
Cook up Web sites fast with CakePHP, Part 1:
Getting started
Quick and easy PHP rapid-development aid

Skill Level: Intermediate

Duane O'Brien
PHP developer
Freelance

21 Nov 2006

Updated 08 Feb 2011

CakePHP is a stable production-ready, rapid-development aid for building Web sites
in PHP. This "Cook up Web sites fast with CakePHP" series shows you how to build
an online product catalog using CakePHP. Part 1 focuses on getting CakePHP up
and running, and the basics of how to put together a simple application allowing
users to register for an account and log in to the application.

Section 1. Before you start

Editor's note: This series was originally published in 2006, and has undergone
several revisions since in order to keep up with ongoing developments on CakePHP.
This revision was written for CakePHP V1.3.4.

This "Cook up Web sites fast with CakePHP" series is designed for PHP application
developers who want to start using CakePHP to make their lives easier. In the end,
you will have learned how to install and configure CakePHP, the basics of
Model-View-Controller (MVC) design, how to validate user data in CakePHP, how to
use CakePHP helpers, and how to get an application up and running quickly using
CakePHP. It might sound like a lot to learn, but don't worry — CakePHP does most

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 1 of 37

http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=cook+web+sites+CakePHP
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=cook+web+sites+CakePHP
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

of it for you.

About this series

• Part 1 focuses on getting CakePHP up and running, and the basics of
how to put together a simple application allowing users to register for an
account and log in to the application.

• Part 2 demonstrates how to use scaffolding and Bake to get a jump start
on your application, and how to use CakePHP's access control lists
(ACLs).

• Part 3 shows how to use Sanitize, a handy CakePHP class, which helps
secure an application by cleaning up user-submitted data. Part 3 also
covers the CakePHP Security component, handling invalid requests and
other advanced request authentication.

• Part 4 focuses primarily on the Session component of CakePHP,
demonstrating three ways to save session data, as well as the Request
Handler component to help you manage multiple types of requests
(mobile browsers, requests containing XML or HTML, and so on).

• Part 5 deals with caching, specifically view and layout caching, which can
help reduce server resource consumption and speed up your application.

About this tutorial

This tutorial shows how to get started using CakePHP. You'll go through the
installation process, then get down and dirty by writing the user registration code.
Through it all, you'll see how much time you could have saved had you been using
CakePHP all along. This part of the tutorial builds the online product application, Tor,
which includes a "request dealership username and password" page and a login
page.

CakePHP topics include:

• MVC design

• Helpers

• CakePHP data validation

Prerequisites

It is assumed that you are familiar with PHP, have a fundamental grasp of database

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 2 of 37

http://www.ibm.com/developerworks/opensource/tutorials/os-php-cake2/index.html
http://www.ibm.com/developerworks/opensource/library/os-php-cake3/
http://www.ibm.com/developerworks/opensource/tutorials/os-php-cake4/
http://www.ibm.com/developerworks/opensource/library/os-php-cake5/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

design, and are comfortable getting your hands dirty. A full grasp of the MVC design
pattern is not necessary, as the fundamentals will be covered during this tutorial.
More than anything, you should be eager to learn, ready to jump in, and anxious to
speed up your development time.

System requirements

Before you begin, you need to have an environment in which you can work.
CakePHP has reasonably minimal server requirements:

1. An HTTP server that supports sessions (and preferably mod_rewrite).
This tutorial was written using Apache V2.2.4 with mod_rewrite
enabled.

2. PHP V4.3.2 or later (including PHP V5). This tutorial was written using
PHP V5.2.3.

3. A supported database engine. This tutorial was written using MySQL
V5.0.4.

You'll also need a database ready for your application to use. The tutorial will
provide syntax for creating any necessary tables in MySQL.

The simplest way to download CakePHP is to visit CakePHP.org and download the
latest stable version from the Downloads section (see Resources). This tutorial was
written using V1.3.4.

Section 2. Installation

CakePHP wants to make your life easier, regardless of your level of experience, by
making your applications easier to maintain and quicker to write. CakePHP is full of
cool and useful features. CakePHP wants to handle your Ajax, your data validation,
your sessions. It will even slice your bread if you can write a plug-into tell it how. But
you can't use CakePHP yet. You need to install it first.

Unpack and install

For the purpose of this tutorial, the entire CakePHP installation directory should be
unpacked within the webroot of your Web server. In Listing 1, the webroot is

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 3 of 37

http://cakeforge.org/projects/cakephp
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

/webroot.

Listing 1. Unpacking the CakePHP installation directory

unzip cakephp-cakephp-1.3.4-0-g703344c.zip
cd cakephp-cakephp-df6ffd4
mv * /webroot

Type ls -la /webroot to list the contents of the webroot and verify that the files
have been moved properly. The output should look something like Listing 2.

Listing 2. Output of the ls command

-rw-r--r-- 1 YOURUSER YOURGROUP 139 2010-09-12 00:57 .htaccess
-rw-r--r-- 1 YOURUSER YOURGROUP 1154 2010-09-12 00:57 README
drwxr-xr-x 13 YOURUSER YOURGROUP 4096 2010-09-12 00:57 app
drwxr-xr-x 6 YOURUSER YOURGROUP 4096 2010-09-12 00:57 cake
-rw-r--r-- 1 YOURUSER YOURGROUP 1848 2010-09-12 00:57 index.php
drwxr-xr-x 2 YOURUSER YOURGROUP 4096 2010-09-12 00:57 plugins
drwxr-xr-x 3 YOURUSER YOURGROUP 4096 2010-09-12 00:57 vendors

The directory app/tmp needs to be writable by your Web server. Confirm the
permissions on this folder by typing ls -l app. The output will probably look
similar to Listing 3.

Listing 3. Confirming the folder permissions

-rw-r--r-- 1 YOURUSER YOURGROUP 141 2010-09-12 00:57 .htaccess
drwxr-xr-x 3 YOURUSER YOURGROUP 4096 2010-09-12 00:57 config
drwxr-xr-x 3 YOURUSER YOURGROUP 4096 2010-09-12 00:57 controllers
-rw-r--r-- 1 YOURUSER YOURGROUP 685 2010-09-12 00:57 index.php
drwxr-xr-x 2 YOURUSER YOURGROUP 4096 2010-09-12 00:57 libs
drwxr-xr-x 3 YOURUSER YOURGROUP 4096 2010-09-12 00:57 locale
drwxr-xr-x 4 YOURUSER YOURGROUP 4096 2010-09-12 00:57 models
drwxr-xr-x 2 YOURUSER YOURGROUP 4096 2010-09-12 00:57 plugins
drwxr-xr-x 5 YOURUSER YOURGROUP 4096 2010-09-12 00:57 tests
drwxr-xr-x 6 YOURUSER YOURGROUP 4096 2010-09-12 00:57 tmp
drwxr-xr-x 3 YOURUSER YOURGROUP 4096 2010-09-12 00:57 vendors
drwxr-xr-x 8 YOURUSER YOURGROUP 4096 2010-09-12 00:57 views
drwxr-xr-x 6 YOURUSER YOURGROUP 4096 2010-09-12 00:57 webroot

The simplest way to accomplish this is probably the most common and least secure:
give write permissions to everyone (see Listing 4).

Listing 4. Giving write permissions to everyone

chmod -R 777 app/tmp
ls -l app

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 4 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The permissions for the tmp folder should have been updated, as shown in Listing 5.

Listing 5. Updating the permissions for the tmp folder

drwxrwxrwx 6 YOURUSER YOURGROUP 2010-09-12 00:57 tmp

Giving write permissions to everyone is not recommended for general use. Ideally,
you should change the ownership of this folder to match the user that the Web
server uses, or add the user that the Web server uses to a the group for the
directory and add group write permissions. This tutorial is intended to demonstrate
how to use CakePHP and is not designed to be a guide for building secure
applications. While security should be at the head of any application development, a
full discussion of secure PHP practices is outside the scope of this tutorial.

For a production installation, change the webroot of the Web server to app/webroot,
which will minimize the amount of code accessible via the Web browser and help
enhance the security of your installation.

Validation 1

In a browser, go to the URL that corresponds with the webroot for your Web server.
For example, if you've installed CakePHP into the webroot of your localhost, go to
http://localhost; you should see the CakePHP default home page (see Figure 1).

Figure 1. The CakePHP default home page as it should be seen

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 5 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Note: If the default home page looks more like Figure 2, then mod_rewrite is not
working the way CakePHP requires. This can sometimes be a problem for first-time
users.

Figure 2. The incorrect-looking home page

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 6 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The following list are some items to verify.

Is your .htaccess file correct?

You should have gotten an .htaccess file in the CakePHP installation directory. On
most *nix systems, this will be hidden from view by default. If you do not have the
file, check the source you downloaded or get a fresh update from CakePHP.org.
Confirm that the file exists and is valid by going to the installation directory and
running cat .htaccess. This will display the file's contents, which should look like
Listing 6.

Listing 6. Confirming that the .htaccess file exists

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteRule ^$ app/webroot/ [L]
RewriteRule (.*) app/webroot/$1 [L]

</IfModule>

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 7 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Is mod_rewrite enabled for the server?

Make sure that mod_rewrite is enabled for your Web server. For Apache, there
are two lines that should appear in the httpd.conf file. In the LoadModule list, you
should see the following line (or something very close to it): LoadModule
rewrite_module libexec/mod_rewrite.so. In the AddModule list, you should
see this line (or something very close): AddModule mod_rewrite.c.

If you cannot find these lines in your httpd.conf file, mod_rewrite is not enabled.
Consult your server documentation for details on how to do this.

Does the server allow .htaccess override?

Make sure your Web server is configured to allow .htaccess override. For Apache,
each directory should be defined in the httpd.conf file. These definitions can look
very different from installation to installation, but you should still see the line
AllowOverride All in the definition. Your definition might look something like
Listing 7.

Listing 7. Definitions in the httpd.conf file

<Directory "/webroot">
Options Indexes MultiViews
AllowOverride All
Order allow,deny
Allow from all

</Directory>

Consult your server documentation for more details about .htaccess override.

Configuring a database connection

Now that you've got CakePHP installed and on speaking terms with your Web
server, you need to introduce CakePHP to your database. This section will cover
setting up the database configuration and verifying that CakePHP likes your
database. Tor is going to need a place to store its user and product data. You'll be
soon be creating a users table to be used to build the login and registration parts of
Tor.

Editing the database configuration file

Setting up your database configuration is pretty darn easy, but before you start,
make sure your database server is running, that you have created a database for
your application, and that you have a username and password for a user with rights

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 8 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

to the database.

To start, make a copy of the app/config/database.php.default file and save it as
app/config/database.php. Do this to preserve a copy of the original template. Open
the file in your favorite text editor and look for the section shown in Listing 8 (it
should be just near the bottom of the file).

Listing 8. The app/config/database.php.default file

var $default = array(
'driver' => 'mysql',
'persistent' => false,
'host' => 'localhost',
'login' => 'user',
'password' => 'password',
'database' => 'database_name',
'prefix' => ''

);

Modify this information to fit your installation:

driver
This can be mysql, mysqli, postgres, sqlite, mssql, db2, oracle,
adodb or pear-drivername. This tutorial assumes mysql.

persistent
This field tells CakePHP whether it should use persistent database
connections. This should be true or false. This tutorial assumes false.

host
This is the hostname of your database server, such as localhost or
mysql.yourdomain.

login
This is the username for your database login, such as dbuser.

password
This is the password for your database login, such as secretsecret.

database
This is the name of the database you wish to use, such as cakedev.

prefix
Prefix is a string, such as cp_, that is prepended to table names for any
database call made by CakePHP. Using a prefix may be necessary if the
database is shared among applications to keep tables from stepping on each
other where two or more applications want a table with the same name, such
as users.

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 9 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Don't forget to save the file.

Any number of database configurations can be specified in database.php provided
they have distinct names. You can specify which database configuration the
application should use in the models.

Some notes about databases and CakePHP:

• The tables must have a primary key named id.

• If you include a created or modified column in the table, CakePHP will
automatically populate the field when appropriate.

• Table names should be plural (users, products, eggs, sodas, winners,
losers). Their corresponding models will have singular names (user,
product, egg, soda, winner, loser).

• If tables are to be related, foreign keys should follow the format
table_id with singular table names. For example, user_id,
product_id, egg_id, soda_id, winner_id and loser_id would be
foreign keys for the table's user, product, egg, soda, winner, and loser.

Validation 2

Go back to the URL you used to validate the initial installation. You should see that
the CakePHP default home page has changed to indicate the status of your
database configuration (see Figure 3).

Figure 3. CakePHP default home page has changed to indicate status of
database configuration

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 10 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

If the default home page says the database configuration file is not present, you may
have put it in the wrong place or misnamed it. Make sure the database configuration
file is app/config/database.php. If the default home page says CakePHP is unable to
connect to the database, confirm that the connection information you entered is valid
and retry.

Creating the application tables

So now CakePHP, your Web server, and your database are all on speaking terms.
Time to roll up your sleeves and get to the real work. Tor needs a users table.

This table will contain the basic information necessary to identify and interact with a
user. A simple username and password field would probably suffice, but other
information can be useful, such as an e-mail address (for sending password reset
requests), first and last name (for personalization), and last login date (to help track
inactive accounts). You probably want your username and e-mail fields to be unique.

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 11 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

And don't forget the primary key ID field. The SQL to create your table might look
something like Listing 9.

Listing 9. SQL to create your table

CREATE TABLE 'users' (
'id' INT(10) NOT NULL AUTO_INCREMENT PRIMARY KEY ,
'username' VARCHAR(40) NOT NULL ,
'password' VARCHAR(40) NOT NULL ,
'email' VARCHAR(255) NOT NULL ,
'first_name' VARCHAR(40) NOT NULL ,
'last_name' VARCHAR(40) NOT NULL ,

UNIQUE (
'username' ,,

'email'
)

) TYPE = MYISAM ;

Notice that the username, password, first_name, and last_name fields have a
maximum character length of 40. We will enforce this character length in the user
model. The 40-character maximum length, in this case, is entirely arbitrary.

Section 3. MVC design

It's common enough at this point to jump in and start cranking out code based on
what the application is intended to do. A login page, a database, registration —
BAM! Simple enough. And it usually is. Until you want to change how it looks, how it
interacts with the database, change validation rules, or change essentially anything
about the application at all. Then things start to get complicated.

CakePHP is designed to make writing the application as easy as possible, while
giving you something you can maintain long-term. The tutorial will show you how to
build Tor using the MVC design pattern. CakePHP will show you how it can be easy.
You'll see for yourself why it makes sense.

The MVC design pattern breaks an application into three distinct layers: Data
management, UI and Logic, respectively. MVC was first described in the book
Design Patterns: Elements of Reusable Object-Oriented Software, also known as
the "Gang Of Four" book. A full discussion of design patterns and MVC is outside
the scope of this tutorial, but it will be helpful to touch on what the three pieces mean
— specifically, in the CakePHP world.

Model

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 12 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Users, products, prices, messages — when you boil it all down, it's all just data. You
make sure the data is what you want, it goes into a database, then you have to get it
back out. It will be useful for all the data-handling aspects of Tor to live in one place.
That where model comes in.

Model is primarily concerned with handling data. Getting data from a database,
inserting data into a database, validating data — all of this takes place within the
model.

An individual model typically is used to access a specific table in the database.
Generally, a model will associate to a database table if the table name is a plural
form of the model name. For example, a Product model will, by default, associate to
a Products table. All user-defined models will extend the CakePHP AppModel class.

The user model

Having created a users table for Tor, you will need a user model to interact with the
table. The user model will save your user data, get it back out of the table for you,
and verify that the user data is in an acceptable format. For now, this model can be a
stub. It should be created as app/models/user.php and might look something like
Listing 10.

Listing 10. The user model

<?php
class User extends AppModel
{

var $name = 'User';
}
?>

Notice the line var $name = 'User';. It is accepted as best practice to specify
the name of the model in $name.

View

Being able to save, retrieve, and validate your data is pretty useless without some
means of displaying the data. By putting all display and presentation code in one
place, you can change the look and feel of your application without having to work
around application logic and data-related code.

View is primarily concerned with formatting data for presentation to the user. The
view represents any and all UI work, including all templates and HTML. CakePHP's
view files are regular HTML files embedded with PHP code.

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 13 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Ultimately, a view is just a page template. Usually, the view will be named after the
action associated with it. For example, a display() action would normally have a
display view.

Returning to the sample application, we have created a users table and a user
model to interact with this table. Now we need some views. The user will need to
register an account and log in to the application. This calls for a register and a login
view.

The register view

Before a user can use the Tor application, he will need to register an account. This
will require a register view, which will present the registration form to the user. You
should already know what kind of user information Tor is looking for — specifically,
you will need to collect a username, password, e-mail address, and first and last
name.

The register view should be created as app/views/users/register.ctp and might look
something like that shown in Listing 11.

Listing 11. The register view

<form action="/users/register" method="post">
<p>Please fill out the form below to register an account.</p>
<label>Username:</label><input name="username" size="40" />

<label>Password:</label><input type="password" name="password" size="40"
/>

<label>Email Address:</label><input name="email" size="40"
maxlength="255" />

<label>First Name:</label><input name="first_name" size="40" />

<label>Last Name:</label><input name="last_name" size="40" />

<input type="submit" value="register" />
</form>

It is important to note that the field names are the same as the column names in
your database. This will come into play when we get to the users controller. Later,
when you learn a little more about Cake and see how Cake Helpers work, you will
rewrite this page completely, but for now this page is regular HTML, just like you
have probably always written.

Controller

With data handling all contained within in the model, and the presentation layer all

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 14 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

contained within the view, the rest of the application is going to live in the controller.
This is where the application 'does' things — logic, decision-making, workflow, etc.
The model manages your data, the view shows it to you, the controller does
everything else.

The controller manages server requests. It accepts user input (URL requests, form
POSTs, GET requests, etc.), applies logic where necessary, invokes models where
data handling is required, and sends output through the appropriate view.

Generally, a controller will manage logic for a single model. A controller contains any
number of functions, referred to as actions. An action typically applies logic and
displays a view. All user-defined controllers will need to extend the CakePHP
AppController class.

In Tor, you have created a users table, a user model to interact with the table, and
views to present registration and login forms to the user. Those forms will submit to
the users controller, invoking the register and login actions, respectively. The
users controller should be created as app/controllers/users_controller.php and
should start out looking something like Listing 12.

Listing 12. The users controller

<?php
class UsersController extends AppController
{
}
?>

The register action

You now have a controller. But it's not doing anything yet. Before it will do anything
for you, you'll have to give it some actions to perform.

Now you are getting down to the nuts and bolts. The user has filled out a form and
submitted it to the application. We will cover data validation later, but for now, we will
just push the registration data into the database. We do this by adding the
register action to the users controller (see Listing 13).

Listing 13. The register action

<?php
class UsersController extends AppController
{
function register()
{

if (!empty($this->params['form']))
{

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 15 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

if ($this->User->save($this->params['form']))
{

$this->flash('Your registration information was accepted.',
'/users/register');

} else {
$this->flash('There was a problem with your registration',

'/users/register');
}

}
}

}
?>

The register action starts by looking at the form ($this->params['form']) to
see if it was submitted. If the form was not submitted, the action will not do anything.
Once you know the form was submitted with data, the controller calls the save
method on the user model, which is an extension of AppModel. The save method
will, by default, look for a table that's a plural of the model itself. In this case, it is
looking for a users table to go with the user model. If the table is found, the save
method will turn the passed array ($this->params['form']) into an INSERT
statement, using the array keys as column names and the array values as the
INSERT values.

Once you know the form was submitted with data, the controller calls the save
method on the user model, which is an extension of AppModel. The save method
will, by default, look for a table that's a plural of the model itself. In this case, it is
looking for a users table to go with the user model. If the table is found, the save
method will turn the passed array ($this->params['form']) into an INSERT
statement, using the array keys as column names and the array values as the
INSERT values. In this case, $this->params['form'] will look like Listing 14.

Listing 14. The $this->params['form'] array

Array
(

[username] => zaphod
[password] => secret
[email] => beeblebrox@heartofgold.hhg
[first_name] => zaphod
[last_name] => beeblebrox

)

The save method will build an INSERT statement from the rest. It would look
something like Listing 15.

Listing 15. INSERT statement

INSERT INTO
users
(username, password, email, first_name, last_name)
VALUES

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 16 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

('zaphod', 'secret', 'beeblebrox@heartofgold.hhg', 'zaphod', 'beeblebrox')

It should now be apparent why you used the database column names in the register
view for the register form field names. By doing so, you simplified the process of
saving your data significantly.

To continue, if the data inserts successfully, the register action calls the Flash
method. Flash presents a basic message to the user (in this case, a success or
failure message) with a link away from the message (in this case, back to the
register view, since nothing else has been defined.

Now that you have a user model to interface with your users table, and a register
view to show a registration form, and a users controller with a register action, you
can actually see your application in action.

Try it out

All the pieces have fallen into place. It's time to bring Tor to life. Fire up your browser
and jump in. Load the register view by going to http://localhost/users/register. You
should see something like Figure 4.

Figure 4. Loading the register view

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 17 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Fill out and submit the form. You should see your success message (see Figure 5).

Figure 5. Success message

If you look in your database, you should see a record corresponding to your form
submission, complete with a plain-text password (a terribly bad idea, which we will
fix later). Try to fill out the form again, using the same information. You should see
the failure message (see Figure 6).

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 18 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Figure 6. Register failure

If you are using a database that supports the UNIQUE field restraint, the registration
will fail. During the creation of the users table, the username and e-mail fields were
defined as UNIQUE, meaning values for those fields cannot be duplicated. CakePHP
recognizes the error when the database throws it and displays an error.

Section 4. Helpers

Helpers in CakePHP exist primarily to help speed up the development of your views.
There are helpers for HTML, Ajax, JavaScript and more. Helpers make it easier to
insert pieces of HTML code you find yourself writing multiple times.

Modifying the users_controller.php file

To start using Helpers, you will need to modify the users_controller.php file you
created earlier. You should give the controller a name and tell it that you want to use
some helpers — in this case, the HTML and Form helpers. Edit the file to add the
$name and $helpers class variables (see Listing 16).

Listing 16. The users controller

<?php
class UsersController extends AppController
{

var $name = 'Users';

var $helpers = array('Html', 'Form');

function register()

{

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 19 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

...

Now that you have included your helpers, you can begin using them.

Making tables easier

Users of Tor should be able to see who else is registered to use the application.
CakePHP has a number of helpers in place to assist with creating tables. These
helpers include many useful bits of functionality, some of which you have probably
written more than once. To demonstrate this, you will create a view to display
registered users.

Start by creating a knownusers action in the users controller (see Listing 17).

Listing 17. Creating a knownusers action

function knownusers()
{
$this->set('knownusers', $this->User->find(

'all',
array(
'fields' => array('id','username', 'first_name', 'last_name'),
'order' => 'id DESC'

)
));

}

This calls the built in find function on the user model. The find function takes a
number of parameters, such of matching conditions (in this case, you passed all
instead of some matching conditions), an array of fields to be returned (we don't
want all of the user information — just what you would want everyone to see), and a
sort field and order (in this case, id DESC to sort the fields in descending order by
ID). You can also specify a limit (maximum rows to return), page (if you are paging
the data), and a recursive option, which can be specified to return models
associated with the data (for example, if you were querying a groups table and
several users belong to each group).

The output from find is put into the knownusers variable. The data can now be
accessed from a view.

Creating the knownusers view

Create the file app/views/users/knownusers.ctp in a text editor. To see what the data
returned by findAll looks like, output the knownusers variable using var_dump
(see Listing 18).

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 20 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Listing 18. Output the knownusers variable using var_dump

<pre>
<?php var_dump($knownusers) ?>
</pre>

Visit the view at http://localhost/users/knownusers. You should see an
array of user data, shown in Figure 7.

Figure 7. The results

If you only have one user listed, go back to http://localhost/users/register and
register a few more. The end result will be more impressive.

Got a nice big array of users? Good! Time to turn that into a table. Replace the
contents of knownusers.ctp with the following from Listing 19.

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 21 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Listing 19. Creating a table

<table>
<?php

echo $html->tableHeaders(array_keys($knownusers[0]['User']));

foreach ($knownusers as $thisuser)
{

echo $html->tableCells($thisuser['User']);
}

?>
</table>

The first helper will create a set of table headers from an array of data — in this
case, the list of keys for our users. The second helper will create a set of table cells,
wrapped in table row tags, from an array of data — in this case, the values for each
user.

That's it! Save it, then visit http://localhost/users/knownusers to see the results (see
Figure 8).

Figure 8. The results

By using the tableCells helper, you have eliminated the need to write your own
code to iterate through the array of user data. This is just one example of how to use
helpers to make it easier to work with HTML in CakePHP.

Form generation

Building a Web application without using forms is like milking a chicken: It's

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 22 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

extremely complicated and rarely works. Well-built and maintainable forms are a
foundation to any well-built application. Given how often you will need to build forms,
it only seems natural to look for ways to make the process easier without cutting
corners.

Using helpers in the registration form

Helpers are especially useful when generating forms. You can use them to generate
the HTML for your input fields, as well as placeholders to hold validation error
messages. Using helpers to generate the form fields and error message holders for
Tor, the register view might look more like Listing 20.

Listing 20. Using helpers to generate the registration form

<p>Please fill out the form below to register an account.</p>
<?php echo $form->create('User', array('action' => 'register'));?>

<?php
echo $form->input('first_name');
echo $form->input('last_name');
echo $form->input('username');
echo $form->input('email');
echo $form->input('password');

?>

<?php echo $form->end('Register');?>

As you can see, making use of CakePHP's helpers can save you quite a bit of code
when writing basic form elements. Now let's look to make even more use of your
helpers.

Making the most of your helpers

To start getting more payoff from your helpers, you'll need to do two things: update
your users controller and introduce a little data validation. Open
controllers/users_controller.php and change your register function to match the one
in Listing 21.

Listing 21. Updating the users controller

function register()
{
if (!empty($this->data))
{

if ($this->User->save($this->data))
{
$this->Session->setFlash('Your registration information was accepted.');

}
}

}

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 23 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Note that the occurrences of $this->params['form'] have changed to
$this->data.

Now open the user model and add a little data validation (covered in detail later). For
now, modify your user model to look like the one in Listing 22.

Listing 22. Modifying your user model

<?php
class User extends AppModel
{
var $name = 'User';

var $validate = array (
'username' => array (
'rule' => 'notEmpty',
'message' => 'This field cannot be left blank.'

),
'password' => array (
'rule' => 'notEmpty',
'message' => 'This field cannot be left blank.'

),
'email' => array(
'rule' => 'email',
'message' => 'Please supply a valid email address.'

)
);

}
?>

To break this down briefly, the $validate array contains entries for validation,
consisting of a key (the form field name) and an array of parameters used to
evaluate the data — the rule to be invoked, and the message to be displayed when
the rule is violated. It is not necessary to validate all of the form fields. In Listing 20,
last_name and first_name were left optional. CakePHP comes with several
predefined regular expressions for data validation. The notEmpty rule is used just
to make sure the field is not empty, while the email rule is used to verify that a
string looks more or less like an e-mail address. There are many other predefined
validation rules available.

Now take it for a spin. Try submitting the form with no data, with one or two required
fields empty, with an invalid e-mail address (see Figure 9. What do you see?

Figure 9. Data validation first try

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 24 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Now try it a second time with different missing data (see Figure 10).

Figure 10. Data validation second try

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 25 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

One thing you should notice is that the CakePHP is turning on and turning off your
error messages for you on the fly. Another thing you should notice is that CakePHP
is remembering and populating the values for the form fields, without you having to
do anything.

That's where the big payoff comes in. What didn't you have to do? For one thing,
you didn't have to tell the form fields to repopulate their information from the _POST
array. CakePHP did that for you. You didn't have to check each field for an error and
conditionally display each message individually. CakePHP did that for you. You
didn't have to make sure you formatted your tags into valid xhtml. CakePHP did that
for you, too.

Helper notes

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 26 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

This tutorial barely scratches the surface of helpers. A whole tutorial could be written
on the subject. Learning how to use helpers well will go a long way toward helping
speed up your development in CakePHP. CakePHP includes helpers for Ajax (using
prototype.js), JavaScript, number conversion, text handling, dates, times, and more.
Review the manual (see Resources) to get more familiar with some of these helpers.

Section 5. CakePHP data validation

You now have a brief look at CakePHP data validation by putting in some basic
validation for users based on defined regular expressions. By defining your own
regular expressions for data validation, you can exercise more control over the
pass/fail criteria for individual form fields within Tor.

The Tor user model

Take another look at the user model (see Listing 23).

Listing 23. The user model

<?php
class User extends AppModel
{
var $name = 'User';

var $name = 'User';

var $validate = array (
'username' => array (
'rule' => 'notEmpty',
'message' => 'This field cannot be left blank.'
),
'password' => array (
'rule' => 'notEmpty',
'message' => 'This field cannot be left blank.'
),
'email' => array(
'rule' => 'email',
'message' => 'Please supply a valid email address.'
)

}
?>

This is a good start, but it's not enough. You'll want to make sure the field lengths
are honored and that the username does not already exist. You will accomplish this
by defining your own regular expressions for validation and defining a function to
check the users table for a username before saving the user.

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 27 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Regular expressions (briefly)

A full discussion about how regular expressions is outside the scope of this tutorial.
The PHP Manual contains information about regular expressions in PHP and should
be reviewed before going too far in rolling your own data validation regular
expressions (see Resources).

A regular expression is basically a pattern of characters used for comparing one
string to another. For example, the character * in a regular expression will match
any character, any number of times. If you don't know anything about regular
expressions, don't worry. The example below should help get you started.

Roll your own validation

For the username and password fields, let's validate that the submitted data is no
longer than 40 characters. It is also helpful to verify that the username and password
are at least six characters. And let's also limit the characters to only alphanumerics.
A regular expression to match strings with a length between six and 40 characters
would look something like this: /^[a-z0-9]{6,40}$/i. Reading that regular
expression from left to right:

• / — Marks the beginning of the regular expression

• ^ — Says from the beginning of the string

• [a-z0-9] — Says any one character from a to z or 0 to 9

• {6,40} — Says at least six times, but no more than 40 times

• $ — Says and the string ends

• / — Marks the end of the regular expression

• i — Ignore the casing of any letter

So, read altogether, this regular expression says "from the beginning of the string, a
letter or number, at least six but not more than 40, and the string ends, ignore case."

To put the regular expression to use (see Listing 24), replace the instances of
notEmpty with the regular expression, in single quotes (to prevent PHP from trying
to interpret any of the special characters).

Listing 24. Regular expression in PHP script

<?php
class User extends AppModel

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 28 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

{
var $name = 'User';

var $validate = array (
'username' => array (
'rule' => '/^[a-z0-9]{6,40}$/i',
'message' => 'This field must have between 6 and 40 alphanumeric characters.'
),
'password' => array (
'rule' => '/^[a-z0-9]{6,40}$/i',
'message' => 'This field must have between 6 and 40 alphanumeric characters.'
),
'email' => array(
'rule' => 'email',
'message' => 'Please supply a valid email address.'
)

);

}
?>

Make sure you've saved all of your files, go back to http://localhost/users/register,
and try to register a user with a four-character username. You should see something
like Figure 11.

Figure 11. Data validation

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 29 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Regular expressions are versatile, but they can't do things like tell you if a username
has already been registered.

Taking validation further

Sometimes you can't tell if data is valid just by looking at it. For example, the
username may be between six and 40 characters, but you will have to check the
database to see if the username is already taken. CakePHP provides the ability to
manually mark a field as invalid. Take a look at the beforeValidate method in
Listing 25. This method would be added to the user model.

Listing 25. Validate the username

function beforeValidate()

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 30 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

{
if (!$this->id)
{

if ($this->findByUsername($this->data['User']['username']))
{
$this->invalidate('username_unique');
return false;

}
}
return true;

}

This method tells the model that before any validation is run, check to see if the
submitted data has an ID. If there is no ID, look for other users with the same
username. If there are any, mark the username field invalid and skip any remaining
validation (return false). You can take full advantage of this by changing the
username input line in the register.ctp view to the following shown in Listing 26.

Listing 26. New username input line

echo $form->input('username', array('after' => $form->error
('username_unique', 'The username is taken. Please try again.')));

This tells the register view what to do when encountering error messages called
'username_unique' like you designated in the beforeValidate method.

Save your files and try it out. Go to http://localhost/user/knownusers to get a list of
existing users. Then go to http://localhost/user/register and try to create one with the
same username. You should see the following, in Figure 12.

Figure 12. Data validation successful

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 31 of 37

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Good data validation is an important step in creating any secure application. As you
build the Tor application, look for opportunities to improve the data validation. Don't
be afraid to put in more data validation than this tutorial demonstrates. Never
assume your users are sending you the data you asked for. Validate everything.
CakePHP makes it easy.

Section 6. Filling in the gaps

So far, users can register for your application and see who has already registered.
The application needs some filling in. Using the skills you've learned so far, try filling
in some more functionality. Check out Part 2 for examples of the following.

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 32 of 37

http://www.ibm.com/developerworks/opensource/tutorials/os-php-cake2/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Login

The login view should gather the user login information and submit it to the users
controller. The users controller should look to see if the user is in the database and
verify that the password is correct. If the user has correctly logged in, write the
username to session and send the user to the index action.

Hints:

• Use the built in
$this->User->findByUsername($your_username_variable_here)
to search for the user in the database

• Write the user's name to Session with
$this->Session->write('user',
$your_username_variable_here)

Index action

The index action should check to see if the user's name has been written to the
session. If the user's name has been written to the session, pull that information from
the database and present the user with a customized greeting. If the user has not
logged in, direct him to the login action.

Logout

The logout action should delete the user's username from the session and forward
the user to the login action.

Bonus

Modify the register action to automatically log the user into the system and
forward the user to the index action. Modify the register and login actions to
use hashed passwords, rather than saving your passwords in the database as plain
text.

Don't worry too much if you get stuck. Part 2 provides sample solutions to these
problems. Then you'll jump right in and build out the Tor application product gallery.

Happy coding!

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 33 of 37

http://www.ibm.com/developerworks/opensource/tutorials/os-php-cake2/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Section 7. Summary

This tutorial taught you how to install and configure CakePHP, the basics of MVC
design, how to validate user data in CakePHP, how to use CakePHP helpers, and
how to get an application up and running quickly using CakePHP. Part 2 covers
writing plug-ins for your application and using CakePHP's access-control lists
(ACLs).

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 34 of 37

http://www.ibm.com/developerworks/opensource/tutorials/os-php-cake2/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download
method

Part 1 source code os-php-cake1.source.zip 3KB HTTP

Information about download methods

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 35 of 37

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=390462&filename=os-php-cake1.source.zip&method=http&locale=
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Visit CakePHP.org to learn more about it.

• The CakePHP API has been thoroughly documented. This is the place to get
the most up-to-date documentation for CakePHP.

• The Cookbook is Cake's Wiki-driven user manual, and contains lots of helpful
information.

• There's a ton of information available at The Bakery, the CakePHP user
community.

• CakePHP Data Validation uses PHP Perl-compatible regular expressions.

• Read a tutorial titled "How to use regular expressions in PHP."

• Want to learn more about design patterns? Check out Design Patterns:
Elements of Reusable Object-Oriented Software, also known as the "Gang Of
Four" book.

• Check out some Source material for creating users.

• Check out the Wikipedia Model-View-Controller.

• Here is more useful background on the Model-View-Controller.

• Here's a whole list of different types of software design patterns.

• Read about Design Patterns.

• PHP.net is the central resource for PHP developers.

• Check out the "Recommended PHP reading list."

• Browse all the PHP content on developerWorks.

• Follow developerWorks on Twitter.

• Expand your PHP skills by checking out IBM developerWorks' PHP project
resources.

• To listen to interesting interviews and discussions for software developers,
check out developerWorks podcasts.

• Using a database with PHP? Check out the Zend Core for IBM, a seamless,
out-of-the-box, easy-to-install PHP development and production environment
that supports IBM DB2 V9.

• Stay current with developerWorks' Technical events and webcasts.

• Check out upcoming conferences, trade shows, webcasts, and other Events

developerWorks® ibm.com/developerWorks

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 36 of 37

http://www.cakephp.org/
http://api.cakephp.org
http://book.cakephp.org/
http://bakery.cakephp.org
http://us2.php.net/manual/en/ref.pcre.php
http://www.ibm.com/developerworks/opensource/tutorials/os-phpexpr/
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://en.wikipedia.org/wiki/Plan_9_from_outer_space
http://en.wikipedia.org/wiki/Model-view-controller
http://www.phpwact.org/pattern/model_view_controller
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.php.net
http://www.ibm.com/developerworks/library/os-php-read/index.html
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=php
http://twitter.com/developerworks
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/podcast/
http://www-306.ibm.com/software/data/info/zendcore/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

• Watch and learn about IBM and open source technologies and product
functions with the no-cost developerWorks On demand demos.

Get products and technologies

• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

• Download IBM product evaluation versions or explore the online trials in the
IBM SOA Sandbox and get your hands on application development tools and
middleware products from DB2®, Lotus®, Rational®, Tivoli®, and
WebSphere®.

Discuss

• Participate in developerWorks blogs and get involved in the developerWorks
community.

• Participate in the developerWorks PHP Forum: Developing PHP applications
with IBM Information Management products (DB2, IDS).

About the author

Duane O'Brien
Duane O'Brien has been a technological Swiss Army knife since the
Oregon Trail was text only. His favorite color is sushi. He has never
been to the moon.

ibm.com/developerWorks developerWorks®

Getting started Trademarks
© Copyright IBM Corporation 2006, 2011. All rights reserved. Page 37 of 37

http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=992&cat=51
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=992&cat=51
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites
	System requirements

	Installation
	Unpack and install
	Validation 1
	Configuring a database connection
	Editing the database configuration file
	Validation 2
	Creating the application tables

	MVC design
	Model
	The user model
	View
	The register view
	Controller
	The register action
	Try it out

	Helpers
	Modifying the users_controller.php file
	Making tables easier
	Creating the knownusers view
	Form generation
	Making the most of your helpers
	Helper notes

	CakePHP data validation
	The Tor user model
	Regular expressions (briefly)
	Roll your own validation
	Taking validation further

	Filling in the gaps
	Login
	Index action
	Logout
	Bonus

	Summary
	Downloads
	Resources
	About the author

