20-32-C65100-0599

USER'S MANUAL

KS32C65100
32-Bit RISC
Microprocessor
Revision O

AL

ELECTRONICS

KS32C65100

32-BIT RISC
MICROPROCESSORS
USER'S MANUAL

Revision O

s Ui g

ELECTRONICS

Important Notice

The information in this publication has been
carefully checked and is believed to be entirely
accurate at the time of publication. Samsung
assumes no responsibility, however, for possible
errors or omissions, or for any consequences
resulting from the use of the information contained
herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of
any product or circuit and specifically disclaims any
and all liability, including without limitation any
consequential or incidental damages.

KS32C65100 RISC Microprocessors
User's Manual, Revision0
Publication Number: 20-32-C65100-0599

© 1999 Samsung Electronics

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all
claims, costs, damages, expenses, and reasonable
attorney fees arising out of, either directly or
indirectly, any claim of personal injury or death that
may be associated with such unintended or
unauthorized use, even if such claim alleges that
Samsung was negligent regarding the design or
manufacture of said product.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior

written consent of Samsung Electronics.

and objectives.

Samsung Electronics' Microprocessor business has been awarded full ISO-
14001 certification (BSI Certificate No. FM24653). All semiconductor products
are designed and manufactured in accordance with the highest quality standards

Samsung Electronics Co., Ltd.

San #24 Nongseo-Lee, Kiheung-Eup
Yongin-City, Kyungi-Do, Korea
C.P.O. Box #37, Suwon 449-900

TEL: (02) 760-6530, (0331) 209-6530
FAX: (02) 760-6547
Home-Page URL: Hittp://www.samsungsemi.com

Printed in the Republic of Korea

Preface

The KS32C65100 RISC Microprocessor User's Manual is designed for application designers and programmers
who are using the KS32C65100 RISC Microprocessor for application development. It is organized in two main
parts:

Part1 Programming Model Part Il Hardware Descriptions

Part | contains software-related information to familiarize you with the RISC Microprocessor's architecture,
programming model, instruction set, memory structure, and special function registers. It has five chapters:

Chapter 1 Product Overview Chapter 4 Address Spaces
Chapter 2 Programmer’s Model Chapter 5 Special Function Registers
Chapter 3 Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to KS17C80064/C80013/F80013 with general product
descriptions, as well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, “Programmer’s Model,” describes the important feature of the KS17C80064/C80013/F80013
programming environment.

Chapter 3, "Instruction Set," describes the features and conventions of the instruction set used for all KS17-series
RISC Microprocessors. Several summary tables are presented for orientation and reference. Detailed
descriptions of each instruction are presented in a standard format. Each instruction description includes one or
more practical examples of how to use the instruction when writing an application program.

Chapter 4, "Address Spaces," describes program and data memory spaces, the internal register file, and register
addressing.

Chapter 5, "Special Function Regsiters," contains overview tables for all mapped system and peripheral control
register values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-
read, alphabetically organized, register descriptions as a quick-reference source when writing programs.

A basic familiarity with the information in Part | will help you to understand the hardware module descriptions in
Part Il. If you are not yet familiar with the KS17-series RISC Microprocessor family and are reading this manual
for the first time, we recommend that you first read Chapters 1-3 carefully. Then, briefly look over the detailed

information in Chapters 4, and 5. Later, you can reference the information in Part | as necessary.

Part Il "hardware Descriptions," has detailed information about specific hardware components of the
KS17C80064/C80013/F80013 RISC Microprocessor. Also included in Part Il are electrical, mechanical, and MTP.
It has 14 chapters:

Chapter 6 System Reset and Power Mode Chapter 13 PWM

Chapter 7 Clock Circuits Chapter 14 Remocon Receive

Chapter 8 Interrupts Chapter 15 4-Bit Analog-to-Digital Converter
Chapter 9 I/O Ports Chapter 16 On-Screen Display (OSD)
Chapter 10 Real Timer Chapter 17 Electrical Data

Chapter 11 Basic Timer & Watchdog Timer Chapter 18 Mechanical Data

Chapter 12 16-Bit Timers Chapter 19 KS17F80013 MTP

Two order forms are included at the back of this manual to facilitate customer order for
KS17C80064/C80013/F80013 RISC Microprocessors: the Mask ROM Order Form, and the Mask Option
Selection Form.

You can photocopy these forms, fill them out, and then forward them to your local Samsung Sales
Representative.

KS32C65100 RISC MICROPROCESSOR iii

Table of Contents

Chapter 1 Product Overview

INEFOAUCTION. ...ttt
FRALUIES ...ttt ettt e e e e e e e e e e e e r s
= aTod Jql B IT= To] = 1 4 [P T PP PPPTPTPPN
L NS To T] 0 =T o TP
L I T Tox 01T o PPN
KS32C65100 Special FUNCLON REGISIEIS. .. .uuuutiiiiiiiiiiiiiiiiiiiieiiiiibbbbbbbebebbebebe bbb eee bbb bbb bbebeebbebeeeeerereeenes

Chapter 2 Programmers Model

L@V YT TR
PrOCESSOr OPEIALING STALES .. .uuuutttitttitttiiittittebebebbbbbeb bbb bbb bbb bbb e e e e e e bbb b e bbb bbb e e b b e bt e e s e s b et e e e st e e b b bbe e eebbeebneenes
(o] T o IS = (T
MEMIONY FOIMMIALS ...ttt ettt e e ettt e et e e et e e e e e e e e e e e e e e e s e nn e e e e e e ennnnanas
=T To B = g o [T T I o] 40 = TP
[T = oo [E LI o] 1 = PPN
INSTIUCHION LENGIN c.coiiiiiiiiii
OPEIALING IMOUES ...
=T8RS (= £ PPN
The Program Status REQISIEIScooiiiiiiiii
Ly Cod =T o) 1o o PPN

=T

Chapter 3 Instruction Set

INSIIUCLION SET SUMIMAY.....ciiiiiiiiiiiiiiiii i
FOMMAL SUMIMAIY ..ot e e e e e e e e e e e et e e e e e e e enrr e as
INSIFUCTION SUMMEBIY .oeiiiiiiiiiiiiiiiie s

The Condition FIEld ...

Branch and EXCRANGE (BX).......uuuuuuuuuuuuuuttuttuuututtttustaeetsteseasesssssssesssssssssesssessesss e e esseeesesssseseesebbsessessbsbesenes
INSEIUCEION CYCIE TIMES ..ciiiiiiiiiiiiiieeee
ASSEMDIET SYNTAX ..eeiiiiiiiiiiiiiiii
USING R1L5 AS AN OPEIANG. ... uuttttiiiitiitiittittieietebbbbeeeeeeeee bbb e e e e e e e e e e e bbb e e e e e ee e b e e s e e e s ses e s bsseeebbbbbbbbbneenes

Branch and Branch With LinNK (B, BL)uuuuuuuuuuiiiiiiiiiiiiitiiiiiiiiieiieieeeeseeseeeeeeeseseseeseeeeseseeseeeseseeeeeeseeseeeene
TRE LINK Bit...c oo
INSEIUCEION CYCIE TIMES ittt
ASSEMDIET SYNTAX .eeiiiiiiiiiiiiiiii i

KS32C65100 RISC MICROPROCESSOR

Chapter 3 Instruction Set(Continued)

Data PrOCESSING....cci i 3-8
CPSR FIAGS .ottt 3-9
S 0111 TSP 3-10
Immediate OPErand ROTAIESccooi oo 3-14
WIHEING TO RS .o 3-14
USING R15 AS AN OPEIANG......ccoiiiiiiiiieee e 3-14
TEQ, TST, CMP @and CMN OPCOUESuuuuiiiieiiiiiiiiiiiaieeeeeeeetiiisaseeeaeeeetaesaaseeeseeeassnnaaeaeeeeeesnrnnaaaeees 3-14
INSIIUCTION CYCIE TIMES ..o 3-14
ASSEMDIEE SYNTAX ... 3-15

PSR Transfer (MRS, MSR)oooiiiii 3-16
Operand RESHICHONSciiiiiiiiiiiiii 3-16
RESEIVEA BilS.. .o 3-18
INSIIUCTION CYCIE TIMES ..o 3-18
ASSEMDIEE SYNTAX ... 3-19

Multiply and Multiply-Accumulate (MUL, MLA)cooiiiii 3-20
L@ 2T o B T o LSRR 3-21
INSIIUCTION CYCIE TS ..o 3-21
ASSEMDIEE SYNTAX ... 3-21

Multiply Long and Multiply-Accumulate Long (MULL,MLAL) ...ttt 3-22
Operand RESIICHONSciiiiiiiiiiiiii e 3-22
L@ 2T o B T o LU PRPRP 3-23
INSIIUCTION CYCIE TIMES ..o 3-23
ASSEMDIEE SYNTAX ... 3-23

Single Data Transfer (LDR, STR).....cuuiiiiiiiiii 3-24
Offsets and AULO-INAEXINGooiiiiiiiiiiiii 3-25
Shifted RegISIEr OffSEL...ciiiiiiiiiiiiiiii 3-25
BYLES AN WOITS ... 3-25
USE OF RIS .. 3-27
Restriction On The Use 0f BaSE REGISIEI........ccoiiiiiiiiii 3-27
Data ADOITS ... 3-27
INSIIUCTION CYCIE TIMES ..o 3-27
ASSEMDIEE SYNTAX ... 3-28

Halfword and Signed Data Transfer (LDRH/STRH/LDRSB/LDRSH)..........cccccociiiiiiii 3-30
Offsets and AULO-INAEXINGcoviiiiiiiiiii 3-32
Halfword LOad and STOTEScooiiiiiiiiiiee e 3-32
Signed Byte and HalfWord LOAASccoiiiiiiiiiiiiiii 3-32
Endianness and Byte/Halfword Selection..............oooviiiiiiii 3-32
USE OF RIS .. 3-33
Data ADOITS ... 3-33
INSIIUCTION CYCIE TS oo 3-33
ASSEMDIET SYNTAX ..o 3-34

vi KS32C65100 RISC MICROPROCESSOR

Table of Contents (continued)

Table of Contents (continued)

Chapter 3 Instruction Set(Continued)

BlOCK Data TranSEr (LDIM, STIM)uuuuuuuuuuuuuuueetueututtutetstetteseeesseeseeseseessesessssssesseeesessseeeessessseessbesssbessesessenes 3-36
THE REQISTEE LIST ... 3-36
AAAIESSING MOUEScoiiiiiiiiiiii i 3-37
AAAreSS ANIGNIMENT ...ciiiiiiiiii i 3-37
LWL T o B I TSI S =T PP PPPPTTPPPPNS 3-39
USE Of RLS AS THE BASE ...uttttittiiiiitiiiiiiiiiiiitietbtbbbbbeeeeeee bbb bbb bbb bbbt s et et s ettt ettt bbbt bbb bbb e b neeenee 3-39
Inclusion of The Base In The RegISIEr LiSt..........couuiiiiiiiiii 3-40
(T2 1= Y o 1o] 4 £ PP PPPTPPPPNS 3-40
INSEIUCEION CYCIE TIMES ..ottt 3-40
ASSEMDIET SYNTAX .eeiiiiiiiiiiiiiiii i 3-41

SINGIE DAA SWAP (SVVP) ..o 3-43
YT oo T o T o LTS 3-43
LU ST o) L PP PPPTPPPPNS 3-43
(= 1= Y o 1o] 4 £ PPN 3-44
INSEIUCEION CYCIE TIMES ..ottt 3-44
ASSEMDIET SYNTAX ..eeiiiiiiiiiiiiiiii 3-44

SOWEAIE INTEITUDL (SWV) e 3-45
RELUIN FIOM THE SUDEIVISON .. .uutttttiiitiittittiittttbtbebbbebebbb bbb bbbt bbb bbb e bbb bbb bbb bbebebbbbnebeees 3-45
COMMENT FIEIA. ... 3-45
INSEIUCEION CYCIE TIMES ..ottt 3-45
ASSEMDIET SYNTAX .eeiiiiiiiiiiiiiiii 3-46

Coprocessor Data OPerationS (CDP)ccoooooioooooeeeee e 3-47
(O] o] oo S1ST o] gl 1 £] 10T 1o =PI 3-47
The CoproCesSOr FIElS.........oooviiiiiii 3-48
INSEIUCEION CYCIE TIMES ..ottt 3-48
ASSEMDIET SYNTAX .eeiiiiiiiiiiiiiiii 3-48

Coprocessor Data Transfers (LDC, STC) .oiiiiii oo 3-49
The CoproCesSOr FIElS.........cooiiiiiiii 3-49
AAArESSING MOUEScoiiiiiiiiiiii 3-50
AAAreSS ANIGNIMENT ...coiiiiiiiii i 3-50
L0 ST o) L PPN 3-50
(= 1= Y oo] £ PP PPTTPPPPNS 3-50
INSEIUCEION CYCIE TIMES ..ottt 3-50
ASSEMDIET SYNTAX ..eeiiiiiiiiiiiiiiie i 3-51

Coprocessor Register Transfers (MRC, MCR).....coooiiiiiiiiii e 3-52
The CoproCesSOr FIElS........coooviiiiiii 3-52
Transfers TO RLD ... 3-53
Transfers From RIS ... 3-53
INSEIUCEION CYCIE TIMES ..ttt 3-53
ASSEMDIET SYNTAX .eeiiiiiiiiiiiiiiie i 3-53

KS32C65100 RISC MICROPROCESSOR

vii

Table of Contents (continued)

Chapter 3 Instruction Set(Continued)

Undefined INSIIUCTIONoooiiii 3-54
INSITUCTION CYCIE TIMES ..o 3-54
ASSEMDIET SYNTAX ... 3-54

INSIIUCTION SEE EXAMIPIES ... 3-55
Using The Conditional INSIIUCLIONS.coiiiiiiiii e 3-55
Pseudo-Random Binary SeqUeNnCe GENETALONccuuviiiiiiiiiiieieeeee e 3-57
Multiplication by Constant Using The Barrel Shifter ... 3-57
Loading A Word From An Unknown AlIGNMENT ... 3-59

THUMD INSTIUCHON ST FOIMAL.uttttittttiiiiittittb bbbt bt bbb bbb e e e e e b bbbbbebbbbeees 3-60
FOIMAL SUMIMAIY ...ttt e et e et e e e e et e e e e nr e n e e e e e e e ennnaaas 3-60
OP COUR SUMMEBIY .ttt 3-61

Format 1: Move Shifted REQISIENoooiiiiiii 3-63

Format 1: Move Shifted REQISIENcooiiiiiiii 3-63

Format 2: ADA/SUDIIACT.cooiie 3-64

Format 3: Move/Compare/Add/Subtract IMmediate ... 3-65

Format 4: ALU OPEIatiONSccooiiiiiiiiiieee e 3-66

Format 5: Hi-Register Operations/Branch EXChange ... 3-68

Format 6: PC-RElAtiVE LOAcoooiiiiiiiiii 3-71

Format 7: Load/Store With Register OffSEtoovviiiiiiiii 3-72

Format 8: Load/Store Sign-Extended Byte/HalfWord ... 3-74

Format 9: Load/Store With Immediate OffSet..........ccoiviiiiiiiiiii 3-76

Format 10: Load/Store HalfWOrd ... 3-78

Format 11: SP-Relative LOAA/SIONEcooiiiiiiiiiii 3-79

FOrmat 12: LOA AQAIESS......cooiiiiieeeee e 3-80

Format 13: Add Offset TO Stack POINTETcooiiiiiiiii 3-82

Format 14: PUSh/POP REQISIEIScooiiiiiiiiiie e 3-83

Format 15: MUltiple LOGO/STOTe.......ccooviiiiiiie e 3-85

Format 16: Conditional BranChcoooiiiiiiiiii 3-86

Format 17: SOftWare INTEITUPLooiiiiee e 3-88

Format 18: Unconditional BranCh...........coooiiiiiiiiiii 3-89

Format 19: Long Branch With LiNK..........coooiiiiiiii 3-90

INSIIUCTION S EXAMIPIES ... 3-92
Multiplication by A Constant Using Shifts and AddS ... 3-92
General PUrpose SIgNed DiVIOE........couiiiiiiiiiiiii 3-93
DiViSION DY A CONSTANT ..o 3-95

viii KS32C65100 RISC MICROPROCESSOR

Table of Contents (continued)

Chapter 4 System Manager

L@V YT T
System Manager REGISIEIS (SIMR)o
System Register Address Configuration Register (SYSCFG).......ooooiioiiiiieeeeeen
R @ 1Y I OTe] gl fo] B =T oI (=] PPN
SRAM CONIOl REGISIEIS. ..o
(B YN oo gl o] I =T oIS (=] £ PPN
DRAM RefreSh CONIOI REGISTETuuuuiiiiiiiiiiiiiitiiieiittibbbbbbbbbbbbe bbb bbb e bbb bebeeebebeeeeeeeees
Extra Bank ACCESS CONIIOI REGISIEISuuuuiiiiiiiiiiiiiiiiiiiiiiiiiibiibbbbbbbbbee bbb bbb bbbebeeeeebebeeeeeenes
A.C Electrical CharaCteriStiCSciiiiiiiiiiiiiii

Chapter 5 Cache Controller

L@ 1Y 11 P
L0 Tod d T @ 1= =1 1T o PPN
(O 1ot L @] a1 0] I 2 L= 1] (= = PN

Chapter 6 Derasterizer

(@Y= VAT T
[0] =1 1[0 o [T
Shift Control RegiSter (SFTCON) ..o

Chapter 7 General ADC

OV BIVIBW ...ttt ettt et et e e ettt e e et e e e ettt e e e e ta e e e e ta e e e ettt e e e e ba e e e s ba e es e bt eesabaneesstaeessranaeeesras
U I ONS . ..ttt e e ettt e et e e et e e e e et e e e et ee e et e e eata e e e et e aeat e aertaaaaes
SAR (Successive Approximation Register) A/D Converter Operationuueeevieeeeveeeiiiniineeneennns
Comparator (COMP) and DAC (Digital To Analog CONVEIE)........cuuuuiiieeeiieeeiiiiiee e eeeeeiiieeeeeeneeeens
Y o=t o oL =T 0[] (= PPN

Chapter 8 Timer
L@ YL YT N

Timer CoNtrol REGISIENcco i
Timer Count Value REQISIENcoooiiiiie

KS32C65100 RISC MICROPROCESSOR

Table of Contents (continued)

Chapter 9 DMA
OVEIVIBW ...ttt 9-1
DIMA OPEIALION.....ceiiiiiee e 9-2
Data Transfers MOUEcooo i 9-3
General DMA CONtrol REGISIETcoiiiiiiiiiiiiii 9-5
GDMA Source/Destination Address REGISTENcoviiiiiiiiiiiiiii 9-8
CDMA CONIOI REISTEN ...ceiiiiiiiiiiiiiiieeeeee e 9-9
Chapter 10 Parallel Port Interface
OVEIVIBW ...ttt 10-1
KS32C65100 PPIC Operating MOUEScooviiiiiiiiiieee e 10-2
PPIC SPeCial REISIEIS.....ccc i 10-5
Parallel Port Data REQISIENccooiiiiiiiie e 10-5
Parallel Port Status REGISTEN........coiiiiiie 10-6
Parallel Port ACK Width REGISIENcooviiiiiiiii 10-9
Parallel Port Control REJISIENoooiiiiii 10-10
Parallel Port Interrupt Event Registers (PPINTEN, PPINTPND)........ccccoiiiiiiiii, 10-14

Chapter 11 UART

OVEIVIBW ...ttt e e e e e 11-1
UART OPEIALION ..o 11-2
UART SpecCial REISIEIS ... 11-6
I aT Lo =T | =T a PP PTPPRTRPTIN 11-15
Chapter 12 Tone Generator
OVEIVIBW ...ttt e e e e e 12-1
Tone Generator Data REQIStEr (TONDATA) .. .uuuuuutttitiiiteitttttebeeebbebbeebb bbb eeererreerrees 12-1

Chapter 13 Watchdog Timer

OVEIVIBW ...ttt 13-1
Watchdog Timer COUNIEN REGISIET .. .o 13-2
Watchdog Timer CoNtrol REGISTELcooo e 13-3

X KS32C65100 RISC MICROPROCESSOR

Table of Contents (continued)

Chapter 14 I/O Ports

L@V YT TR 14-1
1/O POIt SPECIAl REGISIEIS.ciiiiiiiiiiiiiii i 14-1
1/O POIt MOOE REGISIETciiiiiiiiiiiiiiiiiee 14-3
INPUL POIt MOOE REGISIETciiiiiiiiiiiiiiii 14-3
OULPUL A POIt MOOE REGISIET ... 14-4
OUPUL B POIt MOOE REGISIET ... 14-4
/O POIt Data REJISIEN ...cceiiiiiiiiiiiiiiiee 14-5
INPUL POIt DAt REGISIETccviiiiiiiiiiiiie 14-5
OULPUL A POt Data REGISIET ... 14-6
OUPUL B POt Data REGISIEI ... 14-6
TSt CONLIOI REGISIEN ... 14-7
External INterrupt CONTIOl REGISTETuuuiiiiiiiiiiiiiiiiiiiiibibbb bbb bbb eebbeebeebeeeneeees 14-8
TESEPIN SEUING ..o 14-8
Chapter 15 Interrupt Controller
L@V YT T 15-1
INEEITUDE SOUICES ...ttt ettt e oo et e e e e s e e e ettt e e e e e s e e e e e e e e bE b na e e e e e eesnnaaneeeeeeenn 15-2
SPECIAI REGISTEN ..o 15-3

Chapter 16 LF Motor

L@V YT TR 16-1
SpeCial FUNCHON REGISTEI ... 16-1
Line Feed MOtOr CONIOI REGISTETuuuuuuuiiiiiiiitiiiteiiiiibbbbbbbbbbbbbbe bbb ebeeeebbbeeeeeeeees 16-1
Line Feed Motor Phase CONtrol REGISIETuuuuiiiiiiiiiiiiiiiiiiiiiiiiieiibibibebbebbbeebebeeeebeeeebebeeeeeeeeeeeeerenee 16-3
[T oY= B] =T gl E =T 11 =T PPN 16-4
[610] N == Yol o o] g 10 I 2=] (= PP PPPTPPPPNS 16-5
Phase State and Current Table For Full/Half/Quarter Step MOdeuuvviviiiiiiiiiiiiiiiiiiiiiiiiiiiinnns 16-6

Chapter 17 CR Control

L@V YT T 17-1

SpeCial FUNCHON REGISTEI ... 17-3
CR PV TiMIBr oo 17-8
(= gLt To (=T g @0 U1 o= PP TPPTPPPPNS 17-9
INtErrUPL INTEIVAI COUNTET ..oiiiiiiiiiiiiiiiiie 17-10
Suggestions For Carrier Motor Drive F/W DESIONcoooeeeeieeeeeeeeeee e 17-11

KS32C65100 RISC MICROPROCESSOR

Table of Contents (continued)

Chapter 18 CR Fire

OVEIVIBW ...ttt e e e e e 18-1
Special FUNCHON REGISTEToiiiiiiiiiiiiiiii 18-2
Position & Fire Control REJISIET........cooiiiiiiii 18-2
CR Position and Fire Control REGISTENcouiiiiiiiiiiii 18-3
SUQGGESHIONS FOI F/MW DESIGN ..coeiiiiiiiiiiiiiiiie e 18-4

Chapter 19 Print Head

OVEIVIBW ...ttt 19-1
Special FUNCHON REGISTEToiiiiiiiiiiiiiiii 19-1
Print Head Control REGISIETcoo i 19-1
Fire Enable Timer/Observation REQISTEr...........cooviiiiiiiiii 19-3
Fire Window Timer/Observation REQISTErcovviiiiiiiii 19-3
Fire Strobe Delay Timer/Observation REQISLErccoovviiiiiiiiii 19-4
Pre-Heat Pulse Timer/Observation REQISLErcooviiiiiiiiii 19-5
Pre-Heat Delay Timer/Observation REgISIErooviiiiiiiiii 19-5
Printhead Observation REQISIENooiiiiiiiii 19-6
Front and Back End Delay Counter REGISIEN..........couiiiiiiiiiiii 19-7
Print Head Data WOord REQISIENooiiiiiiiiiie 19-8
DOt COUNEN REGISIE ... 19-9
Dot Counter Control ObServation REQISTENccuiiiiiiiiiiii 19-9

Chapter 20 HDMA

OVEIVIBW ...ttt 20-1
HDMA SpecCial REJISIEIS.....ccoiiiieiieeeeeee e 20-1
HEAD DMA CONtrol REGISTENccoiiiiiiieie e 20-1
HDMA Source AddreSSs REGISIENcoiiiiiiiiieeeee e 20-4
HDMA Transfer CouNt REGISIENcooiiiiiiiiiie e 20-4
HDMA Source/Match ADR REGISIEI........ccoiiiiiiiii 20-5

Xii KS17C80064/C80013/F80013 MICROCONTROLLER

Table of Contents (continued)

Chapter 21 Image Processor

L@V YT TR
Image Processor Special REGISIEIScuiiiiiiiiiiii
Sensor Shift Clock CONErol REGISIETcooe oo
Sensor S| CloCK CoNrol REGISTEN ...
Sensor R (GB) Led CONrol REGISTENccoo oo
IWIN CONIOl REGISIET ..cceiiiiiiiiiiiiiiieee
Changed IWIN CONtrol REGISTETcoo oo
MAG/RED Ratio CONIOI REJISIETuuutitiiitiiiiiiiiitetitiibbbbbbebbbbbbbbebbbe bbb eeeb bbb ebbbbebebbeeebbbbeeererees
LAT (Local Adaptive Threshold) CoNntrol REQISIENuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiieieiiereeeieeeeereeeeeeeeeereeeeee
ADC CONLIOI REGISTEeiiiiiiiiiiiiiii e
Operation CONIOl REGISIETo
SRAM CONIOl REGISIET ..o
SRAM DAt REGISTET ...
[(e g =T g g @] g1 fo] l aY=To L] 1= PP PPPPPTPPPPNS
MOLOr PRASE CONIOI REGISTEN uutttiiiiiiiiiiitiiebtbbbebbbbbbbe bbb bbb bbb bbb bbb bbb b e bebeeebbebbeeeees
Black Shading Correction FACtOr REQGISTENuuuuuuiiiiiiiiiiiiiiiiiiiiiiiibbbbbibbbbeeebbebebeb bbb eebeeeeeeeeereeee
RNCTo (U Toin o) g IR Y F=To [a1 Tor= 1o o TR PPN
(DT [1e=1 ST gtTe [1aTe I Lo ¢ £=Tox i o] o HA PPN
1= 100100 F- W Ofe] ¢ (=Tt i o] o TR
=TT =T g2 (o] o PP PPPPPPPPNS
ADC CONIIOL ittt
[1 (o T g @o] o1 1 (o PP PPPTTPPPPNS
LT oIS (T g == Lo AT (PP TPPPPPPNS
DIMA OULPUL ...ttt s oo et et e e e s e e e e et e e e e e e s e e e e et e e e e b rn e e e e e e e e nrrna e as

Chapter 22 Real Time Clock

L@ YT YT T
[T T I T I 1=l o =T - (o TP SPPPPPPPTPT
System POWEr OPEAtiON (F5V) ..o
o To B o 2 F L =T VA @] o T=T = Vi o] o H PPN
Y= U T T O [Tod S =T 0 L] (= PPN
R O 0L @ I I LT 11 =] PP PPTRPPPNS
21O S =l O 0o 10 1 (=T gl =T [(] PPN
BCDMIN COUNTEE REGISTETtuttittiitiiitiitiittbtteebebbbbbbebeeee bbb bbb bbb e e e e e e bbb e e b b e e e b e e e e see e b bbb bbbebbbbbbbeneenes
BCDHOUR COUNTET REQISTEN ... uuttttititiitiitiitiittttttbtbtbbbbbbbbeeeeeeeeebebee bbb e bbb bbb bbb e e b bbb bbsbeseseebbbeebeeeees
BCDDAY COUNTET REGISTEI ... tuutttttttiiitiittitiiteeetbbbbbbbeeeee bbb bbb bbb e bbb e s bbb bbb e bbb bbb b e bbb s ee e e bbb s e eeebbbbbbbeesenes
21O BN N O o 10 o] (=] gl =T] (= PPN
BCDMON COUNTET REQGISTEI ... uutttttttiiitiittiittttettbebbbbbbeeeeb bbb bbb bbb bbb e bbb bbb bbb bbb e b e e e bbb e bbb s ebbbebbbbbbnebenes
BCDYEAR COUNET REGISTEuuuttttttitiitiittitiititieebtbebtebssbsesebbeebeeeeeeesesee b e e s e bbb s e b e s e e e e b bbb sbbesseeesebbeeeeeenes

KS32C65100 RISC MICROPROCESSOR

Xiii

Table of Contents (concluded)

Chapter 23 Clock Save and PLL Control

OVEIVIBW ...ttt e e e e e 23-1
REGISIEIS ... 23-1
CLKSAVCON REGISIEN ...ceiiiiiiiiiiiiiiiieee ettt 23-2
PLLCON REGISIEN ... 23-2

Chapter 24 LSU Control

T e e (¥ ol 1To] o I 24-1
Main INPUI/OULPUL SIGNAIS......cooiiiiiiie 24-2
SPECIAI REGISTEN.....ciiiiiiiiiiiiii i 24-3
LSU_CON CONrol REGISIENcceeeiiieeeeeeeeee e 24-3
V_Window Start/ENd TiMe REQGISTETuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiebbiieeeeebebeebeeebeebebe bbb beeeeeereeeeeeenrree 24-4
LD_ON Pre/Post TIME REQISIENccoiiiiiiiiiii e 24-4
V_Window Counter ODSErvation REQISIEIuuuuuuuiuriiiiiiiiiiiiiiiieiiiiibebebeeeeebe bbb 24-5
LSU Motor Clock Generation Counter REJISTENouiiiiiiiiiiii 24-5
Chapter 25 Printer Interface Controller
OVEIVIBW ...ttt 25-1
Page Image Data FetCh OPEration.............ooiiiiiiiiiiiiii 25-2
PHNE OPEIALION ..o 25-4
PIFC Special REGISIEISo 25-5
PDMA and Engine Interface Status ReQISIEr..........ooviiiiiiiiiii 25-5
VA To [=To I @fo] g1 (o] I mL=To £ (= TP 25-6
Pattern Control REGISIENcooi i 25-8
Printer Dma Control REGISTETooi i 25-11
R R =T e LI (T I (] TP 25-13
Left Margin REGISTENoooiiiieeeee e 25-14
PixXel COUNE REGISTET ... 25-14
Queue 0/1 Start AdAreSS REGISIEISciiiiiiiiiiiiii 25-15
Queue 0/1 Transfer CoUNt REGISTEIS........ciiiiiiiiiiiiii 25-16
F-g Lens Compensation Control REQISTENouiiiiiiiiiii 25-17
F-g Compensation Table Start AQArESScooviiiiiiiii 25-18
F-g Compensation Table Data REQISTENcooiiiiiiiiiiii 25-19
TONEr COUNEET SEHNG REQISTETuuutuiiiiiiiiiitiiieeitetbbbbbbb bbb bbb bbb bbb bbb bbb bbb bbbebbebeeeeeesbeeeees 25-19
TONEE COUNT REGISTETtttttttttittiittittttbeetbe bbb bbb bbb ettt bbbttt ettt ettt ettt ettt sttt b bbb e ne e 25-20

Xiv KS17C80064/C80013/F80013 MICROCONTROLLER

Table of Contents (concluded)

Chapter 26 Variable Image Scailing

L@ YT YT T
ALGOTTTNIM ..
EXAMPIE OFf VIS OPEIATIONuuutttititiiitiitiitiittitbbbbbbbbbebebb bbb bbb bbb e bbb bbb s bbb s e s eebebbbeebebbbbbbebeeeenes
[F= 100 1 o PPN
SPECIAI REGISTEN ..o

Chapter 27 PWM Timer Control

INEFOTAUCTION. ...ttt
MaiN INPULY/OULPUL SIGNAISvvtiiiiiiiiiiiiiitiieeibiiebbbbbbb bbb bbb bbb e bbb bbb bbb e bbbbbbbeebeeenes
SpeCial FUNCHON REGISIEIo

Chapter 28 Mechanical Data

Lo o] = Vo TN D 1=] T LU

Chapter 29 Evaluation Board

INEFOTUCTIONceiiiiiiiiiiii e
SYSIEM REQUINTEIMEINTS ...
(2 ToF= 100 I @Te g gT 0o] =T o] €T PPN
2T 0To 1 oo IS YA (=] o PP PPPTTPPPPNS
EMbeddedICE UNIt INSTAIALIONuuttiiiiiiiiiiiiiiiiiiieibibbebbbebbebbbbbb bbb bbb bbbebbbebebeesbbseeneees
(= gal o =To (o L=To | [@F =Rl o1 PPN
Connecting KS32C65100 Evaluation Board and PC..........cooooiiiiiiiiii
Powering Up The Board and EMbeddedICEuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiirieeieieeeeeeeeeeeeeereeeeeee
Debug Application With EMDEdUEUICEuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeee e
SWitCh and JUMPETS DESCIIPION ...

KS32C65100 RISC MICROPROCESSOR

XV

List of Figures

Figure Title Page
Number Number
1-1 KS32C65100 BIOCK DIBJIAIM ...uvvvviiiiiiiiiiiiiiiiiitiiiisiiiseeeeebesieebeeeessbeeeeeeseesseeeseeeeeeeeeees 1-4
1-2 LT NS To | 0] 01T £ TP TPTRTTPPRN 1-5
2-1 Big-Endian Addresses of Bytes Within WOIdSuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiin, 2-2
2-2 Little-Endian Addresses of Bytes within WOrdsuuviviiiiiiiiiiiiiiiiiiiiiiiiiiiinn, 2-2
2-3 Register Organization in ARM SEALEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeerieeeeeeeeeeeeee e 2-4
2-4 Register Organization in THUMB SEateuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieenienns 2-5
2-5 Mapping of THUMB State Registers onto ARM State Registers.........cccccceeevieeernnnns 2-6
2-6 Program Status RegiSter FOIMALuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeieeeeeeeee 2-7
3-1 ARM INSLrUction Set FOrMALccoviiiiiiiiiiiiiii 3-1
3-2 Branch and EXchange INSIIUCHIONSuuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiirieeeeeeeeeeeeeeeeeeeee 3-4
3-3 BranCh INSIIUCTIONSuuuuttiiitiiiiiiiiibibbieiee bbb ebbebebeeeneeees 3-6
3-4 Data Processing INSIUCHIONSuuuuuiiiiiiiiiiiiiiiiiitiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeereenee 3-8
3-5 ARM Shift OPerationS.........ccouiiiiiiiiiiiii 3-10
3-6 (oo [Tor= LIS 11 = PP TPTRTTRPRRN 3-10
3-7 [T o o= 1 ISy 111 S o] o PP PTTTPTRTPRPRPRN 3-11
3-8 Arithmetic Shift RIGNT ... 3-11
3-9 [RNe 1 F= L3N o] o | TP 3-12
3-10 Rotate Right EXIENAEAuuuuiiiiiiiiiiiiiiiiiiiiiiiibiiiibbibbebeebbebeebbeeeeebebbeeeebeeeeeeeeeeeeeeeeeee 3-12
3-11 LS I =10 1 =T PPN 3-17
3-12 MUIEIPIY TNSTIUCTIONS ... vttt b bbb eebeneeeeeees 3-20
3-13 MUIEIPIY LONG INSIFUCTIONS ...uvtitiiiiiiiiiiiiiietiiebbieb bbb eeeeeeeeeeeeeee 3-22
3-14 Single Data Transfer INStrUCHONS........cooooi oo 3-24
3-15 Little-Endian OffSet AAArESSINGuuurrrrrruriiiiiiiiiiiiiiiiiiiieiiireeeeeeeeaereeeeeeeeeeee s 3-26
3-16 Halfword and Signed Data Transfer with Register OffSet..............uuvvvviviiiiiiiiiiiiinnnns 3-30
3-17 Halfword and Signal Data Transfer with Immediate Offset and Auto-Indexing 3-31
3-18 Block Data Transfer INSIIUCHIONSuuuuriiiiiiiiiiiiiiiiiiiiiiiiiiibbbbiebebbbeeeeeeeeeeeeeeeeeeereeeee 3-36
3-19 POSE-INCrEMENT AQUIESSING. .. .uvvvevuiitirtittitietiiieteitbbebebbebeebeaebeeee bbb bbb ebebebeebreeerreeees 3-37
3-20 Pro-InCrement AQAreSSINGuuuuuuuiieiiiiiiiiiiiiiiiiiiibeebbebebebb bbb eeeereeeee 3-38
3-21 POSt-Decrement AQArESSINGuuuuuuuuuereiititeiiiiieietiubreeeeeeeeeeeeeee bbb 3-38
3-22 Pre-DecremMent AQUIESSING.uuuuuuuuuererrriuriiteuuirreereueeeeeeeaeeeeeee e 3-39
3-23 SWAP INSITUCTION ... 3-43
3-24 Software INterrupt INSTIUCTION........cooie i 3-45
3-25 Coprocessor Data Operation INSIIUCLIONcoooveeeiieeeeeeeeeee e 3-47
3-26 Coprocessor Data Transfer INSIrUCHONSooooeeeieeee e 3-49
3-27 Coprocessor Register Transfer INStruCtioNSooooveveeiiie e, 3-52
3-28 UNAefiNed INSIIUCTIONuuiiiiiiiiiiiiiiiiiiiiieiiib bbb eeeeeeeeee 3-54
3-29 THUMB Instruction Set FOrMALS..........oooviiiiiiiiii 3-60

KS32C65100 RISC MICROPROCESSOR XVii

List of Figures (continued)

Figure Title Page
Number Number
3-30 FOMMAL L. et e e e et e e e e e 3-63
3-31 FOMMAL 2. e e e e e e s 3-64
3-32 FOMMAL 3. e e e 3-65
3-33 FOMMAL 4.t e e e e e e e e s 3-66
3-34 FOMMAL 5. e e 3-68
3-35 FOMMAL ... e e e e e e e s 3-71
3-36 FOMMAL 7. et e et e 3-72
3-37 FOMMAL ...t e e e 3-74
3-38 FOMMAL O e e e e e s 3-76
3-39 FOMMAL L0 e e e e e e e 3-78
3-40 FOMMAL L1, oo e e e e e e e e e e 3-79
3-41 FOMMAL L2, e e e e e e e e e n s 3-80
3-42 FOMMAL L3 et e e e et e e e e e e e e s 3-82
3-43 FOMMAL L4 ... e e e e e e e e e e e e 3-83
3-44 FOMMAL L5, et e e e e e e e e s 3-85
3-45 FOMMAL L6, et e e e e e e e e e e e e e 3-86
3-46 FOMMAL L7t e e e e e e e s 3-88
3-47 FOMMAL 8. e et e e e e e 3-89
3-48 FOMMAL 1. e e e e s 3-90
4-1 System Memory Map (Default Map After ReSet)........ccccviiiiiiiiiii 4-2
4-2 SYSEM MEMOIY IMEP. .. ettt ettt e e e e e eeeees 4-3
4-3 Special Function Register Address Configuration Registerccccccciviiiininnnn. 4-4
4-4 ROM Control Register (ROMCON)ccoiiiiiiiiiiiiiii 4-6
4-5 The Byte Swap Operation of BTU and the Positions of Data in Memory 4-8
4-6 Simple ROM ACCESS TIMINGcciiiiiiiiiiiiiiiii 4-10
4-7 Page Mode ROM ACCESS TIMINGcceuiiiiiiiiiiiiieeeee 4-10
4-8 SRAM COoNtrol REJISTEIS.cciiiiiiiiiiiiiiiii 4-11
4-9 External Address Bus Generation (ADDR[2L:0])ccovvvviiiiiiiiiiiiiiii 4-12
4-11 SRAM ReAd TIMING...ciiiiiiiiiiiiiiiiii 4-13
4-12 SRAM WHIEE TIMING ceeiiiiiiiiiiiiiiiii 4-13
4-13 DRAM Control Registers (DRAMCONO - DRAMCONLIL)ccoovviiiiiiiiiiiiiii 4-15
4-14 DRAM Bank Read Timing (Page MOde)coovviiiiiiiiiiiii 4-16
4-15 DRAM Bank Write Timing (Page Mode) ... 4-16
4-16 DRAM Refresh Control & Memory Configuration Register (DRAM Refresh Control)4-17
4-17 Self Refresh Mode Entry Process by NRESETcccccciiiiiiiii 4-18
4-18 Self Refresh Mode Entry Process by Software.........cccccccciiiii 4-19
4-19 DRAM Refresh TimMiNg......coooiiiiiiiii 4-20
4-20 Special I/O ADAreSS Mapccovviiiiiiiiiii 4-21
4-21 Extra Bank Control Registers (EXtCNtr 0, 1, 2, 3) ..ccovvvivieiiiiiieeieeeiiiciee e 4-22
4-22 Extra Bank Read Timing (tcoh = 1, tacc =4, t€0S = 1, taCS = 2)...cceevvvviiiiiiiiininennnn. 4-23
4-23 Extra Bank Write TiMiNgcoooviiiiiiiiiii 4-23
4-24 An Example of System Manager Register Settings..........ooovevvvviiiiiieee e, 4-25

XViii KS17C80064/C80013/F80013 MICROCONTROLLER

List of Figures (continued)

Figure Title Page
Number Number
5-1 Cache Memory ConfigUuIationooooeeeiieee e 5-2
5-2 CS-Dit SALUS DIagram ... 5-3
5-3 Write Buffer Configuration............ccccoiiiiiii 5-4
5-4 NoN-Cacheable Area REJISIENuuuuiiiiiiiiiiiiiiiiiiiiibiibib bbb 5-5
6-1 Shift CONTIOl REGISIET ... 6-2
6-2 ROtAtioN CONTIGUIALION. uutiiiiiiiiiiiiiibbbbbiieb bbb reeeeeeree 6-2
7-1 Functional Block Diagram of General ADC............uuuuuuiiiiiiiiiiiiiiiiiiieiiiiiieiieeiieeei. 7-1
7-2 ADC Control Register (ADCCON).......cciiiiiiiiiiiiiiii 7-4
7-3 ADC Data Register (ADCDATA)cuttiiii 7-5
8-1 16-Bit Timer BIOCK DIAQIAIMuuuuuuieiiiiiiiiiiiiiiieiiiiiiieeiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 8-1
8-2 Timer Control REGISIENcooiiiiiiiii 8-2
8-3 Timer Count Value ReJISIENcoovviiiiiiii 8-3
8-4 Timer Programming SEQUENCE.........ccoiiiiiiiiiieieee et 8-3
9-1 GDMA/CDMA Unit BIOCK Diagram.......ccooeeeeeeeeeeeeee e 9-1
9-2 External DMA Requests @ SiNglIe MOAEuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiiieeeeneen 9-3
9-3 External DAM Requests @ BIOCK MOEcccovvuiieiiiiiieiiieie e e 9-4
9-4 External DMA Requests @ Demand Mode.............uueiiiiiiiiiiiiiiiiiiie e e e 9-4
9-5 GDMA CONLIOl REGISIEN ... 9-7
9-6 GDMA Source/Destination Address ReQISTErcoovvvvveviieeeee e 9-8
9-7 GDMA Transfer CouNt REGISTENccooiei oo 9-8
9-8 CDMA CONMIOl REGISTEN ... 9-11
9-9 CDMA Source/Destination Address RegISTErcooveveiieiieeeeeeeeeee 9-12
9-10 CDMA Transfer COUNt REGISTENccoeeieeeeee e 9-12
10-1 Real Timer BIOCK DIAQIAIMuuuuuiiieiiiiiiiiiiiiiiiiiiitiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeereneee 10-1
10-2 Real Time Clock Control Register (RTCON).......uuuuuuuiiiiiiiiiiiiiiiiiiiiieiiierieieeeeiereneeees 10-2
11-1 UART BIOCK DIBGIAIMuutttitiiiiiiiiiiiiiiieesbtaiibiebbbbbbbebbebebebeeseesbbesssbebeseeseeesseeseeeesseseees 11-1
11-2 UART BIOCK DIBGIAIMtttiiiiiiiiiiiiiiiiiititsbtabibbbbbbeebeebsbeeeebesaebesbeesebebeeebsseesseeeeeeeseeeeees 11-2
11-3 UART Data TranSmiSSION PrOCESS.uuuuuuuriiiiiiiiiiiiiiiiiiirinirirnerrernrerereeeeeererees 11-4
11-4 UART Data RECEPLON PrOCESS. ... uuuuuuiiiiiiiiiiiiriiiiiiiiiiiitiittiiiseeeeseeeeeeeeeeeeeeeeeeeeeeeee 11-5
11-5 UART Line Control Register (ULCONO, 1, 2)uuuuiruuriiiiiiiiiiiiiiiieninnnenneeeeeneieeennnenes 11-7
11-6 UART Control Register (UCOND,1,2)uuuuuuuuuirriiiiinniieeennirennnnernneereerreeeeeeneeeees 11-9
11-7 UART Status Register (USTATO0,1,2) . ..uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiinniiieierererereeeeeeeeneees 11-11
11-8 UART Transmit Buffer Register (UTXBUFO0,1,2)cuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieeiineiennnns 11-12
11-9 UART Receive Buffer Register (URXBUFO, 1, 2)uuuuviuiiiiiiiiiiiiiiiiiiiiiiieeiieneiienen 11-13
11-10 UART Baud Rate Divisor Register (UBRDIVO,1, 2)..........uuvvivuiiiiiiiiiiiiiiieiiiiiiieeiinnnns 11-14
11-11 Interrupt-Based Serial I/O Timing Diagram (TX and RX)cccccociiiiiiiiiiiniinnn. 11-15

KS32C65100 RISC MICROPROCESSOR XiX

List of Figures (continued)

Figure Title Page
Number Number
12-1 16-Bit Timer BIOCK Diagram............coooiiiiiiiiiiii 12-2
12-2 TiMEr CONLIOl REGISTETvuuiiiiiiiiiiiiiiiiiiiiibbbebb bbb bbb eebebbbeeeeeee 12-5
12-3 Timer Data Registers (TODATA, T1IDATA, and T2DATA)uuuvrvvirvirmmerireeniieiiniiinnns 12-6
12-4 Timer Count Registers (TOCNT, TLICNT and, T2CNT)uuuvurrrrrmrirriririiieniiieeniennnns 12-7
13-1 PWM Control Register (PWMCON)cooiiiiiiiii 13-3
13-2 PWM Data Register (PWMO, PWML) ... 13-4
13-3 Block Diagram of 14-bit PWM Output UNit............ccvviiiiiiiii, 13-6
14-1 Bi-directional Port Mode Register (GIOPMOD) ... 14-3
14-2 Input Port Mode Register (GIPMOD)coooiiioieieeieeee e 14-3
14-3 Output Port Mode Register (GOPAMOD)coovviiiiiiiiiiiiiii 14-4
14-4 Output Port Mode Register (GOPBMOD)ccovvviiiiiiiiiiiiii 14-4
14-5 Bi-directional Port Data Register (GIOPD)cccoviiiiiiiiii 14-5
14-6 Input Port Data Register (GIPD)oooooooeeeeeeeeeeee e 14-5
14-7 Output Port A Data Register (GOPAD)ccuuiiiiiiiiiiii 14-6
14-8 Output Port B Data Register (GOPBD)cccouviiiiiiiiiiiii 14-6
14-9 Test Control RegiSter (TSTCON) ...uuuuuuuuuiriiiiiiiiiiiiiiieieiiiereereeeeeeeerereeeeeeeere e 14-7
14-10 External Interrupt Control Register (INTCON)........coovviiiiiiiiiii 14-8
15-1 INtErTUPt MOAE REGISTEN ... 15-3
15-2 Interrupt Pending ReGISTENcooo oo 154
15-3 INtErTUPt MASK REGISTET ... 15-5
16-1 LF Motor Control REQISTENcooviiiiiiiiieece 16-2
16-2 LF Motor Phase Control REQISTENccuiiiiiiiiiii 16-3
16-3 LF Motor TImer REQISTEr......cooiiiiiiiii 16-4
16-4 LFCON REQISIEN ... 16-5
17-1 Carrier Motor CoNtrol REGISTENccuviiiiiiiiii 17-3
17-2 Basic Timer Base REQISIErcooiiiiiiiii 17-4
17-3 Pre-step Timer Base ReQISIEN.........covviiiiiiii 17-4
17-4 CR State Control REQISIENccoiviiiiiiiiiiii 17-5
17-5 CRSREG REQISIEIciiiiiiiiiiiiiiiiie 17-6
17-5 PWM Counter Base REQISIEN..........cooviiiiiiiiii 17-8
17-6 Encoder Cycle REJISIENcooviiiiiiiii 17-9
17-7 Interrupt Interval Value RegISIEroooe e 17-10
18-1 Position & Fire Control REJISIET.........covviiiiiii 18-2
18-2 CR COUNt REGISTEN ..coeiiiiiiiiiiiiieee 18-3

XX KS17C80064/C80013/F80013 MICROCONTROLLER

List of Figures (continued)

Figure Title Page
Number Number
19-1 Print Head CONtrol REJISIETuuuuiiiiiiiiiiiiiiiiiiiiiibiibeiiibbbbbbbbbebbeebbbeeeeeebebeeeeeeeeeeeeeeee 19-2
19-2 Fire Enable Timer/Observation REQISTEr...........uuuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiirieeeeeeneeeneeeee 19-3
19-3 Fire Window Timer/Observation REQISTEruuuuruuuiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeieeeieeenes 19-3
19-4 Fire Strobe Delay Timer/Observation REQISTeruuuuuviiiiiiiiiiiiiiiiiiiiiiieiiiieiieenn 19-4
19-5 Pre-Heat Pulse Timer/Observation REQISter............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiinene 19-5
19-6 Pre-Heat Delay Timer/Observation REgISIEr..........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiennn 19-5
19-7 PrintHead ObServation REJISIENuuuiuuiiiiiiiiiiiiiiiiiiiiiiiiiibiiieiebieeeeeeeeeeeeeeeeeeeeeneee 19-6
19-8 Td Delay Counter REGISIENcooviiiiiiiiieee e 19-7
19-9 Print Head Data WOrd REQISTENuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisieieieeeeeeseeeeeeeeeeeeeneneee 19-8
19-10 DOt COUNTEN REGISIET ... uutttiiiiiiiitiiibbebbbbbbbbbb bbb ebb bbb bebbebeeeeeees 19-9
19-11 Dot Counter Control Observation REQISTEr...........uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeieeeeieee 19-9
20-1 HDMA CONIOI REQISTENutttitiiiiiiiiiiiittetbieeebbbbbbbbbbeb bbb bbb ebeeebbeeeeeerees 20-3
20-2 HDMA SOUICE AGAIESS. ... uttttiiiiiiiiiiiiittetbbaeebbbbbbbbbb bbb bbb e b beeeabebbbbbbbebbebbebbeeeeeeerees 20-4
20-3 HDMA Transfer COUNt REQISTENuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieibeeieiebeeeeeeeeeeeeeeeeeeeeeeeeee 20-4
20-4 HDMA SoUrCe/MatCh AQUIESSuuuuiiiiiiiiiiiiiiiiiiiiiiibibibbbbb bbb 20-5
21-1 Image Processor BIOCK DIiagram ... 21-1
21-2 Sensor Shift Clock Control REGISIENccooeeieeeeeeeee e 21-2
21-3 Sensor S| Clock Control REGISTENccooeeeeeeeeeeeee e 21-3
21-4 Sensor R(GB) LED CoNtrol REGISTENcoooeee oo 21-4
21-5 IWIN CONtrol REGISIET ..ccovviiiiiiiiiiiiie 21-4
21-6 CHANGED_IWIN CoNtrol REGISTEIcooi oo 21-5
21-7 Mag/Red Ratio CONIOl REQISTENuuuuiriiiiiiiiiiiiiiiiiiiiiiibiiibbbbeebebbbbb bbb 21-5
21-8 [I @0] 0] I =T] (= TP TTPTRTPRPTRN 21-6
21-9 ADC CONLIOl REGISIENciiiiiiiiiiiiiiiiiie 21-6
21-10 Operation CoNtrol REGISTENcooee e 21-7
21-11 SRAM CONtrol REGISIET ... 21-8
21-12 SRAM DAt REGISIEN ... 21-8
21-13 Motor Term CONtrol REJISTENuuuuiiiiiiiiiiiiiiiiiiiiiiibbbbibbbbbebb bbb 21-9
21-14 Motor Phase CONtrol REQISTENuuuuuiriiiiiiiiiiiiiiiiiiiiiiieibbbibbbbeebebbeeeeeeeeeeeeeeeeereereneee 21-9
21-15 Block Shading Correction Factor REQISTENuuuiviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeieeees 21-10
21-16 Restart & SCAN_ON Timing Diagramuuuuuuuuuuruureiiiiiiiiiniieieeeeereieneeereeree. 21-10
21-17 Reduction Pixel Clock Timing DIiAgramueueeuieeereuuieiiiiiiiienereeiireeeeeeee. 21-12
21-18 Magnification Pixel Clock Timing DIiagramuuueeeeeeuiiimmmeiiiiiiieeeieeeiieriinee. 21-13
21-19 Shading Correction BIOCK DIiagramooooviioiiiieeeeeeeeeee e 21-14
21-20 Gamma Correction BIOCK Diagramcooooooeooooeeeeeeeeeeeee e 21-15
21-21 ADC Control Timing Diagram (CANON)cccoiiiiiiiiiii 21-16
21-22 ADC Control Timing Diagram (DYNA)cooiiiiiiiiiii 21-17
21-23 Motor Interrupt/Phase Timing Diagram............uuuueeueruriiiiiiiiiiiiiiiiiiiiriieieieeeeeeee. 21-17
21-24 Register Read/Write TimiNgG DIagramuuuuuuruuriiieiiiiiiiiiiiieiiiieereeeeeeeeeee. 21-18
21-25 Timing Diagram SRAM Read/Write by Registerccccooiiiii 21-19

KS32C65100 RISC MICROPROCESSOR XXi

List of Figures (continued)

Figure Title Page
Number Number
22-1 Real Time Clock BIOCK Diagramccoouviiiiiiiiiiiii 22-1
22-2 RTCCON REGISIEN ... 22-3
22-3 BCDSEC CoUuNter REGISIENcciiiiiiiiiiiie e 22-4
22-4 BCDMIN CouNter REGISIEI......ccoiiiiiiiiieieeee 22-4
22-5 BCDHOUR CoUuNter REQISIENcciiiiiiiiiiiiieeeeeeee 22-5
22-6 BCDDAY CoUNter REQISIENccceiiiiiiiieeeeeeee e 22-5
22-7 BCDDATE Counter REJISTENcoviiiiiiiiiieieeee 22-6
22-8 BCDMON CoUNter REGISIENcciiiiiiieiieeieeeeeeee 22-6
22-9 BCDYEAR CoUNter REGISIEN.......cciiiiiiiiiiiiieeeeeee 22-7
23-1 Clock Save BIOCK DIiagramcccuiiiiiiiiiiiiiii 23-1
23-2 CLKSAVCON ...ttt 23-2
23-3 PLLCON . . 23-2
24-1 LSU CONIOL....ciiiiiiiiceeeeee 24-1
24-2 LSU_CON CoNntrol REJISIENccoeiiiiiiiiiieee e 24-3
24-3 V-Window Time Start/ENd REQISTENuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiriiieireeeeieeneeeee. 24-4
24-4 LDON_Pre/Post TIMe REQISIENccciviiiiiiiieee 24-4
24-5 V-Window Counter Observation REJISTEruuuueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieineen. 24-5
24-6 LSU CLK Counter Base/Observation RegISter ... 24-5
25-1 Queued Operation for End-of-Page (EOP)ccccciiiiiiiiiii 25-2
25-2 Queued Operation for Page Under-run (PUR)cccccciiiiiiiiii 25-3
25-3 Protocol Diagram (PIFC and Printer ENgiNe) ... 25-4
25-4 PDMA and Engine Interface Status Register (STATUS)cccceviiiiiiiii, 25-5
25-5 Video Control REQIStEr (VCON)uuuiiuiiiiiiiiiiiiiieiiiiiititiiiisebsieeeeesebeeeesseeseneeeeeseeeeeneee 25-7
25-6 Pattern Control Register (PCON).......ccoiiiiiiiiiii 25-10
25-7 Printer DMA Control Register (PDMACON) ... 25-12
25-8 TOp Margin REQISEN (TOP)uuuuuiiiiiiiiiiiiitiititiieiieetieeeeeeeseeeeeeeeeeeebeeeeeeeeereeeeeerreeeeeee 25-13
25-9 PagE LAYOUL ... e 25-13
25-10 Left Margin Register (LFT) ... 25-14
25-12 Queue 0/1 Start Address Registers (QSARO, QSARL).......ccccocviiiiiiiiiiiii 25-15
25-13 Queue 0/1 Transfer Count Registers (QTCRO, QTCRL).......cccccvvviiiiiiiiiiiiiiii, 25-16
25-14 F-g Compensation Control Register (FTCON)ooovviiiiiiiiiiiii 25-17
25-15 F-g Compensation Table Start Address (FSADDR).........cccccciiiiiiiiiiii 25-18
25-16 F-g Compensation Table Data Register (FDATA) ... 25-19
25-17 Toner Counter Setting RegISter (TCVAL)uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeieeeereeeeee. 25-19
25-18 Toner Count REGISEr (TNCNT) ...uuuuuuiiiiiiitiiiiiiieiieeiieieiiiereeeeereeeeeeeeeeeeeeeereeereeeeeeee 25-20
25-19 Test Pattern DUration (TPVAL)uuuuuuuiiiiiiiiiiiiieiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeeeeeseeeeeeeeeenene 25-20
25-20 Test Pattern Width (TPON)uuuuiiiiiiiiiiiiiiiiiiiiiieiiiiiibiiiiieieebeeeeebeeeeeeeeeeeeereeeeeeeeeeeeeee 25-21

XXii KS17C80064/C80013/F80013 MICROCONTROLLER

List of Figures (continued)

Figure Title Page
Number Number
26-1 VIS Algorithm DeSCHPLIONoovviiiiiiiiii 26-2
26-2 Examples of VISG Internal OPeration................uueeuereruriieeniiiriiiiiriiieieeeeieeeeeeeeees 26-3
26-4 VIS Status Register (VISSR)cooviiiiii 26-5
26-5 VIS Control Register (VISCON)cooiiiiiiii 26-6
26-6 VIS Data Size Registers (DStSize, SICSIZE).......ccovviiiiiiiiiiiiii 26-6
26-7 VIS Data Registers (SrcReg, DSIREQ)covvvviiiiiiiiii 26-7
26-7 VIS Data Registers (SrcReg, DSIREQ)covvvvviiiiiiiiii 26-8
27-1 PWM_CON CONIOl REGISTETuuutuitiiiiiiiiiiiiiiiiiiiisiibbiiebebbeaeebeeeseeseeeeseeseeeeeeeeeeeeeeeeee 27-2
27-2 PWM Pre-Scaler Counter Base/Observation RegiSteruuvvevvvivviiviviiiiniiiinnns 27-2
27-3 PWM Cycle Time Base/Observation RegISIEruuuuviuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeinnnn 27-3
27-4 PWM On Time Base/Observation REQISTEruuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiieieienn 27-3
28-1 208-QFP-2828 Package DIMENSIONSccooieieiieee e 28-1
29-1 EVAIUALION BOAIT. ... uutttiiiiiiiiiiiiiiiiiiiiiebbbbbbbebbeb bbb bbb bbbebebbereneee 29-3
29-3 Connection to Embedded ICE ... 29-4
29-4 Evaluation Board SCREMALIC 1uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeereeeeeeeeeeeeeeeeeereneees 29-8
29-5 Evaluation Board SCREMALIC 2uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieieeeeereeeeeeeeeeeeeeeeeeneee 29-9
29-6 Evaluation Board SChEMALIC 3uuuuiuriiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeerereeeeeeeeeeeeeeeeenee 29-10
29-7 Evaluation Board SCREMALIC 2uuuuiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeereeeeeeeeeeeeeereeeneee 29-11
29-8 Evaluation Board SCREMALIC 2uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeneee 29-12

KS32C65100 RISC MICROPROCESSOR XXiii

List of Tables

Table Title Page
Number Number
1-1 [T DTS Tox 1 01T [P PPRTTRRN 1-6
1-2 KS32C65100 Special FUNCLION REJISIEISuuvviiiiiiiiiiiiiiiiiiiiiiieiiivviiiveieeeieeeeeeeeeeeeee 1-11
2-1 PSR MOAE DIt VAIUESuiiiiiiiiiiiiiiiiiiiiiiibiiiibib bbb bebebeeeeeeeeeeeeees 2-9
2-2 EXCEPLION ENTIY/EXIT. ... uuutiiiiiiiiiiiiiiiiiiiiiiiiiieiiebbbbebbebebbeeebebeeeeeeeebbbbeebeebeeeebeeeeeeeeeeenees 2-11
2-3 [Cel=T o1 i o] g BV =T (o] PP RPTRTPPPRRN 2-13
3-1 The ARM INSIIUCHION ST ...cccoiiiiiiiiii 3-2
3-2 Condition COAE SUMMANY ...oeeieeeeeeeee e 3-3
3-3 ARM Data Processing INSrUCLIONS...........ccovviiiiiiiiiiii 3-9
3-4 Incremental CYCle TIMES......coiiiiiiiiiii 3-14
3-5 Assembler Syntax DeSCHPLONSccuviiiiiiiiiii 3-23
3-6 Addressing Mode NAMES.........ccuiiiiiiiiiii 3-41
3-7 THUMB INStruction Set OPCOUES.......ccoviiiiiiiiiiiieeeee 3-61
3-7 THUMB Instruction Set Opcodes (Continued)..........ccoovvviiiiiiiiiiii 3-62
3-8 Summary of Format 1 INStrUCHONS.......coooei oo 3-63
3-9 Summary of Format 2 INStrUCHONS.......coooiie oo 3-64
3-10 Summary of Format 3 INStrUCHONS.......coooeieeee e 3-65
3-11 Summary of Format 4 INStrUCHONS.......cooeeiee oo 3-66
3-12 Summary of Format 5 INStrUCHONS.......coooeeeeee e 3-68
3-13 Summary of PC-Relative Load INStrUCLION.........cooooiiiieeieeee 3-71
3-36 Summary of Format 7 INStIUCHIONS........ooovieeeeeee e 3-72
3-15 Summary of Format 8 INStrUCHIONS.......ccoove e 3-74
3-16 Summary of Format 9 INStrUCHIONS.......cooeei oo 3-76
3-17 Halfword Data Transfer INSIrUCHIONS.uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiibbbieeeeeeeeeeeeeeeeeeieeeee 3-78
3-18 SP-Relative Load/Store INSIIUCHIONScoooiieeeeeeeeeeeee e 3-79
3-19 [=T I [0 £ PP PTRTTRPTPN 3-80
3-20 The ADD SP INSHUCHONS......ccooiiiiiiiiie 3-82
3-21 PUSH and POP INSIUCHONSuuuutiiiiiiiiiiiiiiiiiiiiiiiieiiieeieesaeeeeseeseeeeeeeesseeeeeeeeeeeereeeee 3-83
3-22 The Multiple Load/Store INSIIUCLIONS..........ooviiiiiiiiii 3-85
3-23 The Conditional Branch INSIIUCLIONScooviiiiiiiiii 3-86
3-24 The SWIINSIIUCHION. ... 3-88
3-25 Summary of Branch INStrUCHONooooeiiiieeeeeee e 3-89
3-26 The BL INSIUCHON ..o 3-91
4-1 The Relations Between Physical Address and Address in Instructions..................... 4-9
6-1 Set 1 Register Values after a RESEt........cooooveiiiiiiieeeee 6-4

KS32C65100 RISC MICROPROCESSOR XXV

List of Tables (continued)

Table Title Page
Number Number
9-1 Difference Between GDMA and CDMA ... 9-3
12-1 Timer Control Register DeSCHPLIONuuuuiiiiiiiiiiiiiiiiiiiiiiebbbeiebeeebbbbeeeeeeereeeeeeereeeneee 12-3
12-2 Timer Data RegiSters DESCHPIIONuuuuurrriiiiriiiiiiiiiiiiiiiiierreeeeeeeereeeeeeeeereeeeeeeeee 12-6
12-3 Timer Count RegisSters deSCriPtONuuuuuiiiiiiiiiiiiiiiiiiiiibeiebeeeeee bbb 12-7
13-1 PWMO and PWM1 Control and Data RegiSters..........ccccccvvviiiiiiiiii 13-5
13-2 PWM Output (Stretch) Values for Extension Registers PWMO0 and PWM1 13-5
14-1 I/O Port Mode Configuration and SettingsS.........ooooveiviiiieieee e 14-1
15-1 INEEITUPE SOUICES ...ttt e e e e e e e e ennnaans 15-2
29-1 N[0 o] oT=T g B ToT Yol T o] 1T] o PPN 29-7
29-2 SWILCN DESCHPLIONceiiiiiiiiiiiiiii 29-7

XXVi KS17C80064/C80013/F80013 MICROCONTROLLER

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

PRODUCT OVERVIEW

INTRODUCTION

Samsung's KS32C65100 16/32-bit RISC micro controller is designed to provide a cost-effective and high
performance micro controller solution for ink-jet/laser-jet printers and MFP.

An outstanding feature of the KS32C65100 is its CPU core, a 16/32-bit RISC processor (ARM7TDMI) designed
by Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general purpose microprocessor macro-
cell that was developed for use in application-specific and custom-specific integrated circuits. Its simple, elegant,
and fully static design is particularly suitable for cost-sensitive and power sensitive applications.

The KS32C65100 was developed using an ARM7TDMI core, 0.35um CMOS standard cells, and a memory
compiler. Most of the on-chip function blocks were designed using an HDL synthesiser.

The integrated on-chip functions that are described in this document include:

2KB Instruction/data cache and controller
PLL (Phase Locked Loop)
Clock save control

DMA control (3 channel)
Interrupt control

UART (3 channel)

16-bit Timer (3 channel)

PWM timer (3 channel)

Watch dog timer

A/D converter (8/10-bit, 3 channel)
General I/0O port control

Scan image control

Scan motor control

Tone generator

Real time clock

Parallel Port Interface control
Print head control

Carrier motor control

Paper motor control

Laser Printer Interface control
Laser engine control

S/W assistant function (rotator)

ELECTRONICS 1-1

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

FEATURES

Architecture
Fully 16/32-bit RISC architecture
Efficient and powerful ARM7TDMI CPU core
Cost-effective JTAG-based debug solution

System Manager

16-bit external bus support for ROM.
8/16-bit external bus support for SRAM, DRAM
(Fast Page, EDO) and external 1/0

Programmable access cycle (2 ~ 7 wait cycles)

Support idle mode for low power consumption

Unified Instruction/Data cache
Two way set associative cache with 2KB
LRU (Least Recently Used)
Four depth write buffer

PLL Frequency Synthesiser
Input freq. range: 10MHz ~ 40MHz
Jitter: £150 ps
External loop filter: 820 pF

DMA (Direct Memory Access) Controller
3-channel DMA Controller
Memory-to-print block with decompression

Memory-to-memory, memory-to-parallel port,
parallel-to-memory, UART-to-memory, memory-
to-UART, IP-to-memory, memory-to-IP data,
I/O-to-memory, memory-to-1/0O data transfers
without CPU intervention.

Initiated by software or external DMA request.

Increments or decrements source or 8-bit, 16-bit
or 32-bit data transfer

Interrupts
31 interrupt sources (external: 3)
Normal or fast interrupt modes(IRQ, FIQ)
Level or edge selectable 3 external interrupt

UART (SIO)

Three channel UART (Serial 1/0) with DMA
based or interrupt based operation;

supports 5-bit, 6-bit, 7-bit, or 8-bit serial data
transmit/receive

Programmable baud rate
Infra-red(IR) Tx/Rx support(IrDA)

General Timers

Three programmable 16-bit timers

Watch Dog Timer

16-bit timer useful for periodic reset or interrupts

PWM Timers

Three programmable 16-bit PWM timers with
each prescaler

General ADC

Three input 8/10- bit ADC with analog MUX
(Max. conversion rate: 650KSPS @25MHz)

ADC clock: MCLK/2 or MCLK/4

Scan Image Control
Minimum scan line time: up to 2 ms
Supports 200dpi or 300dpi, include 8 bit ADC
25-200% reduction/magnification,
White shading & gamma correction
LAT/EDF(2X3) Binarization, 256 Gray

Scan Motor Control

Programmable 16 bit interval counter with
interrupt

Output phase and control signals at same time
with counter interrupt

RTC (Real Time Clock) Unit
32.768kHz clock

The data includes second, minute, hour, date,
day, month and year

1-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRODUCT OVERVIEW

Parallel Port Interface Controller
DMA-based or interrupt-based operation

Supports IEEE 1284 standard communication
modes (compatibility mode, nibble mode, bytes
mode, and ECP mode)

Supports ECP protocol with or without Run-
Length Encoding (RLE)

Automatic handshaking mode for any forward or
reverse protocol with software/DMA

Ink Head Control
Supports both daVinci and Babbage print head

Printing data and fire control

Carrier Motor Control
Supports two kind of Motor (DC and stepper)
Motor speed calculation and compensation

Support Full/Half/Quarter step mode for stepper

Carrier Position and Fire Control

Fire control up to 2400 dpi, and position control
by 600 dpi in DC motor mode

Fire and position control up to 9600 dpi in step
motor mode

Carrier position interrupt for easy position
control

Paper Motor Control
Support two kind of motor driver (Uni-/Bi-polar)

Support Full/Half/Quarter step mode

Derasterizer
16x16 bit block rotates by 90/270 degree

Rotates 13 half words with selectable direction

Laser Printer Video Data Control

Cost-effective, high-performance, DMA-based
Laser printer engine interface

Dedicated DMA for fast data transfer between
page memory and the printer engine

Consecutive zero string (blank data) output for
banded bit maps(no memory access required)

Queuing operation to facilitate smooth switching
between data blocks of banded page memory

Pixel chopping mode for fine-edged image
printing

Video data/boundary polarity definition
Support for 2x or 4x image expansion
Dot counter to accumulate printing dot

Generates test pattern for laser engine

Laser Engine Control
Controls LSU on/off data and motor clock
Controls LSU interface signals

Programmable external clock for LSU motor

Operating Voltage Range
Internal logic: 3 to 3.6 Volts
PAD: 4.75 to 5.25 Volts

Operating Frequency
Up to 33MHz,

Package Type
208 pin QFP

ELECTRONICS

1-3

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

BLOCK DIAGRAM

(@) o >
= 3 g
I > =X
A A A
Ic/c?ntF:gﬂt;r DI BN e BIPLL & Clock CcPU
- R U p» Save (ARM7TDMI)
. I 4
Scan Image & |4 : : < LBUS
Scan Motor !4—-— ----- -+ Bus Router |« 'y >
Controller [~ " """ 20 RERR AR H i
A : |
< : . I/D Cache
Ink Head | . - | — —. Interrupt
Controller [— = ST T _> Controller (2-KB)
i SR | >
A . : I
: ' P CEREEE] EEEPEEES > A/D
A 4 h 4 ‘ JR
DMA €D A _: Converter
- —-— p
Controller |g - .
<-- T [
- | Derasterizer
. < >
I
Parallel : ! .
IntZ::‘:ce R s +CaréI§;tl:/é(|)t0r
L EEE S PEPRPRE R e SEEEERES >
Video Data < l
< 1 ; i » Position &
Controller [~~~ =+ = 7 77 %%, .77 .7 3 Fire Control
UART/ | : .
. > . » Paper Motor
Serial /O :_ [S R RS _= Control
L
Lsu [¢ : I » Real Time
< — - — = P = — »
Control € N R RT p Clock
: I
PWM & | . — _; Wat(_:h Dog
Gen. Timer :‘__'_—__'_T_'_T_'__—_ : —’:‘_ p| Timer
\ AR 2R

System Manager

System Bus Controller

Bus Arbitration

Bus Interface

ROM/SRAM/DRAM Controller

Figure 1-1. KS32C65100 Block Diagram

ELECTRONICS

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

PIN ASSIGNMENT

02YdO9/gHdNOD 0S
24N oS

£4NO 0S

SSA
§ZYdO9/0VIND
€2VdOOIVHd ¥D
9ZvYdO9/TVIND
12vd09/0814D
¥2vdO9/gHd ¥
82vd09/Ta14D
aane

8dI9/XHD
6dI9/AHO
TIVdO9/00WMd
ZIVdOO/TOWMd
€TVdOD/ZOWMd
62Yd09/20aA
¥IVdOS/TOAA
STVdOO/M1ONST
SSA
OTdIO/TONASH
TTdI9/AQYIYTU
ZTdID/ZONASH
€TdIDNAA
YTdIDMIOA
LdI9/LIVMLX3U
aane

MOL

aL

oaL

SWL

1sy1u

0doID

1doID

zdolo

€doID

aans

0ddd

1ddd

2ddd

€ddd

vadd

Sddd

9ddd

,Add

SSA

38041Su
9TdID/NILDISU
STdI9/LINIU
£1d19/a401Nvu
1Inv4u

10313S

SC_CUR1
SC_CUR0
SC_CONPHA/GOPA19
ADDR20

ADDR19

ADDR18

ADDR17

ADDR16

ADDR15

ADDR14

5VDD

ADDR10

ADDR9

ADDRS

ADDR7

ADDR6

ADDR5

ADDR4

3vDD

ADDR3
ADDR2
ADDR1
ADDRO
VSs

DATA15
DATA14

S0T
90T
L0T
80T
60T
oTT
1T
423
€T
Vit
STT
91T
LTT
81T
61T
oct
4
[44%
€cr
et
et
9cT
L2t
8ctT
62T
OET
€T
413
€eT
VET
GET
9ET
LET
8ET
6ET
orT
wr
443
vt
T
ST
T
LvT
8rT
6vT
0sT
18T
¢ST
€sT
ST
GST
9sT

KS32C65100

208-QFP
(Top View)

DB: Double Bonding

SLEDO/GOPA16 —]
SLED1/GOPA17]
SLED2/GOPA18 [—]

O

O A NM S DO~
OO0OO0O0O0 OO0 OO
NANNNNNNNN
ZE= FNHO
£26%308€222
0% >0 <<
95790%Xz %
OpORS 0000
noExE
xXoxr o
95
3
=X
f=4

ANM S OO~ OD

osvyu
4SSl
L¥dO9/TSOU
0So¥u

aans
92dOI9/9TIOHd
G2dOI9/STIOHd
¥2dOI9/rTIOHd
€2dOI9/ETIOHd
22dOI9/ZTIOHd
12dOI9/TTIOHd
02dOI9/0TIOHd
6TdOI9/630Hd
SSA
81dOI9/830Hd
LTdOI9/.30Hd
91dOI9/930Hd
STdOI9/SIOHd
¥1dOI9/FI0Hd
€1dOI9/EIOHd
21dOI9/230Hd
TTdOI9/TIOHd
aane
08d0O9/TYOHdU
T8d09/ZYOHdU
28d09/EVOHAU
£8d0O9/PYOHdU
SSA
78d0D/SYOHJU
S8d0D/9VOHdU
98d09/LVOHdU
28d09/8VOHdU
88d09/6YOHdU
68d0O9/0TYOHU
0T9dOS/TTVOHJU
119d09/ZTYOHJU
Z19dO9/ETYOHJU
aane
8vd09/zso3u
1SO3U

VSeEL

SSA
SdI9/ZLNIFU
¥dIO/TLNIFU
€dI9/0LNIFU
IS7SID

M107SID

SSAVS

FUNAVS

NIVS

LHUAVS

aanvs

Figure 1-2. Pin Assignment

1-5

ELECTRONICS

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

PIN DESCRIPTION

Table 1-1. Pin Description

Signal Pin No. I/O Type Description

OSClI 184 17 KS32C65100 master clock input.

OSCO 185 o7 KS32C65100 master clock output.

PLL FILTER 183 15 PLL filter

NRESET 182 14 Not reset. NRESET is the global reset input for the
KS32C65100. For a system reset, NRESET must be held to
low level for at least 65 machine cycles.

NSLCTIN/GIP[16] 152 11 Not select information. This input signal is used by parallel port
interface to request ‘on-line' status information.

NnSTROBE 151 11 Not strobe. The nSTROBE input indicates when valid data is
on parallel port data bus, PPD[7:0]

NAUTOFD/GIP[17] 154 11 Not auto feed. The NnAUTOFD input indicates whether data on
the parallel port data bus, PPD[7:0], is an auto feed command.
Otherwise, the bus signals are interpreted as data only.

nINIT/GIP[15] 153 11 Not initialization. The nINIT input signal initializes the parallel
port's input control.

nNACK 159 11 Not parallel port acknowledge. The nACK output signal is
issued whenever a transfer on the parallel port data bus is
completed.

BUSY 158 o1 Parallel port busy. The BUSY output signal indicates that the
KS32C65100 parallel port is currently busy.

SELECT 156 01 Parallel port select. The SELECT output signal indicates
whether the device connected to the KS32C65100 parallel port
is ‘on-line' or 'off-line".

PERROR 157 01 Parallel port paper error. PERROR output indicates that a
problem exists with the paper in the ink-jet printer. It could
indicate that the printer has a paper jam or that the printer is
out of paper.

nFAULT 155 o1 Not fault. The nFAULT output indicates that an error condition
exists with the printer. This signal can be used to indicate that
the printer is out of ink or to inform the user that the printer is
not turned on.

PPD[7:0] 142~149 /02 Parallel port data bus. This 8-bit, tri-state bus is used to
exchange data between the KS32C65100 and an external
host(peripheral).

SAVRT 16 Top reference voltage for IP ADC

SAIN 16 Analog input for IP ADC

SAVRB 4 16 Bottom reference voltage for IP ADC

1-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRODUCT OVERVIEW

Table 1-1. Pin Description (Continued)

Signal Pin No. I/O Type Description
CIS_CLK 6 o1 CIS shift clock
CIs_si 7 o1 CIS latch signal
PHA _1AO 164 01 Line feed motor phase signal A
PHA 1Al 165 01 Line feed motor phase signal AZ
PHB_IBO 167 01 Line feed motor phase signal B
PHB_IB1 168 01 Line feed motor phase signal BZ
LF_PHO/GOPA[21] 163 01 Line feed motor control signal O
LF_PH1/GOPA[22] 166 01 Line feed motor control signal 1
CR_PHA/GOPA[23] 110 o1 Direction control line for phase A
CR_PHB/GOPA[24] 113 o1 Direction control line for phase B
CRIAO/GOPA[25] 109 o1 Current control line 0 for phase A
CRIA1/GOPA[26] 111 o1 Current control line 1 for phase A
CRIBO/GOPA[27] 112 01 Current control line O for phase B
CRIB1/GOPA[28] 114 o1 Current control line 1 for phase B
CHX/GIPI[8] 116 13 Encode sensor
CHYI/GIP[9] 117 13 Encode sensor
ADDRJ[21:0] 77~80, 05 Address bus. The 22bit address bus, ADDR[21:0], covers the
82~88, full 4M half-words address range of each ROM/SRAM, DRAM,
90~100 and external 1/0 bank
DATA[15:0] 59~66, I/03 External bi-directional 16-bit data bus.
68~75
nRAS[1:0] 52,53 01 Not row address strobe for DRAM. The KS32C65100 supports
up to two DRAM banks. One nRAS output is provided for each
bank.
nCAS[1:0] 54,55 01 Not column address strobe for DRAM. The two nCAS outputs
indicate the byte selections whenever a DRAM bank is
accessed.
nOE 56 o1 Not output enable. Whenever a memory access occurs, the
nOE output controls the output enable port of the specific
memory device.
nWE 57 06 Not write enable. Whenever a memory access occurs, the
NWE output controls the write enable port of the specific
memory device.
nPHGA[13:1)/ 16~24, 01 Gate control line for print head.
GOPB[12:0] 26~29
PHOE[16:1)/ 31~38, /01 Drain control line for print head.
GIOP[26:11] 40~47

ELECTRONICS

1-7

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR
Table 1-1. Pin Description (Continued)
Signal Pin No. | I/O Type Description

RXDO/GIP[0] 194 11 Receive data input for the UARTO. RXDO is the UARTO
channel's input signal for receiving serial data.

RXD1/GIP[1] 192 11 Receive data input for the UART1. RXD1 is the UART1
channel's input signal for receiving serial data.

RXD2/GIP[2] 190 11 Receive data input for the UART2. RXD2 is the UART2
channel's input signal for receiving serial data.

NEINTO/GIP[3] 13 External interrupt request input NEINTO.

NEINT1/GIP[4] 13 External interrupt request input NnEINT1.

NEINT2/GIP[5] 10 13 External interrupt request input NEINT2.

nXDREQ/GIP[6] 199 13 External DMA request.

TXDO/GOPA[0] 193 01 Transmit data output for the UARTO. TXDO is the UARTO
channel's output for transmitting serial data.

TXD1/GOPA[1] 191 o1 Transmit data output for the UART1. TXD1 is the UART1
channel's output for transmitting serial data.

TXD2/GOPA[2] 189 o1 Transmit data output for the UART2. TXD2 is the UART2
channel's output for transmitting serial data.

NXDACK/GOPA[5] 200 o1 External DMA acknowledge. This active low output signal is
generated whenever a DMA transfer is completed.

TONEOUT/GOPA[3] 188 o1 Tone generator output.

NWDTO/GOPA[4] 187 P3 Reset out by watch dog timer.

nIOWR/GOPA[10] 161 o1 External output write strobe

nIORD/GOPA[9] 162 o1 External output read strobe

CLKOUT/GOPA[6] 180 o1 Clock for external chip

NECS2/GOPA[8] 14 o1 External memory chip select 2.

TCK 132 12 JTAG TCK interface in MDS mode.

TMS 135 12 JTAG TMS interface in MDS mode.

TDI 133 12 JTAG TDI interface in MDS mode.

NTRST 136 12 JTAG nTRST interface in MDS mode.

TDO 134 o1 JTAG TDO interface in MDS mode.

GIOP[10:0] 137~140, /04 General I/O port.

173~179

TESTO 169 12 Test 0 pin. At normal operation this pin must be connected to
GND.

TEST1 170 12 Test 1 pin. At normal operation this pin must be connected to
GND.

TEST2 171 12 Test 2 pin. At normal operation this pin must be connected to

GND.

1-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRODUCT OVERVIEW

Table 1-1. Pin Description (Continued)

Signal Pin No. I/O Type Description

nECS[1:0] 12,13 01 Not external chip select. Three I/O banks are provided for
external memory-mapped I/O operations. Each 1/0 bank
contains up to 4M half-word. The nECS signals indicate that an
external I/O bank is selected.

nRCS[2] 51 02 Not ROM/SRAM chip select. The KS32C65100 can access up

RCSIJGOPAT] | 50 | 01 |5 ree exemal ROMSRAN bk, nRCS(] caresponce o

nRCS[0] 49 01 2. By controlling the nRCS signals, CPU addresses can be
mapped into the physical memory banks.

SC_CONPHA/ 102 01 Scan motor control/Bi-phase

GOPA[19]

SC_CONPHB/ 105 01 Scan motor control/Bi-phase

GOPA[20]

SC_CURJ[3:0] 103, 104, 01 Scan motor bi-current/uni-phase

106, 107

PWMOI2:0]/ 118~120 o1 PWM out signal

GOPA[13:11]

VDO2/GOPA[29] 121 04 Video out from PIFC

VDO1/GOPA[14] 122 05 Video out from LSU control

LSU_CLK/ 123 01 Clock for LSU motor

GOPA[15]

NHSYNC1/GIP[10] 125 11 HSYNC1

NLREADY/GIP[11] 126 11 LSU ready

NHSYNC2/GIP[12] 127 11 HSYNC2

VDI/GIP[13] 128 12 Video data input from RET

VCLK/GIP[14] 129 12 External video clock

NEXTWAIT/GIP[7] 130 13 External wait

RTCXIN 202 17 RTC oscillator clock input.

RTCXOUT 203 o7 RTC oscillator clock output.

SLEDI[2:0]/ 196~198 o1 CIS LED signals

GOPA[18:16]

GAVRT 205 15 Top reference voltage for general ADC

GAIN[2:0] 206~208 15 Analog inputs for general ADC

RTC_VDD 201 RTC VDD.

ELECTRONICS

1-9

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

Table 1-1. Pin Description (Continued)

Signal Pin No. I/O Type Description
VDD_PLL 186 PLL power (3.3V).
SAVDD 1 Analog power for scan ADC and general ADC (3.3V).
SAVSS 5 Scan ADC ground.
GAVSS 204 General ADC ground
3vDD 15, 30, 81, 3.3V internal power.
115, 131, Externally connected to the 3.3V regulator.
160
5vDD 48, 67, 89, 5V 1/O power.
141, 195 Externally connected to the VCC board plane.
VSS 11, 25, 39, System ground.
58, 76, 101, Externally connected to the ground board plane.
108, 124,
150, 172,
181
Pin Type Pad Type Resistor/Drive Description
11 PHIL -/- TTL schmitt trigger level input buffer
12 PHIT -/ - TTL level input buffer
13 PHILU50 50K/ - TTL schmitt trigger level input buffer with pull-up resistor
14 PHIS -/ - CMOS schmitt trigger level input
15 PICA -/ - Analog normal input pad with seperate bulk bias
16 PICA10 10/ - Analog normal input pad with resistor & seperate bulk bias
17 -/ - Master clock input.
o1 PHOB4 - [AmA Normal output buffer
02 PHOT4 - [AmA Tri-State output buffer
03 PHODA4 - [AmA Open drain output buffer
04 PHOB4SM - [AmA Normal output buffer with medium slew-rate
05 PHOB8SM - /8mA Normal output buffer with medium slew-rate
06 PHOT4SM - [AmA Tri-State output buffer with medium slew-rate
o7 -/ - Master clock output.
/101 PHBTUS50T4 50K/4mA TTL level with pull-up resistor and Tri-State output
/102 PHBLUS50T4SM 50K/4mA TTL schmitt trigger level input with pull-up resistor and
Tri-State output with medium slew-rate
/103 PHBLUS50T8SM 50K/8mA TTL schmitt trigger level input with pull-up resistor and
Tri-State output with medium slew-rate
/04 PHBLT4 - [AmA TTL schmitt trigger level input and Tri-State output.

1-10

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW
KS32C65100 SPECIAL FUNCTION REGISTERS
Table 1-2. KS32C65100 Special Function Registers
Group Register Offset R/W Description Reset Value
SYSCFG 0x0000 R/W | System register address configuration 0x1001
register
ROMCON 0x1000 R/W | ROM control register 0x02003002
SRAMCONO 0x1004 R/W | SRAM control register 0 0x000007fc
SRAMCON1 0x1008 R/W | SRAM control register 1 0x000007fc
System EXTCONO 0x100c R/W [1/O bankO0 control register 0x00000000
Manager |EXTCON1 0x1010 R/W [1/O bank1l control register 0x00000000
EXTCON2 0x1014 R/W | 1/O bank2 control register 0x00000000
EXTCON3 0x1018 R/W | 1/O bank3 control register 0x00000000
DRAMCONO 0x101c R/W | DRAM control register O 0x00000000
DRAMCON1 0x1020 R/W | DRAM control register 1 0x00000000
REFCON 0x1024 R/W | DRAM refresh control 0x00000001
CACHNABO 0x0004 R/W | Non-cacheable area begin 0 0x0000000
Cache CACHNAEO 0x0008 R/W [Non-cacheable area end 0 0x0000000
CACHNAB1 0x000c R/W | Non-cacheable area begin 1 0x0000000
CACHNAEL1 0x0010 R/W [Non-cacheable area end 1 0x0000000
SFTCON 0x5004 R/W | Shift control register 0x04
DRASTO 0x4800 R/W | Derasterizer data register O OXXXXX
DRAST1 0x4804 R/W | Derasterizer data register 1 OXXXXX
DRAST2 0x4808 R/W | Derasterizer data register 2 OXXXXX
DRAST3 0x480c R/W | Derasterizer data register 3 OXXXXX
DRAST4 0x4810 R/W | Derasterizer data register 4 OXXXXX
DRASTS5 0x4814 R/W | Derasterizer data register 5 OXXXXX
DRASTG6 0x4818 R/W | Derasterizer data register 6 OXXXXX
Derasterizer | DRAST7 0x481c R/W | Derasterizer data register 7 OXXXXX
DRASTS 0x4820 R/W | Derasterizer data register 8 OXXXXX
DRAST9 0x4824 R/W | Derasterizer data register 9 OXXXXX
DRAST10 0x4828 R/W | Derasterizer data register 10 OXXXXX
DRAST11 0x482c R/W | Derasterizer data register 11 OXXXXX
DRAST12 0x4830 R/W | Derasterizer data register 12 OXXXXX
DRAST13 0x4834 R/W | Derasterizer data register 13 OXXXXX
DRAST14 0x4838 R/W | Derasterizer data register 14 OXXXXX
DRAST15 0x483c R/W | Derasterizer data register 15 OXXXXX

ELECTRONICS

1-11

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset Value
TCON 0x3000 R/W | System timers control register 0x000
Timer TBCNTO 0x3004 R/W | Timer base/count register 0 OXXXXX
TBCNT1 0x3008 R/W | Timer base/count register 1 OXXXXX
TBCNT2 0x301c R/W | Timer base/count register 2 OXXXXX
DMACONO 0x8800 R/W | CDMA control register 0x00000
DMASRCO 0x8804 R/W | CDMA source address register OXXXXXXXX
DMADSTO 0x8808 R/W | CDMA destination address register OXXXXXXXX
DMA DMACNTO 0x880c R/W | CDMA transfer count register OXXXXXXXX
DMACON1 0x9000 R/W | GDMA control register 0x0000
DMASRC1 0x9004 R/W | GDMA source address register OXXXXXXXX
DMADST1 0x9008 R/W | GDMA destination address register OXXXXXXXX
DMACNT1 0x900c R/W | GDMA transfer count register OXXXXXXXX
PPDATA 0x8000 R/W | Parallel port data register 0x100
PPSTAT 0x8004 R/W | Parallel port status register 0x7e8
Parallel port PPACKWTH 0x8008 R/W | Parallel port acknowledge width register OxXXXX
PPCON 0x800c R/W | Parallel port control register 0x0000
PPINTEN 0x8010 R/W | Parallel port enable interrupt event register 0x000
PPINTPND 0x8014 R/W | Parallel port interrupt pending register 0x000
HDCON 0x7800 R/W | HDMA control register 0x0000000
HDSAR 0x7804 R/W | HDMA source address register 0x0000000
HDTCR 0x780c R/W | HDMA transfer count register 0x000000
HDMA HDSARO 0x7814 R/W | HDMA source address register 0 0x0000000
HDMARO 0x7818 R/W | HDMA match address register O 0x0000000
HDSAR1 0x781c R/W | HDMA source address register 1 0x0000001
HDMARL1 0x7820 R/W | HDMA match address register 1 0x0000000
Tone TONDATA 0x3804 R/W | Tone generator data & control register OxOff
Generator
Watchdog |WTCON 0x4000 R/W | Watch dog timer control register 0x21
Timer WTCNT 0x4004 R/W [Watch dog timer count register 0x0003

1-12

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRODUCT OVERVIEW

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset Value
GIOPMOD 0x2800 R/W | Bi-Directional port mode register 0xffff800
GIPMOD 0x2804 R/W [Input port mode register 0x00000
GOPAMOD 0x2808 R/W | Output port mode register 0x00000000
GOPBMOD 0x280c R/W | Output port mode register 0x0000
/O Ports GIOPD 0x2810 R/W | Bi-Directional port data register 0x0000000

GIPD 0x2814 R/W | Input port data register OXXXXX
GOPAD 0x2818 R/W | Output port data register 0x00000000
GOPBD 0x281c R/W | Output port data register 0x0000
TSTCON 0x2820 R/W | Test control register 0x00600
INTCON 0x2824 R/W | External interrupt control register 0x000
INTMOD 0x2000 R/W | Interrupt mode register 0x00000000

(_I‘,r::trrroullpzatr INTPND 0x2004 R/W | Interrupt pending register 0x00000000
INTMSK 0x2008 R/W | Interrupt mask register 0x00000000
RTCCON 0xc840 R/W | RTC control register 0x0
BCDSEC 0xc870 R/W [RTC second register OxXX
BCDMIN 0xc874 R/W [RTC minute register OxXX

Real Time |BCDHOUR 0xc878 R/W [RTC hour register OxXX

Clock BCDDAY 0xc87c R/W [RTC day register OxXX

BCDDATE 0xc880 R/W | RTC date register 0xX
BCDMON 0xc884 R/W [RTC month register OxXX
BCDYEAR 0xc888 R/W [RTC year register OxXX

Clock Save CLKSAVCON 0x1800 R/W | Clock save con-trol register 0x0
PLLCON 0x1804 W [PLL control register 0x00000

ELECTRONICS

1-13

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset Value
ULCONO 0xb000 R/W [UART Ch-0 line control register 0x00
ULCON1 0xb800 R/W | UART Ch-1 line control register 0x00
ULCON2 0xc000 R/W | UART Ch-2 line control register 0x00
UCONO 0xb004 R/W | UART Ch-0 control register 0x00
UCON1 0xb804 R/W [UART Ch-1 control register 0x00
UCON2 0xc004 R/W [UART Ch-2 control register 0x00
USTATO 0xb008 R |UART Ch-0 status register 0x00
USTAT1 0xb808 R |UART Ch-1 status register 0x00

UART USTAT2 0xc008 R |UART Ch-2 status register 0x00
UTXBUFO 0xb00c W [UART Ch-0 transmit buffer register 0x00
UTXBUF1 0xb80c W [UART Ch-1 transmit buffer register 0x00
UTXBUF2 0xc00c W [UART Ch-2 transmit buffer register 0x00
URXBUFO 0xb010 R |UART Ch-0 receive buffer register 0x00
URXBUF1 0xb810 R |UART Ch-1 receive buffer register 0x00
URXBUF2 0xc010 R |UART Ch-2 receive buffer register 0x00
UBRDIVO 0xb014 R/W | Baud rate divisor register 0 0x0000
UBRDIV1 0xb814 R/W | Baud rate divisor register 1 0x0000
UBRDIV2 0xc014 R/W | Baud rate divisor register 2 0x0000
STATUS 0xa000 R/W | Status register 0x00
VCON 0xa004 R/W | Video control register 0x00000000
PCON 0xa008 R/W | Pattern control register 0x000000
PDMACON 0xa00c R/W | PDMA control register 0x00
TOP 0xa010 R/W | TOP margin register 0x0000
LFT 0xa014 R/W | LEFT margin register 0x0000
PXL 0xa018 R/W | Pixel count register 0x0000
QSARO Oxa0lc R/W | QO start address register 0x0000000

Printer QTCRO 0xa020 R/W | QO transfer address register 0x000000

érl)tﬁtr:gﬁ; QSAR1 0xa024 R/W | Q1 start address register 0x0000000

QTCR1 0xa028 R/W | Q1 transfer address register 0x000000
FTCON 0Xa02c R/W | F-q control register 0x0
FSADDR 0xa030 R/W | F-q start register 0x00
FDATA 0xa034 R/W | F-q data register Oxeffb
TCVAL 0xa038 R/W | Toner counter set value register 0x00000000
TNCNT 0xa03c R/W | Tone count value register 0x00000000
TPVAL 0xa040 R/W | Test pattern period value register 0x00
TPON 0xa044 R/W | Test pattern on length register 0x00

1-14

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRODUCT OVERVIEW

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value
LSUCON 0xd000 R/W |LSU_CON control register 0x0000
VWIN_STR 0xd004 R/W | V_Window time start register 0x00000
VWIN_END 0xd008 R/W [V_Window time end register 0x00000
LSU LDPON_Pre 0xd00c R/W | LDON Pre_On time register 0x00000
LDPON_Post 0xd010 R/W | LDON Post_On time register 0x00000
VCNT_OBS 0xd014 R/W [V_Window counter observation register 0x00000
LSUCK_CNT 0xd018 R/W [LSU Motor Clock counter base & 0x00000000
observation register
GADC ADCCON 0xd800 R/W | ADC control register 0xa0
ADCDATA 0xd804 R | ADC data register OXXXX
SEN_CLK 0x9800 R/W | Sensor shift signal period register 0x00818
S| TERM 0x9804 R/W | Sensor Sl signal period register 0x09c4
RLED 0x9808 R/W | Sensor R led signal period register 0x00000960
GLED 0x980c R/W | Sensor G led signal period register 0x00000960
BLED 0x9810 R/W | Sensor B led signal period register 0x00000960
IWIN 0x9814 R/W | EAl Image area register 0x000006b8
CHANGED_IWIN | 0x9818 R/W [Magnified/reduced pixels num. register 0x06b8
Image RATIO 0x981c R/W | Magnified/reduced ratio register 0x10080
Processing |LAT 0x9820 R/W | Local adaptive register 0xdc7f40
ADC 0x9824 R/W | IP ADC control register 0x005
OPERATION 0x9828 R/W | Operation control register 0x000
RAM_CTRL 0x982c R/W [IP inner SRAM control register 0x70000
RAM_DATA 0x9830 R/W [IP inner SRAM data register 0x00
MOTOR_TERM 0x9834 R/W | Motor signal period register 0x0000
MOTOR_PHASE 0x9838 R/W | Motor signal phase register 0x00f
BLACK 0x983c R/W | Black shading correction value register 0x00
LFCR 0x5800 R/W | Line feed motor control register 0x0800
LFPCR 0x5804 R/W | Line feed motor phase control register 0x3c0
LFTBR 0x5808 R/W | Line feed motor timer base register 0x0000
LFTOR 0x580c R | Line feed motor timer observation register 0x1e0d
LF Motor) rcBRr 0x5810 | R/W |Line feed motor timer compare base 0x0000
register
LFTCOR 0x5814 R | LF motor timer compare observation 0x0000
register
LFCON 0x5818 R/W | LF step each control register 0x0000

ELECTRONICS

1-15

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value
CMCR 0x6000 R/W | Carrier motor control register 0x204
BTB1R 0x6004 R/W | Basic timer base register 1 OXXXXX
BTB2R 0x6008 R/W | Basic timer base register 2 OXXXXX
PSTBR 0x600c R/W | CR_Step INT counter & pre-step counter 0x000
base register
CRSCR 0x6010 R/W | CR state control register 0x603f
Carrier PWMOBS 0x6014 R | PWM counter observation register 0x0000
Motor PWMCYL 0x6018 R/W | PWM cycle time base register 0x0000
Control PWMONT 0x601c R/W | PWM on time base register 0x0000
ECDTIM 0x6020 R | PWM on time base register 0x020292
ECDVAL 0x6024 R | Encoder cycle value register 0x000000
INTTIM 0x6028 R Interval counter observation register 0x0000
INTVAL 0x602c R | Interrupt interval value register 0x0000
CRSREG 0x6030 R/W | CR step each control register 0x000000
PFCR 0x6820 R/W | Position & Fire control register 0x0080d0
Fire & CPCR 0x6824 R/W | Carrier position counter register 0x0001
Position PSPR 0x6828 R/W [Print start position register OxOffff
Control PSCR 0x682c R/W | Print slice counter register 0x0000
PIR 0x6830 R/W | Position interrupt register Oxffff
PHCR 0xa000 R/W | Print head control register 0x000000
FETR 0x7004 R/W | Fire enable timer register 0x00
FETOR 0x7008 R | Fire enable timer observation register 0x00
FWTR 0x700c R/W | Fire window timer register 0x000
FWTOR 0x7010 R | Fire window timer observation register 0x000
Print FSDTR 0x7014 R/W | Fire strobe delay timer register 0x000
Head FSDTOOR 0x7018 R Firg delay strobe timer 0 observation 0x000
register
FSDT10R 0x701c R | Fire delay strobe timer 1 observation 0x000
register
FSDT20R 0x7020 R/W | Fire delay strobe timer 2 observation 0x000
register
FSDT30R 0x7024 R/W | Fire delay strobe timer 3 observation 0x000
register

1-16

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRODUCT OVERVIEW

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value
PHPTR 0x7028 R/W | Pre-heat pulse timer register 0x00
PHPTOR 0x702c R | Pre-heat pulse timer observation register 0x00
PHDTR 0x7030 R/W | Pre-heat delay timer register 0x00
PHDTOR 0x7034 R | Pre-heat delay timer observation register 0x00
PHOR 0x7038 R | Print head observation register 0x0000000
TDCR 0x703c R/W | Td delay counter register 0x00
PHDWOR 0x7040 R/W | Print head data word O register 0x0000
PHDWI1R 0x7044 R/W | Print head data word 1 register 0x0000
PHDW2R 0x7048 R/W | Print head data word 2 register 0x0000
PHDW3R 0x704c R/W | Print head data word 3 register 0x0000
PHDWA4R 0x7050 R/W | Print head data word 4 register 0x0000
Print Head PHDW5R 0x7054 R/W | Print head data word 5 register 0x0000
PHDWG6R 0x7058 R/W | Print head data word 6 register 0x0000
PHDW7R 0x705c¢ R/W | Print head data word 7 register 0x0000
PHDWS8R 0x7060 R/W | Print head data word 8 register 0x0000
PHDW9R 0x7064 R/W | Print head data word 9 register 0x0000
PHDW10R 0x7068 R/W | Print head data word 10 register 0x0000
PHDW11R 0x706¢ R/W | Print head data word 11 register 0x0000
PHDW12R 0x7070 R/W | Print head data word 12 register 0x0000
DCBR 0x7074 R/W | Dot counter black register 0x00000000
DCYR 0x7078 R/W | Dot counter yellow register 0x00000000
DCCR 0x707c R/W | Dot counter cyan register 0x00000000
DCMR 0x7080 R/W | Dot counter magenta register 0x00000000
DCCOR 0x7084 R | Dot counter control observation register 0x000
PWMCONR 0xe000 R/W | PWM_CON control register 0x0
PWM_PRSC 0xe004 R/W [PWM Pre-Scaler counter base value 0x00000000
register
PWM_CYTO 0xe008 R/W | PWMO cycle time & observation register | 0x00000000
PWM PWM_ONTO 0xe00c R/W [PWMO on time & observation register 0x00000000
PWM_CYT1 0xe010 R/W | PWML1 cycle time & observation register | 0x00000000
PWM_ONT1 0xe014 R/W [PWM1 on time & observation register 0x00000000
PWM_CYT2 0xe018 R/W | PWM2 cycle time & observation register | 0x00000000
PWM_ONT2 OxeOlc R/W [PWM2 on time & observation register 0x00000000

ELECTRONICS

1-17

PRODUCT OVERVIEW

KS32C65100 RISC MICROPROCESSOR

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value
VISSR 0xa800 R | VIS Status register 0x0
VISCON 0xa804 R/W | VIS control register 0x0
DstSize 0xa808 R/W | Destination image data size register OXXXXX
SrcSize 0xa80c R/W | Source image data size register OXXXXX
VIS SrcReg 0xa810 R/W | Source image data register OXXX
DstReg 0xa814 R | Destination image data register OXXXXX
Refln 0xa818 R/W | Reference data register OXXXXX
PixIn Oxa81c R/W | Source image pixel data register OXXXXX
HftReg 0xa820 R | Halftone image data register OXXXXX

1-18

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PROGRAMMER(S MODEL

PROGRAMMER(MODEL

OVERVIEW

KS32C65100 was developed using the advanced ARM7TDMI core designed by advanced RISC machines, Ltd.
PROCESSOR OPERATING STATES
From the programmer& point of view, the ARM7TDMI can be in one of two states:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit
1 to select between alternate halfword.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State
Entry into ARM state happens:

On execution of the BX instruction with the state bit clear in the operand register.

On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode® link register, and execution commences at the exception® vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

NOTE
The KS32C65100 is configured to the big-endian format.

ELECTRONICS 2-1

PROGRAMMER(S MODEL KS32C65100 RISC MICROPROCESSOR

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

Higher Address 31 23 15 8 7 0 Word Address
24 16
8 9 10 11 8
4 5 6 7 4
0 1 2 3 0

Lower Address

Most significant byte is at lowest address
Word is addressed by byte address of most signficant byte

Figure 2-1. Big-Endian Addresses of Bytes within Words

The data locations in the external memory are different with Figure 2-1 in the KS32C6200. Please refer to the
chapter 4, system manager.

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word® least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0.

Higher Address 31 23 15 8 7 0 Word Address
24 16
11 10 9 8 8
7 6 5 4 4
3 2 1 0 0

Lower Address

Most significant byte is at lowest address
¢ Word is addressed by byte address of least signficant byte

Figure 2-2. Little-Endian Addresses of Bytes within Words

2-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PROGRAMMER(S MODEL

INSTRUCTION LENGTH
Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARMT7TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

OPERATING MODES

ARM7TDMI supports seven modes of operation:

User (usr): The normal ARM program execution state
FIQ (fiq): Designed to support a data transfer or channel process
IRQ (irq): Used for general-purpose interrupt handling

Supervisor (svc): Protected mode for the operating system
Abort mode (abt): Entered after a data or instruction prefetch abort
System (sys): A privileged user mode for the operating system

Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in user mode. The non-user modes-known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers-31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
user) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: RO to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information

ELECTRONICS 2-3

PROGRAMMER(S MODEL

KS32C65100 RISC MICROPROCESSOR

Register 14

Register 15
[31:2]

Register 16
and

is used as the subroutine link register. This receives a copy of R15 when a branch and

link (BL) instruction is executed. At all other times it may be treated as a general-
purpose register. The corresponding banked registers R14_svc, R14_irq, R14_fiq,
R14 _abt and R14_und are similarly used to hold the return values of R15 when
interrupts and exceptions arise, or when branch and link instructions are executed
within interrupt or exception routines.

holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

is the CPSR (Current Program Status Register). This contains condition code flags

the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fig-R14_fig). In ARM

state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor,

abort and undefined each have two banked registers mapped to R13 and R14,
allowing each of these modes to have a private stack pointer and link registers.

ARM State General Registers and Program Counter

System & User FIQ Supervisor About IRG Undefined

RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
RS R8_fiq RS RS RS RS
R9 R9_fiq R9 R9 R9 R9
R10 R10_fiq R10 R10 R10 R10
R11 R11 fiq R11 R11 R11 R11
R12 R12_fiq R12 R12 R12 R12
R13 R13_fiq R13_svc R13_abt R13_irq R13_und
R14 R14_fiq R14_svc R14_abt R14_irq R14_und

R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC)

ARM State Program Status Register
| cpsr CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

D\ = banked register

Figure 2-3. Register Organization in ARM State

2-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PROGRAMMER(S MODEL

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0O-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

THUMB State General Registers and Program Counter

System & User FIQ Supervisor About IRG Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
SP SP_fiq SP_svc SP_abt SP_irq SP_und
LR LR_fiq LR_svc LR_abt LR_irq LR_und
PC PC PC PC PC PC
THUMB State Program Status Registers
| cPsr CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

D\ = banked register

Figure 2-4. Register Organization in THUMB State

ELECTRONICS 2-5

PROGRAMMER(S MODEL

KS32C65100 RISC MICROPROCESSOR

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

THUMB state RO-R7 and ARM state RO-R7 are identical

THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical
THUMB state SP maps onto ARM state R13

THUMB state LR maps onto ARM state R14

The THUMB state program counter maps onto the ARM state program counter (R15)

This relationship is shown in Figure 2-5.

THUMB State ARM State
RO > RO —
R1 - R1
R2 > R2 o
R3 > R3 3
(o))
R4 P R4 $
R5 > R5 S
R6 P R6
R7 P R7 1
R8 —
R9
R10)
R11 3
R12 g
Stack Pointer (SP) P~ Stack Pointer (R13) T
Link Register (LR) P Link Register (R14)
Program Counter (PC) » Program Counter (R15) —
CPSR - CPSR
SPSR - SPSR

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

2-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PROGRAMMER(S MODEL

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0O-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register® functions are:

Hold information about the most recently performed ALU operation
Control the enabling and disabling of interrupts

Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

condition code flags (reserved) control bits

31 30 29 28 27 26 25 2423 7 8 7 6 5 4 3 2 1 0

N Z Cc \% // . | F T M4 | M3 | M2 | M1 | MO

L/ L |
Overflow I— Mode bits
Carry/Borrow/Extend State bit
Zero FIQ disable
Negative/Less Than FRQ disable

Figure 2-6. Program Status Register Format

ELECTRONICS 2-7

PROGRAMMER(S MODEL KS32C65100 RISC MICROPROCESSOR

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.
In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
change when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in
THUMB state, otherwise it is executing in ARM state. This is reflected on the TBIT
external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The | and F bits are the interrupt disable bits. When set, these
disable the IRQ and FIQ interrupts respectively.

The mode bits The M4, M3, M2, M1 and MO bits (M[4:0]) are the mode bits. These determine the
processor® operating mode, as shown in Table 2-1. Not all combinations of the mode
bits define a valid processor mode. Only those explicitly described shall be used. The
user should be aware that if any illegal value is programmed into the mode bits,

M[4:0], then the processor will enter an unrecoverable state. If this occurs, reset should be
applied.
Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR& flag or control

bits, you must ensure that these unused bits are not altered. Also, your program
should not rely on them containing specific values, since in future processors they
may read as one or zero.

2-8 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PROGRAMMER(S MODEL

Table 2-1. PSR Mode bit Values

M[4:0] Mode Visible THUMB State Registers Visible ARM State Registers

10000 User R7..RO, R14..R0,

LR, SP PC, CPSR PC, CPSR
10001 FIQ R7..RO, R7..RO,

LR_fiq, SP_fiq R14 fig..R8_fiq,

PC, CPSR, SPSR_fiq PC, CPSR, SPSR_fiq
10010 IRQ R7..RO, R12..RO,

LR_irg, SP_irq R14 irq..R13_irq,

PC, CPSR, SPSR_irq PC, CPSR, SPSR_irq
10011 Supervisor R7..RO, R12..R0,

LR_svc, SP_svc, R14 svc..R13_suvc,

PC, CPSR, SPSR_svc PC, CPSR, SPSR_svc
10111 Abort R7..RO, R12..R0,

LR _abt, SP_abt, R14 abt..R13_abt,

PC, CPSR, SPSR_abt PC, CPSR, SPSR_abt
11011 Undefined R7..RO R12..R0,

LR_und, SP_und, R14_und..R13_und,

PC, CPSR, SPSR_und PC, CPSR
11111 System R7..RO, R14..R0,

LR, SP PC, CPSR PC, CPSR

ELECTRONICS

2-9

PROGRAMMER(S MODEL KS32C65100 RISC MICROPROCESSOR

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
see exception priorities on page 2-14.

Action on Entering an Exception
When handling an exception, the ARM7TDMI:

1.

Preserves the address of the next instruction in the appropriate link register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the link register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the link register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14 svc will always return to the next instruction regardless of whether the SWiI
was executed in ARM or THUMB state.

Copies the CPSR into the appropriate SPSR
Forces the CPSR mode bits to a value which depends on the exception

Forces the PC to fetch the next instruction from the relevant exception vector It may also set the interrupt
disable flags to prevent otherwise unmanageable nestings of exceptions. If the processor is in THUMB state
when an exception occurs, it will automatically switch into ARM state when the PC is loaded with the
exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1.

Moves the link register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

Copies the SPSR back to the CPSR
Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

2-10 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PROGRAMMER(S MODEL

Exception Entry/Exit Summary

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes
ARM R14 x THUMB R14 x
BL MOV PC, R14 PC +4 PC +2 1
SWI MOVS PC, R14_svc PC +4 PC +2 1
UDEF MOVS PC, R14 und PC +4 PC +2 1
FIQ SUBS PC, R14 fiq, #4 PC +4 PC +2 2
IRQ SUBS PC, R14 irq, #4 PC +4 PC +2 2
PABT SUBS PC, R14_abt, #4 PC +4 PC +2 1
DABT SUBS PC, R14_abt, #8 PC +8 PC+2 3
RESET NA - - 4
NOTES:

1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.

2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.

4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimising the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fig,#4

FIQ may be disabled by setting the CPSR& F flag (but note that this is not possible from user mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

ELECTRONICS 211

PROGRAMMER(S MODEL KS32C65100 RISC MICROPROCESSOR

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a low level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the | bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort
An abort indicates that the current memory access cannot be completed. It can be signalled by the external abort
input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

Prefetch abort: occurs during an instruction prefetch.

Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

The swap instruction (SWP) is aborted as though it had not been executed.

Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (i.e. it has the base in the transfer list), the overwriting
is prevented. All register overwriting is prevented after an abort is indicated, which means in particular that
R15 (always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14 abt#4 ; for a prefetch abort, or
SUBS PC,R14 abt#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

2-12 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PROGRAMMER(S MODEL

Software Interrupt

The software interrupt instruction (SWI) is used for entering supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE
nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC, R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode on Entry
0x00000000 Reset Supervisor
0x00000004 Undefined instruction Undefined
0x00000008 Software interrupt Supervisor
0x0000000C Abort (prefetch) Abort
0x00000010 Abort (data) Abort
0x00000014 Reserved Reserved
0x00000018 IRQ IRQ
0x0000001C FIQ FIQ

ELECTRONICS 2-13

PROGRAMMER(S MODEL KS32C65100 RISC MICROPROCESSOR

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:
Reset

Data abort
FIQ

IRQ
Prefetch abort

o M 0w bR

Lowest priority:

6. Undefined instruction, software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the CPSR& F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the
instruction at Ox1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfig.
This is 4 processor cycles.

RESET

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.
When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The
value of the saved PC and SPSR is not defined.

Forces M[4:0] to 10011 (supervisor mode), sets the | and F bits in the CPSR, and clears the CPSR& T bit.
Forces the PC to fetch the next instruction from address 0x00.

P

Execution resumes in ARM state.

2-14 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.
FORMAT SUMMARY

The ARM instruction set formats are shown below.

31 30 29 28 27 26 25 24 23 2221 2019 181716 151413121110 9 8 7 6 5 4 3 2 1 0
Data processing/
Cond 0(0]1 Opcode S Rn Rd Operand2 PSR Transfer
Cond ofofofofOfOfA|S Rd Rn Rs 110|001 Rm Multiply
Cond 0|0[OfOf1|U|A|S RdHi RnLo Rn 1{ofo]1 Rm Multiply Long
Cond ofojof1|jo|(B|O]O Rn Rd ojojofo|1|{o|0]1 Rm Single data swap
Cond olofo]1fo]o 101|1|1|1 1|1|1|111110001 RN Branch and exchange
Cond [ofofo[P[u]o[w|L Rn Rd o[oJofof1[s[H[1 Rm Halfword gata transfer:
Cond [ofofo[P[u1[w]|L Rn Rd Offset [1[S|H[1]| Offset Halfword data transfer:
Cond Oj1(1|P|U|[B|W|L Rn Rd Offset Single data transfer
Cond of1]1 [1] Undefined
Cond 1|/0|0]|P U|S|W| L| Rn Register List Block data transfer
Cond 1{0]1fL Offset Branch
cond [1]1]o[P|U[N]W]L Rn CRd CP# Offset Coprocessor data
Cond |[1][1[1][0] cPopc CRn CRd CP# cp# [0 CRm GoRrggessor data
cond [1]1]1]0]cPopc|L CRn Rd CP# cp# 1| CRm Coprocessor data
Cond 111111 Ignored by processor Software Interrupt
31 30 29 28 27 26 25 24 23 2221 2019 18 1716 151413121110 9 8 7 6 5 4 3 2 1 0

Figure 3-1. ARM Instruction Set Format

Some instruction codes are not defined but do not cause the undefined instruction trap to be taken, for instance a
multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their action may change
in future ARM implementations.

ELECTRONICS 3-1

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action
ADC Add with carry Rd: = Rn + Op2 + Carry
ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn and Op2

B Branch R15: = address

BIC Bit clear Rd: = Rn and not Op2

BL Branch with link R14: = R15, R15: = address
BX Branch and exchange R15: = Rn, T bit: = Rn[0]
CDP Coprocessor data processing (Coprocessor-specific)
CMN Compare negative CPSR flags: = Rn + Op2
CMP Compare CPSR flags: = Rn - Op2
EOR Exclusive OR Rd: = (Rn and not Op2) or (op2 and not Rn)
LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)
LDR Load register from memory Rd: = (address)

MCR Move CPU register to coprocessor register cRn: =rRn {<op>cRm}
MLA Multiply accumulate Rd: = (Rm * Rs) + Rn

MOV Move register or constant Rd: = Op2

MRC Move from coprocessor register to CPU register [Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to register Rn: = PSR

MSR Move register to PSR status/flags PSR: =Rm

MUL Multiply Rd: = Rm * Rs

MVN Move negative register Rd: = OXFFFFFFFF EOR Op2
ORR OR Rd: = Rn or Op2

RSB Reverse subtract Rd: =Op2 - Rn

RSC Reverse subtract with carry Rd: =Op2 - Rn -1+ Carry
SBC Subtract with carry Rd: =Rn - Op2 -1 + Carry
STC Store coprocessor register to memory address: = CRn

STM Store Multiple Stack manipulation (push)
STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn - Op2

S Software Interrupt OS call

SWP Swap register with memory Rd: =[Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags: = Rn EOR Op2
TST Test bits CPSR flags: = Rn AND Op2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction® condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction& mnemonic. For example, a branch (B in assembly language) becomes BEQ for "Branch if Equal”,
which means the branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (suffix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning
0000 EQ Z set Equal
0001 NE Z clear Not equal
0010 CSs C set Unsigned higher or same
0011 CcC C clear Unsigned lower
0100 MI N set Negative
0101 PL N clear Positive or zero
0110 VS V set Overflow
0111 VC V clear No overflow
1000 HI C setand Z clear Unsigned higher
1001 LS C clear or Z set Unsigned lower or same
1010 GE N equals V Greater or equal
1011 LT N not equal to V Less than
1100 GT Z clear AND (N equals V) Greater than
1101 LE Z set OR (N not equal to V) Less than or equal
1110 AL (ignored) Always

ELECTRONICS

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

cond 0001001021112 111121110 0 01 Rn

[3:0] Operand Register
If bit 0 of Rn = 1, subsequenct instructions decoded as THUMB instructions
If bit 0 of Rn = 0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-2. Branch and Exchange Instructions
INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequencial (N-cycle), respectively.

ASSEMBLER SYNTAX
BX - branch and exchange. ltems in {} are optional. Items in <> must be present.
BX {cond} Rn

{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behaviour is undefined.

3-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

Examples

ADR RO, Into_THUMB + 1
BX RO
CODE16

Into_ THUMB

ADR R5, Back_to_ARM

BX R5

ALIGN
CODE32
Back_to_ARM

Generate branch target address
and set bit 0 high - hence

arrive in THUMB state.

Branch and change to THUMB
state.

Assemble subsequent code as
THUMB instructions

Generate branch target to word aligned address
- hence bit 0 is low and so change back to ARM state.
Branch and change back to ARM state.

Word align
Assemble subsequent code as ARM instructions

ELECTRONICS

3-5

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below

31 28 27 25 24 23 0
code 101 L offset
[24] Link Bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously loaded into
a register. In this case the PC should be manually saved in R14 if a branch with link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
sequential (S-cycle) and internal (I-cycle).

3-6 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SYNTAX
Items in {} are optional. Iltems in <> must be present.
B{L}cond} <expression>

{L} Used to request the branch with link form of the instruction. If absent, R14 will not be
affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be
used.
<expression> The destination. The assembler calculates the offset.
Examples
here BAL here ; Assembles to OXEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred
;. if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.
BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags
; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

;. case unless R1 held OxFFFFFFFF.

ELECTRONICS 3-7

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.

The instruction encoding is shown in Figure 3-4.

31 28 27 26 25 24 21 20 19

16 15 12 11 10

cond 00 1| OpCode | S Rn

Rd Operand 2

[15:12] Destination Register
0 = Branch

[19:16] 1st Operand Register
0 = Branch

[20] Set Condition Codes
0 = Do not after condition codes

[24:21] Operation Code

0000 = AND - Rd: Op1 AND Op2
0001 = EOR - Rd: Op1 EOR Op2
0010 = SUB - Rd: Op1 - Op2

0011 = RSB - Rd: Op2 - Op1

0100 = ADD - Rd: Op1 + Op2

0101 =ADC - Rd: Op1 +Op2 +C
0110 = SBC - Rd: Op1-0p2 +C -1
0111 =RSC-Rd: Op2-0Opl+C-1

1100 = ORR - Rd: Op1 or Op2

1101 = MOV - Rd: Op2

1110 = BIC - Rd: Op1 AND NOT Op2
1111 = MVN - Rd: NOT Op2

[25] Immediate Operand
0 = Operand 2 is a register

[11:0] Operand 2 Type Selection

1000 = TST - set condition codes in Opl AND Op2
1001 = TEO - set condition codes in Op1 EOR Op2
1010 = CMP - set condition codes in Opl - Op2
1011 = SMN - set condition codes in Opl + Op2

1 = Branch with link

1 = Branch with link

1 = Set condition codes

1 = Operand 2 is an Immediate value

[11:4] Shift applied to Rm

11 4 3 0
Shift Rm
[3:0] 2nd operand register
11 8 7 0
Rotate Imm

[7:0] Unsigned 8 bit immediate value

[31:28] Confition Field

[11:8] Shift applied to Imm

Figure 3-4. Data Processing Instructions

3-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the | bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler Op-Code Action
Mnemonic
AND 0000 Operandl AND operand 2
EOR 0001 Operandl EOR operand2
SUB 0010 Operandl - operand2
RSB 0011 Operand2 operandl
ADD 0100 Operandl + operand2
ADC 0101 Operandl + operand2 + carry
SBC 0110 Operandl - operand2 + carry - 1
RSC 0111 Operand?2 - operandl + carry - 1
TST 1000 As AND, but result is NOT written
TEQ 1001 As EOR, but result is NOT written
CMP 1010 As SUB, but result is NOT written
CMN 1011 As ADD, but result is NOT written
ORR 1100 Operandl OR operand2
MOV 1101 Operand2 (operandl is ignored)
BIC 1110 Operand1l AND NOT operand?2 (Bit clear)
MVN 1111 NOT operand2 (operandl is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

ELECTRONICS 3-9

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register (other than R15). The encoding for the
different shift types is shown in Figure 3-5.

11 76 5 4 11 8 76 5 4
0 RS 0 1
[6:5] Shift Type [6:5] Shift Type
00 = Logic left 01 = Logical right 00 = Logic left 01 = Logical right
10 = Arithmetic right 11 = Rotate right 10 = Arithmetic right 11 = Rotate right
[11:7] Shift Amount [11:8] Shift Register
5 Bit unsigned integer Shift amount specified in bottom-byte of Rs

Figure 3-5. ARM Shift Operations
Instruction Specified Shift Amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

31 27 26 0

Contents of Rm

Value of Operand 2 0 00O0O

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

3-10 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

31 5 4 0

Mom

Contents of Rm

00O0ODO Value of Operand 2

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure 3-
8.

31 30 5 4 0

Mm

Contents of Rm

Value of Operand 2

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

ELECTRONICS 3-11

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

Rotate right (ROR) operations reuse the bits which 2overshoot? in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9. The form of the shift field which might be expected to give ROR #0 is
used to encode a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right by one
bit position of the 33 bit quantity formed by appending the CPSR C flag to the most significant end of the
contents of Rm as shown in Figure 3-10.

31 5 4 0

Contents of Rm

W L |

Value of Operand 2

Figure 3-9. Rotate Right

31 1 O

Contents of Rm

c \ carry out

Value of Operand 2

Figure 3-10. Rotate Right Extended

3-12 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

Register Specified Shift Amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1.

2.

LSL by 32 has result zero, carry out equal to bit 0 of Rm.

LSL by more than 32 has result zero, carry out zero.

LSR by 32 has result zero, carry out equal to bit 31 of Rm.

LSR by more than 32 has result zero, carry out zero.

ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.
ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ELECTRONICS 3-13

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state change which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERAND
If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR
transfer operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a
privileged mode and to do nothing if in User mode.

INSTRUCTION CYCLE TIMES

Data processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles
Normal data processing 1S
Data processing with register specified shift 1S + 1l
Data processing with PC written 2S + 1N
Data processing with register specified shift and PC written 2S + 1IN + 1

NOTE: S, N and | are as defined sequential (S-cycle), non-sequencial (N-cycle), and internal (I-cycle) respectively .

3-14 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SYNTAX

MOV,MVN (single operand instructions).
<opcode>{cond{S} Rd,<Op2>

CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,0ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

<Op2>
{cond}

{S}
Rd, Rn and Rm

<#expression>

<shift>

<shiftname>s

Examples

ADDEQ
TEQS

SUB

MOV
MOVS

Rm{,<shift>} or,<#expression>

A two-character condition mnemonic. See Table 3-2.

Set condition codes if S present (implied for CMP, CMN, TEQ, TST).
Expressions evaluating to a register number.

If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with
extend).

ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)

R2, R4, R5 ; Ifthe Z flag is set make R2: = R4 + R5
R4, #3 ; Test R4 for equality with 3.
; (The Sis in fact redundant as the
; assembler inserts it automatically.)
R4, R5, R7, LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.
PC, R14 ; Return from subroutine.
PC, R14 ; Return from exception and restore CPSR
; from SPSR_mode.

ELECTRONICS

3-15

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in
Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS
In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the

CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

You must not specify R15 as the source or destination register.

Also, do not attempt to access an SPSR in User mode, since no such register exists.

3-16 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

MRS (Transfer PSR Contents to a Register)
31 28 27 23 22 21 16 15 12 11 0

cond 00010 Ps 001111 Pd 000000000000

[15:12] Destination Register

[22] Source PSR
0=CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

MRS (Transfer Register Contents to PSR)
31 28 27 23 22 21 12 11 4 3 0

cond 00010 Pd 1010011111 00000000 Rm

[3:0] Source Register

[22] Destination PSR
0=CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

MRS (transfer register contents or immdiate value to PSR flag bits only)
31 28 27 26 2524 2322 21 12 11 0

cond 00 |1 10 Pd 1010001111 Source operand

[22] Destination PSR
0=CPSR 1 = SPSR_<current mode>

[25] Immediate Operand

0 = Source operand is a register

1 = SPSR_<current mode>

[11:0] Source Operand

11 4 3 0

00000000 Rm

[3] Source register
[11:4] Source operand is an immediate value

11 8 7 0

00000000 Imm

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to Imm

[31:28] Confition Field

Figure 3-11. PSR Transfer

ELECTRONICS 3-17

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:
The reserved bits should be preserved when changing the value in a PSR.

Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

Examples

The following sequence performs a mode change:

MRS RO,CPSR ; Take a copy of the CPSR.

BIC RO,R0O,#0x1F ; Clear the mode bits.

ORR RO,R0O,#new_mode ; Select new mode

MSR CPSR,RO ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N, Z, C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as sequential (S-cycle).

3-18 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

ASSEMBLER SYNTAX

MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N,Z,C

and V flags respectively.

Key:
{cond}

Rd and Rm

<psr>

<psrf>

<#expression>

Examples

Two-character condition mnemonic. See Table 3-2.

Expressions evaluating to a register number other than R15

CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are

SPSR and SPSR_all)

CPSR_flg or SPSR_flg

Where this is used, the assembler will attempt to generate a shifted immediate 8-bit
field to match the expression. If this is impossible, it will give an error.

In user mode the instructions behave as follows:

MSR
MSR
MSR
MRS

In privileged modes the instructions behave as follows:

MSR
MSR
MSR
MSR
MSR
MSR
MRS

CPSR_all,Rm
CPSR_flg,Rm
CPSR_flg,#0xA0000000
Rd,CPSR

CPSR_all,Rm
CPSR_flg,Rm
CPSR_flg,#0x50000000
SPSR_all,Rm
SPSR_flg,Rm
SPSR_flg,#0xC0000000
Rd,SPSR

CPSRJ[31:28] = Rm[31:28]

CPSRJ[31:28] = Rm[31:28]

CPSR[31:28] = OxA (set N, C; clear Z, V)
Rd[31:0] = CPSR[31:0]

CPSR[31:0] = Rm[31:0]

CPSR[31:28] = Rm[31:28]

CPSR[31:28] = 0x5 (set Z, V; clear N, C)
SPSR_<mode>[31:0] = Rm[31:0]
SPSR_<mode>[31:28] = Rm[31:28]
SPSR_<mode>[31:28] = OxC (set N, Z; clear C, V)
Rd[31:0] = SPSR_<mode>[31:0]

ELECTRONICS

3-19

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 0 00O O O OfA[S Rd Rn Rs 1 0 0 1 Rm

[15:12][11:8][3:0] Operand Register
[19:16] Destination Register

[21] SetCondition Set
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only 1 = Multiply and accumulate

[31:28] Condition Field

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd: = Rm*Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set.The multiply-accumulate form gives Rd: = Rm*Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2& complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits-the
low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:

Operand A Operand B Result

OxFFFFFFF6 0x0000001 OXFFFFFF38

If the Operands Are Interpreted as Sighed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
OxFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as Ox13FFFFFF38, so the least significant 32 bits are OXFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

3-20 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

CPSR FLAGS
Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)

flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + ml and MLA 1S + (m+1)I cycles to execute, where S and | are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m: The number of 8 bit multiplier array cycles is required to complete the multiply, which is controlled by the
value of the multiplier operand specified by Rs. Its possible values are as follows

If bits [32:8] of the multiplier operand are all zero or all one.
If bits [32:16] of the multiplier operand are all zero or all one.
If bits [32:24] of the multiplier operand are all zero or all one.

A wDd R

In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2.
{S} Set condition codes if S present
Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.
Examples
MUL R1,R2,R3 ; R1: = R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1: = R2*R3+R4, Setting condition codes.

ELECTRONICS 3-21

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL,MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 28 27 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 0 0 0 0 1|{U[A[S RdHi RdLo Rs 1 0 0 1 Rm

[11:8][3:0] Operand Registers

[19:16][15:12] Source Destination Registers
[20] Set Condition Code

0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only 1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned 1 = Signed

[31:28] Condition Field

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi, RdLo: = Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of
the result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi, RdLo: = Rm * Rs + RdHi, RdLo. The lower 32 bits of the 64
bit number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower
32 bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary humbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signhed 64 bit result.

OPERAND RESTRICTIONS

R15 must not be used as an operand or as a destination register.

RdHi, RdLo, and Rm must all specify different registers.

3-22 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)l and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed Instructions SMULL, SMLAL.:
If bits [31:8] of the multiplier operand are all zero or all one.
If bits [31:16] of the multiplier operand are all zero or all one.
If bits [31:24] of the multiplier operand are all zero or all one.

In all other cases.

For Unsigned Instructions UMULL, UMLAL.:
If bits [31:8] of the multiplier operand are all zero.
If bits [31:16] of the multiplier operand are all zero.
If bits [31:24] of the multiplier operand are all zero.

In all other cases.

S and | are defined as sequential (S-cycle) and internal (I-cycle), respectively.
ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose
UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned multiply long 32x32=64
UMLAL{condH{S} RdLo,RdHi,Rm,Rs Unsigned multiply & accumulate long 32x32+64=64
SMULL{condH{S} RdLo,RdHi,Rm,Rs Signed multiply long 32x32=64
SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed multiply & accumulate long 32x32+64=64

{cond} Two-character condition mnemonic. See Table 3-2.
{S} Set condition codes if S present
RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.
Examples
UMULL R1,R4,R2,R3 ; R4,R1: =R2*R3
UMLALS R1,R5R2,R3 ; R5,R1: = R2*R3+R5,R1 also setting condition codes

ELECTRONICS 3-23

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address

used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 10

cond

01

I|P{U|B[W]|L Rn Rd

Offset

[15:12] Source/Destination Register
[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-Back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value
[11:0] Offse
11 0
| Immediate offset |

[11:0] Unsigned 12 bit immedite offset
11 4 3 0
| Shift Rm |

[3:0] Offset register [11:4] shift applied to Rm

[31:28] Condition Field

Figure 3-14. Single Data Transfer Instructions

3-24

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U = 1) or subtracted from (U = 0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P = 1) or after (post-indexed, P
= 0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W = 1), or the old base value may be kept (W = 0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B = 1) or a word (B = 0) between an ARM7TDMI register
and memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

NOTE
The KS32C65100 is configured to the big-endian format.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros.
Please see Figure 2-2.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ELECTRONICS 3-25

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

Memory Register
A+3 A A 24
24
A+2 B B 16
16
A+l Cc Cc 8
8
A D D 0
0

LDR from word aligned address

A+3 A A 24
24
A+2 B B 16
16
A+l Cc Cc 8
8
A D D 0
0

LDR from word address offset by 2

Figure 3-15. Little-Endian Offset Addressing
Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros.
please see Figure 2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of O or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

3-26 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.
Example:

LDR RO,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.
DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the data abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1l and LDR PC take 2S + 2N +1I incremental cycles, where S, N and |
are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

ELECTRONICS 3-27

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

ASSEMBLER SYNTAX

<LDR|STR>{cond{BHT} Rd,<Address>

where:
LDR
STR
{cond}
{B}
{T}

Rd

Rn and Rm

<Address>can be:

1

<shift>

{1}

Load from memory into a register

Store from a register into memory

Two-character condition mnemonic. See Table 3-2.

If B is present then byte transfer, otherwise word transfer

If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

An expression evaluating to a valid register number.

Expressions evaluating to a register number. If Rn is R15 then the assembler will

subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this case base
write-back should not be specified.

An expression which generates an address:

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>[{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted
by <shift>

A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[RN],{+/-}Rm{,<shift>} offset of +/- contents of index register,

shifted as by <shift>.

General shift operation (see data processing instructions) but you cannot specify the
shift amount by a register.

Writes back the base register (set the W bit) if! is present.

3-28

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

Examples

STR

STR
LDR
LDR
LDREQB

STR
PLACE

R1,[R2,R4]!

R1,[R2],R4
R1,[R2,#16]
R1,[R2,R3,LSL#2]
R1,[R6,#5]

R1,PLACE

Store R1 at R2+R4 (both of which are registers)

and write back address to R2.

Store R1 at R2 and write back R2+R4 to R2.

Load R1 from contents of R2+16, but don't write back.
Load R1 from contents of R2+R3*4,

Conditionally load byte at R6+5 into

R1 bits 0 to 7, filling bits 8 to 31 with zeros.

Generate PC relative offset to address PLACE.

ELECTRONICS

3-29

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

31

28 27

25 24 23 22 21 20 19 16 15 12 11

8 7 6 5 43

0

cond

000

PIU|O|W|[L Rn Rd

0000

1|S

H

Rm

[3:0] Offset Register

[6][5] SH

0 0= SWP instruction

0 1 = Unsigned halfwords
1 0= Signed byte

1 1 = Signed halfwords

[15:12] Source/Destination Register
[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Write address into base

[21] Write-Block
0: No write-back
1: Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

[31:28] Condition Field

Figure 3-16. Halfword and Signed Data Transfer with Register Offset

3-30

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

31 28 27 25 24 23 22 21 20 19

16 15

12 11

87 6 5 43

cond 000 PlU|1[W]|L Rn

Rd

Offset

1|S

H

Offset

[6][5] SH

0 0= SWP instruction

0 1 = Unsigned halfwords
1 0= Signed byte

1 1 =Signed byte

[19:16] Base Register
[20] Load/Store

0 = Store to memory

1 = Load from memory
[21] Write-Back

0 = No write-back

1 = Write address into base
[23] Up/Down

1 = Up: add offset to base

[24] Pre/Post Indexing

[31:28] Condition Field

[3:0] Immediate Offset (low nibble)

0 = Down: subtract offset from base

[11:8] Immediate Offset (high nibble)

[15:12] Source/Destination Register

0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

Figure3-17. Halfword and Signal Data Transfer with Immediate Offset and Auto-Indexing

ELECTRONICS

3-31

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U = 1) or subtracted from (U =
0) the base register Rn. The offset modification may be performed either before (pre-indexed, P = 1) or after
(post-indexed, P = 0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W = 1), or the old base may be kept (W = 0). In the case of post-indexed addressing,
the write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The Write-
back bit should not be set high (W = 1) when post-indexed addressing is selected.

HALFWORD LOAD AND STORES

Setting S = 0 and H = 1 may be used to transfer unsigned Half-words between an ARM7TDMI register and
memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S = 1 the H bit selects between Bytes (H = 0) and
Half-words (H = 1). The L bit should not be set low (Store) when signed (S = 1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied
address should always be on a halfword boundary. If bit O of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit O of the address is HIGH this will cause unpredictable
behaviour.

3-32 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to O if it is a halfword boundary, (A[1]=1). The supplied
address should always be on a halfword boundary. If bit O of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit O of the address is HIGH this will cause unpredictable
behaviour.

NOTE
The KS32C651000 is configured to the big-endian format.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the data abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H, SH, SB) instructions take 1S + 1N + 1I. LDR(H, SH, SB) PC take 2S + 2N + 1l incremental
cycles. S,N and | are defined as sequential (S-cycle), hon-sequential (N-cycle), and internal (I-cycle),
respectively. STRH instructions take 2N incremental cycles to execute.

ELECTRONICS 3-33

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2..
H Transfer halfword quantity

SB Load sign extended byte (only valid for LDR)

SH Load sign extended halfword (only valid for LDR)
Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>[{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register
3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[RN],{+/-}Rm offset of +/- contents of index register.
4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the

assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In
this case base write-back should not be specified.

{1 Writes back the base register (set the W bit) if ! is present.

3-34 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

Examples

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the halfword address
; contained in R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte
; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[RO] ; Conditionally load R11 with the sign extended contents
; of the halfword address contained in RO.
HERE ; Generate PC relative offset to address FRED.
STRH RS, [PC,#(FRED-HERE-8)]; Store the halfword in RS at address FRED
FRED

ELECTRONICS 3-35

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit O of the register field will cause RO to be transferred, a O will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 28 27 25 24 23 22 21 20 19 16 15 0

cond 100 PIU|S|W]|L Rn Register list

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-Back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or force user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtrack offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

Figure 3-18. Block Data Transfer Instructions

3-36 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn = 0x1000 and write back of the modified
base is required (W = 1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W = 0), Rn would have retained its initial
value of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have
been overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

0x100C 0x100C
Rn —» 0x1000 R1 0x1000
OXOFF4 OXOFF4
1 2
0x100C Rn —» 0x100C
R7
R5 R5
R1 0x1000 R1 0x1000
OXOFF4 OXOFF4
3 4

Figure 3-19. Post-Increment Addressing

ELECTRONICS 3-37

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

0x100C 0x100C
R1
Rn —» 0x1000 0x1000
OXOFF4 OXOFF4
1 2
0x100C Rn —» R7 0x100C
R5 R5
R1 R1
0x1000 0x1000
OXOFF4 OXOFF4
3 4
Figure 3-20. Pro-Increment Addressing
0x100C 0x100C
Rn —» 0x1000 0x1000
R1
OXOFF4 OXOFF4
1 2
0x100C 0x100C
0x1000 R7 0x1000
R5 R5
R1 R1
OXOFF4 Rn —» OXOFF4
3 4

Figure 3-21. Post-Decrement Addressing

3-38

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

0x100C 0x100C
Rn —» 0x1000 0x1000
OxOFF4 R1 OxOFF4
1 2
0x100C 0x100C
0x1000 0x1000
R7
R5 R5
R1 OxOFF4 Rn —» R1 OxOFF4
3 4

Figure 3-22. Pre-Decrement Addressing
USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the user bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the user bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV RO, RO after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

ELECTRONICS 3-39

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Aborts during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 11 and LDM PC takes (n+1)S + 2N + 1l incremental cycles, where S,N
and | are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

3-40 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{"}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{1 If present requests write-back (W = 1), otherwise W = 0.

"} If present set S bit to load the CPSR along with the PC, or force transfer of user bank

when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit
Pre-increment load LDMED LDMIB 1 1 1
Post-increment load LDMFD LDMIA 1 0 1
Pre-decrement load LDMEA LDMDB 1 1 0
Post-decrement load LDMFA LDMDA 1 0 0
Pre-increment store STMFA STMIB 0 1 1
Post-increment store STMEA STMIA 0 0 1
Pre-decrement store STMFD STMDB 0 1 0
Post-decrement store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a 2full? or 2empty? stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean increment after,
increment before, decrement after, decrement before.

ELECTRONICS 341

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

Examples
LDMFD SP!{RO,R1,R2}
STMIA R0O,{R0-R15}
LDMFD SP! {R15}
LDMFD SP! {R15}"
STMFD R13,{R0O-R14}"

Unstack 3 registers.

Save all registers.

R15 - (SP), CPSR unchanged.
R15 - (SP), CPSR - SPSR_mode
(allowed only in privileged modes).
Save user mode regs on stack
(allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling

routine:
STMED SP! {R0-R3,R14}
BL somewhere
LDMED SP! {R0-R3,R15}

Save RO to R3 to use as workspace
and R14 for returning.

This nested call will overwrite R14
Restore workspace and return.

3-42

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

SINGLE DATA SWAP (SWP)

31 28 27 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 00010 B| 00 Rn Rd 0000 1001 Rm

[3:0] Source Register
[15:12] Destination Register
[19:16] Base Register

[22] Byte/Word Bit

0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition Field

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are 2locked? together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B = 1) or a word (B = 0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and little Endian
configuration applies to the SWP instruction.

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

ELECTRONICS 3-43

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the data abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S, N and | are defined as sequential (S-
cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.
{B} If B is present then byte transfer, otherwise word transfer
Rd,Rm,Rn Expressions evaluating to valid register numbers
Examples
SWP RO,R1,[R2] ; Load RO with the word addressed by R2, and
; store R1 at R2.
SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.
SWPEQ RO,R0,[R1] ; Conditionally swap the contents of the

; word addressed by R1 with RO.

3-44 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

31 28 27 24 23 0

cond 1111 Comment Field (ignored by processor)

[32:28] Condition Field

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter supervisor mode in a controlled manner. The instruction causes
the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed value
(0Ox08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external memory
management hardware) from modification by the user, a fully protected operating system may be constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

ELECTRONICS 3-45

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.
<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).
Examples

S ReadC ; Get next character from read stream.

SWI Writel+2k2 ; Output a 2k2 to the write stream.

SWINE 0 Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor
EntryTable

DCD ZeroRtn
DCD ReadCRtn
DCD WritelRtn

Zero EQU O

ReadC EQU 256

Writel EQU 512
Supervisor

STMFD R13,{R0-R2,R14}

LDR RO,[R14 #-4]

BIC RO0,R0,#0xFF000000
MOV R1,RO,LSR#8

ADR R2,EntryTable

LDR R15,[R2,R1,LSL#2]
WritelRtn

LDMFD R13,{R0-R2,R15}"

SWI entry point
Addresses of supervisor routines

SWI has routine required in bits 8-23 and data (if any) in
bits 0-7. Assumes R13_svc points to a suitable stack
Save work registers and return address.

Get SWI instruction.

Clear top 8 bits.

Get routine offset.

Get start address of entry table.

Branch to appropriate routine.

Enter with character in RO bits 0-7.

Restore workspace and return,
restoring processor mode and flags.

3-46

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The KS32C65100, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the KS32C65100.
These coprocessor instructions can be emulated by the undefined trap handler. Even though external
coprocessor can not be connected to the KS32C65100, the coprocessor instructions are still described here in full
for completeness. (Remember that any external coprocessor described in this section is a software emulation.)

31 28 27 24 23 20 19 16 15 12 11 8 7 543 0

cond 1110 CP Opc CRn CRd CP# CP 0 CRm

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Unmber

[15:12] Coprocessor Destination Register
[19:16] Coprocessor Operand Register

[23:20] Coprocessor Operand Code

[31:28] Condition Field

Figure 3-25. Coprocessor Data Operation Instruction

ELECTRONICS 3-47

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

THE COPROCESSOR FIELDS

Only bit 4 and bits 24 to 31 are significant to ARM7TDMI. The remaining bits are used by coprocessors. The
above field names are used by convention, and particular coprocessors may redefine the use of all fields except
CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bl incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and | are defined as sequential (S-cycle) and internal (I-cycle).
ASSEMBLER SYNTAX

CDP{cond} p#,<expressionl>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.
p# The unique number of the required coprocessor
<expressionl> Evaluated to a constant and placed in the CP Opc field
cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively
<expression2> Where present is evaluated to a constant and placed in the CP field
Examples

CDP pl1,10,c1,c2,c3 ; Request coproc 1 to do operation 10

; on CR2 and CR3, and put the result in CR1.
CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)

; on CR2 and CRS3, and put the result in CR1.

3-48 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26. This class of instruction is used to load (LDC) or store (STC) a
subset of a coprocessors® registers directly to memory. ARM7TDMI is responsible for supplying the memory
address, and the coprocessor supplies or accepts the data and controls the number of words transferred.

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110 PIU|IN|W|L Rn CRd CP# Offset

[7:0] Unsigned 8 Bit Immediate Offset
[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register
[19:16] Base Register

[20] Load/Store Bit

0 = Store to memory

1 = Load from memory

[21] Write-Back Bit

0 = No write-back

1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit

0 = Down: subtrack offset from base

1 = Up: add offset to base

[24] Pre/Post Indexing Bit

0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance

N = 0 could select the transfer of a single register, and N = 1 could select the transfer of all the registers for
context switching.

ELECTRONICS 3-49

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U = 1) or subtracted from (U = 0)
the base register (Rn); this calculation may be performed either before (P = 1) or after (P = 0) the base is used as
the transfer address. The modified base value may be overwritten back into the base register (if W = 1), or the
old value of the base may be preserved (W = 0). Note that post-indexed addressing modes require explicit
setting of the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES
Coprocessor data transfer instructions take (n-1)S + 2N + bl incremental cycles to execute, where:
n: The number of words transferred.

B: The number of cycles spent in the coprocessor busy-wait loop.

S, N and | are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

3-50 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2..

p# The unigue number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>[{!} offset of <expression> bytes
3 A post-indexed addressing specification:
[Rn],<#expression > offset of <expression> bytes
{1 write back the base register (set the W bit)
ifl is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE
If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

Examples
LDC pl,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.
STCEQL p2,c3,[R5,#24]! ; Conditionally store ¢3 of coproc 2

; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

ELECTRONICS 3-51

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 28 27 24 23 21 20 19 16 15 12 11 8 7 543 0

cond 1110 CP Opc L CRn Rd CP# CP 1 CRm

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Uumber

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register
[20] Load/Store Bit

0 = Store to Co-Processor

1 = Load from Co-Processor

[23:21] Coprocessor Operation Mode

[31:28] Condition Field

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS
The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

3-52 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15
A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.
INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)l +1C incremental cycles to execute, where S, | and C are defined as sequential
(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bl +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)
MCR Move from ARM7TDMI register to coprocessor (L=0)
{cond} Two character condition mnemonic. See Table 3-2
p# The unique number of the required coprocessor
<expressionl> Evaluated to a constant and placed in the CP Opc field
Rd An expression evaluating to a valid ARM7TDMI register number
cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively
<expression2> Where present is evaluated to a constant and placed in the CP field
Examples
MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5

; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
;on R4 and place the result in c6.
MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to

; perform operation 9 (type 2) on c5 and
; €6, and transfer the result back to R3.

ELECTRONICS 3-53

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 28 27 25 24 543 0

cond 011 XXX XXXXXXXXXXXXXXXX 1 XXXX

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 11 + 1N cycles, where S, N and | are defined as sequential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

3-54 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly they

just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn.#p
BEQ Label
CMP Rm, #q
BEQ Label

This can be replaced by

CMP Rn.#p
CMPNE Rm,#q
BEQ Label

Absolute Value

TEQ RN, #0
RSBMI Rn,RN,#0

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2
CMP Rb,#5
ADDCS Rc,Rc,Ra
ADDHI Rc,Rc,Ra

Combining Discrete and Range Tests

TEQ Rc,#127
CMPNE Rc,#? 2-1
MOVLS Rc,#2 2

If Rn=p OR Rm=q THEN GOTO Label.

If condition not satisfied try other test.

Test sign
and 2's complement if necessary.

Multiply by 4,

Test value,

Complete multiply by 5,
Complete multiply by 6.

Discrete test,

Range test

IF Rc U 220R Rc = ASCII(127)
THEN Rc: =22

ELECTRONICS

3-55

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM cross development Toolkit, available from your supplier. A short general purpose divide

routine follows.

MOV
Divl CMP
CMPCC
MOVCC
MOVCC
BCC
MOV
Div2 CMP
SUBCS
ADDCS
MOVS
MOVNE
BNE

Rent,#1
Rb,#0x80000000
Rb,Ra
Rb,Rb,ASL#1
Rcnt,Rent, ASL#1
Divl

Rc,#0

Ra,Rb

Ra,Ra,Rb
Rc,Rc,Rcent
Rcnt,Rent,LSR#1
Rb,Rb,LSR#1
Div2

Overflow Detection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL
TEQ
BNE

2. Overflow in signed multiply with a 32-bit result

SMULL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,#0
overflow

Rd,Rt,Rm,Rn
Rt,Rd ASR#31
overflow

Enter with numbers in Ra and Rb.
Bit to control the division.
Move Rb until greater than Ra.

Test for possible subtraction.
Subtract if ok,

Put relevant bit into result
Shift control bit

Halve unless finished.

Divide result in Rc, remainder in Ra.

3 to 6 cycles
+1 cycle and a register

3 to 6 cycles
+1 cycle and a register

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,#0
overflow

4to 7 cycles
+1 cycle and a register

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,Rd, ASR#31

overflow

4to 7 cycles
+1 cycle and a register

3-56

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL RI,Rh,Rm,Rn ; 3to 6 cycles

ADDS RI,RI,Ral ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ;1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL RI,Rh,Rm,Rn ; 3to 6 cycles

ADDS RI,RI,Ral ; Lower accumulate

ADC Rh,Rh,Ra2 ; Upper accumulate

BVS overflow ;1 cycle and 2 registers
NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2*32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit: = bit 33 or bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bitin Rb Isb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry

MOVS Rc,Ra,RRX ;33 bit rotate right

ADC Rb,Rb,Rb ; Carry into Isb of Rb

EOR Rc,Rc,Ra,LSL#12 ; (involved!)

EOR Ra,Rc,Rc,LSR#20 i (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER
Multiplication by 2”~n (1,2,4,8,16,32..)
MOV Ra, Rb, LSL #n

Multiplication by 2*n+1 (3,5,9,17..)
ADD Ra,Ra,Ra,LSL #n

Multiplication by 2*n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n

ELECTRONICS 3-57

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb : = Ra*C, C a constant:
1. If C even, say C = 2"n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. 1f CMOD 4 =1, say C = 2"n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. 1f C MOD 4 = 3, say C = 2"n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 =11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5%9 = 45

3-58 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

BIC
LDMIA
AND
MOVS
MOVNE
RSBNE
ORRNE

Rb,Ra,#3
Rb{Rd,Rc}
Rb,Ra,#3
Rb,Rb,LSL#3
Rd,Rd,LSR Rb
Rb,Rb,#32
Rd,Rd,Rc,LSL Rb

Enter with address in Ra (32 bits) uses

Rb, Rc result in Rd. Note d must be less than c e.g. 0,1
Get word aligned address

Get 64 bits containing answer

Correction factor in bytes

...now in bits and test if aligned

Produce bottom of result word (if not aligned)

Get other shift amount

Combine two halves to get result

ELECTRONICS

3-59

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the
ARM7TDMI core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

15 14 1312 1110 9 8 7 6 5 4 3 2 1 O
1 ({0|0|0]| Op Offset Rs Rd Move shifted register
2 |ofofo[1]|1]|1|op]rumes | Rs Rd Add/subtract
s [o]o[i] op | e orelcompacidd
4 |0(1(0|0]0 Op Rs Rd ALU operations
s [0]2]0[0]0[L] op [1]7] Reis | Ramd | Hiredsteroperatons
6 |0|1|0(0]|1 Rd Word8 PC-relative load
7 (0f1]0]12|L|BJ|O Ro Rb Rd Load/store with register offset
8 [0O[1|0|J1|H|S|1 Ro Rb Rd Load/store sign-extened byte/halfword
9 |0|1|1|BfL Offset5 Rb Rd Load/store with immediate offset
10 |1|0|0|OfL Offset5 Rb Rd Load/store halfword
11 |1|]0|0|1|L Rd Word8 SP-relative load/store
12 (1|0]1f0 S Rd Word8 Load address
13 (1]0(1)|1]0 0|0|S SWord7 Add offset to stack pointer
14 |1j0|2f{1|L|1]|O Rlist Push/pop registers
15 |1]1|0(0|L Rb Rlist Multiple load/store
16 |1(1]|0]|1 cond Softset8 Conditional branch
17 [1|1]of1|2]2 | 1 | 1 Value8 Software interrupt
18 (111|000 Offsetll Unconfitional branch
19 (11|11 (H Offset Long branch with link
15 14 1312 1110 9 8 7 6 5 4 3 2 1 O

Figure 3-29. THUMB Instruction Set Formats

3-60

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

OPCODE SUMMARY

The following table summaries the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register Hi-Register Condition Codes
Operand Operand Set
ADC Add with carry 4 - 4
ADD Add 4 4 4 Q)
AND AND 4 - 4
ASR Arithmetic shift right 4 - 4
B Unconditional branch 4 - -
Bxx Conditional branch 4 - -
BIC Bit clear 4 - 4
BL Branch and link - - -
BX Branch and exchange 4 4 -
CMN Compare negative 4 - 4
CMP Compare 4 4 4
EOR EOR 4 - 4
LDMIA Load multiple 4 - -
LDR Load word 4 - -
LDRB Load byte 4 - -
LDRH Load halfword 4 - -
LSL Logical shift left 4 - 4
LDSB Load sign-extended byte 4 - -
LDSH Load sign-extended 4 - --
halfword
LSR Logical shift right 4 - 44
MOV Move register 4 - 4@
MUL Multiply 4 4 4
MVN Move negative register 4 - 4
NEG Negate 4 - 4
ORR OR 4 - 4
POP Pop registers 4 - -
PUSH Push registers 4 - -
ROR Rotate right 4 - 4
SBC Subtract with carry 4 - 4
STMIA Store multiple 4 - -

ELECTRONICS

3-61

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register Hi-Register Condition Codes
Operand Operand Set
STR Store word 4 - -
STRB Store byte 4 - -
STRH Store half-word 4 - -
SWI Software interrupt - - -
SUB Subtract 4 - 4
TST Test bits 4 - 4
NOTES:
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.
3-62 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 1: MOVE SHIFTED REGISTER

15 14 13 12 11 10 6 5 3 2 0

0 0 0 Op Offset5 Rb Rd

[2:0] Destination Register
[5:3] Source Register
[10:6] Immediate Value
[12:11] Opcode

0: LSL

1:LSR
2: ASR

Figure 3-30. Format 1
OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OoP THUMB Assembler ARM Equivalent Action

00 LSL Rd, Rs, #0ffset5 MOVS Rd, Rs, LSL Shift Rs left by a 5-bit immediate value and
#0Offsets store the result in Rd.

01 LSR Rd, Rs, #0ffset5 MOVS Rd, Rs, LSR Perform logical shift right on Rs by a 5-bit
#0Offsets immediate value and store the result in Rd.

10 |ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR Perform arithmetic shift right on Rs by a 5-bit
#0Offsets immediate value and store the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

ELECTRONICS 3-63

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

FORMAT 2: ADD/SUBTRACT

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 Op Rn/Offset3 Rs Rd

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Value
[9] Opcode

0=Add

1=SUB

[10] Immediate Flag

0 = Register operand
1 = Immediate operand

Figure 3-31. Format 2
OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OoP I THUMB Assembler ARM Equivalent Action
0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs. Place
result in Rd.
0 1 ADD Rd, Rs, #0Offset3 | ADDS Rd, Rs, Add 3-bit immediate value to contents of
#Offset3 Rs. Place result in Rd.
1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.
1 1 SUB Rd, Rs, #0Offset3 | SUBS Rd, Rs, Subtract 3-bit immediate value from
#Offset3 contents of Rs. Place result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.
Examples

ADD RO, R3, R4 ; RO: = R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ;. R6: = R2 -6 and set condition codes.

3-64 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 14 13 12 11 10 8 7 0

0 0 1 Op Rd Offset8

[7:0] ImmediateValue

[10:8] Source/DestinatioiiRegister

[12:11] Opcode
0 =MOV
1=CMP
2 =ADD
3=SUB

Figure 3-32. Format 3
OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OoP THUMB Assembler ARM Equivalent Action

00 MOV Rd, #0ffset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #0ffset8 CMP Rd, #0ffset8 Compare contents of Rd with 8-bit immediate
value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 |Add 8-bit immediate value to contents of Rd and
place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 | Subtract 8-bit immediate value from contents of
Rd and place the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples
MOV RO, #128 ; RO: =128 and set condition codes
CMP R2, #62 ;. Set condition codes on R2 - 62
ADD R1, #255 ; R1:=R1 + 255 and set condition codes
SUB R6, #145 ; R6: = R6 - 145 and set condition codes

ELECTRONICS 3-65

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

FORMAT 4: ALU OPERATIONS

15 14 13 12 11 10 9 6 5 3 2 0

Op Rs Rd

[2:0] Source/Destination Register
[5:3] Source Register 2

[9:6] Opcode

Figure 3-33. Format 4
OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 4 Instructions

OoP THUMB Assembler ARM Equivalent Action
0000 |AND Rd, Rs ANDS Rd, Rd, Rs Rd: = Rd AND Rs

0001 |EOR R4, Rs EORS Rd, Rd, Rs Rd: = Rd EOR Rs

0010 |LSLRd, Rs MOVS Rd, Rd, LSL Rs [Rd: =Rd << Rs

0011 |LSRRd, Rs MOVS Rd, Rd, LSR Rs [Rd: =Rd >>Rs

0100 |ASRRd, Rs MOVS Rd, Rd, ASR Rs |Rd: = Rd ASR Rs
0101 |ADC Rd, Rs ADCS Rd, Rd, Rs Rd: = Rd + Rs + C-bit
0110 |SBCRd, Rs SBCS Rd, Rd, Rs Rd: = Rd - Rs - NOT C-hit
0111 |RORRd, Rs MOVS Rd, Rd, ROR Rs [Rd: = Rd ROR Rs
1000 [TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs
1001 |NEG Rd, Rs RSBS Rd, Rs, #0 Rd =-Rs
1010 |CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs
1011 |CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs
1100 |ORR Rd, Rs ORRS Rd, Rd, Rs Rd: = Rd OR Rs
1101 |MUL Rd, Rs MULS Rd, Rs, Rd Rd: =Rs*Rd
1110 |BICRd, Rs BICS Rd, Rd, Rs Rd: = Rd AND NOT Rs
1111 [MVN Rd, Rs MVNS Rd, Rs Rd: = NOT Rs

3-66

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

EOR
ROR

NEG

CMP
MUL

R3, R4
R1, RO

R5, R3

R2, R6
RO, R7

R3: = R3 EOR R4 and set condition codes

Rotate Right R1 by the value in RO, store

the result in R1 and set condition codes

Subtract the contents of R3 from zero,

store the result in R5. Set condition codes ie R5 = - R3
Set the condition codes on the result of R2 - R6

RO: = R7 * RO and set condition codes

ELECTRONICS

3-67

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 14 13 12 11 10 9

H1

H2

Rs/Hs

Rd/Hd

[2:0] Destination Register
[5:3] Source Register
[6] Hi Operand Flag 2
[7] Hi Operand Flag 1

[9:8] Opcode

Figure 3-34. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE
In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1 = 0, H2 = 0 for Op = 00 (ADD), Op = 01 (CMP) and Op = 10 (MOV) is undefined, and should

not be used.

3-68

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

Table 3-12. Summary of Format 5 Instructions

OP | H1 | H2 | THUMB Assembler ARM Equivalent Action

00 0 1 |ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15to a
register in the range 0-7.

00 1 0 |ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a register
in the range 8-15.

00 1 1 |ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 |CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7 with a

register in the range 8-15. Set the
condition code flags on the result.

01 1 0 |[CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15 with
a register in the range 0-7. Set the
condition code flags on the result.

01 1 1 |CMP Hd, Hs CMP Hd, Hs Compare two registers in the range 8-15.
Set the condition code flags on the result.

10 0 1 |MOV Rd, Hs MOV Rd, Hs Move a value from a register in the range
8-15 to a register in the range 0-7.

10 1 0 [MOV Hd, Rs MOV Hd, Rs Move a value from a register in the range
0-7 to a register in the range 8-15.

10 1 1 | MOV Hd, Hs MOV Hd, Hs Move a value between two registers in the
range 8-15.

11 0 0 [BXRs BX Rs Perform branch (plus optional state
change) to address in a register in the
range O-7.

11 0 1 |BXHs BX Hs Perform branch (plus optional state
change) to address in a register in the
range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION
BX performs a branch to a routine whose start address is specified in a Lo or Hi register.
Bit 0 of the address determines the processor state on entry to the routine:

Bit0=0 Causes the processor to enter ARM state.
Bit0=1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

ELECTRONICS 3-69

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

Examples

Hi-Register Operations

ADD PC, R5 ;. PC:=PC + R5 but don't set the condition codes.
CMP R4, R12 ;. Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

;. Switch from THUMB to ARM state.

ADR R1,outof THUMB ;. Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ;. Transfer the contents of R11 into the PC.

;. Bit 0 of R11 determines whether
;. ARM or THUMB state is entered, ie. ARM state here.

ALIGN
CODE32
outof THUMB
; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit O cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

3-70 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 6: PC-RELATIVE LOAD

15 14 13 12 11 10 8 7 0

0 1 0 0 1 Rd Word8

[7:0] Immediate Value

[10:8] Destination Register

Figure 3-35. Format 6
OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB Assembler ARM Equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes) in Imm to
the current value of the PC. Load the word from the
resulting address into Rd.

NOTE: The value specified by #lmm is a full 10-bit address, but must always be word-aligned (i.e. with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than
the address of this instruction, but bit 1 of the PC is forced to O to ensure it is word aligned.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
;211 as the Word8 value.

ELECTRONICS 3-71

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

15 14 13 12 11

10 9 8

Ro

Rb Rd

[5:3] Base Register
[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quanity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[2:0] Source/Destination Register

OPERATION

Figure 3-36. Format 7

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-36. Summary of Format 7 Instructions

THUMB Assembler

ARM Equivalent

Action

0 |STRRd, [Rb, Ro]

STR Rd, [Rb, Ro]

Pre-indexed word store:

Calculate the target address by adding together
the value in Rb and the value in Ro. store the
contents of Rd at the address.

0 | 1 [STRBRAd,[RDb, Ro]

STRB Rd, [Rb, Ro]

Pre-indexed byte store:

Calculate the target address by adding together
the value in Rb and the value in Ro. Store the
byte value in Rd at the resulting address.

1 | 0 |LDRRd,[Rb,Ro]

LDR Rd, [Rb, Ro]

Pre-indexed word load:

Calculate the source address by adding together
the value in Rb and the value in Ro. Load the
contents of the address into Rd.

1 | 1 |LDRBRJ,[Rb,R0]

LDRB Rd, [Rb, Ro]

Pre-indexed byte load:

Calculate the source address by adding together
the value in Rb and the value in Ro. load the
byte value at the resulting address.

3-72

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples
STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 - R2.
LDRB R2, [RO,R7] ; Load into R2 the byte found at

; the address formed by adding R7 - RO.

ELECTRONICS 3-73

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

15 14 13 12 11

10 9 8

Ro

Rb Rd

[11] H Flag

[2:0] Destination Register
[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag

0 = Operand not sign-extended
1 = Operand sign-extended

OPERATION

Figure 3-37. Format 8

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler

syntax is shown below.

Table 3-15. Summary of Format 8 Instructions

THUMB Assembler

ARM Equivalent

Action

0 | 0 |STRHR,[Rb, Ro]

STRH Rd, [Rb, Ro]

Store halfword:
Add Ro to base address in Rb. Store bits 0-15
of Rd at the resulting address.

0 | 1 |LDRHRM,[Rb,Ro]

LDRH Rd, [Rb, Ro]

Load halfword:

Add Ro to base address in Rb. Load bits 0-15
of Rd from the resulting address, and set bits
16-31 of Rd to O.

1 0 |LDSB Rd, [Rb, Ro]

LDRSB Rd, [Rb, Ro]

Load sign-extended byte:

Add Ro to base address in Rb. Load bits 0-7 of
Rd from the resulting address, and set bits 8-
31 of Rd to bit 7.

1 1 |LDSH Rd, [Rb, Ro]

LDRSH Rd, [Rb, Ro]

Load sign-extended halfword:

Add Ro to base address in Rb. Load bits 0-15
of Rd from the resulting address, and set bits
16-31 of Rd to bit 15.

3-74

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples
STRH R4, [R3, RO] ; Store the lower 16 bits of R4 at the
; address formed by adding RO - R3.
LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 - R7.
LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword

; found at the address formed by adding R2 - R4.

ELECTRONICS 3-75

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

15 14 13 12 11 10 6 5 3 2 0

0 1 1 B L Offsets Rb Rd

[2:0] Source/Destination Register
[5:3] Base Register

[10:6] Offset Value

[11] Load/Store Flag

0 = Store to memory

1 = Load from memory

[12] Byte/Word Flag

0 = Transfer word quantity
1 = Transfer byte quantity

Figure 3-38. Format 9
OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-16.

Table 3-16. Summary of Format 9 Instructions

THUMB Assembler ARM Equivalent Action

0 0 |[STR Rd, [Rb, #imm] STR Rd, [Rb, #lmm] Calculate the target address by adding
together the value in Rb and Imm. Store the
contents of Rd at the address.

0 1 |LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load Rd
from the address.

1 0 |[STRBRd, [Rb, #imm] |STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store the
byte value in Rd at the address.

1 1 |LDRB Rd, [Rb, #imm] [LDRB Rd, [Rb, #imm] Calculate source address by adding together
the value in Rb and Imm. Load the byte value
at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #lmm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #lmm >> 2 in the Offset5 field.

3-76 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 - R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.
STRB R1, [RO,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 - RO.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

ELECTRONICS 3-77

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

FORMAT 10: LOAD/STORE HALFWORD

15 14 13 12 11 10 6 5 3 2 0

1 0 0 0 L Offset5 Rb Rd

[2:0] Source/Destination Register
[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Bit

0 = Store to memory
1 = Load from memory

Figure 3-39. Format 10
OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Halfword Data Transfer Instructions

THUMB Assembler ARM Equivalent Action

STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #lmm to base address in Rb and store bits O-
15 of Rd at the resulting address.

1 |LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #lmm to base address in Rb. Load bits 0-15
from the resulting address into Rd and set bits 16-
31 to zero.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit O set to 0)
since the assembler places #lmm >> 1 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
;28 as the Offsetb value.
LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed
by
; adding 4 to R7. Note that the THUMB opcode will
contain
;2 as the Offsetb value.

3-78 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 11: SP-RELATIVE LOAD/STORE

15 14 13 12 11 10 8 7 0

1 0 0 1 L Rd Word8

[7:0] Immediate Value
[10:8] Destination Register
[11] Load/Store Bit

0 = Store to memory
1 = Load from memory

Figure 3-40. Format 11
OPERATION

The instructions in this group perform an SP-relative load or store. The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

THUMB Assembler ARM Equivalent Action

STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the SP (R7). Store the
contents of Rd at the resulting address.

1 |LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the SP (R7). Load the
word from the resulting address into Rd.

NOTE: The offset supplied in #lmm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #lmm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain

;123 as the Word8 value.

ELECTRONICS 3-79

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

FORMAT 12: LOAD ADDRESS

15 14 13 12 11 10 8

Word8

[7:0] 8-bit unsigned Constant
[10:8] Destination Register
[11] Source

0=PC
1=SP

Figure 3-41. Format 12

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

SP THUMB Assembler ARM Equivalent Action

0 |ADD Rd, PC, #lmm ADD Rd, R15, #lmm Add #Imm to the current value of the program
counter (PC) and load the result into Rd.

1 |ADD Rd, SP, #lmm ADD Rd, R13, #lmm Add #Imm to the current value of the stack pointer
(SP) and load the result into Rd.

NOTE: The value specified by #lmm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)

since the assembler places #lmm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

3-80

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD R2, PC, #572 ; R2:=PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.
ADD R6, SP, #212 ; R6:=SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

ELECTRONICS 3-81

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

FORMAT 13: ADD OFFSET TO STACK POINTER

15 14 13 12 11 10 9 8 7 6 0

SWord7

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

Figure 3-42. Format 13
OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instructions

S THUMB Assembler

ARM Equivalent

Action

0 |ADD SP, #lmm

ADD R13, R13, #lmm

Add #lmm to the stack pointer (SP).

1 |ADD SP, #Imm

SUB R13, R13, #Imm

Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #lmm can be up to -/+ 508, but must be word-aligned (i.e. with bits 1:0 set to 0)
since the assembler converts #lmm to an 8-bit sign + magnitude number before placing it in field SWord?7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples
ADD SP, #268 ; SP (R13): = SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S = 0.
ADD SP, #-104 7 SP (R13): = SP - 104, but don't set the condition codes.

; Note that the THUMB opcode will contain
;26 as the Word7 value and S = 1.

3-82 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 14: PUSH/POP REGISTERS

15 14 13 12 11 10 9 8 7 0

1 0 1 1 L 1 0 R Rlist

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

Figure 3-43. Format 14
OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be full descending.

Table 3-21. PUSH and POP Instructions

THUMB Assembler ARM Equivalent Action
0 0 |PUSH {Rlist} STMDB R13!, {Rlist} Push the registers specified by Rlist onto
the stack. Update the stack pointer.
0 1 |PUSH {Rlist, LR} STMDB R13!, {Rlist, Push the Link Register and the registers
R14} specified by Rlist (if any) onto the stack.
Update the stack pointer.
1 0 |POP {Rlist} LDMIA R13!, {Rlist} Pop values off the stack into the registers
specified by Rlist. Update the stack pointer.
1 1 |POP {Rlist, PC} LDMIA R13!, {Rlist, R15} | Pop values off the stack and load into the
registers specified by Rlist. Pop the PC off
the stack. Update the stack pointer.

ELECTRONICS 3-83

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

PUSH {RO-R4,LR} ; Store RO, R1, R2, R3, R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.
POP {R2,R6,PC} ; Load R2, R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

3-84 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 15: MULTIPLE LOAD/STORE

15 14 13 12 11 10 8 7 0

1 1 0 0 L Rb Rlist

[7:0] Register List
[10:8] Base Register
[11] Load/Store Bit

0 = Store to memory
1 = Load from memory

Figure 3-44. Format 15
OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

THUMB Assembler ARM Equivalent Action
STMIA Rb!, {Rlist} STMIA Rb!, {Rlist} Store the registers specified by Rlist, starting at the
base address in Rb. Write back the new base
address.
1 |LDMIA RDb!, {Rlist} LDMIA Rb!, {Rlist} Load the registers specified by Rlist, starting at the
base address in Rb. Write back the new base
address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STMIA RO!, {R3-R7} ; Store the contents of registers R3-R7
; starting at the address specified in
; RO, incrementing the addresses for each word.
; Write back the updated value of RO.

ELECTRONICS 3-85

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

FORMAT 16: CONDITIONAL BRANCH

15 14 13 12

11

Cond

SOffset8

[7:0] 8-bit signed Immediate

[11:8] Condition

OPERATION

Figure 3-45. Format 16

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 3-23. The Conditional Branch Instructions

Code | THUMB Assembler

ARM Equivalent

Action

0000 ([BEQ label BEQ label Branch if Z set (equal)

0001 |[BNE label BNE label Branch if Z clear (not equal)

0010 |BCS label BCS label Branch if C set (unsigned higher or same)

0011 |[BCC label BCC label Branch if C clear (unsigned lower)

0100 |[BMI label BMI label Branch if N set (negative)

0101 |[BPL label BPL label Branch if N clear (positive or zero)

0110 |[BVS label BVS label Branch if V set (overflow)

0111 (BVC label BVC label Branch if V clear (no overflow)

1000 |BHI label BHI label Branch if C set and Z clear (unsigned higher)

1001 |BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

1010 |BGE label BGE label Branch if N set and V set, or N clear and V clear (greater
or equal)

1011 |BLT label BLT label Branch if N set and V clear, or N clear and V set (less
than)

1100 |BGT label BGT label Branch if Z clear, and either N set and V set or N clear
and V clear (greater than)

1101 |BLE label BLE label Branch if Z set, or N set and V clear, or N clear and V set

(less than or equal)

NOTES:
While label specifies a full 9-bit two & complement address, this must always be halfword-aligned (i.e. with bit 0 set to 0)
since the assembler actually places label >> 1 in field SOffset8.

1.

3-86

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

2. Cond = 1110 is undefined, and should not be used.
Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples
CMP RO, #45 ; Branch to 2over? if RO > 45,
BGT over ; Note that the THUMB opcode will contain
; the number of halfwords to offset.
over ; Must be halfword aligned.

ELECTRONICS 3-87

ARM INSTRUCTION SET

KS32C65100 RISC MICROPROCESSOR

FORMAT 17: SOFTWARE INTERRUPT

15 14 13 12 11 10 9 7 0
1 1 0 1 1 1 1 Value8
[7:0] Condition
Figure 3-46. Format 17
OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB Assembler

ARM Equivalent

Action

SWI Value 8

SWI Value 8

Perform Software Interrupt:

Move the address of the next instruction into LR, move
CPSR to SPSR, load the SWI vector address (0x8) into
the PC. Switch to ARM state and enter SVC mode.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples
SWI 18

Take the software interrupt exception.
Enter supervisor mode with 18 as the
requested SWI number.

3-88

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

FORMAT 18: UNCONDITIONAL BRANCH

15 14 13 12 11 10 0
1 1 1 0 0 Offsetll
[10:0] Immediate Value
Figure 3-47. Format 18
OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current

instruction.

Table 3-25. Summary of Branch Instruction

THUMB Assembler

ARM Equivalent

Action

B label

BAL label (halfword
offset)

Branch PC relative +/- Offsetll << 1, where label is PC
+/- 2048 bytes.

NOTE: The address specified by label is a full 12-bit two & complement address,
but must always be halfword aligned (i.e. bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

Examples

here B here
B jimmy

jimmy

Branch onto itself. Assembles to OXE7FE.

(Note effect of PC offset).

Branch to ‘jimmy".

Note that the THUMB opcode will contain the number of

half-word to offset.
Must be halfword aligned.

ELECTRONICS

3-89

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

FORMAT 19: LONG BRANCH WITH LINK

15 14 13 12 11 10 0

1 1 1 1 H Offset

[10:0] Long Branch and Link Offset High/low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

Figure 3-48. Format 19
OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two®& complement half-word offset specified by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H=0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H = 1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

3-90 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

THUMB Assembler

ARM Equivalent

Action

BL label

none

LR: = PC + OffsetHigh << 12

Temp: = next instruction address
PC: = LR + OffsetLow << 1
LR:=temp |1

Examples

BL faraway
next

faraway

Unconditionally branch to ‘faraway’

and place following instruction

address, i.e. 'next, in R14,the Link
register and set bit 0 of LR high.

Note that the THUMB opcodes will
contain the number of halfwords to offset.
Must be Half-word aligned.

ELECTRONICS

3-91

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2*n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2*n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2"n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2”n (-2, -4, -8, ...)

LSL Ra, Rb, #n ;. MOV Ra, Rb, LSL #n
MVN Ra, Ra ;. RSB Ra, Ra, #0

5. Multiplication by -2*n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2”n+1, 2”n-1, -2”n or -2"n-1} * 2"n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) 7 (2..5)
LSL Ra, Ra, #n ;. MOV Ra, Ra, LSL #n

3-92 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

GENERAL PURPOSE SIGNED DIVIDE
This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by RO: returns quotient in RO,
; remainder in R1

:Get abs value of RO into R3

ASR R2, RO, #31 ; Get0or-1in R2 depending on sign of RO
EOR RO, R2 ; EOR with -1 (OXFFFFFFFF) if negative
SUB R3, RO, R2 ; and ADD 1 (SUB -1) to get abs value
;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by zero
;Get abs value of R1 by xoring with OXFFFFFFFF and adding 1 if negative
ASR RO, R1, #31 ; GetO0or-1in R3 depending on sign of R1
EOR R1, RO ; EOR with -1 (OXFFFFFFFF) if negative
SUB R1, RO ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in RO & R2) for later use in determining ; sign of quotient & remainder.
PUSH {RO, R2}

:Justification, shift 1 bit at a time until divisor (RO value) ; is just U than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR RO, R1, #1
MOV R2, R3
B %FTO
just_| LSL R2, #1
0 CMP R2, RO
BLS just_|
MOV RO, #0 ; Set accumulator to 0
B %FTO ; Branch into division loop
div_|I LSR R2, #1
0 CMP R1, R2 ; Test subtract
BCC %FTO
SUB R1, R2 ; If successful do a real subtract
0 ADC RO, RO ; Shift result and add 1 if subtract succeeded
CMP R2, R3 ; Terminate when R2 == R3 (i.e. we have just
BNE div_| ; tested subtracting the '‘ones' value).

;Now fixup the signs of the quotient (R0) and remainder (R1)

POP {R2, R3} ; Get dividend/divisor signs back

EOR R3, R2 ; Result sign

EOR RO, R3 ; Negate if result sign = -1

SUB RO, R3

EOR R1, R2 ; Negate remainder if dividend sign =- 1
SUB R1, R2

MOV pc, Ir

ELECTRONICS 3-93

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, al, #&80000000
RSBMI al,al, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0
;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, al
BEQ divide_by zero
just_| ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop
div_|
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, al
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV al, a4
MOVS ip, ip, ASL #1
RSBCS al, al, #0
RSBMI a2, a2, #0
MOV pc, Ir

3-94 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

ARM INSTRUCTION SET

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and

ARM code.

Thumb Code

udivlo

ARM Code
udivl0

MOV
LSR
SUB
LSR
ADD
LSR
ADD
LSR
ADD
LSR
ASL
ADD
ASL
SUB
CMP
BLT
ADD
SUB

MOV

SUB
SUB
ADD
ADD
ADD
MOV
ADD
SUBS
ADDPL
ADDMI
MOV

az, al
a3, al, #2
al, a3
a3, al, #4
al, a3
a3, al, #8
al, a3
a3, al, #16
al, a3
al, #3
a3, al, #2
a3, al
a3, #1
a2, a3
a2, #10
%FTO
al, #1
a2, #10

pc, Ir

a2, al, #10

al, al, al, Isr #2
al, al, al, Isr#4
al, al, al, Isr #8
al, al, al, Isr #16
al, al, Isr #3

a3, al, al, asl #2
a2, a2, a3, asl #1
al, al, #1

az, a2, #10
pc, Ir

Take argument in al returns quotient in al,
remainder in a2

Take argument in al returns quotient in al,
remainder in a2

ELECTRONICS

3-95

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

INSTRUCTION SET SUMMALY ..ottt ettt e ettt e e ettt e et ee s e e e e e et e e e s e s e e e e e e eenrnbaneeeaeeenns 1
FORMAT SUMMARY ettt e oo ettt oo ettt e e e e e e e e e et e e e e e e e e e e e et e e e eaa e e e e e e e e e nnnnann e e s 1
INSTRUCTION SUMMARY ..ttt ettt e ettt e r e e e e et e e e e e e e e e e e e e e e e e s n e e e e e eennnnnaas 2

THE CONDITION FIELD.ottt ettt ettt e e et et e et et e e e e et e e e ee b a e e e e e e e e nnrna e eeas 3

BRANCH AND EXCHANGE (BX) ..o iiiieiiie et 4
INSTRUCTION CYCLE TIMES ..ottt e ettt e e e et et et e e e e e e e e e e nr b nn e e e e e e ennrnnaas 4
ASSEMBLER SY N T A X ittt ettt e ettt ettt r e e e et e e e e e b e e e e et et e e E e et e e e e e e e e nn s 4
USING R15 AS AN OPERAND ...ttt e e ettt e e e e e e et e e e s r e e e e e e e srrn e eas 4

BRANCH AND BRANCH WITH LINK (B, BL) ittt 6
THE LINK BT ettt e oottt s e oot et e e e e s s e e e et e e et e e e et e e e e e e e e e e b e r e e e e e e eee s ea e neeeeeeenes 6
INSTRUCTION CYCLE TIMES ..ottt e ettt s e e e e et e et e e e e e e e e e e nne s n e e e e e eeennnaaas 6
ASSEMBLER SY N T A X ittt ettt e ettt e e ettt e e ot e e ettt e e e h e e e e et et e e e e et e e e e e e e e nn s 7

DATA PROGCESSING. ...ttt ettt e ettt et e s e oo ettt e e e e e e st e et et e e e e e e e e e e e et e e ennann e e e e e eennnnanas 8
CP SR FLAGS . ..ttt e e ettt et oo oot e e et e e et e e e et e e e n e 9
] 1 1 T TP PP PP 10
IMMEDIATE OPERAND ROTATES ...ttt e e ettt r e e e e et e n e e e e e e eenrnaaas 14
WRITING TO RIS ..ttt ettt e ettt e e o e e e ettt e e e e e e e e et e e e eE e e e e e e et e e snba e n e e e e e eennnnaaas 14
USING R15 AS AN OPERAND. ...ttt ettt e ettt e e e e e e e e e s n e e e e e eeenrnaaas 14
TEQ, TST, CMP AND CMN OPCODES ...ttt e et et e e e e e es e e eeeeenes 14
INSTRUCTION CYCLE TIMES ...ttt sttt e e e e e et e e e e e e e e e e e s nnn e n e e e e e e eenrnaaas 14
ASSEMBLER SY N T A X ittt ittt ettt ettt e e ettt e e e e e e ettt e e e e e e e et et e e e e e e et e e e e e e e e e rnnas 15

PSR TRANSFER (MRS, MSR) ..ottt 16
OPERAND RESTRICTIONS ... ittt ettt e e e e et e e e e e e e e e e et n e e e e e e e e nnnn e as 16
RESERVED BIT S ...ttt ettt e ettt e e e e et e e e e et e e et e e e e e e e e e e e e e e e e nnn e e e e e e e nrraas 18
INSTRUCTION CYCLE TIMES ..ottt ettt e ettt e e e e e et e e e e e e e e e e e s nn e n e e e e e e e enrnaaas 18
ASSEMBLER SY N T A X ittt ittt sttt ettt e ettt e e e e e e ettt e e e e e e e et et e e a e e e e et e e e e e e e e nnnaas 19

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA) ..ot 20
CPSR FLAGS . ..ottt oo ettt e e e e et e et e e e e e e e n s 21

3-96 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES ... ittt ettt ettt et e e e e e et e e e r e e e e e e e e nnr e eas 21
ASSEMBLER SY N T AX ittt ettt ettt e e ettt e e e et e et et e e e e e e e e et e e e e e a e 21
MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL,MLAL) ...t 22
OPERAND RESTRICTIONS ...ttt e ettt et e e e et e e et e e e e e e e e e en e b nn e e e e e e ennnnaans 22
CPSR FLAGS it e ettt oot e et e e e e e et e e e e e e e r s 23
INSTRUCTION CYCLE TIMES ... ittt ettt e et e e e e et e e e e e e e e e e e e nnnn e as 23
ASSEMBLER SY N T AKX ittt ettt ettt e e ettt e e e e e e et et e e e e e e e e e e e e e e e a e 23
SINGLE DATA TRANSFER (LDR, STR) ..uutttttttttttttuttuttttttttttutuutstuessesssssssessesssssssssssssssssssssessssssssessssssssssesssssssesnne 24
OFFSETS AND AUTO-RINDEXINGeeiiieiiti ettt e et e e e et e e e n e e e e e e ennr s r e e e e e e eennaanas 25
SHIFTED REGISTER OF FSET ...ttt ittt ittt e e e ettt e e e e e e e e e n bbb nn e e e e e e eennnaaas 25
BYTES AND WORDS ...ttt ettt e et e e e et e e e e e e e e e e e et e e e e eb e e e e e e e e e e eneaaneeeeeeene 25
(610 o @] R TP PPRPPPPRPPN 27
RESTRICTION ON THE USE OF BASE REGISTERcotiiiiiiiiiiiiieii ettt e e e 27
DA T A AB O R T S .ttt ettt e oottt e et e e e et e e e e e ettt e e e e et e e e nr e e e e e eene 27
INSTRUCTION CYCLE TIMES ... ittt ettt e e ettt e e e e et e e e r e e e e e e e e e br e as 27
ASSEMBLER SY N T AX ittt ettt ettt e e ettt e et et e et et e e e e ettt e e e e e e n e 28
HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH) ..., 30
OFFSETS AND AUTO-INDEXINGeiiiieiitiii ettt ettt e e et r e e e et e e e e e e e e e e ennr s n e e e e e e e enraanns 32
HALFWORD LOAD AND STORES ...ttt e e ettt r e e e et e e e e n e e e e e e e ennb e nnaeeeeeene 32
SIGNED BYTE AND HALFWORD LOADSttt e et e e e e e e e e e e e e eennaaaas 32
ENDIANNESS AND BYTE/HALFWORD SELECTION ..o 32
USE OF RIS ..ttt e e e ettt r e oo ettt et e e b et oo e e et e e e e a e oo e e e et e e e e b e e e e et e e e rr e e e e e eene 33
DA T A AB O R T S .ttt ettt e ettt e oo e et e e e et e e e et e et e e e e e et e e e e e e eene 33
INSTRUCTION CYCLE TIMES ... ittt e e et e e e e et e e e r e e e e e e e e e nre e as 33
ASSEMBLER SY N T AKX ittt ettt ettt e e ettt e e et e e e et e e e e e et e e e e e e e e n e 34
BLOCK DATA TRANSFER (LDM, STM) ..ciiitiiiiiiiiiiiii e 36
THE REGISTER LIS ittt ettt e e ettt e e e e e e et e e e e e r e e e e e e e e s e ee e n e e e e e e eeennnanns 36
ADDRESSING MODES.ottt ettt et e ettt e e e e e e e e e et e e e e e 37
ADDRESS ALIGNMENT .ttt ettt ettt e e e e e et et e e e e e et et e e e e e e e e e e e e e e e r b e s e e e e e e e e nnnna e e 37

ELECTRONICS 3-97

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

USE OF THE S Bl ittt ettt ettt e e e et e e et e e e e e e es e e e e e e e e et e enen b r e e e e e e e ennrnaaas 39
USE OF R15 AS THE BASE ..ot e e ettt et e e e e et e e n e e e e e e eenrneaas 39
INCLUSION OF THE BASE IN THE REGISTER LIST ... 40
(DN N Y = 1O I TP PP PPPPTPTT 40
INSTRUCTION CYCLE TIMES ..ottt ettt e e ettt e e e e e e et e e e n e e e e e e e s nn e n e e e e e e eennnaaas 40
ASSEMBLER SY N T A X ittt ettt e ettt e e e e e e e ettt e e e et e e e e et e e e e e e e et e e n e e e e e e e nnnas 41
SINGLE DATA SWAP (SWP) ... 43
BYTES AND WORDS ... oottt e e ettt e e et e e et et e e e e n e e e et e e e e ann e e e e e e e ennrnaaas 43
1010 = @] R TP PPPPTPPT 43
(DN N Y = 1@ I TP P S PPPPPTPPT 44
INSTRUCTION CYCLE TIMES ..o ittt e ettt r e e e et e e e e r e e e e e e e e s nnn i n e e e e e e eenrnaaas 44
ASSEMBLER SY N T A X ittt ittt ettt ettt e ettt et e e e e e et e e e e e e e e et et e e e e e e e et e e e n e e e e e nnnnaas 44
SOFTWARE INTERRUPT (SWI) ..ot 45
RETURN FROM THE SUPERVISOR ..ottt ettt e e e e e e e e e e e nnnnaas 45
COMMENT FIELD ...ttt ettt e e ettt e e e et e e e et e e e e e e e e e e e e e e e e e b r e e e e e e e e srnna e s 45
INSTRUCTION CYCLE TIMES ..ottt e ettt e e e e e e ee b n e e e e e e e s nn e e e e e e eenrnaaas 45
ASSEMBLER SY N T A X ittt ettt ettt e ettt e e ot e e ettt e e e e e e e e et e e e e e e et e e e e e e e e e nnnaas 46
COPROCESSOR DATA OPERATIONS (CDP)...cciiiiiiiieiieeeeee 47
COPROCESSOR INSTRUCTIONS ...ttt ettt e e et e e e e e e e e e e e e e e e nrnn e s 47
THE COPROCESSOR FIELDS ...ttt e ettt r e e e et e e e e e e e e e et e e e snbanaeeeeeeenes 48
INSTRUCTION CYCLE TIMES ..ottt ettt e ettt e e ettt e r e e e e e e e esar b nn e e e e e e eenrnaaas 48
ASSEMBLER SY N T A X ittt ittt ettt e ettt e e et e e e et e e e e e e e et et e e e e e e et e e e e e e e e nnnas 48
COPROCESSOR DATA TRANSFERS (LDC, STC) ..ciiiiiiiiiiiieeeeeeee 49
THE COPROCESSOR FIELDS ...ttt ettt e e et e e e e e et e e a e e e e e e e e snranaeeeeeeenes 49
ADDRESSING MODES. oottt e ettt e e e ettt e e e e e e e e e et e e ee e a e e e e et e e e e e e e e e nnnaas 50
ADDRESS ALIGNMENT ..ttt e ettt e e e ettt e e e et e e e et e e ae e r e e e e et e e enb e an e e e e e e e ennnaaas 50
L0 1S @ R TP PPPPTTTT 50
(D N Y = 1@ I TP PRSPPI 50
INSTRUCTION CYCLE TIMES ..ottt e ettt e e e e e et e e e e e e e e e e s nnb i n e e e e e e e enrnaaas 50

3-98 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

ASSEMBLER SY N T AX ittt ettt e ettt e e ettt et e et e et et e e e e e et e e e e e e e n e 51
COPROCESSOR REGISTER TRANSFERS (MRC, MCR)tttiiiiiiiiiiiiieeie et 52
THE COPROCESSOR FIELDS ... ittt et e e et e e e e e e e e e e bbb e e e e e e e eenrnaans 52
TRANSFERS TO RIS ittt ettt e et e et e e e e e e e e et e e e e e b e e e e e e e e e e ne e n e e e e e e eennrnanns 53
TRANSFERS FROM RIS ... ittt ettt e ettt e e e e et e e e e e e n e e e e e e e e e nr b e e e e e e e e ennnnaaas 53
INSTRUCTION CYCLE TIMES ... ittt ettt e et et e e e e et e e n b r e e e e e e e e e nrn e as 53
ASSEMBLER SY N T AX ittt ettt ettt ettt e e e ettt et et e et et e e e e e e e e e e e e e e e n e 53
UNDEFINED INSTRUGCTIONcttiii ettt ettt e et e e e e e e e e e e e e a e e e e e e e eeee b r e e e e e e e ennrna e e as 54
INSTRUCTION CYCLE TIMES ... ittt ettt e e e e e e e et e e e e e e e e e e e nnre e eas 54
ASSEMBLER SY N T AX ittt ettt ettt e e e e ettt et e e e et et e e e e e e e e e e et e e e n e 54
INSTRUCTION SET EXAMPLES. ... ittt ettt e e ettt e e e e e e e e e e e e e e e e e eennnaaas 55
USING THE CONDITIONAL INSTRUCTIONS ...ttt ettt e et e e e e e eanb e e e e e eenes 55
PSEUDO-RANDOM BINARY SEQUENCE GENERATORcoiiiiiiiiiiii et 57
MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER......ccooiiii e 57
LOADING A WORD FROM AN UNKNOWN ALIGNMENT ...ttt eeeeeees 59
THUMB INSTRUCTION SET FORMAT ...ttt ettt e e et e e e e e e e an e e e e e e e nnnnaaas 60
FORMAT SUMMARY .ttt ettt e ettt oo e et e et e e e e e e ettt e e s e e e e e ettt e e e eae e e e e e e e e enennnaneeeeeeenns 60
OPCODE SUMMARY ...ttt ettt ettt e oo e et e e e e e ot e e ettt e e e e e et et e et e ee e e b e e e e e e e e e en e rb e nn e e e e e eennraanns 61
FORMAT 1: MOVE SHIFTED REGISTER ..o oottt e e e e e 63
1O 1 [PP PS PP PPPPPTTT 63
INSTRUCTION CYCLE TIMES ... ittt oottt e et e e e e et e e e b r e e e e e e e e nnrb e as 63
FORMAT 2: ADD/SUBTRACT ...ttt 64
1O 1 1 [PSPPI 64
INSTRUCTION CYCLE TIMES ... ittt ettt e e et e e e e et e e e n e e e e e e e e nnre e eas 64
FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE ...ttt 65
O P ERATIONS . ettt e ettt oo oo ettt e e e e oo e e e e et e e e e et e e e et et e e e b e e e e et et e e n e e e e e rn s 65
INSTRUCTION CYCLE TIMES ... ittt ettt e et e e e e e e e e e e r e e e e e e e e e nre e as 65
FORMAT 4: ALU OPERATIONSttt ettt ettt e e e e ettt r e e e e et e e e e e e e e e e e e e nnrn e as 66
1O 1 1 [TP PPPPTT 66

ELECTRONICS 3-99

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

INSTRUCTION CYCLE TIMES ...ttt ettt e et e e e e et e e e e e e e e e e e s nn e n e e e e e e eenrnaaas 67
FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGEcooi oo 68
OPERATION ..ttt ettt r oo ettt e e e e e e et et e e e e e e e e e e e et e e e ee bt et e et e e e e e en b nn e e e e e e e n s 68
INSTRUCTION CYCLE TIMES ..ottt ettt et e e e e et e e a e e e e e e e s e n e e e e e e eenrnaaas 69
THE BX INSTRUGCTION ...ttt ettt e ettt e et s s e e e e e et e e e e n s e e e e e e ee e eaa e e e e e e e e e eennaaaeeeeeeene 69
USING R15 AS AN OPERAND. ...ttt ettt e ettt e e e e e e e e e s e e e e e eeenrnaaas 70
FORMAT 6: PC-RELATIVE LOAD ..ottt ettt e et e e e e et e e b e n e e e e e e eennba s neeeeeeenns 71
OPERATION ..ttt ettt e e e ettt e e e e e oo ettt e e e e e e e e e e e et e e e e ee e et e e e e e e e e e e e e e e e e e e e n s 71
INSTRUCTION CYCLE TIMES ..ottt e ettt e e e e e e e e e e n e e e e e e e s nnnrn e e e e e e eenrnaaas 71
FORMAT 7: LOAD/STORE WITH REGISTER OFFSET ... 72
OPERATION ..ttt e ettt e oo ettt e e e oo oo ettt e e e e h e e e e e et e e e e e e e e e e e e e e e e e e n e a e e e e e e e e e e 72
INSTRUCTION CYCLE TIMES ..ottt ettt e ettt e e e et e e e b e n e e e e e e e s nn e n e e e e e e eenrnaans 73
FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORDccooiiiiiiiiiieeeeeee e 74
OPERATION ..ttt ettt oo ettt e oo e e ettt e e e e b e e e e et et e e e ee e et e e e e e e e e e e e r e e e e e e e e e e 74
INSTRUCTION CYCLE TIMES ...ttt ettt e ettt e e e e e e e e e e n e e e e et e e rna e e e e e e eenrnaaas 75
FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET ... 76
OPERATION ..ttt oottt e et et e e e e e oo ettt e e e e b e e e e e e et e e e e e b e et e e e e e e e e ena e n e e e e e e e e 76
INSTRUCTION CYCLE TIMES ...ttt e ettt r e e e ettt e e a e e e e e e eenn e n e e e e e e eenrnaaas 77
FORMAT 10: LOAD/STORE HALFWORDcoiiiiiiiiieeee e 78
INSTRUCTION CYCLE TIMES ...ttt sttt e e e e e et e e e e e e e e e e e s nnn e n e e e e e e eenrnaaas 78
FORMAT 11: SP-RELATIVE LOAD/STOREo 79
OPERATION ..ttt oottt oo ettt e et oo e et et e e e e e e e e e e e et e e e e e e s e e e e e e e e e e e n e n e e e e e e e e n s 79
INSTRUCTION CYCLE TIMES ..ottt e ettt e e e e e et e e e e e e e e e e e s nnnnn e e e e e e eenrnaans 79
FORMAT 12: LOAD ADDRESS ... ittt ettt e e e ettt e b r e e e e et ennnra s neeeeaeenes 80
OPERATION ..ttt e ettt et ettt e et e oo ettt e e e e e e e e e e e et e e e e et e e e e e e e e e e e nar e e e e e e e e n e 80
INSTRUCTION CYCLE TIMES ..ottt e ettt e e e e e et e e e e e e e e e e e s nnnnn e e e e e e eenrnaans 81
FORMAT 13: ADD OFFSET TO STACK POINTERottt ettt eeeeeees 82
OPERATION ..ttt e ettt et ettt e et e oo ettt e e e e e e e e e e e et e e e e et e e e e e e e e e e e nar e e e e e e e e n e 82
INSTRUCTION CYCLE TIMES ..ottt e ettt e e e e e et e e e e e e e e e e e s nnnnn e e e e e e eenrnaans 82

3-100 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

FORMAT 14: PUSH/POP REGISTERScoiiiiiiiiiiiii 83
1O 1 1 [PSSP PPPPPTTT 83
INSTRUCTION CYCLE TIMES ... ittt ettt et et et e e e e et e e e e r e e e e e e e e nnrb e as 84

FORMAT 15: MULTIPLE LOAD/STORE.......ccitiiiiiiiiii 85
1O 1 1 [PSP PPPPPPTT 85
INSTRUCTION CYCLE TIMES ... ittt ettt e et et e e e e et e e n b r e e e e e e e e e nrn e as 85

FORMAT 16: CONDITIONAL BRANGCHce ittt e et e e e e e e s 86
1O 1 1 [PP PPPPTTTT 86
INSTRUCTION CYCLE TIMES ... ittt ettt e et et e e e e et e e b r e e e e e e e e nnre e as 87

FORMAT 17: SOFTWARE INTERRUPT ..ottt e e e et e e e e e e e 88
INSTRUCTION CYCLE TIMES ... ittt ettt e et et e e e e et e e b r e e e e e e e e nnre e as 88

FORMAT 18: UNCONDITIONAL BRANGCHttt e e e e e e e e e 89
1O 1 1 [PP PPPPPTTT 89

FORMAT 19: LONG BRANCH WITH LINK ...ttt e e e e e e e e en e 90
1O 1 1 [PP PPPPPTT 90
INSTRUCTION CYCLE TIMES ... ittt ettt e e et e e e e et e e e r e e e e e e e e nnrn e eas 91

INSTRUCTION SET EXAMPLES. ... ittt ettt e e ettt e e e e e e e et e n b n e e e e e e eenraaaas 92
MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS ... oot 92
GENERAL PURPOSE SIGNED DIVIDE-........cuiiiieiiiiiii ettt e e e e e e e e e e esnrnaans 93
DIVISION BY A CON ST AN T L.ttt ettt ettt e ettt e e et e e e e et s e e e e e et ee e eb e n e e e e e e ennnrnnneeeeeeenns 95

ELECTRONICS 3-101

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

SYSTEM MANAGER

OVERVIEW

KS32C65100 System Manager provides the following features.

It arbitrates the system bus access requests from a master block, based on a fixed priority.

It provides the appropriate memory control signals for an external memory access.

(If a master block such as DMA or CPU generates an address that corresponds to a DRAM bank, the System
Manager's DRAM control block generates appropriate DRAM control signals such as nRAS, nCAS, Address and
Data.)

It compensates for differences in bus width for data flowing between the external memory bus and the
internal data bus.

Supports big-endian mode with efficiency for most graphic device drivers (refer to Figure. 4-5).

SYSTEM MANAGER REGISTERS (SMR)

The KS32C65100 microcontroller has register files (named Special Function Register, SFR) for keeping the
system control information for the system manager, cache, Internal RAM, DMA, UART blocks and so on. The
SFR has System Manager Register files (SMR) for the configuration of external memory maps such as DRAM,
SRAM and ROM, and extra I/O control.

Programmers can specify the memory type, external bus width, access cycles, necessary control signal's timing
(eg. nRAS and nCAS, etc.), memory bank location and memory bank size of each bank which has a very
configurable address spacing by utilizing the SMR. The SMR, also, provide (or accept) the features such as
control signals, address, and data that are required by external I/O devices during normal system operation. The
SMR is constituted of 11 registers to control one ROM bank, two SRAM banks, two DRAM banks, four extra 1/0
banks and a DRAM Refresh Control Register, system configuration register.

The KS32C65100 provides up to 32M bytes of address space and each bank provides up to 4M half word of
memory space because the KS32C65100 has 22 address pins/16 bit data width for each bank.

ELECTRONICS 4-1

SYSTEM MANAGER

KS32C65100 RISC MICROPROCESSOR

0x01010000 —»

0x01000000 —»

0x00800000 —»

0x00000000 —»

Undefined Region

Special Function Register

ROM Region
(Non Accessible Region)

ROM Region
(Accessible Region)

4M half word

ROM Region
(16MB)

32M Bytes
(SA[24:0]

Figure 4-1. System Memory Map (Default Map After Reset)

4-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

DRAM Refresh Control Register (REFCON)

DRAM Control Register 1 (DRAMCON 1)

DRAM Control Register 0 (DRAMCON 0)

Extra Bank 3 Control Register (EXTCON 3)

Extra Bank 2 Control Register (EXTCON 2)

Extra Bank 1 Control Register (EXTCON 1)

Extra Bank 0 Control Register (EXTCON 0)

SRAM Control Register 1 (SRAMCON 1)

Special Function REG. SRAM Control Register 0 (SRAMCON 0)
ROM Control Register (ROMCON)
DRAM Bank 1
System Register Configuration Register
DRAM Bank 0
EXTRA Bank 3 AR EEEE R > Extra Bank 3
32M Bytes SP 10 RIW 0
(SA[24:0] EXTRA Bank 2 L
EXTRA Bank 1 Extra Bank 3

EXTRA Bank 0

SRAM Bank 1
SRAM Bank 0 i
ROM Bank 0 Max. 4M half word(22-bit) per bank

T

* Each bank can be located anywhere in 32MB address space

Figure 4-2. System Memory Map

The KS32C65100 uses an internal 25 bit system address bus and it can provide 32M bytes the size of memory
space. The bank allocation methodology is very configurable and you can use any address area within
0000000h~1FEFFFFh by 64K byte address steps. The last 64K bytes area cannot be allocated as memory banks
except SFR. Because the last 64KB bank is 1FFxxxxh, the next pointer of the last bank should have "+1",
200xxxxh, but it has 000xxxxh because the next pointer is 9-bit. If a user needs to utilize the full 32M bytes of
memory space, you are recommended to allocate the SFRs to the last 64k byte area, 1FFO000h ~ 1FFFFFFh,
and other banks for the rest of the area.

For programming convenience, programmers want to get rid of scattered memory area and want to have
consecutively connected memory space without any blank areas. KS32C65100's configurable memory allocation
methodology provides a very adaptive solution for this type of requirements. You can move the memory area
easily by only changing the SMR.

ELECTRONICS 4-3

SYSTEM MANAGER

KS32C65100 RISC MICROPROCESSOR

When you try to change physical DRAM memory size, for example from 1MB to 2MB, user can easily change
memory configuration by modifying the system manager register(SMR) in the KS32C65100 microcontroller.
KS32C65100 provides two DRAM banks and changeable memory space that has configurable DRAM size to 2M

word. So then you can enlarge memory space just by changing the end point of the DRAM bank.

SYSTEM REGISTER ADDRESS CONFIGURATION REGISTER (SYSCFG)

The KS32C65100 System Manager Registers (SMR) have a register which determines the start (Base point)
address of the Special Function Register (SFR) files. It is the "System Register Address Configuration Register
(SYSCFG)", and its contents indicate the start (base point) address of SFR.

If the initial value is 1001h

, SYSCFG is mapped to the virtual address 01000000h.

Register Offset Address R/W Description

Reset Val.

SYSCFG

0x0000 R/W | Special function register start address

0x1001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
SYSCFG 0|0f0O Start Address 0 wels
E(E|T
[0] Stall Enable (ST)
0 = Disable. It's recommended for faster operation.
1 = Enable, Insert an internal wait inside the core logic when non-sequential
memory accesses Occur.
[1] Cache Enabl (CE)
0 = Cache operation disable
1 = Cache operation enable
[2] Write Buffer Enable (WE)
0 = Write buffer operation disable
1 = Write buffer operation enable
[12:04] SYSCFG Address (SFRs Start Address)
The resolution is 64KB, if you want to place the start address at 1800000h,
Setting Value = 1800000h/10000h
[15:13] Reserved Bits
User should fix '000'.
Figure 4-3. Special Function Register Address Configuration Register
4-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

Start Address

The SYSCFG[12:04] bits indicate the start address [24:16] of SFRs. As SYSCFG is locating at the bottom of the
Special Function Register (SFR) files , SYSCFG's location is same as the start address of SFRs.

Programmers can allocate SFRs to arbitrary locations by using the SYSCFG. You are recommended not to
change the SYSCFG in mid-operation once it has been configured after system reset. The SYSCFG should not
overlap with any other bank.

If a start address of SYSCFG has changed, other control registers in the SFRs will have a new start address,
which is its offset address + the new address of SYSCFG. For example, after the system reset, the initial address
of SYSCFG is 1000000h and ROM control register has initial address 1001000h, because the ROM control
register has the offset address value, 1000h, and its initial address is the sum of 2000000h + 1000h. If the
SYSCFG address is changed to 1800000h, the ROM control register address becomes 1801000h.

Cache Disable/Enable

KS32C65100 Cache memory provides the programmable Cache disable and enable feature. It also provides a
non-cacheable area feature to maintain data coherency for specific memory areas. Programmers can disable or
enable the cache by setting the CE bit to 0 or 1. Programmers should be cautious about data coherency when
cache memory is re-enabled because cache memory doesn't have an auto-flushing mode. Programmers also
have to be cautious about DMA changes the memory data. Usually, the DMA access memory area must be non-
cacheable to keep data coherency.

To keep the data coherency between the cache and external memory, KS32C65100 uses a write-through policy.
To compensate for the performance degradation due to the "write through policy”, there is internal 4 depth write
buffer. A detailed description will be given in Chapter 5.

Write Buffer Disable/Enable

KS32C65100 has four Write Buffer Registers to enhance the memory writing performance. It's operation mode is
programmable. When Write buffer mode is enabled, CPU writes data into write buffer first instead of an external
memory which requires longer memory write cycles. The write buffer has 4 registers and each register includes
32 bits of data field, 25 bits of address field and 2 bit of status field.

Stall Disable/Enable

When the stall option is enabled, the MCU core logic inserts a wait when non-sequential memory accesses occur.
So, the MCU core has more time margin during memory access. When the stall option is disabled, the logic
doesn't insert a wait, so that's faster than when the stall option is enabled.

ELECTRONICS 4-5

SYSTEM MANAGER

KS32C65100 RISC MICROPROCESSOR

ROM CONTROL REGISTER

The KS32C65100 ROM interface has one ROM bank for program memory and it provides configurable features
such as access timing, access size and page mode support, etc. The ROM Control Register (ROMCON) in SMR
supplies the control mode such as normal mode access, page mode access and wait cycles of each mode, for

the external ROM bank.

The initial address of ROMCON is 01001000h and it is the sum of the initial address of SYSCFG (01000000h)
and the ROM control register offset address (00001000h). The register address is re-configurable that

programmers can change the ROM control register by changing the contents of SYSCFG. The real address of
ROM control register is "SYSCFG address" + "Offset address" of the ROM control register.

Register

Offset Address R/W Description

Reset Val.

ROMCON

0x1000 R/W [ROM control register

0x02003002

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ROMCON

Next Pointer Base Pointer Tacc | Tacp| Pmc

DwW

[1:0] Bus Width (DW)
10 = 16 (half word) Others = No use
(The ROM interface supports only 16 bits of external data bus width)

[8:7] Page Mode Configuration (Pmc)
00 = Normal ROM 01 = 4 data page
10 = 8 data page 11 = 16 data page

[10:9] Page Mode Access Cycles (Tacp)
00 =5 cycles 01 =2 cycles
10 = 3 cycles 11 =4 cycles

[13:11] Access Cycles for ROM Bank (Tacc)
000 = Disable bank 100 =5 cycles
001 = 2 cycles 101 =6 cycles
010 = 3 cycles 110 =7 cycles
011 =4 cycles 111 = Not used

[22:14] Start Point of ROM Bank (Base Pointer)
Indicates ROM bank start address

[31:23] End Point + 1 of ROM (Next Pointer)
Indicates ROM bank end address + 1

(Next point value has to be bigger than base point value, if base point and next
point value are same, ROM bank is not valid anymore)

Figure 4-4. ROM Control Register (ROMCON)

4-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

Page mode ROM Access (Burst mode Access)

KS32C65100 ROM can be interfaced with simple ROM and page mode ROM. Programmers can make a burst
mode enable or disable and can define the readable number of burst data by using ROMCON][8:0], ROM has two
different access cycles for simple ROM and page mode ROM. When a new bank has selected, first data access
time will be different from the access time of the following data of the same bank. Tacc, access cycles for ROM
bank, is defined as the access cycles after the ROM bank changes. This cycle time is also used for simple ROM
access mode. When CPU reads consecutive data within same bank, page mode ROM supplies data read cycles
shorter than reading the simple ROM or new bank access mode. The Tacp bit in ROM ROM control register
defines consecutive data read cycles in page mode ROM.

Writes to the ROM space

KS32C65100 ROM interface provides write feature. Users can write data into ROM bank area. Physically, the
internal program in ROM is not to be changed. So, if a user puts external memory instead ROM such as SRAM,
flash memory, etc., it is possible to write data.

ROM Bank Space

One of good features of KS32C65100 is to have the configurable memory space. Users can program the memory
bank size and bank location by modifying the contents of the ROM control register(ROMCON). ROM control
register has two 9 bits address pointers, base and Next pointer. These two pointers denote the beginning and
ending address of ROM bank. These 9 bits are mapped to the address [24:16], which means that bank address
can be configured by 64KB range. The next pointer contents should be ROM bank end address + 1.

Initially, ROM bank start address is 00000000h and end address is 00FFFFFFh Therefore, Next pointer values
must be 00FFh + 1h = 0100h. If ROM next pointer and base pointer values are same, then ROM bank will be
disabled.

Initialization

When system has been initialized, the initial value of ROM control register is 80003002h and it specifies that the
external bus width is 16 bit (half word), normal ROM mode is enabled and the longest page mode access cycles
are selected.

ELECTRONICS 4-7

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

MCU Core Physical Memory Compiled Code
BTU
100h b3 28 b0, |"700h 100h b3
Toih ¢ b2 bl ,701h 101h b2
| 101h | <« Dl b2 ,"102h 102h b1l
%:‘ bl | b0 b3) o3n : ~To3n b0
b0
* BTU: Byte Twist Unit ROM Writing

Figure 4-5. The Byte Swap Operation of BTU and the Positions of Data in Memory

ROM Programming

— Big endian supporting core and little endian supporting physical memory
KS32C65100 core and the internal peripherals support Big-endian configuration, while external memories like
ROM,SRAM,and DRAM can have Little-endian configuration. Instead of having Big-endian physical memory
configuration, there is BTU (Byte twist unit) in KS32C65100, internally. The main role of BTU is to swap the
bytes in word as shown in Fig 4.5. In other word, when core access "11" byte, it can get the "00" byte from
physical memory. To put the Big-endian data in Little-endian memory, Compiled code with the option of Big-
endian has to put in memory by swapping byte in a word as shown in Fig 4.5 due to the double swapping
(BTU and compiled code swapping), KS32C65100 can support Big-endian mode without any problem. The
reason why we have double swapping, is due to internal H/'W implementation issue.

— Big endian format/little endian format
In Big Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data
lines 31 through 24

— In little endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte is the most significant. Byte 0 of the memory system is therefore connected to
data lines 7 through 0.

4-8 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

— Byte swapping in a word
The byte swap is done by using following simple C code. It changes the byte sequence in a word.

Unsigned int swap (unsigned int data) // Make the sequence of bytes reverse in a word
{
return ((Oxff0O0000 & data)>>24)+

(' (0x00ff0000 & data)>>8)+

(' (0x0000ff00 & data)<<8)+

((Oxxxxxxxff & data)<<24));

— ROM writing
BTU changes the sequence the byte in a word, program codes are byte-swapped. To write the program to
ROM, do steps as follows;

1. Compile the program by big endian mode
2. Byte-swap the compiled code
3. Writes the code to ROM.

— Little endian format code vs. Byte swapped big endian format code.
if character strings doesn't exist in programs, little endian format codes may be same as byte-swapped big
endian format codes. But, because the bytes in a string is not affected by whether little endian format or big
endian format, the two codes are not same. So, the big endian format code byte-swapped has to be used in
KS32C65100. if little endian format code is used, the strings are not displayed correctly. (byte swapped
strings may be displayed)

— Interfacing external peripherals
Peripherals address is also byte-swapped. For example, If users want to access address Oh in memory,
address 3h in MCU must be accessed. This is because of word swapping of BTU. The relation between
physical address and the address used by instructions is as follows;

Table 4-1. The Relations Between Physical Address and Address in Instructions

Physical Address Byte Wide Access Half Word Wide Access
(Address Used in Instructions) (Address Used in Instructions)
00b 11b 10b
01b 10b N.A.
10b 01b 00b
11b 00b N.A.

ELECTRONICS 4-9

SYSTEM MANAGER

KS32C65100 RISC MICROPROCESSOR

A VAYATAVATAYAYATAVATA
tADDRh . tADDRd B
< >
Address X X
tNR tNRCS
—_Ci :_ Tacc —» ‘:4_
nRCS \~ '/
oty - o E
nOE \ /
nWE
* Tron
> <
Data(R) \,
Figure 4-6. Simple ROM Access Timing
A VAYATAVATATAYATAVYAWA
tADDRh . B
<+
Address X X X X X
tNRCS :<_ _’ ,<_tNRCS
nRCS -\'4_ Tacc b Tacp >« Tacp P acp) B
tNROE , t
> 4 -« NROi
nOE \:
nWE
tRDh ' tRDh
—» < —»
Data _ﬁ_ﬁf_ﬁf_ﬁ

Figure 4-7. Page Mode ROM Access Timing

4-10

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

SYSTEM MANAGER

SRAM CONTROL REGISTERS

KS32C65100 SRAM interface has two banks of SRAM and each bank is able to set up own SRAM access
configuration. The SRAM Control Registers (SRAMCONO, SRAMCON1) in SMR specifies not only the features
for SRAM banks but also two Special 1/0s (1/00, I/01) in the external bank 3.

The initial addresses of SRAM control registers are 01001004h and 01001008h, each. The real address of each
SRAM control register is "SYSCFG address" + "Offset address" of each SRAM control register. The register
address is re-configurable and programmers can change the SRAM control register address by changing the

contents of SYSCFG.

Registers Offset Address R/W Description Reset Val.
SRAMCONO 0x1004 R/W | SRAM control register 0 0x000007fc
SRAMCON1 0x1008 R/W | SRAM control register 1 0x000007fc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SRAMCONO/1

Next Pointer

Base Pointer Tacc |0 Special I/0 Address DW

[1:0] Bus Width (DW)
00 = Disable bank 01 = 8 (Byte mode)
10 = 16 (half word) 11= No use

[9:2] Special I/O Address Setting Value

It denotes the start address of special I/O address in extra bank 3. Extra
bank 3 has two special I/O areas for cost effective solution.

(See extra I/O control register bank explanation for more information)

[13:11] Access Cycles for SRAM Bank (Tacc)
000 = Disable bank 100 =5 cycles

001 = 2 cycles 101 =6 cycles

010 = 3 cycles 110 =7 cycles

011 =4 cycles 111 = Not used

[22:14] Start Point of SRAM Bank (Base Pointer)
Indicates SRAM bank end address + 1

[31:23] End Point + 1 of SRAM Bank (Next Pointer)

Indicates SRAM bank end address + 1

(Next point value has to be bigger than base point value, if base point and
next point value are same, SRAM bank is not valid anymore)

Figure 4-8. SRAM Control Registers

ELECTRONICS

4-11

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

SRAM Bank Space

KS32C65100 SRAM interface provides two SRAM banks, each of them are able to have different configuration.
Users can program the SRAM access cycles, memory bank size and bank location by using two identical SRAM
control registers, SRAMCONO,1. SRAM control register has two 9 bits address pointers, base and Next pointer.
These two pointers which denote the start and end address of SRAM bank. These 9 bits are mapped to the
address [24:16]. Therefore, bank address offset value is 64K byte (16 bits). The next pointer contents should be
SRAM bank end address + 1.

Initially, Two SRAM banks start and end addresses are 00000000h. Therefore, SRAM banks are disabled after
system initialization because the next pointer and base pointer have same values

Initialization

When system has been initialized, two SRAM Control register initial values are 00000000h and it specifies the
external SRAM is disabled.

Special /0 Address

The extra bank 3 of KS32C65100 has two special I/0 areas for making out the simple external latch control
signal. Two SRAM control registers have dedicated 9 bits for those special I/O areas in the extra bank 3. Extra
bank 3 provides two special control signals, nlORDO, nIlOWRO0. When a user reads/writes data from/to external
latch devices, these signals doesn't need additional address decoding logic. These signals are only available at
the extra bank 3. When MCU accesses any of special /O address area (64kB, 16 bit offset address) specified by
SRAM control registers, extra bank interface logic generates a I/0 read and write signals for the corresponding
address area. Fig 4-20 shows the diagram of special I/0 read/write interface logic.

Address Bus Generation

The address bus of KS32C65100 is some different from general MCUs. When 8 bit data bus is selected, the
resolution of address bus is a byte. When 16bit data bus is selected, the resolution of address bus is a half word.
So, although general MCUs don't use AO pins at 16bit data bus width, KS32C65100 always uses AO pins
regardless of bus width.

Data Bus Width External Address Pins (ADDR[21:0]) Reset Value
8 bit A21-A0 (internal) 4M byte
16 bit A22-Al (internal) 4M half word

Data Bus Width Configuration
(8-bit/16-bit)

8-bit [55— A[21.0]

22-bit f
External Address Pins |
ADDR [21:0] - 22 bit System Address Bus

v

-bit [¢—F~— :
16-bit 27.bit A[22:1]

Figure 4-9. External Address Bus Generation (ADDR[21:0])

4-12 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

tADDRh . tADDRd B
1 > <«
Address :X X
t .
NRCS ' t\res
—» '4: Tacc > ;/I
nRCS [\ >/
NROE ' t
Y 4_ > NRO!E‘_
nOE _\ /
nWE
 tron
> <
Data(R) }
Figure 4-11. SRAM Read Timing
tADDRh . tADDRd B
1 N
Address :X X
O Lt
NRCS : : NRCS
—» Toce =
g »
nRCS \ < >
nOE
. ot
N e 5 o VOV —» q"RWE
nWE \: : /
, Lyvon
> |+
Data(W) < '

Figure 4-12. SRAM Write Timing

ELECTRONICS 4-13

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

DRAM CONTROL REGISTERS

KS32C65100 DRAM interface has two banks of DRAM and each bank is able to control DRAM access timing as
memory configurations. The DRAM interface has two DRAM control registers, DRAMCONO0/1 and one DRAM
refresh control register, REFCON. The initial addresses of each DRAM control registers are 0100101ch and
01001020h. The refresh control register address is 01001024h. The register address is re-configurable and
programmers can change the address of DRAM control register by changing the contents of SYSCFG.

Registers Offset Address R/W Description Reset Val.
DRAMCONO 0x0000101c R/W | DRAM O control register 0x00000000
DRAMCON1 0x00001020 R/W | DRAM 1 control register 0x00000000

The KS32C65100 provides fully programmable external DRAM interface features. Programmers can easily
modify the interface modes such as external data bus width, number of access cycles for fast page or EDO,
access cycles for each DRAM bank and row address strobe (nRAS) pre-charge timing by changing the contents
of corresponding DRAM control register. The refresh control register controls DRAM refresh operation and
KS32C65100 supports CAS before RAS (CBR) refresh mode & self refresh mode.

KS32C65100 can generate row & column address and supports symmetric/Asymmetric address DRAM by
changing the number of address line from 8 to 11. It can support various size of DRAM by varying column
address size. If the number of a column address or a row addresses is bigger than 11, the accessible DRAM
memory size is smaller than the original size of the DRAM. For example, if 16M-bit DRAM with 4Mx4 (row
address = 12bit & column address = 10bit) is connected to KS32C65100, the maximum accessible size of the
memory is 8Mbit (11bit ~ 10bit) and the other 8Mbit will be obsolete.

EDO mode DRAM Accessing

Even If users specify DRAM as EDO mode, KS32C65100 gives same timing diagram compared with normal fast
page mode. However, KS32C65100 CPU fetches data (when read) later by a half clock than normal fast page
mode. It is possible because EDO mode can make data valid even if CAS goes to high when RAS is low. So, it
can give enough time to spare for CPU to access and latch the data so that it can reduce memory access cycle
time, eventually.

DRAM Bank Space

KS32C65100 DRAM interface provides two DRAM banks and each of them are able to have different
configuration. Users can program the DRAM access cycles, memory bank size and bank location by using two
identical DRAM control registers, DRAMCONO0&1. DRAM control register has two 9 bits address pointers, base
and next pointer. These two pointers which denote begin and end address of DRAM bank. These 9 bits are
mapped to the address [24:16]. Therefore, bank address offset value is 64K byte (16 bits). The next pointer
contents should be DRAM bank end address + 1.

Initially, Two DRAM banks start and end addresses are 00000000h. Therefore, DRAM banks are disabled after
system is initialized. because next pointer and base pointer values are same .
Initialization

When system is initialized, two DRAM control register initial values are 00000000h and it specifies mode that the
external DRAM is disabled.

4-14 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

DRAM Bank Configuration

The DRAM has different write methods from SRAM or other external memories. Normally, DRAM module has
two CAS signals to separate data bus by byte order. Therefore, RAS signal is used for bank selection and CAS
signal is used for byte selection mode.

Example) Settings for 60nS EDO DRAM (KM416V1204)

Condition Setting Value for DRAMCON
Memory map: 1000000h ~ 11fffffh 0x9040101a
DRAM: 10bit(row) = 10bit(column) ~ 16bit(data), 60ns, EDO
MCLK: 33MHz

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

E
DRAMCONO0/1 Next Pointer Base Pointer Trp [Trc] Tcs (Tcep Tpgm8 CAN | DW

[1:0] Bus Width (DW)

00 = Disable bank 01 =8 (Byte)

10 = 16 (Half word) 11 = No use

[3:2] Column Address Number (CAN)

00 = 8 bits 01 =9 bits
10 =10 bits 11 =11 bits

[4] EDO DRAM or Ordinary DRAM (EDO)

0 = Ordinary 1 =EDO DRAM
[6:5] CAS Strobe Time (@ Page Mode) (Tpgm)
00 =1 cycle 01 =2 cycles

10 = 3 cycles 11 =4 cycles

[7] CAS Pre-Charge (Tcp)

0 =1cycle 1=2cycles

[10:8] CAS Strobe Time (@ Single Mode) (Tcs)
000 =1 cycle 100 =5 cycles

001 = 2 cycles 101 = Not used

010 = 3 cycles 110 = Not used

011 =4 cycles 111 = Not used

[11] RAS to CAS Delay (Trc)

0=1cycle 1=2cycles
[13:12] RAS Pre-Charge Time (Trp)

00 =1 cycle 01 =2 cycles
10 = 3 cycles 11 =4 cycles

[22:14] Base Point of DRAM x (Base Pointer)
DRAM bank start address.

[31:23] End Point + 1 of DRAM x (Next Pointer)
DRAM bank end address + 1.

Figure 4-13. DRAM Control Registers (DRAMCONO - DRAMCON1)

ELECTRONICS 4-15

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

RAVAVAVAVAVAVAVAVAVAVA

t
Tr : t . . . ' NRASr
PRLNR 5 : - =
NRAS H\ ; i : L
E: Trc b Tcs > Tcgi< Tpgm >
nCAS 5 N\ SN ./
tAPDRd ' tncast 9 tycas: 4% - thcast "' tucasr
» <+ | ' | |
Address >< Row Address >< Column Address >< Column Address ><
P 4—
| e 'ADDRh
tNDOE E ?NDOE
nOE \ : [
: Y """ T~~~ N\
Data(R) < Raluioly ___E_IZQ____, _] N

Fetch Time ’j A\ Fetch Time

@Normal DRAM @EDO DRAM

Figure 4-14. DRAM Bank Read Timing (Page Mode)

N AA AV AVAV AV ARV AT

. - - : t
Trp X t NRASr
> > ¢ T : 5 =
nRAS N\ : ; ; : /
: Trc 1 Tcs L [Tep Tpgm| .
< > >——Pie >
nCAS : SR 3 R /.
t i e . - ‘- -
A,DDRd . tNCAsf N" tNCASW t* A g tNCAsf "' tNCASr
> < | NCASTH, | .
Address >< Row Address>< Column Address >< Column Address ><
' _> - LabDRN
tNDWE E E E tNDWE
_ > | : g .
nWE \ 5 5 |/
tWDDd : tWDDh ' tWDDd
»: < » <+ | » :
Data(W) : < >——
: : > - ‘
tWDDd

Figure 4-15. DRAM Bank Write Timing (Page Mode)

4-16 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

SYSTEM MANAGER

DRAM REFRESH CONTROL REGISTER

The KS32C65100 DRAM interface provides the CAS before RAS (CBR) refresh and self refresh mode. The
refresh control register (REFCON) determines refresh mode, refresh timings, refresh intervals as well as external

bus enable.
Register Offset Address R/W Description Reset Value
REFCON 0x00001024 R/W | DRAM refresh control 0x00000001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Refresh Count Tesr| Tcs REN 0

VSH,

[0] Validity of Special Register Field (VSF)

0 = Not accessable to memory bank

1 = Accessable to memory bank

(Whenever MCU access one of system manager registers(SMR), VSF bit is auto-
activate external bus, VSF bit should be set to 1 by using STMIA instruction in the
last. Programmer should write into 10 system manager registers altogether with
STMIA instruction while VSF bit set instruction is in the last.)

[15] Reserved 'O’

[16] Refresh Enable (REN)

0 = Self refresh mode or disable DRAM refresh.

(When this bit is set '0', DRAM enters the self refresh mode and cannot be
accessed.)

1 = Enable DRAM refresh.

(When this bit is cleared, MCU refreshs DRAM periodically and can read/write the
DRAM)

[19:17] CAS Hold Time (Tcs)

000 =1 cycle 100 =5 cycles
001 = 2 cycles 101 = Not used
010 = 3 cycles 110 = Not used
011 =4 cycles 111 = Not used

[20] CAS Set-up Time (Tcsr)
0=1cycle 1=2cycles

[13:21] Refresh Interval (Refresh Count)
Refresh interval = 2! - Value + 1)/MCLK

Example) If refresh interval is 15.6us, 15.6us = (21! - value + 1)/33MHz
Refresh conut value = 10111111110b

Figure 4-16. DRAM Refresh Control and Memory Configuration Register (DRAM Refresh Control)

ELECTRONICS

4-17

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

DRAM Self refresh mode

Every DRAM requires refresh operation periodically to keep correct data and JEDEC defines couple of refresh
modes. The self refresh mode is one of which has defined in JEDEC specification and it enables the DRAM to
refresh memory cells internally once it has enabled without periodical external refresh control signals unless other
refresh mode happens or power fails.

The self refresh operation is similar to that of CBR (CAS before RAS). Once after CPU generates CBR mode
signals and it keeps CBR mode state more than 100us, DRAMs recognize refresh mode as self refresh instead
CBR.

DRAM Self refresh mode Entry

1. Self Refresh mode by Hardware

When system reset pin, NRESET, is low, the system manager block generates self refresh mode signals, i.e.
whenever KS32C65100 initialized, it activates self refresh mode. Hardware refresh feature enables the system to
avoid DRAM data loss if system backup supplies power to DRAM while main power is disconnected.

When system main power is disconnected, KS32C65100 will be disabled. Meanwhile, if DRAM has power back-
up circuitry, it still requires periodical refresh signals from KS32C65100. Therefore, it won't be able to keep valid
DRAM data in a short time, if KS32C65100 does not make DRAM self refresh mode.

For this reason, when main power is disconnected and nRESET goes low, KS32C65100's system manager block
makes self refresh signals. The system user can make memory back up system easily by utilizing this feature, if
only DRAM is used for system memory.

Main

Power
Reset Filter
65 Cycle

nRST
Internal Internal Reset 256 Cycle

RST

-
’/4 DRAM will enter self fefresh mode after 100us

paTa) I {1 {1 {1

Figure 4-17. Self Refresh Mode Entry Process bynRESET

4-

=

8 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

SYSTEM MANAGER

2. Self Refresh mode by Software

After system reset, KS32C65100 is in DRAM self refresh mode. By programming the REN bit of DRAM refresh
control register to "1", system manager block works as normal DRAM access mode.

To enable the self refresh mode during normal system operation, programmer needs to change the REN bit to
"0". system manager detects the REN bit content change from 1 to 0 and it activates the self refresh mode. If
programmer wants change mode from self refresh mode to normal DRAM access mode, programmer just needs

to write "1" to REN bit once again.

CPU Writes
SFR Bits

CPU Writes
SFR Bits

N

DRAM Enters CBR-Refresh |

4

Nk

%

N\

)/

[|

DATA L — — 1|

| DRAM Access Available |

I
[}
I
|
[}
nOE I
|
|
|
|

 E—

 E—

| DRAM Self Refresh Mode |

|
|
|
I
I
|
—
|

| DRAM Access Available | !

Figure 4-18. Self Refresh Mode Entry Process by Software

NOTES:

1. When DRAM does not work self refresh after system initialization.
Even though KS32C65100 activates self refresh mode when system power connected, DRAM may not recognize self
refresh mode correctly, because of unstable state of control signals during system initialization (Most of DRAM
recognize the self refresh mode very well at power on). When it happens, KS32C65100 may fetch corrupted data from
external memories because DRAM and ROM share OE (Output Enable) signal and they may generate data altogether.

KS32C65100 has a watch dog timer to cope with system malfunction problem. When KS32C65100 initialized, watchdog
timer is enabled and makes external system reset signal unless MCU disables in the mid of operation. Therefore, it is
recommended to put the watch dog ti mer disable code in the boot ROM area to disable watch dog timer. If "power on
initial" is not working correctly and KS32C65100 fetches corrupted data, watch dog timer will make system reset signal
and it will cause KS32C65100 reset once again. The seco nd watch dog reset will cause DRAM self refresh mode
because when it happens, system power and other states are stable.

2. DRAM access during self refresh mode

If KS32C65100 accesses external DRAM for read or write data during self refresh mode, nRAS and nCAS signals are not
working at all. DRAM accessing during the self refresh mode may cause corrupted data read or writing.

ELECTRONICS

4-19

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

3. Memory access is forbidden when the SMR is changed.
The external bus is disabled when MCU accesses any of SMR to change the system memory configurations. It is for
preventing the system malfunction which will be caused by memory address space overlaping during the new
configuration. To re-activate external bus operation, The VSF bit in refresh register need to be set to 1 by writing SMRs
with STMIA ARM instruction. While STMIA instruction writes 10 registers of SRMs, refresh reigster must be written at the
last step with VSF bit has "1" so that external bus can be re-activated right after system manager register has new
configuration.
It is not recommended to change the SFRs after system initialization. If SFR changed, especially memory related areas,
users have to flush cache memory for the data coherency.

SN AYAVAVAVAVAVAVAVAVAVAY
A\

nRAS ; /
Tcsr Tcs
> >
NCAS —_\ /
nWE
Address
I N N I D D I
Data

Figure 4-19. DRAM Refresh Timing

4-20 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

EXTRA BANK ACCESS CONTROL REGISTERS

The KS32C65100 provides four extra banks and four Extra Bank Control registers (EXTCONRN) controls timing,
bank size and bus width. The extra bank 3 has the special features compared with other extra banks. It has one
special dedicated addresses (refer to SRAMO control registers) for providing the low cost external I/O control
solution. Extra bank 3 has special signals such as nlORDO, nlOWRO0. When a user reads/writes data from/to
external latch devices, these signals prevent extra address decoding logic ICs These signals are available at
only the extra bank 3. Basically, they have same timing diagram as the extra bank 3 has. The initial address of
each I/O control registers are plus of its own offset address with initial SYSCFG register address, 01000000h.

Registers Offset Address R/W Description Reset Value

EXTCONO 0x100c R/W | Extra bank O control register 0x00000000

EXTCON1 0x1010 R/W | Extra bank 1 control register 0x00000000

EXTCON2 0x1014 R/W | Extra bank 2 control register 0x00000000

EXTCON3 0x1018 R/W | Extra bank 3 control register 0x00000000
| nwe || noE |

End Address of
Extra Bank 3

33— nlIOWR 0
q
Special /0 0 Address
Specified by SRAM 64KB L 4
Control 0 Reg. nlORD 0

Start Address of
Extra Bank 3

End Address of

End Address of Bank 2
End Address of
Extra Bank 0 Bank 1
Bank O

Start Address of

Start Address of

Start Address of
Extra Bank 0

NS

Figure 4-20. Special /0 Address Map

When fetching data, the point of data reading is the last down edge of MCLK within nNECS active region. Users
may be curious about the figure 4-22, nOE's de-asserting before the point of data reading. If nOE has to be de-
asserted after the point of data reading, use 'tcoh' = 0 which defines the time between nOE's de-asserting and
NECS's de-asserting. Setting 'tcoh' as 0, nOE is de-asserted after the point of data reading as the user wants.

In reality, extra bank 3 cang be configured. It is an imaginary bank for planning the special I/O.

ELECTRONICS 4-21

SYSTEM MANAGER

KS32C65100 RISC MICROPROCESSOR

Special /0 Address

One SRAM control registers have dedicated 8 bits each for the extra bank 3, for providing the low cost system
solution. Bank 3 has special signals, nlORDO, nlOWRO0. When a user reads/writes data from/to external latch
devices, these signals prevent extra address decoding logic ICs. These signals are only available at the extra
bank 3. When CPU access any of special /0 address area (64KB, 16 bit offset address) specified by SRAM
control registers, extra bank interface generates a 1/0 read and write signals for the corresponding address area.

Figure 4-22, 23 shows the timing diagram of special I/O read/write cycles.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Next Point

Base Point

Tacc

Tcch

Tacs

Tcos

DW

[1:0] Programmable Bus Width (DW)

00 = Disable bank 10 = Half word
01 = Byte 11 = No use
[4:2] Chip Selection Set-up on nOE (Tcos)
000 =0 cycle 100 = 4 cycles
001 =1 cycles 101 =5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 =7 cycles
[7:5] Address Set-up Before nECS (Tacs)
000 =0 cycle 100 = 4 cycles
001 =1 cycles 101 =5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 =7 cycles
[10:8] Chip Selection Hold on nOE (Tcoh)
000 =0 cycles 100 = 4 cycles
001 =1 cycles 101 =5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 =7 cycles
[13:11] Access Cycles (nOE Low Time) (Tacc)
000 = Not used 100 =5 cycles
001 = 2 cycles 101 = 6 cycles
010 = 3 cycles 110 =7 cycles
011 =4 cycles 111 = 8 cycles

[22:14] Start Address of Extra Bank n. (Base Paint)
It denotes the start address of extral bank x by word unit.

[31:23] End Point + 1 of Extra Bank n (Next Pointer)
It denotes the start address of next extra bank.

Figure 4-21. Extra Bank Control Registers ExtCntr 0, 1, 2, 3)

4-22

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

N AVAVAVAVAVAVAVAVAVAWVA
tADDRA | ItADDRd B
—>| e > <
Address X ¥ X
t t t tnecs
< ags > NE:gs_ coh T<_
nECS \ ST
tCOS tNROE tNROE
“—>| > e
nOE < face Y
nWE n
RDh
—-»| <«
Data(R) / VAN \
~ \ /i
Tacs + Tcos | tyoro ;
< > :4— > Nlolao_
nlORD \ /i
- - tcoh= 0) \—
t, = Data fetch (t ., = 0) Data fetch (t,,, = 1)
CcOl

A A AVAY Y aVaAYaYavava
| | | |
tADDRh \ | | t
H_! : ; + kﬁDDRd
Address \ | x|
A : e
[}
: ta S tNECS : >} ;tCOh tNECS
< : ld :4_ i h 4 : I
nECS '
| | : AN
[}
: | tNRWE :tNIIQWE
| »> < Rt
T I ! | \
NWE ! AV ANV
| [|
[}
| 3 |
: : : ! tEWDd : tWDh
: X) / 1 \
Data(W) i =\ A /
Tacs + Tcos + 0.5clk L \
< > ! 14 Tyowr »> |« fows
! | |
nlORD | i\' i/ :
A LR
- __ t..=0
: coh= Data fetch (tcoh =0) Data fetch (tcoh =1)
coh

Figure 4-23. Extra Bank Write Timing

ELECTRONICS 4-23

SYSTEM MANAGER

KS32C65100 RISC MICROPROCESSOR

A.C ELECTRICAL CHARACTERISTICS

(Ta=0°Cto+70 °C, Vpp + 3.00V to 3.60V)

Name Description Min Max Unit
tADDRh Address hold time 7.0 ns
tADDRd Address delay time 25.1 ns
tNRCS ROM bank chip select delay time 20.6 ns
tNROE ROM/SRAM/EXtIO bank out enable delay 23.5 ns
tNRWE SRAM or ExtlO bank write enable delay 18.2 ns

tRDh Read data hold time 3.0 ns

twDd Write data delay time (SRAM/EXIO) 9.8 ns

tWDh Write data hold time (SRAM/EXIO) 26.3 ns
tNRAST DRAM raw address strobe active delay 15.2 ns
tNRASTF DRAM raw address strobe release delay 27.0 ns
tNCAST DRAM column address strobe active delay 16.1 ns
tNCAST DRAM CAS signal release delay time 17.1 ns
tNCASw DRAM CAS write active delay 19.8 ns
tNDWE DRAM bank write enable delay time 24.4 ns
tNDOE DRAM bank out enable delay time 23.5 ns
tNECS External 1O bank chip select delay time 20.6 ns
tNIORD Special IO bank read signal delay time 235 ns
tNIOWR Special IO bank write signal delay time 18.2 ns
twDDd DRAM write data delay time (DRAM) 14.2 ns
twDDh DRAM write data hold time (DRAM) 7.4 ns

4-24

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

SYSTEM MANAGER

Memory mapping for external memory and I/O is shown in Figure 4-24

32MB Memory Space

Special Start address
Function SYSCFG[12:4]: 1FFh
rowcon | heXtooner ot
sracono | HeXponer 1541
Srawcon: | Sextponer: coon
oRAMCOND | SEXtporer: 1600
oRAwCON: | Jes Farter 60
extcono | e parter 000
extcons | Nertporter oy
extcon: | hedpobter 06
extcons | e porter 000
Special /0 1 SRiagg?\ldfsbSOOh

> SFR

SRAMO

DRAMO

1/0 BANK1

1/0 BANK2

ROM

1FFFFFFh
1FFO000h
183FFFFh
1800000h
15FFFFFh

1200000h

OAOFFFFh
0A00000h
OAFFFFFh

OFFFFFFh

003FFFFh
0000000h

Figure 4-24. An Example of System Manager Register Settings

ELECTRONICS

4-25

KS32C65100 RISC MICROPROCESSOR CACHE CONTROLLER

CACHE CONTROLLER

OVERVIEW

The KS32C65100 CPU has an internal 2K Bytes of unified (instruction/data) cache. The cache is two-way set
associative and the line size is four words (16 Bytes). It has a write-through policy. When a miss occurs, words of
memory are sequentially fetched from external memory. It has a LRU (Least Recently Used) replacing algorithm.

Typically, the RISC CPU uses instruction and data caches to improve performance. Without caches, the
bottleneck that occurs during the instruction and data fetches from external memory may seriously degrade
performance. The unified cache deals with instruction and data in the same way.

ELECTRONICS 5-1

CACHE CONTROLLER

KS32C65100 RISC MICROPROCESSOR

31 30 29 28 27 26 25 24 10 9 4 3 21 O
Tag Address (15-bit)
< p Y} 2-bit
15 6-bit
A 4
switch |
2 15 15
A A
CS Set 1 Tag Set 0 Tag Height = 64
<—
: Decoder | it
4—
4—
4—
Tag RAM (32-bit)
Set 1 Icache line = 4 instruction/data (128-bit) Set 0 Icache line = 4 instruction/data (128-bit)
Instr3 Instr2 Instrl InstrO Instr3 Instr2 Instrl InstrO
6-bit
Height = 64
32-bit 32-bit
; A A ; ; A A $
[~ |) 2
32 32
2
(Set 0 Hit) 32
(Set 1 Hit)

Figure 5-1. Cache Memory Configuration

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CACHE CONTROLLER

CACHE OPERATION

Cache Organization

The KS32C65100 Cache has two sets of 2KB cache memory and one small Tag RAM. The Tag RAM has two
bits of CS (Cache Status) and two sets of Tag memory, set 0 and 1. Each Tag set has 15 bits of address field
[24:10] which is being stored in the cache memory. The CS has two bits and it indicates the validity of cached
data for corresponding cache memory line. It is also used for the cache replacement algorithm and for selecting a
data coming from Set 0 and 1. Cache memory has two sets, Set 0 and Set 1. Each set has 64 lines and each line
has four words of memory space (128 bits).

Cache Replace Operation

After system is initialized, CS is "00" which represents that the contents of set 0 and set 1 cache memory are
invalid. When first cache fill occurs, CS is changed to "01" at the specified line which represents that only set 0 is
valid. When subsequent cache fills occurs, CS will be "11" at the specified line which represents that contents of
both set 0 and set 1 are valid.

When the contents of the two sets are valid and when it needs content replacement due to cache miss, CS is
changed to "10" at the specified line which represents that the content of set 0 was replaced. When CS is "10"
and when it needs another replacement due to cache miss, the content of set 1 will be replaced by changing CS
as "11". Summarizing, at normal steady state, CS will be changed from "11"/"10" to "10"/"11" which gives the
information for the implementation of the 2-bit pseudo LRU(Least Recently Used) replacement policy.

Reset(/)
NVALID: 00 ; Not valid data
rmiss ; Read miss
A 4
SO only: 01 Q : Set 0 = valid, set 1 = invalid
_ " hit It doesn't change status on hit
rmiss ; ; ; Read miss
v rmiss or hitl '
< ; AV_S1D = All valid and set 1 is dirty.
AV-S1D: 11 p AV-SOD: 10 D "Dirty" means to access just before.
: : Status does not change on hit.
hit 1 rmiss or hit0 hit0 hang T
; AV_SOD = All valid and set 0 is dirty.

Figure 5-2. CS-bit Status Diagram

ELECTRONICS 5-3

CACHE CONTROLLER KS32C65100 RISC MICROPROCESSOR

Cache Disable Operation

The KS32C65100 Cache provides a programmable entire cache enable/disable mode. The cache can be
enabled by setting the CE bit in SYSCFG to 1, and disabled by clearing SYSCFG[1]. When the disable mode is
specified, instructions and data are always fetched from external memory. KS32C65100 can also provide non-
cacheable areas in cache enable mode for some particular memory access operations, such as the DMA
operation. The two non-cacheable areas are specified by four special registers to be introduced later.

Programmers have to be cautious about data coherency when cache memory is enabled again because cache
memory does not have auto flush mode. Programmers also have to be cautious if DMA changes memory data.
The DMA access memory area must be non-cacheable for keeping the data coherency. To keep the data
coherency between the cache and external memory, KS32C65100 uses the write-though method.

Write Buffer Operation

KS32C65100 has four write buffer registers to enhance the memory writing performance. When write buffer
mode is enabled, CPU writes data into the write buffer instead an external memory when the external bus was
already occupied by other bus masters like DMA. The write buffer has 4 registers and each register includes 32
bits of data field, 25 bits of address field and 2 bits of status field.

24 23 02 01 00 01 00 31 30 02 01 00
Address MAS Write Buffer Data

[31:0] Write Buffer Data
Data to be written into external memory

[1:0] MAS

00 = 8 bit data mode
01 = 16 bit data mode
10 = 32 bit data mode
11 = Not used

[24:0] Address
Indicates the address of write data

Figure 5-3. Write Buffer Configuration

5-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CACHE CONTROLLER

CACHE CONTROL REGISTERS

The KS32C65100 Cache provides two non-cacheable areas. It has four Cache Control registers to specify two
non-cacheable areas. Basically, cache stores any data within the whole system memory area, but sometimes it
needs non-cacheable operation to keep the data consistency between the external memory and cache memory.

KS32C65100 provides two non-cacheable areas and each of them requires two cache control registers to indicate
the start and stop address of the non-cacheable area. If a non-cacheable area is specified, that area won't be
cached while read miss occurs.

Registers Offset Address | R/W Description Reset Value
CACHNABO 0x0004 R/W | Start address of non-cacheable area 0 0x0000000
CACHNAEO 0x0008 R/W | End address+1 of non-cacheable area 0 0x0000000
CACHNAB1 0x000c R/W | Start address of non-cacheable area 1 0x0000000
CACHNAE1 0x0010 R/W | End address+1 of non-cacheable area 1 0x0000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Start/End Address o(0|l0O|0O|0O]O|OfOfO

[24:9] Non-Cacheable Start/End Address

This 16-bit address becomes the upper address of the
area.([24:9]), minimum non-cacheable area is 512 byte
because offset address is 9 bit.

1ffffffh
Cacheable Area
CACHNAEO >
Non Cacheable Area 0
CACHNABO
Cacheable Area
CACHNAE1
Non Cacheable Area 1
(minimum 512 bytes)
CACHNAB1 »
Cacheable Area
Oh

Memory Map

Figure 5-4. Non-Cacheable Area Register

ELECTRONICS 5-5

KS32C65100 RISC MICROPROCESSOR DERASTERIZER

DERASTERIZER

OVERVIEW

The KS65100 derasterizer provides the 16 x 16 bit image data rotation feature. The derasterizer consists of 16
registers which has a 16 bit data width. This 16 x 16 bits of register array is used to rotate raster image data 90 or
270 degrees.

Registers Offset Address R/W Description Reset Value
DRASTO 0x4800 R/W 16 bits of derasterizer data register 0 OXXXXX
DRAST1 0x4804 R/W 16 bits of derasterizer data register 1 OXXXXX
DRAST14 0x4838 R/W 16 bits of derasterizer data register 14 OXXXXX
DRAST15 0x483c R/W 16 bits of derasterizer data register 15 OXXXXX

NOTE: When h[15:0] is written and v[15:0] is read, the address of DRASTO~DRAST15 is used.

ROTATION

To rotate image data, programmers should fill image data into the 16 x 16 bit register array from DRASTO to
DRAST15, horizontally. The image data, made by reading the 16x16, has rotated the image. The rotation
direction depends on the shift control register, SFTCONJ3]. When SFTCON]J3] is 0, read image data is 90
degrees rotated and when SFTCON[3] is set to 1, it is rotated 270° degrees.

Write: hO ® h15 (DRASTO ® DRAST15)

Read: 90 degrees: (horizontal direction) vO ® v15 b (vertical direction) MSB ® h15, LSB ® h0O
270 degrees: (horizontal direction) v15 ® vO b (vertical direction) MSB ® h0, LSB ® hl5

ELECTRONICS 6-1

DERASTERIZER KS32C65100 RISC MICROPROCESSOR

SHIFT CONTROL REGISTER (SFTCON)

Shift Control Register (SFTCON) specifies the rotation degree of the derasterizer data

Register Offset Address R/W Description Reset Value

SFTCON 0x5004 R/W Shift control register 0x0

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X

[3] Direction of Derasterizer
0 =90 degree
1 =270 degree

Figure 6-1. Shift Control Register

At First DRASTO is Written, 2'nd DRAST1 is Written, ..., Last DRAST15 is Written by S/W

v0 vl v2 v3 v4 v5 v6 v7 v8 v9 | v10 _vll v12 | v13 v14__v15

«==>g]-—-—_4L__—] _—— - _——] — L _ —_— 1 _—— = -—- —— |- g

N

\

\ 1 DRASTO

bit0 bitl5 hO
A A h1

-

g S S

h2
h3
h4
h5
h6

when when
goc 2700 N7
h8

h9
h10
h11l
h12
h13

v v h14
bitl5 bit0 h15

\
/' bit15 bit0

At First v0 is Read, 2'nd v1, ..., v15 is Read by S/W.

v
DRAST15

Figure 6-2. Rotation Configuration

5-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

DERASTERIZER

Example
SFTCON[3] =1 Original

15 (270 degree) 0 15 0
DRAST15 ho DRASTO
DRAST14 DRAST1
DRAST13 DRAST2
DRAST12 DRAST3
DRAST11 DRAST4
DRAST10 DRAST5
DRAST9 DRAST6
DRAST8 DRAST7
DRAST? DRAST8
DRAST6 DRAST9
DRAST5 DRAST10
DRAST4 DRAST11
DRAST3 DRAST12
DRAST2 DRAST13
DRAST1 DRAST14
DRASTO h15 DRAST15

ho h15 O

15 0
DRASTO
DRAST1
DRAST2
DRAST3
DRAST4
DRAST5
DRAST6
DRAST7
DRAST8
DRAST9
DRAST10
DRAST11
DRAST12
DRAST13
DRAST14
DRAST15

h15 ho

SFTCONI[3] =0
(90 degree)

ELECTRONICS

6-3

KS32C65100 RISC MICROPROCESSOR

GENERAL ADC

GENERAL ADC

OVERVIEW

The 10-bit CMOS A/D converter consists of the 3-channel analog input multiplexer, auto offset calibration

comparator, high resolution R-string DAC, clock generator, 8-bit successive approximation register (SAR), ADC
control register (ADCCON), and the tri-state output register (ADCDATA). The CMOS comparator includes sample

and hold functions without such a circuit and has high comparator gain in two-stages. This ADC provides
software-selection power-down mode. The device operates with a single +3.3V supply and its A/D conversion

rate is 500 KSPS. The external clock XP1 is 25MHz. The operating temperature range is 0 ~ 70°C according to

commercial specifications.

FUNCTIONS

DASC <
A
AIN[2:0] —p SAR
A
ASEL[1:0]
A
XP1
c > CLKGEN OUTREG
L
MCLK —p K
K MODES, ADEN, STBY
[
v DGET
A
A A
ADCCON ADCDATA
CLKSEL

FLAG

Figure 7-1. Functional Block Diagram of General ADC

ELECTRONICS

7-1

GENERAL ADC KS32C65100 RISC MICROPROCESSOR

SAR (SUCCESSIVE APPROXIMATION REGISTER) A/D CONVERTER OPERATION

A SAR type A/D converter basically consists of the comparator, D/A converter, and SAR logic. At the beginning
of the conversion, the MSB is switched on and the analog input signal is compared to the output signal of the D/A
converter. When the input signal is larger than the output signal of the D/A converter, then the MSB remains on
and the next bit is switched on, and a comparison will be performed. A bit by bit operation is performed in this
system to bring the D/A output signal within 1 LSB to the time discrete input signal.

COMPARATOR (COMP) AND DAC (DIGITAL TO ANALOG CONVERTER)

The CMOS comparator produces digital output as the result of comparing selected analog input with reference
voltage. This comparator operates every CLK1 and CLK2, where the two clocks are non-overlapping and have
anti-phase. Note that the comparator has no sample-and-hold circuit for the reduction of the current consumption.

Especially, the D/A converter consists of 128 resistor strings and switches with 7-bit resolution. So, the
comparator performs the comparison with 3-bit resolution. The D/A converter generates the digitized analog
output (DAOUT) from data of SAR logic block as follows.

DAOUT = (AVREF - AVSS)/128 x D[9:0]

where AVREF and AVSS are analog reference voltage and ground that are applied to the comparator and the
D/A converter block. This 128 resolution DAOUT is supplied to the CMOS comparator.

XP1 Generator and Clock Generator (CLKDIV and CKGEN)

The CLKDIV block of the A/D converter in KS32C65100 can choose two clock sources - x2 and x4 from system
clock MCLK - by setting the CLKSEL bit of the ADCCON register. For the selected clock (XP1), CKGEN block
generates CLK1, CLK2, and DACLK. CLK1 and CLK2 are used in the comparator, while DACLK is used to
operate the SAR logic block. Note that the maximum frequency of XP1 is 25MHz.

A/D Conversion Time
When we use the main oscillation frequency of 33MHz and select the A/D converter clock to XPx4, then the total
10-bit conversion time is as follows.

33MHz/4 (divide 4 frequency)/45 (at least 45 cycles by 10 bit operation) = 183.3kHz = 5.45us

This A/D converter was designed to operate at 25MHz XP1 clock source and the maximum conversion rate goes
up to 500 KSPS.

Power-Down Mode

When the power-down mode is activated by setting the STBY bit of the ADCCON register to '1', the A/D
converter is kept in standby mode without A/D conversion operation. If STBY bit is set to '1' even at A/D
conversion mode, flag bit goes high immediately. When the DGET is activated by read operation during power
down mode, the previous A/D conversion data are produced.

7-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR GENERAL ADC

SPECIAL REGISTER

ADC Control Register

The A/D converter control register ADCCON is used to control the operation of the 10-bit A/D converter as
follows.

Register Offset Address R/W Description Reset Value
ADCCON 0xd800 R/W ADC control register 0xa0
[0] A/D conversion enable This bit is A/D conversion start bit.

This bit is auto-cleared after A/D conversion start-up.

[2:1] Analog input Select the analog input to be converted from AIN[2:0].
Select AIN[O] for "00", AIN[1] for “01", AIN[2] for @O¢ and
none if ¢1¢

[3] Reserved This bit must be '0'

4] Clock select Select between MCLK divided by 2 and MCLK divided by 4

as the XP1 clock. Select 2 for "0" and 4 for "1".

[5] Stand-by mode This bit is used for keeping standby without A/D conversion
operation. For A/D conversion, its state must be changed
from '1' to '0' for at least one XP1 period.

[6] 8-bit mode It switches the ADC function between 8 bit and 10 bit. The
Low state is maintained in 10 bit operation, and high state
in 8 bit operation

[71 Flag Its state goes '0' during A/D conversion, and goes '1' after
the A/D conversion. If STBY signal is applied even at A/D
conversion mode, its state goes 'l' immediately.

ELECTRONICS 7-3

GENERAL ADC

KS32C65100 RISC MICROPROCESSOR

31 3029 28 27 26 25 24 23 22 212019 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00
X X| X[X]| X[ASEL| X
[0] A/D Conversion Enable
0 = A/D conversion disable
1 = A/D conversion start
This bit auto-cleared after A/D conversion start-up
[2:1] Analog Input Selection
00 = AINO 01 =AIN1
10 = AIN2 11 = Not defined
[3] Reserved
This bit must be "0".
[4] Clock Selection
0 = MCLK/2 clock 1 = MCLK/4 clock
[5] Stand-by Mode
0 = Normal mode 1 = Stand-by mode
(power down. No A/D conversion operation)
** For A/D conversion, its state must be changed from '1' to 'O’ for at
least one XP1 period
[6] 8-bit Mode
0 = 10-bit resolution 1 = 8-bit resolution
[7] Flag
0 = A/D conversion in process 1 = End of A/D conversion
Figure 7-2. ADC Control Register (ADCCON)
7-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR GENERAL ADC

ADC Data Register

ADCDATA loads the A/D conversion data during read operation after the conversion process is completed and
flag goes '1'. Internally, DGET signal is activated by read operation of ADCDATA and A/D converted data are

produced by applying DGET.

Register Offset Address R/W Description Reset Value
ADCDATA 0xd804 R ADC data register OXXXX

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ADCDATA

[9:0] ADC A/D Conversion Value
A/D converted data.

Figure 7-3. ADC Data Register (ADCDATA)

ELECTRONICS 7-5

KS32C65100 RISC MICROPROCESSOR TIMER

TIMER

OVERVIEW

Timer Block has three 16-bit timers. Three timer blocks share an 8-bit prescaler and a clock divider which has 4
different divided signals. Each timer block receives its own clock signals (signal name is "Timer Clock") from the
clock divider which receives the clock from the 8-bit prescaler. The 8-bit prescaler is programmable and it divides
the MCLK signal depending on the loading value which is stored in TSTCON[14:7] bits.

The timer count value register (TBCNTNn) stores initial count value and its data is loaded into the down counter
when the timer is enabled. Each timer has its own 16-bit down counter that is driven by the timer clock. When
one of the down counters reaches zero, the timer counter interrupt request is generated to inform the CPU that
one of the timer operations is completed. When it reaches zero, the corresponding TBCNTn content is
automatically loaded into the down counter to continue the next operation. However, if a timer is stopped, for
example if you clear the timer enable bit in TCON during the timer running mode, the count value in TBCNTn will
not be reloaded into counter.

The timer count value register is used to define the duration for timer operation, and contains the number of timer
clock periods needed for one operation duration.

The timer duration can be calculated as follows:

Timer_clock = MCLK/(prescale_value + 1)division_factor (Hz)
Timer_duration =count_value/Timer_clock

1/4
1/8
116 | Down Counter |—>Timer 0 interrupt
1/32 ﬁ Reload count value when
Clock ? 2 down counter reaches to "0"
Divider TCON[2:1] | TBCNTO [15:0]
MCLK Timer O
1/4 —»
|—> 8-Bit Prescaler 1/8 > O L
1/16 ' l
1/32 : | Timer 1 interrupt
[1/(prescaler+1)] > | |
? 2 e |
TCON[5:4] Timer 1
14 | S ——)
18 N >
1/16 — : , Timer 2 interrupt
1/32 ! !
? 2) eccsccccoooscososoanod !
TCONI8:7] Timer 2

Figure 8-1. 16-Bit Timer Block Diagram

ELECTRONICS 8-1

TIMER

KS32C65100 RISC MICROPROCESSOR

TIMER CONTROL REGISTER

Programmers can disable or enable the timer operation and can select a clock divider output from 4 divided
signals by using the Timer Control Register (TCON).

Register

Offset Address R/W Description

Reset Value

TCON

0x3000 R/W | System timer control register

0x000h

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X

X

X

X

X | X

[0] Timer O Enable
0 = Stop
1=Run

[2:1] Clock Division Factor Selection for Timer 0

00=4 01=8
10=16 11=32
[3] Timer 1 Enable

0 = Stop

1=Run

[5:4] Clock Division Factor Selection for Timer 1

00=4 01=8
10=16 11=32
[6] Timer 2 Enable

0 = Stop

1=Run

[8:7] Clock Division Factor Selection for Timer 2
00=4 01=8
10=16 11=32

Figure 8-2. Timer Control Register

8-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

TIMER

TIMER COUNT VALUE REGISTER

The timer count value registers, TBCNTn, are used to specify the time-out duration for each timers. Counting
value will be loaded or reloaded into down counter automatically when timer operation is enabled or timer-out
occurs (i.e. the down counter is decreased to "0").

Registers Offset Address R/W Description Reset Value
TBCNTO 0x3004 R/W | Timer O count value register OXXXXX
TBCNT1 0x3008 R/W | Timer 1 count value register OXXXXX
TBCNT2 0x301c R/W | Timer 2 count value register OXXXXX

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Count Value

[15:0] Timer 0/1/2 Count Value

Figure 8-3. Timer Count Value Register

If a programmer changes the contents of TBCNTn while the timer is enabled, the new value will be written in this
register and the counter continues to count with new value.

Example: The timer programming sequence is shown below. The count value and timer clock definition including
the prescaling value and clock division factor, should be specified before the timer-enable bit setting.

Set prescaling value in TSTCON

v

Select clock division factor in TCON

v

Set count value in TBCNTn

v

Set timer enable bit to start the timer operatio

Figure 8-4. Timer Programming Sequence

ELECTRONICS

8-3

KS32C65100 RISC MICROPROCESSOR

DMA

DMA

OVERVIEW

The KS32C65100 has two general direct memory access channels (GDMA, CDMA). These DMA channels
perform the data transfers between the following sources without CPU intervention:

Memory and memory

IP and memory (GDMA)
Parallel port and memory (CDMA)

Serial port and memory

The on-chip DMA controller can be started by software and/or by an external DMA request.

DMA operation can also be stopped and restarted by software. The CPU can recognize when a DMA operation
has been completed by software polling and/or by DMA interrupt request. The KS32C65100 DMA controller can
increase or decrease source or destination address, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word)
data transfers. Detailed information about the DMA block's operation is provided in the descriptions of each DMA

register.

Disabled

nXDREQ
Parallel Port

UART1

Mode Selection

Mode Selection

DMA Channel 1

nDREQ
nDACK
GDMA
(DMA1)
DMA Channel O
NnDREQ nDACK

CDMA
(DMAO)

—)

—)

SmH0n<wm

nwCw

—» nXDACK

Figure 9-1. GDMA/CDMA Unit Block Diagram

ELECTRONICS

9-1

DMA KS32C65100 RISC MICROPROCESSOR

DMA OPERATION

The following sections describe the operation of the DMA.

DMA Transfers

The DMA transfers data directly between a requester and a target. The requester and target are memory, UART,
IP(GDMA), parallel port (CDMA), or external devices (CDMA). An external device requests DMA service by
activating an nXDREQ signal.

A channel is programmed by writing to registers which contain the requester address, target address, the amount
of data, and other control contents.

UART, IP, parallel port, external I/O, or Software (memory) can request DMA service. UART, IP and parallel port
are internally connected to the DMA. In particular, UART1 requests the DMA service to CDMA.

Bus Control Arbitration

Because GDMA, CDMA and DRAM controller (DRAM refresh) can all request bus control, bus control priority
must be arbitrated. The priority of these bus masters is fixed as follows:

1: GDMA
2: DRAM controller (DRAM refresh)
3: CDMA

For very fast response of GDMA request, GDMA has the highest priority. As GDMA has higher priority than the
DRAM controller, GDMA is used very carefully not to disturb the DRAM controller refreshing the DRAM. You may
think that GDMA can't move the large amount of data for DRAM because of DRAM refresh, but GDMA can
transfer the large a amount of data DRAM if user don't use a continuous mode of GDMA. The GDMA which
doesn't use the continuous mode, releases the internal bus request in a short time after one unit of data (1 word,
1 half-word (16-bit) or 1 byte). When the bus is just released, the DRAM controller may have the bus and can
refresh DRAMSs.

If CDMA, which has the lower priority than the DRAM controller, holds bus by continuous mode, the DRAM
refresh controller can not have the bus control until CDMA frees the bus control.

Starting/Ending DMA transfers

DMA starts to transfer data after the DMA receives service request from then XDREQ signal, UART, parallel port,
or Software. When the entire buffer of data has been transferred, the DMA becomes idle. If you want to perform
another buffer transfer, the DMA must be reprogrammed. Although the same buffer transfer will be performed
again, the DMA must be reprogrammed.

9-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR DMA

The Major Difference Between GDMA and CDMA
GDMA and CDMA has differences as shown in table 9-1.

Table 9-1. Difference Between GDMA and CDMA

Functions GDMA CDMA
Single mode O o
Block mode O o
Demand mode O X
Byte swap mode X 0

DATA TRANSFERS MODE

Single Mode

AXDREQ _/ _/ _/

NXDACK

Figure 9-2. External DMA Requests @ Single Mode

The DMA request(nXDREQ or internal request) causes one byte, one half word, or one word to be transmitted.
The single mode requires the DMA request for every data transfer. The nXDREQ signal may be de-asserted after
checking nXDACK to be asserted.

ELECTRONICS 9-3

DMA KS32C65100 RISC MICROPROCESSOR

Block Mode
% N W W W
onons ——(A A O

Figure 9-3. External DAM Requests @ Block Mode

The assertion of only one DMA request(nXDREQ or internal request) causes the entire data, which is set in
control registers, to be transmitted. DMA transfer will be completed when the counter reaches zero. The nXDREQ
signal may be de-asserted after checking nXDACK to be asserted.

Demand Mode

NXDREQ \ /

NXDACK

Figure 9-4. External DMA Requests @ Demand Mode

The amount of data that DMA transfers depends on how long the DMA request input(nXDREQ) is held active. In

the demand mode, the DMA(GDMA only) continues to transfer data while the DMA request input(nXDREQ) is
held active.

9-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR DMA

GENERAL DMA CONTROL REGISTER

Register Offset Address R/W Description Reset Value

DMACON1 0x9000 R/W GDMA control register 0x0000

GDMA Control Register Description

[0] Run enable/disable
The DMA operation starts. When you set this bit to '1' To stop DMA, you must clear this bit to '0". To control only
this bit, use the address 0x9020. By using 0x9020, the other values in the control register will not be affected.

[1] BUSY status
When DMA starts, this read-only status bit is automatically set to '1'. When DMA is in an idle state, this bit is '0".

[3:2] GDMA mode selection
Four sources can initiate a DMA operation: software (memory to memory), the IP block. The mode selection bits
determine which source can initiate a DMA operation at any given time (see Figure 9-5).

[4] Destination adr direction
This bit determines whether the destination address will be decreased or increased during a DMA operation.

[5] Source address direction
This bit determines whether the source address will be decreased or increased during a DMA operation.

[6] Destination address fix
This bit determines whether the destination address will be changed or not during a DMA operation. This feature
is used when transferring data from multiple sources to a single destination.

[7] Source adr fix
This bit determines whether the source address will be changed or not during a DMA operation. This feature is
used when transferring data from a single source to multiple destinations.

[8] Stop interrupt enable

A DMA operation is started/stopped by setting/clearing the run enable/disable bit. If this bit is set to '1' and DMA

is running, a 'stop interrupt' is generated when DMA operation forced to stop on purpose. If this bit is '0', the 'stop
interrupt’ is not generated. The interrupt which is generated when the DMA counter is expired cannot be masked
by this bit.

[9] Reset
If this bit is set to '1', then the DMA control register value will refer to default values. When this bit is cleared to
'0', you can specify other control values.

[10] Peripheral direction
This mode bit specifies the direction of the DMA operation. If this bit is set to '1', DMA operates from memory to
peripheral (IP). If this bit is cleared to '0', DMA operates from peripheral to memory.

[13:12] Transfer width

This determines the transfer data width to be byte (8-bit), halfword (16-bit), or word (32-bit). If transfer length is a
byte, source/destination address will be increased/ decreased by 1. If it is a halfword, then the address will
change by 2. If it is a word, the address will increase/decrease by 4. It's important that the "transfer width" is not
the size of a physical data bus. The size of a physical data bus is determined by SMR configurations.

ELECTRONICS 9-5

DMA KS32C65100 RISC MICROPROCESSOR

[14] Continuous mode
This bit specifies whether the DMA operation will hold the system bus or not until the count value is 0. Therefore,

this bit must be carefully used for the whole operation time not to exceed the appropriate interval (ex: DRAM
Refresh).

[15] Demand mode

If this bit is set during the DMA operation, DMA never goes to the idle state. Altogether, the external device
transfers/receives the amount of data which it wants to transfer/receive. The amount of data depends on how
long the REQ signal is active.

NOTE: All control bits have to be configured independently and carefully
External 1/O related bits have no effect because nXDREQ is not connected to GDMA.

9-6 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR DMA

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

D(C S|T|R|S|S|D|S|D B|R
DMACON1 MNTW slolslilele DDMODESE

[0] Run Enable (RE)
0 = Disable DMA operation 1 = Enalbe DMA operation

[1] Busy Status (Read Only) (BS)
0 =DMA idle 1 = DMA active

[3:2] Mode Selection (MODE)
00 = Software 01 = Reserved
10 = Parallel port 11 = Reserved

[4] Destination Address Direction (DD)
00 = Increase address 1 = Decrease address

[5] Source AddresdDirection (SD)
0 = Increase address 1 = Decrease address

[6] Destination Address Fix (DF)
0 = Increase/decrease destination address
1 = Do not change destination address (fix)

[7] Source Address Fix (SF)
0 = Increase/decrease source address
1 = Do not change source address

[8] Stop Interrupt Enables (SI)
0 = Do not generate stop interrupt when DMA stops
1 = Generate stop interrupt when DMA stops

[9] Reset (RS)
0 = Normal operation 1 = Initialize control register

[10] Transfer Direction for Parallel/UART Only (TD)
0=IPtomemory 1=Momory to IP

[13:12] Transfer Width (TW)
00 = Byte (8-bit) 01 = Halfword (16-bit)
10 = Word (32-bit) 11 = Not used

[14] Continuous Mode (CN)
0 = Normal operation
1 = Hold system bus until the whole DMA operation stops.

[15] Demand Mode (DM)
0 = Normal mode
1 = Demand mode

Figure 9-5. GDMA Control Register

ELECTRONICS 9-7

DMA KS32C65100 RISC MICROPROCESSOR

GDMA SOURCE/DESTINATION ADDRESS REGISTER

These registers contain the 25-bit source/destination address for a DMA channel.
Depending on the setting of the DMA control register (DMACONL1), these addresses will increase, decrease, or

remain the same.

Registers Offset Address R/W Description Reset Value
DMASRC1 0x9004 R/W GDMA source address register OXXXXXXXX
DMADST1 0x9008 R/W GDMA destination address register OXXXXXXXX

313029 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

DMASRC1
DMADST1

Source/Destination Address

[24:0] Source/Destination Address

Figure 9-6. GDMA Source/Destination Address Register

GDMA TRANSFER COUNT REGISTER

This register contains a 24-bit value which is the number of completed DMA transfers.
This value is decreased by 1 when one DMA operation is completed regardless of the width of the data that was

transferred.

Reset Value
OXXXXXXX

Register Offset Address R/W Description

DMACNT1 0x900c R/W

GDMA transfer count register

313029 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

DMACNT1 Number of Transfers

[23:0] Number of Transfers

Figure 9-7. GDMA Transfer Count Register

9-8 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR DMA

CDMA CONTROL REGISTER

CDMA(C-DMA) is 2nd DMA. CDMA can transfer the data by byte swap mode. UART1 can transfer data only
through CDMA.

CDMA (Compress/Decompress DMA) Control Register

Register Offset Address R/W Description Reset Value
DMACONO 0x8800 R/W CDMA control register 0x00000

CDMA Control Register Descriptions (Note: " *" denotes a read only bit)

[0] Run enable/disable
CDMA operation starts When you set this bit to '1'. To stop CDMA, you must clear this bit to '0". To control this bit
only, use the address 0x8810. By using 0xc810, the other values in the control register will not be affected.

[1] BUSY status*
When CDMA starts, this read-only status bit is automatically set to '1'. When it is '0', CDMA is in an idle status.

[3:2] CDMA mode selection

Four sources can initiate a CDMA operation: software, an external CDMA request (nXDREQ) , the parallel port,
and the UART block. The CDMA mode selection bits determine which source can initiate a CDMA operation at
any given time (see Figure 9-8).

[4] Destination adr direction
This bit determines whether the destination address will be decreased or increased during a CDMA operation.

[5] Source adr direction
This bit determines whether the source address will be decreased or increased during a CDMA operation.

[6] Destination adr fix
This bit determines whether the destination address will change or not during a CDMA operation. This feature is
used when transferring data from multiple sources to a single destination.

[7] Source adr fix
This bit determines whether the source address will change or not during a CDMA operation. This feature is used
when transferring data from a single source to multiple destinations.

[8] Stop interrupt enable

A CDMA operation is started/stopped by setting/clearing the run enable/disable bit. This bit is set to '1' when DMA
operation starts. a 'stop interrupt' is generated when CDMA operation stops. If this bit is '0', the 'stop interrupt' is
not generated. the interrupt which is generated when the DMA counter is expired cannot be masked by this bit.

[9] Reset
If this bit is set to '1', the CDMA control register value will be initialized. When this bit is cleared to '0', you can
specify other control values.

[10] Peripheral direction

When the mode bit is set to '10'(parallel port from/to memory) or '11'(UART from/to memory), this direction bit
specifies the direction of the CDMA operation. If this bit is set to '1', then CDMA operates from memory to
peripheral(parallel port/UART). If this bit is cleared to '0', CDMA operates from peripheral to memory.

ELECTRONICS 9-9

DMA KS32C65100 RISC MICROPROCESSOR

[11] Single/Block mode

This bit determines the number of external CDMA requests(nXDREQ) that are required for CDMA operation. At
single mode (this bit is set to '0"), the KS32C65100 requires an external DMA request for every CDMA operation.
At block mode (this bit is set to '1"), the KS32C65100 requires only one DMA request during the entire CDMA
operation. An entire CDMA operation is defined as the operation of CDMA until the counter is '0'.

[13:12] Transfer width

This determines the width of the data being transferred to be a byte, a halfword, or a word. If byte operation is
set, then source/destination address will be increased/decreased by 1. If it is a halfword, then the address is
changed by 2. If it is a word, the address is changed by 4. It's important that the "transfer width" is not the size of
a physical data bus. The size of physical data bus is determined by SMR configurations.

[14] Continuous mode
This bit specifies that CDMA operations hold the system bus until the count value is 0 Therefore, this bit must be
carefully used unless the whole operation time can not over appropriate interval.

[16] Byte swap mode
When the transfer size is a halfword or a word, this bit specifies whether a byte swap operation has occurred or
not.

For example, if this bit is set to '1', 11223344h (read) ® 44332211h (write)

NOTE: All control bits have to be configured independently and carefully.

9-10 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

DMA

313029 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
S C S|T|R|S|S|D|S|D B[R
DMACONO WONTWBDSIFFDDMODESE
[0] Run Enable
0 = Disable CDMA operation 1 = Enalbe CDMA operation
[1] Busy Status
0 =CDMA idle 1 = CDMA active
[3:2] Mode Selection
00 = Software 01 = External NXDREQ
10 = Parallel port 11 = UART1 port
[4] Destination Address Direction
00 = Increase address 1 = Decrease address
[5] Source AddressDirection
0 = Increase address 1 = Decrease address
[6] Destination Address Fix
0 = Increase/decrease address 1 = Do not change address (fix)
[7] Source Address Fix
0 = Increase/decrease address 1 = Do not change address (fix)
[8] Stop Interrupt Enables
0 = Do not generate stop interrupt when CDMA stops
1 = Generate stop interrupt when CDMA stops
[9] Reset (RS)
0 = Normal operation 1 = Initialize control register
[10] Transfer Direction for Paralle/lUART1 Only
0 = Parallel/lUARTL1 to memory
1 = Momory to parallel/lUART1
[11] Single/Block Mode
0 = Single mode 1 = Block mode
[13:12] Transfer Width
00 = Byte (8-bit) 01 = Halfword (16-bit)
10 = Word (32-bit) 11 = Not used
[14] Continuous Mode
0 = Normal operation
1 = Hold system bus until the whole CDMA operation stops.
[16] Demand Mode
0 = Normal operation 1 = Byte swap operation
Figure 9-8. CDMA Control Register
ELECTRONICS 9-11

DMA KS32C65100 RISC MICROPROCESSOR

CDMA Source/Destination Address Register

These registers contain the 25-bit source/destination address for a CDMA channel.
Depending on the setting of the CDMA control register (DMACONQO), these addresses will increase, decrease, or

remain the same.

Registers Offset Address R/W Description Reset Value
DMASRCO 0x8804 R/W CDMA source address register OXXXXXXXX
DMADSTO 0x8808 R/W CDMA destination address register OXXXXXXXX

313029 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

DMASRCO
DMADSTO

Source/Destination Address

[24:0] Source/Destination Address

Figure 9-9. CDMA Source/Destination Address Register

CDMA Transfer Count Register

This register contains a 24-bit value which is the number of CDMA transfers completed for CDMA. This value is
decreased by 1 when one DMA operation is completed regardless of the width of the data that was transferred.

Reset Value
OXXXXXXX

Description
CDMA transfer count register

Offset Address R/W
0x880c R/W

Register
DMACNTO

313029 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Number of Transfers

DMACNTO

[23:0] Number of Transfers

Figure 9-10. CDMA Transfer Count Register

9-12 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

PARALLEL PORT INTERFACE

OVERVIEW

The KS32C65100's parallel port interface controller (PPIC) supports four IEEE 1284 standard communication
modes:

Compatibility mode (Centronics TM)

Nibble mode

Byte mode

Enhanced Capabilities Port (ECP) mode

The PPIC also supports all variants of these communication modes, including device ID requests and Run-
Length Encoded (RLE) data compression.

The PPIC contains specific hardware to support the following operations:

Automatic hardware handshaking between host and peripheral in compatible and ECP modes,

Run-length detection and compression/decompression of host-to-peripheral or peripheral-to-host data during
ECP mode transfers.

These features can substantially improve data rates when operating the parallel port in compatibility or ECP
mode.

In addition, hardware handshaking over the parallel port can be enabled or disabled by software. This gives the
programmer direct control of PPIC signals as well as the eventual use of future protocols. Other operations
defined in IEEE 1284 Standard, such as negotiation, nibble mode and byte mode data transfers, and termination
cycles, must be carried out by software. The IEEE 1284 EPP communications mode is not supported.

NOTE

Here we assume that you are familiar with the parallel port communication protocols specified in IEEE
1284 parallel port standard. If not, we strongly recommend you to read this standard beforehand. It will
help you to understand the contents described in this section.

A detailed technical introduction to IEEE 1284 parallel port standard can be found in the web site:

http://www.fapo.com/ieee1284.htm

ELECTRONICS 10-1

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

KS32C65100 PPIC OPERATING MODES
The KS32C65100 PPIC supports four kinds of handshaking modes for data transfers:

Software handshaking mode for forward and reverse data transfers
Compatibility hardware handshaking mode for forward data transfers

ECP hardware handshaking without RLE support (ECP-without-RLE) mode for forward and reverse data
transfers

ECP hardware handshaking with RLE support (ECP-with-RLE) mode for forward and reverse data transfers

Mode selection is specified in PPIC control register (PPCON). By setting the PPCON[3:2], one of these four
modes can be enabled.

Software Handshaking Mode

This mode is enabled by setting the PPCON's mode-selection bits as "00", i.e. PPCON[3:2] = 00.

In this mode, by using PPIC interrupt event registers (PPINTEN & PPINTPND) and reading/writing PPIC status
register (PPSTAT) to detect and control the logic levels on all parallel port signal pins, software can control all
parallel port operations, including all four kinds of parallel port communications protocols supported by
KS32C65100 (refer to IEEE 1284 standard for operation control). In addition, it also gives software the flexibility
to adapt to new and revised protocols.

Compatibility Hardware Handshaking Mode

Compatibility hardware handshaking mode is enabled by setting the PPCON's mode-selection bits as "01", i.e.
PPCON]J3:2] = 01. In this mode, hardware generates all handshaking signals needed to implement compatibility
mode parallel port communication protocol.

When this mode is enabled, the PPIC automatically generates a BUSY signal on receiving the leading edge of
NSTROBE from the host, and latches the logic levels on PPD7-PPDO pins into PPDATA register. The PPIC then
waits for nSTROBE to negate and the PPDATA's data field to be read. After the PPDATA is read, the PPIC
asserts nACK for the duration specified in the Ack Width Register (PPACKWTH) and then negates the nACK and
BUSY signal to conclude the data transfer, as shown in Figure 10-1.

NOTE

Since the initial value of the BUSY-control bit in the PPSTAT register, PPSTATI[3], is "1" after system
reset, the BUSY output has a high logic level and handshaking is disabled. To enable hardware
handshaking in this mode, the BUSY-control bit PPSTAT[3] must be cleared by software beforehand.

PPD[7:0] >< Data ><

nSTROBE

BUSY / _
NACK \—/7

Figure 10-1. Compatibility Hardware Handshaking Timing

10-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

ECP-Without-RLE Mode

ECP-without-RLE hardware handshaking mode is enabled by setting the PPCON's mode-selection bits as "10",
i.e. PPCON[3:2] = 10. In this mode, hardware generates handshaking signals needed to implement the ECP
mode parallel port communication protocol.

When receiving data from host, PPIC automatically responds to the high-to-low transition on nSTROBE by
latching the logic levels on PPD7-PPDO0 and nAUTOFD in the PPDATA register, in which the nAUTOFD logic
level indicates the current data in PPD[7:0] is a data byte or a command byte and is latched to PPDATA[8].
When the PPDATA is read, the PPIC drives BUSY high, waits for nSTROBE to go high, and then drives BUSY
low to conclude one forward data transfer operation, as shown in Figure 10-2.

Reception of a command byte, indicated by PPDATA[8] = 0, causes the command received bit in PPIC interrupt
pending register, PPINTPNDI9], to be set to "1". By examining the PPDATA[7], software will interpret the
command byte as a channel address if it is "1" and carry out corresponding operation, or interpret the command
byte as a run-length count if it is "0" and then perform data decompression.

PPDI[7:0] >< Byte O >< >< Byte 1 ><
NAUTOFD % Data byte \< >\ Command byte A

NnSTROBE —\—/ \ /

Figure 10-2. ECP Hardware Handshaking Timing (Forward)

During reverse data transfers, software is responsible for data compression and writing data or command bytes in
PPDATA to define the logic levels on PPD7-PPDO and BUSY pins, in which the PPDATA[8] indicates whether
the current data in PPDATA[7:0] is a data byte or a command byte and outputs to the BUSY pin. Responding to
writing PPDATA, PPIC automatically drives the nACK low, waits for the nAUTOFD to go to high, and then drives
NACK high to conclude one reverse data transfer operation, as shown in Figure 10-3.

ELECTRONICS 10-3

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

ECP-with-RLE mode

ECP-with-RLE hardware handshaking mode is enabled by setting the PPCON's mode-selection bits as "11", i.e.
PPCON[3:2] = 11. In this mode, PPIC performs the same ECP mode handshaking as in ECP-without-RLE mode,
except that run-length compression/decompression is also carried out by hardware.

During forward data transfers, PPIC automatically detects and intercepts run-length counts, and carries out data
decompression. Only the channel addresses will cause the command received bit in the PPINTPND register,
PPINTPND[9], to be set, and software responds by only performing operations associated with it.

Similarly, PPIC automatically carries out the data compression in PPDATA during reverse data transfers.

PPDI[7:0] >< Byte O >< >< Byte 1 ><
BUSY % Data byte \< >\ Command byte A

nACK —\—/ \ /
NAUTOFD —/—\ /—\

Figure 10-3. ECP Hardware Handshaking Timing (Reverse)

Digital Filtering

KS32C65100 provides the digital filtering function on host control signal inputs, nSELECTIN, nSTROBE,
NAUTOFD and nINIT, to improve noise immunity and make the PPIC more impervious to inductive switching
noise. The digital filtering function can be enabled regardless of whether hardware handshaking or software
handshaking is enabled.

If this function is enabled, the host control signal can be detected only when its input level keeps stable during
two sampling periods.

Digital filtering can be disabled to avoid signal missing in some specialized applications with the high bandwidth
requirement. Otherwise, it is recommended that digital filtering be enabled.

10-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PARALLEL PORT INTERFACE

PPIC SPECIAL REGISTERS

PARALLEL PORT DATA REGISTER

The parallel port data register, PPDATA, contains an 8-bit data field, PPDATA[7:0], that defines the logic level on
the parallel port data pins, PPD[7:0]. It also contains a status bit, PPDATAJ[8], which is used to indicate when a
command byte (RLE count or channel address) is received during forward data transfers in ECP mode.

Register

Offset Address R/W Description

Reset value

PPDATA

0x8000 R/W Parallel port data register

0x100

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X

Data Field

[7:0] Data for Parallel Port Data Bus, PPD[7:0]

This is an 8-bit read/write field.

When read, this field provides the latched logic leveis on the
parallel port data bus PPD[7:0] when the strobe input from
the host (hRSTROBE) transitions from high to low with the
PPCON]6] clear. (The PPCON][6] bit determines the forward
or reverse dataflow direction of the parallel port.)

When written, the value in this field determines the logic
level on the parallel port bus lines PPD[7:0] when the
PPCON[6] is set.

[8] ECP Mode Command Byte Indicator

During ECP forward data transfers, reading this bit gives the
logic level of NAUTOFD, which indicates the data in
PPDATA[7:0] is a data byte or a command byte, when the
following two conditions are met:

1) nSTROBE has transitioned from high level to low level;
2) the data bus output enable bit in the parallel port control
register, PPCONJ6], is '0'".

During ECP reverse data transfers, writing this bit defines
the logic level of the BUSY pin, which indicates whether the
data written to PPDATA[7:0] is a data byte or a command
byte when the data bus output enable bit in the parallel port
control register, PPCONJ6], is '1'.

0 = Command byte in PPDATA[7:0]
1 = Data byte in PPDATA][7:0]

Figure 10-4. Parallel Port Data Register

ELECTRONICS

10-5

PARALLEL PORT INTERFACE

KS32C65100 RISC MICROPROCESSOR

PARALLEL PORT STATUS REGISTER

The parallel port status register, PPSTAT, contains eleven bits to control the parallel port interface signals. These
eleven bits consist of four read-only bits that are used to read the logic level of the host input pins, two read-only
bits to read the logic level on the BUSY and nACK output pins, and five read/write bits control the logic levels on
the printer output pins, which can be used by software for handshaking control.

Register

Offset Address

R/W

Description Reset value

PPSTAT

0x8004

R/W

Parallel port status register 0x7e8

[0] NFAULT control

[1] SELECT control

[2] PERROR control

[3] BUSY control

4] nACK control

[5] BUSY status

[6] nACK status

[7] NSLCTIN status

Setting this bit drives the nFAULT output to low level;
clearing it drives the signal High on the external nFAULT
pin. NFAULT is used to indicate to the host that there is a
fault condition in the printer engine.

Setting this bit drives SELECT output to High level,
clearing it drives the signal low on the external SELECT
pin. SELECT indicates to the host that there has been a
response from the printer engine.

Setting this bit drives PERROR output to high level;
clearing it drives the signal low on the external PERROR
pin. PERROR indicates to the host that a paper error has
occurred in the engine.

Setting this bit drives the external BUSY output to high
level. This is generally done to disable hardware
handshaking. The PPSTAT][3] bit value is logically ORed
with the internal busy signal that is provided by the

PPIC to control hardware handshaking operations.

Setting this bit to "1" forces the external nACK output to be
driven low.

This is generally done when hardware handshaking is
disabled. The inverted logic of the PPSTATI[4] bit value is
logically ANDed with the internal ACK signal that is
provided by the PPIC to control hardware handshaking.

This read-only bit reflects the logic level on the external
BUSY output pin.

After a system reset, PPSTAT[3] is "1", which results in
PPSTAT[5] being "1". So, for compatibility mode operation,
you must clear the PPSTAT[3] by software beforehand so
as to enable the hardware handshaking.

This read-only bit reflects the inverted logic level on the
external nACK output pin. After a system reset, PPSTAT[6]
is lllll.

This read-only bit reflects the level read on the nSLCTIN
input pin after synchronization (and optional digital filtering
when the digital filtering enable bit, PPCON[1], is set).

10-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

[8] NSTROBE status This read-only bit reflects the level read on the nSTROBE
input pin after synchronization (and optional digital filtering
when the digital filtering enable bit, PPCON[1], is set).

[9] NAUTOFD status This read-only bit reflects the level read on the nAUTOFD
input pin after synchronization (and optional digital filtering
when the digital filtering enable bit, PPCONTJ1], is set).

[10] nINIT status This read-only bit reflects the level read on the nINIT input
pin after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is set).

ELECTRONICS 10-7

PARALLEL PORT INTERFACE

KS32C65100 RISC MICROPROCESSOR

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XX XXX | X] X X[X]X[|X

[0] External nFAULT Output Control Bit
0 = nFAULT output low; printer fault
1 = nFAULT output high; no printer fault

[1] SELECT Output Control Bit
0 = SELECT output low; no response from printer
1 = SELECT output high; response received from printer

[2] PERROR Output Control Bit
0 = PERROR output low; no paper error
1 = PERROR output high; paper error

[3] BUSY Output Control Bit
0 = BUSY output low; not busy
1 = BUSY output high; busy

[4] nACK Output Control Bit
0 = nACK output low; do not acknowledge handshake
1 = nACK output high; acknowledge handshake

[5] BUSY Output Level
This read only bit reflects the logic level on the external
BUSY output. After a system reset, this bit is "1’

[6] NACK Output Level
This read only bit reflects the logic level on the external
nNACK output. After a system reset, this bit is '1".

[7] nSLCTIN Input Level

This read only bit reflects the logic level on the nSLCTIN
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is '1")

[8] NSTROBE Input Level

This read only bit reflects the logic level on the nSTROBE
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is '1")

[9] nAUTOFD Input Level

This read only bit reflects the logic level on the NAUTOFD
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is '1")

[10] nINIT Input Level

This read only bit reflects the logic level on the nINIT input
after synchronization (and optional digital filtering when the
digital filtering enable bit, PPCON[1], is '1")

Figure 10-5. Parallel Port Status Register

10-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

PARALLEL PORT ACK WIDTH REGISTER

This register contains the 9-bit NACK pulse width field. This value defines the nACK pulse width whenever the
parallel port interface controller enters compatibility mode (that is when the parallel port control register mode
bits, PPCON][3:2] are "01"). The nACK pulse width can be selected from 0 to 511 MCLK periods.

The nACK pulse width can be modified at any time and with any PPIC operation mode selected, but it can only
be used during a compatibility handshaking cycle. If you change the nACK width near the end of a data transfer
(when nACK is already low), the new pulse width value does not affect the current cycle. The new pulse width
value would be used at the start of the next cycle.

Register Offset Address R/W Description Reset value
PPACKWTH 0x8008 R/W Parallel port acknowledge width register OXXXX

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

nACK Pulse Width

[8:0] NACK Pulse Width

The value in this 9-bit field defines the NACK pulse width
when compatibility mode is enabled (PPCON[3:2] ='01"). The
period of the nACK pulse can range from 0 to 511 MCLKSs.

If you write a new value to the nACK width field near the end
of a data transfer operation, the new pulse width value does
not take effect until the next cycle takes place.

Figure 10-6. Parallel Port ACK Width Register

ELECTRONICS 10-9

PARALLEL PORT INTERFACE

KS32C65100 RISC MICROPROCESSOR

PARALLEL PORT CONTROL REGISTER

The parallel port control register, PPCON, is used to configure the PPI operations, such as handshaking, digital
filtering, operating mode, data bus output, abort operations, and DMA. PPCON[15:13] are read-only.

Register

Offset Address

R/W

Description Reset value

PPCON

0x800c

R/W

Parallel port control register 0x0000

[0] Software reset

[1] Digital filter enable

[3:2] Mode selection

4] ECP direction

Setting the software reset bit causes the PPIC's
handshaking control and compression/decompression logic
to immediately terminate the current operation and return
to software Idle state. When PPCON[0] is set to "1", the
run-length decompression status bit, PPCON[13], and the
full status bit,PPCON[14], are automatically cleared to "0".

Setting this bit enables digital filtering on all four host
control signal inputs:
NSELECTIN, nSTROBE, nAUTOFD, and nINIT.

This two-bit value selects the current operating mode of the
parallel port interface (see Figure 14-4). Software mode:
disables all hardware handshaking so that handshaking
can be performed by software.

Compatibility mode: Compatibility mode hardware
handshaking can be enabled during a forward data transfer.
You can change the mode selection at any time, but if a
compatibility mode operation is currently in-progress, it will
be completed as normal.

Mode should be changed from compatibility mode only
when BUSY is high level. This ensures that there is no
parallel port activity during the time when the parallel port
is being re-configured. ECP-without-RLE mode: ECP
mode hardware handshaking without RLE support can be
enabled during forward or reverse data transfers.

You can change the mode selection at any time, but if an
ECP cycle is currently in progress,

it will be completed as normal.

ECP-with-RLE mode: ECP mode hardware handshaking
with RLE support can be enabled during forward or reverse
data transfers.

Change on the mode selection doesn't affect current data
transfer operation, including compression/ decompression,
until it completes.

To immediately abort an operation, you can set the
software-reset bit, PPCON][0], to "1".

This bit determines the direction of ECP is forward or
reverse. If this bit is set to '1', then the ECP is operated in
reverse direction.

10-10

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PARALLEL PORT INTERFACE

[5] Error cycle

[6] Data bus output enable
[7] Abort

[8] DMA selection

The error cycle bit is used to execute an error cycle when
in compatibility mode. When PPCON][5] is set to "1", the
BUSY status bit in the parallel port interface register,
PPSTAT[5], is set to "1". This immediately causes the
KS32C65100 to drive the BUSY level high.

If you set the error cycle bit when a compatibility mode
handshaking sequence is in progress, PPSTAT[5] will
remain set to "1" beyond the end of the current cycle.

The error cycle bit does not affect the nACK pulse if it is
already active, but it will prevent an nACK pulse if it is
about to be generated.

When PPCONI5] is "1", software can set or clear the
parallel port status register control bits: PPSTAT[O0]
(nFAULT control), PPSTATI[1] (SELECT control), and
PPSTAT[2] (PERROR control). When PPCONJ[5] is cleared
to "0", the parallel port interface controller generates an
NACK pulse and negates BUSY to conclude the error cycle.

The parallel port data bus output enable bit performs two
functions: 1) It controls the state of the tri-state output
drivers, and 2) It qualifies the latching of data from the
output drivers into the parallel port interface register 0*s
data field, PPDATA[7:0].

When PPCON][6] is "0", parallel port data bus output are
disabled. This allows data to be latched into the PPDATA
data field. When PPCON][6] is "1", PPD output are enabled
and data is prevented from being latched into the PPDATA
data field. In this frozen state, the data field is unaffected
by transitions of NSTROBE.

The setting of the abort bit, PPCON[7],affects the operation
of the data bus output enable bit, PPCON[6]. If PPCON[7]
is "1", nSELECTIN must remain high to allow PPCON][6] to
be set or to remain set. If PPCON[6] is "1" and nSELECTIN
goes low, PPCONJ6] is cleared and setting this bit will
have no effect. The external PPD[7:0] outputs reflect the
current state of PPCON[6].

The abort bit causes the parallel port interface controller to
use NSELECTIN to detect when the host suddenly aborts a
reverse transfer and returns to compatibility mode. If
PPCON[7] is "1", a low level on nSELECTIN causes the
parallel port data bus output enable bit, PPCONJ6], to be
cleared and the output drivers for the data bus lines
PPD[7:0] to be tri-stated.

The PPIC can issue a DMA request during a forward data
transfer in compatibility mode, ECP-without-RLE mode, or
in ECP-with-RLE mode, if the DMA request enable bit,
PPCON][7], is set. The DMA selection bit determines which
DMA channel is used for forward data transfer. When
PPCON[8] is "0", DMA channel 0 is used; when it is "1",
DMA channel 1 is used.

ELECTRONICS

10-11

PARALLEL PORT INTERFACE

KS32C65100 RISC MICROPROCESSOR

[9]

[10]

[12]

[13]

[14]

[15]

DMA request enable

Flush request

Zero insert

RLE status

Data latch status

Write status

When this bit is set to "1", the PPIC issues a DMA request
to DMA channel 0 or 1 during a forward data transfer.
otherwise, an interrupt is requested for the data transfer.

When this bit is set to "1", the PPIC issues a DMA request
to send the remaining data to parallel port. The remaining
data means run-length code and data in the PPIC's buffer
while reverse ECP mode is operating.

When the run-length count is '0', this bit specifies whether
to send the RLE count to PPIC during ECP-with-RLE
reverse data transfers.

If this bit is set to '1', then the count "0" will be sent, but

if otherwise, it is not sent.

This bit indicates the run-length decompression is taking
place during forward data transfers in ECP-with-RLE mode.
It is set when a run-length count is received and loaded into
the internal counter, and cleared when the last read of the
PPD's data field takes place.

If a data is latched to PPDATA, then this bit is setto '1'. It is
automatically cleared while PPDATA is read.

When reverse ECP mode, this bit specifies the PPDATA is
empty.

It is automatically cleared while PPDATA is written with a
new data.

10-12

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PARALLEL PORT INTERFACE

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X[X X]| X XX X[X] X

X

X

Mode

X

X

[0] Software Reset Control
0 = No effect
1 = Terminate current PPIC operation and enter idle status

[1] Digital Filter Enable
0 = Disable 1 = Enable

[3:2] Operating Mode
00 = Software mode 01 = Compeatibility mode
10 = ECP mode without RLE 11 = ECP mode with RLE

[4] ECP Direction
0 = Forward 1 = Reverse

[5] Error Cycle Control (Compatibility Mode Only)
0 = Generate nACK and negate BUSY; end error cycle
1 = Execute an error cycle (drive BUSY high level)

[6] PPD[7:0] Output Enable
0 = Disable PPD[7:0] output 1 = Enable PPD[7:0] output
[7] Abort Bit

0 = Normal operation

1 = Disable data bus output and tri-state PPD[7:0] drivers

[8] DMA Selection
0=DMA 1 = CDMA (codec DMA)

[9] INT/DMA Request Mode
0 = Generate interrupt request for data transfer
1 = Send DMA request to DMA/CDMA for data transfer

[10] Flush Data
0 = No operation
1 = Remaining data to be transmitted to PPIC

[12] Zero Insert (Reverse ECP with RLE)
0 = When run-length is 0, only data to be transmitted
1 = When run-length is 0, nCMD and data are transmitted

[13] Decompress Status
0 = Finished 1 = Decompression is operating

[14] Data Latch Status
0 = No data
1 = Data is latched, if this bit is read, automatically cleared

[15] Data Empty (Reverse ECP Mode)

0 = Data is processed

1 = PPDATA buffer is empty, it is automatically cleared when write
operation occurs.

Figurel0-7. Parallel Port Control Register

ELECTRONICS

10-13

PARALLEL PORT INTERFACE

KS32C65100 RISC MICROPROCESSOR

PARALLEL PORT INTERRUPT EVENT REGISTERS (PPINTEN, PPINTPND)

The two parallel port interrupt event registers, PPINTEN and PPINTPND, control interrupt-related events
for the input signal originating from the host, as well as data reception, command reception, and invalid
events. Enable register, PPINTEN, contains the interrupt enable bits for each interrupt event that is
indicated by the PPINTPND status bits. If its PPINTEN enable bit is "1", the corresponding event causes
the KS32C65100 CPU to generate an interrupt request. Otherwise, no interrupt request is issued.

Registers

Offset Address

R/W

Description Reset value

PPINTEN

0x8010

R/W

Parallel port enable interrupt event register 0x000

PPINTPND

0x8014

R/W

Parallel port interrupt pending register 0x000

[0] NSLCTIN Low-to-High

[1] nSLCTIN High-to-Low

[2] NSTROBE Low-to-High

[3] NSTROBE High-to-Low

4] NAUTOFD Low-to-High

[5] NAUTOFD High-to-Low

[6] nINIT Low-to-High

[7] nINIT High-to-Low

The bit of PPINTPND is set when a Low-to-High transition
on nSLCTIN is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

The bit of PPINTPND is set when a High-to-Low transition
on nSLCTIN is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

The bit of PPINTPND is set when a Low-to-High transition
on NnSTROBE is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

The bit of PPINTPND is set when a High-to-Low transition
on NSTROBE is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

The bit of PPINTPND is set when a Low-to-High transition
on NAUTOFD is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

The bit of PPINTPND is set when a High-to-Low transition
on NAUTOFD is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

The bit of PPINTPND is set when a Low-to-High transition
on nINIT is detected. If the corresponding enable bit is set
in the PPINTEN register, an interrupt request is generated.

The bit of PPINTPND is set when a High-to-Low transition
on nINIT is detected. If the corresponding enable bit is set
in the PPINTEN register, an interrupt request is generated.

10-14

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PARALLEL PORT INTERFACE

[8] Data received

[9] Command received
[10] Invalid transition
[11] Transmit data empty

The bit of PPINTPND is set when data is latched into the
PPDATA register’s data field. This occurs on every High-to-
Low transition of NSTROBE when the parallel port data bus
enable bit, PPCON[6]. is "0". An interrupt is also generated
if ECP-with-RLE mode is enabled, and if a data
decompression is in progress.

The bit of PPINTPND is set when a command byte is
latched into the PPDATA register data field.

If ECP-without-RLE mode is enabled, a command received
interrupt is issued whenever a run-length or channel
address is received.

If ECP-with-RLE mode is enabled, a command

received interrupt is issued only when a channel address is
received. This event can be posted only when ECP mode
is enabled. The corresponding enable bit in the PPINTEN
register determines whether an interrupt request will be
generated when a command byte is received.

The bit of PPINTPND is set when nSLCTIN transitions from
High-to-Low in the middle of an ECP forward data transfer

handshaking sequence. This interrupt is issued if NSLCTIN

is Low when nSTROBE is Low or when BUSY is High. This
event can only be detected when ECP mode is enabled.

The PPINTPND bit is set when the transmit data register (=
PPDATA) can be written in the middle of an ECP reverse
data transfer handshake sequence.

ELECTRONICS

10-15

PARALLEL PORT INTERFACE

KS32C65100 RISC MICROPROCESSOR

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X| X| X[X] X

X

X

X

X

X

X

[0] NSELECTIN Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[1] nSELECTIN High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[2] nSTROBE Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[3] NSTROBE High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[4] nAUTOFD Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[5] NAUTOFD High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[6] NnINITIAL Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[7] nINITIAL High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[8] Data Received (Latched to PPDATA Data Field)
0 = Disable interrupt 1 = Enable interrupt

[9] Command Byte Received (In PPDATA Data Field)
0 = Disable interrupt 1 = Enable interrupt

[10] Invalid nSELECTIN Transition During ECP
0 = Disable interrupt 1 = Enable interrupt

[11] Transmit Data (PPDATA) Empty
0 = Disable interrupt 1 = Enable interrupt

Figure 10-8. Parallel Port Event Interrupt Enable Register (PPINTEN)

10-16

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX XXX | X X|X]|X]|X[|X

[0] NSELECTIN Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[1] nSELECTIN High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[2] nSTROBE Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[3] NSTROBE High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[4] nAUTOFD Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[5] NAUTOFD High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[6] NnINITIAL Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[7] nINITIAL High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[8] Data Received (Latched to PPDATA Data Field)
0 = Normal operation
1 = Data received; issue interrupt if enabled in PPINTEN

[9] Command Byte Received (In PPDATA Data Field)
0 = Normal operation

1 = Command byte received; issue interrupt if enabled in
PPINTEN

[10] Invalid nSELECTIN Transition During ECP
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[11] Transmit Data (PPDATA) Empty
0 = Normal operation
1 =PPDATA empty; issue interrupt if enabled in PPINTEN

Figure 10-9. Parallel Port Event Interrupt Pending Register (PPINTPND)

ELECTRONICS 10-17

KS32C65100 RISC MICROPROCESSOR UART

11 .-

OVERVIEW

The KS32C65100 UART (Universal Asynchronous Receiver and Transmitter) unit provides two independent
asynchronous serial 1/0 (SIO) ports, each of which can operate in interrupt-based or DMA-based mode. For
example, SIO can generate an interrupt or a DMA request for data transfers between CPU and SIO.

Main features of the KS32C65100 UART include programmable baudrates, infra-red (IR) transmit/receive, one or
two stop bit insertion, 5-bit, 6-bit, 7-bit or 8-bit data transfers, and parity checking.

Each SIO contains a baud-rate generator, transmitter, receiver and a control unit, as shown in Figurel1-1.The
baud-rate generator can be clocked by the internal system clock (MCLK). The transmitter and receiver contain
data buffer registers and data shifters. Data to be transmitted is written to the transmit buffer register and then
copied to the transmit shifter and shifted out by the transmit data pin (TXDn). Data received is shifted in by the
receive data pin (RXDn), and then copied from shifter to receive buffer register once one data byte has been
received. The control unit will provide controls for mode selection, and status/interrupt generation..

Transmitter

System » Transmit Buffer Register |
Bus

S Transmit Shifter F———> TXDn
4

Baud-rate clock

Control Baud-rate Clock Source
«—p L L __ —
Unit > Generator (MCLK)

|

[}

! Baud-rate clock

[}

|

: A

- Receive Shifter 3 RXDn
< | Receive Buffer Register |

Receiver

Figure 11-1. UART Block Diagram

ELECTRONICS 11-1

UART KS32C65100 RISC MICROPROCESSOR

UART OPERATION

The following sections describe the UART operations that include infra-red mode, loop-back mode, interrupt
generation, baud-rate generation, data transmission, data reception and so on.

Infra-Red Mode

The KS32C65100 UART block supports infra-red (IR) transmit and receive which can be selected by setting the
infra-red-mode bit in the line control register (ULCONN).
The implementation on the mode is shown in Figure 11-2.

In IR mode, the transmit period is pulsed at a rate of 3/16 the of the normal serial transmit rate (when the transmit
data value in the TBR register is zero); and in IR receive mode, the receiver must detect the 3/16 pulsed period
to recognize a zero value in the receive buffer register, RBR, as the IR receive data. (refer to the frame timing
diagrams shown in Figure 11-15 and 11-16)

TxD [0
» TxD
T
uart RS 1
Block O« RxD
RxD
-
RE L | IRTx || IR Rx
Encoder Decoder

Figure 11-2. UART Block Diagram

Loop-back Mode

The KS32C65100 UART provides a test mode, referred to as the loop-back mode, to aid in isolating faults in the
communications link. In this mode, data that is transmitted is immediately received. This feature allows the
processor to verify the internal transmit and receive data paths of each SIO channel.

This mode can be selected by setting the loop-back-bit in UART control register (UCONN).

Interrupt/DMA Request Generation

Each SIO of KS32C65100 UART has seven status signals: overrun error, parity error, frame error, break, receive
buffer full, transmit buffer register empty and transmitter empty, all of which are indicated by the corresponding
UART status register (USTATN).

The overrun error, parity error, frame error and break condition are referred as the receive status, each of which
can cause the receive status interrupt request, (i.e. the error interrupt to be mentioned in Section 19, if the
receive-status-interrupt-enable bit is set in control register UCONN). When a receive status interrupt request is
detected, you can determine which signal caused the request by reading the status register (USTATN).

When the receiver transfers data from its shifter to its buffer, it activates the receive buffer full status signal
which will cause the receive interrupt, If the receive mode in control register is selected as interrupt mode; and
when the transmitter transfers data from its transmit buffer register to its shifter, it activates

11-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR UART

the transmit buffer register empty status signal which will cause the transmit interrupt if the transmit mode in
control register is selected as interrupt mode.

The receive buffer full and transmit buffer register empty status signals can also be connected to generate the
DMA request signals if the receive/transmit mode in control register is selected as DMA mode. As mentioned
before, two DMA channels, GDMA and CDMA, are provided in KS32C65100. However, each SIO can only be
connected with a fixed DMA channel. In other words, the UARTO can only generate the GDMA request, the
UART1 can only generate the CDMA request, and UART2 can not generate any DMA request.

Baud-Rate Generation

Each UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the
baud-rate generator is KS32C65100's internal system clock (MCLK). The baud-rate clock is generated by dividing
the source clock by 16 and a 16-bit divisor specified by UART baud rate divisor register (UBRDIVn). UBRDIVn
can be determined as follows:

UBRDIVn = (int)(source_clock / (bps x 16)) - 1

where the divisor should be a value from 1 to (2"16-1).

For example, if the baud rate is 56000bps and MCLK is 33Mhz (use internal system clock), UBRDIVn is
calculated as follows:

UBRDIVRn = (int)(33000000 / (56000 * 16)) - 1
= (int)(36.83) - 1
=36-1=35

Data Transmission

The data frame for transmissions is programmable. It consists of a start bit, 5 to 8 data bits, an optional parity bit
and 1 to 2 stop bits, which can be specified in the line control register (ULCONnN). The transmitter can also
produce break conditions. The break condition forces the serial output to logic O state for a duration longer than
one frame transmission time. On the receiving end, a break condition sets an error flag as mentioned above.

The data transmission process is shown in Figure 11-3, in which the transmitter transfers data through such a
path: data source ® transmit buffer register ® transmit shift register ® TXDn pin, and completes parallel-to-
serial data conversions. Two flags (status signals), transmit buffer register empty and transmitter empty, are used
to indicate the status of the transmit buffer register and transmitter which includes both the buffer register and
transmit shifter.

Data Reception

Like the transmissions, the data frame for receptions is also programmable. It consists of a start bit, 5 to 8 data
bits, an optional parity bit and 1 to 2 stop bits, as the settings in the line control register (ULCONR). The receiver
can detect overrun error, parity error, frame error and break condition, each of which can set an error flag. The
overrun error indicates that new data has overwritten old data before the old data has been read. The parity error
indicates the receiver has detected a parity condition other than what it was programmed for. The frame error
indicates that the received data did not have a valid stop bit. The break condition indicates that the received data
input is held in the logic 0 state for a duration longer than one frame transmission time.

The data reception process is shown in Figure 11-4, in which the receiver transfers data through such a path:
RXDn pin ® receive shift register ® receive buffer register ® destination, and completes serial-to-parallel data
conversions. In addition to receive error status flags, a receive buffer full flag is used to indicate the status of the
receive buffer register.

ELECTRONICS 11-3

UART KS32C65100 RISC MICROPROCESSOR

C START)

A

UBRDIV, ULCON, UCON
is configured

<
4

ransmit buffer register N
empty?

Y

Transfer the data to transmit
shifter

A4

Set the transmit buffer register
empty flag

A

After shift out last stop bit, set
the transmitter empty flag

Figure 11-3. UART Data Transmission Process

11-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR UART

C START)

A

UBRDIV, ULCON, UCON
is configured

A

Receive data into receive shifter
from RXDn pin

<
4

Parity, overrun, frame
error or break detected?

h 4

Transfer the data to receive
buffer

A

Set receive buffer full flag.

Figure 11-4. UART Data Reception Process

ELECTRONICS 11-5

UAR

T

KS32C65100 RISC MICROPROCESSOR

UART SPECIAL REGISTERS

UART Line Control Register
There are three identical UART line control registers (ULCONQO, 1, 2) in the UART block, one for each UART

channel.
Registers Offset Address R/W Description Reset Value
ULCONO 0xb000 R/W UART ch-0 line control register 0x00
ULCON1 0xb800 R/W UART ch-1 line control register 0x00
ULCON2 0xc000 R/W UART ch-2 line control register 0x00
[1:0] Word length(WL) The two-bit word length value indicates the number of
data bits to be transmitted or received per frame.
00 = 5hits
01 = 6hits
10 = 7bits
11 = 8bits
[2] No. of stop bit ULCON]J2] specifies how many stop bits are used to signal
end-of-frame (EOF).
0 = One stop bit per frame
1 = Two stop bit per frame
[5:3] Parity mode(PM) The 3-bit parity mode value specifies how parity generation

[6]
[7]

Reserved

Infra-red mode

and checking are to be performed during UART transmit
and receive operations.

0xx = No parity

100 = Odd parity

101 = Even parity

110 = Parity forced/checked as "1".

111 = Parity forced/checked as "0".

This bit must be '0'.
This bit determines whether to use the infra-red mode

0 = Normal mode operation
1 = Infra-red Tx/Rx mode

NOTE: ULCONRN has to be configured before UCONN is configured.

11-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

UART

ULCONO, 1, 2

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 O

IR

0

PARITY [ST| WL

[1:0] Word Length Per Frame

00 =5 bits 01 = 6 bits
10 = 7 bits 11 = 8 bits

[2] Number of Stop Bit at the end of Frame
0 = One stop bit per frame
1 = Two stop bit per frame

[5:3] Parity Mode

Oxx = No parity

100 = Odd parity

101 = Even parity

110 = Parity forced/checked as "1"
111 = Parity forced as "0"

[6] Reserved
This bit must "0"

[7] Infra-red Mode Selection
0 = Normal mode operation
1 = Infra-red Tx/Rx mode

Figure 11-5. UART Line Control Register (ULCONQO, 1, 2)

UART Control Register

There are two identical UART control registers (UCONO,1,2) in the UART block, each for a UART channel.
UCONRN has to be configured after ULCONN is configured.

Registers Offset Address R/W Description Reset Value
UCONO 0xb004 R/W UART ch-0 control register 0x00
UCON1 0xb804 R/W UART ch-1 control register 0x00
UCON2 0xc004 R/W UART ch-2 control register 0x00

[1:0] Receive mode (RxM) This two-bit value determines which function is currently

able to read data from the UART receive buffer register,
RBR. The difference between UCONO and UCONL1 should
be noted. UARTO can only generate GDMA requests,
UART1 can only generate CDMA requests, and UART2
cannot generate any DMA requests.

ELECTRONICS

11-7

UART

KS32C65100 RISC MICROPROCESSOR

[2]

[4:3]

[6]

[7]

Rx status interrupt enable

Transmit mode (TxM)

Send break

Loop-back bit

This bit enables the UART to generate an interrupt if an
exception (break, frame error, parity error, or overrun error)
occurs during a receive operation.

0 = Do not generate receive status interrupt

1 = Generate receive status interrupt

This two-bit value determines which function is currently
able to write Tx data to the UART transmit buffer registers,
TBR. The difference between UCONO and UCONL1 should
be noted. UARTO can only generate GDMA requests,
UART1 can only generate CDMA requests, and UART2
cannot generate any DMA requests.

Setting UCON][6] causes the UART to send a break. Break
is defined as a continuous Low level signal on the transmit
data output with a duration of more than one frame
transmission time. By setting this bit when the transmitter is
empty(transmitter empty bit, USTAT[7] = "1"), you can use
the transmitter to time the frame. When USTAT[7] is "1",
write the transmit buffer register, TBR, with the data to be
transmitted, then poll the USTAT[7] value. When it returns
to "1", clear (reset) the send break bit, UCONI6].

0 = Do not send break

1 = Send break

Setting this bit causes the UART to enter loop-back mode.
In loop-back mode, the transmit data output is sent to high
level and the transmit buffer register (TBR) is internally
connected to the receive buffer register (RBR). This mode
is provided for test purposes only.

0 = Normal SIO operation mode

1 = Enable SIO loop-back mode (for testing only)

11-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

UART

UCONQO, 1, 2

31302928 27 26 2524 2322212019181716 1514131211109 8 7 6 5 4 3 2 1 O

S
B

0

T |R| R
M |S| M

[1:0] SIO Receive Mode Selection (RxM)
00 = Disable
10 = Interrupt Request
10 = GDMA rquest (for UCONO)
CDMA request (for UCON1)
Not used (for UCONZ2)
11 = Not used

[2] Receive Status Interrupt Enable
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

[4:3] UART Transmit Mode Selection (TxM)
00 = Disable
10 = Interrupt Request
10 = GDMA rquest (for UCONO)
CDMA request (for UCON1)
Not used (for UCONZ2)
11 = Not used

[6] Send Break
0 = Do not send break
1 = Send break

[7] Loopback Enable
0 = Normal operationg mode
1 = Enable loopback mode (for testing only)

Figure 11-6. UART Control Register (UCONO,1,2)

UART Status Register

There are two identical UART status registers (USTATO,1) in the UART block, for each SIO channel.
The USTAT is a read-only register that is used to monitor the status of SIO.

Registers Offset Address R/W Description Reset Value
USTATO 0xb008 R/W UART ch-0 status register 0xc0
USTAT 1 0xb808 R/W UART ch-1 status register 0xc0
USTAT 2 0xc008 R/W UART ch-2 status register 0xc0

[0] Overrun error This bit is automatically set to "1" whenever an overrun

error occurs during a serial data receive operation.
If the receive status interrupt enable bit UCONN[2] is "1",
a receive status interrupt will be generated if an overrun

error occurs.

This bit is automatically cleared to "0" whenever the

UART status register (USTATN) is read.

ELECTRONICS

11-9

UART

KS32C65100 RISC MICROPROCESSOR

[1]

[2]

[3]

[5]

[6]

[7]

Parity error

Frame error

Break interrupt

Receive data ready

Tx buffer register empty

Transmitter empty

This bit is automatically set to "1" whenever a parity error
occurs during a serial data receive operation. If the receive
status interrupt enable bit UCONRN[2] is "1", a receive status
interrupt will be generated if a parity error occurs. This bit is
automatically cleared to "0" whenever the UART status
register (USTATN) is read.

This bit is automatically set to "1" whenever a frame error
occurs during a serial data receive operation. If the receive
status interrupt enable bit UCONN[2] is "1", a receive
status interrupt will be generated if a frame error occurs.
The frame error bit is automatically cleared to "0" whenever
the UART status register (USTATN) is read.

This bit is automatically set to "1" to indicate that a break
signal has been received. If the receive status interrupt
enable bit UCONN[2] is "1", a receive status interrupt will
be generated if a break occurs. The break interrupt bit is
automatically cleared to "0" when you read the UART
status register.

This bit is automatically set to "1" whenever the receive
data buffer register (RBR) contains valid data received over
the serial port.

The receive data can then be read from the RBR.

When this bit is "0", the RBR does not contain valid data.
Depending on the current setting of the UART receive
mode bits, UCONN[1:0], an interrupt or a DMA request is
generated when this bit is "1".

This bit is automatically set to "1" when the transmit buffer
register (TBR) does not contain valid data. In this case, the
TBR can be written with the data to be transmitted. When
this bit is "0", the TBR contains valid Tx data that has not
yet been copied to the transmit shift register. In this case,
the TBR cannot be written with new Tx data. Depending on
the current setting of the UART transmit mode bits,
UCONRN[4:3], an interrupt or a DMA request will be
generated whenever this bit is "1".

This bit is automatically set to "1" when the transmit buffer
register has no valid data to transmit and the Tx shift
register is empty. When the transmitter empty bit is "1", it
indicates to software that it can now disable the transmitter
function block.

11-10

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

UART

31302928 27 26 2524 2322212019181716 151413121110 9 8 7

USTATO, 1, 2

T
E

o
A |w

om N

-0+

<O|°

[0] Overrun Error

0 = No overrun error during receive

1 = Overrun error

(generate receive status interrupt if UCON[2] is "1")

[1] Parity Error

0 = No parity error during receive

1 = Parity error

(generate receive status interrupt if UCON[2] is "1")

[2] Frame Error

0 = No frame error during receive

1 = Frame error

(generate receive status interrupt if UCON[2] is "1")

[3] Break Detect

0 = No break receive

1 = Break received

(generate receive status interrupt if UCON[2] is "1")

[5] Receive Data Ready

0 = No valid data in the receive buffer register.

1 = Valid data present in the receive buffer register
(issue interrupt or DMA request if UCON][1:0] set)

[6] Transmit Buffer Register Empty

0 = Valid data in transmit buffer register.

1 = No data transmit buffer register

(issue interrupt or DMA request if UCON][1:0] set)

[7] Transmitter Empty
0 = Transmitter not empty; Tx in progress
1 = Transmitter empty; no data for Tx

Figure 11-7. UART Status Register (USTATO,1,2)

ELECTRONICS

11-11

UART

KS32C65100 RISC MICROPROCESSOR

UART Transmit Buffer Register

There are two identical UART transmit buffer registers (TBR) in the UART block for the two SIO channels, each
of which contains an 8-bit data value to be transmitted over the SIO channel.

In DMA-based transmit mode, the address of the transmit buffer register should be set into the DMA destination
address register as the destination of the DMA channel.

Registers Offset Address R/W Description Reset Value
UTXBUFO 0xb00c W UART ch-0 transmit buffer register 0x00
UTXBUF1 0xb80c W UART ch-1 transmit buffer register 0x00
UTXBUF2 0xc00c W UART ch-2 transmit buffer register 0x00
[7:0] Transmit data This field contains the data to be transmitted by the
corresponding SIO channel. When this register is written,
the transmit buffer register empty bit in the status register
USTAT[6] should be "0" This prevents overwriting transmit
data that may already be present in the TBR. Whenever
the TBR is written with new value, the transmit register
emptybit USTATI6] is automatically cleared to "0".
3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 O
UTXBUFO, 1, 2 Transmit Data

[7:0] Transmit Data for UART

Figure 11-8. UART Transmit Buffer Register (UTXBUFO0,1,2)

11-12

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

UART

UART Receive Buffer Register

There are two identical UART receive buffer registers (RBR) in the UART block for the two SIO channels, each
of which contains an 8-bit data value for received serial data.

In DMA-based receive mode, the address of the receive buffer register should be set into the DMA source
address register as the source of the DMA channel.

Registers Offset Address R/W Description Reset Value

URXBUFO 0xb010 R UART ch-0 receive buffer register 0x00

URXBUF1 0xb810 R UART ch-1 receive buffer register 0x00

URXBUF2 0xc010 R UART ch-2 receive buffer register 0x00

[7:0] Receive data This field contains the data received from the
corresponding SIO channel. When UART finishes
receiving a data frame, the receive data ready bit in the
UART status register USTAT[5] should be "1".
This prevents reading invalid receive data that may already
be present in the RBR. Whenever the RBR is read, the
receive data ready bit USTATI5] is automatically cleared to
IIOII.
3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 O
URXBUFO, 1, 2 Receive Data

[7:0] Receive Data for UART

Figure 11-9. UART Receive Buffer Register (URXBUFO, 1, 2)

ELECTRONICS

11-13

UART

KS32C65100 RISC MICROPROCESSOR

UART Baud Rate Divisor Registers
The value stored in the baud rate divisor register, UBRDIV, is used to determine the serial Tx/Rx clock rate (baud

rate) as follows:

UBRDIVn = (int)(source_clock / (bps x 16)) - 1

where the source_clock is either MCLK (the internal master clock) or UCLK (the external UART clock input), as
determined by the setting of the serial clock selection bit in the line control register, ULCON[6].

Registers Offset Address R/W Description Reset Value
UBRDIVO 0xb014 R/W Baud rate divisor register 0 0x0000
UBRDIV1 0xb814 R/W Baud rate divisor register 1 0x0000
UBRDIV2 0xc014 R/W Baud rate divisor register 2 0x0000
3130292827 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 O
UBRDIVO, 1, 2 Baud Rate Divisor

[15:0] Baud Rate Divisor Value

This field contains the baud rate divisor value for the
corresponding SIO channel. Baud ratecan be calculated as:

Baud rate = source_clock/ (divisor * 16)

Figure 11-10. UART Baud Rate Divisor Register (UBRDIVO0,1, 2)

NOTE: THE BAUD RATE DIVISOR SHOULD BE A VALUE FROM 1 TO (2716-1).

11-14

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR UART

TIMING DIAGRAMS

<TRANSMITTER>

TxD St
\ Start / Data Bits (5-8) >< Parity >/ op Start
(1-2)
THRE \ / \ /
WR_THR /o \ /o \
INT_TXD /o \ /o \

<RECEIVER>

RxD St
\ Start / Data Bits (5-8) >< Parity >/ (1_02% \ Start / Data Bits
INT / \

RBR Previous Receive Data >< Valid Receive Data

Figure 11-11. Interrupt-Based Serial I/O Timing Diagram Tx and Rx)

ELECTRONICS 11-15

KS32C65100 RISC MICROPROCESSOR TONE GENERATOR

1 2 TONE GENERATOR

OVERVIEW

The KS32C65100 Tone Generator provides a programmable tone signal which has 50% duty cycle and can be
used to make a 'key-click' sound. The tone Generator block has a tone counter which includes 8_bit
programmable divider and a 1/2 divider for making the 50% duty cycle, and a Tone Data register (TONDATA)
which has the tone enable or disable bit and tone count data bits. The 8 bit programmable divider receives
MCLK/(prescaler+1)/128 clock signals and divides it depending on the count value in TONDATA[7:0] bits. Also,
you can set the prescaler value (Initial value: OxC) in TSTCON (Figure 14-9).

Enable/Disable
Clock TONDATAI8]
- Reset
MCLK Divider
L ‘
. 8-Bit Programable 1/2 Divider
- »
8-Bit Prescaler }—» 1/128 > Divider > (50% duty) —» Tone
[1/(1+Prescale value)] 4
Reload
TONDATA

[1/Tone data]

Figure 12-1. Tone Generator Block Diagram

The TONDATA[8] bit enables or disables the Tone generator operation. When it is cleared to '0', the tone output
is disabled (stopped) and the programmable divider is automatically cleared while the tone data register
(TONDATA) retains its contents. The initial value of the tone enable bit is '0'.

The input clock to the tone generator is MCLK/(prescaler+1)/128. The division ratio of the tone counter is
determined by the tone data register value, and ranges from 0 to 255.

A user has to load data into the tone data register (TONDATA) before enabling the tone generator to get the
correct tone signal. To make out the 50% duty cycle tone signal, KS32C65100 tone generator has a 1/2 divider
with a programmable divider. The output of the programmable divider is divided by the 1/2 divider.

The frequency of the tone is calculated as follows:

MCLK
[(Prescaler+1) * 128 * ToneData * 2]

ELECTRONICS 12-1

TONE GENERATOR

KS32C65100 RISC MICROPROCESSOR

Table 12-1. Tone Generator Data Value Setting (MCLK = 33 MHz)

[@ Prescale = 0xC]

TONDATA Tone Freq. TONDATA Tone Freq.
0 No tone (all high) 4 2.479 kHz
1 9.915 kHz .
2 4.958 kHz 100 99.159 Hz
3 3.305 kHz 255 38.886 Hz

TONE GENERATOR DATA REGISTER (TONDATA)

The tone generator data register (TONDATA) stores an 8-bit value which determines the frequency of the tone
generator output. The value in the TONDATA register determines the division ratio of the programmable divider.
The divided-by value, therefore, ranges from 0 to 255. Then the output value of the tone counter is divided by
two, producing a 50% duty tone output signal. A reset clears the TONDATA value to '00h'. The tone frequency is
therefore calculated, based on the tone data value, as follows.

MCLK

[(Prescaler + 1) * 128 * ToneData * 2]

Register

Offset Address

R/W

Description

Reset Value

TONDATA

0x3804

R/W

Tone generator data register

OxOff

31302928 27 2625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

X

Tone Count Data

[7:0] Tone Counter Data
8-bit tone counter data value

[8] tone Generator Control
0 = Clear counters and reset tone output
1 = Generate tone

Figure 12-2. Tone Data Register (TONDATA)

12-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR WATCH DOG TIMER

WATCHDOG TIMER

OVERVIEW

The KS32C65100 Watchdog Timer is used to resume controller operation when it is disturbed due to noise or
other kinds of system errors or malfunctions. It can be used as a normal interval timer to request interrupt
services. also, you can set the prescaler value (initial value: 0xC) in TCR (Figure 13-3).

Clock
Divider
Interrupt
MCLK 1/16 > 4
13z > WTCNT
.y ~ .
8-Bit Prescaler }—» ™ ~ (down counter) » NRSTO Pin
[1/(1+Prescale value)] g
1/128 > Enable/ Enable/ Enable/
? Disable Disable Disable
WTCON[4:3] WTCONIS5] WTCON[2] WTCONIO]

Figure 13-1. Watchdog Timer

ELECTRONICS 13-1

WATCH DOG TIMER

KS32C65100 RISC MICROPROCESSOR

WATCHDOG TIMER COUNTER REGISTERS

The watchdog timer counter register WTCNT is used to specify the time out duration.

The watchdog timer enable bit (bit5, WTCON) must be '0' before loading a value to this register.

Watchdog Timer_clock = MCLK / (prescale_value + 1) / division_factor
Watchdog Timer_duration = count_val. / Watchdog Timer_clock

Table 13-1. Watchdog Timer Counter Setting (MCLK = 33MHz)

[@ Prescale = 0xC, WTCNT = 16_bit count]

Clock Source Resolution Maximum Interval Remark
MCLK/(prescale+1)/16 6.24us 408.9ms Default setting
MCLK/(prescale+1)/32 12.28us 817.9ms -
MCLK/(prescale+1)/64 24.96us 1.636s -
MCLK/(prescale+1)/128 49.92us 3.272s -

Register Offset Address R/W Description Reset Value
WTCNT 0x4004 R/W Watchdog timer count register 0x0003

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Count Value

[15:0] Watch Dog Timer Count Register
This specifies the time out duration

Figure 13-2. Watchdog Timer Count Register (WTCNT)

13-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR WATCH DOG TIMER

WATCHDOG TIMER CONTROL REGISTER

The Watchdog Timer Control register WTCON provides the control bits for the enable/disable of the watchdog
timer, selects the clock signal from 4 different sources, enables/disables interrupts, and enables/disables the
watchdog timer reset output signal NnWDTO pin. If the watchdog timer is set to 0O, WTCON is cleared to 0x0.

Register Offset Address R/W Description Reset Value

WTCON 0x4000 R/W Watchdog timer control register 0x21

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X| CLK [X[0]| X

[0] Reset Mode
0 = Disable nWDTO pin 1 = Enable nWDTO pin

[2] Interrupt Mode
0 = Disable Interrupt 1 = Enable Interrupt

[4:3] Clock Division Factor Selection
00 =16 01=32
10 =64 11 =128

[5] Watch Dog Timer Enable/Disable
0 = Disable timer 1 = Enable timer

Figure 13-3. Watchdog Timer Control Register (WTCON)

WATCHDOG TIMER OPERATION

Before loading or reading a count value of the Watchdog Timer Count Register (WTCNT), users have to disable
the watchdog timer by setting the WTCON[5] bit to zero. When WTCON[5] bit is set to "1", the watchdog timer is
enabled and the counter starts down-count. The watchdog counter register value is accessible at any time while
the watchdog timer is enabled, because it provides read and write features.

The watchdog timer provides general timer interrupt as well as system reset features. To enable a timer interrupt,
WTCON]2] bit has to be set to 1. When a timer interrupt is enabled, the interrupt signal generates one pulse of a

request signal to CPU to compare it to the long watchdog reset signal. The interrupt pending bit (bit2, INTPNDR)

is automatically set to '1' when an underflow occurs.

When WTCONI[O] bit is '1', the nWDTO pin is enabled and the watchdog reset signal comes through the nWDTO
pin. If the watchdog counter reaches to zero, the nWDTO signal is activated during for 128 MCLK cycles for
some reason, and WTCON will be 0x0. To avoid the watchdog timer activating the nWDTO signal, MPU has to
periodically reload the counter value into the watchdog counter register (WTCNT).

The nWDTO signal is not connected to nRESET internally. If n\WDTO is connected to nNRESET by an external
logic, the KS32C65100 initialization routine will be executed by the nWDTO signal.

ELECTRONICS 13-3

KS32C65100 RISC MICROPROCESSOR

/O PORTS

OVERVIEW

The KS32C65100 has 18 input, 43 output, and 27 input/output ports.

/O PORTS

I/O PORT SPECIAL REGISTERS

Two registers control the 1/0 port configuration: IOPMOD and IOP.

Table 14-1 shows the possible values for the port mode registers. The IOP register contains one bit for each port
which reflects the signal level at the respective port pin.

NOTE: 1/0 port muxed pin configuration
Table 14-1. 1/0 Port Mode Configuration and Settings
I/O Port Pin I/O Port Mode Configuration Settings
Function for 1 Function for O
GIP[0]: RXDO GIP[O] RXDO
GIP[1]: RXD1 GIP[1] RXD1
GIP[2]: RXD2 GIP[2] RXD2
GIP[3]: nEXT_INTO GIP[3] NEXT_INTO
GIP[4]: nEXT_INT1 GIP[4] NEXT_INT1
GIP[5]: nEXT_INT2 GIP[5] NEXT_INT2
GIP[6]: nEXT_DREQ GIP[6] NEXT_DREQ
GIP[7]: nWAIT GIP[7] nWAIT
GIP[8]: ECD_IN1 GIP[8] ECD_IN1
GIP[9]: ECD_IN2 GIP[9] ECD_IN2
GIP[10]: nHSYNC1 GIP[10] NHSYNC1
GIP[11]: nLREADY GIP[11] nLREADY
GIP[12]: nHSYNC2 GIP[12] NHSYNC2
GIP[13]: nVDI GIP[13] nVvDI
GIP[14]: nVCLK GIP[14] nVCLK
GIP[15]: nINIT GIP[15] nINIT
GIP[16]: nSLCTIN GIP[16] nSLCTIN
GIP[17]: NnAUTOFD GIP[17] nAUTOFD

ELECTRONICS

14-1

/0 PORT

KS32C65100 RISC MICROPROCESSOR

Tablel4-1. I/0O Port Mode Configuration and Settings (Continued)

I/O Port Pin I/O Port Mode Configuration Settings
Function for 1 Function for 0

GOPAJ[0]: TXDO GOPA[0O] TXDO
GOPA[1]: TXD1 GOPA[1] TXD1
GOPA[2]: TXD2 GOPA[2] TXD2
GOPA[3]: TONE GOPA[3] TONE
GOPA[4]: nWDTO GOPA[4] nWDTO
GOPA[5]: nEXT_DACK GOPA[5] NEXT_DACK
GOPA[6]: CLKOUT GOPA[6] CLKOUT
GOPA[7]: nRCS1 GOPA[7] nRCS1
GOPA[8]: nECS2 GOPA[8] nECS2
GOPA[9]: nlIORD GOPA[9] nlORD
GOPA[10]: nIOWR GOPA[10] nIOWR
GOPA[13:11]: PWMOI2:0] GOPA[13:11] PWMOI2:0]
GOPA[14]: nVDO1 GOPA[14] nvVDO1
GOPA[15]: LSU_CLK GOPA[15] LSU CLK
GOPA[18:16]: SLED[2:0] GOPA[18:16] SLED[18:16]
GOPA[20:19]: SNM_CON[1:0] GOPA[20:19] SNM_CONJ[1:0] (SM_PHB, SM_PHA)
GOPA[22:21]: LFM_CON][1:0] GOPA[22:21] LFM_CON[1:0] (LF_PHB, LF_PHA)
GOPA[24:23]: CR_PH[1:0] GOPA[24:23] CR_PH[1:0] (CR_PHB, CR_PHA)
GOPA[28:25]: CR_CUR[3:0] GOPA[28:25] CR_CUR[3:0] (IB1, IBO, IA1, IAQ)
GOPA[29]: nVDO2 GOPA[29] nVDO2
GOPBJ[12:0]: PHGA[12:0] GOPBJ[12:0] PHGA[13:01]
GIOP[26:11]: PHOE[16:1] GIOP[26:11] PHOE[16:01]

14-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR /O PORTS

I/lO PORT MODE REGISTER

The 1/0 port mode register GIOPMOD is used to configure the GIOP (general in/out port).

Register Offset Address R/W Description Reset Val.

GIOPMOD 0x2800 R/W Bi-directional port mode register 0xffff800

313029 28 27 26 25 24 23 222120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX [X[X]X]XX XXX XXX XXX XXX XX XXX XXX

| GIOP[27:0] |

[26:0] General In/Out(GIOP) Mode
0 = Input mode
1 = Ouptut mode

[27] GIOP/PHOE Out Mode
0 = GIOP mode
1 = PHOE output mode

Figure 14-1. Bi-directional Port Mode Register (GIOPMOD)

INPUT PORT MODE REGISTER

Register Offset Address R/W Description Reset Val.

GIPMOD 0x2804 R/W Input port mode register 0x00000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX [X] XXX XXX X[X]X]X]X[X]X]X

| GIP[17:0] |

[17:0] General In(GIP) Mode
0 = Control signal
1 = Intput mode

Figure 14-2. Input Port Mode Register (GIPMOD)

ELECTRONICS 14-3

/0 PORT

KS32C65100 RISC MICROPROCESSOR

OUTPUT A PORT MODE REGISTER

Register

Offset Address

R/W

Description

Reset Value

GOPAMOD

0x2808

R/W

Output port mode register

0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX XX X[X[X[X]XX]X[X[X][X]X]X|X[X[X[X]X]X]X]X]X[X]X[X]X
| GOPA[29:0] |

[29:0] General Output(GOPA) Mode

0 = Control signal

1 = Output mode

Figure 14-3. Output Port Mode Register (GOPAMOD)

OUTPUT B PORT MODE REGISTER
Register Offset Address R/W Description Reset Value
GOPBMOD 0x280C R/W Output port mode register 0x0000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX X[X] X]| X

X

X

X

X

X1 X

| GOPB[12:0]

[12:0] General Output (GOPB) Mode
0 = Control signal
1 = Ouptut mode

Figure 14-4. Output Port Mode Register (GOPBMOD)

14-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR /O PORTS

I/lO PORT DATA REGISTER

The 1/O port data register, GIOPD, contains one-bit values for I/O ports that are configured to input mode and
one-bit write value for ports that are in output mode.

Register Offset Address R/W Description Reset Value
GIOPD 0x2810 R/W Bi-directional port data register 0x0000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XA XXX XXX XX XXX XXX XXX XXX XXX XXX

| GIOP[26:0] |

[26:0] General In/Out (GIOP) Data

Figure 14-5. Bi-directional Port Data Register (GIOPD)

INPUT PORT DATA REGISTER

Register Offset Address R/W Description Reset Value
GIPD 0x2814 R/W Input port data register OXXXXXX

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X[XXX XXX X] XXX XXX X[X]X]X

| GIP[17:0] |

[17:0] General Input Data

Figure 14-6. Input Port Data Register (GIPD)

ELECTRONICS 14-5

/0 PORT

KS32C65100 RISC MICROPROCESSOR

OUTPUT A PORT DATA REGISTER

Register

Offset Address

R/W

Description

Reset Value

GOPAD

0x2818

R/W

Output port data register

0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX XX XX XX XXX XXX XXX [X[X[X]X]X]X]X]X[X]X[X]X
| GOPA[29:0] |
[29:0] General Output(GOPA) Data
Figure 14-7. Output Port A Data Register (GOPAD)
OUTPUT B PORT DATA REGISTER
Register Offset Address R/W Description Reset Value
GOPBD 0x281C R/W Output port data register 0x0000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX X[X] X

X

X

X

X

X

X1 X

| GOPB[12:0]

[12:0] General Output (GOPB) Data

Figure 14-8. Output Port B Data Register (GOPBD)

14-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

/O PORTS

TEST CONTROL REGISTER

The test control register (TSTCON) contains the 16 bits for testing the functions of CHORUS. These bits for

testing are only used during fabrication. These bits are not specified in this manual. The other bits which you can

use are as follows:

— The CKOUT mode bit determines whether CKOUT output is divided by 2 or not.

CKOUT mode
— 0=MCLK
— 1=MCLK/2

Prescaler value

— Timer0, Timerl, Timer2, watchdog timer, tone generator, and line feed motor timer use this prescaler value

to divide MCLK.

Bidirectional control pin

Register Offset Address R/W

Description

Reset Value

TSTCON

0x2820 R/W Test control register

0x00600

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X | x Prescaler Value

o

X

o

o

o

o

o

[0] Chip Test Mode

[1] Fire Test Mode

[2] Out CLK Mode

[3] Phfire Test Mode
[4] Test FSTB Mode
[5] Clock Output Mode
0 =MCLK

1 = MCLK/2

[6] HOE Direction

[14:7] Prescaler Value &.1)

[15] IP Test Output Mode
1 = GPIO[10:0] IP test out

[16] IP Test Input Mode
1 = GIOP[10:0] IP test in

Figure 14-9. Test Control Register (TSTCON)

ELECTRONICS

14-7

/0 PORT

KS32C65100 RISC MICROPROCESSOR

EXTERNAL INTERRUPT CONTROL REGISTER

The external interrupt control register (INTCON) is used for external interrupt signal filter mode control.

Register

Offset Address

R/W Description

Reset Value

INTCON

0x2824

R/W External interrupt control register

0x000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X

X

X

XX X[X]|X]|X

INTCONI[8:0] |

[2:0] EXT_INTO Control Mode
[5:3] EXT_INTO Control Mode

[8:6] EXT_INTO Control Mode
000 = Low level sensitive mode
001 = High level sensitive mode
01X = Falling edge trigger mode
11X = Rising edge trigger mode

Figure 14-10. External Interrupt Control Register (INTCON)

TEST PIN SETTING

Test2 Testl TestO Test Mode Internal Clock
0 0 0 Normal modeO (LF, Scan Mtr output
PHASE[3:0]: Initial value b "H")
0 0 1 Normal model (LF, Scan Mtr output OSC_CLK
PHASE[3:0]: Initial value b "L")
IP scan test mode
IP ADC test mode
1 Normal modeO (LF, Scan Mtr Output
PHASE[3:0]: Initial value b "H") OSC_CLK/2
1 0 1 Normal model (LF, Scan Mtr output
PHASE[3:0]: Initial value b "L")
Core test mode OSC_CLK
NAND tree test mode

14-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR INTERRUPT CONTROLLER

INTERRUPT CONTROLLER

OVERVIEW

The KS32C65100 interrupt structure has a total of 30 interrupt sources, which can be individually or globally
enabled or disabled. Interrupt requests can be generated by internal function blocks and at external pins. The
ARMT7TDMI core recognizes two kinds of interrupts: a normal interrupt request (IRQ) and a fast interrupt request
(FIQ). Therefore, all KS32C65100 interrupts can be categorized as either IRQ or FIQ. The KS32C65100 interrupt
controller extends the number of multiple interrupt sources that can be serviced by using three special registers,
INTMOD, INTPND, and INTMSK:

Interrupt mode register.
Defines the interrupt mode, IRQ or FIQ, for each interrupt source.

Interrupt pending register.

Indicates that an interrupt requests is pending (that is, when the I-flag or F-flag is set in the program status
register, PSR). This status prevents any additional interrupts from being acknowledged. When the pending bit
is set, the interrupt service routine starts whenever the I-flag or F-flag is cleared to '0'. The service routine
must clear the pending condition by writing '1' to the corresponding pending bit.

Interrupt mask register.

Indicates that the current interrupt has been disabled if the corresponding mask bit is '0'. If an interrupt mask
bit is '1', the interrupt will be serviced normally. And if a global mask bit (bit 31) is cleared, all interrupts are not
serviced. However, the source's pending bit is set when the interrupt is generated, even if the corresponding
mask bit is '0'". After the global mask bit is set, the interrupt will be serviced.

ELECTRONICS 15-1

INTERRUPT CONTROLLER

KS32C65100 RISC MICROPROCESSOR

INTERRUPT SOURCES

The 30 interrupt sources in the KS32C65100 interrupt structure are described, in brief, in Table 15.1.

Table 15-1. Interrupt Sources

No. Source Name Description
0 INT_EXT2 External interrupt 2 (comes from general input port 5)
1 INT_EXT1 External interrupt 1 (comes from general input port 4)
2 INT_EXTO External interrupt O (comes from general input port 3)
3 INT_WATCHDOG |Watch dog timer interrupt
4 INT_TXD2 UART?2 transmit interrupt
5 INT_TXD1 UART1 transmit interrupt
6 INT_TXDO UARTO transmit interrupt
7 INT_RXD2 UART?2 receive interrupt
8 INT_RXD1 UART1 receive interrupt
9 INT_RXDO UARTO receive interrupt
10 INT_ERR2 UART?2 error interrupt
11 INT_ERR1 UART1 error interrupt
12 INT_ERRO UARTO error interrupt
13 INT_DMA1 GDMA transfer finish interrupt
14 INT_DMAO CDMA transfer finish interrupt
15 INT_TIMER2 Timer2 interrupt
16 INT_TIMER1 Timerl interrupt
17 INT_TIMERO TimerO interrupt
18 INT_PPIC Parallel port interface controller interrupt
19 INT_IP1 Image processor interrupt 1 (Motor interrupt)
20 INT_IPO Image processor interrupt 0 (Sl interrupt)

21 INT_POS Carrier position interrupt
22 INT_LFMTR Line feed step interrupt
23 INT_CRST Carrier step interrupt
24 INT_PRINT Print interrupt
25 INT_HDMA Head DMA interrupt
26 Reserved Not Used
27 INT_EOP PIFC end of page interrupt
28 INT_SOD PIFC Start of DMA interrupt
29 INT_PUR PIFC page under-run interrupt
30 INT_SYNC1 PIFC Psync request interrupt

15-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR INTERRUPT CONTROLLER

SPECIAL REGISTER

Interrupt Mode Register

Bits in the interrupt mode register INTMOD specify if an interrupt is to be serviced as a fast or normal interrupt.

Register Offset Address R/W Description Reset Value

INTMOD 0x2000 R/W Interrupt mode register 0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XX XXX X XX XXX XXX XXX XXX XX XXX XXX XXX

[30:0] Interrupt Mode Bit

Each of the 31bits in the interrupt mode

register, INTMOD, corresponds to an interrupt source. When
the source's interrupt mode bit is set to '1', the interrupt is
processed by the ARM7TDMI core in FIQ (fast interrupt)
mode. Otherwise, it is processed in IRQ mode (normal
interrupt).

The 30 interrupt sourcess are summarized in Table 15-1.

Figure 15-1. Interrupt Mode Register

ELECTRONICS 15-3

INTERRUPT CONTROLLER

KS32C65100 RISC MICROPROCESSOR

Interrupt Pending Register

The interrupt pending register INTPND contains interrupt pending bits for each interrupt source. The INTPND has
nothing to do with INTMSK. Although INTMSK forbids an Interrupt request generated, INTPND operates properly,
independent of INTMSK.

Register

Offset Address R/W

Description

Reset Value

INTPND

0x2004 R/W

Interrupt pending register

0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X| X

X

X

XXX XXX X]X[X]X

X

X

X

XXX [X]| X X]| X

X

X

X

X

X[X|X

[30:0] Interrupt Pending Bit

Each of the 31bits in the interrupt pending

register, INTPND, corresponds to an interrupt source. When on
interrupt request is generated, it will be set by '1".

The interrupt service routine must then clear the pending condition by
writing '1' to the appropriate pending bit.
Only the bit written with '1' toggles from '1' to '0". The 30 interrupt
sources are summarized in Table 15-1.

Figure 15-2. Interrupt Pending Register

15-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

INTERRUPT CONTROLLER

Interrupt Mask Register

Register

Offset Address

R/W

Description

Reset Value

INTMSK

0x2008

R/W

Interrupt mask register

0x00000000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X

X| X

X

X

X

X

X

X

X

X

XXX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

[31] Global Mask
If this bit is set to "0", all interrupts are disabled.

[30:0] Interrupt Mask Bit
Each of the 31 bits in the interrupt masking
register, INTMSK, corresponds to an interrupt

source. Interrupt mask bit is '1', the interrupt will be serviced
normally. The 30 interrupt sources are summarized in Table
15-1.

Figure 15-3. Interrupt Mask Register

ELECTRONICS

15-5

KS32C65100 RISC MICROPROCESSOR

LF MOTOR

1 6 LF MOTOR

OVERVIEW

This module performs the following functions:

Step interrupt generation for driving line feed motor.

14-bit timer for step interrupt which controls the change of drive signal for line feed motor using selectable

clock.

Phase can be written by software or hardware.

NOTE

1. When the timer is enabled, it begins to decrease from the base value.
2. When the timer expires, the associated interrupt is generated, the base value is reloaded and the

timer continues to decrease.

3. If a new value is loaded in this register before the timer is expired, the timer will keeping counting
with the new value.

SPECIAL FUNCTION REGISTER

LINE FEED MOTOR CONTROL REGISTER

This register selects the phase written by software or hardware, direction, interrupt request generation, and clock

select.

Register

Offset Address

R/W

Description

Reset Value

LFCR

0x5800

R/W

Line feed motor control register

0x0800

ELECTRONICS

16-1

LF MOTOR

KS32C65100 RISC MICROPROCESSOR

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PH | X | X| X[X

XXX X X[X]X|CLK|X

[0] Timer Start
0 = Stop timer 1 = Start timer

[2:1] Clock Select

00 = MCLK/(prescaler + 1)/8
01 = MCLK/(prescaler + 1)/16
10 = MCLK/(prescaler + 1)/32
11 = MCLK/(prescaler + 1)/64

[3] Interrupt Request at Each Step
0 = Disable 1 =Enable

[4] Write Strobe (Write Only: async clk)
0 = No operation 1 = Write strobe

[5] Step Write Enable
0 = Disable 1 =Enable

[6] Phase Hold
0 = Disable 1 =Enable

[7] Direction
0=Up 1 =Down

[8] Chop Enable
0 = Disable 1 =Enable

[9] Phase Write Mode
0 = Phase written by software
1 = Phase written by hardware

[10] Motor Selection
0 = Bi-polar 1 = Uni-polar

[11] Initialize Drive State (Write Only)
0 = Initialize 1 =Normal

[12] Software Latch Strobe (Write Only)
0 = No operation 1 = Latch strobe

[13] Interrupt Latch Enable
0 = Disable 1 =Enable

[15:14] Phase
00 = Full step 01 = Half step
1x = Quarter step

Figure 16-1. LF Motor Control Register

16-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

LF MOTOR

LINE FEED MOTOR PHASE CONTROL REGISTER

Register Offset Address

R/W

Description

Reset Value

LFPCR 0x5804

R/W

Line feed motor phase control register

0x3c0

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X[X | X[X] X[X

X

Phase

0=Low

0=Low

00=AB

0=Low

0=Low

0=Low

0=Low

10 = AzBz

[3:0] Phase A, AZ,B,BZ or IAO, 1,1B0, 1
This 4-bit out signals control the motor phase
[4] LF Motor Control 1

[5] LF Motor Control 2

[7:6] Default Phase[1:0] (When Write)

[6] PHBZ_IB1 (when read) 0 =low, 1 = high
[7] PHB_IBO (when read) 0 = low, 1 = high
[8] PHAZ_IB1 (Read Only)

[9] PHA_IA (Read Only)

[10] LFPHASEB (Read Only)

[11] LFCON_PHA (Read Only)

1 =High

1 =High

01 =AzB
11=ABz

1 =High

1 =High

1 =High

1 =High

Figure 16-2. LF Motor Phase Control Register

ELECTRONICS

16-3

LF MOTOR KS32C65100 RISC MICROPROCESSOR

LINE FEED TIMER REGISTER

This 14-bit timer is used to generate the Line feed motor's phase which is driven by software or hardware
according to line feed motor control register.

Registers Offset Address R/W Description Reset Value
LFTBR 0x5808 R/W Line feed motor timer base register 0x00000000
LFTOR 0x580c R Line feed motor timer observation register 0x1e0d

LFTCBR 0x5810 R/W Line feed motor timer compare base 0x0000

register

LFTCOR 0x5814 R LF motor timer compare observation 0x0000

register

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Timer Value

[13:0] Timer Value
This time is used to generate line feed motor's phase
to phase interval

Figure 16-3. LF Motor Timer Register

16-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

LF MOTOR
LFCON EACH CONTROL REGISTER
This register is used to set current level of each steps in bi-polar mode.
Register Offset Address R/W Description Reset Value
LFCON 0x5818 R/W LF step each control register 0x0000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Value

[15:0] LFCON Each Control Register

Figure 16-4. LFCON Register

CAUTION

When the timer is enabled, it begins to decrease from the base value.

continues to decrease.

In bi-polar mode, Ifcr[12] and Ifpcr[5:0] should all be set to O.

When the timer expires, the associated interrupt is generated, the base value is reloaded and the timer

If a new value is loaded in this register before the timer is expired, the timer will keeping counting with the
new value.

ELECTRONICS

16-5

LF MOTOR

KS32C65100 RISC MICROPROCESSOR

PHASE STATE AND CURRENT TABLE FOR FULL/HALF/QUARTER STEP MODE

Direction Phase Current State & Level Each Control Holding Remark
State A1 | 1A0 IB1 IBO IA/IB% Register Register =1
AB 0 0 0 100/100% 0 33/33%
0 0 1 66/66% 1
AB 0 0 0 33/100% 0 33/33%
0 1 33/66% 1
CwW (A)B 1 1 0 0 0/100% 0 0/33%
ccw (Az)B 0 1 0/66% 1
AzB 1 0 0 0 33/100% 0 33/33%
0 1 33/66% 1
AzB 0 0 0 0 100/100% 0 33/33%
0 1 0 1 66/66% 1
AzB 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1
CwW Az(B) 0 0 1 1 100/0% 0 33/0%
ccw Az(Bz) 0 1 66/0% 1
AzBz 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1
AzBz 0 0 0 0 100/100% 0 33/33%
0 1 0 1 66/66% 1
AzBz 1 0 0 0 33/100% 0 33/33%
1 0 1 33/66% 1
(Az)Bz 1 0 0 0 0/100% 0 0/33%
(A)Bz 0 1 0/66% 1
ABz 1 0 0 0 33/100% 0 33/33%
0 1 33/66% 1
ABz 0 0 0 0 100/100% 0 33/33%
0 1 0 1 66/66% 1
ABz 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1
CwW A(Bz) 0 0 1 1 100/0% 0 33/0%
ccw A(B) 0 1 66/0% 1
AB 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1

16-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CR CONTROL

1 ; CR CONTROL

OVERVIEW

This module is configured as follows:

Basic Timer using MCLK clock is 16-bit-down-counter.

Prestep timer using 19200/9600 PPI (Pulse Per Inch) clock is 10-bit down-counter.

Phase and current control signal generation for step motor of bi-polar type.

Filter for photo sensor input, position counting strobe and direction generation for DC motor.

Encoder cycle counter of 20-bit up-counter and latch with MCLK clock to calculate the cycle of photo sensor
input in DC motor mode.

Interrupt interval counter of 16-bit up-counter and latch with MCLK/32 clock to calculate the interval of carrier
interrupt in DC motor mode.

This module performs the following functions in step motor mode:

Basic timer generates the basic pulse of 19200/9600 PPI to control the state and position of carrier step
motor and to generate fire strobe to control the printhead.

Prestep timer is used to generate carrier step pulse to control the change of output state signals which are
phase and current control signals for carrier motor driver and carrier step interrupt according to carrier motor
step rate.

State control block is used to generate two phases and four current control signals for every step interrupt
according to setting of motor direction and state mode.

This module performs the following functions in DC motor mode:

Filter block is used to protect from false information by noise onto input signals from photo sensor.

Encoder counter is used to calculate and store the cycle time of preceding input from photo sensor. This
cycle time is used for base value of basic timer which generates the basic pulse of 2400 PPI for fire strobe
control in DC motor mode, and this time value can be read by CPU.

Interrupt counter is used to calculate and store the interval time of DC motor interrupt.
If this counter overflows before the next interrupt has been observed, an interrupt will be issued, and the
counter will go back to zero.

In DC motor mode, prestep timer is used to set the number of rising edge on preceding input from photo
sensor to issue an interrupt for DC motor position control.

ELECTRONICS 17-1

CR CONTROL KS32C65100 RISC MICROPROCESSOR

NOTES:

1.

Writing the value of basic timer base register 1 must be preceded by that of basi ¢ timer base register 2 after the reset is
done.

2. If the next base value is written to the other base register when the basic timer based on one of the base registers is
running, the counter will keep counting with next value. If the next base value is not written to the other register,
the counter will the repeat counting with current base value until the timer is disabled.

3. Inorder to set DC motor mode, bit 9 of CMCR has to be set "1".

4. For the step motor mode, CMCR[11:4] has to be set zero .

17-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

CR CONTROL

SPECIAL FUNCTION REGISTER

Carrier Motor Control Register

This register determines whether the interrupt request is generated or not, and enables or disables the prestep

timer and basic timer.

Register Offset Address R/W

Description

Reset Value

CMCR

0x6000 R/W Carrier motor control register

0x204

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X[X| X] X

X

X

X

X

X XX

[0] Basic Timer Enable
0 = Disable 1 =Enable

[1] Preset Timer Enable
0 = Disable 1 =Enable

[2] Carrier Step Interrupt Enable
0 = Disable 1 =Enable

[3] Only for Test (Initial "1")

[4] DC Motor Output Enable
0 = Disable 1 =Enable

[5] DC Motor Output Selection/Direction
0=DCOUTL1 is enabled/DIR =0
1=DCOUT2 is enabled/DIR =1

[6] PWM Timer Run
0 = Stop 1=Run

[7] PWM Mode Selection
0 =2 PWM signal mode
1 =1 PWM and direction signal mode

[8] Preceding Encoder Input Selection
0=CHX 1=CHY

[9] Motor Type Selection

0 = Step motor 1 = DC motor

[10] Head Type Selection in DC Mode
0 =208 nozzle head

[11] Overflow Interrupt Enable
0 = Disable

1 = Enable DC interrupt causing overflow of interrupt interval

counter

1 =56 nozzle head

Figure 17-1. Carrier Motor Control Register

ELECTRONICS

17-3

CR CONTROL KS32C65100 RISC MICROPROCESSOR

Basic Timer Base Register

There are two basic timers, BTB1R and BTB2R. At first, the timer starts with the value of BTB1R, but after down-
count stops the timer starts with the value of BTB2R, and only BTB2R is written to a new value. Otherwise, the
timer starts with the current base timer value (repeat mode).

Registers Offset Address R/W Description Reset Value
BTB1R 0x6004 R/W Basic timer base register 1 OXXXXX
BTB2R 0x6008 R/W Basic timer base register 2 OXXXXX

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Count Value

[15:0] Base Timer 1/2 Count Value

Figure 17-2. Basic Timer Base Register

Prestep Timer Base Register

Register Offset Address R/W Description Reset Value

PSTBR 0x600c R/W CR_Step_INT counter & prestep 0x000
counter base register

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X Count Value

[9:0] Prestep Count Value

[11:10] CR_Step_Interrupt Count Value

Figure 17-3. Pre-step Timer Base Register

17-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

CR CONTROL

CR State Control Register

This register can generate two phase lines and four current control lines to drive a bipolar stepping motor. Eight
output combinations are sequentially presented on these six lines.

Register Offset Address R/W Description

Reset Value

CRSCR 0x6010 R/W CR state control register

0x603f

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X X[X] 1A 1B

X

X

Phase Status

[5:0] Phase Status (Read Only)
[O] 1BO

[1] 1B1

[2] IAO

[3] 1Al

[4] PHASE B

[5] PHASE A

[6] Write Strobe (Write Only: asyn clk)
0 = No operation 1 = Write strobe

[7] Write Enable (Asyn Enable)
0 = Disable 1 = Enable

[9:8] Default Phase
00 = AB 01 =AzB
10 = AzBz 11 =ABz

[11:10] Phase A Current Control (IAO, 1, Al)
00 = Full step 01 = Half step
1x = Quarter step

[12] Direction
0=Up 1 =Down

[13] Holding Enable
0 = Normal state 1 = Holding state

[14] Phase Change Enable
0 = Disable 1 = Enable

[15] Initial Drive State Control (Write Only)
0 = Initialize 1 = Normal

Figure 17-4. CR State Control Register

ELECTRONICS

17-5

CR CONTROL KS32C65100 RISC MICROPROCESSOR

CRSREG Each Control Register

This register is used to set the active current level for each step in bi-polar mode.
You can refer to the phase state and current table the next page for detailed current level of each step.

Register Offset Address R/W Description Reset Value

CRSREG 0x6030 R/W CR step each control register 0x0000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Value

[15:0] CRSREG Each Control Register

Figure 17-5. CRSREG Register

17-6 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CR CONTROL
Phase State and Current Table for Full/Half/Quarter Step Mode
Direction Phase Current State & Level Each Holding Remark
State Control Register =1
A1 IAO IB1 | IBO IA/IB% Register
AB 0 0 0 100/100% 0 33/33%
0 0 1 66/66% 1
AB 0 0 33/100% 0 33/33%
0 1 33/66% 1
CwW (A)B 1 1 0 0 0/100% 0 0/33%
ccw (Az)B 0 1 0/66% 1
AzB 1 0 0 0 33/100% 0 33/33%
0 1 33/66% 1
AzB 0 0 0 0 100/100% 0 33/33%
0 1 0 1 66/66% 1
AzB 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1
CwW Az(B) 0 0 1 1 100/0% 0 33/0%
ccw Az(Bz) 0 1 66/0% 1
AzBz 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1
AzBz 0 0 0 0 100/100% 0 33/33%
0 1 0 1 66/66% 1
AzBz 1 0 0 0 33/100% 0 33/33%
1 0 1 33/66% 1
(Az)Bz 1 0 0 0 0/100% 0 0/33%
(A)Bz 0 1 0/66% 1
ABz 1 0 0 0 33/100% 0 33/33%
0 1 33/66% 1
ABz 0 0 0 0 100/100% 0 33/33%
0 1 0 1 66/66% 1
ABz 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1
CwW A(Bz) 0 0 1 1 100/0% 0 33/0%
ccw A(B) 0 1 66/0% 1
AB 0 0 1 0 100/33% 0 33/33%
0 1 66/33% 1

ELECTRONICS

17-7

CR CONTROL KS32C65100 RISC MICROPROCESSOR

CR_PWM TIMER

Logic Configuration

The PWM block is configured of the Cycle_Time base register, On_Time base register, counter observation
register and 16-bit down-counter.

Function

The PWM output signal's period and the On/Off time within it is decided by the Cycle_Time base value
and the On_Time base value. If the On_Time base value is the same or larger than the Cycle_Time base
value, the PWM output signal maintains On status.

The 16-bit down-counter's RUN (enable) or STOP (disable) status is decided by the CMCR][6].
The PWM block operation and the output according to CMCR's bits 4, 5 and 7 are shown in the following

table.

CMCR Description DC motor control signal output status
CMCR[4] DC motor output enable Enables the PWM outputs
CMCRJT7] PWM mode selection 0 1
CMCRJ5] DC motor direction/output selection 0 1 X X

DC_CRIAO Pin PWM signal 0 PWM signal
DC_CRIAL Pin 0 PWM signal Direction

Counter Base Register and Observation Register

Registers Offset Address R/W Description Reset Value
PWMOBS 0x6014 R PWM counter observation register 0x0000
PWMCYL 0x6018 R/W PWM cycle time base register 0x0000
PWMONT 0x601C R/W PWM on time base register 0x0000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Count Value

[15:0] PWM Cycle/On Time Base Value

Figure 17-5.PWM Counter Base Register

Caution

Real cycle time = (base value + 1) © 1/MCLK
Real on time = (base value + 1) © 1/MCLK

¥ This block only operates in DC mode.

17-8 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CR CONTROL

ENCODER COUNTER

Logic Configuration

This block is configured of a 20-bit up-counter and a 20-bit register for storing the counting results.

Function
It counts the period of the photo sensor (encoder sensor) input and stores the value in the register.

The period is used as a base value for calculating the fire strobe and fire window time according to the setting
of the fire DPI.

Countering Result Register and Observation Register

Registers Offset Address R/W Description Reset Value
ECDTIM 0x6020 R Encoder counter observation register 0x20292
ECDVAL 0x6024 R Encoder cycle value register 0x00000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counting Result

[19:0] Encoder Cycle Register

Figure 17-6. Encoder Cycle Register

Caution

¥ This block only operates in DC mode.

ELECTRONICS 17-9

CR CONTROL

KS32C65100 RISC MICROPROCESSOR

INTERRUPT INTERVAL COUNTER

Logic Configuration

This block is composed of a 16-bit up-counter and a 16-bit register for storing the counting results.

Function

This logic starts operating after the first DC motor interrupt is generated.

It counts the interval between each DC motor interrupt and the next, and stores the value in the register.

When CMCRJ[11] is set to 1 and the counter overflows before the generation of the next interrupt, the DC

motor interrupt is generated, and the counter and pre-step timer are cleared and restarted.

The DC motor interrupt is generated in DC mode when the photo (encoder) sensor input's rising edge occurs
for the number of times specified in the pre-step timer.

Counting Result Register and Observation Register

Registers Offset Address R/W Description Reset Value
INTTIM 0x6028 R Interval counter observation register 0x0000
INTVAL 0x602C R Interrupt interval value register 0x0000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counting Result

[15:0] Interrupt Interval Value

Figure 17-7. Interrupt Interval Value Register

17-10

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CR CONTROL

SUGGESTIONS FOR CARRIER MOTOR DRIVE F/W DESIGN

When CR Motor is Stopped

The BASIC timer and PRESTEP timer's RUN bit must be reset to "0".
{Bits 0, 1 of CMCR(0x6000)}

The position block enable bit (bit 0 of PFCR(0x6820)) must be reset to "0".

When CR Motor is Restarted
Must write new (or previous) values in the BASIC timer base registers.
Must write new (or previous) values in the PRESTEP timer base Register.
Must set the position block enable bit (bit 0 of PFCR(0x6820)) to "1".
Must set BASIC timer and PRESTEP timer's RUN bit to "1".

In other words, before starting Re-RUN after stopping the BASIC timer, you must:

Rewrite the BASIC timer base register and PRESTEP timer base register values, and

Reset the position block enable bit before setting, to reduce the error in carrier motor position.
To reduce location errors, you should fix the position & fire control register's bit 6 (position counter clock) to 1,
adjust the position and fire Pre-Scaler values, and set the fire DPI.

The value of position & fire control register's bit 6 should not be changed during system operation.

ELECTRONICS 17-11

KS32C65100 RISC MICROPROCESSOR CR FIRE

CR FIRE

OVERVIEW

This module performs the following functions:

Count and control the position of carrier motor
Fire strobe and start signal generation

16-bit counter for the position of carrier motor
16-bit print slice counter for counting fire strobe
6-bit prescaler for the clock of carrier position

8-bit prescaler for the clock of fire strobe

NOTES

1. This block is responsible for positioning the printhead and regulating the printhead fire strobe
timing.

2. Two conditions must be met before the fire strobe logic can be activated.
First, the print slice count must be greater than zero. Second, the position counter must be equal
to the print start position.

3. When the start position is reached, the fire logic is enabled, and the first fire strobe is generated.
Each fire strobe decrease the slice count by one.
When the slice count reaches to zero, the fire logic is disabled.

4. For step motor mode, the cycle of fire strobe is decided by setting only the base value of the fire
prescaler. (Fire DPI = 19200/Fire prescaler)
For DC motor mode, the cycle of fire strobe is decided by the setting base value of the fire
prescaler and DPI mode setting bit of PFCR.

ELECTRONICS 18-1

CR FIRE

KS32C65100 RISC MICROPROCESSOR

SPECIAL FUNCTION REGISTER

POSITION & FIRE CONTROL REGISTER

Register

Offset Address R/W Description

Reset Value

PFCR

0x6820

R/W Position & fire control register

0x0080d0

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Prescaler Prescaler

X

X

X

Mode | X

[0] Position Prescaler Enable
0 = Disable 1 = Enable

[3:1] DPI Mode (Only for DC_Mode)
000 =
010 =
011 =

[4] Position Count Reset (Write Only)
0 = Reset 1 = Normal operation

[5] Window Time Base Select
0 = Time base is written by S/W
1 = Time base is written by H/W

[6] PPI Clock Selection (Only for Test)
0 =9600 PPI 1 =19200 PPI (default)

[14:7] Prescaler
This 8 bit prescaler is for the fire strobe

[20:15] Prescaler
This 6 bit prescaler is for carrier position

150 DPI 001 = 300 DPI
600 DPI 011 = 1200 DPI
2400 DPI Other case = 150 DPI

Figure 18-1. Position & Fire Control Register

18-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CR FIRE

CR POSITION AND FIRE CONTROL REGISTER

There are four registers in this block: Carrier Position Count Register(CPCR), Print Start Position Register
(PSPR), Print Slice Counter Register(PSCR), and Position Interrupt Register(PIR).

CPCR: The carrier position is updated based on the carrier movement of 1/600 inch.

PSPR: The fire strobe control logic requires two conditions to be met before it will generate fire strobe to print
logic.

— A non-zero value must be loaded into the print slice counter register.
— The carrier position must match the value in the print start position register.
— Once the two requirements have been met, the logic will begin producing fire strobes after 1/75 inch.

PSCR: This value is decreased once for each fire strobe that is generated.

PIR: When outputs of carrier position counter become same as the value of this register, position interrupt
request occurs.

Registers Offset Address R/W Description Reset Value
CPCR 0x6824 R/W Carrier position counter register 0x0000
PSPR 0x6828 R/W Print start position register Oxffff
PSCR 0x682c R/W Print slice counter register 0x0000

PIR 0x6830 R/W Position interrupt register Oxffff

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Count Value

[15:0] Count Value of Each Register

Figure 18-2. CR Count Register

ELECTRONICS 18-3

CR FIRE KS32C65100 RISC MICROPROCESSOR

SUGGESTIONS FOR F/W DESIGN

When CR Motor is Stopped
Must reset BASIC timer and PRESTEP timer's RUN bit to "0".
Must reset the position block enable bit (bit 0 of PFCR(0x6820)) to "0".

When Restarting the CR Motor
Must write new (or previous) values in the BASIC timer base registers.
Must write new (or previous) values in the PRESTEP timer base register.
Must set the position block enable bit (bit 0 of PFCR(0x6820)) to "1".
Must set the BASIC timer and PRESTEP timer's RUN bit to "1".

In other words, before starting Re-RUN after stopping the BASIC timer, you must:
— Rewrite the BASIC timer base register and PRESTEP timer base register values, and

— Reset the position block enable bit before setting to reduce the error in carrier motor position.

To reduce location errors, you should fix the position & fire control register's bit 6 (position counter clock) to 1,
adjust the position and fire pre-scaler values, and set the fire DPI.

The value of position & fire control register's bit 6 should not be changed during system operation.

Example of Position DPI Setting for Step Motor Mode

Position DPI Pre-scaler Value(PFCR[20:15])
300 DPI 64 (19200/300)
600 DPI 32 (19200/600)
1200 DPI 16 (19200/1200)

Example of Fire DPI Setting

Fire DPI DC Motor Mode Step Motor Mode
Prescaler value (PFCR[14:7]) DPI mode setting value Prescaler value (PFCR[14:7])

150 DPI 16 (2400/150) 000, other case 128 (19200/150)

300 DPI 8 (2400/300) 001 64 (19200/300)

600 DPI 4 (2400/600) 010 32 (19200/600)

1200 DPI 2 (2400/1200) 011 16 (19200/1200)

2400 DPI 1 (2400/2400) 100 8 (19200/2400)

18-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINT HEAD

1 9 PRINT HEAD

OVERVIEW

This module performs the following functions:

Fire pulse generation.

DMA request for reading data.

Three 32-bit dot counters for color.

One 32-bit dot counter for mono.

Fire strobe delay for horizontal alignment of dot.

8-bit decrement timer for the width of the fire enable pulse of print head logic using MCLK.

10-bit decrement timer for the width of the fire group window of print head logic using MCLK.

Four 12-bit timers for the fire strobe delay using selectable clock. (clock = main clock/1, 2, 4, or 8)

4-bit decrement counter for Td delay.

6-bit pre-heat pulse timer.

6-bit pre-heat delay timer.

Head Control Register Head Type Number of Data
PHCRI[8] PHCRI[7] PHCR[11]
0 0 0 DH, mono head (208 nozzle) 13 half-word
0 1 0 DH, colour head (192 nozzle) 12 half-word
1 0 0 SH, mono head (56 nozzle) 4 half-word
1 1 0 SH, colour head (48 nozzle) 3 half-word
1 0 1 SH, mono head (56 nozzle) 7 bytes

SPECIAL FUNCTION REGISTER

PRINT HEAD CONTROL REGISTER

Register

Offset Address

R/W

Description

Reset Value

PHCR

0xa000

R/W

Print head control register

0x000000

ELECTRONICS

19-1

PRINT HEAD

KS32C65100 RISC MICROPROCESSOR

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X

X

Address | CLK| X [X[X[X | X | X[X]X] X|[X

X

X

X

X

Dither

[3:0] Dither Count Bit

[4] Decrement Through Enable Group
0=Up 1 =Down

[5] Black Dot Counter Select
0 = Disable 1 = Enable

[6] Color Dot Counter Select
0 = Disable 1 = Enable

[7] Color Head Select
0 = Black 1 = Color

[8] Head Type Select
0 =208/192 nozzle head 1 = 56/48 nozzle head
[9] Consecutive Dot Eliminator

0 = Disable 1 = Enable

[10] Top Nozzle Group Select
0 = Right 1=Left

[11] Vertical 300DPI Mode
0 = Half-word 1= Byte

[12] Horizontal 300DPI Mode
0 = Disable 1 = Enable

[13] Decompression Mode
0 = Disable 1 = Enable

[14] Data Select
0 =By H/W 1=ByS/W

[15] Simulation Test Control (HDMA Request Generation)
0 = Disable 1 = Enable

[16] Perform a Fire Cycle (Write Only)
0 = Disable 1=Enable

[17] Perform a Data Cycle (Write Only)
0 = Disable 1 = Enable

[19:18] Clock Select

00 = MCLK/1 10 = MCLK/4
01 = MCLK/2 11 = MCLK/8
[23:20] Address Line (for the Nozzle)

[24] Address Line (by S/W)
0 = Disable 1 = Enable

[25] Current Mode
0 = Printing 1 = Scanning

Figure 19-1. Print Head Control Register

19-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRINT HEAD

FIRE ENABLE TIMER/OBSERVATION REGISTER

This 8-bit timer is used for fire enable duration counter value.
The observation register is read-only which is of the current value.

Registers Offset Address R/W Description Reset Value
FETR 0x7004 R/W Fire enable timer register 0x00
FETOR 0x7008 R Fire enable timer observation register 0x00

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counter Value

[7:0] Counter Value
This data specifies the amount in the counter

Figure 19-2. Fire Enable Timer/Observation Register

FIRE WINDOW TIMER/OBSERVATION REGISTER
This 10-bit timer is used for the fire window enable duration counter value.

The observation register is read-only which is of the current value.

Registers Offset Address R/W Description Reset Value
FWTR 0x700c R/W Fire window timer register 0x000
FWTOR 0x7010 R Fire window timer observation register 0x000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counter Value

[9:0] Counter Value
This data specifies the amount in the counter

Figure 19-3. Fire Window Timer/Observation Register

ELECTRONICS 19-3

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

FIRE STROBE DELAY TIMER/OBSERVATION REGISTER
This 12-bit timer is used for the fire strobe delay duration counter value.

The phisthexdit foggistertéme folorl9-hibibm ésofthearertesgtdvadudelay the fire strobes from the carrier motor logic
before sending them to the print head drivers. The timers alternate for each fire strobe.

Wit istmen tiimnsti e ciataygsyiecpeioet e estethve iprsadotihg fetiretssiadseiblobigenerated and the timer will

be forced to reload. This will prevent the loss of data from excessive delays.

Registers Offset R/W Description Reset Value
Address
FSDTR 0x7014 R/W Fire strobe delay timer register 0x000
FSDTOOR 0x7018 R Fire strobe delay timer 0 observation register 0x000
FSDT10R 0x701c R Fire strobe delay timer 1 observation register 0x000
FSDT20R 0x7020 R Fire strobe delay timer 2 observation register 0x000
FSDT30R 0x7024 R Fire strobe delay timer 3 observation register 0x000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counter Value

[11:0] Counter Value
This data specifies the amount in the counter

Figure 19-4. Fire Strobe Delay Timer/Observation Register

19-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINT HEAD

PRE-HEAT PULSE TIMER/OBSERVATION REGISTER

This 6-bit timer is used for the pre-heat pulse enable duration counter value.

The observation register is read-only which is of the current value.

Registers Offset Address R/W Description Reset Value
PHPTR 0x7028 R/W Pre-heat pulse timer register 0x00
PHPTOR 0x702c R Pre-heat pulse timer observation register 0x00

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counter Value

[5:0] Counter Value
This data specifies the amount in the counter

Figure 19-5. Pre-Heat Pulse Timer/Observation Register

PRE-HEAT DELAY TIMER/OBSERVATION REGISTER
This 6-bit timer is used for the pre-heat delay enable duration counter value.

The observation register is read-only which is of the current value.

Registers Offset Address R/W Description Reset Value
PHDTR 0x7030 R/W Pre-heat delay timer register 0x00
PHDTOR 0x7034 R Pre-heat delay timer observation register 0x00

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counter Value

[5:0] Counter Value
This data specifies the amount in the counter

Figure 19-6. Pre-Heat Delay Timer/Observation Register

ELECTRONICS 19-5

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

PRINTHEAD OBSERVATION REGISTER

Register Offset Address R/W Description Reset Value
PHOR 0x7038 R Print Head observation register 0x0000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Sum Delay Number Dither HDMA Fire Data

[3:0] Data State
This indicates the printhead data state machine value

[6:4] Fire State
This indicates the printhead fire state machine value

[10:7] HDMA State
This indicates printhead HDMA state machine value

[14:11] Dither Count
[18:15] Number of Current Printhead Data from HDMA

[22:19] Front/Back end Delay Counter Value

[27:23] Sum of the Number of Output Enable Signals

Figure 19-7. PrintHead Observation Register

19-6 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINT HEAD

FRONT AND BACK END DELAY COUNTER REGISTER

This 4-bit timer is used for the front/back end delay duration counter value.

Register

Offset Address R/W Description

Reset Value

TDCR

0x703c R/W Td delay counter register

0x00

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Front

Back

[3:0] Counter 1 Value
This data specifies the amount in the back-end delay
counter

[7:4] Counter 2 Value
This data specifies the amount in the front-end delay
counter

Figure 19-8. Td Delay Counter Register

ELECTRONICS

19-7

PRINT HEAD

KS32C65100 RISC MICROPROCESSOR

PRINT HEAD DATA WORD REGISTER

Registers Offset Address R/W Description Reset Value
PHDWOR 0x7040 R/W Print head data word 0 register 0x0000
PHDWI1R 0x7044 R/W Print head data word 1 register 0x0000
PHDW2R 0x7048 R/W Print head data word 2 register 0x0000
PHDW3R 0x704c R/W Print head data word 3 register 0x0000
PHDWA4R 0x7050 R/W Print head data word 4 register 0x0000
PHDW5R 0x7054 R/W Print head data word 5 register 0x0000
PHDWG6R 0x7058 R/W Print head data word 6 register 0x0000
PHDW7R 0x705c¢ R/W Print head data word 7 register 0x0000
PHDWS8R 0x7060 R/W Print head data word 8 register 0x0000
PHDW9R 0x7064 R/W Print head data word 9 register 0x0000
PHDW10R 0x7068 R/W Print head data word 10 register 0x0000
PHDW11R 0x706¢ R/W Print head data word 11 register 0x0000
PHDW12R 0x7070 R/W Print head data word 12 register 0x0000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Printhead Data Word

[15:0] Printhead Data Word

Figure 19-9. Print Head Data Word Register

19-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRINT HEAD

DOT COUNTER REGISTER

Registers Offset Address R/W Description Reset Value
DCBR 0x7074 R/W Dot counter black register 0x00000000
DCYR 0x7078 R/W Dot counter yellow register 0x00000000
DCCR 0x707c R/W Dot counter cyan register 0x00000000
DCMR 0x7080 R/W Dot counter magenta register 0x00000000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Dot Counter Value

[31:0] Dot Counter Value
This data specifies the amount in the counter of black for
mono head, and yellow, cyan and megenta for color head

Figure 19-10. Dot Counter Register

DOT COUNTER CONTROL OBSERVATION REGISTER

Register Offset Address R/W Description Reset Value
DCCOR 0x7084 R Dot counter control observation register 0x000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Magenta| Cyan Yellow

[2:0] Yellow Dots
This data specifies the amout of yellow dots per fire pulse

[5:3] Cyan Dots
This data specifies the amout of cyan dots per fire pulse

[8:6] Magenta Dots
This data specifies the amout of magenta dots per fire pulse

Figure 19-11. Dot Counter Control Observation Register

ELECTRONICS 19-9

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

Caution

The print head logic is responsible for receiving image data, conditioning the data for print, and routing the
data to the print head in the proper sequence. The nature of the print head design is the primary motivation
behind the structure of the print head firing logic.

The print head contains 208 nozzles arranged in two columns that are divided into sixteen groups containing
13 nozzles each. The print head is configured so that only one nozzle from each group may be fired at any
time. This necessitates a sequential firing scheme passing through each of the 13-nozzle group, one at a
time, firing a maximum of sixteen nozzles.

Many of the critical timing relationships for the print head firing are controlled by carrier motor logic. It is
imperative that print head motion and nozzle firing be directly linked to produce the desired print output
characteristics. Additional software control is provided to aid print alignment.

Data for the print head logic is received from memory via the HDMA pair or directly from the KS32C65100.
During a print fire cycle, the logic will issue a data request for 7 byte, 3, 4, 12, or 13 half words of data
transferred per print slice.

19-10 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR HDMA

HDMA

OVERVIEW

This module is used to transfer head data from memory to the head data register by DMA with match function.

HDMA SPECIAL REGISTERS
HEAD DMA CONTROL REGISTER
This DMA has a kind of DMA operation under the control of the print module. HDMA reads from memory, and

writes to head. HDMA can transfer data by bytes/half-words. The transfer size is decided by setting the head
control register.

Register Offset Address R/W Description Reset Value
HDCON 0x7800 R/W Head DMA control register 0x0000000
[0] Run enable/disable When you set this bit to '1', HDMA operation starts. To stop

HDMA, you must clear this bit to '0". If you control this bit
only, 0x7810 address will be used (if 0x7810 address is
used, other value will not be changed).

[1] BUSY status When HDMA starts, this read-only status bit is
automatically set to '1".
When it is '0', HDMA is in idle status.

[2] Source address direction Only one source can initiate an HDMA operation.
If this bit is set, the source address will be decreased.
If this bit is cleared, the source address will be increased.

[3] Source address fix This bit determines whether the source address will be
changed or not during an HDMA operation. This feature is
used when transferring data from a single source to
multiple destinations.

[4] Reset If this bit is set to '1', then the HDMA control register value
will be initialized, after this bit is cleared to '0', you can
specify other control values.

[5] Not Used
[6] Match pend status If the value of the source address register (HDSAR) and

the value of the match address register (HDMAR) are
matched, the match pend status bit is set. If you would like

ELECTRONICS 20-1

HDMA

KS32C65100 RISC MICROPROCESSOR

[7] Match interrupt

[8] HDMA Interrupt enable

[9] Auto Load

[10] Alternate Enable

[11] Current queuing

[16] Queuing O enable

[24] Queuing 1 enable

to clear the status bit, write zero.

This bit determines whether the interrupt pending by
match of source/match pending enable address register
occurs or not. In the case of a match, HDMA operates
until the source address is the match address.

An HDMA operation is started/stopped by setting/clearing
the run enable/disable bit. If this bit is set to '1' when
DMA starts, a 'stop interrupt' is generated when HDMA
operation stops. If this bit is '0', an interrupt and match
interrupt are not generated.

This bit should be enabled for source address register's
parallel load.

This bit determines to alternate register banks.
This bit indicates whether the current queuing bank is ‘0’ or
‘1. You can bank selection set/clear the queuing bit

selection.

If this bit is set and HDCON][10] is set, HDMA alternates
bank 0.

If this bit is set and HDCON][10] is set, HDMA alternates
bank 1.

20-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

HDMA

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X 0000000 X 0000 X X[X[X[X[X

X

X

X

X

X

X

[0] Run Enable
0 = Disable HDMA operation 1 = Enable HDMA operation

[1] Busy Status
0 = HDMA idle 1 = HDMA active

[2] Source Address Direction

0 = Increase source address 1 = Decrease source address

[3] Source Address Fix
0 = Increase/decrease source address
1 = Do not change source address (fix)

[4] Reset

0 = Normal operation 1 = Initialize control register

[5] Not Used

[6] Match Pend Status
0 = Not match 1 = Match

[7] Match Interrupt Pending Enable
0 = Match Interrupt disable 1 = Match interrupt enable

[8] HDMA Interrupt Enable
0 = Do not generate stop interrupt and match interrupt
1 = Generate stop interrupt and match interrupt when HDMA stops

[9] Auto Load
0 = Do not load parallel load
1 = Load parallel load of counter register

[10] Alternate Enable
0 = Cannot operates alternation
1 = Can operation alternation between bank 0 and bank 1

[11] Current Queuing Bank Selection
0=Bank 0 1=Bank 1

[16] Queuing Enable Bit 0
0 = Queuing 0 disable 1 = Queuing 0 enable
[24] Queuing Enable Bit 1

0 = Queuing 1 disable 1 = Queuing 1 enable

Figure 20-1. HDMA Control Register

ELECTRONICS

20-3

HDMA KS32C65100 RISC MICROPROCESSOR

HDMA SOURCE ADDRESS REGISTER

These registers contain the 28-bit source/destination address for the HDMA channel.
Depending on the settings you make to the HDMA control register(HDCON), theses adr will be fixed, increased or
decreased.

Register Offset Address R/W Description Reset Value
HDSAR 0x7804 R/W HDMA source address register 0x0000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Source Address

[27:0] Source Address

Figure 20-2. HDMA Source Address

HDMA TRANSFER COUNT REGISTER

This register contains the 24-bit current count value of the number of HDMA transfers completed for HDMA. This
count value is decreased by 1 while one DMA operation is completed regardless of transfer width.

Register Offset Address R/W Description Reset Value
HDTCR 0x780c R/W HDMA transfer count register 0x000000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Transfer Count

[23:0] Transfer Count

Figure 20-3. HDMA Transfer Count Register

20-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR HDMA

HDMA SOURCE/MATCH ADR REGISTER

These registers contain the 28-bit source/destination address for the HDMA channel.
Depending on the settings you make to the HDMA control register (HDCON), theses adr will be fixed, increased
or decreased.

Registers Offset Address R/W Description Reset Value
HDSARO 0x7814 R/W HDMA source address register O 0x0000000
HDMARO 0x7818 R/W HDMA match address register 0 0x0000000
HDSAR1 0x781c R/W HDMA source address register 1 0x0000001
HDMARL1 0x7820 R/W HDMA match address register 1 0x0000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Source/Match Address

[27:0] Source/Match Address

Figure 20-4. HDMA Source/Match Address

Examples of setting registers to use the match and queuing function of HDMA

1. Case 1: BankO ® Bankl ® BankO ® Bankl ® BankO

1) Set HDSARO, HDMARO, HDSAR1, HDMAR1, HDTCR
2) Set HDCON with 0x1010781

(match interrupt pending enable, HDMA interrupt enable, auto load enable, alternate enable,
select bankO for current queuing bank, enable queuing enable bit 0/1, run HDMA)

2. Case 2: Bankl ® BankO ® Bankl ® BankO ® Bankl

1) Set HDSARO, HDMARO, HDSAR1, HDMAR1, HDTCR
2) Set HDCON with 0x1010f81

(match interrupt pending enable, HDMA interrupt enable, auto load enable, alternate enable,
select bank1 for current queuing bank, enable queuing enable bit 0/1, run HDMA)

3. Case 2: BankO ® Bank 1

1) Set HDSARO, HDMARO, HDSAR1, HDMAR1, HDTCR
2) Set HDCON with 0x1000781

(match interrupt pending enable, HDMA interrupt enable, auto load enable, alternate enable,
select bankO for current queuing bank, enable queuing enable bit 1, run HDMA)

ELECTRONICS 20-5

KS32C65100 RISC MICROPROCESSOR

IMAGE PROCESSOR

2 1 IMAGE PROCESSOR

CPU I/F Module (Register)

SRAM (2.56K)

SRAM (0.256K)

OVERVIEW
—» Sensor In
ADC Module
ADC Value[7:0]
«
ADC Clock .

Shading Factor[7:0]
<+— Sl Shading Correction
<4— CLK Module
<4— RLED —| Shade Corrected Value[7:0]
<4—— GLED
<4—— BLED
< St Interrupt Gamma Correction

CTRL —— Gamma Corrected Value[7:0]
—P
Nor_Mag_Red » Reduction/Magnification
Module
R/M Value[7:0]
LAT_EDF d Binarization Module
(LAT, EDF)
— Binary Value[7:0]
DMA ACK >
» DMA Interface Module
. DMA REQ
. DMA Data[31.0]

SRAM (2.56K)

¢
¢
< A 4
Motor
—> Ctrl

Motor Interrupt

Motor Phase[5:0]
EEEEE—

Figure 21-1. Image Processor Block Diagram

ELECTRONICS

21-1

IMAGE PROCESSOR

KS32C65100 RISC MICROPROCESSOR

These modules adjust and convert the input data into data that can be output to the printer.

CIS sensor control

Digital shading correction
GAMMA correction

Magnification/reduction

Photo/text mode binarization

IMAGE PROCESSOR SPECIAL REGISTERS

SENSOR SHIFT CLOCK CONTROL REGISTER

Register

Offset Address R/W Description

Reset Value

SEN_CLK

0x9800 R/W Sensor shift clock control register

0x00818

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X | X CLK_HIGH CLK_LOW

[7:0] SEN_CLK_LOW
Indicates the sensor shift clock's "low" period in system clock units.

[15:8] SEN_CLK_HIGH
Indicates the sensor shift clock's "high" period in system clock units.

NOTE:

The SEN_CLK's 'high' and 'low' periods are chosen according to the type of
sensor being used. For example, for a DYNA with a 25% period, you should input
the values SEN_CLK_HIGH = 08H and SEN_CLK_LOW = 18H (reset value), and
for a CANON with a 50% period, each value should be set to 10H.

[16] Sensor_CLK_LOW ACTICE

The Sl signal and sensor shift signal's phase can be changed according to the
sensor characteristics.

0 = High Active

1 = Low Active

[17] PHASE1_PHASE2
0 = DYNA (1-channel CIS)
1 = CANON (2-channel CIS)

Figure 21-2. Sensor Shift Clock Control Register

21-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

IMAGE PROCESSOR

SENSOR SI CLOCK CONTROL REGISTER

Register Offset Address R/W Description

Reset Value

S|_TERM

0x9804 R/W Sensor Sl clock control register

0x09c4

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SEN_CLK_LOW

[12:0] SI_TERM

This register decides on the sensor latch clock's period. The
count unit uses the SEN_CLK's period as reference. The 1-
channel's sensor counts one period, but the 2-channel sensor
outputs one pixel value in a half-period of SEN_CLK, so you
must adjust as needed.

Example: To get an A pixel with a DYNA sensor:
->S| TERM=A+a
To get an A pixel with a CANON sensor
->S|_ TERM=A/2+a

When the appropriate Sl signal for each period is being

output, an interrupt is generated. The S/W uses this signal to
modify the value. The value modified at this time influences the
Sl output next.

Figure 21-3. Sensor Sl Clock Control Register

ELECTRONICS

21-3

IMAGE PROCESSOR

KS32C65100 RISC MICROPROCESSOR

SENSOR R (GB) LED CONTROL REGISTER

Registers Offset Address R/W Description Reset Value
RLED 0x9808 R/W Sensor R LED control register 0x00000960
GLED 0x980c R/W Sensor G LED control register 0x00000960
BLED 0x9810 R/W Sensor B LED control register 0x00000960

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

START

END

[28:16] RLED_START/[12:0] RLED_END
[28:16] GLED_START/[12:0] GLED_END

[28:16] BLED_START/[12:0] BLED_END

A signal for operating the sensor's light source. It is counted
using SEN_CLK as reference. This signal latches the register
value each time the Sl is turned on, and operates automatically
according to that value. Generally a normal mono CIS uses only
one out of three signals, but the canon color CIS uses all three
(refer to color canon CIS spec.).

Figure 21-4. Sensor R(GB) LED Control Register

IWIN CONTROL REGISTER

Register

Offset Address

R/W

Description

Reset Value

IWIN

0x9814

R/W

Effective pixels num. control register

0x000006b8

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

IWIN_START

IWIN_END

[28:16] IWIN_START/[12:0] IWIN_END

This register is to divide the necessary data from the
unnecessary data that may be included in the sensor output
data. For example, if IWIN_START = 20 and IWIN_END =
1748, it means that the 20th to the 1728th pixel of the ADC
output will be handled and output.

Figure 21-5. IWIN Control Register

21-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

CHANGED IWIN CONTROL REGISTER

Register Offset Address R/W Description Reset Value
CHANGED_IWIN 0x9818 R/W Mag/Red pixels num. control register 0x06b8

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XX CHANGED_PIX_NUM

[11:0] CHANGED_PIX_NUM
This register inputs the modified pixel values if the data is being
magnified or reduced horizontally.

[13:12] NOR_MAG_RED
00: Normal

01: Magnification

10: Reduction

Figure 21-6. CHANGED_IWIN Control Register

MAG/RED RATIO CONTROL REGISTER

Register Offset Address R/W Description Reset Value
RATIO 0x981c R/W Mag/Red ratio control register 0x10080

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

HOR_RATIO VER_RATIO

[7:0] VER_RATIO
Vertical reduction ratio of 1/128 unit

[16:8] HOR_RATIO
Horizontal reduction/magnification ratio of 1/256 unit

Figure 21-7. Mag/Red Ratio Control Register

ELECTRONICS 21-5

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

LAT (LOCAL ADAPTIVE THRESHOLD) CONTROL REGISTER

Register Offset Address R/W Description Reset Value
LAT 0x9820 R/W Local adaptive threshold control register 0xdc7f40
313029 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
TMAX TMIN TDIFF
[7:0] TDIFF
[15:8] TMIN
[23:16] TMAX
Figure 21-8. LAT Control Register
ADC CONTROL REGISTER
Register Offset Address R/W Description Reset Value
ADC 0x9824 R/W ADC clock control register 0x005

313029 28 27 26 25 24 23 222120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X START

[7:0] ADC_START

This signal allows the analog signal output from the sensor to be
A/D converted by the internal ADC. By adjusting this value, the
ADC clock location can be adjusted in system clock units for the
optimum A/D conversion. This value can be found by outputting
the signal output to the sensor and the ADC clock (in IP test
mode) to the oscilloscope simultaneously and comparing the
values.

[8] BINARY_GRAY
0 = Output binary data.
1 = Output 8-bit data.

Figure 21-9. ADC Control Register

OPERATION CONTROL REGISTER

Register

Offset Address

R/W

Description

Reset Value

OPERATION

0x9828

Operation control register

0x000

21-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XX [X[X[0] X|X] X|X[|X[|X[|X

[0] SCAN_ON

After power on, the KS32C65100 provides the Sl signal and other various sensor signals.

Therefore, you need a signal that tells you from which line you will get useful data.

The SCAN-on provides that service. The line triggering signals that follow after this bit is set to "1" are
recognized as meaningful signals (the image processor operates), and the image handling

(shading, binarization etc) starts.

If you want to stop the image processor while it is working, clear the VER_RATIO's value to '0'.

For restarting the image processor, writing the VER_RATIO's value.

[1] RESTART

This register bit can be used for synchronization during automatic operation.

If there isn't a bit that fulfills this purpose, the Sl signal can be triggered without regard
to the KS32C65100's internal operations when power is on, and the brightness of
Line 1's first pixel can be irregular. To prevent this problem, this register bit is

set to "1" after the power is turned on, so that the counting restarts from

this point for synchronicity.

[2] SHAD_ACQ
Shading acquisition

[3] SW_MODE

When initializing or reading the internal SRAM, this value must be set to "1".
The register's read/write signal can be applied as the RAM read/write signal
only when this value is high.

[4] SWING

If the same value is maintained for a long time during error diffusion,

the same pattern is repeated and can have an optically unsatisfactory result.
To prevent this problem, it is necessary to swing the pixel values a little bit
at the outline. An algorithm is applied when this bit is set to "1".

[5] LAT_EDF
0 = Local adaptive threshold (for text mode) 1 = Error diffusion (for photo mode)

[6] PAGE_CLK
This signal is for resetting the horizontal reduction counter. 3
It carries out triggering at the beginning of a page. (0 i i2i®i i2i®"

[8] MOTOR_ON
0 = Motor off 1 = Motor on

[9] MOTOR_PHASE_LAT_OR_NOT

0 = The motor phase value used in the register is used by the MPU with immediate effects
1 = The motor phase value used in the register is latched to the Sl signal

and manifested in the next phase.

[11:10] SEPARATE_CLK_SEL
This register is for selecting the unit clock of the counter that adjusts the motor phase interval.
00 = System clock/2 01 = System clock/4 02 = System clock/8 03 = System clock/16

Figure 21-10. Operation Control Register

ELECTRONICS

21-7

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

SRAM CONTROL REGISTER

Register Offset Address R/W Description Reset Value
RAM_CTRL 0x982c R/W IP Inner SRAM control register 0x70000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

x| X[x| X| oooo RAM_ADDR

[11:0] SW_FIRST_RAM_ADDR
You can select the first address through this register when MPU is
writing data on the internal SRAM.

[16] GAMMA_RAM_CS
0 = RAM chip select for gamma correction SRAM

[17] SHAD_RAM_CS
0 = RAM chip select for shading SRAM

[18] BI_RAM_CS
0 = Chip select for binarization SRAM

[19] SW_ADDR_INIT

This register is for initializing the internal RAM's address. When this
BIT is triggered once (0 -> 1 -> 0), the SW_FIRST_RAM_ADDR value
becomes the first address value that MPU records in the SRAM. it must
be initialized before writing on the internal SRAM.

Figure 21-11. SRAM Control Register

SRAM DATA REGISTER

Register Offset Address R/W Description Reset Value
RAM_DATA 0x9830 R/W SRAM data register 0x00

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

RAM_DATA

[7:0] RAM_DATA
Records the value when MPU is writes on the internal SRAM.

Figure 21-12. SRAM Data Register

21-8 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

MOTOR TERM CONTROL REGISTER

Register Offset Address R/W Description Reset Value

MOTOR_TERM 0x9834 R/W Motor term control register 0x0000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

MOTOR_TERM

[15:0] MOTOR_TERM
This register records the interval between the motor phase.
Its unit clock is selected by the register SEPARATE_CLK_SEL.

Figure 21-13. Motor Term Control Register

MOTOR PHASE CONTROL REGISTER

Register Offset Address R/W Description Reset Value

MOTOR_PHASE 0x9838 R/W Motor phase control register 0x00

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X| X[X] X[X

[0] BASE_VALUEO
[1] BASE_VALUE1
[2] BASE_VALUE2
[3] BASE_VALUE3
[4] BASE_VALUE4

[5] BASE_VALUES
Records next phase value for motor operation.

Figure 21-14. Motor Phase Control Register

ELECTRONICS 21-9

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

BLACK SHADING CORRECTION FACTOR REGISTER

Register Offset Address R/W Description Reset Value
BLACK 0x983c R/W Black shading correction value register 0x00

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

BLACK

[7:0] BLACK

This value is for carrying out black shading correction. It is
found and recorded in this register by averaging the values
found with the sensor turned off.

Figure 21-15. Block Shading Correction Factor Register

SENSOR(CIS)

The sensor is influenced by the 300DPI Canon/DYNA'S CIS. The signal output from the controller to the sensor
include the SI, SEN_CLK, RLED, GLED, and bled. The reset values for all registers related to the sensor are set
with the DYNA 200DPI as reference.

SI

The Sl signal is for latching the electrical charge in the sensor. The period is in SEN_CLK units according to the
value of register SI[12:0]. This signal is adjusted during operation by S/W, so that it is synchronous to the motor.
The Sl signal is automatically operated once the power is on, but an interrupt occurs every time an Sl signal is
generated, so you can change the Sl period if you change the value according to this signal. One thing to
remember is that if you change the register Sl value according to the interrupt, it influences the period of the next
Sl. If you give the restart signal by S/W for synchronicity, a new Sl signal is generated from that signal. Shading
and binarization are carried out only when the Sl signal and the SCAN_ON are both "high".

I
I Recount Start
[}
H : SI_TERM H SI_TERM H SI_TERM H
SI T ((—
Restart ’_‘ \ \
SCAN_ON
Image Handin Image Handin
IWIN

Figure 21-16. Restart & SCAN_ON Timing Diagram

21-10 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

SEN_CLK

The SEN_CLK is a clock for shifting the values latched by the Sl signal to the outside of the sensor. The period of
the SEN_CLK varies for different brands such as DYNA and CANON. You need a 50% period for a CANON
product, and a 25% period for a DYNA product. The SEN_CLK[15:8] adjusts the SEN_CLK signal's high period
and the SEN-CLK]7:0] adjust the SEN_CLK's low period in system clock units. It takes at least 10 system clocks
to handle an actual pixel.

NOTE

The phase of the SI and SEN-CLK signal can change according to the different brands. For example, for
a 200DPI DYNA or a 300DPI CANON, the two signals are high active, but for a 300DPI DYNA, it is low
active. Also, a CANON product uses the 2-channel method which reads values from SEN_CLK's both
high and low level. For that, the register RATIO[17] (SEN_CLK_LOW_ACTIVE) and RATIO[18]
(PHASE1_PHASE?) are prepared.

RLED, GLED, BLED

This signal is for controlling the sensor's brightness. The lamp's operational range is decided using the values of
registers RLED, GLED, And BLED. The SEN_CLK period as the unit reference. Generally, only one of three
signals is needed for normal mono CIS, but the canon color CIS uses all three signals.

ELECTRONICS 21-11

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

REDUCTION & MAGNIFICATION

This feature uses the register value to magnify (up-to 200%) or reduce horizontally to a unit less than 1%, and to
reduce vertically.

Reduction: Horizontal

A 9-bit register can be used for reduction in 256 steps. Reduction can't take place if the register value is 9 'H100',
and for any value below it, reduction is carried out according to the formula given below. This feature is used
when sending an image to a 203DPI-level fax when using a 300DPI-level sensor. This feature uses sampling by
an adder. You only need to set the reduction bit, and you can adjust in units less than 1%.

Register Value = Reduction Ratio = 256

To find the number of reduced pixels compared to the input pixels, use the following formula:

Register Value , o _
€ IS;%% 2 - Number of input pixels = number of reduced pixels

(Except, if the value behind the decimal point of the formula's result is larger than

Register Value
256

If not, the value found is the actual number of reduced pixels.)
For example, when reducing a 300DPI image to 203DPI, the register setting value is

add 1 to the result.

. 203 .,
Register Value = 3%:(3; 256 =137.23

so you should set 137 to the register. The number of reduced pixels can be found in the following manner.

_ . 17 . :
%2 © 2557 =1727.9in 0.97 is larger than 2—52 = 0.67 so the number of pixels actually reduced is 1728.

e | | | | | |

RED_BAN
(reduction ban CLK)

INNER_PIX_CLK
(reduction PIX_CLK)

Figure 21-17. Reduction Pixel Clock Timing Diagram

Reduction: Vertical

The feature described above allows vertical reduction in units of 1/128 using a 3-bit register. The basic algorithm
is the same as that in the horizontal direction, but the unit of reduction is 8 bits, and the reduction ratio is not as
dense. During reduction, all signals transmitted to the sensor and ADC are generated, but the data isn't accepted.
You need to use the reduction ratio register for vertical reduction. You can find the register value using the
following formula.

Register Value = Reduction Ratio © 128

The register’s initialization value is 8 'H80', and the value signifies a mode that does not carry out reduction.

21-12 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

Magnification

The design of this product is such that the reduction feature described above is also used for image
magnification. This feature is to magnify and print a 300DPI image using a 200DPI-level sensor. To do so, first
increase the pixel clock (PIX_CLK) speed to twice the original. Since the internal PIX_CLK (INNER_PIX_CLK) is
made using the reduction feature, you can have a maximum velocity (MSLT) of approximately 2ms for 33MHz in
magnification. In other words, you are guaranteeing the time for one PIX_CLK to be generated between the
PIX_CLKs, and allowing a new PIX_CLK to be generated there according to the register value. The timing
diagram is given below.

PIX_CLK |_| |_| |_| |_| |_|
Whin : . . .) .
SUM[8:0] ‘40 >< h100 >< h040 >< hogo >< hoCo >< h100 >< h040

Carry

MAG_PIX_CLK H H
INNER_PIX_CLK
(magnified PIX_CLK)

Figure 21-18. Magnification Pixel Clock Timing Diagram

To carry out magnification, you must select the magnification bit (NOR_MAG_RED==1), and record the actual
number of pixels calculated using the magnification ratio. For a 125% magnification, the magnification ratio is
0.25, and the register value is found in the following manner.

Register Value = Magnification Ratio = 256

To find the number of magnified pixels, use the following formula.

Regi Value , L . _ .
€ IS;%% aue Total number of line input pixels = number of added pixels

(Except, if the value behind the decimal point of the formula's result is truncated)

The sum of this value and the number of originally input pixels give the number of actually magnified pixels.
For example, for a 137% magnification, the magnification ratio register setting value (for 1720 pixels/line) is
Magnification Register Value = 0.37 ~ 256 = 94.72,

S0 you can set 94 to the register. The number of magnified pixels is the sum of the original value 1720 and the
number of added pixels, 631.

Since in 29_56 1720 = 631.56 (0.56 is truncated), the number of added pixels from the magnification is 631.

ELECTRONICS 21-13

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

DIGITAL SHADING CORRECTION

This feature is for adjusting the sensor's non-uniform illumination characteristics using the 16" 8 divider. In this
controller, the ratio between the value with 8-bit steps and the actual value of white is found, and the ratio is used
for conversion during scanning. For example, if we call the value from white pad W, the value from black pad B,
and the actual value from scanning X, the digital shading corrected value (Y) can be found by the following
formula.

X-B

y =22~
W-B

256

Here, the process of storing the value that will read the white pad (W) in memory is called white shading
acquisition. If you set the shading acquisition bit to "1" and scanning process is performed, the value is
immediately stored in the shading memory. If you go into the scanning process after this step, the shading
corrected value for the actual value is generated using W and B as reference.

Real Scanned Value
- Black Pad Value (8 Bits)

16 * 8 8 Bits Shift
Divider & Clamping ——»

Shading Corrected
Value (8 Bits)

A

White Pad Value
- Black Pad Value (8 Bits)

Figure 21-19. Shading Correction Block Diagram

21-14 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

GAMMA CORRECTION

This process uses a 256" 8-bit SRAM to carry out gamma correction of the RGB value that was shading corrected
in the previous step.

Gamma Table SRAM
(256 * 8 Bits)
Gamma Corrected

' Value (8 Bits)

Shading Corrected Data[7:0]

Value (8 Bits)

Address[7:0]

Figure 21- 20. Gamma Correction Block Diagram

BINARIZATION

Error Diffusion

This process is for binarization in the image mode. The algorithm used is in the FLOYD method, and uses the
mask given below.

1(UC) 5(V) 3(UR)
7(L) Input Pixel(C) -

" C'=C +[(2/16) x Error(UL)] + [(5/16) * Error(U)]
+ [(3/16) x Error(UR)] + [(7/16) ~ Error(L)]

" eBinary output decision and error calculation.
IF C'3 128, OUT White(0), AND Error(C') = C' - 255
ELSE, OUT Black(1), AND Error(C") = C'

This method is advantageous from the aspect of H/W, but if a certain brightness is maintained on the algorithm,
an optically displeasing stripe may be generated on the screen. To compensate for this problem, you can swing
the outline values a little.

Local Adaptive Threshold

This method is for binarization in text mode. You don't need to use an edge-emphasis algorithm when using this
method, and you can expect the ABC effect. You need to select the values for the entire area as shown below.
— Tmax: decides if the pixels will have absolute white value

— Tmin: decides if the pixels will have absolute black value

— Tdiff: decides if the pixels have edge components

ELECTRONICS 21-15

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

The algorithm using the above values is as follows.

" MIN/MAX Decision
Decide MIN/MAX gray value of 2x3 matrix
Calculate the average of min/max value(AVE = [MIN + MAX]/2)

" éEdge Pixel Decision
Pixel which is larger than Tdiff is edge pixel b EXIT

" dn Case of Edge Pixel

Edge pixel which is larger than AVE is white b EXIT
Else is black ¢ EXIT

* @n Case of Non Edge Point

Pixel which is larger than Tmin is white b EXIT
Else is black b EXIT

ADC CONTROL

The ADC signal is for operating the internal ADC, and the signal must always maintain a 50% period. For A/D
conversion of the analog signal, you need a register that adjusts the ADC signal's starting point in units of system

clock for the register value. The figure below shows the ADC controlling diagram for a product using the 2-
channel method, such as CANON.

SEN_CLK

BASIS _‘

<« B =I

ADC_CLK

: k Ll
\ADC_START[7:O] ADC Clock Sample

Figure 21-21. ADC Control Timing Diagram (CANON)

As shown in the figure above, the range of the ADC-STAR][7:0] value that adjusts the ADC signal location
becomes 1/2 of the SEN_CLK's LOW period from 1, and the ADC signal's high period (B) becomes
(SEN_CLK_LOW)/2.

For a product using the 1-channel method such as DYNA CIS, refer to the diagram below.

21-16 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

SEN_CLK SEN_CLK_LOW SEN_CLK_HIGH

BASIS _‘ —‘
|
|
|
|

l«—B »
A S

: ADC_STARTI[7:0] ADC Clock Sample

A

ADC_CLK

Figure 21-22. ADC Control Timing Diagram (DYNA)

In this case, you nheed a 25% DUTY, so the SEN_CLK's HIGH period and low period are added to make the ADC
signal's high period. Therefore, the width of B in the figure above is (SEN_CLK_LOW + SEN_CLK_HIGH)/2.

MOTOR CONTROL

There are 6 port phase outputs for motor control. Each output signal can be adjusted by S/W. In other words, the
register MOTOR_TERM[15:0]'s value can change the interval value for the changing motor phase. An interrupt
occurs every time a signal signifying the interval is generated, so the S/W changes the register value using that
signal, which later influences the next motor phase interval. This feature operates as described above if the bit of
register OPERATION[9] (MOTOR_PHASE_LAT_OR_NOT) is set.

If the bit is reset, the value immediately influences the operation. You can synchronize the motor and Sl using
this feature and the Sl period-adjusting feature. When the value of register OPERAION[8] (MOTOR_HIGH)
becomes high, down counting is carried out from the MOTOR_TERM value. When the value reaches 1, the
MOTOR_PHASE[5:0] value used by the previous interrupt is output to each phase. The reference counting clock
is the one selected by the OPERATION[11:10](SEPARATE_CLK_SEL) value.

A
A

1 7 60
MOTOR_INTERRUPT H ’7 00 > 0 >

70

\ A
BASE_VALUEO 1 >< 1 >< 0 >< 1 ><

MOTOR_TERM[15:0] >< 100 60

MOTOR_PHASEO

Figure 21- 23. Motor Interrupt/Phase Timing Diagram

ELECTRONICS 21-17

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

REGISTER READ/WRITE

Register Read/Write
| | |

NCS

2

SA[5:0]

Al

-

NRW (0: MPU Read,
1: MPU Write)

%

SD[31:0]

Figure 21-24. Register Read/Write Timing Diagram

)

Register Read/Write

When you want to write the register value from the MPU to the IP, you receive the input as shown in Figure 21-
24. When writing or reading the value to the register in the sections shown in the diagram, the register read/write
is carried out within 2 cycles.

21-18 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

IMAGE PROCESSOR

RAM Initialization by Register Read/Write

CLK

NCS

SA[5:0]

NRW (0: MPU Read,
1: MPU Write)

SD[31:0]

MAS[1:0]

SW_RAM_ADDR_INIT

SA_LAT[5:0]

J UL

UL

30

30

30

30

><30

SD_LAT[31:0]
(RAM_DIN)

SW_RAM_WR_CLK

SW_RAM_ADDRI[11:0]

00

01 >

<RAM Write by Register>

SW_RAM_RD_CLK

SW_RAM_ADDR[11:0]

RAM_DOUT[31:0]
(SD)

00

><01

02

00

01

02

<RAM Read by Register>

Figure 21-25. Timing Diagram SRAM Read/Write by Register

ELECTRONICS

21-19

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

The CONTROLLER has the following features so that it can read or write on the RAM using the register. There is
the RAM_CTRL[14:12]'s CHIP SELECT for selecting the internal SRAM. The SRAM's first ADDRESS is received
through the register. This value is loaded using the value of the register called SW_ADDR_INIT. After setting the
environment, if you record the value to the register RAM_DATA, it is read or written to the SRAM. The RAM
ADDRESS increases by 1 for each READ/WRITE from the original value from the register. This process can be
summarized as follows.

Record first address of the SRAM area for read/write, and choose the SRAM (RAM_CS).

Initialize the SRAM address. (Register SW_RAM_ADDR_INIT)

Record value on the register RAM_DATA during write

Read using the register RAM_DATA's address value during read.

NOTE

When you read the register value, the internal ram must not be selected. Of course, when you read the
internal ram values, the internal ram has to be selected.

DMA OUTPUT

Binary Data Output

The binary data output through the IP goes through the 32-bit cycle stealing DMA process. In other words, if the
binary data for 32 pixels is output, one request is output. And if each line's last DMA is not 32 bits, the remaining
parts are filled with "0" for output. To signify the location of the last pixel, you must set the value of the register
CHANGED_PIX_NUM. If you do not magnify or reduce the image, you can use the number of value pixels/line
for the last value, but if you do magnify or reduce, you must use a modified value.

NOTE

If the number of magnified pixels exceeds 2560 during magnification, the DMA operates fixed to 2560,
regardless of the CHANGED_PIX_NUM value.

GRAY Data Output

If you set the BINARY_GRAY register bit to "1", the gamma corrected value (8 bits) is immediately output
through DMA. Since the DMA must maintain 32 bits, DMA request is output once for each time 4 pixels are
handled, so you must select the CHANGED_PIX_NUM accordingly.

21-20 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR REAL TIME CLOCK

2 2 REAL TIME CLOCK

OVERVIEW

The Real Time Clock (RTC) unit is operated by the system power (+5V) or the backup battery if the system
power is turned off. The RTC transmits 8-bit data to the CPU as BCD (Binary-Coded Decimal) values using
STRB/LDRB ARM operation. The data include second, minute, hour, date, day, month, and year. The RTC unit
works with an external 32.768kHz crystal.

RXI >

OSC. & Frequency Leapyear Generator
RXO Division Logic

1 Hz\

Ll

SEC MIN HOUR DAY DATA MON YEAR

/T
| RTCCON
A

A
| System Bus

Figure 22-1. Real Time Clock Block Diagram

ELECTRONICS 22-1

REAL TIME CLOCK KS32C65100 RISC MICROPROCESSOR

LEAP YEAR GENERATOR

This generator calculates if the last date of each month is 28, 29, 30 or 31 based on data from BCDDAY,
BCDMON and BCDYEAR. It also considers leap years in deciding the last date.

An 8-bit counter can just represent 2 BCD digits, so it cannot decide whether 00 year is a leap year or not. We
know year 2000 is a leap year, therefore the leap year generator is hard-wired to work up to 2-29-00.

SYSTEM POWER OPERATION (+5V)

It is required to set bit 0 of the RTCCON register for interfacing between CPU and RTC logic. A 1 second error
can occur when the CPU reads or writes data into BCD counters, and this can cause the change of the higher
time units. When the CPU reads/writes data to/from the BCD counters, another time unit may be changed if
BCDSEC register is overflowed. To avoid this problem, the CPU should reset the BCDSEC register to 00h.The
reading sequence of the BCD counters is BCDYEAR, BCDMON, BCDDATE, BCDDAY, BCDHOUR, BCDMIN
and BCDSEC. It is required to read it again from BCDYEAR to BCDSEC if BCDSEC is zero.

BACKUP BATTERY OPERATION

The RTC logic is driven by a backup battery if the system power is off. The interfaces of the CPU and RTC logic
are blocked and the backup battery only drives the oscillation circuit and the BCD counters, to minimize power
dissipation.

22-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR REAL TIME CLOCK

REAL TIME CLOCK REGISTERS

RTCCON REGISTER

The RTCCON register is comprised of RTCE (RTC Enable: bit 0) which controls the write-disable of the BCD
registers, RCLK (RTC Clock: bitl), CNTSEL (Counter Select: bit 2), and CLKRST (Clock Reset: bit 3) for testing.

Bit RTCE controls all interfaces between the CPU and the RTC, so it should be set to 1 in an initialization routine
to enable data transfer after a system reset. Instead of working BCD with 1Hz, bit RCLK enables the operation of
BCD counters with an external clock which is entered through the pin RXI to the test BCD counters. Bit CNTSEL
converts the dependent operation of BCD counters into independent counters for testing. CLKRST resets the
frequency divided-logic in the RTC unit.

Register Offset Address R/W Description Reset Value
RTCCON 0xc840 R/W RTC control register 0x0

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XXX [X

[0] RTCE: RTC R/W Enable Bit
0 = Disable 1 = Enable

[1] RCLK: BCD Clock Selection Bit
0 = RXI/215 Divied CLK 1=RXI

[2] CNTSEL: BCD Count Selection Bit
0 = Merge BCD Counters
1 = Seperate BCD Counters

[3] CLKRST: RTC Clock Counter Reset Bit
0 = No reset 1 = Reset

Figure 22-2. RTCCON Register

ELECTRONICS 22-3

REAL TIME CLOCK

KS32C65100 RISC MICROPROCESSOR

BCDSEC COUNTER REGISTER

BCD count register for seconds.

Register Offset Address R/W Description Reset Value
BCDSEC 0xc870 R/W RTC second register OxXX
6 4 3 2 1 O
[6:0] Second Counting Value. 0~ 59
Figure 22-3. BCDSEC Counter Register
BCDMIN COUNTER REGISTER
BCD count register for minutes.
Register Offset Address R/W Description Reset Value
BCDMIN 0xc874 R/W RTC minute register OxXX
6 4 3 2 1 O

[6:0] Minute Counting Value. 0 ~ 59

Figure 22-4. BCDMIN Counter Register

22-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

REAL TIME CLOCK

BCDHOUR COUNTER REGISTER

BCD count register for hours.

Register Offset Address R/W Description Reset Value
BCDHOUR 0xc878 R/W RTC hour register OxXX
6 4 3 2 1 O
[5:0] Hour Counting Value. 0 ~ 23
Figure 22-5. BCDHOUR Counter Register

BCDDAY COUNTER REGISTER
BCD count register for days.

Register Offset Address R/W Description Reset Value

BCDDAY 0xc87c R/W RTC day register OxXX

[5:0] Day Counting Value. 1 ~ 28, 29, 30, 31

Figure 22-6. BCDDAY Counter Register

ELECTRONICS

22-5

REAL TIME CLOCK

KS32C65100 RISC MICROPROCESSOR

BCDDATE COUNTER REGISTER

BCD count register for the date.

Register Offset Address R/W Description Reset Value
BCDDATE 0xc880 R/W RTC date register 0xX
6 4 3 2 1 O
[2:0] Date Counting Value. 1 ~7
Figure 22-7. BCDDATE Counter Register
BCDMON COUNTER REGISTER
BCD count register for months.
Register Offset Address R/W Description Reset Value
BCDMON 0xc884 R/W RTC month register OxXX
6 4 3 2 1 O

[4:0] Month Counting Value. 1 ~ 12

Figure 22-8. BCDMON Counter Register

22-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

REAL TIME CLOCK

BCDYEAR COUNTER REGISTER

BCD count register for years.

Register Offset Address R/W Description Reset Value
BCDYEAR 0xc888 R/W RTC year register OxXX
6 4 3 2 1 O

[7:0] Year Counting Value. 0 ~ 99

Figure 22-9. BCDYEAR Counter Register

ELECTRONICS

22-7

KS32C65100 RISC MICROPROCESSOR CLOCK SAVE & PLL CONTROL

CLOCK SAVE & PLL CONTROL

OVERVIEW

PLL is used to generate a higher internal clock from a low external clock source.

Clock saving provides that power dissipation of the periphery decreases in sleeping mode.

SYSTEM CLOCK divided by 40 is cnt_40, and RSTCLK, the frequency divided-logic in the CLKSAV unit, is the
reset filtering logic.

SMCLK is MCLK in normal mode or cnt_40 in sleeping mode

RSTCLK
MCLK > (reset filtering logic)
» SMCLK
v
CNT_20
Enable
Figure 23-1. Clock Save Block Diagram
REGISTERS
Registers Offset Address R/W Description Value
CLKSAVCON 0x1800 R/W CLKSAV control register 0xX
PLLCON 0x1804 W PLL control register 0x00000

ELECTRONICS 23-1

CLOCK SAVE & PLL CONTROL KS32C65100 RISC MICROPROCESSOR

CLKSAVCON REGISTER

The CLKSAVCON register is comprised of the CLKSAVE (CLKSAV Enable: bit 0) which decides whether or not
to enable clock saving for the peripherals.

31 0

[0] CLKSAVE: CLKSAVE Enable Bit
0 = Disble 1 = Enable

[1:31] Reserved

Figure 23-2. CLKSAVCON

PLLCON REGISTER

PLLCON controls PLL, and decides whether to use the PLL-generated clock or the external clock as the system
clock.

31 16 15 10 9 210

[1:0] S: Post Scaler
[9:2] M: Main Divider
[15:10] P: Pre Divider
[16] CLKSEL

0 = Use external clock as MCLK
1 = Use PLL clock out as MCLK

Figure 23-3. PLLCON

The frequency of the PLL-generated clock is found by the following formula.
PLL clock out(MHz) = (M+8) * external clock/((P+2)*(2**S))

If the external clock is 20MHz and M =0, P = 0, and S = 0, the PLL clock out is 8*20/(2*1) = 80MHz.

23-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR CLOCK SAVE & PLL CONTROL

System Clock Calculation Method when using the Frequency Synthesizer PLL

+
— Output Frequency Equation: Fout :MLS " FIN

(p+2) * 2
m: value of 8-bit Main-divider, O£ mE£E 255
p: value of 6-bit Pre-divider, O£p£63
s: value of 2-bit Post-scaler, O£s£3

1) Clock_Input: 10MHz ~ 20MHz (recommend condition)
2) Fliter_Input: 820 pF
3) Clock_output: Main clock

NOTE

The setting of the PLLCON register can change only one time. For example, after power on, the value of
the PLLCON register is 0x0, this is PLL clock is not used. After this you can set the PLLCON register only
one time.

Also, We recommend the s’s value is greater than or equal to 1, and the FIN/(p+2) is greater than 1MHz.

ELECTRONICS 23-3

KS32C65100 RISC MICROPROCESSOR

LSU CONTROL

LSU CONTROL

INTRODUCTION

This module performs the following functions:

V_Window and LD_PreHeat pulse generation
LSU ready state check

VDO masking and software on/off control
LSU motor clock generation

NHSYNC Filtering

A

Printer Video
Data <
InterFace
Control
< nPSYNC <
<—
sd
—:5——> LSU CON
—
mas
—
nrw ———«>
—
mclk
>

NHSYNC2

VDO2

NHSYNC1
NnLREADY

nVDI

VDO1

LSU_CLK

Figure 24-1. LSU Control

ELECTRONICS

24-1

LSU CONTROL KS32C65100 RISC MICROPROCESSOR

MAIN INPUT/OUTPUT SIGNALS

Input
NLREADY: Signal activated when polygon motor is within the accurate speed
NHSYNCZ1: Horizontal beam detect signal from LSU
nVDI: Video data from PIFC block

Output
VDOL1: Laser diode on/off output (external output, initial "H", active "L")
NPSYNC: Page sync. signal set by S/W for PIFC block
LSU_CLK: Clock signal for LSU Motor [MCLK /{ (LSUCK_CNT value+1)x2 }]

24-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

LSU CONTROL

SPECIAL REGISTER

LSU_CON CONTROL REGISTER

Register

Offset Address R/W Description

Reset Value

LSUCON

0xd000 R/W |LSU_CON control register

0x0000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X1 X0 X] X[X[|X] X[X] X

X

X

X

X[X| X

[0] VDO SW On/Off Control
0 = Disable 1 = Enable

[1] Enable VDI from PIFC
0 = Disable 1 = Enable

[2] RUN Video Window & lIdpon Counter
0 = Stop 1=Run

[3] LD Pre_ON Function Enable
0 = Disable 1 = Enable

[4] VDO Polarity Control

0 = Same level as VDI 1 = Inverted level of VDI

[5] LSU_CLK Output Enable
0 = Disable 1 = Enable

[6] Page Sync. Control
0 = Negate (nPsync <= 1) 1 = Active (nPsync <= 0)

[7] Load nHSYNC Filter Clock Value
0 = Disable 1 = Enable

[9:8] NnHSYNC Filter Clock Value
Filter clock = MCLK/(value+1)

[10] External VDI Enable
0 = Disable 1 = Enable

[11] Internal NLREADY Status Check and Clear
Read: 0 = Negate 1 = Active
Write: O = No clear 1 =Clear

[12] nLREADY Port Status (Read Only)

[13] Not Used

[15:14] nHSYNC Filter Counter Observation (Read Only)

Figure 24-2. LSU_CON Control Register

ELECTRONICS

24-3

LSU CONTROL

KS32C65100 RISC MICROPROCESSOR

V_WINDOW START/END TIME REGISTER

Registers Offset Address R/W Description Reset Value
VWIN_STR 0xd004 R/W | V_Window time start register 0x00000
VWIN_END 0xd008 R/W | V_Window time end register 0x00000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Register Value

[19:0] Register Value

LD_ON PRE/POST TIME REGISTER

Figure 24-3. V-Window Time Start/End Register

Registers Offset Address R/W Description Reset Value
LDON_Pre 0xd00c R/W | LD ON Pre time register 0x00000
LDON_Post 0xd010 R/W | LD ON Post time register 0x00000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Register Value

[19:0] Register Value

Figure 24-4. LDON_Pre/Post Time Register

24-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR LSU CONTROL

V_WINDOW COUNTER OBSERVATION REGISTER

Register Offset Address R/W Description Reset Value
VCNT_OBS 0xd014 R/W |V_Window counter observation register 0x00000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Counter Observation Value

[19:0] Counter Observation Value

Figure 24-5. V-Window Counter Observation Register

LSU MOTOR CLOCK GENERATION COUNTER REGISTER

Register Offset Address R/W Description Reset Value
LSUCK_CNT 0xd018 R/W | LSU Motor Clock counter base & 0x00000000
observation register

313029 28 27 26 25 24 23 22212019 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Observation Value Counter Base

[15:0] Counter Base Value

[31:16] Counter Observation Value

Figure 24-6. LSU CLK Counter Base/Observation Register

Caution

The counter of the V-Window time start/end register and the LDON__ pre/post time register should be run when
the control register's run bit is stop ("L") and the needed initial value is written.

The value written when the counter is being run is applied after the counting for the previous value is finished.

ELECTRONICS 24-5

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

PRINTER INTERFACE CONTROLLER

OVERVIEW

The PIFC performs direct memory accesses to fetch video data, and then, serializes the data and handshakes with the
printer to transmit the video data after pattern procession. It has the following important features:

It uses dedicated DMA to accelerate data transfers between page memory and the laser printer engine. The
dedicated DMA supports queued operations to facilitate the smooth switching between blocks of banded page
memory.

The PIFC’s DMA controller can transfer strings of consecutive zeros (the 0’s in a given banded bit map, or blank
data) without accessing external memory. The length of a zeros string is determined by the value in the transfer
count register of the PIFC’s queue 0 or queue 1.

The KS32C65100 PIFC employs pixel chopping to save printer toner.

It provides a fine edge to print images by shrinking the first pixel dot whenever there is a string of consecutive 1's
(that is, at the position where the left edge of the image starts).

It supports 2 to 4-times image expanding print.

It is able to control top-margin, left-margin and image width for page layout.

ELECTRONICS 25-1

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

PAGE IMAGE DATA FETCH OPERATION

Page images are stored in an area of memory known as the band buffer. After a page image is rendered, the PIFC
can be programmed to fetch the contents of the band buffer to fill its FIFO.

The data fetch operation is performed by PDMA, and queued PDMA operations are supported by PIFC specially for
the print task with a large amount of video data. The principle of queued operation is that to divide the whole video
data into several data blocks. The first block of data is transferred by DMA gqueue 0 and the second block is
transferred by DMA queue 1, and during one queue operation the other DMA queue can be set to prepare for next
block transfer so that the next block transfer operation can start as soon as the previous block transfer operation is
completed. The switching between two DMA queues is implemented automatically by a data fetch controller, so as to
guarantee the continuity of data transfer.

Normally, an EOP (End-of-Page) interrupt is posted when a whole page video data transmission is completed, and
then the PIFC returns to idle. However, an abnormal interrupt, PUR (Page Under-run), may be generated if one DMA
gueue is not been ready when another DMA queue operation is completed.

Current State Printing Idle
Queue O is Next Queue is
INT EOP Enabled Here Enabled Here ’_‘
il

INT_SOD ’7 ﬂ ’_‘ i"_i
w W

Queued Operation
Control (PDMACR[4])

Queued 0 Enable
(PDMACR{2]) Enabled Enabled
A

h 4

Queued 1 Enable
(PDMACR3]) EnabV Enabled %
Current Queue %

Auto-Reset

Figure 25-1. Queued Operation for End-of-Page (EOP)

25-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINTER INTERFACE CONTROLLER

Current State

INT_EOP

INT_PUR

INT_SOD

Queued Operation
Control (PDMACR[4])

Queued 0 Enable
(PDMACR][2])

Queued 1 Enable
(PDMACR]3])

Current Queue

Printing

Idle

Queue O is
Enabled Here

Next Queue is
Enabled Here

il

AT

/”

w/

b

Enabled

f

Enabled

Enabled

Not Enabled

Auto-Reset

Figure 25-2. Queued Operation for Page Under-run (PUR)

ELECTRONICS

25-3

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

PRINT OPERATION

The print job is started by PIFC issuing an active print command signal nPRINT (setting VCON[1] to "1"), which means
that the KS32C65100 PIFC is ready to start a print job. The PIFC then begins waiting for the NnPSYNCRQ from
LSU_CON. After nPSYNCRQ arrives, the PIFC activates nPSYNC signal by setting VCON[2] to "1", and in the
meantime, the top margin counting operation begins. The top margin counter is decreased until the count reaches "0",
and then the PIFC begins to transmit video data.

The nPRINT signal must be held active until NPSYNC becomes inactive. By using interrupts, the nPSYNC time
interval can be controlled. As shown in Figure 25-3, the transitions on nPSYNCRQ signal level cause the occurrences
of SYNCL1 interrupts. So the nPSYNC can be activated and inactivated in the ISR (interrupt service routine) of
INT_SYNC1.

Current State Idle Pick-up Counting Top Margin Printing Idle

NPRINT] ’Jr

NnPSYNCRQ %\

nPSYNC XT }
INT_EVENT ’_‘ ’_‘

f
| NPSYNC Active | Top Margin =0

INT_EOP _‘

Figure 25-3. Protocol Diagram (PIFC and Printer Engine)

25-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINTER INTERFACE CONTROLLER

PIFC SPECIAL REGISTERS

PDMA AND ENGINE INTERFACE STATUS REGISTER

The printer interface controller's PDMA and engine interface status register, status, contains read-only status bits used
to monitor the progress of print operations, including power ready, ready to print, print synchronization, PIFC status,
and currently active DMA queue.

Register Offset Address R/W Description Reset Value
STATUS 0xa000 R PDMA and engine interface status register 0x00

[1:0] Reserved

[2] Print Synchronization request When STATUS[2] is "1", a print synchronization request
(nPSYNCRQ) is being received from the laser printer engine.
When the engine issues this request, it is ready to receive
the synchronization pulse, nPSYNC, from the
KS32C65100.

[4:3] Current PIFC status The value of this bit-pair indicates the current operating
status of the printer interface controller. There are four
states: idle, pick-up, counting top margin, and active
printing.

[5] Current DMA queue The KS32C65100 uses two DMA queues for dedicated

printer DMA, DMA 0 and DMA 1. The STATUSJ5] status bit
indicates which queue is currently active during a PDMA
operation. When STATUS[5] is "0", DMA queue 0 is active;
when itis "1", DMA queue 1 is active.

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X |State| X[X]| 0

[1:0] Reserved

[2] Print Synchronization Request
0 = Active nPSYNCRQ not received (nPSYNCRQ is high)
1 = Active nPSYNCRQ received (nPSYNCRQ is low)

[4:3] Current PIFC Status
00 = Idle 01 = Pick-up
10 = Counting top-margin 11 = Active printing

[5] Currently Selected DMA Queue
0 = DMA queue 0 is selected
1 = DMA queue 1 is selected

Figure 25-4.PDMA and Engine Interface Status Register (STATUS)

ELECTRONICS

25-5

PRINTER INTERFACE CONTROLLER

KS32C65100 RISC MICROPROCESSOR

VIDEO CONTROL REGISTER

Settings in the PIFC video control register, VCON, control activities of the KS32C65100 printer interface controller
during a printing operation, including video clock selection and the shift direction of video data.

Register Offset Address

R/W

Description Reset Value

VCON 0xa004

R/W

Video control register 0x00

[0]

[1]

[2]
[3]

[4]

[5]

Reserved

NPRINT output

Print synchronization

Video clock inversion

Video data shift direction

Stop printing

When VCON[1] is "1", it signals the printer engine that the
KS32C65100 PIFC is ready to start a print job.

This bit activates or inactivates nPSYNC signal.

When using external a video clock (VCLK), if VCON[3]is "1",
the PIFC uses a non-inverted external video clock (VCLK) as
its clock. Otherwise, it uses the inverted external VCLK.

The VCLK selection (VCLK) depends on the setting in
PCON[3:2].

In video data transmission, if VCON[4] is "1", the shift
direction of video data in the shift register is LSB-first.
Otherwise, the shift direction is MSB-first.

When VCON][5] is set to "1", PIFC stops printing and
generates the End-of-Page interrupt (INT_EOP), and then
VCON][5] is auto-cleared to "0" and all of PIFC state is
reset.

25-6

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINTER INTERFACE CONTROLLER

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X

X

X

X

X

0

[0] Reserved

[1] nPRINT Signal
0 = nPRINT signal with high level
1 = nPRINT signal with low level

[2] Print Synchronization Signal
0 = nPSYNC signal with high level
1 = nPSYNC signal with low level

[3] Video Clock Inversion
0 = Invert video clock (VCLK)
1 = Don't invert video clock (normal)

[4] Shift Direction of Video Data Transmission
0 = MSB-first 1 = LSB-first

[5] Stop Printing
0 = Normal operation
1 = Stop printing and generate EOP interrupt

Figure 25-5. Video Control Register (VCON)

ELECTRONICS

25-7

PRINTER INTERFACE CONTROLLER

KS32C65100 RISC MICROPROCESSOR

PATTERN CONTROL REGISTER

Settings in the printer interface controller’s pattern control register, PCON, control various video data functions
including video data polarity, border data polarity, video clock selection, clock divisor, shrink pattern, data chopping

selection for toner savings and image expanding.

Register Offset Address

R/W

Description Reset Value

0Oxa008

R/W

Pattern control register 0x000000

[0]

[1]

[3:2]

[6:4]

[9:7]

[17:10]

Video data polarity

Border data polarity

Video clock selection

Video clock divisor selection

Video data shrink pattern

Video data chopping

When PCONIO0] is "0", the video data that the KS32C65100
sends to the printer engine is inverted. Otherwise, the video
data sent in a non-inverted stream.

When PCONT[1] is "0", the border data, which corresponds
to the blank area on paper around the image to be printed,
including the top, left, right and bottom margins, is inverted.
otherwise, the border data is not inverted.

When PCONJ[3:2] is "01", the PIFC selects the external video
clock 0 (VCLKO) as its video clock; and when PCON[3:2] is
"10", the PIFC doesn't selects any clock.

Otherwise, it selects the internal system clock, MCLK.

This 3-bit value determines the divisor for the selected
video clock.

Using this 3-bit value, you can create special effects in the
printed image. Depending on the video clock divisor n, to
achieve a fine print edge, the size of the first pixel dot that is
detected at the left edge of the image is shrunk by 1/n of
the normal pixel size, or by 2/n, 3/n, and so on. The left
edge of an image is defined as the pixel from which a
string of consecutive 1's is detected on a scan line.

In other words, the size of the first pixel in the string of
consecutive 1's is reduced in order to achieve a sharper
"left edge" of the printing area.

Each bit of video data corresponds to a pixel dot in printing,
and the pixel dot consists of n sub-pixels (n is the video
clock divisor defined by PCON[6:4]). To save printer toner,
one or more sub-pixels for each bit pixel can be chopped in
printing and the position of the sub-pixel to be chopped is
specified by PCON[17:10]. Among the eight bits of
PCON][17:10], the positions of zeros determines the
positions of the sub-pixels to be chopped.

For example, PCON][6:4] is specified as “111” (i.e. the nis
equal to 8), then each bit of video data (one pixel dot)
corresponds to 8 sub-pixels in printing. If PCON[17:10] is
specified as “10110010", the 1st, 3rd, 4th and 7th sub-pixel
for each pixel will be chopped in printing.

25-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

[19:18] Image expanding ratio This 2-bit value determines the image expanding ratio.
When PCONJ[19:18] is not "00", the image to be sent to the
printer engine is expanded first according to the defined
ratio and then sent to the engine.

[20] HSYNC selection Selects the HSYNC signal to the used between HSYNC1
and HSYNC2.
[21] Test mode If ‘0’, normal mode.

If ‘1’, outputs the test pattern mode by the TPVAL register and
TPON register.

ELECTRONICS 25-9

PRINTER INTERFACE CONTROLLER

KS32C65100 RISC MICROPROCESSOR

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

T|H

Mls IE SRK CHP CKD

CKS

B
P

\%
P

[0] Video Data Polarity
0 = Invert the video data to be sent to print engine
1 = Do not invert video data

[1] Border Data Polarity
0 = Invert border data 1 = Do not invert border data
[3:2] Video Clock Selection

00 = Use MCLK as the video clock

01 = Use external VCLK as the video clock

10 = No clock selected

11 = Use MCLK as the video clock

[6:4] Video Clock Divisor Selection
000=1 001=2 010=3 011=4
100=5 101=6 110=7 111=8

[9:7] Shrink Pattern for Video Data

000 = No shrinking 001 = 1/n dot shrunk at left edge of image
010 = 2/n dot shrunk 011 = 3/n dot shrunk

100 = 4/n dot shrunk 101 = 5/n dot shrunk

110 = 6/n dot shrunk 111 = 7/n dot shrunk

[17:10] Video Data Chopping Pattern

Xxxxxxx0 = Chop 1st sub-pixel of each dot
xxxxxx0x = Chop 2nd sub-pixel of each dot
xxxxx0xx = Chop 3rd sub-pixel of each dot
xxxX0xxx = Chop 4th sub-pixel of each dot
xxx0xxxx = Chop 5th sub-pixel of each dot
xx0xxxxx = Chop 6th sub-pixel of each dot
X0xxxxxx = Chop 7th sub-pixel of each dot
Oxxxxxxx = Chop 8th sub-pixel of each dot

[19:18] Image Expanding Ratio
00 = Normal 01 = 2-times expanding
10 = 3-times expanding 11 = 4-times expanding

[20] Hsync Selection
0 =HSYNC1 1 =HSYNC2

[21] Test Mode
0 = Normal mode 1 = Test pattern generation

Figure 25-6. Pattern Control Register (PCON)

25-10

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINTER INTERFACE CONTROLLER

PRINTER DMA CONTROL REGISTER

The printer DMA control register, PDMACON, is used to control the operation of the printer DMA queues.

Register

Offset Address

R/W

Description Reset Value

PDMACON

0Oxa00c

R/W

PDMA control register 0x00

[0] Blank mode: DMA queue 0

[1] Blank mode: DMA queue 1

[2] DMA queue 0 enable

[3] DMA queue 1 enable

[4] Queued operation enable

[5] PDMA direction

When PDMACON[0] is "1", the shift register of printer DMA
gueue 0 sends a stream of zeros to the laser printer engine
as video data. No external memory access is required
during this PDMA operation. Blank mode is useful for
sending a "blank image" if the bit map of a certain banded
image consists of all zeros (blank). When this bit is "0", all
PDMA accesses are in normal mode. That is, external page
memory must be accessed to fetch the page bit map.

When PDMACON][1] is "1", the shift register of DMA queue
1 sends a stream of zeros to the laser printer engine as
video data. (This control bit has the same effect for PDMA
gueuel as PDMACONI0] does for PDMA queue 0.)

When PDMACONJ2] is set to "1", queue O is enabled and a
printer DMA 0 operation can start. When the queue O
operation is completed, this bit is automatically cleared to
IIOII.

When PDMACON(3] is set to "1", queue 1 is enabled and a
printer DMA 1 operation can start. When the queue 1
operation is completed, this bit is automatically cleared to
IIOII.

The value of this bit determines whether PDMA uses
gueued operation to transfer banded bit-mapped data to the
laser engine. If PDMACON(4] is "0", PDMA queue 0 or
gueue 1 transfers data over one queue or the other, without
alternating between the two. If PDMACONI[4] is "1", banded
bit-mapped data is transferred in an alternating queue
operation using both queues.

The PDMACON][5] control bit determines whether the bit
map in a PDMA operation is printed from top-to-bottom
(down-printing) or from bottom-to-top (up-printing).

ELECTRONICS

25-11

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X| X[X] X[X

[0] Blank Mode for PDMA Queue 0

0 = Normal PDMA access to external page memory

1 = Blank mode (send zeros as video data without memory
access)

[1] Blank Mode for PDMA Queue 1

0 = Normal PDMA access to external page memory

1 = Blank mode (send zeros as video data without memory
access)

[2] PDMA Queue 0 Enable

0 = Disable PDMA queue 0

(clear automatically when queue 0 operation completed)

1 = Enable PDMA queue 0 (start PDMA gueue 0 operation)

[3] PDMA Queue 1 Enable

0 = Disable PDMA queue 1

(clear automatically when queue 1 operation completed)

1 = Enable PDMA queue 1 (start PDMA gueue 1 operation)

[4] Queued PDMA Operation Enable
0 = Queued operation disable
1 = Queued operation enable

[5] Direction of PDMA Operation
0 = Print page bitmap from bottom to top
1 = Print page bitmap from top to bottom

Figure 25-7. Printer DMA Control Register (PDMACON)

25-12

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PRINTER INTERFACE CONTROLLER

TOP MARGIN REGISTER

The value written to the top margin register, TOP, controls the number of scan lines to be skipped when printing starts.
An internal counter records the number of NENGHSYNC pulses to determine the beginning of the effective printing

area.

Register

Offset Address R/W

Description

Reset Value

TOP

0Oxa010

R/W

Top margin register

0x0000

313029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Top Margin Count

[15:0] Top Margin Count Value

This 16-bits field contains the top margin count value. This
value specifles how many scan lines are to be skipped in the
top margin area of a page in order to reach the start of the
effective print area.

Figure 25-8. Top Margin Register (TOP)

TOP I

/ Paper
Image
/ g

/ Border
/

Figure 25-9. Page Layout

ELECTRONICS

25-13

PRINTER INTERFACE CONTROLLER

KS32C65100 RISC MICROPROCESSOR

LEFT MARGIN REGISTER

The PIFC left margin register, LFT, controls the number of pixels that are skipped when a scan-line operation starts in
synchronization with NnENGHSYNC. An internal counter records the number of pixels skipped in order to determine the

starting pixel of the scan-line operation.

Register

Offset Address R/W Description

Reset Value

LFT

Oxa014 R/W Left margin register

0x0000

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Left Margin Count

[15:0] Left Margin Count Value

This 16-bits field contains the left margin count value. This value
specifles how many pixels are to be skipped in the left margin area of
a page in order to determine the starting pixel on which the scan line
begins.

NOTE: For correct printing operation, it is recommended
that you set the LFT with a value greater than four.

Figure 25-10. Left Margin Register (LFT)

PIXEL COUNT REGISTER

The value stored in the pixel count register, PXL, determines the total number of pixels per scan line.

Register

Offset Address R/W Description

Reset Value

PXL

0xa018 R/W Pixel count register

0x0000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Pixel Count

[15:0] Pixel Count Value
This 16-bits field contains the count value for the number of
pixels per scan line.

NOTE: Inimage expanding operation, the pixel count
value contained in PXL should be set as the pixel
number per scan line of original image rather than
that of the expanded image.

Figure 25-11. Pixel Count Register (PXL)

25-14

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

QUEUE 0/1 START ADDRESS REGISTERS

The values written to the two queue start address registers, QSARO and QSAR1, respectively define the starting byte
address for PDMA queues 0 and 1.

Registers Offset Address R/W Description Reset Value
QSARO Oxa0lc R/W PDMA queue 0 start address register 0x0000000
QSAR1 0xa024 R/W PDMA queue 1 start address register 0x0000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Queue Start Address

[27:0] Queue Start Address for PDMA Operation
This 28-bits field contains the start byte address for the
respective DMA queue (DMA queue 0 or DMA queue 1)

NOTE: Since PDMA performs 32-bit (word) data
transfers, the queue start addresses should be
aligned to word (4-bytes) boundaries.

Figure 25-12. Queue 0/1 Start Address Registers (QSARO, QSAR1)

ELECTRONICS 25-15

PRINTER INTERFACE CONTROLLER

KS32C65100 RISC MICROPROCESSOR

QUEUE 0/1 TRANSFER COUNT REGISTERS

The values written to the two queue transfer count registers, QTCRO and QTCR1, define the transfer count in word
(32-bit) units when the DMA operation starts for the corresponding queue.

Registers Offset Address R/W Description Reset Value
QTCRO 0xa020 R/W PDMA queue 0 transfer count register 0x000000
QTCR1 0xa028 R/W PDMA queue 1 transfer count register 0x000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Queue transfer Count

NOTE:

[27:0] Queue Transfer Count Value

This 24-bits field contains the number of DMA transfers that
have been completed in a gived PDMA operation for the
respective queue. The transfer count value is represented in
word (32-bit) units.

In image expanding operation, a restriction is
imposed on the queue transfer count value setting
(i.e. the count value setting should guarantee the
gueue boundary being aligned to the image line
boundary and the word (32-bit) boundary
simultaneously). In other words, if assuming
PXL_Q is the least common multiple of PXL value
and 32, the queue transfer count should be
specified as multiples of (PXL_Q/32).

Figure 25-13. Queue 0/1 Transfer Count Registers (QTCRO, QTCR1)

25-16

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

F-g LENS COMPENSATION CONTROL REGISTER

Register Offset Address R/W Description Reset Value
FTCON 0xa02c R/W F-q control register 0x0
[0] F-g Enable Disable if 0. Enable if 1.
[1] CPU Access Enable 0: F-gq compensation block accesses the F-q table memory
(read/write)

1. CPU access.
To configure a table, this bit must be set to 1 before CPU write.

[2] Clock Selection Select divided clock.
0: MCLK*2
1: External video clock

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X1 X| X

[0] F¥E Compensation Enable
0 = Disable 1 = Enable

[1] F-¥E Compensation Table Access Mode
0 = Normal mode 1 = CPU access mode

[2] F-¥E Compensation Clock Selection
0=MCLK*2 1 = External video clock

Figure 25-14. Fq Compensation Control Register (FTCON)

ELECTRONICS 25-17

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

F-g COMPENSATION TABLE START ADDRESS
This is the start address for accessing the table (read/write, normal access mode, CPU access mode, etc.).
If you wish to access a different access during operation, you must change this register value.

If you access after writing 00, the F-g compensation block accesses from 00 in order. If you write 20h to this register, it
accesses from 20h.

Register Offset Address R/W Description Reset Value
FSADDR 0xa030 R/W F-q Table start address 0x00

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Start Address

[6:0] F-¥ECompensation Table Start Address

Holds the start address for accessing the table You need

7 bits for the access because the table is composed of 128
lines.

Figure 25-15. Fq Compensation Table Start Address (FSADDR)

25-18 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

F-g COMPENSATION TABLE DATA REGISTER

The CPU reads/writes this register when accessing the F-g compensation Table.

Register Offset Address R/W Description Reset Value

FDATA 0xa034 R/W F-g compensation data register Oxeffb

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Repetition Count Divide Value

[7:0] Divide Value
Decides how to divide clock

[15:8] Repetition Count
Decides how many divided clocks to send out.

Figure 25-16. Fq Compensation Table Data Register (FDATA)

TONER COUNTER SETTING REGISTER

Register Offset Address R/W Description Reset Value

TCVAL 0xa038 R/W Toner counter setting value 0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Toner Counter Setting Value

[31:0] Toner Counter Setting Value

Holds the toner counter setting value.

If you write in this register, the toner counter counts from the
value written.

Figure 25-17. Toner Counter Setting Register (TCVAL)

ELECTRONICS 25-19

PRINTER INTERFACE CONTROLLER

KS32C65100 RISC MICROPROCESSOR

TONER COUNT REGISTER

Register

Offset Address

R/W

Description

Reset Value

TNCNT

Oxa03c

Toner count value register

0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Toner Count

[31:0] Toner Count
Holds the toner count value.

Figure 25-18. Toner Count Register (TNCNT)

Test Pattern Duration

Register

Offset Address

R/W

Description

Reset Value

TPVAL

0xa040

R/W

Test pattern duration value register

0x00

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

[7:0] Test Pattern Duration

Determines the test pattern duration.

Figure 25-19. Test Pattern Duration (TPVAL)

25-20

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

Test Pattern Width

Register Offset Address R/W Description Reset Value

TPON 0xa044 R/W Test pattern width register 0x00

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

[7:0] Test Pattern Width

Determines the test pattern width.

Decides how much width to print black in the duration
decided by TPVAL.

Figure 25-20. Test Pattern Width (TPON)

ELECTRONICS 25-21

KS32C65100 RISC MICROPROCESSOR VARIABLE IMAGE SCALING

2 6 VARIABLE IMAGE SCALING

OVERVIEW

The VIS unit can support the variable-ratio image scaling operation. In other words, the factor of image
expansion can be in either integer or fraction. For example, it supports image scaling with ratios 3/2, 5/4, 2, 13/5
and so on. To implement this operation, five registers are involved in this unit, out of in which two size registers,
SrcSize and DstSize, specify the scanline sizes of the source image and destination image two data registers,
SrcReg and DstReg, are used to contain the scanline data of the input source image and the scaled scanline data
of the output destination image; and one status register, VISSR, indicates the operation status during VIS
running. The image scaling ratio can be determined by comparing the values in two data size registers. For
example, if the source size register is set to 4 and the destination size register is set to 5, then the image scaling
ratio is 5/4.

For integral-ratio image scaling, each pixel of input source image scanline is replicated by hardware according to
the specified scaling ratio to generate the destination image scanline output. This operation is the same as the
image expander’s operation mentioned before, except that in this unit the expanding factor can be an arbitrary
integer. However, for fractional-ratio image scaling, hardware performs the pixel replication following a particular
algorithm. The hardware has to decide which pixel in input source image scanline should be replicated or how
many times it should be replicated. with specified fractional scaling ratio.

ELECTRONICS 26-1

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

ALGORITHM

The VIS algorithm is given out in the form of a C-program, as shown in Figure 26-1.

[* Variable Descriptions:

I* Dst_Pixel_IDx * Pixel position in destination data register
[* Src_Pixel_IDx * Pixel position in source data register

[* Dst_Size * Destination size register’s setting value

[* Src_Size * Source size register’s setting value

I* DstReg * Destination data register

[* SrcReg * Source data register

*/
*/
*/
*/

*/
*/
*/

VIS_Operation()
Frac = 0;
Dst_Pixel_IDx = 0;
Src_Pixel_IDx = 0;

for (i=0; | < Src_Size; i++)

{
Frac = Frac + Dst_Size;
while (Frac >= Src_Size)
{
Frac = Frac - Src_Size;
DstReg[Dst_Pixel_IDx] = SrcReg[Src_Pixel_IDx];
Dst_Pixel IDx ++;
}
Src_Pixel_IDx ++;
}

}

Figure 26-1. VIS Algorithm Description

26-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR VARIABLE IMAGE SCALING

EXAMPLE OF VIS OPERATION
To carry out the VIS operation, S/W should run the following steps:

Set the control register, FUNCONL1, as zero to select the VIS operation;
Set the size registers, SrcSize and DstSize, to specify the scaling ratio;
Write source image data to source data register (SrcReg);

Check the read-request bit in status register (VISSR[0]), and read the scaled image data from destination
data register (DstReg) once the read-request bit is one; repeat this step until all scaled data are read out.

If more data is to be processed, check the write-request bit in status register (VISSR[1]) and repeat steps 2-4
once the write-request bit is one.

Inside the VIS unit, hardware performs the image data replication automatically after obtaining the source image
data from SrcReg according to the algorithm described above, and outputs the scaled image data to DstReg.
Figure 26-2 shows some examples for VIS's internal image data replication process.

Example 1: MSB LSB

SrcSize =4

DstSize = 5
Scaling ratio = 5/4

8-bit SrcReg

16-bit DstReg

MSB LSB
Example 2: MSB LSB
SrcSize = 4 8-bit SrcReg
DstSize = 6

Scaling ratio = 6/4 16-bit DstReg

MSB LSB
MSB LSB
Example 3: 8-bit SrcReg
SrcSize =4
DstSize = 8

16-bit DstReg

MSB LSB

Scaling ratio = 8/4 = 2

Figure 26-2. Examples of VISE Internal Operation

ELECTRONICS 26-3

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

HALFTONING

The halftoning unit performs the operation to convert the gray-level image into a bi-value halftone image. To
support the PCL6.0 protocol, the input gray-level image, in which the pixel’s gray level is 8-bit scaled and each
pixel corresponds 8-bit scale data, should be converted to halftone image suitable to be printed. For halftone
image, the image gray level is represented by the density of the black pixels (i.e. each pixel in this kind of image
only corresponds one bit and may represent as white (zero) or black (one) only).

In this unit, the conversion from gray-level image to halftone image is implemented by hardware based on a
comparison algorithm. To generate the halftone image, each pixel data (8-bit) of the gray-level image is
compared with an 8-bit reference data (i.e. the threshold value), and a one-bit halftone image pixel value is
output according to the comparison result.

To support this operation, four registers are provided in this unit, in which three 16-bit data register (PixIn, Refln
and HftReg) are used to contain the source image (gray-level image) pixels' data, reference data (threshold
values) and the halftone data, and a control register (VISCON) is used to initialize/enable the half toning
operation and select the 'dot mode' to be introduced below.

Since the data register is 16-bit while the input image pixel data is 8-bit, two pixels are input and processed at the
same time. To carry out the half toning operation, S/W runs in the following steps:

Set the control register's 0 bit, VISCONIJOQ], as one to enable the VIS operation, and set the VISCONJ1] to
select dot mode.

Write two pixel thresholds to Refln register's lower 8-bit and upper 8-bit to provide two pixel reference data;
Write two pixel data of source image to PixIn register's lower 8-bit and upper 8-bit to compare with reference.

Repeat steps 2-3 seven times, and then read the HftReg to obtain the 16-bit output, i.e. the 16 pixels's data
of halftone image.

Repeat steps 2-4 until all pixels of source image are processed.

The half toning algorithm is described in Figure 26-3, in which two kinds of dot modes are included. The dot
mode selection in half toning operation depends on the setting of VISCON[1].

Dot mode 0:
if (source_pixel_data > reference_data)
halftone_pixel_data = 0;
else
halftone_pixel_data = 1;
Dot mode 1.

if (source_pixel_data > reference_data)
halftone_pixel_data = 1;
else
halftone_pixel_data = 0;

Figure 26-3. Half toning Algorithm Description

26-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

VARIABLE IMAGE SCALING

SPECIAL REGISTER

VIS Status Register

The VIS status register, VISSR, is a read-only register which is used to monitor the status of VIS operation.

Register

Offset Address R/W Description

Reset Value

VISSR

0xa800 R VIS status register

0x0

[0] Read request

[1] Write request

[2] Busy flag

VISSR[0] is automatically set to "1" whenever the scaled

image data has been prepared in DstReg. When it is "1", it
indicates that you can read the scaled results from DstReg.

VISSR[1] is automatically set to "1" whenever the VIS

operation for all the data in SrcReg has been completed.
When it is "1", it indicates that you can write the next

source data to SrcReg.

VISSR[2] is automatically set to "1" whenever VIS

operation starts; and when it is "0" VIS is in an idle state.

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X X| X

[0] Read Request
0 = No request to read DstReg
1 = Request to read DstReg

[1] Write Request
0 = No request to write SrcReg
1 = Request to write SrcReg

[2] Busy Flag
0 = VIS be in an idle state
1 = VIS be in progress

NOTE: During VIS operation, if read request and write
request occur simultaneously, (i.e. the VISSR's
content is "1112"), the S/W should read the
DstReg first and then write the next source data

to SrcReg.

Figure 26-4. VIS Status Register (VISSR)

ELECTRONICS

26-5

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

VIS Control Register

The VIS control register, VISCON, controls the VIS/half toning operation. Two bits in this register are used to
respectively enable the VIS/half toning operation and select the algorithm for half toning operation.

Register Offset Address R/W Description Reset Value
VISCON 0xa804 R/W VIS control register 0x0

313029 28 27 26 25 24 23 2221 20 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

X1 X

[0] Enable VIS/Halftoning
0 = Enable VIS operation 1 = Enable Halftoning operation

[1] Dot Mode Selection for Halftoning Operation*
0 = Dot mode O 1 = Dot mode 1

* Refer to the halftoning algorithm description in Figure 26-3.

Figure 26-5. VIS Control Register (VISCON)

VIS Data Size Registers

Two VIS data size registers, SrcSize and DstSize, are used to define the image data length before and after the
VIS process (i.e. the input source image data length and the output destination image data length). The image
scaling ratio can be determined by these two registers* contents, i.e.

image_scaling_ratio = DstSize_value/SrcSize_value

Registers Offset Address R/W Description Reset Value
DstSize 0xa808 R/W Destination image data size register OXXXXX
SrcSize 0xa80c R/W Source image data size register OXXXXX

313029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Data Size

[15:0] Data Size

This 16-bit field contains the length value of the source
image data to be written to SrcReg of the destination image
data to be read from DstReg.

Figure 26-6. VIS Data Size Registers (DstSize, SrcSize)

26-6 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR VARIABLE IMAGE SCALING

VIS Data Registers

Two VIS data registers, SrcReg and DstReg, respectively contain the input source image data before the VIS
process and the output destination image data after the VIS process. The SrcReg is an 8-bit register and the
DstReg is a 16-bit register.

Registers Offset Address R/W Description Reset Value
SrcReg 0xa810 R/W Source image data register OXXX
DstReg O0xa814 R Destination image data register OXXXXX

31302928 27 26 25 24 23 22212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SrcReg: Source Image Data

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

DstReg: Destination Image Data

SrcReg[7:0] Source Image Data
This 8-bit field contains the input source image data to be
processed by VIS.

DstReg[15:0] Destination Image Data
This 16-bit field contains the output destination image data
after VIS procession

Figure 26-7. VIS Data Registers (SrcReg, DstReq)

ELECTRONICS 26-7

VARIABLE IMAGE SCALING

KS32C65100 RISC MICROPROCESSOR

Half toner Data Registers

Three half toner data registers, Refln/PixIn and HftReg, respectively contain the input reference/source pixel data
before the half toning process and the output the halftone data after the half toning process.

Registers Offset Address R/W Description Reset Value
Refln 0xa818 R/W Reference data register OXXXXX
PixIn Oxa81c R/W Source image pixel data register OXXXXX

HftReg 0xa820 R Halftone image data register OXXXXX

313029 28 27 26 25 24 23 22212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Refln:

Reference Data n+1

Reference Data n

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PixIn:

Source Pixel Data n+1

Source Pixel Data n

313029 28 27 26 25 24 23 22 21 20 19 18 17 16

1514 1312 11 10 09 08 07 06 05 04 03 02 01 00

HftReg:

Halftone Image Data

RefIn[15:0] Reference Data
This 16-bit field contains two 8-bit reference data to be
compared with corresponding source pixels data.

PixIn[15:0] Source Image Pixel Data
This 16-bit field contains two 8-bit source image pixel data
to be processed.

HftReg[15:0] Halftone Image Data
This 16-bit field contains 16 halftone image pixel data
generated by the halftoning operation.

Figure 26-7. VIS Data Registers (SrcReg, DstReq)

26-8

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR PWM TIMER CONTROL

2 ; PWM TIMER CONTROL

INTRODUCTION

The PWM control is composed of the following: one 8-bit pre-scaler, one 16-bit down_counter, two 4-bit pre-
scalers, and 16-bit down_counter.

The 16-bit counter is either enabled (RUN) or disabled (STOP) according to the each control register's bit
selection.

The PWM output signal and the on/off time within its period are decided according to the Cycle_Time base
value and On-Time base value. If the On-Time base value is the same or larger than the Cycle_Time base
value when the counter is enabled, the PWM output sighal maintains On status.

If a new cycle time or on time value is written, the PWM output is generated according to the modified value
starting from the next cycle.

— PWM_Counter_Clock = MCLK / (pre-scaler value+1)
— Cycle time pulse width = (Cycle time value +1) / PWM_Counter_Clock
— On time pulse width = (On time value +1) / PWM_Counter_Clock

MAIN INPUT/OUTPUT SIGNALS

Output

— PWM_OUTO: PWMO timer output signal
— PWM_OUT1: PWML1 timer output signal
— PWM_OUT2: PWM2 timer output signal

ELECTRONICS 27-1

PWM TIMER CONTROL KS32C65100 RISC MICROPROCESSOR

SPECIAL FUNCTION REGISTER

PWM Control Register

Register Offset Address R/W Description Reset Value
PWMCONR 0xe000 R/W PWM_CON control register 0x0
313029 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
X X[X
[0] Run PWMO Counter
0 = Stop 1=Run
[1] Run PWM1 Counter
0 = Stop 1=Run
[2] Run PWM2 Counter
0 = Stop 1=Run
Figure 27-1. PWM_CON Control Register
PWM Counter Pre-Scaler
Register Offset Address R/W Description Reset Value
PWM_PRSC 0xe004 R/W PWM Pre-Scaler counter base value register | 0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Observation| Observation Observation Counter Counter Counter
Value2 Valuel ValueO Base2 Basel BaseO

[7:0] Pre-Scaler0 Counter Base Value

[11:8] Pre-Scalerl Counter Base Value

[15:12] Pre-Scaler2 Counter Base Value

[23:16] Pre-Scaler0 Counter Observation Value

[27:24] Pre-Scalerl Counter Observation Value

[31:28] Pre-Scaler2 Counter Observation Value

Figure 27-2. PWM Pre-Scaler Counter Base/Observation Register

27-2 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR

PWM TIMER CONTROL

PWM Cycle/On Time Base & Observation Register

Registers Offset Address R/W Description Reset Value
PWM_CYTO 0xe008 R/W PWMO cycle time & observation register 0x00000000
PWM_ONTO 0xe00c R/W PWMO on time & observation register 0x00000000
PWM_CYT1 0xe010 R/W PWM1 cycle time & observation register 0x00000000
PWM_ONT1 0xe014 R/W PWML1 on time & observation register 0x00000000
PWM_CYT2 0xe018 R/W PWM2 cycle time & observation register 0x00000000
PWM_ONT2 OxeOlc R/W PWM2 on time & observation register 0x00000000

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Observation Value

Counter Base

[15:0] Counter Base Value

[31:16] Counter Observation Value

Figure 27-3. PWM Cycle Time Base/Observation Register

313029 28 27 26 25 24 23 222120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Observation Value

Counter Base

[15:0] Counter Base Value

[31:16] Counter Observation Value

Figure 27-4. PWM On Time Base/Observation Register

ELECTRONICS

27-3

PWM TIMER CONTROL KS32C65100 RISC MICROPROCESSOR

Caution
PWM_Counter_Clock = MCLK / (pre-scaler value+1)
Cycle time pulse width = (cycle time value +1) / PWM_Counter_Clock

On time pulse width = (on time value +1) / PWM_Counter_Clock

* PWM Timer Setting Process

Write PWM_Counter Pre-Scaler value
Write PWM_Cycle time value

Write PWM_On time value

RUN PWM_Timer

Write Next PWM_Cycle time value or PWM_On time value
(When you change the PWM_Cycle time or the PWM_On time value)

27-4 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR MECHANICAL DATA

MECHANICAL DATA

PACKAGE DIMENSIONS

| G| '6
— k!
g I e e

Figure 28-1. 208-QFP-2828 Package Dimensions

ELECTRONICS 28-1

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

EVALUATION BOARD

INTRODUCTION

KS32C65100 evaluation board is a platform that is suitable for code development and exploration of
KS32C65100. It supports various memory devices such as DRAM , SRAM, EPROM, and Flash. Using the
embedded ICE interface, you can debug the KS32C65100 directly.

SYSTEM REQUIREMENTS

Host computer: IBM compatible PC

Evaluation board of KS32C65100

DC power supply with the following outputs: +5V at 0.5 A
Parallel Cable (25-pin)

Serial cable (9-pin)

ELECTRONICS 26-1

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

BOARD COMPONENTS

The arrangement of major components on the board is shown in Figure 29-1. The major components include:

EPROM/Flash
Memory

SRAM

DRAM
Parallel Port
Serial Ports
JTAG Port
Expansion

Connectors

Buttons

LED Indicators

There are two sockets, U13 and U14, which will accept 8-bit FLASH or EPROM with
64 K size for lower byte (U13) and upper byte (U14) data access, respectively. The

two sockets finally form 64 K x 16-bit ROM bank. You can control the memory type

by setting the jumper JP15 and JP16.

Two sockets, U18 and U19, are supplied for SRAM memory bank with 128 K x 16- bit
size. The U18 and the U19 will accept the 128 K 8-bit SRAM for lower byte data and
upper byte data, respectively.

Two sockets, U15 and U16, are supplied for DRAM memory bank with 1M x 16- bit
size.

One parallel port (PRINT) is supplied to support parallel data communication
between the host PC and the evaluation board.

Two 9-pin serial ports (SERIAL-1 and SERIAL-2) are supplied for serial data
communication between the host PC and the evaluation board.
You can control the SIO1,S102 by setting the jumper JP3 and JP5.

One 14-pin JTAG port (CON4) is supplied to connect with the Embedded ICE Unit.

Three 50-pin connectors (U11, U12, U17) are supplied for system expansion. They
contain board data bus, address bus, external memory bank/device control, and
external master control signals.

Five buttons are supplied on the board. One button (S5) is for system reset and the
others (S1-S4, S7) are reserved for external intervention during system running.
Depending on the setting of jumpers (JP10-JP14), the S1-S4, S7 are optionally
connected to four KS32C65100& general purpose Input pins (GIP3-GIP7) and the
external intervention can be detected and handled by S/W.

Five LEDs are supplied on the KS32C65100 board. One LED (LD9, adjacent to the
power connector) is for board power indication and the rest (LD2, LD5-LD8) is
reserved for other status indication. LD2, LD5-LD8 are optionally connected with four
KS32C65100& general purpose Output pins (GOPA5, GOPA7-GOPA10). Depending
on the setting of jumpers (JP4, JP6-JP9), their on/off status can be controlled by
SIW.

26-2

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

PARALLEL PORT
SERIAL1 SERIAL2 POWER CON.
POWER S/W Q
3.3V REGURATOR POWER LED
TEST S/IW
- o DRAM
ROM(LOW)
OSC.
ROM(HIGH)
SRAM
RTC BATTERY
SRAM _
ICE PORT MOTOR PORT
S5 = == S2 S3 S4 PRINT PORT

Figure 29-1. Evaluation Board

ELECTRONICS 26-3

VARIABLE IMAGE SCALING

KS32C65100 RISC MICROPROCESSOR

BOOTING SYSTEMT

After power is turned on, the Boot Code is activated automatically. The Boot Code then performs system
initialization and configuration. Once this procedure is completed, the four LEDs (LD1-LD4) on the bottom of the
board should light on together. At the same time, a message appears on the PC, which shows that the system is

waiting for program downloading.

If four LEDs fail to light on, the board is either faulty or incorrectly powered. If the LEDs light on but no message
or some strange symbols appear on the communication window activated on the host PC, you should check if the
parameter setting for the communication window (such as, the Hyper Terminal) is matched to the relative setting
for board, such as baud rate, parity, stop bit setting and so on

Power Supply

KS32C65100

Peripheral1| | Peripheral2| | Peripheral3|

ICEBreaker
ARM

Debug Host RS23

2C Cable

Core
%_%—\

Application Board

ROM
(DEMON/ANGEL)

RAM

Device

Figure 29-2. Connection to Host PC

E
RS232C

”

Debug Host

Power Supply

KS32C65100

Peripheral1| | Peripheral2| | Peripheral3|

mbeddedICE

|
Cable ICEBreaker

ARM

Core
JTAG Cable %_“T‘ﬁp_‘

Application Board

ROM(Boot/App.)

RAM

Device

Figure 29-3. Connection toEmbedded ICE

26-4

ELECTRONICS

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

EMBEDDEDICE UNIT INSTALLATION

EMBEDDEDICE UNIT

The Embedded ICE Unit can also be connected with the KS32C65100 evaluation board as a debugging system
for software applications development. Embedded ICE is a JTAG-based, non-intrusive, debugging system for
ARM-based controllers or processors. Embedded ICE provides the interface between a debugger and the ARM-
based controller development board.

To use the Embedded ICE, the following additional equipment are required:

Embedded ICE Interface Unit
14-way ribbon cable

9-pin RS232 cable

25-pin parallel cable (optional)
7-9 V at 500mA DC power supply

CONNECTING KS32C65100 EVALUATION BOARD AND PC

The Embedded ICE Unit should be connected to the KS32C65100 evaluation board & JTAG Port (CN1) via a 14-
way cable, and to the host PC via a 9-pin RS232 serial cable. A parallel cable can optionally be connected
between the 25-pin parallel port connector on the Embedded ICE interface and the printer port on the host PC.
Using the parallel cable can speed up the code download.

To power on the Embedded ICE interface, 7-9 V DC power supply is required. The system connection with
Embedded ICE is shown in Figure 29-3.

ELECTRONICS 26-5

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

POWERING UP THE BOARD AND EMBEDDEDICE

We recommend that you power on the evaluation board before the Embedded ICE is powered on. In this way, the
system initialization and memory configuration for KS32C65100 evaluation board performed by the Boot Code
can be completed first. Otherwise, it may cause the failure of code download via Embedded ICE.

DEBUG APPLICATION WITH EMBEDDEDICE

Install ARM Tool kit for Windows.
Run the 2Hyper Terminal? in host PC.

1
2
3. Configure the serial port settings of the 2Hyper Terminal?2 as 38400bps, 8-bit data, no parity and 1 stop bit.
4. Install the evaluation board and Embedded ICE interface as Figure 29-3.

5

. Power on the board and Embedded ICE.

Configuring the ARM Windows Debugger

1. Runthe ARM Windows Debugger.

2. Select "Options/configure Debugger/Debugger" menu to set "Big" for "Endian” item.

3. Select "Options/configure Debugger/Target" menu to set "Remote_A" for "Target Environment" item.
4

Click "Configure" button in "Options/configure Debugger/Target" menu to open the "Angel Remote
Configuration" window. In this configuration window, you select "serial" or "serial/parallel" for "Remote
Connection" item, select an appropriate COM port, select an appropriate baud rate for serial line speed, and
then click the "OK" button to end the configuration.

5. Click the "OK" button in "Options/configure Debugger" to conclude the debugger configuration.

6. Select "File/Exit" menu to quit the ARM Windows Debugger.

Debugging the application with Embedded ICE

1. Runthe ARM Project Manager.

Open "Hello.apj" in directory "example/ICEdbg/."

Click the "force build" button to build the application.

Click the "Debug" button to start the ARM Windows Debugger.

Click the "YES" button when you see the message box "Are you sure that you want to start in remote
debugging?'

a kw0

6. After code downloading is completed, type in the following command in the command window :
20b a:\example\ICEdbg\armsd.in?
7. Then, you can run and debug the application using any functions provided by the Debugger.

26-6 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

SWITCH AND JUMPERS DESCRIPTION

Table 29-1. Jumper Description

Jumper Status Description
JP1 (5Vpp)
JP2 (3Vpp)

Main power and chip power (5V, 3.3V) are separated.

Main power and chip power (5V, 3.3V) are connected.

JP3 (SIO TXD) SERIAL2 and TXD1 are connected

SERIAL2 and TXD2 are connected

JP5 (SIO RXD) SERIAL2 and RXD1 are connected

SERIAL2 and RXD2 are connected

JP17 (CLOCK) MCLK and Crystal are connected.

MCLK and Oscillator are connected.

JP4, JP6, JP7, GOPA5,GOPA7~10 and LED(LD2,LD5~8) are separated.
JP8, JP9

GOPA5,GOPA7~10 and LED(LD2,LD5~8) are connected.
JP10-JP14 GIP3~7 and SWITCH(S1~4,S7) are separated.

GIP3~7 and SWITCH(S1~4,S7) are connected.
JP19, JP20 Select EPROM (27512) on ROM sockets (U13 & U14).

Select Flash memory(29EE512) on ROM sockets (U13 & U14).

i memelfl e

NOTE: The grayed rows are the default settings of the evaluation board.

Table 29-2. Switch Description

Switch Key Status Description
Sw1 Main power 5V switch
S8 On Pinl ~3 is TESTO0~1 ground, Pin 4 ICE TDI ground
(When ICE non-connection)
Off Pinl ~3 is TESTO~1 VDD, Pin 4 ICE TDI open
(When ICE connection)
S5 Reset switch

NOTE: The grayed rows are the default settings of the evaluation board

ELECTRONICS 26-7

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

C41 =
82P
o] <t
e
[aN[aX 0| o —
e fete < | ol
alrld<d | o |4 [~NOG Y ol | (g
OFalalal o< o | [0l
002009 |Flalalala]al5 S o | 9 0_||009
0_A¥0300 [60ATD0 == NP b SIS o
Ol XH>OUSSS [FOF9S9 o= 3 o AN T e [[©
P P A e B P N a0 et R T e @ b 2 P e
e o e 18 [(01 [[TV 25, o 1 [P SIS e 7 e @@ [0 (@[0 LI—L%O> o
P51 1 (6 [[l (,(,(,>nf><nf><nf><O%mood<—((85[0 G100t e e B b= B P
NN NN N N[ROIN R?
D S PSS NS Pt ot et el
SN sa It N =t O|©|0o) »—-uuwummbwmpowwummbwmpawwu KS32C65100
22222333?&.‘0.@.@2’3;@;@?83.1—’883%5999999995%%@'?%?%??%%2%%3
Z22Z23J<00000mMmMMOGE505023~6a-MhxQ0000000hnnul | I SOonxo
823825°9 > 300003 82 ERERA <3810 0B ZITIDT 4 JQ0TO0TISGRLY
. xR ORSES R o 50000 S0 1 caesIeaR RHSCCIceI0377 8 S selec
—HR——F{savp ©7852888 TQTQTeeeS m 3 SRgRSeBS T seLEcT iss—EAG
SAvED 05000 BIRIID5G 3 @ 6 639 NFAULT o
N 31 2AIN O0gFJTIT ~p > »>dd e} 3 332 hAUTOFD/GIPL7 [+24— DAUTOFD/GIPIY
& 21 ShvRrs JSEEE ° R Qg 2 2 D@z nAUTOIDIGIEL 3 nINIT/GIPL
g & SAVSS o PRT 33 5 R RS o tNciis [1eZ—nSLCTINGIPIG
SIS LK 81 3Is ik b3S o STROBE 4§ —DSTROBE
nEINTO/GIP3 g CIS S| VSS [-T29—Bp57
AERTrelEs 5 nEINTO/GIP3 PPDY 28— bbR&
nEINT2/GIP5 0| NEINTL/GIP4 PPD6 47— ppDE
7 nEINT2/GIP5 PPD5 46— bpRa
S 5 VSS PPD4 12 —56D3
iEe s oo e
EC n
NECS2IGOPAR H hECS2IGOPAS PPDT 45— 5BRL
NPHGAL3/GOP 6 | 3VDD PPDO z
BNl >+ NPHGA13/GOPB12 5VDD 40— &ob3
NEHGALLGOE 51 NPHGA12/GOPB11 GIOP3 139 Giop>
Nl 5 nPHGA11/GOPB10 GIOP? 35 ——aIoE2
R 5 nPHGALO/GOPBY GIOP1 323k
A e obBs— 51| NPHGAJ/GOPBS GIOPO [136 S —
P PHGAZIGOPRG 97| NPPHGAS/GOPB? nTRST FEE e
RS eSERe—55 NPHGAT/GOPB6 ™S 34—
D AR 8ER2—57 NPHGAG6/GOPB5 TDO 33—
25| [PHCASIGOPBA -
DEHGAJIGOPBS 28] NPHGA4/GOPB3 K S :3 2 (:6! ; I OO 3vBD gD -
SRR 2=ER 56+ nPHGA3/GOPB2 NEXWAIT/GIP7 159 L
nEHGA? z PHGA2/GOPB1 VCLK/GIP14 5 VG KIGIE 14
NPHGALIGOPBO 29| Mol caT/GoPBD " VDIGIP13 55— OVDIGIPL3
2 3 3Voo HSYNCH/GIPTS 27— HSYNCIIGIP12
BHOEL/GIOPIT 31 1 p{oE1/GI0P1L NLREADY/GIP11 58— DLREADY/GIPLL
S OEy SlopT—37] PHOEVGIOP1L NLREADYIGIPIL 195 nHSYNCI/GIP1O
PHOES/GIOP13 33 | bHiOE3/GIOP1S " vss H5a—eND
PHOE4/GIOP14 34 | PHOES/GIOP13 Lsu cLKiGoPe2 123~ 1SU CIKIGOPATS
PHOES/GIOPLS 23 | by OES/GIOP15 VDDL/GOPALA 57— NVDDLGOPALL
PHOEG/GIOP16 38 1 oS ERiciop16 NVDD2/GOPA29 55— MVDD2IGOPA
BHOE/IGIOP1, 371 by OE7/GIOP17 PWMO2/GOPALS 45 PWMO2IGOPALS
PHOEB/GIOP18 38| oy SE4/GIoP18 PWMOL/GOPA12 SUMOTIGORALL
- 3% vss PWMOO/GOPALL EAMODICOEALL
3% 7 PHOE9/GIOP19 DC_SIN1/GIPS [-TT5 C-SINO/GIPS
PHOEL1/GIOP21 2| PHOE10/GIOP20 DC_SINO/GIP8 [-TT8
e 055— 45 PHOEI1/GIOP21 3VDD 11— R IGOPATS
e ST i
DHOEL/GIOR2d 2 | PHOET4/GIOP24 CRIBO/GOPA?7 15— SRIBVCOEAZL
e B8 L oS e M
81 5voD CRIAOIGOPAZS |98 —CRIAOIGOPAZS
n <2/GOPA7 0 | NRCSO VSS 7107 =“D"UR3
2 27-{ nRCS1/GOPA7 SC_CUR3 [H06—2&—¢
ARKSS 52| NRCS2 SCCUR? 05— 2C~CONPHEIGOPAZD
NRASO 088 GOPA20
200,35 g P g o0
325 SoL00000Ts S >SEEEEEBBEEB S
PR REE R e R0 B R R R e 2 2 DR BB SR B Or R b R b B o BRR AR AT
(x1(02[8))(8) [51(8) (&) O (o) (@) e | S| | | (e 0| 100{00| 0[O O[O LOIO|LO KO OO € “‘
I0O1-R U O ~I| 00} O O =N} Lo | UG <[00| LO| O =N Lo - U101 [~ 00| OO =N Lol OO~ 00| O | O OO wa
O
O [Nafad
wnjnu
<<l o Sl den|<in2 O ol <t|1nlcol ool Y ol =3
Zl & Q
LAII=F I""“"“’ I>°° ORI ><|<(<(<(<(<(<(<(<2C<? I:ju'
nivy

Figure 29-4. Evaluation Board Schematic 1

26-8 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

+5V
U9 N}
o v R13 D1
098 T 10K 1N4148B
=sC
Z450 U2A u2B _
_L 7414 7414
XX IS REST<]} 20<} 1 40<} 3
JP1 c11 c13
+5V VDD
+5v [OJPZO {_—>vbD 220 CAP 45V gwlspm
POWER 3.3y [SPOWER33V P2, 3VDD— 3ypp o—xX 1 “T~cs5
10UF/16V
POWER 3.3v [_L o -
)] 5
O [
< POWER PART > T =i con [i3
45V X1 CAP CAP NP 30 of
4 11 o o
T = =
osc 3voD < RESET PART > ,
14 8 9
32 ==
9.5MHz © BNC)
i JP17

R8 R9 R10

R11 R12
JUM()2 —>osci 100 100 100 100

100
l 5 3 3 3 3
€37 CAP NP
1L -
T l 0 2 BRI15 2 JOR16 2 JOR17 2 yoRr18 SAVET 2 yRig
v
C40 CAP NP 1— 9.5MHz

R92 6k
H <_"Josco

1 1 1

< OSC. & CRYSTAL PART > ' < ADC PART >

VDD
3ypD
R25R D3 D4 C35 22P
I 2 2 I It l >

RTC_XIN
1N4148B 1N4148B

N

— BT1

Y1
C36 22P 1— 32 7.6BKHz

1T

= 1 <
N BATTERY Clz—r c1a RTCVDD _L_ RTC_XOUT
3301_ T 10UF/16V N nTRST
L <RTCPART>

S8 R89 4.7k b ==
1[==|8 TIESTO no a1 EICE =
== s TESTZ. 1
cH= R e] <ICE INTERFACE PART >
= SW DIP-4

< TEST S/W PART >

Figure 29-5. Evaluation Board Schematic 2

ELECTRONICS 26-9

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

CN1
] R7 10K ———<_]TXDL/GOPAL
H—x b
] +5V IP3
qg 33UF —2
X 1 Q
— us = >
SERIALL $20r -
- 1 16 \|.c3
c1+ vee VDD
N2 |7 /1'3.3UF ———<_1TXD2/GOPA2
X c1- v+ 2
6 C2+ v |8 \|ca R21 VDD
X |(_33UF 5 15 /T330F] 10k
v s c2- GND -
- 14 11 =
Tlout Tilin Fi5——<__ITXDO/GOPAQ § GIPO
:Eﬁﬁ(B R1lin Rlout g P‘x‘igg R22 (R23
F—X g T20UT _T2in g 10k <10k
EALZ R2in R2out
l <__JRXDL/GIP1
- L = MAX232
c7 |cs [co [c10
| 330F 330F 3301 330 &
PS5
- S ——
o
< SERIAL PORT >)
<_IRXD2/GIP2
\hD
R39~R49
R31~R38
1K
51K U0
NSIRQBE R57_120
—]
PPD[O.7 _ R58~R66 39 EgT»as_ 3 2
D B 3 23
D) 4 24
B BED 5 25
Pl 5 6 26
PP PP 7 27
PP PP 8 28
ACK, DEACK {7 3
?Eé R67_120 ———u 33
FERROR R68_ 120 | | E—a=
cT RE9_ 120 i £ .
== i %
n FD/GIP17 R70 200
n<35rlN/GIP16 R71 200 TP PRINT
h R72, 120
nl P15 R73 200
ClEJ_ Ciglc17] C108C181C19/C20/C211C22]| C23|C24]C25] C26lCc27/C28] C291C30]
< PARALLEL PORT >

Figure 29-6. Evaluation Board Schematic 3

26-10 ELECTRONICS

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

u15 u16
) oo H—B) oo H—B
Ve Ve
H A3 D03 3 H A3 D03 3 u13
5 A4 D4 g 5 A4 D4 g ~
3 As DQ5 g 31 As DQ5 g 0120, pooli3
L0 BFHTR 0% BFHTR —it{Al DoiE
L D A2 DQ2
R76 R A8 DQ8 A8 DQ8 3 7
NCASE > A —————— —A9 29179 Q9 [39 —A9 2917 009 [39 I g]A3 DQ3fIE
R77 R 3 DQI0 34 3 DQIO 35 A2 DR
nCAS_>——A~AA NLCAS DQI1 -5 NLCAS DQ11 [0 A [0
R78 R 759 NUCAS DQ12 |71 154 NUCAS DQ12 [71 45V p—-va—y A DQ6 3T
= A T NeE Btz THNEE BRIz —n
5 D 6 | +
NRAS[_>——AA 9 nw s [1\ pois [] % ﬁ?o " v
noE [o>— 2 vss1 vect] 8V 2ivss1 veel B 8V . sp1s A vee b3
4| VSS2 VCC2 (37 4| VSS2 VCC2 (37 3 ge| a2 NWEPS
nWe Co>——y VSS3 VCC3 V583 VCC3 429 B22 c31
= 33 = o2 Fars VESPI
B —Ale 2|
KM416C1200CT KM416C1200CT C34 30 A16
CAP NP Alg 1 ﬁ}g = =
ALS 5y 29EE512
u14
12 3 D
A0 DQO
u18 u19 . P16 1T A Bt z
12 3 DO 3 D vi
1T A0 D1 [T% 1] A0 D117 5 v D9sIis
101 AL D2 [10] AL D2 1% o CA% BREe
5| A2 D3 1% 2 D313 P v
51 A3 D4 15— B 51 A3 D458 AT 5178 DQeraT
A 4 D5 16— A A4 D55 i
A5 D6 [70 A5 D6 [50 2] 18 +5V
2 A6 D7 [51 A6 D751 2314%
3 A7 D8 77| AT D8 214 a11 vee [
i Ag i N e+ A1z NW i}‘
M2 M o NP
2 75| Al2 2 75| AL2 A6 2 ﬁ}g Vss j I
A 3] A13 +EV A 3|AL3 +5V —“ AL7 = =
A 31| ALd A 31| Al4 L Als = =
7y 21 ALS 7y 2 AlS
A6 vee (35 Ao vee (35
_nRCS2 22— _nRCS2 22|~
22155 cs2 3 22155 cs2 3 _L 29EE512
n 241 50 cs _moE 2415e c39
e WE = CAP NP—E—=H WE CAP NP

KM681000C_55(32-Dip) KM681000C_55(32-Dip)

< MEMORY PART >

Figure 29-7. Evaluation Board Schematic 4

ELECTRONICS 26-11

VARIABLE IMAGE SCALING

KS32C65100 RISC MICROPROCESSOR

+5V
LD2 R24 330 JPa
%IQ o o <__InRCS1/GOPA7
LD5 R27 330 JP6
%l@ o o <__InECS2/GOPA8
LD6 R28 330 JP7
o o <__InIORD/GOPA9
LD7 R29 330 P8
%l@ o o <_InIOWR/GOPA10
LD8 R30 330 JP9
%l@ o o <__InXDACK/GOPA5
R51 R52 R53 R54
47K 47K 47K 47K
JP10
“— 6 o > NEXWAIT/GIP7
JP11
o o > nEINT2/GIP5
P12
o o > nEINT1/GIP4
JP13
o o > nEINTO/GIP3
P14
o o {">nXDREQ/GIP6
s1 s2 s3 s4 s7
—o— 5 15555 155955 15555 15955
»—403 »—403 »—403 »—403 »—403
2o)) Lo 2o

u12 u17
GND VDD GND PHOE1/GIOP11 VDD
— Do 41 50 A0 HOEZ/GIOP12 J1 50 SLEDO/GOPALG
OSCI T 2 49 AL HOE3/GIOP13 J2 49 SLEDI/GOPAIL7
NREST 7 2 ﬁg A2 HOE4/GIOP14 2 gg SLED2/GOPAIS
3 A3 HOES/GIOP15 TONE_OUT/GOPA3
PERROR DI 95 46 Ad HOEG/GIOP16 | 5 46 NWTD_OUT/GOPA4
nFAULT 5 6 45 Ab HOE7/GIOP17 J8 45 SAI
C nAUTOFD/GIP17 — D6 4/ 44 AB HOEB/GIOP18 7 44 CIS Sl
C nINIT/GIPI5 . D7 48 43 A7 HOEY/GIOP19 8 43 CIS_CLK
C nSLCTIN/GIPTe — D8 49 42 A8 HOEI0/GIOP20 (| 9 42 NVCLRIGIP14
C NSTROBE 9 10 41 A9 HOEI1/GIopP21 10 41 P CL
C 7 0 11 40 ALD HOEI12/GIOP22 o 11 40 NVDD2/GOPA29
C 5 T 12 39 AIL HOEI3/GIOP23 12 39 [SU_CLK/GOPAIS
D 5 7 13 38 ALZ HOEI4/GIOP24 13 38 WMOO/GOPATL
——_DCSIN 4 3 14 37 AL3 HOE15/GIOP25 14 37 WMO1/GOPAIZ
C 3 4 15 36 Al4 HOEI6/GIOP26 | 15 36 WMO2/GOPAL3
2 DI5 16 35 AL nPHGAT/GOPBO | 16 35 nVDD1/GOPA1Z
T NECS0 17 34 Al6 NPHGAZ2/GOPBL 17 34 NHSYNC1/GIP10
0 NECS1L 18 33 ALT NPHGA3/GOPB2 18 33 NHSYNC2/GIP12
10 NRCS0 19 32 A NPHGA4/GOPB3 19 32 NLREADY/GIP1L
OP9 nRCS2 20 31 A nPHGAS/GOPB4 20 31 nVDI/GIP13
OP8 nRASO 21 30 A nPHGAG/GOPBS 21 30 nPHGAI3/GOPBIZ
OP7 NRAST 22 29 A2 NnPHGA7/GOPB6 22 29 NPHGAI2/GOPBIL
OP6 NCASO 52 gg nWE nPHGAS/GOPB7 52 gg NPHGAIL/GOPBI0
n nPH PE PH PE
OP5 CASI —d2¢ 21 NOE GAY/GOPES 2 o GAIO/GOPBY
MO PORT4 PORT1
Figure 29-8. Evaluation Board Schematic 5
26-12 ELECTRONICS

