
20-32-C65100-0599

USER'S MANUAL
KS32C65100
32-Bit RISC
Microprocessor
Revision 0

KS32C65100
32-BIT RISC

MICROPROCESSORS

USER'S MANUAL

Revision 0

Important Notice

The information in this publication has been
carefully checked and is believed to be entirely
accurate at the time of publication. Samsung
assumes no responsibility, however, for possible
errors or omissions, or for any consequences
resulting from the use of the information contained
herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of
any product or circuit and specifically disclaims any
and all liability, including without limitation any
consequential or incidental damages.

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all
claims, costs, damages, expenses, and reasonable
attorney fees arising out of, either directly or
indirectly, any claim of personal injury or death that
may be associated with such unintended or
unauthorized use, even if such claim alleges that
Samsung was negligent regarding the design or
manufacture of said product.

KS32C65100 RISC Microprocessors
User's Manual, Revision 0
Publication Number: 20-32-C65100-0599

© 1999 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior
written consent of Samsung Electronics.

Samsung Electronics' Microprocessor business has been awarded full ISO-
14001 certification (BSI Certificate No. FM24653). All semiconductor products
are designed and manufactured in accordance with the highest quality standards
and objectives.

Samsung Electronics Co., Ltd.
San #24 Nongseo-Lee, Kiheung-Eup
Yongin-City, Kyungi-Do, Korea
C.P.O. Box #37, Suwon 449-900

TEL: (02) 760-6530, (0331) 209-6530
FAX: (02) 760-6547
Home-Page URL: Http://www.samsungsemi.com

Printed in the Republic of Korea

KS32C65100 RISC MICROPROCESSOR iii

Preface

The KS32C65100 RISC Microprocessor User's Manual is designed for application designers and programmers
who are using the KS32C65100 RISC Microprocessor for application development. It is organized in two main
parts:

Part I Programming Model Part II Hardware Descriptions

Part I contains software-related information to familiarize you with the RISC Microprocessor's architecture,
programming model, instruction set, memory structure, and special function registers. It has five chapters:

Chapter 1 Product Overview
Chapter 2 Programmer’s Model
Chapter 3 Instruction Set

Chapter 4 Address Spaces
Chapter 5 Special Function Registers

Chapter 1, "Product Overview," is a high-level introduction to KS17C80064/C80013/F80013 with general product
descriptions, as well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, “Programmer’s Model,” describes the important feature of the KS17C80064/C80013/F80013
programming environment.

Chapter 3, "Instruction Set," describes the features and conventions of the instruction set used for all KS17-series
RISC Microprocessors. Several summary tables are presented for orientation and reference. Detailed
descriptions of each instruction are presented in a standard format. Each instruction description includes one or
more practical examples of how to use the instruction when writing an application program.

Chapter 4, "Address Spaces," describes program and data memory spaces, the internal register file, and register
addressing.

Chapter 5, "Special Function Regsiters," contains overview tables for all mapped system and peripheral control
register values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-
read, alphabetically organized, register descriptions as a quick-reference source when writing programs.

A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in
Part II. If you are not yet familiar with the KS17-series RISC Microprocessor family and are reading this manual
for the first time, we recommend that you first read Chapters 1–3 carefully. Then, briefly look over the detailed
information in Chapters 4, and 5. Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the
KS17C80064/C80013/F80013 RISC Microprocessor. Also included in Part II are electrical, mechanical, and MTP.
It has 14 chapters:

Chapter 6 System Reset and Power Mode
Chapter 7 Clock Circuits
Chapter 8 Interrupts
Chapter 9 I/O Ports
Chapter 10 Real Timer
Chapter 11 Basic Timer & Watchdog Timer
Chapter 12 16-Bit Timers

Chapter 13 PWM
Chapter 14 Remocon Receive
Chapter 15 4-Bit Analog-to-Digital Converter
Chapter 16 On-Screen Display (OSD)
Chapter 17 Electrical Data
Chapter 18 Mechanical Data
Chapter 19 KS17F80013 MTP

Two order forms are included at the back of this manual to facilitate customer order for
KS17C80064/C80013/F80013 RISC Microprocessors: the Mask ROM Order Form, and the Mask Option
Selection Form.
You can photocopy these forms, fill them out, and then forward them to your local Samsung Sales
Representative.

KS32C65100 RISC MICROPROCESSOR v

Table of Contents

Chapter 1 Product Overview

Introduction..1-1
Features ..1-2
Block Diagram...1-4
Pin Assignment..1-5
Pin Description ..1-6
KS32C65100 Special Function Registers...1-11

Chapter 2 Programmer’s Model

Overview...2-1
Processor Operating States ...2-1
Switching State..2-1
Memory Formats ...2-1
Big-Endian Format...2-2
Little-Endian Format ..2-2
Instruction Length ..2-3
Operating Modes ...2-3
Registers ...2-3
The Program Status Registers ...2-7
Exceptions...2-10
FIQ..2-11
IRQ..2-12
Interrupt Latencies ...2-14
Reset...2-14

Chapter 3 Instruction Set

Instruction Set Summay...3-1
Format Summary ..3-1
Instruction Summary ...3-2

The Condition Field ...3-3
Branch and Exchange (BX)..3-4

Instruction Cycle Times ...3-4
Assembler Syntax ...3-4
Using R15 As An Operand...3-4

Branch and Branch With Link (B, BL) ..3-6
The Link Bit ...3-6
Instruction Cycle Times ...3-6
Assembler Syntax ...3-7

vi KS32C65100 RISC MICROPROCESSOR

Table of Contents (Continued)

 Chapter 3 Instruction Set (Continued)

Data Processing...3-8
CPSR Flags ..3-9
Shifts...3-10
Immediate Operand Rotates..3-14
Writing To R15 ..3-14
Using R15 As An Operand...3-14
TEQ, TST, CMP and CMN Opcodes ...3-14
Instruction Cycle Times ...3-14
Assembler Syntax ...3-15

PSR Transfer (MRS, MSR) ..3-16
Operand Restrictions ...3-16
Reserved Bits..3-18
Instruction Cycle Times ...3-18
Assembler Syntax ...3-19

Multiply and Multiply-Accumulate (MUL, MLA)...3-20
CPSR Flags ..3-21
Instruction Cycle Times ...3-21
Assembler Syntax ...3-21

Multiply Long and Multiply-Accumulate Long (MULL,MLAL)...3-22
Operand Restrictions ...3-22
CPSR Flags ..3-23
Instruction Cycle Times ...3-23
Assembler Syntax ...3-23

Single Data Transfer (LDR, STR)...3-24
Offsets and Auto-Indexing ...3-25
Shifted Register Offset ..3-25
Bytes and Words ...3-25
Use of R15 ..3-27
Restriction On The Use of Base Register...3-27
Data Aborts ...3-27
Instruction Cycle Times ...3-27
Assembler Syntax ...3-28

Halfword and Signed Data Transfer (LDRH/STRH/LDRSB/LDRSH)...3-30
Offsets and Auto-Indexing ...3-32
Halfword Load and Stores ...3-32
Signed Byte and Halfword Loads...3-32
Endianness and Byte/Halfword Selection...3-32
Use of R15 ..3-33
Data Aborts ...3-33
Instruction Cycle Times ...3-33
Assembler Syntax ...3-34

KS32C65100 RISC MICROPROCESSOR vii

Table of Contents (Continued)

 Chapter 3 Instruction Set (Continued)

Block Data Transfer (LDM, STM)...3-36
The Register List ...3-36
Addressing Modes...3-37
Address Alignment ..3-37
Use of The S Bit ..3-39
Use of R15 As The Base ...3-39
Inclusion of The Base In The Register List...3-40
Data Aborts ...3-40
Instruction Cycle Times ...3-40
Assembler Syntax ...3-41

Single Data Swap (SWP)...3-43
Bytes and Words...3-43
Use of R15 ..3-43
Data Aborts ...3-44
Instruction Cycle Times ...3-44
Assembler Syntax ...3-44

Software Interrupt (SWI)..3-45
Return From The Supervisor ...3-45
Comment Field..3-45
Instruction Cycle Times ...3-45
Assembler Syntax ...3-46

Coprocessor Data Operations (CDP) ...3-47
Coprocessor Instructions ...3-47
The Coprocessor Fields...3-48
Instruction Cycle Times ...3-48
Assembler Syntax ...3-48

Coprocessor Data Transfers (LDC, STC) ...3-49
The Coprocessor Fields...3-49
Addressing Modes...3-50
Address Alignment ..3-50
Use of R15 ..3-50
Data Aborts ...3-50
Instruction Cycle Times ...3-50
Assembler Syntax ...3-51

Coprocessor Register Transfers (MRC, MCR)..3-52
The Coprocessor Fields...3-52
Transfers To R15 ..3-53
Transfers From R15 ..3-53
Instruction Cycle Times ...3-53
Assembler Syntax ...3-53

viii KS32C65100 RISC MICROPROCESSOR

Table of Contents (Continued)

 Chapter 3 Instruction Set (Continued)

Undefined Instruction ...3-54
Instruction Cycle Times ...3-54
Assembler Syntax ...3-54

Instruction Set Examples ...3-55
Using The Conditional Instructions...3-55
Pseudo-Random Binary Sequence Generator ...3-57
Multiplication by Constant Using The Barrel Shifter ...3-57
Loading A Word From An Unknown Alignment ..3-59

Thumb Instruction Set Format..3-60
Format Summary ..3-60
OP code Summary ..3-61

Format 1: Move Shifted Register ...3-63
Format 1: Move Shifted Register ...3-63
Format 2: Add/Subtract..3-64
Format 3: Move/Compare/Add/Subtract Immediate ...3-65
Format 4: ALU Operations ...3-66
Format 5: Hi-Register Operations/Branch Exchange..3-68
Format 6: PC-Relative Load ..3-71
Format 7: Load/Store With Register Offset ..3-72
Format 8: Load/Store Sign-Extended Byte/Halfword ..3-74
Format 9: Load/Store With Immediate Offset...3-76
Format 10: Load/Store Halfword ..3-78
Format 11: SP-Relative Load/Store ...3-79
Format 12: Load Address...3-80
Format 13: Add Offset To Stack Pointer ..3-82
Format 14: Push/Pop Registers ...3-83
Format 15: Multiple Load/Store..3-85
Format 16: Conditional Branch ..3-86
Format 17: Software Interrupt ..3-88
Format 18: Unconditional Branch...3-89
Format 19: Long Branch With Link...3-90
Instruction Set Examples ...3-92

Multiplication by A Constant Using Shifts and Adds ...3-92
General Purpose Signed Divide...3-93
Division by A Constant ..3-95

KS32C65100 RISC MICROPROCESSOR ix

Table of Contents (Continued)

 Chapter 4 System Manager

Overview...4-1
System Manager Registers (SMR)...4-1

System Register Address Configuration Register (SYSCFG)...4-4
ROM Control Register ...4-6
SRAM Control Registers..4-11
DRAM Control Registers ...4-14
DRAM Refresh Control Register..4-17
Extra Bank Access Control Registers ..4-21
A.C Electrical Characteristics ..4-24

Chapter 5 Cache Controller

Overview...5-1
Cache Operation ...5-3
Cache Control Registers..5-5

Chapter 6 Derasterizer

Overview...6-1
Rotation ..6-1
Shift Control Register (SFTCON) ..6-2

Chapter 7 General ADC

Overview...7-1
Functions...7-1

SAR (Successive Approximation Register) A/D Converter Operation ..7-2
Comparator (COMP) and DAC (Digital To Analog Converter)..7-2
Special Register ..7-3

Chapter 8 Timer

Overview...8-1
Timer Control Register ..8-2
Timer Count Value Register ..8-3

x KS32C65100 RISC MICROPROCESSOR

Table of Contents (Continued)

Chapter 9 DMA

Overview ...9-1
DMA Operation..9-2
Data Transfers Mode...9-3
General DMA Control Register ..9-5
GDMA Source/Destination Address Register ...9-8
CDMA Control Register ...9-9

Chapter 10 Parallel Port Interface

Overview ...10-1
KS32C65100 PPIC Operating Modes ..10-2

PPIC Special Registers..10-5
Parallel Port Data Register ..10-5
Parallel Port Status Register..10-6
Parallel Port ACK Width Register ..10-9
Parallel Port Control Register ..10-10
Parallel Port Interrupt Event Registers (PPINTEN, PPINTPND)...10-14

Chapter 11 UART

Overview ...11-1
UART Operation..11-2
UART Special Registers ..11-6
Timing Diagrams ...11-15

Chapter 12 Tone Generator

Overview ...12-1
Tone Generator Data Register (TONDATA)...12-1

Chapter 13 Watchdog Timer

Overview ...13-1
Watchdog Timer Counter Register ..13-2
Watchdog Timer Control Register ...13-3

KS32C65100 RISC MICROPROCESSOR xi

Table of Contents (Continued)

Chapter 14 I/O Ports

Overview...14-1
I/O Port Special Registers..14-1

I/O Port Mode Register..14-3
Input Port Mode Register...14-3
Output A Port Mode Register...14-4
Output B Port Mode Register...14-4
I/O Port Data Register ...14-5
Input Port Data Register ..14-5
Output A Port Data Register ..14-6
Output B Port Data Register ..14-6
Test Control Register...14-7
External Interrupt Control Register ..14-8

Test Pin Setting ...14-8

Chapter 15 Interrupt Controller

Overview...15-1
Interrupt Sources ...15-2
Special Register ..15-3

Chapter 16 LF Motor

Overview...16-1
Special Function Register ..16-1

Line Feed Motor Control Register..16-1
Line Feed Motor Phase Control Register ...16-3
Line Feed Timer Register ..16-4
LFCON Each Control Register...16-5
Phase State and Current Table For Full/Half/Quarter Step Mode ..16-6

Chapter 17 CR Control

Overview...17-1
Special Function Register ..17-3

CR_PWM Timer..17-8
Encoder Counter ...17-9
Interrupt Interval Counter ..17-10
Suggestions For Carrier Motor Drive F/W Design..17-11

xii KS17C80064/C80013/F80013 MICROCONTROLLER

Table of Contents (Continued)

Chapter 18 CR Fire

Overview ...18-1
Special Function Register ..18-2

Position & Fire Control Register...18-2
CR Position and Fire Control Register ...18-3

Suggestions For F/W Design ...18-4

Chapter 19 Print Head

Overview ...19-1
Special Function Register ..19-1

Print Head Control Register ...19-1
Fire Enable Timer/Observation Register..19-3
Fire Window Timer/Observation Register ..19-3
Fire Strobe Delay Timer/Observation Register ..19-4
Pre-Heat Pulse Timer/Observation Register ..19-5
Pre-Heat Delay Timer/Observation Register..19-5
Printhead Observation Register...19-6
Front and Back End Delay Counter Register..19-7
Print Head Data Word Register ...19-8
Dot Counter Register ...19-9
Dot Counter Control Observation Register...19-9

Chapter 20 HDMA

Overview ...20-1
HDMA Special Registers..20-1

HEAD DMA Control Register ...20-1
HDMA Source Address Register..20-4
HDMA Transfer Count Register ...20-4
HDMA Source/Match ADR Register...20-5

KS32C65100 RISC MICROPROCESSOR xiii

Table of Contents (Continued)

Chapter 21 Image Processor

Overview...21-1
Image Processor Special Registers ...21-2

Sensor Shift Clock Control Register ..21-2
Sensor SI Clock Control Register ..21-3
Sensor R (GB) Led Control Register..21-4
IWIN Control Register ...21-4
Changed IWIN Control Register ..21-5
MAG/RED Ratio Control Register..21-5
LAT (Local Adaptive Threshold) Control Register ..21-6
ADC Control Register ..21-6
Operation Control Register ..21-6
SRAM Control Register ...21-8
SRAM Data Register ...21-8
Motor Term Control Register ...21-9
Motor Phase Control Register..21-9
Black Shading Correction Factor Register ...21-10
Reduction & Magnification...21-12
Digital Shading Correction...21-14
Gamma Correction..21-15
Binarization ...21-15
ADC Control ..21-16
Motor Control ..21-17
Register Read/Write..21-18
DMA Output ..21-20

Chapter 22 Real Time Clock

Overview...22-1
Leap Year Generator ...22-2
System Power Operation (+5v)..22-2
Backup Battery Operation..22-2
Real Time Clock Registers ..22-3

RTCCON Register...22-3
BCDSEC Counter Register..22-4
BCDMIN Counter Register ..22-4
BCDHOUR Counter Register...22-5
BCDDAY Counter Register..22-5
BCDDATE Counter Register..22-6
BCDMON Counter Register...22-6
BCDYEAR Counter Register ...22-7

xiv KS17C80064/C80013/F80013 MICROCONTROLLER

 Table of Contents (Concluded)

Chapter 23 Clock Save and PLL Control

Overview ...23-1
Registers ...23-1

CLKSAVCON Register ..23-2
PLLCON Register..23-2

Chapter 24 LSU Control

Introduction..24-1
Main Input/Output Signals..24-2
Special Register...24-3

LSU_CON Control Register ...24-3
V_Window Start/End Time Register ..24-4
LD_ON Pre/Post Time Register...24-4
V_Window Counter Observation Register..24-5
LSU Motor Clock Generation Counter Register..24-5

Chapter 25 Printer Interface Controller

Overview ...25-1
Page Image Data Fetch Operation...25-2
Print Operation ..25-4
PIFC Special Registers..25-5

PDMA and Engine Interface Status Register..25-5
Video Control Register...25-6
Pattern Control Register ..25-8
Printer Dma Control Register...25-11
Top Margin Register ..25-13
Left Margin Register ..25-14
Pixel Count Register..25-14
Queue 0/1 Start Address Registers..25-15
Queue 0/1 Transfer Count Registers..25-16
F-θ Lens Compensation Control Register ..25-17
F-θ Compensation Table Start Address ...25-18
F-θ Compensation Table Data Register ...25-19
Toner Counter Setting Register ...25-19
Toner Count Register ..25-20

KS32C65100 RISC MICROPROCESSOR xv

Table of Contents (Concluded)

Chapter 26 Variable Image Scailing

Overview...26-1
Algorithm...26-2
Example of VIS Operation...26-3
Halftoning..26-4
Special Register ..26-5

Chapter 27 PWM Timer Control

Introduction..27-1
Main Input/Output Signals ...27-1
Special Function Register..27-2

Chapter 28 Mechanical Data

Package Dimensions ...28-1

Chapter 29 Evaluation Board

Introduction..29-1
System Requirements ...29-1
Board Components..29-2
Booting Systemt ..29-4

EmbeddedICE Unit Installation ..29-5
EmbeddedICE Unit..29-5
Connecting KS32C65100 Evaluation Board and PC..29-5
Powering Up The Board and EmbeddedICE..29-6
Debug Application With EmbeddedICE ...29-6

Switch and Jumpers Description ..29-7

KS32C65100 RISC MICROPROCESSOR xvii

List of Figures

Figure Title Page
Number Number

1-1 KS32C65100 Block Diagram ..1-4
1-2 Pin Assignments...1-5

2-1 Big-Endian Addresses of Bytes within Words ...2-2
2-2 Little-Endian Addresses of Bytes within Words ...2-2
2-3 Register Organization in ARM State ...2-4
2-4 Register Organization in THUMB State ..2-5
2-5 Mapping of THUMB State Registers onto ARM State Registers..............................2-6
2-6 Program Status Register Format ..2-7

3-1 ARM Instruction Set Format ...3-1
3-2 Branch and Exchange Instructions ...3-4
3-3 Branch Instructions...3-6
3-4 Data Processing Instructions ..3-8
3-5 ARM Shift Operations...3-10
3-6 Logical Shift Left ..3-10
3-7 Logical Shift Right ..3-11
3-8 Arithmetic Shift Right ...3-11
3-9 Rotate Right ...3-12
3-10 Rotate Right Extended ...3-12
3-11 PSR Transfer ...3-17
3-12 Multiply Instructions..3-20
3-13 Multiply Long Instructions ...3-22
3-14 Single Data Transfer Instructions..3-24
3-15 Little-Endian Offset Addressing ..3-26
3-16 Halfword and Signed Data Transfer with Register Offset ..3-30
3-17 Halfword and Signal Data Transfer with Immediate Offset and Auto-Indexing3-31
3-18 Block Data Transfer Instructions...3-36
3-19 Post-Increment Addressing...3-37
3-20 Pro-Increment Addressing ..3-38
3-21 Post-Decrement Addressing ...3-38
3-22 Pre-Decrement Addressing...3-39
3-23 Swap Instruction...3-43
3-24 Software Interrupt Instruction..3-45
3-25 Coprocessor Data Operation Instruction ...3-47
3-26 Coprocessor Data Transfer Instructions..3-49
3-27 Coprocessor Register Transfer Instructions ..3-52
3-28 Undefined Instruction ...3-54
3-29 THUMB Instruction Set Formats...3-60

xviii KS17C80064/C80013/F80013 MICROCONTROLLER

List of Figures (Continued)

Figure Title Page
Number Number

3-30 Format 1...3-63
3-31 Format 2...3-64
3-32 Format 3...3-65
3-33 Format 4...3-66
3-34 Format 5...3-68
3-35 Format 6...3-71
3-36 Format 7...3-72
3-37 Format 8...3-74
3-38 Format 9...3-76
3-39 Format 10...3-78
3-40 Format 11...3-79
3-41 Format 12...3-80
3-42 Format 13...3-82
3-43 Format 14...3-83
3-44 Format 15...3-85
3-45 Format 16...3-86
3-46 Format 17...3-88
3-47 Format 18...3-89
3-48 Format 19...3-90

4-1 System Memory Map (Default Map After Reset)...4-2
4-2 System Memory Map..4-3
4-3 Special Function Register Address Configuration Register4-4
4-4 ROM Control Register (ROMCON) ...4-6
4-5 The Byte Swap Operation of BTU and the Positions of Data in Memory4-8
4-6 Simple ROM Access Timing...4-10
4-7 Page Mode ROM Access Timing..4-10
4-8 SRAM Control Registers...4-11
4-9 External Address Bus Generation (ADDR[21:0]) ...4-12
4-11 SRAM Read Timing..4-13
4-12 SRAM Write Timing ...4-13
4-13 DRAM Control Registers (DRAMCON0 - DRAMCON1) ..4-15
4-14 DRAM Bank Read Timing (Page Mode) ...4-16
4-15 DRAM Bank Write Timing (Page Mode) ...4-16
4-16 DRAM Refresh Control & Memory Configuration Register (DRAM Refresh Control)4-17
4-17 Self Refresh Mode Entry Process by nRESET..4-18
4-18 Self Refresh Mode Entry Process by Software..4-19
4-19 DRAM Refresh Timing..4-20
4-20 Special I/O Address Map ..4-21
4-21 Extra Bank Control Registers (ExtCntr 0, 1, 2, 3) ..4-22
4-22 Extra Bank Read Timing (tcoh = 1, tacc = 4, tcos = 1, tacs = 2)..............................4-23
4-23 Extra Bank Write Timing ..4-23
4-24 An Example of System Manager Register Settings...4-25

KS32C65100 RISC MICROPROCESSOR xix

List of Figures (Continued)

Figure Title Page
Number Number

5-1 Cache Memory Configuration ...5-2
5-2 CS-bit Status Diagram..5-3
5-3 Write Buffer Configuration..5-4
5-4 Non-Cacheable Area Register ..5-5

6-1 Shift Control Register ...6-2
6-2 Rotation Configuration..6-2

7-1 Functional Block Diagram of General ADC...7-1
7-2 ADC Control Register (ADCCON)...7-4
7-3 ADC Data Register (ADCDATA)...7-5

8-1 16-Bit Timer Block Diagram ...8-1
8-2 Timer Control Register ...8-2
8-3 Timer Count Value Register ...8-3
8-4 Timer Programming Sequence...8-3

9-1 GDMA/CDMA Unit Block Diagram..9-1
9-2 External DMA Requests @ Single Mode ..9-3
9-3 External DAM Requests @ Block Mode ...9-4
9-4 External DMA Requests @ Demand Mode...9-4
9-5 GDMA Control Register..9-7
9-6 GDMA Source/Destination Address Register ..9-8
9-7 GDMA Transfer Count Register..9-8
9-8 CDMA Control Register ..9-11
9-9 CDMA Source/Destination Address Register ..9-12
9-10 CDMA Transfer Count Register ..9-12

10-1 Real Timer Block Diagram ...10-1
10-2 Real Time Clock Control Register (RTCON)...10-2

11-1 UART Block Diagram ...11-1
11-2 UART Block Diagram ...11-2
11-3 UART Data Transmission Process..11-4
11-4 UART Data Reception Process...11-5
11-5 UART Line Control Register (ULCON0, 1, 2) ..11-7
11-6 UART Control Register (UCON0,1,2) ...11-9
11-7 UART Status Register (USTAT0,1,2)..11-11
11-8 UART Transmit Buffer Register (UTXBUF0,1,2)...11-12
11-9 UART Receive Buffer Register (URXBUF0, 1, 2) ...11-13
11-10 UART Baud Rate Divisor Register (UBRDIV0,1, 2)...11-14
11-11 Interrupt-Based Serial I/O Timing Diagram (Tx and Rx) ...11-15

xx KS17C80064/C80013/F80013 MICROCONTROLLER

List of Figures (Continued)

Figure Title Page
Number Number

12-1 16-Bit Timer Block Diagram..12-2
12-2 Timer Control Register ...12-5
12-3 Timer Data Registers (T0DATA, T1DATA, and T2DATA)12-6
12-4 Timer Count Registers (T0CNT, T1CNT and, T2CNT)..12-7

13-1 PWM Control Register (PWMCON)..13-3
13-2 PWM Data Register (PWM0, PWM1) ...13-4
13-3 Block Diagram of 14-bit PWM Output Unit..13-6

14-1 Bi-directional Port Mode Register (GIOPMOD) ...14-3
14-2 Input Port Mode Register (GIPMOD) ..14-3
14-3 Output Port Mode Register (GOPAMOD) ...14-4
14-4 Output Port Mode Register (GOPBMOD) ...14-4
14-5 Bi-directional Port Data Register (GIOPD) ..14-5
14-6 Input Port Data Register (GIPD) ...14-5
14-7 Output Port A Data Register (GOPAD) ...14-6
14-8 Output Port B Data Register (GOPBD) ...14-6
14-9 Test Control Register (TSTCON)..14-7
14-10 External Interrupt Control Register (INTCON)...14-8

15-1 Interrupt Mode Register ..15-3
15-2 Interrupt Pending Register ..15-4
15-3 Interrupt Mask Register ..15-5

16-1 LF Motor Control Register ..16-2
16-2 LF Motor Phase Control Register..16-3
16-3 LF Motor Timer Register...16-4
16-4 LFCON Register...16-5

17-1 Carrier Motor Control Register..17-3
17-2 Basic Timer Base Register ...17-4
17-3 Pre-step Timer Base Register...17-4
17-4 CR State Control Register ..17-5
17-5 CRSREG Register..17-6
17-5 PWM Counter Base Register..17-8
17-6 Encoder Cycle Register ..17-9
17-7 Interrupt Interval Value Register ...17-10

18-1 Position & Fire Control Register..18-2
18-2 CR Count Register ...18-3

KS32C65100 RISC MICROPROCESSOR xxi

List of Figures (Continued)

Figure Title Page
Number Number

19-1 Print Head Control Register..19-2
19-2 Fire Enable Timer/Observation Register...19-3
19-3 Fire Window Timer/Observation Register ...19-3
19-4 Fire Strobe Delay Timer/Observation Register ...19-4
19-5 Pre-Heat Pulse Timer/Observation Register ...19-5
19-6 Pre-Heat Delay Timer/Observation Register...19-5
19-7 PrintHead Observation Register ...19-6
19-8 Td Delay Counter Register ...19-7
19-9 Print Head Data Word Register ..19-8
19-10 Dot Counter Register..19-9
19-11 Dot Counter Control Observation Register..19-9

20-1 HDMA Control Register ..20-3
20-2 HDMA Source Address...20-4
20-3 HDMA Transfer Count Register ..20-4
20-4 HDMA Source/Match Address ..20-5

21-1 Image Processor Block Diagram ..21-1
21-2 Sensor Shift Clock Control Register ..21-2
21-3 Sensor SI Clock Control Register ...21-3
21-4 Sensor R(GB) LED Control Register...21-4
21-5 IWIN Control Register ..21-4
21-6 CHANGED_IWIN Control Register ...21-5
21-7 Mag/Red Ratio Control Register ...21-5
21-8 LAT Control Register..21-6
21-9 ADC Control Register ...21-6
21-10 Operation Control Register ...21-7
21-11 SRAM Control Register ..21-8
21-12 SRAM Data Register ..21-8
21-13 Motor Term Control Register ..21-9
21-14 Motor Phase Control Register...21-9
21-15 Block Shading Correction Factor Register ..21-10
21-16 Restart & SCAN_ON Timing Diagram ..21-10
21-17 Reduction Pixel Clock Timing Diagram ..21-12
21-18 Magnification Pixel Clock Timing Diagram ...21-13
21-19 Shading Correction Block Diagram...21-14
21-20 Gamma Correction Block Diagram...21-15
21-21 ADC Control Timing Diagram (CANON) ...21-16
21-22 ADC Control Timing Diagram (DYNA) ..21-17
21-23 Motor Interrupt/Phase Timing Diagram...21-17
21-24 Register Read/Write Timing Diagram...21-18
21-25 Timing Diagram SRAM Read/Write by Register ...21-19

xxii KS17C80064/C80013/F80013 MICROCONTROLLER

List of Figures (Continued)

Figure Title Page
Number Number

22-1 Real Time Clock Block Diagram...22-1
22-2 RTCCON Register..22-3
22-3 BCDSEC Counter Register...22-4
22-4 BCDMIN Counter Register..22-4
22-5 BCDHOUR Counter Register..22-5
22-6 BCDDAY Counter Register...22-5
22-7 BCDDATE Counter Register...22-6
22-8 BCDMON Counter Register..22-6
22-9 BCDYEAR Counter Register...22-7

23-1 Clock Save Block Diagram...23-1
23-2 CLKSAVCON ...23-2
23-3 PLLCON...23-2

24-1 LSU Control..24-1
24-2 LSU_CON Control Register ..24-3
24-3 V-Window Time Start/End Register ..24-4
24-4 LDON_Pre/Post Time Register...24-4
24-5 V-Window Counter Observation Register ...24-5
24-6 LSU CLK Counter Base/Observation Register ..24-5

25-1 Queued Operation for End-of-Page (EOP) ...25-2
25-2 Queued Operation for Page Under-run (PUR) ..25-3
25-3 Protocol Diagram (PIFC and Printer Engine) ..25-4
25-4 PDMA and Engine Interface Status Register (STATUS) ...25-5
25-5 Video Control Register (VCON) ..25-7
25-6 Pattern Control Register (PCON)..25-10
25-7 Printer DMA Control Register (PDMACON) ..25-12
25-8 Top Margin Register (TOP) ..25-13
25-9 Page Layout ...25-13
25-10 Left Margin Register (LFT)..25-14
25-12 Queue 0/1 Start Address Registers (QSAR0, QSAR1)..25-15
25-13 Queue 0/1 Transfer Count Registers (QTCR0, QTCR1)..25-16
25-14 F-θ Compensation Control Register (FTCON) ..25-17
25-15 F-θ Compensation Table Start Address (FSADDR)...25-18
25-16 F-θ Compensation Table Data Register (FDATA) ...25-19
25-17 Toner Counter Setting Register (TCVAL)..25-19
25-18 Toner Count Register (TNCNT) ..25-20
25-19 Test Pattern Duration (TPVAL) ...25-20
25-20 Test Pattern Width (TPON) ..25-21

KS32C65100 RISC MICROPROCESSOR xxiii

List of Figures (Continued)

Figure Title Page
Number Number

26-1 VIS Algorithm Description ..26-2
26-2 Examples of VIS′s Internal Operation...26-3
26-4 VIS Status Register (VISSR) ..26-5
26-5 VIS Control Register (VISCON)..26-6
26-6 VIS Data Size Registers (DstSize, SrcSize)..26-6
26-7 VIS Data Registers (SrcReg, DstReg) ..26-7
26-7 VIS Data Registers (SrcReg, DstReg) ..26-8

27-1 PWM_CON Control Register..27-2
27-2 PWM Pre-Scaler Counter Base/Observation Register ..27-2
27-3 PWM Cycle Time Base/Observation Register ..27-3
27-4 PWM On Time Base/Observation Register ..27-3

28-1 208-QFP-2828 Package Dimensions..28-1

29-1 Evaluation Board..29-3
29-3 Connection to Embedded ICE ..29-4
29-4 Evaluation Board Schematic 1 ...29-8
29-5 Evaluation Board Schematic 2 ...29-9
29-6 Evaluation Board Schematic 3 ...29-10
29-7 Evaluation Board Schematic 2 ...29-11
29-8 Evaluation Board Schematic 2 ...29-12

KS32C65100 RISC MICROPROCESSOR xxv

List of Tables

Table Title Page
Number Number

1-1 Pin Description ...1-6
1-2 KS32C65100 Special Function Registers ...1-11

2-1 PSR Mode bit Values ...2-9
2-2 Exception Entry/Exit ...2-11
2-3 Exception Vectors ..2-13

3-1 The ARM Instruction Set ..3-2
3-2 Condition Code Summary ..3-3
3-3 ARM Data Processing Instructions..3-9
3-4 Incremental Cycle Times..3-14
3-5 Assembler Syntax Descriptions ..3-23
3-6 Addressing Mode Names..3-41
3-7 THUMB Instruction Set Opcodes..3-61
3-7 THUMB Instruction Set Opcodes (Continued)...3-62
3-8 Summary of Format 1 Instructions..3-63
3-9 Summary of Format 2 Instructions..3-64
3-10 Summary of Format 3 Instructions..3-65
3-11 Summary of Format 4 Instructions..3-66
3-12 Summary of Format 5 Instructions..3-68
3-13 Summary of PC-Relative Load Instruction..3-71
3-36 Summary of Format 7 Instructions..3-72
3-15 Summary of Format 8 Instructions..3-74
3-16 Summary of Format 9 Instructions..3-76
3-17 Halfword Data Transfer Instructions..3-78
3-18 SP-Relative Load/Store Instructions ...3-79
3-19 Load Address ...3-80
3-20 The ADD SP Instructions..3-82
3-21 PUSH and POP Instructions...3-83
3-22 The Multiple Load/Store Instructions...3-85
3-23 The Conditional Branch Instructions ...3-86
3-24 The SWI Instruction..3-88
3-25 Summary of Branch Instruction ..3-89
3-26 The BL Instruction ..3-91

4-1 The Relations Between Physical Address and Address in Instructions4-9

6-1 Set 1 Register Values after a Reset..6-4

xxvi KS17C80064/C80013/F80013 MICROCONTROLLER

List of Tables (Continued)

Table Title Page
Number Number

9-1 Difference Between GDMA and CDMA...9-3

12-1 Timer Control Register Description ...12-3
12-2 Timer Data Registers Description ...12-6
12-3 Timer Count Registers description..12-7

13-1 PWM0 and PWM1 Control and Data Registers...13-5
13-2 PWM Output (Stretch) Values for Extension Registers PWM0 and PWM113-5

14-1 I/O Port Mode Configuration and Settings...14-1

15-1 Interrupt Sources..15-2

29-1 Jumper Description...29-7
29-2 Switch Description ..29-7

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

INTRODUCTION

Samsung's KS32C65100 16/32-bit RISC micro controller is designed to provide a cost-effective and high
performance micro controller solution for ink-jet/laser-jet printers and MFP.

An outstanding feature of the KS32C65100 is its CPU core, a 16/32-bit RISC processor (ARM7TDMI) designed
by Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general purpose microprocessor macro-
cell that was developed for use in application-specific and custom-specific integrated circuits. Its simple, elegant,
and fully static design is particularly suitable for cost-sensitive and power sensitive applications.

The KS32C65100 was developed using an ARM7TDMI core, 0.35um CMOS standard cells, and a memory
compiler. Most of the on-chip function blocks were designed using an HDL synthesiser.

The integrated on-chip functions that are described in this document include:

• 2KB Instruction/data cache and controller
• PLL (Phase Locked Loop)
• Clock save control
• DMA control (3 channel)
• Interrupt control
• UART (3 channel)
• 16-bit Timer (3 channel)
• PWM timer (3 channel)
• Watch dog timer
• A/D converter (8/10-bit, 3 channel)
• General I/O port control
• Scan image control
• Scan motor control
• Tone generator
• Real time clock
• Parallel Port Interface control
• Print head control
• Carrier motor control
• Paper motor control
• Laser Printer Interface control
• Laser engine control
• S/W assistant function (rotator)

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-2

FEATURES

Architecture

• Fully 16/32-bit RISC architecture

• Efficient and powerful ARM7TDMI CPU core

• Cost-effective JTAG-based debug solution

System Manager

• 16-bit external bus support for ROM.
8/16-bit external bus support for SRAM, DRAM
(Fast Page, EDO) and external I/O

• Programmable access cycle (2 ~ 7 wait cycles)

• Support idle mode for low power consumption

Unified Instruction/Data cache

• Two way set associative cache with 2KB

• LRU (Least Recently Used)

• Four depth write buffer

PLL Frequency Synthesiser

• Input freq. range: 10MHz ~ 40MHz

• Jitter: ±150 ps

• External loop filter: 820 pF

DMA (Direct Memory Access) Controller

• 3-channel DMA Controller

• Memory-to-print block with decompression

• Memory-to-memory, memory-to-parallel port,
parallel-to-memory, UART-to-memory, memory-
to-UART, IP-to-memory, memory-to-IP data,
I/O-to-memory, memory-to-I/O data transfers
without CPU intervention.

• Initiated by software or external DMA request.

• Increments or decrements source or 8-bit, 16-bit
or 32-bit data transfer

Interrupts

• 31 interrupt sources (external: 3)

• Normal or fast interrupt modes(IRQ, FIQ)

• Level or edge selectable 3 external interrupt

UART (SIO)

• Three channel UART (Serial I/O) with DMA
based or interrupt based operation;
supports 5-bit, 6-bit, 7-bit, or 8-bit serial data
transmit/receive

• Programmable baud rate

• Infra-red(IR) Tx/Rx support(IrDA)

General Timers

• Three programmable 16-bit timers

Watch Dog Timer

• 16-bit timer useful for periodic reset or interrupts

PWM Timers

• Three programmable 16-bit PWM timers with
each prescaler

General ADC

• Three input 8/10- bit ADC with analog MUX
(Max. conversion rate: 650KSPS @25MHz)

• ADC clock: MCLK/2 or MCLK/4

Scan Image Control

• Minimum scan line time: up to 2 ms

• Supports 200dpi or 300dpi, include 8 bit ADC

• 25-200% reduction/magnification,

• White shading & gamma correction

• LAT/EDF(2X3) Binarization, 256 Gray

Scan Motor Control

• Programmable 16 bit interval counter with
interrupt

• Output phase and control signals at same time
with counter interrupt

RTC (Real Time Clock) Unit

• 32.768kHz clock

• The data includes second, minute, hour, date,
day, month and year

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-3

 Parallel Port Interface Controller

• DMA-based or interrupt-based operation

• Supports IEEE 1284 standard communication
modes (compatibility mode, nibble mode, bytes
mode, and ECP mode)

• Supports ECP protocol with or without Run-
Length Encoding (RLE)

• Automatic handshaking mode for any forward or
reverse protocol with software/DMA

 Ink Head Control

• Supports both daVinci and Babbage print head

• Printing data and fire control

 Carrier Motor Control

• Supports two kind of Motor (DC and stepper)

• Motor speed calculation and compensation

• Support Full/Half/Quarter step mode for stepper

 Carrier Position and Fire Control

• Fire control up to 2400 dpi, and position control
by 600 dpi in DC motor mode

• Fire and position control up to 9600 dpi in step
motor mode

• Carrier position interrupt for easy position
control

 Paper Motor Control

• Support two kind of motor driver (Uni-/Bi-polar)

• Support Full/Half/Quarter step mode

 Derasterizer

• 16×16 bit block rotates by 90/270 degree

• Rotates 13 half words with selectable direction

 Laser Printer Video Data Control

• Cost-effective, high-performance, DMA-based
Laser printer engine interface

• Dedicated DMA for fast data transfer between
page memory and the printer engine

• Consecutive zero string (blank data) output for
banded bit maps(no memory access required)

• Queuing operation to facilitate smooth switching
between data blocks of banded page memory

• Pixel chopping mode for fine-edged image
printing

• Video data/boundary polarity definition

• Support for 2x or 4x image expansion

• Dot counter to accumulate printing dot

• Generates test pattern for laser engine

 Laser Engine Control

• Controls LSU on/off data and motor clock

• Controls LSU interface signals

• Programmable external clock for LSU motor

 Operating Voltage Range

• Internal logic: 3 to 3.6 Volts

• PAD: 4.75 to 5.25 Volts

 Operating Frequency

• Up to 33MHz,

 Package Type

• 208 pin QFP

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-4

BLOCK DIAGRAM

I/O Ports
Controller

Scan Image &
Scan Motor
Controller

Ink Head
Controller

DMA
Controller

Parallel
Port

Interface

Video Data
Controller

UART/
Serial I/O

LSU
Control

PWM &
Gen. Timer

System Bus Controller Bus Arbitration

Bus Interface ROM/SRAM/DRAM Controller

System Manager

Bus Router

PLL & Clock
Save

Interrupt
Controller

A/D
Converter

Derasterizer

Carrier Motor
Control

Position &
Fire Control

Paper Motor
Control

Real Time
Clock

Watch Dog
Timer

CPU
(ARM7TDMI)

I/D Cache
(2-KB)

LBUS

A
D

D
R

D
A

TA

C
N

TR

Figure 1-1. KS32C65100 Block Diagram

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-5

PIN ASSIGNMENT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

157
158
159
160
161
162
163
164
165
166

174
173

167
168
169
170
171
172

176
175

178
177

180
179

182
181

184
183

186
185

188
187

190
189

192
191

194
193

196
195

198
197

200
199

202
201

204
203

206
205

208
207

PERROR
BUSY
nACK
3VDD

nIOWR/GOPA10
nIORD/GOPA9

LF_PH0/GOPA21
PHA_IA0
PHA_IA1

LF_PH1/GOPA22

GIOP5
GIOP4

PHB_IB0
PHB_IB1

TEST0
TEST1
TEST2

VSS

GIOP7
GIOP6

GIOP9
GIOP8

CLKOUT/GOPA6
GIOP10

nRESET
VSS

OSCI
PLL_FILTER

VDD_PLL
OSCO

TONEOUT/GOPA3
nWDTO/GOPA4

RXD2/GIP2
TXD2/GOPA2

RXD1/GIP1
TXD1/GOPA1

RXD0/GIP0
TXD0/GOPA0

SLED0/GOPA16
5VDD

SLED2/GOPA18
SLED1/GOPA17

nXDACK/GOPA5
nXDREQ/GIP6

RTCXIN
RTC_VDD

GAVSS
RTCXOUT

GAIN2
GAVRT

GAIN0
GAIN1

SC_CUR1
SC_CUR0
SC_CONPHA/GOPA19
VSS
ADDR21
ADDR20
ADDR19
ADDR18
ADDR17
ADDR16

ADDR9
ADDR10

ADDR15
ADDR14
ADDR13
ADDR12
ADDR11
5VDD

ADDR7
ADDR8

ADDR5
ADDR6

3VDD
ADDR4

ADDR2
ADDR3

ADDR0
ADDR1

DATA15
VSS

DATA13
DATA14

DATA11
DATA12

DATA9
DATA10

5VDD
DATA8

DATA6
DATA7

DATA4
DATA5

DATA2
DATA3

DATA0
DATA1

nWE
VSS

nCAS1
nOE

nRAS1
nCAS0

S
A

V
D

D
S

A
V

R
T

S
A

IN
S

A
V

R
B

S
A

V
S

S
C

IS
_C

LK
C

IS
_S

I
nE

IN
T0

/G
IP

3
nE

IN
T1

/G
IP

4
nE

IN
T2

/G
IP

5
V

S
S

nE
C

S
0

nE
C

S
1

nE
C

S
2/

G
O

P
A

8
3V

D
D

nP
H

G
A

13
/G

O
P

B
12

nP
H

G
A

12
/G

O
P

B
11

nP
H

G
A

11
/G

O
P

B
10

nP
H

G
A

10
/G

O
P

B
9

nP
H

G
A

9/
G

O
P

B
8

nP
H

G
A

8/
G

O
P

B
7

nP
H

G
A

7/
G

O
P

B
6

nP
H

G
A

6/
G

O
P

B
5

nP
H

G
A

5/
G

O
P

B
4

V
S

S
nP

H
G

A
4/

G
O

P
B

3
nP

H
G

A
3/

G
O

P
B

2
nP

H
G

A
2/

G
O

P
B

1
nP

H
G

A
1/

G
O

P
B

0
3V

D
D

P
H

O
E

1/
G

IO
P

11
P

H
O

E
2/

G
IO

P
12

P
H

O
E

3/
G

IO
P

13
P

H
O

E
4/

G
IO

P
14

P
H

O
E

5/
G

IO
P

15
P

H
O

E
6/

G
IO

P
16

P
H

O
E

7/
G

IO
P

17
P

H
O

E
8/

G
IO

P
18

V
S

S
P

H
O

E
9/

G
IO

P
19

P
H

O
E

10
/G

IO
P

20
P

H
O

E
11

/G
IO

P
21

P
H

O
E

12
/G

IO
P

22
P

H
O

E
13

/G
IO

P
23

P
H

O
E

14
/G

IO
P

24
P

H
O

E
15

/G
IO

P
25

P
H

O
E

16
/G

IO
P

26
5V

D
D

nR
C

S
0

nR
C

S
1/

G
O

P
A

7
nR

C
S

2
nR

A
S

0

104
103
102
101
100
99
98
97
96
95

87
88

94
93
92
91
90
89

85
86

83
84

81
82

79
80

77
78

75
76

73
74

71
72

69
70

67
68

65
66

63
64

61
62

59
60

57
58

55
56

53
54

15
6

15
5

15
4

15
3

15
2

15
1

15
0

14
9

14
8

14
7

14
6

14
5

14
4

14
3

14
2

14
1

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

13
2

13
1

13
0

12
9

12
8

12
7

12
6

12
5

12
4

12
3

12
2

12
1

12
0

11
9

11
8

11
7

11
6

11
5

11
4

11
3

11
2

11
1

11
0

10
9

10
8

10
7

10
6

10
5

S
E

LE
C

T
nF

A
U

LT
nA

U
TO

FD
/G

IP
17

nI
N

IT
/G

IP
15

nS
LC

TI
N

/G
IP

16
nS

TR
O

B
E

V
S

S
P

P
D

7
P

P
D

6
P

P
D

5
P

P
D

4
P

P
D

3
P

P
D

2
P

P
D

1
P

P
D

0
5V

D
D

G
IO

P
3

G
IO

P
2

G
IO

P
1

G
IO

P
0

nT
R

S
T

TM
S

TD
O

TD
I

TC
K

3V
D

D
nE

X
TW

A
IT

/G
IP

7
V

C
LK

/G
IP

14
V

D
I/G

IP
13

H
S

Y
N

C
2/

G
IP

12
nL

R
E

A
D

Y
/G

IP
11

H
S

Y
N

C
1/

G
IP

10
V

S
S

LS
U

C
LK

/G
O

P
A

15
V

D
O

1/
G

O
P

A
14

V
D

O
2/

G
O

P
A

29
P

W
M

O
2/

G
O

P
A

13
P

W
M

O
1/

G
O

P
A

12
P

W
M

O
0/

G
O

P
A

11
C

H
Y

/G
IP

9
C

H
X

/G
IP

8
3V

D
D

C
R

IB
1/

G
O

P
A

28
C

R
_P

H
B

/G
O

P
A

24
C

R
IB

0/
G

O
P

A
27

C
R

IA
1/

G
O

P
A

26
C

R
_P

H
A

/G
O

P
A

23
C

R
IA

0/
G

O
P

A
25

V
S

S
S

C
_C

U
R

3
S

C
_C

U
R

2
S

C
_C

O
N

P
H

B
/G

O
P

A
20

KS32C65100
208-QFP

(Top View)

DB: Double Bonding

Figure 1-2. Pin Assignment

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-6

PIN DESCRIPTION

Table 1-1. Pin Description

Signal Pin No. I/O Type Description

OSCI 184 I7 KS32C65100 master clock input.

OSCO 185 O7 KS32C65100 master clock output.

PLL_FILTER 183 I5 PLL filter

nRESET 182 I4 Not reset. nRESET is the global reset input for the
KS32C65100. For a system reset, nRESET must be held to
low level for at least 65 machine cycles.

nSLCTIN/GIP[16] 152 I1 Not select information. This input signal is used by parallel port
interface to request 'on-line' status information.

nSTROBE 151 I1 Not strobe. The nSTROBE input indicates when valid data is
on parallel port data bus, PPD[7:0]

nAUTOFD/GIP[17] 154 I1 Not auto feed. The nAUTOFD input indicates whether data on
the parallel port data bus, PPD[7:0], is an auto feed command.
Otherwise, the bus signals are interpreted as data only.

nINIT/GIP[15] 153 I1 Not initialization. The nINIT input signal initializes the parallel
port's input control.

nACK 159 I1 Not parallel port acknowledge. The nACK output signal is
issued whenever a transfer on the parallel port data bus is
completed.

BUSY 158 O1 Parallel port busy. The BUSY output signal indicates that the
KS32C65100 parallel port is currently busy.

SELECT 156 O1 Parallel port select. The SELECT output signal indicates
whether the device connected to the KS32C65100 parallel port
is 'on-line' or 'off-line'.

PERROR 157 O1 Parallel port paper error. PERROR output indicates that a
problem exists with the paper in the ink-jet printer. It could
indicate that the printer has a paper jam or that the printer is
out of paper.

nFAULT 155 O1 Not fault. The nFAULT output indicates that an error condition
exists with the printer. This signal can be used to indicate that
the printer is out of ink or to inform the user that the printer is
not turned on.

PPD[7:0] 142~149 I/O2 Parallel port data bus. This 8-bit, tri-state bus is used to
exchange data between the KS32C65100 and an external
host(peripheral).

SAVRT 2 I6 Top reference voltage for IP ADC

SAIN 3 I6 Analog input for IP ADC

SAVRB 4 I6 Bottom reference voltage for IP ADC

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-7

Table 1-1. Pin Description (Continued)

Signal Pin No. I/O Type Description

CIS_CLK 6 O1 CIS shift clock

CIS_SI 7 O1 CIS latch signal

PHA_IA0 164 O1 Line feed motor phase signal A

PHA_IA1 165 O1 Line feed motor phase signal AZ

PHB_IB0 167 O1 Line feed motor phase signal B

PHB_IB1 168 O1 Line feed motor phase signal BZ

LF_PH0/GOPA[21] 163 O1 Line feed motor control signal 0

LF_PH1/GOPA[22] 166 O1 Line feed motor control signal 1

CR_PHA/GOPA[23] 110 O1 Direction control line for phase A

CR_PHB/GOPA[24] 113 O1 Direction control line for phase B

CRIA0/GOPA[25] 109 O1 Current control line 0 for phase A

CRIA1/GOPA[26] 111 O1 Current control line 1 for phase A

CRIB0/GOPA[27] 112 O1 Current control line 0 for phase B

CRIB1/GOPA[28] 114 O1 Current control line 1 for phase B

CHX/GIP[8] 116 I3 Encode sensor

CHY/GIP[9] 117 I3 Encode sensor

ADDR[21:0] 77~80,
82~88,
90~100

O5 Address bus. The 22bit address bus, ADDR[21:0], covers the
full 4M half-words address range of each ROM/SRAM, DRAM,
and external I/O bank

DATA[15:0] 59~66,
68~75

I/O3 External bi-directional 16-bit data bus.

nRAS[1:0] 52,53 O1 Not row address strobe for DRAM. The KS32C65100 supports
up to two DRAM banks. One nRAS output is provided for each
bank.

nCAS[1:0] 54,55 O1 Not column address strobe for DRAM. The two nCAS outputs
indicate the byte selections whenever a DRAM bank is
accessed.

nOE 56 O1 Not output enable. Whenever a memory access occurs, the
nOE output controls the output enable port of the specific
memory device.

nWE 57 O6 Not write enable. Whenever a memory access occurs, the
nWE output controls the write enable port of the specific
memory device.

nPHGA[13:1]/
GOPB[12:0]

16~24,
26~29

O1 Gate control line for print head.

PHOE[16:1]/
GIOP[26:11]

31~38,
40~47

I/O1 Drain control line for print head.

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-8

Table 1-1. Pin Description (Continued)

Signal Pin No. I/O Type Description

RXD0/GIP[0] 194 I1 Receive data input for the UART0. RXD0 is the UART0
channel's input signal for receiving serial data.

RXD1/GIP[1] 192 I1 Receive data input for the UART1. RXD1 is the UART1
channel's input signal for receiving serial data.

RXD2/GIP[2] 190 I1 Receive data input for the UART2. RXD2 is the UART2
channel's input signal for receiving serial data.

nEINT0/GIP[3] 8 I3 External interrupt request input nEINT0.

nEINT1/GIP[4] 9 I3 External interrupt request input nEINT1.

nEINT2/GIP[5] 10 I3 External interrupt request input nEINT2.

nXDREQ/GIP[6] 199 I3 External DMA request.

TXD0/GOPA[0] 193 O1 Transmit data output for the UART0. TXD0 is the UART0
channel's output for transmitting serial data.

TXD1/GOPA[1] 191 O1 Transmit data output for the UART1. TXD1 is the UART1
channel's output for transmitting serial data.

TXD2/GOPA[2] 189 O1 Transmit data output for the UART2. TXD2 is the UART2
channel's output for transmitting serial data.

nXDACK/GOPA[5] 200 O1 External DMA acknowledge. This active low output signal is
generated whenever a DMA transfer is completed.

TONEOUT/GOPA[3] 188 O1 Tone generator output.

nWDTO/GOPA[4] 187 P3 Reset out by watch dog timer.

nIOWR/GOPA[10] 161 O1 External output write strobe

nIORD/GOPA[9] 162 O1 External output read strobe

CLKOUT/GOPA[6] 180 O1 Clock for external chip

nECS2/GOPA[8] 14 O1 External memory chip select 2.

TCK 132 I2 JTAG TCK interface in MDS mode.

TMS 135 I2 JTAG TMS interface in MDS mode.

TDI 133 I2 JTAG TDI interface in MDS mode.

nTRST 136 I2 JTAG nTRST interface in MDS mode.

TDO 134 O1 JTAG TDO interface in MDS mode.

GIOP[10:0] 137~140,
173~179

I/O4 General I/O port.

TEST0 169 I2 Test 0 pin. At normal operation this pin must be connected to
GND.

TEST1 170 I2 Test 1 pin. At normal operation this pin must be connected to
GND.

TEST2 171 I2 Test 2 pin. At normal operation this pin must be connected to
GND.

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-9

Table 1-1. Pin Description (Continued)

Signal Pin No. I/O Type Description

nECS[1:0] 12,13 O1 Not external chip select. Three I/O banks are provided for
external memory-mapped I/O operations. Each I/O bank
contains up to 4M half-word. The nECS signals indicate that an
external I/O bank is selected.

nRCS[2] 51 O2

nRCS[1]/GOPA[7] 50 O1

nRCS[0] 49 O1

Not ROM/SRAM chip select. The KS32C65100 can access up
to three external ROM/SRAM banks. nRCS[0] corresponds to
ROM/SRAM bank 0, nRCS[1] to bank 1, and nRCS[2] to bank
2. By controlling the nRCS signals, CPU addresses can be
mapped into the physical memory banks.

SC_CONPHA/

GOPA[19]

102 O1 Scan motor control/Bi-phase

SC_CONPHB/

GOPA[20]

105 O1 Scan motor control/Bi-phase

SC_CUR[3:0] 103, 104,
106, 107

O1 Scan motor bi-current/uni-phase

PWMO[2:0]/

GOPA[13:11]

118~120 O1 PWM out signal

VDO2/GOPA[29] 121 O4 Video out from PIFC

VDO1/GOPA[14] 122 O5 Video out from LSU control

LSU_CLK/
GOPA[15]

123 O1 Clock for LSU motor

nHSYNC1/GIP[10] 125 I1 HSYNC1

nLREADY/GIP[11] 126 I1 LSU ready

nHSYNC2/GIP[12] 127 I1 HSYNC2

VDI/GIP[13] 128 I2 Video data input from RET

VCLK/GIP[14] 129 I2 External video clock

nEXTWAIT/GIP[7] 130 I3 External wait

RTCXIN 202 I7 RTC oscillator clock input.

RTCXOUT 203 O7 RTC oscillator clock output.

SLED[2:0]/
GOPA[18:16]

196~198 O1 CIS LED signals

GAVRT 205 I5 Top reference voltage for general ADC

GAIN[2:0] 206~208 I5 Analog inputs for general ADC

RTC_VDD 201 RTC VDD.

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-10

Table 1-1. Pin Description (Continued)

Signal Pin No. I/O Type Description

VDD_PLL 186 PLL power (3.3V).

SAVDD 1 Analog power for scan ADC and general ADC (3.3V).

SAVSS 5 Scan ADC ground.

GAVSS 204 General ADC ground

3VDD 15, 30, 81,
115, 131,

160

3.3V internal power.
Externally connected to the 3.3V regulator.

5VDD 48, 67, 89,
141, 195

5V I/O power.
Externally connected to the VCC board plane.

VSS 11, 25, 39,
58, 76, 101,
108, 124,
150, 172,

181

System ground.

Externally connected to the ground board plane.

Pin Type Pad Type Resistor/Drive Description

I1 PHIL - / - TTL schmitt trigger level input buffer

I2 PHIT - / - TTL level input buffer

I3 PHILU50 50K/ - TTL schmitt trigger level input buffer with pull-up resistor

I4 PHIS - / - CMOS schmitt trigger level input

I5 PICA - / - Analog normal input pad with seperate bulk bias

I6 PICA10 10/ - Analog normal input pad with resistor & seperate bulk bias

I7 - / - Master clock input.

O1 PHOB4 - /4mA Normal output buffer

O2 PHOT4 - /4mA Tri-State output buffer

O3 PHOD4 - /4mA Open drain output buffer

O4 PHOB4SM - /4mA Normal output buffer with medium slew-rate

O5 PHOB8SM - /8mA Normal output buffer with medium slew-rate

O6 PHOT4SM - /4mA Tri-State output buffer with medium slew-rate

O7 - / - Master clock output.

I/O1 PHBTU50T4 50K/4mA TTL level with pull-up resistor and Tri-State output

I/O2 PHBLU50T4SM 50K/4mA TTL schmitt trigger level input with pull-up resistor and
Tri-State output with medium slew-rate

I/O3 PHBLU50T8SM 50K/8mA TTL schmitt trigger level input with pull-up resistor and
Tri-State output with medium slew-rate

I/O4 PHBLT4 - /4mA TTL schmitt trigger level input and Tri-State output.

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-11

KS32C65100 SPECIAL FUNCTION REGISTERS

Table 1-2. KS32C65100 Special Function Registers

Group Register Offset R/W Description Reset Value

SYSCFG 0x0000 R/W System register address configuration

register

0x1001

ROMCON 0x1000 R/W ROM control register 0x02003002

SRAMCON0 0x1004 R/W SRAM control register 0 0x000007fc

SRAMCON1 0x1008 R/W SRAM control register 1 0x000007fc

EXTCON0 0x100c R/W I/O bank0 control register 0x00000000

EXTCON1 0x1010 R/W I/O bank1 control register 0x00000000

EXTCON2 0x1014 R/W I/O bank2 control register 0x00000000

EXTCON3 0x1018 R/W I/O bank3 control register 0x00000000

DRAMCON0 0x101c R/W DRAM control register 0 0x00000000

DRAMCON1 0x1020 R/W DRAM control register 1 0x00000000

System

Manager

REFCON 0x1024 R/W DRAM refresh control 0x00000001

CACHNAB0 0x0004 R/W Non-cacheable area begin 0 0x0000000

CACHNAE0 0x0008 R/W Non-cacheable area end 0 0x0000000

CACHNAB1 0x000c R/W Non-cacheable area begin 1 0x0000000
Cache

CACHNAE1 0x0010 R/W Non-cacheable area end 1 0x0000000

SFTCON 0x5004 R/W Shift control register 0x04

DRAST0 0x4800 R/W Derasterizer data register 0 0xXXXX

DRAST1 0x4804 R/W Derasterizer data register 1 0xXXXX

DRAST2 0x4808 R/W Derasterizer data register 2 0xXXXX

DRAST3 0x480c R/W Derasterizer data register 3 0xXXXX

DRAST4 0x4810 R/W Derasterizer data register 4 0xXXXX

DRAST5 0x4814 R/W Derasterizer data register 5 0xXXXX

DRAST6 0x4818 R/W Derasterizer data register 6 0xXXXX

DRAST7 0x481c R/W Derasterizer data register 7 0xXXXX

DRAST8 0x4820 R/W Derasterizer data register 8 0xXXXX

DRAST9 0x4824 R/W Derasterizer data register 9 0xXXXX

DRAST10 0x4828 R/W Derasterizer data register 10 0xXXXX

DRAST11 0x482c R/W Derasterizer data register 11 0xXXXX

DRAST12 0x4830 R/W Derasterizer data register 12 0xXXXX

DRAST13 0x4834 R/W Derasterizer data register 13 0xXXXX

DRAST14 0x4838 R/W Derasterizer data register 14 0xXXXX

Derasterizer

DRAST15 0x483c R/W Derasterizer data register 15 0xXXXX

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-12

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset Value

TCON 0x3000 R/W System timers control register 0x000

TBCNT0 0x3004 R/W Timer base/count register 0 0xXXXX

TBCNT1 0x3008 R/W Timer base/count register 1 0xXXXX
Timer

TBCNT2 0x301c R/W Timer base/count register 2 0xXXXX

DMACON0 0x8800 R/W CDMA control register 0x00000

DMASRC0 0x8804 R/W CDMA source address register 0xXXXXXXX

DMADST0 0x8808 R/W CDMA destination address register 0xXXXXXXX

DMACNT0 0x880c R/W CDMA transfer count register 0xXXXXXXX

DMACON1 0x9000 R/W GDMA control register 0x0000

DMASRC1 0x9004 R/W GDMA source address register 0xXXXXXXX

DMADST1 0x9008 R/W GDMA destination address register 0xXXXXXXX

DMA

DMACNT1 0x900c R/W GDMA transfer count register 0xXXXXXXX

PPDATA 0x8000 R/W Parallel port data register 0x100

PPSTAT 0x8004 R/W Parallel port status register 0x7e8

PPACKWTH 0x8008 R/W Parallel port acknowledge width register 0xXXX

PPCON 0x800c R/W Parallel port control register 0x0000

PPINTEN 0x8010 R/W Parallel port enable interrupt event register 0x000

Parallel port

PPINTPND 0x8014 R/W Parallel port interrupt pending register 0x000

HDCON 0x7800 R/W HDMA control register 0x0000000

HDSAR 0x7804 R/W HDMA source address register 0x0000000

HDTCR 0x780c R/W HDMA transfer count register 0x000000

HDSAR0 0x7814 R/W HDMA source address register 0 0x0000000

HDMAR0 0x7818 R/W HDMA match address register 0 0x0000000

HDSAR1 0x781c R/W HDMA source address register 1 0x0000001

HDMA

HDMAR1 0x7820 R/W HDMA match address register 1 0x0000000

Tone
Generator

TONDATA 0x3804 R/W Tone generator data & control register 0x0ff

WTCON 0x4000 R/W Watch dog timer control register 0x21Watchdog
Timer WTCNT 0x4004 R/W Watch dog timer count register 0x0003

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-13

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset Value

GIOPMOD 0x2800 R/W Bi-Directional port mode register 0xffff800

GIPMOD 0x2804 R/W Input port mode register 0x00000

GOPAMOD 0x2808 R/W Output port mode register 0x00000000

GOPBMOD 0x280c R/W Output port mode register 0x0000

GIOPD 0x2810 R/W Bi-Directional port data register 0x0000000

GIPD 0x2814 R/W Input port data register 0xXXXX

GOPAD 0x2818 R/W Output port data register 0x00000000

GOPBD 0x281c R/W Output port data register 0x0000

TSTCON 0x2820 R/W Test control register 0x00600

I/O Ports

INTCON 0x2824 R/W External interrupt control register 0x000

INTMOD 0x2000 R/W Interrupt mode register 0x00000000

INTPND 0x2004 R/W Interrupt pending register 0x00000000
Interrupt

Controller
INTMSK 0x2008 R/W Interrupt mask register 0x00000000

RTCCON 0xc840 R/W RTC control register 0x0

BCDSEC 0xc870 R/W RTC second register 0xXX

BCDMIN 0xc874 R/W RTC minute register 0xXX

BCDHOUR 0xc878 R/W RTC hour register 0xXX

BCDDAY 0xc87c R/W RTC day register 0xXX

BCDDATE 0xc880 R/W RTC date register 0xX

BCDMON 0xc884 R/W RTC month register 0xXX

Real Time

Clock

BCDYEAR 0xc888 R/W RTC year register 0xXX

CLKSAVCON 0x1800 R/W Clock save control register 0x0
Clock Save

PLLCON 0x1804 W PLL control register 0x00000

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-14

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset Value

ULCON0 0xb000 R/W UART Ch-0 line control register 0x00

ULCON1 0xb800 R/W UART Ch-1 line control register 0x00

ULCON2 0xc000 R/W UART Ch-2 line control register 0x00

UCON0 0xb004 R/W UART Ch-0 control register 0x00

UCON1 0xb804 R/W UART Ch-1 control register 0x00

UCON2 0xc004 R/W UART Ch-2 control register 0x00

USTAT0 0xb008 R UART Ch-0 status register 0x00

USTAT1 0xb808 R UART Ch-1 status register 0x00

USTAT2 0xc008 R UART Ch-2 status register 0x00

UTXBUF0 0xb00c W UART Ch-0 transmit buffer register 0x00

UTXBUF1 0xb80c W UART Ch-1 transmit buffer register 0x00

UTXBUF2 0xc00c W UART Ch-2 transmit buffer register 0x00

URXBUF0 0xb010 R UART Ch-0 receive buffer register 0x00

URXBUF1 0xb810 R UART Ch-1 receive buffer register 0x00

URXBUF2 0xc010 R UART Ch-2 receive buffer register 0x00

UBRDIV0 0xb014 R/W Baud rate divisor register 0 0x0000

UBRDIV1 0xb814 R/W Baud rate divisor register 1 0x0000

UART

UBRDIV2 0xc014 R/W Baud rate divisor register 2 0x0000

STATUS 0xa000 R/W Status register 0x00

VCON 0xa004 R/W Video control register 0x00000000

PCON 0xa008 R/W Pattern control register 0x000000

PDMACON 0xa00c R/W PDMA control register 0x00

TOP 0xa010 R/W TOP margin register 0x0000

LFT 0xa014 R/W LEFT margin register 0x0000

PXL 0xa018 R/W Pixel count register 0x0000

QSAR0 0xa01c R/W Q0 start address register 0x0000000

QTCR0 0xa020 R/W Q0 transfer address register 0x000000

QSAR1 0xa024 R/W Q1 start address register 0x0000000

QTCR1 0xa028 R/W Q1 transfer address register 0x000000

FTCON 0Xa02c R/W F-θ control register 0x0

FSADDR 0xa030 R/W F-θ start register 0x00

FDATA 0xa034 R/W F-θ data register 0xeffb

TCVAL 0xa038 R/W Toner counter set value register 0x00000000

TNCNT 0xa03c R/W Tone count value register 0x00000000

TPVAL 0xa040 R/W Test pattern period value register 0x00

Printer
Interface
Controller

TPON 0xa044 R/W Test pattern on length register 0x00

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-15

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value

LSUCON 0xd000 R/W LSU_CON control register 0x0000

VWIN_STR 0xd004 R/W V_Window time start register 0x00000

VWIN_END 0xd008 R/W V_Window time end register 0x00000

LDPON_Pre 0xd00c R/W LDON Pre_On time register 0x00000

LDPON_Post 0xd010 R/W LDON Post_On time register 0x00000

VCNT_OBS 0xd014 R/W V_Window counter observation register 0x00000

LSU

LSUCK_CNT 0xd018 R/W LSU Motor Clock counter base &
observation register

0x00000000

ADCCON 0xd800 R/W ADC control register 0xa0
GADC

ADCDATA 0xd804 R ADC data register 0xXXX

SEN_CLK 0x9800 R/W Sensor shift signal period register 0x00818

SI_TERM 0x9804 R/W Sensor SI signal period register 0x09c4

RLED 0x9808 R/W Sensor R led signal period register 0x00000960

GLED 0x980c R/W Sensor G led signal period register 0x00000960

BLED 0x9810 R/W Sensor B led signal period register 0x00000960

IWIN 0x9814 R/W EAI Image area register 0x000006b8

CHANGED_IWIN 0x9818 R/W Magnified/reduced pixels num. register 0x06b8

RATIO 0x981c R/W Magnified/reduced ratio register 0x10080

LAT 0x9820 R/W Local adaptive register 0xdc7f40

ADC 0x9824 R/W IP ADC control register 0x005

OPERATION 0x9828 R/W Operation control register 0x000

RAM_CTRL 0x982c R/W IP inner SRAM control register 0x70000

RAM_DATA 0x9830 R/W IP inner SRAM data register 0x00

MOTOR_TERM 0x9834 R/W Motor signal period register 0x0000

MOTOR_PHASE 0x9838 R/W Motor signal phase register 0x00f

Image

Processing

BLACK 0x983c R/W Black shading correction value register 0x00

LFCR 0x5800 R/W Line feed motor control register 0x0800

LFPCR 0x5804 R/W Line feed motor phase control register 0x3c0

LFTBR 0x5808 R/W Line feed motor timer base register 0x0000

LFTOR 0x580c R Line feed motor timer observation register 0x1e0d

LFTCBR 0x5810 R/W Line feed motor timer compare base
register

0x0000

LFTCOR 0x5814 R LF motor timer compare observation
register

0x0000

LF Motor

LFCON 0x5818 R/W LF step each control register 0x0000

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-16

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value

CMCR 0x6000 R/W Carrier motor control register 0x204

BTB1R 0x6004 R/W Basic timer base register 1 0xXXXX

BTB2R 0x6008 R/W Basic timer base register 2 0xXXXX

PSTBR 0x600c R/W CR_Step_INT counter & pre-step counter
base register

0x000

CRSCR 0x6010 R/W CR state control register 0x603f

PWMOBS 0x6014 R PWM counter observation register 0x0000

PWMCYL 0x6018 R/W PWM cycle time base register 0x0000

PWMONT 0x601c R/W PWM on time base register 0x0000

ECDTIM 0x6020 R PWM on time base register 0x020292

ECDVAL 0x6024 R Encoder cycle value register 0x000000

INTTIM 0x6028 R Interval counter observation register 0x0000

INTVAL 0x602c R Interrupt interval value register 0x0000

Carrier

Motor

Control

CRSREG 0x6030 R/W CR step each control register 0x000000

PFCR 0x6820 R/W Position & Fire control register 0x0080d0

CPCR 0x6824 R/W Carrier position counter register 0x0001

PSPR 0x6828 R/W Print start position register 0x0ffff

PSCR 0x682c R/W Print slice counter register 0x0000

Fire &

Position

Control

PIR 0x6830 R/W Position interrupt register 0xffff

PHCR 0xa000 R/W Print head control register 0x000000

FETR 0x7004 R/W Fire enable timer register 0x00

FETOR 0x7008 R Fire enable timer observation register 0x00

FWTR 0x700c R/W Fire window timer register 0x000

FWTOR 0x7010 R Fire window timer observation register 0x000

FSDTR 0x7014 R/W Fire strobe delay timer register 0x000

FSDT0OR 0x7018 R Fire delay strobe timer 0 observation
register

0x000

FSDT1OR 0x701c R Fire delay strobe timer 1 observation
register

0x000

FSDT2OR 0x7020 R/W Fire delay strobe timer 2 observation
register

0x000

Print

Head

FSDT3OR 0x7024 R/W Fire delay strobe timer 3 observation
register

0x000

KS32C65100 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-17

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value

PHPTR 0x7028 R/W Pre-heat pulse timer register 0x00

PHPTOR 0x702c R Pre-heat pulse timer observation register 0x00

PHDTR 0x7030 R/W Pre-heat delay timer register 0x00

PHDTOR 0x7034 R Pre-heat delay timer observation register 0x00

PHOR 0x7038 R Print head observation register 0x0000000

TDCR 0x703c R/W Td delay counter register 0x00

PHDW0R 0x7040 R/W Print head data word 0 register 0x0000

PHDW1R 0x7044 R/W Print head data word 1 register 0x0000

PHDW2R 0x7048 R/W Print head data word 2 register 0x0000

PHDW3R 0x704c R/W Print head data word 3 register 0x0000

PHDW4R 0x7050 R/W Print head data word 4 register 0x0000

PHDW5R 0x7054 R/W Print head data word 5 register 0x0000

PHDW6R 0x7058 R/W Print head data word 6 register 0x0000

PHDW7R 0x705c R/W Print head data word 7 register 0x0000

PHDW8R 0x7060 R/W Print head data word 8 register 0x0000

PHDW9R 0x7064 R/W Print head data word 9 register 0x0000

PHDW10R 0x7068 R/W Print head data word 10 register 0x0000

PHDW11R 0x706c R/W Print head data word 11 register 0x0000

PHDW12R 0x7070 R/W Print head data word 12 register 0x0000

DCBR 0x7074 R/W Dot counter black register 0x00000000

DCYR 0x7078 R/W Dot counter yellow register 0x00000000

DCCR 0x707c R/W Dot counter cyan register 0x00000000

DCMR 0x7080 R/W Dot counter magenta register 0x00000000

Print Head

DCCOR 0x7084 R Dot counter control observation register 0x000

PWMCONR 0xe000 R/W PWM_CON control register 0x0

PWM_PRSC 0xe004 R/W PWM Pre-Scaler counter base value
register

0x00000000

PWM_CYT0 0xe008 R/W PWM0 cycle time & observation register 0x00000000

PWM_ONT0 0xe00c R/W PWM0 on time & observation register 0x00000000

PWM_CYT1 0xe010 R/W PWM1 cycle time & observation register 0x00000000

PWM_ONT1 0xe014 R/W PWM1 on time & observation register 0x00000000

PWM_CYT2 0xe018 R/W PWM2 cycle time & observation register 0x00000000

PWM

PWM_ONT2 0xe01c R/W PWM2 on time & observation register 0x00000000

PRODUCT OVERVIEW KS32C65100 RISC MICROPROCESSOR

1-18

Table 1-2. KS32C65100 Special Function Registers (Continued)

Group Register Offset R/W Description Reset
Value

VISSR 0xa800 R VIS Status register 0x0

VISCON 0xa804 R/W VIS control register 0x0

DstSize 0xa808 R/W Destination image data size register 0xXXXX

SrcSize 0xa80c R/W Source image data size register 0xXXXX

SrcReg 0xa810 R/W Source image data register 0xXX

DstReg 0xa814 R Destination image data register 0xXXXX

RefIn 0xa818 R/W Reference data register 0xXXXX

PixIn 0xa81c R/W Source image pixel data register 0xXXXX

VIS

HftReg 0xa820 R Halftone image data register 0xXXXX

KS32C65100 RISC MICROPROCESSOR PROGRAMMER′S MODEL

2-1

2 PROGRAMMER′S MODEL

OVERVIEW

KS32C65100 was developed using the advanced ARM7TDMI core designed by advanced RISC machines, Ltd.

PROCESSOR OPERATING STATES

From the programmer′s point of view, the ARM7TDMI can be in one of two states:

• ARM state which executes 32-bit, word-aligned ARM instructions.

• THUMB state which operates with 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit
1 to select between alternate halfword.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand register.

• On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode′s link register, and execution commences at the exception′s vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

NOTE

The KS32C65100 is configured to the big-endian format.

PROGRAMMER′S MODEL KS32C65100 RISC MICROPROCESSOR

2-2

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

8

4

0

24

31

16

23 15 8 7 0 Word Address

8

4

0

9

5

1

10

6

2

11

7

3

Higher Address

Lower Address

Most significant byte is at lowest address
Word is addressed by byte address of most signficant byte

Figure 2-1. Big-Endian Addresses of Bytes within Words

The data locations in the external memory are different with Figure 2-1 in the KS32C6200. Please refer to the
chapter 4, system manager.

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word′s least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0.

8

4

0

24

31

16

23 15 8 7 0

11

7

3

10

6

2

9

5

1

8

4

0

Higher Address

Lower Address
Most significant byte is at lowest address
Word is addressed by byte address of least signficant byte

Word Address

Figure 2-2. Little-Endian Addresses of Bytes within Words

KS32C65100 RISC MICROPROCESSOR PROGRAMMER′S MODEL

2-3

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARM7TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

OPERATING MODES

ARM7TDMI supports seven modes of operation:

• User (usr): The normal ARM program execution state

• FIQ (fiq): Designed to support a data transfer or channel process

• IRQ (irq): Used for general-purpose interrupt handling

• Supervisor (svc): Protected mode for the operating system

• Abort mode (abt): Entered after a data or instruction prefetch abort

• System (sys): A privileged user mode for the operating system

• Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in user mode. The non-user modes-known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers-31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
user) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information

PROGRAMMER′S MODEL KS32C65100 RISC MICROPROCESSOR

2-4

Register 14 is used as the subroutine link register. This receives a copy of R15 when a branch and
link (BL) instruction is executed. At all other times it may be treated as a general-
purpose register. The corresponding banked registers R14_svc, R14_irq, R14_fiq,
R14_abt and R14_und are similarly used to hold the return values of R15 when
interrupts and exceptions arise, or when branch and link instructions are executed
within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
[31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags
and the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM
state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor,
abort and undefined each have two banked registers mapped to R13 and R14,
allowing each of these modes to have a private stack pointer and link registers.

R0
R1
R2
R3
R4
R5

R6
R7
R8
R9
R10
R11
R12
R13
R14

R15(PC)

R0
R1
R2
R3
R4
R5

R6
R7

R8_fiq
R9_fiq
R10_fiq
R11_fiq
R12_fiq
R13_fiq
R14_fiq
R15(PC)

R0
R1
R2
R3
R4
R5

R6
R7
R8
R9
R10
R11
R12

R13_svc
R14_svc
R15(PC)

R0
R1
R2
R3
R4
R5

R6
R7
R8
R9
R10
R11
R12

R13_abt
R14_abt
R15(PC)

R0
R1
R2
R3
R4
R5

R6
R7
R8
R9

R10
R11
R12

R13_irq
R14_irq
R15(PC)

R0
R1
R2
R3
R4
R5

R6
R7
R8
R9

R10
R11
R12

R13_und
R14_und
R15(PC)

CPSR CPSR
SPSR_fiq

CPSR
SPSR_svc

CPSR
SPSR_abt

CPSR
SPSR_irq

CPSR
SPSR_und

System & User FIQ Supervisor About IRG Undefined

ARM State Program Status Register

= banked register

ARM State General Registers and Program Counter

Figure 2-3. Register Organization in ARM State

KS32C65100 RISC MICROPROCESSOR PROGRAMMER′S MODEL

2-5

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R4

R5

R6

R7

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

System & User FIQ Supervisor About IRG Undefined

THUMB State Program Status Registers

= banked register

THUMB State General Registers and Program Counter

SP_fiq

LR_fiq

PC

SP_svc

LR_svc

PC

SP_abt

LR_abt

PC

SP_irq

LR_irq

PC

SP_und

LR_und

PC

Figure 2-4. Register Organization in THUMB State

PROGRAMMER′S MODEL KS32C65100 RISC MICROPROCESSOR

2-6

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• THUMB state SP maps onto ARM state R13

• THUMB state LR maps onto ARM state R14

• The THUMB state program counter maps onto the ARM state program counter (R15)

This relationship is shown in Figure 2-5.

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R5

R6

R7

R8

R9

R10

R11

R12

Stack Pointer (R13)

Link Register (R14)

Program Counter (R15)

CPSR

SPSR

Stack Pointer (SP)

Link Register (LR)

Program Counter (PC)

CPSR

SPSR

THUMB State ARM State

Lo
-r

eg
is

te
rs

H
i-r

eg
is

te
rs

R4

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

KS32C65100 RISC MICROPROCESSOR PROGRAMMER′S MODEL

2-7

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register′s functions are:

• Hold information about the most recently performed ALU operation

• Control the enabling and disabling of interrupts

• Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

N Z C V I F T M4 M3 M2 M1 M0

31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0

condition code flags (reserved) control bits

Overflow
Carry/Borrow/Extend
Zero
Negative/Less Than

Mode bits
State bit
FIQ disable
FRQ disable

Figure 2-6. Program Status Register Format

PROGRAMMER′S MODEL KS32C65100 RISC MICROPROCESSOR

2-8

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
change when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in
THUMB state, otherwise it is executing in ARM state. This is reflected on the TBIT
external signal.
Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.
Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these
disable the IRQ and FIQ interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
processor′s operating mode, as shown in Table 2-1. Not all combinations of the mode
bits define a valid processor mode. Only those explicitly described shall be used. The
user should be aware that if any illegal value is programmed into the mode bits,

M[4:0], then the processor will enter an unrecoverable state. If this occurs, reset should be
applied.

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR′s flag or control
bits, you must ensure that these unused bits are not altered. Also, your program
should not rely on them containing specific values, since in future processors they
may read as one or zero.

KS32C65100 RISC MICROPROCESSOR PROGRAMMER′S MODEL

2-9

Table 2-1. PSR Mode bit Values

M[4:0] Mode Visible THUMB State Registers Visible ARM State Registers

10000 User R7..R0,

LR, SP PC, CPSR

R14..R0,

PC, CPSR

10001 FIQ R7..R0,

LR_fiq, SP_fiq

PC, CPSR, SPSR_fiq

R7..R0,

R14_fiq..R8_fiq,

PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,

LR_irq, SP_irq

PC, CPSR, SPSR_irq

R12..R0,

R14_irq..R13_irq,

PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,

LR_svc, SP_svc,

PC, CPSR, SPSR_svc

R12..R0,

R14_svc..R13_svc,

PC, CPSR, SPSR_svc

10111 Abort R7..R0,

LR_abt, SP_abt,

PC, CPSR, SPSR_abt

R12..R0,

R14_abt..R13_abt,

PC, CPSR, SPSR_abt

11011 Undefined R7..R0

LR_und, SP_und,

PC, CPSR, SPSR_und

R12..R0,

R14_und..R13_und,

PC, CPSR

11111 System R7..R0,

LR, SP PC, CPSR

R14..R0,

PC, CPSR

PROGRAMMER′S MODEL KS32C65100 RISC MICROPROCESSOR

2-10

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
see exception priorities on page 2-14.

Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate link register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the link register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the link register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14_svc will always return to the next instruction regardless of whether the SWI
was executed in ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector It may also set the interrupt
disable flags to prevent otherwise unmanageable nestings of exceptions. If the processor is in THUMB state
when an exception occurs, it will automatically switch into ARM state when the PC is loaded with the
exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the link register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

KS32C65100 RISC MICROPROCESSOR PROGRAMMER′S MODEL

2-11

Exception Entry/Exit Summary

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 2 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 2 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 2 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 2 3

RESET NA - - 4

NOTES:
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimising the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR′s F flag (but note that this is not possible from user mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

PROGRAMMER′S MODEL KS32C65100 RISC MICROPROCESSOR

2-12

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a low level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external abort
input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

• Prefetch abort: occurs during an instruction prefetch.

• Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

• The swap instruction (SWP) is aborted as though it had not been executed.

• Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (i.e. it has the base in the transfer list), the overwriting
is prevented. All register overwriting is prevented after an abort is indicated, which means in particular that
R15 (always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

KS32C65100 RISC MICROPROCESSOR PROGRAMMER′S MODEL

2-13

Software Interrupt

The software interrupt instruction (SWI) is used for entering supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC, R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode on Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

PROGRAMMER′S MODEL KS32C65100 RISC MICROPROCESSOR

2-14

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined instruction, software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the CPSR′s F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the
instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq.
This is 4 processor cycles.

RESET

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The
value of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR′s T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-1

3 INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

Cond 0 0 1 Opcode S Rn Rd Operand2

Cond

Cond

Cond
Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 A S

0 0 0 0 1 U A S

0 0 0 1 0 B 0 0
0 0 0 1 0 0 1 0

0 0 0 P U 0 W L

0 0 0 P U 1 W L

0 1 1 P U B W L

0 1 1

1 0 0 P U S W L

1 0 1 L

1 1 0 P U N W L

1 1 1 0

1 1 1 0

1 1 1 1

Offset

Ignored by processor

Rd Rn

RdHi RnLo

Rn Rd
1 1 1 1 1 1 1 1

Rn Rd

Rn Rd

Rn Rd

Rn Register List

Rn CRd

CRn CRdCP Opc

CRn RdCP Opc L

Rs

Rn

1 0 0 1

1 0 0 1

Rm

Rm

Rm

0 0 0 0 1 0 0 1
1 1 1 1 0 0 0 1 Rn

0 0 0 0 1 S H

Offset

1

1 S H 1

Rm

Offset

Offset

1

CP# Offset

CP#

CP#

CP#

CP# 1

0 CRm

CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data processing/
PSR Transfer
Multiply

Multiply Long

Single data swap

Branch and exchange
Halfword data transfer:
register offset
Halfword data transfer:
immediate offset

Block data transfer

Branch
Coprocessor data
transfer
Coprocessor data
Operation
Coprocessor data
Transfer
Software Interrupt

Undefined

Single data transfer

Figure 3-1. ARM Instruction Set Format

Some instruction codes are not defined but do not cause the undefined instruction trap to be taken, for instance a
multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their action may change
in future ARM implementations.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-2

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn and Op2

B Branch R15: = address

BIC Bit clear Rd: = Rn and not Op2

BL Branch with link R14: = R15, R15: = address

BX Branch and exchange R15: = Rn, T bit: = Rn[0]

CDP Coprocessor data processing (Coprocessor-specific)

CMN Compare negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn - Op2

EOR Exclusive OR Rd: = (Rn and not Op2) or (op2 and not Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to coprocessor register cRn: = rRn {<op>cRm}

MLA Multiply accumulate Rd: = (Rm * Rs) + Rn

MOV Move register or constant Rd: = Op2

MRC Move from coprocessor register to CPU register Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to register Rn: = PSR

MSR Move register to PSR status/flags PSR: = Rm

MUL Multiply Rd: = Rm * Rs

MVN Move negative register Rd: = 0xFFFFFFFF EOR Op2

ORR OR Rd: = Rn or Op2

RSB Reverse subtract Rd: = Op2 - Rn

RSC Reverse subtract with carry Rd: = Op2 - Rn - 1 + Carry

SBC Subtract with carry Rd: = Rn - Op2 - 1 + Carry

STC Store coprocessor register to memory address: = CRn

STM Store Multiple Stack manipulation (push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn - Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd: = [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-3

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction′s condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction′s mnemonic. For example, a branch (B in assembly language) becomes BEQ for "Branch if Equal",
which means the branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (suffix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set Equal

0001 NE Z clear Not equal

0010 CS C set Unsigned higher or same

0011 CC C clear Unsigned lower

0100 MI N set Negative

0101 PL N clear Positive or zero

0110 VS V set Overflow

0111 VC V clear No overflow

1000 HI C set and Z clear Unsigned higher

1001 LS C clear or Z set Unsigned lower or same

1010 GE N equals V Greater or equal

1011 LT N not equal to V Less than

1100 GT Z clear AND (N equals V) Greater than

1101 LE Z set OR (N not equal to V) Less than or equal

1110 AL (ignored) Always

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-4

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

[3:0] Operand Register
If bit 0 of Rn = 1, subsequenct instructions decoded as THUMB instructions
If bit 0 of Rn = 0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

0 0 0 1cond 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Figure 3-2. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequencial (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange. Items in {} are optional. Items in <> must be present.

BX {cond} Rn

{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behaviour is undefined.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-5

Examples

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
.
.
.
ADR R5, Back_to_ARM : Generate branch target to word aligned address

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
.
.
.
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-6

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below

31 28 27 25 24 23 0

[24] Link Bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

code 101 L offset

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously loaded into
a register. In this case the PC should be manually saved in R14 if a branch with link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
sequential (S-cycle) and internal (I-cycle).

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-7

ASSEMBLER SYNTAX

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} Used to request the branch with link form of the instruction. If absent, R14 will not be
affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be
used.

<expression> The destination. The assembler calculates the offset.

Examples

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.

BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-8

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.
The instruction encoding is shown in Figure 3-4.

31 28 27 26 25 24 21 20 19 16 15 12 11 10 0

cond 00 1 OpCode S Rn Rd Operand 2

[15:12] Destination Register
0 = Branch 1 = Branch with link

[19:16] 1st Operand Register
0 = Branch 1 = Branch with link

[20] Set Condition Codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation Code
0000 = AND - Rd: Op1 AND Op2
0001 = EOR - Rd: Op1 EOR Op2
0010 = SUB - Rd: Op1 - Op2
0011 = RSB - Rd: Op2 - Op1
0100 = ADD - Rd: Op1 + Op2
0101 = ADC - Rd: Op1 + Op2 + C
0110 = SBC - Rd: Op1 - Op2 + C - 1
0111 = RSC - Rd: Op2 - Op1 + C - 1
1000 = TST - set condition codes in Op1 AND Op2
1001 = TEO - set condition codes in Op1 EOR Op2
1010 = CMP - set condition codes in Op1 - Op2
1011 = SMN - set condition codes in Op1 + Op2
1100 = ORR - Rd: Op1 or Op2
1101 = MOV - Rd: Op2
1110 = BIC - Rd: Op1 AND NOT Op2
1111 = MVN - Rd: NOT Op2

[25] Immediate Operand
0 = Operand 2 is a register 1 = Operand 2 is an Immediate value

[11:0] Operand 2 Type Selection

11 4 3 0

[3:0] 2nd operand register [11:4] Shift applied to Rm

[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to Imm

[31:28] Confition Field

11 8 7 0

Shift Rm

Rotate Imm

Figure 3-4. Data Processing Instructions

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-9

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the I bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler
Mnemonic

Op-Code Action

AND 0000 Operand1 AND operand 2

EOR 0001 Operand1 EOR operand2

SUB 0010 Operand1 - operand2

RSB 0011 Operand2 operand1

ADD 0100 Operand1 + operand2

ADC 0101 Operand1 + operand2 + carry

SBC 0110 Operand1 - operand2 + carry - 1

RSC 0111 Operand2 - operand1 + carry - 1

TST 1000 As AND, but result is NOT written

TEQ 1001 As EOR, but result is NOT written

CMP 1010 As SUB, but result is NOT written

CMN 1011 As ADD, but result is NOT written

ORR 1100 Operand1 OR operand2

MOV 1101 Operand2 (operand1 is ignored)

BIC 1110 Operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-10

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register (other than R15). The encoding for the
different shift types is shown in Figure 3-5.

0

11 7 6 5 4

[6:5] Shift Type
00 = Logic left 01 = Logical right
10 = Arithmetic right 11 = Rotate right

[11:7] Shift Amount
5 Bit unsigned integer

RS 0 1

11 8 7 6 5 4

[6:5] Shift Type
00 = Logic left 01 = Logical right
10 = Arithmetic right 11 = Rotate right

[11:8] Shift Register
Shift amount specified in bottom-byte of Rs

Figure 3-5. ARM Shift Operations

Instruction Specified Shift Amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

Value of Operand 2

Contents of Rm

31 27 26 0

carry out

0 0 0 00

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-11

Value of Operand 20 0 0 00

Contents of Rm

31 5 4 0

carry out

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure 3-
8.

Contents of Rm

Value of Operand 2

31 5 4 0

carry out

30

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-12

Rotate right (ROR) operations reuse the bits which ″overshoot″ in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9. The form of the shift field which might be expected to give ROR #0 is
used to encode a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right by one
bit position of the 33 bit quantity formed by appending the CPSR C flag to the most significant end of the
contents of Rm as shown in Figure 3-10.

Contents of Rm

Value of Operand 2

31 5 4 0

carry out

Figure 3-9. Rotate Right

Contents of Rm

Value of Operand 2

31 1 0

carry outC

in

Figure 3-10. Rotate Right Extended

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-13

Register Specified Shift Amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1. LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2. LSL by more than 32 has result zero, carry out zero.

3. LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4. LSR by more than 32 has result zero, carry out zero.

5. ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6. ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7. ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-14

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state change which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERAND

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR
transfer operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a
privileged mode and to do nothing if in User mode.

INSTRUCTION CYCLE TIMES

Data processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles

Normal data processing 1S

Data processing with register specified shift 1S + 1I

Data processing with PC written 2S + 1N

Data processing with register specified shift and PC written 2S + 1N + 1I

NOTE: S, N and I are as defined sequential (S-cycle), non-sequencial (N-cycle), and internal (I-cycle) respectively .

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-15

ASSEMBLER SYNTAX

• MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

• CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

• AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm Expressions evaluating to a register number.

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with
extend).

<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)

Examples

ADDEQ R2, R4, R5 ; If the Z flag is set make R2: = R4 + R5
TEQS R4, #3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4, R5, R7, LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.

MOV PC, R14 ; Return from subroutine.
MOVS PC, R14 ; Return from exception and restore CPSR

; from SPSR_mode.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-16

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in
Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS

• In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

• Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

• The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

• You must not specify R15 as the source or destination register.

• Also, do not attempt to access an SPSR in User mode, since no such register exists.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-17

MRS (Transfer PSR Contents to a Register)

[15:12] Destination Register

[22] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

cond 00010 Ps 001111 Pd 000000000000

31 28 27 23 22 21 16 15 12 11 0

MRS (Transfer Register Contents to PSR)

cond 00010 Pd 1010011111 00000000 Rm

[3:0] Source Register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

MRS (transfer register contents or immdiate value to PSR flag bits only)

cond 00 Pd 1010001111 Source operandI 10

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = SPSR_<current mode>

[11:0] Source Operand

00000000 Rm

11 4 3 0

[3] Source register
[11:4] Source operand is an immediate value

00000000 Imm

11 8 7 0

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to Imm

[31:28] Confition Field

31 28 27 23 22 21 12 11 034

31 28 27 23 22 21 12 11 026 25 24

Figure 3-11. PSR Transfer

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-18

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:

• The reserved bits should be preserved when changing the value in a PSR.

• Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

Examples

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N, Z, C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as sequential (S-cycle).

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-19

ASSEMBLER SYNTAX

• MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

• MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

• MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

• MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N,Z,C
and V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-2.

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are
SPSR and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit
field to match the expression. If this is impossible, it will give an error.

Examples

In user mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] ← 0xA (set N, C; clear Z, V)
MRS Rd,CPSR ; Rd[31:0] ← CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] ← Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] ← 0x5 (set Z, V; clear N, C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0] ← Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] ← Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] ← 0xC (set N, Z; clear C, V)
MRS Rd,SPSR ; Rd[31:0] ← SPSR_<mode>[31:0]

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-20

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

[15:12][11:8][3:0] Operand Register

[19:16] Destination Register

[21] Set Condition Set
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only 1 = Multiply and accumulate

[31:28] Condition Field

Rd

31 28 27 22 21 16 15 12 11 0

0 0 0 0 0 0 SAcond

20 19

Rn

8

1 0 0 1Rs Rm

7 4 3

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd: = Rm*Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set.The multiply-accumulate form gives Rd: = Rm*Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2′s complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits-the
low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

If the Operands Are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
0xFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-21

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m: The number of 8 bit multiplier array cycles is required to complete the multiply, which is controlled by the
value of the multiplier operand specified by Rs. Its possible values are as follows

1. If bits [32:8] of the multiplier operand are all zero or all one.

2. If bits [32:16] of the multiplier operand are all zero or all one.

3. If bits [32:24] of the multiplier operand are all zero or all one.

4. In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

Examples

MUL R1,R2,R3 ; R1: = R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1: = R2*R3+R4, Setting condition codes.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-22

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL,MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
signed and unsigned multiplication each with optional accumulate give rise to four variations.

[11:8][3:0] Operand Registers

[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only 1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned 1 = Signed

[31:28] Condition Field

RdHi

31 28 27 22 21 16 15 12 11 0

0 0 0 0 1 SAcond

20 19

RdLo

8

1 0 0 1Rs Rm

7 4 3

U

23

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi, RdLo: = Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of
the result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi, RdLo: = Rm * Rs + RdHi, RdLo. The lower 32 bits of the 64
bit number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower
32 bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signed 64 bit result.

OPERAND RESTRICTIONS

• R15 must not be used as an operand or as a destination register.

• RdHi, RdLo, and Rm must all specify different registers.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-23

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed Instructions SMULL, SMLAL:

• If bits [31:8] of the multiplier operand are all zero or all one.

• If bits [31:16] of the multiplier operand are all zero or all one.

• If bits [31:24] of the multiplier operand are all zero or all one.

• In all other cases.

For Unsigned Instructions UMULL, UMLAL:

• If bits [31:8] of the multiplier operand are all zero.

• If bits [31:16] of the multiplier operand are all zero.

• If bits [31:24] of the multiplier operand are all zero.

• In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned multiply long 32 x 32 = 64

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned multiply & accumulate long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed multiply long 32 x 32 = 64

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed multiply & accumulate long 32 x 32 + 64 = 64

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

Examples

UMULL R1,R4,R2,R3 ; R4,R1: = R2*R3
UMLALS R1,R5,R2,R3 ; R5,R1: = R2*R3+R5,R1 also setting condition codes

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-24

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-Back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value

[11:0] Offset

31 28 27 24 21 16 15 12 11 020 1925

RnLWcond Rd Offset01

26

I P U B

23 22

Immediate offset
11

[11:0] Unsigned 12 bit immedite offset

Shift

0

11 0
Rm

4 3

[3:0] Offset register [11:4] shift applied to Rm

[31:28] Condition Field

10

Figure 3-14. Single Data Transfer Instructions

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-25

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U = 1) or subtracted from (U = 0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P = 1) or after (post-indexed, P
= 0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W = 1), or the old base value may be kept (W = 0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B = 1) or a word (B = 0) between an ARM7TDMI register
and memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

NOTE

The KS32C65100 is configured to the big-endian format.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros.
Please see Figure 2-2.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-26

A

B

C

D

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

Memory Register

24

16

8

0

LDR from word aligned address

A

B

C

D

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

24

16

8

0

LDR from word address offset by 2

Figure 3-15. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros.
please see Figure 2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-27

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.

Example:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the data abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S, N and I
are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-28

ASSEMBLER SYNTAX

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will
subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this case base
write-back should not be specified.

<Address>can be:
1 An expression which generates an address:

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted

by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register,

shifted as by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the
shift amount by a register.

{!} Writes back the base register (set the W bit) if! is present.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-29

Examples

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are registers)
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-30

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

31 28 27 24 21 16 15 12 11 020 1925

RnLWcond Rd 0000000 P U 0

23 22 8

1 S H 1 Rm

7 6 5 4 3

[3:0] Offset Register

[6][5] S H
0 0 = SWP instruction
0 1 = Unsigned halfwords
1 0 = Signed byte
1 1 = Signed halfwords

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Write address into base

[21] Write-Block
0: No write-back
1: Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

[31:28] Condition Field

Figure 3-16. Halfword and Signed Data Transfer with Register Offset

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-31

31 28 27 24 21 16 15 12 11 020 1925

RnLWcond Rd Offset000 P U 1

23 22 8

1 S H 1 Offset

7 6 5 4 3

[3:0] Immediate Offset (low nibble)

[6][5] S H
0 0 = SWP instruction
0 1 = Unsigned halfwords
1 0 = Signed byte
1 1 = Signed byte

[11:8] Immediate Offset (high nibble)

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-Back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

[31:28] Condition Field

Figure3-17. Halfword and Signal Data Transfer with Immediate Offset and Auto-Indexing

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-32

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U = 1) or subtracted from (U =
0) the base register Rn. The offset modification may be performed either before (pre-indexed, P = 1) or after
(post-indexed, P = 0) the base register is used as the transfer address.
The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W = 1), or the old base may be kept (W = 0). In the case of post-indexed addressing,
the write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The Write-
back bit should not be set high (W = 1) when post-indexed addressing is selected.

HALFWORD LOAD AND STORES

Setting S = 0 and H = 1 may be used to transfer unsigned Half-words between an ARM7TDMI register and
memory.
The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S = 1 the H bit selects between Bytes (H = 0) and
Half-words (H = 1). The L bit should not be set low (Store) when signed (S = 1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-33

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to 0 if it is a halfword boundary, (A[1]=1). The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

NOTE

The KS32C651000 is configured to the big-endian format.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the data abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H, SH, SB) instructions take 1S + 1N + 1I. LDR(H, SH, SB) PC take 2S + 2N + 1I incremental
cycles. S,N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle),
respectively. STRH instructions take 2N incremental cycles to execute.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-34

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2..

H Transfer halfword quantity

SB Load sign extended byte (only valid for LDR)

SH Load sign extended halfword (only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In
this case base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-35

Examples

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the halfword address
; contained in R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign extended contents

; of the halfword address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED-HERE-8)]; Store the halfword in R5 at address FRED
FRED

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-36

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 28 27 24 21 16 15 020 1925

RnLWcond 100 P U S

23 22

Register list

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-Back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or force user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtrack offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

Figure 3-18. Block Data Transfer Instructions

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-37

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn = 0x1000 and write back of the modified
base is required (W = 1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W = 0), Rn would have retained its initial
value of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have
been overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

2

Rn 0x100C

0x1000

0x0FF4

R5
R1

R1

R7
R5
R1

4

Figure 3-19. Post-Increment Addressing

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-38

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

2

Rn 0x100C

0x1000

0x0FF4

R5
R1

R1

R7
R5
R1

4

Figure 3-20. Pro-Increment Addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4
2

Rn

0x100C

0x1000

0x0FF4

4

R1

R5
R1

R7
R5
R1

Figure 3-21. Post-Decrement Addressing

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-39

0x100C

0x1000

0x0FF4

Rn

1

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

2

Rn

0x100C

0x1000

0x0FF4

R5
R1

R1

R7
R5
R1

4

0x100C

Figure 3-22. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the user bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the user bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-40

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Aborts during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

• Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

• The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S,N
and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-41

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{!} If present requests write-back (W = 1), otherwise W = 0.

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user bank
when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit

Pre-increment load LDMED LDMIB 1 1 1

Post-increment load LDMFD LDMIA 1 0 1

Pre-decrement load LDMEA LDMDB 1 1 0

Post-decrement load LDMFA LDMDA 1 0 0

Pre-increment store STMFA STMIB 0 1 1

Post-increment store STMEA STMIA 0 0 1

Pre-decrement store STMFD STMDB 0 1 0

Post-decrement store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a ″full″ or ″empty″ stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean increment after,
increment before, decrement after, decrement before.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-42

Examples

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 ← (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 ← (SP), CPSR ← SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling
routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; Restore workspace and return.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-43

SINGLE DATA SWAP (SWP)

31 28 27 21 16 15 020 19

Rn00cond 00010 B

23 22

Rd

12

0000

11 8

1001

7 4

Rm

3

[3:0] Source Register

[15:12] Destination Register

[19:16] Base Register

[22] Byte/Word Bit
0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition Field

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are ″locked″ together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B = 1) or a word (B = 0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and little Endian
configuration applies to the SWP instruction.

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-44

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the data abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S, N and I are defined as sequential (S-
cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn Expressions evaluating to valid register numbers

Examples

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-45

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

31 28 27 0

cond 1111

24 23

Comment Field (ignored by processor)

[32:28] Condition Field

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter supervisor mode in a controlled manner. The instruction causes
the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed value
(0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external memory
management hardware) from modification by the user, a fully protected operating system may be constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-46

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.

<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).

Examples

SWI ReadC ; Get next character from read stream.
SWI WriteI+″k″ ; Output a ″k″ to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
 . . .

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7. Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0-7.

LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,

; restoring processor mode and flags.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-47

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The KS32C65100, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the KS32C65100.
These coprocessor instructions can be emulated by the undefined trap handler. Even though external
coprocessor can not be connected to the KS32C65100, the coprocessor instructions are still described here in full
for completeness. (Remember that any external coprocessor described in this section is a software emulation.)

31 28 27 23 1920 0

CRncond 1110

24 15

CP

12 8 7 4

CRm

3

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Unmber

[15:12] Coprocessor Destination Register

[19:16] Coprocessor Operand Register

[23:20] Coprocessor Operand Code

[31:28] Condition Field

CP Opc

16

CRd CP#

11

0

5

Figure 3-25. Coprocessor Data Operation Instruction

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-48

THE COPROCESSOR FIELDS

Only bit 4 and bits 24 to 31 are significant to ARM7TDMI. The remaining bits are used by coprocessors. The
above field names are used by convention, and particular coprocessors may redefine the use of all fields except
CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and I are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

Examples

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)
; on CR2 and CR3, and put the result in CR1.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-49

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26. This class of instruction is used to load (LDC) or store (STC) a
subset of a coprocessors′s registers directly to memory. ARM7TDMI is responsible for supplying the memory
address, and the coprocessor supplies or accepts the data and controls the number of words transferred.

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-Back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtrack offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

31 28 27 23 1920 0

Rncond 110

24 15 12 8 7

Offset

16

CRd CP#

1125

P U N W L

22 21

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance
N = 0 could select the transfer of a single register, and N = 1 could select the transfer of all the registers for
context switching.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-50

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U = 1) or subtracted from (U = 0)
the base register (Rn); this calculation may be performed either before (P = 1) or after (P = 0) the base is used as
the transfer address. The modified base value may be overwritten back into the base register (if W = 1), or the
old value of the base may be preserved (W = 0). Note that post-indexed addressing modes require explicit
setting of the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where:

n: The number of words transferred.

B: The number of cycles spent in the coprocessor busy-wait loop.

S, N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-51

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2..

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:
[Rn],<#expression > offset of <expression> bytes
{!} write back the base register (set the W bit)

if! is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

Examples

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-52

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 28 27 23 1920 0

CRncond 1110

15 12 8 7

CRm

16

Rd CP#

1124

CP Opc L

21

CP 1

5 4 3

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Uumber

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register

[20] Load/Store Bit
0 = Store to Co-Processor
1 = Load from Co-Processor

[23:21] Coprocessor Operation Mode

[31:28] Condition Field

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-53

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as sequential
(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bI +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)

MCR Move from ARM7TDMI register to coprocessor (L=0)
{cond} Two character condition mnemonic. See Table 3-2

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

Rd An expression evaluating to a valid ARM7TDMI register number
cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm

respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

Examples

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-54

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 28 27 24 0

cond 011 XXXX

25

XXXXXXXXXXXXXXXXXXXX 1

5 4 3

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N and I are defined as sequential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-55

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly they
just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,#″ ″-1 ; Range test
MOVLS Rc,#″ ″ ; IF Rc ⇐ ″ ″OR Rc = ASCII(127)

; THEN Rc: = ″.″

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-56

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM cross development Toolkit, available from your supplier. A short general purpose divide
routine follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Detection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result
UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-57

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit: = bit 33 or bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bit in Rb lsb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; Carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-58

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb : = Ra*C, C a constant:

1. If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5*9 = 45

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-59

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-60

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the
ARM7TDMI core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

0 0 0 Op Offset Rs Rd

0 0 0 1 1 I op Rn/offset8 Rs Rd

0 0 1 Op Rd Offset8

0 1 0 0 0 0

Op H
1

H
1 Rs/Hs Rd/Hd

0 1 0 0 1 Rd Word8

0 1 0 1 L B 0 Ro Rb Rd

0 1 0 1 H S 1 Ro Rb Rd

0 1 1 B L Offset5 Rb Rd

1 0 0 0 L Offset5 Rb Rd

1 0 0 1 L Rd Word8

1 0 1 0 s
p Rd Word8

1 0 1 1 0 0 0 0 S SWord7

1 0 1 1 L 1 0 R Rlist

1 1 0 0 L Rb Rlist

1 1 0 1 cond Softset8

1 1 0 1 1 1 1 1 Value8

1 1 1 0 0

1 1 1 1 H

Offset11

Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1

Op Rs Rd

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

5

Move shifted register

Add/subtract
Move/compare/add
/subtract immediate
ALU operations

PC-relative load

Load/store with register offset

Load/store sign-extened byte/halfword

Load/store with immediate offset

Load/store halfword

SP-relative load/store

Load address

Add offset to stack pointer

Push/pop registers

Multiple load/store

Conditional branch

Software interrupt

Unconfitional branch

Long branch with link

Hi register operations
/branch exchange

Figure 3-29. THUMB Instruction Set Formats

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-61

OPCODE SUMMARY

The following table summaries the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition Codes
Set

ADC Add with carry 4 - 4

ADD Add 4 4 4 (1)

AND AND 4 - 4

ASR Arithmetic shift right 4 - 4

B Unconditional branch 4 - -

Bxx Conditional branch 4 - -

BIC Bit clear 4 - 4

BL Branch and link - - -

BX Branch and exchange 4 4 -

CMN Compare negative 4 - 4

CMP Compare 4 4 4

EOR EOR 4 - 4

LDMIA Load multiple 4 - -

LDR Load word 4 - -

LDRB Load byte 4 - -

LDRH Load halfword 4 - -

LSL Logical shift left 4 - 4

LDSB Load sign-extended byte 4 - -

LDSH Load sign-extended
halfword

4 - --

LSR Logical shift right 4 - 44

MOV Move register 4 - 4 (2)

MUL Multiply 4 4 4

MVN Move negative register 4 - 4

NEG Negate 4 - 4

ORR OR 4 - 4

POP Pop registers 4 - -

PUSH Push registers 4 - -

ROR Rotate right 4 - 4

SBC Subtract with carry 4 - 4

STMIA Store multiple 4 - -

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-62

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition Codes
Set

STR Store word 4 - -

STRB Store byte 4 - -

STRH Store half-word 4 - -

SWI Software interrupt - - -

SUB Subtract 4 - 4

TST Test bits 4 - 4

NOTES:
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-63

FORMAT 1: MOVE SHIFTED REGISTER

15 14 13 10 0

0 Offset5

12 35 2

0 0

11

Rb Rd

6

[2:0] Destination Register

[5:3] Source Register

[10:6] Immediate Value

[12:11] Opcode
0: LSL
1: LSR
2: ASR

Op

Figure 3-30. Format 1

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OP THUMB Assembler ARM Equivalent Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL
#Offset5

Shift Rs left by a 5-bit immediate value and
store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR
#Offset5

Perform logical shift right on Rs by a 5-bit
immediate value and store the result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR
#Offset5

Perform arithmetic shift right on Rs by a 5-bit
immediate value and store the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-64

FORMAT 2: ADD/SUBTRACT

15 14 13 10 0

0 Op

12 35 2

0 0

11

Rn/Offset3 Rs Rd

6

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Value

[9] Opcode
0 = Add
1 = SUB

[10] Immediate Flag
0 = Register operand
1 = Immediate operand

1 1 1

9 8

Figure 3-31. Format 2

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OP I THUMB Assembler ARM Equivalent Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs. Place
result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs,
#Offset3

Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs,
#Offset3

Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD R0, R3, R4 ; R0: = R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6: = R2 - 6 and set condition codes.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-65

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 14 13 10 0

0 Op

12

0 1

11

Offset8Rd

[7:0] Immediate Value

[10:8] Source/Destination Register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

8 7

Figure 3-32. Format 3

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OP THUMB Assembler ARM Equivalent Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit immediate
value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 Add 8-bit immediate value to contents of Rd and
place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 Subtract 8-bit immediate value from contents of
Rd and place the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

MOV R0, #128 ; R0: = 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 - 62
ADD R1, #255 ; R1: = R1 + 255 and set condition codes
SUB R6, #145 ; R6: = R6 - 145 and set condition codes

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-66

FORMAT 4: ALU OPERATIONS

15 14 13 10 0

0 Op

12 35 2

1 0

11

Rs Rd

6

[2:0] Source/Destination Register

[5:3] Source Register 2

[9:6] Opcode

0 0 0

9

Figure 3-33. Format 4

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 4 Instructions

OP THUMB Assembler ARM Equivalent Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd: = Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd: = Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd: = Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd: = Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd: = Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd: = Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd: = Rd - Rs - NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd: = Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = - Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd: = Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd: = Rs * Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd: = Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd: = NOT Rs

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-67

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

EOR R3, R4 ; R3: = R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; store the result in R5. Set condition codes ie R5 = - R3
CMP R2, R6 ; Set the condition codes on the result of R2 - R6
MUL R0, R7 ; R0: = R7 * R0 and set condition codes

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-68

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 14 13 10 0

0 Op

12 35 2

1 0

11

Rs/Hs Rd/Hd

6

[2:0] Destination Register

[5:3] Source Register

[6] Hi Operand Flag 2

[7] Hi Operand Flag 1

[9:8] Opcode

0 0 1

9

H2H1

8 7

Figure 3-34. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1 = 0, H2 = 0 for Op = 00 (ADD), Op = 01 (CMP) and Op = 10 (MOV) is undefined, and should
not be used.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-69

Table 3-12. Summary of Format 5 Instructions

OP H1 H2 THUMB Assembler ARM Equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a
register in the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a register
in the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7 with a
register in the range 8-15. Set the
condition code flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15 with
a register in the range 0-7. Set the
condition code flags on the result.

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range 8-15.
Set the condition code flags on the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the range
8-15 to a register in the range 0-7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the range
0-7 to a register in the range 8-15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers in the
range 8-15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state
change) to address in a register in the
range 0-7.

11 0 1 BX Hs BX Hs Perform branch (plus optional state
change) to address in a register in the
range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.
Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-70

Examples

Hi-Register Operations

ADD PC, R5 ; PC: = PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

 ...
ALIGN
CODE32
outofTHUMB

; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-71

FORMAT 6: PC-RELATIVE LOAD

15 14 13 10 0

0 Rd

12

1 0

11

Word8

[7:0] Immediate Value

[10:8] Destination Register

0 1

8 7

Figure 3-35. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB Assembler ARM Equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes) in Imm to
the current value of the PC. Load the word from the
resulting address into Rd.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (i.e. with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than
the address of this instruction , but bit 1 of the PC is forced to 0 to ensure it is word aligned.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-72

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

15 14 13 10 0

0 Ro

12 35 2

1 0

11

Rb Rd

6

[2:0] Source/Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quanity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

1 L B

9 8

0

Figure 3-36. Format 7

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-36. Summary of Format 7 Instructions

L B THUMB Assembler ARM Equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by adding together
the value in Rb and the value in Ro. store the
contents of Rd at the address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by adding together
the value in Rb and the value in Ro. Store the
byte value in Rd at the resulting address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by adding together
the value in Rb and the value in Ro. Load the
contents of the address into Rd.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by adding together
the value in Rb and the value in Ro. load the
byte value at the resulting address.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-73

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 - R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 - R0.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-74

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

15 14 13 10 0

0 Ro

12 35 2

1 0

11

Rb Rd

6

[2:0] Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag
0 = Operand not sign-extended
1 = Operand sign-extended

[11] H Flag

1 H S

9 8

1

Figure 3-37. Format 8

OPERATION

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler
syntax is shown below.

Table 3-15. Summary of Format 8 Instructions

S H THUMB Assembler ARM Equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store halfword:
Add Ro to base address in Rb. Store bits 0-15
of Rd at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load halfword:
Add Ro to base address in Rb. Load bits 0-15
of Rd from the resulting address, and set bits
16-31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:
Add Ro to base address in Rb. Load bits 0-7 of
Rd from the resulting address, and set bits 8-
31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended halfword:
Add Ro to base address in Rb. Load bits 0-15
of Rd from the resulting address, and set bits
16-31 of Rd to bit 15.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-75

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 - R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 - R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword
; found at the address formed by adding R2 - R4.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-76

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

15 14 13 10 0

0 Offset5

12 35 2

1 1

11

Rb Rd

6

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Offset Value

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

B L

Figure 3-38. Format 9

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-16.

Table 3-16. Summary of Format 9 Instructions

S H THUMB Assembler ARM Equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store the
contents of Rd at the address.

0 1 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load Rd
from the address.

1 0 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store the
byte value in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding together
the value in Rb and Imm. Load the byte value
at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-77

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 - R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 - R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-78

FORMAT 10: LOAD/STORE HALFWORD

15 14 13 10 0

1 Offset5

12 35 2

0 0

11

Rb Rd

6

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

0 L

Figure 3-39. Format 10

OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Halfword Data Transfer Instructions

L THUMB Assembler ARM Equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and store bits 0-
15 of Rd at the resulting address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load bits 0-15
from the resulting address into Rd and set bits 16-
31 to zero.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit 0 set to 0)
since the assembler places #Imm >> 1 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed
by

; adding 4 to R7. Note that the THUMB opcode will
contain

; 2 as the Offset5 value.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-79

FORMAT 11: SP-RELATIVE LOAD/STORE

15 14 13 10 0

1 Rd

12

0 0

11

Word8

7

[7:0] Immediate Value

[10:8] Destination Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

1 L

8

Figure 3-40. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store. The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

L THUMB Assembler ARM Equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the SP (R7). Store the
contents of Rd at the resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the SP (R7). Load the
word from the resulting address into Rd.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #Imm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-80

FORMAT 12: LOAD ADDRESS

15 14 13 10 0

1 Rd

12

0 1

11

Word8

7

[7:0] 8-bit unsigned Constant

[10:8] Destination Register

[11] Source
0 = PC
1 = SP

0 SP

8

Figure 3-41. Format 12

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

SP THUMB Assembler ARM Equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value of the program
counter (PC) and load the result into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value of the stack pointer
(SP) and load the result into Rd.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-81

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD R2, PC, #572 ; R2: = PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6: = SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-82

FORMAT 13: ADD OFFSET TO STACK POINTER

15 14 13 10 0

1

12

0 1

11

SWord7

7

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

1 0

8

0 0 0 S

69

Figure 3-42. Format 13

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instructions

S THUMB Assembler ARM Equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, #-Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #Imm can be up to -/+ 508, but must be word-aligned (i.e. with bits 1:0 set to 0)
since the assembler convert s #Imm to an 8-bit sign + magnitude number before placing it in field SWord7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD SP, #268 ; SP (R13): = SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S = 0.

ADD SP, #-104 ; SP (R13): = SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S = 1.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-83

FORMAT 14: PUSH/POP REGISTERS

15 14 13 10 0

1

12

0 1

11

Rlist

7

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

1 L

8

1 0 R

9

Figure 3-43. Format 14

OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be full descending.

Table 3-21. PUSH and POP Instructions

S H THUMB Assembler ARM Equivalent Action

0 0 PUSH {Rlist} STMDB R13!, {Rlist} Push the registers specified by Rlist onto
the stack. Update the stack pointer.

0 1 PUSH {Rlist, LR} STMDB R13!, {Rlist,
R14}

Push the Link Register and the registers
specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP {Rlist} LDMIA R13!, {Rlist} Pop values off the stack into the registers
specified by Rlist. Update the stack pointer.

1 1 POP {Rlist, PC} LDMIA R13!, {Rlist, R15} Pop values off the stack and load into the
registers specified by Rlist. Pop the PC off
the stack. Update the stack pointer.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-84

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

PUSH {R0-R4,LR} ; Store R0, R1, R2, R3, R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2, R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-85

FORMAT 15: MULTIPLE LOAD/STORE

15 14 13 10 0

1

12

1 0

11

Rlist

7

[7:0] Register List

[10:8] Base Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

0 L

8

Rb

Figure 3-44. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

L THUMB Assembler ARM Equivalent Action

0 STMIA Rb!, {Rlist} STMIA Rb!, {Rlist} Store the registers specified by Rlist, starting at the
base address in Rb. Write back the new base
address.

1 LDMIA Rb!, {Rlist} LDMIA Rb!, {Rlist} Load the registers specified by Rlist, starting at the
base address in Rb. Write back the new base
address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples
STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7

; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-86

FORMAT 16: CONDITIONAL BRANCH

15 14 13 0

1

12

1 0

11

SOffset8

7

[7:0] 8-bit signed Immediate

[11:8] Condition

1

8

Cond

Figure 3-45. Format 16

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 3-23. The Conditional Branch Instructions

Code THUMB Assembler ARM Equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or same)

0011 BCC label BCC label Branch if C clear (unsigned lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear (unsigned higher)

1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

1010 BGE label BGE label Branch if N set and V set, or N clear and V clear (greater
or equal)

1011 BLT label BLT label Branch if N set and V clear, or N clear and V set (less
than)

1100 BGT label BGT label Branch if Z clear, and either N set and V set or N clear
and V clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V clear, or N clear and V set
(less than or equal)

NOTES:
1. While label specifies a full 9-bit two ′s complement address, this must always be halfword-aligned (i.e. with bit 0 set to 0)

since the assembler actually places label >> 1 in field SOffset8.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-87

2. Cond = 1110 is undefined, and should not be used.
Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

CMP R0, #45 ; Branch to ″over″ if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
... ; the number of halfwords to offset.
...

over ... ; Must be halfword aligned.
...

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-88

FORMAT 17: SOFTWARE INTERRUPT

15 14 13 0

1

12

1 0

11

Value8

7

[7:0] Condition

1

8

1 1 1 1

10 9

Figure 3-46. Format 17

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB Assembler ARM Equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:

Move the address of the next instruction into LR, move
CPSR to SPSR, load the SWI vector address (0x8) into
the PC. Switch to ARM state and enter SVC mode.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

SWI 18 ; Take the software interrupt exception.
; Enter supervisor mode with 18 as the
; requested SWI number.

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-89

FORMAT 18: UNCONDITIONAL BRANCH

15 14 13 0

1

12

1 1

11

Offset11

[10:0] Immediate Value

0 0

10

Figure 3-47. Format 18

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

Table 3-25. Summary of Branch Instruction

THUMB Assembler ARM Equivalent Action

B label BAL label (halfword
offset)

Branch PC relative +/- Offset11 << 1, where label is PC
+/- 2048 bytes.

NOTE: The address specified by label is a full 12-bit two ′s complement address,
but must always be halfword aligned (i.e. bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

Examples

here B here ; Branch onto itself. Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
 ... ; Note that the THUMB opcode will contain the number of

; half-word to offset.
jimmy ... ; Must be halfword aligned.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-90

FORMAT 19: LONG BRANCH WITH LINK

15 14 13 0

1

12

1 1

11

Offset

[10:0] Long Branch and Link Offset High/low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

1 H

10

Figure 3-48. Format 19

OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two′s complement half-word offset specified by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H = 1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-91

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

H THUMB Assembler ARM Equivalent Action

0 BL label none LR: = PC + OffsetHigh << 12

1 Temp: = next instruction address

PC: = LR + OffsetLow << 1

LR: = temp | 1

Examples

BL faraway ; Unconditionally branch to 'faraway'
next ... ; and place following instruction

; address, i.e. 'next', in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of halfwords to offset.

faraway ... ; Must be Half-word aligned.

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-92

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) ; (2..5)
LSL Ra, Ra, #n ; MOV Ra, Ra, LSL #n

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-93

GENERAL PURPOSE SIGNED DIVIDE

This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just ⇐ than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l
MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded
CMP R2, R3 ; Terminate when R2 == R3 (i.e. we have just
BNE div_l ; tested subtracting the 'ones' value).

;Now fixup the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = - 1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = - 1
SUB R1, R2
MOV pc, lr

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-94

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, a1
BEQ divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4
MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0
MOV pc, lr

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-95

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and
ARM code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

SUB a2, a1, #10
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1
ADDPL a1, a1, #1
ADDMI a2, a2, #10
MOV pc, lr

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-96

INSTRUCTION SET SUMMAY .. 1

FORMAT SUMMARY ... 1

INSTRUCTION SUMMARY.. 2

THE CONDITION FIELD.. 3

BRANCH AND EXCHANGE (BX)... 4

INSTRUCTION CYCLE TIMES .. 4

ASSEMBLER SYNTAX .. 4

USING R15 AS AN OPERAND... 4

BRANCH AND BRANCH WITH LINK (B, BL)... 6

THE LINK BIT .. 6

INSTRUCTION CYCLE TIMES .. 6

ASSEMBLER SYNTAX .. 7

DATA PROCESSING... 8

CPSR FLAGS... 9

SHIFTS .. 10

IMMEDIATE OPERAND ROTATES ... 14

WRITING TO R15 .. 14

USING R15 AS AN OPERAND... 14

TEQ, TST, CMP AND CMN OPCODES ... 14

INSTRUCTION CYCLE TIMES .. 14

ASSEMBLER SYNTAX .. 15

PSR TRANSFER (MRS, MSR) .. 16

OPERAND RESTRICTIONS .. 16

RESERVED BITS... 18

INSTRUCTION CYCLE TIMES .. 18

ASSEMBLER SYNTAX .. 19

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA).. 20

CPSR FLAGS... 21

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-97

INSTRUCTION CYCLE TIMES ...21

ASSEMBLER SYNTAX ...21

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL,MLAL)..22

OPERAND RESTRICTIONS ...22

CPSR FLAGS ...23

INSTRUCTION CYCLE TIMES ...23

ASSEMBLER SYNTAX ...23

SINGLE DATA TRANSFER (LDR, STR)...24

OFFSETS AND AUTO-INDEXING ..25

SHIFTED REGISTER OFFSET...25

BYTES AND WORDS ...25

USE OF R15 ...27

RESTRICTION ON THE USE OF BASE REGISTER ..27

DATA ABORTS...27

INSTRUCTION CYCLE TIMES ...27

ASSEMBLER SYNTAX ...28

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH) ...30

OFFSETS AND AUTO-INDEXING ..32

HALFWORD LOAD AND STORES ...32

SIGNED BYTE AND HALFWORD LOADS..32

ENDIANNESS AND BYTE/HALFWORD SELECTION ..32

USE OF R15 ...33

DATA ABORTS...33

INSTRUCTION CYCLE TIMES ...33

ASSEMBLER SYNTAX ...34

BLOCK DATA TRANSFER (LDM, STM) ...36

THE REGISTER LIST ...36

ADDRESSING MODES...37

ADDRESS ALIGNMENT ...37

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-98

USE OF THE S BIT.. 39

USE OF R15 AS THE BASE .. 39

INCLUSION OF THE BASE IN THE REGISTER LIST.. 40

DATA ABORTS.. 40

INSTRUCTION CYCLE TIMES .. 40

ASSEMBLER SYNTAX .. 41

SINGLE DATA SWAP (SWP) .. 43

BYTES AND WORDS .. 43

USE OF R15 .. 43

DATA ABORTS.. 44

INSTRUCTION CYCLE TIMES .. 44

ASSEMBLER SYNTAX .. 44

SOFTWARE INTERRUPT (SWI) ... 45

RETURN FROM THE SUPERVISOR... 45

COMMENT FIELD.. 45

INSTRUCTION CYCLE TIMES .. 45

ASSEMBLER SYNTAX .. 46

COPROCESSOR DATA OPERATIONS (CDP).. 47

COPROCESSOR INSTRUCTIONS.. 47

THE COPROCESSOR FIELDS.. 48

INSTRUCTION CYCLE TIMES .. 48

ASSEMBLER SYNTAX .. 48

COPROCESSOR DATA TRANSFERS (LDC, STC)... 49

THE COPROCESSOR FIELDS.. 49

ADDRESSING MODES.. 50

ADDRESS ALIGNMENT .. 50

USE OF R15 .. 50

DATA ABORTS.. 50

INSTRUCTION CYCLE TIMES .. 50

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-99

ASSEMBLER SYNTAX ...51

COPROCESSOR REGISTER TRANSFERS (MRC, MCR) ...52

THE COPROCESSOR FIELDS...52

TRANSFERS TO R15 ...53

TRANSFERS FROM R15..53

INSTRUCTION CYCLE TIMES ...53

ASSEMBLER SYNTAX ...53

UNDEFINED INSTRUCTION..54

INSTRUCTION CYCLE TIMES ...54

ASSEMBLER SYNTAX ...54

INSTRUCTION SET EXAMPLES..55

USING THE CONDITIONAL INSTRUCTIONS ..55

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR ..57

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER..57

LOADING A WORD FROM AN UNKNOWN ALIGNMENT ..59

THUMB INSTRUCTION SET FORMAT ..60

FORMAT SUMMARY..60

OPCODE SUMMARY..61

FORMAT 1: MOVE SHIFTED REGISTER ..63

OPERATION...63

INSTRUCTION CYCLE TIMES ...63

FORMAT 2: ADD/SUBTRACT ..64

OPERATION...64

INSTRUCTION CYCLE TIMES ...64

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE..65

OPERATIONS...65

INSTRUCTION CYCLE TIMES ...65

FORMAT 4: ALU OPERATIONS...66

OPERATION...66

ARM INSTRUCTION SET KS32C65100 RISC MICROPROCESSOR

3-100

INSTRUCTION CYCLE TIMES .. 67

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE.. 68

OPERATION .. 68

INSTRUCTION CYCLE TIMES .. 69

THE BX INSTRUCTION ... 69

USING R15 AS AN OPERAND... 70

FORMAT 6: PC-RELATIVE LOAD ... 71

OPERATION .. 71

INSTRUCTION CYCLE TIMES .. 71

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET.. 72

OPERATION .. 72

INSTRUCTION CYCLE TIMES .. 73

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD... 74

OPERATION .. 74

INSTRUCTION CYCLE TIMES .. 75

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET .. 76

OPERATION .. 76

INSTRUCTION CYCLE TIMES .. 77

FORMAT 10: LOAD/STORE HALFWORD... 78

INSTRUCTION CYCLE TIMES .. 78

FORMAT 11: SP-RELATIVE LOAD/STORE .. 79

OPERATION .. 79

INSTRUCTION CYCLE TIMES .. 79

FORMAT 12: LOAD ADDRESS ... 80

OPERATION .. 80

INSTRUCTION CYCLE TIMES .. 81

FORMAT 13: ADD OFFSET TO STACK POINTER ... 82

OPERATION .. 82

INSTRUCTION CYCLE TIMES .. 82

KS32C65100 RISC MICROPROCESSOR ARM INSTRUCTION SET

3-101

FORMAT 14: PUSH/POP REGISTERS ..83

OPERATION...83

INSTRUCTION CYCLE TIMES ...84

FORMAT 15: MULTIPLE LOAD/STORE...85

OPERATION...85

INSTRUCTION CYCLE TIMES ...85

FORMAT 16: CONDITIONAL BRANCH..86

OPERATION...86

INSTRUCTION CYCLE TIMES ...87

FORMAT 17: SOFTWARE INTERRUPT ..88

INSTRUCTION CYCLE TIMES ...88

FORMAT 18: UNCONDITIONAL BRANCH...89

OPERATION...89

FORMAT 19: LONG BRANCH WITH LINK...90

OPERATION...90

INSTRUCTION CYCLE TIMES ...91

INSTRUCTION SET EXAMPLES..92

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS...92

GENERAL PURPOSE SIGNED DIVIDE..93

DIVISION BY A CONSTANT...95

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-1

4 SYSTEM MANAGER

OVERVIEW

KS32C65100 System Manager provides the following features.

• It arbitrates the system bus access requests from a master block, based on a fixed priority.

• It provides the appropriate memory control signals for an external memory access.

(If a master block such as DMA or CPU generates an address that corresponds to a DRAM bank, the System
Manager's DRAM control block generates appropriate DRAM control signals such as nRAS, nCAS, Address and
Data.)

• It compensates for differences in bus width for data flowing between the external memory bus and the
internal data bus.

• Supports big-endian mode with efficiency for most graphic device drivers (refer to Figure. 4-5).

SYSTEM MANAGER REGISTERS (SMR)

The KS32C65100 microcontroller has register files (named Special Function Register, SFR) for keeping the
system control information for the system manager, cache, Internal RAM, DMA, UART blocks and so on. The
SFR has System Manager Register files (SMR) for the configuration of external memory maps such as DRAM,
SRAM and ROM, and extra I/O control.

Programmers can specify the memory type, external bus width, access cycles, necessary control signal's timing
(eg. nRAS and nCAS, etc.), memory bank location and memory bank size of each bank which has a very
configurable address spacing by utilizing the SMR. The SMR, also, provide (or accept) the features such as
control signals, address, and data that are required by external I/O devices during normal system operation. The
SMR is constituted of 11 registers to control one ROM bank, two SRAM banks, two DRAM banks, four extra I/O
banks and a DRAM Refresh Control Register, system configuration register.

The KS32C65100 provides up to 32M bytes of address space and each bank provides up to 4M half word of
memory space because the KS32C65100 has 22 address pins/16 bit data width for each bank.

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-2

Undefined Region

4M half word

0x01010000

Special Function Register

ROM Region
(Non Accessible Region)

ROM Region
(Accessible Region)

ROM Region
(16MB)

32M Bytes
(SA[24:0]

0x01000000

0x00000000

0x00800000

Figure 4-1. System Memory Map (Default Map After Reset)

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-3

Special Function REG.

32M Bytes
(SA[24:0]

DRAM Refresh Control Register (REFCON)

DRAM Control Register 1 (DRAMCON 1)

DRAM Control Register 0 (DRAMCON 0)

Extra Bank 3 Control Register (EXTCON 3)

Extra Bank 2 Control Register (EXTCON 2)

Extra Bank 1 Control Register (EXTCON 1)

Extra Bank 0 Control Register (EXTCON 0)

SRAM Control Register 1 (SRAMCON 1)

SRAM Control Register 0 (SRAMCON 0)

ROM Control Register (ROMCON)

System Register Configuration Register

Extra Bank 3

SP IO R/W 0

Extra Bank 3

DRAM Bank 1

DRAM Bank 0

EXTRA Bank 3

EXTRA Bank 2

EXTRA Bank 1

EXTRA Bank 0

SRAM Bank 1

SRAM Bank 0

ROM Bank 0 Max. 4M half word(22-bit) per bank

* Each bank can be located anywhere in 32MB address space

Figure 4-2. System Memory Map

The KS32C65100 uses an internal 25 bit system address bus and it can provide 32M bytes the size of memory
space. The bank allocation methodology is very configurable and you can use any address area within
0000000h~1FEFFFFh by 64K byte address steps. The last 64K bytes area cannot be allocated as memory banks
except SFR. Because the last 64KB bank is 1FFxxxxh, the next pointer of the last bank should have "+1",
200xxxxh, but it has 000xxxxh because the next pointer is 9-bit. If a user needs to utilize the full 32M bytes of
memory space, you are recommended to allocate the SFRs to the last 64k byte area, 1FF0000h ~ 1FFFFFFh,
and other banks for the rest of the area.

For programming convenience, programmers want to get rid of scattered memory area and want to have
consecutively connected memory space without any blank areas. KS32C65100's configurable memory allocation
methodology provides a very adaptive solution for this type of requirements. You can move the memory area
easily by only changing the SMR.

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-4

When you try to change physical DRAM memory size, for example from 1MB to 2MB, user can easily change
memory configuration by modifying the system manager register(SMR) in the KS32C65100 microcontroller.
KS32C65100 provides two DRAM banks and changeable memory space that has configurable DRAM size to 2M
word. So then you can enlarge memory space just by changing the end point of the DRAM bank.

SYSTEM REGISTER ADDRESS CONFIGURATION REGISTER (SYSCFG)

The KS32C65100 System Manager Registers (SMR) have a register which determines the start (Base point)
address of the Special Function Register (SFR) files. It is the "System Register Address Configuration Register
(SYSCFG)", and its contents indicate the start (base point) address of SFR.

If the initial value is 1001h, SYSCFG is mapped to the virtual address 01000000h.

Register Offset Address R/W Description Reset Val.

SYSCFG 0x0000 R/W Special function register start address 0x1001

31 19 18 12 00

[0] Stall Enable (ST)
0 = Disable. It's recommended for faster operation.
1 = Enable, Insert an internal wait inside the core logic when non-sequential
memory accesses occur.

[1] Cache Enabl (CE)
0 = Cache operation disable
1 = Cache operation enable

[2] Write Buffer Enable (WE)
0 = Write buffer operation disable
1 = Write buffer operation enable

[12:04] SYSCFG Address (SFRs Start Address)
The resolution is 64KB, if you want to place the start address at 1800000h,

Setting Value = 1800000h/10000h

[15:13] Reserved Bits
User should fix '000'.

17 1628 27 26 01

S
T

020304050607080910111314152021222324252930

Start Address C
E

W
E0000SYSCFG

Figure 4-3. Special Function Register Address Configuration Register

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-5

Start Address

The SYSCFG[12:04] bits indicate the start address [24:16] of SFRs. As SYSCFG is locating at the bottom of the
Special Function Register (SFR) files , SYSCFG's location is same as the start address of SFRs.

Programmers can allocate SFRs to arbitrary locations by using the SYSCFG. You are recommended not to
change the SYSCFG in mid-operation once it has been configured after system reset. The SYSCFG should not
overlap with any other bank.

 If a start address of SYSCFG has changed, other control registers in the SFRs will have a new start address,
which is its offset address + the new address of SYSCFG. For example, after the system reset, the initial address
of SYSCFG is 1000000h and ROM control register has initial address 1001000h, because the ROM control
register has the offset address value, 1000h, and its initial address is the sum of 1000000h + 1000h. If the
SYSCFG address is changed to 1800000h, the ROM control register address becomes 1801000h.

Cache Disable/Enable

KS32C65100 Cache memory provides the programmable Cache disable and enable feature. It also provides a
non-cacheable area feature to maintain data coherency for specific memory areas. Programmers can disable or
enable the cache by setting the CE bit to 0 or 1. Programmers should be cautious about data coherency when
cache memory is re-enabled because cache memory doesn't have an auto-flushing mode. Programmers also
have to be cautious about DMA changes the memory data. Usually, the DMA access memory area must be non-
cacheable to keep data coherency.

To keep the data coherency between the cache and external memory, KS32C65100 uses a write-through policy.
To compensate for the performance degradation due to the "write through policy", there is internal 4 depth write
buffer. A detailed description will be given in Chapter 5.

Write Buffer Disable/Enable

KS32C65100 has four Write Buffer Registers to enhance the memory writing performance. It's operation mode is
programmable. When Write buffer mode is enabled, CPU writes data into write buffer first instead of an external
memory which requires longer memory write cycles. The write buffer has 4 registers and each register includes
32 bits of data field, 25 bits of address field and 2 bit of status field.

Stall Disable/Enable

When the stall option is enabled, the MCU core logic inserts a wait when non-sequential memory accesses occur.
So, the MCU core has more time margin during memory access. When the stall option is disabled, the logic
doesn't insert a wait, so that’s faster than when the stall option is enabled.

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-6

ROM CONTROL REGISTER

The KS32C65100 ROM interface has one ROM bank for program memory and it provides configurable features
such as access timing, access size and page mode support, etc. The ROM Control Register (ROMCON) in SMR
supplies the control mode such as normal mode access, page mode access and wait cycles of each mode, for
the external ROM bank.

The initial address of ROMCON is 01001000h and it is the sum of the initial address of SYSCFG (01000000h)
and the ROM control register offset address (00001000h). The register address is re-configurable that
programmers can change the ROM control register by changing the contents of SYSCFG. The real address of
ROM control register is "SYSCFG address" + "Offset address" of the ROM control register.

Register Offset Address R/W Description Reset Val.

ROMCON 0x1000 R/W ROM control register 0x02003002

31 19 18 12 00

[1:0] Bus Width (DW)
10 = 16 (half word) Others = No use
(The ROM interface supports only 16 bits of external data bus width)

[8:7] Page Mode Configuration (Pmc)
00 = Normal ROM 01 = 4 data page
10 = 8 data page 11 = 16 data page

[10:9] Page Mode Access Cycles (Tacp)
00 = 5 cycles 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[13:11] Access Cycles for ROM Bank (Tacc)
000 = Disable bank 100 = 5 cycles
001 = 2 cycles 101 = 6 cycles
010 = 3 cycles 110 = 7 cycles
011 = 4 cycles 111 = Not used

[22:14] Start Point of ROM Bank (Base Pointer)
Indicates ROM bank start address

[31:23] End Point + 1 of ROM (Next Pointer)
Indicates ROM bank end address + 1

(Next point value has to be bigger than base point value, if base point and next
point value are same, ROM bank is not valid anymore)

17 1628 27 26 01

DW

020304050607080910111314152021222324252930

ROMCON PmcTacpTaccBase PointerNext Pointer

Figure 4-4. ROM Control Register (ROMCON)

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-7

Page mode ROM Access (Burst mode Access)

KS32C65100 ROM can be interfaced with simple ROM and page mode ROM. Programmers can make a burst
mode enable or disable and can define the readable number of burst data by using ROMCON[8:0], ROM has two
different access cycles for simple ROM and page mode ROM. When a new bank has selected, first data access
time will be different from the access time of the following data of the same bank. Tacc, access cycles for ROM
bank, is defined as the access cycles after the ROM bank changes. This cycle time is also used for simple ROM
access mode. When CPU reads consecutive data within same bank, page mode ROM supplies data read cycles
shorter than reading the simple ROM or new bank access mode. The Tacp bit in ROM ROM control register
defines consecutive data read cycles in page mode ROM.

Writes to the ROM space

KS32C65100 ROM interface provides write feature. Users can write data into ROM bank area. Physically, the
internal program in ROM is not to be changed. So, if a user puts external memory instead ROM such as SRAM,
flash memory, etc., it is possible to write data.

ROM Bank Space

One of good features of KS32C65100 is to have the configurable memory space. Users can program the memory
bank size and bank location by modifying the contents of the ROM control register(ROMCON). ROM control
register has two 9 bits address pointers, base and Next pointer. These two pointers denote the beginning and
ending address of ROM bank. These 9 bits are mapped to the address [24:16], which means that bank address
can be configured by 64KB range. The next pointer contents should be ROM bank end address + 1.

Initially, ROM bank start address is 00000000h and end address is 00FFFFFFh Therefore, Next pointer values
must be 00FFh + 1h = 0100h. If ROM next pointer and base pointer values are same, then ROM bank will be
disabled.

Initialization

When system has been initialized, the initial value of ROM control register is 80003002h and it specifies that the
external bus width is 16 bit (half word), normal ROM mode is enabled and the longest page mode access cycles
are selected.

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-8

b3
b2
b1
b0

100h

101h

102h

103h

b0
b1
b2
b3

100h
101h

102h

103h

b3
b2
b1
b0

100h
101h

102h

103h

* BTU: Byte Twist Unit ROM Writing

Physical Memory Compiled CodeMCU Core

BTU
b3
b2
b1
b0

b0
b1
b2
b3

Figure 4-5. The Byte Swap Operation of BTU and the Positions of Data in Memory

ROM Programming

— Big endian supporting core and little endian supporting physical memory
KS32C65100 core and the internal peripherals support Big-endian configuration, while external memories like
ROM,SRAM,and DRAM can have Little-endian configuration. Instead of having Big-endian physical memory
configuration, there is BTU (Byte twist unit) in KS32C65100, internally. The main role of BTU is to swap the
bytes in word as shown in Fig 4.5. In other word, when core access "11" byte, it can get the "00" byte from
physical memory. To put the Big-endian data in Little-endian memory, Compiled code with the option of Big-
endian has to put in memory by swapping byte in a word as shown in Fig 4.5 due to the double swapping
(BTU and compiled code swapping), KS32C65100 can support Big-endian mode without any problem. The
reason why we have double swapping, is due to internal H/W implementation issue.

— Big endian format/little endian format
In Big Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data
lines 31 through 24

— In little endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte is the most significant. Byte 0 of the memory system is therefore connected to
data lines 7 through 0.

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-9

— Byte swapping in a word
The byte swap is done by using following simple C code. It changes the byte sequence in a word.

Unsigned int swap (unsigned int data) // Make the sequence of bytes reverse in a word

{

 return ((0xff000000 & data)>>24)+

 ((0x00ff0000 & data)>>8)+

 ((0x0000ff00 & data)<<8)+

 ((0xxxxxxxff & data)<<24));

}

— ROM writing
BTU changes the sequence the byte in a word, program codes are byte-swapped. To write the program to
ROM, do steps as follows;

 1. Compile the program by big endian mode

 2. Byte-swap the compiled code

 3. Writes the code to ROM.

— Little endian format code vs. Byte swapped big endian format code.
if character strings doesn't exist in programs, little endian format codes may be same as byte-swapped big
endian format codes. But, because the bytes in a string is not affected by whether little endian format or big
endian format, the two codes are not same. So, the big endian format code byte-swapped has to be used in
KS32C65100. if little endian format code is used, the strings are not displayed correctly. (byte swapped
strings may be displayed)

— Interfacing external peripherals
Peripherals address is also byte-swapped. For example, If users want to access address 0h in memory,
address 3h in MCU must be accessed. This is because of word swapping of BTU. The relation between
physical address and the address used by instructions is as follows;

Table 4-1. The Relations Between Physical Address and Address in Instructions

Physical Address Byte Wide Access

(Address Used in Instructions)

Half Word Wide Access

(Address Used in Instructions)

00b 11b 10b

01b 10b N.A.

10b 01b 00b

11b 00b N.A.

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-10

MCLK

Address

nRCS

nOE

Data(R)

tADDRh

tNROEtNROE

tNRCS

nWE

tNRCS

tADDRd

tRDh

Tacc

Figure 4-6. Simple ROM Access Timing

MCLK

Address

nRCS

nOE

Data

tADDRh

tNRCS

tNROE

tRDh

TacpTacpTacpTacc

tNRCS

tNROE

tRDh

nWE

Figure 4-7. Page Mode ROM Access Timing

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-11

SRAM CONTROL REGISTERS

KS32C65100 SRAM interface has two banks of SRAM and each bank is able to set up own SRAM access
configuration. The SRAM Control Registers (SRAMCON0, SRAMCON1) in SMR specifies not only the features
for SRAM banks but also two Special I/Os (I/O0, I/O1) in the external bank 3.

The initial addresses of SRAM control registers are 01001004h and 01001008h, each. The real address of each
SRAM control register is "SYSCFG address" + "Offset address" of each SRAM control register. The register
address is re-configurable and programmers can change the SRAM control register address by changing the
contents of SYSCFG.

Registers Offset Address R/W Description Reset Val.

SRAMCON0 0x1004 R/W SRAM control register 0 0x000007fc

SRAMCON1 0x1008 R/W SRAM control register 1 0x000007fc

31 19 18 12 00

[1:0] Bus Width (DW)
00 = Disable bank 01 = 8 (Byte mode)
10 = 16 (half word) 11= No use

[9:2] Special I/O Address Setting Value
It denotes the start address of special I/O address in extra bank 3. Extra
bank 3 has two special I/O areas for cost effective solution.
(See extra I/O control register bank explanation for more information)

[13:11] Access Cycles for SRAM Bank (Tacc)
000 = Disable bank 100 = 5 cycles
001 = 2 cycles 101 = 6 cycles
010 = 3 cycles 110 = 7 cycles
011 = 4 cycles 111 = Not used

[22:14] Start Point of SRAM Bank (Base Pointer)
Indicates SRAM bank end address + 1

[31:23] End Point + 1 of SRAM Bank (Next Pointer)
Indicates SRAM bank end address + 1
(Next point value has to be bigger than base point value, if base point and
next point value are same, SRAM bank is not valid anymore)

17 1628 27 26 01

DW

020304050607080910111314152021222324252930

Special I/O Address0Base PointerSRAMCON0/1 TaccNext Pointer

Figure 4-8. SRAM Control Registers

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-12

SRAM Bank Space

KS32C65100 SRAM interface provides two SRAM banks, each of them are able to have different configuration.
Users can program the SRAM access cycles, memory bank size and bank location by using two identical SRAM
control registers, SRAMCON0,1. SRAM control register has two 9 bits address pointers, base and Next pointer.
These two pointers which denote the start and end address of SRAM bank. These 9 bits are mapped to the
address [24:16]. Therefore, bank address offset value is 64K byte (16 bits). The next pointer contents should be
SRAM bank end address + 1.

Initially, Two SRAM banks start and end addresses are 00000000h. Therefore, SRAM banks are disabled after
system initialization because the next pointer and base pointer have same values

Initialization

When system has been initialized, two SRAM Control register initial values are 00000000h and it specifies the
external SRAM is disabled.

Special I/O Address

The extra bank 3 of KS32C65100 has two special I/O areas for making out the simple external latch control
signal. Two SRAM control registers have dedicated 9 bits for those special I/O areas in the extra bank 3. Extra
bank 3 provides two special control signals, nIORD0, nIOWR0. When a user reads/writes data from/to external
latch devices, these signals doesn't need additional address decoding logic. These signals are only available at
the extra bank 3. When MCU accesses any of special I/O address area (64kB, 16 bit offset address) specified by
SRAM control registers, extra bank interface logic generates a I/O read and write signals for the corresponding
address area. Fig 4-20 shows the diagram of special I/O read/write interface logic.

Address Bus Generation

The address bus of KS32C65100 is some different from general MCUs. When 8 bit data bus is selected, the
resolution of address bus is a byte. When 16bit data bus is selected, the resolution of address bus is a half word.
So, although general MCUs don't use A0 pins at 16bit data bus width, KS32C65100 always uses A0 pins
regardless of bus width.

Data Bus Width External Address Pins (ADDR[21:0]) Reset Value

8 bit A21-A0 (internal) 4M byte

16 bit A22-A1 (internal) 4M half word

External Address Pins
ADDR [21:0]

Data Bus Width Configuration
(8-bit/16-bit)

8-bit

16-bit

22-bit A[21:0]

22-bit A[22:1]

22-bit
System Address Bus

Figure 4-9. External Address Bus Generation (ADDR[21:0])

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-13

MCLK

Address

nRCS

nOE

Data(R)

tADDRh

tNROE
tNROE

tNRCS

nWE

tNRCS

tADDRd

tRDh

Tacc

Figure 4-11. SRAM Read Timing

MCLK

Address

nRCS

nOE

Data(W)

tADDRh

tNRCS

nWE

tNRCS

tADDRd

tWDh

Tacc

tNRWEtNRWE

Figure 4-12. SRAM Write Timing

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-14

DRAM CONTROL REGISTERS

KS32C65100 DRAM interface has two banks of DRAM and each bank is able to control DRAM access timing as
memory configurations. The DRAM interface has two DRAM control registers, DRAMCON0/1 and one DRAM
refresh control register, REFCON. The initial addresses of each DRAM control registers are 0100101ch and
01001020h. The refresh control register address is 01001024h. The register address is re-configurable and
programmers can change the address of DRAM control register by changing the contents of SYSCFG.

Registers Offset Address R/W Description Reset Val.

DRAMCON0 0x0000101c R/W DRAM 0 control register 0x00000000

DRAMCON1 0x00001020 R/W DRAM 1 control register 0x00000000

The KS32C65100 provides fully programmable external DRAM interface features. Programmers can easily
modify the interface modes such as external data bus width, number of access cycles for fast page or EDO,
access cycles for each DRAM bank and row address strobe (nRAS) pre-charge timing by changing the contents
of corresponding DRAM control register. The refresh control register controls DRAM refresh operation and
KS32C65100 supports CAS before RAS (CBR) refresh mode & self refresh mode.

KS32C65100 can generate row & column address and supports symmetric/Asymmetric address DRAM by
changing the number of address line from 8 to 11. It can support various size of DRAM by varying column
address size. If the number of a column address or a row addresses is bigger than 11, the accessible DRAM
memory size is smaller than the original size of the DRAM. For example, if 16M-bit DRAM with 4Mx4 (row
address = 12bit & column address = 10bit) is connected to KS32C65100, the maximum accessible size of the
memory is 8Mbit (11bit × 10bit) and the other 8Mbit will be obsolete.

EDO mode DRAM Accessing

Even If users specify DRAM as EDO mode, KS32C65100 gives same timing diagram compared with normal fast
page mode. However, KS32C65100 CPU fetches data (when read) later by a half clock than normal fast page
mode. It is possible because EDO mode can make data valid even if CAS goes to high when RAS is low. So, it
can give enough time to spare for CPU to access and latch the data so that it can reduce memory access cycle
time, eventually.

DRAM Bank Space

KS32C65100 DRAM interface provides two DRAM banks and each of them are able to have different
configuration. Users can program the DRAM access cycles, memory bank size and bank location by using two
identical DRAM control registers, DRAMCON0&1. DRAM control register has two 9 bits address pointers, base
and next pointer. These two pointers which denote begin and end address of DRAM bank. These 9 bits are
mapped to the address [24:16]. Therefore, bank address offset value is 64K byte (16 bits). The next pointer
contents should be DRAM bank end address + 1.

Initially, Two DRAM banks start and end addresses are 00000000h. Therefore, DRAM banks are disabled after
system is initialized. because next pointer and base pointer values are same .

Initialization

When system is initialized, two DRAM control register initial values are 00000000h and it specifies mode that the
external DRAM is disabled.

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-15

DRAM Bank Configuration

The DRAM has different write methods from SRAM or other external memories. Normally, DRAM module has
two CAS signals to separate data bus by byte order. Therefore, RAS signal is used for bank selection and CAS
signal is used for byte selection mode.

Example) Settings for 60nS EDO DRAM (KM416V1204)

Condition Setting Value for DRAMCON

Memory map: 1000000h ~ 11fffffh

DRAM: 10bit(row) × 10bit(column) × 16bit(data), 60ns, EDO

MCLK: 33MHz

0x9040101a

[1:0] Bus Width (DW)
00 = Disable bank 01 = 8 (Byte)
10 = 16 (Half word) 11 = No use

[3:2] Column Address Number (CAN)
00 = 8 bits 01 = 9 bits
10 = 10 bits 11 = 11 bits

[4] EDO DRAM or Ordinary DRAM (EDO)
0 = Ordinary 1 = EDO DRAM

[6:5] CAS Strobe Time (@ Page Mode) (Tpgm)
00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[7] CAS Pre-Charge (Tcp)
0 = 1 cycle 1 = 2 cycles

[10:8] CAS Strobe Time (@ Single Mode) (Tcs)
000 = 1 cycle 100 = 5 cycles
001 = 2 cycles 101 = Not used
010 = 3 cycles 110 = Not used
011 = 4 cycles 111 = Not used

[11] RAS to CAS Delay (Trc)
0 = 1 cycle 1 = 2 cycles

[13:12] RAS Pre-Charge Time (Trp)
00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[22:14] Base Point of DRAM x (Base Pointer)
DRAM bank start address.

[31:23] End Point + 1 of DRAM x (Next Pointer)
DRAM bank end address + 1.

31 19 18 12 0017 1628 27 26 01

DW

020304050607080910111314152021222324252930

TcsBase PointerDRAMCON0/1 TrpNext Pointer Trc CAN
E
D
O

TpgmTcp

Figure 4-13. DRAM Control Registers (DRAMCON0 - DRAMCON1)

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-16

MCLK

nRAS

nCAS

Address

Data(R)

Trp tNRASr

Trc

nOE

tNRASf

Tcs Tcp Tpgm

tNCASf tNCASr tNCASf tNCASr

Column Address Column AddressRow Address

tADDRd

EDO

tNDOE tNDOE

tADDRh

Fetch Time
@EDO DRAM

Fetch Time
@Normal DRAM

Figure 4-14. DRAM Bank Read Timing (Page Mode)

MCLK

nRAS

nCAS

Address

Data(W)

Trp tNRASr

Trc

nWE

tNRASf

Tcs Tcp Tpgm

tNCASf tNCASw tNCASf tNCASr

Column Address Column AddressRow Address

tADDRd

tNDWE tNDWE

tADDRh

tWDDhtWDDd tWDDd

tWDDd

tNCASr

Figure 4-15. DRAM Bank Write Timing (Page Mode)

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-17

DRAM REFRESH CONTROL REGISTER

The KS32C65100 DRAM interface provides the CAS before RAS (CBR) refresh and self refresh mode. The
refresh control register (REFCON) determines refresh mode, refresh timings, refresh intervals as well as external
bus enable.

Register Offset Address R/W Description Reset Value

REFCON 0x00001024 R/W DRAM refresh control 0x00000001

31 19 18 12 00

[0] Validity of Special Register Field (VSF)
0 = Not accessable to memory bank
1 = Accessable to memory bank
(Whenever MCU access one of system manager registers(SMR), VSF bit is auto-
activate external bus, VSF bit should be set to 1 by using STMIA instruction in the
last. Programmer should write into 10 system manager registers altogether with
STMIA instruction while VSF bit set instruction is in the last.)

[15] Reserved '0'

[16] Refresh Enable (REN)
0 = Self refresh mode or disable DRAM refresh.
(When this bit is set '0', DRAM enters the self refresh mode and cannot be
accessed.)
1 = Enable DRAM refresh.
(When this bit is cleared, MCU refreshs DRAM periodically and can read/write the
DRAM)

[19:17] CAS Hold Time (Tcs)
000 = 1 cycle 100 = 5 cycles
001 = 2 cycles 101 = Not used
010 = 3 cycles 110 = Not used
011 = 4 cycles 111 = Not used

[20] CAS Set-up Time (Tcsr)
0 = 1 cycle 1 = 2 cycles

[13:21] Refresh Interval (Refresh Count)
Refresh interval = 211 - Value + 1)/MCLK

Example) If refresh interval is 15.6us, 15.6us = (2 11 - value + 1)/33MHz
Refresh conut value = 10111111110b

17 1628 27 26 01

VSF

020304050607080910111314152021222324252930

TcsRefresh Count Tcsr REN 0

Figure 4-16. DRAM Refresh Control and Memory Configuration Register (DRAM Refresh Control)

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-18

DRAM Self refresh mode

Every DRAM requires refresh operation periodically to keep correct data and JEDEC defines couple of refresh
modes. The self refresh mode is one of which has defined in JEDEC specification and it enables the DRAM to
refresh memory cells internally once it has enabled without periodical external refresh control signals unless other
refresh mode happens or power fails.

The self refresh operation is similar to that of CBR (CAS before RAS). Once after CPU generates CBR mode
signals and it keeps CBR mode state more than 100us, DRAMs recognize refresh mode as self refresh instead
CBR.

DRAM Self refresh mode Entry

1. Self Refresh mode by Hardware
When system reset pin, nRESET, is low, the system manager block generates self refresh mode signals, i.e.
whenever KS32C65100 initialized, it activates self refresh mode. Hardware refresh feature enables the system to
avoid DRAM data loss if system backup supplies power to DRAM while main power is disconnected.

When system main power is disconnected, KS32C65100 will be disabled. Meanwhile, if DRAM has power back-
up circuitry, it still requires periodical refresh signals from KS32C65100. Therefore, it won't be able to keep valid
DRAM data in a short time, if KS32C65100 does not make DRAM self refresh mode.

For this reason, when main power is disconnected and nRESET goes low, KS32C65100's system manager block
makes self refresh signals. The system user can make memory back up system easily by utilizing this feature, if
only DRAM is used for system memory.

Reset Filter
65 Cycle

DRAM will enter self refresh mode after 100us

Internal Reset 256 CycleInternal
RST

nRAS

nCAS

nOE

DATA

nRST

Main
Power

Figure 4-17. Self Refresh Mode Entry Process by nRESET

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-19

2. Self Refresh mode by Software

After system reset, KS32C65100 is in DRAM self refresh mode. By programming the REN bit of DRAM refresh
control register to "1", system manager block works as normal DRAM access mode.

To enable the self refresh mode during normal system operation, programmer needs to change the REN bit to
"0". system manager detects the REN bit content change from 1 to 0 and it activates the self refresh mode. If
programmer wants change mode from self refresh mode to normal DRAM access mode, programmer just needs
to write "1" to REN bit once again.

CPU Writes
SFR Bits

CPU Writes
SFR Bits

DRAM Enters CBR-Refresh

DRAM Access AvailableDRAM Self Refresh ModeDRAM Access Available

'REN'

nRAS

nCAS

nOE

DATA

Figure 4-18. Self Refresh Mode Entry Process by Software

NOTES:
1. When DRAM does not work self refresh after system initialization.

Even though KS32C65100 activates self refresh mode when system power connected, DRAM may not recognize self
refresh mode correctly, because of unstable state of control signals during system initialization (Most of DRAM
recognize the self refresh mode very well at power on). When it happens, KS32C65100 may fetch corrupted data from
external memories because DRAM and ROM share OE (Output Enable) signal and they may generate data altogether.

KS32C65100 has a watch dog timer to cope with system malfunction problem. When KS32C65100 initialized, watchdog
timer is enabled and makes external system reset signal unless MCU disables in the mid of operation. Therefore, it is
recommended to put the watch dog ti mer disable code in the boot ROM area to disable watch dog timer. If "power on
initial" is not working correctly and KS32C65100 fetches corrupted data, watch dog timer will make system reset signal
and it will cause KS32C65100 reset once again. The seco nd watch dog reset will cause DRAM self refresh mode
because when it happens, system power and other states are stable.

2. DRAM access during self refresh mode
If KS32C65100 accesses external DRAM for read or write data during self refresh mode, nRAS and nCAS signals are not
working at all. DRAM accessing during the self refresh mode may cause corrupted data read or writing.

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-20

3. Memory access is forbidden when the SMR is changed.
The external bus is disabled when MCU accesses any of SMR to change the system memory configurations. It is for
preventing the system malfunction which will be caused by memory address space overlaping during the new
configuration. To re-activate external bus operation, The VSF bit in refresh register need to be set to 1 by writing SMRs
with STMIA ARM instruction. While STMIA instruction writes 10 registers of SRMs, refresh reigster must be written at the
last step with VSF bit has "1" so that external bus can be re-activated right after system manager register has new
configuration.
It is not recommended to change the SFRs after system initialization. If SFR changed, especially memory related areas,
users have to flush cache memory for the data coherency.

MCLK

nRAS

nCAS

Address

Data

TcsTcsr

nWE

Figure 4-19. DRAM Refresh Timing

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-21

EXTRA BANK ACCESS CONTROL REGISTERS

The KS32C65100 provides four extra banks and four Extra Bank Control registers (EXTCONn) controls timing,
bank size and bus width. The extra bank 3 has the special features compared with other extra banks. It has one
special dedicated addresses (refer to SRAM0 control registers) for providing the low cost external I/O control
solution. Extra bank 3 has special signals such as nIORD0, nIOWR0. When a user reads/writes data from/to
external latch devices, these signals prevent extra address decoding logic ICs These signals are available at
only the extra bank 3. Basically, they have same timing diagram as the extra bank 3 has. The initial address of
each I/O control registers are plus of its own offset address with initial SYSCFG register address, 01000000h.

Registers Offset Address R/W Description Reset Value

EXTCON0 0x100c R/W Extra bank 0 control register 0x00000000

EXTCON1 0x1010 R/W Extra bank 1 control register 0x00000000

EXTCON2 0x1014 R/W Extra bank 2 control register 0x00000000

EXTCON3 0x1018 R/W Extra bank 3 control register 0x00000000

64KB

End Address of
Extra Bank 3

Special I/O 0 Address
Specified by SRAM

Control 0 Reg.

Start Address of
Extra Bank 3

End Address of

End Address of

End Address of
Extra Bank 0

Start Address of

Start Address of

Start Address of
Extra Bank 0

Bank 2

Bank 1

Bank 0

nWE nOE

nIOWR 0

nIORD 0

Figure 4-20. Special I/O Address Map

When fetching data, the point of data reading is the last down edge of MCLK within nECS active region. Users
may be curious about the figure 4-22, nOE's de-asserting before the point of data reading. If nOE has to be de-
asserted after the point of data reading, use 'tcoh' = 0 which defines the time between nOE's de-asserting and
nECS's de-asserting. Setting 'tcoh' as 0, nOE is de-asserted after the point of data reading as the user wants.

In reality, extra bank 3 can′t be configured. It is an imaginary bank for planning the special I/O.

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-22

Special I/O Address

One SRAM control registers have dedicated 8 bits each for the extra bank 3, for providing the low cost system
solution. Bank 3 has special signals, nIORD0, nIOWR0. When a user reads/writes data from/to external latch
devices, these signals prevent extra address decoding logic ICs. These signals are only available at the extra
bank 3. When CPU access any of special I/O address area (64KB, 16 bit offset address) specified by SRAM
control registers, extra bank interface generates a I/O read and write signals for the corresponding address area.
Figure 4-22, 23 shows the timing diagram of special I/O read/write cycles.

31 19 18 12 00

[1:0] Programmable Bus Width (DW)
00 = Disable bank 10 = Half word
01 = Byte 11 = No use

[4:2] Chip Selection Set-up on nOE (Tcos)
000 = 0 cycle 100 = 4 cycles
001 = 1 cycles 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[7:5] Address Set-up Before nECS (Tacs)
000 = 0 cycle 100 = 4 cycles
001 = 1 cycles 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[10:8] Chip Selection Hold on nOE (Tcoh)
000 = 0 cycles 100 = 4 cycles
001 = 1 cycles 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[13:11] Access Cycles (nOE Low Time) (Tacc)
000 = Not used 100 = 5 cycles
001 = 2 cycles 101 = 6 cycles
010 = 3 cycles 110 = 7 cycles
011 = 4 cycles 111 = 8 cycles

[22:14] Start Address of Extra Bank n. (Base Point)
It denotes the start address of extral bank x by word unit.

[31:23] End Point + 1 of Extra Bank n (Next Pointer)
It denotes the start address of next extra bank.

17 1628 27 26 01

DW

020304050607080910111314152021222324252930

TcchTaccBase PointNext Point Tacs Tcos

Figure 4-21. Extra Bank Control Registers (ExtCntr 0, 1, 2, 3)

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-23

MCLK

Address

nECS

nOE

nWE

Data(R)

nlORD

tADDRdtADDRh

tacs
tNECS

tNECStcoh

tNROE

tacc

tNROE

tRDh

Tacs + Tcos

tcoh= 0
tcoh = 1 Data fetch (t coh = 0) Data fetch (t coh = 1)

tcos

tNIORD

tNIORD

Figure 4-22. Extra Bank Read Timing (tcoh = 1, tacc = 4, tcos = 1, tacs = 2)

MCLK

Address

nECS

nWE

Data(W)

nlORD

tADDRd
tADDRh

tacs tNECS
tNECStcoh

tNRWE

tWDh

Tacs + Tcos + 0.5clk

tcoh= 0
tcoh = 1

Data fetch (tcoh = 0) Data fetch (tcoh = 1)

tNIOWR

tNRWE

tEWDd

tNIOWR

Figure 4-23. Extra Bank Write Timing

SYSTEM MANAGER KS32C65100 RISC MICROPROCESSOR

4-24

A.C ELECTRICAL CHARACTERISTICS

(Ta = 0 °C to +70 °C, VDD + 3.00V to 3.60V)

Name Description Min Max Unit

tADDRh Address hold time 7.0 ns

tADDRd Address delay time 25.1 ns

tNRCS ROM bank chip select delay time 20.6 ns

tNROE ROM/SRAM/ExtIO bank out enable delay 23.5 ns

tNRWE SRAM or ExtIO bank write enable delay 18.2 ns

tRDh Read data hold time 3.0 ns

tWDd Write data delay time (SRAM/EXIO) 9.8 ns

tWDh Write data hold time (SRAM/EXIO) 26.3 ns

tNRASf DRAM raw address strobe active delay 15.2 ns

tNRASr DRAM raw address strobe release delay 27.0 ns

tNCASf DRAM column address strobe active delay 16.1 ns

tNCASr DRAM CAS signal release delay time 17.1 ns

tNCASw DRAM CAS write active delay 19.8 ns

tNDWE DRAM bank write enable delay time 24.4 ns

tNDOE DRAM bank out enable delay time 23.5 ns

tNECS External IO bank chip select delay time 20.6 ns

tNIORD Special IO bank read signal delay time 23.5 ns

tNIOWR Special IO bank write signal delay time 18.2 ns

tWDDd DRAM write data delay time (DRAM) 14.2 ns

tWDDh DRAM write data hold time (DRAM) 7.4 ns

KS32C65100 RISC MICROPROCESSOR SYSTEM MANAGER

4-25

Memory mapping for external memory and I/O is shown in Figure 4-24

Special
Function

Start address
SYSCFG[12:4]: 1FFh

ROMCON Next pointer: 004h
Base pointer: 000h

SRAMCON0 Next pointer: 184h
Base pointer: 180h

SRAMCON1 Next pointer: 000h
Base pointer: 000h

DRAMCON0 Next pointer: 160h
Base pointer: 120h

DRAMCON1 Next pointer: 000h
Base pointer: 000h

EXTCON0

Next pointer: 0A1h
Base pointer: 0A0hEXTCON1

Next pointer: 000h
Base pointer: 000h

Next pointer: 100h
Base pointer: 0B0hEXTCON2

Next pointer: 000h
Base pointer: 000hEXTCON3

Start address
SRAMCON 1: 000hSpecial I/O 1

SFR

SRAM0

DRAM0

I/O BANK1

I/O BANK2

ROM

32MB Memory Space
1FFFFFFh

1FF0000h

183FFFFh

1800000h

15FFFFFh

1200000h

0A0FFFFh

0A00000h

0AFFFFFh

0FFFFFFh

003FFFFh

0000000h

Figure 4-24. An Example of System Manager Register Settings

KS32C65100 RISC MICROPROCESSOR CACHE CONTROLLER

5-1

5 CACHE CONTROLLER

OVERVIEW

The KS32C65100 CPU has an internal 2K Bytes of unified (instruction/data) cache. The cache is two-way set
associative and the line size is four words (16 Bytes). It has a write-through policy. When a miss occurs, words of
memory are sequentially fetched from external memory. It has a LRU (Least Recently Used) replacing algorithm.

Typically, the RISC CPU uses instruction and data caches to improve performance. Without caches, the
bottleneck that occurs during the instruction and data fetches from external memory may seriously degrade
performance. The unified cache deals with instruction and data in the same way.

CACHE CONTROLLER KS32C65100 RISC MICROPROCESSOR

5-2

31 30 29 28 27 26

Tag Address (15-bit)

25 10 9 4 3 2 1 0

switch

CS Set 1 Tag Set 0 Tag

.

.

.

.

.

.

.

.

.

.

.

.

15 152

Tag RAM (32-bit)

Instr3 Instr2 Instr1 Instr0

.

.

.

.

.

.

.

.

.

.

.

32-bit

Set 1 Icache line = 4 instruction/data (128-bit)

Instr3 Instr2 Instr1 Instr0

.

.

.

.

.

.

.

.

.

.

.

32-bit

Set 0 Icache line = 4 instruction/data (128-bit)

Decoder

6-bit
2-bit

Height = 64

6-bit

6-bit

Height = 64

2
32

32

32

2
(Set 0 Hit)
(Set 1 Hit)

15

24

.

.

.

.

.

.

Figure 5-1. Cache Memory Configuration

KS32C65100 RISC MICROPROCESSOR CACHE CONTROLLER

5-3

CACHE OPERATION

Cache Organization

The KS32C65100 Cache has two sets of 2KB cache memory and one small Tag RAM. The Tag RAM has two
bits of CS (Cache Status) and two sets of Tag memory, set 0 and 1. Each Tag set has 15 bits of address field
[24:10] which is being stored in the cache memory. The CS has two bits and it indicates the validity of cached
data for corresponding cache memory line. It is also used for the cache replacement algorithm and for selecting a
data coming from Set 0 and 1. Cache memory has two sets, Set 0 and Set 1. Each set has 64 lines and each line
has four words of memory space (128 bits).

Cache Replace Operation

After system is initialized, CS is "00" which represents that the contents of set 0 and set 1 cache memory are
invalid. When first cache fill occurs, CS is changed to "01" at the specified line which represents that only set 0 is
valid. When subsequent cache fills occurs, CS will be "11" at the specified line which represents that contents of
both set 0 and set 1 are valid.

When the contents of the two sets are valid and when it needs content replacement due to cache miss, CS is
changed to "10" at the specified line which represents that the content of set 0 was replaced. When CS is "10"
and when it needs another replacement due to cache miss, the content of set 1 will be replaced by changing CS
as "11". Summarizing, at normal steady state, CS will be changed from "11"/"10" to "10"/"11" which gives the
information for the implementation of the 2-bit pseudo LRU(Least Recently Used) replacement policy.

AV-S1D: 11 AV-SOD: 10

Reset(/)

NVALID: 00

S0 only: 01

rmiss

rmiss hit

hit 1

; Not valid data

; Read miss

; Set 0 = valid, set 1 = invalid
It doesn't change status on hit
; Read miss
; AV_S1D = All valid and set 1 is dirty.
 "Dirty" means to access just before.
 Status does not change on hit.
; AV_S0D = All valid and set 0 is dirty.

hit0

rmiss or hit1

rmiss or hit0

Figure 5-2. CS-bit Status Diagram

CACHE CONTROLLER KS32C65100 RISC MICROPROCESSOR

5-4

Cache Disable Operation

The KS32C65100 Cache provides a programmable entire cache enable/disable mode. The cache can be
enabled by setting the CE bit in SYSCFG to 1, and disabled by clearing SYSCFG[1]. When the disable mode is
specified, instructions and data are always fetched from external memory. KS32C65100 can also provide non-
cacheable areas in cache enable mode for some particular memory access operations, such as the DMA
operation. The two non-cacheable areas are specified by four special registers to be introduced later.

Programmers have to be cautious about data coherency when cache memory is enabled again because cache
memory does not have auto flush mode. Programmers also have to be cautious if DMA changes memory data.
The DMA access memory area must be non-cacheable for keeping the data coherency. To keep the data
coherency between the cache and external memory, KS32C65100 uses the write-though method.

Write Buffer Operation

KS32C65100 has four write buffer registers to enhance the memory writing performance. When write buffer
mode is enabled, CPU writes data into the write buffer instead an external memory when the external bus was
already occupied by other bus masters like DMA. The write buffer has 4 registers and each register includes 32
bits of data field, 25 bits of address field and 2 bits of status field.

24 23 000102 31 30

Address MAS Write Buffer Data

000102

[31:0] Write Buffer Data
Data to be written into external memory

[1:0] MAS
00 = 8 bit data mode
01 = 16 bit data mode
10 = 32 bit data mode
11 = Not used

[24:0] Address
Indicates the address of write data

0001

Figure 5-3. Write Buffer Configuration

KS32C65100 RISC MICROPROCESSOR CACHE CONTROLLER

5-5

CACHE CONTROL REGISTERS

The KS32C65100 Cache provides two non-cacheable areas. It has four Cache Control registers to specify two
non-cacheable areas. Basically, cache stores any data within the whole system memory area, but sometimes it
needs non-cacheable operation to keep the data consistency between the external memory and cache memory.

KS32C65100 provides two non-cacheable areas and each of them requires two cache control registers to indicate
the start and stop address of the non-cacheable area. If a non-cacheable area is specified, that area won't be
cached while read miss occurs.

Registers Offset Address R/W Description Reset Value

CACHNAB0 0x0004 R/W Start address of non-cacheable area 0 0x0000000

CACHNAE0 0x0008 R/W End address+1 of non-cacheable area 0 0x0000000

CACHNAB1 0x000c R/W Start address of non-cacheable area 1 0x0000000

CACHNAE1 0x0010 R/W End address+1 of non-cacheable area 1 0x0000000

0001020304050607080910111213141516171819202122232425262728293031

000000000Start/End Address

[24:9] Non-Cacheable Start/End Address
This 16-bit address becomes the upper address of the
area.([24:9]), minimum non-cacheable area is 512 byte
because offset address is 9 bit.

Cacheable Area

Non Cacheable Area 0

Cacheable Area

Non Cacheable Area 1
(minimum 512 bytes)

Cacheable Area

CACHNAE0

CACHNAB0

CACHNAE1

CACHNAB1

1ffffffh

0h
Memory Map

Figure 5-4. Non-Cacheable Area Register

KS32C65100 RISC MICROPROCESSOR DERASTERIZER

6-1

6 DERASTERIZER

OVERVIEW

The KS65100 derasterizer provides the 16 x 16 bit image data rotation feature. The derasterizer consists of 16
registers which has a 16 bit data width. This 16 x 16 bits of register array is used to rotate raster image data 90 or
270 degrees.

Registers Offset Address R/W Description Reset Value

DRAST0 0x4800 R/W 16 bits of derasterizer data register 0 0xXXXX

DRAST1 0x4804 R/W 16 bits of derasterizer data register 1 0xXXXX

… … … … …

DRAST14 0x4838 R/W 16 bits of derasterizer data register 14 0xXXXX

DRAST15 0x483c R/W 16 bits of derasterizer data register 15 0xXXXX

NOTE: When h[15:0] is written and v[15:0] is read, the address of DRAST0~DRAST15 is used.

ROTATION

To rotate image data, programmers should fill image data into the 16 x 16 bit register array from DRAST0 to
DRAST15, horizontally. The image data, made by reading the 16×16, has rotated the image. The rotation
direction depends on the shift control register, SFTCON[3]. When SFTCON[3] is 0, read image data is 90
degrees rotated and when SFTCON[3] is set to 1, it is rotated 270° degrees.

• Write: h0 → h15 (DRAST0 → DRAST15)

• Read: 90 degrees: (horizontal direction) v0 → v15 ⇒ (vertical direction) MSB → h15, LSB → h0
 270 degrees: (horizontal direction) v15 → v0 ⇒ (vertical direction) MSB → h0, LSB → h15

DERASTERIZER KS32C65100 RISC MICROPROCESSOR

5-2

SHIFT CONTROL REGISTER (SFTCON)

Shift Control Register (SFTCON) specifies the rotation degree of the derasterizer data

Register Offset Address R/W Description Reset Value

SFTCON 0x5004 R/W Shift control register 0x0

0001020304050607080910111213141516171819202122232425262728293031

[3] Direction of Derasterizer
0 = 90 degree
1 = 270 degree

X

Figure 6-1. Shift Control Register

At First DRAST0 is Written, 2'nd DRAST1 is Written, ..., Last DRAST15 is Written by S/W

h1

h2

h3

h4

h5

h6

h7

h8

h9

h15

h14

h13

h12

h11

h10

h0bit15bit0

bit0

when
270o

when
90o

bit15

At First v0 is Read, 2'nd v1, ..., v15 is Read by S/W.

bit15

DRAST15

DRAST0

bit0

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Figure 6-2. Rotation Configuration

KS32C65100 RISC MICROPROCESSOR DERASTERIZER

6-3

Example

DRAST15
DRAST14
DRAST13
DRAST12
DRAST11
DRAST10
DRAST9
DRAST8
DRAST7
DRAST6
DRAST5
DRAST4
DRAST3
DRAST2
DRAST1
DRAST0

15 0

h0 h15

DRAST0
DRAST1
DRAST2
DRAST3
DRAST4
DRAST5
DRAST6
DRAST7
DRAST8
DRAST9
DRAST10
DRAST11
DRAST12
DRAST13
DRAST14
DRAST15

15 0
h0

h15

DRAST0
DRAST1
DRAST2
DRAST3
DRAST4
DRAST5
DRAST6
DRAST7
DRAST8
DRAST9

DRAST10
DRAST11
DRAST12
DRAST13
DRAST14
DRAST15

15 0

h0h15
SFTCON[3] = 0

(90 degree)

OriginalSFTCON[3] = 1
(270 degree)

KS32C65100 RISC MICROPROCESSOR GENERAL ADC

7-1

7 GENERAL ADC

OVERVIEW

The 10-bit CMOS A/D converter consists of the 3-channel analog input multiplexer, auto offset calibration
comparator, high resolution R-string DAC, clock generator, 8-bit successive approximation register (SAR), ADC
control register (ADCCON), and the tri-state output register (ADCDATA). The CMOS comparator includes sample
and hold functions without such a circuit and has high comparator gain in two-stages. This ADC provides
software-selection power-down mode. The device operates with a single +3.3V supply and its A/D conversion
rate is 500 KSPS. The external clock XP1 is 25MHz. The operating temperature range is 0 ~ 70°C according to
commercial specifications.

FUNCTIONS

C
O

M
P

C
L
K
K
I
V

A
M

U
X

AIN[2:0]

MCLK

ADCCON

ASEL[1:0]

CLKGEN

SAR

DASC

OUTREG

ADCDATA

MODE8, ADEN, STBY

CLKSEL

DGET

FLAG

C
L
K
1

C
L
K
2

D
A
C
L
K

+

-

XP1

Figure 7-1. Functional Block Diagram of General ADC

GENERAL ADC KS32C65100 RISC MICROPROCESSOR

7-2

SAR (SUCCESSIVE APPROXIMATION REGISTER) A/D CONVERTER OPERATION

A SAR type A/D converter basically consists of the comparator, D/A converter, and SAR logic. At the beginning
of the conversion, the MSB is switched on and the analog input signal is compared to the output signal of the D/A
converter. When the input signal is larger than the output signal of the D/A converter, then the MSB remains on
and the next bit is switched on, and a comparison will be performed. A bit by bit operation is performed in this
system to bring the D/A output signal within 1 LSB to the time discrete input signal.

COMPARATOR (COMP) AND DAC (DIGITAL TO ANALOG CONVERTER)

The CMOS comparator produces digital output as the result of comparing selected analog input with reference
voltage. This comparator operates every CLK1 and CLK2, where the two clocks are non-overlapping and have
anti-phase. Note that the comparator has no sample-and-hold circuit for the reduction of the current consumption.

Especially, the D/A converter consists of 128 resistor strings and switches with 7-bit resolution. So, the
comparator performs the comparison with 3-bit resolution. The D/A converter generates the digitized analog
output (DAOUT) from data of SAR logic block as follows.

DAOUT = (AVREF - AVSS)/128 x D[9:0]

where AVREF and AVSS are analog reference voltage and ground that are applied to the comparator and the
D/A converter block. This 128 resolution DAOUT is supplied to the CMOS comparator.

XP1 Generator and Clock Generator (CLKDIV and CKGEN)

The CLKDIV block of the A/D converter in KS32C65100 can choose two clock sources - x2 and x4 from system
clock MCLK - by setting the CLKSEL bit of the ADCCON register. For the selected clock (XP1), CKGEN block
generates CLK1, CLK2, and DACLK. CLK1 and CLK2 are used in the comparator, while DACLK is used to
operate the SAR logic block. Note that the maximum frequency of XP1 is 25MHz.

A/D Conversion Time

When we use the main oscillation frequency of 33MHz and select the A/D converter clock to XPx4, then the total
10-bit conversion time is as follows.

33MHz/4 (divide 4 frequency)/45 (at least 45 cycles by 10 bit operation) = 183.3kHz = 5.45us

This A/D converter was designed to operate at 25MHz XP1 clock source and the maximum conversion rate goes
up to 500 KSPS.

Power-Down Mode

When the power-down mode is activated by setting the STBY bit of the ADCCON register to '1', the A/D
converter is kept in standby mode without A/D conversion operation. If STBY bit is set to '1' even at A/D
conversion mode, flag bit goes high immediately. When the DGET is activated by read operation during power
down mode, the previous A/D conversion data are produced.

KS32C65100 RISC MICROPROCESSOR GENERAL ADC

7-3

SPECIAL REGISTER

ADC Control Register

The A/D converter control register ADCCON is used to control the operation of the 10-bit A/D converter as
follows.

Register Offset Address R/W Description Reset Value

ADCCON 0xd800 R/W ADC control register 0xa0

[0] A/D conversion enable This bit is A/D conversion start bit.
 This bit is auto-cleared after A/D conversion start-up.

[2:1] Analog input Select the analog input to be converted from AIN[2:0].
Select AIN[0] for "00", AIN[1] for “01”, AIN[2] for ′10′, and
none if ′11′

[3] Reserved This bit must be '0'

[4] Clock select Select between MCLK divided by 2 and MCLK divided by 4
as the XP1 clock. Select 2 for "0" and 4 for "1".

[5] Stand-by mode This bit is used for keeping standby without A/D conversion
operation. For A/D conversion, its state must be changed
from '1' to '0' for at least one XP1 period.

[6] 8-bit mode It switches the ADC function between 8 bit and 10 bit. The
Low state is maintained in 10 bit operation, and high state
in 8 bit operation

[7] Flag Its state goes '0' during A/D conversion, and goes '1' after
the A/D conversion. If STBY signal is applied even at A/D
conversion mode, its state goes '1' immediately.

GENERAL ADC KS32C65100 RISC MICROPROCESSOR

7-4

0001020304050607080910111213141516171819202122232425262728293031

[0] A/D Conversion Enable
0 = A/D conversion disable
1 = A/D conversion start
This bit auto-cleared after A/D conversion start-up

[2:1] Analog Input Selection
00 = AIN0 01 = AIN1
10 = AIN2 11 = Not defined

[3] Reserved
This bit must be "0".

[4] Clock Selection
0 = MCLK/2 clock 1 = MCLK/4 clock

[5] Stand-by Mode
0 = Normal mode 1 = Stand-by mode
(power down. No A/D conversion operation)
** For A/D conversion, its state must be changed from '1' to '0' for at
 least one XP1 period

[6] 8-bit Mode
0 = 10-bit resolution 1 = 8-bit resolution

[7] Flag
0 = A/D conversion in process 1 = End of A/D conversion

XASELXXXXX

Figure 7-2. ADC Control Register (ADCCON)

KS32C65100 RISC MICROPROCESSOR GENERAL ADC

7-5

ADC Data Register

ADCDATA loads the A/D conversion data during read operation after the conversion process is completed and
flag goes '1'. Internally, DGET signal is activated by read operation of ADCDATA and A/D converted data are
produced by applying DGET.

Register Offset Address R/W Description Reset Value

ADCDATA 0xd804 R ADC data register 0xXXX

0001020304050607080910111213141516171819202122232425262728293031

[9:0] ADC A/D Conversion Value
A/D converted data.

ADCDATA

Figure 7-3. ADC Data Register (ADCDATA)

KS32C65100 RISC MICROPROCESSOR TIMER

8-1

8 TIMER

OVERVIEW

Timer Block has three 16-bit timers. Three timer blocks share an 8-bit prescaler and a clock divider which has 4
different divided signals. Each timer block receives its own clock signals (signal name is "Timer Clock") from the
clock divider which receives the clock from the 8-bit prescaler. The 8-bit prescaler is programmable and it divides
the MCLK signal depending on the loading value which is stored in TSTCON[14:7] bits.

The timer count value register (TBCNTn) stores initial count value and its data is loaded into the down counter
when the timer is enabled. Each timer has its own 16-bit down counter that is driven by the timer clock. When
one of the down counters reaches zero, the timer counter interrupt request is generated to inform the CPU that
one of the timer operations is completed. When it reaches zero, the corresponding TBCNTn content is
automatically loaded into the down counter to continue the next operation. However, if a timer is stopped, for
example if you clear the timer enable bit in TCON during the timer running mode, the count value in TBCNTn will
not be reloaded into counter.
The timer count value register is used to define the duration for timer operation, and contains the number of timer
clock periods needed for one operation duration.
The timer duration can be calculated as follows:

Timer_clock = MCLK/(prescale_value + 1)/division_factor (Hz)
Timer_duration = count_value/Timer_clock

8-Bit Prescaler

Clock
Divider

1/4
1/8

1/16
1/32

2

1/4
1/8

1/16
1/32

2

1/4
1/8

1/16
1/32

2

TCON[2:1]

TCON[5:4]

TCON[8:7]

Down Counter

16

TBCNT0 [15:0]

Reload count value when
down counter reaches to "0"

Timer 0 interrupt

Timer 0

Timer 1 interrupt

Timer 1

Timer 2 interrupt

Timer 2

[1/(prescaler+1)]

MCLK

Figure 8-1. 16-Bit Timer Block Diagram

TIMER KS32C65100 RISC MICROPROCESSOR

8-2

TIMER CONTROL REGISTER

Programmers can disable or enable the timer operation and can select a clock divider output from 4 divided
signals by using the Timer Control Register (TCON).

Register Offset Address R/W Description Reset Value

TCON 0x3000 R/W System timer control register 0x000h

0001020304050607080910111213141516171819202122232425262728293031

[0] Timer 0 Enable
0 = Stop
1 = Run

[2:1] Clock Division Factor Selection for Timer 0
00 = 4 01 = 8
10 = 16 11 = 32

[3] Timer 1 Enable
0 = Stop
1 = Run

[5:4] Clock Division Factor Selection for Timer 1
00 = 4 01 = 8
10 = 16 11 = 32

[6] Timer 2 Enable
0 = Stop
1 = Run

[8:7] Clock Division Factor Selection for Timer 2
00 = 4 01 = 8
10 = 16 11 = 32

XXXXXX

Figure 8-2. Timer Control Register

KS32C65100 RISC MICROPROCESSOR TIMER

8-3

TIMER COUNT VALUE REGISTER

The timer count value registers, TBCNTn, are used to specify the time-out duration for each timers. Counting
value will be loaded or reloaded into down counter automatically when timer operation is enabled or timer-out
occurs (i.e. the down counter is decreased to "0").

Registers Offset Address R/W Description Reset Value

TBCNT0 0x3004 R/W Timer 0 count value register 0xXXXX

TBCNT1 0x3008 R/W Timer 1 count value register 0xXXXX

TBCNT2 0x301c R/W Timer 2 count value register 0xXXXX

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Timer 0/1/2 Count Value

Count Value

Figure 8-3. Timer Count Value Register

If a programmer changes the contents of TBCNTn while the timer is enabled, the new value will be written in this
register and the counter continues to count with new value.

Example: The timer programming sequence is shown below. The count value and timer clock definition including
the prescaling value and clock division factor, should be specified before the timer-enable bit setting.

Set prescaling value in TSTCON

Select clock division factor in TCON

Set count value in TBCNTn

Set timer enable bit to start the timer operation

Figure 8-4. Timer Programming Sequence

KS32C65100 RISC MICROPROCESSOR DMA

9-1

9 DMA

OVERVIEW

The KS32C65100 has two general direct memory access channels (GDMA, CDMA). These DMA channels
perform the data transfers between the following sources without CPU intervention:

• Memory and memory

• IP and memory (GDMA)

• Parallel port and memory (CDMA)

• Serial port and memory

The on-chip DMA controller can be started by software and/or by an external DMA request.
DMA operation can also be stopped and restarted by software. The CPU can recognize when a DMA operation
has been completed by software polling and/or by DMA interrupt request. The KS32C65100 DMA controller can
increase or decrease source or destination address, and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word)
data transfers. Detailed information about the DMA block's operation is provided in the descriptions of each DMA
register.

DMA Channel 1

nDREQ

nDACK

S
Y
S
T
E
M

B
U
S

DMA Channel 0

nDREQ nDACK

nXDACKGDMA
 (DMA1)

CDMA
 (DMA0)

IP

Disabled

Mode Selection

nXDREQ

UART1

Parallel Port

Mode Selection

Figure 9-1. GDMA/CDMA Unit Block Diagram

DMA KS32C65100 RISC MICROPROCESSOR

9-2

DMA OPERATION

The following sections describe the operation of the DMA.

DMA Transfers

The DMA transfers data directly between a requester and a target. The requester and target are memory, UART,
IP(GDMA), parallel port (CDMA), or external devices (CDMA). An external device requests DMA service by
activating an nXDREQ signal.

A channel is programmed by writing to registers which contain the requester address, target address, the amount
of data, and other control contents.

UART, IP, parallel port, external I/O, or Software (memory) can request DMA service. UART, IP and parallel port
are internally connected to the DMA. In particular, UART1 requests the DMA service to CDMA.

Bus Control Arbitration

Because GDMA, CDMA and DRAM controller (DRAM refresh) can all request bus control, bus control priority
must be arbitrated. The priority of these bus masters is fixed as follows:

1: GDMA
2: DRAM controller (DRAM refresh)
3: CDMA

For very fast response of GDMA request, GDMA has the highest priority. As GDMA has higher priority than the
DRAM controller, GDMA is used very carefully not to disturb the DRAM controller refreshing the DRAM. You may
think that GDMA can't move the large amount of data for DRAM because of DRAM refresh, but GDMA can
transfer the large a amount of data DRAM if user don't use a continuous mode of GDMA. The GDMA which
doesn't use the continuous mode, releases the internal bus request in a short time after one unit of data (1 word,
1 half-word (16-bit) or 1 byte). When the bus is just released, the DRAM controller may have the bus and can
refresh DRAMs.

If CDMA, which has the lower priority than the DRAM controller, holds bus by continuous mode, the DRAM
refresh controller can not have the bus control until CDMA frees the bus control.

Starting/Ending DMA transfers

DMA starts to transfer data after the DMA receives service request from then XDREQ signal, UART, parallel port,
or Software. When the entire buffer of data has been transferred, the DMA becomes idle. If you want to perform
another buffer transfer, the DMA must be reprogrammed. Although the same buffer transfer will be performed
again, the DMA must be reprogrammed.

KS32C65100 RISC MICROPROCESSOR DMA

9-3

The Major Difference Between GDMA and CDMA

GDMA and CDMA has differences as shown in table 9-1.

Table 9-1. Difference Between GDMA and CDMA

Functions GDMA CDMA

Single mode O O

Block mode O O

Demand mode O X

Byte swap mode X O

DATA TRANSFERS MODE

Single Mode

nXDREQ

nXDACK

RD/WR Cycle

Figure 9-2. External DMA Requests @ Single Mode

The DMA request(nXDREQ or internal request) causes one byte, one half word, or one word to be transmitted.
The single mode requires the DMA request for every data transfer. The nXDREQ signal may be de-asserted after
checking nXDACK to be asserted.

DMA KS32C65100 RISC MICROPROCESSOR

9-4

Block Mode

nDREQ

nDACK

RD/WR Cycle

Figure 9-3. External DAM Requests @ Block Mode

The assertion of only one DMA request(nXDREQ or internal request) causes the entire data, which is set in
control registers, to be transmitted. DMA transfer will be completed when the counter reaches zero. The nXDREQ
signal may be de-asserted after checking nXDACK to be asserted.

Demand Mode

nXDREQ

nXDACK

RD/WR Cycle

Figure 9-4. External DMA Requests @ Demand Mode

The amount of data that DMA transfers depends on how long the DMA request input(nXDREQ) is held active. In
the demand mode, the DMA(GDMA only) continues to transfer data while the DMA request input(nXDREQ) is
held active.

KS32C65100 RISC MICROPROCESSOR DMA

9-5

GENERAL DMA CONTROL REGISTER

Register Offset Address R/W Description Reset Value

DMACON1 0x9000 R/W GDMA control register 0x0000

GDMA Control Register Description

[0] Run enable/disable
The DMA operation starts. When you set this bit to '1' To stop DMA, you must clear this bit to '0'. To control only
this bit, use the address 0x9020. By using 0x9020, the other values in the control register will not be affected.

[1] BUSY status
When DMA starts, this read-only status bit is automatically set to '1'. When DMA is in an idle state, this bit is '0'.

[3:2] GDMA mode selection
Four sources can initiate a DMA operation: software (memory to memory), the IP block. The mode selection bits
determine which source can initiate a DMA operation at any given time (see Figure 9-5).

[4] Destination adr direction
This bit determines whether the destination address will be decreased or increased during a DMA operation.

[5] Source address direction
This bit determines whether the source address will be decreased or increased during a DMA operation.

[6] Destination address fix
This bit determines whether the destination address will be changed or not during a DMA operation. This feature
is used when transferring data from multiple sources to a single destination.

[7] Source adr fix
This bit determines whether the source address will be changed or not during a DMA operation. This feature is
used when transferring data from a single source to multiple destinations.

[8] Stop interrupt enable
A DMA operation is started/stopped by setting/clearing the run enable/disable bit. If this bit is set to '1' and DMA
is running, a 'stop interrupt' is generated when DMA operation forced to stop on purpose. If this bit is '0', the 'stop
interrupt' is not generated. The interrupt which is generated when the DMA counter is expired cannot be masked
by this bit.

[9] Reset
If this bit is set to '1', then the DMA control register value will refer to default values. When this bit is cleared to
'0', you can specify other control values.

[10] Peripheral direction
This mode bit specifies the direction of the DMA operation. If this bit is set to '1', DMA operates from memory to
peripheral (IP). If this bit is cleared to '0', DMA operates from peripheral to memory.

[13:12] Transfer width
This determines the transfer data width to be byte (8-bit), halfword (16-bit), or word (32-bit). If transfer length is a
byte, source/destination address will be increased/ decreased by 1. If it is a halfword, then the address will
change by 2. If it is a word, the address will increase/decrease by 4. It's important that the "transfer width" is not
the size of a physical data bus. The size of a physical data bus is determined by SMR configurations.

DMA KS32C65100 RISC MICROPROCESSOR

9-6

 [14] Continuous mode
This bit specifies whether the DMA operation will hold the system bus or not until the count value is 0. Therefore,
this bit must be carefully used for the whole operation time not to exceed the appropriate interval (ex: DRAM
Refresh).

[15] Demand mode
If this bit is set during the DMA operation, DMA never goes to the idle state. Altogether, the external device
transfers/receives the amount of data which it wants to transfer/receive. The amount of data depends on how
long the REQ signal is active.

NOTE: All control bits have to be configured independently and carefully
External I/O related bits have no effect because nXDREQ is not connected to GDMA.

KS32C65100 RISC MICROPROCESSOR DMA

9-7

0001020304050607080910111213141516171819202122232425262728293031

[0] Run Enable (RE)
0 = Disable DMA operation 1 = Enalbe DMA operation

[1] Busy Status (Read Only) (BS)
0 = DMA idle 1 = DMA active

[3:2] Mode Selection (MODE)
00 = Software 01 = Reserved
10 = Parallel port 11 = Reserved

[4] Destination Address Direction (DD)
00 = Increase address 1 = Decrease address

[5] Source Address Direction (SD)
0 = Increase address 1 = Decrease address

[6] Destination Address Fix (DF)
0 = Increase/decrease destination address
1 = Do not change destination address (fix)

[7] Source Address Fix (SF)
0 = Increase/decrease source address
1 = Do not change source address

[8] Stop Interrupt Enables (SI)
0 = Do not generate stop interrupt when DMA stops
1 = Generate stop interrupt when DMA stops

[9] Reset (RS)
0 = Normal operation 1 = Initialize control register

[10] Transfer Direction for Parallel/UART Only (TD)
0 = IP to memory 1 = Momory to IP

[13:12] Transfer Width (TW)
00 = Byte (8-bit) 01 = Halfword (16-bit)
10 = Word (32-bit) 11 = Not used

[14] Continuous Mode (CN)
0 = Normal operation
1 = Hold system bus until the whole DMA operation stops.

[15] Demand Mode (DM)
0 = Normal mode
1 = Demand mode

R
E

B
SMODED

D
D
F

S
F

S
D

S
I

R
S

T
D

S
BTWC

N
D
M

DMACON1

Figure 9-5. GDMA Control Register

DMA KS32C65100 RISC MICROPROCESSOR

9-8

GDMA SOURCE/DESTINATION ADDRESS REGISTER

These registers contain the 25-bit source/destination address for a DMA channel.
Depending on the setting of the DMA control register (DMACON1), these addresses will increase, decrease, or
remain the same.

Registers Offset Address R/W Description Reset Value

DMASRC1 0x9004 R/W GDMA source address register 0xXXXXXXX

DMADST1 0x9008 R/W GDMA destination address register 0xXXXXXXX

0001020304050607080910111213141516171819202122232425262728293031

[24:0] Source/Destination Address

Source/Destination AddressDMASRC1
DMADST1

Figure 9-6. GDMA Source/Destination Address Register

GDMA TRANSFER COUNT REGISTER

This register contains a 24-bit value which is the number of completed DMA transfers.
This value is decreased by 1 when one DMA operation is completed regardless of the width of the data that was
transferred.

Register Offset Address R/W Description Reset Value

DMACNT1 0x900c R/W GDMA transfer count register 0xXXXXXX

0001020304050607080910111213141516171819202122232425262728293031

[23:0] Number of Transfers

Number of TransfersDMACNT1

Figure 9-7. GDMA Transfer Count Register

KS32C65100 RISC MICROPROCESSOR DMA

9-9

CDMA CONTROL REGISTER

CDMA(C-DMA) is 2nd DMA. CDMA can transfer the data by byte swap mode. UART1 can transfer data only
through CDMA.

CDMA (Compress/Decompress DMA) Control Register

Register Offset Address R/W Description Reset Value

DMACON0 0x8800 R/W CDMA control register 0x00000

CDMA Control Register Descriptions (Note: " * " denotes a read only bit)

[0] Run enable/disable
CDMA operation starts When you set this bit to '1'. To stop CDMA, you must clear this bit to '0'. To control this bit
only, use the address 0x8810. By using 0xc810, the other values in the control register will not be affected.

[1] BUSY status*
When CDMA starts, this read-only status bit is automatically set to '1'. When it is '0', CDMA is in an idle status.

[3:2] CDMA mode selection
Four sources can initiate a CDMA operation: software, an external CDMA request (nXDREQ) , the parallel port,
and the UART block. The CDMA mode selection bits determine which source can initiate a CDMA operation at
any given time (see Figure 9-8).

[4] Destination adr direction
This bit determines whether the destination address will be decreased or increased during a CDMA operation.

[5] Source adr direction
This bit determines whether the source address will be decreased or increased during a CDMA operation.

[6] Destination adr fix
This bit determines whether the destination address will change or not during a CDMA operation. This feature is
used when transferring data from multiple sources to a single destination.

[7] Source adr fix
This bit determines whether the source address will change or not during a CDMA operation. This feature is used
when transferring data from a single source to multiple destinations.

[8] Stop interrupt enable
A CDMA operation is started/stopped by setting/clearing the run enable/disable bit. This bit is set to '1' when DMA
operation starts. a 'stop interrupt' is generated when CDMA operation stops. If this bit is '0', the 'stop interrupt' is
not generated. the interrupt which is generated when the DMA counter is expired cannot be masked by this bit.

[9] Reset
If this bit is set to '1', the CDMA control register value will be initialized. When this bit is cleared to '0', you can
specify other control values.

[10] Peripheral direction
When the mode bit is set to '10'(parallel port from/to memory) or '11'(UART from/to memory), this direction bit
specifies the direction of the CDMA operation. If this bit is set to '1', then CDMA operates from memory to
peripheral(parallel port/UART). If this bit is cleared to '0', CDMA operates from peripheral to memory.

DMA KS32C65100 RISC MICROPROCESSOR

9-10

[11] Single/Block mode
This bit determines the number of external CDMA requests(nXDREQ) that are required for CDMA operation. At
single mode (this bit is set to '0'), the KS32C65100 requires an external DMA request for every CDMA operation.
At block mode (this bit is set to '1'), the KS32C65100 requires only one DMA request during the entire CDMA
operation. An entire CDMA operation is defined as the operation of CDMA until the counter is '0'.

[13:12] Transfer width
This determines the width of the data being transferred to be a byte, a halfword, or a word. If byte operation is
set, then source/destination address will be increased/decreased by 1. If it is a halfword, then the address is
changed by 2. If it is a word, the address is changed by 4. It's important that the "transfer width" is not the size of
a physical data bus. The size of physical data bus is determined by SMR configurations.

[14] Continuous mode
This bit specifies that CDMA operations hold the system bus until the count value is 0 Therefore, this bit must be
carefully used unless the whole operation time can not over appropriate interval.

[16] Byte swap mode
When the transfer size is a halfword or a word, this bit specifies whether a byte swap operation has occurred or
not.

For example, if this bit is set to '1', 11223344h (read) → 44332211h (write)

NOTE: All control bits have to be configured independently and carefully.

KS32C65100 RISC MICROPROCESSOR DMA

9-11

0001020304050607080910111213141516171819202122232425262728293031

[0] Run Enable
0 = Disable CDMA operation 1 = Enalbe CDMA operation

[1] Busy Status
0 = CDMA idle 1 = CDMA active

[3:2] Mode Selection
00 = Software 01 = External nXDREQ
10 = Parallel port 11 = UART1 port

[4] Destination Address Direction
00 = Increase address 1 = Decrease address

[5] Source Address Direction
0 = Increase address 1 = Decrease address

[6] Destination Address Fix
0 = Increase/decrease address 1 = Do not change address (fix)

[7] Source Address Fix
0 = Increase/decrease address 1 = Do not change address (fix)

[8] Stop Interrupt Enables
0 = Do not generate stop interrupt when CDMA stops
1 = Generate stop interrupt when CDMA stops

[9] Reset (RS)
0 = Normal operation 1 = Initialize control register

[10] Transfer Direction for Parallel/UART1 Only
0 = Parallel/UART1 to memory
1 = Momory to parallel/UART1

[11] Single/Block Mode
0 = Single mode 1 = Block mode

[13:12] Transfer Width
00 = Byte (8-bit) 01 = Halfword (16-bit)
10 = Word (32-bit) 11 = Not used

[14] Continuous Mode
0 = Normal operation
1 = Hold system bus until the whole CDMA operation stops.

[16] Demand Mode
0 = Normal operation 1 = Byte swap operation

R
E

B
SMODED

D
D
F

S
F

S
D

S
I

R
S

T
D

S
BTWC

N0S
WDMACON0

Figure 9-8. CDMA Control Register

DMA KS32C65100 RISC MICROPROCESSOR

9-12

CDMA Source/Destination Address Register

These registers contain the 25-bit source/destination address for a CDMA channel.
Depending on the setting of the CDMA control register (DMACON0), these addresses will increase, decrease, or
remain the same.

Registers Offset Address R/W Description Reset Value

DMASRC0 0x8804 R/W CDMA source address register 0xXXXXXXX

DMADST0 0x8808 R/W CDMA destination address register 0xXXXXXXX

0001020304050607080910111213141516171819202122232425262728293031

[24:0] Source/Destination Address

Source/Destination AddressDMASRC0
DMADST0

Figure 9-9. CDMA Source/Destination Address Register

CDMA Transfer Count Register

This register contains a 24-bit value which is the number of CDMA transfers completed for CDMA. This value is
decreased by 1 when one DMA operation is completed regardless of the width of the data that was transferred.

Register Offset Address R/W Description Reset Value

DMACNT0 0x880c R/W CDMA transfer count register 0xXXXXXX

0001020304050607080910111213141516171819202122232425262728293031

[23:0] Number of Transfers

Number of TransfersDMACNT0

Figure 9-10. CDMA Transfer Count Register

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-1

10 PARALLEL PORT INTERFACE

OVERVIEW

The KS32C65100's parallel port interface controller (PPIC) supports four IEEE 1284 standard communication
modes:

• Compatibility mode (Centronics TM)

• Nibble mode

• Byte mode

• Enhanced Capabilities Port (ECP) mode

The PPIC also supports all variants of these communication modes, including device ID requests and Run-
Length Encoded (RLE) data compression.

The PPIC contains specific hardware to support the following operations:

• Automatic hardware handshaking between host and peripheral in compatible and ECP modes,

• Run-length detection and compression/decompression of host-to-peripheral or peripheral-to-host data during
ECP mode transfers.

These features can substantially improve data rates when operating the parallel port in compatibility or ECP
mode.

In addition, hardware handshaking over the parallel port can be enabled or disabled by software. This gives the
programmer direct control of PPIC signals as well as the eventual use of future protocols. Other operations
defined in IEEE 1284 Standard, such as negotiation, nibble mode and byte mode data transfers, and termination
cycles, must be carried out by software. The IEEE 1284 EPP communications mode is not supported.

NOTE

 Here we assume that you are familiar with the parallel port communication protocols specified in IEEE
1284 parallel port standard. If not, we strongly recommend you to read this standard beforehand. It will
help you to understand the contents described in this section.

A detailed technical introduction to IEEE 1284 parallel port standard can be found in the web site:

http://www.fapo.com/ieee1284.htm

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-2

KS32C65100 PPIC OPERATING MODES

The KS32C65100 PPIC supports four kinds of handshaking modes for data transfers:

• Software handshaking mode for forward and reverse data transfers

• Compatibility hardware handshaking mode for forward data transfers

• ECP hardware handshaking without RLE support (ECP-without-RLE) mode for forward and reverse data
transfers

• ECP hardware handshaking with RLE support (ECP-with-RLE) mode for forward and reverse data transfers

Mode selection is specified in PPIC control register (PPCON). By setting the PPCON[3:2], one of these four
modes can be enabled.

Software Handshaking Mode

This mode is enabled by setting the PPCON's mode-selection bits as "00", i.e. PPCON[3:2] = 00.
In this mode, by using PPIC interrupt event registers (PPINTEN & PPINTPND) and reading/writing PPIC status
register (PPSTAT) to detect and control the logic levels on all parallel port signal pins, software can control all
parallel port operations, including all four kinds of parallel port communications protocols supported by
KS32C65100 (refer to IEEE 1284 standard for operation control). In addition, it also gives software the flexibility
to adapt to new and revised protocols.

Compatibility Hardware Handshaking Mode

Compatibility hardware handshaking mode is enabled by setting the PPCON's mode-selection bits as "01", i.e.
PPCON[3:2] = 01. In this mode, hardware generates all handshaking signals needed to implement compatibility
mode parallel port communication protocol.

When this mode is enabled, the PPIC automatically generates a BUSY signal on receiving the leading edge of
nSTROBE from the host, and latches the logic levels on PPD7-PPD0 pins into PPDATA register. The PPIC then
waits for nSTROBE to negate and the PPDATA's data field to be read. After the PPDATA is read, the PPIC
asserts nACK for the duration specified in the Ack Width Register (PPACKWTH) and then negates the nACK and
BUSY signal to conclude the data transfer, as shown in Figure 10-1.

NOTE

Since the initial value of the BUSY-control bit in the PPSTAT register, PPSTAT[3], is "1" after system
reset, the BUSY output has a high logic level and handshaking is disabled. To enable hardware
handshaking in this mode, the BUSY-control bit PPSTAT[3] must be cleared by software beforehand.

DataPPD[7:0]

nSTROBE

BUSY

nACK

Figure 10-1. Compatibility Hardware Handshaking Timing

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-3

ECP-Without-RLE Mode

ECP-without-RLE hardware handshaking mode is enabled by setting the PPCON's mode-selection bits as "10",
i.e. PPCON[3:2] = 10. In this mode, hardware generates handshaking signals needed to implement the ECP
mode parallel port communication protocol.

When receiving data from host, PPIC automatically responds to the high-to-low transition on nSTROBE by
latching the logic levels on PPD7-PPD0 and nAUTOFD in the PPDATA register, in which the nAUTOFD logic
level indicates the current data in PPD[7:0] is a data byte or a command byte and is latched to PPDATA[8].
When the PPDATA is read, the PPIC drives BUSY high, waits for nSTROBE to go high, and then drives BUSY
low to conclude one forward data transfer operation, as shown in Figure 10-2.

Reception of a command byte, indicated by PPDATA[8] = 0, causes the command received bit in PPIC interrupt
pending register, PPINTPND[9], to be set to "1". By examining the PPDATA[7], software will interpret the
command byte as a channel address if it is "1" and carry out corresponding operation, or interpret the command
byte as a run-length count if it is "0" and then perform data decompression.

Byte 0PPD[7:0]

nAUTOFD

nSTROBE

BUSY

Byte 1

Data byte Command byte

Figure 10-2. ECP Hardware Handshaking Timing (Forward)

During reverse data transfers, software is responsible for data compression and writing data or command bytes in
PPDATA to define the logic levels on PPD7-PPD0 and BUSY pins, in which the PPDATA[8] indicates whether
the current data in PPDATA[7:0] is a data byte or a command byte and outputs to the BUSY pin. Responding to
writing PPDATA, PPIC automatically drives the nACK low, waits for the nAUTOFD to go to high, and then drives
nACK high to conclude one reverse data transfer operation, as shown in Figure 10-3.

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-4

ECP-with-RLE mode

ECP-with-RLE hardware handshaking mode is enabled by setting the PPCON's mode-selection bits as "11", i.e.
PPCON[3:2] = 11. In this mode, PPIC performs the same ECP mode handshaking as in ECP-without-RLE mode,
except that run-length compression/decompression is also carried out by hardware.

During forward data transfers, PPIC automatically detects and intercepts run-length counts, and carries out data
decompression. Only the channel addresses will cause the command received bit in the PPINTPND register,
PPINTPND[9], to be set, and software responds by only performing operations associated with it.

Similarly, PPIC automatically carries out the data compression in PPDATA during reverse data transfers.

Byte 0PPD[7:0]

BUSY

nACK

nAUTOFD

Byte 1

Data byte Command byte

Figure 10-3. ECP Hardware Handshaking Timing (Reverse)

Digital Filtering

KS32C65100 provides the digital filtering function on host control signal inputs, nSELECTIN, nSTROBE,
nAUTOFD and nINIT, to improve noise immunity and make the PPIC more impervious to inductive switching
noise. The digital filtering function can be enabled regardless of whether hardware handshaking or software
handshaking is enabled.

If this function is enabled, the host control signal can be detected only when its input level keeps stable during
two sampling periods.

Digital filtering can be disabled to avoid signal missing in some specialized applications with the high bandwidth
requirement. Otherwise, it is recommended that digital filtering be enabled.

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-5

PPIC SPECIAL REGISTERS

PARALLEL PORT DATA REGISTER

The parallel port data register, PPDATA, contains an 8-bit data field, PPDATA[7:0], that defines the logic level on
the parallel port data pins, PPD[7:0]. It also contains a status bit, PPDATA[8], which is used to indicate when a
command byte (RLE count or channel address) is received during forward data transfers in ECP mode.

Register Offset Address R/W Description Reset value

PPDATA 0x8000 R/W Parallel port data register 0x100

0001020304050607080910111213141516171819202122232425262728293031

[7:0] Data for Parallel Port Data Bus, PPD[7:0]
This is an 8-bit read/write field.
When read, this field provides the latched logic leveis on the
parallel port data bus PPD[7:0] when the strobe input from
the host (nSTROBE) transitions from high to low with the
PPCON[6] clear. (The PPCON[6] bit determines the forward
or reverse dataflow direction of the parallel port.)
When written, the value in this field determines the logic
level on the parallel port bus lines PPD[7:0] when the
PPCON[6] is set.

[8] ECP Mode Command Byte Indicator
During ECP forward data transfers, reading this bit gives the
logic level of nAUTOFD, which indicates the data in
PPDATA[7:0] is a data byte or a command byte, when the
following two conditions are met:

1) nSTROBE has transitioned from high level to low level;
2) the data bus output enable bit in the parallel port control
register, PPCON[6], is '0'.

During ECP reverse data transfers, writing this bit defines
the logic level of the BUSY pin, which indicates whether the
data written to PPDATA[7:0] is a data byte or a command
byte when the data bus output enable bit in the parallel port
control register, PPCON[6], is '1'.

0 = Command byte in PPDATA[7:0]
1 = Data byte in PPDATA[7:0]

Data FieldX

Figure 10-4. Parallel Port Data Register

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-6

PARALLEL PORT STATUS REGISTER

The parallel port status register, PPSTAT, contains eleven bits to control the parallel port interface signals. These
eleven bits consist of four read-only bits that are used to read the logic level of the host input pins, two read-only
bits to read the logic level on the BUSY and nACK output pins, and five read/write bits control the logic levels on
the printer output pins, which can be used by software for handshaking control.

Register Offset Address R/W Description Reset value

PPSTAT 0x8004 R/W Parallel port status register 0x7e8

[0] nFAULT control Setting this bit drives the nFAULT output to low level;
clearing it drives the signal High on the external nFAULT
pin. nFAULT is used to indicate to the host that there is a
fault condition in the printer engine.

[1] SELECT control Setting this bit drives SELECT output to High level;
 clearing it drives the signal low on the external SELECT
 pin. SELECT indicates to the host that there has been a

response from the printer engine.

[2] PERROR control Setting this bit drives PERROR output to high level;
 clearing it drives the signal low on the external PERROR
 pin. PERROR indicates to the host that a paper error has

occurred in the engine.

[3] BUSY control Setting this bit drives the external BUSY output to high
level. This is generally done to disable hardware
handshaking. The PPSTAT[3] bit value is logically ORed
with the internal busy signal that is provided by the
PPIC to control hardware handshaking operations.

[4] nACK control Setting this bit to "1" forces the external nACK output to be
driven low.
This is generally done when hardware handshaking is
disabled. The inverted logic of the PPSTAT[4] bit value is
logically ANDed with the internal ACK signal that is
provided by the PPIC to control hardware handshaking.

[5] BUSY status This read-only bit reflects the logic level on the external
BUSY output pin.
After a system reset, PPSTAT[3] is "1", which results in
PPSTAT[5] being "1". So, for compatibility mode operation,
you must clear the PPSTAT[3] by software beforehand so
as to enable the hardware handshaking.

[6] nACK status This read-only bit reflects the inverted logic level on the
external nACK output pin. After a system reset, PPSTAT[6]
is "1".

[7] nSLCTIN status This read-only bit reflects the level read on the nSLCTIN
input pin after synchronization (and optional digital filtering
when the digital filtering enable bit, PPCON[1], is set).

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-7

[8] nSTROBE status This read-only bit reflects the level read on the nSTROBE
input pin after synchronization (and optional digital filtering
when the digital filtering enable bit, PPCON[1], is set).

[9] nAUTOFD status This read-only bit reflects the level read on the nAUTOFD
input pin after synchronization (and optional digital filtering
when the digital filtering enable bit, PPCON[1], is set).

[10] nINIT status This read-only bit reflects the level read on the nINIT input
pin after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is set).

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-8

0001020304050607080910111213141516171819202122232425262728293031

[0] External nFAULT Output Control Bit
0 = nFAULT output low; printer fault
1 = nFAULT output high; no printer fault

[1] SELECT Output Control Bit
0 = SELECT output low; no response from printer
1 = SELECT output high; response received from printer

[2] PERROR Output Control Bit
0 = PERROR output low; no paper error
1 = PERROR output high; paper error

[3] BUSY Output Control Bit
0 = BUSY output low; not busy
1 = BUSY output high; busy

[4] nACK Output Control Bit
0 = nACK output low; do not acknowledge handshake
1 = nACK output high; acknowledge handshake

[5] BUSY Output Level
This read only bit reflects the logic level on the external
BUSY output. After a system reset, this bit is '1'

[6] nACK Output Level
This read only bit reflects the logic level on the external
nACK output. After a system reset, this bit is '1'.

[7] nSLCTIN Input Level
This read only bit reflects the logic level on the nSLCTIN
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is '1')

[8] nSTROBE Input Level
This read only bit reflects the logic level on the nSTROBE
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is '1')

[9] nAUTOFD Input Level
This read only bit reflects the logic level on the nAUTOFD
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is '1')

[10] nINIT Input Level
This read only bit reflects the logic level on the nINIT input
after synchronization (and optional digital filtering when the
digital filtering enable bit, PPCON[1], is '1')

XXXXXX X X XX X

Figure 10-5. Parallel Port Status Register

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-9

PARALLEL PORT ACK WIDTH REGISTER

This register contains the 9-bit nACK pulse width field. This value defines the nACK pulse width whenever the
parallel port interface controller enters compatibility mode (that is when the parallel port control register mode
bits, PPCON[3:2] are "01"). The nACK pulse width can be selected from 0 to 511 MCLK periods.

The nACK pulse width can be modified at any time and with any PPIC operation mode selected, but it can only
be used during a compatibility handshaking cycle. If you change the nACK width near the end of a data transfer
(when nACK is already low), the new pulse width value does not affect the current cycle. The new pulse width
value would be used at the start of the next cycle.

Register Offset Address R/W Description Reset value

PPACKWTH 0x8008 R/W Parallel port acknowledge width register 0xXXX

0001020304050607080910111213141516171819202122232425262728293031

[8:0] nACK Pulse Width
The value in this 9-bit field defines the nACK pulse width
when compatibility mode is enabled (PPCON[3:2] = '01'). The
period of the nACK pulse can range from 0 to 511 MCLKs.
If you write a new value to the nACK width field near the end
of a data transfer operation, the new pulse width value does
not take effect until the next cycle takes place.

nACK Pulse Width

Figure 10-6. Parallel Port ACK Width Register

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-10

PARALLEL PORT CONTROL REGISTER

The parallel port control register, PPCON, is used to configure the PPI operations, such as handshaking, digital
filtering, operating mode, data bus output, abort operations, and DMA. PPCON[15:13] are read-only.

Register Offset Address R/W Description Reset value

PPCON 0x800c R/W Parallel port control register 0x0000

[0] Software reset Setting the software reset bit causes the PPIC's
handshaking control and compression/decompression logic
to immediately terminate the current operation and return

 to software Idle state. When PPCON[0] is set to "1", the
 run-length decompression status bit, PPCON[13], and the
 full status bit,PPCON[14], are automatically cleared to "0".

[1] Digital filter enable Setting this bit enables digital filtering on all four host
 control signal inputs:

nSELECTIN, nSTROBE, nAUTOFD, and nINIT.

[3:2] Mode selection This two-bit value selects the current operating mode of the
parallel port interface (see Figure 14-4). Software mode:
disables all hardware handshaking so that handshaking
can be performed by software.
Compatibility mode: Compatibility mode hardware
handshaking can be enabled during a forward data transfer.
You can change the mode selection at any time, but if a
compatibility mode operation is currently in-progress, it will
be completed as normal.
Mode should be changed from compatibility mode only
when BUSY is high level. This ensures that there is no
parallel port activity during the time when the parallel port

 is being re-configured. ECP-without-RLE mode: ECP
 mode hardware handshaking without RLE support can be
 enabled during forward or reverse data transfers.
 You can change the mode selection at any time, but if an
 ECP cycle is currently in progress,
 it will be completed as normal.

ECP-with-RLE mode: ECP mode hardware handshaking
with RLE support can be enabled during forward or reverse
data transfers.

 Change on the mode selection doesn't affect current data
 transfer operation, including compression/ decompression,
 until it completes.

To immediately abort an operation, you can set the
software-reset bit, PPCON[0], to "1".

[4] ECP direction This bit determines the direction of ECP is forward or
reverse. If this bit is set to '1', then the ECP is operated in
reverse direction.

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-11

[5] Error cycle The error cycle bit is used to execute an error cycle when
 in compatibility mode. When PPCON[5] is set to "1", the

BUSY status bit in the parallel port interface register,
PPSTAT[5], is set to "1". This immediately causes the
KS32C65100 to drive the BUSY level high.
If you set the error cycle bit when a compatibility mode
handshaking sequence is in progress, PPSTAT[5] will
remain set to "1" beyond the end of the current cycle.
The error cycle bit does not affect the nACK pulse if it is
already active, but it will prevent an nACK pulse if it is

 about to be generated.
When PPCON[5] is "1", software can set or clear the
parallel port status register control bits: PPSTAT[0]
(nFAULT control), PPSTAT[1] (SELECT control), and
PPSTAT[2] (PERROR control). When PPCON[5] is cleared
to "0", the parallel port interface controller generates an
nACK pulse and negates BUSY to conclude the error cycle.

[6] Data bus output enable The parallel port data bus output enable bit performs two
functions: 1) It controls the state of the tri-state output
drivers, and 2) It qualifies the latching of data from the
output drivers into the parallel port interface register 0*s
data field, PPDATA[7:0].
When PPCON[6] is "0", parallel port data bus output are
disabled. This allows data to be latched into the PPDATA
data field. When PPCON[6] is "1", PPD output are enabled
and data is prevented from being latched into the PPDATA
data field. In this frozen state, the data field is unaffected
by transitions of nSTROBE.
The setting of the abort bit, PPCON[7],affects the operation
of the data bus output enable bit, PPCON[6]. If PPCON[7]

 is "1", nSELECTIN must remain high to allow PPCON[6] to
 be set or to remain set. If PPCON[6] is "1" and nSELECTIN

goes low, PPCON[6] is cleared and setting this bit will
have no effect. The external PPD[7:0] outputs reflect the
current state of PPCON[6].

[7] Abort The abort bit causes the parallel port interface controller to
use nSELECTIN to detect when the host suddenly aborts a
reverse transfer and returns to compatibility mode. If
PPCON[7] is "1", a low level on nSELECTIN causes the
parallel port data bus output enable bit, PPCON[6], to be
cleared and the output drivers for the data bus lines
PPD[7:0] to be tri-stated.

[8] DMA selection The PPIC can issue a DMA request during a forward data
transfer in compatibility mode, ECP-without-RLE mode, or
in ECP-with-RLE mode, if the DMA request enable bit,
PPCON[7], is set. The DMA selection bit determines which
DMA channel is used for forward data transfer. When
PPCON[8] is "0", DMA channel 0 is used; when it is "1",
DMA channel 1 is used.

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-12

[9] DMA request enable When this bit is set to "1", the PPIC issues a DMA request
to DMA channel 0 or 1 during a forward data transfer.
otherwise, an interrupt is requested for the data transfer.

[10] Flush request When this bit is set to "1", the PPIC issues a DMA request
to send the remaining data to parallel port. The remaining
data means run-length code and data in the PPIC's buffer
while reverse ECP mode is operating.

[12] Zero insert When the run-length count is '0', this bit specifies whether
 to send the RLE count to PPIC during ECP-with-RLE
 reverse data transfers.

If this bit is set to '1', then the count "0" will be sent, but
if otherwise, it is not sent.

[13] RLE status This bit indicates the run-length decompression is taking
place during forward data transfers in ECP-with-RLE mode.
It is set when a run-length count is received and loaded into
the internal counter, and cleared when the last read of the
PPD's data field takes place.

[14] Data latch status If a data is latched to PPDATA, then this bit is set to '1'. It is
automatically cleared while PPDATA is read.

[15] Write status When reverse ECP mode, this bit specifies the PPDATA is
empty.
It is automatically cleared while PPDATA is written with a
new data.

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-13

0001020304050607080910111213141516171819202122232425262728293031

[0] Software Reset Control
0 = No effect
1 = Terminate current PPIC operation and enter idle status

[1] Digital Filter Enable
0 = Disable 1 = Enable

[3:2] Operating Mode
00 = Software mode 01 = Compatibility mode
10 = ECP mode without RLE 11 = ECP mode with RLE

[4] ECP Direction
0 = Forward 1 = Reverse

[5] Error Cycle Control (Compatibility Mode Only)
0 = Generate nACK and negate BUSY; end error cycle
1 = Execute an error cycle (drive BUSY high level)

[6] PPD[7:0] Output Enable
0 = Disable PPD[7:0] output 1 = Enable PPD[7:0] output

[7] Abort Bit
0 = Normal operation
1 = Disable data bus output and tri-state PPD[7:0] drivers

[8] DMA Selection
0 = DMA 1 = CDMA (codec DMA)

[9] INT/DMA Request Mode
0 = Generate interrupt request for data transfer
1 = Send DMA request to DMA/CDMA for data transfer

[10] Flush Data
0 = No operation
1 = Remaining data to be transmitted to PPIC

[12] Zero Insert (Reverse ECP with RLE)
0 = When run-length is 0, only data to be transmitted
1 = When run-length is 0, nCMD and data are transmitted

[13] Decompress Status
0 = Finished 1 = Decompression is operating

[14] Data Latch Status
0 = No data
1 = Data is latched, if this bit is read, automatically cleared

[15] Data Empty (Reverse ECP Mode)
0 = Data is processed
1 = PPDATA buffer is empty, it is automatically cleared when write
operation occurs.

XXXXX X X ModeXXXXXX

Figure10-7. Parallel Port Control Register

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-14

PARALLEL PORT INTERRUPT EVENT REGISTERS (PPINTEN, PPINTPND)

The two parallel port interrupt event registers, PPINTEN and PPINTPND, control interrupt-related events
for the input signal originating from the host, as well as data reception, command reception, and invalid
events. Enable register, PPINTEN, contains the interrupt enable bits for each interrupt event that is
indicated by the PPINTPND status bits. If its PPINTEN enable bit is "1", the corresponding event causes
the KS32C65100 CPU to generate an interrupt request. Otherwise, no interrupt request is issued.

Registers Offset Address R/W Description Reset value

 PPINTEN 0x8010 R/W Parallel port enable interrupt event register 0x000

PPINTPND 0x8014 R/W Parallel port interrupt pending register 0x000

[0] nSLCTIN Low-to-High The bit of PPINTPND is set when a Low-to-High transition
on nSLCTIN is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

[1] nSLCTIN High-to-Low The bit of PPINTPND is set when a High-to-Low transition
on nSLCTIN is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

[2] nSTROBE Low-to-High The bit of PPINTPND is set when a Low-to-High transition
on nSTROBE is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

[3] nSTROBE High-to-Low The bit of PPINTPND is set when a High-to-Low transition
on nSTROBE is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

[4] nAUTOFD Low-to-High The bit of PPINTPND is set when a Low-to-High transition
on nAUTOFD is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

[5] nAUTOFD High-to-Low The bit of PPINTPND is set when a High-to-Low transition
on nAUTOFD is detected. If the corresponding enable bit is
set in the PPINTEN register, an interrupt request is
generated.

[6] nINIT Low-to-High The bit of PPINTPND is set when a Low-to-High transition
 on nINIT is detected. If the corresponding enable bit is set
 in the PPINTEN register, an interrupt request is generated.

[7] nINIT High-to-Low The bit of PPINTPND is set when a High-to-Low transition
on nINIT is detected. If the corresponding enable bit is set

 in the PPINTEN register, an interrupt request is generated.

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-15

[8] Data received The bit of PPINTPND is set when data is latched into the
PPDATA register’s data field. This occurs on every High-to-
Low transition of nSTROBE when the parallel port data bus
enable bit, PPCON[6]. is "0". An interrupt is also generated
if ECP-with-RLE mode is enabled, and if a data
decompression is in progress.

[9] Command received The bit of PPINTPND is set when a command byte is
latched into the PPDATA register data field.

 If ECP-without-RLE mode is enabled, a command received
 interrupt is issued whenever a run-length or channel
 address is received.
 If ECP-with-RLE mode is enabled, a command

received interrupt is issued only when a channel address is
received. This event can be posted only when ECP mode

 is enabled. The corresponding enable bit in the PPINTEN
register determines whether an interrupt request will be
generated when a command byte is received.

[10] Invalid transition The bit of PPINTPND is set when nSLCTIN transitions from
High-to-Low in the middle of an ECP forward data transfer
handshaking sequence. This interrupt is issued if nSLCTIN
is Low when nSTROBE is Low or when BUSY is High. This
event can only be detected when ECP mode is enabled.

[11] Transmit data empty The PPINTPND bit is set when the transmit data register (=
 PPDATA) can be written in the middle of an ECP reverse

data transfer handshake sequence.

PARALLEL PORT INTERFACE KS32C65100 RISC MICROPROCESSOR

10-16

0001020304050607080910111213141516171819202122232425262728293031

[0] nSELECTIN Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[1] nSELECTIN High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[2] nSTROBE Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[3] nSTROBE High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[4] nAUTOFD Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[5] nAUTOFD High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[6] nINITIAL Low-to-High Transition
0 = Disable interrupt 1 = Enable interrupt

[7] nINITIAL High-to-Low Transition
0 = Disable interrupt 1 = Enable interrupt

[8] Data Received (Latched to PPDATA Data Field)
0 = Disable interrupt 1 = Enable interrupt

[9] Command Byte Received (In PPDATA Data Field)
0 = Disable interrupt 1 = Enable interrupt

[10] Invalid nSELECTIN Transition During ECP
0 = Disable interrupt 1 = Enable interrupt

[11] Transmit Data (PPDATA) Empty
0 = Disable interrupt 1 = Enable interrupt

XXXXX X XXXX XX

Figure 10-8. Parallel Port Event Interrupt Enable Register (PPINTEN)

KS32C65100 RISC MICROPROCESSOR PARALLEL PORT INTERFACE

10-17

0001020304050607080910111213141516171819202122232425262728293031

[0] nSELECTIN Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[1] nSELECTIN High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[2] nSTROBE Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[3] nSTROBE High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[4] nAUTOFD Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[5] nAUTOFD High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[6] nINITIAL Low-to-High Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[7] nINITIAL High-to-Low Transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[8] Data Received (Latched to PPDATA Data Field)
0 = Normal operation
1 = Data received; issue interrupt if enabled in PPINTEN

[9] Command Byte Received (In PPDATA Data Field)
0 = Normal operation
1 = Command byte received; issue interrupt if enabled in
PPINTEN

[10] Invalid nSELECTIN Transition During ECP
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[11] Transmit Data (PPDATA) Empty
0 = Normal operation
1 =PPDATA empty; issue interrupt if enabled in PPINTEN

XXXXX X XXXX XX

Figure 10-9. Parallel Port Event Interrupt Pending Register (PPINTPND)

KS32C65100 RISC MICROPROCESSOR UART

11-1

11 UART

OVERVIEW

The KS32C65100 UART(Universal Asynchronous Receiver and Transmitter) unit provides two independent
asynchronous serial I/O (SIO) ports, each of which can operate in interrupt-based or DMA-based mode. For
example, SIO can generate an interrupt or a DMA request for data transfers between CPU and SIO.

Main features of the KS32C65100 UART include programmable baudrates, infra-red (IR) transmit/receive, one or
two stop bit insertion, 5-bit, 6-bit, 7-bit or 8-bit data transfers, and parity checking.

Each SIO contains a baud-rate generator, transmitter, receiver and a control unit, as shown in Figure11-1.The
baud-rate generator can be clocked by the internal system clock (MCLK). The transmitter and receiver contain
data buffer registers and data shifters. Data to be transmitted is written to the transmit buffer register and then
copied to the transmit shifter and shifted out by the transmit data pin (TXDn). Data received is shifted in by the
receive data pin (RXDn), and then copied from shifter to receive buffer register once one data byte has been
received. The control unit will provide controls for mode selection, and status/interrupt generation..

Transmitter

Transmit Buffer Register

Transmit Shifter

Control
Unit

Baud-rate
Generator

Clock Source
(MCLK)

TXDn

Receiver

Receive Shifter

Receive Buffer Register

RXDn

Baud-rate clock

System
Bus

Baud-rate clock

Figure 11-1. UART Block Diagram

UART KS32C65100 RISC MICROPROCESSOR

11-2

UART OPERATION

The following sections describe the UART operations that include infra-red mode, loop-back mode, interrupt
generation, baud-rate generation, data transmission, data reception and so on.

Infra-Red Mode

The KS32C65100 UART block supports infra-red (IR) transmit and receive which can be selected by setting the
infra-red-mode bit in the line control register (ULCONn).
The implementation on the mode is shown in Figure 11-2.

In IR mode, the transmit period is pulsed at a rate of 3/16 the of the normal serial transmit rate (when the transmit
data value in the TBR register is zero); and in IR receive mode, the receiver must detect the 3/16 pulsed period
to recognize a zero value in the receive buffer register, RBR, as the IR receive data. (refer to the frame timing
diagrams shown in Figure 11-15 and 11-16)

UART
Block

TxD

IR Tx
Encoder

IR Rx
Decoder

IRS

RxD

RE

TxD

RxD

0

1

1

0

Figure 11-2. UART Block Diagram

Loop-back Mode

The KS32C65100 UART provides a test mode, referred to as the loop-back mode, to aid in isolating faults in the
communications link. In this mode, data that is transmitted is immediately received. This feature allows the
processor to verify the internal transmit and receive data paths of each SIO channel.

This mode can be selected by setting the loop-back-bit in UART control register (UCONn).

Interrupt/DMA Request Generation

Each SIO of KS32C65100 UART has seven status signals: overrun error, parity error, frame error, break, receive
buffer full, transmit buffer register empty and transmitter empty, all of which are indicated by the corresponding
UART status register (USTATn).

The overrun error, parity error, frame error and break condition are referred as the receive status, each of which
can cause the receive status interrupt request, (i.e. the error interrupt to be mentioned in Section 19, if the
receive-status-interrupt-enable bit is set in control register UCONn). When a receive status interrupt request is
detected, you can determine which signal caused the request by reading the status register (USTATn).

When the receiver transfers data from its shifter to its buffer, it activates the receive buffer full status signal
which will cause the receive interrupt, If the receive mode in control register is selected as interrupt mode; and
when the transmitter transfers data from its transmit buffer register to its shifter, it activates

KS32C65100 RISC MICROPROCESSOR UART

11-3

the transmit buffer register empty status signal which will cause the transmit interrupt if the transmit mode in
control register is selected as interrupt mode.

The receive buffer full and transmit buffer register empty status signals can also be connected to generate the
DMA request signals if the receive/transmit mode in control register is selected as DMA mode. As mentioned
before, two DMA channels, GDMA and CDMA, are provided in KS32C65100. However, each SIO can only be
connected with a fixed DMA channel. In other words, the UART0 can only generate the GDMA request, the
UART1 can only generate the CDMA request, and UART2 can not generate any DMA request.

Baud-Rate Generation

Each UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the
baud-rate generator is KS32C65100's internal system clock (MCLK). The baud-rate clock is generated by dividing
the source clock by 16 and a 16-bit divisor specified by UART baud rate divisor register (UBRDIVn). UBRDIVn
can be determined as follows:

UBRDIVn = (int)(source_clock / (bps x 16)) - 1

where the divisor should be a value from 1 to (2^16-1).

For example, if the baud rate is 56000bps and MCLK is 33Mhz (use internal system clock), UBRDIVn is
calculated as follows:

UBRDIVn = (int)(33000000 / (56000 × 16)) - 1
= (int)(36.83) - 1
= 36 - 1 = 35

;

Data Transmission

The data frame for transmissions is programmable. It consists of a start bit, 5 to 8 data bits, an optional parity bit
and 1 to 2 stop bits, which can be specified in the line control register (ULCONn). The transmitter can also
produce break conditions. The break condition forces the serial output to logic 0 state for a duration longer than
one frame transmission time. On the receiving end, a break condition sets an error flag as mentioned above.

 The data transmission process is shown in Figure 11-3, in which the transmitter transfers data through such a
path: data source → transmit buffer register → transmit shift register → TXDn pin, and completes parallel-to-
serial data conversions. Two flags (status signals), transmit buffer register empty and transmitter empty, are used
to indicate the status of the transmit buffer register and transmitter which includes both the buffer register and
transmit shifter.

Data Reception

Like the transmissions, the data frame for receptions is also programmable. It consists of a start bit, 5 to 8 data
bits, an optional parity bit and 1 to 2 stop bits, as the settings in the line control register (ULCONn). The receiver
can detect overrun error, parity error, frame error and break condition, each of which can set an error flag. The
overrun error indicates that new data has overwritten old data before the old data has been read. The parity error
indicates the receiver has detected a parity condition other than what it was programmed for. The frame error
indicates that the received data did not have a valid stop bit. The break condition indicates that the received data
input is held in the logic 0 state for a duration longer than one frame transmission time.

The data reception process is shown in Figure 11-4, in which the receiver transfers data through such a path:
RXDn pin → receive shift register → receive buffer register → destination, and completes serial-to-parallel data
conversions. In addition to receive error status flags, a receive buffer full flag is used to indicate the status of the
receive buffer register.

UART KS32C65100 RISC MICROPROCESSOR

11-4

START

UBRDIV, ULCON, UCON
is configured

Transmit buffer register
empty?

Transfer the data to transmit
shifter

Set the transmit buffer register
empty flag

After shift out last stop bit, set
the transmitter empty flag

N

Y

Figure 11-3. UART Data Transmission Process

KS32C65100 RISC MICROPROCESSOR UART

11-5

START

UBRDIV, ULCON, UCON
is configured

Parity, overrun, frame
error or break detected?

Receive data into receive shifter
from RXDn pin

Transfer the data to receive
buffer

Set receive buffer full flag.

N

Y

Figure 11-4. UART Data Reception Process

UART KS32C65100 RISC MICROPROCESSOR

11-6

UART SPECIAL REGISTERS

UART Line Control Register

There are three identical UART line control registers (ULCON0, 1, 2) in the UART block, one for each UART
channel.

Registers Offset Address R/W Description Reset Value

ULCON0 0xb000 R/W UART ch-0 line control register 0x00

ULCON1 0xb800 R/W UART ch-1 line control register 0x00

ULCON2 0xc000 R/W UART ch-2 line control register 0x00

[1:0] Word length(WL) The two-bit word length value indicates the number of
data bits to be transmitted or received per frame.

 00 = 5bits
01 = 6bits

 10 = 7bits
 11 = 8bits

[2] No. of stop bit ULCON[2] specifies how many stop bits are used to signal
end-of-frame (EOF).

 0 = One stop bit per frame
1 = Two stop bit per frame

[5:3] Parity mode(PM) The 3-bit parity mode value specifies how parity generation
and checking are to be performed during UART transmit
and receive operations.

 0xx = No parity
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as "1".
111 = Parity forced/checked as "0".

[6] Reserved This bit must be '0'.

[7] Infra-red mode This bit determines whether to use the infra-red mode
 0 = Normal mode operation

1 = Infra-red Tx/Rx mode

NOTE: ULCONn has to be configured before UCONn is configured.

KS32C65100 RISC MICROPROCESSOR UART

11-7

012345678910111213141516171819202122232425262728293031

[1:0] Word Length Per Frame
00 = 5 bits 01 = 6 bits
10 = 7 bits 11 = 8 bits

[2] Number of Stop Bit at the end of Frame
0 = One stop bit per frame
1 = Two stop bit per frame

[5:3] Parity Mode
0xx = No parity
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as "1"
111 = Parity forced as "0"

[6] Reserved
This bit must "0"

[7] Infra-red Mode Selection
0 = Normal mode operation
1 = Infra-red Tx/Rx mode

WLSTPARITY0IRULCON0, 1, 2

Figure 11-5. UART Line Control Register (ULCON0, 1, 2)

UART Control Register

There are two identical UART control registers (UCON0,1,2) in the UART block, each for a UART channel.
UCONn has to be configured after ULCONn is configured.

Registers Offset Address R/W Description Reset Value

UCON0 0xb004 R/W UART ch-0 control register 0x00

UCON1 0xb804 R/W UART ch-1 control register 0x00

UCON2 0xc004 R/W UART ch-2 control register 0x00

[1:0] Receive mode (RxM) This two-bit value determines which function is currently
able to read data from the UART receive buffer register,
RBR. The difference between UCON0 and UCON1 should
be noted. UART0 can only generate GDMA requests,
UART1 can only generate CDMA requests, and UART2
cannot generate any DMA requests.

UART KS32C65100 RISC MICROPROCESSOR

11-8

[2] Rx status interrupt enable This bit enables the UART to generate an interrupt if an
exception (break, frame error, parity error, or overrun error)
occurs during a receive operation.
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

[4:3] Transmit mode (TxM) This two-bit value determines which function is currently
able to write Tx data to the UART transmit buffer registers,
TBR. The difference between UCON0 and UCON1 should
be noted. UART0 can only generate GDMA requests,
UART1 can only generate CDMA requests, and UART2
cannot generate any DMA requests.

[6] Send break Setting UCON[6] causes the UART to send a break. Break
is defined as a continuous Low level signal on the transmit
data output with a duration of more than one frame
transmission time. By setting this bit when the transmitter is
empty(transmitter empty bit, USTAT[7] = "1"), you can use
the transmitter to time the frame. When USTAT[7] is "1",
write the transmit buffer register, TBR, with the data to be
transmitted, then poll the USTAT[7] value. When it returns
to "1", clear (reset) the send break bit, UCON[6].
0 = Do not send break
1 = Send break

[7] Loop-back bit Setting this bit causes the UART to enter loop-back mode.
In loop-back mode, the transmit data output is sent to high

 level and the transmit buffer register (TBR) is internally
connected to the receive buffer register (RBR). This mode

 is provided for test purposes only.
0 = Normal SIO operation mode
1 = Enable SIO loop-back mode (for testing only)

KS32C65100 RISC MICROPROCESSOR UART

11-9

012345678910111213141516171819202122232425262728293031

[1:0] SIO Receive Mode Selection (RxM)
00 = Disable
10 = Interrupt Request
10 = GDMA rquest (for UCON0)
 CDMA request (for UCON1)
 Not used (for UCON2)
11 = Not used

[2] Receive Status Interrupt Enable
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

[4:3] UART Transmit Mode Selection (TxM)
00 = Disable
10 = Interrupt Request
10 = GDMA rquest (for UCON0)
 CDMA request (for UCON1)
 Not used (for UCON2)
11 = Not used

[6] Send Break
0 = Do not send break
1 = Send break

[7] Loopback Enable
0 = Normal operationg mode
1 = Enable loopback mode (for testing only)

R
M

R
S

S
B

L
PUCON0, 1, 2 T

M0

Figure 11-6. UART Control Register (UCON0,1,2)

UART Status Register

There are two identical UART status registers (USTAT0,1) in the UART block, for each SIO channel.
The USTAT is a read-only register that is used to monitor the status of SIO.

Registers Offset Address R/W Description Reset Value

USTAT0 0xb008 R/W UART ch-0 status register 0xc0

USTAT 1 0xb808 R/W UART ch-1 status register 0xc0

USTAT 2 0xc008 R/W UART ch-2 status register 0xc0

[0] Overrun error This bit is automatically set to "1" whenever an overrun
 error occurs during a serial data receive operation.
 If the receive status interrupt enable bit UCONn[2] is "1",
 a receive status interrupt will be generated if an overrun
 error occurs.
 This bit is automatically cleared to "0" whenever the
 UART status register (USTATn) is read.

UART KS32C65100 RISC MICROPROCESSOR

11-10

[1] Parity error This bit is automatically set to "1" whenever a parity error
occurs during a serial data receive operation. If the receive
status interrupt enable bit UCONn[2] is "1", a receive status
interrupt will be generated if a parity error occurs. This bit is
automatically cleared to "0" whenever the UART status
register (USTATn) is read.

[2] Frame error This bit is automatically set to "1" whenever a frame error
occurs during a serial data receive operation. If the receive
status interrupt enable bit UCONn[2] is "1", a receive

 status interrupt will be generated if a frame error occurs.
 The frame error bit is automatically cleared to "0" whenever
 the UART status register (USTATn) is read.

[3] Break interrupt This bit is automatically set to "1" to indicate that a break
signal has been received. If the receive status interrupt
enable bit UCONn[2] is "1", a receive status interrupt will

 be generated if a break occurs. The break interrupt bit is
automatically cleared to "0" when you read the UART

 status register.

[5] Receive data ready This bit is automatically set to "1" whenever the receive
 data buffer register (RBR) contains valid data received over
 the serial port.
 The receive data can then be read from the RBR.
 When this bit is "0", the RBR does not contain valid data.
 Depending on the current setting of the UART receive

 mode bits, UCONn[1:0], an interrupt or a DMA request is
generated when this bit is "1".

[6] Tx buffer register empty This bit is automatically set to "1" when the transmit buffer
 register (TBR) does not contain valid data. In this case, the

TBR can be written with the data to be transmitted. When
this bit is "0", the TBR contains valid Tx data that has not
yet been copied to the transmit shift register. In this case,
the TBR cannot be written with new Tx data. Depending on
the current setting of the UART transmit mode bits,
UCONn[4:3], an interrupt or a DMA request will be
generated whenever this bit is "1".

[7] Transmitter empty This bit is automatically set to "1" when the transmit buffer
 register has no valid data to transmit and the Tx shift

register is empty. When the transmitter empty bit is "1", it
indicates to software that it can now disable the transmitter
function block.

KS32C65100 RISC MICROPROCESSOR UART

11-11

012345678910111213141516171819202122232425262728293031

[0] Overrun Error
0 = No overrun error during receive
1 = Overrun error
(generate receive status interrupt if UCON[2] is "1")

[1] Parity Error
0 = No parity error during receive
1 = Parity error
(generate receive status interrupt if UCON[2] is "1")

[2] Frame Error
0 = No frame error during receive
1 = Frame error
(generate receive status interrupt if UCON[2] is "1")

[3] Break Detect
0 = No break receive
1 = Break received
(generate receive status interrupt if UCON[2] is "1")

[5] Receive Data Ready
0 = No valid data in the receive buffer register.
1 = Valid data present in the receive buffer register
(issue interrupt or DMA request if UCON[1:0] set)

[6] Transmit Buffer Register Empty
0 = Valid data in transmit buffer register.
1 = No data transmit buffer register
(issue interrupt or DMA request if UCON[1:0] set)

[7] Transmitter Empty
0 = Transmitter not empty; Tx in progress
1 = Transmitter empty; no data for Tx

O
V

F
R

T
H

T
EUSTAT0, 1, 2 P

T
B
K

R
D 0

Figure 11-7. UART Status Register (USTAT0,1,2)

UART KS32C65100 RISC MICROPROCESSOR

11-12

UART Transmit Buffer Register

There are two identical UART transmit buffer registers (TBR) in the UART block for the two SIO channels, each
of which contains an 8-bit data value to be transmitted over the SIO channel.

In DMA-based transmit mode, the address of the transmit buffer register should be set into the DMA destination
address register as the destination of the DMA channel.

Registers Offset Address R/W Description Reset Value

UTXBUF0 0xb00c W UART ch-0 transmit buffer register 0x00

UTXBUF1 0xb80c W UART ch-1 transmit buffer register 0x00

UTXBUF2 0xc00c W UART ch-2 transmit buffer register 0x00

[7:0] Transmit data This field contains the data to be transmitted by the
corresponding SIO channel. When this register is written,
the transmit buffer register empty bit in the status register
USTAT[6] should be "0" This prevents overwriting transmit
data that may already be present in the TBR. Whenever
the TBR is written with new value, the transmit register
emptybit USTAT[6] is automatically cleared to "0".

012345678910111213141516171819202122232425262728293031

[7:0] Transmit Data for UART

UTXBUF0, 1, 2 Transmit Data

Figure 11-8. UART Transmit Buffer Register (UTXBUF0,1,2)

KS32C65100 RISC MICROPROCESSOR UART

11-13

UART Receive Buffer Register

There are two identical UART receive buffer registers (RBR) in the UART block for the two SIO channels, each
of which contains an 8-bit data value for received serial data.

In DMA-based receive mode, the address of the receive buffer register should be set into the DMA source
address register as the source of the DMA channel.

Registers Offset Address R/W Description Reset Value

URXBUF0 0xb010 R UART ch-0 receive buffer register 0x00

URXBUF1 0xb810 R UART ch-1 receive buffer register 0x00

URXBUF2 0xc010 R UART ch-2 receive buffer register 0x00

[7:0] Receive data This field contains the data received from the
corresponding SIO channel. When UART finishes
receiving a data frame, the receive data ready bit in the
UART status register USTAT[5] should be "1".
This prevents reading invalid receive data that may already
be present in the RBR. Whenever the RBR is read, the
receive data ready bit USTAT[5] is automatically cleared to
"0".

012345678910111213141516171819202122232425262728293031

[7:0] Receive Data for UART

URXBUF0, 1, 2 Receive Data

Figure 11-9. UART Receive Buffer Register (URXBUF0, 1, 2)

UART KS32C65100 RISC MICROPROCESSOR

11-14

UART Baud Rate Divisor Registers

The value stored in the baud rate divisor register, UBRDIV, is used to determine the serial Tx/Rx clock rate (baud
rate) as follows:

UBRDIVn = (int)(source_clock / (bps x 16)) - 1

where the source_clock is either MCLK (the internal master clock) or UCLK (the external UART clock input), as
determined by the setting of the serial clock selection bit in the line control register, ULCON[6].

Registers Offset Address R/W Description Reset Value

UBRDIV0 0xb014 R/W Baud rate divisor register 0 0x0000

UBRDIV1 0xb814 R/W Baud rate divisor register 1 0x0000

UBRDIV2 0xc014 R/W Baud rate divisor register 2 0x0000

012345678910111213141516171819202122232425262728293031

[15:0] Baud Rate Divisor Value
This field contains the baud rate divisor value for the
corresponding SIO channel. Baud ratecan be calculated as:

Baud rate = source_clock/ (divisor * 16)

UBRDIV0, 1, 2 Baud Rate Divisor

Figure 11-10. UART Baud Rate Divisor Register (UBRDIV0,1, 2)

NOTE: THE BAUD RATE DIVISOR SHOULD BE A VALUE FROM 1 TO (2^16-1).

KS32C65100 RISC MICROPROCESSOR UART

11-15

TIMING DIAGRAMS

ParityData Bits (5-8)Start Stop
(1-2) Start

TxD

THRE

WR_THR

INT_TXD

<TRANSMITTER>

ParityData Bits (5-8)Start Stop
(1-2) Start

RxD

INT

RBR

<RECEIVER>

Data Bits

Previous Receive Data Valid Receive Data

Figure 11-11. Interrupt-Based Serial I/O Timing Diagram (Tx and Rx)

KS32C65100 RISC MICROPROCESSOR TONE GENERATOR

12-1

12 TONE GENERATOR

OVERVIEW

The KS32C65100 Tone Generator provides a programmable tone signal which has 50% duty cycle and can be
used to make a 'key-click' sound. The tone Generator block has a tone counter which includes 8_bit
programmable divider and a 1/2 divider for making the 50% duty cycle, and a Tone Data register (TONDATA)
which has the tone enable or disable bit and tone count data bits. The 8 bit programmable divider receives
MCLK/(prescaler+1)/128 clock signals and divides it depending on the count value in TONDATA[7:0] bits. Also,
you can set the prescaler value (Initial value: 0xC) in TSTCON (Figure 14-9).

8-Bit Prescaler

Clock
Divider

1/128
8-Bit Programable

Divider

TONDATA[8]

1/2 Divider
(50% duty)

TONDATA

[1/Tone data]

Tone

Enable/Disable

Reset

Reload

[1/(1+Prescale value)]

MCLK

Figure 12-1. Tone Generator Block Diagram

The TONDATA[8] bit enables or disables the Tone generator operation. When it is cleared to '0', the tone output
is disabled (stopped) and the programmable divider is automatically cleared while the tone data register
(TONDATA) retains its contents. The initial value of the tone enable bit is '0'.

The input clock to the tone generator is MCLK/(prescaler+1)/128. The division ratio of the tone counter is
determined by the tone data register value, and ranges from 0 to 255.

A user has to load data into the tone data register (TONDATA) before enabling the tone generator to get the
correct tone signal. To make out the 50% duty cycle tone signal, KS32C65100 tone generator has a 1/2 divider
with a programmable divider. The output of the programmable divider is divided by the 1/2 divider.

The frequency of the tone is calculated as follows:

MCLK
[(Prescaler+1) * 128 * ToneData * 2]

TONE GENERATOR KS32C65100 RISC MICROPROCESSOR

12-2

Table 12-1. Tone Generator Data Value Setting (MCLK = 33 MHz)

[@ Prescale = 0xC]

TONDATA Tone Freq. TONDATA Tone Freq.

0 No tone (all high) 4 2.479 kHz

1 9.915 kHz

2 4.958 kHz 100 99.159 Hz

3 3.305 kHz 255 38.886 Hz

TONE GENERATOR DATA REGISTER (TONDATA)

The tone generator data register (TONDATA) stores an 8-bit value which determines the frequency of the tone
generator output. The value in the TONDATA register determines the division ratio of the programmable divider.
The divided-by value, therefore, ranges from 0 to 255. Then the output value of the tone counter is divided by
two, producing a 50% duty tone output signal. A reset clears the TONDATA value to '00h'. The tone frequency is
therefore calculated, based on the tone data value, as follows.

MCLK
[(Prescaler + 1) * 128 * ToneData * 2]

Register Offset Address R/W Description Reset Value

TONDATA 0x3804 R/W Tone generator data register 0x0ff

012345678910111213141516171819202122232425262728293031

[7:0] Tone Counter Data
8-bit tone counter data value

[8] tone Generator Control
0 = Clear counters and reset tone output
1 = Generate tone

Tone Count DataX

Figure 12-2. Tone Data Register (TONDATA)

KS32C65100 RISC MICROPROCESSOR WATCH DOG TIMER

13-1

13 WATCHDOG TIMER

OVERVIEW

The KS32C65100 Watchdog Timer is used to resume controller operation when it is disturbed due to noise or
other kinds of system errors or malfunctions. It can be used as a normal interval timer to request interrupt
services. also, you can set the prescaler value (initial value: 0xC) in TCR (Figure 13-3).

8-Bit Prescaler

Clock
Divider

1/16

1/32

1/64

1/128

WTCNT
(down counter)

WTCON[4:3]

Interrupt

[1/(1+Prescale value)]

MCLK

WTCON[5]

Enable/
Disable

nRSTO Pin

Enable/
Disable

Enable/
Disable

WTCON[2] WTCON[0]

Figure 13-1. Watchdog Timer

WATCH DOG TIMER KS32C65100 RISC MICROPROCESSOR

13-2

WATCHDOG TIMER COUNTER REGISTERS

The watchdog timer counter register WTCNT is used to specify the time out duration.

The watchdog timer enable bit (bit5, WTCON) must be '0' before loading a value to this register.

 Watchdog Timer_clock = MCLK / (prescale_value + 1) / division_factor
 Watchdog Timer_duration = count_val. / Watchdog Timer_clock

Table 13-1. Watchdog Timer Counter Setting (MCLK = 33MHz)

[@ Prescale = 0xC, WTCNT = 16_bit count]

Clock Source Resolution Maximum Interval Remark

MCLK/(prescale+1)/16 6.24us 408.9ms Default setting

MCLK/(prescale+1)/32 12.28us 817.9ms -

MCLK/(prescale+1)/64 24.96us 1.636s -

MCLK/(prescale+1)/128 49.92us 3.272s -

Register Offset Address R/W Description Reset Value

WTCNT 0x4004 R/W Watchdog timer count register 0x0003

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Watch Dog Timer Count Register
This specifies the time out duration

Count Value

Figure 13-2. Watchdog Timer Count Register (WTCNT)

KS32C65100 RISC MICROPROCESSOR WATCH DOG TIMER

13-3

WATCHDOG TIMER CONTROL REGISTER

The Watchdog Timer Control register WTCON provides the control bits for the enable/disable of the watchdog
timer, selects the clock signal from 4 different sources, enables/disables interrupts, and enables/disables the
watchdog timer reset output signal nWDTO pin. If the watchdog timer is set to 0, WTCON is cleared to 0x0.

Register Offset Address R/W Description Reset Value

WTCON 0x4000 R/W Watchdog timer control register 0x21

0001020304050607080910111213141516171819202122232425262728293031

[0] Reset Mode
0 = Disable nWDTO pin 1 = Enable nWDTO pin

[2] Interrupt Mode
0 = Disable Interrupt 1 = Enable Interrupt

[4:3] Clock Division Factor Selection
00 = 16 01 = 32
10 = 64 11 = 128

[5] Watch Dog Timer Enable/Disable
0 = Disable timer 1 = Enable timer

X CLK X X0

Figure 13-3. Watchdog Timer Control Register (WTCON)

WATCHDOG TIMER OPERATION

Before loading or reading a count value of the Watchdog Timer Count Register (WTCNT), users have to disable
the watchdog timer by setting the WTCON[5] bit to zero. When WTCON[5] bit is set to "1", the watchdog timer is
enabled and the counter starts down-count. The watchdog counter register value is accessible at any time while
the watchdog timer is enabled, because it provides read and write features.

The watchdog timer provides general timer interrupt as well as system reset features. To enable a timer interrupt,
WTCON[2] bit has to be set to 1. When a timer interrupt is enabled, the interrupt signal generates one pulse of a
request signal to CPU to compare it to the long watchdog reset signal. The interrupt pending bit (bit2, INTPNDR)
is automatically set to '1' when an underflow occurs.

When WTCON[0] bit is '1', the nWDTO pin is enabled and the watchdog reset signal comes through the nWDTO
pin. If the watchdog counter reaches to zero, the nWDTO signal is activated during for 128 MCLK cycles for
some reason, and WTCON will be 0x0. To avoid the watchdog timer activating the nWDTO signal, MPU has to
periodically reload the counter value into the watchdog counter register (WTCNT).

The nWDTO signal is not connected to nRESET internally. If nWDTO is connected to nRESET by an external
logic, the KS32C65100 initialization routine will be executed by the nWDTO signal.

KS32C65100 RISC MICROPROCESSOR I/O PORTS

14-1

14 I/O PORTS

OVERVIEW

The KS32C65100 has 18 input, 43 output, and 27 input/output ports.

I/O PORT SPECIAL REGISTERS

Two registers control the I/O port configuration: IOPMOD and IOP.
Table 14-1 shows the possible values for the port mode registers. The IOP register contains one bit for each port
which reflects the signal level at the respective port pin.

NOTE: I/O port muxed pin configuration

Table 14-1. I/O Port Mode Configuration and Settings

I/O Port Pin I/O Port Mode Configuration Settings

Function for 1 Function for 0

GIP[0]: RXD0 GIP[0] RXD0

GIP[1]: RXD1 GIP[1] RXD1

GIP[2]: RXD2 GIP[2] RXD2

GIP[3]: nEXT_INT0 GIP[3] nEXT_INT0

GIP[4]: nEXT_INT1 GIP[4] nEXT_INT1

GIP[5]: nEXT_INT2 GIP[5] nEXT_INT2

GIP[6]: nEXT_DREQ GIP[6] nEXT_DREQ

GIP[7]: nWAIT GIP[7] nWAIT

GIP[8]: ECD_IN1 GIP[8] ECD_IN1

GIP[9]: ECD_IN2 GIP[9] ECD_IN2

GIP[10]: nHSYNC1 GIP[10] nHSYNC1

GIP[11]: nLREADY GIP[11] nLREADY

GIP[12]: nHSYNC2 GIP[12] nHSYNC2

GIP[13]: nVDI GIP[13] nVDI

GIP[14]: nVCLK GIP[14] nVCLK

GIP[15]: nINIT GIP[15] nINIT

GIP[16]: nSLCTIN GIP[16] nSLCTIN

GIP[17]: nAUTOFD GIP[17] nAUTOFD

I/O PORT KS32C65100 RISC MICROPROCESSOR

14-2

Table14-1. I/O Port Mode Configuration and Settings (Continued)

I/O Port Pin I/O Port Mode Configuration Settings

Function for 1 Function for 0

GOPA[0]: TXD0 GOPA[0] TXD0

GOPA[1]: TXD1 GOPA[1] TXD1

GOPA[2]: TXD2 GOPA[2] TXD2

GOPA[3]: TONE GOPA[3] TONE

GOPA[4]: nWDTO GOPA[4] nWDTO

GOPA[5]: nEXT_DACK GOPA[5] nEXT_DACK

GOPA[6]: CLKOUT GOPA[6] CLKOUT

GOPA[7]: nRCS1 GOPA[7] nRCS1

GOPA[8]: nECS2 GOPA[8] nECS2

GOPA[9]: nIORD GOPA[9] nIORD

GOPA[10]: nIOWR GOPA[10] nIOWR

GOPA[13:11]: PWMO[2:0] GOPA[13:11] PWMO[2:0]

GOPA[14]: nVDO1 GOPA[14] nVDO1

GOPA[15]: LSU_CLK GOPA[15] LSU_CLK

GOPA[18:16]: SLED[2:0] GOPA[18:16] SLED[18:16]

GOPA[20:19]: SNM_CON[1:0] GOPA[20:19] SNM_CON[1:0] (SM_PHB, SM_PHA)

GOPA[22:21]: LFM_CON[1:0] GOPA[22:21] LFM_CON[1:0] (LF_PHB, LF_PHA)

GOPA[24:23]: CR_PH[1:0] GOPA[24:23] CR_PH[1:0] (CR_PHB, CR_PHA)

GOPA[28:25]: CR_CUR[3:0] GOPA[28:25] CR_CUR[3:0] (IB1, IB0, IA1, IA0)

GOPA[29]: nVDO2 GOPA[29] nVDO2

GOPB[12:0]: PHGA[12:0] GOPB[12:0] PHGA[13:01]

GIOP[26:11]: PHOE[16:1] GIOP[26:11] PHOE[16:01]

KS32C65100 RISC MICROPROCESSOR I/O PORTS

14-3

I/O PORT MODE REGISTER

The I/O port mode register GIOPMOD is used to configure the GIOP (general in/out port).

Register Offset Address R/W Description Reset Val.

GIOPMOD 0x2800 R/W Bi-directional port mode register 0xffff800

0001020304050607080910111213141516171819202122232425262728293031

[26:0] General In/Out(GIOP) Mode
0 = Input mode
1 = Ouptut mode

[27] GIOP/PHOE Out Mode
0 = GIOP mode
1 = PHOE output mode

X X XXXXXXXXXXXXXXXXXXXXXXXXXX

GIOP[27:0]

Figure 14-1. Bi-directional Port Mode Register (GIOPMOD)

INPUT PORT MODE REGISTER

Register Offset Address R/W Description Reset Val.

GIPMOD 0x2804 R/W Input port mode register 0x00000

0001020304050607080910111213141516171819202122232425262728293031

[17:0] General In(GIP) Mode
0 = Control signal
1 = Intput mode

X X XXXXXXXXXXXXXXXX

GIP[17:0]

Figure 14-2. Input Port Mode Register (GIPMOD)

I/O PORT KS32C65100 RISC MICROPROCESSOR

14-4

OUTPUT A PORT MODE REGISTER

Register Offset Address R/W Description Reset Value

GOPAMOD 0x2808 R/W Output port mode register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[29:0] General Output(GOPA) Mode
0 = Control signal
1 = Output mode

X X XXXXXXXXXXXXXXXXXXXXXXXXXX

GOPA[29:0]

XX

Figure 14-3. Output Port Mode Register (GOPAMOD)

OUTPUT B PORT MODE REGISTER

Register Offset Address R/W Description Reset Value

GOPBMOD 0x280C R/W Output port mode register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[12:0] General Output (GOPB) Mode
0 = Control signal
1 = Ouptut mode

X X XXXXXXXXXXX

GOPB[12:0]

Figure 14-4. Output Port Mode Register (GOPBMOD)

KS32C65100 RISC MICROPROCESSOR I/O PORTS

14-5

I/O PORT DATA REGISTER

The I/O port data register, GIOPD, contains one-bit values for I/O ports that are configured to input mode and
one-bit write value for ports that are in output mode.

Register Offset Address R/W Description Reset Value

GIOPD 0x2810 R/W Bi-directional port data register 0x0000000

0001020304050607080910111213141516171819202122232425262728293031

[26:0] General In/Out (GIOP) Data

X X XXXXXXXXXXX

GIOP[26:0]

XXXXXXXXXXXXXX

Figure 14-5. Bi-directional Port Data Register (GIOPD)

INPUT PORT DATA REGISTER

Register Offset Address R/W Description Reset Value

GIPD 0x2814 R/W Input port data register 0xXXXXX

0001020304050607080910111213141516171819202122232425262728293031

[17:0] General Input Data

X X XXXXXXXXXXX

GIP[17:0]

XXXXX

Figure 14-6. Input Port Data Register (GIPD)

I/O PORT KS32C65100 RISC MICROPROCESSOR

14-6

OUTPUT A PORT DATA REGISTER

Register Offset Address R/W Description Reset Value

GOPAD 0x2818 R/W Output port data register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[29:0] General Output(GOPA) Data

X X XXXXXXXXXXX

GOPA[29:0]

XXXXXXXXXXXXXXXXX

Figure 14-7. Output Port A Data Register (GOPAD)

OUTPUT B PORT DATA REGISTER

Register Offset Address R/W Description Reset Value

GOPBD 0x281C R/W Output port data register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[12:0] General Output (GOPB) Data

X X XXXXXXXXXXX

GOPB[12:0]

Figure 14-8. Output Port B Data Register (GOPBD)

KS32C65100 RISC MICROPROCESSOR I/O PORTS

14-7

TEST CONTROL REGISTER

The test control register (TSTCON) contains the 16 bits for testing the functions of CHORUS. These bits for
testing are only used during fabrication. These bits are not specified in this manual. The other bits which you can
use are as follows:

• CKOUT mode

— The CKOUT mode bit determines whether CKOUT output is divided by 2 or not.

— 0 = MCLK

— 1 = MCLK / 2

• Prescaler value

— Timer0, Timer1, Timer2, watchdog timer, tone generator, and line feed motor timer use this prescaler value
to divide MCLK.

• Bidirectional control pin

Register Offset Address R/W Description Reset Value

TSTCON 0x2820 R/W Test control register 0x00600

0001020304050607080910111213141516171819202122232425262728293031

[0] Chip Test Mode

[1] Fire Test Mode

[2] Out CLK Mode

[3] Phfire Test Mode

[4] Test FSTB Mode

[5] Clock Output Mode
0 = MCLK
1 = MCLK/2

[6] HOE Direction

[14:7] Prescaler Value (> 1)

[15] IP Test Output Mode
1 = GPIO[10:0] IP test out

[16] IP Test Input Mode
1 = GIOP[10:0] IP test in

X O OOOOOxx Prescaler Value

Figure 14-9. Test Control Register (TSTCON)

I/O PORT KS32C65100 RISC MICROPROCESSOR

14-8

EXTERNAL INTERRUPT CONTROL REGISTER

The external interrupt control register (INTCON) is used for external interrupt signal filter mode control.

Register Offset Address R/W Description Reset Value

INTCON 0x2824 R/W External interrupt control register 0x000

0001020304050607080910111213141516171819202122232425262728293031

[2:0] EXT_INT0 Control Mode

[5:3] EXT_INT0 Control Mode

[8:6] EXT_INT0 Control Mode
000 = Low level sensitive mode
001 = High level sensitive mode
01X = Falling edge trigger mode
11X = Rising edge trigger mode

X X XXXXXXX

INTCON[8:0]

Figure 14-10. External Interrupt Control Register (INTCON)

TEST PIN SETTING

Test2 Test1 Test0 Test Mode Internal Clock

0 0 0 Normal mode0 (LF, Scan Mtr output

PHASE[3:0]: Initial value ⇒ "H")

0 0 1 Normal mode1 (LF, Scan Mtr output

PHASE[3:0]: Initial value ⇒ "L")

0 1 0 IP scan test mode

0 1 1 IP ADC test mode

OSC_CLK

1 0 0 Normal mode0 (LF, Scan Mtr Output

PHASE[3:0]: Initial value ⇒ "H")

1 0 1 Normal mode1 (LF, Scan Mtr output

PHASE[3:0]: Initial value ⇒ "L")

OSC_CLK/2

1 1 0 Core test mode

1 1 1 NAND tree test mode

OSC_CLK

KS32C65100 RISC MICROPROCESSOR INTERRUPT CONTROLLER

15-1

15 INTERRUPT CONTROLLER

OVERVIEW

The KS32C65100 interrupt structure has a total of 30 interrupt sources, which can be individually or globally
enabled or disabled. Interrupt requests can be generated by internal function blocks and at external pins. The
ARM7TDMI core recognizes two kinds of interrupts: a normal interrupt request (IRQ) and a fast interrupt request
(FIQ). Therefore, all KS32C65100 interrupts can be categorized as either IRQ or FIQ. The KS32C65100 interrupt
controller extends the number of multiple interrupt sources that can be serviced by using three special registers,
INTMOD, INTPND, and INTMSK:

• Interrupt mode register.
Defines the interrupt mode, IRQ or FIQ, for each interrupt source.

• Interrupt pending register.
Indicates that an interrupt requests is pending (that is, when the I-flag or F-flag is set in the program status
register, PSR). This status prevents any additional interrupts from being acknowledged. When the pending bit
is set, the interrupt service routine starts whenever the I-flag or F-flag is cleared to '0'. The service routine
must clear the pending condition by writing '1' to the corresponding pending bit.

• Interrupt mask register.
Indicates that the current interrupt has been disabled if the corresponding mask bit is '0'. If an interrupt mask
bit is '1', the interrupt will be serviced normally. And if a global mask bit (bit 31) is cleared, all interrupts are not
serviced. However, the source's pending bit is set when the interrupt is generated, even if the corresponding
mask bit is '0'. After the global mask bit is set, the interrupt will be serviced.

INTERRUPT CONTROLLER KS32C65100 RISC MICROPROCESSOR

15-2

INTERRUPT SOURCES

The 30 interrupt sources in the KS32C65100 interrupt structure are described, in brief, in Table 15.1.

Table 15-1. Interrupt Sources

No. Source Name Description

0 INT_EXT2 External interrupt 2 (comes from general input port 5)

1 INT_EXT1 External interrupt 1 (comes from general input port 4)

2 INT_EXT0 External interrupt 0 (comes from general input port 3)

3 INT_WATCHDOG Watch dog timer interrupt

4 INT_TXD2 UART2 transmit interrupt

5 INT_TXD1 UART1 transmit interrupt

6 INT_TXD0 UART0 transmit interrupt

7 INT_RXD2 UART2 receive interrupt

8 INT_RXD1 UART1 receive interrupt

9 INT_RXD0 UART0 receive interrupt

10 INT_ERR2 UART2 error interrupt

11 INT_ERR1 UART1 error interrupt

12 INT_ERR0 UART0 error interrupt

13 INT_DMA1 GDMA transfer finish interrupt

14 INT_DMA0 CDMA transfer finish interrupt

15 INT_TIMER2 Timer2 interrupt

16 INT_TIMER1 Timer1 interrupt

17 INT_TIMER0 Timer0 interrupt

18 INT_PPIC Parallel port interface controller interrupt

19 INT_IP1 Image processor interrupt 1 (Motor interrupt)

20 INT_IP0 Image processor interrupt 0 (SI interrupt)

21 INT_POS Carrier position interrupt

22 INT_LFMTR Line feed step interrupt

23 INT_CRST Carrier step interrupt

24 INT_PRINT Print interrupt

25 INT_HDMA Head DMA interrupt

26 Reserved Not Used

27 INT_EOP PIFC end of page interrupt

28 INT_SOD PIFC Start of DMA interrupt

29 INT_PUR PIFC page under-run interrupt

30 INT_SYNC1 PIFC Psync request interrupt

KS32C65100 RISC MICROPROCESSOR INTERRUPT CONTROLLER

15-3

SPECIAL REGISTER

Interrupt Mode Register

Bits in the interrupt mode register INTMOD specify if an interrupt is to be serviced as a fast or normal interrupt.

Register Offset Address R/W Description Reset Value

INTMOD 0x2000 R/W Interrupt mode register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[30:0] Interrupt Mode Bit
Each of the 31bits in the interrupt mode
register, INTMOD, corresponds to an interrupt source. When
the source's interrupt mode bit is set to '1', the interrupt is
processed by the ARM7TDMI core in FIQ (fast interrupt)
mode. Otherwise, it is processed in IRQ mode (normal
interrupt).
The 30 interrupt sourcess are summarized in Table 15-1.

X X XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 15-1. Interrupt Mode Register

INTERRUPT CONTROLLER KS32C65100 RISC MICROPROCESSOR

15-4

Interrupt Pending Register

The interrupt pending register INTPND contains interrupt pending bits for each interrupt source. The INTPND has
nothing to do with INTMSK. Although INTMSK forbids an Interrupt request generated, INTPND operates properly,
independent of INTMSK.

Register Offset Address R/W Description Reset Value

INTPND 0x2004 R/W Interrupt pending register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[30:0] Interrupt Pending Bit
Each of the 31bits in the interrupt pending
register, INTPND, corresponds to an interrupt source. When on
interrupt request is generated, it will be set by '1'.
The interrupt service routine must then clear the pending condition by
writing '1' to the appropriate pending bit.
Only the bit written with '1' toggles from '1' to '0'. The 30 interrupt
sources are summarized in Table 15-1.

X X XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 15-2. Interrupt Pending Register

KS32C65100 RISC MICROPROCESSOR INTERRUPT CONTROLLER

15-5

Interrupt Mask Register

Register Offset Address R/W Description Reset Value

INTMSK 0x2008 R/W Interrupt mask register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[31] Global Mask
If this bit is set to "0", all interrupts are disabled.

[30:0] Interrupt Mask Bit
Each of the 31 bits in the interrupt masking
register, INTMSK, corresponds to an interrupt
source. Interrupt mask bit is '1', the interrupt will be serviced
normally. The 30 interrupt sources are summarized in Table
15-1.

X X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 15-3. Interrupt Mask Register

KS32C65100 RISC MICROPROCESSOR LF MOTOR

16-1

16 LF MOTOR

OVERVIEW

This module performs the following functions:

• Step interrupt generation for driving line feed motor.

• 14-bit timer for step interrupt which controls the change of drive signal for line feed motor using selectable
clock.

• Phase can be written by software or hardware.

NOTE

1. When the timer is enabled, it begins to decrease from the base value.
2. When the timer expires, the associated interrupt is generated, the base value is reloaded and the
timer continues to decrease.
3. If a new value is loaded in this register before the timer is expired, the timer will keeping counting
with the new value.

SPECIAL FUNCTION REGISTER

LINE FEED MOTOR CONTROL REGISTER

This register selects the phase written by software or hardware, direction, interrupt request generation, and clock
select.

Register Offset Address R/W Description Reset Value

LFCR 0x5800 R/W Line feed motor control register 0x0800

LF MOTOR KS32C65100 RISC MICROPROCESSOR

16-2

0001020304050607080910111213141516171819202122232425262728293031

[0] Timer Start
0 = Stop timer 1 = Start timer

[2:1] Clock Select
00 = MCLK/(prescaler + 1)/8
01 = MCLK/(prescaler + 1)/16
10 = MCLK/(prescaler + 1)/32
11 = MCLK/(prescaler + 1)/64

[3] Interrupt Request at Each Step
0 = Disable 1 = Enable

[4] Write Strobe (Write Only: async clk)
0 = No operation 1 = Write strobe

[5] Step Write Enable
0 = Disable 1 = Enable

[6] Phase Hold
0 = Disable 1 = Enable

[7] Direction
0 = Up 1 = Down

[8] Chop Enable
0 = Disable 1 = Enable

[9] Phase Write Mode
0 = Phase written by software
1 = Phase written by hardware

[10] Motor Selection
0 = Bi-polar 1 = Uni-polar

[11] Initialize Drive State (Write Only)
0 = Initialize 1 = Normal

[12] Software Latch Strobe (Write Only)
0 = No operation 1 = Latch strobe

[13] Interrupt Latch Enable
0 = Disable 1 = Enable

[15:14] Phase
00 = Full step 01 = Half step
1x = Quarter step

X CLK XXXXXXXXXXXPH

Figure 16-1. LF Motor Control Register

KS32C65100 RISC MICROPROCESSOR LF MOTOR

16-3

LINE FEED MOTOR PHASE CONTROL REGISTER

Register Offset Address R/W Description Reset Value

LFPCR 0x5804 R/W Line feed motor phase control register 0x3c0

0001020304050607080910111213141516171819202122232425262728293031

[3:0] Phase A, AZ, B, BZ or IA0, 1, IB0, 1
This 4-bit out signals control the motor phase

[4] LF Motor Control 1
0 = Low 1 = High

[5] LF Motor Control 2
0 = Low 1 = High

[7:6] Default Phase[1:0] (When Write)
00 = AB 01 = AzB
10 = AzBz 11 = ABz

[6] PHBZ_IB1 (when read) 0 = low, 1 = high
[7] PHB_IB0 (when read) 0 = low, 1 = high

[8] PHAZ_IB1 (Read Only)
0 = Low 1 = High

[9] PHA_IA (Read Only)
0 = Low 1 = High

[10] LFPHASEB (Read Only)
0 = Low 1 = High

[11] LFCON_PHA (Read Only)
0 = Low 1 = High

X XXXXXXX Phase

Figure 16-2. LF Motor Phase Control Register

LF MOTOR KS32C65100 RISC MICROPROCESSOR

16-4

LINE FEED TIMER REGISTER

This 14-bit timer is used to generate the Line feed motor's phase which is driven by software or hardware
according to line feed motor control register.

Registers Offset Address R/W Description Reset Value

LFTBR 0x5808 R/W Line feed motor timer base register 0x00000000

LFTOR 0x580c R Line feed motor timer observation register 0x1e0d

LFTCBR 0x5810 R/W Line feed motor timer compare base
register

0x0000

LFTCOR 0x5814 R LF motor timer compare observation
register

0x0000

0001020304050607080910111213141516171819202122232425262728293031

[13:0] Timer Value
This time is used to generate line feed motor's phase
to phase interval

Timer Value

Figure 16-3. LF Motor Timer Register

KS32C65100 RISC MICROPROCESSOR LF MOTOR

16-5

LFCON EACH CONTROL REGISTER

This register is used to set current level of each steps in bi-polar mode.

Register Offset Address R/W Description Reset Value

LFCON 0x5818 R/W LF step each control register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] LFCON Each Control Register

Value

Figure 16-4. LFCON Register

CAUTION

1. When the timer is enabled, it begins to decrease from the base value.

2. When the timer expires, the associated interrupt is generated, the base value is reloaded and the timer
continues to decrease.

3. If a new value is loaded in this register before the timer is expired, the timer will keeping counting with the
new value.

4. In bi-polar mode, lfcr[12] and lfpcr[5:0] should all be set to 0.

LF MOTOR KS32C65100 RISC MICROPROCESSOR

16-6

PHASE STATE AND CURRENT TABLE FOR FULL/HALF/QUARTER STEP MODE

Current State & LevelDirection Phase
State IA1 IA0 IB1 IB0 IA/IB%

Each Control
Register

Holding
Register = 1

Remark

AB 0

0

0

1

0

0

0

1

100/100%

66/66%

0

1

33/33%

AB 1 0 0

0

0

1

33/100%

33/66%

0

1

33/33%

CW

CCW

(A)B

(Az)B
1 1 0

0

0

1

0/100%

0/66%

0

1

0/33%

AzB 1 0 0

0

0

1

33/100%

33/66%

0

1

33/33%

AzB 0

0

0

1

0

0

0

1

100/100%

66/66%

0

1

33/33%

AzB 0

0

0

1

1 0 100/33%

66/33%

0

1

33/33%

CW

CCW

Az(B)

Az(Bz)
0

0

0

1

1 1 100/0%

66/0%

0

1

33/0%

AzBz 0

0

0

1

1 0 100/33%

66/33%

0

1

33/33%

AzBz 0

0

0

1

0

0

0

1

100/100%

66/66%

0

1

33/33%

AzBz 1 0

1

0

0

0

1

33/100%

33/66%

0

1

33/33%

(Az)Bz

(A)Bz
1 0 0

0

0

1

0/100%

0/66%

0

1

0/33%

ABz 1 0 0

0

0

1

33/100%

33/66%

0

1

33/33%

ABz 0

0

0

1

0

0

0

1

100/100%

66/66%

0

1

33/33%

ABz 0

0

0

1

1 0 100/33%

66/33%

0

1

33/33%

CW

CCW

A(Bz)

A(B)
0

0

0

1

1 1 100/0%

66/0%

0

1

33/0%

AB 0

0

0

1

1 0 100/33%

66/33%

0

1

33/33%

KS32C65100 RISC MICROPROCESSOR CR CONTROL

17-1

17 CR CONTROL

OVERVIEW

This module is configured as follows:

• Basic Timer using MCLK clock is 16-bit-down-counter.

• Prestep timer using 19200/9600 PPI (Pulse Per Inch) clock is 10-bit down-counter.

• Phase and current control signal generation for step motor of bi-polar type.

• Filter for photo sensor input, position counting strobe and direction generation for DC motor.

• Encoder cycle counter of 20-bit up-counter and latch with MCLK clock to calculate the cycle of photo sensor
input in DC motor mode.

• Interrupt interval counter of 16-bit up-counter and latch with MCLK/32 clock to calculate the interval of carrier
interrupt in DC motor mode.

This module performs the following functions in step motor mode:

• Basic timer generates the basic pulse of 19200/9600 PPI to control the state and position of carrier step
motor and to generate fire strobe to control the printhead.

• Prestep timer is used to generate carrier step pulse to control the change of output state signals which are
phase and current control signals for carrier motor driver and carrier step interrupt according to carrier motor
step rate.

• State control block is used to generate two phases and four current control signals for every step interrupt
according to setting of motor direction and state mode.

This module performs the following functions in DC motor mode:

• Filter block is used to protect from false information by noise onto input signals from photo sensor.

• Encoder counter is used to calculate and store the cycle time of preceding input from photo sensor. This
cycle time is used for base value of basic timer which generates the basic pulse of 2400 PPI for fire strobe
control in DC motor mode, and this time value can be read by CPU.

• Interrupt counter is used to calculate and store the interval time of DC motor interrupt.
If this counter overflows before the next interrupt has been observed, an interrupt will be issued, and the
counter will go back to zero.

• In DC motor mode, prestep timer is used to set the number of rising edge on preceding input from photo
sensor to issue an interrupt for DC motor position control.

CR CONTROL KS32C65100 RISC MICROPROCESSOR

17-2

NOTES:
1. Writing the value of basic timer base register 1 must be preceded by that of basi c timer base register 2 after the reset is

done.
2. If the next base value is written to the other base register when the basic timer based on one of the base registers is

running, the counter will keep counting with next value. If the next base value is not written to the other register,
the counter will the repeat counting with current base value until the timer is disabled.

3. In order to set DC motor mode, bit 9 of CMCR has to be set "1".
4. For the step motor mode, CMCR[11:4] has to be set zero .

KS32C65100 RISC MICROPROCESSOR CR CONTROL

17-3

SPECIAL FUNCTION REGISTER

 Carrier Motor Control Register

 This register determines whether the interrupt request is generated or not, and enables or disables the prestep
timer and basic timer.

 Register Offset Address R/W Description Reset Value

 CMCR 0x6000 R/W Carrier motor control register 0x204

0001020304050607080910111213141516171819202122232425262728293031

[0] Basic Timer Enable
0 = Disable 1 = Enable

[1] Preset Timer Enable
0 = Disable 1 = Enable

[2] Carrier Step Interrupt Enable
0 = Disable 1 = Enable

[3] Only for Test (Initial "1")

[4] DC Motor Output Enable
0 = Disable 1 = Enable

[5] DC Motor Output Selection/Direction
0 = DCOUT1 is enabled/DIR = 0
1 = DCOUT2 is enabled/DIR = 1

[6] PWM Timer Run
0 = Stop 1 = Run

[7] PWM Mode Selection
0 = 2 PWM signal mode
1 = 1 PWM and direction signal mode

[8] Preceding Encoder Input Selection
0 = CHX 1 = CHY

[9] Motor Type Selection
0 = Step motor 1 = DC motor

[10] Head Type Selection in DC Mode
0 = 208 nozzle head 1 = 56 nozzle head

[11] Overflow Interrupt Enable
0 = Disable
1 = Enable DC interrupt causing overflow of interrupt interval
counter

XXXXXXXXXXXX

 Figure 17-1. Carrier Motor Control Register

CR CONTROL KS32C65100 RISC MICROPROCESSOR

17-4

 Basic Timer Base Register

 There are two basic timers, BTB1R and BTB2R. At first, the timer starts with the value of BTB1R, but after down-
count stops the timer starts with the value of BTB2R, and only BTB2R is written to a new value. Otherwise, the
timer starts with the current base timer value (repeat mode).

 Registers Offset Address R/W Description Reset Value

 BTB1R 0x6004 R/W Basic timer base register 1 0xXXXX

 BTB2R 0x6008 R/W Basic timer base register 2 0xXXXX

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Base Timer 1/2 Count Value

Count Value

 Figure 17-2. Basic Timer Base Register

 Prestep Timer Base Register

 Register Offset Address R/W Description Reset Value

 PSTBR 0x600c R/W CR_Step_INT counter & prestep
counter base register

 0x000

0001020304050607080910111213141516171819202122232425262728293031

[9:0] Prestep Count Value

[11:10] CR_Step_Interrupt Count Value

Count ValueX X

 Figure 17-3. Pre-step Timer Base Register

KS32C65100 RISC MICROPROCESSOR CR CONTROL

17-5

 CR State Control Register

 This register can generate two phase lines and four current control lines to drive a bipolar stepping motor. Eight
output combinations are sequentially presented on these six lines.

 Register Offset Address R/W Description Reset Value

 CRSCR 0x6010 R/W CR state control register 0x603f

0001020304050607080910111213141516171819202122232425262728293031

[5:0] Phase Status (Read Only)
[0] IB0
[1] IB1
[2] IA0
[3] IA1
[4] PHASE B
[5] PHASE A

[6] Write Strobe (Write Only: asyn clk)
0 = No operation 1 = Write strobe

[7] Write Enable (Asyn Enable)
0 = Disable 1 = Enable

[9:8] Default Phase
00 = AB 01 = AzB
10 = AzBz 11 = ABz

[11:10] Phase A Current Control (IA0, 1, A1)
00 = Full step 01 = Half step
1x = Quarter step

[12] Direction
0 = Up 1 = Down

[13] Holding Enable
0 = Normal state 1 = Holding state

[14] Phase Change Enable
0 = Disable 1 = Enable

[15] Initial Drive State Control (Write Only)
0 = Initialize 1 = Normal

Phase StatusXXIBIAXXXX

 Figure 17-4. CR State Control Register

CR CONTROL KS32C65100 RISC MICROPROCESSOR

17-6

 CRSREG Each Control Register

 This register is used to set the active current level for each step in bi-polar mode.
You can refer to the phase state and current table the next page for detailed current level of each step.

 Register Offset Address R/W Description Reset Value

 CRSREG 0x6030 R/W CR step each control register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] CRSREG Each Control Register

Value

 Figure 17-5. CRSREG Register

KS32C65100 RISC MICROPROCESSOR CR CONTROL

17-7

 Phase State and Current Table for Full/Half/Quarter Step Mode

 Current State & Level Direction Phase
State

 IA1 IA0 IB1 IB0 IA/IB%

 Each
Control
Register

 Holding
Register = 1

 Remark

 AB 0

 0

 0

 1

 0

 0

 0

 1

 100/100%

 66/66%

 0

 1

 33/33%

 AB 1 0 0

 0

 0

 1

 33/100%

 33/66%

 0

 1

 33/33%

 CW

 CCW

 (A)B

 (Az)B
 1 1 0

 0

 0

 1

 0/100%

 0/66%

 0

 1

 0/33%

 AzB 1 0 0

 0

 0

 1

 33/100%

 33/66%

 0

 1

 33/33%

 AzB 0

 0

 0

 1

 0

 0

 0

 1

 100/100%

 66/66%

 0

 1

 33/33%

 AzB 0

 0

 0

 1

 1 0 100/33%

 66/33%

 0

 1

 33/33%

 CW

 CCW

 Az(B)

 Az(Bz)
 0

 0

 0

 1

 1 1 100/0%

 66/0%

 0

 1

 33/0%

 AzBz 0

 0

 0

 1

 1 0 100/33%

 66/33%

 0

 1

 33/33%

 AzBz 0

 0

 0

 1

 0

 0

 0

 1

 100/100%

 66/66%

 0

 1

 33/33%

 AzBz 1 0

 1

 0

 0

 0

 1

 33/100%

 33/66%

 0

 1

 33/33%

 (Az)Bz

 (A)Bz
 1 0 0

 0

 0

 1

 0/100%

 0/66%

 0

 1

 0/33%

 ABz 1 0 0

 0

 0

 1

 33/100%

 33/66%

 0

 1

 33/33%

 ABz 0

 0

 0

 1

 0

 0

 0

 1

 100/100%

 66/66%

 0

 1

 33/33%

 ABz 0

 0

 0

 1

 1 0 100/33%

 66/33%

 0

 1

 33/33%

 CW

 CCW

 A(Bz)

 A(B)
 0

 0

 0

 1

 1 1 100/0%

 66/0%

 0

 1

 33/0%

 AB 0

 0

 0

 1

 1 0 100/33%

 66/33%

 0

 1

 33/33%

CR CONTROL KS32C65100 RISC MICROPROCESSOR

17-8

 CR_PWM TIMER

 Logic Configuration

 The PWM block is configured of the Cycle_Time base register, On_Time base register, counter observation
register and 16-bit down-counter.

 Function

 • The PWM output signal's period and the On/Off time within it is decided by the Cycle_Time base value
and the On_Time base value. If the On_Time base value is the same or larger than the Cycle_Time base
value, the PWM output signal maintains On status.

 • The 16-bit down-counter's RUN (enable) or STOP (disable) status is decided by the CMCR[6].

 • The PWM block operation and the output according to CMCR's bits 4, 5 and 7 are shown in the following
table.

 CMCR Description DC motor control signal output status

 CMCR[4] DC motor output enable Enables the PWM outputs

 CMCR[7] PWM mode selection 0 1

 CMCR[5] DC motor direction/output selection 0 1 x x

 DC_CRIA0 Pin PWM signal 0 PWM signal

 DC_CRIA1 Pin 0 PWM signal Direction

 Counter Base Register and Observation Register

 Registers Offset Address R/W Description Reset Value

 PWMOBS 0x6014 R PWM counter observation register 0x0000

 PWMCYL 0x6018 R/W PWM cycle time base register 0x0000

 PWMONT 0x601C R/W PWM on time base register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] PWM Cycle/On Time Base Value

Count Value

 Figure 17-5.PWM Counter Base Register

 Caution

 Real cycle time = (base value + 1) × 1/MCLK
 Real on time = (base value + 1) × 1/MCLK

  This block only operates in DC mode.

KS32C65100 RISC MICROPROCESSOR CR CONTROL

17-9

 ENCODER COUNTER

 Logic Configuration

 This block is configured of a 20-bit up-counter and a 20-bit register for storing the counting results.

 Function

• It counts the period of the photo sensor (encoder sensor) input and stores the value in the register.

• The period is used as a base value for calculating the fire strobe and fire window time according to the setting
of the fire DPI.

 Countering Result Register and Observation Register

 Registers Offset Address R/W Description Reset Value

 ECDTIM 0x6020 R Encoder counter observation register 0x20292

 ECDVAL 0x6024 R Encoder cycle value register 0x00000

0001020304050607080910111213141516171819202122232425262728293031

[19:0] Encoder Cycle Register

Counting Result

 Figure 17-6. Encoder Cycle Register

 Caution

 This block only operates in DC mode.

CR CONTROL KS32C65100 RISC MICROPROCESSOR

17-10

 INTERRUPT INTERVAL COUNTER

 Logic Configuration

 This block is composed of a 16-bit up-counter and a 16-bit register for storing the counting results.

 Function

• This logic starts operating after the first DC motor interrupt is generated.

• It counts the interval between each DC motor interrupt and the next, and stores the value in the register.

• When CMCR[11] is set to 1 and the counter overflows before the generation of the next interrupt, the DC
motor interrupt is generated, and the counter and pre-step timer are cleared and restarted.

• The DC motor interrupt is generated in DC mode when the photo (encoder) sensor input's rising edge occurs
for the number of times specified in the pre-step timer.

 Counting Result Register and Observation Register

 Registers Offset Address R/W Description Reset Value

 INTTIM 0x6028 R Interval counter observation register 0x0000

 INTVAL 0x602C R Interrupt interval value register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Interrupt Interval Value

Counting Result

 Figure 17-7. Interrupt Interval Value Register

KS32C65100 RISC MICROPROCESSOR CR CONTROL

17-11

 SUGGESTIONS FOR CARRIER MOTOR DRIVE F/W DESIGN

 When CR Motor is Stopped

• The BASIC timer and PRESTEP timer's RUN bit must be reset to "0".
{Bits 0, 1 of CMCR(0x6000)}

• The position block enable bit (bit 0 of PFCR(0x6820)) must be reset to "0".

 When CR Motor is Restarted

• Must write new (or previous) values in the BASIC timer base registers.

• Must write new (or previous) values in the PRESTEP timer base Register.

• Must set the position block enable bit (bit 0 of PFCR(0x6820)) to "1".

• Must set BASIC timer and PRESTEP timer's RUN bit to "1".

 In other words, before starting Re-RUN after stopping the BASIC timer, you must:

• Rewrite the BASIC timer base register and PRESTEP timer base register values, and

• Reset the position block enable bit before setting, to reduce the error in carrier motor position.

 To reduce location errors, you should fix the position & fire control register's bit 6 (position counter clock) to 1,
adjust the position and fire Pre-Scaler values, and set the fire DPI.

• The value of position & fire control register's bit 6 should not be changed during system operation.

KS32C65100 RISC MICROPROCESSOR CR FIRE

18-1

18 CR FIRE

OVERVIEW

This module performs the following functions:

• Count and control the position of carrier motor

• Fire strobe and start signal generation

• 16-bit counter for the position of carrier motor

• 16-bit print slice counter for counting fire strobe

• 6-bit prescaler for the clock of carrier position

• 8-bit prescaler for the clock of fire strobe

NOTES

1. This block is responsible for positioning the printhead and regulating the printhead fire strobe
 timing.
2. Two conditions must be met before the fire strobe logic can be activated.
 First, the print slice count must be greater than zero. Second, the position counter must be equal
 to the print start position.
3. When the start position is reached, the fire logic is enabled, and the first fire strobe is generated.
 Each fire strobe decrease the slice count by one.
 When the slice count reaches to zero, the fire logic is disabled.
4. For step motor mode, the cycle of fire strobe is decided by setting only the base value of the fire
 prescaler. (Fire DPI = 19200/Fire prescaler)
 For DC motor mode, the cycle of fire strobe is decided by the setting base value of the fire
 prescaler and DPI mode setting bit of PFCR.

CR FIRE KS32C65100 RISC MICROPROCESSOR

18-2

SPECIAL FUNCTION REGISTER

POSITION & FIRE CONTROL REGISTER

Register Offset Address R/W Description Reset Value

PFCR 0x6820 R/W Position & fire control register 0x0080d0

0001020304050607080910111213141516171819202122232425262728293031

[0] Position Prescaler Enable
0 = Disable 1 = Enable

[3:1] DPI Mode (Only for DC_Mode)
000 = 150 DPI 001 = 300 DPI
010 = 600 DPI 011 = 1200 DPI
011 = 2400 DPI Other case = 150 DPI

[4] Position Count Reset (Write Only)
0 = Reset 1 = Normal operation

[5] Window Time Base Select
0 = Time base is written by S/W
1 = Time base is written by H/W

[6] PPI Clock Selection (Only for Test)
0 = 9600 PPI 1 = 19200 PPI (default)

[14:7] Prescaler
This 8 bit prescaler is for the fire strobe

[20:15] Prescaler
This 6 bit prescaler is for carrier position

Prescaler Prescaler X X X XMode

Figure 18-1. Position & Fire Control Register

KS32C65100 RISC MICROPROCESSOR CR FIRE

18-3

CR POSITION AND FIRE CONTROL REGISTER

There are four registers in this block: Carrier Position Count Register(CPCR), Print Start Position Register
(PSPR), Print Slice Counter Register(PSCR), and Position Interrupt Register(PIR).

CPCR: The carrier position is updated based on the carrier movement of 1/600 inch.

PSPR: The fire strobe control logic requires two conditions to be met before it will generate fire strobe to print
logic.

— A non-zero value must be loaded into the print slice counter register.

— The carrier position must match the value in the print start position register.

— Once the two requirements have been met, the logic will begin producing fire strobes after 1/75 inch.

PSCR: This value is decreased once for each fire strobe that is generated.

PIR: When outputs of carrier position counter become same as the value of this register, position interrupt
request occurs.

Registers Offset Address R/W Description Reset Value

CPCR 0x6824 R/W Carrier position counter register 0x0000

PSPR 0x6828 R/W Print start position register 0xffff

PSCR 0x682c R/W Print slice counter register 0x0000

PIR 0x6830 R/W Position interrupt register 0xffff

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Count Value of Each Register

Count Value

Figure 18-2. CR Count Register

CR FIRE KS32C65100 RISC MICROPROCESSOR

18-4

SUGGESTIONS FOR F/W DESIGN

When CR Motor is Stopped

• Must reset BASIC timer and PRESTEP timer's RUN bit to "0".

• Must reset the position block enable bit (bit 0 of PFCR(0x6820)) to "0".

When Restarting the CR Motor

• Must write new (or previous) values in the BASIC timer base registers.

• Must write new (or previous) values in the PRESTEP timer base register.

• Must set the position block enable bit (bit 0 of PFCR(0x6820)) to "1".

• Must set the BASIC timer and PRESTEP timer's RUN bit to "1".

In other words, before starting Re-RUN after stopping the BASIC timer, you must:

— Rewrite the BASIC timer base register and PRESTEP timer base register values, and

— Reset the position block enable bit before setting to reduce the error in carrier motor position.

To reduce location errors, you should fix the position & fire control register's bit 6 (position counter clock) to 1,
adjust the position and fire pre-scaler values, and set the fire DPI.

The value of position & fire control register's bit 6 should not be changed during system operation.

Example of Position DPI Setting for Step Motor Mode

Position DPI Pre-scaler Value(PFCR[20:15])

300 DPI 64 (19200/300)

600 DPI 32 (19200/600)

1200 DPI 16 (19200/1200)

Example of Fire DPI Setting

DC Motor Mode Step Motor ModeFire DPI

Prescaler value (PFCR[14:7]) DPI mode setting value Prescaler value (PFCR[14:7])

150 DPI 16 (2400/150) 000, other case 128 (19200/150)

300 DPI 8 (2400/300) 001 64 (19200/300)

600 DPI 4 (2400/600) 010 32 (19200/600)

1200 DPI 2 (2400/1200) 011 16 (19200/1200)

2400 DPI 1 (2400/2400) 100 8 (19200/2400)

KS32C65100 RISC MICROPROCESSOR PRINT HEAD

19-1

19 PRINT HEAD

OVERVIEW

This module performs the following functions:

• Fire pulse generation.

• DMA request for reading data.

• Three 32-bit dot counters for color.

• One 32-bit dot counter for mono.

• Fire strobe delay for horizontal alignment of dot.

• 8-bit decrement timer for the width of the fire enable pulse of print head logic using MCLK.

• 10-bit decrement timer for the width of the fire group window of print head logic using MCLK.

• Four 12-bit timers for the fire strobe delay using selectable clock. (clock = main clock/1, 2, 4, or 8)

• 4-bit decrement counter for Td delay.

• 6-bit pre-heat pulse timer.

• 6-bit pre-heat delay timer.

 Head Control Register Head Type Number of Data

 PHCR[8] PHCR[7] PHCR[11]

 0 0 0 DH, mono head (208 nozzle) 13 half-word

 0 1 0 DH, colour head (192 nozzle) 12 half-word

 1 0 0 SH, mono head (56 nozzle) 4 half-word

 1 1 0 SH, colour head (48 nozzle) 3 half-word

 1 0 1 SH, mono head (56 nozzle) 7 bytes

SPECIAL FUNCTION REGISTER

PRINT HEAD CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 PHCR 0xa000 R/W Print head control register 0x000000

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

19-2

0001020304050607080910111213141516171819202122232425262728293031

[3:0] Dither Count Bit

[4] Decrement Through Enable Group
0 = Up 1 = Down

[5] Black Dot Counter Select
0 = Disable 1 = Enable

[6] Color Dot Counter Select
0 = Disable 1 = Enable

[7] Color Head Select
0 = Black 1 = Color

[8] Head Type Select
0 = 208/192 nozzle head 1 = 56/48 nozzle head

[9] Consecutive Dot Eliminator
0 = Disable 1 = Enable

[10] Top Nozzle Group Select
0 = Right 1 = Left

[11] Vertical 300DPI Mode
0 = Half-word 1 = Byte

[12] Horizontal 300DPI Mode
0 = Disable 1 = Enable

[13] Decompression Mode
0 = Disable 1 = Enable

[14] Data Select
0 = By H/W 1 = By S/W

[15] Simulation Test Control (HDMA Request Generation)
0 = Disable 1 = Enable

[16] Perform a Fire Cycle (Write Only)
0 = Disable 1 = Enable

[17] Perform a Data Cycle (Write Only)
0 = Disable 1 = Enable

[19:18] Clock Select
00 = MCLK/1 10 = MCLK/4
01 = MCLK/2 11 = MCLK/8

[23:20] Address Line (for the Nozzle)

[24] Address Line (by S/W)
0 = Disable 1 = Enable

[25] Current Mode
0 = Printing 1 = Scanning

X DitherXXXXXXXXXXXXXCLKAddressXX

 Figure 19-1. Print Head Control Register

KS32C65100 RISC MICROPROCESSOR PRINT HEAD

19-3

FIRE ENABLE TIMER/OBSERVATION REGISTER

 This 8-bit timer is used for fire enable duration counter value.
The observation register is read-only which is of the current value.

 Registers Offset Address R/W Description Reset Value

 FETR 0x7004 R/W Fire enable timer register 0x00

 FETOR 0x7008 R Fire enable timer observation register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[7:0] Counter Value
This data specifies the amount in the counter

Counter Value

 Figure 19-2. Fire Enable Timer/Observation Register

FIRE WINDOW TIMER/OBSERVATION REGISTER

 This 10-bit timer is used for the fire window enable duration counter value.

 The observation register is read-only which is of the current value.

 Registers Offset Address R/W Description Reset Value

 FWTR 0x700c R/W Fire window timer register 0x000

 FWTOR 0x7010 R Fire window timer observation register 0x000

0001020304050607080910111213141516171819202122232425262728293031

Counter Value

[9:0] Counter Value
This data specifies the amount in the counter

 Figure 19-3. Fire Window Timer/Observation Register

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

19-4

FIRE STROBE DELAY TIMER/OBSERVATION REGISTER

 This 12-bit timer is used for the fire strobe delay duration counter value.

 The observation register is read-only which is of the current value. The print head logic contains four 12-bit timers that are used to delay the fire strobes from the carrier motor logic
before sending them to the print head drivers. The timers alternate for each fire strobe.

 While one timer is delaying a pulse, the other will be waiting for the next pulse. When the timer decreases to zero, it passes the pulse to the fire strobe state machine. If the timer is still running when four slices have passed, the next fire strobe will be generated and the timer will
be forced to reload. This will prevent the loss of data from excessive delays.

 Registers Offset
Address

 R/W Description Reset Value

 FSDTR 0x7014 R/W Fire strobe delay timer register 0x000

 FSDT0OR 0x7018 R Fire strobe delay timer 0 observation register 0x000

 FSDT1OR 0x701c R Fire strobe delay timer 1 observation register 0x000

 FSDT2OR 0x7020 R Fire strobe delay timer 2 observation register 0x000

 FSDT3OR 0x7024 R Fire strobe delay timer 3 observation register 0x000

0001020304050607080910111213141516171819202122232425262728293031

[11:0] Counter Value
This data specifies the amount in the counter

Counter Value

 Figure 19-4. Fire Strobe Delay Timer/Observation Register

KS32C65100 RISC MICROPROCESSOR PRINT HEAD

19-5

PRE-HEAT PULSE TIMER/OBSERVATION REGISTER

 This 6-bit timer is used for the pre-heat pulse enable duration counter value.

 The observation register is read-only which is of the current value.

 Registers Offset Address R/W Description Reset Value

 PHPTR 0x7028 R/W Pre-heat pulse timer register 0x00

 PHPTOR 0x702c R Pre-heat pulse timer observation register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[5:0] Counter Value
This data specifies the amount in the counter

Counter Value

 Figure 19-5. Pre-Heat Pulse Timer/Observation Register

PRE-HEAT DELAY TIMER/OBSERVATION REGISTER

 This 6-bit timer is used for the pre-heat delay enable duration counter value.

 The observation register is read-only which is of the current value.

 Registers Offset Address R/W Description Reset Value

 PHDTR 0x7030 R/W Pre-heat delay timer register 0x00

 PHDTOR 0x7034 R Pre-heat delay timer observation register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[5:0] Counter Value
This data specifies the amount in the counter

Counter Value

 Figure 19-6. Pre-Heat Delay Timer/Observation Register

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

19-6

PRINTHEAD OBSERVATION REGISTER

 Register Offset Address R/W Description Reset Value

 PHOR 0x7038 R Print Head observation register 0x0000000

0001020304050607080910111213141516171819202122232425262728293031

[3:0] Data State
This indicates the printhead data state machine value

[6:4] Fire State
This indicates the printhead fire state machine value

[10:7] HDMA State
This indicates printhead HDMA state machine value

[14:11] Dither Count

[18:15] Number of Current Printhead Data from HDMA

[22:19] Front/Back end Delay Counter Value

[27:23] Sum of the Number of Output Enable Signals

DataFireHDMADitherNumberDelaySum

 Figure 19-7. PrintHead Observation Register

KS32C65100 RISC MICROPROCESSOR PRINT HEAD

19-7

FRONT AND BACK END DELAY COUNTER REGISTER

 This 4-bit timer is used for the front/back end delay duration counter value.

 Register Offset Address R/W Description Reset Value

 TDCR 0x703c R/W Td delay counter register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[3:0] Counter 1 Value
This data specifies the amount in the back-end delay
counter

[7:4] Counter 2 Value
This data specifies the amount in the front-end delay
counter

BackFront

 Figure 19-8. Td Delay Counter Register

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

19-8

PRINT HEAD DATA WORD REGISTER

 Registers Offset Address R/W Description Reset Value

 PHDW0R 0x7040 R/W Print head data word 0 register 0x0000

 PHDW1R 0x7044 R/W Print head data word 1 register 0x0000

 PHDW2R 0x7048 R/W Print head data word 2 register 0x0000

 PHDW3R 0x704c R/W Print head data word 3 register 0x0000

 PHDW4R 0x7050 R/W Print head data word 4 register 0x0000

 PHDW5R 0x7054 R/W Print head data word 5 register 0x0000

 PHDW6R 0x7058 R/W Print head data word 6 register 0x0000

 PHDW7R 0x705c R/W Print head data word 7 register 0x0000

 PHDW8R 0x7060 R/W Print head data word 8 register 0x0000

 PHDW9R 0x7064 R/W Print head data word 9 register 0x0000

 PHDW10R 0x7068 R/W Print head data word 10 register 0x0000

 PHDW11R 0x706c R/W Print head data word 11 register 0x0000

 PHDW12R 0x7070 R/W Print head data word 12 register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

Printhead Data Word

[15:0] Printhead Data Word

 Figure 19-9. Print Head Data Word Register

KS32C65100 RISC MICROPROCESSOR PRINT HEAD

19-9

DOT COUNTER REGISTER

 Registers Offset Address R/W Description Reset Value

 DCBR 0x7074 R/W Dot counter black register 0x00000000

 DCYR 0x7078 R/W Dot counter yellow register 0x00000000

 DCCR 0x707c R/W Dot counter cyan register 0x00000000

 DCMR 0x7080 R/W Dot counter magenta register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

Dot Counter Value

[31:0] Dot Counter Value
This data specifies the amount in the counter of black for
mono head, and yellow, cyan and megenta for color head

 Figure 19-10. Dot Counter Register

DOT COUNTER CONTROL OBSERVATION REGISTER

 Register Offset Address R/W Description Reset Value

 DCCOR 0x7084 R Dot counter control observation register 0x000

0001020304050607080910111213141516171819202122232425262728293031

Yellow

[2:0] Yellow Dots
This data specifies the amout of yellow dots per fire pulse

[5:3] Cyan Dots
This data specifies the amout of cyan dots per fire pulse

[8:6] Magenta Dots
This data specifies the amout of magenta dots per fire pulse

CyanMagenta

 Figure 19-11. Dot Counter Control Observation Register

PRINT HEAD KS32C65100 RISC MICROPROCESSOR

19-10

 Caution

• The print head logic is responsible for receiving image data, conditioning the data for print, and routing the
data to the print head in the proper sequence. The nature of the print head design is the primary motivation
behind the structure of the print head firing logic.

• The print head contains 208 nozzles arranged in two columns that are divided into sixteen groups containing
13 nozzles each. The print head is configured so that only one nozzle from each group may be fired at any
time. This necessitates a sequential firing scheme passing through each of the 13-nozzle group, one at a
time, firing a maximum of sixteen nozzles.

• Many of the critical timing relationships for the print head firing are controlled by carrier motor logic. It is
imperative that print head motion and nozzle firing be directly linked to produce the desired print output
characteristics. Additional software control is provided to aid print alignment.

• Data for the print head logic is received from memory via the HDMA pair or directly from the KS32C65100.
During a print fire cycle, the logic will issue a data request for 7 byte, 3, 4, 12, or 13 half words of data
transferred per print slice.

KS32C65100 RISC MICROPROCESSOR HDMA

20-1

20 HDMA

OVERVIEW

This module is used to transfer head data from memory to the head data register by DMA with match function.

HDMA SPECIAL REGISTERS

HEAD DMA CONTROL REGISTER

This DMA has a kind of DMA operation under the control of the print module. HDMA reads from memory, and
writes to head. HDMA can transfer data by bytes/half-words. The transfer size is decided by setting the head
control register.

Register Offset Address R/W Description Reset Value

HDCON 0x7800 R/W Head DMA control register 0x0000000

[0] Run enable/disable When you set this bit to '1', HDMA operation starts. To stop
HDMA, you must clear this bit to '0'. If you control this bit
only, 0x7810 address will be used (if 0x7810 address is
used, other value will not be changed).

[1] BUSY status When HDMA starts, this read-only status bit is
automatically set to '1'.
When it is '0', HDMA is in idle status.

[2] Source address direction Only one source can initiate an HDMA operation.
If this bit is set, the source address will be decreased.
If this bit is cleared, the source address will be increased.

[3] Source address fix This bit determines whether the source address will be
changed or not during an HDMA operation. This feature is
used when transferring data from a single source to
multiple destinations.

[4] Reset If this bit is set to '1', then the HDMA control register value
will be initialized, after this bit is cleared to '0', you can
specify other control values.

[5] Not Used

[6] Match pend status If the value of the source address register (HDSAR) and
the value of the match address register (HDMAR) are
matched, the match pend status bit is set. If you would like

HDMA KS32C65100 RISC MICROPROCESSOR

20-2

to clear the status bit, write zero.
[7] Match interrupt This bit determines whether the interrupt pending by

match of source/match pending enable address register
occurs or not. In the case of a match, HDMA operates
until the source address is the match address.

[8] HDMA Interrupt enable An HDMA operation is started/stopped by setting/clearing
the run enable/disable bit. If this bit is set to '1' when
DMA starts, a 'stop interrupt' is generated when HDMA
operation stops. If this bit is '0', an interrupt and match
interrupt are not generated.

[9] Auto Load This bit should be enabled for source address register's
parallel load.

[10] Alternate Enable This bit determines to alternate register banks.

[11] Current queuing This bit indicates whether the current queuing bank is ‘0’ or
‘1’. You can bank selection set/clear the queuing bit
selection.

[16] Queuing 0 enable If this bit is set and HDCON[10] is set, HDMA alternates
bank 0.

[24] Queuing 1 enable If this bit is set and HDCON[10] is set, HDMA alternates
bank 1.

KS32C65100 RISC MICROPROCESSOR HDMA

20-3

0001020304050607080910111213141516171819202122232425262728293031

[0] Run Enable
0 = Disable HDMA operation 1 = Enable HDMA operation

[1] Busy Status
0 = HDMA idle 1 = HDMA active

[2] Source Address Direction
0 = Increase source address 1 = Decrease source address

[3] Source Address Fix
0 = Increase/decrease source address
1 = Do not change source address (fix)

[4] Reset
0 = Normal operation 1 = Initialize control register

[5] Not Used

[6] Match Pend Status
0 = Not match 1 = Match

[7] Match Interrupt Pending Enable
0 = Match Interrupt disable 1 = Match interrupt enable

[8] HDMA Interrupt Enable
0 = Do not generate stop interrupt and match interrupt
1 = Generate stop interrupt and match interrupt when HDMA stops

[9] Auto Load
0 = Do not load parallel load
1 = Load parallel load of counter register

[10] Alternate Enable
0 = Cannot operates alternation
1 = Can operation alternation between bank 0 and bank 1

[11] Current Queuing Bank Selection
0 = Bank 0 1 = Bank 1

[16] Queuing Enable Bit 0
0 = Queuing 0 disable 1 = Queuing 0 enable

[24] Queuing Enable Bit 1
0 = Queuing 1 disable 1 = Queuing 1 enable

X X X X X X X X X X X X XX00000000000

Figure 20-1. HDMA Control Register

HDMA KS32C65100 RISC MICROPROCESSOR

20-4

HDMA SOURCE ADDRESS REGISTER

These registers contain the 28-bit source/destination address for the HDMA channel.
Depending on the settings you make to the HDMA control register(HDCON), theses adr will be fixed, increased or
decreased.

Register Offset Address R/W Description Reset Value

HDSAR 0x7804 R/W HDMA source address register 0x0000000

0001020304050607080910111213141516171819202122232425262728293031

[27:0] Source Address

Source Address

Figure 20-2. HDMA Source Address

HDMA TRANSFER COUNT REGISTER

This register contains the 24-bit current count value of the number of HDMA transfers completed for HDMA. This
count value is decreased by 1 while one DMA operation is completed regardless of transfer width.

Register Offset Address R/W Description Reset Value

HDTCR 0x780c R/W HDMA transfer count register 0x000000

0001020304050607080910111213141516171819202122232425262728293031

[23:0] Transfer Count

Transfer Count

Figure 20-3. HDMA Transfer Count Register

KS32C65100 RISC MICROPROCESSOR HDMA

20-5

HDMA SOURCE/MATCH ADR REGISTER

These registers contain the 28-bit source/destination address for the HDMA channel.
Depending on the settings you make to the HDMA control register (HDCON), theses adr will be fixed, increased
or decreased.

Registers Offset Address R/W Description Reset Value

HDSAR0 0x7814 R/W HDMA source address register 0 0x0000000

HDMAR0 0x7818 R/W HDMA match address register 0 0x0000000

HDSAR1 0x781c R/W HDMA source address register 1 0x0000001

HDMAR1 0x7820 R/W HDMA match address register 1 0x0000000

0001020304050607080910111213141516171819202122232425262728293031

[27:0] Source/Match Address

Source/Match Address

Figure 20-4. HDMA Source/Match Address

Examples of setting registers to use the match and queuing function of HDMA

1. Case 1: Bank0 → Bank1 → Bank0 → Bank1 → Bank0

1) Set HDSAR0, HDMAR0, HDSAR1, HDMAR1, HDTCR
2) Set HDCON with 0x1010781

(match interrupt pending enable, HDMA interrupt enable, auto load enable, alternate enable,
 select bank0 for current queuing bank, enable queuing enable bit 0/1, run HDMA)

2. Case 2: Bank1 → Bank0 → Bank1 → Bank0 → Bank1

1) Set HDSAR0, HDMAR0, HDSAR1, HDMAR1, HDTCR
2) Set HDCON with 0x1010f81

(match interrupt pending enable, HDMA interrupt enable, auto load enable, alternate enable,
 select bank1 for current queuing bank, enable queuing enable bit 0/1, run HDMA)

3. Case 2: Bank0 → Bank 1

1) Set HDSAR0, HDMAR0, HDSAR1, HDMAR1, HDTCR
2) Set HDCON with 0x1000781

(match interrupt pending enable, HDMA interrupt enable, auto load enable, alternate enable,
 select bank0 for current queuing bank, enable queuing enable bit 1, run HDMA)

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-1

21 IMAGE PROCESSOR

OVERVIEW

Sensor In

 ADC Module

 ADC Value[7:0]

 ADC Clock

SI
CLK
RLED
GLED
BLED
SI Interrupt

SENSOR
CTRL

Nor_Mag_Red

 LAT_EDF

 Shading Factor[7:0]
 Shading Correction

Module
Shade Corrected Value[7:0]

Gamma Correction
Module

Gamma Corrected Value[7:0]

Reduction/Magnification
Module

R/M Value[7:0]

 Binarization Module
(LAT, EDF)

Binary Value[7:0]

DMA Interface Module

CPU I/F Module (Register)

SRAM (2.56K)

SRAM (0.256K)

SRAM (2.56K)

Motor
Ctrl

Motor Interrupt

Motor Phase[5:0]

DMA Data[31:0]

DMA REQ

DMA ACK

Figure 21-1. Image Processor Block Diagram

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-2

These modules adjust and convert the input data into data that can be output to the printer.

• CIS sensor control

• Digital shading correction

• GAMMA correction

• Magnification/reduction

• Photo/text mode binarization

IMAGE PROCESSOR SPECIAL REGISTERS

SENSOR SHIFT CLOCK CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 SEN_CLK 0x9800 R/W Sensor shift clock control register 0x00818

0001020304050607080910111213141516171819202122232425262728293031

CLK_HIGHxx

[7:0] SEN_CLK_LOW
Indicates the Sensor shift clock'S "low" period in system clock units.

[15:8] SEN_CLK_HIGH
Indicates the sensor shift clock's "high" period in system clock units.

NOTE:
The SEN_CLK's 'high' and 'low' periods are chosen according to the type of
sensor being used. For example, for a DYNA with a 25% period, you should input
the values SEN_CLK_HIGH = 08H and SEN_CLK_LOW = 18H (reset value), and
for a CANON with a 50% period, each value should be set to 10H.

[16] Sensor_CLK_LOW ACTICE
The SI signal and sensor shift signal's phase can be changed according to the
sensor characteristics.
0 = High Active
1 = Low Active

[17] PHASE1_PHASE2
0 = DYNA (1-channel CIS)
1 = CANON (2-channel CIS)

CLK_LOW

 Figure 21-2. Sensor Shift Clock Control Register

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-3

SENSOR SI CLOCK CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 SI_TERM 0x9804 R/W Sensor SI clock control register 0x09c4

0001020304050607080910111213141516171819202122232425262728293031

SEN_CLK_LOW

[12:0] SI_TERM
This register decides on the sensor latch clock's period. The
count unit uses the SEN_CLK's period as reference. The 1-
channel's sensor counts one period, but the 2-channel sensor
outputs one pixel value in a half-period of SEN_CLK, so you
must adjust as needed.

Example: To get an A pixel with a DYNA sensor:
 -> SI_TERM = A + a

To get an A pixel with a CANON sensor
 -> SI_TERM = A/2 + a

When the appropriate SI signal for each period is being
output, an interrupt is generated. The S/W uses this signal to
modify the value. The value modified at this time influences the
SI output next.

 Figure 21-3. Sensor SI Clock Control Register

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-4

SENSOR R (GB) LED CONTROL REGISTER

 Registers Offset Address R/W Description Reset Value

 RLED 0x9808 R/W Sensor R LED control register 0x00000960

 GLED 0x980c R/W Sensor G LED control register 0x00000960

 BLED 0x9810 R/W Sensor B LED control register 0x00000960

0001020304050607080910111213141516171819202122232425262728293031

END

[28:16] RLED_START/[12:0] RLED_END

[28:16] GLED_START/[12:0] GLED_END

[28:16] BLED_START/[12:0] BLED_END
A signal for operating the sensor's light source. It is counted
using SEN_CLK as reference. This signal latches the register
value each time the SI is turned on, and operates automatically
according to that value. Generally a normal mono CIS uses only
one out of three signals, but the canon color CIS uses all three
(refer to color canon CIS spec.).

START

 Figure 21-4. Sensor R(GB) LED Control Register

IWIN CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 IWIN 0x9814 R/W Effective pixels num. control register 0x000006b8

0001020304050607080910111213141516171819202122232425262728293031

IWIN_END

[28:16] IWIN_START/[12:0] IWIN_END
This register is to divide the necessary data from the
unnecessary data that may be included in the sensor output
data. For example, if IWIN_START = 20 and IWIN_END =
1748, it means that the 20th to the 1728th pixel of the ADC
output will be handled and output.

IWIN_START

 Figure 21-5. IWIN Control Register

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-5

CHANGED IWIN CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 CHANGED_IWIN 0x9818 R/W Mag/Red pixels num. control register 0x06b8

0001020304050607080910111213141516171819202122232425262728293031

CHANGED_PIX_NUM

[11:0] CHANGED_PIX_NUM
This register inputs the modified pixel values if the data is being
magnified or reduced horizontally.

[13:12] NOR_MAG_RED
00: Normal
01: Magnification
10: Reduction

XX

 Figure 21-6. CHANGED_IWIN Control Register

MAG/RED RATIO CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 RATIO 0x981c R/W Mag/Red ratio control register 0x10080

0001020304050607080910111213141516171819202122232425262728293031

[7:0] VER_RATIO
Vertical reduction ratio of 1/128 unit

[16:8] HOR_RATIO
Horizontal reduction/magnification ratio of 1/256 unit

HOR_RATIO VER_RATIO

 Figure 21-7. Mag/Red Ratio Control Register

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-6

LAT (LOCAL ADAPTIVE THRESHOLD) CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 LAT 0x9820 R/W Local adaptive threshold control register 0xdc7f40

0001020304050607080910111213141516171819202122232425262728293031

TDIFF

 [7:0] TDIFF

 [15:8] TMIN

 [23:16] TMAX

TMINTMAX

 Figure 21-8. LAT Control Register

ADC CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 ADC 0x9824 R/W ADC clock control register 0x005

0001020304050607080910111213141516171819202122232425262728293031

START

[7:0] ADC_START
This signal allows the analog signal output from the sensor to be
A/D converted by the internal ADC. By adjusting this value, the
ADC clock location can be adjusted in system clock units for the
optimum A/D conversion. This value can be found by outputting
the signal output to the sensor and the ADC clock (in IP test
mode) to the oscilloscope simultaneously and comparing the
values.

[8] BINARY_GRAY
0 = Output binary data.
1 = Output 8-bit data.

X

 Figure 21-9. ADC Control Register

OPERATION CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 OPERATION 0x9828 W Operation control register 0x000

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-7

[0] SCAN_ON
After power on, the KS32C65100 provides the SI signal and other various sensor signals.
Therefore, you need a signal that tells you from which line you will get useful data.
The SCAN-on provides that service. The line triggering signals that follow after this bit is set to "1" are
recognized as meaningful signals (the image processor operates), and the image handling
(shading, binarization etc) starts.
If you want to stop the image processor while it is working, clear the VER_RATIO's value to '0'.
For restarting the image processor, writing the VER_RATIO's value.

[1] RESTART
This register bit can be used for synchronization during automatic operation.
If there isn't a bit that fulfills this purpose, the SI signal can be triggered without regard
to the KS32C65100's internal operations when power is on, and the brightness of
Line 1's first pixel can be irregular. To prevent this problem, this register bit is
set to "1" after the power is turned on, so that the counting restarts from
this point for synchronicity.

[2] SHAD_ACQ
Shading acquisition

[3] SW_MODE
When initializing or reading the internal SRAM, this value must be set to "1".
The register's read/write signal can be applied as the RAM read/write signal
only when this value is high.

[4] SWING
If the same value is maintained for a long time during error diffusion,
the same pattern is repeated and can have an optically unsatisfactory result.
To prevent this problem, it is necessary to swing the pixel values a little bit
at the outline. An algorithm is applied when this bit is set to "1".

[5] LAT_EDF
0 = Local adaptive threshold (for text mode) 1 = Error diffusion (for photo mode)

[6] PAGE_CLK
This signal is for resetting the horizontal reduction counter.
It carries out triggering at the beginning of a page. (0 ¡¯¡æ¡®1¡¯¡æ¡®0')

[8] MOTOR_ON
0 = Motor off 1 = Motor on

[9] MOTOR_PHASE_LAT_OR_NOT
0 = The motor phase value used in the register is used by the MPU with immediate effects
1 = The motor phase value used in the register is latched to the SI signal
and manifested in the next phase.

[11:10] SEPARATE_CLK_SEL
This register is for selecting the unit clock of the counter that adjusts the motor phase interval.
00 = System clock/2 01 = System clock/4 02 = System clock/8 03 = System clock/16

0001020304050607080910111213141516171819202122232425262728293031

XX X X X X X X X X X0

 Figure 21-10. Operation Control Register

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-8

SRAM CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 RAM_CTRL 0x982c R/W IP Inner SRAM control register 0x70000

[11:0] SW_FIRST_RAM_ADDR
You can select the first address through this register when MPU is
writing data on the internal SRAM.

[16] GAMMA_RAM_CS
0 = RAM chip select for gamma correction SRAM

[17] SHAD_RAM_CS
0 = RAM chip select for shading SRAM

[18] BI_RAM_CS
0 = Chip select for binarization SRAM

[19] SW_ADDR_INIT
This register is for initializing the internal RAM's address. When this
BIT is triggered once (0 -> 1 -> 0), the SW_FIRST_RAM_ADDR value
becomes the first address value that MPU records in the SRAM. it must
be initialized before writing on the internal SRAM.

0001020304050607080910111213141516171819202122232425262728293031

XXXX RAM_ADDR0000

 Figure 21-11. SRAM Control Register

SRAM DATA REGISTER

 Register Offset Address R/W Description Reset Value

 RAM_DATA 0x9830 R/W SRAM data register 0x00

[7:0] RAM_DATA
Records the value when MPU is writes on the internal SRAM.

0001020304050607080910111213141516171819202122232425262728293031

RAM_DATA

 Figure 21-12. SRAM Data Register

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-9

MOTOR TERM CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 MOTOR_TERM 0x9834 R/W Motor term control register 0x0000

[15:0] MOTOR_TERM
This register records the interval between the motor phase.
Its unit clock is selected by the register SEPARATE_CLK_SEL.

0001020304050607080910111213141516171819202122232425262728293031

 MOTOR_TERM

 Figure 21-13. Motor Term Control Register

MOTOR PHASE CONTROL REGISTER

 Register Offset Address R/W Description Reset Value

 MOTOR_PHASE 0x9838 R/W Motor phase control register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[0] BASE_VALUE0

[1] BASE_VALUE1

[2] BASE_VALUE2

[3] BASE_VALUE3

[4] BASE_VALUE4

[5] BASE_VALUE5
Records next phase value for motor operation.

XXXXXX

 Figure 21-14. Motor Phase Control Register

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-10

BLACK SHADING CORRECTION FACTOR REGISTER

 Register Offset Address R/W Description Reset Value

 BLACK 0x983c R/W Black shading correction value register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[7:0] BLACK
This value is for carrying out black shading correction. It is
found and recorded in this register by averaging the values
found with the sensor turned off.

BLACK

 Figure 21-15. Block Shading Correction Factor Register

SENSOR(CIS)

 The sensor is influenced by the 300DPI Canon/DYNA'S CIS. The signal output from the controller to the sensor
include the SI, SEN_CLK, RLED, GLED, and bled. The reset values for all registers related to the sensor are set
with the DYNA 200DPI as reference.

SI

 The SI signal is for latching the electrical charge in the sensor. The period is in SEN_CLK units according to the
value of register SI[12:0]. This signal is adjusted during operation by S/W, so that it is synchronous to the motor.
The SI signal is automatically operated once the power is on, but an interrupt occurs every time an SI signal is
generated, so you can change the SI period if you change the value according to this signal. One thing to
remember is that if you change the register SI value according to the interrupt, it influences the period of the next
SI. If you give the restart signal by S/W for synchronicity, a new SI signal is generated from that signal. Shading
and binarization are carried out only when the SI signal and the SCAN_ON are both "high".

SI_TERM

Recount Start

SI_TERM SI_TERM
SI

Image HandingImage Handing

Restart

SCAN_ON

IWIN

 Figure 21-16. Restart & SCAN_ON Timing Diagram

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-11

 SEN_CLK

 The SEN_CLK is a clock for shifting the values latched by the SI signal to the outside of the sensor. The period of
the SEN_CLK varies for different brands such as DYNA and CANON. You need a 50% period for a CANON
product, and a 25% period for a DYNA product. The SEN_CLK[15:8] adjusts the SEN_CLK signal's high period
and the SEN-CLK[7:0] adjust the SEN_CLK's low period in system clock units. It takes at least 10 system clocks
to handle an actual pixel.

 NOTE

 The phase of the SI and SEN-CLK signal can change according to the different brands. For example, for
a 200DPI DYNA or a 300DPI CANON, the two signals are high active, but for a 300DPI DYNA, it is low
active. Also, a CANON product uses the 2-channel method which reads values from SEN_CLK's both
high and low level. For that, the register RATIO[17] (SEN_CLK_LOW_ACTIVE) and RATIO[18]
(PHASE1_PHASE2) are prepared.

 RLED, GLED, BLED

 This signal is for controlling the sensor's brightness. The lamp's operational range is decided using the values of
registers RLED, GLED, And BLED. The SEN_CLK period as the unit reference. Generally, only one of three
signals is needed for normal mono CIS, but the canon color CIS uses all three signals.

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-12

REDUCTION & MAGNIFICATION

 This feature uses the register value to magnify (up-to 200%) or reduce horizontally to a unit less than 1%, and to
reduce vertically.

 Reduction: Horizontal

 A 9-bit register can be used for reduction in 256 steps. Reduction can't take place if the register value is 9 'H100',
and for any value below it, reduction is carried out according to the formula given below. This feature is used
when sending an image to a 203DPI-level fax when using a 300DPI-level sensor. This feature uses sampling by
an adder. You only need to set the reduction bit, and you can adjust in units less than 1%.

 Register Value = Reduction Ratio × 256

 To find the number of reduced pixels compared to the input pixels, use the following formula:

Register Value

256 × Number of input pixels = number of reduced pixels

(Except, if the value behind the decimal point of the formula's result is larger than

Register Value

256 add 1 to the result.

If not, the value found is the actual number of reduced pixels.)
For example, when reducing a 300DPI image to 203DPI, the register setting value is

 Register Value =
203
300 × 256 = 137.23

 so you should set 137 to the register. The number of reduced pixels can be found in the following manner.
173
256 × 2557 = 1727.9 in 0.97 is larger than

173
256 = 0.67 so the number of pixels actually reduced is 1728.

PIX_CLK

RED_BAN
(reduction ban CLK)

INNER_PIX_CLK
(reduction PIX_CLK)

 Figure 21-17. Reduction Pixel Clock Timing Diagram

 Reduction: Vertical

 The feature described above allows vertical reduction in units of 1/128 using a 3-bit register. The basic algorithm
is the same as that in the horizontal direction, but the unit of reduction is 8 bits, and the reduction ratio is not as
dense. During reduction, all signals transmitted to the sensor and ADC are generated, but the data isn't accepted.
You need to use the reduction ratio register for vertical reduction. You can find the register value using the
following formula.

 Register Value = Reduction Ratio × 128

 The register’s initialization value is 8 'H80', and the value signifies a mode that does not carry out reduction.

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-13

 Magnification

 The design of this product is such that the reduction feature described above is also used for image
magnification. This feature is to magnify and print a 300DPI image using a 200DPI-level sensor. To do so, first
increase the pixel clock (PIX_CLK) speed to twice the original. Since the internal PIX_CLK (INNER_PIX_CLK) is
made using the reduction feature, you can have a maximum velocity (MSLT) of approximately 2ms for 33MHz in
magnification. In other words, you are guaranteeing the time for one PIX_CLK to be generated between the
PIX_CLKs, and allowing a new PIX_CLK to be generated there according to the register value. The timing
diagram is given below.

PIX_CLK

Carry

MAG_PIX_CLK

'h100 'h040 'h080 'h0C0 'h100 'h040Whin
SUM[8:0] '40

INNER_PIX_CLK
(magnified PIX_CLK)

 Figure 21-18. Magnification Pixel Clock Timing Diagram

 To carry out magnification, you must select the magnification bit (NOR_MAG_RED==1), and record the actual
number of pixels calculated using the magnification ratio. For a 125% magnification, the magnification ratio is
0.25, and the register value is found in the following manner.

 Register Value = Magnification Ratio × 256

 To find the number of magnified pixels, use the following formula.

Register Value

256 × Total number of line input pixels = number of added pixels

 (Except, if the value behind the decimal point of the formula's result is truncated)

 The sum of this value and the number of originally input pixels give the number of actually magnified pixels.
For example, for a 137% magnification, the magnification ratio register setting value (for 1720 pixels/line) is
Magnification Register Value = 0.37 × 256 = 94.72,

 so you can set 94 to the register. The number of magnified pixels is the sum of the original value 1720 and the
number of added pixels, 631.

 Since in
94
256 × 1720 = 631.56 (0.56 is truncated), the number of added pixels from the magnification is 631.

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-14

 DIGITAL SHADING CORRECTION

 This feature is for adjusting the sensor's non-uniform illumination characteristics using the 16×8 divider. In this
controller, the ratio between the value with 8-bit steps and the actual value of white is found, and the ratio is used
for conversion during scanning. For example, if we call the value from white pad W, the value from black pad B,
and the actual value from scanning X, the digital shading corrected value (Y) can be found by the following
formula.

Y X B

W B
256=

−
−

×

 Here, the process of storing the value that will read the white pad (W) in memory is called white shading
acquisition. If you set the shading acquisition bit to "1" and scanning process is performed, the value is
immediately stored in the shading memory. If you go into the scanning process after this step, the shading
corrected value for the actual value is generated using W and B as reference.

16 * 8
Divider

8 Bits Shift
& Clamping Shading Corrected

Value (8 Bits)

White Pad Value
- Black Pad Value (8 Bits)

Real Scanned Value
- Black Pad Value (8 Bits)

 Figure 21-19. Shading Correction Block Diagram

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-15

 GAMMA CORRECTION

 This process uses a 256×8-bit SRAM to carry out gamma correction of the RGB value that was shading corrected
in the previous step.

 Gamma Table SRAM
 (256 * 8 Bits)

Data[7:0]

Address[7:0]

Gamma Corrected
Value (8 Bits)

Shading Corrected
Value (8 Bits)

 Figure 21- 20. Gamma Correction Block Diagram

 BINARIZATION

 Error Diffusion

 This process is for binarization in the image mode. The algorithm used is in the FLOYD method, and uses the
mask given below.

 1(UC) 5(U) 3(UR)

 7(L) Input Pixel(C) -

 ̈ ç C' = C + [(1/16) × Error(UL)] + [(5/16) × Error(U)]
 + [(3/16) × Error(UR)] + [(7/16) × Error(L)]
 ̈ è Binary output decision and error calculation.
 IF C' ≥ 128, OUT White(0), AND Error(C') = C' - 255
 ELSE, OUT Black(1), AND Error(C') = C'

 This method is advantageous from the aspect of H/W, but if a certain brightness is maintained on the algorithm,
an optically displeasing stripe may be generated on the screen. To compensate for this problem, you can swing
the outline values a little.

 Local Adaptive Threshold

 This method is for binarization in text mode. You don't need to use an edge-emphasis algorithm when using this
method, and you can expect the ABC effect. You need to select the values for the entire area as shown below.

— Tmax: decides if the pixels will have absolute white value

— Tmin: decides if the pixels will have absolute black value

— Tdiff: decides if the pixels have edge components

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-16

 The algorithm using the above values is as follows.

 ̈ ç MIN/MAX Decision
 Decide MIN/MAX gray value of 2x3 matrix
 Calculate the average of min/max value(AVE = [MIN + MAX]/2)

 ̈ è Edge Pixel Decision
 Pixel which is larger than Tdiff is edge pixel ⇒ EXIT

 ̈ é In Case of Edge Pixel
 Edge pixel which is larger than AVE is white ⇒ EXIT
 Else is black ¢ ¡ EXIT

 ̈ ê In Case of Non Edge Point
 Pixel which is larger than Tmin is white ⇒ EXIT
 Else is black ⇒ EXIT

 ADC CONTROL

 The ADC signal is for operating the internal ADC, and the signal must always maintain a 50% period. For A/D
conversion of the analog signal, you need a register that adjusts the ADC signal's starting point in units of system
clock for the register value. The figure below shows the ADC controlling diagram for a product using the 2-
channel method, such as CANON.

B

ADC_START[7:0] ADC Clock Sample

1 2 3A A/2 A/2+1 A/2+2 A/2+3 A 1 2 3

SEN_CLK

BASIS

BASIS_CNT[7:0]

ADC_CLK

 Figure 21-21. ADC Control Timing Diagram (CANON)

 As shown in the figure above, the range of the ADC-STAR[7:0] value that adjusts the ADC signal location
becomes 1/2 of the SEN_CLK's LOW period from 1, and the ADC signal's high period (B) becomes
(SEN_CLK_LOW)/2.

 For a product using the 1-channel method such as DYNA CIS, refer to the diagram below.

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-17

ADC_START[7:0] ADC Clock Sample

SEN_CLK

BASIS

BASIS_CNT[7:0]

ADC_CLK

SEN_CLK_LOW SEN_CLK_HIGH

1 2 3A A/2 A/2+1 A/2+2 A/2+3 A 1 2 3

B

 Figure 21-22. ADC Control Timing Diagram (DYNA)

 In this case, you need a 25% DUTY, so the SEN_CLK's HIGH period and low period are added to make the ADC
signal's high period. Therefore, the width of B in the figure above is (SEN_CLK_LOW + SEN_CLK_HIGH)/2.

 MOTOR CONTROL

 There are 6 port phase outputs for motor control. Each output signal can be adjusted by S/W. In other words, the
register MOTOR_TERM[15:0]'s value can change the interval value for the changing motor phase. An interrupt
occurs every time a signal signifying the interval is generated, so the S/W changes the register value using that
signal, which later influences the next motor phase interval. This feature operates as described above if the bit of
register OPERATION[9] (MOTOR_PHASE_LAT_OR_NOT) is set.

 If the bit is reset, the value immediately influences the operation. You can synchronize the motor and SI using
this feature and the SI period-adjusting feature. When the value of register OPERAION[8] (MOTOR_HIGH)
becomes high, down counting is carried out from the MOTOR_TERM value. When the value reaches 1, the
MOTOR_PHASE[5:0] value used by the previous interrupt is output to each phase. The reference counting clock
is the one selected by the OPERATION[11:10](SEPARATE_CLK_SEL) value.

MOTOR_PHASE0

100 70 60

1 0 11BASE_VALUE0

MOTOR_TERM[15:0]

MOTOR_INTERRUPT 6070100

 Figure 21- 23. Motor Interrupt/Phase Timing Diagram

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-18

 REGISTER READ/WRITE

CLK

NCS

SA[5:0]

NRW (0: MPU Read,
 1: MPU Write)

SD[31:0]

MAS[1:0]

Register Read/Write

 Figure 21-24. Register Read/Write Timing Diagram

 Register Read/Write

 When you want to write the register value from the MPU to the IP, you receive the input as shown in Figure 21-
24. When writing or reading the value to the register in the sections shown in the diagram, the register read/write
is carried out within 2 cycles.

KS32C65100 RISC MICROPROCESSOR IMAGE PROCESSOR

21-19

 RAM Initialization by Register Read/Write

CLK

NCS

SA[5:0]

NRW (0: MPU Read,
 1: MPU Write)

SD[31:0]

MAS[1:0]

30 30 30

<RAM Write by Register>

<RAM Read by Register>

020100

00 01 02

0100

3030

SW_RAM_ADDR_INIT

SA_LAT[5:0]

SD_LAT[31:0]
(RAM_DIN)

SW_RAM_WR_CLK

SW_RAM_ADDR[11:0]

SW_RAM_RD_CLK

SW_RAM_ADDR[11:0]

RAM_DOUT[31:0]
(SD)

 Figure 21-25. Timing Diagram SRAM Read/Write by Register

IMAGE PROCESSOR KS32C65100 RISC MICROPROCESSOR

21-20

 The CONTROLLER has the following features so that it can read or write on the RAM using the register. There is
the RAM_CTRL[14:12]'s CHIP SELECT for selecting the internal SRAM. The SRAM's first ADDRESS is received
through the register. This value is loaded using the value of the register called SW_ADDR_INIT. After setting the
environment, if you record the value to the register RAM_DATA, it is read or written to the SRAM. The RAM
ADDRESS increases by 1 for each READ/WRITE from the original value from the register. This process can be
summarized as follows.

• Record first address of the SRAM area for read/write, and choose the SRAM (RAM_CS).

• Initialize the SRAM address. (Register SW_RAM_ADDR_INIT)

• Record value on the register RAM_DATA during write

• Read using the register RAM_DATA's address value during read.

NOTE

When you read the register value, the internal ram must not be selected. Of course, when you read the
internal ram values, the internal ram has to be selected.

DMA OUTPUT

Binary Data Output

The binary data output through the IP goes through the 32-bit cycle stealing DMA process. In other words, if the
binary data for 32 pixels is output, one request is output. And if each line's last DMA is not 32 bits, the remaining
parts are filled with "0" for output. To signify the location of the last pixel, you must set the value of the register
CHANGED_PIX_NUM. If you do not magnify or reduce the image, you can use the number of value pixels/line
for the last value, but if you do magnify or reduce, you must use a modified value.

NOTE

If the number of magnified pixels exceeds 2560 during magnification, the DMA operates fixed to 2560,
regardless of the CHANGED_PIX_NUM value.

GRAY Data Output

If you set the BINARY_GRAY register bit to "1", the gamma corrected value (8 bits) is immediately output
through DMA. Since the DMA must maintain 32 bits, DMA request is output once for each time 4 pixels are
handled, so you must select the CHANGED_PIX_NUM accordingly.

KS32C65100 RISC MICROPROCESSOR REAL TIME CLOCK

22-1

22 REAL TIME CLOCK

OVERVIEW

The Real Time Clock (RTC) unit is operated by the system power (+5V) or the backup battery if the system
power is turned off. The RTC transmits 8-bit data to the CPU as BCD (Binary-Coded Decimal) values using
STRB/LDRB ARM operation. The data include second, minute, hour, date, day, month, and year. The RTC unit
works with an external 32.768kHz crystal.

SEC MIN HOUR DAY DATA MON YEAR

Leapyear Generator

System Bus

RTCCON

OSC. & Frequency
Division Logic

RXI

RXO
1 Hz

Figure 22-1. Real Time Clock Block Diagram

REAL TIME CLOCK KS32C65100 RISC MICROPROCESSOR

22-2

LEAP YEAR GENERATOR

This generator calculates if the last date of each month is 28, 29, 30 or 31 based on data from BCDDAY,
BCDMON and BCDYEAR. It also considers leap years in deciding the last date.

An 8-bit counter can just represent 2 BCD digits, so it cannot decide whether 00 year is a leap year or not. We
know year 2000 is a leap year, therefore the leap year generator is hard-wired to work up to 2-29-00.

SYSTEM POWER OPERATION (+5V)

It is required to set bit 0 of the RTCCON register for interfacing between CPU and RTC logic. A 1 second error
can occur when the CPU reads or writes data into BCD counters, and this can cause the change of the higher
time units. When the CPU reads/writes data to/from the BCD counters, another time unit may be changed if
BCDSEC register is overflowed. To avoid this problem, the CPU should reset the BCDSEC register to 00h.The
reading sequence of the BCD counters is BCDYEAR, BCDMON, BCDDATE, BCDDAY, BCDHOUR, BCDMIN
and BCDSEC. It is required to read it again from BCDYEAR to BCDSEC if BCDSEC is zero.

BACKUP BATTERY OPERATION

The RTC logic is driven by a backup battery if the system power is off. The interfaces of the CPU and RTC logic
are blocked and the backup battery only drives the oscillation circuit and the BCD counters, to minimize power
dissipation.

KS32C65100 RISC MICROPROCESSOR REAL TIME CLOCK

22-3

REAL TIME CLOCK REGISTERS

RTCCON REGISTER

The RTCCON register is comprised of RTCE (RTC Enable: bit 0) which controls the write-disable of the BCD
registers, RCLK (RTC Clock: bit1), CNTSEL (Counter Select: bit 2), and CLKRST (Clock Reset: bit 3) for testing.

Bit RTCE controls all interfaces between the CPU and the RTC, so it should be set to 1 in an initialization routine
to enable data transfer after a system reset. Instead of working BCD with 1Hz, bit RCLK enables the operation of
BCD counters with an external clock which is entered through the pin RXI to the test BCD counters. Bit CNTSEL
converts the dependent operation of BCD counters into independent counters for testing. CLKRST resets the
frequency divided-logic in the RTC unit.

Register Offset Address R/W Description Reset Value

RTCCON 0xc840 R/W RTC control register 0x0

[0] RTCE: RTC R/W Enable Bit
0 = Disable 1 = Enable

[1] RCLK: BCD Clock Selection Bit
0 = RXI/215 Divied CLK 1 = RXI

[2] CNTSEL: BCD Count Selection Bit
0 = Merge BCD Counters
1 = Seperate BCD Counters

[3] CLKRST: RTC Clock Counter Reset Bit
0 = No reset 1 = Reset

0001020304050607080910111213141516171819202122232425262728293031

X XX X

Figure 22-2. RTCCON Register

REAL TIME CLOCK KS32C65100 RISC MICROPROCESSOR

22-4

BCDSEC COUNTER REGISTER

BCD count register for seconds.

Register Offset Address R/W Description Reset Value

BCDSEC 0xc870 R/W RTC second register 0xXX

01234567

[6:0] Second Counting Value. 0~ 59

Figure 22-3. BCDSEC Counter Register

BCDMIN COUNTER REGISTER

BCD count register for minutes.

Register Offset Address R/W Description Reset Value

BCDMIN 0xc874 R/W RTC minute register 0xXX

01234567

[6:0] Minute Counting Value. 0 ~ 59

Figure 22-4. BCDMIN Counter Register

KS32C65100 RISC MICROPROCESSOR REAL TIME CLOCK

22-5

BCDHOUR COUNTER REGISTER

BCD count register for hours.

Register Offset Address R/W Description Reset Value

BCDHOUR 0xc878 R/W RTC hour register 0xXX

01234567

[5:0] Hour Counting Value. 0 ~ 23

Figure 22-5. BCDHOUR Counter Register

BCDDAY COUNTER REGISTER

BCD count register for days.

Register Offset Address R/W Description Reset Value

BCDDAY 0xc87c R/W RTC day register 0xXX

01234567

[5:0] Day Counting Value. 1 ~ 28, 29, 30, 31

Figure 22-6. BCDDAY Counter Register

REAL TIME CLOCK KS32C65100 RISC MICROPROCESSOR

22-6

BCDDATE COUNTER REGISTER

BCD count register for the date.

Register Offset Address R/W Description Reset Value

BCDDATE 0xc880 R/W RTC date register 0xX

01234567

[2:0] Date Counting Value. 1 ~ 7

Figure 22-7. BCDDATE Counter Register

BCDMON COUNTER REGISTER

BCD count register for months.

Register Offset Address R/W Description Reset Value

BCDMON 0xc884 R/W RTC month register 0xXX

01234567

[4:0] Month Counting Value. 1 ~ 12

Figure 22-8. BCDMON Counter Register

KS32C65100 RISC MICROPROCESSOR REAL TIME CLOCK

22-7

BCDYEAR COUNTER REGISTER

BCD count register for years.

Register Offset Address R/W Description Reset Value

BCDYEAR 0xc888 R/W RTC year register 0xXX

01234567

[7:0] Year Counting Value. 0 ~ 99

Figure 22-9. BCDYEAR Counter Register

KS32C65100 RISC MICROPROCESSOR CLOCK SAVE & PLL CONTROL

23-1

23 CLOCK SAVE & PLL CONTROL

OVERVIEW

 PLL is used to generate a higher internal clock from a low external clock source.
Clock saving provides that power dissipation of the periphery decreases in sleeping mode.
SYSTEM CLOCK divided by 40 is cnt_40, and RSTCLK, the frequency divided-logic in the CLKSAV unit, is the
reset filtering logic.
SMCLK is MCLK in normal mode or cnt_40 in sleeping mode

RSTCLK
(reset filtering logic)

SMCLK

CNT_20

Enable

MCLK

Figure 23-1. Clock Save Block Diagram

REGISTERS

Registers Offset Address R/W Description Value

CLKSAVCON 0x1800 R/W CLKSAV control register 0xX

PLLCON 0x1804 W PLL control register 0x00000

CLOCK SAVE & PLL CONTROL KS32C65100 RISC MICROPROCESSOR

23-2

CLKSAVCON REGISTER

The CLKSAVCON register is comprised of the CLKSAVE (CLKSAV Enable: bit 0) which decides whether or not
to enable clock saving for the peripherals.

031

[0] CLKSAVE: CLKSAVE Enable Bit
0 = Disble 1 = Enable

[1:31] Reserved

X

Figure 23-2. CLKSAVCON

PLLCON REGISTER

PLLCON controls PLL, and decides whether to use the PLL-generated clock or the external clock as the system
clock.

012910151631

[1:0] S: Post Scaler

[9:2] M: Main Divider

[15:10] P: Pre Divider

[16] CLKSEL
0 = Use external clock as MCLK
1 = Use PLL clock out as MCLK

X P M S

Figure 23-3. PLLCON

The frequency of the PLL-generated clock is found by the following formula.

PLL clock out(MHz) = (M+8) * external clock/((P+2)*(2**S))

If the external clock is 20MHz and M = 0, P = 0, and S = 0, the PLL clock out is 8*20/(2*1) = 80MHz.

KS32C65100 RISC MICROPROCESSOR CLOCK SAVE & PLL CONTROL

23-3

System Clock Calculation Method when using the Frequency Synthesizer PLL

— - Output Frequency Equation: Fout =
(m+8)

(p+2) * 2S × FIN

m: value of 8-bit Main-divider, 0 ≤ m ≤ 255
p: value of 6-bit Pre-divider, 0 ≤ p ≤ 63
s: value of 2-bit Post-scaler, 0 ≤ s ≤ 3

1) Clock_Input: 10MHz ~ 20MHz (recommend condition)
2) Fliter_Input: 820 pF
3) Clock_output: Main clock

 NOTE

 The setting of the PLLCON register can change only one time. For example, after power on, the value of
the PLLCON register is 0x0, this is PLL clock is not used. After this you can set the PLLCON register only
one time.

 Also, We recommend the s’s value is greater than or equal to 1, and the FIN/(p+2) is greater than 1MHz.

KS32C65100 RISC MICROPROCESSOR LSU CONTROL

24-1

24 LSU CONTROL

INTRODUCTION

This module performs the following functions:

• V_Window and LD_PreHeat pulse generation

• LSU ready state check

• VDO masking and software on/off control

• LSU motor clock generation

• nHSYNC Filtering

Printer Video
Data

InterFace
Control

LSU_CON

LSU_CLK

VDO1

nVDI

nLREADY

nHSYNC1

VDO2

nHSYNC2

sd
sa

mas

nrw
mclk

nPSYNC

Figure 24-1. LSU Control

LSU CONTROL KS32C65100 RISC MICROPROCESSOR

24-2

MAIN INPUT/OUTPUT SIGNALS

Input

• nLREADY: Signal activated when polygon motor is within the accurate speed

• nHSYNC1: Horizontal beam detect signal from LSU

• nVDI: Video data from PIFC block

Output

• VDO1: Laser diode on/off output (external output, initial "H", active "L")

• nPSYNC: Page sync. signal set by S/W for PIFC block

• LSU_CLK: Clock signal for LSU Motor [MCLK / { (LSUCK_CNT value+1)x2 }]

KS32C65100 RISC MICROPROCESSOR LSU CONTROL

24-3

SPECIAL REGISTER

LSU_CON CONTROL REGISTER

Register Offset Address R/W Description Reset Value

LSUCON 0xd000 R/W LSU_CON control register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[0] VDO SW On/Off Control
0 = Disable 1 = Enable

[1] Enable VDI from PIFC
0 = Disable 1 = Enable

[2] RUN Video Window & Idpon Counter
0 = Stop 1 = Run

[3] LD Pre_ON Function Enable
0 = Disable 1 = Enable

[4] VDO Polarity Control
0 = Same level as VDI 1 = Inverted level of VDI

[5] LSU_CLK Output Enable
0 = Disable 1 = Enable

[6] Page Sync. Control
0 = Negate (nPsync <= 1) 1 = Active (nPsync <= 0)

[7] Load nHSYNC Filter Clock Value
0 = Disable 1 = Enable

[9:8] nHSYNC Filter Clock Value
Filter clock = MCLK/(value+1)

[10] External VDI Enable
0 = Disable 1 = Enable

[11] Internal nLREADY Status Check and Clear
Read: 0 = Negate 1 = Active
Write: 0 = No clear 1 = Clear

[12] nLREADY Port Status (Read Only)

[13] Not Used

[15:14] nHSYNC Filter Counter Observation (Read Only)

XXXXXXXXXXXXX0XX

Figure 24-2. LSU_CON Control Register

LSU CONTROL KS32C65100 RISC MICROPROCESSOR

24-4

V_WINDOW START/END TIME REGISTER

Registers Offset Address R/W Description Reset Value

VWIN_STR 0xd004 R/W V_Window time start register 0x00000

VWIN_END 0xd008 R/W V_Window time end register 0x00000

0001020304050607080910111213141516171819202122232425262728293031

[19:0] Register Value

Register Value

Figure 24-3. V-Window Time Start/End Register

LD_ON PRE/POST TIME REGISTER

Registers Offset Address R/W Description Reset Value

LDON_Pre 0xd00c R/W LD ON Pre time register 0x00000

LDON_Post 0xd010 R/W LD ON Post time register 0x00000

0001020304050607080910111213141516171819202122232425262728293031

[19:0] Register Value

Register Value

Figure 24-4. LDON_Pre/Post Time Register

KS32C65100 RISC MICROPROCESSOR LSU CONTROL

24-5

V_WINDOW COUNTER OBSERVATION REGISTER

Register Offset Address R/W Description Reset Value

VCNT_OBS 0xd014 R/W V_Window counter observation register 0x00000

0001020304050607080910111213141516171819202122232425262728293031

[19:0] Counter Observation Value

Counter Observation Value

Figure 24-5. V-Window Counter Observation Register

LSU MOTOR CLOCK GENERATION COUNTER REGISTER

Register Offset Address R/W Description Reset Value

LSUCK_CNT 0xd018 R/W LSU Motor Clock counter base &
observation register

0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Counter Base Value

[31:16] Counter Observation Value

Counter BaseObservation Value

Figure 24-6. LSU CLK Counter Base/Observation Register

Caution

The counter of the V-Window time start/end register and the LDON_ pre/post time register should be run when
the control register's run bit is stop ("L") and the needed initial value is written.

The value written when the counter is being run is applied after the counting for the previous value is finished.

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-1

25 PRINTER INTERFACE CONTROLLER

OVERVIEW

The PIFC performs direct memory accesses to fetch video data, and then, serializes the data and handshakes with the
printer to transmit the video data after pattern procession. It has the following important features:

• It uses dedicated DMA to accelerate data transfers between page memory and the laser printer engine. The
dedicated DMA supports queued operations to facilitate the smooth switching between blocks of banded page
memory.

• The PIFC’s DMA controller can transfer strings of consecutive zeros (the 0’s in a given banded bit map, or blank
data) without accessing external memory. The length of a zeros string is determined by the value in the transfer
count register of the PIFC’s queue 0 or queue 1.

• The KS32C65100 PIFC employs pixel chopping to save printer toner.

• It provides a fine edge to print images by shrinking the first pixel dot whenever there is a string of consecutive 1’s
(that is, at the position where the left edge of the image starts).

• It supports 2 to 4-times image expanding print.

• It is able to control top-margin, left-margin and image width for page layout.

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-2

PAGE IMAGE DATA FETCH OPERATION

Page images are stored in an area of memory known as the band buffer. After a page image is rendered, the PIFC
can be programmed to fetch the contents of the band buffer to fill its FIFO.

The data fetch operation is performed by PDMA, and queued PDMA operations are supported by PIFC specially for
the print task with a large amount of video data. The principle of queued operation is that to divide the whole video
data into several data blocks. The first block of data is transferred by DMA queue 0 and the second block is
transferred by DMA queue 1, and during one queue operation the other DMA queue can be set to prepare for next
block transfer so that the next block transfer operation can start as soon as the previous block transfer operation is
completed. The switching between two DMA queues is implemented automatically by a data fetch controller, so as to
guarantee the continuity of data transfer.

Normally, an EOP (End-of-Page) interrupt is posted when a whole page video data transmission is completed, and
then the PIFC returns to idle. However, an abnormal interrupt, PUR (Page Under-run), may be generated if one DMA
queue is not been ready when another DMA queue operation is completed.

Auto-Reset

Next Queue is
Enabled Here

Queue 0 is
Enabled Here

Printing Idle

EnabledEnabled

Enabled Enabled

Queued Operation
Control (PDMACR[4])

INT_SOD

INT_EOP

Current State

Queued 0 Enable
(PDMACR[2])

Queued 1 Enable
(PDMACR[3])

Current Queue

Figure 25-1. Queued Operation for End-of-Page (EOP)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-3

Auto-Reset

Next Queue is
Enabled Here

Queue 0 is
Enabled Here

Printing Idle

EnabledEnabled

Enabled

Not Enabled

Queued Operation
Control (PDMACR[4])

INT_SOD

INT_EOP

Current State

Queued 0 Enable
(PDMACR[2])

Queued 1 Enable
(PDMACR[3])

Current Queue

INT_PUR

Figure 25-2. Queued Operation for Page Under-run (PUR)

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-4

PRINT OPERATION

The print job is started by PIFC issuing an active print command signal nPRINT (setting VCON[1] to "1"), which means
that the KS32C65100 PIFC is ready to start a print job. The PIFC then begins waiting for the nPSYNCRQ from
LSU_CON. After nPSYNCRQ arrives, the PIFC activates nPSYNC signal by setting VCON[2] to "1", and in the
meantime, the top margin counting operation begins. The top margin counter is decreased until the count reaches "0",
and then the PIFC begins to transmit video data.

The nPRINT signal must be held active until nPSYNC becomes inactive. By using interrupts, the nPSYNC time
interval can be controlled. As shown in Figure 25-3, the transitions on nPSYNCRQ signal level cause the occurrences
of SYNC1 interrupts. So the nPSYNC can be activated and inactivated in the ISR (interrupt service routine) of
INT_SYNC1.

Top Margin = 0nPSYNC Active

Idle Pick-up Counting Top Margin Printing IdleCurrent State

nPRINT

nPSYNCRQ

nPSYNC

INT_EVENT

INT_EOP

Figure 25-3. Protocol Diagram (PIFC and Printer Engine)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-5

PIFC SPECIAL REGISTERS

PDMA AND ENGINE INTERFACE STATUS REGISTER

The printer interface controller’s PDMA and engine interface status register, status, contains read-only status bits used
to monitor the progress of print operations, including power ready, ready to print, print synchronization, PIFC status,
and currently active DMA queue.

Register Offset Address R/W Description Reset Value

STATUS 0xa000 R PDMA and engine interface status register 0x00

[1:0] Reserved

[2] Print Synchronization request When STATUS[2] is "1", a print synchronization request
(nPSYNCRQ) is being received from the laser printer engine.
When the engine issues this request, it is ready to receive
the synchronization pulse, nPSYNC, from the
KS32C65100.

[4:3] Current PIFC status The value of this bit-pair indicates the current operating
status of the printer interface controller. There are four
states: idle, pick-up, counting top margin, and active
printing.

[5] Current DMA queue The KS32C65100 uses two DMA queues for dedicated
printer DMA, DMA 0 and DMA 1. The STATUS[5] status bit
indicates which queue is currently active during a PDMA
operation. When STATUS[5] is "0", DMA queue 0 is active;
when it is "1", DMA queue 1 is active.

0001020304050607080910111213141516171819202122232425262728293031

0

[1:0] Reserved

[2] Print Synchronization Request
0 = Active nPSYNCRQ not received (nPSYNCRQ is high)
1 = Active nPSYNCRQ received (nPSYNCRQ is low)

[4:3] Current PIFC Status
00 = Idle 01 = Pick-up
10 = Counting top-margin 11 = Active printing

[5] Currently Selected DMA Queue
0 = DMA queue 0 is selected
1 = DMA queue 1 is selected

XXStateX

Figure 25-4.PDMA and Engine Interface Status Register (STATUS)

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-6

VIDEO CONTROL REGISTER

Settings in the PIFC video control register, VCON, control activities of the KS32C65100 printer interface controller
during a printing operation, including video clock selection and the shift direction of video data.

Register Offset Address R/W Description Reset Value

VCON 0xa004 R/W Video control register 0x00

[0] Reserved

[1] nPRINT output When VCON[1] is "1", it signals the printer engine that the
KS32C65100 PIFC is ready to start a print job.

[2] Print synchronization This bit activates or inactivates nPSYNC signal.

[3] Video clock inversion When using external a video clock (VCLK), if VCON[3] is "1",
 the PIFC uses a non-inverted external video clock (VCLK) as
 its clock. Otherwise, it uses the inverted external VCLK.

The VCLK selection (VCLK) depends on the setting in
PCON[3:2].

[4] Video data shift direction In video data transmission, if VCON[4] is "1", the shift
direction of video data in the shift register is LSB-first.
Otherwise, the shift direction is MSB-first.

[5] Stop printing When VCON[5] is set to "1", PIFC stops printing and
generates the End-of-Page interrupt (INT_EOP), and then
VCON[5] is auto-cleared to "0" and all of PIFC state is
reset.

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-7

0001020304050607080910111213141516171819202122232425262728293031

0

[0] Reserved

[1] nPRINT Signal
0 = nPRINT signal with high level
1 = nPRINT signal with low level

[2] Print Synchronization Signal
0 = nPSYNC signal with high level
1 = nPSYNC signal with low level

[3] Video Clock Inversion
0 = Invert video clock (VCLK)
1 = Don't invert video clock (normal)

[4] Shift Direction of Video Data Transmission
0 = MSB-first 1 = LSB-first

[5] Stop Printing
0 = Normal operation
1 = Stop printing and generate EOP interrupt

XXX XX

Figure 25-5. Video Control Register (VCON)

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-8

PATTERN CONTROL REGISTER

Settings in the printer interface controller’s pattern control register, PCON, control various video data functions
including video data polarity, border data polarity, video clock selection, clock divisor, shrink pattern, data chopping
selection for toner savings and image expanding.

Register Offset Address R/W Description Reset Value

PCON 0xa008 R/W Pattern control register 0x000000

[0] Video data polarity When PCON[0] is "0", the video data that the KS32C65100
sends to the printer engine is inverted. Otherwise, the video
data sent in a non-inverted stream.

[1] Border data polarity When PCON[1] is "0", the border data, which corresponds
to the blank area on paper around the image to be printed,
including the top, left, right and bottom margins, is inverted.
otherwise, the border data is not inverted.

[3:2] Video clock selection When PCON[3:2] is "01", the PIFC selects the external video
clock 0 (VCLK0) as its video clock; and when PCON[3:2] is
"10", the PIFC doesn’t selects any clock.
Otherwise, it selects the internal system clock, MCLK.

[6:4] Video clock divisor selection This 3-bit value determines the divisor for the selected
video clock.

[9:7] Video data shrink pattern Using this 3-bit value, you can create special effects in the
printed image. Depending on the video clock divisor n, to
achieve a fine print edge, the size of the first pixel dot that is
detected at the left edge of the image is shrunk by 1/n of
the normal pixel size, or by 2/n, 3/n, and so on. The left
edge of an image is defined as the pixel from which a
string of consecutive 1’s is detected on a scan line.
In other words, the size of the first pixel in the string of
consecutive 1’s is reduced in order to achieve a sharper
"left edge" of the printing area.

[17:10] Video data chopping Each bit of video data corresponds to a pixel dot in printing,
and the pixel dot consists of n sub-pixels (n is the video
clock divisor defined by PCON[6:4]). To save printer toner,
one or more sub-pixels for each bit pixel can be chopped in
printing and the position of the sub-pixel to be chopped is
specified by PCON[17:10]. Among the eight bits of
PCON[17:10], the positions of zeros determines the
positions of the sub-pixels to be chopped.
For example, PCON[6:4] is specified as “111” (i.e. the n is
equal to 8), then each bit of video data (one pixel dot)
corresponds to 8 sub-pixels in printing. If PCON[17:10] is
specified as “10110010”, the 1st, 3rd, 4th and 7th sub-pixel
for each pixel will be chopped in printing.

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-9

[19:18] Image expanding ratio This 2-bit value determines the image expanding ratio.
When PCON[19:18] is not "00", the image to be sent to the
printer engine is expanded first according to the defined
ratio and then sent to the engine.

[20] HSYNC selection Selects the HSYNC signal to the used between HSYNC1
and HSYNC2.

[21] Test mode If ‘0’, normal mode.
 If ‘1’, outputs the test pattern mode by the TPVAL register and

TPON register.

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-10

0001020304050607080910111213141516171819202122232425262728293031

V
P

[0] Video Data Polarity
0 = Invert the video data to be sent to print engine
1 = Do not invert video data

[1] Border Data Polarity
0 = Invert border data 1 = Do not invert border data

[3:2] Video Clock Selection
00 = Use MCLK as the video clock
01 = Use external VCLK as the video clock
10 = No clock selected
11 = Use MCLK as the video clock

[6:4] Video Clock Divisor Selection
000 = 1 001 = 2 010 = 3 011 = 4
100 = 5 101 = 6 110 = 7 111 = 8

[9:7] Shrink Pattern for Video Data
000 = No shrinking 001 = 1/n dot shrunk at left edge of image
010 = 2/n dot shrunk 011 = 3/n dot shrunk
100 = 4/n dot shrunk 101 = 5/n dot shrunk
110 = 6/n dot shrunk 111 = 7/n dot shrunk

[17:10] Video Data Chopping Pattern
xxxxxxx0 = Chop 1st sub-pixel of each dot
xxxxxx0x = Chop 2nd sub-pixel of each dot
xxxxx0xx = Chop 3rd sub-pixel of each dot
xxxx0xxx = Chop 4th sub-pixel of each dot
xxx0xxxx = Chop 5th sub-pixel of each dot
xx0xxxxx = Chop 6th sub-pixel of each dot
x0xxxxxx = Chop 7th sub-pixel of each dot
0xxxxxxx = Chop 8th sub-pixel of each dot

[19:18] Image Expanding Ratio
00 = Normal 01 = 2-times expanding
10 = 3-times expanding 11 = 4-times expanding

[20] Hsync Selection
0 = HSYNC1 1 = HSYNC2

[21] Test Mode
0 = Normal mode 1 = Test pattern generation

B
PCKSCKDCHPSRKIEH

S
T
M

Figure 25-6. Pattern Control Register (PCON)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-11

PRINTER DMA CONTROL REGISTER

The printer DMA control register, PDMACON, is used to control the operation of the printer DMA queues.

Register Offset Address R/W Description Reset Value

PDMACON 0xa00c R/W PDMA control register 0x00

[0] Blank mode: DMA queue 0 When PDMACON[0] is "1", the shift register of printer DMA
queue 0 sends a stream of zeros to the laser printer engine
as video data. No external memory access is required
during this PDMA operation. Blank mode is useful for
sending a "blank image" if the bit map of a certain banded
image consists of all zeros (blank). When this bit is "0", all
PDMA accesses are in normal mode. That is, external page
memory must be accessed to fetch the page bit map.

[1] Blank mode: DMA queue 1 When PDMACON[1] is "1", the shift register of DMA queue
1 sends a stream of zeros to the laser printer engine as
video data. (This control bit has the same effect for PDMA
queue1 as PDMACON[0] does for PDMA queue 0.)

[2] DMA queue 0 enable When PDMACON[2] is set to "1", queue 0 is enabled and a
printer DMA 0 operation can start. When the queue 0
operation is completed, this bit is automatically cleared to
"0".

[3] DMA queue 1 enable When PDMACON[3] is set to "1", queue 1 is enabled and a
printer DMA 1 operation can start. When the queue 1
operation is completed, this bit is automatically cleared to
"0".

[4] Queued operation enable The value of this bit determines whether PDMA uses
queued operation to transfer banded bit-mapped data to the
laser engine. If PDMACON[4] is "0", PDMA queue 0 or
queue 1 transfers data over one queue or the other, without
alternating between the two. If PDMACON[4] is "1", banded
bit-mapped data is transferred in an alternating queue
operation using both queues.

[5] PDMA direction The PDMACON[5] control bit determines whether the bit
map in a PDMA operation is printed from top-to-bottom
(down-printing) or from bottom-to-top (up-printing).

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-12

0001020304050607080910111213141516171819202122232425262728293031

X

[0] Blank Mode for PDMA Queue 0
0 = Normal PDMA access to external page memory
1 = Blank mode (send zeros as video data without memory
access)

[1] Blank Mode for PDMA Queue 1
0 = Normal PDMA access to external page memory
1 = Blank mode (send zeros as video data without memory
access)

[2] PDMA Queue 0 Enable
0 = Disable PDMA queue 0
(clear automatically when queue 0 operation completed)
1 = Enable PDMA queue 0 (start PDMA queue 0 operation)

[3] PDMA Queue 1 Enable
0 = Disable PDMA queue 1
(clear automatically when queue 1 operation completed)
1 = Enable PDMA queue 1 (start PDMA queue 1 operation)

[4] Queued PDMA Operation Enable
0 = Queued operation disable
1 = Queued operation enable

[5] Direction of PDMA Operation
0 = Print page bitmap from bottom to top
1 = Print page bitmap from top to bottom

XXXXX

Figure 25-7. Printer DMA Control Register (PDMACON)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-13

TOP MARGIN REGISTER

The value written to the top margin register, TOP, controls the number of scan lines to be skipped when printing starts.
An internal counter records the number of nENGHSYNC pulses to determine the beginning of the effective printing
area.

Register Offset Address R/W Description Reset Value

TOP 0xa010 R/W Top margin register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Top Margin Count Value
This 16-bits field contains the top margin count value. This
value specifles how many scan lines are to be skipped in the
top margin area of a page in order to reach the start of the
effective print area.

Top Margin Count

Figure 25-8. Top Margin Register (TOP)

PXLLFT

TOP

Paper

Image

Border

Figure 25-9. Page Layout

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-14

LEFT MARGIN REGISTER

The PIFC left margin register, LFT, controls the number of pixels that are skipped when a scan-line operation starts in
synchronization with nENGHSYNC. An internal counter records the number of pixels skipped in order to determine the
starting pixel of the scan-line operation.

Register Offset Address R/W Description Reset Value

LFT 0xa014 R/W Left margin register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Left Margin Count Value
This 16-bits field contains the left margin count value. This value
specifles how many pixels are to be skipped in the left margin area of
a page in order to determine the starting pixel on which the scan line
begins.

NOTE: For correct printing operation, it is recommended
 that you set the LFT with a value greater than four.

Left Margin Count

Figure 25-10. Left Margin Register (LFT)

PIXEL COUNT REGISTER

The value stored in the pixel count register, PXL, determines the total number of pixels per scan line.

Register Offset Address R/W Description Reset Value

PXL 0xa018 R/W Pixel count register 0x0000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Pixel Count Value
This 16-bits field contains the count value for the number of
pixels per scan line.

NOTE: In image expanding operation, the pixel count
value contained in PXL should be set as the pixel
number per scan line of original image rather than
that of the expanded image.

Pixel Count

Figure 25-11. Pixel Count Register (PXL)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-15

QUEUE 0/1 START ADDRESS REGISTERS

The values written to the two queue start address registers, QSAR0 and QSAR1, respectively define the starting byte
address for PDMA queues 0 and 1.

Registers Offset Address R/W Description Reset Value

QSAR0 0xa01c R/W PDMA queue 0 start address register 0x0000000

QSAR1 0xa024 R/W PDMA queue 1 start address register 0x0000000

0001020304050607080910111213141516171819202122232425262728293031

[27:0] Queue Start Address for PDMA Operation
This 28-bits field contains the start byte address for the
respective DMA queue (DMA queue 0 or DMA queue 1)

NOTE: Since PDMA performs 32-bit (word) data
transfers, the queue start addresses should be
aligned to word (4-bytes) boundaries.

Queue Start Address

Figure 25-12. Queue 0/1 Start Address Registers (QSAR0, QSAR1)

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-16

QUEUE 0/1 TRANSFER COUNT REGISTERS

The values written to the two queue transfer count registers, QTCR0 and QTCR1, define the transfer count in word
(32-bit) units when the DMA operation starts for the corresponding queue.

Registers Offset Address R/W Description Reset Value

QTCR0 0xa020 R/W PDMA queue 0 transfer count register 0x000000

QTCR1 0xa028 R/W PDMA queue 1 transfer count register 0x000000

0001020304050607080910111213141516171819202122232425262728293031

[27:0] Queue Transfer Count Value
This 24-bits field contains the number of DMA transfers that
have been completed in a gived PDMA operation for the
respective queue. The transfer count value is represented in
word (32-bit) units.

NOTE: In image expanding operation, a restriction is
imposed on the queue transfer count value setting
(i.e. the count value setting should guarantee the
queue boundary being aligned to the image line
boundary and the word (32-bit) boundary
simultaneously). In other words, if assuming
PXL_Q is the least common multiple of PXL value
and 32, the queue transfer count should be
specified as multiples of (PXL_Q/32).

Queue transfer Count

Figure 25-13. Queue 0/1 Transfer Count Registers (QTCR0, QTCR1)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-17

F-θ LENS COMPENSATION CONTROL REGISTER

Register Offset Address R/W Description Reset Value

FTCON 0xa02c R/W F-θ control register 0x0

[0] F-θ Enable Disable if 0. Enable if 1.

[1] CPU Access Enable 0: F-θ compensation block accesses the F-θ table memory
(read/write)

1: CPU access.
To configure a table, this bit must be set to 1 before CPU write.

[2] Clock Selection Select divided clock.
0: MCLK*2
1: External video clock

0001020304050607080910111213141516171819202122232425262728293031

[0] F-¥È Compensation Enable
0 = Disable 1 = Enable

[1] F-¥È Compensation Table Access Mode
0 = Normal mode 1 = CPU access mode

[2] F-¥È Compensation Clock Selection
0 = MCLK * 2 1 = External video clock

XXX

Figure 25-14. F-θ Compensation Control Register (FTCON)

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-18

F-θ COMPENSATION TABLE START ADDRESS

This is the start address for accessing the table (read/write, normal access mode, CPU access mode, etc.).

If you wish to access a different access during operation, you must change this register value.

If you access after writing 00, the F-θ compensation block accesses from 00 in order. If you write 20h to this register, it
accesses from 20h.

Register Offset Address R/W Description Reset Value

FSADDR 0xa030 R/W F-θ Table start address 0x00

0001020304050607080910111213141516171819202122232425262728293031

[6:0] F-¥ÈCompensation Table Start Address
Holds the start address for accessing the table You need
7 bits for the access because the table is composed of 128
lines.

Start Address

Figure 25-15. F-θ Compensation Table Start Address (FSADDR)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-19

F-θ COMPENSATION TABLE DATA REGISTER

The CPU reads/writes this register when accessing the F-θ compensation Table.

Register Offset Address R/W Description Reset Value

FDATA 0xa034 R/W F-θ compensation data register 0xeffb

0001020304050607080910111213141516171819202122232425262728293031

[7:0] Divide Value
Decides how to divide clock

[15:8] Repetition Count
Decides how many divided clocks to send out.

Divide ValueRepetition Count

Figure 25-16. F-θ Compensation Table Data Register (FDATA)

TONER COUNTER SETTING REGISTER

Register Offset Address R/W Description Reset Value

TCVAL 0xa038 R/W Toner counter setting value 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[31:0] Toner Counter Setting Value
Holds the toner counter setting value.
If you write in this register, the toner counter counts from the
value written.

Toner Counter Setting Value

Figure 25-17. Toner Counter Setting Register (TCVAL)

PRINTER INTERFACE CONTROLLER KS32C65100 RISC MICROPROCESSOR

25-20

TONER COUNT REGISTER

Register Offset Address R/W Description Reset Value

TNCNT 0xa03c R Toner count value register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[31:0] Toner Count
Holds the toner count value.

Toner Count

Figure 25-18. Toner Count Register (TNCNT)

Test Pattern Duration

Register Offset Address R/W Description Reset Value

TPVAL 0xa040 R/W Test pattern duration value register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[7:0] Test Pattern Duration
Determines the test pattern duration.

Figure 25-19. Test Pattern Duration (TPVAL)

KS32C65100 RISC MICROPROCESSOR PRINTER INTERFACE CONTROLLER

25-21

Test Pattern Width

Register Offset Address R/W Description Reset Value

TPON 0xa044 R/W Test pattern width register 0x00

0001020304050607080910111213141516171819202122232425262728293031

[7:0] Test Pattern Width
Determines the test pattern width.
Decides how much width to print black in the duration
decided by TPVAL.

Figure 25-20. Test Pattern Width (TPON)

KS32C65100 RISC MICROPROCESSOR VARIABLE IMAGE SCALING

26-1

26 VARIABLE IMAGE SCALING

OVERVIEW

The VIS unit can support the variable-ratio image scaling operation. In other words, the factor of image
expansion can be in either integer or fraction. For example, it supports image scaling with ratios 3/2, 5/4, 2, 13/5
and so on. To implement this operation, five registers are involved in this unit, out of in which two size registers,
SrcSize and DstSize, specify the scanline sizes of the source image and destination image two data registers,
SrcReg and DstReg, are used to contain the scanline data of the input source image and the scaled scanline data
of the output destination image; and one status register, VISSR, indicates the operation status during VIS
running. The image scaling ratio can be determined by comparing the values in two data size registers. For
example, if the source size register is set to 4 and the destination size register is set to 5, then the image scaling
ratio is 5/4.

For integral-ratio image scaling, each pixel of input source image scanline is replicated by hardware according to
the specified scaling ratio to generate the destination image scanline output. This operation is the same as the
image expander’s operation mentioned before, except that in this unit the expanding factor can be an arbitrary
integer. However, for fractional-ratio image scaling, hardware performs the pixel replication following a particular
algorithm. The hardware has to decide which pixel in input source image scanline should be replicated or how
many times it should be replicated. with specified fractional scaling ratio.

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-2

ALGORITHM

The VIS algorithm is given out in the form of a C-program, as shown in Figure 26-1.

/**/
/* Variable Descriptions: */
/* Dst_Pixel_IDx * Pixel position in destination data register */
/* Src_Pixel_IDx * Pixel position in source data register */
/* Dst_Size * Destination size register’s setting value */
/* Src_Size * Source size register’s setting value */
/* DstReg * Destination data register */
/* SrcReg * Source data register */
/**/

VIS_Operation()
{
 Frac = 0;
 Dst_Pixel_IDx = 0;
 Src_Pixel_IDx = 0;

 for (i = 0; I < Src_Size; i++)
 {

Frac = Frac + Dst_Size;
while (Frac >= Src_Size)
{

Frac = Frac - Src_Size;
DstReg[Dst_Pixel_IDx] = SrcReg[Src_Pixel_IDx];
Dst_Pixel_IDx ++;

 }
 Src_Pixel_IDx ++;
 }
}

Figure 26-1. VIS Algorithm Description

KS32C65100 RISC MICROPROCESSOR VARIABLE IMAGE SCALING

26-3

EXAMPLE OF VIS OPERATION

To carry out the VIS operation, S/W should run the following steps:

• Set the control register, FUNCON1, as zero to select the VIS operation;

• Set the size registers, SrcSize and DstSize, to specify the scaling ratio;

• Write source image data to source data register (SrcReg);

• Check the read-request bit in status register (VISSR[0]), and read the scaled image data from destination
data register (DstReg) once the read-request bit is one; repeat this step until all scaled data are read out.

• If more data is to be processed, check the write-request bit in status register (VISSR[1]) and repeat steps 2-4
once the write-request bit is one.

Inside the VIS unit, hardware performs the image data replication automatically after obtaining the source image
data from SrcReg according to the algorithm described above, and outputs the scaled image data to DstReg.
Figure 26-2 shows some examples for VIS's internal image data replication process.

8-bit SrcReg

16-bit DstReg

8-bit SrcReg

16-bit DstReg

8-bit SrcReg

16-bit DstReg

Example 1:
SrcSize = 4
DstSize = 5

Scaling ratio = 5/4

Example 2:
SrcSize = 4
DstSize = 6

Scaling ratio = 6/4

Example 3:
SrcSize = 4
DstSize = 8

Scaling ratio = 8/4 = 2

MSB

MSB LSB

LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

Figure 26-2. Examples of VIS′s Internal Operation

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-4

HALFTONING

The halftoning unit performs the operation to convert the gray-level image into a bi-value halftone image. To
support the PCL6.0 protocol, the input gray-level image, in which the pixel’s gray level is 8-bit scaled and each
pixel corresponds 8-bit scale data, should be converted to halftone image suitable to be printed. For halftone
image, the image gray level is represented by the density of the black pixels (i.e. each pixel in this kind of image
only corresponds one bit and may represent as white (zero) or black (one) only).

In this unit, the conversion from gray-level image to halftone image is implemented by hardware based on a
comparison algorithm. To generate the halftone image, each pixel data (8-bit) of the gray-level image is
compared with an 8-bit reference data (i.e. the threshold value), and a one-bit halftone image pixel value is
output according to the comparison result.

To support this operation, four registers are provided in this unit, in which three 16-bit data register (PixIn, RefIn
and HftReg) are used to contain the source image (gray-level image) pixels' data, reference data (threshold
values) and the halftone data, and a control register (VISCON) is used to initialize/enable the half toning
operation and select the 'dot mode' to be introduced below.

Since the data register is 16-bit while the input image pixel data is 8-bit, two pixels are input and processed at the
same time. To carry out the half toning operation, S/W runs in the following steps:

• Set the control register's 0 bit, VISCON[0], as one to enable the VIS operation, and set the VISCON[1] to
select dot mode.

• Write two pixel thresholds to RefIn register's lower 8-bit and upper 8-bit to provide two pixel reference data;

• Write two pixel data of source image to PixIn register's lower 8-bit and upper 8-bit to compare with reference.

• Repeat steps 2-3 seven times, and then read the HftReg to obtain the 16-bit output, i.e. the 16 pixels's data
of halftone image.

• Repeat steps 2-4 until all pixels of source image are processed.

The half toning algorithm is described in Figure 26-3, in which two kinds of dot modes are included. The dot
mode selection in half toning operation depends on the setting of VISCON[1].

Dot mode 0:
if (source_pixel_data > reference_data)

halftone_pixel_data = 0;
else

halftone_pixel_data = 1;

Dot mode 1:
if (source_pixel_data > reference_data)

halftone_pixel_data = 1;
else

halftone_pixel_data = 0;

Figure 26-3. Half toning Algorithm Description

KS32C65100 RISC MICROPROCESSOR VARIABLE IMAGE SCALING

26-5

SPECIAL REGISTER

VIS Status Register

The VIS status register, VISSR, is a read-only register which is used to monitor the status of VIS operation.

Register Offset Address R/W Description Reset Value

VISSR 0xa800 R VIS status register 0x0

[0] Read request VISSR[0] is automatically set to "1" whenever the scaled
image data has been prepared in DstReg. When it is "1", it
indicates that you can read the scaled results from DstReg.

[1] Write request VISSR[1] is automatically set to "1" whenever the VIS
operation for all the data in SrcReg has been completed.
When it is "1", it indicates that you can write the next
source data to SrcReg.

[2] Busy flag VISSR[2] is automatically set to "1" whenever VIS
operation starts; and when it is "0" VIS is in an idle state.

0001020304050607080910111213141516171819202122232425262728293031

[0] Read Request
0 = No request to read DstReg
1 = Request to read DstReg

[1] Write Request
0 = No request to write SrcReg
1 = Request to write SrcReg

[2] Busy Flag
0 = VIS be in an idle state
1 = VIS be in progress

NOTE: During VIS operation, if read request and write
request occur simultaneously, (i.e. the VISSR's
content is "1112"), the S/W should read the
DstReg first and then write the next source data

 to SrcReg.

XXX

Figure 26-4. VIS Status Register (VISSR)

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-6

VIS Control Register

The VIS control register, VISCON, controls the VIS/half toning operation. Two bits in this register are used to
respectively enable the VIS/half toning operation and select the algorithm for half toning operation.

Register Offset Address R/W Description Reset Value

VISCON 0xa804 R/W VIS control register 0x0

0001020304050607080910111213141516171819202122232425262728293031

[0] Enable VIS/Halftoning
0 = Enable VIS operation 1 = Enable Halftoning operation

[1] Dot Mode Selection for Halftoning Operation*
0 = Dot mode 0 1 = Dot mode 1

* Refer to the halftoning algorithm description in Figure 26-3.

XX

Figure 26-5. VIS Control Register (VISCON)

VIS Data Size Registers

Two VIS data size registers, SrcSize and DstSize, are used to define the image data length before and after the
VIS process (i.e. the input source image data length and the output destination image data length). The image
scaling ratio can be determined by these two registers* contents, i.e.

image_scaling_ratio = DstSize_value/SrcSize_value

Registers Offset Address R/W Description Reset Value

DstSize 0xa808 R/W Destination image data size register 0xXXXX

SrcSize 0xa80c R/W Source image data size register 0xXXXX

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Data Size
This 16-bit field contains the length value of the source
image data to be written to SrcReg of the destination image
data to be read from DstReg.

Data Size

Figure 26-6. VIS Data Size Registers (DstSize, SrcSize)

KS32C65100 RISC MICROPROCESSOR VARIABLE IMAGE SCALING

26-7

VIS Data Registers

Two VIS data registers, SrcReg and DstReg, respectively contain the input source image data before the VIS
process and the output destination image data after the VIS process. The SrcReg is an 8-bit register and the
DstReg is a 16-bit register.

Registers Offset Address R/W Description Reset Value

SrcReg 0xa810 R/W Source image data register 0xXX

DstReg 0xa814 R Destination image data register 0xXXXX

0001020304050607080910111213141516171819202122232425262728293031

SrcReg[7:0] Source Image Data
This 8-bit field contains the input source image data to be
processed by VIS.

DstReg[15:0] Destination Image Data
This 16-bit field contains the output destination image data
after VIS procession

Source Image Data

0001020304050607080910111213141516171819202122232425262728293031

Destination Image Data

SrcReg:

DstReg:

Figure 26-7. VIS Data Registers (SrcReg, DstReg)

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-8

Half toner Data Registers

Three half toner data registers, RefIn/PixIn and HftReg, respectively contain the input reference/source pixel data
before the half toning process and the output the halftone data after the half toning process.

Registers Offset Address R/W Description Reset Value

RefIn 0xa818 R/W Reference data register 0xXXXX

PixIn 0xa81c R/W Source image pixel data register 0xXXXX

HftReg 0xa820 R Halftone image data register 0xXXXX

0001020304050607080910111213141516171819202122232425262728293031

RefIn[15:0] Reference Data
This 16-bit field contains two 8-bit reference data to be
compared with corresponding source pixels data.

PixIn[15:0] Source Image Pixel Data
This 16-bit field contains two 8-bit source image pixel data
to be processed.

HftReg[15:0] Halftone Image Data
This 16-bit field contains 16 halftone image pixel data
generated by the halftoning operation.

Reference Data n

0001020304050607080910111213141516171819202122232425262728293031

Source Pixel Data n+1

RefIn:

PixIn:

0001020304050607080910111213141516171819202122232425262728293031

Halftone Image DataHftReg:

Reference Data n+1

Source Pixel Data n

Figure 26-7. VIS Data Registers (SrcReg, DstReg)

KS32C65100 RISC MICROPROCESSOR PWM TIMER CONTROL

27-1

27 PWM TIMER CONTROL

INTRODUCTION

The PWM control is composed of the following: one 8-bit pre-scaler, one 16-bit down_counter, two 4-bit pre-
scalers, and 16-bit down_counter.

• The 16-bit counter is either enabled (RUN) or disabled (STOP) according to the each control register's bit
selection.

• The PWM output signal and the on/off time within its period are decided according to the Cycle_Time base
value and On-Time base value. If the On-Time base value is the same or larger than the Cycle_Time base
value when the counter is enabled, the PWM output signal maintains On status.

• If a new cycle time or on time value is written, the PWM output is generated according to the modified value
starting from the next cycle.

— PWM_Counter_Clock = MCLK / (pre-scaler value+1)

— Cycle time pulse width = (Cycle time value +1) / PWM_Counter_Clock

— On time pulse width = (On time value +1) / PWM_Counter_Clock

MAIN INPUT/OUTPUT SIGNALS

Output

— PWM_OUT0: PWM0 timer output signal

— PWM_OUT1: PWM1 timer output signal

— PWM_OUT2: PWM2 timer output signal

PWM TIMER CONTROL KS32C65100 RISC MICROPROCESSOR

27-2

SPECIAL FUNCTION REGISTER

PWM Control Register

Register Offset Address R/W Description Reset Value

PWMCONR 0xe000 R/W PWM_CON control register 0x0

0001020304050607080910111213141516171819202122232425262728293031

[0] Run PWM0 Counter
0 = Stop 1 = Run

[1] Run PWM1 Counter
0 = Stop 1 = Run

[2] Run PWM2 Counter
0 = Stop 1 = Run

XXX

Figure 27-1. PWM_CON Control Register

PWM Counter Pre-Scaler

Register Offset Address R/W Description Reset Value

PWM_PRSC 0xe004 R/W PWM Pre-Scaler counter base value register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[7:0] Pre-Scaler0 Counter Base Value

[11:8] Pre-Scaler1 Counter Base Value

[15:12] Pre-Scaler2 Counter Base Value

[23:16] Pre-Scaler0 Counter Observation Value

[27:24] Pre-Scaler1 Counter Observation Value

[31:28] Pre-Scaler2 Counter Observation Value

Counter
Base0

Observation
Value0

Observation
Value1

Observation
Value2

Counter
Base2

Counter
Base1

Figure 27-2. PWM Pre-Scaler Counter Base/Observation Register

KS32C65100 RISC MICROPROCESSOR PWM TIMER CONTROL

27-3

PWM Cycle/On Time Base & Observation Register

Registers Offset Address R/W Description Reset Value

PWM_CYT0 0xe008 R/W PWM0 cycle time & observation register 0x00000000

PWM_ONT0 0xe00c R/W PWM0 on time & observation register 0x00000000

PWM_CYT1 0xe010 R/W PWM1 cycle time & observation register 0x00000000

PWM_ONT1 0xe014 R/W PWM1 on time & observation register 0x00000000

PWM_CYT2 0xe018 R/W PWM2 cycle time & observation register 0x00000000

PWM_ONT2 0xe01c R/W PWM2 on time & observation register 0x00000000

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Counter Base Value

[31:16] Counter Observation Value

Counter BaseObservation Value

Figure 27-3. PWM Cycle Time Base/Observation Register

0001020304050607080910111213141516171819202122232425262728293031

[15:0] Counter Base Value

[31:16] Counter Observation Value

Counter BaseObservation Value

Figure 27-4. PWM On Time Base/Observation Register

PWM TIMER CONTROL KS32C65100 RISC MICROPROCESSOR

27-4

Caution

• PWM_Counter_Clock = MCLK / (pre-scaler value+1)

• Cycle time pulse width = (cycle time value +1) / PWM_Counter_Clock

• On time pulse width = (on time value +1) / PWM_Counter_Clock

* PWM Timer Setting Process

• Write PWM_Counter Pre-Scaler value

• Write PWM_Cycle time value

• Write PWM_On time value

• RUN PWM_Timer

• Write Next PWM_Cycle time value or PWM_On time value
(When you change the PWM_Cycle time or the PWM_On time value)

KS32C65100 RISC MICROPROCESSOR MECHANICAL DATA

28-1

28 MECHANICAL DATA

PACKAGE DIMENSIONS

NOTE: Typical dimensions are in millimeters.

208-QFP-2828B

28.80 BSC

30.60 BSC

28
.8

0
B

S
C

30
.6

0
B

S
C

0.
45

 -
 0

.7
5

0.25 MIN

3.40 ± 0.20

4.10 MAX

0.08 MAX

0.15+0.0
5

-0.0
6

0-
7

#
1

0.08 MAX

0.50 BSC+ 0.07
- 0.030.20 (1.25)

Figure 28-1. 208-QFP-2828 Package Dimensions

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

26-1

29 EVALUATION BOARD

INTRODUCTION

KS32C65100 evaluation board is a platform that is suitable for code development and exploration of
KS32C65100. It supports various memory devices such as DRAM , SRAM, EPROM, and Flash. Using the
embedded ICE interface, you can debug the KS32C65100 directly.

SYSTEM REQUIREMENTS

• Host computer: IBM compatible PC

• Evaluation board of KS32C65100

• DC power supply with the following outputs: +5V at 0.5 A

• Parallel Cable (25-pin)

• Serial cable (9-pin)

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-2

BOARD COMPONENTS

The arrangement of major components on the board is shown in Figure 29-1. The major components include:

EPROM/Flash
Memory

There are two sockets, U13 and U14, which will accept 8-bit FLASH or EPROM with
64 K size for lower byte (U13) and upper byte (U14) data access, respectively. The
two sockets finally form 64 K x 16-bit ROM bank. You can control the memory type
by setting the jumper JP15 and JP16.

SRAM Two sockets, U18 and U19, are supplied for SRAM memory bank with 128 K x 16- bit
size. The U18 and the U19 will accept the 128 K 8-bit SRAM for lower byte data and
upper byte data, respectively.

DRAM Two sockets, U15 and U16, are supplied for DRAM memory bank with 1M x 16- bit
size.

Parallel Port One parallel port (PRINT) is supplied to support parallel data communication
between the host PC and the evaluation board.

Serial Ports Two 9-pin serial ports (SERIAL-1 and SERIAL-2) are supplied for serial data
communication between the host PC and the evaluation board.
You can control the SIO1,SIO2 by setting the jumper JP3 and JP5.

JTAG Port One 14-pin JTAG port (CON4) is supplied to connect with the Embedded ICE Unit.

Expansion
Connectors

Three 50-pin connectors (U11, U12, U17) are supplied for system expansion. They
contain board data bus, address bus, external memory bank/device control, and
external master control signals.

Buttons Five buttons are supplied on the board. One button (S5) is for system reset and the
others (S1-S4, S7) are reserved for external intervention during system running.
Depending on the setting of jumpers (JP10-JP14), the S1-S4, S7 are optionally
connected to four KS32C65100′s general purpose Input pins (GIP3-GIP7) and the
external intervention can be detected and handled by S/W.

LED Indicators Five LEDs are supplied on the KS32C65100 board. One LED (LD9, adjacent to the
power connector) is for board power indication and the rest (LD2, LD5-LD8) is
reserved for other status indication. LD2, LD5-LD8 are optionally connected with four
KS32C65100′s general purpose Output pins (GOPA5, GOPA7-GOPA10). Depending
on the setting of jumpers (JP4, JP6-JP9), their on/off status can be controlled by
S/W.

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

26-3

1

SERIAL1 SERIAL2
PARALLEL PORT

ROM(LOW)

ROM(HIGH)

SRAM

SRAM

DRAM

S5 S7 S1 S2 S3 S4

ICE PORT

RTC BATTERY

OSC.

TEST S/W

POWER S/W

3.3V REGURATOR

MOTOR PORT

DATA PORT

PRINT PORT

LD8 LD7 LD6 LD5 LD2

POWER CON.

REST

POWER LED

 Figure 29-1. Evaluation Board

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-4

BOOTING SYSTEMT

After power is turned on, the Boot Code is activated automatically. The Boot Code then performs system
initialization and configuration. Once this procedure is completed, the four LEDs (LD1-LD4) on the bottom of the
board should light on together. At the same time, a message appears on the PC, which shows that the system is
waiting for program downloading.

If four LEDs fail to light on, the board is either faulty or incorrectly powered. If the LEDs light on but no message
or some strange symbols appear on the communication window activated on the host PC, you should check if the
parameter setting for the communication window (such as, the Hyper Terminal) is matched to the relative setting
for board, such as baud rate, parity, stop bit setting and so on

Debug Host
ARM
Core

KS32C65100

TAP

Application Board

ROM
(DEMON/ANGEL)

RAM

Device

ICEBreaker

Peripheral1 Peripheral2 Peripheral3

Power Supply

Parallel Cable

RS232C Cable

Figure 29-2. Connection to Host PC

Debug Host
ARM
Core

KS32C65100

EmbeddedICE

TAP

Application Board

ROM(Boot/App.)

RAM

Device

ICEBreaker

Peripheral1 Peripheral2 Peripheral3

Power Supply

Parallel Cable

RS232C Cable

JTAG Cable

Figure 29-3. Connection to Embedded ICE

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

26-5

EMBEDDEDICE UNIT INSTALLATION

EMBEDDEDICE UNIT

The Embedded ICE Unit can also be connected with the KS32C65100 evaluation board as a debugging system
for software applications development. Embedded ICE is a JTAG-based, non-intrusive, debugging system for
ARM-based controllers or processors. Embedded ICE provides the interface between a debugger and the ARM-
based controller development board.

To use the Embedded ICE, the following additional equipment are required:

• Embedded ICE Interface Unit

• 14-way ribbon cable

• 9-pin RS232 cable

• 25-pin parallel cable (optional)

• 7–9 V at 500mA DC power supply

CONNECTING KS32C65100 EVALUATION BOARD AND PC

The Embedded ICE Unit should be connected to the KS32C65100 evaluation board ′s JTAG Port (CN1) via a 14-
way cable, and to the host PC via a 9-pin RS232 serial cable. A parallel cable can optionally be connected
between the 25-pin parallel port connector on the Embedded ICE interface and the printer port on the host PC.
Using the parallel cable can speed up the code download.

To power on the Embedded ICE interface, 7–9 V DC power supply is required. The system connection with
Embedded ICE is shown in Figure 29-3.

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-6

POWERING UP THE BOARD AND EMBEDDEDICE

We recommend that you power on the evaluation board before the Embedded ICE is powered on. In this way, the
system initialization and memory configuration for KS32C65100 evaluation board performed by the Boot Code
can be completed first. Otherwise, it may cause the failure of code download via Embedded ICE.

DEBUG APPLICATION WITH EMBEDDEDICE

1. Install ARM Tool kit for Windows.

2. Run the ″Hyper Terminal″ in host PC.

3. Configure the serial port settings of the ″Hyper Terminal″ as 38400bps, 8-bit data, no parity and 1 stop bit.

4. Install the evaluation board and Embedded ICE interface as Figure 29-3.

5. Power on the board and Embedded ICE.

Configuring the ARM Windows Debugger

1. Run the ARM Windows Debugger.

2. Select "Options/configure Debugger/Debugger" menu to set "Big" for "Endian" item.

3. Select "Options/configure Debugger/Target" menu to set "Remote_A" for "Target Environment" item.

4. Click "Configure" button in "Options/configure Debugger/Target" menu to open the "Angel Remote
Configuration" window. In this configuration window, you select "serial" or "serial/parallel" for "Remote
Connection" item, select an appropriate COM port, select an appropriate baud rate for serial line speed, and
then click the "OK" button to end the configuration.

5. Click the "OK" button in "Options/configure Debugger" to conclude the debugger configuration.

6. Select "File/Exit" menu to quit the ARM Windows Debugger.

Debugging the application with Embedded ICE

1. Run the ARM Project Manager.

2. Open "Hello.apj" in directory "example/ICEdbg/."

3. Click the "force build" button to build the application.

4. Click the "Debug" button to start the ARM Windows Debugger.

5. Click the "YES" button when you see the message box "Are you sure that you want to start in remote
debugging?"

6. After code downloading is completed, type in the following command in the command window :

 ″ob a:\example\ICEdbg\armsd.ini″

7. Then, you can run and debug the application using any functions provided by the Debugger.

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

26-7

SWITCH AND JUMPERS DESCRIPTION

Table 29-1. Jumper Description

Jumper Status Description

Main power and chip power (5V, 3.3V) are separated.JP1 (5VDD)

JP2 (3VDD)
Main power and chip power (5V, 3.3V) are connected.

SERIAL2 and TXD1 are connectedJP3 (SIO TXD)

SERIAL2 and TXD2 are connected

SERIAL2 and RXD1 are connectedJP5 (SIO RXD)

SERIAL2 and RXD2 are connected

MCLK and Crystal are connected.JP17 (CLOCK)

MCLK and Oscillator are connected.

GOPA5,GOPA7~10 and LED(LD2,LD5~8) are separated.JP4, JP6, JP7,
JP8, JP9

GOPA5,GOPA7~10 and LED(LD2,LD5~8) are connected.

GIP3~7 and SWITCH(S1~4,S7) are separated.JP10-JP14

GIP3~7 and SWITCH(S1~4,S7) are connected.

Select EPROM (27512) on ROM sockets (U13 & U14).JP19, JP20

Select Flash memory(29EE512) on ROM sockets (U13 & U14).

NOTE: The grayed rows are the default settings of the evaluation board.

Table 29-2. Switch Description

Switch Key Status Description

SW1 Main power 5V switch

On Pin1 ~3 is TEST0~1 ground, Pin 4 ICE TDI ground
(When ICE non-connection)

S8

Off Pin1 ~3 is TEST0~1 VDD, Pin 4 ICE TDI open
(When ICE connection)

S5 Reset switch

NOTE: The grayed rows are the default settings of the evaluation board

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-8

KS32C65100

DC_SIN0/GIP8

O
S

C
I

O
S

C
O

S
LE

D
1/

G
O

P
A

17

3VDD

V
D

D

A
21

A
19

A
6

PPD0
A

12

PPD6

nW
TD

_O
U

T/
G

O
P

A
4

S
LE

D
0/

G
O

P
A

16

R
TC

_X
O

CRIA0/GOPA25
CR_PHB/GOPA23

PPD2

3VDD

R
X

D
2/

G
IP

2

R
X

D
0/

G
IP

0

G
N

D

G
A

IN
2

SC_CUR2

PWMO1/GOPA12

nVDI/GIP13

GIOP1

A
9

A
14

A
5

TX
D

2/
G

O
P

A
2

LSU_CLK/GOPA15

nHSYNC1/GIP10

nHSYNC2/GIP12

nVCLK/GIP14

TMS
nTRST

GIOP2

VDD

PPD7
GND
nSTROBE

3V
D

D

A
17

V
D

D

R
TC

_X
I

CRIB0/GOPA27

CRIB1/GOPA28

TDI

A
4

S
LE

D
2/

G
O

P
A

18

R
TC

_V
D

D

G
A

IN
0

SC_CUR3

DC_SIN1/GIP9

nVDD2/GOPA29

GND

nEXWAIT/GIP7

A
15

S
C

_C
U

R
1

TX
D

0/
G

O
P

A
0

GIOP3

nFAULT

nR
A

S
1

A
20

A
13

PPD3

S
C

_C
U

R
0

PPD4

3V
D

D

G
A

IN
1

PWMO2/GOPA13

nLREADY/GIP11

TDO

SELECT

G
N

D

A
8

A
18

PPD1
A

11

S
C

_C
O

N
P

H
A

/G
O

P
A

19

P
LL

FI
LT

E
R

TO
N

E
_O

U
T/

G
O

P
A

3

TX
D

1/
G

O
P

A
1

R
X

D
1/

G
IP

1

nX
D

R
E

Q
/G

IP
6

nX
D

A
C

K
/G

O
P

A
5

A
3

A
7

G
V

R
T

GND

GIOP0

nAUTOFD/GIP17

A
16

PPD5

CRIA1/GOPA26

CR_PHB/GOPA24

PWMO0/GOPA11

nVDD1/GOPA14

A
10

PHOE11/GIOP21
PHOE10/GIOP20

nEINT1/GIP4

3VDD

nECS1

GND

PHOE16/GIOP26

nPHGA4/GOPB3

3VDD

PHOE2/GIOP12

PHOE4/GIOP14

nPHGA10/GOPB9

nPHGA1/GOPB0

PHOE8/GIOP18

nRCS2

CIS_CLK
CIS_SI
nEINT0/GIP3

nPHGA13/GOPB12

nPHGA11/GOPB10

nPHGA8/GOPB7
nPHGA7/GOPB6

nPHGA2/GOPB1

PHOE14/GIOP24

nPHGA3/GOPB2

PHOE3/GIOP13

PHOE6/GIOP16

PHOE9/GIOP19

nRCS1/GOPA7

nPHGA5/GOPB4

PHOE12/GIOP22

SAVRT

nPHGA12/GOPB11

GND
nECS0

nECS2/GOPA8

3VDD

nPHGA6/GOPB5

PHOE1/GIOP11

PHOE7/GIOP17

SAIN

nPHGA9/GOPB8

GND

nRCS0

nRAS3

GND

PHOE5/GIOP15

GND

PHOE13/GIOP23

PHOE15/GIOP25

nEINT2/GIP5

VDD

nINIT/GIP15

TCK

D
12

D
2

D
1nW

E

D
3

D
6

D
4 A
1

D
14

D
8G
N

D

D
11

D
9nC

A
S

1

D
5nC

A
S

0

A
0

D
10 A
2

D
15

D
13

D
7

D
0nO

E

G
N

D

V
D

D

SC_CONPHB/GOPA20

nSLCTIN/GIP16
C

LK
O

U
T/

G
O

P
A

6

G
IO

P
6

G
IO

P
4

G
N

D

G
IO

P
10

G
N

D
TE

S
T2

TE
S

T0

nR
E

S
T

G
IO

P
8

TE
S

T1

LF
_C

U
R

2

LF
_C

U
R

1

G
IO

P
5

LF
_P

H
1/

G
O

P
A

22

LF
_C

U
R

0

nI
O

R
D

/G
O

P
A

9
nI

O
W

R
/G

O
P

A
10

B
U

S
Y

3V
D

D

LF
_P

H
0/

G
O

P
A

21

G
IO

P
7

LF
_C

U
R

3

nA
C

K

G
IO

P
9

P
E

R
R

O
R

C41
82P

R?
KS32C65100

PPD6
148

G
O

P
A

19
102

PPD5
147

A
11

90

PPD4
146

S
C

_C
U

R
0

103

PPD3
145

A
4

82

PPD2
144

S
C

_C
U

R
1

104

PPD1
143

A
12

91

PPD0
142

A
1

78

A
13

92

A
5

83

A
14

93
A

15
94

A
6

84

A
2

79

nECS2/GOPA8
14

A
16

95

A
7

85

A
17

96
A

18
97

A
8

86

A
3

80

A
19

98
A

20
99

A
9

87

3V
D

D
81

SAVDD1

A
21

100

D
8

68

A
10

88

D
9

69

V
S

S
101

D
10

70

nR
A

S
1

53

D
11

71

nC
A

S
0

54

D
12

72

nC
A

S
1

55

D
13

73

3VDD
15

D
14

74

nO
E

56

D
15

75

SAVRT
2

V
S

S
76

nW
E

57

A
0

77

nPHGA13/GOPB12
16

5V
D

D
89

V
S

S
58

SAIN3

D
0

59

nPHGA12/GOPB11
17

D
1

60

SAVRB
4

D
2

61

nPHGA11/GOPB10
18

D
3

62

SAVSS5

D
4

63
nPHGA10/GOPB9

19
D

5
64

CIS_CLK
6

D
6

65

nPHGA9/GOPB8
20

D
7

66

CIS_SI
7

nPHGA8/GOPB7
21

nEINT0/GIP3
8

nPHGA7/GOPB6
22

nEINT1/GIP4
9

nPHGA6/GOPB5
23

nEINT2/GIP5
10

VSS
11

VSS
25

nECS0
12

nPHGA4/GOPB3
26

nECS1
13

nPHGA3/GOPB2
27

nPHGA2/GOPB1
28

3VDD
30

PHOE1/GIOP11
31

VSS
39

5VDD48
nRCS0

49
nRCS1/GOPA750
nRCS2

51
nRAS052

SELECT 156
nFAULT

155
nAUTOFD/GIP17 154

nINIT/GIP15
153

nSLCTIN/GIP16 152
nSTROBE

151
VSS

150
PPD7

149

5VDD
141

GIOP3
140

GIOP2
139

GIOP1
138

GIOP0
137

nTRST
136

TMS
135

TDO
134

TDI
133

TCK
132

nEXWAIT/GIP7
130

nVCLK/GIP14
129

nVDI/GIP13
128

nHSYNC2/GIP12
127

nLREADY/GIP11
126

nHSYNC1/GIP10
125

VSS
124

LSU_CLK/GOPA15
123

nVDD1/GOPA14
122

nVDD2/GOPA29
121

PWMO2/GOPA13
120

PWMO1/GOPA12
119

PWMO0/GOPA11
118

DC_SIN1/GIP9
117

3VDD 115
CRIB1/GOPA28

114
CR_PHB/GOPA24 113

CRIB0/GOPA27
112

CRIA1/GOPA26 111
CR_PHB/GOPA23

110
CRIA0/GOPA25 109

VSS
108

SC_CUR3 107
SC_CUR2

106
GOPA20 105

G
A

N
0

208
G

A
N

1
207

G
A

N
2

206
G

V
R

T
205

G
A

V
S

S
204

R
TC

_X
O

203
R

TC
_X

I
202

R
TC

_V
D

D
201

nX
D

A
C

K
/G

O
P

A
5

200
nX

D
R

E
Q

/G
IP

6
199

S
LE

D
2/G

O
P

A
18

198
S

LE
D

1/G
O

P
A

117
197

S
LE

D
0/G

O
P

A
16

196
5V

D
D

195
R

X
D

0/G
IP

0
194

TX
D

0/G
O

P
A

0
193

R
X

D
1/G

IP
1

192
TX

D
1/G

O
P

A
1

191
R

X
D

2/G
IP

2
190

TX
D

2/G
O

P
A

2
189

TO
N

E
_O

U
T/G

O
P

A
3

188
nW

TD
_O

U
T/G

O
P

A
4

187
P

LL_V
D

D
186

O
S

O
O

185
O

S
C

I
184

P
LLFILTE

R
183

nR
E

S
T

182
V

S
S

181
C

LK
O

U
T/G

O
P

A
6

180
G

IO
P

10
179

G
IO

P
9

178
G

IO
P

8
177

G
IO

P
7

176
G

IO
P

6
175

G
IO

P
5

174
G

IO
P

4
173

V
S

S
172

TE
S

T2
171

TE
S

T1
170

TE
S

T0
169

LF_C
U

R
3

168
LF_C

U
R

2
167

LF_P
H

1/G
O

P
A

22
166

LF_C
U

R
1

165
LF_C

U
R

0
164

LF_P
H

0/G
O

P
A

21
163

nIO
R

D
/G

O
P

A
9

162
nIO

W
R

/G
O

P
A

10
161

3V
D

D
160

nA
C

K
159

B
U

S
Y

158
P

E
R

R
O

R
157

nPHGA5/GOPB4
24

nPHGA1/GOPB0
29

PHOE2/GIOP12
32

PHOE3/GIOP13
33

PHOE4/GIOP14
34

PHOE5/GIOP15
35

PHOE6/GIOP16
36

PHOE7/GIOP17
37

PHOE8/GIOP18
38

PHOE9/GIOP19
40

PHOE10/GIOP20
41

PHOE11/GIOP2142
PHOE12/GIOP22

43
PHOE13/GIOP2344
PHOE14/GIOP24

45
PHOE15/GIOP2546
PHOE16/GIOP26

47

5V
D

D
67

3VDD
131

DC_SIN0/GIP8
116

Figure 29-4. Evaluation Board Schematic 1

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

26-9

osc

< POWER PART >

< RESET PART >

< ADC PART >

< ICE INTERFACE PART >

< OSC. & CRYSTAL PART >

< RTC PART >

< TEST S/W PART >

3VDD

3VDD
VDD

+5V

+5V

+5V

+5V

+5V

TEST2

TEST0
TEST1

+5V VDD

POWER 3.3V 3VDD

R11
100

R10
100

R12
100

R9
100

R8
100

R87
10K

R88
33

R85
10k

R86
10k

R84
10k

D4

1N4148B

I2

R92 6k

Y1
32 7.6BKHz

R25R

JP1

JP2

D3

1N4148B

I 2

Y2
9.5MHz

JUM
JP17

2

3
1

U2A
7414

12

J1

CON2

1
2

C12
330P

R17

1

3

2

R91 4.7k

S5
1
2
3
4

5
6
7
8

C104
CAP NP

J2
BNC

U9
CON4

V
C

C
4

G
N

D
3

O
U

T
2

IN
1

R16

1

3

2

R13
10K

R18

1

3

2

CON4

EICE

1
3
5
7
9
11
13

2
4
6
8

10
12
14

C102
CAP

C5
10UF/16V

X1

9.5MHz

114

8

7

14

C40 CAP NP

D1
1N4148B

I
2

C14
10UF/16V

R19

1

3

2

C35 22P

S8

SW DIP-4

1
2
3
4

8
7
6
5

BT1
BATTERY

1
2

C11
220P

R90 4.7k

R89 4.7k

SW1
SW SPDT

U2B
7414

34

C13
CAP

C37 CAP NP

R15

1

3

2

C36 22P

GVRTGAIN2GAIN0 GAIN1 SAVRT

TDO
TCK

TDI
nTRST

TMS

RTC_XOUT

POWER 3.3V

VDD

3VDD

POWER 3.3V

RTCVDD

+5V

OSCO

OSCI

RTC_XIN

nREST

Figure 29-5. Evaluation Board Schematic 2

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-10

VDD

VDD

+5V

VDD

PPD1
PPD0

PPD5

PPD2

PPD6PPD6

PPD3

PPD7

PRT-35

nP_ACK

PPD5

PPD3
PPD4

PPD2

PPD4

PPD1
PPD0

PPD7

R58~R66

1K

39

R31~R38

5.1K

R39~R49

< SERIAL PORT >

< PARALLEL PORT >

C19

220P

CN1

SERIAL1

1
2
3
4
5
6
7
8
9

JP3

1
3

2

C8
330P

JP5

1
3

2

C29

22P

C21

220P

R69 120

C1
3.3UF

R71 200

C30

22P

C24

220P

R57 120

C16

220P

R21
10k

R73 200

CN2

SERIAL2

1
2
3
4
5
6
7
8
9

C25

220P

C15

110P

R72 120

C4
3.3UF

C9
330P

C23

220P

C108

220P

C28

22P

C26

1N

C20

220P

C2
3.3UF

TP

C18

220P

R70 200

C3
3.3UF

C6
3.3UF

R7 10K

U8

MAX232

VCC 16C1+1

V+
2

C1-
3

V-
6

GND
15

C2+
4

T1in
11

C2-
5

R1out
12

T2in
10

T1out
14

R2out
9

R1in
13

T2OUT
7

R2in
8

R67 120

R23
10k

R22
10k

C7
330P

R68 120

C27

1N

U10

PRINT

1 19
18 20
35 21
2 22
3 23
4 24
5 25
6 26
7 27
8 28
9 29
10 30
11 33
12 16
13 34
14 31
17 32
15 36

C17

220P

C10
330P

C22

220P

nACK

PERROR

RXD2/GIP2

TXD2/GOPA2

TXD1/GOPA1

SELECT

nAUTOFD/GIP17

RXD0/GIP0

nINIT/GIP15

BUSY

TXD0/GOPA0

nSTROBE

nSLCTIN/GIP16

PPD[0..7]

RXD1/GIP1

nFAULT

Figure 29-6. Evaluation Board Schematic 3

KS32C65100 RISC MICROPROCESSOR EVALUATION BOARD

26-11

< MEMORY PART >

+5V

+5V

+5V

+5V

+5V

+5V

+5V

+5V

nOE

A8

A6

A16

A9

A16

A1

A1

D5

A14

A12

D13

nOE

D8

D3

A15

A6

D3

D0

A4

A2

D10
D9

D6
D5

nWE

A3

A3

A4

A8

A7

A16

A9

A9

A11
A10

D13

D15

D6

D6

D14

D3

A17

D9

D1

D12

A8

D8

A14

D0

A0

A2

A6

D10
D11

A3

D9

A9

A4

A0

A11

A10

A18

A12

A1

D12

A5

D15

A5

A5

A7

D2
D3

nWE

D15

A7

nRCS0

D1

D14

D12

A9

nWE

D11

A2

A14

A11

D7

A4

A0

D4

A4

A0

A13

A5

D7
D6

A12

A7

A3

A13

A1

D5

D9

A3

D15
D14

A6

A13

D0

A8

D13

D10

A2

A0

nOE

D1

A13

D7

A16

A6

D4

D11

A10

D2

D1

A15

A2

nRCS0

A7

D13

D8

D2

A9

D7

nWE

A15

A1 A4

D14

D5

nRCS2

A1

nOE

A14

D8A8

D11

nRCS2

A3

D4

A18

A12

A10

A6

A2

A8

A5

A11

D10
A0

D12

D4
A5

D0

A7

D2

nRAS1

nWE

nCAS0

nOE

nCAS1

nRAS0

C32

R76 R

C38
CAP NP

KM681000C_55(32-Dip)

U18

A14
3

CS1
22

A15
31

VCC
32A16

2

OE24

D1
13

WE
29

CS2
30

D2
14

VSS 16

A0
12

D3 15
D4 17

A1
11

D5
18

D6
19

A210

D7
20

D8
21

A39
A4

8
A5

7
A6

6
A7

5
A8

27
A9

26
A10

23
A1125
A12

4
A13

28

C39
CAP NP

JP161
3

2

KM416C1200CT

U15

VSS1
23

NLCAS32

VSS2
39 VCC1

1

VSS344

NUCAS
31

VCC2
6

NRAS
15

DQ0
2

NOE
30

VCC3 22

NW
14

A0
18

DQ1
3

A1
19

DQ2 4A220
DQ3

5
A3

21
DQ4

7
A4

24
DQ5

8
A5

25
DQ6

9
A6

26
DQ7

10
A7

27
DQ8

35
A8

28
DQ9

36
A9

29
DQ10 37
DQ11 38
DQ12

40
DQ13

41
DQ14

42
DQ15

43

KM681000C_55(32-Dip)

U19

A14
3

CS1
22

A15
31

VCC
32A16

2

OE24

D1
13

WE
29

CS2
30

D2
14

VSS 16

A0
12

D3 15
D4 17

A1
11

D5
18

D6
19

A210

D7
20

D8
21

A39
A4

8
A5

7
A6

6
A7

5
A8

27
A9

26
A10

23
A1125
A12

4
A13

28

R77 R

29EE512

U13

DQ0
13

A0
12

DQ1
14

A1
11

DQ2
15

A2
10

DQ3
17

A3
9

DQ4 18A48
DQ5

19
A5

7
DQ6

20
A6

6
DQ7

21
A7

5

VCC
32

A8
27

NWE 31

A9
26

NOE 24

A10
23

NCE
22

A11
25

VSS
16

A124
A1328
A14

29
A15

3
A16

2
A17

30
A18

1

C31

C34
CAP NP

KM416C1200CT

U16

VSS1
23

NLCAS32

VSS2
39 VCC1

1

VSS344

NUCAS
31

VCC2
6

NRAS
15

DQ0
2

NOE
30

VCC3 22

NW
14

A0
18

DQ1
3

A1
19

DQ2 4A220
DQ3

5
A3

21
DQ4

7
A4

24
DQ5

8
A5

25
DQ6

9
A6

26
DQ7

10
A7

27
DQ8

35
A8

28
DQ9

36
A9

29
DQ10 37
DQ11 38
DQ12

40
DQ13

41
DQ14

42
DQ15

43R79 R

C33

R78 R

JP151
3

2

29EE512

U14

DQ0
13

A0
12

DQ1
14

A1
11

DQ2
15

A2
10

DQ3
17

A3
9

DQ4
18

A4
8

DQ5 19A57
DQ6

20
A6

6
DQ7

21
A7

5

VCC
32

A8
27

NWE
31

A9
26

NOE 24

A10
23

NCE 22

A11
25

VSS
16

A12
4

A1328
A1429
A15

3
A16

2
A17

30
A18

1

Figure 29-7. Evaluation Board Schematic 4

VARIABLE IMAGE SCALING KS32C65100 RISC MICROPROCESSOR

26-12

< KEY & LED I/O PART >

< DATA PORT >< MOTOR PORT > < PRINT PORT >

CRIA1/GOPA26

A14

nSLCTIN/GIP16
nSTROBE

D1

GIOP2

nAUTOFD/GIP17

GIOP10

A7

nOE

nFAULT

PPD2

A9

A1

D5

GIOP3

GIOP9
GIOP8

D8

A13

nINIT/GIP15

CRIB0/GOPA27

D7

nRCS0
PPD0

VDD

nECS0

OSCI

A4
A5

A12
PPD6

GND

LF_CUR1

nRCS2

CR_PHA/GOPA23

CRIB1/GOPA28

SC_CUR2

A2
A3

GIOP6

A20

LF_PH0/GOPA21

D4

D10

LF_CUR2

D11

SC_CONPHA/GOPA19

GIOP7

PPD1

D0

A17

D2

DC_SIN1/GIP9

VDD

D9

D14

D3

PPD5

GIOP1

A15

PPD7

GND

A19

CR_PHB/GOPA24

A10

SC_CONPHB/GOPA20

D12

SC_CUR1

PPD4

A0

D6

LF_CUR0 D15

nECS1

A8

A6
SC_CUR3

A21

nREST

GIOP5

DC_SIN0/GIP8

CRIA0/GOPA25

nCAS0

SC_CUR0

A11

D13

A16

nCAS1

LF_CUR3

PPD3

A18
LF_PH1/GOPA22

nRAS0

POWER 3.3V

nWE
nRAS1

GIOP0

PERROR

CIS_SI

nPHGA12/GOPB11
nPHGA11/GOPB10

nVDD1/GOPA14

LSU_CLK/GOPA15

PHOE9/GIOP19

nVDD2/GOPA29

PHOE1/GIOP11

nPHGA2/GOPB1

PHOE8/GIOP18

nPHGA9/GOPB8

PHOE3/GIOP13

PHOE15/GIOP25

PHOE2/GIOP12

nPHGA3/GOPB2

CLKOUT/GOPA6

nHSYNC1/GIP10

nVCLK/GIP14

PHOE4/GIOP14

nVDI/GIP13

PHOE5/GIOP15

PWMO0/GOPA11

PWMO2/GOPA13

nPHGA8/GOPB7

nLREADY/GIP11

nPHGA10/GOPB9

TONE_OUT/GOPA3

VDD

SLED1/GOPA17
SLED2/GOPA18

nPHGA6/GOPB5

SAIN

PHOE16/GIOP26

CIS_CLK

nPHGA4/GOPB3
nPHGA5/GOPB4

PHOE11/GIOP21

nPHGA1/GOPB0

PHOE6/GIOP16

SLED0/GOPA16

nPHGA7/GOPB6

nWTD_OUT/GOPA4

PHOE10/GIOP20

PHOE14/GIOP24
PWMO1/GOPA12

nPHGA13/GOPB12

PHOE13/GIOP23

nHSYNC2/GIP12

PHOE12/GIOP22

PHOE7/GIOP17

+5V

nIORD/GOPA9

nRCS1/GOPA7

nXDREQ/GIP6

nEINT0/GIP3

nEINT1/GIP4

nEXWAIT/GIP7

nEINT2/GIP5

nIOWR/GOPA10

nXDACK/GOPA5

nECS2/GOPA8

JP10

JP11

R53
4.7K

R54
4.7K

R24 330

S3
1
2
3
4

5
6
7
8

JP12

LD7

R28 330 JP7

R27 330

S2
1
2
3
4

5
6
7
8

S4
1
2
3
4

5
6
7
8

R52
4.7K

JP4

R29 330

JP9

R50
4.7K

LD6

LD8 R30 330

S1
1
2
3
4

5
6
7
8

LD2

JP14

S7
1
2
3
4

5
6
7
8

R51
4.7K

LD5

JP8

JP6

JP13

PORT4

U12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26

MO

U11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26

PORT1

U17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26

Figure 29-8. Evaluation Board Schematic 5

