
- 1 -

Firefly 8.0.0 manual

Version 2013-11-12

Table of Contents

Introduction

About this manual
Overview of capabilities
Firefly and GAMESS (US)
Release history
Citing Firefly

Installing and running Firefly

General information
Windows
Windows MPI implementations
Windows and CUDA
Linux
Linux MPI implementations
Linux and CUDA
Installing Firefly on 64-bit Linux cluster with InfiniBand network
and Intel MPI
Command line options

Creating an input file
 Input file structure
 Chemical control data
 Computer related control data
 Formatted input sections
 Input checking
 Input preprocessing

Performance

Introduction
64-bit processing support

 The P2P communication interface
The XP and extended XP parallel modes of execution
Utilizing HyperThreading

 CUDA
The Fastdiag dynamic library
Fast two-electron integrals code
Quantum fast multipole method

Output
 Main output
 The PUNCH file
 The IRCDATA file
 The MCQD files

- 2 -

Restart capabilities

Coordinate types
 Introduction
 Cartesian coordinates
 Z-Matrix and natural internal coordinates
 Delocalized coordinates

Utilizing symmetry
Isotopic substitution

Basis sets
 Introduction
 Built-in basis sets
 Using pure spherical polarization functions
 Using an external basis set file

Manually specifying a basis set
Using effective core potentials
Partial linear dependence in a basis set
Basis set superposition error (BSSE) correction

Starting orbitals

General accuracy switches

Semi-empirical methods
 Introduction
 Available methods

Hartree-Fock theory
 Introduction
 Restricted Hartree-Fock
 Unrestricted Hartree-Fock
 Restricted-open Hartree-Fock
 Direct vs conventional
 Convergence options

General valence bond
 Introduction

Open-shell SCF with GVB
True GVB perfect pairing runs
The special case of TCSCF
A caution about symmetry

Møller-Plesset correlation corrections

Introduction
MP2 calculations
Performance of the MP2 code
MP3 and MP4 calculations

Density Functional Theory
 Introduction
 Available functionals
 Making modifications to functionals
 Empirical dispersion correction (DFT-D)

- 3 -

Time-Dependent Theories
 General information
 Excited state calculations with TDHF (RPA)
 Excited state calculations with TDDFT

Configuration Interaction methods
 Introduction
 CI singles

Higher-order CI

Multi-configurational SCF methods
 Introduction
 Orbital optimization options
 Determinants vs CSFs
 Determinant CI code (ALDET)

CSF CI code (GUGA)
Performance
Performing state-specific MCSCF calculations
Performing state-averaged MCSCF calculations
MCSCF state-tracking

 Strategies for selecting an MCSCF active space
 Multireference configuration interaction

(Extended) Multi-configurational quasi-degenerate perturbation theory

Introduction
Overview of MCQDPT
The XMCQDPT theory
XMCQDPT vs XMS-CASPT2
Useful hints and best practices
References

Geometry optimizations
 Introduction
 Optimizations towards a minimum

The Hessian
 Optimizations towards a transition state
 Optimizations and symmetry
 Mode following
 Constrained optimization

Locating Conical Intersections (CIs) and Interstate Crossings (ISCs)
 Using numerical gradients

Non-gradient total energy minimizations

Hessian calculations
 General information
 Vibrational data
 Thermochemistry
 Raman activities

Potential energy surface scans
 Rigid PES scans
 Relaxed PES scans

- 4 -

Reaction coordinate scans
 Intrinsic reaction coordinate
 Dynamic reaction coordinate

Gradient extremal following

Solvation models
 Self-consistent reaction field
 Polarizable continuum model
 Effective fragment potentials

Calculating single geometry properties
 Introduction

Electrostatic moments, electrostatic potential, electron density,
electrostatic field, and electric field gradient

Cube files
Radiative transition moment
Polarizabilities
Spin-orbit coupling
Stone's distributed multipole analysis

Additional capabilities

Orbital localization
The NBO program

 Morokuma energy decomposition
 Interfacing with other programs

Keyword list

- 5 -

Introduction

About this manual

The goal of this manual is to provide users with a description of all capa-
bilities of the Firefly QC software package. It consists of two parts: a
multi-chapter document that describes Firefly’s core functionality and a
list of all keywords that are available in Firefly.

The main document provides an overview of all important functionality pre-
sent in Firefly. It deals with several theories and calculation types and,
in addition, explains also how to set up Firefly in both Windows and Linux
environments. It is intended for users new to Firefly (or new to a specific
feature in Firefly) and assumes a basic to moderate level of QC knowledge.
However, as this document contains several tips, users with a higher level
of knowledge might also find this document useful. Note that as only an
overview of Firefly’s functionality is provided, many of the less important
(but not necessarily less useful) keywords are not discussed here. Instead,
these can be found in the list of keywords.

The list of keywords provides a complete listing of all options accessible
in Firefly. This document contains very specific information for each fea-
ture in Firefly and will foremost be useful to the more experienced users.
However, beginning users are also encouraged to read through the list –
they might come across some useful keywords not mentioned in the main docu-
ment. In the list, keywords are organized by the keyword group (e.g. $CON-
TRL, $SYSTEM, etc.) they belong to. The list is also available as a sepa-
rate PDF document for the quick lookup of keywords.

This manual is freely available from the Firefly website and falls under
the copyright policy of the Firefly website. It may not be printed or re-
published without the explicit permission of the copyright holder.

Overview of capabilities

The table below summarizes the current main capabilities of Firefly:

Wavefunction RHF UHF ROHF GVB MCSCF
Semiempirical SCF dm dm dm dm -
SCF energy cdp cdp cdp cdp cdp
SCF analytical gradient cdp cdp cdp cdp cdp
SCF analytical Hessian cdp* - cdp* cdp* -
DFT energy cdp cdp cdp - -
DFT analytical gradient cdp cdp cdp - -
CIS energy cdp - - - -

- 6 -

CIS analytical gradient cdp - - - -
TDHF (RPA) energy cdp - - - -
TDDFT energy cdp - - - -
MP2 energy cdp cdp cdp - cdmp
MP2 analytical gradient cdp - - - -
MP3 energy cdm - - - -
MP4 energy cdmp* - - - -
CI energy cdp - cdp cdp cdp
CI analytical gradient cd* - - - -

Legend: c - conventional
 d - direct/semidirect
 m - multithreaded
 p - parallel
 * - additional notes:

- CI analytical gradients and SCF analytical Hessians are
programmed for spd basis sets only (note that CIS gradi-
ents are available for any supported basis sets);
- For GVB, SCF analytical Hessians are available only for
a selected subset of possible GVB-type wavefunctions;
- The MP4(SDQ) code is multithreaded but not parallel
while the MP4(SDTQ) code is both multithreaded and paral-
lel for (T) part.

Firefly and GAMESS (US)

Due to historical reasons, Firefly and GAMESS (US) share a lot of function-
ality. When the Firefly project started in 1993 at MSU, it was based on the
source code of the GAMESS (US) package developed by members of Mark Gor-
don's group at ISU. Modifications to the source code were made by Alex
Granovsky (who at that time was working at MSU), and the modified package
was known as “PC GAMESS”. Initially, PC GAMESS was only available locally
at MSU, but in 1997 it became available outside of MSU as part of the pub-
lic GAMESS (US) distribution.

Up until 1999, features added to GAMESS (US) were also incorporated in PC
GAMESS. The latest release of GAMESS (US) of which the source code was used
is the October 25th, 1999 release. After this release, the development of
PC GAMESS and GAMESS (US) became independent. However, PC GAMESS did remain
part of the GAMESS (US) distribution and a certain degree of compatibility
between the two packages was maintained. With the release of version 7.1.C
in 2008, PC GAMESS became completely forked from GAMESS (US) as an inde-
pendent package and the name was changed to “Firefly” (though the PC GAMESS
name was also used till the release of version 7.1.G).

An overview of similarities and differences between Firefly and GAMESS (US)
is given below.

Similarities with GAMESS (US)
Firefly supports all functionalities of GAMESS (US) up to the October 25th,
1999 release of GAMESS (US). Many additional features added to GAMESS (US)

- 7 -

since 1999 are supported as well. Ab initio SCF wavefunctions for RHF, UHF,
ROHF, GVB and MCSCF cases are available. Correlation corrections include
configuration interaction (CI) and Møller-Plesset (MP) perturbation theory.
For MCSCF wavefunctions, correlation corrections can be calculated with
MCQDPT2. Excited electronic states can also be described with configuration
interaction with singles (CIS), RPA (i.e. TDHF), and TDDFT. Support for
effective core potentials and a variety of density functional (DFT) func-
tionals is available. Geometry optimizations can be performed with analyti-
cal gradients at the HF, MP2, CI, DFT, and MCSCF levels. Analytical Hessi-
ans can be computed for RHF, ROHF and GVB wavefunctions while numerical
Hessians are available for all methods that support analytic gradients.
Finally, numerical gradients and double-numerical Hessians are available
for all methods.

Differences with GAMESS (US)
Firefly provides fast and efficient algorithms for Møller-Plesset second,
third, and fourth order energy corrections. The DFT code in the Firefly is
completely different with respect to that of GAMESS (US) and the two pro-
grams support different density functionals. In Firefly, MCSCF gradients
can be calculated semi-numerically from state-averaged orbitals, whereby
state-tracking is supported. MCSCF can be used for the location of conical
intersections and interstate crossings. MCQDPT2 calculations in Firefly can
be sped up through a Resolvent fitting technique, and an improved theory,
namely XMCQDPT2, is available. Finally, Firefly has different engines for
geometry optimizations and relaxed surface scans.

Firefly lacks some features that have been implemented in later versions of
GAMESS (US). For example, Firefly does not support coupled cluster and
fragment molecular orbitals methods. ORMAS-type CI and MCSCF calculations
are not possible. Also, it is not possible to do all-electron relativistic
calculations with Firefly. Note that both Firefly and GAMESS (US) lack sup-
port for h and higher angular momentum basis functions.

Release history

Firefly 8.0.0, build #8240. Official Firefly binaries released to the pub-
lic September 5, 2013

System-wide changes:

- New hierarchical eXtreme Parallel (xp) parallel execution model
- Improved performance of threaded code with all presently known issues

fixed
- Improved memory management which is capable to allocate more memory

and to handle it in a more intelligent way
- Improved support of Lustre and other non-local filesystems with all

presently known compatibility issues resolved
- Support of Intel's AVX-enabled processors
- Support of Intel's AVX2-enabled processors and FMA3
- Support of AMD Bulldozer processors and FMA4
- New high-performance intelligent numerical gradients mode

- 8 -

- New, updated documentation for Firefly. This documentation combines
information taken from the old manual, the various README files, and
the forums, and also many new chapters

Changes to HF and DFT code:

- Improved DIIS code with lots of additional modes of operation, con-
figurable using dedicated input options

- Better parallel scalability of DFT code due to faster DIIS
- Improved accuracy of DFT quadratures
- DFT-D empirical dispersion correction
- New GGA and hybrid GGA functionals
- Support of double-hybrid functionals
- New HFX parameter allowing users to modify the fraction of the exact

HF exchange used in hybrid functionals. Helpful in TDDFT calculations
of Rydberg and charge-transfer states.

Changes to MP2 code:

- SCS and SOS MP2
- More intelligent handling of I/O errors while running in parallel

Changes to CUDA-enabled MP4 code:

- Changes for CUDA 4.x and 5.x

Changes to CASSCF, MCQDPT, and XMCQDPT2 code:

- New high-performance determinant-based CASCI/CASSCF code with better
parallel scalability and efficiency, and very modest memory demands

- Multiple functional and performance improvements and extensions to
MCQDPT and XMCQDPT module

- Improved conical intersection location code now capable to deal with
arbitrary averaging of multiple states in SA-CASSCF

Other changes:

- CPCM solvent model
- Fully variational DPCM and CPCM-like extended solvent models
- PCM is enabled for UHF/UDFT and ROHF/RODFT
- Extended restart capabilities
- Improvements and extensions to surface scan module
- Multiple bugfixes and minor improvements

7.1.G (i.e., 7.1.16), build #5618. Official Firefly binaries released to
the public December 4, 2009.

Main new features are:

- Multiple minor bugfixes and improvements.
- More aggressive set of default settings for better performance and

stability.

- 9 -

- Improved performance on AMD Phenom/Phenom
II/Barcelona/Shanghai/Istanbul processors.

- Improved performance of MP2 Energy/Energy Gradient method=1 code.
- Improved DLC engine.
- Improved code for relaxed PES scans using DLCs.
- Improvements to P2P communication interface.
- Completely redesigned threading model for better multithreaded per-

formance and CUDA interoperability.
- Improved MP4 code with CUDA support.
- Program name changed to Firefly.

7.1.F (i.e., 7.1.15), build #5211. Official PC GAMESS/Firefly binaries re-
leased to the public February 24, 2009.

This is mainly the maintenance/bugfix release over PC GAMESS/Firefly ver-
sion 7.1.E. Main new features and bugfixes are:

- Support of Mac OS X/Intel platform.
- Better multithreaded performance on some platforms/hardware.
- Workaround for nasty CPUID bug.
- New fully dynamically linked MPICH/NPTL binaries for Linux.
- Faster GVB/MCSCF gradients.
- State-Specific gradient code for State-Averaged MCSCF allows use of

PCM solvation model for excited states optimization and location of
Conical Intersections.

7.1.E (i.e., 7.1.14), build #5190. Official PC GAMESS/Firefly binaries re-
leased to the public January 11, 2009.

This is mainly the maintenance/bugfix release over PC GAMESS/Firefly ver-
sion 7.1.C. However, it adds some new important features:

- Completely new DLC engine and improved default geometry optimizer.
- Better support of Core i7 (as well as other Nehalem core processors).
- More efficient I/O under Windows Vista/Windows Server 2008 R1.
- Support of httfix option under Linux.
- New mpich2-linked binaries for Linux.
- Fixes for compatibility with the most recent Linux distributions.

7.1.C (i.e., 7.1.12), build #5014. Official PC GAMESS/Firefly binaries re-
leased to the public October 17, 2008.

Accumulates multiple bugfixes, performance improvements, and new function-
ality introduced since the release of PC GAMESS v. 7.1.5:

- Massive internal engine rewrites.
- Extended P2P interface with support of up to 1024 nodes.
- New eXtended MultiConfiguration QuasiDegenerate Perturbation Theory

(XMCQDPT) code (see
http://classic.chem.msu.su/gran/gamess/xmcqdpt.pdf).

- 10 -

- Improved CPHF=AO code for analytical RHF second derivatives with re-
duced memory requirements and better parallel scalability. Note it is
now turned on by default!

- Improved, much more stable and faster SOSCF code available for
RHF/ROHF/UHF/GVB/MCSCF wavefunctions optimization

- Improved METHOD=GDIIS geometry optimizations.
- Updated NBO version 5.G module.
- Relaxed 1D and 2D PES scans over bonds, angles, or torsions in DLCs

(list of new available options is to be published soon in "Manuals"
section).

- Added RM1 parameterization to MOPAC code.
- Improved stability of the ALDET's Davidson CI diagonalization code.
- Improved state-averaged MCSCF gradient code.
- Improved MCSCF state-tracking feature.
- New code for location of conical intersections (CI).
- Improved DIIS code with reduced memory demands.
- More accurate memory demands estimation for CIS/TD code.
- New, much more stable code to convert internals to Cartesians.
- DFT gradients are now slightly more accurate.
- Support of Gaussian-style O3LYP functional.
- Support of Intel Atom processors.
- Initial optimization for Intel Core i7 (codename Nehalem) microarchi-

tecture.
- Improved compatibility with some buggy Linux versions.
- Linux/MPICH version of PC GAMESS now uses SSH by default.

7.1.6 - 7.1.11 (i.e., 7.1.B), internal builds.

7.1.5, build #4630, December 23, 2007.

Available as the set of the update patches to the original PC GAMESS ver-
sion 7.1 build # 4471 from the Downloads section of the PC GAMESS homepage
at MSU. Incorporates multiple bugfixes and performance improvements (espe-
cially for AMD Phenom/Barcelona and Intel Core 2 processors), as well as
some new functionality.

7.1.4, November 2007, internal build.

7.1.3, October 2007, internal build.

7.1.2, October 2007, internal build.

7.1.1, September 2007, internal build.

7.1, Official PC GAMESS binaries released to the public, build #4471, Sep-
tember 5, 2007.

- 11 -

This version accumulates all the changes introduced in intermediate releas-
es versions 7.0.2-7.0.7, as well as state-specific analytic gradients for
state-averaged MCSCF and completely new state of the art serial and paral-
lel semidirect MP2 gradient program with excellent performance, scalability
and very modest memory demands.

7.1 final RC, build #4400, June 27, 2007.

New PC GAMESS version features completely new state of the art parallel
semidirect MP2 gradient program with excellent performance, scalability and
very modest memory demands. The updated PC GAMESS binaries were available
from MSU for registered PC GAMESS users for testing purposes upon request.

7.0.7, build #4194, April 23, 2007.

Dynamically linked Linux binaries of PC GAMESS are now fully nptl compati-
ble and were carefully tested with MPICH, MPICH-GM, MPICH-MX, OpenMPI,
Scali MPI, HP-MPI, Intel MPI 3.0 and Infinipath MPI implementations. The
updated PC GAMESS binaries were available from MSU for registered PC GAMESS
users for testing purposes upon request.

7.0.6, April 2007, internal build.

7.0.5, March 2007, internal build.

7.0.4, build #4102, February 16, 2007, internal build.

- More numerically stable PCM energy and gradient code
- Serious improvements of parallel scalability of ALDET CASCI and

CASSCF code The updated PC GAMESS binaries were available from MSU
for registered PC GAMESS users for testing purposes upon request.

7.0.3, build #4063, January 21, 2007, internal build.

- Shared memory version of P2P interface (Windows)
- support of OPTX, OLYP, and O3LYP XC functionals
- Parallel PCM with enlarged PCM dimensions

The updated PC GAMESS binaries were available from MSU for registered PC
GAMESS users for testing purposes upon request.

7.0.2, build #4020, October 8, 2006, internal build.

Added completely new, much faster MCQDPT2 code developed at MSU. The updat-
ed PC GAMESS binaries were available from MSU for registered PC GAMESS us-
ers for testing purposes upon request.

- 12 -

7.0.1, build #3970, August 17, 2006

- Better optimization for Intel Core 2 (Woodcrest/Conroe/Merom proces-
sors) microarchitecture

- Minor bugfixes and improvements

7.0, build #3910, May 11, 2006

- Initial optimization for Intel Core 2 (Woodcrest/Conroe/Merom proces-
sors) microarchitecture

- Time-dependent Hartree-Fock (TDHF) and density functional theory
(TDDFT)

- Configuration Interaction Singles (CIS)
- Static and dynamic hyperpolarizabilities via TDDFT
- Large-scale direct and conventional parallel MCSCF
- Semidirect MCQDPT
- Support of general contraction basis sets
- Faster PCM
- Improved Linux compatibility
- Unified support of different MPI implementations under Windows

6.5, Release Candidate #9, January 2005, was available to beta testers only

- Support for spherical basis functions
- Quantum Fast Multipole Method and Linear Exchange for linear scaling

HF and DFT
- Faster direct SCF/DFT code
- New 2-e integrals code
- Much faster MCQDPT code with SMP support

6.4, March 2004

- Fast hybrid DFT
- Support of AMD Opteron and Intel Pentium M processors
- Improved performance and stability
- Dynamic load balancing on the top of P2P interface
- Improvements to P2P parallel MP2 energy code
- Better support of SMP including HTT environment
- Several other enhancements and extensions (cube facility etc...)

6.3, June 2003

- Optimized binaries for AMD Athlon and Intel Pentium 4 processors
- New parallel mode P2P communication interface
- Efficient parallel MP2 energy code based on P2P model allowing thou-

sands of basis functions
- Various bugfixes and enhancements

- 13 -

6.2, 2001

- Optimized binaries for AMD Athlon
- Cumulative bugfixes and improvements

6.1, 2001, Internal release

6.0, May 2000

- PC GAMESS is now based on updated GAMESS (US) sources
- Pentium/Pentium Pro/Pentium II/Pentium III-optimized native Linux

SMP-aware PC GAMESS ELF binaries
- Pentium Pro/Pentium II/Pentium III-optimized OS/2-based SMP & JFS-

aware binaries
- Large files are supported via transparent file splitting on all 32-

bit file systems (2 or 4 GB limit)
- Enhanced convergence options for solving MP2 CPHF equations
- PG GAMESS can now write out cube files for visualization
- Advanced surface scan interface
- NBO module is incorporated into PC GAMESS
- Support of direct MP3/MP4
- GDIIS method for geometry optimization

5.4, 1999

- Changes for faster MP3/MP4
- Changes to better support SMP throughout the code
- OS and CPU autodetection

5.3, 1999, Internal release

- Changes to use updated MKL libraries
- Changes to support parallel execution

5.2, May 1999

- New RHF MP4(SDTQ) (i.e., full MP4) energy module is added
- The SMP scaling properties of MP3/MP4 calculations are improved con-

siderably
- The speed of MP2 gradient calculations for non-abelian symmetry

groups is increased
- The speed of Conjugated Gradient solver (used mainly during calcula-

tions of analytical second derivatives) is improved significantly
- The Finite Field module is changed to avoid reevaluations of 2-e in-

tegrals if possible
- The ECP integrals module is rewritten to avoid numerical instability

problems
- It is now possible to run the PC GAMESS under Linux using customized

Wine

- 14 -

5.1, Build #1519, October 1998

- RHF MP3/MP4(SDQ) energy modules are added.
- Memory management is improved again (Win32 and OS/2-specific).
- The CPHF solver used during MP2-level geometry optimization/hessian

runs is now faster.
- GAMESS bugs concerning PCM-level geometry optimization/hessian runs

are fixed.
- The precision of the HF density matrix generated by SOSCF converger

is enhanced

5.0, August 1998

- Based on May 8, 1998 GAMESS code
- Faster TDHF, MCQDPT, MP2 energy, and MP2 energy gradient calculations
- The disk usage is reduced for non-FORS GUGA CI jobs
- Improved support of SMP (Windows NT specific)

4.5, Internal Release

4.4, March 1998

- Completely new RHF/ROHF/UHF MP2 energy program
- Additional GUGA CI Hamiltonian packing
- Improved memory management (Windows NT specific)

4.3, October 1997

- Updated MP2, MP2 gradient, and CI gradient codes
- Large direct access files (> 2 GB) are supported under Windows NT
- Ctrl-C and Ctrl-Break signal handling is implemented

4.2, Internal Release

4.1, Build number 1220

- The fast (non-Fortran) file I/O as well as the AO integrals and GUGA
CI Hamiltonian packing are implemented

- Large sequential access files (> 2 GB) are supported under Windows NT

4.0, Build number 1080

- First public release based on the original GAMESS sources dated March
18, 1997

- 15 -

Versions 1.0 - 3.0 were used locally at MSU.

Citing Firefly

You must use the following Firefly reference in your publications:

Alex A. Granovsky, Firefly version 8.0.0, www
http://classic.chem.msu.su/gran/firefly/index.html

This reference should be explicitly given in the appropriate section of
your paper just like any other regular references are. Specifically, this
should not be just a reference given in pass within the main body of paper.

The recommended form is as follows:

Firefly QC package [1], which is partially based on the GAMESS (US)
[2] source code.

1. Alex A. Granovsky, Firefly version 8.0.0, www
http://classic.chem.msu.su/gran/firefly/index.html

2. M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon,
J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus,
M.Dupuis, J.A.Montgomery J.Comput.Chem. 14, 1347-1363 (1993)

- 16 -

Installing and Running Firefly

General information

Firefly is freely available and can be obtained from the Firefly website.
The Windows and Linux versions of the program are distributed as a com-
pressed archive – to be precise, as a RAR file inside a ZIP file. The RAR
file is password protected; one first has to register in order to obtain
the password which is necessary for decompression. Instructions for the
registration can be found inside the ZIP file. The Mac OS X version is as
an encrypted installation image (the password will be asked during instal-
lation process).

Before downloading, one has to decide which version to download. First of
all, Firefly can be obtained for Windows, Linux, and OS X. The Windows ver-
sion can run in serial and parallel mode, and is compatible with various
MPI implementations. The Linux version can also work with various MPI im-
plementations, however, a separate download is provided for each MPI type.
Archives for MPI implementations not listed in the download section on the
Firefly website can be provided upon request.

Up until version 8.0.0, one could also choose from various com-
piled/optimized versions of Firefly, designed to run with maximum efficien-
cy on a certain CPU architecture. However, as of Firefly 8.0.0 only the so-
called “P4” version is available from the Firefly website. The P4 version
is optimized for Intel Pentium 4, Intel Pentium D, Intel Xeon, Intel Core
2, and Intel Core i3/i5/i7 processors as well as for AMD Phenom, AMD “Bar-
celona” Opteron, and newer AMD processors. It is also possible to run this
version on older processors provided that they support SSE2, but perfor-
mance might not be optimal in such a case. Binaries optimized for older
processors are available upon request. Note that a 64-bit version of Fire-
fly is currently not available.

Specifics regarding the installation and execution of Firefly on Windows
and Linux are given in the following sections.

An important bit of information which applies to all versions of Firefly is
that the execution of a job results in the creation of many new files. Some
of these contain formatted data (such as the PUNCH file), others are tempo-
rary files (such as the DICTNRY file). Firefly will refuse to start a new
job if the formatted data file(s) from a previous job are still in the
working directory (as they may contain something useful), these should
therefore either be deleted or moved to a different directory. Temporary
files don’t necessarily have to be deleted, though it is advisable to do so
(unless a job is restarted).

Windows

- 17 -

The installation of Firefly under Windows is quite straightforward. The
first step is to extract the contents of the downloaded RAR archive to a
directory for which Firefly has read and write permissions. This is all
that is required for executing a single instance of Firefly in serial mode.
Running multiple, separate jobs is possible, the only requirement is that
each instance of Firefly runs from its own directory.

When executing Firefly, the program will look for input in a file called
"input" in the directory which contains the firefly.exe executable, though
it is also possible to specify an input file with the “-i” command line
option. By default, the output is written to the “stdout” device (i.e., it
will appear onscreen if no I/O redirection is used). Therefore, if one
would like the output to be saved to a file, an I/O redirection has to be
used. When executing Firefly on an NT-based version of Windows, one could
for example specify:

 firefly.exe >test.out 2>&1

This will cause the output to appear in the file test.out. The addition of
“2>&1” will cause most severe error messages normally sent to console also
to be send to test.out instead. (Firefly high-level error messages will be
written to test.out anyway). This however does not work on Windows 95/98/ME
as command interpreter's I/O redirection is more limited on these operating
systems. In these cases, one can only specify:

firefly.exe >test.out

If one is executing Firefly from the Windows Powershell, it is also possi-
ble to send the output simultaneously to the screen and to a file by using
the tee command. This is not recommended though, as the output file pro-
duced in this way cannot easily be opened by other programs like ChemCraft
due to an ASCII/binary problem.

Additionally, it is also possible to tell Firefly to write the output to a
file of your choosing with the “-o” command line option:

firefly.exe –o test.out

Windows MPI implementations

The instructions in the previous section cover the basic steps needed to
get Firefly installed and running in serial mode. Running Firefly in paral-
lel mode however requires some additional work. Specifically, one has to
choose an MPI implementation, even if Firefly will be run on a standalone
SMP/multicore system (i.e. a single multicore computer).

The Windows version of Firefly is supplied with a series of DLL files which
after extraction of the RAR archive will be in a directory named BINDINGS.
Each of these files makes Firefly compatible with a particular MPI imple-
mentation. The list of supported MPI implementations and corresponding DLL
files is as follows:

- 18 -

* MPIBIND.SEQ.DLL - no MPI implementation is used, this file converts Fire-
fly into a purely sequential program

* MPIBIND.NT-MPICH-SMP.DLL - to be used with mpich_smp.dll library (includ-
ed into the Firefly distribution, taken from NT-MPICH version 1.3) on
standalone SMP/multicore systems

* MPIBIND.NT-MPICH.DLL - to be used with NT-MPICH

* MPIBIND.DEINOMPI.DLL - to be used with Deino MPI

* MPIBIND.INTELMPI.DLL - to be used with Intel MPI

* MPIBIND.MPICH.NT.DLL - to be used with MPICH.NT

* MPIBIND.MPICH2.DLL - to be used with MPICH2

* MPIBIND.WMPI-1.3.DLL - to be used with WMPI v. 1.3 (included into the
Firefly distribution)

* MPIBIND.WMPI-1.6.DLL - to be used with WMPI v. 1.6 and above

* MPIBIND.WMPI-II.DLL - to be used with WMPI-II

* MPIBIND.MPIPRO.DLL - to be used with MPI Pro

* MPIBIND.MSMPI.DLL - to be used with Microsoft MPI library for Windows
Compute Cluster Edition/Compute Cluster Server

The recommended MPI implementation for Firefly on pure SMP/multicore sys-
tems is NT-MPICH-SMP. For self-made (non CCS-based) Windows clusters the
recommended implementation is NT-MPICH. Finally, for Windows CCS systems,
the recommended MPI implementation is MS MPI.

Making Firefly compatible with a certain MPI implementation requires one to
copy the appropriate DLL file from the BINDINGS directory into the Firefly
installation directory and rename it to “mpibind.dll” (after deleting the
old version of mpibind.dll). Note that because Firefly is 32-bit program
you will need to use 32-bit MPI libraries, even when you are is using a 64-
bit version of Windows.

Getting Firefly to run in parallel on a single SMP/multicore system is
quite straightforward – the mpich_smp.dll library, which is needed for NT-
MPICH-SMP implementation, is included in the downloaded Firefly RAR archive
and will already be present in the Firefly directory if the full archive
was extracted. The only thing that has to be done is to copy and rename the
file mpibind.nt-mpich-smp.dll. A job can then be started with the following
command:

firefly.exe -i c:\jobs\job1.inp -o c:\jobs\job1.out -t c:\ff\ -np 2

Here, the -i and -o switches give the input and output file names. The -t
command line switch specifies a directory in which Firefly will place its
temporary files. To be more specific, Firefly will create a separate direc-

- 19 -

tory in c:\ff\ for each instance of Firefly in which the temporary files of
that instance will be placed. It should hereby be noted that it is possible
to run multiple jobs in a single directory without any filename conflicts.
Formatted data files such as the PUNCH file will be placed in the first of
these automatically created directories. Finally, the -np switch gives the
amount of instances of Firefly that should be started.

When your computer system has more than one physical hard drive, it is ad-
visable to let Firefly use all of them in order to spread the I/O workload.
For such a case, you can explicitly specify working directories as follows:

firefly.exe DIR0 DIR1 DIR2 ... DIRN -np number_of_cpu_cores_to_use

where DIR0 is the master directory (where the formatted data files will be
created, and where the input file is assumed to be). Prior to execution,
all of the directories specified should be manually created. As an example,
when launching a single job on two cores and two separate hard disks, one
could write:

firefly.exe d:\mydir\wrk0 "e:\my dir\wrk1" -np 2

Command line switches such as -i and -o should precede the list of directo-
ries. It is also possible to use relative paths; these will be relative to
the master directory.

Detailed instructions for setting up Firefly with other MPI implementations
are not included in this documentation as the documentation for each MPI
implementation itself is already a good source of information (we recommend
reading this before attempting to setup up Firefly in an MPI environment).
However, some general tips can be given for a few MPI implementations:

WMPI 1.3
The installation package for this implementation is distributed with Fire-
fly and is one of few that supports Windows 98 and Me. After installation,
the cvwmpi.dll file should be somewhere in your path, and the wp4 daemon
(wmpi_daemon.exe, Windows 98/Me) or service (wmpi_service.exe, Windows
NT/2000,XP, etc...) has to be running on all systems. Note, the -p4dialog
option is currently not supported by the Firefly and that this will not be
changed in the future. The simplest command line for executing Firefly with
WMPI 1.3 is as follows:

 FIREFLY.EXE DIR0 DIR1 DIR2 ... DIRN < wp4 options >

where “wp4 options” are optional wp4-specific options (see the WMPI docu-
mentation for the list). For example, you can use something like the fol-
lowing:

 firefly.exe d:\mydir\wrk0 e:\mydir\wrk1 "f:\my dir\wrk2" -p4gm
10000000

In this example, the -p4gm 10000000 option sets the size of the global
memory used by the WMPI libraries and the wp4 device to 10 MB.

- 20 -

Finally, it's a good idea to look at the more detailed instructions written
by Prof. Ernst Schumacher at http://www.chemsoft.ch/qc/pcgamess.htm

NT-MPICH
Setup requires the installation of the 32-bit NT-MPICH package (the part of
MP-MPICH), including MPI dynamic link libraries and cluster management ser-
vice, on all computers that will be used to run Firefly in parallel. Also
create an appropriate machinefile (machines.txt) following directions in
the NT-MPICH documentation. Afterwards, a Firefly job is executed with
mpiexec. A simple command line is as follows:

mpiexec.exe < mpiexec options > FIREFLY.EXE DIR0 DIR1 DIR2 ... DIRN

An example:

mpiexec.exe -n 3 -account local/administrator C:\FIREFLY\FIREFLY.EXE
-o C:\FIREFLY\MP2LARGE\mp2.out C:\FIREFLY\MP2LARGE D:\FIREFLY\MP2LARGE
E:\FIREFLY\MP2LARGE

MPICH.NT
Setup requires the installation of the 32-bit MPICH.NT package on all com-
puters to be used to run Firefly in parallel. After installation, an appro-
priate config file has to be created. Below is an example:

exe C:\FIREFLY\FIREFLY.EXE
args -o C:\WORK\chk.out D:\FIREFLY\1 C:\FIREFLY\1 C:\FIREFLY\2
hosts
P4 1
DUATH 2

In this example, D:\FIREFLY\1 must exist on host P4, while C:\FIREFLY\1 and
C:\FIREFLY\2 must exist on host DUATH2 prior to execution of the Firefly
job. The job can be executed with the mpirun program.

Finally, some general advice that applies to all MPI implementations can be
given. First of all, it is important to keep in mind that, when running
Firefly in parallel, it is possible to experience performance degradation
due to simultaneous I/O operations. In such a case, the use of a high-
quality RAID setup, or the use of a separate physical disk for each in-
stance of Firefly can help. If the problem persist, one solution is to use
direct computation methods which require much less disk I/O.

It should be noted that the default value for AOINTS is DUP. This is proba-
bly optimal for low-speed networks (10 and 100 Mbps Ethernet). On the other
hand, for faster networks and SMP systems the optimal value could be
AOINTS=DIST which distributes the AO integral file across all nodes. One
can change this behavior through the AOINTS keyword in the $SYSTEM group.

In the case of MPI-related problems, there are four keywords in the $SYSTEM
group which might be of help. These are MXBCST, MPISNC, MXBNUM, and LENSNC.
For a description of these keywords, please see the list with keywords. It

- 21 -

is recommended not to modify the default values unless you are absolutely
sure that this is needed.

Windows and CUDA

Documentation on the use of CUDA under Windows OSs will be provided in the
future. Some information on this topic can be found in the forums on the
Firefly website.

Linux

As we have seen in the previous section, the Windows version of Firefly can
be made compatible with a certain MPI implementation by copying the appro-
priate binding DLL into the main Firefly directory. Things however work a
bit different for the Linux version of Firefly as here the compatibility
with a certain MPI type is incorporated in the main Firefly executable.
Therefore, an individual download is available for each MPI implementation.
Additionally, for the MPICH version, one can choose between statically and
dynamically linked libraries as well as between rsh and ssh supporting li-
braries.

Getting Firefly up and running in serial mode under Linux is very straight-
forward. The easiest is to download and decompress the Linux MPICH version
that is statically linked with MPICH and dynamically linked with other li-
braries, as this version does not require an MPI implementation to be in-
stalled for serial runs. After decompression, the main firefly binary has
to be made executable with the following command:

chmod a+x ./firefly

This is all that is required for executing Firefly in serial mode. Running
multiple, separate jobs is possible. Note that with Firefly 8.0.0, it is
possible to run multiple jobs in a single directory without any filename
conflicts.

When executing Firefly, the program will look for input in a file called
"input" in the directory which contains the firefly executable, though it
is also possible to specify an input file with the “-i” command line op-
tion. By default, the output is written to the “stdout” device. Therefore,
if one would like the output to be saved to a file, an I/O redirection has
to be used, for example:

./firefly >test.out 2>&1

This will cause the output to appear in the file test.out. The addition of
“2>&1” will cause some severe error messages also to be send to test.out
(Firefly high-level error messages will be written to test.out anyway).
Additionally, it is also possible to tell Firefly to write the output to a
specific file by using the “-o” command line option:

./firefly -o test.out

- 22 -

Linux MPI implementations

For Linux, Firefly binaries are available for the following MPI implementa-
tions. Note that all fully dynamically linked versions are NPTL-based.

• MPICH (using ssh as remote shell by default), statically linked with
MPICH and dynamically linked with other libraries.

• MPICH (using rsh as remote shell by default), statically linked with
MPICH and dynamically linked with other libraries.

• MPICH, fully dynamically linked
• MPICH2, dynamically linked
• LAM/MPI version 7.1.X, dynamically linked
• OpenMPI version 1.4.X, dynamically linked
• OpenMPI version 1.6.X, dynamically linked
• MVAPICH, dynamically linked
• MVAPICH2, dynamically linked
• MPICH-MX, dynamically linked
• MPICH-GM, dynamically linked
• Intel MPI, dynamically linked
• Scali MPI, dynamically linked
• Parastation, dynamically linked
• Infinipath MPI, dynamically linked
• HP-MPI, dynamically linked
• Platform MPI, dynamically linked

The MPICH binaries exist in two versions, namely one statically linked with
MPICH library only, and one fully dynamically linked. All other binaries
are fully dynamically linked and you therefore need to compile and/or in-
stall the particular MPI implementation you want to use with support of the
shared libraries enabled. Note that because all the currently available
Firefly versions are 32-bit executables, so you need 32-bit shared librar-
ies even when using a 64-bit system!

In addition to the above MPI implementations, Firefly has also been suc-
cessfully linked and tested with other MPI implementations, including
LAM/MPI v6.5.9, INTEL MPI v1.x-2.x, MPICH-GM (statically linked),
MVAPICH/libvapi, etc. If you would like to obtain Firefly binaries linked
with these (or other) MPI implementations, please register for the MPICH
version of Firefly, then contact us to obtain customized binaries.

Detailed instructions for setting up Firefly with these MPI implementations
are not included in this documentation as the documentation of the MPI im-
plementation itself is already a good source of information (we recommend
reading this before attempting to setup up Firefly in an MPI environment).
However, some general pointers can be given for the statically linked MPICH
version of Firefly, which is probably the easiest to set up for a single
multicore node as it does not need the installation of MPICH.

The first step is to unpack the statically linked MPICH version of Firefly
into a directory of your choosing. Let’s assume its path is
/home/alex/firefly. Next, after unpacking Firefly, you will need to make a
procgroup file (filename: “procgrp”) in Firefly’s main directory. Details
on how to do this are in the MPICH documentation. Unfortunately, since the

- 23 -

inception of MPICH2, the original MPICH documentation is somewhat hard to
find. Pedro Silva is therefore gracefully hosting an old MPICH manual on

http://www2.ufp.pt/~pedros/procgroup.htm

For a single node with only 2 CPU cores, the procgroup file can be kept
simple. It only has to contain the string “local 1”. If the single node has
4 cores, the string should be “local 3”. Etcetera.

Then, assuming your input file is in /home/alex/firefly, Firefly can be
executed as follows:

/home/alex/firefly/firefly -r -f -p -stdext -i /home/alex/test.inp -o
/home/alex/test.out -ex /home/alex/firefly -t /tmp/scratch/test -p4pg
/home/alex/firefly/procgrp &

Finally, it is recommended to install the “cleanipcs” script, which is a
part of MPICH1 distribution but which can also be found separately on the
web after some googling (this script is also included into some Linux dis-
tributions).

For running Firefly on an Infiniband interconnect based cluster, we recom-
mend using MVAPICH or recent versions of Intel MPI.

Please see the Windows MPI section for some general advice that applies to
all MPI implementations.

Linux and CUDA

Documentation on the use of CUDA under Linux-based OSs will be provided in
the future. Some information on this topic can be found in the forums on
the Firefly website.

Installing Firefly on an InfiniBand network 64-bit Linux cluster
with Intel MPI v. 3.x

Because of the popularity of Linux computing clusters with InfiniBand in-
terconnect, this section contains instructions specifically on how to set
up Intel MPI version of Firefly on such a cluster. In the following we as-
sume that Intel MPI is already installed on the cluster.

To get maximum performance of Firefly on a cluster with InfiniBand inter-
connect, we need to configure our system and the Firefly to use Infini-
band. In addition, some parts of Firefly will benefit if IP over InfiniBand
(IPoIB) is enabled and functioning. Keep in mind that 32-bit libraries are
required to setup Firefly on 64-bit cluster. Most clusters use a Linux-
based OS. Therefore, all information below corresponds to the Linux-based
OS. Requirements:

• A cluster with preinstalled Linux OS.
• A high speed adapter InfiniBand installed on it.
• Intel MPI v. 3.x

- 24 -

If you are not sure whether Infiniband adapters are installed on your clus-
ter, type at the command prompt (commands to type are preceded by a '$'
sign):

$ /sbin/ifconfig -a

If you see a string beginning with "ib" then you have IB installed. In the
case where several devices are installed on the cluster (ib0, ib1 ..),
check all of them carefully. Only one device should normally be marked as
active. Also, we need to check whether or not 32-bit dat and dapl libraries
are installed. These libraries are used by Intel MPI to communicate with
the IB device.
All examples and outputs below pertain to a particular cluster. The outputs
you get may differ in some details, and so may the scripts and configura-
tion files to use in your environment.

$ /sbin/ldconfig -p | grep dat
libicudata.so.34 (libc6,x86-64) => /usr/lib64/libicudata.so.34
libdat.so.1 (libc6,x86-64) => /usr/lib64/libdat.so.1
libdat.so.1 (libc6) => /usr/lib/libdat.so.1
libdat.so (libc6,x86-64) => /usr/lib64/libdat.so
libdat.so (libc6) => /usr/lib/libdat.so
libboost_date_time.so.1.33.1 (libc6,x86-64) =>
/usr/lib64/libboost_date_time.so.1.33.1
$

As we can see, 32-bit and 64-bit dat libraries are installed on the clus-
ter. As the system-wide settings of Intel MPI installed on a 64-bit cluster
are to use 64-bit libraries, we need to override the defaults and force
Intel MPI to use 32-bit dapl libraries. In order to achieve this, we need
to create our own dat configuration file "dat.conf". This file contains a
user defined list of dapl providers for the IB adapter and can be created
anywhere within a user's folder. It is good idea to create user's
"dat.conf" file based on the system wide one.

$ cp /etc/dat.conf ~/
$ cat ~/dat.conf
This is example of the dat.con file
OpenIB-cma u1.2 nonthreadsafe default libdaplcma.so.1 dapl.1.2 "ib0 0" ""
OpenIB-cma-1 u1.2 nonthreadsafe default libdaplcma.so.1 dapl.1.2 "ib1 0" ""
OpenIB-cma-2 u1.2 nonthreadsafe default libdaplcma.so.1 dapl.1.2 "ib2 0" ""
OpenIB-cma-3 u1.2 nonthreadsafe default libdaplcma.so.1 dapl.1.2 "ib3 0" ""
OpenIB-bond u1.2 nonthreadsafe default libdaplcma.so.1 dapl.1.2 "bond0 0"
""
$

The first word of the strings ("OpenIB-cma", "OpenIB-cma-1", etc.) is a
name of a dapl provider. Now, we need to find our device (remember the out-
put from "ifconfig" above). In our case it should be ib0. A part of the
string "libdaplcma.so.1" is a name of the library that should be used by
IB. Of course, on a 64-bit cluster it is a 64-bit library by default. We
need to redefine that library and make sure it points out on 32-bit li-
brary.

- 25 -

Now, we need to check whether or not the 32-bit library is installed on our
cluster:

$ /sbin/ldconfig -p | grep libdaplcma
libdaplcma.so.1 (libc6,x86-64) => /usr/lib64/libdaplcma.so.1
libdaplcma.so.1 (libc6) => /usr/lib/libdaplcma.so.1 # 32-bit library
libdaplcma.so (libc6,x86-64) => /usr/lib64/libdaplcma.solibdaplcma.so
(libc6) => /usr/lib/libdaplcma.so # 32-bit library

Libraries that do not contain x86-64 are 32-bit. Based on that, we conclude
that we have 32-bit libraries installed. Now we need to change the string
"libdaplcma.so.1" in our "dat.conf" file to "/usr/lib/libdaplcma.so.1”

The new file dat.conf looks as follows:

$ cat ~/dat.conf
OpenIB-cma u1.2 nonthreadsafe default /usr/lib/libdaplcma.so.1 dapl.1.2
"ib0 0" ""

To start Firefly via PBS, we need to add a couple of extra strings to a pbs
script. We need to use the 32-bit version of the Intel MPI libraries. In
the case they are not installed system-wide, we need to inform the dynamic
loader where to look for them. You need to know where exactly they are in-
stalled. You may ask your system administrator or use the “locate” or
“find” commands.

Let’s assume we found that the 32-bit libraries are installed here:
/opt/intel/ict32/impi/3.2.1.009/lib

Now, we need to modify the LD_LIBRARY_PATH environment variable accordingly
(note the line below is a single wrapped line):

export LD_LIBRARY_PATH=/opt/intel/ict32/impi/3.2.1.009/lib:$LD_LIBRARY_PATH

To call Intel MPI's mpirun/mpiexec we need to add the directory "bin" with-
in the Intel MPI installation to the PATH environment variable:

export PATH=/opt/intel/ict32/impi/3.2.1.009/bin:$PATH

By default, the dat layer uses a system wide dat configuration file such as
"/etc/dat.conf". We can override these settings by defining a DAT_OVERRIDE
environment variable:

export DAT_OVERRIDE=$HOME/dat.conf

Now it points to our version of the dat.conf file.

- 26 -

Below you will find a sample PBS script that can be used to run Intel MPI
version of Firefly over an InfiniBand network.

#!/bin/sh -x
#PBS -N jobname
#PBS -l nodes=3:ppn=8 # we are going to use 3 nodes and

8 CPU's on each node
#PBS -l mem=500mb
#PBS -l walltime=6:00:00
#PBS -e jobname.e
#PBS -o jobname.o

COMMON SETTINGS ###
export IMPI_HOME=/soft/intel/ict32/impi/3.2.2.006
export PATH=$IMPI_HOME/bin:$PATH
export LD_LIBRARY_PATH=$IMPI_HOME/lib:$LD_LIBRARY_PATH
export TMP_DIR=/scratch1/$USER/$PBS_JOBID
export FFHOME=$HOME/bin
export WORK_DIR=$PBS_O_WORKDIR

Intel MPI ####
I_MPI_DEVICE=< device >:< provider >
see user manual for Intel MPI
"rdssm" - Combined sockets + shared memory + DAPL
(for clusters with SMP nodes and RDMA-capable network fabrics)
Provider is "OpenIB-cma" as defined in our dat.conf file.
export I_MPI_DEVICE="rdssm:OpenIB-cma"
Just in case, let us setup extra output information for IntelMPI
This should not however be used in production runs
export I_MPI_DEBUG=10

Below we need to add appropriate commands to start Firefly.
It is recommended to read the Quick Start guide for IntelMPI.

mkdir $TMP_DIR
cd $WORK_DIR

mpiexec -n $NCPUS $FFHOME/firefly -r -f -p -stdext -ex $FFHOME -i
$WORK_DIR/filename.inp -o $WORK_DIR/filename.out -b $WORK_DIR/basis.lib -t
$TMP_DIR
or
mpirun -np $NCPUS $FFHOME/firefly -r -f -p -stdext -ex $FFHOME -i
$WORK_DIR/filename.inp -o $WORK_DIR/filename.out -b $WORK_DIR/basis.lib -t
$TMP_DIR

cd $WORK_DIR && rm -rf $TMP_DIR
rm -rf $TMP_DIR.*

The script can be queued by the command:

$ qsub myscript.pbs

- 27 -

The next step is to obtain the IP address and network mask of the ib0 in-
terface, which will be used to direct the P2P interface to use fast IPoIB
network. Note that this is usually not required on modern clusters.

Start by typing

$ /sbin/ifconfig -a

Go to the part "ib0" and look at the strings "inet addr … " and "Mask …."
These should be something like:

"inet addr:192.168.5.5 Mask:255.255.0.0"

or

$ cat /etc/sysconfig/network/ifcfg-ib0 | grep IPADDR IPADDR=192.168.5.5
$

Now we first need to convert the IP address and Mask to hexadecimal. After
that, we need to perform a logical AND of the IP address with the Mask. The
result is the network address of the IpoIB network. To speed up P2P, we
need to put extra settings directly into Firefly INPUT file:

 $P2P BIND=.t. NET=<hexadecimal value of the IPoIB network address>
 MASK=<hexadecimal value for the IPoIB network mask> $END
 $SYSTEM MXBCST=-1 $end
 $MPI MXGSUM=1048576 $end
 $MPI MNPDOT=1000000 $end

Note that you need to specify leading zeros, if any (e.g. net=0a100000 in-
stead of net=a100000).

Command line options

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

All Firefly versions can take optional command line arguments. The support-
ed format of command line is as follows:

firefly [optional command line options in any order] [optional list of
working directories]

The Firefly accepts both -option and /option syntax. All options are case-
insensitive. A list of the most widely used command line options is given
below:

The following list is currently incomplete and will be completed in the

future.

- 28 -

-i <filename> Specifies input file to use. Filename is the com-

plete absolute name of the file to be used as input.
If no path is specified, Firefly will assume the
file resides in the initial working directory from
which Firefly was launched. The file will be read
in, optionally preprocessed (in the case it contains
any preprocessing directives), and result will be
copied into the assigned working directory of the
master Firefly process using the plain "INPUT" file-
name. If this option is omitted, the file named "IN-
PUT" will be searched for in the assigned working
directory of the master Firefly process, and used
directly as the input file to Firefly.

-o <filename> Specifies output file to use. Filename is the com-
plete absolute name of the file to be used as out-
put. If this option is omitted, output will be sent
to standard output (stdout) device.

-b <path or file-
name>

Specifies the complete absolute location and/or name
of the external basis set library file. If the file-
name is given, it will be used to read in the exter-
nal basis sets. If the filename was not found, Fire-
fly tries to interpret it as path and looks for file
called "BASIS.LIB" at this location.

-t <path> Directs the Firefly to use the specified path as the
template to create per-instance unique temporary
working directories to be used to store all the in-
termediate working files.

-ex <path> Linux specific: directs the Firefly to copy runtime
extension files (pcgp2p.ex, fastdiag.ex, and option-
ally p4stuff.ex) into its working directory(ies)
from the location specified by path.

-r Directs the Firefly to remove all the temporary
scratch files opened using FSF routines at the end
of the job.

-f Forces the Firefly execution in the presence of the
old PUNCH or IRCDATA files. Windows specific: also
forces execution if the assigned working directory
is on the network drive or is the root directory of
the volume (e.g., C:\). This option can also be giv-
en three times followed by an -o option (i.e., "-f -
f -f -o OUTPUT.out") in order to force Firefly to
overwrite the output file specified with -o.

-p Redirects all the text output files (PUNCH, IRCDATA,
etc...) from working directory to the directory
where the main output file resides.

-stdext Changes naming convention used for PUNCH and IRCDATA
files. Provided that output filename was set using -

- 29 -

o option, the last extension of this name, if any,
will be removed and then .dat/.irc extension will be
added to the end to form the filename to use instead
of plain PUNCH or IRCDATA names.

-daf <mode> Specifies the mode used to work with primary dic-
tionary file DICTNRY. Mode is a number, it can be
one of 0, 1, or 2.
<mode> = 0
Default strategy is used to handle requests to
DICTNRY file.
<mode> = 1
Increases the size of messages used to broadcast
contents of DICTNRY file to the slave processes.
This may reduce overhead of communications on some
interconnects and/or for some MPI implementations
resulting in better performance and scalability.
<mode> = 2
Allows DICTNRY file to be replicated over all
slaves. This mode completely eliminates overhead
caused by all DICTNRY-related communications by the
cost of performing some extra I/O. Typically, this
is the fastest and the best scalable mode.

-ncores <number> Allows one to override the automatically detected
number of physical cores per CPU. Useful when run-
ning the Firefly on buggy processors, or in the vir-
tualized environment like Hyper-V etc... . Passing
correct value (in the case it was not properly de-
tected automatically) will generally improve the
Firefly performance.

-nthreads <number> Allows one to override the automatically detected
number of active logical cores per single physical
core. Useful when running the Firefly on buggy pro-
cessors, or in the virtualized environment like Hy-
per-V etc... . Passing correct value (in the case it
was not properly detected automatically) will gener-
ally improve the Firefly performance.

-lp Windows specific: Allows Firefly to use large memory
pages. The hardware and OS must support large pages,
and user account must have enough rights to allow
Firefly to allocate large pages. Otherwise, this op-
tion will be ignored. Running in large pages mode,
Firefly prints information message on their use at
the beginning of its output.

-nocheck Disables validity check of the command line argu-
ments (e.g., check for valid names of files and di-
rectories, etc.) passed to the Firefly.

-nompi Forces purely sequential execution avoiding any MPI
calls even if initially launched in parallel.

-v Directs the Firefly to trace each MPI call on each
node. This will create additional pseudo- output

- 30 -

files for all slaves.

-prof Directs the Firefly to gather some real-time profil-
ing statistics. This option is useful while fine-
tuning the performance and provides some insight on
the possible performance bottlenecks.

-xp or -xp=<number> Given without <number>, this option enables the XP
parallel mode of execution. With <number>, it ena-
bles the extended XP parallel mode of execution,
where <number> defines the amount of processes in
each group. This option may also be written in the
form of -xp:<number>

-legacy Causes output to be more in the style of older ver-
sion of Firefly (useful when a third-party program
has difficulties parsing Firefly 8.0.0 output).

-run Forces the job to be an actual run, regardless of
the value of EXETYP in $CONTRL.

-check Forces the job to be a check run, regardless of the
value of EXETYP in $CONTRL.

-prealloc:<number> Instructs Firefly to preallocate <number> MW of
memory in the virtual address space at the very be-
ginning of the job initialization. Such behavior is
different from Firefly’s normal behavior, which is
to allocate memory after MPI initialization. This
can be of help when trying to run Firefly with a
large amount of memory (400 – 500 MW) as the memory
allocated has to be a single continuous address
range, but MPI initialization might cause the virtu-
al address space to be fragmented. There is no guar-
antee that the pre-allocation will be successful
though.

The optional list of working directories, if any, must follow the list of
command-line options. It has no effect if the -t < path > option was al-
ready specified. However, if this option is not given, one must provide the
list of working directories when running the Firefly in parallel mode. The
format of this list is very simple:

 DIR0 DIR1 DIR2 ... DIRn-1

One must specify exactly the same number of directories as the total number
of Firefly instances is. For example, to run the Firefly in parallel on 16
cores, one has to specify sixteen directories. The master instance of the
parallel Firefly process will use DIR0, the first slave will use DIR1, and
so on. Unlike temporary directories created using -t < path > option, the
explicitly passed directories must exist and have proper access rights pri-
or to the Firefly execution, as they will not be created automatically! In
most cases, it is much more convenient to use -t < path > syntax; however,
there are some situations when the old-style "directories list" syntax is
very helpful.

- 31 -

Creating an input file

Input file structure

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Input to Firefly may be in upper or lower case. There are three types of
input groups in Firefly:

1. A pseudo-namelist, free format, keyword driven group. Almost all input
groups fall into this first category.

2. A free format group which does not use keywords. The only examples of
this category are $DATA, $ECP, $POINTS, and $STONE.

3. Formatted data. This data is never typed by the user, but rather is gen-
erated in the correct format by some earlier Firefly run.

All input groups begin with a $ sign in column 2, followed by a name iden-
tifying that group. The group name should be the only item appearing on the
input line for any group in category 2 or 3.

All input groups terminate with a $END. For any group in category 2 and 3,
the $END must appear beginning in column 2, and thus is the only item on
that input line.

Type 1 groups may have keyword input on the same line as the group name,
and the $END may appear anywhere.

Because each group has a unique name, the groups may be given in any order
desired. In fact, multiple occurrences of category 1 groups are permissi-
ble.

Most of the groups can be omitted if the program defaults are adequate. An
exception is $DATA, which is always required. A typical free format $DATA
group is

 $DATA
 STO-3G test case for water
 CNV 2

 OXYGEN 8.0
 STO 3

 HYDROGEN 1.0 -0.758 0.0 0.545

- 32 -

 STO 3

 $END

Here, position is important. For example, the atom name must be followed by
the nuclear charge and then the x,y,z coordinates. Note that missing values
will be read as zero, so that the oxygen is placed at the origin.
The zero Y coordinate must be given for the hydrogen, so that the final
number is taken as Z.
The free format scanner code used to read $DATA is adapted from the ALIS
program. Note that the characters ;>! mean something special to the free
format scanner, and so use of these characters in $DATA and $ECP should
probably be avoided.

Because the default type of calculation is a single point (geometry) closed
shell SCF, the $DATA group shown is the only input required to do a
RHF/STO-3G water calculation.

* * *

As mentioned, the most common type of input is a namelist-like, keyword
driven, free format group. These groups must begin with the $ sign in col-
umn 2, but have no further format restrictions. You are not allowed to ab-
breviate the keywords, or any string value they might expect. They are ter-
minated by a $END string, appearing anywhere. The groups may extend over
more than one physical card. In fact, you can give a particular group more
than once, as multiple occurrences will be found and processed. We can re-
write the STO-3G water calculation using the keyword groups $CONTRL and
$BASIS as

 $CONTRL SCFTYP=RHF RUNTYP=ENERGY $END
 $BASIS GBASIS=STO NGAUSS=3 $END
 $DATA
STO-3G TEST CASE FOR WATER
CNV 2

Oxygen 8.0 0.0 0.0 0.0
Hydrogen 1.0 -0.758 0.0 0.545
 $END

Keywords may expect logical, integer, floating point, or string values.
Group names and keywords never exceed 6 characters. String values assigned
to keywords never exceed 8 characters. Spaces or commas may be used to sep-
arate items:

$CONTRL MULT=3 SCFTYP=UHF,TIMLIM=30.0 $END

Floating point numbers need not include the decimal, and may be given in
exponential form, i.e. TIMLIM=30, TIMLIM=3.E1, and TIMLIM=3.0D+01 are all
equivalent.

Numerical values follow the FORTRAN variable name convention. All keywords
which expect an integer value begin with the letters I-N, and all keywords

- 33 -

which expect a floating point value begin with A-H or O-Z. String or logi-
cal keywords may begin with any letter.

Some keyword variables are actually arrays. Array elements are entered by
specifying the desired subscript:

$SCF NO(1)=1 NO(2)=1 $END

When contiguous array elements are given this may be given in a shorter
form:

$SCF NO(1)=1,1 $END

When just one value is given to the first element of an array, the sub-
script may be omitted:

$SCF NO=1 NO(2)=1 $END

Logical variables can be .TRUE. or .FALSE. or .T. or .F. The periods are
required. Logical variables may also be input as 1 or 0.

The program rewinds the input file before searching for the namelist group
it needs. This means that the order in which the namelist groups are given
is immaterial, and that comment cards may be placed between namelist
groups.

Furthermore, the input file is read all the way through for each free-form
namelist so multiple occurrences will be processed, although only the LAST
occurrence of a variable will be accepted. Comment fields within a free-
form namelist group are turned on and off by an exclamation point (!). Com-
ments may also be placed after the $END's of free format namelist groups.
Usually, comments are placed in between groups,

$CONTRL SCFTYP=RHF RUNTYP=GRADIENT $END
--$CONTRL EXETYP=CHECK $END
$DATA
molecule goes here...

The second $CONTRL is not read, because it does not have a blank and a $ in
the first two columns. Here a careful user has executed a CHECK job, and is
now running the real calculation. The CHECK card is now just a comment
line.

* * *

The final form of input is the fixed format group.
The formatted groups are $VEC, $HESS, $GRAD, $DIPDR, and $VIB. Each of
these is produced by some earlier Firefly run, in exactly the correct for-
mat for reuse. Thus, the format by which they are read is not documented in
this manual.

* * *

Each group is described in the 'Input Description' chapter.

- 34 -

Fixed format groups are indicated as such, and the conditions for which
each group is required and/or relevant are stated.

Chemical control data

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The most important settings are provided through the $CONTRL group, which
can be used to specify the calculation type, wave function type, multiplic-
ity, charge, etc.

Computer related control data

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

Settings that pertain to the computer operations are mostly part of the
$SYSTEM, $P2P, $LP2P, and $SMP groups. A few very specific settings can be
found in various other groups (for example, I/O control switches for the
MP2 program are part of the $MP2 group).

Formatted input sections

A run can produce one or more formatted input groups, depending on the type
of run and the settings used during the run. Below is an overview of for-
matted input groups which are used by Firefly. Note that some groups allow
one to use the first line as a title card, while other groups are very
strict about whether such a group can be used.

Name Content Location Title card?
$VEC Orbitals PUNCH and MCQD* files Allowed
$HESS Force constant matrix PUNCH file Required
$GRAD Gradient vector PUNCH file Required
$DIPDR Dipole derivative tensor PUNCH file Not allowed
$ALPDR Alpha polarizability PUNCH file Required
$VIB Restart data for a nu-

merical RUNTYP=HESSIAN
and RUNTYP=RAMAN runs

PUNCH and IRCDATA
files

Not allowed

$CISVEC CIS orbitals PUNCH file Allowed
$TDVEC TDHF and TDDFT orbitals

(from a CITYP=TDHF/TDDFT
run)

PUNCH file Allowed

$TWOEI Transformed two-electron
coulomb and exchange
integrals

PUNCH file Not allowed

- 35 -

Input checking

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Because some of the data in the input file may not be processed until well
into a lengthy run, a facility to check the validity of the input has been
provided. If EXETYP=CHECK is specified in the $CONTRL group, Firefly will
run without doing much real work so that all the input sections can be exe-
cuted and the data checked for correct syntax and validity to the extent
possible. The one-electron integrals are evaluated and the distinct row
table is generated. Problems involving insufficient memory can be identi-
fied at this stage. To help avoid the inadvertent absence of data, which
may result in the inappropriate use of default values, Firefly will report
the absence of any control group it tries to read in CHECK mode. This is of
some value in determining which control groups are applicable to a particu-
lar problem.

The use of EXETYP=CHECK is HIGHLY recommended for the initial execution of
a new problem.

Input preprocessing

Starting from version 7.1, Firefly has a useful preprocessing function that
retrieves parts of the input from one or more external files. The idea be-
hind this function is to keep the input file as small as possible while
giving flexible and versatile control over large blocks in the input file,
examples of such blocks being the specification of the basis set and effec-
tive core potential (ECP), the orbital data (the $VEC group), the Hessian
data (the $HESS group), etc. In order to activate the preprocessing func-
tion, Firefly should be run with the -i <filename> command line parameter,
where <filename> is the name of the main input file.

In the main input, the notation "@filename" is used to retrieve the con-
tents of a specific external file and insert its content as a block into
the input file. Here, "filename" is a plain text file containing the infor-
mation of interest. By default, Firefly will look for the specified file in
the working directory of Firefly’s master process. It is, however, possible
to specify additional directories with the "#libdir ./directory" directive.
To clarify this, let us consider the following example:

#libdir /home/ff/ECP
#libdir /home/ff/basis
#libdir /home/ff/job1/guess
 $CONTRL DFTTYP=PBE0 RUNTYP=OPTIMIZE SCFTYP=RHF EXETYP=RUN
 COORD=UNIQUE NZVAR=39 ICHARG=0 MULT=1 MAXIT=500
 ECP=READ D5=.T. $END
 $CONTRL EXETYP=CHECK $END
 $ZMAT DLC=.T. AUTO=.T.
 NONVDW(1)= 1,2 1,15
 IFZMAT(1)= 3,15,1,2,11
 SYMREP=-1 $END

- 36 -

 $SCF NCONV=5 DIRSCF=.T. $END
 $STATPT NSTEP=100 OPTTOL=0.0001 METHOD=GDIIS $END
 $GUESS GUESS=MOREAD NORB=200 $END
 $SYSTEM TIMLIM=6000 MWORDS=10 $END
 $BASIS EXTFIL=.T. GBASIS=SVP $END
 $DATA
 RhP3NOF9
CN 3

RH 45.0 0.000000000 0.000000000 0.569919578 @Rh_svp.bas
P 15.0 1.414965727 1.465467346 -0.382720422 @P_svp.bas
F 9.0 2.431892386 1.029806465 -1.546074422 @F_svp.bas
F 9.0 0.861955322 2.810425007 -1.062902422 @F_svp.bas
F 9.0 2.477768601 2.138622865 0.615240578 @F_svp.bas
O 8.0 0.000000000 0.000000000 3.566541578 @O_svp.bas
N 7.0 0.000000000 0.000000000 2.392496578 @N_svp.bas
 $END
 $ECP
@Rh_def2_SVP.ecp
P-ECP NONE
P-ECP
P-ECP
F-ECP NONE
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
O-ECP NONE
N-ECP NONE
 $END
@MO_to_read.txt

At the top, the three #libdir preprocessing directives define three direc-
tories (ECP, basis and guess) from which Firefly will retrieve all files
specified with the '@' marker. These files can be named as desired. In the
example, the "basis" directory contains files with basis sets (Rh_svp.bas,
P_svp.bas, F_svp.bas etc.), the "ECP" directory contains the file
Rh_def2_SVP.ecp with ECP data for the Rh atom, and the "guess" directory
contains the file (MO_to_read.txt) with molecular vectors extracted from
the PUNCH file of a previous run. Since information from @filename is cop-
ied directly into the input file (the inserted text is not preprocessed),
special attention should be paid to the format of these files – their con-
tents should fit seamlessly into the input file. In the above example, the
files should start immediately with the basis set or ECP definition (no
atom name is allowed) and should be terminated by empty line in case of the
basis set data. Group names such as $DATA and $BASIS should not be given as
they're already in the input file. However, for the file with the MO vec-
tors, the $VEC and $END keywords must be present since these are not yet
specified in the input file – the whole block with MO vectors has to be
inserted.

- 37 -

Note that the path specified with "#libdir" can be absolute or relative to
scratch directory. It is usually recommended to use absolute paths as this
is the most convenient.

- 38 -

Performance

Introduction

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

This chapter discusses a few important settings that are important for
Firefly’s performance (i.e. speed).

64-bit processing support

Though a fully 64-bit version of Firefly is not yet available, the current
version of Firefly is able to use some 64-bit CPU instructions. More pre-
cisely, the base 32-bit code can call some 64-bit computational kernels for
faster processing. The use of 64-bit code is especially important when us-
ing newer processors (Intel Core 2 and newer, AMD Barcelona core and new-
er). We recommend all Firefly users running Firefly on these processors to
use a 64-bit operating system in order to allow the use of the 64-bit code.

The use of 64-bit code is enabled through the CALL64 keyword of the $SMP
group:

 $SMP CALL64=.T. $END

In Firefly 8.0.0, this option is enabled by default. For older version of
Firefly, it is by default enabled for the Windows binaries, but disabled
for the Linux binaries.

The P2P communication interface

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Starting from the PC GAMESS version 6.3, the support of the new proprietary
parallel mode communication interface (which is called P2P interface) was
implemented as a part of the software. This interface is very flexible and
was specifically designed to overwhelm the limitations of MPI & DDI inter-
faces. The Firefly specific parallel MP2 energy and energy gradient meth-
od=1 modules supports P2P communication model. It is expected that in the
future more and more computational methods and algorithms in the Firefly
will support P2P.
To take advantages of this interface, you need:

1. Firefly running in parallel mode over MPI as usually.

- 39 -

2. The dynamic library in which the P2P interface is implemented.
It is called pcgp2p.dll (Win32) or pcgp2p.ex (Linux). The Firefly
distribution contains the library that is suitable for your OS. It
should be placed into the Firefly home directories on each computing
node in the case of Windows OS and into the Firefly working directo-
ries (note not into the Firefly home directories, or /usr/lib,
etc...) on each node in the case of Linux OS. It should be renamed to
be all lowercase (Linux).

3. You should activate the P2P interface adding $P2P P2P=.T. $END
to the input file.

Starting from the PC GAMESS v. 6.4, the DLB (dynamic load balancing) func-
tionality was added to P2P interface. To activate DLB, add the following
line to your input:

 $P2P P2P=.T. DLB=.T. $END

Many of the parallel-aware Firefly parts transparently use DLB over P2P
interface if DLB is enabled, including 2-e part of direct SCF and DFT,
etc...

For some jobs you may find that extended DLB model (XDLB) results in
slightly better performance than standard DLB model. XDLB can be activated
by specifying:

 $P2P P2P=.T. XDLB=.T. $END

The difference between these DLB and XDLB modes is in the additional
thread(s) created by Firefly to handle P2P requests. In DLB mode, a single
additional thread is created which operates in multiplexed mode, serving
both P2P requests and DLB requests In XDLB mode, two additional threads are
created, one of which serves to handle DLB requests exclusively. XDLB mode
requires more system and program resources but may result in better load
balancing. This is most frequently observed for parallel MP2 METHOD=1 runs.

Details on the MP2 energy code and P2P interface implementation in the
Firefly can be found here. Information on how the DLB affects performance
can be found on this page.

Windows specific:
The file pcgp2psm.dll contains implementation of the P2P interface that is
specific to shared memory SMP/multicore systems. If you run Firefly on a
standalone SMP/multicore system, rename this file to pcgp2p.dll and replace
the default P2P library in the Firefly home directory. This will provide
better performance than the default library (which uses TCP/IP rather than
shared memory).
For better efficiency of shared memory implementation of P2P, it is recom-
mended to use the following additional P2P settings in the input files:

 $P2P MXBUF=2048 $END

Below is the sample Firefly input file which uses P2P for DLB-driven direct
SCF calculations in parallel mode:

- 40 -

 $CONTRL SCFTYP=RHF RUNTYP=ENERGY UNITS=ANGS $END
 $SYSTEM TIMLIM=600 MEMORY=3000000 $END
! to activate P2P inteface and DLB:
 $P2P P2P=.T. DLB=.T. $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
! to speed up Huckel guess:
 $GUESS GUESS=HUCKEL KDIAG=0 $END
 $SCF DIRSCF=.T. $END
 $DATA
6-31G*//RHF/3-21G* Silacyclobutane
CS

SILICON 14.0 -0.081722 1.055710
CARBON 6.0 -0.081722 -0.395331 1.217568
CARBON 6.0 0.319935 -1.329102
HYDROGEN 1.0 -1.222554 1.998369
HYDROGEN 1.0 1.168317 1.848237
HYDROGEN 1.0 0.604981 -0.419640 2.052727
HYDROGEN 1.0 -1.077445 -0.641554 1.572232
HYDROGEN 1.0 1.388834 -1.500162
HYDROGEN 1.0 -0.184517 -2.285408
 $END

The XP and extended XP parallel modes of execution

Firefly version 8.0 and above supports two new parallel modes of execution,
namely the standard eXtreme Parallel (XP) and extended XP modes. The idea
behind these modes is to efficiently utilize the multi-level parallelism
inherent to many typical QC calculations by splitting the entire job into
quasi-independent pieces which can be processed at high level in parallel.
In the standard XP mode, each instance of the entire parallel Firefly su-
per-process most of the time acts as if it were a separate master process
working on its own task, in serial or using multi-threading. In the extend-
ed XP mode, there are several groups of processes, each group consisting of
its own local master and slave processes. The global master process is at
the same time the local master of the first group. The members of each
group are working together on the task or tasks which are specifically as-
signed to them. For instance, in runs involving numerical gradients, the
energy at each displaced geometry used in finite differencing can be calcu-
lated independently. If the underlying theoretical method is not programmed
to run in parallel, it is then natural to use the standard XP mode to run
multiple serial energy calculations at once and in parallel. If it is, any
of three parallel modes (standard parallel, standard XP, and extended XP)
could be used, with extended XP being the most scalable and most highly-
performing alternative. For example, if a typical single point energy com-
putation for a particular combination of QC method and model system is
scalable to e.g. 64 cores, and the numerical gradient code requires ca. 100
reevaluations of energy, the calculations of numerical gradients in extend-
ed XP modes would be scalable up to 64*100=6400 cores and would be extreme-
ly fast.

- 41 -

The current implementation of XP modes in Firefly supports two levels of
parallelism. This will be changed in the future to support the arbitrary
number of parallelism levels provided there will be a need for this. Pres-
ently, any job involving numerical gradients can be run in either standard
XP or extended XP modes, or both. Other jobs types are not currently al-
lowed to run in XP modes. This limitation will be relaxed in the future by
allowing semi-numerical Hessian computations, semi-analytic Raman activi-
ties computations, surface scans and some other types of jobs to run in XP
modes as well.

The XP or extended XP modes are invoked by running Firefly in parallel us-
ing dedicated command line options. There is no way to force XP modes using
information in the input file as preparations for these modes of operation
need to be done at the very early stages of Firefly's initialization.
Namely, to launch Firefly in standard XP mode, use the -xp command line
option. Similarly, to launch Firefly in extended XP mode, the -xp:N (or,
alternatively, -xp=N) command line options can be used. Here, N is the num-
ber of processes belonging to each process group. For instance, launching
Firefly on 32 cores using -xp=4 (or -xp:4) command line option will create
eight groups of processes, with each group consisting of four separate pro-
cesses.

Firefly's P2P interface and dynamic load balancing over P2P can be used in
any of three parallel modes of execution. Working in the extended XP mode,
Firefly supports two levels of P2P communications and dynamic load balanc-
ing. The high-level one is global for the entire parallel Firefly process,
and serves primarily for the communications between the local masters of
separate groups. For instance, high-level dynamic load balancing is used to
distribute the high-level jobs between individual process groups. The glob-
al P2P interface is controlled by the usual $P2P control group of the input
file. Each separate group of processes can be interconnected via its own
local P2P interface which is virtually identical to the global one but is
limited in its scope to the members of its group only. The behavior of the
second-level, local P2P interfaces is controlled using the new $LP2P con-
trol group of the input file. The $LP2P input group has exactly the same
keywords as the standard $P2P input group.

Utilizing HyperThreading

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

HyperThreading is a CPU technology that causes each physical CPU core to be
seen as two virtual cores. For some calculations types, Firefly is able to
make use of these extra cores in order to provide a modest speedup. Typi-
cally, Firefly will automatically detect the presence of virtual cores and
use them in an intelligent manner. However, if one finds that Firefly mis-
takenly uses more than one virtual core on one physical core without ex-
hausting all physical cores, one can correct this behavior by specifying:

 $SMP HTTFIX=.F. $END

- 42 -

Which disables explicit binding to cores at all. Alternatively, you can
use:

 $SMP HTTPAR=.T. $END

to allow the binding of each process to different logical processors for
parallel runs.

Finally, in the case of two independent jobs on one SMP system, you should
add:

 $SMP HTTALT=.T. $END

to the second input file to resolve binding conflict between two Firefly
instances.

CUDA

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The MP4 code in Firefly can be executed using CUDA. CUDA is not supported
by any other functionality in Firefly.

The Fastdiag dynamic library

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

The Fastdiag dynamic library (fastdiag.dll for Windows Firefly distribu-
tions, fastdiag.ex for Linux distributions) contains fast optimized modern
algorithms of symmetric matrix diagonalization and inversion and is intend-
ed to improve the performance of initial guess generation, DIIS extrapola-
tion, as well as some other computationally-intensive steps. Windows users
should put this library into the folder where the Firefly executables re-
side, while Linux users should put it into the Firefly working/scratch di-
rectories. Under Linux, the name of the file should be all lower-case.

There are three related options in $SYSTEM and $GUESS groups, namely:

$SYSTEM KDIAG= < one of 3,2,1,0,-1,-2 > $END - Controls the system-wide
diagonalization routine used.

$SYSTEM NOJAC= < N > $END - Instructs Firefly to never use Jacobi diago-
nalization for matrices of size NxN and above, even if Jacobi code was ex-
plicitly requested.

$GUESS KDIAG= < one of 3,2,1,0,-1,-2 > $END - Controls the diagonalization
routine used during initial guess generation.

- 43 -

The values of 3, 2, 1 have the same meaning as in the regular GAMESS (US),
the values of 0,-1,-2 are the Firefly specific Fastdiag values.

KDIAG=0 selects very stable, fast and precise diagonalization routine based
on the Divide and Conquer (DC) algorithm. However, DC-based code requires
large amount of extra memory.

KDIAG=-1 selects a potentially less stable, less precise but even faster
diagonalization routine based on the Relatively Robust Representation (RRR)
approach. This method requires less memory than DC code.

Finally, KDIAG=-2 selects a combination of RRR and DC methods, which falls
back to DC in the cases when RRR fails completely resulting in NANs and
INFs. It is usually as fast as KDIAG=-1 but requires as much memory as KDI-
AG=0. However, as in the most cases results are obtained using RRR ap-
proach, KDIAG=-2 is still less precise than purely DC-based kdiag=0.

Note, KDIAG=-1 and KDIAG=-2 options are currently considered as the experi-
mental ones and are intended mainly for large MOPAC jobs. Otherwise, they
should not normally be used! The most serious issue one can encounter using
RRR-based code is the sporadic program hangs inside RRR-based diagonaliza-
tion code. This seems to be the intrinsic property of the RRR approach and
there does not seem to exist any solution to this problem.

The default value of KDIAG found in $SYSTEM and $GUESS groups is 0 (as -1
and -2 are the experimental options at present), which is reasonable. For
better compatibility with GAMESS (US), the default value of NOJAC is -1,
meaning that this variable has no effect at all. It is generally recommend-
ed to set NOJAC to some small value, e.g., 30 or so, especially if the num-
ber of basis functions is large enough.

Note that fast diagonalization routines use extra memory which is not taken
into account during check runs! Hence it is recommended to reserve some
additional amount of memory for diagonalization routines. For example, if
the system of interest has ca. 1000 basis functions, it is a good idea to
add about 2.5-3 MW of memory for diagonalization purposes. If the amount of
memory is not enough to use fast routines, the slower built-in routine will
be called.

Finally, it should be noted that fastdiag is not compatible with and is not
used by the generic Pentium Firefly versions.

Fast two-electron integrals code

The ‘fastints’ 2-electron integrals/fock matrix build/integral transfor-
mation modules are intended to speed up direct HF/DFT/CIS/TDHF/TDDFT/MCSCF
runs. They are presently implemented for direct
RHF/UHF/ROHF/CIS/TDHF/TDDFT/MCSCF-type calculations only. The performance
gain as compared with standard GAMESS (US)-based direct SCF implementation
depends on the particular basis set type and the processor architecture
used and usually varies from 50% to 200-400%. The only situation where old
integral code can be faster than fastints is in the case of a pure L-shell
basis set while using the Pople integral package. Even for the 6-31* basis

- 44 -

set, which contains a relatively large number of L shells per atom, the new
code is considerably faster than the old code (mainly due to the presence
of d functions), especially on Pentium 4-type processors. Note that in many
situations the new direct SCF modules are faster than the corresponding
conventional SCF. The precision of the two-electron integrals calculated by
the new code is comparable with that of GAMESS (US)’s old INTTYP=HONDO 2-e
integral code package. By code design, the time required for Fock matrix
formation using new routines depends strictly quadratically on the number
of atoms in molecule for sufficiently large molecular systems.

The new code can be run in parallel using both static and dynamic load bal-
ancing modes, though the latter is preferred. For very large molecular sys-
tems and HF/DFT, the new code can be used in conjunction with the linear
scaling QFMM code – see the QFMM section for additional information on QFMM
implementation in Firefly. Options specific to MCSCF calculations are docu-
mented elsewhere. Generic input is described below.

There are three options related to the new code in the $CONTRL group:

FSTINT=.TRUE./.FALSE. Enables (default)/disables the use of the new direct
SCF code.

REORDR=.TRUE./.FALSE. Enables (default)/disables shells reordering for even
better direct SCF performance.

GENCON=.TRUE./.FALSE. Enables (default)/disables the use of the special
version of the fastints code designed for general contraction (GC) type
basis sets. It is mainly intended to dramatically speedup calculations in-
volving large GC-type basis sets like ANO basis sets by Roos et al (the
example of pure GC basis sets), and to some degree cc-pVXZ basis sets
(which are only partially of GC type), and many others. The code is very
efficient, but requires some additional amount of memory and has minor ad-
dition computational overhead for setup. It can result in slightly differ-
ent energies than the standard fastints code using the same value of ICUT
and ITOL parameters, and does not improve performance for pure segmented
contraction basis sets at all. This is why the gencon code automatically
disables itself if the basis set is not of the GC type. At present, it has
no effect on QFMM calculations.

Quantum fast multipole method

New modules implementing linear scaling methods based on QFMM were added to
the Firefly in order to speed up large-scale direct HF and DFT runs. The
QFMM code is partially based on optimized and bugfixed GAMESS (US) QFMM
code (refs. 3 and 4 below), as well as on new modules developed at MSU. It
is currently implemented for RHF/UHF/ROHF-type calculations only. A CI or
MP stage is allowed to be performed after the QFMM calculation stage, and
conventional gradients (not QFMM-based) are available. The QFMM code can be
run in parallel using both static and dynamic load balancing modes, the
latter is preferred in most cases.

- 45 -

QFMM calculations consist of two or possibly three different steps, depend-
ing on whether exact HF exchange is required (for HF and hybrid DFT) or not
(for pure DFT). These steps are:

1. Calculation of the so-called Coulomb (J) far-field contribution to
the Fock matrix. This step is performed using the FMM (fast multipole
method) technique. For this step, Firefly uses a set of routines
based on the original GAMESS (US) sources which were bugfixed and
tuned for better performance.

2. Calculation of the so-called Coulomb (J) near-field contribution
to the Fock matrix. This step is performed using two-electron inte-
gral and modified direct SCF-like routines. At present, there are two
algorithms implemented in Firefly to perform this step. The first one
is based on bugfixed and performance tuned GAMESS (US) code, the sec-
ond approach is completely different and is based on the new fastints
code.

3. The so-called linear-scaling exact exchange (K) contribution to
the Fock matrix (also known as LEX or linK). This step is also per-
formed using two-electron integral and modified direct SCF-like rou-
tines. At present, there are three algorithms implemented in Firefly
to perform this step. The first one is based on bugfixed and perfor-
mance tuned GAMESS (US) code, the second and third approaches are
completely different and are based on the fastints code.

The QFMM input in Firefly is compatible with that of GAMESS (US). QFMM is
turned on by the logical variable QFMM in the $INTGRL group (its default
value is .FALSE., i.e., no QFMM calculations). You must select
DIRSCF=.TRUE. in $SCF and SCHWRZ=.TRUE. (default) in $INTGRL if you use
this option. Most of the QFMM-related options are controlled by the corre-
sponding $FMM group. Some keywords in the $CONTRL group affect QFMM as
well, namely ICUT, ITOL, FSTINT and REORDR. Another keyword affecting the
performance of all linear exchange routines is the RCRIT value in the
$MOORTH group, which controls the density matrix pruning. If RCRIT is
greater than zero, all matrix elements of the density matrices will be set
to zero if the distance between two orbital centers is greater than RCRIT.
This option can speed up LEX (the routine used to calculate HF exchange
terms), but should be used with a caution, especially for conjugated sys-
tems, metal clusters, etc. For alkanes, RCRIT=25 a.u. seems to be safe
enough. The default is zero.

Note that the default values of the keywords of the $FMM group are quite
reasonable, so there is usually no need to alter them.

Some additional comments:

1. Near-field J and linear exchange routines require more CPU time than
direct SCF in the case of small and even medium-size systems due to addi-
tional logic and computational overhead. Thus, QFMM should be used for
large systems only and it is usually a good idea to check what the fastest
method is in your particular case.

- 46 -

2. There is no or little use of molecular symmetry during QFMM runs. Thus,
direct SCF with fastints code can be faster than QFMM for very large sym-
metrical systems (like fullerenes, etc.)

3. Time required for QOPS far-field J FMM is usually much smaller than that
of near-field J, especially on the first SCF iterations. The time used by
LEX is usually comparable with or larger than that of near-field J, espe-
cially on the very first SCF iterations. There is some additional overhead
in near-field J routines if HF exchange is required as well. Thus, the
speedup of pure DFT calculations due to QFMM is more serious than that of
HF and hybrid DFT.

4. There is an EXETYP=QFMM option in the $CONTRL group which is used to get
the timing statistics of the various QFMM stages during SCF.

Selected QFMM references:

1. E.O.Steinborn, K.Ruedenberg Adv.Quantum Chem. 7, 1-81 (1973)
2. L.Greengard "The Rapid Evaluation of Potential Fields in Particle Sys-
tems" (MIT, Cambridge, 1987)
3. C.H.Choi, J.Ivanic, M.S.Gordon, K.Ruedenberg J.Chem.Phys. 111, 8825-8831
(1999)
4. C.H.Choi, K.Ruedenberg, M.S.Gordon J.Comput.Chem. 22, 1484-1501 (2001)
5. C.H.Choi J.Chem.Phys. 120, 3535-3543 (2004)

- 47 -

Output

Main output

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The main output is by default printed onscreen. One can send the output to
a file as follows:

 firefly.exe >test.out 2>&1

Alternatively, one can use the –o parameter:

 firefly.exe –o test.out

The amount of information printed can be changed through various keywords
in Firefly. The most important of these is the NPRINT keyword in $CONTRL.

The PUNCH file

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The PUNCH file contains various data produced by the calculation. Much of
this data is of the formatted type and can be cope/pasted to the input of a
second run. Examples of data punched is geometry information, basis set
information, orbitals, the force constant matrix, etc.

The IRCDATA file

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The IRCDATA file serves multiple functions. For example, it contains molec-
ular geometries found during an IRC run. Also, it contains restart data
from a numerical Hessian calculations and Raman calculations.

The MCQD files

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The MCQD files contain data from (X)MCQDPT2 runs. MCQD63 contains
(X)MCQDPT2 MOs, MCQD64 contains information on the CSFs used.

- 48 -

Restart capabilities

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

The program checks for CPU time, and will stop if time is running short.
Restart data are printed and punched out automatically, so the run can be
restarted where it left off.

At present all SCF modules will place the current orbitals in the punch
file if the maximum number of iterations is reached. These orbitals may be
used in conjunction with the GUESS=MOREAD option to restart the iterations
where they quit. Also, if the TIMLIM option is used to specify a time limit
just slightly less than the job's batch time limit, Firefly will halt if
there is insufficient time to complete another full iteration, and the cur-
rent orbitals will be punched.

When searching for equilibrium geometries or saddle points, if time runs
short, or the maximum number of steps is exceeded, the updated Hessian ma-
trix is punched for restart. Optimization runs can also be restarted with
the dictionary file. See $STATPT for details.

- 49 -

Coordinate types

Introduction

Firefly is capable of working with various types of coordinates. Possible
input coordinates are Cartesian coordinates, Hilderbrandt style internals
and Z-Matrix internal coordinates (Gaussian and MOPAC style). In addition,
Firefly can internally work with 'plain' Z-matrix coordinates, symmetrized
Z-matrix coordinates (e.g. natural internals), and delocalized internal
coordinates (DLCs).

The input coordinate type can be set with the COORD keyword in the $CONTRL
group. Possible values are:

- UNIQUE: only the symmetry unique atoms will be given, in Cartesian coor-
dinates (this is the default; use this unless you have a good reason to use
COORD=CART);
- HINT: only the symmetry unique atoms will be given, in Hilderbrandt style
internals;
- CART: Cartesian coordinates will be input (this option is generally not
recommended, see below);
- ZMT: GAUSSIAN style internals will be input;
- ZMTMPC: MOPAC style internals will be input;
- FRAGONLY: this means no part of the system is treated by ab initio means,
hence $DATA is not given. The system is to be fully specified by $EFRAG.

The CART, ZMT, and ZMTMPC choices require input of all atoms in the mole-
cule. These three also orient the molecule, and then determine which atoms
are unique. The reorientation is very likely to change the order of the
atoms from what you input. When the point group contains a 3-fold or higher
rotation axis, the degenerate moments of inertia often cause problems
choosing correct symmetry unique axes, in which case you must use
COORD=UNIQUE rather than Z-matrices. It is also important to realize that
the reorientation into principal axes is done only for atomic coordinates,
and is not applied to the axis dependent data of the groups $VEC, $HESS,
$GRAD, $DIPDR, and $VIB, nor to Cartesian coordinates of effective frag-
ments in $EFRAG. COORD=UNIQUE avoids reorientation, and is thus the safest
way to read these.

Note that the choices CART, ZMT, ZMTMPC require the use of a $BASIS group
to define the basis set. The first two choices might or might not use $BA-
SIS, as you wish.

Furthermore, it is important to note that the choice COORD=CART currently
forces the job to be a check run (i.e., EXETYP=CHECK). The reason for this
is that it is generally not recommended to use this coordinate type. For
users who need this coordinate input type and know what they’re doing,
COORD=CART jobs can be forced to run by using the "-run" command line
switch.

- 50 -

For Cartesian coordinates, the distance unit is set with the keyword UNITS
in the $CONTRL group. Possible values are ANGS (for Ångstroms, the default)
and BOHR (for Bohr atomic unites).

In the next three sections, Cartesian coordinates, Z-Matrix coordinates,
and the use of DLCs will be discussed separately. In addition, there will
be two sections devoted to the use of symmetry and isotopic substitution,
respectively. Hilderbrandt internals will not be discussed in detail. In-
stead, for this coordinate type, we would like to refer the reader to the
list of keywords as well as to the following reference:

R.L. Hilderbrandt, J. Chem. Phys. 51, 1654 (1969).

Cartesian coordinates

Cartesian coordinates should be input in the form of:

NAME NUCLEAR_CHARGE X-COORD Y-COORD Z-COORD

Here, NAME is an arbitrary name. One could use the elements name or symbol,
but in principal any name is allowed, e.g. CAT, MOUSE, or, if in the case
of a heavier element, ELEPHANT. NUCLEAR_CHARGE is the atom's nuclear
charge. An example:

 $DATA
 Water
C1
OXYGEN 8.0 -0.708955260 -0.940298490 0.000000000
HYDROGEN 1.0 0.251044740 -0.940298490 0.000000000
HYDROGEN 1.0 -1.029409850 -0.035362660 0.000000000
 $END

Coordinates may be omitted when they equal 0, starting from Z coordinate.
The above example when oriented differently:

 $DATA
 Water
C1
OXYGEN 8.0 -0.062007499
HYDROGEN 1.0 0.721968395 0.554059380
HYDROGEN 1.0 -0.845983394 0.554059380
 $END

Note that optimizations in Cartesian coordinates have a reputation of con-
verging slowly. This is largely due to the fact that translations and rota-
tions are usually left in the problem. Numerical problems caused by the
small eigenvalues associated with these degrees of freedom are the source
of this poor convergence. The methods in Firefly project the Hessian matrix
to eliminate these degrees of freedom, which should not cause a problem.

- 51 -

Nonetheless, Cartesian coordinates are in general the most slowly conver-
gent coordinate system.

Z-Matrix and natural internal coordinates

Internal coordinates are able to provide convergence faster than with Car-
tesian coordinates. They can be specified with NZVAR in $CONTRL and with
$ZMAT group. An simple input example (taken from the example job EXAM06):

$CONTRL NZVAR=3 COORD=ZMT $END
$DATA
Methylene
Cnv 2

C
H 1 rCH
H 1 rCH 2 aHOH

rCH=1.09
aHOH=99.0
 $END
 $ZMAT IZMAT(1)=1,1,2, 1,1,3, 2,2,1,3 $END

Benefits of this coordinate type are the elimination of the six rotational
and translational degrees of freedom and that the GUESS Hessian is able to
use empirical information about bond stretches and bends. On the other
hand, there are many possible choices for the internal coordinates, some of
which may lead to much poorer convergence of the geometry search than oth-
ers. Particularly poorly chosen coordinates may not even converge at all.

One thing to keep in mind is that internal coordinates are frequently
strongly coupled. A very common example to illustrate this might be a bond
length in a ring, and the angle on the opposite side of the ring. Clearly,
changing one changes the other simultaneously. A more mathematical defini-
tion of "coupled" is to say that there is a large off-diagonal element in
the Hessian. In this case convergence may be unsatisfactory, especially
with a diagonal GUESS Hessian, where a "good" set of internals is one with
a diagonally dominant Hessian. Of course, if you provide an accurately com-
puted Hessian, it will have large off-diagonal values where those are truly
present. Even so, convergence may be poor if the coordinates are coupled
through large 3rd or higher derivatives. The best coordinates are therefore
those which are the most "quadratic".

One very popular set of internal coordinates is the usual "model builder"
Z-matrix input, where for N atoms, one uses N-1 bond lengths, N-2 bond an-
gles, and N-3 bond torsions. The popularity of this choice is based on its
ease of use in specifying the initial molecular geometry. Typically, howev-
er, it is the worst possible choice of internal coordinates, and in the
case of rings, is not even as good as Cartesian coordinates.

However, Firefly does not require this particular mix of the common types.
Firefly's only requirement is that you use a total of 3N-6 coordinates,

- 52 -

chosen from these 3 basic types, or several more exotic possibilities. (Of
course, we mean 3N-5 throughout for linear molecules.) These additional
types of internal coordinates include linear bends for 3 collinear atoms,
out of plane bends, and so on. There is no reason at all why you should
place yourself in a straightjacket of N-1 bonds, N-2 angles, and N-3 tor-
sions. If the molecule has symmetry, be sure to use internals which are
symmetrically related.

For example, the most effective choice of coordinates for the atoms in a
four membered ring is to define all four sides, any one of the internal
angles, and a dihedral defining the ring pucker. For a six membered ring,
the best coordinates seem to be 6 sides, 3 angles, and 3 torsions. The an-
gles should be every other internal angle, so that the molecule can
"breathe" freely. The torsions should be arranged so that the central bond
of each is placed on alternating bonds of the ring, as if they were pi
bonds in Kekule benzene. For a five membered ring, we suggest all 5 sides,
2 internal angles, again alternating every other one, and 2 dihedrals to
fill in. The internal angles of necessity skip two atoms where the ring
closes. Larger rings should generalize on the idea of using all sides but
only alternating angles. If there are fused rings, start with angles on the
fused bond, and alternate angles as you go around from this position.

Rings and more especially fused rings can be tricky. For these systems,
especially, we suggest the Cadillac of internal coordinates, the "natural
internal coordinates" of Peter Pulay. For a description of these, see:

P. Pulay, G. Fogarosi, F. Pang, J. E. Boggs, J. Am. Chem. Soc. 101, 2550-
2560 (1979)
G. Fogarasi, X. Zhou, P. W. Taylor, P. Pulay J.Am.Chem.Soc. 114, 8191-8201
(1992)

These are linear combinations of local coordinates, except in the case of
rings. The examples given in these two papers are very thorough.

An illustration of natural internal coordinates is given in the example job
EXAM25. This is a nonsense molecule, designed to show many kinds of func-
tional groups. It is defined using standard bond distances with a classical
Z-matrix input, and the angles in the ring are adjusted so that the start-
ing value of the unclosed OO bond is also a standard value. Using Cartesian
coordinates is easiest, but takes a very large number of steps to converge.
This however, is better than using the classical Z-matrix internals given
in $DATA, which is accomplished by setting NZVAR to the correct 3N-6 value.
The geometry search changes the OO bond length to a very short value on the
1st step, and the SCF fails to converge. (Note that if you have used dummy
atoms in the $DATA input, you cannot simply enter NZVAR to optimize in in-
ternal coordinates, instead you must give a $ZMAT which involves only real
atoms).

The third choice of internal coordinates in EXAM25, natural internal coor-
dinates, is the best set which can be made from the simple coordinates. It
follows the advice given above for five membered rings, and because it in-
cludes the OO bond it has no trouble with crashing this bond. It takes 20
steps to converge, so the trouble of generating this $ZMAT can be worth it
when compared to the use of Cartesians. Natural internal coordinates are

- 53 -

defined in the final group of input. The coordinates are set up first for
the ring, including two linear combinations of all angles and all torsions
within the ring. After this the methyl is hooked to the ring as if it were
a NH group, using the usual terminal methyl hydrogen definitions. The H is
hooked to this same ring carbon as if it were a methine. The NH and the CH2
within the ring follow Pulay's rules exactly. The amount of input is much
greater than a normal Z-matrix. For example, 46 internal coordinates are
given, which are then placed in 3N-6=33 linear combinations. Note that nat-
ural internals tend to be rich in bends, and short on torsions.

The energy results for the three coordinate systems which converge are as
follows:

 NSERCH Cart good Z-mat nat. int.
 0 -48.6594935049 -48.6594935049 -48.6594935049
 1 -48.6800538676 -48.6806631261 -48.6838361406
 2 -48.6822702585 -48.6510215698 -48.6874045449
 3 -48.6858299354 -48.6882945647 -48.6932811528
 4 -48.6881499412 -48.6849667085 -48.6946836332
 5 -48.6890226067 -48.6911899936 -48.6959800274
 6 -48.6898261650 -48.6878047907 -48.6973821465
 7 -48.6901936624 -48.6930608185 -48.6987652146
 8 -48.6905304889 -48.6940607117 -48.6996366016
 9 -48.6908626791 -48.6949137185 -48.7006656309
 10 -48.6914279465 -48.6963767038 -48.7017273728
 11 -48.6921521142 -48.6986608776 -48.7021504975
 12 -48.6931136707 -48.7007305310 -48.7022405019
 13 -48.6940437619 -48.7016095285 -48.7022548935
 14 -48.6949546487 -48.7021531692 -48.7022569328
 15 -48.6961698826 -48.7022080183 -48.7022570260
 16 -48.6973813002 -48.7022454522 -48.7022570662
 17 -48.6984850655 -48.7022492840
 18 -48.6991553826 -48.7022503853
 19 -48.6996239136 -48.7022507037
 20 -48.7002269303 -48.7022508393
 21 -48.7005379631
 22 -48.7008387759
 ...
 50 -48.7022519950

from which you can see that the natural internals are actually the best
set. The $ZMAT exhibits upward burps in the energy at step 2, 4, and 6, so
that for the same number of steps, these coordinates are always at a higher
energy than the natural internals.

The initial Hessian generated for these three columns contains 0, 33, and
46 force constants. This assists the natural internals, but is not the ma-
jor reason for its superior performance. The computed Hessian at the final
geometry of this molecule, when transformed into the natural internal coor-
dinates is almost diagonal. This almost complete uncoupling of coordinates
is what makes the natural internals perform so well. The conclusion is of
course that not all coordinate systems are equal, and natural internals are
the best. As another example, we have run the ATCHCP molecule, which is a
popular geometry optimization test, due to its two fused rings:

- 54 -

H. B. Schlegel, Int. J. Quantum Chem., Symp. 26, 253-264 (1992)
T. H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768-9774 (1992)
J. Baker, J. Comput. Chem. 14, 1085-1100 (1993)

Here, we have compared the same coordinate types, using a guess Hessian, or
a computed Hessian. The latter set of runs is a test of the coordinates
only, as the initial Hessian information is identical. The results show
clearly the superiority of the natural internals, which like the previous
example, give an energy decrease on every step:

 HESS=GUESS HESS=READ
 Cartesians 65 41 steps
 good Z-matrix 32 23
 natural internals 24 13

A final example is phosphinoazasilatrane, with three rings fused on a com-
mon SiN bond, in which 112 steps in Cartesian space became 32 steps in nat-
ural internals. The moral here is: "A little brain time can save a lot of
CPU time".

Delocalized coordinates

A relatively new type of internal coordinate is the delocalized internal
coordinate (DLC), which generally provides fast convergence and is easier
to set up than Z-matrix coordinates. It is described by J. Baker, A. Kessi,
and B. Delley (J. Chem. Phys. 1996, 105, 192-212), although the implementa-
tion in Firefly is not exactly the same. Bonds are kept as independent co-
ordinates while angles are placed in linear combination by the DLC process.
There are some interesting options for applying constraints, and other op-
tions to assist the automatic DLC generation code by either adding or de-
leting coordinates.

It is simple to use DLCs in their most basic form. One has to specify:

 $CONTRL NZVAR=value $END
 $ZMAT DLC=.T. AUTO=.T. $END

where the value of NZVAR is nonzero. As with ZMAT input, setting NZVAR=0
disables the use of DLCs. This can be used as an easy way of switching be-
tween internal and Cartesian coordinates without the need to remove of com-
ment out additional DLC related directives from the input.

Because of the popularity of DLCs, it is also possible to enable them using
a 'shortcut'. If NZVAR is nonzero, input coordinates are in Cartesian for-
mat, and no $ZMAT group is given, then Firefly will act as if the input
contains $ZMAT DLC=.T. AUTO=.T. $END with a nonzero value of NZVAR.

Though the quality of DLCs are not as good as explicitly constructed natu-
ral internals (which benefit from human chemical knowledge), they are al-
most always better than carefully crafted $ZMATs using only the primitive

- 55 -

internal coordinates. Because of their relative ease to use, we recommend
their use highly.

As mentioned earlier, DLCs are generated from Cartesian or Z-matrix coordi-
nates by Firefly’s DLC generator. The generation process, however, is not
entirely black box as there are cases in which the generator can fail. In
many such cases it might help to set:

 $ZMAT DLCTOL=1D-7 ORTTOL=1D-7 $END

which lowers the threshold used to check the quality/completeness of DLCs.

Another possible remedy might be to choose a different method for freezing
internals in DLCs with the IFDMOD keyword in $ZMAT. Possible values are 0
(the most stable method), 1 (a less stable method), and 2 (an experimental
method). Setting IFDMOD=2 has been found to help in a number of cases.

There are, however, a few important general cases in which these settings
do not help. Important examples of these are multimolecular systems and
systems in which four or more atoms lie on a straight line (in some cases,
three atoms on one line may also pose a problem). For such cases, one has
to manually define one or more additional bonds through the NONVDW keyword
in the $ZMAT group in order to reach the necessary amount of linearly inde-
pendent coordinates. NONVDW should be given as an array that describes atom
pairs. For example, NONVDW(1)=2,3,5,6 describes bonds between atoms 2 and
3, and between atoms 5 and 6. You may add as many bonds as you want through
NONVDW. However, beware that the addition of too many bonds may degrade the
performance of the optimization algorithm.

For clarity, let us consider two basic examples.

The first example is a system consisting of water and ethene, as depicted
in the first image. Here, one or more additional bonds have to be added
through the NONVDW array. Typically, these additional bonds should be (by
order of importance):

a) bonds that are expected to be broken (or formed)
in the process under study

b) if the system under investigation includes more
than one fragment, at least one “inter-fragment”

For this particular system, one should specify one
of the following:

 $ZMAT NONVDW(1)= 1,7 $END or
 $ZMAT NONVDW(1)= 1,8 $END or
 $ZMAT NONVDW(1)= 1,9 $END

Again, it is not recommended to add too many bonds. In this example, addi-
tion of two explicit bonds, rather than one, increased the number of opti-
mization steps from around 50 to almost 90.

- 56 -

However, if you want to study the addition of the water to the ethylene
above, your NONVDW group should read:

 $ZMAT NONVDW(1)=1,7,2,8,2,9 $END

since the addition of the water to the ethylene may (depending on your ba-
sis set and theory level) immediately cause one of the O-H bonds to break
and the migration of that H nucleus to carbon number 2.

As a second example, let us consider the allene
molecule, which is depicted in the second image.
Because of the 180 degree bond angle between atoms
1, 2, and 3, at least one additional bond has to be
specified. The specification of

 $ZMAT NONVDW(1)=4,2 $END

allows the DLC generator the find enough linearly independent coordinates.
A different atom pair (such as 5,2) can also be specified to get the same
result.

Utilizing symmetry

The symmetry group of the system under investigation can be specified in
the $DATA group, below the title card, in the form:

GROUP NAXIS

Here, GROUP is the Schoenflies symbol of the symmetry group. You may choose
from:

C1, CS, CI, CN, S2N, CNH, CNV, DN, DNH, DND, T, TH, TD, O, OH

NAXIS is the order of the highest rotation axis, and must be given when the
name of the group contains an N. For example, "CNV 2" is C2v. "S2N 3" means
S6. For linear molecules, choose either CNV or DNH, and enter NAXIS as 4.
Enter single atoms as DNH with NAXIS=2 (see also input example "EXAM16").

When group C1 is specified, the atom input can directly start on the line
after "C1".

$DATA
 Water
C1
OXYGEN 8.0 -0.708955260 -0.940298490 0.000000000
HYDROGEN 1.0 0.251044740 -0.940298490 0.000000000
HYDROGEN 1.0 -1.029409850 -0.035362660 0.000000000
 $END

When a different point group is specified, two additional input lines have
to be given prior to the atom input. These two cards specify the coordi-
nates and orientation of the axis/planes of symmetry. As input structures

- 57 -

are nowadays usually prepared with external molecule building programs
(which are able to orient the system correctly with respect to axis/planes
of symmetry), these two input lines have little use. They can be skipped
over by providing a single blank line, as in the example below:

$DATA
 H2O
CNV 2

OXYGEN 8.0 0.000000000 0.000000000 -0.066188278
HYDROGEN 1.0 -0.751549274 0.000000000 0.525227863
 $END

Armed with only the name of the group, Firefly is able to exploit the mo-
lecular symmetry throughout almost all of the program, and thus save a
great deal of computer time. Firefly does not require that you know very
much else about group theory, although a deeper knowledge (character ta-
bles, irreducible representations, term symbols, and so on) is useful when
dealing with the more sophisticated wavefunctions.

It should finally be noted that the use of symmetry can be disabled/enabled
through the NOSYM keyword in the $CONTRL group. By default, symmetry is
enabled (NOSYM=0). When NOSYM=1 is specified, symmetry is only used to
build the molecule and not in any calculations. Disabling symmetry is nec-
essary

- for GVB and MCSCF runs in which the charge density is not fully symmet-
ric;
- for polarizability calculations with RUNTYP=TDHF;
- for effective fragment potential calculations;
- for many DRC runs;
- in some cases when rotating alpha and beta HOMO and LUMO orbitals in the
initial guess with $GUESS MIX=.T $END.

Isotopic substitution

Isotopic substitution can be controlled with the AMASS keyword in the $MASS
group. AMASS is an array that specifies the atomic masses of elements in
$DATA, in amu. The default is to use the mass of the most abundant isotope.
Masses through element 104 are stored. For example:

 $MASS AMASS(3)=2.0140 $END

will make the third atom in the molecule a deuterium. Masses affect only
the frequencies and normal modes of vibration.

- 58 -

Basis sets

Introduction

Firefly uses Gaussian basis functions for the construction of the molecular
orbitals. It can handle basis sets of the segmented contraction and of the
general contraction type, with support for s, p, d, f, and g functions, as
well as Pople style sp functions. Higher functions such as h and i are not
supported, which is important to keep in mind when using basis sets that
include these functions (such as Dunning’s cc-pV5Z set). Additionally,
there is support for effective core potentials (i.e. pseudopotentials).

This chapter will start with a description of the basis sets included in
Firefly, followed by a brief explanation on the use of spherical or Carte-
sian functions. It will then discuss ways in which one can manually specify
a basis set, making it possible to either modify a basis set or use a basis
set that is not included in Firefly. The specification of effective core
potentials will also be discussed. Finally, the chapter will conclude with
a short discussion on how to handle partial linear dependence in a basis
set.

Built-in basis sets

The following built-in basis sets can be requested through the GBASIS key-
word. References for these basis sets can be found at the end of this sec-
tion.

* GBASIS=STO - Pople's STO-NG minimal basis set

Available H-Xe, for NGAUSS=2,3,4,5,6

* GBASIS=N21 - Pople's N-21G split valence basis set

 Available H-Xe, for NGAUSS=3

Available H-Ar, for NGAUSS=6

* GBASIS=N31 - Pople's N-31G split valence basis set

 Available H-Ne,P-Cl for NGAUSS=4

Available H-He,C-F for NGAUSS=5
Available H-Ar, for NGAUSS=6
For Ga-Kr, N31 selects the BC basis

* GBASIS=N311 - Pople's "triple split" N-311G basis set

Available H-Ne, for NGAUSS=6
Selecting N311 implies MC for Na-Ar

- 59 -

* GBASIS=MC - McLean/Chandler "triple split" basis

 (12s,9p)/[6s,5p] for Na-Ar

Selecting MC implies 6-311G for H-Ne

The first four basis sets are designed by Pople and coworkers, the last
basis set is by McLean and Chandler and is often used together with 6-311G.
Specifically, if N-311G is requested on a second row atom, the McLean Chan-
dler basis set is used on this atom instead (and in the same manner, when
McLean/Chandler is requested on H, He, or a first row atom, 6-311G will be
used). For the N-31G basis sets, the ‘BC’ basis set (a double-zeta valence
basis set by Binning and Curtiss) will be used on Ga-Kr. For all four Pople
basis sets, the number of primitive gaussians to be used for core orbitals
should be set with the NGAUSS keyword. Popular choices are to use STO-3G,
3-21G, and 6-31G.

* GBASIS=MINI - Huzinaga's 3 gaussian minimal basis set

 Available H-Rn.

* GBASIS=MIDI - Huzinaga's 21 split valence basis set

 Available H-Rn.

These two basis sets were designed by Huzinaga and coworkers. The MINI ba-
sis consists of three gaussian expansions of each atomic orbital. The expo-
nents and contraction coefficients are optimized for each element, and s
and p exponents are not constrained to be equal. As a result these bases
give much lower energies than does STO-3G. The valence MINI orbitals of
main group elements are scaled by factors while transition metal MINI bases
are not scaled.

The MIDI bases are derived from the MINI sets by decontracting the outer
valence function, thus making them of the split valence type. MIDI bases
are not scaled by Firefly. The transition metal bases are taken from the
lowest SCF terms in the s**1,d**n configurations.

Note that nowadays multiple basis sets carry the MINI or MIDI name. The
MINI and MIDI basis sets incorporated in Firefly are in literature commonly
referred to as MINI-1 and MIDI-1.

* GBASIS=DH - Dunning/Hay "double zeta" basis set

(3s)/[2s] for H
(9s,4p)/[3s,2p] for Li
(9s,5p)/[3s,2p] for Be-Ne
(11s,7p)/[6s,4p] for Al-Cl

* GBASIS=DZV - "double zeta valence" basis set

A synonym for DH for H, Li, Be-Ne, Al-Cl
(14s,9p,3d)/[5s,3p,1d] for K-Ca

- 60 -

(14s,11p,5d/[6s,4p,1d] for Ga-Kr (= the BC basis)

* GBASIS=TZV - "triple zeta valence" basis set

(5s)/[3s] for H
(10s,3p)/[4s,3p] for Li
(10s,6p)/[5s,3p] for Be-Ne
A synonym for MC for Na-Ar
(14s,9p)/[8s,4p] for K-Ca
(14s,11p,6d)/[10s,8p,3d] for Sc-Zn

The DZV and DH sets are identical for H, Li, Be-Ne, and Al-Cl – both use
the double zeta set by Dunning and Hay. The only difference is that DZV can
also be used on K-Ca and Ga-Kr. This basically makes the DH set redundant;
it is actually only included in Firefly for backwards compatibility rea-
sons. The TZV set uses a triple zeta set by Dunning for H and Li-Ne, the
McLean/Chandler set for Na-Ar, and Wachters’ bases for K-Ca and Sc-Zn.

* GBASIS=SBKJC - Stevens/Basch/Krauss/Jasien/Cundari valence

 basis set, for Li-Rn. This choice implies an
 unscaled -31G basis for H-He.

* GBASIS=HW - Hay/Wadt valence basis. This is a -21 split,
 available for Na-Xe, except for the transition metals.
 This implies a 3-21G basis for H-Ne.

These two options request valence only basis sets, meant to be used in com-
bination with effective core potentials (which describe the core orbitals).
Effective core potentials are discussed in a later section.

* GBASIS=MNDO
* GBASIS=AM1
* GBASIS=PM3
* GBASIS=RM1

These four options do not request a basis set, but request the use of a
semi-empirical method. They are discussed in separate chapter. Requesting
one of these methods causes all other keywords in $BASIS to be ignored.

The addition of polarization functions to the basis set can be requested
with the NDFUNC, NPFUNC, and NFFUNC keywords. NDFUNC specifies the amount
of d functions on ‘heavy’ atoms, except for MINI/MIDI where it requests
additional p functions. For the STO, HW, and N21 sets ‘heavy’ means Na and
heavier, for other basis sets it means Li and heavier. NPFUNC specifies the
amount of p functions that should be added to H and He. Finally, NFFUNC
specifies the amount of f functions that is to be added to Li-Cl. NDFUNC
and NPFUNC may not exceed 3. The only permitted values for NFFUNC are 0 and
1.

- 61 -

Five different sets of polarization exponents are available in Firefly.
Which set of polarization exponents is used is determined by the keyword
POLAR, which can be set to following values:

- POPLE (chooses exponents designed for GBASIS=STO, N21, N31, SBKJC, HW)
- POPN311 (chooses exponents designed for GBASIS=N311, MC)
- DUNNING (chooses exponents designed for GBASIS=DH, DZV)
- HUZINAGA (chooses exponents designed for GBASIS=MINI, MIDI)
- HONDO7 (chooses exponents designed for GBASIS=TZV)

It is normally not necessary to specify POLAR as Firefly will automatically
pick the set of polarization exponents that matches the basis set chosen
with GBASIS. A detailed list of exponents as well as references is given
later on in this section.

Two more keywords that pertain to the specification of polarization func-
tions are SPLIT2 and SPLIT3. These keywords specify the splitting factors
when NDFUNC and/or NPFUNC is chosen as >1. In such a case, the 1d and/or 1p
single values are split according to the chosen values. For example,
SPLIT2=2.0,0.5 means to double and halve the single polarization exponent.
The default values (SPLIT2=2.0,0.5 and SPLIT3=4.00,1.00,0.25) are from the
Pople school, and as they were derived with correlation in mind they are
probably too far apart for Hartree-Fock. The default SPLIT2 value will usu-
ally cause an >increase< over the 1d energy at the HF level for hydrocar-
bons. For HF, SPLIT2=0.4,1.4 will always lower the SCF energy. For SPLIT3,
we might suggest 3.0,1.0,1/3. For more information, see also:

M.J.Frisch, J.A.Pople, J.S.Binkley J.Chem.Phys. 80, 3265-3269 (1984).

The addition of diffuse basis functions to the basis set can be controlled
with the DIFFSP and DIFFS keywords (possible values being .T. or .F.). The
first keyword requests diffuse functions on ‘heavy atoms’, i.e. Li-F, Na-
Cl, Ga-Br, In-I, and Tl-At. The latter keyword requests diffuse functions
on H and He. A list of diffuse exponents used in Firefly is given at the
end of this section. As opposed to the case with polarization exponents,
Firefly contains only a single set of diffusion exponents that is used for
all basis sets available through GBASIS.

By default, DIFFSP requests diffuse functions for all heavy atoms present
in $DATA. It is however possible to limit the addition of diffuse functions
to specific elements. When DIFFSP is set to .T., this can be done with the
ELNEG keyword. For example,

DIFFSP=.T. ELNEG(1)=7,8,9

adds diffuse functions to N, O, and F, but not to other elements. ELNEG
only affects heavy atoms, it cannot be used to include or exclude diffuse
functions on H and He (this can only be controlled through DIFFS).

This section will conclude with a list of details and references for all
included basis sets, polarization functions, and diffuse functions.

- 62 -

STO-NG

 H-Ne Ref. 1 and 2
 Na-Ar Ref. 2 and 3 **
 K,Ca,Ga-Kr Ref. 4
 Rb,Sr,In-Xe Ref. 5
 Sc-Zn,Y-Cd Ref. 6

1) W.J.Hehre, R.F.Stewart, J.A.Pople J.Chem.Phys. 51, 2657-2664(1969).
2) W.J.Hehre, R.Ditchfield, R.F.Stewart, J.A.Pople J.Chem.Phys. 52, 2769-
2773(1970).
3) M.S.Gordon, M.D.Bjorke, F.J.Marsh, M.S.Korth J.Am.Chem.Soc. 100, 2670-
2678(1978). ** the valence scale factors for Na-Cl are taken from this pa-
per, rather than the "official" Pople values in Ref. 2.
4) W.J.Pietro, B.A.Levi, W.J.Hehre, R.F.Stewart, Inorg.Chem. 19, 2225-
2229(1980).
5) W.J.Pietro, E.S.Blurock, R.F.Hout,Jr., W.J.Hehre, D.J. DeFrees,
R.F.Stewart Inorg.Chem. 20, 3650-3654(1980).
6) W.J.Pietro, W.J.Hehre J.Comput.Chem. 4, 241-251(1983).

MINI/MIDI

 H-Xe Ref. 7

7) "Gaussian Basis Sets for Molecular Calculations" S.Huzinaga, J.Andzelm,
M.Klobukowski, E.Radzio-Andzelm, Y.Sakai, H.Tatewaki Elsevier, Amsterdam,
1984.

3-21G

 H-Ne Ref. 8 (also 6-21G)
 Na-Ar Ref. 9 (also 6-21G)
 K,Ca,Ga-Kr,Rb,Sr,In-Xe Ref. 10
 Sc-Zn Ref. 11
 Y-Cd Ref. 12

8) J.S.Binkley, J.A.Pople, W.J.Hehre J.Am.Chem.Soc. 102, 939-947(1980).
9) M.S.Gordon, J.S.Binkley, J.A.Pople, W.J.Pietro, W.J.Hehre J.Am.Chem.Soc.
104, 2797-2803(1982).
10) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 7, 359-378(1986)
11) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 8, 861-879(1987)
12) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 8, 880-893(1987)

N-31G

 references for 4-31G 5-31G 6-31G
 H 13 13 13
 He 21 21 21
 Li 17,22 17

- 63 -

 Be 18,22 18
 B 15 17
 C-F 13 14 14
 Ne 21 21
 Na-Ga 20
 Si 19 **
 P-Cl 16 20
 Ar 20
 K-Zn 23

13) R.Ditchfield, W.J.Hehre, J.A.Pople J.Chem.Phys. 54, 724-728(1971).
14) W.J.Hehre, R.Ditchfield, J.A.Pople J.Chem.Phys. 56, 2257-2261(1972).
15) W.J.Hehre, J.A.Pople J.Chem.Phys. 56, 4233-4234(1972).
16) W.J.Hehre, W.A.Lathan J.Chem.Phys. 56, 5255-5257(1972).
17) J.D.Dill, J.A.Pople J.Chem.Phys. 62, 2921-2923(1975).
18) J.S.Binkley, J.A.Pople J.Chem.Phys. 66, 879-880(1977).
19) M.S.Gordon Chem.Phys.Lett. 76, 163-168(1980)

** - Note that the built in 6-31G basis for Si is not that given by
Pople in reference 20. The basis by Mark Gordon gives a better wave-
function for a ROHF calculation in full atomic (Kh) symmetry:

 6-31G Energy virial
 Gordon -288.828573 1.999978
 Pople -288.828405 2.000280

See the input example "EXAM16" for information on how to run in Kh.

20) M.M.Francl, W.J.Pietro, W.J.Hehre, J.S.Binkley, M.S.Gordon,
D.J.DeFrees, J.A.Pople J.Chem.Phys. 77, 3654-3665(1982).
21) Unpublished, copied out of GAUSSIAN82.
22) For Li and Be, 4-31G is actually a 5-21G expansion.
23) V.A.Rassolov, J.A.Pople, M.A.Ratner, T.L.Windus J.Chem.Phys. 109, 1223-
1229(1998)

6-311G

24) R.Krishnan, J.S.Binkley, R.Seeger, J.A.Pople J.Chem.Phys. 72, 650-
654(1980).

DH / DZV / BC

 DH basis H Ref. 25
 DH basis Li-Ne Ref. 25
 DH basis Al-Ar Ref. 25
 DZV basis K,Ca Ref. 26
 DZV basis Ga-Kr Ref. 27 (a.k.a. the BC basis)

25) T.H.Dunning, Jr., P.J.Hay Chapter 1 in "Methods of Electronic Structure
Theory", H.F.Shaefer III, Ed. Plenum Press, N.Y. 1977, pp 1-27.
Note that Firefly uses inner/outer scale factors of 1.2 and 1.15 for DH's
hydrogen. To get Thom's usual basis, scaled 1.2 throughout:

HYDROGEN 1.0 x, y, z

- 64 -

 DH 0 1.2 1.2

26) J.-P.Blaudeau, M.P.McGrath, L.A.Curtiss, L.Radom J.Chem.Phys. 107,
5016-5021(1997)
27) R.C.Binning, Jr., L.A.Curtiss J.Comput.Chem. 11, 1206-1216(1990)

TZV / MC

 H Ref. 28
 Li-Ne Ref. 28
 Na-Ar Ref. 29 (a.k.a. the MC basis)
 K,Ca Ref. 30
 Ga-Kr Ref. 30**

28) T.H. Dunning, J.Chem.Phys. 55 (1971) 716-723.
29) A.D.McLean, G.S.Chandler J.Chem.Phys. 72,5639-5648(1980).
30) A.J.H. Wachters, J.Chem.Phys. 52 (1970) 1033-1036 (see Table VI, Con-
traction 3).

** Ga-Kr is taken from HONDO 7 and is Wachters' (14s9p5d) basis (ref. 30)
contracted to (10s8p3d) with the following modifications:

1. the most diffuse s removed;
2. additional s spanning 3s-4s region;
3. two additional p functions to describe the 4p;
4. (6d) contracted to (411) from ref. 31, except for Zn where
Wachter's (5d)/[41] and Hay's diffuse d are used.

31) A.K. Rappe, T.A. Smedley, and W.A. Goddard III, J.Phys.Chem. 85 (1981)
2607-2611

SBKJC -31G splits, bigger for trans. metals (available Li-Rn)

32) W.J.Stevens, H.Basch, M.Krauss J.Chem.Phys. 81, 6026-6033 (1984)
33) W.J.Stevens, H.Basch, M.Krauss, P.Jasien Can.J.Chem, 70, 612-630 (1992)
34) T.R.Cundari, W.J.Stevens J.Chem.Phys. 98, 5555-5565(1993)

HW -21 splits (sp exponents not shared; transition metals are not built in
at present, although they will work if you type them in)

35) P.J.Hay, W.R.Wadt J.Chem.Phys. 82, 270-283 (1985) main group (available
Na-Xe)
36) W.R.Wadt, P.J.Hay J.Chem.Phys. 82, 284-298 (1985)
see also
37) P.J.Hay, W.R.Wadt J.Chem.Phys. 82, 299-310 (1985)

Polarization exponents

 STO-NG* ref. 38
 3-21G* ref. 39 (see also ref. 10)
 6-31G* ref. 40 (see also ref. 20)

- 65 -

 6-31G** ref. 40 (see also ref. 20)

38) J.B.Collins, P. von R. Schleyer, J.S.Binkley, J.A.Pople J.Chem.Phys.
64, 5142-5151(1976).
39) W.J.Pietro, M.M.Francl, W.J.Hehre, D.J.DeFrees, J.A. Pople, J.S.Binkley
J.Am.Chem.Soc. 104,5039-5048(1982)
40) P.C.Hariharan, J.A.Pople Theoret.Chim.Acta 28, 213-222(1973)

Multiple polarization, and f functions

41) M.J.Frisch, J.A.Pople, J.S.Binkley J.Chem.Phys. 80, 3265-3269 (1984).

Polarization exponents built into Firefly are listed in the table below.
The values are for d functions unless otherwise indicated. Please note that
the names associated with each column are only generally descriptive. For
example, the column marked "POPLE" contains a value for Si with which John
Pople would not agree, and the Ga-Kr values in this column are actually
from the Huzinaga "green book". The exponents for K-Kr under "DUNNING" are
from Curtiss, et al., not Thom Dunning. And so on. A blank means the value
equals the "POPLE" column.

 POPLE POPN311 DUNNING HUZINAGA HONDO7
 ------ ------- ------- -------- ------
 H 1.1(p) 0.75(p) 1.0(p) 1.0(p) 1.0(p)
 He 1.1(p) 0.75(p) 1.0(p) 1.0(p) 1.0(p)

 Li 0.2 0.200 0.076(p)
 Be 0.4 0.255 0.164(p) 0.32
 B 0.6 0.401 0.70 0.388 0.50
 C 0.8 0.626 0.75 0.600 0.72
 N 0.8 0.913 0.80 0.864 0.98
 O 0.8 1.292 0.85 1.154 1.28
 F 0.8 1.750 0.90 1.496 1.62
 Ne 0.8 2.304 1.00 1.888 2.00

 Na 0.175 0.061(p) 0.157
 Mg 0.175 0.101(p) 0.234
 Al 0.325 0.198 0.311
 Si 0.395 0.262 0.388
 P 0.55 0.340 0.465
 S 0.65 0.421 0.542
 Cl 0.75 0.514 0.619
 Ar 0.85 0.617 0.696

 K 0.2 0.260 0.039(p)
 Ca 0.2 0.229 0.059(p)
 Sc-Zn 0.8(f) N/A N/A N/A N/A
 Ga 0.207 0.141
 Ge 0.246 0.202
 As 0.293 0.273
 Se 0.338 0.315
 Br 0.389 0.338

- 66 -

 Kr 0.443 0.318

 Rb 0.11 0.034(p)
 Sr 0.11 0.048(p)

Common d polarization used for all basis sets (from the "green book") are
as follows:
 In Sn Sb Te I Xe
 0.160 0.183 0.211 0.237 0.266 0.297
 Tl Pb Bi Po At Rn
 0.146 0.164 0.185 0.204 0.225 0.247

Firefly uses the following f polarization functions (these are from refer-
ence 41):
 Li Be B C N O F Ne
 0.15 0.26 0.50 0.80 1.00 1.40 1.85 2.50
 Na Mg Al Si P S Cl Ar
 0.15 0.20 0.25 0.32 0.45 0.55 0.70 --

Diffuse exponents

42) T.Clark, J.Chandrasekhar, G.W.Spitznagel, P. von R. Schleyer J. Comput.
Chem. 4, 294-301 (1983)
43) G.W.Spitznagel, Diplomarbeit, Erlangen, 1982.

The following exponents are for L shells, except those for H and He. For H-
F, they are taken from ref 42. For Na-Cl, they are taken directly from ref-
erence 43. These values may be found in footnote 13 of reference 41. For
Ga-Br, In-I, and Tl-At the exponents were optimized for the atomic ground
state anion, using ROHF with a flexible ECP basis set, by Ted Packwood at
NDSU.

 H He
 0.0360 0.0860
 Li Be B C N O F
 0.0074 0.0207 0.0315 0.0438 0.0639 0.0845 0.1076
 Na Mg Al Si P S Cl
 0.0076 0.0146 0.0318 0.0331 0.0348 0.0405 0.0483
 Ga Ge As Se Br
 0.0205 0.0222 0.0287 0.0318 0.0376
 In Sn Sb Te I
 0.0223 0.0231 0.0259 0.0306 0.0368
 Tl Pb Bi Po At
 0.0170 0.0171 0.0215 0.0230 0.0294

Additional information about diffuse functions and also Rydberg type expo-
nents can be found in reference 25. The following atomic energies are from
UHF calculations (RHF on 1-S states), with p orbitals not symmetry equiva-
lenced, and using the default molecular scale factors. They should be use-
ful in picking a basis of the desired energy accuracy, and estimating the
correct molecular total energies.

 Atom state STO-2G STO-3G 3-21G 6-31G

- 67 -

 H 2-S -.454397 -.466582 -.496199 -.498233
 He 1-S -2.702157 -2.807784 -2.835680 -2.855160
 Li 2-S -7.070809 -7.315526 -7.381513 -7.431236
 Be 1-S -13.890237 -14.351880 -14.486820 -14.566764
 B 2-P -23.395284 -24.148989 -24.389762 -24.519492
 C 3-P -36.060274 -37.198393 -37.481070 -37.677837
 N 4-S -53.093007 -53.719010 -54.105390 -54.385008
 O 3-P -71.572305 -73.804150 -74.393657 -74.780310
 F 2-P -95.015084 -97.986505 -98.845009 -99.360860
 Ne 1-S -122.360485 -126.132546 -127.803825 -128.473877
 Na 2-S -155.170019 -159.797148 -160.854065 -161.841425
 Mg 1-S -191.507082 -197.185978 -198.468103 -199.595219
 Al 2-P -233.199965 -239.026471 -240.551046 -241.854186
 Si 3-P -277.506857 -285.563052 -287.344431 -288.828598
 P 4-S -327.564244 -336.944863 -339.000079 -340.689008
 S 3-P -382.375012 -393.178951 -395.551336 -397.471414
 Cl 2-P -442.206260 -454.546015 -457.276552 -459.442939
 Ar 1-S -507.249273 -521.222881 -524.342962 -526.772151

 SCF *
 Atom state DH 6-311G MC limit
 H 2-S -.498189 -.499810 -- -0.5
 He 1-S -- -2.859895 -- -2.861680
 Li 2-S -7.431736 -7.432026 -- -7.432727
 Be 1-S -14.570907 -14.571874 -- -14.573023
 B 2-P -24.526601 -24.527020 -- -24.529061
 C 3-P -37.685571 -37.686024 -- -37.688619
 N 4-S -54.397260 -54.397980 -- -54.400935
 O 3-P -74.802707 -74.802496 -- -74.809400
 F 2-P -99.395013 -99.394158 -- -99.409353
 Ne 1-S -128.522354 -128.522553 -- -128.547104
 Na 2-S -- -- -161.845587 -161.858917
 Mg 1-S -- -- -199.606558 -199.614636
 Al 2-P -241.855079 -- -241.870014 -241.876699
 Si 3-P -288.829617 -- -288.847782 -288.854380
 P 4-S -340.689043 -- -340.711346 -340.718798
 S 3-P -397.468667 -- -397.498023 -397.504910
 Cl 2-P -459.435938 -- -459.473412 -459.482088
 Ar 1-S -- -- -526.806626 -526.817528

* M.W.Schmidt and K.Ruedenberg, J.Chem.Phys. 71, 3951-3962(1979). These are
ROHF energies in Kh symmetry.

Using spherical functions

Full support of spherical basis functions (also referred to as pure func-
tions) has been implemented in Firefly. By default, spherical functions are
disabled. They can be enabled by specifying:

$CONTRL D5=.T. $END

- 68 -

The $D5 group provides further control through the D5, F7, and G9 keywords,
which pertain to d, f, and g functions, respectively. Their default values
are .T. meaning that spherical functions are used for these three types of
functions, provided of course that spherical functions are enabled in the
first place by setting $CONTRL D5=.T.

As an example, if one would like to use Cartesian d functions but spherical
f and g functions, one should specify:

$CONTRL D5=.T. $END
$D5 D5=.F. $END

Whether one should use Cartesian or spherical functions depends on what the
basis set used has been designed for. As a general rule, older basis sets
are usually designed to use Cartesian d functions, while newer sets should
generally be used with spherical d functions. Higher functions (f and g)
should almost always be spherical.

The following sets in Firefly should be used with Cartesian d functions:

STO-NG, N-21G, N-31G, SBKJC, HW, DH, DZV, TZV, MINI, and MIDI

As spherical functions are disabled by default, one does not have to speci-
fy anything special when augmenting these basis sets with d functions. On
the other hand, f functions with these sets are usually spherical. There-
fore, when using a basis set such as 6-31G(2df,2p), one should use Carte-
sian d and spherical f functions (giving input as in the example above).

The N-311G/MC set in Firefly was designed to use spherical polarization
functions, so setting $CONTRL D5=.T. for this basis set is a requirement.
The same goes for many popular basis sets not incorporated in Firefly such
as. Examples are:

- Ahlrichs’ SV, TZV, QZV (both def and def2 generation), and all sets de-
rived from these (such as def2-TZVPPD)
- Dunning's cc-pVXZ family and all sets derived from these (such as aug-cc-
pVTZ, cc-pwCVTZ, and cc-pVTZ-PP)
- Jensen's pc-X family and all sets derived from these (such as aug-pc-2
and pcS-2)
- LANL2DZdp, LANL2TZ, and LANL08d
- Roos' augmented DZ and TZ ANO, and ANO-RCC
- Sadlej's pVTZ
- The Sapporo family of sets

Not using spherical functions for these sets can result in discrepancies in
energies and/or poor SCF convergence.

Note that the current implementation of the D5 option is incompatible with
non-standard molecular input frames (i.e. custom orientations of axes).

Using an external basis set file

- 69 -

Firefly can be instructed to get the basis set from an external file by
specifying:

$BASIS EXTFIL=.T. GBASIS=name $END

where “name” is the name of the basis set as specified in the external
file. “name” must be a string of 8 or less characters, and should obviously
not be identical to any of the internally stored names.

By default, Firefly will assume that the external file is called BASIS.LIB
(in uppercase when using Linux) and is present in the same directory as the
input file. A different file name (and path) can be specified using the “–
b” command line argument, e.g.:

firefly -o test.out –b ccpvtz.lib

It is also possible to specify only the path to BASIS.LIB:

 firefly -o test.out –b c:\basis_sets\ (Windows)
 firefly -o test.out –b /home/alex/basis_sets/ (Linux)

The structure of the external basis set file should be as follows:

 element basis_name
 shell n_Gauss
 1 exponent contr_coeffs
 2 exponent contr_coeffs
 3 exponent contr_coeffs
 etc...
 shell n_Gauss
 1 exponent contr_coeffs
 2 exponent contr_coeffs
 3 exponent contr_coeffs
 etc...
<terminate with a blank line>

In here,
 - element is the element’s symbol (as in the periodic table).
 - basis_name is the basis set name specified with GBASIS.

- shell is the shell type. This can be S, P, D, F, G, or L. Here, L
defines a Pople style SP shell.
- n_Gauss is the number of Gaussian primitives which the shell is
made up from.
- exponent gives the Gaussian’s exponent.
- contr_coeffs are the contraction coefficients. When specifying two
or more contraction coefficients for one exponent, the coefficients
should be separated by one or more spaces.

As an example, a 6-31+G(d) set on carbon looks as follows:

 C 631pGd
 S 6

- 70 -

 1 3047.5249000 0.0018347
 2 457.3695100 0.0140373
 3 103.9486900 0.0688426
 4 29.2101550 0.2321844
 5 9.2866630 0.4679413
 6 3.1639270 0.3623120
 L 3
 1 7.8682724 -0.1193324 0.0689991
 2 1.8812885 -0.1608542 0.3164240
 3 0.5442493 1.1434564 0.7443083
 L 1
 1 0.1687144 1.0000000 1.0000000
 L 1
 1 0.0438000 1.0000000 1.0000000
 D 1
 1 0.8000000 1.0000000

It is also possible to use internally stored names. The above example can,
for example, also be written as:

C 631pGd
 N31 6
 L 1
 1 0.0438000 1.00000000 1.0000000
 D 1
 1 0.8000000 1.00000000

When using internally stored names, the number of Gaussian primitives only
has to be specified for Pople sets (i.e. for STO, N21, N31, N311).

Several basis set files ready for use can be downloaded from the downloads
section on the Firefly website. Another good source for basis sets is the
EMSL Basis Set Exchange, which can be accessed on
https://bse.pnl.gov/bse/portal. Here, basis sets obtained in the “GAMESS-
US” format are fully compatible with Firefly.

One final tip: though one might choose to make a separate file for each
basis set, it is also possible to have several basis sets in the same file,
each identified by a unique GBASIS string.

Specifying a basis set in $DATA

In addition to the above basis input methods, it is possible to specify a
basis set in $DATA. This can be useful if one would like to use different
sets on different atoms of the same element. For example, one may desire to
use diffuse functions on one carbon atom, but not on another carbon atom. A
$BASIS group should in this case be omitted from the input.

Basis set information in $DATA should be structured in the same way as the
external basis set file (see previous section), except that for each atom
“element basis_name” should be replaced with the element name (which can be

- 71 -

arbitrary), atomic nuclear charge, and Cartesian coordinates of the atom on
which the set is used. As with the external basis file, it is possible to
fully specify a set as well use internally stored names.

Note that a basis set input in $DATA can be easily generated by taking the
$DATA block in the PUNCH file of an earlier calculation as this block al-
ready has the desired format. As an example, if one would like to use a 6-
31+G(d,p) basis but remove the diffuse function from one of the carbon at-
oms, one can first run a test calculation (EXETYP=CHECK) using

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=1 DIFFSP=.T. $END

After this, one can take the $DATA block from the PUNCH file, remove the
desired function, and replace the $DATA part in the input file with it
(and, as mentioned, the $BASIS group should then be omitted).

Using effective core potentials

Effective core potentials (ECPs), also referred to as pseudopotenials
(PPs), can be used instead of basis functions to describe the core part of
an element. This has two advantages. First, heavier elements have a lot of
core electrons, which would make it necessary to employ a large number of
basis functions in order to accurately describe its core. The use of an ECP
in such a case will dramatically reduce the number of basis functions of
the system. Secondly, from the third row of the periodic table onwards,
relativistic effects become increasingly important. However, these cannot
be accounted for by a basis set (at least, not without carrying out an ad-
ditional relativistic calculation). An ECP on the other hand can include
relativistic effects, making for a more accurate description for the ele-
ments of the lower half of the periodic table. ECPs, together with spin-
orbit coupling calculations, are currently the only way to account for rel-
ativistic effects as all-electron relativistic calculations such as
Douglass-Kroll-Hess and the Zeroth Order Relativistic Approximation (ZORA)
are not (yet) possible with Firefly.

Two sets of ECPs are incorporated in Firefly: the Ste-
vens/Basch/Krauss/Jasien/Cundari (SBKJC) potentials which are available for
Li to Rn, and the Hay/Wadt (HW) potentials which are available for Na to
Xe. These should be used in conjunction with the SBKJC and HW valence-only
basis set (e.g. $BASIS GBASIS=SBKJC $END). In addition, it also possible to
manually specify ECPs.

Input for ECPs can be given in three different ways.

The first applies only to the SBKJC and HW ECPs included in Firefly. By
using the ECP keyword in the group $CONTRL, one of these two ECPs can be
chosen. For example:

$CONTRL ECP=SBKJC $END

The specified potentials will then be used on all atoms given in $DATA they
are available for.

- 72 -

If one would prefer more control over which potentials are used on which
atoms, one should specify

$CONTRL ECP=READ $END

and provide an $ECP group. The way the $ECP group should be formatted is
explained in detail in the keyword list and will thus not be given fully
here. An example for a formic acid molecule looks as follows:

$ECP
C-ECP SBKJC
H-ECP NONE
O-ECP SBKJC
O-ECP
H-ECP
$END

An ECP should be specified for every (real) atom present in $DATA. “NONE”
means that no core electrons will be removed for an element. In the above
example, the second oxygen atom uses the same ECP as the first.

Thirdly, it is possible to specify a potential explicitly. For the formal-
dehyde example above, this could look as follows:

$ECP
C-ECP GEN 2 1
1 ----- CARBON U(P) -----
 -0.89371 1 8.56468
2 ----- CARBON U(S)-U(P) -----
 1.92926 0 2.81497
 14.88199 2 8.11296
H-ECP NONE
O-ECP GEN 2 1
1 ----- OXYGEN U(P) -----
 -0.92550 1 16.11718
2 ----- OXYGEN U(S)-U(P) -----
 1.96069 0 5.05348
 29.13442 2 15.95333
O-ECP
H-ECP
$END

Here also, the second oxygen copies from the first.

Constructing an $ECP group for a large molecule can be a labor-intensive
task, however, there are some scripts which provide help with this. They
can be found in the download section on the Firefly website.

Partial linear dependence in a basis set

- 73 -

When using a large basis set, the situation can arise where some basis
functions can be written as linear combinations of other basis functions.
This happens most often when diffuse functions are used. This situation is
referred to as partial linear dependence in the basis set and can be a
problem as it can cause numerical instabilities, possibly leading to poor
SCF convergence.

When partial linear dependence is detected, Firefly will print the follow-
ing message:

 * * * WARNING * * *

THE OVERLAP MATRIX HAS x EIGENVALUES BELOW 1.0E-05. THE SMALLEST OF
THESE IS x. THIS INDICATES A PARTIAL LINEAR DEPENDENCE IN YOUR ATOMIC
BASIS.

TO OBTAIN SCF CONVERGENCE MAY REQUIRE MORE ACCURATE INTEGRAL EVALUA-
TION (INTTYP=HONDO, ICUT=11, ITOL=30 IN $CONTRL), MORE ACCURATE DI-
RECT SCF FOCK MATRIX FORMATION (FDIFF=.FALSE. IN $SCF), OR CHANGING
CONVERGERS (DIIS=.T. SOSCF=.F. IN $SCF).

EIGENVALUES BELOW 1.0D-07 PROBABLY WON'T CONVERGE. EIGENVALUES BE-
TWEEN 1.0D-07 AND 1.0D-06 MAY REQUIRE TIGHTENING OF -NCONV- DENSITY
CONVERGENCE IN $SCF.

THE OVERALL DEGREES OF AOS LINEAR INDEPENDENCE ARE:

--list of values --

YOU MAY CONSIDER DROPPING ONE OR MORE AOS, STARTING FROM THE END OF
THIS LIST.

When encountering this message, the required course of action depends on
severity of the linear dependence. As the output suggests, eigenvalues
above 1.0D-07 might converge but require higher accuracy. More accurate
integrals ($CONTRL INTTYP=HONDO, ICUT=11) would be a good starting point.
As the message suggests one can also disable FDIFF ($SCF FDIFF=.F – this
applies to HF, DFT, and GVB convergence), but this should not be necessary
as Firefly will disable FDIFF automatically when it encounters difficult
convergence. Finally, it is recommended to use tighter convergence criteria
as the linear dependence can cause inaccuracies in the results when normal
criteria are used. This is important when the calculated wavefunction will
be used for further calculations (e.g., gradient after energy, MP2 after
HF, TDDFT after DFT).

When the partial linear dependence results in eigenvalues below 1.0D-07,
convergence might not be reached. In such a case, the dependence can be
decreased by manually removing one or more functions from the basis. Which
functions are best to be removed can be seen from the list of values given
in the output. Take for example a situation in which the list ends with:

 0.2043E-06 - C 23 S, SHELL 86, AO 230
 0.1455E-06 - C 5 S, SHELL 20, AO 62
 0.1147E-06 - C 12 S, SHELL 49, AO 157

- 74 -

 0.1015E-06 - C 13 S, SHELL 53, AO 170
 0.8695E-07 - C 1 S, SHELL 4, AO 10

As can be seen from this list, the smallest eigenvalue originates from
shell nr. 4, situated on atom nr. 1. Looking at the atomic basis set
printout:

SHELL TYPE PRIM EXPONENT CONTRACTION COEFFICIENTS

 C

 1 S 1 3047.524880 0.536345 (0.001835)
 1 S 2 457.369518 0.989452 (0.014037)
 1 S 3 103.948685 1.597283 (0.068843)
 1 S 4 29.210155 2.079187 (0.232184)
 1 S 5 9.286663 1.774174 (0.467941)
 1 S 6 3.163927 0.612580 (0.362312)

 2 L 7 7.868272 -0.399556 (-0.119332) 1.296082 (
0.068999)
 2 L 8 1.881289 -0.184155 (-0.160854) 0.993754 (
0.316424)
 2 L 9 0.544249 0.516390 (1.143456) 0.495953 (
0.744308)

 3 L 10 0.168714 0.187618 (1.000000) 0.154128 (
1.000000)

 4 L 11 0.043800 0.068236 (1.000000) 0.028562 (
1.000000)

it can be seen that shell 4 is a diffuse function on atom 1. The course of
action would now be to take the $DATA block from the PUNCH file, remove
this function, and restart the calculation with the modified basis. Most
likely, convergence will be much better with the function removed. If not,
then the whole procedure needs to be repeated until all problematic func-
tions have been eliminated.

Note that if an internally stored basis set was used, the $DATA block from
the PUNCH file will use the GBASIS name as opposed to specifying each shell
individually (to be more precise, polarization and diffuse functions are
specified individually, but the ‘basic’ basis set will be abbreviated as
its GBASIS name, for example, as N31 or TZV). This makes it difficult to
remove core shells. There currently is no easy way to solve this – one ei-
ther will have to replace the abbreviation with the individual shells the
set consists of, or one should use an external basis set file which does
not use abbreviations from the start (hint: Firefly’s basis sets are avail-
able from the EMSL basis set exchange, though there is no guarantee that
they are exactly the same as the internal sets – be sure to verify this).

Finally, a word of caution: removing functions can of course change the
energy, gradient, and other properties of the system under investigation.
This should always be kept in mind when resolving a partial linear depend-
ence in such a way. For example, one should be careful comparing the ener-

- 75 -

gies of two isomers when one of the isomers has less functions than the
other.

Basis set superposition error (BSSE) correction

A problem inherent to the use of an incomplete basis set with fixed posi-
tions (i.e., with basis functions that are centered on the positions of the
nuclei) is that the situation can arise where basis functions positioned on
one part of the molecular system can be used in the description of other
parts of the molecular system. This situation, commonly referred to as ba-
sis set superposition error (BSSE), can cause problems as it artificially
lowers the total energy of the system, thus causing the calculated energy
to be incorrect. This is encountered most often when studying weak interac-
tions, such as van der Waals bonding, between separate molecules. Circum-
venting the BSSE problem is in practice difficult – as it is the result of
basis set incompleteness in combination with fixed positions for basis
functions, the only real solutions are to either a) use a basis set close
to the complete basis set limit, or b) use a delocalized basis set designed
to describe the system as a whole. Both of these solutions are impractical.
There are, however, a few ways to correct for the problem. These will be
discussed in this section.

The most simple correction that can be applied with Firefly is the counter-
poise correction scheme proposed by Boys and Bernardi[1]. In this scheme,
the energy error is evaluated by a set of separate energy calculations. Let
us, for example, consider a water dimer with water molecules 'A' and 'B'.
Because of BSSE, basis functions on A can be used in the description of B
and vice versa, causing the calculated total energy of the dimer A+B to be
too low. The counterpoise correction on the total energy of the dimer can
be obtained through four energy calculations. All of these use the geome-
tries of the two water molecules as they are in the dimer (so, one should
not reoptimize them). The four energy calculations are:

- the energy of A+B with a basis set on both molecules, but with ghost at-
oms specified for B; E(A)ab
- the energy of A+B with a basis set on both molecules, but with ghost at-
oms specified for A; E(B)ab
- the energy of A, using the geometry of A as in A+B; E(A)a
- the energy of B, using the geometry of B as in A+B; E(B)b

Here, a ghost atom is an atom with basis functions but without charge. A
ghost atom can be specified by adding a negative sign to the charge as is
shown in the example below (where the three atoms of water molecule B are
ghost atoms):

 O 8.0 -1.411087 -1.022605 -1.001415
 H 1.0 -2.196224 -0.454859 -1.004828
 H 1.0 -1.111711 -1.052794 -1.922420
 O -8.0 0.616682 0.473774 0.420136
 H -1.0 0.973421 -0.026190 1.167563
 H -1.0 -0.051557 -0.112528 0.012392

The use of COORD=UNIQUE in $CONTRL is highly recommended.

- 76 -

With the four energy calculations carried out, the correction itself can be
obtained as follows:

 Ecorr = E(A)ab - E(A)a + E(B)ab - E(B)b

Finally, the corrected energy of the dimer can then obtained as follows:

 E(AB)ab_corr = E(AB)ab + Ecorr

A second approach to correcting for BSSE is the so-called SCF-MI method
[2]. This method is a modification of the Roothaan equations that avoids
BSSE in intermolecular interaction calculations by expanding each monomer's
orbitals using only its own basis set. As a result, the resulting orbitals
are not orthogonal. The use of this method is triggered by the presence of
the $SCFMI group in the input. Its current implementation is limited to two
monomers and only works with restricted Hartree-Fock calculations. Energies
and gradients are available, analytical Hessians are not. Furthermore, this
type of calculation cannot be run in parallel.

An SCF-MI run requires that the following four keywords are specified:

 NA = number of doubly occupied MOs on fragment A
 NB = number of doubly occupied MOs on fragment B
 MA = number of basis functions on fragment A
 MB = number of basis functions on fragment B

Note that, in $DATA, all atoms of monomer A must be given before the atoms
of monomer B. Additional keywords belonging to the $SCFMI group are dis-
cussed in the list of keywords.

A third way of correcting for BSSE is to calculate the BSSE correction by
means of a Morokuma energy decomposition calculation[3]. This calculation
is requested by specifying RUNTYP=MOROKUMA in $CONTRL and MOROKM=.T. in
$MOROKM. In addition, BSSE=.T. and CTPSPL=.T. should be specified in the
$MOROKM. During a MOROKM=.T. decomposition, a basis set superposition error
is automatically generated by the RVS scheme. Note however that this is not
the full Boys counterpoise correction, as is explained in the reference.
More information on this type of calculation can be found in the section on
Morokuma energy decompositions.

(1) S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970)
(2) "Modification of Roothan Equations to Exclude BSSE from Molecular In-
teraction Calculations" E. Gianinetti, M. Raimondi, E. Tornaghi Int. J.
Quantum Chem. 60, 157 (1996)
(3) R.Cammi, R.Bonaccorsi, J.Tomasi Theoret.Chim.Acta 68, 271-283(1985) and
"Energy decomposition analysis for many-body interactions, and application
to water complexes" W.Chen, M.S.Gordon J.Phys.Chem. 100, 14316-14328(1996)

- 77 -

Starting orbitals

All methods in Firefly require the selection of a set of starting orbitals.
The selection of starting orbitals is controlled through the $GUESS input
group. The GUESS keyword selects the type of starting orbitals.

GUESS=HUCKEL (the default for all runs except restarts) and GUESS=HCORE
select methods that automatically generate starting orbitals. HUCKEL per-
forms an extended Hückel calculation using a Huzinaga MINI-1 basis that is
projected onto the current basis set, and is available for all elements up
to Rn. With HCORE, the one electron Hamiltonian is diagonalized in order to
obtain the initial guess, a method that can be used for any element. In
general, HUCKEL works better, but HCORE might give better results for sys-
tems containing transition metals. This is because HUCKEL does not always
treat ECPs on transition metals properly.

Orbitals from earlier calculations can be used through GUESS=MOREAD,
GUESS=MOSAVED, GUESS=RDMINI, or GUESS=SKIP. MOREAD requests that the start-
ing orbitals are read in from the input file (from a $VEC group). MOSAVED
requests that orbitals are read in from the DICTNRY file of an earlier run;
this value of GUESS is the default for restarts. RDMINI can be used to read
in the $VEC deck from a converged calculation that used GBASIS=MINI without
any polarization functions, and project these orbitals onto the current
basis. Note that this option should not be used if the current basis in-
volves ECP basis sets. Finally, SKIP skips the initial orbitals selection.
Instead, Firefly will assume that the initial orbitals and density matrix
are in the DICTNRY file.

All GUESS types except SKIP carry out an orthonormalization of the orbit-
als, and generate the correct initial density matrix. However, the initial
density matrix cannot be generated for CI and MCSCF calculations, so prop-
erty restarts for these wavefunctions will require 'SKIP'. Other possible
uses for SKIP are for a EXETYP=CHECK job, or a RUNTYP=HESSIAN job where the
Hessian is supplied. Apart from these scenarios, SKIP is a seldom used op-
tion (that may not always work correctly).

Note that all GUESS types (again except SKIP) permit reordering of the or-
bitals through the NORDER and IORDER keywords. NORDER is used to enable the
reordering (through NORDER=1) while IORDER is an array that supplies reor-
dering instructions. As an example, if one would like to switch the posi-
tions of orbitals 9 and 11, the reordering instructions can be as follows:

NORDER=1 IORDER(9)=11,10,9

Alternatively, one could also write

NORDER=1 IORDER(9)=11 IORDER(11)=9

Finally, it is possible to give the above reorder instructions as:

- 78 -

IORDER(9)=-11 or IORDER(11)=-9

which have the same effect.

For UHF orbitals, the IORDER keyword pertains to the alpha orbitals only.
Reordering of the beta orbitals can be specified with the JORDER keyword.

Finally, it should be noted that it is possible to project orbitals ob-
tained with a small basis set upon a larger basis set. This is achieved
through the EXTRA keyword which instructs Firefly that the larger basis has
extra functions. The NEXTRA keyword in $EXTRAF should hereby be used to
provide projection instructions.

An example of projection onto a larger basis is given below for a RHF cal-
culation on water. Here, the orbitals of a converged calculation with the
cc-pVDZ basis are projected onto an aug-cc-pVDZ basis. The NEXTRA keyword
provides a list of the number of Cartesian functions that will be added for
each atom (where atom 1 is oxygen, atom 2 is hydrogen, etc.). In the case
of symmetry, this array should still be specified for all atoms, as if the
point group is set as C1.

In this example, Firefly is instructed that 10 Cartesian functions will be
added for oxygen (s, p, and d) and 4 will be added for hydrogen (s and p).
Note that, despite the D5=.T. option (which enables the use of spherical
functions), 6 functions are requested for the oxygen’s d function. This is
because Firefly does not explicitly work with spherical basis functions –
it works with Cartesian components but limits the entire Cartesian AO space
to its pure spherical subspace. In other words, in the case of a d func-
tion, all six Cartesian functions are required to form five spherical func-
tions.

 $CONTRL SCFTYP=RHF D5=.T. $END
 $SYSTEM TIMLIM=1 MEMORY=500000 $END

 $GUESS GUESS=MOREAD NORB=25 EXTRA=.T. $END
 $EXTRAF NEXTRA(1)=10,4,4 $END

 $DATA
RHF/aug-cc-pVDZ run that uses converged RHF/cc-pVDZ orbitals
CNV 2

 O 8.0 0.0000000000 0.0000000000 0.7205815395
 S 8
 1 11720.00000 0.710000000E-03
 2 1759.00000 0.547000000E-02
 3 400.80000 0.278370000E-01
 4 113.70000 0.104800000
 5 37.03000 0.283062000
 6 13.27000 0.448719000
 7 5.02500 0.270952000
 8 1.01300 0.154580000E-01
 S 8

- 79 -

 1 11720.0000 -0.160000000E-03
 2 1759.0000 -0.126300000E-02
 3 400.80000 -0.626700000E-02
 4 113.70000 -0.257160000E-01
 5 37.03000 -0.709240000E-01
 6 13.27000 -0.165411000
 7 5.02500 -0.116955000
 8 1.01300 0.557368000
 S 1
 1 0.30230 1.000000000
 P 3
 1 17.70000 0.430180000E-01
 2 3.85400 0.228913000
 3 1.04600 0.508728000
 P 1
 1 0.27530 1.000000000
 D 1
 1 1.18500 1.000000000
 S 1
 1 0.07896 1.000000000
 P 1
 1 0.06856 1.000000000
 D 1
 1 0.33200 1.000000000

 H 1.0 0.0000000000 0.7565140024 0.1397092302
 S 3
 1 13.01000 0.196850000E-01
 2 1.96200 0.137977000
 3 0.44460 0.478148000
 S 1
 1 0.12200 1.000000000
 P 1
 1 0.72700 1.000000000
 S 1
 1 0.02974 1.000000000
 P 1
 1 0.14100 1.000000000

 $END
 $VEC
---orbitals from a converged RHF/cc-pVDZ run---
 $END

In addition, it is possible to reduce the basis set size by removing func-
tions. This can be requested with the DELETE keyword in $GUESS. The DELIST
keyword in $AODEL should hereby be used to specify deletion instructions.

- 80 -

General accuracy switches

There are a few accuracy options that are universal amongst all calculation
types. These are discussed in this chapter.

First of all, the choice of integral code is controlled by two keywords the
in $CONTRL group: INTTYP and FSTINT. INTTYP selects the integral routine
that is used by the 'old' parts of Firefly’s code. Two values are possible,
namely INTTYP=POPLE and INTTYP=HONDO. POPLE (the default) selects the use
of fast Pople-Hehre routines for s, p, and sp integrals whereby HONDO/Rys
code is used for all other integrals. HONDO selects the use of the HON-
DO/Rys code for all integrals. HONDO is somewhat slower than POPLE, but it
is also more accurate.

There are a number of scenarios where the use of HONDO is important because
POPLE can lead to inaccurate results. One such a scenarios is when diffuse
functions are used, as the error in SCF (meaning anything from RHF to
MCSCF) energies with POPLE is generally small, but the error in computa-
tions that occupy the virtual orbitals may be much larger. In fact, energy
errors up to 1D-4 Hartree have been observed for MP2 energy calculations
when diffuse functions were used. It is thus recommended to set
INTTYP=HONDO for any calculation that uses diffuse functions. A second sce-
nario where the use of INTTYP=HONDO is recommended is in case of a partial
linear dependence in the basis.

The FSTINT keyword can be used to select to select the fastints/gencon
code, which is a new, faster integral code available for direct runs only.
It can be set for many calculation types (for a list, see the Performance
chapter) and has an accuracy similar to INTTYP=HONDO, but has not been in-
corporated throughout all of Firefly yet. That means that many methods that
use fastints/gencon will occasionally use the old code specified by INTTYP.
As a result, for these runs, INTTYP still remains a relevant keyword and
INTTYP=HONDO is still recommended for the scenarios mentioned above.

Then, two other important keywords of the $CONTRL group are ICUT, the cut-
off used in deciding which integrals to discard, and ITOL, the cutoff used
in deciding which primitives to skip. The default value for ICUT is 9,
which is usually fine but not high enough in cases that require a higher
accuracy. For such cases, we recommend to increase ICUT to 11 or higher.
The standard value of ITOL is 20. As with ICUT, it is possible to increase
ITOL for cases in which a higher accuracy is required. However, in our ex-
perience ITOL is much less important than ICUT. Therefore, it is typically
not necessary to change ITOL’s default value.

The choice of diagonalization routine can be specified by the KDIAG keyword
(in $SYSTEM and/or in $GUESS). More information on this can be found in the
performance chapter.

Accuracy options specific to each method (SCF, MCSCF, CI, etc.) are dis-
cussed in the chapters corresponding to these methods.

- 81 -

Semi-empirical methods

Introduction

Semi-empirical methods are based on Hartree-Fock theory, but strive to re-
duce the computational cost of Hartree-Fock calculations by simplifying the
quantum mechanical problem. This is achieved through a number of ways.
First, the number of basis functions is reduced by only treating the va-
lence electrons explicitly, hereby using a minimal Slater-type orbitals
basis set. A second important approximation is the Zero Differential Over-
lap (ZDO) approximation, an approach in which various small two-electron
repulsion integrals are neglected.

Through these simplifications, semi-empirical calculations run significant-
ly faster than Hartree-Fock calculations though, obviously, at the cost of
accuracy. To compensate for the loss of accuracy, semi-empirical methods
use parameters which are based on experimental data or quantum mechanical
calculations. At present, various semi-empirical methods exist, which dif-
fer in which integrals are neglected and what parameters are used.

One popular program for semi-empirical quantum chemistry calculations is
MOPAC, written by J. Stewart. To allow semi-empirical calculations to be
carried out with Firefly, Firefly contains parts of the MOPAC 6.0 program.
The quantum mechanical nature of semi-empirical theory actually makes it
quite compatible with the ab initio methodology in Firefly. As a result,
very little of the MOPAC code has actually been incorporated. The part that
has been incorporated is the code that evaluates:

1) the one- and two-electron integrals,
2) the two-electron part of the Fock matrix,
3) the Cartesian energy derivatives, and
4) the ZDO atomic charges and molecular dipole.

Everything else is Firefly: coordinate input (including point group sym-
metry), the SCF convergence procedures, the matrix diagonalizer, the geome-
try searcher, the numerical Hessian driver, and so on. Therefore, the out-
put will look mostly like “regular” Firefly output. Semi-empirical methods
will however not work with every option in Firefly. It is currently only
possible to use RHF, UHF, and ROHF type wavefunctions in any combination
with RUNTYP=ENERGY, GRADIENT, OPTIMIZE, SADPOINT, HESSIAN, and IRC (whereby
HESSIAN runs use numerical finite differencing instead of calculating the
Hessian analytically). In addition, it is possible to use GVB wavefunc-
tions, though this method currently lacks analytical gradients. It should
be noted that the CI and half electron methods present in MOPAC are not
supported.

The use of empirical parameters gives semi-empirical theory the potential
to be more accurate than Hartree-Fock theory, a potential that is frequent-
ly realized by some of the more recently proposed methods. It should be
stressed though that semi-empirical methods are not nearly as robust as ab
initio or DFT methods and can perform extremely poorly with more complex
systems. As a tip, one good question to ask before using a semi-empirical
method is "How well is my system modeled with an ab initio minimal basis

- 82 -

sets, such as STO-3G?". If the answer is "not very well" there is a good
chance that a semi-empirical description is poor.

On the flipside, semiempirical calculations are very fast. Actually, one of
the motives for the MOPAC implementation within Firefly is to take ad-
vantage of this speed. Semiempirical models can rapidly provide reasonable
starting geometries for ab initio or DFT optimizations. Also, a semiempiri-
cal Hessian can be obtained at virtually no computational cost and is very
useful as a starting Hessian for a geometry optimization (much better than
a guessed Hessian, and often almost as useful as a Hessian calculated at a
higher level). Simply use HESS=READ in $STATPT to read a semi-empirically
obtained $HESS group in at the start of an ab initio or DFT geometry opti-
mization.

Available methods

Using a semi-empirical method in Firefly is extremely simple. All one needs
to do is specify GBASIS=MNDO, AM1, PM3, or RM1 in the $BASIS group. This
not only picks a particular Slater orbital basis, but it also selects a
particular "Hamiltonian", namely a particular parameter set. Note that re-
questing one of these methods causes all other keywords in $BASIS to be
ignored (as they have no function).

Information on the four individual methods is given below.

MNDO

The MNDO, or Modified Neglect of Differential Overlap, method was developed
by Dewar and Thiel and published in 1977. MNDO has a number of limitations,
one of the most important ones being that it calculates the repulsion be-
tween two atom 2 to 3 Ångstroms apart as too high. As a result, it does not
perform well for modeling hydrogen bonds and calculating activation ener-
gies. Nowadays, it has been surpassed by newer methods with respect to ac-
curacy.

AM1

The AM1, or Austin Model 1, method was developed by Dewar and coworkers,
and published in 1985. It improves upon the MNDO method by using Gaussian
functions to improve the core-core interaction function and by being re-
parameterized. As a result, it is overall more accurate than the MNDO meth-
od.

PM3

Parametric Model 3 was developed by J. Stewart and published in 1989. It is
very similar to the AM1 method, the most important difference being that it
uses different, more optimized parameters. It usually outperforms the MNDO
and AM1 methods with respect to accuracy, though there are cases where AM1
still performs better.

RM1

- 83 -

Recife Model 1 was developed by J. Stewart and coworkers and published in
2006. It is a re-parameterized version of AM1 with the intent of improving
its accuracy for organic molecules and biochemical systems. For these sys-
tems, it is generally more accurate than AM1 and PM3.

The above four methods can be used for the following elements. Note that
for MNDO, Na and K are so-called "sparkles". This means that a basis is
defined for these atoms have a basis set, however, it is not used in any
calculations.

 For MNDO

H

Li Be B C N O F

Na' Mg Al Si P S Cl

K' Ca ... Cr ... Zn * Ge * * Br

* * * * Sn * * I

* * Hg * Pb * * *

(' = sparkle)

 For AM1:
H

Li' Be' B C N O F

Na Mg Al Si P S Cl

K Ca Zn * Ge * * Br

* * * * * * * I

* * Hg * * * * *

(' = MNDO parameters are used)

- 84 -

For PM3

H

Li Be * C N O F

Na Mg Al Si P S Cl

K Ca Zn Ga Ge As Se Br

* * Cd In Sn Sb Te I

* * Hg Tl Pb Bi * *

For RM1

H

Li' Be' B" C N O F

Na" Mg" Al" Si" P S Cl

K" Ca" Zn" * Ge" * * Br

* * * * * * * I

* * Hg" * * * * *

(' = MNDO parameters are used)
(" = AM1 parameters are used)

The AM1 and RM1 methods use parameters from other methods for some ele-
ments. Use this with caution – mixing parameters from different methods has
not been fully tested and is therefore not recommended.

- 85 -

Hartree-Fock

Introduction

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Four SCF wavefunction methods are present in Firefly: restricted Hartree-
Fock (RHF), unrestricted Hartree-Fock (UHF), restricted-open Hartree-Fock
(ROHF), and generalized valence bond (GVB). This chapter discusses RHF,
UHF, and ROHF, as well as direct vs conventional runs and options pertain-
ing to the convergence procedure. GVB is discussed in a separate chapter.

RHF, UHF, and ROHF all have an intrinsic N4 time dependence, because they
are all driven by integrals in the AO basis. Analytic gradients are imple-
mented for all three, and therefore numerical Hessians are also available
for each. Analytic Hessian calculations are implemented for RHF, ROHF, but
not for UHF. Analytic Hessians are more accurate, and computed much more
quickly than numerical Hessians, but require additional disk storage to
perform the integral transformation, and also more physical memory.

Restricted Hartree-Fock

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Restricted HF calculations are requested with SCFTYP=RHF in the $CONTRL
group.

Unrestricted Hartree-Fock

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Restricted HF calculations are requested with SCFTYP=UHF in the $CONTRL
group. The multiplicity of the system can be controlled with the MULT key-
word, also of $CONTRL.

Restricted-open Hartree-Fock

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Open shell SCF calculations in Firefly can be performed by both the ROHF
code and the GVB code. Note that when the GVB code is executed with no

- 86 -

pairs, the run is NOT a true GVB run, and should be referred to in publica-
tions and discussion as a ROHF calculation.

The ROHF module in Firefly can handle any number of open shell electrons,
provided these have a high spin coupling. Some commonly occurring cases
are:

one open shell, doublet:

 $CONTRL SCFTYP=ROHF MULT=2 $END

two open shells, triplet:
 $CONTRL SCFTYP=ROHF MULT=3 $END

m open shells, high spin:

 $CONTRL SCFTYP=ROHF MULT=m+1 $END

The Fock matrix in the MO basis has the form

 closed open virtual
 closed F2 | Fb | (Fa+Fb)/2

 open Fb | F1 | Fa

 virtual (Fa+Fb)/2 | Fa | F0

where Fa and Fb are the usual alpha and beta Fock matrices any UHF program
produces. The Fock operators for the doubly, singly, and zero occupied
blocks can be written as

F2 = Acc*Fa + Bcc*Fb
F1 = Aoo*Fa + Boo*Fb
F0 = Avv*Fa + Bvv*Fb

Some choices found in the literature for these canonicalization coeffi-
cients are

 Acc Bcc Aoo Boo Avv Bvv
 Guest and Saunders 1/2 1/2 1/2 1/2 1/2 1/2
 Roothaan single matrix -1/2 3/2 1/2 1/2 3/2 -1/2
 Davidson 1/2 1/2 1 0 1 0
 Binkley, Pople, Dobosh 1/2 1/2 1 0 0 1
 McWeeny and Diercksen 1/3 2/3 1/3 1/3 2/3 1/3
 Faegri and Manne 1/2 1/2 1 0 1/2 ½

The choice of the diagonal blocks is arbitrary, as ROHF is converged when
the off diagonal blocks go to zero. The exact choice for these blocks can
however have an effect on the convergence rate. This choice also affects
the MO coefficients, and orbital energies, as the different choices produce
different canonical orbitals within the three subspaces. All methods, how-

- 87 -

ever, will give identical total wavefunctions, and hence identical proper-
ties such as gradients and Hessians.

The default coupling case in Firefly is the Roothaan single matrix set. If
one would like to try any other canonicalizations, the Acc, Aoo, Avv and
Bcc, Boo, Bvv parameters can be input as the first three elements of ALPHA
and BETA in $SCF.

Direct vs conventional

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Direct SCF is implemented for every possible HF type calculation. The di-
rect SCF method may not be used with DEM convergence. Direct SCF may be
used during energy, gradient, numerical or analytic Hessian, CI or MP2 en-
ergy correction, or localized orbitals computations.

Normally, HF calculations proceed by evaluating a large number of two elec-
tron repulsion integrals, and storing these on a disk. This integral file
is read back in during each HF iteration to form the appropriate Fock oper-
ators. In a direct HF, the integrals are not stored on disk, but are in-
stead reevaluated during each HF iteration. The default for DIRSCF in $SCF
is .FALSE.

You can estimate the disk storage requirements for conventional HF using a
P or PK file by the following formulae:

nint = 1/sigma * 1/8 * N**4
Mbytes = nint * x / 1024**2

Here N is the total number of basis functions in your run, which you can
learn from an EXETYP=CHECK run. The 1/8 accounts for permutational symmetry
within the integrals. Sigma accounts for the point group symmetry, and is
difficult to estimate accurately. Sigma cannot be smaller than 1, in no
symmetry (C1) calculations. For benzene, sigma would be almost six, since
you generate 6 C's and 6 H's by entering only 1 of each in $DATA. For water
sigma is not much larger than one, since most of the basis set is on the
unique oxygen, and the C2v symmetry applies only to the H atoms. The factor
x is 12 bytes per integral for RHF, and 20 bytes per integral for ROHF,
UHF, and GVB. Finally, since integrals very close to zero need not be
stored on disk, the actual power dependence is not as bad as N**4, and in
fact in the limit of very large molecules can be as low as N**2. Thus plug-
ging in sigma=1 should give you an upper bound to the actual disk space
needed. If the estimate exceeds your available disk storage, your only re-
course is direct HF.

What are the economics of direct HF? Naively, if we assume the run takes 10
iterations to converge, we must spend 10 times more CPU time doing the in-
tegrals on each iteration. However, we do not have to waste any CPU time
reading blocks of integrals from disk, or in unpacking their indices. We

- 88 -

also do not have to waste any wall clock time waiting for a relatively slow
mechanical device such as a disk to give us our data.

There are some less obvious savings too, as first noted by Almlof. First,
since the density matrix is known while we are computing integrals, we can
use the Schwarz inequality to avoid doing some of the integrals. In a con-
ventional SCF this inequality is used to avoid doing small integrals. In a
direct SCF it can be used to avoid doing integrals whose contribution to
the Fock matrix is small (density times integral=small). Secondly, we can
form the Fock matrix by calculating only its change since the previous it-
eration. The contributions to the change in the Fock matrix are equal to
the change in the density times the integrals. Since the change in the den-
sity goes to zero as the run converges, we can use the Schwarz screening to
avoid more and more integrals as the calculation progresses. The input op-
tion FDIFF in $SCF selects formation of the Fock operator by computing only
its change from iteration to iteration. The FDIFF option is not implemented
for GVB since there are too many density matrices from the previous itera-
tion to store, but is the default for direct RHF, ROHF, and UHF.

So, in our hypothetical 10 iteration case, we do not spend as much as 10
times more time in integral evaluation. Additionally, the run as a whole
will not slow down by whatever factor the integral time is increased. A
direct run spends no additional time summing integrals into the Fock opera-
tors, and no additional time in the Fock diagonalizations. So, generally
speaking, a RHF run with 10-15 iterations will slow down by a factor of 2-4
times when run in direct mode. The energy gradient time is unchanged by
direct HF, and this is a large time compared to HF energy, so geometry op-
timizations will be slowed down even less. This is really the converse of
Amdahl's law: if you slow down only one portion of a program by a large
amount, the entire program slows down by a much smaller factor.

Convergence options

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Generally speaking, the simpler the function, the better its convergence.
In our experience, the majority of RHF, ROHF, and UHF runs will converge
readily from GUESS=HUCKEL. GVB runs typically require GUESS=MOREAD, alt-
hough the Hückel guess usually works for NPAIR=0. RHF convergence is the
best, closely followed by ROHF. In the current implementation in Firefly,
ROHF is always better convergent than the closely related unrestricted high
spin UHF. GVB calculations require much more care, and cases with NPAIR
greater than one are particularly difficult.

Unfortunately, not all HF runs converge readily. The best way to improve
your convergence is to provide better starting orbitals! In many cases,
this means to MOREAD orbitals from a simpler HF case. For example, if you
want to do a doublet ROHF, and the HUCKEL guess does not seem to converge,
try to do an RHF calculation on the +1 cation. RHF is typically more stable
than ROHF, UHF, or GVB, and cations are usually readily convergent. Then

- 89 -

MOREAD the cation's orbitals into the neutral calculation which you wanted
to do at first.

GUESS=HUCKEL does not always guess the correct electronic configuration. It
may be useful to use PRTMO in $GUESS during a EXETYP=CHECK run to examine
the starting orbitals, and then reorder them with NORDER if that seems ap-
propriate.

Of course, by default Firefly uses the convergence procedures which are
usually most effective. Still, there are cases which are difficult, so the
$SCF group permits you to select several alternative methods for improving
convergence. Briefly, these are:

EXTRAP. This extrapolates the three previous Fock matrices, in an attempt
to jump ahead a bit faster. This is the most powerful of the old-fashioned
accelerators, and normally should be used at the beginning of any SCF run.
When an extrapolation occurs, the counter at the left of the SCF printout
is set to zero.

DAMP. This damps the oscillations between several successive Fock matrices.
It may help when the energy is seen to oscillate wildly. Thinking about
which orbitals should be occupied initially may be an even better way to
avoid oscillatory behaviour.

SHIFT. This shifts the diagonal elements of the virtual part of the Fock
matrix up, in an attempt to uncouple the unoccupied orbitals from the occu-
pied ones. At convergence, this has no effect on the orbitals, just their
orbital energies, but will produce different (and hopefully better) orbit-
als during the iterations.

RSTRCT. This limits mixing of the occupied orbitals with the empty ones,
especially the flipping of the HOMO and LUMO to produce undesired electron-
ic configurations or states. This should be used with caution, as it makes
it very easy to converge on incorrect electronic configurations, especially
if DIIS is also used. If you use this, be sure to check your final orbital
energies to see if they are sensible. A lower energy for an unoccupied or-
bital than for one of the occupied ones is a sure sign of problems.

DIIS. Direct Inversion in the Iterative Subspace is a modern method, due to
Pulay, using stored error and Fock matrices from a large number of previous
iterations to interpolate an improved Fock matrix. This method was devel-
oped to improve the convergence at the final stages of the SCF process, but
turns out to be quite powerful at forcing convergence in the initial stages
of SCF as well. By giving ETHRSH as 10.0 in $SCF, you can practically guar-
antee that DIIS will be in effect from the first iteration. The default is
set up to do a few iterations with conventional methods (extrapolation)
before engaging DIIS. This is because DIIS can sometimes converge to solu-
tions of the SCF equations that do not have the lowest possible energy. For
example, the 3-A-2 small angle state of SiLi2 (see M.S.Gordon and
M.W.Schmidt, Chem.Phys.Lett., 132, 294-8(1986)) will readily converge with
DIIS to a solution with a reasonable S**2, and an energy about 25 milli-
Hartree above the correct answer. A SURE SIGN OF TROUBLE WITH DIIS IS WHEN
THE ENERGY RISES TO ITS FINAL VALUE. However, if you obtain orbitals at one
point on a PES without DIIS, the subsequent use of DIIS with MOREAD will

- 90 -

probably not introduce any problems. Because DIIS is quite powerful, EX-
TRAP, DAMP, and SHIFT are all turned off once DIIS begins to work. DEM and
RSTRCT will still be in use, however.

SOSCF. Approximate second-order (quasi-Newton) SCF orbital optimization.
SOSCF will converge about as well as DIIS at the initial geometry, and
slightly better at subsequent geometries. There's a bit less work solving
the SCF equations, too. The method kicks in after the orbital gradient
falls below SOGTOL. Some systems, particularly transition metals with ECP
basis sets, may have Huckel orbitals for which the gradient is much larger
than SOGTOL. In this case it is probably better to use DIIS instead, with a
large ETHRSH, rather than increasing SOGTOL, since you may well be outside
the quadratic convergence region. SOSCF does not exhibit true second-order
convergence since it uses an approximation to the inverse Hessian. SOSCF
will work for MOPAC runs, but is slower in this case. SOSCF will work for
UHF, but the convergence is slower than DIIS. SOSCF will work for non-
Abelian ROHF cases, but may encounter problems if the open shell is degen-
erate.

DEM. Direct energy minimization should be your last recourse. It explores
the "line" between the current orbitals and those generated by a conven-
tional change in the orbitals, looking for the minimum energy on that line.
DEM should always lower the energy on every iteration, but is very time
consuming, since each of the points considered on the line search requires
evaluation of a Fock operator. DEM will be skipped once the density change
falls below DEMCUT, as the other methods should then be able to affect fi-
nal convergence. While DEM is working, RSTRCT is held to be true, regard-
less of the input choice for RSTRCT. Because of this, it behooves you to be
sure that the initial guess is occupying the desired orbitals. DEM is
available only for RHF. The implementation in Firefly resembles that of R.
Seeger and J. A. Pople, J. Chem. Phys. 65, 265-271 (1976). Simultaneous use
of DEM and DIIS resembles the ADEM-DIOS method of H. Sellers, Chem. Phys.
Lett. 180, 461-465 (1991). DEM does not work with direct SCF.

- 91 -

General valence bond

Introduction

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Just as RHF, UHF, and ROHF, GVB wavefunctions have an intrinsic N4 time
dependence. Analytic gradients are implemented, and therefore numerical
Hessians are also available for each. Analytic Hessian calculations are
implemented only GVB cases with NPAIR=0 or NPAIR=1. Information on the con-
vergence accelerators and conventional vs direct runs can be found in the
chapter on Hartree-Fock.

Open-shell SCF with GVB

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Genuine GVB-PP runs will be discussed later in this Section. First, we will
consider how to do open shell SCF with the GVB part of the program.

It is possible to do other open shell cases with the GVB code, which can
handle the following cases:

one open shell, doublet:
 $CONTRL SCFTYP=GVB MULT=2 $END
 $SCF NCO=xx NSETO=1 NO(1)=1 $END
two open shells, triplet:
 $CONTRL SCFTYP=GVB MULT=3 $END
 $SCF NCO=xx NSETO=2 NO(1)=1,1 $END
two open shells, singlet:
 $CONTRL SCFTYP=GVB MULT=1 $END
 $SCF NCO=xx NSETO=2 NO(1)=1,1 $END

Note that the first two cases duplicate runs which the ROHF module can do
better. Note that all of these cases are really ROHF, since the default
for NPAIR in $SCF is 0.

Many open shell states with degenerate open shells (for example, in diatom-
ic molecules) can be treated as well.

If you would like to do any cases other than those shown above, you must
derive the coupling coefficients ALPHA and BETA, and input them with the
occupancies F in the $SCF group.

Mariusz Klobukowski of the University of Alberta has shown how to obtain
coupling coefficients for the GVB open shell program for many such open

- 92 -

shell states. These can be derived from the values in Appendix A of the
book "A General SCF Theory" by Ramon Carbo and Josep M. Riera, Springer-
Verlag (1978). The basic rule is

 (1) F(i) = 1/2 * omega(i)
 (2) ALPHA(i) = alpha(i)
 (3) BETA(i) = - beta(i),

where omega, alpha, and beta are the names used by Ramon in his Tables.

The variable NSETO should give the number of open shells, and NO should
give the degeneracy of each open shell. Thus the 5-S state of carbon would
have NSETO=2, and NO(1)=1,3.

Some specific examples, for the lowest term in each of the atomic P**N con-
figurations are

! p**1 2-P state
 $CONTRL SCFTYP=GVB MULT=2 $END
 $SCF NCO=xx NSETO=1 NO=3 COUPLE=.TRUE.
 F(1)= 1.0 0.16666666666667
 ALPHA(1)= 2.0 0.33333333333333 0.00000000000000
 BETA(1)= -1.0 -0.16666666666667 -0.00000000000000 $END

! p**2 3-P state
 $CONTRL SCFTYP=GVB MULT=3 $END
 $SCF NCO=xx NSETO=1 NO=3 COUPLE=.TRUE.
 F(1)= 1.0 0.333333333333333
 ALPHA(1)= 2.0 0.66666666666667 0.16666666666667
 BETA(1)= -1.0 -0.33333333333333 -0.16666666666667 $END

! p**3 4-S state
 $CONTRL SCFTYP=ROHF MULT=4 $END

! p**4 3-P state
 $CONTRL SCFTYP=GVB MULT=3 $END
 $SCF NCO=xx NSETO=1 NO=3 COUPLE=.TRUE.
 F(1)= 1.0 0.66666666666667
 ALPHA(1)= 2.0 1.33333333333333 0.83333333333333
 BETA(1)= -1.0 -0.66666666666667 -0.50000000000000 $END

! p**5 2-P state
 $CONTRL SCFTYP=GVB MULT=2 $END
 $SCF NCO=xx NSETO=1 NO=3 COUPLE=.TRUE.
 F(1)= 1.0 0.83333333333333
 ALPHA(1)= 2.0 1.66666666666667 1.33333333333333
 BETA(1)= -1.0 -0.83333333333333 -0.66666666666667 $END

 Be sure to give all the digits, as these are part of a double precision
energy formula.

- 93 -

Coupling constants for d**N configurations are

! d**1 2-D state
 $CONTRL SCFTYP=GVB MULT=2 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.1
 ALPHA(1)= 2.0, 0.20, 0.00
 BETA(1)=-1.0,-0.10, 0.00 $END

! d**2 average of 3-F and 3-P states
 $CONTRL SCFTYP=GVB MULT=3 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.2
 ALPHA(1)= 2.0, 0.40, 0.05
 BETA(1)=-1.0,-0.20,-0.05 $END

! d**3 average of 4-F and 4-P states
 $CONTRL SCFTYP=GVB MULT=4 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.3
 ALPHA(1)= 2.0, 0.60, 0.15
 BETA(1)=-1.0,-0.30,-0.15 $END

! d**4 5-D state
 $CONTRL SCFTYP=GVB MULT=5 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.4
 ALPHA(1)= 2.0, 0.80, 0.30
 BETA(1)=-1.0,-0.40,-0.30 $END

! d**5 6-S state
 $CONTRL SCFTYP=ROHF MULT=6 $END

! d**6 5-D state
 $CONTRL SCFTYP=GVB MULT=5 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.6
 ALPHA(1)= 2.0, 1.20, 0.70
 BETA(1)=-1.0,-0.60,-0.50 $END

! d**7 average of 4-F and 4-P states
 $CONTRL SCFTYP=GVB MULT=4 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.7
 ALPHA(1)= 2.0, 1.40, 0.95
 BETA(1)=-1.0,-0.70,-0.55 $END

! d**8 average of 3-F and 3-P states
 $CONTRL SCFTYP=GVB MULT=3 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.8
 ALPHA(1)= 2.0, 1.60, 1.25
 BETA(1)=-1.0,-0.80,-0.65 $END

! d**9 2-D state
 $CONTRL SCFTYP=GVB MULT=2 $END
 $SCF NCO=xx NSETO=1 NO=5 COUPLE=.TRUE. F(1)=1.0,0.9
 ALPHA(1)= 2.0, 1.80, 1.60
 BETA(1)=-1.0,-0.90,-0.80 $END

- 94 -

The source for these values is R.Poirier, R.Kari, and I.G.Csizmadia's book
"Handbook of Gaussian Basis Sets", Elsevier, Amsterdam, 1985.

Note that Firefly can do a proper calculation on the ground terms for the
d**2, d**3, d**7, and d**8 configurations only by means of state averaged
MCSCF. For d**8, use

 $CONTRL SCFTYP=MCSCF MULT=3 $END
 $DRT GROUP=C1 FORS=.TRUE. NMCC=xx NDOC=3 NALP=2 $END
 $GUGDIA NSTATE=10 $END
 $GUGDM2 WSTATE(1)=1,1,1,1,1,1,1,0,0,0 $END

Open shell cases such as s**1,d**n are probably most easily tackled with
the state-averaged MCSCF program.

True GVB perfect pairing runs

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

True GVB runs are obtained by choosing NPAIR nonzero. If you wish to have
some open shell electrons in addition to the geminal pairs, you may add the
pairs to the end of any of the GVB coupling cases shown above. The GVB mod-
ule assumes that you have reordered your MOs into the order: NCO double
occupied orbitals, NSETO sets of open shell orbitals, and NPAIR sets of
geminals (with NORDER=1 in the $GUESS group).

Each geminal consists of two orbitals and contains two singlet coupled
electrons (perfect pairing). The first MO of a geminal is probably heavily
occupied (such as a bonding MO u), and the second is probably weakly occu-
pied (such as an antibonding, correlating orbital v). If you have more than
one pair, you must be careful that the initial MOs are ordered u1, v1, u2,
v2..., which is -NOT- the same order that RHF starting orbitals will be
found in. Use NORDER=1 to get the correct order.

These pair wavefunctions are actually a limited form of MCSCF. GVB runs are
much faster than MCSCF runs, because the natural orbital u,v form of the
wavefunction permits a Fock operator based optimization. However, conver-
gence of the GVB run is by no means assured. The same care in selecting the
correlating orbitals that you would apply to an MCSCF run must also be used
for GVB runs. In particular, look at the orbital expansions when choosing
the starting orbitals, and check them again after the run converges.

GVB runs will be carried out entirely in orthonormal natural u,v form, with
strong orthogonality enforced on the geminals. Orthogonal orbitals will
pervade your thinking in both initial orbital selection, and the entire
orbital optimization phase (the CICOEF values give the weights of the u,v
orbitals in each geminal). However, once the calculation is converged, the
program will generate and print the nonorthogonal, generalized valence bond
orbitals. These GVB orbitals are an entirely equivalent way of presenting
the wavefunction, but are generated only after the fact.

- 95 -

Convergence of true GVB runs is by no means as certain as convergence of
RHF, UHF, ROHF, or GVB with NPAIR=0. You can assist convergence by doing a
preliminary RHF or ROHF calculation, and use these orbitals for
GUESS=MOREAD. Few, if any, GVB runs with NPAIR non-zero will converge with-
out using GUESS=MOREAD. Generation of MVOs during the prelimnary SCF can
also be advantageous. In fact, all the advice outlined for MCSCF computa-
tions below is germane, for GVB-PP is a type of MCSCF computation.

The total number of electrons in the GVB wavefunction is given by the fol-
lowing formula:

NE = 2*NCO + sum 2*F(i)*NO(i) + 2*NPAIR

The charge is obtained by subtracting the total number of protons given in
$DATA. The multiplicity is implicit in the choice of alpha and beta con-
stants. Note that ICHARG and MULT must be given correctly in $CONTRL any-
way, as the number of electrons from this formula is double checked against
the ICHARG value.

The special case of TCSCF

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

The wavefunction with NSETO=0 and NPAIR=1 is called GVB-PP(1) by Goddard,
two configuration SCF (TCSCF) by Schaefer or Davidson, and CASSCF with two
electrons in two orbitals by others. Note that this is just semantics, as
these are all identical. This is a very important type of wavefunction, as
TCSCF is the minimum acceptable treatment for singlet biradicals. The TCSCF
wavefunction can be obtained with SCFTYP=MCSCF, but it is usually much
faster to use the Fock based SCFTYP=GVB. Because of its importance, the
TCSCF function (if desired, with possible open shells) permits analytic
Hessian computation.

A caution about symmetry

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Caution! Some exotic calculations with the GVB program do not permit the
use of symmetry. The symmetry algorithm in Firefly was "derived assuming
that the electronic charge density transforms according to the completely
symmetric representation of the point group", Dupuis/King, JCP, 68, 3998
(1978). This may not be true for certain open shell cases, and in fact dur-
ing GVB runs, it may not be true for closed shell singlet cases!

First, consider the following correct input for the singlet-delta state of
NH:
 $CONTRL SCFTYP=GVB NOSYM=1 $END
 $SCF NCO=3 NSETO=2 NO(1)=1,1 $END

- 96 -

for the x**1y**1 state, or for the x**2-y**2 state,

 $CONTRL SCFTYP=GVB NOSYM=1 $END
 $SCF NCO=3 NPAIR=1 CICOEF(1)=0.707,-0.707 $END

Neither gives correct results, unless you enter NOSYM=1.

The electronic term symbol is degenerate, a good tip off that symmetry can-
not be used. However, some degenerate states can still use symmetry, be-
cause they use coupling constants averaged over all degenerate states with-
in a single term, as is done in EXAM15 and EXAM16. Here the "state averaged
SCF" leads to a charge density which is symmetric, and these runs can ex-
ploit symmetry.

Secondly, since GVB runs exploit symmetry for each of the "shells", or type
of orbitals, some calculations on totally symmetric states may not be able
to use symmetry. An example is CO or N2, using a three pair GVB to treat
the sigma and pi bonds. Individual configurations such as (sigma)**2,(pi-
x)**2,(pi-y*)**2 do not have symmetric charge densities since neither the
pi nor pi* level is completely filled. Correct answers for the sigma-plus
ground states result only if you input NOSYM=1.

Problems of the type mentioned should not arise if the point group is Abe-
lian (C1, C2, Ci, Cs, C2v, C2h, D2, and D2h), but will be fairly common in lin-
ear molecules. Since Firefly cannot detect that the GVB electronic state is
not totally symmetric (or averaged to at least have a totally symmetric
density), it is left up to you to decide when to input NOSYM=1. If you have
any question about the use of symmetry, try it both ways. If you get the
same energy, both ways, it remains valid to use symmetry to speed up your
run.

And beware! Brain dead computations, such as RHF on singlet O2, which actu-
ally is a half-filled degenerate shell, violate the symmetry assumptions,
and also violate nature. Use of partially filled degenerate shells always
leads to very wild oscillations in the RHF energy, which is how the program
tries to tell you to think first, and compute second. Configurations such
as pi**2, e**1, or f2u**4 can be treated, but require GVB wavefunctions and
F, ALPHA, BETA values from the sources mentioned.

- 97 -

Møller-Plesset correlation corrections

Introduction

One important approximation made in the Hartree-Fock model is that, for
each electron, the interaction of this electron with the other electrons in
a system is simplified by considering only an average interaction. As a
result, the energy of a system as obtained with the Hartree-Fock model is
higher than the energy that would be obtained if all electron-electron in-
teractions would individually be taken into account. This difference in
energy is commonly referred to as the dynamic electron correlation energy.

One theory for recovering this dynamic correlation energy that is absent
from the Hartree-Fock solution is Møller-Plesset perturbation theory. In
Firefly, it is possible to perform second-order, third-order, and fourth-
order Møller-Plesset energy corrections (commonly abbreviated as MP2, MP3,
and MP4), where higher-order methods obtain more of the missing correlation
energy than lower-order methods (but also require more computational re-
sources). MP2 is implemented for RHF, UHF, and ROHF wavefunctions with ana-
lytic gradients available only with RHF. MP3 and MP4 theories on the other
hand are implemented for RHF wavefunctions only and can only be used to
obtain energies.

The MP2 code in Firefly has been optimized for performance to a great ex-
tent. MP2 performance is discussed in a section of its own, and it is rec-
ommended to read through this section before commencing with MP2 calcula-
tions.

Second-order Møller-Plesset theory is also implemented for MCSCF wavefunc-
tions in the form of MRMP2 and (X)MCQDPT2 theory. This theory is discussed
in the (X)MCQDPT2 chapter.

MP2 calculations

MP2 calculations can be requested by specifying MPLEVL=2 in $CONTROL, in
combination with SCFTYP=RHF, UHF, or ROHF. Keywords that pertain to MP2
calculations are found in the $MP2 group. Additionally, keywords in the
$MP2GRD group can be used to control the calculation of gradients.

There is little that has to be said with respect to RHF and UHF MP2 calcu-
lations. The most important thing is that the description of the system
under investigation should already be good at the zeroth-order level (i.e.
at the Hartree-Fock level). If this is not the case, it is probably better
to use MCSCF theory and recover the correlation energy using (X)MCQDPT2.

One point which may not be commonly appreciated is that the density matrix
for the first-order wavefunction for the RHF case, which is generated dur-
ing gradient runs or if properties are requested in the $MP2 group
(MP2PRP=.TRUE.), is of the type known as "response density", which differs

- 98 -

from the more usual "expectation value density". The eigenvalues of the
response density matrix (which are the occupation numbers of the MP2 natu-
ral orbitals) can therefore be greater than 2 for frozen core orbitals, or
even negative values for the highest 'virtual' orbitals. The sum is of
course exactly the total number of electrons. We have seen values outside
the range 0-2 in several cases where the single configuration RHF wavefunc-
tion was not an appropriate description of the system, and thus these occu-
pancies may serve as a guide to the wisdom of using a RHF reference.

The case of ROHF MP2 deserves more explanation. There are a number of open
shell perturbation theories described in the literature. It is important to
note that these methods give different results for the second-order energy
correction, reflecting ambiguities in the selection of the zeroth-order
Hamiltonian and in defining the ROHF Fock matrices. Two of these are avail-
able in Firefly.

One theory is known as RMP which, it should be pointed out, is entirely
equivalent to the ROHF-MBPT2 method. This theory is as UHF-like as possible
and can be chosen by selection of OSPT=RMP in $MP2 (though this is actually
not necessary as it is the default method). The RMP method diagonalizes the
alpha and beta Fock matrices separately so that their occupied-occupied and
virtual-virtual blocks are canonicalized. This generates two distinct or-
bital sets whose double excitation contributions are processed by the usual
UHF MP2 program, but an additional energy term from single excitations is
required.

RMP's use of different orbitals for different spins adds to the CPU time
required for integral transformations, of course. RMP is invariant under
all of the orbital transformations for which the ROHF itself is invariant.
Unlike UHF MP2, the second-order RMP energy does not suffer from spin con-
tamination, since the reference ROHF wavefunction has no spin contamina-
tion. The RMP wavefunction, however, is spin contaminated at 1st and higher
order, and therefore the 3rd and higher order RMP energies are spin contam-
inated

The ZAPT (Z-averaged perturbation theory) formalism is also implemented in
Firefly, and can be requested by specifying OSPT=ZAPT in $MP2. Characteris-
tics of this theory is that it is partially noninvariant, is not spin con-
taminated at any order, and has only a single set of orbitals in the MO
transformation. It should be noted that, at present, the new MP2 code can
only execute ROHF MP2 calculations of the RMP kind. ZAPT2 calculations
should be run with old MP2 code (see the section on MP2 performance for
more information on the new MP2 code). In addition, these calculations can-
not be run in parallel.

There are a number of other open shell theories with names such as HC,
OPT1, OPT2, and IOPT. These are not implemented in Firefly but results
equivalent to the results of these methods can be obtained by using GUGA-
style MCSCF followed by (X)MCQDPT2. The same is true for GVB-based MP2. For
example, one could use a $DRT input such as

NMCC=N/2-1 NDOC=0 NAOS=1 NBOS=1 NVAL=0

- 99 -

which generates a single CSF if the two open shells have different sym-
metry. For a one pair GVB function, one can specify

NMCC=N/2-1 NDOC=1 NVAL=1

which generates a 3 CSF function entirely equivalent to the two configura-
tion TCSCF, also known as GVB-PP(1). And if one would attempt a triplet
state with the GUGA MCSCF program

NMCC=N/2-1 NDOC=0 NALP=2 NVAL=0

one would get a result equivalent to the OPT1 open shell method instead of
the RMP result. For details on $DRT input, please see the chapter on MCSCF.

A feature new to Firefly 8.0.0 is the possibility to scale the two MP2 spin
components by certain factors. This functionality is controlled through the
SCS keyword and is programmed for RHF, UHF, and ROHF (though only RMP, not
ZAPT2). Currently, only energies are available. Input should be of the
form:

 $MP2 SCS(1)=singlet_pairs_multiplier,triplet_pairs_multiplier $END

As an example, Grimme’s SCS-MP2 scheme can be specified as:

 $MP2 SCS(1)=1.2,0.333333333333333 $END

while the SOS-MP2 scheme from Head-Gordon and co-workers can be specified
as:

 $MP2 SCS(1)=1.3,0 $END

Note that use of spin scaling forces the use of MP2 METHOD=1 code (see next
section), which is faster than Laplace-transform based code even for SOS-
MP2.

Performance of the MP2 code

Over the years, the MP2 code in Firefly has been optimized greatly. There-
fore, some information with respect to performance should be given.

One of the most important things to note is that, in comparison to the
GAMESS(US) code on which Firefly is originally based, Firefly has a new
RHF/ROHF/UHF MP2 energy program which is designed to handle large systems
(e.g., 500 AOs or more). It is direct, very fast, and requires much less
memory compared to other MP2 methods. Use of this new program can be re-
quested by specifying METHOD=1 in $MP2 and is recommended for all medium
and large jobs. For small jobs (100 to 150 basis functions), the old method
is still faster due to less overhead (the new program always requires the
2-electron AO integrals to be reevaluated four times, regardless of the

- 100 -

size of the job). It is for this reason that the old method has remained
the default one.

The memory requirements of the new program scale as approximately N2. This
as opposed to the other MP2 programs currently implemented, which scale as
at least N3 for the segmented transformation and as A * N2 for the alterna-
tive integral transformation. Here, A and N are the number of active orbit-
als and the total number of MOs, respectively. Disk requirements of the new
code scale as const1 * A2N2, whereas they scale as const2 * A2(N-A)2 for the
alternative integral transformation. The new code is very light on I/O:
only two passes over its disk file are needed, as opposed to the alterna-
tive transformation which performs multiple passes over its (huge) disk
file. The segmented transformation does not use temporary disk storage.
Disk I/O is used, but to a very limited degree. Therefore, the CPU utiliza-
tion is usually 90% or even better. The CPU utilization is usually less
than 50% for other MP2 transformation methods working in the conventional
mode, while, in the direct mode, there is a very serious overhead because
of the multiple reevaluation of 2-electron integrals.

Asymptotically, the FLOPs count with the new program is about a half or
even better as compared to other MP2 energy transformation methods.

Please note that the new MP2 code requires use of P2P when running in par-
allel. See the section on P2P for more details.

Then, it is important to discuss some specifics about the MP2 gradient
code. Since version 7.1, Firefly has new and efficient semidirect MP2 gra-
dient (and properties) program that is based on fastints code and runs in
parallel using the P2P interface. The new MP2 gradient program is used by
default when running in parallel. Gradients are available only for RHF
wavefunctions.

The memory demands of the new gradient program are quite modest: asymptoti-
cally, they are proportional to Nocc * (Nocc + Ncore) * Nvir, where Nocc is
the number of active occupied orbitals (i.e., excluding frozen core orbit-
als), Ncore is the number of frozen core occupied orbitals, and Nvir is the
number of virtual orbitals. Parallel scalability is good, with most of the
memory demands reducing linearly with the number of used computing nodes.

As for disk I/O, the new MP2 gradient program uses (large) temporary files
to store half-transformed 2-electron integrals (in the DASORT file) and the
non-separable part of the MP2 2-particle density matrix (DM2, stored in
DAFL30 file during gradient runs only). Therefore, disk I/O can be quite
intensive. When running in parallel, the contents of these files is evenly
distributed across all nodes. If one is running this code in parallel on an
SMP or multicore system, it is recommended to assign a separate physical
disk to each Firefly process.

Unfortunately, the exact amount of disk space required to store files
DASORT and DAFL30 cannot be predicted exactly because of two reasons.
First, the Firefly uses sparsity of half-transformed integrals and DM2 to
save disk space by storing only non-zero values. Second, half-transformed
integrals, DM2 elements as well as their labels are further packed, and it

- 101 -

is impossible to predict the exact packing ratio. However, it is possible
to provide upper bounds on the overall maximum sizes of DASORT and DAFL30.
Note, these bounds usually seriously overestimate the real size of these
files!

Namely, the overall size of all DASORT files is less or equal than:

6 * Nocc * Nvirt * Nao * (Nao + 1) bytes

Similarly, the overall size of all DAFL30 files is less or equal than:

8 * Nocc * Nvirt * Nao * (Nao + 1) bytes

Here, Nocc is the number of active occupied orbitals, Nvirt is the number
of virtual orbitals, and Nao is the number of Cartesian atomic orbitals.

When using the new gradient program, it is recommended to use the following
input:

 $CONTRL INTTYP=HONDO $END
 $P2P P2P=.T. DLB=.T. XDLB=.T. $END
 $SMP CSMTX=.T. $END
 $MP2 METHOD=1 $END

Depending on your operating system (e.g., under some Windows systems), the
use of the following addition options:

 $SYSTEM SPLITF=.T./.F. $END (large file splitting enabled/disabled)

and/or

 $SYSTEM IOFLGS(30)=1 $END (activates file cache write through mode for
unit # 30 which contains DM2 elements)

may have serious positive or negative impact on the overall performance as
well.

The following set of parameters of the new MP2 gradient code seems to be
optimal in the case you are running large problems in parallel on Linux-
based SMP or multicore system which do not have a separate physical disks
for each instance of the parallel Firefly processes.

 $SYSTEM SPLITF=.F. $END
 $SYSTEM IOFLGS(30)=0 $END
 $MP2GRD DBLBF=.F. FUSED=.F. ASYNC=.T. $END

The following set of additional I/O parameters seem to be optimal for
large-scale jobs running under Windows Vista and Windows Server 2008 R1:

 $MP2 IOFLGS(1)=65536,65536 IOFLGS(3)=65536,65536 $END

These settings turn on direct unbuffered disk I/O for the files DASORT and
DICTNRY and disable standard buffered disk reads and writes.

- 102 -

If the I/O remains a significant bottleneck, or if the amount of available
disk space is not sufficient for carrying out an MP2 calculation, one can
enable the direct evaluation of AO integrals. This is done by specifying
DIRECT=.T. in $MP2, which will somewhat reduce the amount of disk space
used at the cost of additional CPU time.

Finally, it should be noted that the new gradient code requires higher ac-
curacy when there is a partial linear dependence in the AO basis set. We
recommend the use of the following settings (tighter values can be used if
desired):

 $CONTRL ICUT=11 INTTYP=HONDO $END
 $SCF NCONV=7 $END
 $MP2GRD TOL1=1D-12 TOL2=1D-12 $END

MP3 and MP4 calculations

MP3 and MP4 type calculations can be requested by specifying MPLEVL=3 and
MPLEVL=4 in $CONTROL in combination with SCFTYP=RHF. Related keywords can
be found in the groups $MP3 and $MP4. As noted earlier, these calculations
are only implemented for RHF wavefunctions – ROHF and UHF MP3/MP4 calcula-
tions are currently not possible. For MP4, it is possible to perform three
types of calculations, namely MP4(SDQ), MP4(SDTQ), and MP4(T). The default
MP4 type is MP4(SDQ).

MP3 and MP4(SDQ) calculations are multithreaded and cannot be executed in
parallel mode as the corresponding code was written many years ago and was
not allowed to run in parallel at the time. Despite this, the code is still
quite efficient and scales well with increasing numbers of threads. The
MP4(T) code on the other hand was written more recently, is more advanced,
and is written to run in parallel, though it also benefits from multi-
threading. This makes performing an MP4(SDTQ) calculation in the most opti-
mal way a bit complicated.

To explain this a bit more: it is perfectly possible to perform an MP4 cal-
culation in a single job (which can done by specifying $MP4 SDTQ=.T. $END).
However, in terms of computational time this is not the most optimal way.
When run in parallel, the MP4(SDQ) part of the calculation cannot run in
parallel and will therefore just be duplicated on all instances of Firefly.
At the same time, multithreaded execution is also not optimal as the MP4(T)
part of the calculation will not benefit as much from multithreading as it
does from parallel execution. Also, the Hartree-Fock part of the calcula-
tion does not benefit from multithreading.

Because of this, it is advised to split an MP4(SDTQ) calculation up in
three separate steps (i.e., jobs). The first step is to perform a parallel
Hartree-Fock calculation. The option $CONTRL WIDE=.T. $END can hereby be
used to punch the HF orbitals with double accuracy. The second step is then
to perform a multithreaded MP4(SDQ) calculation, using the orbitals from
the previous step as the initial guess. The third and final step is to per-
form an MP4(T) calculation (which can be requested using $MP4 TONLY=.T.
$END), again using the HF orbitals as the initial guess. As noted, the

- 103 -

MP4(T) code can run parallel and multithreaded at the same time and it is
advisable to do so. The optimal number of threads per process depends here
on the particular computer architecture that is used. In most cases, it is
equal to the number of physical cores sharing the same memory domain on the
cc-NUMA system. E.g., assuming that a 2-way four-core Xeon 5500 system is
used, the best way is to use 2 processes per box with four working threads
each. However, this can be adjusted to minimize I/O or scratch storage, and
the code is flexible here.

The usage of Abelian symmetry can greatly decrease the required CPU time
for any MP3 or MP4 calculations. Unlike MP2 case, where the speed up due to
the use of symmetry is roughly proportional to the first power of the order
of the symmetry group (Ng) used, in the case of MP3 and MP4 jobs, the speed
up is proportional to Ng2 on the average.

It finally should be noted that, in practice, there might not be much of a
reason for performing MP3 calculations, as the computational cost of a
large MP4(SDQ) calculation is typically only 2-3 times greater than that of
a similar MP3 job. Also, the memory demands of both types of calculations
are very similar. MP4(SDTQ) jobs are always much more demanding.

- 104 -

Density Functional Theory

General information

Density functional theory in Firefly is implemented for restricted, unre-
stricted, and restricted-open wavefunctions. For each wavefunction, ener-
gies and analytical gradients are available. Analytical Hessians are cur-
rently not available. Instead, Hessians can be calculated in a semi-
numerical fashion. Double hybrid functionals are an exception – for these
functionals, only energies are currently available. Various functionals can
be used, a list of these is provided in the next section. It should be not-
ed that the DFT code in Firefly is completely different from that of GAMESS
(US) with respect to both implementation and input specification.

A DFT calculation can be requested by specifying a functional using the
DFTTYP keyword in $CONTRL. The value of SCFTYP determines which type of
wavefunction is used. For example, a RO-BLYP calculation can be requested
using

SCFTYP=ROHF DFTTYP=BLYP

Additional DFT-related input is provided with the optional $DFT group. The
majority of the keywords in this group can be used to change the accuracy
of various aspects of the DFT calculation. The default values are fine for
most cases, so providing this input usually isn’t necessary.

Information on the convergence accelerators and conventional vs direct runs
can be found in the chapter on Hartree-Fock.

A few things should be mentioned about performance. First of all, the cur-
rent DFT implementation in Firefly does not support multithreading. It is
therefore recommended to run calculations in parallel mode. Secondly, the
molecular symmetry specified in $DATA is used only partially during calcu-
lation of the DFT contributions to the Fock matrix. To be more precise, the
so-called octant symmetry is not used at present.

Resolution of identity / Coulomb fitting techniques, which serve to speed
up calculations that use pure DFT functionals, are currently not implement-
ed. As a result, one might expect that other DFT programs that exploit
these techniques (for example, TURBOMOLE) will outperform Firefly on pure
DFT calculations. This is especially true with large molecules. For such
molecules, the time for the pure DFT part of calculations depends approxi-
mately linearly on the number of atoms in molecule. The reason for this is
that, while for small molecular systems the pure DFT part of the calcula-
tions is usually the time-limiting step, for large systems the cost of the
standard Coulomb (and possible exchange for hybrid functionals) contribu-
tions to the Fock matrix due to two-electron integrals becomes the dominant
part of the calculations. The implementation of Coulomb fitting techniques
should overcome this shortcoming.

- 105 -

It should also be noted that the RODFT energy/gradient code is routed
through the generic UDFT code, therefore, the RODFT performance is identi-
cal to that of UDFT. This situation might be changed in the future by add-
ing separate RODFT routines which should provide a speedup of approximately
15 to 20 % for small and medium size molecules.

Double hybrid functionals, which use an MP2-like perturbation term in the
correlation part of the functional, can make use of any of the MP2 methods
in Firefly. Just as with MP2 calculations, $MP2 METHOD=1 is the preferred
method except for small jobs. Please see the chapter on MP2 for more infor-
mation.

An example input file for a BLYP geometry optimization and subsequent vi-
brational analysis for a water molecule:

 $CONTRL SCFTYP=RHF DFTTYP=BLYP RUNTYP=OPTIMIZE $END
 $SYSTEM TIMLIM=3000 MEMORY=3000000 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $STATPT HSSEND=.T. NPRT=-2 $END
 $FORCE NVIB=2 VIBSIZ=0.005 $END
 $DATA
H2O
CNV 2

 O 8.0 0.0000000000 0.0000000000 0.7205815395
 H 1.0 0.0000000000 0.7565140024 0.1397092302
 $END

Finally, some technical details should be mentioned. The DFT implementation
in Firefly is grid-based. Angular integration is based on Lebedev quadra-
tures, while radial integration is based on Mura-Knowles quadratures. The
atomic partitioning function used is the modification of Stratmann,
Scuseria and Frisch (Chem. Phys. Lett. (1996) 257, 213).

Available functionals

Before providing the full list of functionals available in Firefly, it is
important to mention that the specification of a functional in the input is
unambiguous except for a few specific cases that will discussed below.

Firstly, there are two variations of the VWN functional available as compo-
nents of the B3LYP and O3LYP functionals, namely VWN formula 1 RPA and VWN
formula 5. The reason for the inclusion of both variants is to improve com-
patibility with other QC programs, which can use either of the two formu-
lae. Formula 1 RPA type B3LYP is used by for example NWCHEM and GAUSSIAN,
while formula 5 type B3LYP is the default with GAMESS (US). The use of VWN
formula 1 RPA in B3LYP and O3LYP can be specified with DFTTYP=B3LYP1 and
DFTTYP=O3LYP1, respectively. Similarly, the use of VWN formula 5 can be
specified with DFTTYP=B3LYP5 and DFTTYP=O3LYP5. Note that some QC programs
refer to VNW formula 1 RPA as “VWN functional III” and that these are the
same functionals.

- 106 -

For B3LYP, it is also possible to specify DFTTYP=B3LYP. The choice of VWN
formula will then depend on the value of B3LYP in the $DFT group. Possible
values are NWCHEM (formula 1 RPA, the default) and GAMESS (formula 5). DFT-
TYP=O3LYP will always be interpreted as O3LYP5.

For the O3LYP functionals, the weight of the non-local exchange can be ad-
justed with the O3LYP keyword in $DFT. The reason for including this option
is that recent versions of Gaussian use a weight different from the one
used by most other QC programs. Setting O3LYP to GAUSSIAN changes the
weight so that the resulting functional will be identical to one used in
Gaussian 03 Rev D.01 and above. Specifying O3LYP=DEFAULT (which is, not
entirely surprising, the default value) enables compatibility with the im-
plementation used in other QC programs. Note that the reason for the exist-
ence of two different implementations is that there are some ambiguities in
O3LYP-related papers. Due to these ambiguities, is not possible to say
which implementation is “correct”. Instead, these two implementations
should be considered as two different functionals.

There is also a keyword pertaining to the Perdew-Zunger 1981 LDA correla-
tion that should be mentioned. In the paper defining this functional, its
parameters were given with only four digits. As there are two branches in
the fit, two parameters of the fit were selected in such a manner that Exc
and Vxc are globally continuous functions, even at the branch point itself.
However, the four-digit precision is not enough for this purpose as it
causes small deviations from exact continuity that in turn result in errors
such as non-precise gradients. Tight geometry optimizations in particular
are not possible with this functional. By default, the parameters of the
fit are used with increased precision (for P81LDA as well as for all func-
tionals using P81 local correlation), hereby achieving smooth Exc and Vxc.
However, this corrected fit does result in a slightly different functional.
If desired, the functional can be reverted to its slightly discontinuous
form by specifying FIXP81=.F. in the $DFT group.

With respect to double hybrid functionals, it should be mentioned that most
of these functionals by default do not freeze any cores. This behavior is
forced by Firefly, but can be overridden by specifying a negative value for
NCORE. This keyword belongs to the $MP2 group (not the $DFT group), and
input should look like this:

 $MP2 NCORE=-5 $END

Here, the minus sign tells Firefly to override the default behavior and the
number is the amount of cores to be frozen.

Note that there are two functionals which by default do use frozen cores,
namely D-LYP and D-PBEP86 (as these functionals were designed to be used
together with the frozen core approximation). This behavior is not forced
though so, if desired, it can be changed using the NCORE keyword without
having to use the minus sign.

The list of available functionals is as follows:

- 107 -

Exchange functionals (no correlation)

DFTTYP value Functional Refs.

LDA exchange
SLATER Slater exchange 1
LSDA A synonym of SLATER
GGA exchange
B88 Becke 1988 exchange 2

XPW91 Perdew-Wang 1991 exchange 3

XMPW91 Modified Perdew-Wang 1991 exchange. Modification by
Adamo and Barone

11

GILL96 Gill 1996 exchange 4

XPBE96 Perdew-Burke-Ernzerhof 1996 exchange 5

OPTX Handy-Cohen 2001 OPTX exchange 6

XSOGGA The exchange part of the SOGGA functional by Zhao and
Truhlar

20

XSOGGA11 The exchange part of the SOGGA-11 functional by
Peverati, Zhao, and Truhlar

21

Hybrid exchange
XSOGGAX The exchange part of the SOGGA-11X hybrid functional

by Peverati and Truhlar
31

Pure correlation functionals – these use 100 % exact (i.e., Hartree-Fock)
exchange)

DFTTYP value Functional Refs.

LDA correlation
VWN1RPA VWN formula 1 RPA local correlation. This functional is

referred to as “VWN formula 3” by some programs (such as
Gaussian, Q-Chem).

7

VWN5 VWN formula 5 local correlation 8

P81LDA Perdew-Zunger 1981 local correlation 36

PW91LDA Perdew-Wang 1991 local correlation 9

GGA correlation
P86 Perdew 1986 nonlocal (1.0) + Perdew-Zunger 1981 local

(1.0) correlation
37,36

LYP Lee-Yang-Parr 1988 correlation 10

CPBE96 Perdew-Burke-Ernzerhof 1996 nonlocal (1.0) + Perdew-Wang
1991 local (1.0) correlation

5,9

CPW91 Perdew 1991 nonlocal (1.0) + Perdew-Wang 1991 local
(1.0) correlation

12,9

CSOGGA11 The correlation part of the SOGGA-11 functional by
Peverati, Zhao, and Truhlar

21

- 108 -

CSOGGAX The correlation part of the SOGGA-11X functional by
Peverati and Truhlar

31

Exchange-correlation functionals

DFTTYP
value

Functional Refs.

SVWN1RPA Slater exchange, VWN formula 1 RPA local correlation 1,7

BVWN1RPA Becke 1988 exchange, VWN formula 1 RPA local
correlation

2,7

SVWN5 Slater exchange, VWN formula 5 local correlation 1,8

BVWN5 Becke 1988 exchange, VWN formula 5 local correlation 2,8

SP81LDA Slater exchange, Perdew-Zunger 1981 local correlation 1,36

BP81LDA Becke 1988 exchange, Perdew-Zunger 1981 local
correlation

2,36

BP86 Becke 1988 exchange, Perdew 1986 nonlocal (1.0) +
Perdew-Zunger 1981 local (1.0) correlation

2,37,36

PBEP86 Perdew-Burke-Ernzerhof 1996 exchange, Perdew 1986
nonlocal (1.0) + Perdew-Zunger 1981 local (1.0)
correlation

5,37,36

SLYP Slater exchange, Lee-Yang-Parr 1988 correlation 1,10

BLYP Becke 1988 exchange, Lee-Yang-Parr 1988 correlation 2,10

GLYP Gill 1996 exchange, Lee-Yang-Parr 1988 correlation 4,10

MPW91LYP Modified Perdew-Wang 91 exchange, Lee-Yang-Parr 1988
correlation

11,10

OLYP OPTX exchange, Lee-Yang-Parr 1988 correlation 6,10

XLYP Extended exchange functional (a combination of Slater
local (1.0), Becke 88 nonlocal (0.722), and Perdew-Wang
91 nonlocal (0.347) exchange), Lee-Yang-Parr 1988
correlation

13

BPW91 Becke 1988 exchange, Perdew 1991 nonlocal (1.0) +
Perdew-Wang 1991 local (1.0) correlation

2,12,9

PW91 Perdew-Wang 1991 exchange, Perdew 1991 nonlocal (1.0) +
Perdew-Wang 1991 local (1.0) correlation

3,12,9

MPW91 Modified Perdew-Wang 91 exchange, Perdew 1991 nonlocal
(1.0) + Perdew-Wang 1991 local (1.0) correlation

11,12,9

PBEPW91 Perdew-Burke-Ernzerhof 1996 exchange, Perdew 1991
nonlocal (1.0) + Perdew-Wang 1991 local (1.0)
correlation

5,12,9

PBE96 Perdew-Burke-Ernzerhof 1996 exchange, Perdew-Burke-
Ernzerhof 1996 nonlocal (1.0) + Perdew-Wang 1991 local
(1.0) correlation

5,9

MPW91PBE Modified Perdew-Wang 91 exchange, Perdew-Burke-
Ernzerhof 1996 nonlocal (1.0) + Perdew-Wang 1991 local
(1.0) correlation

11,5,9

- 109 -

HCTH93 HCTH/93 exchange-correlation functional 14

HCTH120 HCTH/120 exchange-correlation functional 15

HCTH147 HCTH/147 exchange-correlation functional 15

HCTH407 HCTH/407 exchange-correlation functional 16

HCTH407P HCTH/407+ exchange-correlation functional 17

HCTHP14 HCTH potential-fitted 1/4 functional 18

B97GGA1 Becke 97, reparametrized as pure GGA by Cohen and Handy
(2000)

19

B97D Becke 97-D, another pure GGA reparameterization of B97,
by Grimme (2006). To be used with DFT-D. Selection of
this functional automatically enables the use of the
DFT-D2 scheme (unless the user chooses a different
scheme or explicitly disables the use of DFT-D)

30

SOGGA SOGGA exchange-correlation functional by Zhao and
Truhlar

20

SOGGA11 SOGGA-11 exchange-correlation functional by Peverati,
Zhao, and Truhlar

21

Hybrid functionals

DFTTYP
value

Functional Refs.

B1P86 Becke 1988 (0.75) + Hartree-Fock (0.25) exchange,
Perdew 1986 nonlocal (1.0) + Perdew-Zunger 1981 local
(1.0) correlation

2,37,36

B1LYP Becke 1988 (0.75) + Hartree-Fock (0.25) exchange, Lee-
Yang-Parr 1988 correlation

2,10

BHHLYP Becke 1988 (0.5) + Hartree-Fock (0.5) exchange, Lee-
Yang-Parr 1988 correlation

24,10

B1PW91 Becke 1988 (0.75) + Hartree-Fock (0.25) exchange,
Perdew 1991 nonlocal (1.0) + Perdew-Wang 1991 local
(1.0) correlation

2,12,9

B3P86 Becke 1988 nonlocal (0.72) + Slater local (0.80) +
Hartree-Fock (0.20) exchange, Perdew 1986 nonlocal
(1.0) + Perdew-Zunger 1981 LDA local (1.0) correlation

22,37,36

B3LYP1 Becke 1988 nonlocal (0.72) + Slater local (0.80) +
Hartree-Fock (0.20) exchange, Lee-Yang-Parr 1988
(0.81) + VWN formula 1 RPA local (0.19) correlation.
This is B3LYP as implemented in NWCHEM and GAUSSIAN

22,10

B3LYP5 Same as B3LYP1, but with VWN formula 5 instead of VWN formula 1
RPA local correlation. This is B3LYP as implemented in GAMESS
(US)

B3LYP Either B3LYP1 or B3LYP5, depending on the value of the B3LYP
keyword in the $DFT group (default is B3LYP1)

B3PW91 Becke 1988 nonlocal (0.72) + Slater local (0.80) + 22,12,9

- 110 -

Hartree-Fock (0.20) exchange, Perdew 1991 nonlocal
(0.81) + Perdew-Wang 1991 LDA local (1.0) correlation

O3LYP1 OPTX nonlocal (0.8133) + Slater local (0.9262) +
Hartree-Fock (0.1161) exchange, Lee-Yang-Parr 1988
(0.81) + VWN formula 1 RPA local (0.19) correlation

23

O3LYP5 Same as O3LYP1, but with VWN formula 5 instead of VWN formula 1
RPA local correlation

O3LYP A synonym of O3LYP5
X3LYP Extended hybrid exchange functional (a combination of

Slater local (0.782), Becke 88 nonlocal (0.542), and
Perdew-Wang 91 nonlocal (0.167) exchange + Hartree-
Fock (0.218)), Lee-Yang-Parr (0.871) + VWN formula 1
RPA local (0.129) correlation

13

PBE1P86 Perdew-Burke-Ernzerhof 1996 (0.75) + Hartree-Fock
(0.25) exchange, Perdew 1986 nonlocal (1.0) + Perdew-
Zunger 1981 local (1.0) correlation

5,37,36

PBE1PW91 Perdew-Burke-Ernzerhof 1996 (0.75) + Hartree-Fock
(0.25) exchange, Perdew 1991 nonlocal (1.0) + Perdew-
Wang 1991 LDA local (1.0) correlation

25,12,9

PBE0 Perdew-Burke-Ernzerhof 1996 (0.75) + Hartree-Fock
(0.25) exchange, Perdew-Burke-Ernzerhof 1996 nonlocal
(1.0) + Perdew-Wang 1991 LDA local (1.0) correlation.
This functional is also known as PBE1PBE

25

MPW1LYP Modified Perdew-Wang 91 (0.75) + Hartree-Fock (0.25)
exchange, Lee-Yang-Parr 1988 correlation

11,10

MPW1PW91 Modified Perdew-Wang 91 (0.75) + Hartree-Fock (0.25)
exchange, Perdew 1991 nonlocal (1.0) + Perdew-Wang
1991 LDA local (1.0) correlation

11

MPW1K Modified Perdew-Wang 91 (0.572) + Hartree-Fock (0.428)
exchange, Perdew 1991 nonlocal (1.0) + Perdew-Wang
1991 LDA local (1.0) correlation. Functional by
Truhlar and coworkers.

41

MPW1PBE Modified Perdew-Wang 91 (0.75) + Hartree-Fock (0.25)
exchange, Perdew-Burke-Ernzerhof 1996 nonlocal (1.0) +
Perdew-Wang 1991 local (1.0) correlation

11,5,9

MPW3PBE Modified Perdew-Wang 91 local and nonlocal (0.72) +
Slater local (0.08) + Hartree-Fock (0.20) exchange
Perdew-Burke-Ernzerhof 1996 nonlocal (0.81) + Perdew-
Wang 1991 local (1.0) correlation

11,1,5,9

B970 Becke 97 hybrid exchange-correlation functional 26

B980 Becke 98 hybrid exchange-correlation functional 27

B971 Becke 97-1, a 1998 reparametrized version of B97 by
Handy, Tozer, and coworkers

14

B972 Becke 97-2, a 2001 reparametrized version of B97 by
Wilson, Bradley, and Tozer

28

B973 Becke 97-3, a 2005 reparametrized version of B97 by
Keal and Tozer

29

- 111 -

SOGGAX SOGGA-11X hybrid exchange-correlation functional by
Peverati and Truhlar

31

Double hybrid functionals

DFTTYP value Functional Refs.

Self-consistent functionals
B2PLYP Becke 1988 (0.47) + Hartree-Fock (0.53) exchange,

Lee-Yang-Parr 1988 (0.73) + MP2 (0.27) correlation
32

B2GPPLYP Becke 1988 (0.35) + Hartree-Fock (0.65) exchange,
Lee-Yang-Parr 1988 (0.64) + MP2 (0.36) correlation

33

MPW2PLYP Modified Perdew-Wang 91 (0.45) + Hartree-Fock (0.55)
exchange, Lee-Yang-Parr 1988 (0.75) + MP2 (0.25)
correlation

42

DSD-BLYP Initial version of DSD-BLYP(full), which uses the
following terms and parameters: Becke 1988 (0.31) +
Hartree-Fock (0.69) exchange, Lee-Yang-Parr 1988
(0.54) + opposite spin MP2 (0.46) + same spin MP2
(0.37) correlation + DFT-D version 2 with an alpha
value of 60.0. Selection of this functional
automatically sets DFTD=.T.

38

D-BLYP Newer version DSD-BLYP(fc), which uses the following
terms and parameters: Becke 1988 (0.29) + Hartree-
Fock (0.71) exchange, Lee-Yang-Parr 1988 (0.55) +
opposite spin MP2 (0.46) + same spin MP2 (0.43)
correlation + DFT-D version 2 with an alpha value of
20.0. Selection of this functional automatically sets
DFTD=.T.

39

D-PBEP86 DSD-PBEP86(fc) functional: Perdew-Burke-Ernzerhof
1996 (0.32) + Hartree-Fock (0.68) exchange, Perdew
1986 nonlocal (0.45) + Perdew-Zunger 1981 LDA local
(0.45) + opposite spin MP2 (0.51) + same spin MP2
(0.23) correlation + DFT-D version 2. Selection of
this functional automatically sets DFTD=.T.
Functional and empirical dispersion parameters
recommended for the use of D-PBEP86 with DFT-D
version 4 are not implemented but can be given
manually.

39

Non-self-consistent functionals
XYG3 Becke 1988 nonlocal (0.2107) + Slater local (0.1967)

+ Hartree-Fock (0.8033) exchange, Lee-Yang-Parr 1988
(0.6789) + MP2 (0.3211) correlation. Each term in
this functional (incl. the MP2-like term) is
evaluated using B3LYP1 orbitals and density.

34

XYGJ-OS Slater local (0.2269) + Hartree-Fock (0.7731)
exchange, Lee-Yang-Parr 1988 (0.2754) + VWN formula 1
RPA local (0.2309) + MP2 (0.4364) correlation. Each
term in this functional (incl. the MP2-like term) is

40

- 112 -

evaluated using B3LYP1 orbitals and density. From the
MP2-like term, only the opposite spin part is used.

XDH-PBE0 Perdew-Burke-Ernzerhof 1996 (0.1665) + Hartree-Fock
(0.8335) exchange, Perdew-Burke-Ernzerhof 1996
nonlocal (0.5292) + Perdew-Wang 1991 LDA local
(0.5292) + MP2 (0.5428) correlation. Each term in
this functional (incl. the MP2-like term) is
evaluated using PBE0 orbitals and density. From the
MP2-like term, only the opposite spin part is used.

35

References

1. J.C. Slater; Phys. Rev., 81, 385-390 (1951)
2. A.D. Becke; Phys. Rev. A, 38, 3098-3100 (1988)
3. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J.

Singh, C.Fiolhais; Phys. Rev. B, 46, 6671-6687 (1992)
4. P.M.W. Gill; Mol. Phys., 89, 433-445 (1996)
5. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865-3868 (1996)
6. N.C. Handy, A.J. Cohen; Mol. Phys., 99, 403-412 (2001)
7. Functional III in S.H. Vosko, L. Wilk, M. Nusair; Can. J. Phys., 58, 1200-1211

(1980)
8. Functional V in S.H. Vosko, L. Wilk, M. Nusair; Can. J. Phys., 58, 1200-1211

(1980)
9. J.P. Perdew, Y. Wang; Phys. Rev. B, 45, 13244-13249 (1992)
10. C. Lee, W. Yang, R.G. Parr; Phys. Rev. B, 37, 785-789 (1988)
11. C. Adamo, V. Barone, J. Chem. Phys., 108, 664-675 (1998)
12. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J.

Singh, C.Fiolhais; Phys. Rev. B, 46, 6671-6687 (1992)
13. X. Xu, W. A. Goddard III, P. Natl. Acad. Sci. USA, 101, 2673-2677 (2004)
14. F.A. Hamprecht, A.J. Cohen, D.J. Tozer, N.C. Handy J. Chem. Phys., 109, 6264-

6271 (1998)
15. A.D. Boese, N.L. Doltsinis, N.C. Handy, M. Sprik. J. Chem. Phys., 112, 1670-

1678 (2000)
16. A.D. Boese, N.C. Handy, J. Chem. Phys., 114, 5497-5503 (2001)
17. A.D. Boese, A. Chandra, J.M.L. Martin, D. Marx, J. Chem. Phys., 119, 5965-5980

(2003)
18. G. Menconi, P.J. Wilson, D.J. Tozer, J. Chem. Phys., 114, 3958-3967 (2001)
19. A.J. Cohen and N.C. Handy, Chem. Phys. Lett., 316, 160-166 (2000)
20. Y. Zhao, D.G. Truhlar, J. Chem. Phys., 128, 184109 (2008)
21. R. Peverati, Y. Zhao, D.G. Truhlar, J. Phys. Chem. Lett., 2, 1991–1997 (2011)
22. A.D. Becke, J. Chem. Phys., 98, 5648-5652 (1993)
23. W.M. Hoe, A.J. Cohen, N.C. Handy, Chem. Phys. Lett., 341, 319-328 (2001)
24. A.D. Becke J. Chem. Phys., 98, 1372-1377 (1993)
25. C. Adamo, V. Barone, J. Chem. Phys., 110, 6158-6169 (1999)
26. A.D. Becke, J. Chem. Phys., 107, 8554-8560 (1997)
27. H.L. Schmider, A.D. Becke, J. Chem. Phys., 108, 9624-9631 (1998)
28. P.J. Wilson, T.J. Bradley, D.J. Tozer, J. Chem. Phys., 115, 9233-9242 (2001)
29. T.W. Keal, D.J. Tozer, J. Chem. Phys., 123, 121103 (2005)
30. S. Grimme, J. Comp. Chem., 27, 1787-1799 (2006)
31. R. Peverati, D.G. Truhlar, J. Chem. Phys., 135, 191102 (2011)
32. S. Grimme, J. Chem. Phys., 124, 034108 (2006)
33. A. Karton, A. Tarnopolsky, J.-F. Lamère, G.C. Schatz, J.M.L. Martin, J. Phys.

Chem. A, 112, 12868–12886 (2008)
34. Y. Zhang. X. Xu, W. A. Goddard III, P. Natl. Acad. Sci. USA, 106, 4963-4968

(2009)

- 113 -

35. I.Y. Zhang, N.Q. Su, E.A.G. Brémond, C. Adamo, X. Xu, J. Chem. Phys. 136,
174103 (2012)

36. J.P. Perdew, A. Zunger, Phys. Rev. B, 23, 5048-5079 (1981)
37. J.P. Perdew, Phys. Rev. B, 33, 8822-8824 (1986)
38. S. Kozuch, D. Gruzman, J.M.L. Martin, J. Phys. Chem. C, 114, 20801-20808

(2010)
39. S. Kozuch, J.M.L. Martin, Phys. Chem. Chem. Phys., 13, 20104-20107 (2011)
40. I.Y. Zhang, X. Xu, Y. Jung, W.A. Goddard III, Proc. Natl. Acad. Sci. U.S.A.,

108, 19896-19900 (2011)
41. B.J. Lynch, P.L. Fast, M. Harris and D.G. Truhlar, J. Phys. Chem. A, 104,

4811-4815 (2000)
42. T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys., 8, 4398-4401 (2006)

Making modifications to functionals

Firefly has four important keywords, all belonging to the $DFT group, which
can be used to modify some of the (double) hybrid functionals implemented.
These are:

- HFX, which provides control over the amount of exact exchange;
- CPT2, which provides control over the amount of MP2-like correlation;
- SCS, which controls scaling of spin components of the MP2-like perturba-
tion;
- PARENT, which selects the parent functional used in non-self-consistent
double hybrid functionals (such as XYG3, for which the parent functional is
B3LYP1).

Changing the amount of exact exchange used in a functional can, for exam-
ple, be useful in TDDFT calculations to distinguish between Rydberg and
valence states. The amount of exact exchange can be controlled through the
HFX option. Formally, HFX should be given as an array (for reasons that
will be discussed later), e.g.

 HFX(1)=0.75

However, it is possible to specify HFX as a single variable:

 HFX=0.75

The HFX option is available for most hybrid functional and all double hy-
brid functionals. However, for the B97/B98 type functionals as well as for
the SOGGA-X functional this option has not been implemented. These func-
tionals were parameterized for a certain amount of exact exchange, so
changing this amount doesn’t make much sense. Note that there is no limit
to HFX – it is possible to set its value larger than 1.0 for experimenta-
tion purposes.

For (double) hybrid functionals that combine exact exchange with only one
type of DFT exchange, such as BHHLYP, PBE0, and MPW1PW91, the way the HFX
keyword works is quite straightforward. Setting HFX(1)=0 for example re-
moves all exact exchange from the functional, while HFX(1)=1 makes the ex-
change part of the functional fully exact. For example, setting HFX(1)=0

- 114 -

for PBE1PW91 makes the functional identical to PBEPW91, while HFX(1)=1
makes the functional identical to PW91. Naturally, any value between 0 and
1 is possible. HFX(1)=0.25 will use the default amount of exact exchange
for the PBE1PW91.

For the B3LYP, O3LYP, MPW3PBE, and XYG3 functionals, the HFX interpolation
is a bit more complex and is best explained by an example. The exchange
part of B3LYP consists of the following parameters (default values in pa-
rentheses):

 B88X – the amount of Becke 88 local and nonlocal (0.72)
 LDAX – the amount of excess Slater local (0.08)
 (because Becke 88 non-local + Slater local = Becke 88 GGA)
 HFX – the amount of exact exchange (0.2)

When the value of HFX is changed, B88X and LDAX change as follows:

 B88X_new = B88X * (1 - HFX) / (B88X + LDAX)
 LDAX_new = LDAX * (1 - HFX) / (B88X + LDAX)

For X3LYP, the interpolation scheme is different as this functional com-
bines 4 types of exchange. Its parameters in the exchange part are as fol-
lows:

 B88X – the amount of Becke 88 local and nonlocal (0.542)
 PW91X – the amount of Perdew-Wang 91 local and nonlocal (0.167)
 LDAX – the amount of excess Slater local (0.073)
 HFX – the amount of exact exchange (0.218)

When the value of HFX is changed, the other parameters change as follows:

 B88X_new = B88X * (1 - HFX) / (1 – HFX_default)
 PW91X_new = PW91X * (1 - HFX) / (1 – HFX_default)
 LDAX_new = LDAX * (1 - HFX) / (1 – HFX_default)

where HFX_default is the default value of 0.218.

For non-self-consistent double hybrid functionals, HFX can be used to con-
trol the amount of exact exchange for the double hybrid functional as well
as its parent function. This can be done by giving an array of two varia-
bles. As an example, for xDH-PBE0, the default values can be specified as:

 HFX(1)=0.8335,0.25

where the first value specifies the amount of exact exchange in the double
hybrid functional and the second value specified the amount of exact ex-
change in the parent functional.

- 115 -

The CPT2 keyword works in the same way as the HFX keyword. As noted earli-
er, it can be used to control the amount of MP2-like correlation in double
hybrid functionals.

Finally, the SCS keyword can be used to scale the spin components of the
MP2-like part by certain factors. It functions the same way as the SCS key-
word in the $MP2 group. For more information, please see the MP2 section.

Of course, the HFX, CPT2, and SCS can be used to define a few functionals
currently not present in Firefly, provided that these are of the same form
as a functional already implemented. For example, the B2K-PLYP functional
can be specified as follows:

 $CONTRL DFTTYP=B2PLYP $END
 $DFT HFX(1)=0.72 CPT2=0.42 $END

Here, DFTTYP is set to B2PLYP as this functional is of the same form as
B2K-PLYP – only the fractions of exact exchange and MP2-like correlation
are different. It would also have been possible to specify DFTTYP=B2GPPLYP
as this functional is of the same form.

The DSD-PBEP86 functional implemented in Firefly was designed to be used
with DFT-D version 2. However, reference 39 also contains parameters opti-
mized for use with version 4. As a second example, this functional can be
specified as follows:

 $CONTRL DFTTYP=D-PBEP86 DFTD=.T. $END
 $DFT HFX(1)=0.70 CPT2=0.57
 SCS(1)=0.9298245614035088,0.4385964912280702 $END
 $DFTD VERSN=4 S6=0.418 RS6=0.0 S18=0.25 RS18=5.65 ALP=14.0 $END

More information on DFT-D can be found in the next section.

Lastly, the PARENT keyword should be discussed. This keyword is only used
for non-self-consistent double hybrid functionals such as XYG3 and selects
the parent functional. This parent functional is used for generating the
orbitals and density used for the evaluation of each term in the double
hybrid functional. Any GGA exchange, GGA correlation, exchange-correlation,
and hybrid functional may be specified. LDA functionals and double hybrid
functionals cannot be used.

Empirical dispersion correction (DFT-D)

Newly available in Firefly 8.0.0 is the empirical dispersion correction to
DFT proposed by Grimme and co-workers, a method commonly abbreviated as
DFT-D. Three versions of the correction are available:

- DFT-D version 2, which was proposed in 2006 as part of the B97-D func-
tional and which is an update of the original DFT-D version.
- DFT-D version 3, proposed in 2010.

- 116 -

- DFT-D version 3 with Becke-Johnson damping (from here on referred to as
‘version 4’), proposed in 2011.

The corresponding references are:
- Version 2: S. Grimme, J. Comput. Chem., 27 (2006), 1787-1799
- Version 3: S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.
132 (2010), 154104
- The BJ-damping used in version 4: S. Grimme, S. Ehrlich, and L. Goerigk,
J. Comput. Chem. 32 (2011), 1456-1465

It is important to point out that the available range of versions (together
with their default parameters) is defined by the DFT-D extension file in
use (either dftd.dll or dftd.ex). Consequently, the empirical dispersion
correction functionality is only available if Firefly is capable to find
and load this extension file.

The empirical dispersion correction is designed to improve the long-range
behavior of DFT methods. However, its use is not limited to DFT only – it
can actually be used with any computational method present in Firefly. Both
energies and analytical gradients are available with DFT-D, provided of
course that analytical gradients are available for the method the correc-
tion is used with. Analytical second derivatives are not available, in-
stead, second derivatives should be obtained numerically.

The use of the correction can be enabled by specifying DFTD=.T. in the
$CONTRL group. Control over the correction is provided by keywords in the
$DFTD group. Here, the VERSN keyword can be used to specify the DFT-D ver-
sion to be used (default is VERSN=3). Thus, if one would like to use DFT-D
version 4, one should specify:

 $CONTRL DFTD=.T. $END
 $DFTD VERSN=4 $END

Parameters for many functionals (as well as for Hartree-Fock) are stored
internally in Firefly. Their availability is as follows:

Version 2 Version 3 Version 3 with
TZ=.T. (*)

Version 4

BP86
BLYP
B3LYP1
B3LYP5
PBE96
PBE0
B97-D
B2PLYP
B2GP-PLYP
DSD-BLYP
D-BLYP
D-PBEP86

Hartree-Fock
Slater (LSDA)
BP86
BLYP
B3LYP1
B3LYP5
BHHLYP
B3PW91
PBE96
PBE0
HCTH/120
OLYP
B97-D
B2PLYP
B2GP-PLYP

BP86
BLYP
B3LYP1
B3LYP5
PBE96
PBE0
MPW91LYP
B97-D
B2PLYP

Hartree-Fock
BP86
BLYP
B3LYP1
B3LYP5
BHHLYP
B3PW91
PBE96
PBE0
MPW91LYP
HCTH/120
OLYP
B97-D
B2PLYP
B2GP-PLYP

- 117 -

(*) The TZ keyword selects the use of a special set of DFT-D version 3 parameters optimized
for Ahlrichs' TZVPP basis set. Its default value is .FALSE.

The parameters of the correction model can be changed with the S6, RS6,
S18, RS18, and ALP keywords. These should be used if one uses a function-
al/method for which parameters are not stored internally, or if one would
like to use custom parameters. Their functions are:

S6 The s6 global scaling factor, the main scaling factor in DFT-D
version 2. For DFT-D version 3 and 4 it is of lesser importance
and is usually set to 1.0 (except with double hybrid function-
als).

RS6 For DFT-D version 2, this parameter is used in calculating the
dampening factor – its value is 1.1 (for all functionals). For
DFT-D version 3, this parameter corresponds to the sr,6 scaling
factor, which is the main scaling factor in this version. For
DFT-D version 4, it corresponds to the α1 free fit parameter.

S18 The s8 scaling factor used in DFT-D version 3 and 4. For DFT-D
version 2, this parameter has no function.

RS18 For DFT-D version 3, this parameter is used in calculating the
dampening factor, its value being 1.0 except with Slater ex-
change (where its value is 0.697). For DFT-D version 4, this
parameter corresponds to the α2 free fit parameter. For DFT-D
version 2, this parameter has no function.

ALP The global scaling parameter of the damping function (which
dampens the dispersion correction at short ranges). Its value is
usually 20 for DFT-D version 2, and 14 for DFT-D version 3 and
4. For DFT-D version 4, this parameter is only used when ABC=.T.
(see below).

The above parameter naming scheme is identical to the one used in the DFT-
D3 program by Grimme. However, a few of these parameters have names which
do not correspond to the parameters they represent, or have different mean-
ings depending on the DFT-D version used. As we assume this can be confus-
ing for some, aliases have been created for these parameters. Available
aliases are:

Keyword Aliases

RS6 SR6, ALPHA1

S18 S8

RS18 ALPHA2

- 118 -

It is important to note that, when specifying a custom set of parameters,
all five of the above parameters should be given a value, even those which
are zero or not used by the DFT-D version used!

In addition to the above parameters, there are a few other parameters and
keywords that should be mentioned. First of all, it is possible to control
the coordination number dependent dispersion (used in DFT-D version 3 and
4) through the K1, K2, and K3 keywords, which correspond to the k1, k2, and
k3 parameter, respectively. Their default values are K1=16, K2=4/3, and
K3=-4. Typically, there is no need to change them.

Furthermore, it is possible to enable the three-body non-additive contribu-
tion to the dispersion correction. This is done by specifying ABC=.T. and
pertains to DFT-D versions 3 and 4. By default, the three-body contribution
is disabled as Grimme and co-workers found that inclusion of three-body
terms had only a marginal impact overall while leading to poorer results in
a few specific cases.

It should finally be noted that some parameters, such as C6 and R0, cannot
be controlled. The values of these parameters are used as specified in the
references mentioned at the start of this section.

- 119 -

Time-Dependent Theories

General information

Time-dependent Hartree-Fock (TDHF; also known as RPA, random phase approxi-
mation) and time-dependent density functional theory (TDDFT) are theories
used to investigate properties of a system in the presence of an external
field such an electric or magnetic field. In Firefly, these theories can be
used to calculate the properties of excited state such as energies and os-
cillator strengths. Furthermore, it is possible to calculate various static
and/or frequency dependent polarizabilities (with an emphasis on important
NLO properties such as second and third harmonic generation). Both types of
calculations can be performed by direct type calculations using the ‘fast-
ints’ computation module (see the "Performance" chapter for details). Only
an RHF reference is allowed at present. Analytical gradients are not yet
programmed for both TDHF and TDDFT theories.

It is important to emphasize that time-dependent excited state calculations
and time-dependent polarizability calculations take place through two dif-
ferent modules and therefore need very different input. Excited state cal-
culations are requested through the CITYP keyword in $CONTRL group. The
$TDHF or $TDDFT group can hereby be used to specify additional keywords.
Two examples:

$CONTRL SCFTYP=RHF CITYP=TDHF RUNTYP=ENERGY $END
$TDHF <additional keywords> $END

$CONTRL SCFTYP=RHF CITYP=TDDFT DFTTYP=PBE0 RUNTYP=ENERGY $END
$TDDFT <additional keywords> $END

Polarizability calculations on the other hand are requested by RUNTYP=TDHF
in $CONTRL and do not use the CITYP keyword. Two examples:

$CONTRL SCFTYP=RHF RUNTYP=TDHF NOSYM=1 $END
$TDHF <additional keywords> $END

$CONTRL SCFTYP=RHF DFTTYP=PBE0 RUNTYP=TDHF NOSYM=1 $END
$TDHF <additional keywords> $END

As can be seen, both runs use RUNTYP=TDHF, even though the second one is a
TDDFT calculation. Furthermore, in both cases any additional keywords have
to be specified through the $TDHF group; the $TDDFT group is not used. The
specification of NOSYM=1 is required because the Fock matrices computed
during the time-dependent Hartree-Fock CPHF are not symmetric.

- 120 -

It is currently not possible to use all of the available DFT functionals
for TDDFT calculations. Supported values of DFTTYP are:

Exchange Correlation Exchange-correlation Hybrid

SLATER
B88
XPW91
GILL96
XPBE96
OPTX

VWN1RPA
VWN5
PW91LDA
LYP
CPW91
CPBE96

SVWN1RPA
BVWN1RPA
SVWN5
BVWN5
SLYP
BLYP
GLYP
OLYP
XLYP
BPW91
PW91
PBEPW91
PBE96

B1LYP
BHHLYP
B1PW91
B3PW91
B3LYP1
B3LYP5
O3LYP1
O3LYP5
X3LYP
PBE1PW91
PBE0

Finally, with respect to the calculation of static and dynamic (hyper) po-
larizabilities by TDDFT, it should be noted that while alpha values are
exact, beta and gamma are only approximate at present as second-order (and
higher) exchange-correlation kernels are not properly taken into account.
This might be fixed in a future version of Firefly.

Excited state calculations with TDHF (RPA)

As shown in the examples above, TDHF theory for excited state calculations
can be requested by the presence of the CITYP=TDHF keyword in the $CONTRL
group. Current implementation allows the use of only RHF references, but
can pick up both singlet and triplet excited states. Properties are availa-
ble using "unrelaxed" density. Due to efficiency considerations, TDHF is
programmed for SAPS (spin-adapted antisymmetrized product) basis only, so
you cannot get both singlet and triplet states at once.

The number of states to be found (excluding the ground state) is controlled
by NSTATE keywords. Specification of a state of interest for which proper-
ties will be calculated can be done via the ISTATE keyword. Only one state
can be chosen. The state-tracking feature of the Firefly's TDHF code may be
activated by selecting a negative value for ISTATE in the $TDHF group. Mul-
tiplicity (1 or 3) of the singly excited states can, as usual, be requested
via the MULT keyword in $CONTRL.

Another important keyword is ISTSYM, which is used to specify the symmetry
of the states of interest. Its default value is zero, which disables the
use of symmetry during the TD calculation (i.e., states of all symmetries
will be considered). Setting its value to the index of the desired irreduc-
ible representation (according to Firefly numbering) will produce only
states of the desired symmetry and will also exploit the full (including
non-abelian) symmetry of molecule, thus significantly reducing the computa-

- 121 -

tion time. Values for ISTSYM can be found in the output under "DIMENSIONS
OF THE SYMMETRY SUBSPACES ARE". A tip: when using a UNIX-like OS, one can
use grep -A 3 "DIMENSIONS OF THE SYMMETRY SUBSPACES ARE" outputfile to find
this string quickly.

As an example, below is the output for butadiene, a molecule with C2h sym-
metry.

 DIMENSIONS OF THE SYMMETRY SUBSPACES ARE
 AG = 28 AU = 8 BU = 28 BG = 8

From the order in which the irreps are printed, one can see that:

 Ag corresponds to ISTSYM=1,
 Au corresponds to ISTSYM=2,
 Bu corresponds to ISTSYM=3,
 Bg corresponds to ISTSYM=4,

For a better understanding of the ISTSYM keyword, let us take a closer look
this butadiene example. We have seen now that the C2h point group contains
four irreducible representations: Ag, Bg, Au, and Bu. Hereby, only the tran-
sitions Ag->Au, Ag->Bu, Bg->Au, Bg->Bu are symmetry allowed. As a result, on-
ly two symmetry allowed excited states can be formed by single electron
excitations: Au and Bu. Instead of solving TDHF for all four possible types
of states, we can consider only symmetry allowed states and thus save on
computation time. However, forbidden states can play a significant role in
non-radiative relaxation processes such as intersystem crossing and inter-
nal conversion and should be considered if needed. It is important to note
that oscillator strengths printed in the TDHF summary table are calculated
using transition dipoles length form only.

There is an option to re-read vectors from a previous run. This can be
helpful especially when one would like to obtain properties for more than
one state. In this case, there is no need to recalculate the TDHF equations
– all information can be read from $TDVEC group. This is achieved by speci-
fying RDTDVC=.T. in the $TDHF group and copying the $TDVEC block from the
PUNCH file of the converged TDHF run to the input file of the next run.

In the first example below, a TDHF calculation was performed for six single
excited singlets (NSTATE=6); properties for the first excited state will be
printed out (ISTATE=1); states of all possible summitries will be consid-
ered (ISTSYM=0).

Example 1:

 $CONTRL CITYP=TDHF RUNTYP=ENERGY $END
 $SYSTEM TIMLIM=525600 MEMORY=10000000 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $TDHF NSTATE=6 ISTSYM=0 ISTATE=1 $END
 $DATA
1,3-butadiene TDHF/6-31G(d)//RHF/6-31G(d)
CNH 2

 C 6.0 0.5262888328 0.5113710450 0.0000000000

- 122 -

 C 6.0 1.8213687868 0.2431548398 0.0000000000
 H 1.0 0.1953148875 1.5374180614 0.0000000000
 H 1.0 2.5595257633 1.0243655101 0.0000000000
 H 1.0 2.1906083178 -0.7681578804 0.0000000000
 $END

In the second example, a TDHF calculation is performed for four single ex-
cited singlets (NSTATE=4); properties for the second excited state will be
printed out using the state-tracking feature (ISTATE=-2); only states of Bu
symmetry will be considered (ISTSYM=3).

Example 2:

 $CONTRL CITYP=TDHF RUNTYP=ENERGY $END
 $SYSTEM TIMLIM=525600 MEMORY=10000000 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $TDHF NSTATE=4 ISTSYM=3 ISTATE=-2 $END
 $DATA
1,3-butadiene TDHF/6-31G(d)//RHF/6-31G(d)
CNH 2

 C 6.0 0.5262888328 0.5113710450 0.0000000000
 C 6.0 1.8213687868 0.2431548398 0.0000000000
 H 1.0 0.1953148875 1.5374180614 0.0000000000
 H 1.0 2.5595257633 1.0243655101 0.0000000000
 H 1.0 2.1906083178 -0.7681578804 0.0000000000
 $END

As was mentioned earlier, consideration of the symmetry specific states
significantly speed up computation. In the presented examples the speed up
was an approximate 2.3 times (!).

Excited state calculations with TDDFT

Excited state calculations with TDDFT are executed the same way as those
with TDHF. Virtually everything mentioned in the previous section also ap-
plies to TDDFT. The only difference is that TDDFT excited state calcula-
tions are requested by specifying CITYP=TDDFT instead of CITYP=TDHF. Addi-
tionally, keywords pertaining to the TDDFT calculation belong to the $TDDFT
group instead of the $TDHF group (keywords remain the same).

In addition to ‘normal’ TDDFT calculations, it is also possible to use the
Tamm-Dancoff approximation to TDDFT (TDDFT/TDA). This can be requested by
specifying TDA=.T. in the $TDDFT group.

In the example below a TDDFT calculation is performed in order to obtain
four single excited triplet states (NSTATE=4 MULT=3); properties for the
first excited state will be printed out (ISTATE=1); the states of all pos-
sible symmetries will be considered (ISTSYM=0).

Example 1:

- 123 -

 $CONTRL CITYP=TDDFT DFTTYP=PBE0 RUNTYP=ENERGY $END
 $SYSTEM TIMLIM=525600 MEMORY=10000000 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $TDDFT NSTATE=4 ISTSYM=0 ISTATE=1 $END
 $DATA
1,3-butadiene TDDFT/6-31G(d)//RHF/6-31G(d)
CNH 2

 C 6.0 0.5262888328 0.5113710450 0.0000000000
 C 6.0 1.8213687868 0.2431548398 0.0000000000
 H 1.0 0.1953148875 1.5374180614 0.0000000000
 H 1.0 2.5595257633 1.0243655101 0.0000000000
 H 1.0 2.1906083178 -0.7681578804 0.0000000000
 $END

The second example illustrates a TDDFT calculation performed for five sin-
gly excited singlet states (NSTATE=5); properties for the first excited
state will be printed out (ISTATE=1); only states of Au symmetry will be
considered (ISTSYM=2).

Example 2:

 $CONTRL CITYP=TDDFT DFTTYP=PBE0 RUNTYP=ENERGY $END
 $SYSTEM TIMLIM=525600 MEMORY=10000000 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $TDDFT NSTATE=5 ISTSYM=2 ISTATE=1 $END
 $DATA
1,3-butadiene TDDFT/6-31G(d)//RHF/6-31G(d)
CNH 2

 C 6.0 0.5262888328 0.5113710450 0.0000000000
 C 6.0 1.8213687868 0.2431548398 0.0000000000
 H 1.0 0.1953148875 1.5374180614 0.0000000000
 H 1.0 2.5595257633 1.0243655101 0.0000000000
 H 1.0 2.1906083178 -0.7681578804 0.0000000000
 $END

The third and final example illustrates a TDDFT calculation using the Tamm-
Dancoff approximation to TDDFT (TDA=.T.). Six singly excited singlet states
are requested (NSTATE=6); properties for the first excited state will be
printed out (ISTATE=1); no symmetry will be used during the calculation
(ISTSYM=0).

Example 3:

 $CONTRL CITYP=TDDFT DFTTYP=PBE0 $END
 $SYSTEM TIMLIM=525600 MEMORY=10000000 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $TDDFT NSTATE=6 ISTSYM=0 ISTATE=1 TDA=.T. $END
 $DATA
1,3-butadiene TDDFT/6-31G(d)//RHF/6-31G(d)

- 124 -

CNH 2

 C 6.0 0.5262888328 0.5113710450 0.0000000000
 C 6.0 1.8213687868 0.2431548398 0.0000000000
 H 1.0 0.1953148875 1.5374180614 0.0000000000
 H 1.0 2.5595257633 1.0243655101 0.0000000000
 H 1.0 2.1906083178 -0.7681578804 0.0000000000
 $END

- 125 -

Configuration Interaction methods

Introduction

Configuration interaction (CI) is a theory in which the wavefunction is
described as a linear combination of Slater determinants. CI calculations
in Firefly can be performed in a few different ways. First, there is a CI-
singles (CIS) program which performs single excitations from a RHF refer-
ence wavefunction. Analytic gradients are available for this method.

Then, it is also possible to perform higher order CI calculations with the
ALDET and GUGA programs. These programs were designed to perform MCSCF cal-
culations such as FORS-MCSCF (also known as CASSCF), and multireference CI,
but the GUGA program can also be used for performing single-reference CI
calculations. The ALDET program is not capable of performing truncated CI
calculations, it can only do full CI. This chapter will only focus on how
to perform single-reference CI calculations. Multireference CI is discussed
in the MCSCF chapter.

CI singles and higher-order CI calculations will be separately discussed in
the next two sections.

CI singles

The CIS method is the simplest way to treat excited states. By Brillouin's
Theorem, a single determinant reference such as RHF will have zero matrix
elements with singly substituted determinants. The ground state reference
therefore has no mixing with the excited states treated with singles only.
The CIS method can be thought of as a non-correlated method, rigorously so
for the ground state, and effectively so for the various excited states.
Some issues making CIS not quite a black box method are:

a) Any states characterized by important doubles are simply missing from
the calculation.
b) Excited states commonly possess Rydberg (diffuse) character, so the AO
basis used must allow this.
c) Excited states often have different point group symmetry than the ground
state, so the starting geometries for these states must reflect their actu-
al symmetry.
d) Excited state surfaces frequently cross, and thus root flipping may very
well occur.

The CIS code in the Firefly is based on heavily modified source code of the
original GAMESS (US) AO-basis CIS program written by Simon P. Webb. Its
current implementation allows the use of RHF reference wavefunctions only,
but it can pick up both singlet and triplet excited states. Nuclear gradi-
ents are available, as are properties.

- 126 -

A CIS calculation can be requested with the keyword CITYP=CIS in the $CON-
TRL group. The input group with relevant keywords is the $CIS group. The
most important keywords are NSTATE, which determines the amount of excited
states to be found, and ISTATE, which determines for which state properties
or a gradient should be calculated. Naturally, the value of NSTATE should
be at least as high as the value of ISTATE. However, no error message is
produced is this requirement is not met. In such a case, ISTATE will be set
to be identical to NSTATE. In other words, be sure to check your input as
the Firefly will not warn you if you set NSTATE too low. Setting ISTATE=0
will cause the Firefly to default to ISTATE=1.

It is possible to request only states of a specific symmetry using the
ISTSYM keyword, provided you specified a point group in $DATA. ISTSYM=0
disables the use of symmetry while a non-zero value of ISTSYM requests
states belonging to a certain irreducible representation. For more infor-
mation on symmetry and the ISTSYM keyword, please see the section on TDHF.

Contrary to the TDHF and TDDFT codes, the CIS code can pick up singlet and
triplet states at the same time, however it is not able to do this by de-
fault. In order to achieve this, it is necessary to choose a different CI
type by using the HAMTYP keyword. The default CI type is HAMTYP=SAPS, which
uses a spin-adapted antisymmetrized product basis and which can obtain
states of only one multiplicity. The determinant based CI type, set through
HAMTYP=DETS, can pick up both multiplicities, however, this CI type does
have the downside that it will disable the use of fastints/gencon code dur-
ing direct CIS runs (which will be detrimental to computation time).

The CIS program has a state-tracking feature which is activated by select-
ing a negative value of ISTATE. It is intended to be used for the geometry
optimization of excited states in the case of root flipping.

An example input file for a CIS calculation on a water molecule:

 $CONTRL SCFTYP=RHF CITYP=CIS RUNTYP=ENERGY UNITS=ANGS $END
 $SYSTEM TIMLIM=3000 MWORDS=10 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $CIS NSTATE=3 ISTSYM=0 ISTATE=1 $END
 $DATA
H2O
CNV 2

 O 8.0 0.000000000 0.000000000 0.715595046
 H 1.0 0.000000000 -0.754094334 0.142202477
 $END

Note that oscillator strengths printed in the CIS summary table in the out-
put are calculated using transition dipoles length form only. In addition,
for degenerate irreps, computed oscillator strengths are for pure quantum
states, so for most purposes one needs to multiply them by the factor equal
to the degeneracy of the electronic states.

Instructions for the generation of state-averaged CIS natural orbitals can
be found here:

- 127 -

http://classic.chem.msu.su/gran/gamess/forum/attach/cisnos_averaged.rar

Higher order CI

Higher order CI calculations can be performed with the ALDET and GUGA pro-
grams. These programs have two different approaches for doing CI calcula-
tions. ALDET, the Ames Labs DETerminant CI program, uses determinants to
form the many electronic basis set. GUGA, the Graphical Unitary Group Ap-
proach CI program, on the other hand forms the many electronic basis set
using configuration state functions (CSFs). As noted earlier, these two
programs were designed for performing MCSCF (and MRCI) calculations. There-
fore, many aspects related to these programs, including the difference be-
tween determinants and CSFs, are discussed in the chapter on MCSCF. This
section will only focus on single-reference CI calculations. Since the
ALDET program is only capable of full CI, the remainder of this section
will discuss GUGA-style CI.

GUGA CSF-based CI can be requested with the keyword CITYP=GUGA in the $CON-
TRL group. The GUGA program was originally a set of different programs, so
the input to control it is spread over several input groups. The CSFs are
specified by a $CIDRT group. Other relevant input groups are $CISORT, $GUG-
EM, $GUGDIA, and $GUGDM. The $LAGRAN group can possible be relevant as
well. Perhaps the most interesting variables outside the $CIDRT group are
NSTATE in $GUGDIA to include excited states in the CI computation, and
IROOT in $GUGDM to select the state for which properties and/or the gradi-
ent are to be calculated.

With CSF-based CI, the CSFs are ordinarily specified by giving a reference
CSF together with a maximum degree of electron excitation from that single
CSF. The MOs in the reference CSF are filled in the order of FZC first,
followed by DOC, AOS, BOS, ALP, VAL, and EXT (the Aufbau principle). AOS,
BOS, and ALP are singly occupied MOs (note that the amount of AOS should
always be equal to the amount of NBOS). ALP means a high spin alpha cou-
pling, while AOS/BOS are an alpha/beta coupling to an open shell singlet.
For a single-reference CI calculation, this input can be kept very simple,
an example being:

NFZC=3 NDOC=5 NVAL=34

which means the reference RHF wavefunction is:

FZC FZC FZC DOC DOC DOC DOC DOC VAL VAL ... VAL

In this case, NVAL is a large number conveying the total number of virtual
orbitals into which electrons are excited. Note that NVAL's spelling was
chosen to make the most sense for MCSCF calculations, and so it is a bit of
a misnomer here. The excitation level can be set with the IEXCIT keyword,
where IEXCIT=2 for example requests a CISD calculation. All excitations
smaller than the value of IEXCIT are automatically included in the CI.

Before going on, there is a quirk related to single-reference CI that
should be mentioned. Whenever the single-reference wavefunction contains
unpaired electrons, such as

- 128 -

NFZC=3 NDOC=4 NALP=2 NVAL=33

some "extra" CSFs will be generated. The reference here can be abbreviated

2222 11 000 000 000 000 000 000 000 000 000 000 000

In the case of IEXCIT=2, the following CSF

2200 22 000 011 000 000 000 000 000 000 000 000 000

will be generated and used in the CI. Most people would prefer to think of
this as a quadrupole excitation from the reference, but acting solely on
the reasoning that no more than two electrons went into previously vacant
NVAL orbitals, the GUGA CSF program decides it is a double. The result is
that an open shell CISD calculation with Firefly will not give the same
result as would be obtained with other programs, although the result for
any such calculation with these "extras" is correctly computed.

Analytical gradients are available for CSF-based CI, however, at present
gradient calculations cannot run in parallel and benefit little from multi-
threading. Therefore, these calculations do not run very efficiently and
might not be feasible with larger systems.

It is possible to request only states of a certain symmetry. This is done
with the keywords GROUP and ISTSYM, which both belong to the $CIDRT group.
GROUP can be used to specify the point group. The following point groups
are supported: C1, C2, CI, CS, C2V, C2H, D2, D2H, C4V, D4, D4H. The desired
irrep can be requested with ISTSYM. Note that, contrary to what is the case
for CIS calculations, ISTSYM=0 does not disable symmetry (setting this will
set the symmetry to be defined by the symmetry of the reference CSF). In-
stead, this is done by specifying GROUP=C1. For more information on the use
of symmetry, please see the MCSCF chapter.

An example input file for a CISD energy calculation on a water molecule:

 $CONTRL SCFTYP=RHF CITYP=GUGA RUNTYP=ENERGY UNITS=ANGS $END
 $SYSTEM TIMLIM=10000 MWORDS=10 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
 $CIDRT GROUP=C1 ISTSYM=1 NFZC=1 NDOC=4 NVAL=14 IEXCIT=2 $END
 $GUGDIA NSTATE=5 $END
 $DATA
H2O
CNV 2

 O 8.0 0.000000000 0.000000000 0.715595046
 H 1.0 0.000000000 -0.754094334 0.142202477
 $END

Additional, performance related keywords are discussed in the MCSCF chap-
ter.

- 129 -

Multi-configurational SCF methods

General information

Multi-configuration self-consistent field (MCSCF) wavefunctions are the
most general SCF type, offering a description of chemical processes involv-
ing the separation of electrons (i.e. bond breaking, electronically excited
states, etc.), which are often not well represented using single configura-
tion SCF methods.

MCSCF wavefunctions, as the name implies, contain more than one configura-
tion, each of which is multiplied by a "configuration interaction (CI) co-
efficient", determining its weight. In addition, the orbitals which form
each of the configurations are optimized, just as in a simpler SCF, to
self-consistency.

Typically, the uniqueness of each chemical problem requires that the design
of an MCSCF wavefunction to treat it has to be done on a case by case ba-
sis. For example, one may be interested in describing the reactivity of a
particular functional group instead of elsewhere in the molecule. This
means that one has to choose carefully which configurations should be in-
cluded in the MCSCF procedure in order to achieve a good description of the
chemical problem. A popular way of doing this is by dividing the molecular
orbitals into an “active” and an “inactive” space, where the active space
contains the orbitals that are best described using multiple configura-
tions. If within the active space all possible configurations are consid-
ered (similar to a full CI calculation within the active space), the ap-
proach is usually referred to as FORS-MCSCF (fully optimized reactive space
MCSCF) or CASSCF (complete active space SCF), the latter name being used
more often. Because of the importance of CASSCF, a large part of this chap-
ter will focus on this theory. If within the active space only a part of
all possible configurations is considered, the approach can be referred to
as 'incomplete active space SCF'.

Using CASSCF allows one to calculate the static correlation energy in a
chemical problem, but it does not calculate the dynamic correlation energy.
A follow-up CI calculation, a method known as multireference CI, is one way
to obtain the dynamic correlation, but has the drawbacks of not being size
consistent and requiring a lot of computational resources. A more efficient
technique implemented in Firefly for finding the dynamic correlation energy
is second-order perturbation theory, in the variants known as MCQDPT and
XMCQDPT. MRCI (though not a SCF method) is discussed in this chapter, while
the MCQDPT and XMCQDPT theories are discussed in a separate chapter.

With the exception of the QUAD converger, the CASSCF program in Firefly is
of the type termed "unfolded two step" by Roos. This means the orbital and
CI coefficient optimizations are separated. The latter are obtained in a
conventional CI diagonalization, while the former are optimized by a sepa-
rate orbital improvement step.

- 130 -

Simplified, each CASSCF iteration consists of the following steps:
1) transformation of AO integrals to the current MO basis,
2) generation of the Hamiltonian matrix (not needed with direct CI),
3) optimization of the CI coefficients by means of a Davidson diagonaliza-
tion,
3) generation of the first and second-order density matrix,
4) improvement of the molecular orbitals.

As was discussed in the previous chapter, the CI problem in steps 2 and 3
has two options, namely to use a determinant based CI code (ALDET) or a
configuration state function (CSF) based CI code (GUGA). The choice between
these is determined by the keyword CISTEP in the $MCSCF group: CISTEP=ALDET
will request determinant-based MCSCF while CISTEP=GUGA will request CSF-
based MCSCF. The differences between determinants and CSFs will be dis-
cussed later on.

The orbital problem in step 4 has four options. These are FOCAS, SOSCF,
FULLNR, and QUAD, listed here in order of their computer resource require-
ments. These options will be discussed in the next section.

Information on the selection of the active space, ways to interpret the
resulting MCSCF wavefunction, and the treatment for dynamical correlation
not included in the MCSCF wavefunction can be found in the following refer-
ences:

"The Complete Active Space Self-Consistent Field Method and its Applica-
tions in Electronic Structure Calculations" K. P. Lawley and B. O. Roos,
Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part
2, Volume 69, 399-445 (1987)

"The Construction and Interpretation of MCSCF wavefunctions" M. W. Schmidt
and M. S. Gordon, Ann. Rev. Phys. Chem. 49, 233-266 (1998)

"Multiconfigurational quantum chemistry for ground and excited states" B.
O. Roos, Challenges and Advances in Computational Chemistry and Physics
Vol. 5: Radiation Induced Molecular Phenomena in Nucleic Acids, 125-156
(2008)

"How to select active space for multiconfigurational quantum chemistry?" V.
Veryazov, P. Å. Malmqvist, and B. O. Roos, Int. J. Quantum. Chem. 111,
3329-3338 (2011)

Orbital optimization options

There are presently four orbital improvement options, namely FOCAS, SOSCF,
FULLNR, and QUAD. All four MCSCF orbital optimization methods were designed
to efficiently run in parallel.

FOCAS is a first-order, complete active space MCSCF optimization procedure.
The FOCAS code was written by Michel Dupuis and Antonio Marquez at IBM. It
is based on a novel approach due to Meier and Staemmler, using very fast
but numerous microiterations to improve the convergence of what is intrin-
sically a first-order method. Since FOCAS requires only one virtual orbital

- 131 -

index in the integral transformation to compute the orbital gradient (aka
the Lagrangian), the total MCSCF job may take less time than a second-order
method, even though it may require twice as many iterations to converge.
The use of microiterations is crucial to FOCAS' ability to converge. It is
important to take a great deal of care choosing the starting orbitals.

SOSCF is a method built upon the FOCAS code, which seeks to combine the
speed of FOCAS with second-order convergence properties. It is an approxi-
mate Newton-Raphson method which starts at the diagonal guess to the or-
bital Hessian and then uses the limited memory BFGS (LBFGS) update approach
to attain a quasi-linear, i.e. approximately quadratic convergence. Its
time requirements per iteration are like FOCAS, with a convergence rate
better than FOCAS but not as good as true second-order. LBFGS allows the
SOSCF method to be used with much larger basis sets than exact second-order
methods. Good convergence by the SOSCF method requires that you prepare
starting orbitals carefully, and read in all MOs in $VEC, as the provision
of canonicalized virtual orbitals increases the diagonal dominance of the
orbital Hessian. It is important to note that the SOSCF converger in Fire-
fly is much improved compared to the original SOSCF converger from GAMESS
US. In most cases, SOSCF is better than FULLNR.

FULLNR means a full Newton-Raphson orbital improvement step is taken, using
the exact orbital Hessian. FULLNR is a quite powerful convergence method,
and normally takes the fewest iterations to converge. Computing the exact
orbital Hessian requires two virtual orbital indices to be included in the
transformation, making this step quite time consuming, and of course memory
for storage of the orbital Hessian must be available. Because both the
transformation and orbital improvement steps of FULLNR are time consuming,
FULLNR is not the default. The FULLNR MCSCF code in Firefly uses the aug-
mented Hessian matrix approach to solve the Newton-Raphson equations. There
are two suboptions for computation of the orbital Hessian. DM2 is the fast-
est but takes more memory than TEI.

QUAD uses a fully quadratic, or second-order approach and is thus the most
powerful MCSCF converger. QUAD runs begin with unfolded FULLNR iterations,
until the orbitals approach convergence sufficiently. QUAD then begins the
simultaneous optimization of CI coefficients and orbitals, and convergence
should be obtained in 3-4 additional MCSCF iterations. The QUAD method re-
quires building the full Hessian, including orbital/orbital, orbital/CI,
and CI/CI blocks, which is a rather big matrix. QUAD may be helpful in con-
verging excited electronic states, but note that you may not use state av-
eraging with QUAD. QUAD is a memory hog, and so may be used only for fairly
small numbers of configurations.

The default converger is SOSCF because it usually requires the least CPU
time, disk space, and memory needs. Depending on the size of your calcula-
tion, however, there can be cases where FOCAS is faster so it is recommend-
ed you give this converger a try when convergence with SOSCF is generally
smooth. If you cannot reach convergence with the SOSCF method, you can try
to use the FULLNR method. However, this method should always be used with
caution as it is able to reach convergence even with badly chosen active
spaces, resulting in orbitals which from a chemical point of view make no
sense anymore. When doing MCSCF calculations, it is always wise to regular-
ly visualize your orbitals, but this goes double when using the FULLNR

- 132 -

method. Alternatively, SOSCF convergence can be often be improved by per-
forming several FOCAS iterations to improve the active space followed by an
inspection of the natural orbitals, which can then be used in a subsequent
SOSCF calculation.

The input to choose the convergence method can be given in the $MCSCF group
(e.g. SOSCF=.T.). The keywords MAXIT, ACURCY, and ENGTOL, which control the
convergence behavior, also belong to this group. In some circumstances the
diagonalizations of the core and virtual orbitals to canonicalize these
(after overall MCSCF convergence) may produce spatial orbital symmetry
loss, particularly in point groups with degeneracy present. The SD=.T. op-
tion can be used to preserve symmetry in this case.

Determinants vs CSFs

Either determinants or configuration state functions (CSFs) may be used to
form the many electron basis set. It is necessary to explain these in a bit
of detail so that you can understand the advantages of each.

A determinant is a simple object: an antisymmetrized product of spin orbit-
als with a given Sz quantum number, that is, the number of alpha spins and
number of beta spins are a constant. Matrix elements involving determi-
nants are correspondingly simple, but unfortunately determinants are not
necessarily eigenfunctions of the S**2 operator.

To expand on this point, consider the four familiar 2e- functions which
satisfy the Pauli principle. Here u,v are space orbitals, and a, b are the
alpha and beta spin functions. As you know, the singlet and triplets are:

 S1 = (uv + vu)/sqrt(2) * (ab - ba)/sqrt(2)
 T1 = (uv) * aa
 T2 = (uv - vu)/sqrt(2) * (ab + ba)/sqrt(2)
 T3 = (uv) * bb

It is a simple matter to multiply out S1 and T2, and to expand the two de-
terminants which have Sz=0,

 D1 = |ua vb| D2 = |va ub|

This reveals that

 S1 = (D1+D2)/sqrt(2) or D1 = (S1 + T2)/sqrt(2)
 T2 = (D1-D2)/sqrt(2) D2 = (S1 - T2)/sqrt(2)

Thus, one must take a linear combination of determinants in order to have a
wavefunction with the desired total spin.

There are two important points to note:

a) A two by two Hamiltonian matrix over D1 and D2 has eigenfunctions with -
different- spins, S=0 and S=1.
b) use of all determinants with Sz=0 does allow for the construction of
spin adapted states. D1+D2, or D1-D2, are -not- spin contaminated.

- 133 -

By itself, a determinant such as D1 is said to be "spin contaminated", be-
ing a fifty-fifty admixture of singlet and triplet (it is curious that cal-
culations with just one such determinant are often called "singlet UHF").
Of course, some determinants are spin adapted all by themselves, for exam-
ple the spin adapted functions T1 and T3 above are single determinants, as
are the closed shells

 S2 = (uu) * (ab - ba)/sqrt(2).
 S3 = (vv) * (ab - ba)/sqrt(2).

It is possible to perform a triplet calculation, with no singlet states
present, by choosing determinants with Sz=1 such as T1, since then no state
with Sz=0 as is required when S=0 exists in the determinant basis set. To
summarize, the eigenfunctions of a Hamiltonian formed by determinants with
any particular Sz will be spin states with S=Sz, S=Sz+1, S=Sz+2, ... but
will not contain any S values smaller than Sz.

CSFs are an antisymmetrized combination of a space orbital product, and a
spin adapted linear combination of simple alpha-beta products. Namely, the
following CSF

 C1 = A (uv) * (ab-ba)/sqrt(2)

which has a singlet spin function is identical to S1 above if you write out
what the antisymmetrizer A does, and the CSFs

 C2 = A (uv) * aa
 C3 = A (uv - vu)/sqrt(2) * ((ab + ba)/sqrt(2))
 C4 = A (uv) * bb

equal T1-T3. Since the three triplet CSFs have the same energy, Firefly
works with the simpler form C2. Singlet and triplet computations using CSFs
are done in separate runs, because when spin-orbit coupling is not consid-
ered, the Hamiltonian is block diagonal in a CSF basis.

Technical information about the CSFs are that they use Yamanouchi-Kotani
spin couplings, and matrix elements are obtained using a GUGA, or graphical
unitary group approach.

The determinant implementation in Firefly can perform only full CI computa-
tions, meaning its primary use is for MCSCF wavefunctions of the complete
active space type. The CSF code is capable of more general CI computations,
and so can be used for first- or second-order CI computations. Other com-
parisons between the determinant and CSF implementations, as they exist in
Firefly today, are

 determinants CSFs
 parallel execution yes yes
 direct CI yes yes
 exploits space symmetry yes yes
 state average mixed spins yes no
 first-order density yes yes
 state averaged densities yes yes

- 134 -

 can form CI Lagrangian yes yes

The default CISTEP in $MCSCF is ALDET, the Ames Laboratory determinant CI
code.

The next two sections describe in detail the input for specification of the
configurations, using determinants or CSFs.

Determinant CI code (ALDET)

The determinant CI code is capable only of full CI wavefunctions. Keywords
associated with the determinant CI code belong to the $DET and $CIDET
groups. The first of these is used for CASSCF calculations while the latter
is used for full CI calculations. Despite having a different name, these
two groups use almost the same keywords. Input for these groups is rela-
tively simple -- many runs can be done by specifying only the orbital and
electron counts: NCORE, NACT, and NELS.

The number of electrons is 2*NCORE+NELS and will be checked against the
charge implied by ICHARG. The MULT given in $CONTRL is used to determine
the desired Sz value, by extracting S from MULT=2S+1, then by default Sz=S.
If you wish to include lower spin multiplicities, which will increase the
CPU time of the run but will let you know what the energies of such states
are, just input a smaller value for SZ. The states whose orbitals will be
MCSCF optimized will be those having the requested MULT value, unless you
choose otherwise with the PURES flag. An interesting feature that should be
mentioned is that runs with Sz=0 use so-called NA = NB simplification and
therefore, on average, twice as fast compared to runs with other values of
Sz. This way, triplets can sometimes be computed faster using Sz=0 than the
native Sz.

When one would like to obtain many states of a certain multiplicity, diffi-
culties can be encountered when using the ALDET program as NSTATE will need
to be set to a very high value. For example, if one would like to obtain 20
singlet states, NSTATE possibly might need be set as high as 60. With this
many states, the Davidson diagonalization routine might fail due to loss of
orthogonality and spin purity as a consequence of the multiple repeated re-
orthogonalizations and reconstructions of the expansion basis. In such a
case, the ISPIN keyword can be used to filter out a part of the states pri-
or to Davidson diagonalization. ISPIN=0 filters out states with odd S val-
ues (triplets, heptaplets, etc.) while ISPIN=1 filters out states with even
S values (singlets, quintets, etc.). The NSTGSS keyword should be used to
request enough states prior to filtering. An example for obtaining 20
states with an even S value:

 NSTATE=20 ISPIN=0 NSTGSS=60

The remaining parameters in $DET/$CIDET give extra control over the diago-
nalization process. Most are not given in normal circumstances, except
NSTATE, which you may need to adjust in order to produce enough roots of
the desired MULT value. The only important keyword which has not been dis-
cussed is the WSTATE array, which gives the weights for each state in form-

- 135 -

ing the first- and second-order density matrix elements, which drive the
orbital update methods during MCSCF runs. Note that truly analytic gradi-
ents are available only when a pure state is specified, such as
WSTATE(1)=0,1,0 which requests gradients of the first excited state to be
computed. For state averaged MCSCF, gradients are instead obtained semi-
numerically using a state-specific gradient calculation over state-averaged
orbitals using a very efficient and accurate dedicated procedure based on
the differentiation of the averaged gradient of SA-MCSCF (which is dis-
cussed in more detail further on in this chapter). When used for state av-
eraged MCSCF, WSTATE is normalized to a unit sum, thus WSTATE(1)=1,1,1 re-
ally means a weight of 0.33333... for each of the states being averaged.

The ALDET code is able to exploit spatial symmetry, which, like the spin
and charge, is implicitly determined by the choice of the reference CSF.
The keyword GROUP in $DET/$CIDET governs the use of spatial symmetry. The
ALDET code works with Abelian point groups, which are D2h and any of its
subgroups. Fhe following point groups are supported: C1, C2, CI, CS, C2V,
C2H, D2, D2H. For non-Abelian groups, the program automatically assigns the
orbitals to an irrep in the highest possible Abelian subgroup. For the oth-
er non-Abelian groups, you must at present select an Abelian subgroup of
the full point group or no symmetry at all (i.e. GROUP=C1). When symmetry
is used, the desired irrep can be chosen with the keyword ISTSYM. Note that
when you are computing a Hessian matrix, many of the displaced geometries
are asymmetric, hence the program will automatically choose C1 in
$DET/$CIDET (however, be sure to use the highest symmetry possible in $DA-
TA!).

CSF CI code (GUGA)

The GUGA CSF package was originally a set of different programs, so the
input to control CSF-based MCSCF is spread over several input groups, name-
ly $DRT/$CIDRT, $GUGEM, $GUGDIA, $GUGDM, $GUGDM2, $CISORT, and $GUGDRT. The
CSFs are specified by a $DRT group for MCSCF wavefunctions and by a $CIDRT
group in the case of CITYP=GUGA. Thus, it is possible to perform an MCSCF
calculation defined by a $DRT group (or a $DET group, which is also possi-
ble), and follow this up with a CI calculation defined by a $CIDRT group
(or even a $CIDET group), in the same run.

Apart from the $DRT group, $GUGDIA, and $GUGDM2 are probably the most im-
portant groups for MCSCF runs. The most interesting variables outside the
$DRT group are NSTATE in $GUGDIA to include additional states in the CI
computation and WSTATE in $GUGDM2 to control which (average) state's ener-
gies are optimized. As with determinant-based MCSCF, truly analytic gradi-
ents are only available for pure states while state specific gradients for
state averaged MCSCF are obtained semi-numerically (which will be discussed
further on in this chapter).

The CSFs are specified by giving a reference CSF, together with a maximum
degree of electron excitation from that single CSF. The MOs in the refer-
ence CSF are filled in the order MCC (MCSCF) / FZC (CI) first, followed by
DOC, AOS, BOS, ALP, VAL, and EXT (the Aufbau principle). AOS, BOS, and ALP
are singly occupied MOs. ALP means a high spin alpha coupling, while

- 136 -

AOS/BOS are an alpha/beta coupling to an open shell singlet. This requires
the value NAOS=NBOS, and their MOs alternate. An example is

NMCC=1 NDOC=2 NAOS=2 NBOS=2 NALP=1 NVAL=3

which gives the reference CSF

MCC,DOC,DOC,AOS,BOS,AOS,BOS,ALP,VAL,VAL,VAL

This is a doublet state with five unpaired electrons. VAL orbitals are un-
occupied only in the reference CSF, they will become occupied as the other
CSFs are generated. This is done by giving an excitation level, either ex-
plicitly by the IEXCIT variable, or implicitly by the FORS, FOCI, or SOCI
flags. One of these four keywords must be chosen, however, it is possible
to use specify IEXCIT in addition to FORS/FOCI/SOCI to limit the excitation
level inside the active space (thus creating an incomplete active space).
More information on FOCI and SOCI can be found in the section on multi-
reference CI.

Consider another simpler example:

NMCC=3 NDOC=3 NVAL=2

which gives the reference CSF

MCC,MCC,MCC,DOC,DOC,DOC,VAL,VAL

having six electrons in five active orbitals. Usually, MCSCF calculations
are of the CASSCF/FORS type. These are enabled using the FORS keyword. In
the present instance, choosing FORS=.T. gives an excitation level of 4, as
the 6 valence electrons have only 4 holes available for excitation. MCSCF
runs typically have only a small number of VAL orbitals. It is common to
summarize this example as "six electrons in five orbitals" (which is often
written as 'CASSCF(6,5)').

Note that, if you choose an excitation level IEXCIT smaller than that need-
ed to generate the complete active space, you must use the FULLNR or SOSCF
method (as FOCAS assumes complete active spaces). Be sure to set FORS=.F.
in $MCSCF or else very poor convergence will result. Actually, the conver-
gence for incomplete active spaces is likely to be poor anyway.

As was discussed above, the CSFs are automatically spin-symmetry adapted,
with S implicit in the reference CSF. The spin quantum number you appear to
be requesting in $DRT (basically, S = NALP/2) will be checked against the
value of MULT in $CONTRL, and the total number of electrons, 2*NMCC(or
NFZC) + 2*NDOC + NAOS + NBOS + NALP will be checked against the input given
for ICHARG.

Like the ALDET code, the GUGA code is able to exploit spatial symmetry,
which, like the spin and charge, is implicitly determined by the choice of
the reference CSF. The keyword GROUP in $DRT/$CIDRT governs the use of spa-
tial symmetry. The CSF program works with Abelian point groups, which are
D2h and any of its subgroups. However, $DRT/$CIDRT allows the input of some
(but not all) higher point groups -- the following point groups are sup-

- 137 -

ported: C1, C2, CI, CS, C2V, C2H, D2, D2H, C4V, D4, D4H. For non-Abelian
groups, the program automatically assigns the orbitals to an irrep in the
highest possible Abelian subgroup. For the other non-Abelian groups, you
must at present select an Abelian subgroup of the full point group or no
symmetry at all (i.e. GROUP=C1). When symmetry is used, the desired irrep
can be chosen with the keyword ISTSYM (which overrides the symmetry comput-
ed from the reference). Note that when you are computing a Hessian matrix,
many of the displaced geometries are asymmetric, hence the program will
automatically choose C1 in $DRT/$CIDRT (however, be sure to use the highest
symmetry possible in $DATA!).

In cases with high point group symmetry, it may be possible to generate
correct state degeneracies only by using no symmetry (GROUP=C1) when gener-
ating CSFs. As an example, consider the 2-pi ground state of NO. If you use
GROUP=C4V, which will be mapped into its highest Abelian subgroup C2v, the
two components of the pi state will be seen as belonging to different ir-
reps, B1 and B2. The only way to ensure that both sets of CSFs are generat-
ed is to enforce no symmetry at all, so that CSFs for both components of
the pi level are generated. (Alternatively, for this specific example, one
can use the C2 group as well as both pi orbitals belong to the same irrep.)
This permits state averaging (i.e. WSTATE(1)=0.5,0.5) to preserve cylindri-
cal symmetry. It is however perfectly feasible to use C4v or D4h symmetry
in $DRT/$CIDRT when treating sigma states.

Performance

Over the years, many changes have been made to the Firefly code in order to
optimize its performance. Improved algorithms have been written in order to
achieve maximum performance and various new keywords allow one to choose or
tune these algorithms in order to maximize the performance for a specific
calculation. Many of these algorithms and their associated keywords were
already discussed in the Performance chapter. The focus of this section is
on the performance of MCSCF and (MR)CI type calculations.

Using FASTINTS/GENCON code
Throughout this section, we denote "large-scale" MCSCF calculations as sys-
tems having large number of basis functions (e.g. 500) and relatively small
active spaces (e.g. 12 electrons/12 orbitals). In this case, the overall
cost of calculations is mainly dominated by the integral transformation and
effective Fock matrix construction steps. To speed up these stages, Firefly
includes special fast direct and conventional integral transformation algo-
rithms based on the fastints/gencon code (see the chapter on performance
for details). These are available for any CI type, incl. CASSCF-type CI.

Some important keywords, all belonging to the $TRANS group, and their rec-
ommended values are:

$TRANS MPTRAN=2 DIRTRF=.T. AOINTS=DIST ALTPAR=.T. MODE=gsm $END

Here, the MPTRANS keyword instructs Firefly to select a fast alternative
algorithm for integral transformation (fastints), using either its direct
variant (preferred), or the conventional variant with 2-e integrals dis-
tributed over nodes, and selects an alternative (more scalable) parallel

- 138 -

strategy for MSCSF runs. The MODE keyword selects various suboptions. “gsm”
is 3-digit decimal number defining the details of the direct parallel
transformation code to be used. g can be either 0 or 1, and means either to
use (1) or not to use (0) gencon version of the fastints code. s can be
either 0 or 1, and means either to use (1) or not to use (0) approximate
Schwarz integral screening (note that even if approximate screening is dis-
abled, the exact Schwarz screening will be nevertheless in effect by de-
fault). Finally, m can be 0, 1, and 2, and denotes a small (0), medium (1),
or large (2) active space. Thus, mode=112 is the most appropriate for most
runs. For very small active spaces (typically 4 to 8 orbitals), mode=110 or
111 will perform faster, though one may find different depending on one's
system and computer hardware. Note that fastints is only implemented for
the FOCAS and SOSCF methods, not for the FULLNR method. Consequently, with
FULLNR, MPTRANS cannot be set to 2.

The DIRTRF and AOINTS keywords serve to reduce the amount of I/O opera-
tions. ALTPAR duplicates some work but reduces communication and changes
disk usage.

Packing the GUGA CI Hamiltonian file
When performing an MCSCF calculation with the GUGA program, an additional
keyword of interest is:

$GUGEM PACK2=.T. $END

This selects (secondary) packing of GUGA CI Hamiltonian file, which works
in conjunction with the FASTCI method of compression. This is a lossless
method, which generally reduces the size of WORK16 file by a factor of up
to 3-6 additionally to the FASTCI squeezing. Thus, the total degree of com-
pression can reach the factor of 10-20 and even more, especially for the
non-FORS type CI. Hence, this option is very useful in the case of rela-
tively large CI calculations (i.e. 50000 CSFs or more, up to several mil-
lions), saving the disk space and reducing the wall clock time. Currently,
the fastest way to perform any large GUGA CI/MCSCF calculation is to use
this PACK2 method of packing. The only exception is the case of GUGA CI
Hamiltonians of medium size that can entirely reside in the system file
cache (which is limited only by the amount of the physical memory currently
unused). For such jobs, the default packing settings are still faster.

MCSCF convergers
As noted in an earlier section of this chapter, the SOSCF and FOCAS orbital
convergers are generally the fastest methods when performing an MCSCF type
calculation. One important exception however is when you are using dozens
of orbitals and many CSFs so that the main bottleneck is the diagonaization
of the Hamiltonian, not the integral transformation and orbital improvement
steps. For such a case, FULLNR can be a faster choice as it will minimize
the total number of iterations. In addition, each orbital improvement may
contain some microiterations, which consists of an integral transformation
over the new MOs, followed immediately by an orbital improvement, reusing
the current 2nd order density matrix. This avoids the CI diagonalization
step every microiteration, which may be of some use in MCSCF calculations
with a large number of configurations. Please note though that, as men-
tioned above, the FULLNR method currently does not support the use of fast-
ints/gencon algorithm. Finally, since determinant based CI is a direct CI,

- 139 -

it is probably better to use it in this circumstance in order to avoid the
very large disk file used to store the CSF Hamiltonian, and its associated
I/O bottleneck.

Fast CI integral transformations
There are two keywords that pertain only to CI calculations:

$CIINP CASTRF=.T. $END
$TRANST CASTRF=.T. $END

The first selects fast MCSCF-like integral transformations for standalone
CI runs, the latter fast MCSCF-like integral transformations for standalone
CI transition moment/spinorbit runs. Sometimes these options may require
much more memory than the standard CI integral transformations though, so
they might not be the most economic depending on the size of your job.

Using the new ALDET CASCI/CASSCF diagonalization code
As of version 8.0.0, Firefly contains new code for performing MCSCF/CI di-
agonalizations with the ALDET program. Compared to the traditional (i.e.
“old”) code, when running in parallel, the new code demands much less
memory and scales better. To use the new code, one needs to specify a non-
zero value for DISTCI (DISTCI stands for Distributed CI) variable:

$DET DISTCI=number_of_cores $END

or, for CASCI:

$CIDET DISTCI=number_of_cores $END

In a parallel run, the number of cores specified using the DISTCI variable
is ignored, provided it is non-zero. Instead, the actual number of cores
will be used. However, the value of the DISTCI variable is important for
check runs (which can be run even using a single process) as it allows for
the precise calculation of memory demands for a regular job running on the
specified number of cores.

In the DISTCI mode, the memory demands are:

memory = const1 + const2/number_of_processes

where const2 is typically much larger than conts1. For comparison, when
using the traditional code, the demands are:

memory = const1 + const2

Const1 can be estimated with:

const1 = MAXV * 2 * (number of determinants in CI)

The MAXV parameter defines the batch size over CI roots and can be speci-
fied as follows:

$(CI)DET MAXV=number $END

- 140 -

Allowed values are 1, 2 and 4. By default, MAXV is set automatically as
follows:

- for single CI root runs, maxv is set to 1;
- for runs for two or three CI roots, maxv is set to 2;
- for larger number of roots, the default value is 4.

These settings are optimized for best performance.

Const2 can be estimated with:

const2 = MXXPAN * 2 * (number of determinants in CI)

where MXXPAN can be specified in the $(CI)DET group and defines the sub-
space dimension of Davidson CI diagonalization. This keyword is described
elsewhere in this manual.

One tip is that the number of CI roots in ALDET CI can be reduced provided
one is interested in singlet states only. For example,

$DET ISPIN=0 $END

will filter out all states for which S is odd. As mentioned earlier, this
option may require increasing the NSTGSS variable. More information can be
found in the section on determinant-based CI.

CASSCF(2,2) vs GVB-PP(1)
A very common MCSCF wavefunction has 2 electrons in 2 active MOs. This is
the simplest possible wavefunction describing a singlet diradical. While
this function can be obtained in an MCSCF run (using NACT=2 NELS=2 or
NDOC=1 NVAL=1), it can be obtained much faster by use of the GVB code, with
one GVB pair. This GVB-PP(1) wavefunction is also known in the literature
as two configuration SCF, or TCSCF. The two configurations of this GVB are
equivalent to the three configurations used in this MCSCF, as orbital opti-
mization in natural form (configurations 20 and 02) causes the coefficient
of the 11 configuration to vanish. Please see the chapter on GVB for de-
tails on how to perform a TCSCF GVB calculation.

Performing state-specific MCSCF calculations

Below is an input example for ALDET-style state-specific CASSCF on a buta-
diene molecule:

 $CONTRL SCFTYP=MCSCF RUNTYP=ENERGY UNITS=ANGS $END
 $SYSTEM TIMLIM=10000 MWORDS=20 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=1 $END

 $MCSCF CISTEP=ALDET $END
 $DET GROUP=C2 ISTSYM=1 NCORE=13 NACT=4 NELS=4 NSTATE=1 WSTATE(1)=1,0 $END

 $GUESS GUESS=MOREAD NORB=17 $END
 $DATA
Butadiene

- 141 -

CN 2

 C 6.0 -1.5193996537 0.3119398887 0.5084798296
 H 1.0 -1.1071381034 0.6368872371 1.4479540422
 H 1.0 -2.5916948192 0.2697833502 0.4350941431
 C 6.0 -0.7391057353 -0.0052615754 -0.5349454028
 H 1.0 -1.2053069850 -0.2818783775 -1.4675271720
 $END
 $VEC
--input orbitals--
 $END

The example uses an active space of 4 electrons in 4 orbitals which could,
for example, include the molecule’s two pi bonding orbitals and the corre-
sponding antibonding orbitals. Which orbitals should be included in the
active space is highly dependent on the nature of the chemical problem. The
example active space above would allow one to study the electrocyclic con-
version of butadiene into cyclobutene, but would not be appropriate when
studying, say, C—H bond breaking. In the end, the choice which orbitals to
include is up to the researcher. Some strategies for getting chosen orbit-
als into an active space are discussed in the next section. Note that a
CASSCF calculation should always start with the orbitals from a previous
calculation, which can be read in with GUESS=MOREAD.

The same calculation, this time performed with the GUGA program:

 $CONTRL SCFTYP=MCSCF RUNTYP=ENERGY UNITS=ANGS $END
 $SYSTEM TIMLIM=10000 MWORDS=20 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=1 $END

 $MCSCF CISTEP=GUGA $END
 $DRT GROUP=C2 ISTSYM=1 FORS=.T. NMCC=13 NDOC=2 NVAL=2 $END
 $GUGDIA NSTATE=1 $END
 $GUGDM2 WSTATE(1)=1,0 $END

 $GUESS GUESS=MOREAD NORB=17 $END
 $DATA
Butadiene
CN 2

 C 6.0 -1.5193996537 0.3119398887 0.5084798296
 H 1.0 -1.1071381034 0.6368872371 1.4479540422
 H 1.0 -2.5916948192 0.2697833502 0.4350941431
 C 6.0 -0.7391057353 -0.0052615754 -0.5349454028
 H 1.0 -1.2053069850 -0.2818783775 -1.4675271720
 $END
 $VEC
--input orbitals--
 $END

If one is interested in a higher root, the first excited state for example,
this state can be requested with WSTATE(1)=0,1. Consequently, NSTATE also
has to be set higher in order to find enough states. With GUGA-style
CASSCF, NSTATE=2 would be a sufficient value, though it is generally recom-

- 142 -

mended to request a few additional states if this is not too expensive.
With ALDET-style CASSCF, NSTATE almost always should be set higher as the
states found by the ALDET program are of various multiplicities, not just
of the desired multiplicity (though the ISPIN keyword can be used to filter
out states with certain multiplicities as described in the section on de-
terminant-based CI).

Performing state-averaged MCSCF calculations

When studying quasi-degenerate or excited states, it is usually better to
use state-averaged MCSCF. In Firefly, state-specific gradients for state-
averaged orbitals are calculated in a semi-numerical fashion. In more de-
tail, this approach is based on the differentiation of the effective gradi-
ent vector computed with state-averaged density matrices over the weight of
the state of interest. The differentiation is performed using second-order
finite differences and takes three state averaged MCSCF energy evaluations
prior to calculating the gradient. As a result, state-specific gradients
for SA-MCSCF are approximately two to three times more costly than gradi-
ents for MCSCF without state averaging. The approach is described in detail
on:

http://classic.chem.msu.su/gran/gamess/ss-gradients.pdf

As the approach make use of differentiation, the computed gradients are
more sensitive to numerical errors in the computed solution of SA-MCSCF
than the ordinary MCSCF gradients are. Therefore, one needs to increase the
overall precision of computations as will be discussed below. The MCSCF
procedure itself can be arbitrary, i.e. it can be of any supported type,
can use both GUGA and ALDET CI code, and can utilize any of available MCSCF
convergers. However, the use of Firefly’s unique SOSCF converger is strong-
ly recommended. The relevant input groups are $MCSCF and $MCAVER. The most
important keywords in the $MCSCF group are ISTATE, ACURCY, and ENGTOL,
while the most important keywords in the $MCAVER group are CONIC, DELTAW,
and HPGRAD.

The ISTATE keywords specifies the state number for which SS gradient will
be computed. States are numbered starting from one. For example,

 $MCSCF ISTATE=2 $END

will compute gradients for the first excited state of a given multiplicity
and symmetry type as specified by other sections of input file. The only
exception is the case of ALDET CI with PURES=.T., for which the numbering
will include all states regardless of their multiplicity. Please note that
one should not use the ISTATE option (or specify a value of zero) for MCSCF
runs without state-averaging or when state-specific gradients are not re-
quired! The default value is ISTATE=0, i.e. state-specific gradients are
disabled.

The ACURCY and ENGTOL keywords pertain to two convergence criteria for
MCSCF. ACURCY specifies the maximum permissible asymmetry in the Lagrangian
matrix and is the major convergence criterion in MCSCF. While its default

- 143 -

value of 1.0E-05 is suitable for single-state MCSCF, computation of SS gra-
dients for SA-MCSCF requires tighter convergence. Therefore, its recommend-
ed value lies in the range 1.0E-07 to 1.0E-08. ENGTOL specifies the maximum
permissible energy change, i.e. the MCSCF is considered converged when the
energy change is smaller than this value. The default is value is 1.0E-10.
Again, as gradients for SA-MCSCF require tighter convergence, the recom-
mended value of ENGTOL lies in the range 1.0E-12 to 1.0E-13.

As explained earlier, the method for obtaining gradients for state-averaged
MCSCF is based on finite differencing. Control over this procedure is pro-
vided by the DELTAW and CONIC keywords. The DELTAW keyword sets the step
size in the state’s weight that is to be used. Its default value is 0.0015,
while recommended values lie in the range of 0.0005 to 0.0025. The CONIC
keyword can be used to specify one of three approaches for differencing.
The default approach is CONIC=0, which selects the use of central (i.e.
symmetric) second order finite differences. With this approach, the calcu-
lation is performed as follows. First, the calculation of the SA-MCSCF en-
ergies and effective gradient is performed with the original weight of the
state specified with ISTATE increased by DELTAW. Secondly, the calculation
of the SA-MCSCF energies and the effective gradient is performed with the
original weight of the state specified with ISTATE decreased by DELTAW.
Thirdly, the calculation of the SA-MCSCF energies is performed using the
unmodified original weights, and finally, the state-specific expectation
value type density matrix is computed for the state specified with ISTATE.
This is the most economical way of computation. In addition, it provides
the way to obtain the state-specific properties for the state of interest.

CONIC=1 selects an alternative approach that is based on the use of a for-
ward finite differencing scheme. This is more stable than the CONIC=0 ap-
proach in the case of nearly quasi-degenerated CI roots and hence it is
more suitable for location of conical intersections. The calculation with
this approach is organized as follows. First, the calculation of the SA-
MCSCF energies and the effective gradient is performed with the original
weight of the state specified with ISTATE increased by DELTAW. Secondly,
the calculations of the SA-MCSCF energies and the effective gradient is
performed with the original weight of the state specified by ISTATE in-
creased by DELTAW / 2. Finally, the calculation of the SA-MCSCF energies
and the effective gradient is performed using unmodified original weights,
but the state-specific density matrix is not computed, hence no state-
specific properties are available.

Finally, CONIC=2 selects another approach that is similar to CONIC=1 but
that is even more robust in the vicinities of conical intersections. First,
the calculation on the SA-MCSCF energies and the effective gradient is per-
formed with the original weight of the state specified with ISTATE. Second-
ly, the calculation of the SA-MCSCF energies and the effective gradient is
performed with the original weight of the state specified by ISTATE in-
creased by DELTAW / 2. Finally, the calculation of the SA-MCSCF energies
and the effective gradient is performed with the original weight of target
state increased by DELTAW. As with the CONIC=1 approach no state-specific
density matrix is computed, thus the state-specific properties are not
available.

- 144 -

Finally, the HPGRAD keyword should be mentioned. If set to .TRUE., it re-
quests extra high precision during the computation of the two-electron con-
tributions to the effective gradient. This may significantly slow down com-
putations and usually does not considerably increase the precision of the
computed state-specific gradients. This is why this option is disabled by
default.

Typically, the separate stages involved in the MSCSF procedure are: evalua-
tion of the two-electron integrals, integral transformation, CI procedure,
computation of one- and two-particle density matrices, and the orbital im-
provement step. When calculating gradients for SA-MCSCF, one needs to in-
crease the precision of each of these steps. Below is a synopsis of related
input groups and keywords, with recommendations on the optimal values for
the latter.

1. The precision of two-electron integrals is controlled by INTTYP,
ICUT, and ITOL keywords of the $CONTRL group. For the calculation of
gradients with SA-MCSCF, the recommended values are INTTYP=HONDO,
ICUT=11 (12 or 13 is even better), and ITOL=20.

2. The precision of the integral transformation stage is controlled
by the CUTTRF keyword of $TRANS group. For the calculation of gradi-
ents with SA-MCSCF, the recommended value of CUTTRF is 1.0D-13 or
tighter.

3. The precision of the CI step is controlled by a single keyword for
the ALDET CI code and by two keywords for the GUGA CI code. For the
ALDET code, this is CVGTOL in the $DET group, its recommended value
being 1.0D-7 to 1.0D-9. For GUGA CI, the relevant keywords are CUTOFF
of the $GUGEM group and CVGTOL of the $GUGDIA group. The recommended
values are CUTOFF=1.0D-20 and CVGTOL=1.0D-7 to 1.0D-9, respectively.

4. For GUGA CI, the precision of the two-particle density matrix com-
putation step is controlled by the CUTOFF keyword of the $GUGDM2
group. The recommended value is CUTOFF=1.0D-15 or a tighter value.
For ALDET CI, there is no need for any additional keywords.

5. The precision of the orbital improvement step can be improved us-
ing several keywords of $MOORTH and $SYSTEM groups. It is recommended
to set:

 $SYSTEM KDIAG=0 NOJAC=1 $END
 $MOORTH NOSTF=.T. NOZERO=.T. SYMS=.T. SYMDEN=.T. SYMVEC=.T.
SYMVX=.T. TOLE=0.0D0 TOLZ=0.0D0 $END

An example input file is as follows:

 $CONTRL SCFTYP=MCSCF RUNTYP=GRADIENT UNITS=ANGS $END
 $SYSTEM TIMLIM=10000 MWORDS=20 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=1 $END

 $MCSCF CISTEP=GUGA ISTATE=2 $END
 $DRT GROUP=C1 ISTSYM=1 FORS=.T. NMCC=13 NDOC=2 NVAL=2 $END

- 145 -

 $GUGDIA NSTATE=4 $END
 $GUGDM2 WSTATE(1)=1,1 $END

 $GUESS GUESS=MOREAD NORB=17 $END

! Extra accuracy is needed
 $SYSTEM KDIAG=0 NOJAC=1 $END
 $CONTRL INTTYP=HONDO ICUT=11 $END
 $MOORTH NOSTF=.T. NOZERO=.T. SYMS=.T. SYMDEN=.T. SYMVEC=.T. SYMVX=.T.
 TOLE=0.0D0 TOLZ=0.0D0 $END
 $TRANS CUTTRF=1D-13 $END
 $GUGEM CUTOFF=1.0D-20 $END
 $GUGDIA CVGTOL=1.0D-7 $END
 $GUGDM2 CUTOFF=1.0D-15 $END
 $MCSCF ACURCY=1D-7 ENGTOL=1.0D-12 $END

 $DATA
Butadiene – gradient first excited state
CN 2

 C 6.0 -1.5193996537 0.3119398887 0.5084798296
 H 1.0 -1.1071381034 0.6368872371 1.4479540422
 H 1.0 -2.5916948192 0.2697833502 0.4350941431
 C 6.0 -0.7391057353 -0.0052615754 -0.5349454028
 H 1.0 -1.2053069850 -0.2818783775 -1.4675271720
 $END
 $VEC
--input orbitals--
 $END

In the above example, GROUP was set to C1 in order to allow state-averaging
over two states with different symmetries.

Some additional examples can be found on the Firefly website:

http://classic.chem.msu.su/gran/gamess/ch2o_s0_s1.rar

MCSCF state-tracking

When investigating excited states, it is recommended to make use of state
tracking as root switching can occur. This can be requested with NTRACK in
the $MCSCF group. NTRACK=6 will, for example, track the 6 lowest states.
NTRACK should be at least as high as the highest state included in WSTATE,
and can naturally not be higher than the amount of states requested. State
tracking is quite cheap, so tracking a few additional states does not have
a large effect on performance.

The NTRACK value, if nonzero, activates MCSCF states tracking and remapping
feature of Firefly. More precisely, NTRACK defines the number of lowest
roots (states) to be tracked and, if necessary, remapped to other states.
The present implementation of state tracking in Firefly is rather simple
and is based on the analysis of overlap matrix of current states with the

- 146 -

previously computed ones. See the description of $TRACK group below for
more details and for additional keywords. The default for NTRACK is
NTRACK=0, i.e. do not track states at all. As said, state tracking is cheap
and can be of great help e.g. during geometry optimization of excited
states as it can detect root flipping and remap states accordingly, so it
is generally a good idea to activate it.

Strategies for selecting an MCSCF active space

The first step in selecting an active space is to partition the orbital
space into core, active, and external sets, in a manner which is sensible
for your chemical problem. This is a bit of an art, and the user is re-
ferred to the references quoted at the end of this section. Having decided
what MCSCF to perform, you now must consider the more pedantic problem of
what orbitals to begin the MCSCF calculation with.

You should always start an MCSCF run with orbitals from some other run, by
means of GUESS=MOREAD. Do not expect to be able to use HCORE or HUCKEL! If
you are beginning your MCSCF problem, use orbitals from some appropriate
converged SCF run. Once you get an MCSCF to converge, you can and should
use these MCSCF MOs (which will be Schmidt orthogonalized) at other nearby
geometries.

Starting from SCF orbitals can take a little bit of care. Most of the time
(but not always) the orbitals you want to correlate will be the highest
occupied orbitals in the SCF. Fairly often, however, the correlating orbit-
als you wish to use will not be the lowest unoccupied virtuals of the SCF.
It is then necessary to change the order of the starting orbitals. This is
done by specifying NORDER=1 and an accompanying IORDER array in $GUESS.
Let’s for example consider a molecule with 15 occupied orbitals. In this
example, visualization of your starting orbitals has shown you that the
orbitals of interest are occupied orbitals 10, 13, 14, and virtual orbitals
18 and 19 (a six electrons, five orbitals active space). Therefore, your
reorder instructions could be:

 NORDER=1 IORDER(10)=11,12,15,10,13,14,18,19,16,17

In this case, IORDER specifies that, starting from the 10th orbital, the
new order of orbitals is 11, 12, 15, etc. Alternatively, one can also spec-
ify:

 NORDER=1 IORDER(10)=15 IORDER(15)=10 IORDER(16)=18,19,16,17

which simply switches orbitals 10 and 15. This may also be 'abbreviated'
as:

 NORDER=1 IORDER(10)=-15 IORDER(16)=18,19,16,17

which functions the same. This might be the preferred syntax when one of
the orbitals of interest lies very far from the active space – in such a
case, reorder instructions in the fashion of the first example would re-
quire one to specify a very long array. Note that the exact order of the

- 147 -

orbitals is irrelevant as long as each orbital lies in its correct parti-
tion, e.g. core occupied orbitals lie in the core space, the orbitals of
interest lie inside the active space, and external valence orbitals lie in
the external valence space.

The occupied and especially the virtual canonical SCF MOs are often spread
out over regions of the molecule other than "where the action is". Orbitals
which remedy this can be generated by a few additional options at almost no
CPU cost.

One way to improve SCF starting orbitals is by a partial localization of
the occupied orbitals. Typically MCSCF active orbitals are concentrated in
the part of the molecule where bonds are breaking, etc. Canonical SCF MOs
are normally more spread out. By choosing LOCAL=BOYS along with SYMLOC=.T.
in $LOCAL, you can get orbitals which are localized, but still retain or-
bital symmetry to help speed the MCSCF along. In groups with an inversion
center, a SYMLOC=.T. Boys localization does not change the orbitals, but
you can instead use LOCAL=POP. Localization tends to order the orbitals
fairly randomly, so be prepared to reorder them appropriately.

Virtual SCF orbitals can generally be improved by the generation of modi-
fied virtual orbitals (MVOs). MVOs are obtained by diagonalizing the Fock
operator of a very positive ion, within the virtual orbital space only. As
implemented in Firefly, MVOs can be obtained at the end of any RHF, ROHF,
or GVB run by setting MVOQ in $SCF nonzero, at the cost of a single SCF
cycle. A good setting is MVOQ=+6. Generating MVOs does not change any of
the occupied SCF orbitals of the original neutral, but gives more valence-
like LUMOs.

Pasting the virtuals from a MVOQ run onto the occupied orbitals of a SYMLOC
run (both can be done in the same SCF computation) often gives a good set
of starting orbitals. If you also take the time to design your active space
carefully, select the appropriate starting orbitals from this combined
$VEC, and inspect your converged results, you will be able to carry out
MCSCF computations correctly.

An additional option for obtaining good starting orbitals is to use the NBO
program present in Firefly, which can convert the occupied orbitals into
natural bond orbitals (NBOs) and the virtual orbitals in natural localized
molecular orbitals (NLMOs). As opposed to MVOs, NLMOs are localized and
might therefore be an even better choice as starting orbitals.

Convergence of MCSCF is by no means guaranteed. Poor convergence can invar-
iably be traced back to either a poor initial selection of orbitals, or a
poorly chosen number of active orbitals. Good advice is, before you even
start: "Look at the orbitals. Then look at the orbitals again". Later, if
you have any trouble: "Look at the orbitals some more". Few people are able
to see the orbital shapes in the LCAO matrix in a log file, so a visualiza-
tion program will be of great help.

Even if you don't have any trouble, look at the orbitals to see if they
converged to what you expected, and have reasonable occupation numbers.
MCSCF is by no means the sort of "black box" that RHF is, so look very
carefully at your results.

- 148 -

Multireference configuration interaction

Before discussing how to perform MRCI calculations in Firefly, it is im-
portant to note that the MRCI implementation in Firefly is not MRCI in the
classical sense of the term. Instead, the FOCI and SOCI methods in Firefly
should be seen as variants of MRCI. Let us consider that in a given system
with a given active space the orbitals can be grouped as follows:

doubly occupied orbitals – active space – valence space

In 'classical' MRCI, excitations are allowed from doubly occupied orbitals
into the active space, from the active space into the valence space, and
from doubly occupied orbitals into the valence space. FOCI and SOCI, howev-
er, only allow excitations from the active space into the valence space.
These excitations are either singles (FOCI, a variant of MRCIS) or singles
and doubles (SOCI, a variant of MRCISD). Below is an example of a FOCI or
SOCI wavefunction.

NFZC=3 NDOC=3 NVAL=2 NEXT=-1

This leads to the reference CSF

FZC,FZC,FZC,DOC,DOC,DOC,VAL,VAL,EXT,EXT,...

In this example, all CSFs with N electrons (in this case N=6) are distrib-
uted in the valence orbitals in all ways (that is, the CASSCF wavefunction)
to make the base wavefunction. To this, FOCI adds all CSFs with N-1 elec-
trons in active and 1 electron in external orbitals while SOCI adds all
CSFs with N-2 electrons in active orbitals and 2 in external orbitals. SOCI
is often prohibitively large, but is also a very accurate wavefunction.
FOCI or SOCI is chosen by selecting the appropriate flag (FOCI=.T. or SO-
CI=.T.). Hereby, the correct excitation level is automatically generated.
The value of -1 for NEXT is shorthand and causes all remaining virtual MOs
to be included in the external orbital space.

For the butadiene CASSCF example given earlier, SOCI input could look like
this:

 $CONTRL SCFTYP=MCSCF CITYP=GUGA RUNTYP=ENERGY UNITS=ANGS $END
 $SYSTEM TIMLIM=10000 MWORDS=20 $END
 $BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=1 $END

 $MCSCF CISTEP=ALDET $END
 $DET GROUP=C1 ISTSYM=1 NCORE=13 NACT=4 NELS=4 NSTATE=1 WSTATE(1)=1 $END
 $CIDRT GROUP=C1 ISTSYM=1 NFZC=13 NDOC=2 NVAL=2 NEXT=-1 SOCI=.T. $END
 $GUGDIA NSTATE=1 $END

 $GUESS GUESS=MOREAD NORB=90 $END

 $DATA
Butadiene
CN 2

- 149 -

 C 6.0 -1.5193996537 0.3119398887 0.5084798296
 H 1.0 -1.1071381034 0.6368872371 1.4479540422
 H 1.0 -2.5916948192 0.2697833502 0.4350941431
 C 6.0 -0.7391057353 -0.0052615754 -0.5349454028
 H 1.0 -1.2053069850 -0.2818783775 -1.4675271720
 $END
 $VEC
--input orbitals--
 $END

Note that GROUP in $DET and $CIDRT is set to C1. It is also possible to use
the GUGA MCSCF program instead of the ALDET one:

 $MCSCF CISTEP=GUGA $END
 $DRT GROUP=C1 ISTSYM=1 NMCC=13 NDOC=2 NVAL=2 FORS=.T. $END
 $CIDRT GROUP=C1 ISTSYM=1 NFZC=13 NDOC=2 NVAL=2 NEXT=-1 SOCI=.T. $END
 $GUGDIA NSTATE=1 $END

Because the FOCI and SOCI methods only allow excitations from the active
space into the valence space, the active space in the above example is
probably too small to lead to results that are significantly more accurate
than the CASSCF results. More accurate results can be obtained by increas-
ing the size of the active space during the MRCI step. The active space of
the preceding MCSCF step can be also increased, however, this is not re-
quired as Firefly does not check or enforce the active space to be same in
the MCSCF and MRCI steps. An example:

 $MCSCF CISTEP=GUGA $END
 $DRT GROUP=C1 ISTSYM=1 NMCC=13 NDOC=2 NVAL=2 FORS=.T. $END
 $CIDRT GROUP=C1 ISTSYM=1 NFZC=4 NDOC=11 NVAL=2 NEXT=-1 SOCI=.T. $END
 $GUGDIA NSTATE=1 $END

Here, the inclusion of more doubly occupied orbitals in the active space
during MRCI creates a wavefunction that is much closer to 'classical'
MRCISD, though it should be noted that, strictly speaking, this calculation
can no longer be considered as canonical MRCI. A downside of this approach
though is that the number of CSFs increases quickly as more orbitals are
added to the active space. In the preceding example, the number of CSFs is
even bigger than would be the case with 'classical' MRCISD.

In order to keep the size of the calculation manageable, the number of CSFs
in an MRCI calculation can be decreased by limiting the excitation level.
This is done by specifying a value of IEXCIT together with SO-
CI=.T./FOCI=.T. An example:

 $CIDRT GROUP=C1 ISTSYM=1 NFZC=7 NDOC=18 NVAL=6 NEXT=-1 FOCI=.T. IEXCIT=3
$END

In this example, specifying IEXCIT=3 will limit the maximum excitation lev-
el to 3. This will cause the active space to contain only CISDT excitations

- 150 -

(recall that a complete active space normally contains all possible excita-
tions, i.e. full CI). The entire CSF space will in addition also include
FOCI-type CSFs that are singly excited with respect to the NDOC/NVAL active
space and that have an overall excitation level that is less than or equal
to 3. A word of caution: limiting the number of excitations in the active
space can exclude CSFs from the calculation that are important for describ-
ing multi-reference cases. So, when a multi-reference description is im-
portant for your system, this approach has a chance of giving you incorrect
results.

MRCI calculations can also be started from other wavefunctions, such as GVB
and RHF wavefunctions. It is even possible to specify SCFTYP=NONE, provided
that a set of converged orbitals is read in using GUESS=MOREAD (the full
list of orbitals including all virtuals must be given). Below is an example
of a GVB-PP (TCSCF) calculation that is followed up with a MRCI calcula-
tions). Because gradients not available for MRCI, TRUDGE is used to opti-
mize the geometry.

 $CONTRL SCFTYP=GVB CITYP=GUGA RUNTYP=TRUDGE COORD=HINT $END
 $BASIS GBASIS=N31 NGAUSS=6 $END

 $SCF NCO=3 NPAIR=1 $END

 $CIDRT GROUP=C2V SOCI=.TRUE. NFZC=1 NDOC=3 NVAL=1 NEXT=-1 $END
 $GUGDIA NSTATE=5 $END
 $GUGDM IROOT=3 $END

 $TRUDGE OPTMIZ=GEOMETRY NPAR=2 IEX(1)=21,22 P(1)=1.08 $END

 $DATA
Methylene TCSCF+CISD geometry optimization
CNV 2
 C 6. LC 0.00 0.0 0.00 - O K
 H 1. PCC 1.00 53. 0.00 + O K I
 $END

- 151 -

(Extended) Multi-configurational quasi-degenerate pertur-
bation theory

Introduction

Perturbation Theory (PT) is one of the most successful yet relatively inex-
pensive tools of quantum chemistry. In particular, the variant of PT sug-
gested by Møller and Plesset1 (MPn) turned out to be a very powerful tool
for computational ground-state quantum chemistry already at the second or-
der (MP2)2-3. However, it is well known that simple single-reference con-
structs, which the MPn is, work very well for electronic states dominated
by a single Slater determinant, but fail severely for multi-configuration
wavefunctions. Several successful generalizations of MP or MP-like ap-
proaches to the case of multi-configuration reference states (MR-PT) have
been suggested during last two decades. Among them are the MR-MP2 approach
by Hirao4-7, CASPT2 approach by Andersson, Malmqvist and Roos8-11, and NEVPT2
by Angeli et al12-15. An overview of other approaches to MR-PT can be found
in Ref. 16.

Nevertheless, the single-state approaches to MR-PT assume the “diagonalize-
then perturb” philosophy and require a zero-order wavefunction that is al-
ready well described by CASSCF or a similar procedure. In practice, this is
more the exception than the rule; for this reason, the possibility for sev-
eral reference states to mix within the MR-PT treatment is very important.
The natural way to allow this mixing is to use the multi-state (MS) formu-
lations of MR-PT approaches leading to various MS-MR-PT theories. Specifi-
cally, the MS formulation of MR-MP2 has long been known as the MCQDPT ap-
proach developed by Nakano17-23. The MS formulation of CASPT2 known as MS-
CASPT2 was originally suggested by Finley et al24 while the MS version of
NEVPT2 known as QD-NEVPT2 has been developed by Angeli et al25. All of them
are of the “diagonalize-then perturb-then diagonalize” type. In particular,
this means that instead of perturbing the entire CASCI Hamiltonian, only
several selected CI roots are perturbed and mixed, i.e. these methods em-
ploy the so-called partial contraction in the space of CI expansion coeffi-
cients. These approaches are more or less directly related to the formal
theory of the effective Hamiltonians and Quasi-Degenerate Perturbation The-
ories (QDPT) that have been well established for a long time26-37. Essen-
tially, all three theories define approximations to the exact effective
Hamiltonian acting within a model space33,37, i.e. a subspace spanned by the
selected CI roots. Energies of perturbed states are then obtained as eigen-
values of effective Hamiltonian while projections of perturbed states onto
zero-order states are defined by the corresponding eigenvectors.

Besides direct mixing of target states, the effective Hamiltonians tech-
nique allows indirect relaxation via interaction with higher-energy CASCI
states. When entering effective Hamiltonians, higher-energy states admix
with target states, thus allowing relaxation of low-lying states within the
CASCI space and improving their overall description. Indeed, CASSCF usually
tends to converge to solutions that are too delocalized in the space of CI

- 152 -

coefficients, so additional states in the model space are often needed to
eliminate this deficiency at MS-MR-PT level.

The most important distinctions in the formulation of various MS-MR-PT
schemes are the selection of a zero-order Hamiltonian and of so called
“perturbers”, i.e. zero-order states that are allowed to interact with ze-
ro-order wavefunctions in the PT treatment. In the case of MCQDPT2, “per-
turbers” are simply all possible individual CSFs or Slater determinants not
belonging to the CASCI space and obtained applying single and double exci-
tations individually to every CSF (determinant) entering the reference
states. In contrast, both MS-CASPT2 and QD-NEVPT2 are formulated using
state-specific and more sophisticated “perturbers” defined as specific lin-
ear combinations of some selected classes of CSFs or determinants. Depend-
ing on the particular scheme in use, the latter approach is known as an
either internal8,9,38 or external39,40 contraction. For instance, most of
CASPT2 variants can be considered as internally contracted approximations
to the MR-MP2, while MS-CASPT2 theories are internally contracted approxi-
mations to the MCQDPT2.

Both the MR-MP2 and the CASPT2 approach applies a one-particle Fock-like
zero-order Hamiltonian. In contrast, the NEVPT2 scheme adopts a partially
bi-electronic zero-order Hamiltonian initially suggested by Dyall41. The
situation is more complicated for the MS-MR-PT counterparts of these ap-
proaches.

Overview of MCQDPT

The MCQDPT (Multi-Configuration Quasi-Degenerate Perturbation Theory) ap-
proach was suggested by Nakano17 as a multi-state generalization of the MR-
MP2 theory by Hirao4. In this paragraph, we review the basics of MCQDPT.
Additional details can be found in the original papers on this theory17-23.

MCQDPT is a multi-state multi-reference Van-Vleck-type perturbation theory
of the partially contracted type that employs isometric (i.e., unitary
through any PT order) normalization42-44. More precisely, a model space is
spanned by several CI vectors (i.e the partial contraction is used) that
are typically obtained as a result of the state-averaged CASSCF procedure
(the P subspace), while the secondary, first-order interacting space is
formed by the individual CSFs or determinants and thus is not contracted
(the S subspace). It is also helpful to define the O subspace as a subspace
of CASCI vectors that are complementary to P, with P⊕O forming the entire
CASCI subspace R, and O⊕S forming the subspace Q, as shown in Fig. 1.

MCQDPT applies H0 which is constructed using a diagonal model Fock operator

F̂ . More precisely, MCQDPT applies individual blocks of H0 that are defined

via expectation values of F̂ using projectors onto individual CI vectors
and perturbers. The particular choice of interacting space and zero-order
Hamiltonian in MCQDPT theory results in a H0 that is fully diagonal in P,
O, and S subspaces. The attractive consequence of this feature is a very
simple expression for the Resolvent that eliminates any need to solve large
systems of linear equations. Instead, the second-order effective Hamiltoni-
an is expressed as the direct sum of different contributions corresponding

- 153 -

to each particular class of diagrams, with energy denominators of a very
simple structure. This opens a way to a very efficient implementation of
MCQDPT2 as was shown in45-46 and implemented within Firefly. In particular,
the so-called Resolvent-fitting (a.k.a. table-driven) approach is very com-
putationally efficient45. The current implementation allows MCQDPT2 calcu-
lations of systems with active spaces up to several millions of CSFs and
with the overall number of molecular orbitals up to 2000-3000 to be rou-
tinely performed on a standalone single-CPU workstation or desktop comput-
er.

 Fig. 1. Schematic illustration on various subspaces.

However,
0
mcqdptH

 does not have any well-defined algebraic transformation
properties with respect to transformations of basis within the model space.

Moreover, for any non-trivial model space
0
mcqdptH

 is actually a many-
particle operator, and hence, the perturbation is also artificially made to
be a many-particle operator rather than the two-particle one as would natu-
rally expect. These two points apply equally to MS-CASPT2 and QD-NEVPT2
theories. More precisely, MCQDPT results in perturbation being a many-
particle operator in the R subspace, MS-CASPT2 results in perturbation be-
ing a many-particle operator in both R and S subspaces, while QD-NEVPT2
results in perturbation being a many-particle operator in the S subspace.
It is worth noting that both original MS-CASPT2 and QD-NEVPT2 apply inter-
nal contraction and a multi-partitioning scheme by Zaitsevskii and Mal-
rieu47 which introduces an additional source of non-invariance into these
theories.

For instance, let us assume one fixes the number of CI roots and values of
their corresponding weights in computing the averaged one-particle density

matrix that is used to define the model Fock operator F̂ . In this case,
the effective second-order MCQDPT2 Hamiltonians of progressively decreasing
dimension form the trivial sequence with the n×n effective operator being
exactly equal to the (n+1)×(n+1) operator with the row and column, corre-
sponding to the (n+1)th extra CI root, being removed. Evidently, there is
no any explicit dependence of the effective Hamiltonian on the dimension of

- 154 -

model space in this approach, as the n×n effective operator is simply en-
closed into (n+1)×(n+1) one.

The XMCQDPT theory

The XMCQDPT (Extended Multi-Configuration Quasi-Degenerate Perturbation
Theory) theory46 is a novel multistate formulation of MR-MP2 employing in-
variant zero-order Hamiltonian. Being the alternative to MCQDPT2, it is
superior to MCQDPT2 and is free of multiple drawbacks of the latter while
obeying several important physical and mathematical properties that are
desirable for any partially contracted MS-MR-PT-based approach. These prop-
erties are discussed below and can be considered as an attempt to bring
various formulations of MS-MR-PT into better accordance with the formal
theory of Effective Hamiltonians.

In practical applications, various MR-PT and especially MS-MR-PT theories
can be plagued by the so-called “intruder state problem”48,49 which causes
the appearance of very small energy denominators in PT series, hereby lead-
ing to spurious results of the entire PT calculation. The persistence of
this problem varies with the particular theory. For instance, it has been
demonstrated that NEVPT2 is inherently less prone to this problem as com-
pared with MR-MP2 and CASPT250,51. However, the problem still persists in
the QD version of the NEVPT2 approach on par with other MS-MR-PT schemes.
For simplicity, we assume below that intruder states are either irrelevant,
or that they were successfully eliminated using, for instance, intruder
state avoidance52 (ISA) or similar techniques.

First, we assume that the effective Hamiltonian should be explicitly de-
pendent on the dimension of the model space in any nontrivial order of PT.
Evidently, this dependence should not be just a trivial one caused by the
simple extension of the model space. It also should not be related only to
the variations of orbital energies, orbitals, or both, caused by the aver-
aging of one-particle density matrices over a varying number of CI roots,
and hence, should not be related only to the implicit dependence of the
effective Fock operator(s) and zero-order Hamiltonian on the dimension of
the model space. Indeed, exact effective Hamiltonians depend explicitly on
the model space dimension46. Hence, approximations to the exact effective
Hamiltonian should approximate this explicit dependence on the model space
size as well. It should be realized that, in general, the restriction of an
effective Hamiltonian to a subspace of the model space is not a new effec-
tive Hamiltonian associated with this smaller subspace.

Second, a very important property is the convergence of energies as well as
other observable properties with respect to model space extension at any
fixed order of PT provided that the active space used in underlying MCSCF
calculations is well-balanced and accurately designed so that there are no
spurious zero-order states (i.e. solutions of non-linear MCSCF equations
which do not describe real excited states53-55). This property is evidently
mandatory for the low-lying electronic states that are typically of inter-
est and is desirable for other states as well.

The third property is that the effective Hamiltonian should be a function
of the subspace spanned by the selected CI vectors, rather than a function

- 155 -

of any particular choice of basis in this subspace. In particular, this
means that the effective Hamiltonian should be the same regardless of
whether the initial CI vectors, or any alternative vectors obtained as
their arbitrary orthogonal transformation, were used for MS-MR-PT computa-
tions. Indeed, as many-body perturbation theory (MBPT) is a purely algebra-
ic approach, it has well-defined algebraic invariance properties. Hence, it
is natural to impose the same restriction on the MS-MR-PT. A very important
consequence of this property is that the correctly formulated partially-
contracted theory should be exactly equivalent to the corresponding uncon-
tracted theory provided that the dimension of the model space is equal to
the dimension of the CI space (i.e. the overall number of CSFs or determi-
nants spanning the CI space).

Finally, the most important and physically evident requirement is that the
computed energies must be uniquely defined, continuous, and smooth func-
tions of the molecular geometry and any other external parameters, with
possible exceptions at the manifolds of their accidental degeneracy such as
conical intersections.

In modeling of many-electron molecular systems, the correct dependence of
computed energies and other properties on the number of electrons in the
correlation treatment plays crucial role. This requirement is related to
such features of the underlying theories as exact or approximate size-
consistency56 and separability57-60. It is often believed that the exact
size-consistency is very desirable for any high-level computational ap-
proach designed to describe large systems. However, we do not consider
small deviations from the exact size-consistency as a serious deficiency of
MS-MR-PT theories, provided that these deviations are more or less constant
regardless of the model space dimension and do not cause any significant
unphysical effects even for large systems. It seems that the exact or ap-
proximate core-separability60 is the most important requirement, while
small deviations from the strict separability are quite acceptable. In par-
ticular, the possibility of applying the correctly formulated MS-MR-PT-
based methods to the calculation of vertical electronic excitation energies
should not be affected by these deviations.

The difference between MCQDPT and XMCQDPT is the choice of the H0 operator.
Namely, XMCQDPT employs H0 that is much closer to the one-particle Fock

operator F̂ . More precisely, unlike MCQDPT, the PP and OO blocks of H0 is
non-diagonal in the basis of CASCI eigenvectors and is formed by the entire

projection of F̂ onto P and O subspaces.

It can be easily shown that any unitary transformation of the basis set in
the model space transforms the second-order effective Hamiltonian H(2)eff of
XMCQDPT according to the usual law of transformation of an arbitrary linear
operator so that XMCQDPT2 (XMCQDPT at the second order of PT) satisfies the
invariance property above. Hence, the XMCQDPT2 theory is evidently equiva-
lent to the fully uncontracted approach provided that the dimension of the
model space is equal to the dimension of the CI space. The “explicit de-
pendence on the model space extension” property is also satisfied taking
into account the non-diagonal nature of the PP block of H0 in the basis of
CI vectors forming the model space.

- 156 -

As has been mentioned above, MCQDPT, MS-CASPT, and QD-NEVPT2 theories as-
sume the PP block of H0 that is defined using projectors onto individual CI
vectors and do not have well-defined transformation properties with respect
to the unitary transformation of the model space. This results in the non-
invariant perturbation theories and introduces an artificial many-particle
nature into the perturbation. In contrast, XMCQDPT applies H0 resulting in
the invariant theory with balanced perturbation being an approximation to
the true two-particle operator in the R subspace and the true two-particle
operator in the S space. A discussion on the importance of balanced pertur-
bation in PT treatment can be found in Ref. 13 in the context of NEVPT ap-
proach.

It is natural to expect that non-invariance should lead to significant er-
ratic behavior of the non-invariant theories in the regions of the molecu-
lar geometries where the corresponding CI vectors undergo rapid change or
are not uniquely defined at all. More precisely, all non-invariant theories
are not defined at the geometries corresponding to conical intersections at
the underlying MCSCF level, and behave badly in the vicinities of the
avoided crossings.

In multi-reference electronic structure calculations for mixed electronic
states, the relative contributions of different reference configurations
tend to differ substantially between the reference SA-CASSCF wavefunctions
and the final correlated wavefunction. For instance, the position of the
avoided crossing point between the neutral and ionic potential energy
curves of the 1Σ+ states of the LiF molecule differs by ca. 3 Bohr between
SA-CASSCF and MRSDCI calculations. Obviously, in the region between SA-
CASSCF and correlated crossing points, the quality of the zero-order wave-
functions obtained using SA-CASSCF procedure degrades. This can be a seri-
ous issue for non-invariant MS-MR-PT approaches defined using projectors as
this can result in an incorrect description of the interstate mixing, and
thus, the PESs. In contrast, this situation is much better for invariant
theories such as XMCQDPT2. Indeed, the final correlated states depend only
on the subspace spanned by the zero-order wavefunctions (i.e. on the model
space) rather than on the zero-order wavefunctions themselves. Therefore,
if the number of physically important CSFs shared by the zero-order SA-
CASSCF states is less or equal to the dimension of model space, one can a
priori expect a better and more balanced description of the interstate mix-
ing and PESs by invariant MS-MR-PT theories as compared with non-invariant
formulations.

MCQDPT2 is neither size-consistent nor core-separable. In contrast, differ-
ent variants of CASPT2 as well as NEVPT2 are exactly core-separable; moreo-
ver, NEVPT2 is exactly size consistent and strictly separable. While analy-
sis of their MS counterparts is more complicated, both theories are at
least exactly core-separable.

In the special case of a one-dimensional model space, XMCQDPT2 is complete-
ly equivalent to the MR-MP2 approach4. Due to the structure of its energy
denominators, MR-MP2 is neither exactly size-consistent, nor core-
separable. This can be easily verified by performing test computations on
simple model systems like the Be2 molecule at large internuclear distances.
However, the deviations from exact size-consistency are typically small.

- 157 -

Keeping these properties of MR-MP2 in mind, it is logical to expect that
XMCQDPT2 should in general not be exactly size-consistent or core-separable
as well. This is indeed the case. However, we mention as an important fact
that the fully uncontracted limit of XMCQDPT is an exactly size-consistent
and separable theory through the fourth order of Van-Vleck PT expansion61.
Assuming that the convergence of energies with an increase of the dimension
of the model space is reasonably fast, XMCQDPT2 should be approximately
size-consistent and core-separable for low-lying states even for the quite
modest dimensions of effective Hamiltonians, with size-inconsistency errors
rapidly decreasing upon the extension of the model space.

Let XMCQDPT2’ and MCQDPT2’ denote the modified (and thus approximate) XMC-
QDPT2 and MCQDPT2 calculations that apply the MP2-like expression for dou-
ble excitations from double occupied inactive orbitals to external MOs.
This approximation eliminates the dominant contribution violating exact
core-separability and makes both theories almost exactly core-consistent.
While MCQDPT2’ is typically an improvement over MCQDPT2, XMCQDPT2’ is not
usually an improvement over XMCQDPT2 as XMCQDPT2’ introduces approximations
not needed by the parent theory while not significantly improving the core-
separability properties of the computed XMCQDPT2 energies.

MCQDPT2 and MS-CASPT2 tend to overestimate off-diagonal elements of effec-
tive Hamiltonians62-70. This is true, although to a lesser extent, for
MCQDPT2’ as well. Indeed, one can consider MCQDPT2 as an approximation to
XMCQDPT2 that completely neglects the off-diagonal elements of H0 in the
CASCI space. The quality of this approximation depends on the magnitude of
the neglected off-diagonal elements. If the zero-order interaction of the
states forming the model space is small, these two theories should be in
the close agreement. However, as soon as zero-order interaction increases,
MCQDPT2 performance starts to degrade. For instance, one can a priori ex-
pect large zero-order interactions in situations when two or more CI roots
share a common set of leading CSFs, resulting in questionable applicability
of MCQDPT2 as well as of all other non-invariant theories formulated using
projectors onto the model space. The neglect of off-diagonal terms intro-
duces inaccuracy into both diagonal and off-diagonal elements of effective
Hamiltonians.

In the case of MCQDPT2’, the leading MP2-like contribution to the correla-
tion energy is treated differently so it results only in the equal shift of
all diagonal elements of H(2)eff. Hence, this reduces the accumulated errors
in off-diagonal elements of H(2)eff, mcqdpt. However, this does not eliminate
errors entirely.

XMCQDPT vs XMS-CASPT2

Soon after the paper on XMCQDPT theory was published, the XMS-CASPT2 theory
(i.e. the Extended Multi-State Second Order Complete Active Space Perturba-
tion Theory) was suggested by Shiozaki, Győrffy, Celani and Werner (Ref.
71), who based their work on the ideas of the XMCQDPT paper (Ref. 46). The
XMS-CASPT2 theory is an improvement over standard MS-CASPT2 and can be con-
sidered as an internally-contracted approximation to XMCQDPT2. Typically
one may expect similar results from MS-CASPT2 and XMCQDPT2. However, the
Resolvent fitting technique cannot be applied to XMS-CASPT2 as this theory

- 158 -

does not allow direct summation of PT series. This makes XMCQDPT2 computa-
tionally much more efficient compared with XMS-CASPT2, especially for large
molecular systems.

Useful hints and best practices

A. Understanding basic steps of MCQDPT2 and XMCQDPT2 execution flow with
Firefly

To activate one of XMCQDPT2 and MCQDPT2, one needs to use $CONTRL MPLEVL=2
together with SCFTYP=MCSCF. The choice between XMCQDPT2 and MCQDPT2 theo-
ries is controlled by the presence of the corresponding input groups. I.e.
if the $MCQDPT group is given in the input, Firefly will perform MCQDPT2
computations. Otherwise, if the $XMCQDPT or $QDPT group is given in the
input, XMCQDPT2 computations will be performed. All three groups share a
common set of input variables; and, as explained in details in Ref. 46,
XMCQDPT2 and MCQDPT2 computations with Firefly use the same common code. In
the following we use (X)MCQDPT2 to term either of two. There are three
flags and one extra input group that significantly affect execution flow of
(X)MCQDPT2 computations.

First, (X)MCQDPT2 can be preceded by MCSCF computations. This is the most
typically used scenario. However, there is a possibility to skip the MCSCF
part. To do this, one needs to provide a complete $VEC group with converged
orbitals, read in orbitals using $GUESS GUESS=MOREAD with the NORB variable
equal to the overall number of MOs, and set the INORB variable of the
$(X)MCQDPT group to 2 (default is INORB=0) to indicate that the MCSCF stage
should not be performed. It is recommended to use orbitals saved with extra
high precision, i.e. with the $CONTROL WIDE flag set to .TRUE. (default is
wide=.FALSE.).

Second, the (X)MCQDPT2 code performs canonicalization of input or previous-
ly computed MOs by default. This requires some additional computations,
namely the extra CASCI-type integral transformation (performed by the
MQTRMC routine), CASCI computations (MQCACI routine), first order state-
averaged density matrix construction, Fock matrix construction, and its
block-diagonalization (MQFORB routine). Note, the WSTATE array is used in
computing weights of roots for state-averaged density matrix calculation at
this stage.

However, input orbitals or orbitals generated by the preceding MCSCF proce-
dure can already be in semi-canonical form, so that user can request Fire-
fly to skip canonicalization. This can be done by setting the IFORB varia-
ble of the $(X)MCQDPT group to 0 (the default is IFORB=1, i.e. not to skip
canonicalization).

Third, one can request either the exact (X)MCQDPT2 (the default setting) or
the approximate (X)MCQDPT2'. The latter option is activated by setting the
IROT variable of the $(X)MCQDPT group to 1 (default is 0). Computationally,
(X)MCQDPT2' is a bit cheaper than (X)MCQDPT2. As was discussed above,
(X)MCQDPT2' theories also have better properties if the approximate core-
separability is of concern. However, one should realize that (X)MCQDPT2'

- 159 -

theories are the approximations to the exact second-order answer given by
the (X)MCQDPT2 theories.

Finally, the presence of the $MCQFIT group triggers the use of Resolvent
fitting (a.k.a. table-driven) code45. Additional options can be specified
in $MCQFIT group allowing fine control over Resolvent fitting code.

Regardless of the variables described above, the rest of computations is
organized as follows. First, the MP2-type integral transformation is per-
formed by the MQTRF routine. This can be a disk-based or semi-direct trans-
formation, whereby the latter is selected by specifying $TRANS
DIRTRF=.TRUE. and is highly recommended. Then, molecular integrals are re-
arranged and a CASCI procedure in the basis of semi-canonical Fock orbitals
is performed (MQCACI). Next, provided the optional CSF selection option is
turned on, the number of CSFs entering the PT computations is reduced based
on user-specified criteria, and the final CI procedure is performed in this
reduced subspace. Note that CSF selection is disabled by default. Finally,
the one-particle state-averaged density matrix is recomputed using the
AVECOE array, then the Fock matrix and the effective orbital energies are
constructed by the routine MQORB2, and some additional setup is performed
by the MQLPR1 and MQLPR2 routines (alternatively by MQLPR1, MQLPRB and
MQLPRC). At this point, the code is ready for summation of PT series, which
is performed for contributions of different types by the routines MQLMB1,
MQLMB2, MQLMB3 and MQLMBR/MQLMBR0/MQLMBR1/MQLMBR2 called in a big loop over
all CI states forming the model space.

(Footnote: Note that both the WSTATE and AVECOE arrays are used to define
the state's weights used to compute state-averaged density matrices. Tech-
nically, the averaging used to define semi-canonical orbitals and to define
orbital energies of these orbitals can be different. If both WSTATE and
AVECOE are given in the input file, the first one defines the averaging
used to compute orbitals while the second is used for energies. If only one
of them is given in input, then the second one will be set to be identical
with the first one. The latter option should be used almost exclusively
unless one has really good reasons for using different averaging for dif-
ferent stages.)

At the very end, the MQGETE routine (which is preceded by the MQVSML rou-
tine in the case of PT with CSF selection) is called and prints computed
energies and zero-order QDPT properties: dipole moments, transition mo-
ments, and so on.

B. Planning (X)MCQDPT2 computations

1. Use XMCQDPT2 rather than MCQDPT2

2. When absolutely in need to use MCQDPT2, use MCQDPT2'

3. Use Intruder State Avoidance (ISA) denominator shift. The default shift
is zero. To set ISA shift to 0.02 Hartree (the recommended value), use
$(X)MCQDPT EDSHIFT=0.02.

4. For reliable results, use an at least triple zeta + polarization func-
tions basis sets such as cc-pVTZ or better.

- 160 -

5. Use the same averaging in SA-CASSCF (defined by the WSTATE array of $DET
or $GUGDM2), and in (X)MCQDPT2 (defined by the WSTATE and AVECOE arrays of
$(X)MCQDPT) unless there are strong reasons for the opposite. Use all
weights equal to unity, once again unless there are strong reasons for the
opposite.

6. Add some extra CASCI states to a model space, i.e. use a value of NSTATE
that is larger than the number of states in SA-CASSCF averaging.

C. Running (X)MCQDPT2 computations
1. Use Firefly's efficient and fast SOSCF or FOCAS convergers for MCSCF
stage of job.

2. Use the Resolvent fitting-based code for large (X)MCQDPT2 jobs as it is
much faster than the default code. The use of the Resolvent fitting-based
code is triggered by the presence of the $MCQFIT group in the input file.
In most cases, it is sufficient to specify only $MCQFIT $END without alter-
ing any parameters of the $MCQFIT group - the default parameters are se-
lected so that the errors introduced in the computed energies are typically
less than 10-8 Hartree. There are three adjustable parameters in the
$MCQFIT group:

a. DELTAE - double precision, default is zero. If nonzero, this vari-
able is used to define the step of the interpolation grid.

b. NPOINT - integer, default is 400. Together with DELTAE, this vari-
able is used to define the step size and the number of points of the
interpolation grid. The actual grid size will be the least of the
two, the number specified using the NPOINT variable and the number of
points computed based on the value of DELTAE. Increasing NPOINT will
result in an increase of the required CPU time while reducing errors
in the computed energy.

c. IORDER - integer variable. Available values are 3, 5, and 7. De-
fines the order of the polynomial to use in interpolation. The de-
fault value is 7.

3. Use the efficient direct and semi-direct integral transformation code
for large (X)MCQDPT2 jobs i.e. specify $TRANS DIRTRF=.TRUE. in the input
file. One can control large (MP2-style) integral transformations (MQTRF
stage) using the appropriate variables of $MP2 group. In addition, it is
best to use Firefly's specific large-scale efficient CASCI/CASSCF integral
transformation code during MQTRMC stage by setting the dedicated keyword in
the $TRANS group as follows: $TRANS MPTRANS=2 DIRTRF=.TRUE. $END. Other
variables that could be useful are $TRANS ALTPAR, MODE, and CUTTRF. These
variables are documented elsewhere in the manual.

4. The PT series summation in Firefly's (X)MCQDPT2 code does not run in
parallel at present but is efficiently threaded. To speed up computations,
use SMP and/or multi-core systems and allow Firefly to use extra computing
threads. One can do this by specifying the overall number of threads to use
via ether the $SYSTEM NP or $SMP NP variables (these two variables are syn-
onyms). Note, the $SMP HTTNP variable, which can be either 1 or 2 and which

- 161 -

is described elsewhere, affects the actual number of threads when running
in an environment that supports hyper-threading.

5. The preceding CASSCF stage and the semidirect MQTRF/ALTTRF integral
transformation stage of (X)MCQDPT2 are allowed to run in parallel so if one
runs a (X)MCQDPT2 job in parallel, these stages will be executed in paral-
lel. The summation of PT series will however be executed in serial by the
master Firefly's process. To speed up this serial stage, use threading as
described above. In addition, one needs to set the $SMP SMPPAR=.TRUE. which
indicates that created additional working threads should only be used dur-
ing the execution of serial parts of code i.e. the use of a specific type
of mixed parallel/threaded model of execution. Note this requires (the low-
level) P2P protocol and dynamic load balancing. Thus, the input for a mixed
parallel/multithreading (X)MCQDPT2 run (either with our without a preceding
CASSCF step in the same run) would look as follows (for a 8 core system
without HyperThreading support):

 $SYSTEM MKLNP=1 NP=8 $END
 $SMP SMPPAR=.T. $END
 $P2P P2P=.T. DLB=.T. $END

6. For the most typically used (X)MCQDPT2 runs involving a preceding CASSCF
step in the same run, it is possible skip to first MQCACI and integral
transformation by instructing the (X)MCQDPT2 code to reuse information from
the CASSCF step. This can be done by specifying the following:

 $MCSCF IFORB=.TRUE. $END
 $(X)MCQDPT IFORB(1)=-1,1,1 $END

Hereby, it is recommended to also specify $MCSCF SD=.T. These keywords are
described in the list of keywords.

7. The numerical gradient based code and all runtypes involving numerical
gradients are allowed to execute all stages of (X)MCQDPT2 in parallel using
XP and Extended XP models of execution, which are described elsewhere. In
addition, running in the Extended XP mode, one can still set $SMP SMP-
PAR=.TRUE. to allow the mixed parallel/threaded model of execution within
each separate group of processes.

8. Use the MASMEM keyword of $SYSTEM group to alter the amount of memory
used by the master process (or XP local master processes). The PT summation
stage of (X)MCQDPT2 code typically requires more memory than the preceding
CASSCF and MQTRF integral transformation stages. With this option, one can
allow a master Firefly process to use more memory than other Firefly's in-
stances. E.g. the line $SYSTEM MWORDS=100 MASMEM=200 $END would allow the
master to use 200 Mwords with regular instances of parallel Firefly process
still consuming 100 Mwords each. While using MASMEM, it is a good idea to
perform exetyp=check run in parallel mode. Alternatively, one can run it
twice in serial (once for MWORDS without specifying MASMEM, and once for
MWORDS with the desired value of MASMEM).

9. If the (X)MCQDPT2 run runs out of memory, one can consider:

- 162 -

a. decreasing the value of the $(X)MCQDPT MXBASE variable (the dimen-
sion of subspace in Davidson diagonalization, which affects the
amount of memory used by routine MQCACI);

b. decreasing the number of threads used during the PT summation
stage and disabling the use of additional HTT threads (i.e. setting
$SMP HTTNP=1) (this affects MQLMB1, MQLMB2, MQLMB3, and
MQLMBR/R0/R1/R2);

c. limiting the amount of the stack allotted to Firefly (for Linux
OSs, ulimit -s 2048 should normally work);

d. allowing Firefly to use additional memory in its heap: $(X)MCQDPT
HALLOC=.TRUE.;

e) allowing the selection of most prominent CSFs with $(X)MCQDPT
ISELCT(1)=(one of 1, 2, 3, 4, -1, 2, -3, -4) THRWGT="the smallest
CSF's weight (i.e. the squared coefficient of CSF in CI expansion) to
keep". The default value of THRWGT is 10-6. One can try smaller val-
ues e.g. 10-8. By default, ISELCT(1) is equal to 0, i.e. no selection
is allowed. The values of 1, 2, 3, and 4 select slightly different
schemes of CSFs selection. For the values 2, 3, and 4, it is also
possible to specify a value for ISELCT(2) that can be interpreted as
the maximum allowed number of CSFs.
For large-scale MCQDPT2 and XMCQDPT2 computations, one of the most
important considerations defining the amount of the memory required
is the size of the “envelope” of the set of CSFs, i.e. the set of all
CSFs that can be generated by applying all possible single electron
excitation and de-excitation operators acting within the active space
to the given set of CSFs. The CSF selection scheme works by first
generating a primary set of CSFs using the threshold defined by
THRWGT. After this, the primary set is extended in a several differ-
ent ways provided that the generated envelope will be the same. At
this stage, CSFs with small weights can be added if they are free.
The size of the envelope is not allowed to exceed the value of
ISELCT(2), which gives the maximum allowed size of the envelope. The
size of the primary set is reported by the MQSLT2 routine, the size
of the envelope by the MQCOND routine.
The least advanced method of selection is method #1, which does not
allow one to specify a maximum size for the envelope. The most ad-
vanced (and recommended) scheme is method #4, although the difference
between different methods is rather subtle. It should be noted that
if ISELCT(2) is not given (or set to 0), the primary set of CSFs is
selected without limits on the envelope size. It is then extended by
several possible ways but again with no restriction on the size of
the envelope. This way, it is actually possible to include all CSFs
into the extended set of CSFs. Conversely, if the envelop size is
kept quite constrained (a small value for ISELCT(2) is given), CSFs
with weights higher than THRWGT may be dropped.
The values of -1, -2, -3, and -4 for ISELCT(1) are the counterparts
of their positive analogs which in addition perform the rotation of
CI roots computed in the incomplete space after CSFs selection. This
rotation is within the space spanned by these CI roots and is con-
structed to maximize the overlap of rotated states with the initial

- 163 -

CASCI states before CSFs selection. This option can be important for
MCQDPT2 but is ignored for XMCQDPT2 as results of XMCQDPT2 depend on-
ly on the subspace spanned by the CI vectors rather than on the par-
ticular basis in this subspace (i.e. CI vectors).

D. Analyzing results
1. Check the resulting second-order Effective Hamiltonian (search the out-
put for "*** EFFECTIVE HAMILTONIAN (0-2) ***") for unusually large off-
diagonal elements (say 0.05 Hartree or above). In the case there are some,
one may need to reexamine the appropriateness of the underlying (SA-)CASSCF
procedure, esp. active orbitals, the entire active space, state-averaging
protocol, etc.

2. Check the numbers labeled by "E(MP2)=" (these are the energies of states
within the (X)MCQDPT2 theory) for sense. This table is labeled as "***
(X)MC-QDPT2 ENERGIES ***"

3. Check the table containing "EIGENVECTORS OF THE EFFECTIVE HAMILTONIAN"
for unexpectedly strong/unphysical mixing of the zero-order CASCI states.
Is this exactly what could be expected? If it is not, strong mixing may
indicate deficiencies in the underlying CASSCF description of the zero-
order states. Is there any considerable admixture of higher-energy roots to
the target states? If so, one may need to consider including higher-energy
states into SA-CASSCF state-averaging procedure.

4. Check that the target "EIGENVALUES OF THE NON-SYMMETRIC EFFECTIVE HAMIL-
TONIAN" are all real and are all close to the eigenvalues of the symmetric
Effective Hamiltonian i.e. numbers labeled by "E(MP2)=" as mentioned above.
Large deviations and large imaginary contributions indicate deficiencies in
the PT treatment.

5. Check that the "OVERLAP NORM MATRIX OF NON-ORTHOGONAL EIGENVECTORS" does
not contain large off-diagonal values, e.g. values larger than 0.1 or 0.2.
If the off-diagonal overlap is large this typically means that the target
states are extremely poorly described by the model space and that they have
a (very) large norm of projection on the secondary subspace i.e. they are
living outside the CASCI space.

6. Check that the energies of states (or at least the transition energies)
are stable with respect to the extension of a model space.

7. Analyzing molecular properties printed at the end of (X)MCQDPT2 run,
take in mind that the computed values are the zero-order QDPT properties.
This means that they include only a part of all effects due to interaction
with the secondary space. Namely, they correctly include effects causing
rotation and intermixing of zero order states (i.e. CASCI vectors) within
the model space but do not include the first order correction to the wave-
function (i.e. the part of the perturbed states which belongs to the sec-
ondary space). Thus, the printed properties should be considered as approx-
imations to the "true" (X)MCQDPT2 properties.

E. Citing MCQDPT2 and XMCQDPT2
One should cite Firefly as explained in this manual and on the Firefly
homepage. In addition, one needs to cite XMCQDPT2 as follows: A. A.

- 164 -

Granovsky, J. Chem. Phys. 134, 214113 (2011). For MCQDPT2, the proper ref-
erence is: H. Nakano, J. Chem. Phys. 99, 7983 (1993).

References

1 C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
2 J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem.,
Quantum Chem. Symp. S10, 1 (1976).
3 M.J.Frisch, M.Head-Gordon, J.A.Pople, Chem. Phys. Lett. 166, 275
(1990).
4 K. Hirao, Chem. Phys. Lett. 190, 374 (1992).
5 K. Hirao, Chem. Phys. Lett. 196, 397 (1992).
6 K. Hirao, Int. J. Quant. Chem. S26, 517 (1992).
7 K. Hirao, Chem. Phys. Lett. 201, 59 (1993).
8 K. Andersson, P-Å. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski,
J. Phys. Chem. 94, 5483 (1990).
9 K. Andersson, P.-Å. Malmqvist, and B. O. Roos, J. Chem. Phys. 96,
1218 (1992).
10 K. Andersson, B. O. Roos, Int. J. Quant. Chem. 45, 591 (1993).
11 B. O. Roos, K. Andersson, M. P. Fülscher, P.-Å. Malmqvist, L. Serra-
no-Andrés, K. Pierloot, and M. Merchán, in Advances in Chemical Physics:
New Methods in Computational Quantum Mechanics edited by I. Prigogine, S.
A. Rice (Wiley, New York, 1996) Vol. XCIII, p. 219.
12 C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P.
Malrieu, J. Chem. Phys. 114, 10252 (2001).
13 C. Angeli, R. Cimiraglia, and J.-P. Malrieu, J. Chem. Phys. 117, 9138
(2002).
14 C. Angeli, R. Cimiraglia, and J.-P. Malrieu, Chem. Phys. Lett. 350,
297 (2001).
15 C. Angeli, S. Borini, and R. Cimiraglia, Theor. Chem. Acc. 111, 352
(2004).
16 R. K. Chaudhuri, K. F. Freed, and G. Hose, P. Piecuch, K. Kowalski,
and M. Włoch, S. Chattopadhyay and D. Mukherjee, Z. Rolik, Á. Szabados, G.
Tóth, and P. R. Surján, J. Chem. Phys. 122, 134105 (2005)
17 H. Nakano, J. Chem. Phys. 99, 7983 (1993).
18 H. Nakano, Chem. Phys. Lett. 207, 372 (1993).
19 H. Nakano, K. Nakayama, K. Hirao, M. Dupuis, J. Chem. Phys. 106, 4912
(1997).
20 T. Hashimoto, H. Nakano, K. Hirao, J. Mol. Struct. (THEOCHEM) 451, 25
(1998).
21 H. Nakano, R. Uchiyama, K. Hirao, J. Comput. Chem. 23, 1166 (2002).
22 M. Miyajima, Y. Watanabe, H. Nakano, J. Chem. Phys. 124, 044101
(2006).
23 R. Ebisuzaki, Y. Watanabe, H. Nakano, Chem. Phys. Lett. 442, 164
(2007).
24 J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés, Chem.
Phys. Lett. 288, 299 (1998).
25 C. Angeli, S. Borini, M. Cestari, and R. Cimiraglia, J. Chem. Phys.,
121, 4043 (2004)
26 C. Bloch, Nucl. Phys. 6, 329 (1958).
27 B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
28 B. H. Brandow, Int. J. Quant. Chem. 15, 207 (1979);
29 I. Lindgren, J. Phys. B 7, 2441 (1974).

- 165 -

30 I. Lindgren, Int. J. Quant. Chem. 14 (S12), 33 (1978).
31 G. Hose and U. Kaldor, J. Phys. B 12, 3827 (1981).
32 J.-P. Daudey and J.-P. Malrieu, in Current Aspects of Quantum Chemis-
try 1981 (Ed R. Carbó) , p. 35 (Elsevier 1982).
33 Ph. Durand, J.-P. Malrieu, in Adv. Chem. Phys. 67, (Ed. K. P. Law-
ley), p. 321 (Wiley 1987).
34 K. F. Freed and M. G. Sheppard, J. Chem. Phys. 75, 4507 (1981)
35 K. F. Freed and M. G. Sheppard, J. Chem. Phys. 75, 4525 (1981).
36 V. Hurtubise and K. F. Freed, in Adv. Chem. Phys., 83 (Eds. I. Prigo-
gine and S. A. Rice), p. 465 (Wiley 1993).
37 J.-P. Malrieu, J.-L. Heully, and A. Zaitsevskii, Theor. Chim. Acta
90, 167 (1995).
38 H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
39 P. E. M. Siegbahn, Chem. Phys. 25, 197 (1977).
40 H. Zhang, J.-P. Malrieu, P. Reinhardt, and J. Ma, J. Chem. Phys. 132,
034108 (2010).
41 K. G. Dyall, J. Chem. Phys. 102, 4909 (1995).
42 B. Kirtman, J. Chem. Phys. 49, 3890 (1968).
43 B. Kirtman, J. Chem. Phys. 75, 798 (1981).
44 I. Shavitt and L. R. Redmon, J. Chem. Phys. 73, 5711 (1980).
45 a) A. A. Granovsky; URL:
http://classic.chem.msu.su/gran/gamess/qdpt2.pdf, b) A. A. Granovsky; URL:
http://classic.chem.msu.su/gran/gamess/table_qdpt2.pdf
46 A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011).
47 A. Zaitsevskii and J.-P. Malrieu, Chem. Phys. Lett. 223, 597 (1995)
48 T. H. Schucan, H. Weidenmüller, Ann Phys NY, 73, 108 (1972).
49 T. H. Schucan, H. Weidenmüller, Ann Phys NY, 76, 483 (1973).
50 C. Camacho, R. Cimiraglia and H. A. Witek, Phys. Chem. Chem. Phys.,
12, 5058 (2010).
51 C. Camacho, H. A. Witek, and R. Cimiraglia J. Chem. Phys. 132, 244306
(2010).
52 H. A. Witek, Y.-K. Choe, J. P. Finley, K. Hirao, J. Comput. Chem. 23,
957-965 (2002).
53 M. Lewin, Arch. Ration. Mech. Anal 171, 83 (2004)
54 É. Cancès, H. Galicher, and M. Lewin, J. Comp. Phys. 212, 73 (2006).
55 M. Lewin, J. Math. Chem. 44, 967 (2008).
56 J. A. Pople, J. S. Binkley, R. Seeger, Int. J. Quantum Chem. Symp.
10, 1 (1976).
57 K. A. Brueckner, Phys. Rev. 100, 36 (1955).
58 A. Hugenholtz, Physica 23, 481 (1957).
59 R. J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981).
60 M. Hanrath, Chem. Phys. 356, 31 (2009).
61 P. Ghosh, S. Chattopadhyay, D. Jana and D. Mukherjee, Int. J. Mol.
Sci. 3, 733 (2002)
62 A. V. Nemukhin, A. V. Bochenkova, K. B. Bravaya, and A. A. Granovsky,
Proc. SPIE, 6449, 64490N (2007).
63 K. Bravaya, A. Bochenkova, A. Granovsky, and A. Nemukhin, J. Am.
Chem. Soc., 129 (43), 13035 (2007)
64 L. Kessel, I. B. Nielsen, A. V. Bochenkova, K. B. Bravaya, and L. H.
Andersen, J. Phys. Chem. A, 111 (42), 10537 (2007)
65 K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. P. Savitsky, and
A. V. Nemukhin, J. Phys. Chem. A, 112 (37), 8804 (2008).
66 K. Bravaya, A. Bochenkova, A. Granovsky, A. Nemukhin, Russian Journal
of Physical Chemistry B, Focus on Physics, 2, 671 (2008).

- 166 -

67 T. Rocha-Rinza, O. Christiansen, J. Rajput, A. Gopalan, D. B. Rahbek,
L. H. Andersen, A. V. Bochenkova, A. A. Granovsky, K. B. Bravaya, A. V.
Nemukhin, K. L. Christiansen and M. B. Nielsen, J. Phys. Chem. A, 113 (34),
9442 (2009)
68 M. G. Khrenova, A. V. Bochenkova, and A. V. Nemukhin, Proteins:
Structure, Function, and Bioinformatics 78, 614 (2010).
69 A. A. Granovsky; URL:
http://classic.chem.msu.su/gran/gamess/xmcqdpt.pdf
70 L. Serrano-Andrés, M. Merchán, and R. Lindh, J. Chem. Phys. 122,
104107 (2005).
71 T. Shiozaki, W. Győrffy, P. Celani and H.-J. Werner, J. Chem. Phys.
135, 081106 (2011)

- 167 -

Geometry optimizations

Introduction

Stationary points are places on the potential energy surface with a zero
gradient vector (first derivative of the energy with respect to nuclear
coordinates). These include minima (whether local or global), better known
to chemists as reactants, products, and intermediates; as well as transi-
tion states (also known as first order saddle points).

The two types of stationary points have a precise mathematical definition,
depending on the curvature of the potential energy surface at these points.
If all of the eigenvalues of the Hessian matrix (second derivative of the
energy with respect to nuclear coordinates) are positive, the stationary
point is a minimum. If there is one, and only one, negative curvature, the
stationary point is a first order saddle point (i.e., a transition state).
Saddle points with more than one negative curvature (i.e. higher order sad-
dle points) are not uncommon but are less important in chemistry. Because
vibrational frequencies are basically the square roots of the curvatures
expressed in the mass-weighted coordinates, a minimum has all real frequen-
cies, and a first-order saddle point has one imaginary vibrational "fre-
quency".

Firefly locates minima by geometry optimization, as RUNTYP=OPTIMIZE, and
transition states by first order saddle point searches, as RUNTYP=SADPOINT.
The input to control both these RUNTYPs is found in the $STATPT group. In
addition, the minimum energy difference geometries corresponding conical
intersections/interstate crossings/avoided crossings can be identified with
RUNTYP=OPTIMIZE. In this chapter, the term "geometry search" is used here
to describe features which are common to all these procedures.

As will be noted in the section on optimizations and symmetry later in this
chapter, an OPTIMIZE run does not always find a minimum, and a SADPOINT run
may not find a transition state, even though the gradient is brought to
zero. You can prove you have located a minimum or transition state only by
examining the local curvatures of the potential energy surface. This can be
done by following the geometry search with a RUNTYP=HESSIAN job, which
should be a matter of routine. Note that CI and ISC location runs are ex-
ceptions, i.e. RUNTYP=HESSIAN does not have much sense for geometries lo-
cated in these runs (as they do not locate a minimum or transition state
geometry).

Geometry searches do not bring the gradient exactly to zero. Instead they
stop when the largest component of the gradient is below the value of
OPTTOL (which defaults to a reasonable 0.0001) and when the RMS of compo-
nents of gradient vector is below the value of OPTTOL/3. Analytic Hessians
usually have residual frequencies below 10 cm**-1 with this degree of opti-
mization. The sloppiest value you probably ever want to try is 0.0005.

- 168 -

If a geometry search runs out of time, or exceeds NSTEP, it can be restart-
ed. For RUNTYP=OPTIMIZE or CONIC, restart with the coordinates having the
lowest total energy (for SCF methods, do a string search on "FINAL"). For
RUNTYP=SADPOINT, restart with the coordinates having the smallest gradient
(do a string search on "RMS", which means root mean square). These are not
necessarily at the last geometry! The "restart" should actually be a normal
run, that is, you should not try to use the restart options in $CONTRL.

Another method to restart a geometry optimization is to add the entire
$RSTART group (and only this group) to the unmodified initial input file
and to set $STATPT IREST=2 $END to request a restart. The $RSTART group was
generated if the

$STATPT IDUMP=1 (to dump a single file with restart info), or

$STATPT IDUMP=2 (to dump also a backup copy of the restart info)

option was provided in the input file. This option is useful for restarting
large jobs running on clusters with queue systems controlling the job’s
execution time. A job restarted using this option will be resumed exactly
as if it were not interrupted. Some experimentation with these options is
recommended to get the idea on how this form of restart works.

Sometimes when you are fairly close to the minimum, an OPTIMIZE run will
take a first step which raises the energy, with subsequent steps improving
the energy and perhaps finding the minimum. The erratic first step is
caused by the GUESS Hessian. It may help to limit the size of this wrong
first step, by reducing its radius, DXMAX. Conversely, if you are far from
the minimum, sometimes you can decrease the number of steps by increasing
DXMAX.

When using Z-Matrix or natural internals, the program uses an iterative
process to convert the internal coordinate change into Cartesian space. In
some cases, a small change in the internals will produce a large change in
Cartesians, and thus produce a warning message on the output. If these
warnings appear only in the beginning, there is probably no problem, but if
they persist you can probably devise a better set of coordinates. You may
in fact have one of the two problems described in the next paragraph. In
some cases (hopefully very few) the iterations to find the Cartesian dis-
placement may not converge, producing a second kind of warning message. The
fix for this may very well be a new set of internal coordinates as well, or
adjustment of ITBMAT in $STATPT. Note that this should not be an issue with
DLCs as Firefly’s GDIIS and CONIC codes are able to redefine DLCs.

There are two examples of poorly behaved Z-Matrix or natural internals co-
ordinates which can give serious problems. The first of these is three an-
gles around a central atom, when this atom becomes planar (sum of the an-
gles nears 360). The other is a dihedral where three of the atoms are near-
ly linear, causing the dihedral to flip between 0 and 180. Avoid these two
situations if you want your geometry search to be convergent.

Sometimes it is handy to constrain the geometry search by freezing one or
more coordinates, via the IFREEZ array. For example, constrained optimiza-
tions may be useful while trying to determine what area of a potential en-

- 169 -

ergy surface contains a first order saddle point. If you try to freeze co-
ordinates with an automatically generated $ZMAT, you need to know that the
order of the coordinates defined in $DATA is

 y
 y x r1
 y x r2 x a3
 y x r4 x a5 x w6
 y x r7 x a8 x w9

and so on, where y and x are whatever atoms and molecular connectivity you
happen to be using. Note that this automatically generated ZMAT (which is
generated for a non-zero value of NZVAR in the absence of the $ZMAT input
group) is identical to the user’s COORD=ZMAT or COORD=ZMTMPC input.

Optimizations towards a minimum

If the exact molecular Hessian were to be known at each step, geometry
searches would be most effectively done by the Newton-Raphson method. How-
ever, since this is not the case, so-called quasi-Newton-Raphson methods
are typically superior. These methods assume a quadratic potential surface,
and require the exact gradient vector and an approximation to the Hessian.
It is the approximate nature of the Hessian that makes the method "quasi".
The rate of convergence of the geometry search depends on how quadratic the
real surface is, and the quality of the Hessian. The latter is something
you have control over, and is discussed in the next section.

Firefly contains various implementations of quasi Newton procedures for
finding stationary points, namely METHOD=NR, RFO, QA, GDIIS, and the seldom
used SCHLEGEL. They differ primarily in how the step size and direction are
controlled, and how the Hessian is updated. The CONOPT method is a way of
forcing a geometry away from a minimum towards a TS. It is not a quasi-
Newton method, and is described at the very end of this section.

The NR method employs a straight Newton-Raphson step. There is no step size
control, the algorithm will simply try to locate the nearest stationary
point, which may be a minimum, a TS, or any higher order saddle point. NR
is not intended for general use, but is used by Firefly in connection with
some of the other methods after they have homed in on a stationary point,
and by Gradient Extremal runs where location of higher order saddle points
is common. NR requires a very good estimate of the geometry in order to
converge to the desired stationary point.

The RFO and QA methods are two different versions of the so-called augment-
ed Hessian techniques. They both employ Hessian shift parameter(s) in order
to control the step length and direction.

In the RFO method, the shift parameter is determined by approximating the
PES with a Rational Function, instead of a second-order Taylor expansion.
For a RUNTYP=SADPOINT, the TS direction is treated separately, giving two
shift parameters. This is known as a Partitioned Rational Function Optimi-
zation (P-RFO). The shift parameter(s) ensure that the augmented Hessian
has the correct eigenvalue structure, all positive for a minimum search,

- 170 -

and one negative eigenvalue for a TS search. The (P)-RFO step can have any
length, but if it exceeds DXMAX, the step is simply scaled down.

In the QA (Quadratic Approximation) method, the shift parameter is deter-
mined by the requirement that the step size should equal DXMAX. There is
only one shift parameter for both minima and TS searches. Again the aug-
mented Hessian will have the correct structure. There is another way of
describing the same algorithm, namely as a minimization on the "image" po-
tential. The latter is known as TRIM (Trust Radius Image Minimization). The
working equation is identical in these two methods. When the QA steplength
is close to DXMAX, there is little difference between the QA and RFO meth-
ods. However, the RFO step may in some cases exceed DXMAX significantly,
and a simple scaling of the step will usually not produce the best direc-
tion. For this reason, QA is generally preferred over RFO.

GDIIS (geometry optimization using direct inversion in the iterative sub-
space) is an extrapolation method analogous to the DIIS method used for the
wavefunction optimization. The implementation used in Firefly is unique and
uses ideas presented in references 5 and 6. GDIIS is usually superior to
RFO and QA, especially on flat regions on the PES. For this reason, it is
the default optimizer.

Near a stationary point the straight NR algorithm is the most efficient.
RFO, QA and GDIIS may be viewed as methods for guiding the search in the
"correct" direction when starting far from the stationary point. Once the
stationary point is approached, the RFO, QA, and GDIIS methods switch to
NR, automatically, when the NR steplength drops below 0.10 or DXMAX, which-
ever is the smallest.

Some references can be given if one desires to understand how these methods
are designed to work. The first 3 references describe the RFO and TRIM/QA
algorithms. Reference 4, written by Frank Jensen of Odense University (who
wrote the original FORTRAN code for the geometry searches) compares many of
the algorithms implemented in Firefly. References 5 and 6, as said, provide
details regarding the implementation of GDIIS in Firefly. Finally, as a
general review and textbook on optimization methods we highly recommend
reference 7.

1. J. Baker J. Comput. Chem. 7, 385-395 (1986)
2. T. Helgaker Chem. Phys. Lett. 182, 305-310 (1991)
3. P. Culot, G. Dive, V. H. Nguyen, J. M. Ghuysen Theoret. Chim. Acta 82,
189-205 (1992)
4. F. Jensen J. Chem. Phys. 102, 6706-6718 (1995).
5. S. Vogel, T. H. Fischer, J. Hutter, H. P. Luthi Int. J. Quantum Chem.
45, 6, 679-688 (1993)
6. H. Sellers Int. J. Quantum Chem. 45, 1, pages 31-41 (1993)
7. Practical Optimization, Philip E. Gill, Walter Murray, Margaret H.
Wright Academic Press, January 28, 1982

The Hessian

- 171 -

Although quasi-Newton methods require only an approximation to the true
Hessian, the choice of this matrix has a great effect on convergence of the
geometry search.

There is a procedure contained within Firefly for guessing a diagonal, pos-
itive definite Hessian matrix, HESS=GUESS. If you are using Cartesian coor-
dinates, the guess Hessian is 1/3 times the unit matrix. The guess is more
sophisticated when internal coordinates are defined, as empirical rules
will be used to estimate stretching and bending force constants. Other
force constants are set to 1/4. The diagonal guess often works well for
minima, but cannot possibly find transition states (because it is positive
definite). Therefore, GUESS may not be selected for SADPOINT runs.

Two options for providing a more accurate Hessian are HESS=READ and CALC.
For the latter, the true Hessian is obtained by direct calculation at the
initial geometry, and then the geometry search begins, all in one run. The
READ option allows you to feed in the Hessian in a $HESS group, as obtained
by a RUNTYP=HESSIAN job. The second procedure is actually preferable, as
you get a chance to inspect the calculated frequencies. Then, if the local
curvatures look good, you can commit to the geometry search. Be sure to
include a $GRAD group (if the exact gradient is available) in the HESS=READ
job so that Firefly can take its first step immediately.

Note also that you can compute the Hessian at a lower basis set and/or
wavefunction level, and read it into a higher level geometry search. In
fact, the $HESS group could be obtained at the semiempirical level or the
RHF/3-21G level (for which the Hessian can be computed analytically). For
systems not well described by a single-determinant approach, one can try to
use GVB-PP(1) (for which analytical Hessians are also available). This
trick works because the Hessian is 3Nx3N for N atoms, no matter what atomic
basis is used. The gradient from the lower level is of course worthless, as
the geometry search must work with the exact gradient of the wavefunction
and basis set in current use. Discard the $GRAD group from the lower level
calculation!

You often get what you pay for. HESS=GUESS is free, but may lead to signif-
icantly more steps in the geometry search. The other two options are more
expensive at the beginning, but may pay back by rapid convergence to the
stationary point.

The Hessian update schemes usually work very well but may break down under
some (rare) circumstances. The symptoms are a nice lowering of the energy
or the RMS gradient for many steps, followed by the inefficient steps and
warnings. You can try to cure this by putting the best coordinates into
$DATA, and resubmitting, to make a fresh determination of the Hessian and
internal coordinates.

The default Hessian update for OPTIMIZE runs is that of Broyden–Fletcher–
Goldfarb–Shanno (BFGS), which is likely to remain positive definite. The
POWELL update is the default for SADPOINT runs, since the Hessian can de-
velop a negative curvature as the search progresses. The POWELL update is
also used by the METHOD=NR and CONOPT since the Hessian may have any number
of negative eigenvalues in these cases. The MSP update is a mixture of Mur-
tagh-Sargent and Powell, suggested by Josep Bofill, (J.Comput.Chem., 15, 1-

- 172 -

11, 1994). It sometimes works slightly better than Powell, so you may want
to try it.

Optimizations towards a transition state

Finding minima is relatively easy. There are large tables of bond lengths
and angles, so guessing starting geometries is pretty straightforward. Very
nasty cases may require computation of an exact Hessian, but the location
of most minima is straightforward.

In contrast, finding transition states is a black art. The diagonal guess
Hessian will never work (as there will be no negative curvature(s) in it),
so you must provide a computed one. The Hessian should be computed at your
best guess as to what the geometry of the transition state (T.S.) should
be, and preferably using a level at least close to the one at which you
will perform the search. It is safer to do this in two steps as outlined
above, rather than through using HESS=CALC. This lets you verify you have
guessed a structure with one and only one negative curvature. Guessing a
good trial structure is the hardest part of a RUNTYP=SADPOINT.

This point is worth iterating. Even with sophisticated step size control
such as is offered by the quasi Newton methods, it is in general very dif-
ficult to move correctly from a region with incorrect curvatures towards a
first order saddle point. Even procedures such as CONOPT or RUNTYP=GRADEXTR
will not replace your own chemical intuition about where transition states
may be located.

The RUNTYP=HESSIAN's normal coordinate analysis is rigorously valid only at
stationary points on the surface. This means the frequencies from the Hes-
sian at your trial geometry are untrustworthy, in particular the six "zero"
frequencies corresponding to translational and rotational (T&R) degrees of
freedom will usually be 300-500 cm**-1, and possibly imaginary. The Sayvetz
conditions on the printout will help you distinguish the T&R "contaminants"
from the real vibrational modes. If you have defined a $ZMAT, the PURIFY
option within $STATPT will help zap out these T&R contaminants).

If the Hessian at your assumed geometry does not have one and only one im-
aginary frequency (taking into account that the "zero" frequencies can
sometimes be 300i!), then it could prove difficult to find the transition
state (though one can sometimes get away with multiple negative frequencies
if the magnitude of the 'desired' frequency is much larger than that of the
other negative frequencies). If so, you need to compute a Hessian at a bet-
ter guess for the initial geometry, or read about mode following below.
Often, a relaxed geometry scans (RUNTYP=RSURFACE) can be used to get a good
starting geometry for subsequent TS search.

If you need to restart your run, do so with the coordinates which have the
smallest RMS gradient. Note that the energy does not necessarily have to
decrease in a SADPOINT run, in contrast to an OPTIMIZE run. It is sometimes
necessary to do several restarts, involving recalculation of the Hessian,
before actually locating the transition state.

- 173 -

Assuming you do find the T.S., it is always a good idea to recompute the
Hessian at this structure. As described in the discussion of symmetry, only
totally symmetric vibrational modes are probed in a geometry search. There-
fore, it is possible to find that at your "T.S." there is a second imagi-
nary frequency, which corresponds to a non-totally symmetric vibration.
This means you haven't found the correct T.S., and are back to the drawing
board. The proper procedure is to lower the point group symmetry by dis-
torting along the symmetry breaking "extra" imaginary mode, by a reasonable
amount. Don't be overly timid in the amount of distortion, or the next run
will come back to the invalid structure.

The real trick here is to find a good guess for the transition structure.
The closer you are, the better. It is often difficult to guess these struc-
tures. One way around this is to compute a linear least motion (LLM) path.
This connects the reactant structure to the product structure by linearly
varying each coordinate. If you generate about ten structures intermediate
to reactants and products, and compute the energy at each point, you will
in general find that the energy first goes up, and then down. The maximum
energy structure is a "good" guess for the true T.S. structure. Actually,
the success of this method depends on how curved the reaction path is.

A particularly good paper on the symmetry which a transition state (and
reaction path) can possess is by

P. Pechukas, J. Chem. Phys. 64, 1516-1521 (1976)

Optimizations and symmetry

At the end of any successful geometry search, you will have a set of coor-
dinates where the gradient of the energy is zero. However, your newly dis-
covered stationary point is not necessarily a minimum or a transition
state.

This apparent mystery is due to the fact that the gradient vector trans-
forms under the totally symmetric representation of the molecular point
group. As a direct consequence, a geometry search is point group conserv-
ing. (For a proof of these statements, see J. W. McIver and A. Komornicki,
Chem. Phys. Lett., 10, 303-306 (1971)). In simpler terms, the molecule will
remain in whatever point group you select in $DATA, even if the true mini-
mum is in some lower point group. Since a geometry search only explores
totally symmetric degrees of freedom, the only way to learn about the cur-
vatures for all degrees of freedom is RUNTYP=HESSIAN.

As an example, consider disilene, the silicon analog of ethene. It is natu-
ral to assume that this molecule is planar like ethene, and an OPTIMIZE run
in D2h symmetry will readily locate a stationary point. However, as a cal-
culation of the Hessian will readily show, this structure is a transition
state (one imaginary frequency), and the molecule is really trans-bent
(C2h). A careful worker will always characterize a stationary point as ei-
ther a minimum, a transition state, or some higher order stationary point
(which are usually not of any interest) by performing a RUNTYP=HESSIAN.

- 174 -

The point group conserving properties of a geometry search can be annoying,
as in the preceding example, or advantageous. For example, assume you wish
to locate the transition state for rotation about the double bond in eth-
ene. A little thought will soon reveal that ethene is D2h, the 90 degrees
twisted structure is D2d, and structures in between are D2. Since the tran-
sition state geometry is actually higher symmetry than the rest of the ro-
tational surface, you can locate it by RUNTYP=OPTIMIZE within D2d symmetry.
You can readily find this stationary point with the diagonal guess Hessian.
In fact, if you attempt to do a RUNTYP=SADPOINT within D2d symmetry, there
will be no totally symmetric modes with negative curvatures, and it is un-
likely that the geometry search will be very well behaved.

Although a geometry search cannot lower the symmetry, the gain of symmetry
is quite possible. For example, if you initiate a water molecule optimiza-
tion with a trial structure which has unequal bond lengths, the geometry
search will come to a structure that is indeed C2v (to within OPTTOL, any-
way). However, Firefly leaves it up to you to realize that a gain of sym-
metry has occurred.

In general, Mother Nature usually chooses more symmetrical structures over
less symmetrical structures. Therefore, you are probably better served to
assume the higher symmetry, perform the geometry search, and then check the
stationary point's curvatures. The alternative is to start with artificial-
ly lower symmetry and see if your system regains higher symmetry. The prob-
lem with this approach is that you don't necessarily know which subgroup is
appropriate, and you lose the great speedups Firefly can obtain from proper
use of symmetry. It is good to note here that "lower symmetry" does not
mean simply changing the name of the point group and entering more atoms in
$DATA, instead the nuclear coordinates themselves must actually be of lower
symmetry. Otherwise, the molecular symmetry will be preserved even in the
C1 group and will be destroyed only due to round-off errors accumulation.
Sometimes this process is so slow so that the geometry converges faster
than the symmetry is destroyed in C1 or any other subgroup.

Mode Following

In certain circumstances, METHOD=RFO, QA, or GDIIS can walk from a region
of all positive curvatures (i.e. near a minimum) to a transition state. The
criteria for whether this will work is that the mode being followed should
be only weakly coupled to other close-lying Hessian modes. Especially, the
coupling to lower modes should be almost zero. In practice this means that
the mode being followed should be the lowest of a given symmetry, or spa-
tially far away from lower modes (for example, rotation of methyl groups at
different ends of the molecule). It is certainly possible to follow also
modes which do not obey these criteria, but the resulting walk (and possi-
bly TS location) will be extremely sensitive to small details such as the
stepsize.

This sensitivity also explain why TS searches often fail, even when start-
ing in a region where the Hessian has the required one negative eigenvalue.
If the TS mode is strongly coupled to other modes, the direction of the
mode is incorrect, and the maximization of the energy along that direction
is not really what you want (but what you get).

- 175 -

Mode following is really not a substitute for the ability to intuit regions
of the PES with a single local negative curvature. When you start near a
minimum, it matters a great deal which side of the minima you start from,
as the direction of the search depends on the sign of the gradient. We
strongly urge that you read before trying to use IFOLOW, namely the papers
by Frank Jensen and Jon Baker mentioned above, and see also Figure 3 of C.
J. Tsai, K. D. Jordan, J. Phys. Chem. 97, 11227-11237 (1993) which is quite
illuminating on the sensitivity of mode following to the initial geometry
point.

Note that Firefly retains all degrees of freedom in its Hessian, and thus
there is no reason to suppose the lowest mode is totally symmetric. Remem-
ber to lower the symmetry in the input deck if you want to follow non-
symmetric modes. You can get a printout of the modes in internal coordinate
space by a EXETYP=CHECK run, which will help you decide on the value of
IFOLOW.

Constrained optimization

CONOPT is a different sort of transition state search procedure. Here, a
certain "CONstrained OPTimization" may be considered as another mode fol-
lowing method. The idea is to start from a minimum, and then perform a se-
ries of optimizations on hyperspheres of increasingly larger radii. The
initial step is taken along one of the Hessian modes, chosen by IFOLOW, and
the geometry is optimized subject to the constraint that the distance to
the minimum is constant. The convergence criteria for the gradient norm
perpendicular to the constraint is taken as 10*OPTTOL, and the correspond-
ing steplength as 100*OPTTOL.

After such a hypersphere optimization has converged, a step is taken along
the line connecting the two previous optimized points to get an estimate of
the next hypersphere geometry. The stepsize is DXMAX, and the radius of
hyperspheres is thus increased by an amount close (but not equal) to DXMAX.
Once the pure NR step size falls below DXMAX/2 or 0.10 (whichever is the
largest) the algorithm switches to a straight NR iterate to (hopefully)
converge on the stationary point.

The current implementation always conducts the search in Cartesian coordi-
nates, but internal coordinates may be printed by the usual specification
of NZVAR and ZMAT. At present there is no restart option programmed.

CONOPT is based on the following papers, but the actual implementation is
the modified equations presented in Frank Jensen's paper mentioned above.

Y. Abashkin, N. Russo, J. Chem. Phys. 100, 4477-4483 (1994)
Y. Abashkin, N. Russo, M. Toscano, Int. J. Quant. Chem. 52, 695-704(1994)

There is little experience on how this method works in practice, so experi-
ment with it at your own risk!

- 176 -

Locating Conical Intersections (CIs) and Interstate Crossings (ISCs)

Conical Intersections (CIs) and Interstate Crossings (ISCs) are the specif-
ic manifolds on the Potential Energy Surfaces (PESs) of two different elec-
tronic states where, at the same geometry, the energies of these states are
strictly equal each other and thus two states are exactly degenerate. The
difference between CIs and ISCs is that ISCs are always formed by the
states of different spatial or spin symmetry. As a result these states be-
long to the different blocks of the Hamiltonian matrix expressed in a
block-diagonal form using symmetry-adapted (i.e. adapted according to the
different possible irreducible representations) basis set. Let us consider
small perturbations of the Hamiltonian matrix caused by the various defor-
mations of the selected molecular geometry that preserve the initial molec-
ular symmetry and hence the symmetry of the Hamiltonian. Evidently, there
is no any "interaction" possible between the two states of interest, even
exactly at their crossing points, as any "interaction" which could be
caused by such perturbations is vanished due to symmetry reasons. As the
result, the dimension of the ISC manifold is equal to the dimension of the
original PES minus one, as there is in fact only one constrain (i.e. Ei =
Ej) to be satisfied.

By contract, CIs are formed by the states of exactly the same symmetry so
that they are allowed to "interact". Mathematically, a second constrain
arises: "interactions" of that kind must vanish at the CI manifold, other-
wise the states cannot be exactly degenerate. The dimension of CI manifold
is thus equal to the dimension of the original PES minus two, and the local
topology on a two-dimension slice over the crossing manifold is the same as
for two crossing cones with a single point in common, hence the "Conical
Intersection" name. One could argue there is still only one constrain,
namely: Ei = Ej at any CI point. While this is formally true, for CIs the
equality Ei = Ej is in fact of the type: x+*x + y+*y = 0 (where the super-
script '+' sign stands for conjugate). The latter, being a single equality,
implies both x = 0 and y = 0!

Usually, there is no need to locate all the geometries belonging to ISC or
CI manifolds. Often, one is interested in locating just the Minimum Energy
Crossing Point (MECP or MECI). These are specific ISC or CI points having
the minimum possible energy. Unlike CIs and ISCs, MECPs and MECIs are not
multidimensional manifolds of complex structure but rather are just a sin-
gle point on PES. MECPs and MECIs are typically exactly what the most peo-
ple calls ISCs and CIs.

With Firefly versions prior to Firefly v. 8.0.0, it was possible to locate
MECIs and MECPs only at the state-averaged MCSCF level of theory, using an
efficient procedure developed for the calculation of semi-numerical state-
specific gradients for SA-MCSCF (which is documented in the chapter on
MCSCF). In addition, only two intersecting states were allowed to be aver-
aged, naturally with equal weights, in the SA-MCSCF procedure. With Firefly
v. 8.0.0, the MECIs/MECPs location code was extended to optionally use nu-
merical gradients thus allowing XMCQDPT2, MCQDPT2, and any configuration
interaction procedure to be used for the location of MECIs and MECPs in
addition to plain SA-MCSCF. Moreover, an arbitrary averaging of states can
now be used for the purpose of locating MECIs and MECPs at the SA-MCSCF
level, provided the weights of two crossing states are equal. However, the

- 177 -

energies of both intersecting states must be obtained as a result of a sin-
gle computation (e.g. a single SA-MCSCF or XMCQDPT2 procedure). The primary
reason of this is to avoid an imbalanced description of two different
states of interest which could arise from the use of different computation-
al schemes for different states.

There are two very different ways how the MECIs/MECPs can be located with
Firefly. The first one is based on the use of penalty functions, the second
one is based on the use of Lagrange multiplier technique. Any of them can
be used with both Cartesian and internal coordinates (including DLCs), and
can handle additional geometry constrains like frozen coordinates, etc.

The penalty function based methods programmed in Firefly are based on the
minimization of the following expression:

 F(Ei, Ej) = alpha*Ei + (1-alpha)*Ej + Penalty(Ej-Ei) = min (1)

rather than of the Ei itself as it would be in the case of unconstrained
energy optimization. With Firefly, the possible values of alpha are 1.0 and
0.5. This corresponds to the minimization of the energy of the first state
of interest or the average energy of two states, respectively. Evidently,
at a MECI/MECP point these are exactly the same, but they differ when away
from the MECI/MECP geometry. Penalty(Ej-Ei) = Penalty(ΔE) is the penalty
function which depends on the energy splitting between two states.

The well designed penalty function must obey some restrictions. It should
be zero if ΔE is zero and should be (very) small if ΔE is small enough. At
the same time, the penalty function and its gradient should become (very)
large when ΔE increases. In addition, it is convenient if Penalty(ΔE) is a
smooth and differentiable function as all standard geometry optimization
engines assume that the PES is a smooth and differentiable function. By
forcing Penalty(ΔE) to be smooth enough, it is possible to use any standard
geometry optimization code for location of MECPs and MECIs. Strictly speak-
ing, the minimum of F(Ei, Ej) does not exactly correspond to a MECI or MECP
point and Ei and Ej are not exactly equal at the corresponding geometry.
However, for a well-designed penalty function this point is very close to
true MECI/MECP.

There are three different penalty functions presently available in Firefly.
The choice of the penalty function is controlled by the PENLTY variable of
the $MCAVER input group. Each of three penalty functions is parameterized
by two parameters which can be altered by the user.

PENLTY=1 calls the so-called Ciminelli penalty function and has the form:

 Penalty(Δ) = B*ln(1.0 + (Δ/A)2) with default values A=0.008 and B=0.2

PENLTY=2 calls a penalty function suggested by Levine, Coe, and Martinez:

 Penalty(Δ) = B*(Δ2)/(Δ+A) with default values A=0.02 and B=3.5

- 178 -

Finally, PENLTY=3 calls a penalty function specific to Firefly:

 Penalty(Δ) = B*((Δ2 + A2)1/2) - B*|A| with default values A=0.01 and
B=3.5

The values of 'A' and 'B' can controlled with the A and B keywords in the
$MCAVER group.

The method based on the Lagrange multiplier technique as implemented in
Firefly is the original self-consistent variant of the Sequential Quadratic
Programming approach. Basically, the energy of state i (i.e. Ei) is opti-
mized subject to constrain Ei = Ej. The constrain is taken into account by
constructing the proper Lagrange function:

 L(R) = Ei(R) + λ(R)*(Ej(R) - Ei(R))

where λ is the Lagrange multiplier for constrain Ei = Ej and (R) denotes
the dependence of all quantities on the molecular geometry. The Lagrange
function is then optimized. Its minimum is located exactly at the MECI/MECP
geometry while the computed value of λ contains important information on
the type of located MECI/MECP. More precisely, if λ is greater than 1.0,
gradients of two degenerated states at their MECI/MECP point are always
oppositely directed. Otherwise, they are directed in the same direction.
Naturally, one can consider another form of L:

 L'(R) = (Ei(R) + Ej(R))*0.5 + λ'(R)*(Ej(R) - Ei(R))

Optimization of both L(R) and L'(R) result in the same MECI/MECP geometry,
while the values of two Lagrange multipliers at this geometry differ by
0.5. However, the number of steps required to converge optimization is gen-
erally different. The trajectories formed by the sequential points taken by
the optimization procedure are different as well.

As to which approach is preferred: the Lagrange multiplier technique usual-
ly works better and converges faster. In addition, it provides useful in-
formation, i.e. the value of multiplier itself. On the other hand, penalty
function based methods are a bit more robust to numerical noise. Our expe-
rience shows that, with Firefly, Lagrange multiplier based approaches are
the best choice for SA-MCSCF while the penalty function based methods work
better for XMCQDPT2.

With Firefly, both penalty function and Lagrange multiplier based code re-
quire only state specific energy gradients for both MECI and MECP location.
None of the approaches requires computation of the so-called non-adiabatic
coupling vector. This vector corresponds to the second direction (the first
being the difference of gradients of two states) along which the CI mani-
fold (i.e. the manifold of the exact degeneracy) is destroyed under the
small variations of molecular geometry. In other words, this vector de-
scribes the second constrain which is specific to CIs but not to ISCs. Tak-
en together with the gradients difference the non-adiabatic coupling vector
forms the so-called "branching plane".

- 179 -

Because the non-adiabatic coupling vector is not used nor computed by Fire-
fly's routines, both MECIs and MECPs are handled by the same code and are
virtually identical from the point of view of MECI/MECP geometry optimizer.
In Firefly, the MECI or MECP location is not implemented as a separate
RUNTYP. The standard $CONTRL RUNTYP=OPTIMIZE is used instead together with
some additional keywords controlling the process of MECI/MECP optimization.
In addition to RUNTYP=OPTIMIZE, the RUNTYP=RSURFACE is also allowed. While
the penalty function based approach can be used with any of the available
Firefly's geometry optimization engines such as GDIIS, QA, or NR, the La-
grange multiplier-based approach requires the dedicated geometry optimizer
which is called "CONIC" and should be explicitly requested as follows:
$STATPT METHOD=CONIC. The location of MECIs/MECPs can be performed in Car-
tesian or internal coordinates, the latter being the recommended coordinate
type.

The $MCAVER input group is relevant for both penalty function and Lagrange
multiplier based code. In addition, the Lagrange multiplier based approach
is also controlled by the dedicated $CONIC input group. If MECI/MECP opti-
mization is based on fully numerical gradients (e.g. the optimization of
MECI at XMCQDPT2 level), the ISTATE, JSTATE, and NGRADS keywords of the
$NUMGRD input group should be properly set as described in the documenta-
tion on the numerical gradient code. Alternatively, if semi-numerical
state-specific gradients for SA-MCSCF are used, the ISTATE keyword of the
$MCSCF input group must be properly set, as well as other variables that
are essential for the computation of state-specific gradients for SA-MCSCF.
Finally, when locating CIs/MECPs at SA-MCSCF level of theory, the MCSCF
state tracking can be of considerable help. The latter is controlled by the
$TRACK input group, which function is described in the MCSCF chapter. More
information on the $MCAVER group can be found in the MCSCF chapter as well
as in the list of keywords.

The $CONIC group allows control over the detailed behavior of the $STATPT
METHOD=CONIC Lagrange multiplier based CIs/ISCs optimizer called CONIC. In
addition to the parameters described below, METHOD=CONIC is also controlled
by the usual parameters of the $STATPT group. Detailed information on the
$CONIC group can be found in the list of keywords.

This section will conclude with three input examples for the optimization
of CIs and ISCs. The complete input files as well as the corresponding out-
put files can be found at the following location:

http://classic.chem.msu.su/gran/gamess/Conic_ISC_samples.rar

Input example 1. Optimization of ISC in 1,1-difluoro-1,3-butadiene molecule
using Lagrange multiplier based code and semi-numerical gradients for SA-
MCSCF.

 $CONTRL SCFTYP=MCSCF RUNTYP=OPTIMIZE INTTYP=HONDO
 ICUT=11 D5=.T. NZVAR=1 $END
 $SYSTEM TIMLIM=6000 MWORDS=10 NOJAC=1 KDIAG=0 $END
 $ZMAT DLC=1 AUTO=1 $END

- 180 -

 $MOORTH NOSTF=1 NOZERO=1 TOLE=0 TOLZ=0 SYMS=1 SYMDEN=1 SYMVEC=1 $END

 $GUESS GUESS=MOREAD NORB=26 $END

 $DRT GROUP=C1 FORS=.T. NMCC=18 NDOC=5 NVAL=3 $END
 $GUGDIA NSTATE=2 ITERMX=200 CVGTOL=1D-7 $END
 $GUGDM2 CUTOFF=1D-12 WSTATE(1)=1,1 $END
 $GUGEM CUTOFF=1D-12 $END
 $MCSCF CISTEP=GUGA MAXIT=350 ISTATE=1 ACURCY=5D-8
 ENGTOL=5.0D-13 NTRACK=2 $END
 $TRANS CUTTRF=1D-12 $END

 $MCAVER JSTATE=2 CONIC=2 $END

 $TRACK TOL=1.4 FREEZE=.T. STICKY=.F. UPDATE=.T. RESET=.F. DELCIV=.F. $END

 $STATPT NSTEP=1000 OPTTOL=1.0D-4 METHOD=CONIC $END

 $DATA
 optimization of ISC in CF2=CH-CH=CH2 by state-averaged CAS
CS
--input coordinates--
 $END
 $VEC
--input orbitals--
 $END

Input example 2. Optimization of CI in ethene molecule at XMCQDPT2 level
using penalty function based code and numerical gradients.

$CONTRL
! Set NZVAR to non-zero to allow automatic DLCs
 NZVAR=1
 SCFTYP=MCSCF MPLEVL=2
! Some standard stuff for XMCQDPT2 numerical derivatives.
 RUNTYP=OPTIMIZE INTTYP=HONDO ICUT=13 NUMDER=1
! We want to use spherical basis set in this particular run
 D5=.T.
 $END

 $SYSTEM
 TIMLIM=6000 MWORDS=40
! To speed up things a bit
 NOJAC=1 KDIAG=0
 $END

! To allow DLCs
 $ZMAT DLC=1 AUTO=1 $END

! This group is required for extreme precision needed for numerical deriva-
tives
 $MOORTH NOSTF=1 NOZERO=1 TOLE=0 TOLZ=0 $END

- 181 -

 $BASIS GBASIS=N311 NGAUSS=6 NDFUNC=1 POLAR=DUNNING $END

 $GUESS GUESS=MOREAD NORB=9 $END

! We need to increase precision here a bit
 $TRANS ALTPAR=.T. MPTRAN=2 DIRTRF=.T. MODE=100 CUTTRF=1D-13 $END
! We need to increase precision here a bit
 $MCSCF CISTEP=ALDET SOSCF=.T. FOCAS=.F. MAXIT=100 ACURCY=1D-8 $END
 $DET
GROUP=C1 NCORE=7 NACT=2 NELS=2 NSTATE=4 WSTATE(1)=1,1
! We need to increase precision here a bit
ITERMX=1000 CVGTOL=1D-8
 $END

! This input is specific to penalty-based CI search algorithm
! (using penalty function due to work of Todd Martinez)
 $MCAVER TARGET=MIXED PENLTY=2 XGRAD=.F. $END

 $XMCQDPT
NSTATE=2 EDSHFT=0.02 ISTSYM=1 WSTATE(1)=1,1
! We need to increase precision a bit
THRGEN=1D-20 THRERI=1D-20 GENZRO=1D-20 THRCON=1D-8
 $END

! To compute two (NGRADS=2) gradients for ISTATE=1 and JSTATE=2
! using special fitting for CIs (SPLINE=4 CONFIT=1 PRAXES=1) to improve
! precision of numerical gradients near CI point
 $NUMGRD
 ORDER=6 DELTA=0.01 ISTATE=1 JSTATE=2 NGRADS=2 SPLINE=4 CONFIT=1 PRAXES=1
 $END

! Using QA optimizer
 $STATPT NSTEP=400 METHOD=QA OPTTOL=3D-5 FMAXT=1000 $END

 $DATA
 C2H4
C1
--input coordinates--
 $END
 $VEC
--input orbitals--
 $END

Input example 3. Optimization of CI in allene molecule using Lagrange func-
tion based code and semi-numerical gradients for SA-MCSCF.

 $CONTRL SCFTYP=MCSCF RUNTYP=OPTIMIZE INTTYP=HONDO
 ICUT=11 D5=.T. NZVAR=1 $END
 $SYSTEM TIMLIM=6000 MWORDS=10 NOJAC=1 KDIAG=0 $END

 $MOORTH NOSTF=1 NOZERO=1 TOLE=0 TOLZ=0 SYMS=1 SYMDEN=1 SYMVEC=1 $END

- 182 -

 $GUESS GUESS=MOREAD NORB=13 $END

 $BASIS GBASIS=DH NDFUNC=1 POLAR=DUNNING $END

 $DRT GROUP=CS FORS=.T. NMCC=9 NDOC=2 NVAL=2 ISTSYM=1 $END
 $GUGDIA NSTATE=4 ITERMX=200 CVGTOL=1D-7 MEMMAX=999999 $END
 $GUGEM CUTOFF=1D-12 $END
 $GUGDM2 CUTOFF=1D-12 WSTATE(1)=1,1 $END
 $MCSCF CISTEP=GUGA MAXIT=100 ISTATE=1 ACURCY=1D-7 ENGTOL=1.0D-12 NTRACK=4
$END
 $TRANS CUTTRF=1D-12 $END

 $MCAVER JSTATE=2 CONIC=2 $END

 $CONIC SHIFT0=1D-2 $END

 $TRACK TOL=1.4 FREEZE=.T. STICKY=.F. UPDATE=.T. RESET=.F. DELCIV=.F. $END

 $STATPT NSTEP=1000 OPTTOL=3.0D-5 METHOD=CONIC $END

 $DATA
 C3H4
Cs
--input coordinates--
 $END
 $VEC
--input orbitals--
 $END

Using numerical gradients

As of version 8.0.0, Firefly has the ability to calculate gradients numeri-
cally. The primary purpose of this feature is to allow computations which
normally require analytic energy gradients to be performed using QC methods
for which analytic gradients are not yet programmed.

The idea behind the numerical gradients code is very simple; gradients are
obtained using various finite difference formulas applied to the energy
itself. Thus, the approach is based on multiple reevaluations of energy
values at a set of slightly displaced geometries. The numerical gradients
code is tightly integrated into Firefly and can be used anywhere where ana-
lytical energy gradients are required by default. It operates in both
standard parallel, XP, and extended XP modes, allowing parallel computa-
tions of gradients for those QC methods for which parallel implementation
is not available yet and improving parallel scalability of methods that are
already well parallelized. The numerical gradient code handles molecular
symmetry in a very efficient way and always uses the minimal required num-
ber of single-point energy evaluations. The code supports both static and
dynamic load balancing.

The numerical gradient code is enabled by specifying

 $CONTRL NUMDER=.T. $END

- 183 -

Further control over the numerical gradient code is provided by keywords in
the $NUMGRD group. The ORDER keyword determines the amount of energy evalu-
ations that will be performed, which (in the case of C1 symmetry) is

 X * (3N – 6) + 1

where X is the value of ORDER and N is the amount of atoms in $DATA. As
already noted, use of molecular symmetry reduces the amount of energy eval-
uations needed. Possible values for ORDER are 1, 2, 4, and 6.

Then, three other important keywords should be mentioned. The NGRADS key-
word can be used to request gradients for multiple states of interest, when
using a method that can calculate the energies of several states at once
(such as MCSCF). The default is NGRADS=1, meaning that the gradient is only
computed for the lowest energy state. NGRADS=3, for example, will calculate
the gradients of the three lowest states. Obviously, the amount of states
requested with NGRADS should not be larger than the amount of states avail-
able.

The keyword ISTATE is used to pick the state to be used by other parts of
the program (e.g., the state to be used for a geometry optimization). Its
default value is 1, the lowest energy state. ISTATE is intended to be used
together with the NGRADS option. For example, when optimizing the geometry
of the second root using TDDFT, one should specify NGRADS as greater than
or equal to 2, and ISTATE as 2. A second state (to be used for the location
of conical intersections or interstate crossings) can be requested with the
JSTATE keyword. By default, JSTATE equals 0 meaning that no second state is
to be used. Note that, for TD/CIS runs, ISTATE and JSTATE pertain to TD/CIS
states, e.g. ISTATE=1 equals the first excited state, not the ground state!

As with any finite differencing, numerical gradients require extra high
precision in computed energy values. It is therefore the user's responsi-
bility to increase the precision of all the stages involved into computa-
tion of target energies.

Finally, it should be noted that the new RUNTYP=NUMGRAD is a slightly
cheaper alternative to RUNTYP=GRADIENT when using numerical gradients. In
addition, RUNTYP=NUMGRAD always prints gradients for all NGRADS states
while RUNTYP=GRADIENT will only print gradient for the ISTATE state.

Non-gradient total energy minimizations

A non-gradient optimization of exponents or the geometry can be selected by
specifying RUNTYP=TRUDGE. The TRUDGE package is a modified version of the
same code from Michel Dupuis' HONDO 7.0 system, originally written by H. F.
King. The program allows for the optimization of 100 parameters.

Exponent optimization works only for uncontracted primitives, without en-
forcing any constraints (though symmetrically-equivalent atoms will retain
identical exponents).

- 184 -

Geometry optimization works only in HINT internal coordinates. The total
energy of all types of wavefunctions can be optimized, although this would
make no sense as gradient methods are far more efficient. The main purpose
of the program used to be for methods lacking analytical gradients such as
open shell MP2 and CI. However, with the availability of numerical gradi-
ents in Firefly 8.0.0 the TRUDGE program has much less purpose. It is cur-
rently retained for backwards compatibility reasons mainly.

For information on how to run RUNTYP=TRUDGE job, see the list of keywords
(specifically, the $TRUDGE and $TRURST groups).

- 185 -

Hessian calculations

General information

The Hessian matrix, i.e. the second derivatives of the energy with respect
to the input geometry, can be calculated by means of a RUNTYP=HESSIAN job.
It can be calculated analytically for RHF and ROHF wavefunctions as well as
for GVB wavefunctions with NPAIR=0 or 1. For all other theories, it can
only be obtained numerically. Control over the calculation of the Hessian
(and data derived from the Hessian) is provided by keywords of the $FORCE
group. For analytical calculations, additional control is provided by key-
words of the $CPHF group.

Compared to numerical Hessians, analytic Hessians are more accurate and
computed much more quickly, but they require additional disk storage as
well as more physical memory. The numerical calculation of Hessian requires
less storage and memory, but takes more time as it requires at least 3N+1
gradient evaluations (where N is the number of symmetry unique atoms). In
addition, the accuracy of numerical Hessians is typically somewhat lower
but can be improved by doubling the number of displacements in each Carte-
sian direction. Such a run requires 6N+1 gradient evaluations and can be
requested through the NVIB keyword:

 $FORCE NVIB=2 $END

Doubling the number of displacements gives a small improvement in accuracy
-- frequencies will often differ from NVIB=1 results by 1-100 wavenumbers.
However, the normal modes will be more nearly symmetry adapted, and the
residual rotational and translational modes will be much closer to zero. A
Hessian calculated with NVIB=2 is typically almost as good as an analyti-
cally calculate one.

In addition, it is also possible to calculate Hessian for methods for which
only energies are available using numerical gradients. As discussed else-
where, numerical gradients can be requested with:

 $CONTRL NUMDER=.T. $END

and require tighter accuracy settings than ordinary runs. When calculating
Hessians, it is important to set the DELROT keyword of the $NUMGRD group to
.FALSE.

A successfully calculated Hessian will be printed both to the output (to-
gether with vibrational data, corresponding IR intensities, and a thermo-
chemical analysis) and to the PUNCH file (as a $HESS group). The $HESS
group can be used for subsequent runs such as a geometry optimization, an
IRC calculation, a Raman calculations, etc. Restart data for a numerical
Hessian calculation is written to the IRCDATA file as a $VIB group. If one
would like to resume such a calculation, it suffices to copy this group
(make sure it is terminated with ‘$END’) to the input and restart the run.

- 186 -

A completed Hessian calculation can be rerun by copying the $HESS group to
the input and specifying:

 $FORCE RDHESS=.T. $END

As is discussed in the chapter on geometry optimizations, a geometry opti-
mization always needs an initial Hessian at the start of the calculation.
An initial Hessian can be guessed by:

 $STATPT HESS=GUESS $END

Unfortunately though, the guessed Hessian is of poor quality which usually
causes the geometry converger to require more steps before the equilibrium
geometry is reached. Also, for an optimization towards a first-order saddle
point, it is important to realize that the guessed Hessian cannot contain
negative frequencies, which are required of one would like to have any
chance of finding the desired saddle point. As such, it is typically recom-
mended to calculate an initial Hessian prior to the optimization procedure.
This can be done at the same level at which the optimization will be per-
formed with:

 $STATPT HESS=CALC $END

However, it can be almost as effective and much cheaper to calculate the
initial Hessian at a lower level of theory. For example, a Hessian calcu-
lated at the PM3, RM1, or RHF/3-21G level can already be a good approxima-
tion to the exact Hessian and greatly speed up the optimization procedure.
For systems which cannot be described well by a single-determinant method,
one could try to use GVB with NPAIR=1 (i.e., a GVB-PP(1) or TCSCF calcula-
tion) which can provide a starting Hessian readily by means of an analyti-
cal calculation. After the calculation of the initial Hessian, the $HESS
block should be placed in the input of the geometry optimization run to-
gether with:

 $STATPT HESS=READ $END

When a geometry optimization has converged, the nature of the stationary
point found can be investigated by calculating the Hessian at the exact
same level of theory that was used for the geometry optimization. This can
even be done in the same job by specifying:

 $STATPT HSSEND=.T. $END

If the Hessian is calculated at a different level, any data derived from
the Hessian (such a thermochemistry) is invalid.

Vibrational data

By default, a vibrational analysis is performed at the end of a
RUNTYP=HESSIAN or RUNTYP=OPTIMIZE/SADPOINT with HSSEND=.T. run. For each
normal mode, the frequency, reduced mass, and IR intensity are printed. IR
intensities are automatically calculated as part of the Hessian calculation
and are printed also to the PUNCH file (the $DIPDR group).

- 187 -

If a Hessian calculation is rerun by supplying the $HESS group in the input
stream, the $DIPDR group should also be supplied, otherwise IR intensities
will not be printed.

IR intensities are printed in Debye2/amu-Å2. These can be converted into
intensities as defined by Wilson, Decius, and Cross's equation 7.9.25 (see
The Theory of Infrared and Raman Vibrational Spectra), in km/mol by multi-
plying by 42.255. If you prefer 1/atm-cm2, use a conversion factor of
171.65 instead. A good reference for deciphering these units is:

 A. Komornicki, R. L. Jaffe J. Chem. Phys. 1979, 71, 2150-2155

As mentioned earlier, a vibrational analysis provides information on the
nature of the stationary point found. When the geometry found lies in a
minimum on the PES, no imaginary vibrational modes (modes with a negative
frequency) may be present. In addition, the six modes that correspond to
rotations and translations of the geometry should be close to zero. For a
first-order saddle point, only one imaginary mode should be present, and
the nature of this mode should correspond to the process to which this sad-
dle point (transition state) belongs. For example, the first-order saddle
point on the PES of a bond breaking process will exhibit an imaginary mode
in which the bond to be broken will be stretching.

Thermochemistry

A thermochemical analysis is automatically performed at the end of a
RUNTYP=HESSIAN or RUNTYP=OPTIMIZE/SADPOINT with HSSEND=.T. run. Thermochem-
ical parameters are printed at the end of the output.

The temperature for which the analysis is performed can be specified with
the TEMP keyword in the $FORCE group. The temperature should be given as an
array. Up to ten temperatures can be specified at the same time. For exam-
ple:

 $FORCE TEMP(1)=298.15, 320.15, 350.15 $END

A temperature of 0 K should be specified as 0.001 K. The pressure used for
the analysis is 1 atmosphere (101325 Pa) and cannot be modified.

It is possible to specify a scaling factor for the thermochemical contribu-
tion to the zero-point energy through the SCLFAC keyword. Scaling factors
are typically < 1.0 and have been proposed for various combinations of the-
ories and basis sets. Scaling is only used for the thermochemical analysis
and as such does not affect the printed wavenumbers.

It should be noted that Firefly will always attempt to identify rotations
and translations automatically, but will print a warning if these modes are
not the first six in the list (excluding the single imaginary mode present
in the case of a first-order saddle point):

 WARNING, MODE 1 HAS BEEN CHOSEN AS A VIBRATION
 WHILE MODE 7 IS ASSUMED TO BE A TRANSLATION/ROTATION.

- 188 -

 PLEASE VERIFY THE PROGRAM'S DECISION MANUALLY!
 MODES 2 TO 7 ARE TAKEN AS ROTATIONS AND TRANSLATIONS

In the case of such a warning, it is recommended to visualize the modes
using a third-party visualization tool and check if Firefly has chosen the
rotations and translation correctly. An incorrect assignment of vibrations,
rotations, and translations will result in an error in the thermochemical
data. In many cases, the warning originates from small inaccuracies in the
calculated Hessian or from the geometry not yet being fully in a minimum.

Raman activities

After the Hessian has been calculated, it is possible to calculate Raman
activities by means of a RUNTYP=RAMAN run. Such a run requires the calcu-
lated Hessian to be present in the input (in the form of a $HESS group),
together with the geometry for which it was calculated. The calculation
requires 18+1 gradient evaluations in total and can be controlled by key-
words of the $RAMAN group. The method of calculation is described in:

 a) A. Komornicki, J. W. McIver J. Chem. Phys. 1979, 70, 2014-2016
 b) G. B. Bacskay, S. Saebo, P. R. Taylor Chem. Phys. 1984, 90, 215-224

Dipole derivatives (i.e., IR intensities) are recalculated during a Raman
calculation and, as such, the $DIPDR group does not have to be provided in
order for IR intensities to be printed.

Calculated Raman data is printed at the end of the output as part of the
vibrational data, whereby the Raman activity and depolarization are given
for each vibrational mode. In addition, the calculated polarizability is
given in the PUNCH file as an $ALPDR group. A completed Raman calculation
can be rerun instantly by providing the $DIRDR and $ALPDR groups in the
input, which can be of use in the case of isotopic substitution. In addi-
tion, the $ALPDR group can also be specified for a RUNTYP=HESSIAN run if
one desires to make use of options of the $FORCE group – in this case, Ra-
man activities will be added to the output of this run. Restart data for
incomplete RUNTYP=RAMAN runs is written to the IRCDATA file as a $VIB
group.

Raman activities are printed Å4/amu. These can be multiplied by 6.0220E-09
in order to obtain units of cm4/g. For the relationship between Raman ac-
tivities and intensities, see:

 a) P. L. Polavarapu J. Phys. Chem. 1990, 94, 8106-8112
 b) G. Keresztury, S. Holly, J. Varga, G. Besenyei, A. Y. Wang, J. R. Durig
Spectrochim. Acta A 1993, 49A, 2007-2026

As was discussed earlier, the calculation of the Hessian requires one to
use the exact level of theory that was also used for the geometry optimiza-
tion, otherwise the calculated vibrational data will not be valid. However,
it is important to note that such a requirement does not exist for the cal-
culation of Raman data. Thus, it is possible to obtain the geometry and
Hessian using a level of theory that is more suited for obtaining accurate

- 189 -

geometries and wavenumbers, while a level of theory more suited for the
calculation of polarizabilities can be used during the Raman calculation.

It is not possible to calculate other Raman-related properties, such as
pre-resonance Raman activities, resonance Raman activities, and Raman opti-
cal activities (i.e., ROA spectra).

An example input file for a methane molecule is as follows:

 $CONTRL SCFTYP=RHF RUNTYP=RAMAN UNITS=ANGS $END
 $SYSTEM TIMLIM=100000 MWORDS=10 $END

 $BASIS GBASIS=N31 NGAUSS=6 $END

 $DATA
 Methane Raman calculation
Td

 C 6.0 0.0000000 0.0000000 0.0000000
 H 1.0 0.6247991 0.6247991 0.6247991
 $END

 $HESS
--Hessian data--
 $END

- 190 -

Potential energy surface scans

Rigid PES scans

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Rigid PES scans are requested by specifying RUNTYP=SURFACE in $CONTRL. Key-
words of the $SURF group can be used to set up the scan. In Firefly, rigid
PES scans can be used at any level of theory as only energies are required.

The following keywords of $SURF can be used to set up the scan:

IVEC1 = an array of two atoms, defining a coordinate from the first atom
given to the second.

IGRP1 = an array specifying a group of atoms, which must include the second
atom given in IVEC1. The entire group will be translated (rigidly) along
the vector IVEC1, relative to the first atom given in IVEC1.

ORIG1 = starting value of the coordinate, which may be positive or nega-
tive. Zero corresponds to the distance given in $DATA.

DISP1 = step size for the coordinate.

NDISP1 = number of steps to take for this coordinate.

There are no reasonable defaults for these keywords, so you should input
all of them. ORIG1 and DISP1 should be given in Ångstrom.

In addition, the IVEC2, IGRP2, ORIG2, DISP2, and NDISP2 keywords exist.
These function identical to their "1" counterparts, and permit you to make
a two dimensional map along two displacement coordinates. If the "2" key-
words are not input, the surface map proceeds in only one dimension.

One additional keyword that should be mentioned is NSURF, which specifies
for how many states energies will be printed (the default is 1). Note that
for TD/CIS runs the amount of states for which energies are printed equals
NSURF+1 as ground state energies will be printed as well. When setting
NSURF, always make sure you request enough states through use of the key-
words appropriate to the method used (e.g., NSTATE in $DET or $GUGDIA for
MCSCF, NSTATE in $TDDFT for TDDFT, etc.).

See the next section for input examples.

Relaxed PES scans

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

- 191 -

Relaxed PES scans are requested by specifying RUNTYP=RSURFACE in $CONTRL.
As for rigid scans, keywords of the $SURF group can be used to set up the
scan. Relaxed require the availability of gradients but can also be used
with methods for which only energies are available by use of Firefly’s nu-
merical gradient feature.

RSURFACE runs should use IFREEZ in $STATPT to manually freeze the same Car-
tesian/internal coordinates or their combinations which are selected to
scan in $surf via VECT1/VECT2. In general, it is recommended to run relaxed
scans in delocalized coordinates (DLCs) together with the $ZMAT SCAN=.T.
option. The SCAN keyword triggers the use of a specific scan engine which
is designed for the use with DLCs.

A few important keywords should be mentioned. VECT1 and VECT2 are double
precision arrays containing coefficients of the Cartesian or internal coor-
dinates forming displacements to scan, with the numbering scheme the same
as of IFREEZ array in $STATPT. VECT1 (and VECT2) runs should be used in
conjunction with DISPi and NDISPi. Use of ORIGi is also allowed. Finally,
the NORMV keyword is seldom used and means to renorm vectors defined via
VECT1 or VECT2 to unity.

Examples of input files for rigid and relaxed PES scans can be found at the
following locations:

http://classic.chem.msu.su/gran/gamess/pes.html
http://classic.chem.msu.su/gran/gamess/dlcscan.html
http://classic.chem.msu.su/gran/gamess/rsurf_samples.rar
http://classic.chem.msu.su/gran/gamess/firefly_dlc_scans.rar

- 192 -

Reaction coordinate scans

Intrinsic reaction coordinate

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

The Intrinsic Reaction Coordinate (IRC) is defined as the minimum energy
path connecting the reactants to products via the transition state. In
practice, the IRC is found by first locating the transition state for the
reaction. The IRC is then found in halves, going forward and backwards from
the transition state, down the steepest descent path in mass weighted Car-
tesian coordinates. This is accomplished by numerical integration of the
IRC equations, by a variety of methods to be described below.

The IRC is becoming an important part of polyatomic dynamics research, as
it is hoped that only knowledge of the PES in the vicinity of the IRC is
needed for prediction of reaction rates, at least at threshold energies.
The IRC has a number of uses for electronic structure purposes as well.
These include the proof that a certain transition structure does indeed
connect a particular set of reactants and products, as the structure and
imaginary frequency normal mode at the transition state do not always unam-
biguously identify the reactants and products. The study of the electronic
and geometric structure along the IRC is also of interest. For example, one
can obtain localized orbitals along the path to determine when bonds break
or form.

The accuracy to which the IRC is determined is dictated by the use one in-
tends for it. Dynamical calculations require a very accurate determination
of the path, as derivative information (second derivatives of the PES at
various IRC points, and path curvature) is required later. Thus, a sophis-
ticated integration method (such as AMPC4 or RK4), and small step sizes
(STRIDE=0.05, 0.01, or even smaller) may be needed. In addition to this,
care should be taken to locate the transition state carefully (perhaps de-
creasing OPTTOL by a factor of 10), and in the initiation of the IRC run.
The latter might require a Hessian matrix obtained by double differencing,
certainly the Hessian should be PURIFY'd. Note also that EVIB must be cho-
sen carefully, as described below.

On the other hand, identification of reactants and products allows for much
larger step sizes, and cruder integration methods. In this type of IRC one
might want to be careful in leaving the transition state (perhaps STRIDE
should be reduced to 0.10 or 0.05 for the first few steps away from the
transition state), but once a few points have been taken, larger step sizes
can be employed. In general, the defaults in the $IRC group are set up for
this latter, cruder quality IRC. The STRIDE value for the GS2 method can
usually be safely larger than for other methods, no matter what your inter-
est in accuracy is.

- 193 -

The simplest method of determining an IRC is linear gradient following,
PACE=LINEAR. This method is also known as Euler's method. If you are em-
ploying PACE=LINEAR, you can select "stabilization" of the reaction path by
the Ishida, Morokuma, Komornicki method. This type of corrector has no ap-
parent mathematical basis, but works rather well since the bisector usually
intersects the reaction path at right angles (for small step sizes). The
ELBOW variable allows for a method intermediate to LINEAR and stabilized
LINEAR, in that the stabilization will be skipped if the gradients at the
original IRC point, and at the result of a linear prediction step form an
angle greater than ELBOW. Set ELBOW=180 to always perform the stabiliza-
tion.

A closely related method is PACE=QUAD, which fits a quadratic polynomial to
the gradient at the current and immediately previous IRC point to predict
the next point. This pace has the same computational requirement as LINEAR,
and is slightly more accurate due to the reuse of the old gradient. Howev-
er, stabilization is not possible for this pace, thus a stabilized LINEAR
path is usually more accurate than QUAD.

Two rather more sophisticated methods for integrating the IRC equations are
the fourth order Adams-Moulton predictor-corrector (PACE=AMPC4) and fourth
order Runge Kutta (PACE=RK4). AMPC4 takes a step towards the next IRC point
(prediction), and based on the gradient found at this point (in the near
vincinity of the next IRC point) obtains a modified step to the desired IRC
point (correction). AMPC4 uses variable step sizes, based on the input
STRIDE. RK4 takes several steps part way toward the next IRC point, and
uses the gradient at these points to predict the next IRC point. RK4 is the
most accurate integration method implemented in Firefly, and is also the
most time consuming.

The Gonzalez-Schlegel 2nd order method finds the next IRC point by a con-
strained optimization on the surface of a hypersphere, centered at 1/2
STRIDE along the gradient vector leading from the previous IRC point. By
construction, the reaction path between two successive IRC points is thus a
circle tangent to the two gradient vectors. The algorithm is much more ro-
bust for large steps than the other methods, so it has been chosen as the
default method. Thus, the default for STRIDE is too large for the other
methods. The number of energy and gradients need to find the next point
varies with the difficulty of the constrained optimization, but is normally
not very many points. Be sure to provide the updated Hessian from the pre-
vious run when restarting PACE=GS2.

The number of wavefunction evaluations, and energy gradients needed to jump
from one point on the IRC to the next point are summarized in the following
table:

 PACE # energies # gradients
 ---- ---------- -----------
 LINEAR 1 1
 stabilized
 LINEAR 3 2
 QUAD 1 1 (+ reuse of historical
 gradient)
 AMPC4 2 2 (see note)

- 194 -

 RK4 4 4
 GS2 2-4 2-4 (equal numbers)

Note that the AMPC4 method sometimes does more than one correction step,
with each such correction adding one more energy and gradient to the calcu-
lation. You get what you pay for in IRC calculations: the more energies and
gradients which are used, the more accurate the path found.

A description of these methods, as well as some others that were found to
be not as good is geven by Kim Baldridge and Lisa Pederson, Pi Mu Epsilon
Journal, 9, 513-521 (1993).

All methods are initiated by jumping from the first-order saddle point,
parallel to the normal mode (CMODE) which has an imaginary frequency. The
jump taken is designed to lower the energy by an amount EVIB. The actual
distance taken is thus a function of the imaginary frequency, as a smaller
FREQ will produce a larger initial jump. You can simply provide a $HESS
group instead of CMODE and FREQ, which involves less typing. To find out
the actual step taken for a given EVIB, use EXETYP=CHECK. The direction of
the jump (towards reactants or products) is governed by FORWRD. Note that
if you have decided to use small step sizes, you must employ a smaller EVIB
to ensure a small first step. The GS2 method begins by following the normal
mode by one half of STRIDE, and then performing a hypersphere minimization
about that point, so EVIB is irrelevant to this PACE.

The only method which proves that a properly converged IRC has been ob-
tained is to regenerate the IRC with a smaller step size, and check that
the IRC is unchanged. Again, note that the care with which an IRC must be
obtained is highly dependent on what use it is intended for.

A small program which converts the IRC results punched to file IRCDATA into
a format close to that required by the POLYRATE VTST dynamics program writ-
ten in Don Truhlar's group is available. For a copy of this IRCED program,
contact Mike Schmidt. The POLYRATE program must be obtained from the
Truhlar group.

Some key IRC references are:

K.Ishida, K.Morokuma, A.Komornicki J.Chem.Phys. 66, 2153-2156 (1977)
K.Muller Angew.Chem., Int.Ed.Engl.19, 1-13 (1980)
M.W.Schmidt, M.S.Gordon, M.Dupuis J.Am.Chem.Soc. 107, 2585-2589 (1985)
B.C.Garrett, M.J.Redmon, R.Steckler, D.G.Truhlar, K.K.Baldridge, D.Bartol,
M.W.Schmidt, M.S.Gordon J.Phys.Chem. 92, 1476-1488(1988)
K.K.Baldridge, M.S.Gordon, R.Steckler, D.G.Truhlar J.Phys.Chem. 93, 5107-
5119(1989)
C.Gonzales, H.B.Schlegel J.Chem.Phys. 90, 2154-2161(1989)

The IRC discussion closes with some practical tips:

The $IRC group has a confusing array of variables, but fortunately very
little thought need be given to most of them. An IRC run is restarted by
moving the coordinates of the next predicted IRC point into $DATA, and in-
serting the new $IRC group into your input file. You must select the de-

- 195 -

sired value for NPOINT. Thus, only the first job which initiates the IRC
requires much thought about $IRC.

The symmetry specified in the $DATA deck should be the symmetry of the re-
action path. If a saddle point happens to have higher symmetry, use only
the lower symmetry in the $DATA deck when initiating the IRC. The reaction
path will have a lower symmetry than the saddle point whenever the normal
mode with imaginary frequency is not totally symmetric. Be careful that the
order and orientation of the atoms corresponds to that used in the run
which generated the Hessian matrix.

If you wish to follow an IRC for a different isotope, use the $MASS group.
If you wish to follow the IRC in regular Cartesian coordinates, just enter
unit masses for each atom. Note that CMODE and FREQ are a function of the
atomic masses, so either regenerate FREQ and CMODE, or more simply, provide
the correct $HESS group.

Dynamic reaction coordinate

The dynamical reaction coordinate is a time-dependent classical trajectory
method based on quantum chemical potential energy surfaces. In Firefly,
DRCs may be calculated by wave mechanics, DFT, and semiempirical methods.
Because the vibrational period of a normal mode with frequency 500 wave-
numbers is 67 fs, a DRC needs to run for many steps in order to sample a
representative portion of phase space.

DRC runs are requested with RUNTYP=DRC in $CONTRL. Keywords that control
the DRC run are of the $DRC group. Only a few important keywords will be
mentioned here. The number of steps can be set with the NSTEP keywords. The
time step size (in fs) is specified with the DELTAT keyword. By default, it
is assumed that a started DRC run is a new one and thus starts at 0 sec-
onds. If this is not the case, the starting point can be set nonzero with
the TOTIME keyword (in fs).

In general, a DRC can be initiated anywhere, so $DATA might contain coordi-
nates of the equilibrium geometry, or a nearby transition state, or some-
thing else. Almost all DRCs break molecular symmetry, so one should build
their molecule with C1 symmetry in $DATA, or specify NOSYM=1 in $CONTRL.
Also, one must supply an initial kinetic energy, and the direction of the
initial velocity, which can be done with the EKIN (the initial kinetic en-
ergy) and VEL (an array of velocity components) keywords. The NVEL keyword
is a flag to compute the initial kinetic energy from the input VEL using
the sum of mass*VEL*VEL/2 (this is usually done only for restarts).

There are five different ways to specify the DRC trajectory:

1. VEL vector with NVEL=.TRUE. This is difficult to specify at your
initial point, and so this option is mainly used when restarting your
trajectory. The restart information is always in this format.

2. VEL vector and EKIN with NVEL=.FALSE. This will give a desired
amount of kinetic energy in the direction of the velocity vector.

- 196 -

3. VIBLVL and VIBENG selected, to give initial kinetic energy to all
of the normal modes.

4. NNM and ENM to give quanta to a single normal mode.

5. NNM and EKIN to give arbitrary kinetic energy to a single normal
mode.

More information on DRC runs can be found in the list of keywords ($DRC) as
well as in the following references:

1. J. J. P. Stewart, L. P. Davis, L. W. Burggraf J. Comput. Chem. 8,
 1117-1123 (1987)
2. S. A. Maluendes, M. Dupuis J. Chem. Phys. 93, 5902-5911 (1990)
3. T. Taketsugu, M. S. Gordon J. Phys. Chem. 99, 8462-8471 (1995)
4. T. Taketsugu, M. S. Gordon J. Phys. Chem. 99, 14597-604 (1995)
5. T. Taketsugu, M. S. Gordon J. Chem. Phys. 103, 10042-10049 (1995)
6. M. S. Gordon, G. Chaban, T. Taketsugu J. Phys. Chem. 100, 11512-
 11525 (1996)
7. T. Takata, T. Taketsugu, K. Hirao, M. S. Gordon J. Chem. Phys. 109,
 4281-4289 (1998)
8. T. Taketsugu, T. Yanai, K. Hirao, M. S. Gordon THEOCHEM 451, 163-
 177 (1998)

Gradient extremal following

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

This section of the manual, as well as the source code to trace gradient
extremals was written by Frank Jensen of Odense University.

A Gradient Extremal (GE) curve consists of points where the gradient norm
on a constant energy surface is stationary. This is equivalent to the con-
dition that the gradient is an eigenvector of the Hessian. Such GE curves
radiate along all normal modes from a stationary point, and the GE leaving
along the lowest normal mode from a minimum is the gentlest ascent curve.
This is not the same as the IRC curve connecting a minimum and a TS, but
may in some cases be close.

GEs may be divided into three groups: those leading to dissociation, those
leading to atoms colliding, and those which connect stationary points. The
latter class allows a determination of many (all?) stationary points on a
PES by tracing out all the GEs. Following GEs is thus a semi-systematic way
of mapping out stationary points.

The disadvantages are:

i) There are many (but finitely many!) GEs for a large molecule.
ii) Following GEs is computationally expensive.
iii) There is no control over what type of stationary point (if any) a GE
will lead to.

- 197 -

Normally one is only interested in minima and TSs, but many higher order
saddle points will also be found. Furthermore, it appears that it is neces-
sary to follow GEs radiating also from TSs and second (and possibly also
higher) order saddle point to find all the TSs.

A rather complete map of the extremals for the H2CO potential surface is
available in a paper which explains the points just raised in greater de-
tail:

K.Bondensgaard, F.Jensen, J.Chem.Phys. 104, 8025-8031(1996).

An earlier paper gives some of the properties of GEs:

D.K.Hoffman, R.S.Nord, K.Ruedenberg, Theor. Chim. Acta 69, 265-279(1986).

There are two GE algorithms in Firefly, one due to Sun and Ruedenberg
(METHOD=SR), which has been extended to include the capability of locating
bifurcation points and turning points, and another due to Jorgensen, Jen-
sen, and Helgaker (METHOD=JJH):

J. Sun, K. Ruedenberg, J.Chem.Phys. 98, 9707-9714(1993)
P. Jorgensen, H. J. Aa. Jensen, T. Helgaker Theor. Chim. Acta 73, 55
(1988).

The Sun and Ruedenberg method consist of a predictor step taken along the
tangent to the GE curve, followed by one or more corrector steps to bring
the geometry back to the GE. Construction of the GE tangent and the correc-
tor step requires elements of the third derivative of the energy, which is
obtained by a numerical differentiation of two Hessians. This puts some
limitations on which systems the GE algorithm can be used for. First, the
numerical differentiation of the Hessian to produce third derivatives means
that the Hessian should be calculated by analytical methods, thus only
those types of wavefunctions where this is possible can be used. Second,
each predictor/corrector step requires at least two Hessians, but often
more. Maybe 20-50 such steps are necessary for tracing a GE from one sta-
tionary point to the next. A systematic study of all the GE radiating from
a stationary point increases the work by a factor of ~2*(3N-6). One should
thus be prepared to invest at least hundreds, and more likely thousands, of
Hessian calculations. In other words, small systems, small basis sets, and
simple wavefunctions.

The Jorgensen, Jensen, and Helgaker method consists of taking a step in the
direction of the chosen Hessian eigenvector, and then a pure NR step in the
perpendicular modes. This requires (only) one Hessian calculation for each
step. It is not suitable for following GEs where the GE tangent forms a
large angle with the gradient, and it is incapable of locating GE bifurca-
tions.

- 198 -

Although experience is limited at present, the JJH method does not appear
to be suitable for following GEs in general (at least not in the current
implementation). Experiment with it at your own risk!

The flow of the SR algorithm is as follows: A predictor geometry is pro-
duced, either by jumping away from a stationary point, or from a step in
the tangent direction from the previous point on the GE. At the predictor
geometry, we need the gradient, the Hessian, and the third derivative in
the gradient direction. Depending on HSDFDB, this can be done in two ways.
If .TRUE. the gradient is calculated, and two Hessians are calculated at
SNUMH distance to each side in the gradient direction. The Hessian at the
geometry is formed as the average of the two displaced Hessians. This cor-
responds to a doublesided differentiation, and is the numerical most stable
method for getting the partial third derivative matrix. If HSDFDB =
.FALSE., the gradient and Hessian are calculated at the current geometry,
and one additional Hessian is calculated at SNUMH distance in the gradient
direction. This corresponds to a single-sided differentiation. In both cas-
es, two full Hessian calculations are necessary, but HSDFDB = .TRUE. re-
quire one additional wavefunction and gradient calculation. This is usually
a fairly small price compared to two Hessians, and the numerically better
double-sided differentiation has therefore been made the default.

Once the gradient, Hessian, and third derivative is available, the correc-
tor step and the new GE tangent are constructed. If the corrector step is
below a threshold, a new predictor step is taken along the tangent vector.
If the corrector step is larger than the threshold, the correction step is
taken, and a new micro iteration is performed. DELCOR thus determines how
closely the GE will be followed, and DPRED determine how closely the GE
path will be sampled.

The construction of the GE tangent and corrector step involve solution of a
set of linear equations, which in matrix notation can be written as Ax=B.
The A-matrix is also the second derivative of the gradient norm on the con-
stant energy surface.

After each corrector step, various things are printed to monitor the behav-
ior: The projection of the gradient along the Hessian eigenvalues (the gra-
dient is parallel to an eigenvector on the GE), the projection of the GE
tangent along the Hessian eigenvectors, and the overlap of the Hessian ei-
genvectors with the mode being followed from the previous (optimzed) geome-
try. The sign of these overlaps are not significant, they just refer to an
arbitrary phase of the Hessian eigenvectors.

After the micro iterations has converged, the Hessian eigenvector curva-
tures are also displayed, this is an indication of the coupling between the
normal modes. The number of negative eigenvalues in the A-matrix is denoted
the GE index. If it changes, one of the eigenvalues must have passed
through zero. Such points may either be GE bifurcations (where two GEs
cross) or may just be "turning points", normally when the GE switches from
going uphill in energy to downhill, or vice versa. The distinction is made
based on the B-element corresponding to the A-matrix eigenvalue = 0. If the
B-element = 0, it is a bifurcation, otherwise it is a turning point.

- 199 -

If the GE index changes, a linear interpolation is performed between the
last two points to locate the point where the A-matrix is singular, and the
corresponding B-element is determined. The linear interpolation points will
in general be off the GE, and thus the evaluation of whether the B-element
is 0 is not always easy. The program additionally evaluates the two limit-
ing vectors which are solutions to the linear sets of equations, these are
also used for testing whether the singular point is a bifurcation point or
turning point.

Very close to a GE bifurcation, the corrector step become numerically un-
stable, but this is rarely a problem in practice. It is a priori expected
that GE bifurcation will occur only in symmetric systems, and the crossing
GE will break the symmetry. Equivalently, a crossing GE may be encountered
when a symmetry element is formed, however such crossings are much harder
to detect since the GE index does not change, as one of the A-matrix eigen-
values merely touches zero. The program prints an message if the absolute
value of an A-matrix eigenvalue reaches a minimum near zero, as such points
may indicate the passage of a bifurcation where a higher symmetry GE cross-
es. Run a movie of the geometries to see if a more symmetric structure is
passed during the run.

An estimate of the possible crossing GE direction is made at all points
where the A-matrix is singular, and two perturbed geometries in the + and -
direction are written out. These may be used as predictor geometries for
following a crossing GE. If the singular geometry is a turning point, the +
and - geometries are just predictor geometries on the GE being followed.
In any case, a new predictor step can be taken to trace a different GE from
the newly discovered singular point, using the direction determined by in-
terpolation from the two end point tangents (the GE tangent cannot be
uniquely determined at a bifurcation point). It is not possible to deter-
mine what the sign of IFOLOW should be when starting off along a crossing
GE at a bifurcation, one will have to try a step to see if it returns to
the bifurcation point or not.

In order to determine whether the GE index change it is necessary to keep
track of the order of the A-matrix eigenvalues. The overlap between succes-
sive eigenvectors are shown as "Alpha mode overlaps".

Things to watch out for:

1) The numerical differentiation to get third derivatives requires more
accuracy than usual. The SCF convergence should be at least 100 times
smaller than SNUMH, and preferably better. With the default SNUMH of 10**(-
4) the SCF convergence should be at least 10**(-6). Since the last few SCF
cycles are inexpensive, it is a good idea to tighten the SCF convergence as
much as possible, to maybe 10**(-8) or better. You may also want to in-
crease the integral accuracy by reducing the cutoffs (ITOL and ICUT) and
possibly also try more accurate integrals (INTTYP=HONDO). The CUTOFF in
$TRNSFM may also be reduced to produce more accurate Hessians. Don't at-
tempt to use a value for SNUMH below 10**(-6), as you simply can't get
enough accuracy. Since experience is limited at present, it is recommended
that some tests runs are made to learn the sensitivity of these factors for
your system.

- 200 -

2) GEs can be followed in both directions, uphill or downhill. When stating
from a stationary point, the direction is implicitly given as away from the
stationary point. When starting from a non-stationary point, the "+" and "-
" directions (as chosen by the sign of IFOLOW) refers to the gradient di-
rection. The "+" direction is along the gradient (energy increases) and "-"
is opposite to the gradient (energy decreases).

3) A switch from one GE to another may be seen when two GE come close to-
gether. This is especially troublesome near bifurcation points where two
GEs actually cross. In such cases a switch to a GE with -higher- symmetry
may occur without any indication that this has happened, except possibly
that a very large GE curvature suddenly shows up. Avoid running the calcu-
lation with less symmetry than the system actually has, as this increases
the likelihood that such switches occurring. Fix: alter DPRED to avoid hav-
ing the predictor step close to the crossing GE.

4) "Off track" error message: The Hessian eigenvector which is parallel to
the gradient is not the same as the one with the largest overlap to the
previous Hessian mode. This usually indicate that a GE switch has occured
(note that a switch may occur without this error message), or a wrong value
for IFOLOW when starting from a non-stationary point. Fix: check IFOLOW, if
it is correct then reduce DPRED, and possibly also DELCOR.

5) Low overlaps of A-matrix eigenvectors. Small overlaps may give wrong
assignment, and wrong conclusions about GE index change. Fix: reduce DPRED.

6) The interpolation for locating a point where one of the A-matrix eigen-
values is zero fail to converge. Fix: reduce DPRED (and possibly also
DELCOR) to get a shorter (and better) interpolation line.

7) The GE index changes by more than 1. A GE switch may have occurred, or
more than one GE index change is located between the last and current
point. Fix: reduce DPRED to sample the GE path more closely.

8) If SNRMAX is too large the algorithm may try to locate stationary points
which are not actually on the GE being followed. Since GEs often pass quite
near a stationary point, SNRMAX should only be increased above the default
0.10 after some consideration.

- 201 -

Solvation models

Introduction

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

In a very thorough 1994 review of continuum solvation models, Tomasi and
Persico divide the possible approaches to the treatment of solvent effects
into four categories:

a) virial equations of state, correlation functions
b) Monte Carlo or molecular dynamics simulations
c) continuum treatments
d) molecular treatments

The Effective Fragment Potential method, documented in the following sec-
tion of this chapter, falls into the latter category, as each EFP solvent
molecule is modeled as a distinct object. This section describes the two
continuum models which are implemented in the standard version of Firefly.

Continuum models typically form a cavity of some sort containing the solute
molecule, while the solvent outside the cavity is thought of as a continu-
ous medium and is categorized by a limited amount of physical data, such as
the dielectric constant. The electric field of the charged particles com-
prising the solute interact with this background medium, producing a polar-
ization in it, which in turn feeds back upon the solute's wavefunction.

Self-consistent reaction field

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

A simple continuum model is the Onsager cavity model, often called the
Self-Consistent Reaction Field, or SCRF model. This represents the charge
distribution of the solute in terms of a multipole expansion. SCRF usually
uses an idealized cavity (spherical or ellipsoidal) to allow an analytic
solution to the interaction energy between the solute multipole and the
multipole which this induces in the continuum. This method is implemented
in Firefly in the simplest possible fashion:

i) a spherical cavity is used
ii) the molecular electrostatic potential of the solute is represented as a
dipole only, except a monopole is also included for an ionic solute.

- 202 -

The input for this implementation of the Kirkwood-Onsager model is provided
in $SCRF.

Some references on the SCRF method are

1. J.G.Kirkwood J.Chem.Phys. 2, 351 (1934)
2. L.Onsager J.Am.Chem.Soc. 58, 1486 (1936)
3. O.Tapia, O.Goscinski Mol.Phys. 29, 1653 (1975)
4. M.M.Karelson, A.R.Katritzky, M.C.Zerner Int.J.Quantum Chem., Symp. 20,
521-527 (1986)
5. K.V.Mikkelsen, H.Agren, H.J.Aa.Jensen, T.Helgaker J.Chem.Phys. 89, 3086-
3095 (1988)
6. M.W.Wong, M.J.Frisch, K.B.Wiberg J.Am.Chem.Soc. 113, 4776-4782 (1991)
7. M.Szafran, M.M.Karelson, A.R.Katritzky, J.Koput, M.C.Zerner
J.Comput.Chem. 14, 371-377 (1993)
8. M.Karelson, T.Tamm, M.C.Zerner J.Phys.Chem. 97, 11901-11907 (1993)

The method is very sensitive to the choice of the solute RADIUS, but not
very sensitive to the particular DIELEC of polar solvents. The plots in
reference 7 illustrate these points very nicely. The SCRF implementation in
Firefly is Zerner's Method A, described in the same reference. The total
solute energy includes the Born term, if the solute is an ion. Another lim-
itation is that a solute's electrostatic potential is not likely to be fit
well as a dipole moment only, for example see Table VI of reference 5 which
illustrates the importance of higher multipoles. Finally, the restriction
to a spherical cavity may not be very representative of the solute's true
shape. However, in the special case of a roundish molecule, and a large
dipole which is geometry sensitive, the SCRF model may include sufficient
physics to be meaningful:

M.W.Schmidt, T.L.Windus, M.S.Gordon J.Am.Chem.Soc. 117, 7480-7486(1995).

Polarizable continuum model

The following text might currently not be complete and/or contain outdated

information, but will be improved in the future.

A much more sophisticated continuum method, named the Polarizable Continuum
Model, is also available. The PCM method places a solute in a cavity formed
by a union of spheres centered on each atom. PCM also includes a more exact
treatment of the electrostatic interaction with the surrounding medium, as
the electrostatic potential of the solute generates an 'apparent surface
charge' on the cavity's surface. The computational procedure divides this
surface into small tesserae, on which the charge (and contributions to the
gradient) are evaluated. Typically the spheres defining the cavity are tak-
en to be 1.2 times the van der Waals radii. A technical difficulty caused
by the penetration of the solute charge density outside this cavity is
dealt with by a renormalization. Procedures are provided not only for the
computation of the electrostatic interaction of the solute with the appar-
ent surface charges, but also for the cavitation energy, and dispersion and
repulsion contributions to the solvation free energy.

- 203 -

Two variants of PCM have been implemented in Firefly: dielectric PCM (DPCM)
in which the solvent is treated in terms of dielectrics, and conductor-like
PCM (CPCM) in which the solvent is treated as a conductor-like continuum.
CPCM can be seen as an implementation of the COSMO solvation model in the
PCM framework. Another popular PCM variant, IEFPCM, is currently not avail-
able in Firefly.

The main input group is $PCM. The PCMTYP keyword can be used to specify the
type PCM, possible values being DPCM and CPCM. For CPCM, the value of ‘x’
in the equation

f(ε) = (ε - 1) / (ε + x)

can be set with the XCPCM keyword. The default is XCPCM=0.0, which makes
the model identical to CPCM as implemented most frequently. Setting
XCPCM=0.5 makes the solvent model identical to COSMO.

Another important keyword is IXPCM. Setting IXPCM=2 activates Firefly-
specific, fully variational DPCM and CPCM models. These models have not yet
been published.

The $PCMCAV group can be used to provide auxiliary cavity information. If
any of the optional energy computations are requested in $PCM, the addi-
tional input groups $NEWCAV, $DISBS, or $DISREP may be required.

Solvation of course affects the non-linear optical properties of molecules.
The PCM implementation extends RUNTYP=TDHF to include solvent effects. Both
static and frequency dependent hyperpolarizabilities can be found. Besides
the standard PCM electrostatic contribution, the IREP and IDP keywords can
be used to determine the effects of repulsion and dispersion on the polar-
izabilities.

Due to its sophistication, users of the (D)PCM model are strongly encour-
aged to read the primary literature.

General papers on the PCM method:
1) S.Miertus, E.Scrocco, J.Tomasi Chem.Phys. 55, 117-129(1981)
2) J.Tomasi, M.Persico Chem.Rev. 94, 2027-2094(1994)
3) R.Cammi, J.Tomasi J.Comput.Chem. 16, 1449-1458(1995)

The GEPOL method for cavity construction:
4) J.L.Pascual-Ahuir, E.Silla, J.Tomasi, R.Bonaccorsi J.Comput.Chem. 8,
778-787(1987) Charge renormalization (see also ref. 3):
5) B.Mennucci, J.Tomasi J.Chem.Phys. 106, 5151-5158(1997)

Derivatives with respect to nuclear coordinates (energy gradient and Hessi-
an):
6) R.Cammi, J.Tomasi J.Chem.Phys. 100, 7495-7502(1994)
7) R.Cammi, J.Tomasi J.Chem.Phys. 101, 3888-3897(1995)
8) M.Cossi, B.Mennucci, R.Cammi J.Comput.Chem. 17, 57-73(1996)

Derivatives with respect to applied electric fields (polarizabilities and
hyperpolarizabilities):
9) R.Cammi, J.Tomasi Int.J.Quantum Chem. Symp. 29, 465-474(1995)

- 204 -

10) R.Cammi, M.Cossi, J.Tomasi J.Chem.Phys. 104, 4611-4620(1996) 11)
R.Cammi, M.Cossi, B.Mennucci, J.Tomasi J.Chem.Phys. 105, 10556-10564(1996)
12) B. Mennucci, C. Amovilli, J. Tomasi J.Chem.Phys. submitted.

Cavitation energy:
13) R.A.Pierotti Chem.Rev. 76, 717-726(1976)
14) J.Langlet, P.Claverie, J.Caillet, A.Pullman J.Phys.Chem. 92, 1617-
1631(1988)

Dispersion and repulsion energies:
15) F.Floris, J.Tomasi J.Comput.Chem. 10, 616-627(1989)
16) C.Amovilli, B.Mennucci J.Phys.Chem. B101, 1051-1057(1997)

At the present time, the PCM model in Firefly has the following limita-
tions:

a) SCFTYP=RHF, ROHF, UHF, and MCSCF, only.
b) point group symmetry is switched off internally during PCM.
c) electric field integrals at normals to the surface elements are stored
on disk, even during DIRSCF runs. The file size may be considerable.
d) nuclear derivatives are limited to gradients, although theory for Hessi-
ans is given in Ref. 7.

Effective fragment potentials

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

The basic idea behind the effective fragment potential (EFP) method is to
replace the chemically inert part of a system by EFPs, while performing a
regular ab initio calculation on the chemically active part. Here "inert"
means that no covalent bond breaking process occurs. This "spectator re-
gion" consists of one or more "fragments", which interact with the ab ini-
tio "active region" through non-bonded interactions, and so of course these
EFP interactions affect the ab initio wavefunction. A simple example of an
active region might be a solute molecule, with a surrounding spectator re-
gion of solvent molecules represented by fragments. Each discrete solvent
molecule is represented by a single fragment potential, in marked contrast
to continuum models for solvation.

The quantum mechanical part of the system is entered in the $DATA group,
along with an appropriate basis. The EFPs defining the fragments are input
by means of a $EFRAG group, one or more $FRAGNAME groups describing each
fragment's EFP, and a $FRGRPL group. These groups define non-bonded inter-
actions between the ab initio system and the fragments, and between the
fragments. The former interactions enter via one-electron operators in the
ab initio Hamiltonian, while the latter interactions are treated by analyt-
ic functions. The only electrons explicitly treated (e.g. with basis func-
tions used to expand occupied orbitals) are those in the active region, so
there are no new two electron terms. Thus the use of EFPs leads to signifi-
cant time savings compared to full ab initio calculations on the same sys-
tem.

- 205 -

At ISU, the EFPs are currently used to model RHF/DZP water molecules in
order to study aqueous solvation effects, for example references 1,2,3. Our
co-workers at NIST have also used EFPs to model parts of enzymes, see ref-
erence 4.

Terms in an EFP

The non-bonded interactions currently implemented are:

1) Coulomb interaction. The charge distribution of the fragments is repre-
sented by an arbitrary number of charges, dipoles, quadrupoles, and octu-
poles, which interact with the ab initio hamiltonian as well as with multi-
poles on other fragments. It is possible to input a screening term that
accounts for the charge penetration. Typically the multipole expansion
points are located on atomic nuclei and at bond midpoints.

2) Dipole polarizability. An arbitrary number of dipole polarizability ten-
sors can be used to calculate the induced dipole on a fragment due to the
electric field of the ab initio system as well as all the other fragments.
These induced dipoles interact with the ab initio system as well as the
other EFPs, in turn changing their electric fields. All induced dipoles are
therefore iterated to self-consistency. Typically the polarizability ten-
sors are located at the centroid of charge of each localized orbital of a
fragment.

3) Repulsive potential. Two different forms for the repulsive potentials
are used: one for ab initio-EFP repulsion and one for EFP-EFP repulsion.
The form of the potentials is empirical, and consists of distributed gauss-
ian or exponential functions, respectively. The primary contribution to the
repulsion is the quantum mechanical exchange repulsion, but the fitting
technique used to develop this term also includes the effects of charge
transfer. Typically these fitted potentials are located on atomic nuclei
within the fragment.

Constructing an EFP using Firefly

RUNTYP=MOROKUMA assists in the decomposition of intermolecular interaction
energies into electrostatic, polarization, charge transfer, and exchange
repulsion contributions. This is very useful in developing EFPs since po-
tential problems can be attributed to a particular term by comparison to
these energy components for a particular system.

A molecular multipole expansion can be obtained using $ELMOM. A distributed
multipole expansion can be obtained by either a Mulliken-like partitioning
of the density (using $STONE) or by using localized molecular orbitals
($LOCAL: DIPDCM and QADDCM). The molecular dipole polarizability tensor can
be obtained during a Hessian run ($CPHF), and a distributed LMO polariza-
bility expression is also available ($LOCAL: POLDCM).

The repulsive potential is derived by fitting the difference between ab
initio computed intermolecular interaction energies, and the form used for
Coulomb and polarizability interactions. This difference is obtained at a
large number of different interaction geometries, and is then fitted. Thus,

- 206 -

the repulsive term is implicitly a function of the choices made in repre-
senting the Coulomb and polarizability terms. Note that Firefly currently
does not provide a way to obtain these repulsive potential, or the charge
interpenetration screening parameters.

Since you cannot develop all terms necessary to define a new EFP's $FRAG-
NAME group using Firefly, in practice you will be limited to using the in-
ternally stored H2OEF2 potential mentioned below.

Current Limitations

1. The energy and energy gradient are programmed, which permits
RUNTYP=ENERGY, GRADIENT, and numerical HESSIAN. The necessary modifications
to use the EFP gradients while moving on the potential surface are pro-
grammed for RUNTYP=OPTIMIZE, SADPOINT, and IRC (see reference 3), but the
other gradient based potential surface explorations such as DRC are not yet
available. Finally, RUNTYP=PROP is also permissible.

2. The ab initio system must be treated with RHF, ROHF, UHF, or the open
shell SCF wavefunctions permitted by the GVB code. The correlated methods
in Firefly (MP2 and CI) should not be used, since the available H2OEF2 po-
tential was derived at the RHF level, and therefore does not contain dis-
persion terms. A correlated computation on the ab initio system without
these terms in the EFP will probably lead to unphysical results. MCSCF and
GVB-PP represent a gray area, but Mo Krauss has obtained some results for a
solute described by an MCSCF wavefunction in which the EFP results agree
well with fully ab initio computations (in structures and interaction ener-
gies).

3. EFPs can move relative to the ab initio system and relative to each oth-
er, but the internal structure of an EFP is frozen.

4. The boundary between the ab initio system and the EFPs must not be
placed across a chemical bond.

5. Calculations must be done in C1 symmetry at present. Enter NOSYM=1 in
$CONTRL to accomplish this.

6. Reorientation of the fragments and ab initio system is not well coordi-
nated. If you are giving Cartesian coordinates for the fragments
(COORD=CART in $EFRAG), be sure to use $CONTRL's COORD=UNIQUE option so
that the ab initio molecule is not reoriented.

7. If you need IR intensities, you have to use NVIB=2. The potential sur-
face is usually very soft for EFP motions, and double differenced Hessians
should usually be obtained.

Practical hints for using EFPs

At the present time, we have only one EFP suitable for general use. This
EFP models water, and its numerical parameters are internally stored, using
the fragment name H2OEF2. These numerical parameters are improved values
over the H2OEF1 set which were presented and used in reference 2, and they
also include the improved EFP-EFP repulsive term defined in reference 3.

- 207 -

The H2OEF2 water EFP was derived from RHF/DH(d,p) computations on the water
dimer system. When you use it, therefore, the ab initio part of your system
should be treated at the SCF level, using a basis set of the same quality
(ideally DH(d,p), but probably other DZP sets such as 6-31G(d,p) will give
good results as well). Use of better basis sets than DZP with this water
EFP has not been tested.

As noted, effective fragments have frozen internal geometries, and there-
fore only translate and rotate with respect to the ab initio region. An
EFP's frozen coordinates are positioned to the desired location(s) in
$EFRAG as follows:

a) the corresponding points are found in $FRAGNAME.
b) Point -1- in $EFRAG and its FRAGNAME equivalent are made to coincide.
c) The vector connecting -1- and -2- is aligned with the corresponding vec-
tor connecting FRAGNAME points.
d) The plane defined by -1-, -2-, and -3- is made to coincide with the cor-
responding FRAGNAME plane.

Therefore the 3 points in $EFRAG define only the relative position of the
EFP, and not its internal structure. So, if the "internal structure" given
by points in $EFRAG differs from the true values in $FRAGNAME, then the
order in which the points are given in $EFRAG can affect the positioning of
the fragment. It may be easier to input water EFPs if you use the Z-matrix
style to define them, because then you can ensure you use the actual frozen
geometry in your $EFRAG. Note that the H2OEF2 EFP uses the frozen geometry
r(OH)=0.9438636, a(HOH)=106.70327, and the names of its 3 fragment points
are ZO1, ZH2, ZH3.

The translations and rotations of EFPs with respect to the ab initio system
and one another are automatically quite soft degrees of freedom. After all,
the EFP model is meant to handle weak interactions! Therefore the satisfac-
tory location of structures on these flat surfaces will require use of a
tight convergence on the gradient: OPTTOL=0.00001 in the $STATPT group.

EFP references

The first of these is more descriptive, and the second has a very detailed
derivation of the method. The latest EFP developments are discussed in the
3rd paper.

1. "Effective fragment method for modeling intermolecular hydrogen bonding
effects on quantum mechanical calculations"
J.H.Jensen, P.N.Day, M.S.Gordon, H.Basch, D.Cohen, D.R.Garmer, M.Krauss,
W.J.Stevens in "Modeling the Hydrogen Bond" (D.A. Smith, ed.) ACS Symposium
Series 569, 1994, pp 139-151.

2. "An effective fragment method for modeling solvent effects in quantum
mechanical calculations".
P.N.Day, J.H.Jensen, M.S.Gordon, S.P.Webb, W.J.Stevens, M.Krauss, D.Garmer,
H.Basch, D.Cohen J.Chem.Phys. 105, 1968-1986(1996).

3. "The effective fragment model for solvation: internal rotation in forma-
mide"

- 208 -

W.Chen, M.S.Gordon, J.Chem.Phys., 105, 11081-90(1996)

4. "Transphosphorylation catalyzed by ribonuclease A: Computational study
using ab initio EFPs"
B.D.Wladkowski, M. Krauss, W.J.Stevens, J.Am.Chem.Soc. 117, 10537-
10545(1995).

5. "A study of aqueous glutamic acid using the effective fragment potential
model"
P.N.Day, R.Pachter J.Chem.Phys. 107, 2990-9(1997)

6. "Solvation and the excited states of formamide"
M.Krauss, S.P.Webb J.Chem.Phys. 107, 5771-5(1997)

7. "Study of small water clusters using the effective fragment potential
method"
G.N.Merrill, M.S.Gordon J.Phys.Chem.A 102, 2650-7(1998)

8. "Menshutkin Reaction"
S.P.Webb, M.S.Gordon J.Phys.Chem.A in press

9. "Solvation of Sodium Chloride: EFP study of NaCl(H2O)n"
C.P.Petersen, M.S.Gordon J.Phys.Chem.A 103, 4162-6(1999)

- 209 -

- 210 -

Calculating single geometry properties

Introduction

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Firefly is capable of calculation various properties. Some of these are
already calculated at the end of a simple SCF job while others require a
separate job in order to be obtained. This chapter attempts to provide an
overview of properties available that were not yet discussed in the previ-
ous chapters.

It’s important to mention the existence of the RUNTYP=PROP capability. This
can be used to quickly obtain some properties if one already has a con-
verged set of orbitals (a $VEC group has to be supplied and read in at the
start of this RUNTYP).

Electrostatic moments, electrostatic potential, electron density,
electrostatic field, and electric field gradient

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Electrostatic moments are cheap and are printed at the end of most energy
runs. The way in which they are calculated and printed can be controlled
with keywords of the $ELMOM group. By default, only monopole and dipole
moments are printed, however, quadrupole and octopole moments can also be
obtained.

Calculation of the electrostatic potential can be controlled by keywords of
the $ELPOT group. This property is the electrostatic potential V(a) felt by
a test positive charge, due to the molecular charge density. A nucleus at
the evaluation point is ignored. If this property is evaluated at the nu-
clei, it obeys the equation sum on nuclei(a)

Z(a)*V(a) = 2*V(nn) + V(ne)

The electronic portion of this property is called the diamagnetic shield-
ing.

The calculation of the electron density can be controlled by keywords of
the $ELDENS group.

Electrostatic field and electric field gradient calculations can be con-
trolled by keywords of the $ELFLDG group.

- 211 -

Cube files

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The cube capability provides the ability to punch a 3 dimensional grid of
electrostatic potential or electron density information suitable for 3D
isosufacing or 3D volumetric rendering.

The cube output data are in the standard 'cube' format used by Gaussian and
are suitable for use as input to a wide variety of available visualization
programs (e.g. gOpenMol, ReView 3, Molden, etc.).

Cube input to Firely is performed using the $CUBE namelist in combination
with the properties namelists $ELPOT or/ and $ELDENS. Specific $CUBE namel-
ist variables and their definitions are as follow:

VARIABLE VALUES DEFINITION

CUBE .T. or .F. A logical flag that enables (.T.) or disables
(.F.) the generation of cube data. Default is .F.

MESH Specifies desired density of points along each
side of the cube.

 COARSE
MEDIUM
FINE
ULTA

40 points
80 points (The default)
100 points
200 points

 Using these mesh values as an initial guess, The
cube generation program attempts to provide a
common size of increment along each axis to
minimize distortion in the visualization. In the
process, the actual number of points along each
axis may differ slightly from that listed here.

NXCUBE > 0 The user input density of points along each x side
of the cube. Default is 0. This is an integer
variable.

NYCUBE > 0 The user input density of points along each y side
of the cube. Default is 0. This is an integer
variable.

NZCUBE > 0 The user input density of points along each z side
of the cube. Default is 0. This is an integer
variable. Note: if NXCUBE, NYCUBE, and NZCUBE are
all equal to 0, all cube input will be ignored
except for CUBE and MESH. All the cube parameters
will be generated internally using the value of
MESH as described previously.

X0CUBE The x-coordinate of the cube origin. The default
is 0.0 This is a floating point variable. Units
are Bohr (au).

Y0CUBE The y-coordinate of the cube origin. The default

- 212 -

is 0.0 This is a floating point variable. Units
are Bohr (au).

Z0CUBE The z-coordinate of the cube origin. The default
is 0.0 This is a floating point variable. Units
are Bohr (au).

XINCUB > 0.0 The increment (or interval size) along the x-axis
of the cube. The default is 0.0 This is a
floating point variable. Units are Bohr (au).

YINCUB > 0.0 The increment (or interval size) along the y-axis
of the cube. The default is 0.0 This is a
floating point variable. Units are Bohr (au).

ZINCUB > 0.0 The increment (or interval size) along the z-axis
of the cube. The default is 0.0 This is a
floating point variable. Units are Bohr (au).

If $ELPOT group is provided with IEPOT = 1 and the $CUBE group is provided
with CUBE=.T., then a 3D "cube" format info on electrostatic potential data
will be punched. The structure of the data follows the GAUSSIAN format:

 Title
 record for density source information
 NAtoms, X0CUBE, Y0CUBE, Z0CUBE
 NXCUBE, XINCUB, 0., 0.
 NYCUBE, 0., YINCUB, 0.
 NZUBE, 0., 0., ZINCUB
 IA1, Chg1, X1, Y1, Z1 Atomic number, charge, and coordinates of the
first atom
 ...
 IAn, Chgn, Xn, Yn, Zn Atomic number, charge, and coordinates of the
last atom
 (NXCUBE*NYCUBE) records, each of length NZCUBE values of the potential
at each point in the grid. Note that a separate write is used for each rec-
ord.

If one wishes to read the values of the potential back into an array dimen-
sioned X(NZCUBE,NYCUBE,NXCUBE) code like the following Fortran loop may be
used:

 Do 10 I1 = 1, nxcube
 Do 10 I2 = 1, nycube
 Read(n,'(6E13.5)') (X(I3,I2,I1),I3=1,nzcube)
 10 Continue

where ‘n’ is the unit number corresponding to the cube file.

Similarly, if the $ELDENS group is provided with IEDEN=1, MORB=0 and the
$CUBE group is provided with CUBE=.T., then a 3D "cube" of total density
data will be punched. The structure of the data follows the GAUSSIAN for-
mat as discussed previously.

Some additional keywords of the $ELDENS should be mentioned.

- 213 -

SPIND=.F.(default)/.T. - calculate spin density if available

DIFFD=.F.(default)/.T. - calculate delta density

SKIPHF=.T.(default)/.F. - skip (HF - initial guess) delta density calcula-
tion

DERIVS(1)=0,0,0(default) - any combination of up to three numbers 0, 1, and
2. Defines the level of derivatives required. 0 means density, 1 means the
density gradient (or its norm), 2 means density Laplacian.

Also, the 'WHERE' variable of the $ELPOT and $ELDENS groups can be assigned
the value CUBE (i.e. WHERE=CUBE). This is the default in the presence of
the $CUBE group. Thus, it is not necessary to use $CUBE CUBE=.T. $END, it
is enough simply to use $CUBE $END.

GRDFLD=.F.(default)/.T. - modifies density gradient calculations so that
the 3-component vector gradient field is written (by default, the norm of
the gradient is written).

ICORBS - integer array - indices of alpha MOs (positive) and (if available)
beta MOs/NOs (negative) for which to calculate the values of orbitals (not
the density!). Most of other $CUBE-related options are disabled in the
presence of ICORBS array. In the PUNCH file, the inner loop of the printout
is over different MOs, then over z-coordinate, etc.

UHFNOS=.F.(default)/.T. modifies ICORBS array entries so that negative en-
tries are treated as requests to calculate UHF NOs, not UHF beta orbitals.

Below are a few input examples:

 $CONTRL SCFTYP=RHF RUNTYP=optimize CITYP=GUGA $END
 $SYSTEM TIMLIM=3000 MEMORY=30000000 $END
 $CIDRT NFZC=1 NDOC=4 NVAL=57 NEXT=0 IEXCIT=2 GROUP=C2V $END
 $BASIS GBASIS=TZV NDFUNC=3 NPFUNC=3 DIFFSP=.T. DIFFS=.T. $END
 $CUBE MESH=coarse $END
 $ELDENS IEDEN=1 spind=.f. diffd=.t. skiphf=.f. derivs(1)=0,1,2 $END
 $STATPT OPTTOL=1D-5 $END
 $DATA
H2O
CNV 2

 O 8.0 0.0000000000 0.0000000000 0.7205815395
 H 1.0 0.0000000000 0.7565140024 0.1397092302
 $END

Example 2:

 $CONTRL SCFTYP=RHF RUNTYP=optimize CITYP=GUGA $END
 $SYSTEM TIMLIM=3000 MEMORY=30000000 $END
 $CIDRT NFZC=1 NDOC=4 NVAL=57 NEXT=0 IEXCIT=2 GROUP=C2V $END
 $BASIS GBASIS=TZV NDFUNC=3 NPFUNC=3 DIFFSP=.T. DIFFS=.T. $END
 $CUBE MESH=ultra $END

- 214 -

 $ELDENS IEDEN=1 spind=.f. diffd=.t. skiphf=.t. derivs(1)=0,2 $END
 $STATPT OPTTOL=1D-5 $END
 $DATA
H2O
CNV 2

 O 8.0 0.0000000000 0.0000000000 0.7205815395
 H 1.0 0.0000000000 0.7565140024 0.1397092302
 $END

Example 3:

 $CONTRL SCFTYP=UHF RUNTYP=energy icharg=+1 mult=2 $END
 $SYSTEM TIMLIM=3000 MEMORY=30000000 $END
 $BASIS GBASIS=TZV NDFUNC=3 NPFUNC=3 DIFFSP=.T. DIFFS=.T. $END
 $CUBE MESH=coarse $END
! Request to calculate first 9 alpha and 7 beta orbitals.
! Minus sign means beta orbitals if available, or natural orbitals,
! if available. Note that program will rearrange MOs to simplify pro-
cessing.
! The order of MOs here is not important.
! Look into punch cube printout to find the actual order of orbitals.
 $ELDENS IEDEN=1 ICORBS(1)=1,-1,2,-2,3,-3,4,-4,5,-5,6,-6,7,-7,8,9 $END
 $DATA
H2O
CNV 2

 O 8.0 0.0000000000 0.0000000000 0.7205815395
 H 1.0 0.0000000000 0.7565140024 0.1397092302
 $END

Example 4:

 $CONTRL SCFTYP=ROHF RUNTYP=energy icharg=+1 mult=2 $END
 $SYSTEM TIMLIM=3000 MEMORY=30000000 $END
 $BASIS GBASIS=TZV NDFUNC=3 NPFUNC=3 DIFFSP=.T. DIFFS=.T. $END
 $CUBE MESH=coarse $END
 $ELDENS IEDEN=1 MORB=4 $END
 $DATA
H2O
CNV 2

 O 8.0 0.0000000000 0.0000000000 0.7205815395
 H 1.0 0.0000000000 0.7565140024 0.1397092302
 $END

Example 5:

 $CONTRL SCFTYP=UHF RUNTYP=energy icharg=+1 mult=2 $END
 $SYSTEM TIMLIM=3000 MEMORY=30000000 $END
 $BASIS GBASIS=TZV NDFUNC=3 NPFUNC=3 DIFFSP=.T. DIFFS=.T. $END
 $CUBE MESH=coarse $END
 $ELDENS IEDEN=1 spind=.t. grdfld=.t. derivs(1)=0,1,2 $END

- 215 -

 $DATA
H2O
CNV 2

 O 8.0 0.0000000000 0.0000000000 0.7205815395
 H 1.0 0.0000000000 0.7565140024 0.1397092302
 $END

Radiative transition moment

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The radiative transition moment can be calculated by a RUNTYP=TRANSITN run.
Keywords controlling this run are of the $TRANST group (which also pertains
to spin-orbit coupling calculations).

Polarizabilities

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The use of RUNTYP=TDHF for the calculation of polarizabilities was already
discussed. In addition, it should be mentioned that RUNTYP=FFIELD can be
used to apply finite electric fields in order to extract polarizabilities.
Such calculations can be controlled by keywords of the $FFCALC group. The
FFIELD method is general, and so works for all ab initio SCFTYPs. There are
some restrictions however: analytic Hessians are not available, but numeri-
cal hessians are. Because an external field causes a molecule with a dipole
to experience a torque, geometry optimizations must be done in Cartesian
coordinates only. Internal coordinates eliminate the rotational degrees of
freedom, which are no longer free.

Notes: a Hessian calculation will have two rotational modes with non-zero
"frequency", caused by the torque. A gas phase molecule will rotate so that
the dipole moment is anti-parallel to the applied field. To carry out this
rotation during geometry optimization will take many steps, and you can
help save much time by inputting a field opposite the molecular dipole.
There is also a stationary point at higher energy with the dipole parallel
to the field, which will have two imaginary frequencies in the hessian.
Careful, these will appear as the first two modes in a hessian run, but
will not have the i for imaginary included on the printout since they are
rotational modes.

Transition moments and spin-orbit coupling

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

- 216 -

Firefly can compute transition moments and oscillator strengths for the
radiative transition between two CI wavefunctions. The moments are computed
using both the "length (dipole) form" and "velocity form". Firefly can also
compute the one electron portion of the "microscopic Breit-Pauli spin orbit
operator". The two electron terms can be approximately accounted for by
means of effective nuclear charges.

The orbitals for the CI can be one common set of orbitals used by all CI
states. If one set of orbitals is used, the transition moment or spin-orbit
coupling can be found for any type of CI wavefunction Firefly can compute.

Alternatively, two sets of orbitals (obtained from separate MCSCF orbital
optimizations) can be used. Two separate CIs will be carried out (in 1
run). The two MO sets must share a common set of frozen core orbitals, and
the CI -must- be of the complete active space type. These restrictions are
needed to leave the CI wavefunctions invariant under the necessary trans-
formation to corresponding orbitals. The non-orthogonal procedure imple-
mented in Firefly is a GUGA driven equivalent to the method of Lengsfield,
et al. Note that the FOCI and SOCI methods described by these workers are
not available in Firefly.

If you would like to use separate orbitals for the states, use the FCORE
option in $MCSCF in a SCFTYP=MCSCF optimization of the orbitals. Typically
you would optimize the ground state completely, and use these MCSCF orbit-
als in an optimization of the excited state, under the constraint of
FCORE=.TRUE. The core orbitals of such a MCSCF optimization should be de-
clared MCC, rather than FZC, even though they are frozen.

In the case of transition moments either one or two CI calculations are
performed, necessarily on states of the same multiplicity. Thus, only a
$CIDRT1 is read. A spinorbit coupling run almost always does two or more CI
calculations, as the states to be coupled are usually of different multi-
plicities. So, spin-orbit runs might read only $CIDRT1, but normally read
several, $CIDRT1, $CIDRT2, The first CI calculation, defined by
$CIDRT1, must be for the state of lower spin multiplicity, with $CIDRT2,
$CIDRT3, ... being successively higher multiplicities.

You will probably have to lower the symmetry in $CIDRT1 and $CIDRT2 to C1.
You may use full spatial symmetry in the CIDRT groups only if the two
states happen to have the same total spatial symmetry.

The spin-orbit operator contains a one electron term arising from the
Pauli's reduction of the hydrogenic Dirac equation to one-component form,
and a two electron term added by Breit. At present, the code for treating
the full Breit-Pauli operator is limited to consideration of only singlet
states with one triplet state. The active space for METHOD=BREIT is limited
to 10 active orbitals on 32 bit machines and about 16 on 64 bit machines.

As an approximation, the nuclear charge appearing in the one electron term
can be regarded as an empirical scale factor, compensating for the omission
of the two electron operator. This is METHOD=ZEFF, and is general both to
any number of active orbitals or spin muptiplicities. The values of ZEFF
may be very different from the true nuclear charge if ECP basis sets are in
use, see the two references mentioned below.

- 217 -

For Pauli-Breit runs you can several options control the form factors cal-
culation. For large active spaces you may want to precalculate the form
factors and save them to disk by using the ACTION option. In case if you do
not provide enough storage for the form factors sorting then some extra
disk space will be used; the extra disk space can be eliminated if you set
SAVDSK=.TRUE. (the amount of savings depends on the active space and memory
provided, it some cases it can decrease the disk space up to one order of
magnitude). The form factors are in binary format, and so can be transfered
between computers only if they have compatible binary files. There is a
built-in check for consistency of a restart file DAFL30 with the current
run parameters.

The transition moment and spin orbit coupling driver is a rather restricted
path through Firefly, in that

1) Give SCFTYP=NONE. $GUESS is not read, as the program expects to MOREAD
the orbitals $VEC1 group, and perhaps $VEC2,... groups. It is not possible
to reorder MOs.

2) $CIINP is not read. The CI is hardwired to consist of CIDRT generation,
integral transformation/sorting, Hamiltonian generation, and diagonaliza-
tion. This means $CIDRT1 (and maybe $CIDRT2,...), $TRANS, $CISORT, $GUGEM,
and $GUGDIA input is read, and acted upon.

3) The density matrices are not generated, and so no properties (other than
the transition moment or the spin-orbit coupling) are computed.

4) There is no restart capability provided.

5) CIDRT input is given in $CIDRT1 and maybe $CIDRT2.

6) IROOTS will determine the number of CI states in each CI for which the
properties are calculated. Use NSTATE to specify the number of CI states
for the CI Hamiltonian diagonalisation. Sometimes the CI convergence is
assisted by requesting more roots to be found in the diagonalization than
you want to include in the property calculation.

7) The spin-orbit integrals permit the basis to be METHOD=Zeff: s,p,d,f but
not l,g (l means sp) METHOD=Breit: s,p,d,l but not f,g

Reference for separate orbital optimization:

1. B.H.Lengsfield, III, J.A.Jafri, D.H.Phillips, C.W.Bauschlicher, Jr.
J.Chem.Phys. 74,6849-6856(1981) References for transition moments:
2. F.Weinhold, J.Chem.Phys. 54,1874-1881(1970)
3. C.W.Bauschlicher, S.R.Langhoff Theoret.Chim.Acta 79:93-103(1991)
4. "Intramediate Quantum Mechanics, 3rd Ed." Hans A. Bethe, Roman Jackiw
Benjamin/Cummings Publishing, Menlo Park, CA (1986), chapters 10 and 11.
5. S.Koseki, M.S.Gordon J.Mol.Spectrosc. 123, 392-404(1987)

References for Zeff spin-orbit coupling, and ZEFTYP values:

- 218 -

6. S.Koseki, M.W.Schmidt, M.S.Gordon J.Phys.Chem. 96, 10768-10772 (1992)
7. S.Koseki, M.S.Gordon, M.W.Schmidt, N.Matsunaga J.Phys.Chem. 99, 12764-
12772 (1995)
8. N.Matsunaga, S.Koseki, M.S.Gordon J.Chem.Phys. 104, 7988-7996 (1996)
9. S.Koseki, M.W.Schmidt, M.S.Gordon J.Phys.Chem.A 102, 10430-10435 (1998)

References for full Breit-Pauli spin-orbit coupling:

10. T.R.Furlani, H.F.King J.Chem.Phys. 82, 5577-5583 (1985) 11. H.F.King,
T.R.Furlani J.Comput.Chem. 9, 771-778 (1988)

Special thanks to Bob Cave and Dave Feller for their assistance in perform-
ing check spin-orbit coupling runs with the MELDF programs. Special thanks
to Tom Furlani for contributing his 2e- spin-orbit code and answering many
questions about its interface.

Here is an example. Note that you must know what you are doing with term
symbols, J quantum numbers, point group symmetry, and so on in order to
make skillful use of this part of the program.

! Compute the splitting of the famous sodium D line.
!
! The two SCF energies below give an excitation energy
! of 16,044 cm-1 to the 2-P term. The computed spin-orbit
! levels are at RELATIVE E=-10.269 and 5.135 cm-1, which
! means the 2-P level interval is 15.404 cm-1.
!
! Charlotte Moore's Atomic Energy Levels, volume 1, gives
! the experimental 2-P interval as 17.1963, the levels are
! at 2-S-1/2=0.0, 2-P-1/2=16,956.183, 2-P-3/2=16,973.379
!

1. generate ground state 2-S orbitals by conventional ROHF.
the energy of the ground state is -161.8413919816

--- $contrl scftyp=rohf mult=2 $end
--- $system kdiag=3 memory=300000 $end
--- $guess guess=huckel $end
--- $basis gbasis=n31 ngauss=6 $end

2. generate excited state 2-P orbitals, using a state-averaged SCF wave-
function to ensure radial degeneracy of the 3p shell is preserved. The open
shell SCF energy is -161.7682895801. The computation is both spin and space
restricted open shell SCF on the 2-P Russell-Saunders term. Starting orbit-
als are reordered orbitals from step 1.

--- $contrl scftyp=gvb mult=2 $end
--- $system kdiag=3 memory=300000 $end
--- $guess guess=moread norb=13 norder=1 iorder(6)=7,8,9,6 $end
--- $basis gbasis=n31 ngauss=6 $end
--- $scf nco=5 nseto=1 no(1)=3 rstrct=.true. couple=.true.

- 219 -

--- f(1)= 1.0 0.16666666666667
--- alpha(1)= 2.0 0.33333333333333 0.0
--- beta(1)= -1.0 -0.16666666666667 0.0 $end

3. compute spin orbit coupling in the 2-P term. The use of C1 symmetry in
$CIDRT ensures that all three spatial CSFs are kept in the CI function. In
the preliminary CI, the spin function is just the alpha spin doublet, and
all three roots should be degenerate, and furthermore equal to the GVB en-
ergy at step 2. The spin-orbit coupling code uses both doublet spin func-
tions with each of the three spatial wavefunctions, so the spin-orbit Ham-
iltonian is a 6x6 matrix. The two lowest roots of the full 6x6 spin-orbit
Hamiltonian are the doubly degenerate 2-P-1/2 level, while the other four
roots are the degenerate 2-P-3/2 level.

 $contrl scftyp=none cityp=guga runtyp=spinorbt mult=2 $end
 $system memory=500000 $end
 $gugdia nstate=3 $end
 $transt numvec=1 numci=1 nfzc=5 nocc=8 iroots=3 zeff=10.04 $end
 $cidrt1 group=c1 fors=.true. nfzc=5 nalp=1 nval=2 $end

 $data
 Na atom...2-P excited state...6-31G basis, typed w/o L shells.
 Dnh 2

 Na 11.0
 ...basis information...

 $end

 --- GVB ORBITALS --- GENERATED AT 7:46:08 CST 30-MAY-1996
 Na atom...2-P excited state
 E(GVB)= -161.7682895801, 5 ITERS
 $VEC1
 ...orbitals from step 2 go here...
 $END

Stone's distributed multipole analysis

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Stone’s distributed multipole analysis is triggered by the presence of the
$STONE group in the input. Keywords of this group provide control over the
analysis.

- 220 -

Additional capabilities

Orbital localization

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Three different orbital localization methods are implemented in Firefly.
The energy and dipole based methods normally produce similar results, but
see M.W.Schmidt, S.Yabushita, M.S.Gordon in J.Chem.Phys., 1984, 88, 382-389
for an interesting exception. You can find references to the three methods
at the beginning of this chapter.

The method due to Edmiston and Ruedenberg works by maximizing the sum of
the orbitals' two electron self-repulsion integrals. Most people who think
about the different localization criteria end up concluding that this one
seems superior. The method requires the two electron integrals, transformed
into the molecular orbital basis. Because only the integrals involving the
orbitals to be localized are needed, the integral transformation is actual-
ly not very time consuming.

The Boys method maximizes the sum of the distances between the orbital cen-
troids, that is the difference in the orbital dipole moments.

The population method due to Pipek and Mezey maximizes a certain sum of
gross atomic Mulliken populations. This procedure will not mix sigma and pi
bonds, so you will not get localized banana bonds. Hence it is rather easy
to find cases where this method give different results than the Ruedenberg
or Boys approach.

Firefly will localize orbitals for any kind of RHF, UHF, ROHF, or MCSCF
wavefunctions. The localizations will automatically restrict any rotation
that would cause the energy of the wavefunction to be changed (the total
wavefunction is left invariant). As discussed below, localizations for GVB
or CI functions are not permitted.

The default is to freeze core orbitals. The localized valence orbitals are
scarcely changed if the core orbitals are included, and it is usually con-
venient to leave them out. Therefore, the default localizations are: RHF
functions localize all doubly occupied valence orbitals. UHF functions lo-
calize all valence alpha, and then all valence beta orbitals. ROHF func-
tions localize all valence doubly occupied orbitals, and all singly occu-
pied orbitals, but do not mix these two orbital spaces. MCSCF functions
localize all valence MCC type orbitals, and localize all active orbitals,
but do not mix these two orbital spaces. To recover the invariant MCSCF
function, you must be using a FORS=.TRUE. wavefunction, and you must set
GROUP=C1 in $DRT, since the localized orbitals possess no symmetry.

- 221 -

In general, GVB functions are invariant only to localizations of the NCO
doubly occupied orbitals. Any pairs must be written in natural form, so
pair orbitals cannot be localized. The open shells may be degenerate, so in
general these should not be mixed. If for some reason you feel you must
localize the doubly occupied space, do a RUNTYP=PROP job. Feed in the GVB
orbitals, but tell the program it is SCFTYP=RHF, and enter a negative ICH-
ARG so that Firefly thinks all orbitals occupied in the GVB are occupied in
this fictitous RHF. Use NINA or NOUTA to localize the desired doubly occu-
pied orbitals. Orbital localization is not permitted for CI, because we
cannot imagine why you would want to do that anyway.

Boys localization of the core orbitals in molecules having elements from
the third or higher row almost never succeeds. Boys localization including
the core for second row atoms will often work, since there is only one in-
ner shell on these. The Ruedenberg method should work for any element, alt-
hough including core orbitals in the integral transformation is more expen-
sive.

The easiest way to do localization is in the run which generates the wave-
function, by selecting LOCAL=xxx in the $CONTRL group. However, localiza-
tion may be conveniently done at any time after determination of the wave-
function, by executing a RUNTYP=PROP job. This will require only $CONTRL,
$BASIS/$DATA, $GUESS (pick MOREAD), the converged $VEC, possibly $SCF or
$DRT to define your wavefunction, and optionally some $LOCAL input.

There is an option to restrict all rotations that would mix orbitals of
different symmetries. SYMLOC=.TRUE. yields only partially localized orbit-
als, but these still possess symmetry. They are therefore very useful as
starting orbitals for MCSCF or GVB-PP calculations. Because they still have
symmetry, these partially localized orbitals run as efficiently as the ca-
nonical orbitals. Because it is much easier for a user to pick out the
bonds which are to be correlated, a significant number of iterations can be
saved, and convergence to false solutions is less likely.

The most important reason for localizing orbitals is to analyze the wave-
function. A simple example is to make contour plots of the resulting orbit-
als with the PLTORB graphics codes, or perhaps to read the localized orbit-
als in during a RUNTYP=PROP job to examine their Mulliken populations.
MCSCF localized orbitals can be input to a CI calculation, to generate the
corresponding density matrix, which contains much useful information about
electron populations and chemical bonding. For example:

J.Am.Chem.Soc., 104, 960-967 (1982)
J.Am.Chem.Soc., 113, 5231-5243 (1991)
Theoret.Chim.Acta, 83, 57-68 (1992)

In addition, the energy of your molecule can be partitioned over the local-
ized orbitals so that you may be able to understand the origin of barriers,
etc. This analysis can be made for the SCF energy, and also the MP2 correc-
tion to the SCF energy, which requires two separate runs. An explanation of
the method, and application to hydrogen bonding may be found in J.H.Jensen,
M.S.Gordon, J.Phys.Chem. 1995, 99, 8091-8107.

- 222 -

Analysis of the SCF energy is based on the localized charge distribution
(LCD) model: W.England and M.S.Gordon, J.Am.Chem.Soc. 93, 4649-4657 (1971).
This is implemented for RHF and ROHF wavefunctions, and it requires use of
the Ruedenberg localization method, since it needs the two electron inte-
grals to correctly compute energy sums. All orbitals must be included in
the localization, even the cores, so that the total energy is reproduced.

The LCD requires both electronic and nuclear charges to be partitioned. The
orbital localization automatically accomplishes the former, but division of
the nuclear charge may require some assistance from you. The program at-
tempts to correctly partition the nuclear charge, if you select the MOIDON
option, according to the following: a Mulliken type analysis of the local-
ized orbitals is made. This determines if an orbital is a core, lone pair,
or bonding MO. Two protons are assigned to the nucleus to which any core or
lone pair belongs. One proton is assigned to each of the two nuclei in a
bond. When all localized orbitals have been assigned in this manner, the
total number of protons which have been assigned to each nucleus should
equal the true nuclear charge.

Many interesting systems (three center bonds, backbonding, aromatic delo-
calization, and all charged species) may require you to assist the automat-
ic assignment of nuclear charge. First, note that MOIDON reorders the lo-
calized orbitals into a consistent order: first comes any core and lone
pair orbitals on the 1st atom, then any bonds from atom 1 to atoms 2, 3,
..., then any core and lone pairs on atom 2, then any bonds from atom 2 to
3, 4, ..., and so on. Let us consider a simple case where MOIDON fails, the
ion NH4+. Assuming the nitrogen is the 1st atom, MOIDON generates

 NNUCMO=1,2,2,2,2
 MOIJ=1,1,1,1,1
 2,3,4,5
 ZIJ=2.0,1.0,1.0,1.0,1.0,
 1.0,1.0,1.0,1.0

The columns (which are LMOs) are allowed to span up to 5 rows (the nuclei),
in situations with multicenter bonds. MOIJ shows the Mulliken analysis
thinks there are four NH bonds following the nitrogen core. ZIJ shows that
since each such bond assigns one proton to nitrogen, the total charge of N
is +6. This is incorrect of course, as indeed will always happen to some
nucleus in a charged molecule. In order for the energy analysis to correct-
ly reproduce the total energy, we must ensure that the charge of nitrogen
is +7. The least arbitrary way to do this is to increase the nitrogen
charge assigned to each NH bond by 1/4. Since in our case NNUCMO and MOIJ
and much of ZIJ are correct, we need only override a small part of them
with $LOCAL input:

 IJMO(1)=1,2, 1,3, 1,4, 1,5
 ZIJ(1)=1.25, 1.25, 1.25, 1.25

which changes the charge of the first atom of orbitals 2 through 5 to 5/4,
changing ZIJ to

 ZIJ=2.0,1.25,1.25,1.25,1.25,
 1.0, 1.0, 1.0, 1.0

- 223 -

The purpose of the IJMO sparse matrix pointer is to let you give only the
changed parts of ZIJ and/or MOIJ.

Another way to resolve the problem with NH4+ is to change one of the 4
equivalent bond pairs into a "proton". A "proton" orbital AH treats the LMO
as if it were a lone pair on A, and so assigns +2 to nucleus A. Use of a
"proton" also generates an imaginary orbital, with zero electron occupancy.
For example, if we make atom 2 in NH4+ a "proton", by

 IPROT(1)=2
 NNUCMO(2)=1
 IJMO(1)=1,2,2,2 MOIJ(1)=1,0 ZIJ(1)=2.0,0.0

the automatic decomposition of the nuclear charges will be

 NNUCMO=1,1,2,2,2,1
 MOIJ=1,1,1,1,1,2
 3,4,5
 ZIJ=2.0,2.0,1.0,1.0,1.0,1.0
 1.0,1.0,1.0

The 6th column is just a proton, and the decomposition will not give any
electronic energy associated with this "orbital", since it is vacant. Note
that the two ways we have disected the nuclear charges for NH4+ will both
yield the correct total energy, but will give very different individual
orbital components. Most people will feel that the first assignment is the
least arbitrary, since it treats all four NH bonds equivalently.

However you assign the nuclear charges, you must ensure that the sum of all
nuclear charges is correct. This is most easily verified by checking that
the energy sum equals the total SCF energy of your system.

As another example, H3PO is studied in EXAM26.INP. Here the MOIDON analysis
decides the three equivalent orbitals on oxygen are O lone pairs, assigning
+2 to the oxygen nucleus for each orbital. This gives Z(O)=9, and Z(P)=14.
The least arbitrary way to reduce Z(O) and increase Z(P) is to recognize
that there is some backbonding in these "lone pairs" to P, and instead as-
sign the nuclear charge of these three orbitals by 1/3 to P, 5/3 to O.

Because you may have to make several runs, looking carefully at the local-
ized orbital output before the correct nuclear assignments are made, there
is an option to skip directly to the decomposition when the orbital locali-
zation has already been done. Use

$CONTRL RUNTYP=PROP
$GUESS GUESS=MOREAD NORB=
$VEC containing the localized orbitals!
$TWOEI

The latter group contains the necessary Coulomb and exchange integrals,
which are punched by the first localization, and permits the decomposition
to begin immediately.

- 224 -

SCF level dipoles can also be analyzed using the DIPDCM flag in $LOCAL. The
theory of the dipole analysis is given in the third paper of the LCD se-
quence. The following list includes application of the LCD analysis to many
problems of chemical interest:

W.England, M.S.Gordon J.Am.Chem.Soc. 93, 4649-4657 (1971)
W.England, M.S.Gordon J.Am.Chem.Soc. 94, 4818-4823 (1972)
M.S.Gordon, W.England J.Am.Chem.Soc. 94, 5168-5178 (1972)
M.S.Gordon, W.England Chem.Phys.Lett. 15, 59-64 (1972)
M.S.Gordon, W.England J.Am.Chem.Soc. 95, 1753-1760 (1973)
M.S.Gordon J.Mol.Struct. 23, 399 (1974)
W.England, M.S.Gordon, K.Ruedenberg, Theoret.Chim.Acta 37, 177-216 (1975)
J.H.Jensen, M.S.Gordon, J.Phys.Chem. 99, 8091-8107 (1995)
J.H.Jensen, M.S.Gordon, J.Am.Chem.Soc. 117, 8159-8170 (1995)
M.S.Gordon, J.H.Jensen, Acc.Chem.Res. 29, 536-543 (1996)

It is also possible to analyze the MP2 correlation correction in terms of
localized orbitals, for the RHF case. The method is that of G.Peterssen and
M.L.Al-Laham, J.Chem.Phys., 94, 6081-6090 (1991). Any type of localized
orbital may be used, and because the MP2 calculation typically omits cores,
the $LOCAL group will normally include only valence orbitals in the locali-
zation. As mentioned already, the analysis of the MP2 correction must be
done in a separate run from the SCF analysis, which must include cores in
order to sum up to the total SCF energy.

Typically, the results are most easily interpreted by looking at "the big-
ger picture" than at "the details". Plots of kinetic and potential energy,
normally as a function of some coordinate such as distance along an IRC,
are the most revealing. Once you determine, for example, that the most sig-
nificant contribution to the total energy is the kinetic energy, you may
wish to look further into the minutia, such as the kinetic energies of in-
dividual localized orbitals, or groups of LMOs corresponding to an entire
functional group.

Additional references:
Boys orbital localization-
S. F. Boys, "Quantum Science of Atoms, Molecules, and Solids" P. O. Lowdin,
Ed, Academic Press, NY, 1966, 253-262.

Population orbital localization
J. Pipek, P. Z. Mezey J. Chem. Phys. 90, 4916(1989).

The NBO program

From the very beginning of its history, Firefly includes a fully-functional
NBO module. However, the NBO part of the Firefly requires activation as it
is a commercial code. As such, you have to purchase the Firefly/PC GAMESS
NBO license codes and NBO manual from TCI/NBO if you would like to use the
NBO module. The Firefly NBO license is very inexpensive ($ 30).

To activate the NBO module, you should add the following strings to your
Firefly input:

- 225 -

 $LICENSE NBOLID=LID NBOKEY=KEY $END
 $NBO <NBO options> $END

Normally, you need to receive both NBO activation key (NBOKEY, 8-digit hex-
adecimal code), and NBO license ID (NBOLID, some decimal number) from TCI.
Nevertheless, they sometimes forget to provide users by the NBOLID value.
In this case, please contact us as we can recover your NBOLID using infor-
mation on the NBO activation key by just looking it up in our NBO database.

The NBO code version incorporated into the current distributions of Firefly
is NBO v.5.G (July 16th, 2008).

If you would like to post your input and output files on the Firefly forum
(or share them with others in any other way), please remember to remove
your NBO license data from them.

Morokuma energy decomposition

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

The Morokuma–Kitaura energy decomposition is an analysis of the energy con-
tributions to dimerization. This type of calculation was already discussed
shortly in the section on basis set superposition error (BSSE, see the
chapter on basis sets). The $MOROKM group controls how the supermolecule
input in the $DATA group is divided into two or more monomers. Both the
supermolecule and its constituent monomers must be well described by RHF
wavefunctions (avoid breaking chemical bonds!).

The present implementation has some quirks:

1. The initial guess of the monomer orbitals is not controlled by $GUESS.
The program first looks for a $VEC1, $VEC2, ... group for each monomer. If
they are found, they will be MOREAD. If any of these are missing, the guess
for that monomer will be constructed by HCORE. Check your monomer energies
carefully! The initial guess orbitals for the supermolecule are formed by a
block diagonal matrix of the monomer orbitals.

2. The use of symmetry is turned off internally.

3. There is no direct SCF option. File ORDINT will be a full C1 list of
integrals. File AOINTS will contain whatever subset of these is needed for
each particular decomposition step. So extra disk space is needed compared
to RUNTYP=ENERGY.

4. This kind of run applies only to ab initio cases.

5. This kind of run will work in parallel.

References:
C.Coulson in "Hydrogen Bonding", D.Hadzi, H.W.Thompson, Eds., Pergamon
Press, NY, 1957, pp 339-360.

- 226 -

C.Coulson Research, 10, 149-159 (1957).

K.Morokuma J.Chem.Phys. 55, 1236-44 (1971).

K.Kitaura, K.Morokuma Int.J.Quantum Chem. 10, 325 (1976).

K.Morokuma, K.Kitaura in "Chemical Applications of Electrostatic Poten-
tials", P.Politzer,D.G.Truhlar, Eds. Plenum Press, NY, 1981, pp 215-242.

The method coded is the newer version described in the latter two papers.
Note that the CT term is computed separately for each monomer, as described
in the words below equation 16 of the 1981 paper, not simultaneously.

Reduced Variational Space:
W.J.Stevens, W.H.Fink, Chem.Phys.Lett. 139, 15-22(1987).

A comparison of the RVS and Morokuma decompositions can be found in the
review article:
"Wavefunctions and Chemical Bonding" M.S.Gordon, J.H.Jensen in "Encyclope-
dia of Computational Chemistry", volume 5, P.V.R.Schleyer, editor, John
Wiley and Sons, Chichester, 1998.

The present implementation:
"Energy decomposition analysis for many-body interactions, and application
to water complexes" W.Chen, M.S.Gordon J.Phys.Chem. 100, 14316-14328(1996)

Interfacing with other programs

The following text is a 'stub' and contains only minimal information. It

will be expanded in the future.

Firefly is capable of interfacing with a number of external program. Below
is an overview:

MOLPLT – the MOLPLT keyword (.T. or .F.) in $CONTRL can be used to produce
an input deck for a molecule drawing program that is distributed with
GAMESS (US)

PLTORB – the PLTORB keyword (.T. or .F.) in $CONTRL can be used to produce
an input deck for a molecule drawing program that is distributed with
GAMESS (US)

AIMPAC – interfacing met AIMPAC is possible through the AIMPAC keyword in
$CONTRL. Possible values are 0 (do not produce AIMPAC input), 1 (produce
standard AIMPAC input), and 2 (special AIMPAC input: for UHF wavefunctions,
separate data is printed for alpha and beta orbitals rather than unified
data for UHF natural orbitals).

The PLTORB, MOLPLT, and AIMPAC decks are written to file PUNCH at the end
of the job. PLTORB and MOLPLT are written even for EXETYP=CHECK. AIMPAC
requires at least RUNTYP=PROP.

- 227 -

In addition, the FRIEND keyword in $CONTRL is able to prepare input for
HONDO 8.2, MELDF, GAMESS-UK, and Gaussian 9x. Selecting FRIEND turns the
job into a CHECK run only, no matter how you set EXETYP. Thus, the geometry
is that encountered in $DATA. The input is added to the PUNCH file, and may
require some (usually minimal) modification.

Firefly 8.0.0 keyword list

Version: 2013-11-11

This list of keywords is currently a work in progress. At the moment, the following keyword groups
have been fully documented:

$CONTRL
$MOORTH
$GUESS
$BASIS
$D5
$ZMAT
$LIBE
$SYSTEM
$SMP
$NUMGRD
$RAMAN
$CONIC
$FMM
$SCF
$DFT
$DFTD
$MP2
$MP2GRD
$MCSCF
$MCAVER
$TRACK
$XMCQDPT and $MCQDPT
$MCQFIT

Documentation for all other keyword groups is currently under review and not yet included in this
document. Instead, the (incomplete) descriptions for these groups can be found in the “old” Firefly
manual (Firefly_input_rev002.pdf) which already covers > 95 % of all functionality in Firefly. Some
additional keyword descriptions not present in the old manual can be found on the Firefly discussion
forums.

http://classic.chem.msu.su/gran/gamess/Firefly_input_rev002.pdf

Overview of groups

Name Function

Global settings, calculation type, molecule, basis set, wavefunction, initial guess, external field
specification:

$CONTRL chemical control data
$MOORTH molecular orbital orthogonalization control
$GUESS initial orbital selection
$BASIS basis set
$EXTRAF basis set projection control
$AODEL basis set reduction control
$D5 pure spherical functions control
$ECP effective core potentials
$EFIELD external electric field
$DATA molecule, basis set
$ZMAT coded z-matrix
$LIBE linear bend data
$MASS isotope selection

Hardware-related specification, control and tuning:

$SYSTEM computer related control data
$SMP SMP related control data
$CUDA CUDA-related control data
$MPI MPI-related control data
$P2P P2P interface control data
$LP2P local P2P interfaces control data
$MMM manual performance tuning and instrumentation for matrix operations

Additional details on calculation type:

$DRC dynamic reaction path
$FFCALC finite field polarizabilities
$FORCE Hessian, normal coordinates
$GRADEX gradient extremal method
$IRC intrinsic reaction path
$NUMGRD numerical gradient control
$MOROKM Morokuma energy decomposition
$RAMAN Raman calculation options
$STATPT geometry search control
$CONIC conical intersection search control
$SURF potential surface scan
$TRANST transition moments, spin-orbit

$TRUDGE non-gradient optimization

Details on two-electron integrals computation, four-index transformation, and Coupled-Perturbed
Hartree-Fock equation solvers:

$INTGRL format for two-electron integrals
$FMM quantum fast multipole method
$ECPINP parameters controlling the details of effective core potentials computations
$NUMINT control numerical quadratures used to compute integrals for HLS's inequality
$TRANS integral transformation
$CPHF Coupled-Perturbed Hartree-Fock options

Semiempirical, HF and DFT SCF-related options:

$MOPAC control over details of semi-empirical code
$SCF HF-SCF and GVB wavefunction control
$SCFMI SCF-MI input control
$DFT DFT control
$DFTD empirical dispersion correction scheme control

Møller-Plesset perturbation theory specific options:

$MP2 2nd order Møller-Plesset perturbation theory
$MP2GRD MP2 gradient control
$MP3 3rd order Møller-Plesset perturbation theory
$MP4 4th order Møller-Plesset perturbation theory

CI Singles, TDHF, and TDDFT options:

$CIS CI Singles control data
$TDHF time-dependent HF (for excitations) control data
$TDDFT time-dependent DFT (for excitations) control data

GUGA CI specific options:

$DRT distinct row table for MCSCF
$CIDRT distinct row table for CI
$CIDRT1-$CIDRT20 used as input for computation of transition moments and spin-orbit couplings
$CIINP control of GUGA CI process
$CISORT integral sorting
$GUGEM Hamiltonian matrix formation
$GUGDIA Hamiltonian eigenvalues/vectors
$GUGDM one-electron density matrix

$GUGDM2 two-electron density matrix
$TRFDM2 two-electron density back transformation
$LAGRAN CI lagrangian matrix

Determinant-based CI options:

$DET determinantal full CI for MCSCF
$CIDET determinantal full CI

MCSCF-related options:

$MCSCF parameters for MCSCF
$MCAVER parameters for state-averaged MSCSF
$SOSCF parameter tuning for SOSCF (HF/DFT/GVB and MCSCF) convergers
$TRACK parameters for MCSCF state-tracking

Options specific to multistate multireference perturbation theories:

$XMCQDPT extended multi-configurational quasi-degenerate perturbation theory
$MCQDPT multi-configurational quasi-degenerate perturbation theory
$MCQFIT resolvent fitting (X)MCQDPT control

Orbital localization options:

$LOCAL orbital localization control

Solvation models: self-consistent reaction field:

$SCRF self-consistent reaction field

Solvation models: polarizable continuum model:

$PCM polarizable continuum model
$PCMCAV PCM cavity generation
$PCMRAD fine control over PCM radii
$DISBS PCM dispersion basis set
$DISREP PCM dispersion/repulsion
$NEWCAV PCM escaped charge cavity

Solvation models: effective fragments:

$EFRAG effective fragment potentials
$"FRAGNAME" specific named fragment potentials
$FRGRPL inter-fragment repulsion

Options controlling computation of various molecular properties, population analysis, and preparation
of data for orbital/density visualization:

$TDHF time-dependent HF and DFT NLO properties
$ELDENS electron density
$ELFLDG electric field/gradient
$ELMOM electrostatic moments
$ELPOT electrostatic potential
$PPA nonlinear pair population analysis control
$CISPRP CIS properties
$PDC MEP fitting mesh
$VDWRAD control over van-der-Waals radii used in MEP fitting
$CUBE control over Firefly's CUBE feature
$GRID property calculation mesh
$POINTS property calculation points
$STONE distributed multipole analysis
$MOLGRF orbital plots
$NBO NBO control data
$LICENSE NBO license data

Formatted input groups providing various restart capabilities:

$VEC orbitals, commonly used specification of starting MOs
$VEC1/$VEC2 orbitals, used for transition moment/spin-orbit coupling calculations
$VEC1-$VEC9 orbitals, provide initial guess for Morokuma decomposition runs
$TDVEC coefficients of TD excitations and de-excitations
$CISVEC coefficients of CIS excitations and de-excitations
$HESS force constant matrix
$HESS2 force constant matrix. Required for some types of DRC runs
$GRAD gradient vector
$VIB RUNTYP=HESSIAN and RAMAN restart data
$DIPDR dipole derivative matrix
$ALPDR alpha derivative tensor
$ENERG restart data for Morokuma decomposition runs
$TWOEI two-electron integrals
$RSTART restart data for $STATPT geometry searches
$TRURST restart data for RUNTYP=TRUDGE

$CONTRL group

This is a free format group specifying global switches. SCFTYP together with MPLEVL or CITYP specifies
the wavefunction.

SCFTYP Chooses a wavefunction type.

 RHF Restricted Hartree-Fock calculation. (Default)

 UHF Unrestricted Hartree-Fock calculation

 ROHF Restricted open shell Hartree-Fock. (high spin, see GVB for low spin)

 GVB Generalized valence bond wavefunction a.k.a. low spin a.k.a. OCBSE
(orthogonality-constrained basis set expansion) type ROHF. (needs $SCF input)

 MCSCF Multiconfigurational SCF wavefunction (this requires $DET or $DRT input)

 NONE Indicates a single point computation, reading a converged SCF function. This
option requires that you select CITYP=GUGA or ALDET, RUNTYP=ENERGY,
TRANSITN, or SPINORBT, and GUESS=MOREAD.

MPLEVL Chooses Møller-Plesset perturbation theory level, after the SCF. See $MP2, $MP3, $MP4,

$MCQDPT and $XMCQDPT input groups.

 0 Skips the MP computation. (Default)

 2 Performs a second order energy correction. MP2 is implemented only for RHF,
UHF, ROHF, TCSCF and MCSCF wave functions. Gradients are available only
for RHF, so for the others you may pick from RUNTYP=ENERGY, TRUDGE,
SURFACE, or FFIELD only, or use numerical gradients.

 3 Performs a third (MP3) order energy correction. Implemented for SCFTYP=RHF
only. See $MP3 group.

 4 Performs a fourth (MP4) order energy correction. Implemented for
SCFTYP=RHF only. See $MP4 group.

CITYP Chooses a CI computation after the SCF, for any SCFTYP except UHF.

 NONE No CI calculation. (Default)

 CIS Perform CI Singles (also known as Tamm-Dancoff Approximation) i.e. Single
excitations CI from a SCFTYP=RHF reference, only. This is for excited
states, with analytic nuclear gradients available. See the $CIS input group.

 TDHF Perform Time-dependent Hartree-Fock calculation (while TDHF is rather similar
to CIS it is not actually a CI!) for excited states. Available for SCFTYP=RHF
only. Analytic gradient is not programmed yet. See the $TDHF input group.

 TDDFT Perform Time-dependent DFT or Tamm-Dancoff Approximation to TDDFT
calculations (note these are not a CI as well!). Available for SCFTYP=RHF only.
DFTTYP must be set to one of the supported functionals. Analytic gradients are

not programmed yet. See also DFTTYP in $CONTRL and the $TDDFT input
groups.

 GUGA Runs the Unitary Group CI package, which requires $CIDRT input. Analytic
gradients are available only for RHF, so for other SCFTYPs, you may choose
only RUNTYP=ENERGY, TRUDGE, SURFACE, FFIELD, TRANSITN, or
SPINORBT, or use numerical gradients.

 ALDET Runs the Ames Laboratory determinant full CI package, requiring $CIDET input.
RUNTYP=ENERGY only. Analytic gradients are not so you may choose only
RUNTYP=ENERGY, TRUDGE, SURFACE, FFIELD, or use numerical
gradients.

Note: At most one of MPLEVL or CITYP may be chosen.

DFTTYP Controls DFT functional. Should be explicitly given to activate DFT code. See the chapter on

DFT for the complete list of functionals. Default is DFTTYP=NONE i.e. no DFT
calculations.

DFTD Flag that provides control over the use of Grimme's empirical dispersion correction scheme.

See the $DFTD group for details.

 .TRUE. Use Grimme's empirical dispersion correction.

 .FALSE. No empirical dispersion correction. (Default)

RUNTYP Specifies the type of computation.

 ENERGY Molecular energy at a single geometry point. (Default)

 GRADIENT Molecular energy plus gradient at a single geometry point.

 HESSIAN Molecular energy plus gradient plus second derivatives at a single geometry
point, including harmonic vibrational analysis. See the $FORCE and
$CPHF input groups.

 OPTIMIZE Optimize the molecular geometry using analytic or numeric energy
gradients. See $STATPT.

 TRUDGE Non-gradient total energy minimization. See groups $TRUDGE and
$TRURST.

 SADPOINT Locate saddle point (transition state). See the $STATPT group.

 IRC Follow intrinsic reaction coordinate. See the $IRC group.

 GRADEXTR Trace gradient extremals. See the $GRADEX group.

 DRC Follow dynamic reaction coordinate. See the $DRC group.

 SURFACE Scan fragment of the potential energy surface. See $SURF.

 RSURFACE Relaxed scan of the potential energy surface. See $SURF.

 RSURFX Advanced relaxed scan of the potential energy surface. See $SURF.

 PROP Calculation of properties for previously computed Hartree-Fock-type
wavefunction. A $DATA deck and converged $VEC group should be input.
Optionally, orbital localization can be done. See $ELPOT, etc.

 MOROKUMA Performs monomer energy decomposition. See the $MOROKM group.

 TRANSITN Compute radiative transition moment. See the $TRANST group.

 SPINORBT Compute spin-orbit coupling. See the $TRANST group.

 FFIELD Applies finite electric fields, most commonly to extract polarizabilities. See
the $FFCALC group.

 TDHF Analytic computation of frequency-dependent polarizabilities. See the
$TDHF group.

 RAMAN Computes Raman activities, see $RAMAN.

Note: RUNTYPs involving the energy gradient are: GRADIENT, HESSIAN, OPTIMIZE, SADPOINT, IRC,
GRADEXTR, DRC and RAMAN, cannot be used with analytic gradients for any CI or MP2 computation,
except when SCFTYP=RHF.

NUMDER Flag that enables/disables the use of numerical derivatives.

 .TRUE. Use of numerical derivatives.

 .FALSE. Do not use numerical derivatives. (Default)

EXETYP Sets the execution type.

 RUN Actually do the run. (Default)

 CHECK Wavefunction and energy will not be evaluated. This lets you speedily check
input and memory requirements.

 DEBUG Massive amounts of output are printed, useful only if you hate trees.

 ROUTINE Maximum output is generated by the routine named. Please contact developers
for the correct name of routine of interest.

MAXIT N Maximum number of SCF iteration cycles. If given, it pertains to RHF, UHF, ROHF,

GVB, and MCSCF runs. If not given, a default value of 30 is used for RHF, UHF,
ROHF, and GVB. For MCSCF, the number of iterations depends on the value of
MAXIT in $MCSCF (which overrules MAXIT in $CONTRL).

ICHARG N Molecular charge. (Default is 0)

MULT N Multiplicity of the electronic state. 1 = singlet, 2 = doublet, 3 = triplet, etc.

(Default is 1)

Note: ICHARG and MULT are used directly for RHF, UHF, ROHF. For GVB, these are implicit in the $SCF
input, while for MCSCF or CI, these are implicit in $DRT/$CIDRT or $DET/$CIDET input. You must
however still give them correctly.

ECP Effective potential control.

 NONE All electron calculation. (Default)

 READ Read in the potentials from the $ECP group.

 SBKJC Use Stevens, Basch, Krauss, Jasien, Cundari potentials for all heavy atoms (Li-Rn
are available).

 HW Use Hay, Wadt potentials for all the heavy atoms (Na-Xe are available).

OLDECP Flag that selects the code used for ECP integral evaluation.

 .TRUE. Use the old code for ECP integral evaluation. The old code is slower, and does not
allow high-angular value ECPs and basis functions but is more numerically stable.

 .FALSE. Use the new code for ECP integral evaluation (default)

The next three keywords control molecular geometry:

COORD Choice for molecular geometry in $DATA.

 UNIQUE Only the symmetry unique atoms will be given, in Cartesian coordinates
(default).

 HINT Only the symmetry unique atoms will be given, in Hilderbrandt style
internals.

 CART Cartesian coordinates will be input.

 ZMT GAUSSIAN style internals will be input.

 ZMTMPC MOPAC style internals will be input.

 FRAGONLY Means no part of the system is treated by ab initio means, hence $DATA is
not given. The system is specified by $EFRAG.

UNITS Distance units, any angles must be in degrees.

 ANGS Angstroms (Default)

 BOHR Bohr atomic units

NZVAR M Control over Z-matrix NZVAR refers mainly to the coordinates used by OPTIMIZE

or SADPOINT runs, but may also print the internal coordinate values for other run
types. You can use internals to define the molecule, but Cartesians during
optimizations!

 0 Use Cartesian coordinates. (Default).

 M > 0 If COORD does not equal ZMT or ZMTMPC and a $ZMAT is not given: the
delocalized internal coordinates (DLCs) will be generated automatically.

 M > 0 If COORD=ZMT or ZMTMPC and a $ZMAT is not given: the internal coordinates
will be those defining the molecule in $DATA. In this case, $DATA must not contain
any dummy atoms. M is usually 3N–6, or 3N–5 for linear.

 M > 0 For other COORD choices, or if $ZMAT is given: the internal coordinates will be
those defined in $ZMAT. This allows more sophisticated internal coordinate choices.
M is ordinarily 3N–6 (3N–5), unless $ZMAT has linear bends.

LOCAL Controls orbital localization. See the $LOCAL group. Localization does not work for

SCFTYP=GVB, CITYP, or any MP.

 NONE Skip localization. (Default).

 BOYS Do Foster-Boys localization.

 RUEDNBRG Do Edmiston-Ruedenberg localization.

 POP Do Pipek-Mezey population localization.

D5 Flag that enables/disables the use of a spherical basis set.

 .TRUE. Use pure spherical basis sets. Note that the current implementation of D5 option is
not compatible with non-standard molecular input frames (custom orientations of
axes). See the description of the relevant $D5 input group.

 .FALSE. Use Cartesian basis sets. (Default)

MOLPLT Allows Firefly to interface with a molecule drawing program (MOLPLT) distributed with

GAMESS (US).

 .TRUE. Produce an input deck for MOLTPLT.

 .FALSE. Do not produce an input deck for MOLTPLT. (Default)

PLTORB Allows Firefly to interface with an orbital plotting program (PLTORB) distributed with

GAMESS (US).

 .TRUE. Produce an input deck for PLTORB.

 .FALSE. Do not produce an input deck for PLTORB. (Default)

AIMPAC Allows Firefly to interface with Bader's atoms in molecules properties code (AIMPAC). For

information about this program, contact:

Richard F.W. Bader
Dept. of Chemistry
McMaster University
Hamilton, Ontario L8S-4M1 Canada
bader@sscvax.cis.mcmaster.ca

 .TRUE. Produce an input deck for AIMPAC.

 .FALSE. Do not produce an input deck for AIMPAC. (Default)

RPAC Flag to create the input files for Bouman and Hansen's RPAC electronic excitation and NMR

shieldings program. RPAC works only with RHF wavefunctions. (This option is inactive.)

 .TRUE. Produce an input deck for RPAC.

 .FALSE. Do not produce an input deck for RPAC. (Default)

FRIEND String to prepare input for other quantum chemistry programs. If given, the corresponding

input file will be created and punched.

 No value Do not prepare input for other QC programs. (Default)

 HONDO Prepare input for HONDO 8.2.

 MELDF Prepare input for MELDF.

 GAMESSUK Prepare input for GAMESS (UK Daresbury version).

 GAUSSIAN Prepare input for Gaussian 9X.

 ALL Prepare input for all of the above.

Note: PLTORB, MOLPLT, and AIMPAC decks are written to file PUNCH at the end of the job. The two
binary disk files output by RPAC are written at the end of the job. Thus all of these correspond to the final
geometry encountered during the job. In contrast, selecting FRIEND turns the job into a CHECK run only,
no matter how you set EXETYP. Thus the geometry is that encountered in $DATA. The input is added to the
PUNCH file, and may require some (usually minimal) massaging. PLTORB and MOLPLT are written even
for EXETYP=CHECK. AIMPAC requires at least RUNTYP=PROP. RPAC requires at least
RUNTYP=ENERGY and you must take action to save the binary files AOINTS and WORK15.

NPRINT Print/punch control flag. See also EXETYP for debug info. Options -7 to 5 are primarily for

debugging.

 -7 Extra printing from Boys localization.

 -6 Debug for geometry searches.

 -5 Minimal output.

 -4 Print 2e-contribution to gradient.

 -3 Print 1e-contribution to gradient.

 -2 Normal printing, no punch file.

 1 Extra printing for basis, symmetry, ZMAT.

 2 Extra printing for MO guess routines.

 3 Print out property and 1e- integrals.

 4 Print out 2e- integrals.

 5 Print out SCF data for each cycle. (Fock and density matrices, current MOs)

 6 Same as 7, but wider 132 columns output. This option isn't perfect.

 7 Normal printing and punching (Default)

 8 More printout than 7. The extra output is (AO) Mulliken and overlap population
analysis, eigenvalues, Lagrangians, etc...

 9 Everything in 8 plus Löwdin population analysis, final density matrix.

NOSYM Controls the use of symmetry

 0 The symmetry specified in $DATA is used as much as possible in integrals, SCF,
gradients, etc. (Default)

 1 The symmetry specified in the $DATA group is used to build the molecule, then
symmetry is not used again. Some runs require you request no symmetry, see the
symmetry section in the chapter on coordinate types of the manual for more details.

INTTYP Provides control over two-electron integral code.

 POPLE Use fast Pople-Hehre routines for sp integral blocks, and HONDO Rys
polynomial code for all other integrals. (Default).

 HONDO Use HONDO/Rys polynomial package for all integrals. This option produces
slightly more accurate integrals but is also slower.

FSTINT Flag that provides control over the use of the fastints direct SCF code.

 .TRUE. Enables the use of fastints. (Default).

 .FALSE. Disables the use of fastints.

REORDR Flag that controls reordering of shells for even better direct SCF performance.

 .TRUE. Enable reordering of shells. (Default)

 .FALSE. Disable reordering of shells.

GENCON Flag that enables/disables the use of a special version of the fastints code designed for

general contraction (GC) type basis sets. It is mainly intended to dramatically speedup
calculations involving large GC-type basis sets like the ANO basis sets by Roos et al (the

example of pure GC basis sets), and to some degree the cc-pVXZ basis sets (which are only
partially of the GC type), and many others. The code is very efficient, but requires some
additional amount of memory and has a minor addition computational overhead for setup. It
can result in slightly different energies compared to those obtained with the standard fastints
code using the same value of ICUT and ITOL parameters. Also, it does not at all improve
performance for pure segmented contraction basis sets. This is why the gencon code
automatically disables itself if the basis set is not of GC type. GENCON has no effect on
QFMM calculations.

 .TRUE. Enable the use of the special version of the fastints code.

 .FALSE. Disable the use of the special version of the fastints code

NORMF Controls normalization of the basis functions.

 0 Normalize the basis functions. (Default)

 1 No normalization.

NORMP Controls whether or not input contraction coefficients refer to normalized Gaussian

primitives.

 0 Input contraction coefficients refer to normalized Gaussian primitives. (Default)

 1 Input contraction coefficients do not refer to normalized Gaussian primitives.

ICUT N Cutoff for two-electron integrals. In conventional mode, integrals less than 10–ICUT are

not stored. In direct mode, 10–ICUT is the cutoff for Schwarz inequality screening.
(Default is 9)

ITOL N Primitive cutoff factor. Products of primitives whose exponential factor is less than 10–

ITOL are skipped. (Default is 20)

LEXCUT N Secondary cutoff for two-electron integrals and for Schwarz inequality screening.

Affects only the direct exchange operator formation fastints/gencon code.

 1 A cutoff of 10–ICUT–N is used. (Default)

The following keywords are restart options:

IREST Restart control options (for OPTIMIZE run restarts, see $STATPT). Note these options

should not normally be used.

 -1 Reuse dictionary file from previous run, useful with GEOM=DAF and/or
GUESS=MOSAVED. Otherwise, this option is the same as 0.

 0 Normal run. (Default)

 1 2e restart (1–e integrals and MOs saved in the old DICTNRY).

 2 SCF restart (1–, 2–e integrals and MOs saved). Restart with the AOINTS file only 1–e
integrals will be recomputed if the old DICTNRY file does not exist.

 3 1e gradient restart.

 4 2e gradient restart.

GEOM Selects where to obtain the molecular geometry.

 INPUT Obtain the geometry from the $DATA input. (Default for IREST=0)

 DAF Read the geometry from the DICTNRY file. (Default for IREST≠0)

WIDE Flag that provides control over formatted orbitals punchout.

 .TRUE. Use wide format for vectors in $VEC groups for both INPUT and PUNCH files.
Should be used for post-SCF computations and to get better precision in SCF
when reading in orbitals.

 .FALSE. Default format. (Default)

$MOORTH group

This group controls various symmetry- and orthogonality-related checks and procedures.

SYMS Flag that controls additional explicit symmetrization of the AO overlap matrix.

 .TRUE. Perform an extra explicit symmetrization of the overlap matrix.

 .FALSE. Do not perform an extra explicit symmetrization of the overlap matrix. (Default)

SYMDEN Flag that controls explicit symmetrization of the density matrix during the SCF procedure.

This affects RHF, ROHF, and UHF wavefunctions (Hartree-Fock as well as DFT) only.

 .TRUE. Perform explicit symmetrization of the density matrix during SCF procedure.

 .FALSE. Do not perform explicit symmetrization of the density matrix during SCF
procedure. (Default)

SYMVEC Flag that controls explicit symmetrization of the MOs after the SCF procedure and/or before

the integral transformation stage(s).

 .TRUE. Perform this explicit symmetrization of the MOs.

 .FALSE. Do not perform explicit symmetrization of MOs. (Default)

SYMVX Flag that controls an extra symmetrization of the initial MOs for subsequent SCF procedures.

Use of this symmetrization is enforced when SCFTYP=MCSCF.

 .TRUE. Perform an extra symmetrization of MOs at the beginning of each of subsequent
SCF procedures. (Enforced for SCFTYP=MCSCF)

 .FALSE. Do not perform an extra symmetrization of MOs at the beginning of SCF
procedures (Default for SCFTYP≠MCSCF)

TOLSYM N Maximum permissible symmetry contamination allowed when determining

symmetry of the MOs for various integral transformation stages. (Default is 1.0D-
10)

TOLE N The threshold below which MO coefficients will be forcibly equated. This is a

relative level; coefficients are set equal if one agrees in magnitude to TOLE
multiplied with the other. A value of 0.0 disables equating of MO coefficients.
(Default is 0.0)

TOLZ N The threshold below which MO coefficients will be zeroed forcibly. Coefficients are
zeroed if they are below TOLZ in magnitude. A value of 0.0 effectively disables
zeroing of MO coefficients. (Default is 0.0)

NOZERO Controls the zeroing of various computed intermediate quantities. Small quantities are zeroed

forcibly if they fall below the dedicated cutoffs (controlled with TOLE and TOLZ, see above)
in magnitude.

 .TRUE. Disable forcible zeroing. (Default)

 .FALSE. Enable forcible zeroing.

RCRIT N This option controls the pruning of density matrices during QFMM SCF

computations. Matrix elements of the density matrices will be zeroed if the distance
(in Bohr) between two orbital centers is greater than RCRIT. This option can speed
up computation of the linear exchange (LEX, see documentation on QFMM), but
should be used with caution, especially for conjugated systems, metal clusters, etc.
For non-conjugated systems, RCRIT=25 seems to be safe enough. A value of 0.0
disables pruning. (Default is 0.0)

NOSTF Controls the enforcing of standard phases of MOs and CI vectors by multiplying them

by -1.0 when needed. A standard phase corresponds to the positive sign of the maximum in
the magnitude element of a vector.

 .TRUE. Do not enforce standard phase on vectors. (Default)

 .FALSE. Enforce standard phase on vectors as appropriate.

The remaining keywords in this group are obsolete and should not be used.

SORTH .FALSE. The default option.

SOONLY N (Default is 0)

NFIRST N (Default is 0)

THRX N (Default is 1.0D-10)

THRD N (Default is 1.0D-10)

THRS N (Default is 1.0D-10)

$GUESS group

This group controls the selection of initial molecular orbitals.

GUESS Selects type of initial orbital guess. All GUESS types except SKIP permit reordering of the

orbitals, carry out an orthonormalization of the orbitals (unless disabled with the ASIS
keyword), optional orbital purification, and generate the correct initial density matrix. The
initial density matrix cannot be generated for CI and MCSCF runs, so property restarts for
these wavefunctions are disabled. Note that the correct computation of a GVB density matrix
requires CICOEF in $SCF. A possible use for SKIP is to speed up a EXETYP=CHECK job,
or a RUNTYP=HESSIAN job where the Hessian is supplied.

 HUCKEL Carry out an extended Hückel calculation using a Huzinaga MINI basis set for
all atoms with no ECPs and a HW basis set for all atoms with ECPs if the ECP
core count is the same, and project this onto the current basis. This is
implemented for atoms up to Rn, and will work for any all electron or ECP
basis set. (Default for most runs)

 HCORE Diagonalize the one electron Hamiltonian to obtain the initial guess orbitals.
This method is applicable to any basis set. In general, it does not work as well
as HUCKEL but it might give better results for systems containing transition
metals. This is because HUCKEL does not always treat ECPs on transition
metals properly.

 MOREAD Read in formatted vectors punched by an earlier run. This requires a $VEC
group, and you MUST pay attention to the NORB keyword below.

 RDMINI Read in the $VEC deck from a converged calculation that used
GBASIS=MINI without any polarization functions, and project these orbitals
onto the current basis.

 MOSAVED The initial orbitals are read from the DICTNRY file of the earlier run. Note,
one needs to specify IREST=1 in $CONTRL for this feature to work correctly!
(Default for restarts).

 SKIP Bypass initial orbital selection. The initial orbitals and density matrix are
assumed to be in the DICTNRY file. This GUESS assumes IREST=1.

ASIS Flag that controls orthonormalization of the initial guess orbitals.

 .TRUE. Use the orbitals ‘as is’, i.e. do not orthonormalize the initial guess orbitals.

 .FALSE. Orthonormalize the initial guess orbitals. (Default)

PRTMO Flag that controls printing of the initial guess orbitals.

 .TRUE. Print the initial guess orbitals.

 .FALSE. Do not print the initial guess orbitals. (Default)

PUNMO Flag that controls punching of the initial guess orbitals.

 .TRUE. Punch the initial guess orbitals.

 .FALSE. Do not punch the initial guess orbitals. (Default)

NORB N The number of orbitals to be read in the $VEC group. This applies only to

GUESS=MOREAD. For RHF, UHF, ROHF, and GVB wavefunctions, NORB defaults
to the number of occupied orbitals. NORB must be given for CI and MCSCF
wavefunctions. For UHF wavefunctions, if NORB is not given, only the occupied
alpha and beta orbitals should be given, back to back. Otherwise, both alpha and beta
orbitals must consist of NORB vectors. NORB may be larger than the number of
occupied MOs, if you wish to read in the virtual orbitals. If NORB is less than the
number of atomic orbitals, the remaining orbitals are generated as the orthogonal
complement to those read.

EXTRA Flag that enables/disables input basis set modification. This applies only to

GUESS=MOREAD. This keyword can be used together with the DELETE keyword. If both
are given, the deletion is performed first.

 .TRUE. The $VEC deck read in is to be expanded to a larger basis. The $EXTRAF
group should be used to provide expansion instructions.

 .FALSE. No projection. (Default)

DELETE Flag that enables/disables input basis set modification. This applies only to

GUESS=MOREAD. This keyword can be used together with the EXTRA keyword. If both
are given, the deletion is performed first.

 .TRUE. The $VEC deck read in is to be trimmed to a smaller basis. The $AODEL group
should be used to provide deletion instructions.

 .FALSE. No projection. (Default)

NORDER Orbital reordering switch.

 0 Do not reorder orbitals.

 1 Reorder orbitals using according to instructions provided with the IORDER and
JORDER keywords.

IORDER N1,N2,… Array of reordering instructions. Input to this array gives the new molecular

orbital order. For example, IORDER(3)=4,3 will interchange orbitals 3 and 4,
while leaving the other MOs in the original order. A minus sign can be used as
shorthand to swap the positions of two MOs, i.e. IORDER(6)=-9 will swap MOs
6 and 9. IORDER applies to all orbitals (alpha and beta) except for UHF

wavefunctions, where it only affects the alpha MOs. (Default is IORDER(i)=i)

JORDER N1,N2,

…
Functions the same as IORDER, but applies to the beta MOs of a UHF
wavefunction.

This keyword also has an alternative meaning. By default, the IORDER and
JORDER reordering instructions are applied after any processing of orbitals like
orthogonalization or symmetry adaptation. However, for inputs with no separate
beta orbital set (e.g., RHF or MCSCF), the JORDER array, if given, allows one to
reorder orbitals prior to the orbital processing stages. This feature is intended to
work together with IORDER which additionally reorders orbitals after processing
them. An example of a typical usage scenario is the use of MOs generated for one
molecular geometry on a different molecular geometry. By putting the most
important orbitals (say, orbitals forming the active space in the MCSCF) to the
beginning of the orbital list before executing the processing steps, one can
minimize the impact of the processing on these particular orbitals. The correct
order can then be recovered using the IORDER array.

TOLZ N The level below which MO coefficients will be set to zero. (Default is equal to the

value of TOLZ in $MOORTH)

TOLE N The level at which MO coefficients will be equated. This is a relative level,

coefficients are set equal if one agrees in magnitude to TOLE times the other. (Default
is equal to the value of TOLE in $MOORTH)

SYMDEN Controls the use of a routine which projects all but the totally symmetric components out of

the density matrix in order to obtain a symmetric density matrix. This may be useful if the
HUCKEL or HCORE give orbitals with inexact symmetry, resulting to a non-totally
symmetric density matrix. Since the generated density matrix may not be idempotent, this
can generate a non-variational energy on the first iteration of HF and DFT SCF.

 .TRUE. Project all but the totally symmetric components out of the density matrix.

 .FALSE. Do not perform this processing step. (Default)

MIX Flag which controls the rotation of the alpha and beta HOMO and LUMO orbitals so as to

generate inequivalent alpha and beta orbital spaces. This pertains to singlet UHF
wavefunctions only. This may require the use of NOSYM=1 in $CONTRL depending on
your situation.

 .TRUE. Rotate the alpha and beta HOMO and LUMO orbitals.

 .FALSE. Do not rotate the alpha and beta HOMO and LUMO orbitals. (Default)

KDIAG Selects the diagonalization routine used during initial guess generation.

 0 Selects a very stable and fast diagonalization routine which requires large amount of
extra memory. This routine is recommended for all Firefly input files, especially if the
number of basis functions is large. (Default)

 -1 Selects a potentially less stable but even faster diagonalization routine which uses less
memory than KDIAG=0.

 -2 Selects a combination of the two above methods which can be more stable than
KDIAG=-1, is usually as fast as KDIAG =-1, but requires as much memory as
KDIAG=0.

 1 Use EVVRSP diagonalization. This may be more accurate than the KDIAG=1 option
in GAMESS (US).

 2 Use GIVEIS diagonalization (not as fast as EVVRSP but is more reliable).

 3 Use JACOBI diagonalization. This is the slowest method. This default is not sensible,
but assures compatibility with Gamess (US).

PURIFY Flag that can be used to symmetry-purify (i.e., symmetry adapt) the input orbitals. This

option is useful for removing symmetry contaminants in the input MOs which could cause a
warning during the integral transformation phase.

 .TRUE. Symmetry-purify input orbitals.

 .FALSE. Do not symmetry-purify input orbitals. (Default)

USEQMT Flag that can be used to speed up the Hückel guess for semiempirical jobs by reusing the

pre-computed Q matrix. It should not be used for any computations other than semiempirical
runs and is of use only for very large systems. This option is experimental.

 .TRUE. Speed up the Hückel guess.

 .FALSE. Do not try to speed up the Hückel guess. (Default)

$BASIS group

This group allows certain standard basis sets to be easily given. The choices of COORD=CART, ZMT, and
ZMTMPC input coordinates require the use of a $BASIS group to define the basis set. The use of
COORD=UNIQUE or HINT might or might not use $BASIS, as you wish. If this group is omitted, the basis
set must be given instead in the $DATA group.

GBASIS Chooses an internally stored basis or semi-empirical method.

 MINI Huzinaga's 3 gaussian minimal basis set (commonly known as MINI-1). Available for
H-Rn.

 MIDI Huzinaga's 21 split valence basis set (commonly known as MIDI-1). Available for H-
Rn.

 STO Pople's STO-NG minimal basis set. Available for H-Xe, for NGAUSS=2,3,4,5, 6.

 N21 Pople's N-21G split valence basis set.
• Available for H-Xe, for NGAUSS=3.
• Available for H-Ar, for NGAUSS=6.

 N31 Pople's N-31G split valence basis set.
• Available for H-Ne, P-Cl for NGAUSS=4.
• Available for H-He, C-F for NGAUSS=5.
• Available for H-Ar, for NGAUSS=6.
• For Ga-Kr, N31 selects the BC basis.

 N311 Pople's "triple split" N-311G basis set.
• Available for H-Ne, for NGAUSS=6.
• Selecting N311 implies MC for Na-Ar.

 DH Dunning/Hay "double zeta" basis set.
• (3s)/[2s] for H.
• (9s,4p)/[3s,2p] for Li.
• (9s,5p)/[3s,2p] for Be-Ne.
• (11s,7p)/[6s,4p] for Al-Cl.

 DZV "Double zeta valence" basis set.
• A synonym for DH for H, Li, Be-Ne, Al-Cl.
• (14s,9p,3d)/[5s,3p,1d] for K-Ca.
• Selecting DZV implies BC for Ga-Kr.

 TZV "Triple zeta valence" basis set.
• (5s)/[3s] for H.
• (10s,3p)/[4s,3p] for Li.
• (10s,6p)/[5s,3p] for Be-Ne.
• A synonym for MC for Na-Ar.
• (14s,9p)/[8s,4p] for K-Ca.
• (14s,11p,6d)/[10s,8p,3d] for Sc-Zn.

 BC Binning/Curtiss "double zeta" basis.
• (14s,11p, 5d/[6s,4p,1d] for Ga-Kr.
• Selecting BC for other elements implies DZV.

 MC McLean/Chandler "triple split" basis.
• (12s,9p)/[6s,5p] for Na-Ar.
• Selecting MC implies 6-311G for H-Ne.

The next two are ECP bases only

 SBKJC Stevens/Basch/Krauss/Jasien/Cundari valence basis set, for Li-Rn. This choice implies
an unscaled -31G basis for H-He.

 HW Hay/Wadt valence basis. This is a -21 split, available for Na-Xe, except for the
transition metals. This implies a 3-21G basis for H-Ne.

The next four values specify semi-empirical methods

 MNDO Selects MNDO model Hamiltonian.

 AM1 Selects AM1 model Hamiltonian.

 PM3 Selects PM3 model Hamiltonian.

 RM1 Selects RM1 model Hamiltonian.

An overview of elements for which semi-empirical methods are available can be found in the 'Semi-
empirical methods' chapter of this manual. If you pick one of these, all other data in this group is ignored.
Note that semi-empirical runs actually use valence-only STO bases, not GTOs.

NGAUSS N The number of Gaussians (N). This parameter pertains only to GBASIS=STO, N21, N31,

or N311. There is no default value.

NDFUNC N The number of heavy atom polarization functions to be used. These are usually d

functions, except for MINI/MIDI. The term "heavy" means Na on up for GBASIS=STO,
HW, or N21, and from Li on up otherwise. The value may not exceed 3. The variable
POLAR selects the actual exponents to be used, see also SPLIT2 and SPLIT3. (Default is
0)

NFFUNC N The number of heavy atom f type polarization functions to be used on Li-Cl. This may

only be input as 0 or 1. (Default is 0)

NPFUNC N The number of light atom, p type polarization functions to be used on H-He. This may not

exceed 3, see also POLAR, SPLIT2, and SPLIT3. (Default is 0)

DIFFSP Enables/disables the addition of an extra diffuse sp (L) shell for heavy atoms. Heavy means Li-F,

Na-Cl, Ga-Br, In-I, and Tl-At.

 .TRUE. Add diffuse sp (L) shell to heavy atoms.

 .FALSE. Do not add diffuse sp (L) shell to heavy atoms. (Default)

DIFFS Enables/disables the addition of an extra diffuse s shell for hydrogen atoms.

 .TRUE. Add extra diffuse s shell to hydrogens.

 .FALSE. Do not add extra diffuse s shell to hydrogens. (Default)

ELNEG N1,N2,... Array that instructs Firefly to add diffuse functions only to heavy elements specified

by the ELNEG array. Values given correspond to atomic nuclear charges. For
example, ELNEG(1)=7,8,9 will add diffuse functions to N, O, and F atoms, but not to
other elements. This option does not have an effect is DIFFSP is not set. If no ELNEG
is given, diffuse functions will be added to all supported heavy atoms (the default),
provided DIFFSP=.true.

POLAR Selects a set of polarization functions to use.

 POPLE Default if not explicitly stated otherwise.

 POPN311 Default for GBASIS=N311, MC

 DUNNING Default for GBASIS=DH, DZV

 HUZINAGA Default for GBASIS=MINI, MIDI

 HONDO7 Default for GBASIS=TZV

SPLIT2 N1,N2 An array of two splitting factors used when NDFUNC or NPFUNC is 2. Default is

SPLIT2(1)=2.0,0.5

SPLIT3 N1,N2,N3 An array of three splitting factors used when NDFUNC or NPFUNC is 3. Default is

SPLIT3(1)=4.00,1.00,0.25

EXTFIL Flag that instructs Firefly to read the basis from an external file.

 .TRUE. Read the basis set name defined by GBASIS=name from the external basis set library
file defined by the -b command line option.

 .FALSE. Do not read the basis set from the external basis set library file. (Default)

Note: See the "basis sets" section of the manual for more information on how to use basis sets from an
external file.

$D5 group

This group provides control over the use of pure spherical basis functions. The $D5 group only has an effect
if the D5 option of the $CONTRL group is set as .TRUE. When set as .FALSE. (default value), Cartesian
functions will be used and the D5, F7, and G9 keywords will be silently ignored.

D5 Flag that enables/disables the use of spherical functions for d shells.

 .TRUE. Use spherical functions for d shells. (Default)

 .FALSE. Use Cartesian functions for d shells.

F7 Flag that enables/disables the use of spherical functions for f shells.

 .TRUE. Use spherical functions for f shells. (Default)

 .FALSE. Use Cartesian functions for f shells.

G9 Flag that enables/disables the use of spherical functions for g shells.

 .TRUE. Use spherical functions for g shells. (Default)

 .FALSE. Use Cartesian functions for g shells.

HSHIFT
ESHIFT

Keywords used solely for debugging purposes.

$ZMAT group

This group lets you define the internal coordinates in which the gradient geometry search is carried out.
These need not be the same as the internal coordinates used in $DATA. The coordinates may be simple
Z-matrix types, delocalized coordinates, or natural internal coordinates. You must input a total of
M=3N–6 internal coordinates (M=3N–5 for linear molecules). NZVAR in $CONTRL can be less than M
if and only if you are using linear bends or alternatively if you are directing Firefly to automatically
construct DLCs. It is also possible to input more than M coordinates if they are used to form exactly M
linear combinations for new internals. These may be symmetry coordinates or natural internal
coordinates. If NZVAR > M, you must input IJS and SIJ below to form M new coordinates. See
DECOMP in $FORCE for the only circumstance in which you may enter a larger NZVAR without giving
SIJ and IJS.

Basic input:

IZMAT Defines simple internal coordinates. IZMAT is an array of integers defining each

coordinate. The general form for each internal coordinate is: "encoded coordinate
type",I,J,K,L,M,N. Possible input is:

 1 followed by two atom numbers I and J. These specify a I-J bond length.
 2 followed by three numbers I,J, and K. These specify a I-J-K bond angle.
 3 followed by four numbers I,J,K, and L. These specify a torsion angle between

planes I-J-K and J-K-L
 4 followed by four atom numbers I,J,K, and L. These specify an out-of-plane angle

(Out of Plane bend, OPL) from bond I-J to plane J-K-L
 5 followed by three numbers I,J, and K. These specify a I-J-K linear bend. This

counts as 2 coordinates for the degenerate bend, normally J is the center atom. See
also the $LIBE group.

 6 followed by five atom numbers, I,J,K,L, and M. These specify a dihedral angle
between planes I-J-K and K-L-M.

 7 followed by six atom numbers, I,J,K,L,M, and N. These specify a ghost torsion. Let
A be the midpoint between atoms I and J, and B be the midpoint between atoms M
and N. This coordinate is the dihedral angle A-K-L-B. The atoms I,J and/or M,N
may be the same atom. (If I=J AND M=N, this is a conventional torsion.)
Examples: N2H4, or, with one common pair, H2POH

Example - a nonlinear triatomic, with atom 2 in the middle:

 $ZMAT IZMAT(1)=1,1,2, 2,1,2,3, 1,2,3 $END

This sets up two bonds and the angle between them. The blanks between each coordinate definition are
not necessary, but improve readability mightily.

The next keywords define symmetry coordinates and natural internal coordinates.

SIJ N1,N2,… Specifies a transformation matrix of dimension NZVAR x M, used to

transform the NZVAR internal coordinates in IZMAT into M new internal

coordinates. SIJ is a sparse matrix, so only the non-zero elements are given,
by using the IJS array described below. The columns of SIJ will be
normalized by Firefly. (Default: SIJ = I, unit matrix)

IJS N1,N2,… Specifies an array of pairs of indices, giving the row and column index of

the entries in SIJ.

For example, if the above triatomic is water, using
 IJS(1) = 1,1, 3,1, 1,2, 3,2, 2,3
 SIJ(1) = 1.0, 1.0, 1.0, -1.0, 1.0
gives the matrix S = 1.0 1.0 0.0
 0.0 0.0 1.0
 1.0 -1.0 0.0
which defines the symmetric stretch, asymmetric stretch, and bend of water.

The next keywords define delocalized coordinates (DLCs).

DLC Flag that requests the use of delocalized coordinates.
 .TRUE. Use delocalized coordinates. This is the default if NZVAR in $CONTRL is

non-zero and no $ZMAT group is given, and the input coordinates are not
in the ZMT or ZMTMPC format.

 .FALSE. Do not use delocalized coordinates. This is the default if NZVAR in
$CONTRL equals zero, or if a $ZMAT group is given, or if the input
coordinates are in the ZMT or ZMTMPC format.

AUTO Flag that requests to generate all redundant coordinates automatically. The DLC space

will consist of all non-redundant combinations of these which can be found. The list of
redundant coordinates will consist of bonds, angles, torsions, and out of plane bends
only.

 .TRUE. Generate redundant coordinates automatically. This is the default if
NZVAR in $CONTROL is non-zero and no $ZMAT group is given, and the
input coordinates are not in the ZMT or ZMTMPC format.

 .FALSE. Do not generate redundant coordinates automatically. This is the default if
NZVAR in $CONTRL equals zero, or if a $ZMAT group is given, or if the
input coordinates are in the ZMT or ZMTMPC format.

NONVDW N1,N2,… An array of atom pairs which are to be joined by a bond, but might be

skipped by the routine that automatically includes all distances shorter than
the sum of van der Waals radii. Any angles and torsions associated with
new bonds are also automatically included.

IXZMAT N1,N2,… An extra array of simple internal coordinates which you want to have added

to the list generated by AUTO. Unlike NONVDW, IXZMAT will add only
the coordinate(s) you specify. Its format is identical to that of IZMAT.

IRZMAT N1,N2,… An array of simple internal coordinates which you would like to remove

from the AUTO list of redundant coordinates. It is sometimes necessary to
remove a torsion if other torsions around a bond are being frozen, in order
to obtain a nonsingular G matrix. Its format is identical to that of IZMAT.

IFZMAT N1,N2,… An array of up to 562 simple internal coordinates which you would like to

freeze. Its format is identical to that of IZMAT. See also the FVALUE
keyword below. Note that IFZMAT and FVALUE work only with DLCs.
See the IFREEZ option in $STATPT if you wish to freeze simple or natural
coordinates.

FVALUE N1,N2,… An array of up to 562 values to which the internal coordinates should be

constrained. It is not necessary to input $DATA in such a way that the
initial values match these desired final values, but it is helpful if the initial
values are not too far away.

AUTOFV A flag to generate the FVALUE array automatically using a current geometry. This

option is especially useful for relaxed PES scans in DLCs.
 .TRUE. The FVALUE array is generated automatically. Any user input of FVALUE

is thus ignored. (Default)
 .FALSE. The FVALUE array is not generated automatically.

IFRZAT N1,N2,… An array of atom numbers you want to freeze during a geometry

optimization using DLC. More precisely, the distances between all chosen
atoms will be frozen, however, they will be allowed to rotate and translate
as a single, united group, a rigid body.

IFDMOD Selects one of three programmed methods used to freeze internals in DLCs.
 0 The default method, which is the most stable one.
 1 A less stable method.
 2 An even less stable, experimental method.

DLCTOL N The threshold used at several stages during DLC generation as well as to impose

geometrical constrains. Normally you do not need to alter it. However, in some
cases setting it to, say, 1.0D-7 can help generating the required number of linearly
independent DLC coordinates. (Default is 1.0D-5)

ORTTOL N Tolerance/threshold used to check the quality/completeness of DLCs after imposing
geometry constrains. One may need to lower it to up to 1.0D-8 or below in some
cases, for example when getting an "Unable to project DLC" error message.
(Default is 1.0D-5)

FRATTL N Tolerance/threshold used to check the quality/completeness of constrains generated

to freeze atoms specified in the IFRZAT array. One may need to lower it to up to
1.0D-7 or below in some cases. (Default is 1.0D-5)

CNVTOL N Threshold used in the conversion of the displacement from internal to Cartesian

coordinates. When this conversion does not converge, Firefly will abort. In this
case, you should increase the value of CNVTOL to 1.0D-7 or 1.0D-6. (Default is
1.0D-8)

STPMAX N The value of the maximum step size used during the conversion of internals to

Cartesians. One can try to decrease it to 0.25 or below if the conversion routine
diverges. (Default is 0.5)

UNSTABLE A flag which can be used to force the propagation of updated Cartesians from the

master node to all slave processes. It should be used on some hardware to avoid
situations when some instances of parallel Firefly process get different results from the
conversion that other ones. The use of this flag helps to avoid program hangs or
unexpected behavior, for example when running on a cluster of non-all-identical nodes.

 .TRUE. Propagate updated Cartesians from the master node.
 .FALSE. Do not propagate updated Cartesians from the master node. (Default)

DELANG N Threshold (in degrees) to delete ill-defined angles, i.e. angles that are larger than

DELANG. (Default is 178.0)

DELTOR N Threshold (in degrees) to delete ill-defined torsions, i.e. those that are larger than

DELTOR by an absolute value. In addition, DELTOR affects the deletion of ill-
defined OPLs, i.e. those that are larger than DELTOR/2 by an absolute value.
(Default is 172.0)

TORTOL N Threshold value (in radians) to forcibly equate torsions and Out of Plane bends

(OPLs) to zero or π (for torsions) and +π/2 (for OPLs) if they are close enough to
these values, i.e. the difference is less than TORTOL. (Default is 0)

OPLTHR N Threshold (in degrees) used to replace torsions with an absolute value larger than

OPLTHR with the corresponding OPLs to improve the quality of the DLCs.
(Default is 150.0)

STRICT Enables/disables the automatic elimination of some extra (superfluous) torsions and

OPLs from DLCs. This elimination is optional as it is not required for the construction of
the DLCs. However, the presence of the extra coordinates may affect the effectiveness of
the DLCs.

 .TRUE. Enable this elimination.
 .FALSE. Disable this elimination. (Default)

HBOND N The maximum possible hydrogen bond length (in Ångstrom) for the reference

O-H-O hydrogen bond used during the automatic generation of hydrogen bonds.
Setting it to zero disables this feature altogether and will revert the behavior to that
of Firefly 7.1.F. Setting it to a negative value will revert the behavior to that of
Firefly 7.1.G. (Default is 2.1)

SYMREP Integer bitfield forcing symmetry replication of IXZMAT (bit 0), IRZMAT (bit 1),

IFZMAT/IFZRAT (bit 2), and NONVDW (bit 3) arrays. E.g., SYMREP=9 (or 0x9 as
Firefly equally accepts decimal, binary, octal, and hexadecimal inputs) will symmetry
replicate the IXZMAT and NONVDW arrays. The simplest way to enforce all arrays to
be symmetry replicated is to enter SYMREP=-1. The default is 0, i.e. no replication at
all.

SCAN A flag that triggers the use of a specific scan engine that is designed to be used for scans

in DLCs, and that is generally the most suitable for most types of scans.
 .TRUE. Enable this scan engine. This should be used for scans in DLCs.
 .FALSE. Disable this scan engine. (Default)

$LIBE group

This group is required if linear bends are used in $ZMAT. It contains only one keyword.

APTS X1,Y1,Z1,

X2,Y2,Z2,…
An array that specifies linear bends.

A degenerate linear bend occurs in two orthogonal planes, which are specified with the help of a point A.
The first bend occurs in a plane containing the atoms I,J,K and the user input point A. The second bend is
in the plane perpendicular to this, and containing I,J,K. One such point must be given for each pair of
bends used.

APTS(1)= x1,y1,z1,x2,y2,z2,... for linear bends 1,2,...

Note that each linear bend serves as two coordinates, so that if you enter 2 linear bends (HCCH, for
example), the correct value of NZVAR is M–2, where M=3N–6 or 3N–5, as appropriate.

$SYSTEM group

This group provides global control information for your computer's operation. This is system related input
and will not seem particularly chemical to you.

The following keywords provide control over execution time and memory usage.

TIMLIM N CPU time limit, in minutes. When running in parallel, this is the CPU time allotted to each

instance of Firefly. When running Firefly using batch queue systems like PBS, SLURM,
etc..., set TIMLIM to about 95 percent of the time limit given to the batch job so that Firefly
can stop itself gracefully if this is possible. Note, not all types of jobs honor TIMLIM.
(Default is 2880)

MWORDS N The maximum amount of dynamic memory that can be used by each instance of Firefly.

This value is given in units of 1,000,000 words (as opposed to 1024*1024 words), where a
word is always a 64 bit/8 byte quantity (i.e., a word is a double precision (DP) number that
consumes eight bytes of memory). Firefly allocates this memory at runtime. In case finer
control over the amount of memory is needed, this value can be given in units of words by
using the keyword MEMORY instead of MWORDS. (Default is 20)

MEMORY N Has the same function as MWORDS, but uses words instead of MWords. If not given, the

MWORDS keyword is used. If MWORDS and MEMORY are specified, the larger of the
two values is used. (Default is 20000000)

SAFMEM N The size of the safety memory pool, in words, which can be used by some parts of Firefly in

the case when there is not enough dynamic memory to complete the current operation. In
some cases, Firefly may require to use a bit more memory than the amount reserved via
MWORDS or MEMORY. Firefly will attempt to allocate this additional amount from the
safety memory pool. Thus, increasing SAFMEM can help with some badly behaving jobs.
(Default is 16384)

MASMEM N Same as MWORDS, but applies to Firefly's grand master process as well as for local

masters in extended XP mode. If not given, MWORDS/MEMORY is used instead. (Default
is 0, i.e. no explicit MASMEM is given).

SHMEM N The size of the shared memory pool, in words. This memory can optionally be used by

Firefly’s MP4 code when running in SMP parallel mode on a standalone SMP/multi-core
system. This option is supported under Windows OSs only. (Default is 0)

WSCTL Specifies who may control the amount of physical memory. For this option to work one may
need to have elevated privileges.

 .FALSE. The operating system controls the amount of physical memory (the size of the
working set) used by Firefly.

 .TRUE. Firefly dynamically allocates the working set that is as large as the amount of
memory needed for the current operation. The process working set is the amount of
physical (note: not virtual) memory that is allotted to this process. The dynamic
allocation strategy usually reduces paging for memory-demanding jobs considerably.
On the other hand, this also reduces the amount of physical memory available to other
processes and to the operating system. (Default)

MAXWS N The upper limit on the size of the Firefly's working set, in words. Firefly will never try to set

its working set larger than this value. A value of 0 asks for the automatic selection of an
appropriate limit. (Default is 0)

DECOMM Provides control over the memory management behavior.

 .FALSE. Old-style memory manager behavior. Use this option only if you encounter some
unexpected problems with the default setting.

 .TRUE. Turns on the advanced memory management features. The advanced memory
management is enabled by default on most systems. (Default is .TRUE. under
Windows OS. Under Linux OS, the default is .TRUE. if not running over InfiniBand
and .FALSE. otherwise)

IDLE Provides control over the CPU scheduling priority.

 .TRUE. Flag to reduce Firefly’s CPU scheduling priority. This feature may not work well
under some operating systems.

 .FALSE. Use the default scheduling priority. (Default)

The following keywords provide control over file I/O.

BLKSIZ N The size of the I/O buffer to be used by the standard Fortran I/O routines. The default value

is 0, which tells Firefly not to set the size explicitly and instead use the Watcom Fortran
runtime library's default value of 8192 bytes.

LDAR N The value of LDAR parameter (the size of the direct access file record) for $INTGRL,

$GUGDM2, $TRFDM2, $CISORT, and $MCSCF groups. (Default is 2045)

FASTF Provides controls over file I/O implementation to be used by Firefly

 .FALSE. Use standard Fortran Input/output routines for file I/O

 .TRUE. Turns on the use of the fast non-Fortran file I/O routines, the so-called FSF routines.
FSF stands for the Fast System Files and is a powerful set of fast non-Fortran file I/O
routines that is specific to Firefly. By default, FSF routines are used by Firefly to
perform all file I/O operations. This increases the overall I/O performance and allows
Firefly to handle large (> 2GBytes) files. When Firefly is run on a file system
supporting large files with the FASTF option enabled, all files handled by the FSF
routines are allowed to have their size up to the native limit of that file system. On
file systems which do not support large files, the latter will be split automatically into
several smaller chunks. (Default is .TRUE. i.e. to use FSF)

The following keywords (TRUNCF to IORTRY) pertain only to jobs for which FASTF is enabled.

TRUNCF Provides controls over the truncation of files

 .FALSE. Existing files of non-zero length will not be truncated when being reopened for
writing. This allows one to (pre)allocate (almost) all the required disk space at the
beginning of a Firefly run. This may be useful in some cases as it prevents other disk-
intensive programs from causing Firefly to abort when they temporarily exhaust the
free disk space.

 .TRUE. The files are truncated while being (re)opened for writing. This results in faster write
operations. (Default)

FLUSH Provides control over the use of file cache flushes.

 .FALSE. Disables the use of file cache flushes for Firefly's working files. It is recommended to
disable file flushing if:
the total size of all Firefly working files is less than the available size of the OS file
cache, or if
a high performance RAID or SSD volume is used for scratch storage

 .TRUE. Enables the use of file cache flushes. Firefly will flush the cache buffers of its
working files onto disk as necessary. (Default)

ASYNC Provides control over asynchronous file I/O.

 0 Disables asynchronous file I/O. (The default on Linux OSs)

 1 Activates asynchronous file I/O for most of files. (The default on Windows OSs)

 2 Activates asynchronous file I/O, even for files for which asynchronous I/O usually does not
improve performance.

AIOBUF N The buffer size for asynchronous file I/O, in kilobytes. Buffers are allocated on a per file

basis. (Default is 2048)

AIOPTY One of -15, -2,
-1, 0, 1, 2, 15

The priority boost for dedicated asynchronous file I/O threads. This option
is available under Windows OSs only. (Default is 2)

SPLITF Provides control over the splitting of large files.

 .TRUE. Enables splitting of large files into chunks. This is a workaround for file systems
which do not support large files natively,

 .FALSE. Disables splitting of large files into chunks. It is safe to use this option if the file
system in use supports large files i.e. the files larger than 2 GBytes. (Default
is .FALSE. except if running on FAT or HPFS file systems).

VOLSIZ N The chunk size used to split large files, in MBytes. (Default is 2047)

MXIOB N1,N2 Sets the system wide buffer size of a single I/O operation, in Kilobytes. The first value

sets the size of buffer used for file reads, the second value sets the size of buffer used
for file writes. MXIOB(1)=512,256 usually works better with SSDs than the default
values. (Default is 128,128)

MEMF Provides control over memory-related behavior.

 .FALSE. The default behavior.

 .TRUE. Directs Firefly to try to keep all important files in memory by using a dedicated file
I/O API to provide special hints to the OS level cache/memory manager.

FRESHF Provides control over I/O-related behavior.

 .FALSE. The default behavior.

 .TRUE. Close and then reopen files instead of just rewinding them. This may improve
performance a bit when running on Windows NT 4.0.

NOSEOF Provides control over I/O-related behavior.

 .FALSE. The default behavior.

 .TRUE. Does not explicitly set the end of files. This is a workaround for some buggy Linux
kernels.

MEMCPY One of -3,

-2, -1, 0, 1,
2, 3

Selects the memory copying method used by the FSF routines. The default is 0. Use
of other values e.g. 3 or -3 may improve performance a bit.

IOFLGS N An array of 100 elements that can be used to provide I/O optimization flags to FSF routines

and the operating system on a per Fortran logical unit base. E.g., IOFLGS(9) corresponds to
Fortran's unit 9 which, in turn, for Firefly corresponds to the file "MOINTS". One can
contact Firefly's developers for a complete list of units and corresponding files.

The I/O optimization flags are the bitwise OR of the flags described below:

0x00000001 any writes to a file must go through the file cache directly to the disk (i.e. no
lazy writes allowed)
0x00000002 optimize file I/O for sequential file access
0x00000004 optimize file I/O for random file access
0x00000008 does not explicitly set the end of file for this particular unit (exactly like the
NOSEOF flag but on a per unit base)
0x00000010 split this particular unit into chunks (exactly like the SPLITF flag but on a per
unit base)
0x00000020 use asynchronous I/O for this particular unit and use OS level blocking calls
when waiting for I/O completion
0x00000040 use asynchronous I/O for this particular unit and use spin loops when waiting
for I/O completion
0x00000080 try to keep this file in memory (exactly like the MEMF flag but on a per unit
base)
0x00000100 set TRUNCF flag on for this particular file
0x00000200 file will be compressed if the underlying file system supports compression
0x00000400 file will be marked as sparse f the underlying file system support sparse files
0x00000800 records in the file will be protected by CRC32. Note this flag is currently
implemented only for selected units
0x00001000 file will be deleted before opening for rewrite
0x00002000 use constant block size disk reads for this file
0x00004000 use constant block size direct non-buffered disk reads (no disk cache involved)
for this file
0x00008000 use deferred I/O for this file
0x00020000 set FRESHF flag on for this particular file

Some exotic combinations of I/O optimization flags cannot be used. For these combinations,
the FSF layer will abort the job. Some flags are not supported under Linux OSs.

The default for the IOFLGS array is that all elements are zeroed. Input elements are
combined with the global flags described above (such as MEMF, FRUNCF, etc.) and are
passed to FSF routines.

IORTRY N The maximum number of I/O attempts to try before reporting an I/O failure. The default is

1, i.e. there will be no I/O retries.

The following keywords provide control over parallel execution and can help in the case of MPI-related
problems. Do not modify the default values unless you are absolutely aware that you need to do this.

MXBCST N The maximum size, in words, of the message used in a single broadcast operation. A value
of -1 means there will be no limit. (Default is 32768)

MPISNC Provides control over MPI synchronization calls.

 .FALSE. Selects the normal operation, except for OpenMPI which is buggy and requires this
option to be enabled. (Default)

 .TRUE. Activates a strategy where a call to the broadcast routines will periodically
synchronize all MPI processes.

MXBNUM N The maximum number of broadcast operations which can be performed before the global

synchronization call is done. Relevant only if MPISNC is .TRUE. (Default is 100)

LENSNC N The maximum aggregate length, in words, of the messages that can be broadcasted before

the global synchronization call is done. Relevant only if MPISNC is .true. The default
length depends on the number of cores used. A reasonable value is in the range of 4096 to
65536.

The following keyword provides control over AO integral storage during conventional parallel integral
transformations.

AOINTS Provides control over the AOINTS integral file duplication.

 DUP A duplicate of the AOINTS integral file will be stored on each node. (Default)

 DIST The AOINTS integral file is distributed across all nodes.

The following keywords provide basic control over threading.

MKLNP N Sets the number of physical (not logical) CPU cores to be used by Firefly via multithreaded

BLAS level 3 routines. If the NP option below is not given, the default is 1. If NP is given
(but MKLNP is not), MKLNP equals NP.

MKLAFF N An array of 32 elements controlling the affinity mask for BLAS level 3 threads. The affinity

is assigned by a cyclic fashion on a per process basis. The length of a cycle is defined by the
number of consecutive non-zero elements in the MKLAFF array starting from its first
element. E.g., MKLAFF(1)=0xff,0xff00,0,… defines a cycle of the length two.
MKLAFF(1)=-1 means no special affinity mask. The default is MKLAFF(1)=-1,0,0,... i.e.
no special affinity mask for BLAS level 3 threads of all processes.

XPBIND Flag that modifies the behavior of MKLAFF.

 .FALSE. Normal operation. (Default when not running in extended XP mode.)

 .TRUE. Modifies the behavior of MKLAFF so that the cycle assigning affinities is restarted at
the start of each XP group of processes. (Default in extended XP mode)

MKLSMP Flag that provides control over the threading implementation.

 .FALSE. Normal operation. (Default)

 .TRUE. For some of the threaded code inside Firefly, uses threading as implemented within
BLAS level 3 routines rather than coarse-grained threading over BLAS level 3
routines.

BLAS3 Provides control over the state of additional threads created by BLAS level 3 routines.

 SLEEP Additional threads created by BLAS level 3 routines are suspended when not in
use. (Default)

 NOSLEEP Additional threads are permanently active. Normally, one should not use this option
as it can cause severe performance degradation.

NP N Sets the number of physical (not logical) CPU cores to be used by Firefly via the native

multithreaded code. When the MKLNP option is not given, the default is 1. If MKLNP is
given (but NP is not), NP equals MKLNP.

The following keywords are basic floating point control switches.

KDIAG Provides control over the matrix diagonalization routine.

 0 Selects the use of a very stable and fast diagonalization routine which requires a large
amount of extra memory. (Default)

 -1 Selects a potentially less stable but even faster diagonalization routine which uses less
memory than KDIAG=0 (experimental).

 -2 Selects a combination of the two methods above that is more stable than KDIAG=-1 and is
usually as fast as KDIAG=-1, but that requires as much memory as KDIAG=0
(experimental).

 1 Selects the use of EVVRSP diagonalization (not recommended). This is much slower than
the fast KDIAG=0,-1,-2 methods.

 2 Selects the use of GIVEIS diagonalization. This is even slower than EVVRSP but is much
more reliable than EVVRSP.

 3 Selects the use of JACOBI diagonalization (this is the slowest method).

NOJAC N Never use Jacobi diagonalization for matrices of size N by N and above. (Default is 50)

L2SIZE N The size of the fast Level 2 cache per CPU core, in Kilobytes. The information on cache

size is used by Firefly to optimize its performance. The default is to determine the correct
size automatically based on the particular hardware in use. If Firefly fails to detect the size
of the Level 2 cache properly, this keyword can be used to specify the correct amount.

FPECHK Provides control over checks for floating point exceptions.

 .TRUE. Enables checks for floating point exceptions and abort the job if any are encountered.

 .FALSE. Disables checks for floating point exceptions. (Default)

$SMP group

This group contains keywords aimed to control the execution of Firefly running on SMP and multi-core
systems. Similarly to the $SYSTEM group, the $SMP group provides control over your computer's
operation and does not contain any particular chemistry-related settings.

The following keywords provide fine control over threading.

MKLNP N Sets the number of physical (not logical) CPU cores to be used by Firefly via

multithreaded BLAS level 3 routines. If the NP option below is not given, the default
is 1. If NP is given (but MKLNP is not), MKLNP equals NP. Note, this option is
currently duplicated in the $SYSTEM group for compatibility reasons.

NP N Sets the number of physical (not logical) CPU cores to be used by Firefly via the

native multithreaded code. When the MKLNP option is not given, the default is 1. If
MKLNP is given (but NP is not), NP equals MKLNP. This option defines the
number of primary 'CPU worker' threads for threaded code. Note, this option is
currently duplicated in the $SYSTEM group for compatibility reasons.

HTTNP Sets the number of logical cores belonging to the same physical core to be used by the

native multithreaded code.

 1 Directs Firefly to use only the first of all siblings belonging to the same physical
core. (Default on systems without HyperThreading)

 2 Allows one to use two siblings per physical core provided this is supported by the
code. Compared to HTTNP=1, this option effectively doubles the number of “CPU
worker" threads for this code by creating the secondary ”CPU worker” threads.
(Default on HyperThreading capable systems)

MKLSMP Provides control over threading with BLAS level 3 routines.

 .TRUE. For some of the threaded code inside Firefly, this option enables the use of
threading as implemented within BLAS level 3 routines rather than coarse-
grained threading over BLAS level 3 routines. Note, this option is currently
duplicated in the $SYSTEM group for compatibility reasons.

 .FALSE. Normal operation. (Default)

TPOOL N Directs to create a thread pool containing up to N threads. Thread pooling allows

threads to be reused as needed instead of being created when needed and destroyed
when not needed. Pooled threads do not consume CPU resources. A value of 0
disables thread pooling. The default is TPOOL=128, i.e. to create a thread pool of up
to 128 threads.

THRSTK N The default thread's stack size, in Bytes. (Default is 16384)

PCGAFF N An array of 32 elements controlling the affinity mask for the entire Firefly process,

i.e. this mask has effect over any threads created by Firefly. The affinity is assigned
in a cyclic fashion on a per process basis. The length of a cycle is defined by the
number of consecutive non-zero elements in the PCGAFF array starting from its first
element. E.g., PCGAFF(1)=0xff, 0xff00, 0,... defines a cycle of the length two. -1
means no special affinity mask. The default is PCGAFF (1)=-1,0,0... i.e. no special
affinity mask for all processes. Note, the semantics of this option is affected by the
XPBIND option of the $SYSTEM group in the same way as is explained for the
MKLAFF option below.

WRKAFF N An array of 32 elements controlling the affinity mask of all primary 'CPU worker'

threads. The affinity is assigned in a cyclic fashion on a per process basis. The length
of a cycle is defined by the number of consecutive non-zero elements in the
WRKAFF array starting from its first element. E.g., WRKAFF(1)=0xff, 0xff00,0,...
defines a cycle of the length two. -1 means no special affinity mask. The default is
WRKAFF(1)=-1,0,0... i.e. no special affinity mask for all 'CPU worker' threads of all
processes. Note, the semantics of this option is affected by the XPBIND option of the
$SYSTEM group in the same way as is explained for the MKLAFF option below.

MKLAFF N An array of 32 elements controlling the affinity mask of all BLAS level 3 threads.

The affinity is assigned in a cyclic fashion on a per process basis. The length of a
cycle is defined by the number of consecutive non-zero elements in the MKLAFF
array starting from its first element. E.g., MKLAFF(1)=0xff,0xff00,0,... defines a
cycle of the length two. -1 means no special affinity mask. The default is
MKLAFF(1)=-1,0,0... i.e. no special affinity mask for BLAS level 3 threads of all
processes. If the XPBIND option of the $SYSTEM group is set it modifies the
behavior of MKLAFF so that the cycle assigning affinities are restarted at the start of
each XP group of processes. Note, this option is duplicated in $SYSTEM group for
compatibility reasons.

EXPAFF Provides control over the 'CPU worker' thread's affinities.

 0 Normal operation. (Default)

 1 or 2 When supported by the code, set the primary 'CPU worker' thread's affinities
explicitly by binding each CPU working thread to its own core, and ignoring the
WRKAFF option. With EXPAFF=1 threads are bound to cores # 0, 1, 2, 3, etc...,
while with EXPAFF=2 they are bound to cores # 0, 2, 4, 6, etc. (the latter option
is useful on Windows systems with HyperThreading enabled in hardware and
software).

RODUP Provides control over the replication of some frequently used read-only data for threaded

code.

 .TRUE. Use a per-thread separate copy of this data.

 .FALSE. Share this data across all threads. (Default)

ALLOC Provides control over the allocation of unused core siblings (logical cores) of

HyperThreading enabled cores.

 .TRUE. Allocate unused core siblings of HyperThreading enabled cores by creating
special additional low-priority light-weighted threads assigned to these cores.

 .FALSE. Do not allocate unused core siblings. (Default)

HTTFIX Provides control over the affinity masks of Firefly's primary 'CPU worker' threads on

HyperThreading-enabled systems.

 .TRUE. Modify affinity masks of Firefly's primary 'CPU worker' threads for optimal
performance. Note this will disable the use of several core siblings belonging
to the same core by the primary 'CPU worker' threads i.e. at most only a single
sibling of each physical core will be used. (Default)

 .FALSE. Do not modify affinity masks of Firefly's primary 'CPU worker' threads for
better performance. Note this may enable the use of several core siblings
belonging to the same core by the primary 'CPU worker' threads.

HTTALT Allows one to modify the behavior of HTTFIX option.

 .TRUE. Modify the behavior of the HTTFIX option so that the sibling used for
computations will be selected complementary to that assigned by default by
the HTTFIX option. Use of this option in one of two Firefly jobs running on
the same computer system allows them to use all logical cores (hereby sharing
physical cores) and avoid OS scheduler over-subscription. The default is
HTTALT=.FALSE.

 .FALSE. Do not modify the behavior of the HTTFIX option. (Default)

HTTPAR Provides control over HTTALT flags.

 .TRUE. Inverts the HTTALT flag of the every second Firefly instance of the parallel
Firefly process. This option can be used to allow parallel Firefly jobs to use all
logical cores of HyperThreading-enabled systems.

 .FALSE. Normal operation. (Default)

SMPPAR Enables/disables the use of a mixed parallel/multithreaded mode.

 .TRUE. If set, this option means that Firefly should be executed in the mixed
parallel/multithreaded mode, hereby switching back and forth between a
parallel mode of execution and a threaded mode of execution as needed. The
user must provide valid MKLNP and NP values. Additional threads will only
be used by the grand master and the local master processes executing the
threaded part of the computation.

 .FALSE. Do not to use a mixed mode of execution. (Default)

XHTT Provides control over the creation of secondary 'CPU worker' threads.

 .TRUE. Forces the SMP/multicore aware parts of Firefly, which do not normally use
additional (secondary) 'CPU worker' threads for execution on the extra logical
processors of HT capable multi-core, SMP, or HTT systems, to use these
additional logical cores by creating secondary 'CPU worker' threads. The
default is XHTT=.FALSE., i.e. use the code's default heuristics when running
on SMT-capable system rather than forcing the use of HT. This option does
not has an effect if HTTNP is set to 1.

 .FALSE. Normal operation (Default)

CSMTX Provides control over thread synchronization.

 .TRUE. Use critical sections for threads synchronization. Critical sections are normally
faster. (Default)

 .FALSE. Use mutexes for thread synchronization .

FTIMER Provides control over Windows system interval timer. This option is supported under

Windows OSs only.

 .TRUE. Set the highest possible resolution of the Windows internal system interval
timer. This decreases the thread's time slice and allows threads to be
preempted/rescheduled with a higher frequency at the costs of some additional
OS overhead.

 .FALSE. Normal operation. (Default)

STTF N If nonzero, this option allows the use of the Windows' explicit thread switching API

from inside the thread's spin wait loops. The particular types of waiting primitives
allowed to use the thread switching API are coded by the bits of the STTF variable.
Contact Firefly's developers for a complete list of the available bitfields and their
exact meaning. This option is supported under Windows OSs only. The default is
STTF=0, i.e. not to use this feature.

SLEEP Provides control over the use of the OS's sleep functions API to initiate thread

rescheduling when appropriate.

 .TRUE. Use the OS's sleep functions API.

 .FALSE. Do not use the OS's sleep functions API. (Default)

THRTMT N An internal timeout used when waiting for threads, in milliseconds. A value of -1

disables timeouts. The default value depends on the operating system. There is
normally no need to change the value of this keyword.

EVTTMT N An internal timeout used when waiting for events, in milliseconds. A value of -1

disables timeouts. The default value depends on the operating system. There is
normally no need to change the value of this keyword.

MTXTMT N An internal timeout used when waiting for mutexes, in milliseconds. A value of -1

disables timeouts. The default value depends on the operating system. There is
normally no need to change the value of this keyword.

DLLHLT Provides control over the suspension of threads created by Firefly's dynamic extension

libraries.

 .TRUE. When not in use, suspend execution of the OpenMP working and control
threads created by Firefly's dynamic extension libraries such as fastdiag.
(Default on Windows OSs)

 .FALSE. Normal operation. (Default on non-Windows OSs)

BLKTIM N Thread blocking timeout for the OpenMP parts of the code, in milliseconds. The

default is 200 under Windows and 0 under other operating systems.

SMPFCK Provides control over the use of the multithreaded code for Fock matrix construction

when running in conventional (i.e. with two-electron integrals stored on disk) mode.

 .TRUE. Enables the use of this multithreaded code. (Default)

 .FALSE. Disables the use of this multithreaded code.

The following keywords provide control over the Firefly's runtime library.

RTLPAR N An integer array allowing one to modify the behavior of the compiler's runtime

libraries (RTL) used by Firefly. The default settings depend on the particular OS in
use. Normally, there is no need to modify the default settings. Contact Firefly's
developers for a complete list of available options and their exact meaning.

MXHEAP N The maximum allowed size of the heap area, in Kilobytes. The default is

MXHEAP=-1 which means there is no limit to the heap size. MXHEAP=0 disables
heap usage.

CSTACK N The size of the stack of the main Firefly thread to pre-commit at the beginning of run,

in Kilobytes. The default is CSTACK=0, i.e. stack will not be pre-committed.

The following keywords are used for execution tuning and optimization.

L2SIZE N The size of the fast Level 2 cache per CPU core, in Kilobytes. The information on

cache size is used by Firefly to optimize its performance. The default is to determine
the correct size automatically based on the particular hardware in use. If Firefly fails
to detect the size of the Level 2 cache properly, this keyword can be used to specify
the correct amount. Note, this option is currently duplicated in the $SYSTEM group
for compatibility reasons.

L3SIZE N The size of the slow Level 3 cache per CPU core, in Kilobytes, when available. The

information on cache size is used by Firefly to optimize its performance. The default
is to determine the correct size automatically based on the particular hardware in use.
If Firefly fails to detect the size of the Level 3 cache properly, this keyword can be
used to specify the correct amount.

CALL64 Provides control over the use of fast 64-bit computational kernels.

 .TRUE. Allow calls to fast 64-bit computational kernels. By default, this option is
enabled on under Windows and Linux, and is disabled under Mac OS X as it
results in a crash of the operating system. Note, the use of this option may
conflict with para-virtualized Linux kernels running under Xen virtualization
software. This option is only supported under 64-bit OSs.

 .FALSE. Do not call fast 64-bit computational kernels.

CUDA Provides control over the use of CUDA.

 .TRUE. Allow Firefly to use CUDA, if supported by the particular code being used.
See the $CUDA group for CUDA-related options.

 .FALSE. Do not use CUDA (Default)

NOAVX Provides control over the use of AVX instructions (when supported by hardware and OS).

 .TRUE. Disables the use of AVX instruction. (Default)

 .FALSE. Enabled the use of AVX instruction.

The following keywords provide fine control over the DGEMM code. By default, Firefly selects the use
of the most suitable implementation of the DGEMM routine. The algorithm used for selection is rather
involved, especially on non-Intel CPUs. The default selection can be modified using the keywords
described below.

MKL64 N (allowed

values are 1
to 14)

Forces the use of one of the available 64-bit MKL's DGEMM
implementations. The default is to pick up the most suitable one
automatically, when appropriate. It is generally not recommended to
change the default value. This option does not have any effect if the
CALL64 option is disabled.

MMMTYP N (allowed

values are -9
to 9)

Forces the use of one of the available alternative 32-bit and 64-bit
DGEMM implementations. The default is to pick up the most suitable one
automatically, if appropriate. It is generally not recommended to change the
default value.

MSU32 Provides control over the use of a specific 32-bit DGEMM version optimized for the first

generation of Intel Core 2 processors (those with codenames Merom, Conroe, Woodcrest,
and Clovertown).

 .TRUE. Use this specific 32-bit DGEMM version.

 .FALSE. Do not use this specific 32-bit DGEMM version. (Default)

SSG32 Provides control over the use of a specific 32-bit DGEMM version optimized for the

second generation of Intel Core 2 processors (those with codenames Penryn, Wolfdale,
Yorkfield, Harpertown, etc.)

 .TRUE. Use this specific 32-bit DGEMM version.

 .FALSE. Do not use this specific 32-bit DGEMM version. (Default)

LOAD Provides control over the use of one of the 32-bit optimized DGEMM implementations

from the dynamic load library p4stuff.dll (Windows) or p4stuff.ex (Linux).

 .TRUE. Use one of these 32-bit optimized DGEMM implementations.

 .FALSE. Do not use one of these 32-bit optimized DGEMM implementations. (Default)

MKLLVL 0,1,2, or 3 Controls to what extent MKL's DGEMM implementations will be preferred

over the non-MKL DGEMM ones. MKLVL=3 disables most of the non-
MKL code. The default value is MKLLVL=2.

FSTDIA Provides control over the use of fast diagonalization routines from the fastdiag dynamic

library (fastdiag.dll/fastdiag.ex).

 .TRUE. Use these diagonalization routines, provided the fastdiag library is available.
(Default)

 .FALSE. Do not use these diagonalization routines.

DIANP N The maximum number of threads to be used by the fast diagonalization routines from

the fastdiag dynamic library. The default is equal to the value of the MKLNP option.

EXPMEM Provides control over the export of Firefly's advanced memory management routines for

use by the fastdiag dynamic library.

 .TRUE. Export Firefly's advanced memory management routines. (Default)

 .FALSE. Do not export Firefly's advanced memory management routines.

EXPMMM Provides control over the export of Firefly's advanced DGEMM routines for use by the

fastdiag dynamic library.

 .TRUE. Export Firefly's DGEMM routines. (Default)

 .FALSE. Do not export Firefly's DGEMM routines.

$NUMGRD group

The $NUMGRD allows control over the numerical calculation of gradients, which are requested by
specifying NUMDER=.TRUE. in $CONTRL. The primary purpose of the numerical gradient code is to
allow computations normally requiring analytic energy gradients, to be performed using those QC
methods for which analytic gradients are not yet programmed. As with any finite differencing, numerical
gradients require extra high precision in computed energy values. It is therefore the user's responsibility to
increase the precision of all the stages involved into computation of target energies.

ORDER The order of finite difference formulas to use. Finite differencing of order X requires

X × (3N – 6) + 1 energy evaluations (assuming a non-linear molecule with C1 symmetry)
with N being the number of atoms. The use of symmetry, if any, can dramatically reduce
this number.

 1 X = 1. This option is the least expensive and least accurate.
 2 X = 2. (Default)
 4 X = 4.
 6 X = 6. This methods is the most expensive and most accurate.

DELTA N Step size (in atomic units) for finite differencing. (Default is 0.01)

NGRADS N For methods computing energies of several states at once (e.g. CI, MCSCF,
TDHF, TDDFT, MCQDPT2, XMCQDPT2) this option requests Firefly to
compute gradients for an N number of (lowest) energy states. The default is
NGRADS=1, i.e. the gradient will only be computed for the lowest energy state.
Use of this option does not introduce any additional computational overhead. For
TDHF/CIS/TDDFT, the NGRADS numbering excludes the reference ground state
energy. Note, the value of NGRADS should not be larger than the actual number
of states available! (Default is 1)

ISTATE N This option selects the target state of interest, i.e. the state which’ gradient is to be
used by other parts of the program, for example during geometry optimization
involving numerical gradients. This option is intended for use together with the
NGRADS option. For instance, to optimize the second root of TDDFT or
XMCQDPT, set NGRADS equal to or greater than 2, set ISTATE to 2, and
properly set other relevant parameters controlling the number of computed roots
during TDDFT or XMCQDPT procedure to capture at least two states.
(Default is 1)

JSTATE N Selects the second state of interest. The default is JSTATE=0, i.e. no second state
of interest. One must provide a nonzero JSTATE together with a valid NSTATE
and ISTATE for the numerical location of interstate crossings or conical
intersections. (Default is 0)

DELROT Logical variable affecting the behavior of numerical differencing code with respect to the

elimination of rigid body rotations. Normally, DELROT does not affect optimized
geometries but does slightly affect double-numerical Hessians. This option must be
manually set .FALSE. for any RUNTYP other than OPTIMIZE or SADPOINT and for
any optimization runs that uses HSSEND=.TRUE.

 .TRUE. Selects an approximate elimination of rigid body rotations during
computations of numerical gradients, thus reducing the number of required
reevaluations of energy. (Default)

 .FALSE. Do not eliminate rigid body rotations.

CHEBSH Flag that selects the use of Chebyshev grids for finite differencing.
 .TRUE. Use Chebyshev grids.
 .FALSE. Use equidistant central finite differences. (Default)

PRAXES Controls the use of principal axes for the coordinate frame for finite differencing.
 .TRUE. Use principal axes.
 .FALSE. Do not use principal axes. This value is recommended for symmetric

molecules. (Default)

SPLINE N Selects the use of spline differentiation of order SPLINE over the selected grid
(either equidistant or Chebyshev). It has an effect only for ORDER=4 and
ORDER=6 finite differences. Valid values of SPLINE are 1, 2, 3, and 4.
SPLINE=0 disables spline differentiation. (Default is 0)

CONFIT N Variable that selects one of three dedicated finite differencing algorithms that are
the most appropriate and most precise in the vicinity of conical intersections.
Available for finite differences of ORDER=4 and 6 only. CONFIT=1, 2, and 3
select one dedicated algorithm each while CONFIT=0 selects the use of the
default (non-dedicated) algorithm. (Default is 0)

CFCOND N Parameter controlling the activation of the CONFIT procedure. When one of the
three CONFIT algorithms is requested, it will not be in action unless the condition
number of the fit obtained with the CONFIT procedure is below CFCOND. The
default is CFCOND=6.0. Smaller values effectively enable CONFIT to handle
more displacements. Larger values effectively disable CONFIT except in the
close vicinity of conical intersection. (Default is 6.0)

FNOISE N The threshold for automatic numerical noise detection. The automatic noise
detection is available only for ORDER=4 or 6 differencing. Values larger than the
default make the noise detection algorithm less sensitive to numerical noise.
(Default is 1.0D-7)

The last three options were introduced to facilitate debugging of the numerical gradient code. They are
typically not useful to users, but can be used to verify the code.

CART Flag that selects the use of either Cartesian coordinates or their symmetrized
combinations in finite differencing.

 .TRUE. Use Cartesian coordinates.
 .FALSE. Use the symmetrized combinations. (Default)

TOL N The threshold used by the numerical gradient code during the elimination of
redundant geometry displacements. It is generally not recommended to change the
default value. (Default is 1.0D-6)

IASTRT
IAEND

N Integers defining the first (IASTRT) and last atom (IAEND) for which the partial
gradient will be computed. These options can only be used with CART=.TRUE.
These keywords are useful for verifying numerical gradients without performing
the entire, more costly computation of the numerical gradient (in the normal way).
The default is to use all atoms defined in $DATA.

$RAMAN group

The $RAMAN group can be used to control the calculations of Raman activities (RUNTYP=RAMAN) by
numerical differentiation against an electric field.

EFIELD N The applied electric field strength. Recommended values are in the range 0.001 to

0.005 a.u. (Default is 0.002)

DDONLY Instructs Firefly not to perform a Raman calculation but instead obtain only the dipole

derivative tensor (required for obtaining IR intensities). Note that the dipole derivative tensor
is already calculated at the end of a successful Hessian calculation.

 .TRUE. Calculate only the dipole derivative tensor. Do not calculate the alpha
polarizability derivative tensor and do not print frequencies at the end of the job.
This requires 7 gradient evaluations: 1 in the absence of electric field and 6 with
the field turned on. This option was added as a rather cheap way to compute
GAPT charges (Cioslowski, J. J Am Chem Soc 1989, 111, 8333) with Firefly.
(Although the present implementation does not actually compute them, they can
be easily computed manually using components of the printed dipole derivative
tensor.)

 .FALSE. Calculate the alpha polarizability derivative tensor. Calculate the dipole
derivative tensor when the $DIPDR group is missing from the input. Print
frequencies, IR intensities, and Raman activities at the end of the job. This
requires 19 gradient evaluations: 1 in the absence of electric field and 18 with
various components of the electric field turned on. (Default)

$CONIC group

This group provides fine control over the behavior of the $STATPT METHOD=CONIC Lagrange multiplier
based CIs/ISCs optimizer called CONIC. In addition to the keyword of this group, CONIC is also controlled
by keywords of the $STATPT group.

SHIFT N The final target value of Δ = E j - Ei (in Hartree). For true CIs, it is almost impossible

to reliably converge calculations to values of Δ less than approx. 0.0001 Hartree. For
ISCs, it is possible to use tighter convergence criteria, up to SHIFT=1.0D-7 or
1.0D-8. The difference in convergence behavior between true CIs and ISCs is
related to non-zero non-adiabatic coupling between quasi-degenerate states in the
case of CIs and the absence of this coupling in the case of ISCs. (Default is 0.0001)

SHIFT0 N The intermediate target value of Δ = Ej - Ei (in Hartree). For CIs, the recommended

value is 0.001 Hartree. For ISCs, the recommendation is to always set SHIFT0 to
the same value as SHIFT. The CONIC optimizer first tries to converge CIs/ISCs to Δ
values equal to or below of SHIFT0 using loosened values of various convergence
thresholds. During this process (which is internally called “phase 1”), the CONIC
optimizer gathers information on the behavior of the particular system of interest.
Upon achieving the initial convergence, the optimizer switches to the original values
of various convergence thresholds and continues optimization trying to achieve
tighter convergence with a value of Δ equal to or below SHIFT. This is internally
called “phase 2”. Here, the previously gathered information is used to achieve the
final convergence. In particular, the first few optimization steps of phase 2 attempt
to rapidly decrease Δ using directed steps along the “most significant” modes while
the rest of the steps take care of the final relaxation of the “less significant” modes.
(Default is 0.0001)

HDGSS N The value to put on the diagonal of the initial diagonal guess to the Hessian matrix

of the Lagrange function. It is ignored if internal coordinates are used for the
optimization; in this case, Firefly's standard guess for the Hessian in internal
coordinates is used. (Default is 1.0)

TDE N The value of the delta energy convergence threshold (in Hartree). It defines the first

of the five tests, all of which needs to be positive for the optimization process to
complete successfully. This first test is satisfied if |TDE| is less than |Δ - shift|.
(Default is 1.0D-5)

TDXMAX N The value of the maximum primitive coordinate displacement convergence

threshold. It defines the second of the five convergence tests. The displacement
along each primitive coordinate should be less than TDXMAX. (Default is
20.0*OPTTOL of $STATPT)

TDXRMS N The value of the RMS coordinate displacement convergence threshold. It defines the

third of the five convergence tests. The RMS displacement should be less than
TDXRMS. (Default is 15.0*OPTTOL of $STATPT)

TGMAX N The threshold value for the maximum primitive component of the gradient of the

Lagrange function. It defines the fourth of the five convergence tests. The
component of the gradient along each primitive coordinate should be less than
TGMAX. (Default is 5.0*OPTTOL of $STATPT)

TGRMS N The threshold value for the RMS gradient of the Lagrange function. It defines the

last of the five convergence tests. The RMS gradient should be less than TGRMS.
(Default is 3.0*OPTTOL of $STATPT)

STPSIZ N The maximum permissible RMS length of the geometry update step in Bohr.

(Default is 0.05)

DEMAX N The maximum permissible change of the Lagrange function on every geometry

update step (in Hartree). As the change in the Lagrange function can only be
estimated, DEMAX is applied to this estimate instead of to the actual but unknown
change. (Default is 0.03)

RESET N Parameter controlling whether and when to reset the current approximation to the

Hessian of the Lagrange function. A reset is performed automatically using the value
of RESET in some internal consistency checks. The default value for reset is 10.0.
Smaller values will reset the approximate Hessian more often. To disable reset-
based tests, specify RESET= –1.0. A disabled reset can result in either negative or
positive effects on the convergence.

LSTART N Provides the initial value for Lagrange multiplier λ. A value of 0.0 instructs Firefly

to automatically compute a starting approximation to λ rather than to use a user's
input. This parameter can be used to facilitate restart of CONIC runs. (Default is
0.0)

LMAX N The upper bound on the absolute value of the Lagrange multiplier λ: |λ| ≤ LMAX.

(Default is 3.0)

TRACK Flag that provides control over the use of an additional state tracking procedure that is based
on the analysis of the values of Lagrange multipliers. This additional tracking can correct
mispredictions of the base tracking and detect the flip-flopping of states.

 .TRUE. Enable additional state tracking. (Default)

 .FALSE. Disable additional state tracking.

STAGE2 Flag that instructs the CONIC code whether the CI/ISC optimization should be started

directly from the "phase 2" of the algorithm (thus skipping the first phase) or not. This flag is
useful for restarts.

 .TRUE. Start the CI/ISC optimization directly from the "phase 2" of the algorithm.

 .FALSE. Do not start the CI/ISC optimization directly from the "phase 2" of the
algorithm. (Default)

NDOWN N Defines the number of directed steps performed at the beginning of "phase 2" of the

CONIC algorithm in order to decrease Δ to its final target value. The more steps
performed the less the "strain" is on each particular step so that the molecular
system of interest has more possibilities to relax during this procedure. (Default is 5)

RADOWN N Defines the relative decrease of Δ which the CONIC code attempts to achieve on

each step at the beginning of "phase 2" of the CONIC algorithm in order to decrease
Δ to its final target value. If non-zero, this triggers an alternative approach to the
directed decrease of Δ, namely an exponential decrease of the following form: Δnext
= Δcurrent * (1.0 - RADOWN). The default value is 0.0, i.e. not to use this approach.
Recommended values are in the range 0.1 to 0.2

TRDOWN N The multiplier for the TRMAN and TRMIN variables of the $STATPT group, which

is applied when switching from "phase 1" to "phase 2" of the CONIC code. (Default
is 0.2)

FILTER N The upper limit on the absolute values of the approximate Hessian matrix

eigenvalues of the Lagrange function. Any values larger than FILTER are filtered
off and zeroed. (Default is 5.0D+5)

DIABAS Flag that directs the CONIC code whether or not to construct approximate diabatic states

based on the extremals of the gradients and to use these diabatic states rather than adiabatic
ones during the optimization of MECIs/MECPs. Note: with this option turned on, the value
of λ at the MECI/MECP point will always be equal 1.0, so it can no longer be used to
characterize the MECI/MECP type. This option is still experimental as of Firefly version
8.0.0.

 .TRUE. Construct approximate diabatic states based on the extremals of the gradients
and use them during the optimization.

 .FALSE. Use adiabatic states during the optimization. (Default)

TOLS N1,N2,… Array containing undocumented parameters defining various details of the

CONIC algorithm's behavior. These parameters are implementation-dependent
and are therefore not documented at this time.

MULTIW This keyword is a duplicate of the MULTIW keyword of the $MCAVER group and exists for

historical reasons. See the $MCAVER group for a description. It is recommended to use the
$MCAVER version of this keyword.

If specified, this keyword overrides the value of MULTIW of the $MCAVER group.

$FMM group

This group controls the quantum fast multipole method (QFMM) evaluation of Fock matrices. QFMM is
turned on by the logical variable QFMM in the $INTGRL group. The defaults of the keywords in $FMM are
reasonable, so there is little need to give this input.

QOPS A flag that provides control over the use of the Quantum Optimum Parameter Searching

technique, which finds an optimum FMM parameter set.
 .TRUE. Use Quantum Optimum Parameter Searching. (Default)
 .FALSE. Do not use Quantum Optimum Parameter Searching. See the note below.

If QOPS=.FALSE. the ITGERR value is not used. In this case the user should specify the following
parameters:

The following are additional useful options which are either Firefly specific or not yet documented in the
GAMESS (US) manual:

METHOD Controls disk vs. CPU usage during the first (FMM) part of the calculation. At present,

FULLDRCT is equivalent to SEMIDRCT. SEMIDRCT uses less disk space and is usually
faster than DISK, especially for very large systems.

 DISK Use the disk-based method.
 SEMIDRCT Use the semi-direct method. (Default)
 FULLDRCT Use the fully direct method.

ITGERR N Target error in final energy, to 10–-ITGERR Hartree. The accuracy is usually better than
the setting of ITGERR. In fact QFMM runs should suffer no loss of accuracy or be
more accurate than a conventional integral run. (Default is 7)

NP N The highest multipole order for FMM. (Default is 15)

NS N The highest subdivision level. (Default is 2)

IWS N The minimum well-separateness. (Default is 2)

IDPGD N Point charge approximation error 10–IDPGD of the Gaussian products. (Default is 9)

IEPS N Very fast multipole method (vFMM) error 10–IEPS. (Default is 9)

NUMRD N A positive integer that controls disk read caching during FMM, as well as the
granularity of the static/dynamic load balancing during parallel QFMM runs. The
default value is reasonable in most cases. (Default is 10)

MODIFY A flag to allow the QOPS code to modify the ICUT and ITOL variables of $CONTRL

group.
 .TRUE. Allow. Though it provides better compatibility with GAMESS (US), it is

generally not recommended to use this option.
 .FALSE. Do not allow. (Default)

MQOPS Determines whether it is allowed to manually input SCLF and NS when QOPS=.TRUE.
 0 SCLF and NS are determined automatically. (Default)
 1 User provided values of SCLF and NS override those found by QOPS.

STATIC Provides control over the use of static load balancing (SLB) during FMM part of

calculations even if DLB is activated. The default is .TRUE. because in the case of
homogeneous environment the static load balancing is implemented much more efficient.

 .TRUE. Enable SLB. (Default)
 .FALSE. Disable SLB.

NEARJ Selects the routine used to calculate near field Coulomb terms.
 0 Selects an optimal default based on FSTINT & REORDR settings in $CONTRL.

(Default)
 1 Selects use of a bugfixed/improved GAMESS (US)-based routine using the HONDO

integral package.
 2 Selects use of a Firefly specific routine based on the fastints code, which is generally

much faster. This option requires FSTINT and REORDR to be set in $CONTRL.

LEX Selects the routine used to calculate HF exchange terms.
 0 Selects an optimal default based on the FSTINT & REORDR settings in $CONTRL, as

well as on the molecular symmetry. (Default)
 1 Selects the use of a bugfixed/improved GAMESS (US)-based routine using HONDO

integral package. One should take into account that this implementation of linear
exchange is by design to some degree approximate and is not fully equivalent to direct
SCF, although in most cases one can safely neglect this fact.

 2 Selects the use of a fastints based routine which evaluates some extra integrals but is the
only part of the QFMM which can take into account the molecular symmetry. It is
strictly equivalent to the direct SCF. For highly-symmetrical systems, this is faster than
any other available method. It requires FSTINT to be set in $CONTRL.

 3 Selects the use of a fastints based routine which evaluates the minimal number of all the
necessary two-electron integrals and is also strictly equivalent to direct SCF. It does not
exploit molecular symmetry though. For low-symmetry systems, this is the fastest
method available. It requires FSTINT and REORDR to be set in $CONTRL.

SCLF N The FMM cube scaling factor must be greater or equal to 1.00. (Default is 1.00)

SKIP1 A flag that modifies the behavior of the inner loop of the two-electron integral selection code

of the LEX=1 exchange routine. See also the description of the STRICT keyword.
 .TRUE. GAMESS (US)-style behavior. (Default)
 .FALSE. Makes the loop more precise at the cost of some CPU overhead.

SKIP2 A flag that modifies the behavior of the outer loop of the two-electron integral selection code

of the LEX=1 exchange routine. See also the description of the STRICT keyword.
 .TRUE. GAMESS (US)-style behavior. (Default)
 .FALSE. Makes the loop more precise at the cost of some CPU overhead.

STRICT A flag that modifies the behavior of the density matrix sorting and nonzero elements

selection for the LEX=1 exchange routine. The default is .FALSE. because even if one sets
SKIP1=.FALSE. SKIP2=.FALSE. STRICT=.TRUE. the LEX=1 routine is not exactly
equivalent to direct SCF while the CPU overhead is very significant.

 .TRUE. Make the density matrix sorting and nonzero elements selection more precise at
the cost of some CPU overhead.

 .FALSE. GAMESS (US)-style behavior. (Default).

$SCF group

This group provides additional control over the Hartree-Fock, DFT, or GVB SCF steps. Some of its
keywords are required for GVB open shell or perfect pairing wavefunctions.

Important: unless indicated otherwise (such as for the DIIS and SOSCF keywords), the terms ‘RHF’,
‘ROHF’, and ‘UHF’ refer to both Hartree-Fock and DFT wavefunctions.

DIRSCF Specifies whether the SCF type is direct or conventional.

 .TRUE. Direct SCF calculation. For every iteration, the integrals are recomputed as
needed. This options allows use of the fastints code (see $CONTRL). This
keyword also selects direct MP2, MP3, or MP4 computations, if requested.

 .FALSE. Conventional SCF calculation. The integrals are stored on the disk. (Default)

FDIFF Flag used to request incremental Fock matrix formation. This will compute only a change in

the Fock matrices since the previous iteration, rather than recomputing all two-electron
contributions. This saves much CPU time in the later iterations as small contributions are
neglected (as controlled by various cutoff thresholds – of these, the ICUT of $CONTRL is
the most important one). Incremental Fock matrix formation pertains only to direct SCF and
is implemented only for the RHF, ROHF, and UHF.
Cases with many diffuse functions in the basis set sometimes oscillate at the end rather than
converging. Firefly is able to detect this and will automatically turns off the FDIFF option
when needed, so there is usually no need to turn this option off manually. The use of this
detection is controlled through the FDCTRL option below.

 .TRUE. Use incremental Fock matrix formation. (Default for SCFTYP=RHF, ROHF,
and UHF)

 .FALSE. Do not use incremental Fock matrix formation. (Enforced for SCFTYP=GVB)

FDCTRL Flag used to request automatic control over incremental Fock matrix formation code.

 .TRUE. Turn off incremental Fock matrix formation as appropriate. (Default)

 .FALSE. Do not turn off incremental Fock matrix formation automatically.

XFDIFF Flag used to request a variation of the incremental Fock matrix formation approach which is

based on the orthogonal factorization of the density matrix. This approach can be a bit faster
than the standard FDIFF code. This flag does not have effect if FDIFF is turned off. This
option is programmed only for RHF.

 .TRUE. Use orthogonal factorization of the density matrix during incremental Fock
matrix formation.

 .FALSE. Do not use orthogonal factorization of the density matrix during incremental

Fock matrix formation (Default).

XFDNR N The maximum number of re-orthogonalizations to be used by the XFDIFF code.

Values larger than the default may improve stability somewhat by the cost of
additional CPU overhead. (Default is 2)

UHFNOS Flag controlling generation of the natural orbitals of a UHF wavefunction.

 .TRUE. Generate natural orbitals of the UHF wavefunction.

 .FALSE. Do not generate natural orbitals of the UHF wavefunction. (Default)

MVOQ N Form modified virtual orbitals, using a cation with N electrons removed.

Implemented for restricted, restricted open, and GVB wavefunctions. If necessary to
reach a closed shell cation, the program might remove N+1 electrons. A typical
value of N is 6. A value of 0 skips the formation of MVOs. (Default is 0)

NPUNCH SCF punch option.

 0 Do not punch out the final orbitals.

 1 Punch out the occupied orbitals. For GVB wavefunctions, orbitals in geminal pairs
will be punched out as well.

 2 Punch out the occupied and virtual orbitals. (Default)

JKMAT Controls the optional formation and printout of closed shell J and K matrices. This option is

mainly intended for debug purposes. It is currently implemented for RHF only.

 .TRUE. Enable this optional formation and printout.

 .FALSE. Disable this optional formation and printout. (Default)

The next options control the SCF convergence criteria.

NCONV N SCF density convergence threshold. Convergence is reached when the density

change between two consecutive SCF cycles is less than 10 (-N). One more cycle is
executed after reaching convergence. Note that accuracy higher than the default is
sometimes needed, especially in cases with a partial linear dependency in the basis.
Insufficient accuracy gives questionable gradients. Note that the DENTOL keyword
(see below) can be used if finer control over the density convergence threshold is
desired. (Default is 5, except for CI or MP2 gradients where it is 6)

ENGTHR N Energy convergence threshold for SCF, in Hartrees. (Default is 1.0D-9)

DIITHR N DIIS error convergence threshold for SCF, in Hartrees. (Default is 1.0D-7)

SOGTHR N SOSCF gradient convergence threshold for SCF, in Hartrees. (Default is 1.0D-12)

DENTOL N Maximum density matrix change convergence threshold for SCF. This keyword has

been implemented to replace the NCONV keyword, providing finer control over the
SCF density convergence threshold. A value of 0.0 means to use the value of
NCONV to compute DENTOL such that DENTOL = 1.0*10-NCONV (making the two
keywords specify the same threshold). Valid values are from 1.0D-4 to 0.0. (Default
is 0.0)

The next options control the SCF convergence procedure. Note that when either DIIS or SOSCF is specified,
any other accelerator is put in abeyance. If DIIS and SOSCF are both specified, only SOSCF will be used.

DIIS Controls the use of Pulay’s DIIS extrapolation method. Note that DIIS can only be used for

GVB wavefunctions with NPAIR=0 or NPAIR=1.

 .TRUE. Enables use of the DIIS method. (Default for unrestricted wavefunctions, non-
Abelian group ROHF wavefunctions, and DFT)

 .FALSE. Disables use of the DIIS method. (Default for RHF, Abelian group ROHF, GVB,
and R and RO semiempirical wavefunctions)

SOSCF Controls the use of the second order SCF orbital optimization method.

 .TRUE. Enables use of the SOSCF method. (Default for RHF, Abelian group ROHF,
GVB, and R and RO semiempirical wavefunctions)

 .FALSE. Disables use of the SOSCF method. (Default for unrestricted wavefunctions,
non-Abelian group ROHF wavefunctions, and DFT)

EXTRAP Controls the use of Pople extrapolation of the Fock matrix.

 .TRUE. Enables Pople extrapolation. (Default)

 .FALSE. Disables Pople extrapolation.

DAMP Controls the use of Davidson damping of the Fock matrix. The damping factor will be

determined automatically, but can be controlled using other keywords (see below).

 .TRUE. Enables Davidson damping. (Default for DFT)

 .FALSE. Disables Davidson damping. (Default for HF, GVB, and semi-empirical
wavefunctions)

SHIFT Controls the use of variable level shift of the Fock matrix. This option is cannot be used with

the DIIS and SOSCF convergers.

 .TRUE. Enables level shifting. (Default for DFT wavefunctions.)

 .FALSE. Disables level shifting. (Default for non-DFT wavefunctions.)

FSHIFT N Specifies a fixed level shift to be used during SCF iterations (in Hartree). Note:

unlike SHIFT level shifting, FSHIFT can be used together with DIIS. The default
value of 0.1 is appropriate in most cases. Use of larger values of FSHIFT can be
helpful in converging difficult SCF cases. While larger values of FSHIFT may help
diverging SCF to converge, they usually negatively impact the SCF convergence
rate. FSHIFT=0.0 completely disables fixed level shifting. This option is not
programmed for GVB. Use of FSHIFT disable level shifting with SHIFT. (Default is
0.1)

RSTRCT Controls the use of restriction for orbital interchanges.

 .TRUE. Restrict orbital interchanges.

 .FALSE. Do not restrict orbital interchanges. (Default)

DEM Controls the use of the direct energy minimization method. This option has been

implemented only for restricted wavefunctions (DFT wavefunctions are not allowed though).
In addition, it can only be used with conventional SCF.

 .TRUE. Enables the use of direct energy minimization.

 .FALSE. Disables the use of direct energy minimization. (Default)

The next options provide further control over the SCF convergence procedure.

FSTDII Flag used to request the use of the new, faster code in DIIS computations. New code forms

DIIS error vector significantly faster than an older, standard DIIS code. This flag does not
have effect if DIIS is turned off. This option not programmed for GVB.

 .TRUE. Use the new code in DIIS computations. (Default for RHF, ROHF, and UHF)

 .FALSE. Do not use the new code in DIIS computations. (Default for GVB)

ETHRSH N Energy error threshold for initiating DIIS. The DIIS error is the largest element of

e=FDS-SDF. Increasing the value of ETHRSH forces DIIS to be activated sooner.

(Default is 0.5 Hartree)

MAXDII N Maximum size of the DIIS linear equations, so that at most MAXDII-1 Fock

matrices are used in the interpolation. (Default is 10)

DIIMOD N Selects the particular algorithm to be used to remove old error vectors from the DIIS

subspace. Valid values are 0 to 5. One can experiment with this setting in the case of
poor DIIS convergence. (Default is 0)

DIIERR N Selects the particular form of DIIS error vector to use. Valid values are 0 and 1. A

value of 0 instructs Firefly to use a standard FDS-SDF SCF DIIS error vector. A
value of 1 is experimental. One can experiment with this setting in the case of bad
DIIS convergence. (Default is 0)

DIITOL N The threshold used to remove quasi-linearly dependent vectors from DIIS subspace.

Values below the default value may remove vectors more often. (Default is 100.0)

SOGTOL N Second order gradient threshold. SOSCF will be initiated when the orbital gradient

falls below this threshold. (Default is 0.25 Hartree)

SODIIS Flag used to request the use of a combination of the DIIS and SOSCF convergence

accelerators. This option is programmed only for RHF and is currently experimental, so it
should normally not be used.

 .TRUE. Use SOSCF+DIIS combo code.

 .FALSE. Do not use SOSCF+DIIS combo code. (Default).

DIONCE Flag used to request DIIS for the first SCF procedure and SOSCF for all subsequent SCF

procedures, e.g. at subsequent geometries during geometry optimization. This option is
currently programmed only for RHF. This option requires the DIIS option to be turned on.

 .TRUE. Use DIIS at first and SCF at all subsequent SCFs.

 .FALSE. Always use DIIS if it is turned on. (Default)

DEMCUT N Direct energy minimization threshold. DEM will not be done once the density matrix

change falls below this threshold. (Default is 0.5)

DMPCUT N Damping factor lower bound cutoff. The damping factor will not be allowed to drop
below this value. Note that the damping factor does not have to equal zero to achieve
valid convergence (see Hsu, Davidson and Pitzer, J. Chem. Phys. 1976, 65, 609,
especially the section on convergence control), but it should not be astronomically
high either. (Default is 0.0)

The next four options apply to virial scaling. This has been implemented for SCFTYP=RHF, ROHF, and
UHF (though not for DFT wavefunctions), with RUNTYP=ENERGY, OPTIMIZE, and SADPOINT. For
more information on this functionality, which is most economically employed during a geometry search, see
M. Lehd and F. Jensen, J. Comput. Chem. 1991, 12, 1089-1096.

VTSCAL Flag that requests that the virial theorem be satisfied. An analysis of the total energy as an

exact sum of orbital kinetic energies is printed.

 .TRUE. The virial theorem is to be satisfied.

 .FALSE. The virial theorem does not have to be satisfied. (Default)

SCALF N Initial exponent scale factor when VTSCAL is in use, useful when restarting.

(Default is 1.0)

MAXVT N Maximum number of iterations (at a single geometry) to satisfy the energy virial

theorem. (Default is 20)

VTCONV N Convergence criterion for the VT, which is satisfied when 2<T> + <V> + R * dE/dR

is less than VTCONV. (Default is 1.0D-6 Hartree)

The next parameters define the GVB wavefunction. Note that ALPHA and BETA also have meaning for
ROHF. See also MULT in the $CONTRL group. The GVB wavefunction assumes orbitals are in the order
core, open, pairs. Note that the defaults for F, ALPHA, and BETA depend on the state chosen. Defaults for
the most commonly occurring cases are stored internally. See the chapter on GVB in the Firefly manual for
examples of other cases.

NCO N The number of closed shell orbitals. The default should almost certainly be changed!

(Default is 0)

NSETO N The number of sets of open shells in the function. The maximum allowed value is

10. (Default is 0)

NO N1,N2,… Array giving the degeneracy of each open shell set. (Default is 0,0,...)

NPAIR N The number of geminal pairs in the GVB wavefunction. The maximum allowed

value is 12. A value of 0 corresponds to open shell SCF. (Default is 0)

CICOEF N1,N2,… Array of ordered pairs of CI coefficients for the GVB pairs. For example, a two

pair case for water could be CICOEF(1)=0.95,-0.05,0.95,-0.05. If not yet
normalized (as in the default), CICOEF will be automatically normalized. This
parameter is useful for restarting a GVB run with the current CI coefficients.
(Default is 0.90,-0.20,0.90,-0.20,...)

COUPLE Flag controlling the input of F, ALPHA, and BETA.

 .TRUE. Use input for F, ALPHA, and BETA.

 .FALSE. Ignore input for F, ALPHA, and BETA. (Default)

F N1,N2,… Array of fractional occupations.

ALPHA N1,N2,… Array of A coupling coefficients given in lower triangular order (i.e.

alpha11,alpha21,alpha22,alpha31,alpha32,alpha33,alpha41,...).

BETA N1,N2,… Array of B coupling coefficients given in lower triangular order.

$DFT group

This group contains keywords relevant when the DFTTYP keyword of the $CONTRL group is specified, i.e.
for DFT runs, TDDFT runs, and for any other runs which are directly or indirectly affected by DFTTYP.

NRAD N The default number of radial points per atom. (Default is 63)

NRDATM N1,N2,… Integer array of up to 128 elements. This array can be used to change the actual

value of NRAD on a per atomic number basis. For example, setting
NRDATM(6)=99 will apply a radial grid of 99 points to all carbon atoms. The
entry NRDATM(128) is used for dummy atoms with no charge. The default is to
use values equal to NRAD for all elements.

LMAX The maximum order of the Lebedev angular grid to use. Below is a list of allowed orders and

the number of points per radial shell associated.
 3 6 points per radial shell
 5 14
 7 26
 9 38
 11 50
 13 74
 15 86
 17 110
 19 146
 21 170
 23 194
 25 230
 27 266
 29 302 (Default)
 31 350
 35 434
 41 590
 47 770
 53 974
 59 1202
 65 1454
 71 1730
 77 2030
 83 2354
 89 2702
 95 3074
 101 3470
 107 3890
 113 4334

 119 4802
 125 5294
 131 5810

LMIN N The minimum allowed order of the Lebedev angular grid to use. The default value is

computed based on the basis set properties and minimizes some errors that arise from to
the use of numerical quadratures. Normally, one does not need to change the default
value. Furthermore, it is not recommended to decrease it.

LMXATM N1,N2,… Integer array of up to 128 elements. This array can be used to change the value of

LMAX on a per atomic number basis. For example, setting LMXATM(1)=29
will apply an angular grid of 29th order to all hydrogen atoms. The entry
LMXATM(128) is used for dummy atoms with no charge. The default is to use
values equal to LMAX for all elements.

ANGPRN Flag that activates/deactivates angular grid pruning as a function of the radius through the use

of a scheme similar to the one proposed by Murray, Handy and Laming (MHL).
 .TRUE. Use angular grid pruning. (Default)
 .FALSE. Do not use angular grid pruning. This will slow down the calculations but will

result in more accurate results.

KAP N The parameter Ktheta used for angular pruning. The default value is 5.0 as

recommended by MHL. Increasing this value to, say, 10.0 will improve precision at
the cost of performance. This parameter has no effect if angular pruning is not used.
(Default is 5.0)

RADPRN Flag that activates/deactivates radial grid pruning. Note: in order to get correct results for

systems having atoms with no associated basis, one must disable radial pruning.
 .TRUE. Use radial grid pruning. (Default)
 .FALSE. Do not use radial grid pruning. This will slow down calculations to some degree

but may improve precision.

RMXATM N1,N2,… Integer array of up to 128 elements. This array can be used to change the atomic

cutoff radii which are used during radial pruning, on a per atomic number basis.
For example, setting RMXATM(8)=6 will set the effective radius of all oxygen
atoms to 6 Ångstrom. The entry RMXATM(128) is used for dummy atoms with
no charge. The default values are probably much larger than is actually necessary
and depend on the basis set used.

CUTOFF N Contributions to the DFT Fock matrix due to batch of angular points are ignored if they

are smaller than CUTOFF by an absolute value. (Default is 1.0D-10)

CUTAO N If the absolute value of an atomic basis function is smaller than CUTAO, it will be set to

zero during calculations. (Default is 1.0D-10)

CUTWGT N If the absolute value of a weight associated with a grid point is less than CUTWGT, this

point will not be taken into account during DFT calculations. (Default is 1.0D-20)

CUTORB N Contributions to the DFT Fock matrix due to batch of orbitals are ignored if they are

smaller than CUTORB by an absolute value. (Default is 1.0D-15)

CUTGG1
CUTGG2
CUTGG3
CUTGG4

N Various cutoffs used during the calculation of the grid weights derivatives contributions
to the molecular gradients. The default values are 1.0D-13, 1.0D-13, 1.0D-13, and 1.0D-
30, respectively, and are probably too strict.

B3LYP Selects which of the VWN functionals should be used in the B3LYP functional. Note that this

choice can also be made by setting DFTTYP as either B3LYP1 or B3LYP5.
 NWCHEM Use VWN formula 1 RPA (sometimes referred to as VWN formula 3). This

makes the B3LYP functional identical to the one used in NWChem and
Gaussian. (Default)

 GAMESS Use VWN formula 5. This makes the B3LYP functional identical to the one
used in GAMESS.

O3LYP Provides control over the weight of non-local exchange in the O3LYP1 and O3LYP5

functionals. This option exists because there are some ambiguities in O3LYP-related papers. It
cannot be said which of the two weights is correct, instead, these two implementations should
be considered as two different functionals.

 DEFAULT Set the weight so that the resulting functionals are identical to those used by
various QC programs. (Default)

 GAUSSIAN Set the weight so that the resulting functionals are identical to the ones used
in Gaussian 03 Rev D.01 and above.

HFX N1,N2 The weight of the exact (i.e. Hartree-Fock) exchange. This option is supported

only for hybrid functionals. The default value is set as is appropriate for a
particular value of DFTTYP. For non-self-consistent double-hybrid functionals an
extended form of this keyword exists, namely HFX(2), which allows one to
change the weight of the exact exchange in the parent DFT functional (see the
description of PARENT keyword below).

PRJGRD Flag that requests a special treatment of the computed DFT gradient so that the contributions

of translational and rotational contaminants to the gradient are projected out and eliminated.
 .TRUE. Project out these contributions. This increases the precision of computed

gradients. (Default)
 .FALSE. Do not project out these contributions.

METHOD Selects the method used to construct DFT contributions to the Fock matrix.
 0 Use an adaptive strategy based on both density matrix and MOs. (Default)
 1 Use a density-matrix driven method.
 2 Use an MO driven method.

FIXP81 Flag that pertains to the Perdew-Zunger 1981 LDA correlation. In the paper defining this

functional, its parameters were given with only four digits. As there are two branches of the Ec
fit, the two parameters of this functional were selected to be such a functions of other
parameters that Ec and Vc are globally continuous. However, the four-digit precision is not
enough for this purpose as it causes small deviations from the exact continuity which, in turn,
results in errors such as non-precise gradients. Tight geometry optimizations in particular are
not possible with this functional. By default, Firefly uses parameters redefined with a 15 digit
precision, thus allowing the globally continuous merging of the two branches of the fit and
achieving a smooth Ec and Vc. This pertains to P81LDA as well as to all functionals using the
P81 local correlation functional. However, this corrected fit does result in a slightly different
functional.

 .TRUE. Use 15 digit precision. (Default)
 .FALSE. Do not use the 15 digit precision. The causes the functional to reverted to its

original, slightly discontinuous form.

CPT2 N The overall amount of the MP2-like correlation to be used as a part of a double hybrid

functional. This option pertains only to double hybrid functionals. The default value is
set as is appropriate for a particular value of DFTTYP.

SCS N1,N2 Array of two elements that provides control over the scaling of the individual

contributions of the singlet and triplet pairs to the MP2-like energy. SCS(1) defines a
scaling factor for the contributions from singlet pairs (a.k.a. the spin opposite part of
the MP2-like term). SCS(2) defines a scaling factor for the contributions from triplet
pairs (a.k.a. the same spin part of the MP2-like term). The two parts of an MP2-like
term are first multiplied by the corresponding scaling factors, the results are added,
and sum is multiplied by CPT2 to form the final contribution to the DFT energy. This
option pertains to double hybrid functionals only. The default values of SCS are set
as is appropriate for a particular value of DFTTYP.

PARENT For non-self-consistent double-hybrid functionals, this keyword defines the parent DFT

functional that is used to generate the MOs and density. This keyword can be used to give the
name of any supported non-local functional. The default value is PARENT=DEFAULT which
means to use the parent functional used in the original formulation of the double-hybrid
functional used. This option pertains to non-self-consistent double hybrid functionals only.

CF3 N Allows one to modify some of the complex functionals in Firefly. The particular
meaning of this keywords depends on the functional. Historically, this was “coefficient
#3” thus the name of variable.

$DFTD group

This group controls the various parameters and settings of Grimme’s empirical dispersion correction scheme
(a.k.a. DFT-D). The DFT-D scheme is enabled by setting DFTD=.T. in $CONTRL. Note that a few DFT
functionals, when selected, automatically enable the use of a specific version of DFT-D.

VERSN Selects the version of the DFT-D scheme.
 2 DFT-D version 2.
 3 DFT-D version 3. (Default)
 4 DFT-D version 3 with Becke-Johnson damping. This version will be referred to as

version 4 for the remainder of this keyword list.

The following keywords specify the most important parameters of the correction model. Optimal parameters
recommended by Grimme have been implemented for various functionals (see the manual for an overview of
functionals for which parameters are available). As such, the default values of these keywords depend on the
functional and DFT-D scheme version that have been specified. It is important to note that, when specifying
a custom set of parameters, all five of the above parameters should be given a value, even those which are
zero or not used by the DFT-D version used!

S6 N The s6 global scaling factor, the main scaling factor in DFT-D version 2. For DFT-D
version 3 and 4, this parameter is of lesser importance and is usually set to 1.0 (except
for double hybrid functionals).

RS6 N For DFT-D version 2, this parameter is used in calculating the dampening factor – its
value is 1.1 (for all functionals). For DFT-D version 3, this parameter corresponds to
the sr,6 scaling factor, which is the main scaling factor in this version. For DFT-D
version 4, it corresponds to the α1 free fit parameter.

S18 N The s8 scaling factor used in DFT-D version 3 and 4. For DFT-D version 2, this
parameter has no function.

RS18 N For DFT-D version 3, this parameter is used in calculating the dampening factor, its
value being 1.0 except with Slater exchange (where its value is 0.697). For DFT-D
version 4, this parameter corresponds to the α2 free fit parameter. For DFT-D version
2, this parameter has no function.

ALP N The global scaling parameter of the damping function (which dampens the dispersion
correction at short ranges). Its value is usually 20 for DFT-D version 2, and 14 for
DFT-D version 3 and 4. For DFT-D version 4, this parameter is only used when
ABC=.T. (see below).

The following four keywords are aliases for some of the parameters above.

The remaining keywords in this group are used less often.

ABC Flag that enables/disables the three-body non-additive contribution to the dispersion correction.

Analytical gradients are not available for DFT-D with the three-body contribution enabled.
 .TRUE. Enable the three-body non-additive contribution. This forces the use of numerical

gradients.
 .FALSE. Disable the three-body non-additive contribution. (Default)

TZ Flag that selects the use of a special set of DFT-D version 3 parameters optimized for

Ahlrichs' TZVPP basis set. These parameters are available for a limited set of functionals
only. See the main chapter on DFT-D in the manual for an overview.

 .TRUE. Enable the use of the special DFT-D3 parameters.
 .FALSE. Disable the use of the special DFT-D3 parameters. (Default)

SR6 N An alias for the RS6 keyword.

S8 N An alias for the S18 keyword.

ALPHA1 N An alias for the RS6 keyword.

ALPHA2 N An alias for the RS18 keyword.

K1 N The k1 parameter, which controls the coordination number dependent dispersion.
(Default = 16)

K2 N The k2 parameter, which controls the coordination number dependent dispersion.
(Default = 1.3333333)

K3 N The k3 parameter, which controls the coordination number dependent dispersion.
(Default = -40)

RTHR N A threshold that can speedup DFT-D calculations on large molecules. (Default is
20000.0D0)

RHTR2 N A threshold that can speedup DFT-D calculations on large molecules. (Default is
1600.0D0)

NG Flag which requests numerical DFT-D gradients. As analytical DFT-D gradients are

available, the default is .FALSE.
 .TRUE. Calculate gradients numerically.
 .FALSE. Calculate gradients analytically. (Default)

$MP2 group

The $MP2 group controls second order Møller-Plesset perturbation theory (MP2) runs, requested by
MPLEVL=2 in $CONTRL. In addition, this group also controls the ALTTRF integral transformation
stage of MCQDPT2 and XMCQDPT2 calculations.

MP2 energies are available for RHF, high spin ROHF, and UHF wavefunctions. Analytic gradients and
the first order correction to the wavefunction (i.e. properties) are available for RHF only. The old-style
and improved serial MP2 gradient programs are also controlled by the $MP2 group. See the description of
the $MP2GRD group for control over the new MP2 energy gradient program. See the DIRSCF keyword
in the $SCF group to select direct MP2.

See the $MCQDPT and $XMCQDPT groups for the second order perturbation theory based on CASSCF
wavefunctions. See the $MP3 and $MP4 groups for third (MP3) and fourth (MP4) order Møller-Plesset
perturbation theory.

METHOD Selects one of several available MP2 programs (i.e. the integral transformation method).
 1 Selects the use of the new RHF/ROHF/UHF MP2 energy program. This program is

intended to handle large systems (e.g. 500 AOs or more). It is semi-direct, very fast,
and requires much less memory compared to other MP2 methods. It is definitely
the method of choice for large jobs. It can be used with either conventional or direct
SCF. As this method requires the 2-electron AO integrals to be reevaluated four
times, there can be a considerable overhead for small jobs. This is the only reason
why this method is not turned on by default.

 2 Selects the serial or parallel segmented MP2 energy integral transformation. This
transformation can be either conventional or direct, see the DIRSCF keyword in
$SCF. This is the default method for RHF runs, provided enough memory is
available. If this however is not the case, Firefly will try to use METHOD=3.

 -2 For UHF and ROHF, selects the modified serial or parallel segmented MP2 energy
integral transformation which requires approximately half of memory required with
METHOD=2. This transformation can be either conventional or direct, see the
DIRSCF keyword in $SCF. This is the default method for ROHF and UHF runs,
provided enough memory is available. If this however is not the case, Firefly will
try to use METHOD=3.

 3 Alternative conventional out-of-core MP2 energy transformation (which can be
used in serial runs only). It requires more disk, but less memory than the
METHOD=2 transformation. It cannot run in direct mode. This method will be
used if the default METHOD=2 or -2 cannot be run due to not enough memory
being available.

NWORD N Controls the memory usage of the MP2 method, in words. The default value for

NWORD is 0, which means that all available memory can be used.

NCORE N Omits the first N occupied alpha and beta orbitals from the calculation. The default
equals is the number of chemical core orbitals.

CUTOFF N Transformed integral retention threshold. (Default is 1.0D-9).

MP2PRP Flag that requests the calculation of properties for RHF MP2 jobs with

RUNTYP=ENERGY. This is appreciably more expensive than just evaluating the 2nd
order energy correction alone. Properties are always computed during gradient runs, when
they are an almost free byproduct.

 .TRUE. Calculate properties.
 .FALSE. Do not calculate properties. (Default)

LMOMP2 Requests Firefly to analyze the closed shell MP2 energy in terms of localized orbitals.

Any type of localized orbital may be used. This option is implemented for RHF only, and
its selection forces the use of the METHOD=3 transformation.

 .TRUE. Enables analysis in terms of localized orbitals.
 .FALSE. Disables analysis in terms of localized orbitals. (Default)

OSPT Selects the type of open shell spin-restricted perturbation. This parameter applies only to

run with SCFTYP=ROHF.
 RMP Selects RMP (a.k.a ROHF-MBPT) perturbation theory. (Default)
 ZAPT Selects Z-averaged perturbation theory. At present, ZAPT jobs can only be

run in serial and can only use the METHOD=2 integral transformation.

AOINTS Selects the method for AO integral storage during conventional integral transformations

in parallel runs. The default value is defined by the AOINTS keyword of $SYSTEM
group.

 DUP Stores duplicated AO lists on each node. Recommended for parallel computers
with slow inter-node communication, e.g. Ethernet.

 DIST Distributes the AO integral file across all nodes. Recommended for parallel
computers with high speed communications.

SCS N1,N2 Array of two elements that provides control over the scaling of the individual

contributions of the singlet and triplet pairs to the MP2 energy. SCS(1) defines a
scaling factor for the contributions from singlet pairs (a.k.a. the spin opposite
part of the MP2-like term). SCS(2) defines a scaling factor for the contributions
from triplet pairs (a.k.a. the same spin part of the MP2-like term). To compute
SCS-MP2 energies, use SCS(1)=1.2,0.333333333333333. The use of non-
default scaling factors forces METHOD=1 MP2 energy code. Gradient are
available only for MP2 without scaling. The default is SCS(1)=1.0,1.0, i.e. not
to use scaling.

The settings below pertain only to the METHOD=1 MP2 energy program and the ALTTRF integral
transformation.

DIRECT Provides control over the handling of AO integrals.
 .TRUE. Selects the fully direct handling of AO integrals. This somewhat reduces the

amount of disk space needed at the cost of extra CPU time.
 .FALSE. Selects the semidirect handling of AO integrals. (Default)

PACKAO Provides control over the packing of AO integrals.
 .TRUE. Activates the packing of AO integrals during METHOD=1 semidirect MP2

calculations, thus slightly reducing the amount of disk space needed. (Default)
 .FALSE. Do not pack AO integrals.

MNRECL N The minimum allowed record size (in 12-byte elements) for the direct access file

used during METHOD=1 MP2 calculations. Reducing the value of MNRECL
somewhat increases the job execution time but decreases the amount of memory
needed for calculations. It is not recommended to set MNRECL below 500.
(Default is 20000)

SVDISK This option selects whether the ROHF MP2 program may use some extra disk space if

this is needed to reduce the job CPU time.
 .TRUE. Disable the use of extra disk space.
 .FALSE. Allow the ROHF MP2 program to use some extra disk space.

(Default)

SPARSE This options controls how the matrix-matrix multiplication is performed during MP2

METHOD=1 runs. By default, Firefly tries to automatically determine and use the most
appropriate strategy. Note that the automatic selection may not work well in some cases!

 .TRUE. Selects the use of special matrix-matrix multiplication routines. This
strategy is optimal for a sparse list of two-electron integrals, i.e. for
large molecules. In addition, use the of these routines always requires
less memory compared to the amount needed with
SPARSE=.FALSE.

 .FALSE. Selects the use of standard BLAS level 3 routines. This is the best
choice when the list of two-electron integrals is dense, i.e. for small to
medium size molecules.

The settings below pertain only to the MP2 gradient programs. There are three different MP2 gradient
programs in Firefly: the old one, the improved one, and the new one. The old MP2 gradient program is
less efficient except for small systems and does not run in parallel. The improved MP2 gradient program
is usually much more efficient and requires less memory but does not run in parallel. The new MP2
gradient program is the most efficient for large systems, uses even less memory, and runs perfectly in
parallel using the P2P interface.

GRDMET Provides control over the selection of the MP2 gradient program. GRDMET=2 uses less

memory and is usually faster, but for some combinations of computer systems and
particular tasks GRDMET=1 can be the preferred option.

 1 If METHOD=1, selects alternative strategy for the new MP2 gradient program.
Otherwise, selects old style MP2 gradient program.

 2 If METHOD=1, selects the default strategy for the new MP2 gradient program.
Otherwise, selects improved MP2 gradient program. (Default)

DM2MET Selects one of seven programmed methods for the calculation of the non-separable part of

the MP2 two-body density matrix (DM2). Relevant to the improved MP2 gradient
program only. Methods -3, -2, and -1 are precisely the same as methods 3, 2, and 1,
respectively, but use asynchronous disk I/O to eliminate I/O latency and to reduce the
total execution time. Which methods is the fastest depends on the amount of physical
memory installed. One can experiment with this option to find the optimal settings for a
particular task type and environment. Relevant only to the improved MP2 gradient
program.

 3 or -3 These methods require the least memory.
 2 or -2 These methods require the least CPU time, but probably not the least total

time.
 0 This method is definitely the slowest one.
 1 or -1 These methods are designed as a reasonable compromise. (Default)

MINMEM Flag to optionally reduce memory needs for the improved MP2 gradient program at the

cost of extra I/O.
 .TRUE. Use extra I/O to decrease memory needs.
 .FALSE. Do not use extra I/O to decrease memory needs. (Default)

MEMGRD N The maximum amount of memory (in words) to be used during the MP2 gradient

calculation. This option controls only the last stage of calculation, namely the
evaluation of the gradient integrals. A value of 0 means to use all available memory.
Relevant only to the improved MP2 gradient program. (Default is 0)

MXRECL N The maximum record size for the direct access file used during METHOD=3 MP2

energy runs and old-style and improved MP2 gradient runs. (Default is 65536 words)

MXCPIT N Controls the maximum number of AO CPHF iterations during MP2 gradient runs.

Relevant to all MP2 gradient programs. (Default value is 100)

CPTOL N Controls the maximum allowed RMS error of the approximate solution of the CPHF

equations during MP2 gradient runs. Relevant to all MP2 gradient programs. (Default
is 1.0D-10)

CHFSLV Chooses the type of CPHF solver to use. Relevant to all MP2 gradient programs.
 CONJG Selects a preconditioned conjugate gradient solver.
 DIIS Selects a DIIS-like iterative solver. (Default)

THRDII N Threshold to turn on the DIIS convergence accelerator if it was selected to solve

CPHF. Relevant to all MP2 gradient programs. (Default is 0.05)

ICUTCP N Sets the effective value of ICUT to be used by the CONJG CPHF solver when

solving CPHF equations in direct SCF mode. The main purpose of this keyword is to
avoid numerical instabilities causing the conjugate gradient solver to diverge upon
reaching near-convergence. For example, one may set ICUT to 9 or 10 while
tightening ICUTCP to 10 or 11. Relevant to all MP2 gradient programs. The default
is to use the value of ICUT of the $CONTRL group.

RENORM N A density matrix renormalization factor which may be optionally used when solving

CPHF equations in direct SCF mode. The purpose of renormalization is to increase
the numerical stability of the conjugate gradient solver working in direct SCF mode.
A value of 0.0D0 disables renormalization. Relevant to all MP2 gradient programs.
The values to try are in the range of 0.01D0 to 10.0D0. (Default is 0.0D0)

IOPARS Specifies a set of specific I/O optimization flags for the direct access files (DAFs) used by

the MP2 energy and MP2 gradient programs. The input is a 2-digit decimal value. The
least significant digit controls generic DAF I/O operations. The most significant digit
controls the behavior of "READ-THEN-WRITE-TO-THE-SAME-LOCATION"
operations. Each digit can have one of eight values, which are listed below. The default
value for this option is 74 in the case of a non-negative value of DM2MET, and 75
otherwise. For small jobs, it is recommended to set IOPARS to 64. This option does not
pertain to METHOD=1 MP2 energy and gradient programs.

 0 no particular I/O optimization;
 1 no particular I/O optimization, file cache write-through mode;
 2 optimizes file I/O for sequential access;
 3 optimizes file I/O for sequential access, file cache write-through mode;
 4 optimizes file I/O for random access;
 5 optimizes file I/O for random access, file cache write-through mode;
 6 optimizes file I/O for random access with some locality;
 7 optimizes file I/O for random access with some locality, file cache write-through

mode;

IOFLGS N1,N2,… An array of 4 elements that can be used to define I/O optimization flags for the

files DASORT and DAFL30 which are used by the METHOD=1 MP2 energy
and gradient code. The format of these flags is the same as for the IOFLGS array
of $SYSTEM group. In addition, the constant 0x00010000 (i.e. bit 16) is an alias
for 0x00004000 (i.e. bit 14). IOFLGS(1) defines I/O flags used for file DASORT
during the first stage of the MP2 calculation. IOFLGS(2) defines I/O flags used
for file DASORT during the second stage of the MP2 calculation. Similarly,
IOFLGS(3) and IOFLGS(4) defines I/O flags for file DAFL30.

$MP2GRD group

This group contains keywords relevant to the new serial/parallel MP2 gradient/properties code. Use of the
new code is enabled by the presence of the METHOD=1 setting in the $MP2 group or by running MP2
gradient runs in parallel. Its behavior can be further controlled by the GRDMET keyword in the $MP2
group.

The keywords of the $MP2GRD group can be used for fine tuning the new code. A few additional
keywords which control MP2 gradient code are part of the $MP2 group. These are CPTOL, MXCPIT,
CHFSLV, THRDII, ICUTCP, and IOFLGS. The description of these options can be found in the
documentation on $MP2 group.

CACHE Instructs whether or not Firefly should reduce the amount of disk reads during the second

MP2 gradient 2-electron integral half-transformation at the cost of some extra memory. The
default value depends on the particular job.

 .TRUE. Reduce the amount of disk reads.
 .FALSE. Do no reduce the amount of disk reads.

ASYNC Activates/deactivates asynchronous disk I/O during the 2-electron gradient computation at

the cost of some extra memory.
 .TRUE. Activates asynchronous disk I/O. (Default)
 .FALSE. Deactivates asynchronous disk I/O.

XASYNC Activates/deactivates asynchronous disk I/O during the second MP2 gradient 2-electron

integral half-transformation at the cost of some extra memory.
 .TRUE. Activates asynchronous disk I/O. (Default)
 .FALSE. Deactivates asynchronous disk I/O.

ASYSNC Activates/deactivates asynchronous "sync" (e.g., "disk flush") calls.
 .TRUE. Activates asynchronous "sync" calls.
 .FALSE. Deactivates asynchronous "sync" calls. (Default)

FUSED Used to change the ordering of the loops so that the disk I/O becomes less irregular.
 .TRUE. Change the ordering of the loops. (Default)
 .FALSE. Do not change the ordering of the loops.

DBLBF Enables/disables double buffering and asynchronous I/O for disk writes during the second

MP2 gradient two-electron integral half-transformation, at the cost of minor memory
overhead.

 .TRUE. Enables double buffering and asynchronous I/O for disk writes. (Default)
 .FALSE. Disables double buffering and asynchronous I/O for disk writes.

GLBLSN Enables/disables the global synchronization of disk I/O during the second MP2 gradient

two-electron integral half-transformation when running in parallel.
 .TRUE. Enables the global synchronization of disk I/O.
 .FALSE. Disables the global synchronization of disk I/O. (Default)

NBUFS N The number of buffers used for double buffered asynchronous I/O (see the DBLBF

option). The default value is calculated such that it is close to the optimum.

TOL1 N Threshold to store half-transformed 2-e integrals. (Default is 1D-9)

TOL2 N Threshold to store half-transformed DM2 elements. (Default is 1D-9)

RANDOM N The random seed to initialize the random number generator used while distributing

AO shell pairs over nodes. (Default value is 0.33333...)

The next four keywords, MXI, MXPQ, RSIZE1, and RSIZE2, allow one to fine tune the performance of
the new MP2 gradient code. Their default values work fine in most situations. However, sometimes there
might be a need to change them, either in order to further increase the program's efficiency or to reduce
memory needs. As the new MP2 gradient algorithm is quite complex, it is not always easy to find optimal
settings. Some guidelines can be found below. In addition, it is recommended to always run a check job.
This should be run in parallel mode using the same number of processes as in the production run.

The MXI keyword affects both the amount of disk I/O and the memory needs (mainly the memory needs
of the MP2 part of the second half-transformation are affected). Lowering MXI decreases the amount of
memory required by the code but increases the amount of disk I/O. MXI cannot be larger than the number
of active occupied orbitals (as it is the number of active orbitals per one slice (or batch), and at least one
slice (batch) is always required). In addition, by code design, MXI cannot be larger than 256. The default
settings are designed to minimize disk I/O and thus MXI is set as large as it is possible while obeying the
two conditions above; hence by default MXI is min(Nocc,256).

The MXPQ keyword cannot be set below some value defined by the properties of the particular basis set
in use (the program will adjust settings if necessary) and affects the memory needs of the DM2 part of the
second half-transformation stage as well as the memory needs of the 2-electron gradient integral
calculation stage. Lowering MXPQ significantly increase the memory requirements of the former while
(less significantly) decreasing the requirements of the latter.

The RSIZE1 keyword mainly affects the memory needs of the first half-transformation stage. Lowering
RSIZE1 decreases memory needs but makes I/O less efficient due to the use of smaller record sizes for
random access I/O.

The RSIZE2 keyword mainly affects the memory needs of the DM2 part of the second half-
transformation stage. Lowering RSIZE2 decreases memory needs but makes I/O less efficient due to the
use of smaller record sizes for random access I/O.

MXI N The maximum number of occupied orbitals to be processed in one slice during the first

and the second integral half-transformation. Cannot be larger than 256 by design.
(Default is min(Nocc,256))

MXPQ N The maximum number of AO orbital pairs to be processed in one slice during the

second 2-electron integral half-transformation and 2-electron gradient computation.
(Default is 255)

RSIZE1 N Record size (in 12-byte quantities) used to store half-transformed 2-electron integrals.

(Default is 32768)

RSIZE2 N Record size (in 16-byte words) used to store half-transformed DM2 elements.

(Default is 32768)

$MCSCF group

This group controls various MCSCF-related options. It is recommended to carefully read the MCSCF
chapter of the Firefly manual before attempting MCSCF computations.

CISTEP Chooses the configuration basis.

 ALDET Chooses the determinant CI code, which requires $DET input. (Default when
QUAD≠.TRUE.)

 GUGA Chooses the graphical unitary group CSF code, which requires $DRT input. This
is the only value usable with the QUAD converger. (Default when
QUAD=.TRUE.)

ISTATE N For SA-MCSCF calculations this keyword specifies the state (root) of interest, i.e.

the state of which the energy will be used during geometry optimizations, saddle
point locations, or MECI searches. A value of 0 means no state of interest. Setting
this keyword non-zero enables the use of code optimized for the calculation of
state-specific gradients for SA-MCSCF. As such, this keyword should not be given
for SS-MCSCF calculations or for SA-MCSCF calculations in which no state-
specific data is needed. (Default is 0)

NTRACK N Enables state tracking for the N lowest roots. A value of 0 means no state tracking is

used. Be sure to request enough states (of the right multiplicity) with the NSTATE
keyword of $DET or $GUGDIA. (Default is 0)

The next four options choose an orbital optimizer. Only one of these may be set .TRUE. at a time.

FOCAS Selects a first order convergence method (FOCAS). This optimizer may only be used with

complete active spaces.

 .TRUE. Enable the FOCAS optimizer.

 .FALSE. Disable the FOCAS optimizer. (Default)

SOSCF Selects an approximately second order convergence method (SOSCF). This is the most

efficient method.

 .TRUE. Enable the SOSCF optimizer. (Default)

 .FALSE. Disable the SOSCF optimizer.

FULLNR Selects a fully second order convergence method with an exact orbital Hessian (FULLNR).

 .TRUE. Enable the FULLNR optimizer.

 .FALSE. Disable the FULLNR optimizer. (Default)

QUAD Selects a fully quadratic (orbital and CI coefficient) optimization method (QUAD) that is

applicable to FORS and non-FORS wavefunctions. This converger cannot be used with state-
averaging.

 .TRUE. Enable the QUAD optimizer.

 .FALSE. Disable the QUAD optimizer. (Default)

The next options pertain to the FOCAS converger only.

CASDII N The threshold at which to start DIIS. (Default is 0.05)

CASHFT N The level shift value. (Default is 1.0)

NRMCAS Enables/disables renormalization of the Fock matrix.

 0 Do not renormalize the Fock matrix.

 1 Renormalize the Fock matrix. (Default)

The next option pertains to the SOSCF converger only.

NUMFO N The number of FOCAS iterations to perform before switching to the SOSCF

converger. Values > 1 may help to converge MCSCF in difficult situations. Note that
NUMFO will be reset to 0 upon completion of first MCSCF procedure. (Default is 1)

The next options pertain to the FULLNR converger. Note that these also influence QUAD as this converger
always starts with one or more FULLNR iterations.

DAMP N The damping factor, which is adjusted by the program as necessary. (Default is 0.0)

METHOD Selects one of two methods for the construction of the Newton-Raphson matrices.

 DM2 Chooses a density driven construction. (Default)

 TEI Chooses a two-electron integral driven construction. This method requires less
memory than DM2, but is much slower.

MINMEM Can be used to reduce the memory demands during FULLNR/DM2 runs by roughly 50 % at
the cost of a performance penalty.

 .TRUE. Reduce memory demands.

 .FALSE. Do not reduce memory Demands. (Default)

LINSER Flag that controls the use of a method similar to direct minimization of SCF. The method is

used if the energy rises between iterations. It may in some circumstances increase the chance
of converging excited states.

 .TRUE. Use this method.

 .FALSE. Do not use this method. (Default)

OPTACT Flag that enables/disables minor changes in the behavior of the FULLNR converger. This

may somewhat help in the case of slow convergence with non-FORS wavefunctions.

 .TRUE. Enable these changes to the FULLNR converger.

 .FALSE. Disable these changes to the FULLNR converger. (Default)

FCORE Flag used to freeze the optimization of the MCC core orbitals, which is useful in preparation

for RUNTYP=TRANSITN jobs. This option is incompatible with gradients, so can only be
used with RUNTYP=ENERGY.

 .TRUE. Freeze the optimization of the MCC core orbitals. Choosing this option will
automatically force CANONC=.FALSE.

 .FALSE. Do not freeze the optimization of the MCC core orbitals. (Default).

The next five options also pertain to the FULLNR converger, but are rarely used.

DROPC Flag to include/exclude MCC core orbitals during the CI computation.

 .TRUE. Exclude MCC core orbitals by dropping them during the CI and instead form
Fock operators used to build the correct terms in the orbital hessian. (Default)

 .FALSE. Do not exclude MCC core orbitals.

NORB N The number of orbitals to be included in the optimization. When set different from

the default, this option is incompatible with gradients and can only be used with
RUNTYP=ENERGY. (Default is the number of AOs given in $DATA)

MOFRZ N An array of orbitals to be frozen out of the orbital optimization step. (Default is 0 i.e.

not to freeze any orbitals).

NOROT N1,N2,... An array of up to 10000 pairs of orbital rotations to be omitted from the NR

optimization process. The program automatically deletes all core-core rotations,
all act-act rotations if FORS=.T., and all core-act and core-virt rotations if
FCORE=.T. Additional rotations are input as I1,J1,I2,J2... to exclude rotations
between orbital I running from 1 to NORB, and J running up to the smaller of I or
NVAL in $TRANS. (Default is not to omit any orbital rotations.)

LDAR N The record size for temporary files. Reasonable values are in the range 4096-65536.

The default is computed automatically. This option is currently not used by Firefly.

The next option pertains to the QUAD converger.

QUDTHR N The threshold on the orbital rotation parameter, SQCDF, to switch from the initial

FULLNR iterations to the fully quadratic method. (Default = 0.05)

The remaining keywords of this group apply to all convergence methods.

FORS Flag which should be used to specify whether or not the MCSCF function is of the Full

Optimized Reaction Space type (also known as CASSCF). When set to .TRUE., act-act
rotations are omitted from the calculation. However, with the FULLNR method the
convergence is usually better when these are included, even for FORS-type wavefunctions.

 .TRUE. The wavefunction is assumed to be of the FORS type. Act-act rotations are
omitted from the SCF procedure. (Default for FOCAS and SOSCF)

 .FALSE. The wavefunction is assumed not to be of the FORS type. Act-act rotations are
included in the SCF procedure. (Default for FULLNR and QUAD)

ACURCY N The primary convergence criterion, the maximum permissible asymmetry in the

Lagrangian matrix. (Default is 1.0E-05)

ENGTOL N A secondary convergence criterion. The run is considered converged when the energy

change is smaller than this value. (Default is 1.0E-10)

MAXIT N Maximum allowed number of iterations. The MAXIT keyword of the $CONTRL

group may also be used (though it will be overruled by MAXIT of $MCSCF if both
are specified). (Default is 100 for FOCAS, 60 for SOSCF, 30 for FULLNR and
QUAD)

MICIT N Maximum number of microiterations within a single MCSCF iteration. It is generally
not necessary to change its default value. (Default is 5 for FOCAS and SOSCF, 1 for
FULLNR and QUAD)

NWORD N The maximum amount of memory to be used, in MWords. A value of 0 means to use

all available memory. (Default is 0)

CHKPOP Enables or disable a check for very small populations of active orbitals. Normally, small

occupancies indicate some problems with active space selection, but should be ignored for
extended active spaces intended for PES exploration.

 .TRUE. Enable this check. This allows Firefly to abort the job in the case of
pathologically small occupancies of some orbitals within the active space.
(Default)

 .FALSE. Disable this check.

JKMAT Controls the optional formation and printout of closed shell-like J and K matrices. This

option is mainly intended for debug purposes.

 .TRUE. Enable this optional formation and printout.

 .FALSE. Disable this optional formation and printout. (Default)

IJORBS N1,N2 An array of two numbers denoting a pair of MOs for which two-electron Coulomb

and exchange molecular integrals should be computed upon the completion of
MCSCF procedure. This option should be used with JKMAT option above. (Default
is 0,0 i.e. not to compute any integrals.)

CANONC Flag used to request formation of the closed shell Fock operator, and generation of canonical

core and virtual orbitals. This will order the MCC core by their orbital energies.

 .TRUE. Form the closed shell Fock operator and canonical core orbitals. (Default)

 .FALSE. Do not form the closed shell Fock operator and canonical core orbitals.

The following three keywords can be used to generate additional data if the CANONC keyword was
set .TRUE. Only one of these may be set .TRUE. at a time.

IFORB Flag to additionally request generation of the canonical active orbitals and their energies.

This option should be used together with the CANONC keyword.

 .TRUE. Generate canonical active orbitals and their energies.

 .FALSE. Do not generate canonical active orbitals and their energies. (Default)

ILORB Flag to additionally request generation of the Lagrangian's active orbitals and their pseudo-

energies (i.e., Lagrange multipliers) by diagonalizing the MCSCF's Lagrangian. This option
should be used together with the CANONC keyword.

 .TRUE. Generate the Lagrangian's active orbitals and their pseudo-energies.

 .FALSE. Do not generate the Lagrangian's active orbitals and their pseudo-energies.
(Default)

IGORB Flag to request formation of the generalized closed shell Fock-like operator and generation of

generalized canonical core, active, and virtual orbitals. This option should be used together
with the CANONC keyword.

 .TRUE. Form the generalized closed shell Fock-like operator and generate conical
orbitals.

 .FALSE. Do not form the generalized closed shell Fock-like operator nor generate conical
orbitals. (Default)

Additional keywords of this group that apply to all convergence methods:

GFDTOL N An orbital population threshold used in computing the generalized closed shell Fock-

like operator. This parameter is used to distinguish between primary and secondary
active orbitals. Values smaller than the default (down to 0.1) are recommended when
exploring areas of PES. (Default is 0.5)

SD Enables/disables the use of a symmetry-aware orbital canonicalization procedure which

produces symmetry adapted MOs. It is safe to turn on this option.

 .TRUE. Use symmetry-aware orbital canonicalization.

 .FALSE. Do not use symmetry-aware orbital canonicalization. (Default)

KEEPAS Flag that instructs Firefly to minimize rotations within the active space. This flag does not

affect computed energies but helps to track states more reliably.

 .TRUE. Minimize rotations within the active space. (Default)

 .FALSE. Do not minimize rotations within the active space. (Default)

NOCI Provides control over re-computation of CASCI using CASSCF's natural orbitals obtained

upon completion of the MCSCF procedure and requests a printout of the expansion of the CI
vector computed using NOs. This option should only be used for FORS-MCSCF/CASSCF
wavefunctions.

 0 Do not re-compute CASCI using NOs. (Default)

 1 Re-compute CASCI using NOs.

EKT Flag used to request generation of extended Koopmans' theorem orbitals and energies. For

information on this option, see R. C. Morrison and G. Liu J. Comput. Chem., 1992, 13, 1004-
1010. Note that the process generates non-orthogonal orbitals, as well as physically
unrealistic energies for weakly occupied MCSCF orbitals. The method is meant to produce a
good value for the first ionization potential.

 .TRUE. Generate extended Koopmans' theorem orbitals and energies.

 .FALSE. Do not generate extended Koopmans' theorem orbitals and energies. (Default)

NPUNCH The MCSCF PUNCH option, which controls the amount of data that gets written to the

PUNCH file. Analogous to the NPUNCH option in $SCF.

 0 Do not punch out the final orbitals.

 1 Punch out the occupied orbitals.

 2 Punch out occupied and virtual orbitals. (Default)

NPFLG N Array that controls the printing of debug data. This keyword is analogous to the same

keyword in $CIINP. Elements 1, 2, 3, 4, 6, 8, and 9 are usable. The latter two control
debugging the orbital optimization and extended CI coefficient expansion printout.

DUMPRF Flag that instructs Firefly to punch the optimized reaction field that was generated by the

solvent models in use, if any. This will produce a formatted $RFIELD group.

 .TRUE. Punch the optimized reaction field.

 .FALSE. Do not punch the optimized reaction field. (Default)

READRF Flag to read in a previously punched $RFIELD group from the input file and modify the one-

electron Hamiltonian accordingly. Can be used to restart PCM/SCRF/EFP runs.

 .TRUE. Read in the $RFIELD from the input file.

 .FALSE. Do not read in the $RFIELD from the input file. (Default)

$MCAVER group

The $MCAVER input group allows control over exactly how state-specific gradients for state-averaged
MCSCF are computed. $MCAVER is also relevant for Minimum Energy Crossing Point (MECP or
MECI) location runs, providing control over the penalty function and Lagrange multiplier based codes
used during these runs.

The first three keywords control the calculation of SS gradients for SA MCSCF.

CONIC Selects one of the three programmed approaches to finite differencing.
 0 Selects the use of central (i.e. symmetric) second order finite differences. Calculations

with CONIC=0 are performed as follows. First, the calculation of SA-MCSCF
energies and the effective gradient is performed with the original weight of state
ISTATE increased by DELTAW. Second, the calculation of SA-MCSCF energies and
the effective gradient is performed with the original weight of state ISTATE decreased
by DELTAW. Third, the calculation of SA-MCSCF energies is performed using
unmodified original weights, and, finally, the state-specific expectation value type
density matrix is computed for state ISTATE. This is the most economical way of
computation. In addition, it provides the way to obtain the state-specific properties for
the state of interest.

 1 Selects an alternative approach based on the use of a forward finite differencing
scheme, which is more stable in the case of nearly quasi-degenerated CI roots and
hence more suitable for the location of conical intersections. Calculations with
CONIC=1 are performed as follows. First, the calculation of SA-MCSCF energies and
the effective gradient is performed with the original weight of state ISTATE increased
by DELTAW. Second, the calculation of SA-MCSCF energies and the effective
gradient is performed with the original weight of state ISTATE increased by
DELTAW/2. Finally, the calculation of SA-MCSCF energies and the effective
gradient is performed using unmodified original weights, however, the state-specific
density matrix is not computed (hence, no state-specific properties are available).

 2 Selects another approach which is similar to CONIC=1 but which is even more robust
in the vicinity of conical intersections. First, the calculation of SA-MCSCF energies
and the effective gradient is performed with the original weight of state ISTATE.
Second, the calculation of SA-MCSCF energies and the effective gradient is performed
with the original weight of state ISTATE increased by DELTAW/2. Finally, the
calculation of SA-MCSCF energies and the effective gradient is performed with the
original weight of state ISTATE increased by DELTAW. As with CONIC=1 no state-
specific density matrix is computed and, thus, the state-specific properties are not

DELTAW

N The step size (dimensionless) of the state ISTATE’s weight used in finite
differencing. Recommended values are in the range from 0.0005 to 0.0025. Finite
differencing might also involve JSTATE (if specified). To clarify, the CI location
code is smart enough to avoid finite differencing over JSTATE if there are only
exactly two states used in SA-MCSCF. However, if there are three or more states in
averaging, finite differencing will involve both ISTATE and JSTATE for the
purpose of localizing CIs. (Default is 0.0015)

available.

HPGRAD

Requests extra high precision during the computation of the two-electron contribution to
the effective gradient. This may significantly slow down computations and usually does
not increase the precision of the computed state-specific gradients considerably.

 .TRUE. Enable extra high precision during the computation of the two-electron
contribution.

 .FALSE. Disable extra high precision during the computation of the two-electron
contribution. (Default)

The remaining keywords in this group provide control over the penalty functions and Lagrange functions
used during the location of MECPs and MECIs. The penalty function based methods programmed in
Firefly are based on the minimization of the following expression:

 F(Ei, Ej) = alpha*Ei + (1-alpha)*Ej + Penalty(Ej-Ei) = min (1)

whereby possible values of alpha are 0.5 and 1.0. The Penalty(ΔE) is the penalty function which depends
on the energy splitting between two states.

The Lagrange function is as follows:

 L(R) = Ei(R) + λ(R)*(Ej(R) - Ei(R)) (2)

where λ is the Lagrange multiplier for constrain Ei = Ej and (R) denotes the dependence of all quantities
on the molecular geometry. A second form of L is a follows:

 L'(R) = (Ei(R) + Ej(R))*0.5 + λ'(R)*(E j(R) - Ei(R)) (3)

These functions are explained in more detail in the section on the location of CIs and ISCs in the Firefly
manual.

MULTIW A flag that should be set for runs computing semi-numerical SS gradients for SA-MCSCF

for two states (i.e. states ISTATE and JSTATE) when other states are present in the
averaging procedure. If not set, these runs will abort after performing some preliminary
setup. If only the states ISTATE and JSTATE are present in the MCSCF averaging, this
flag should not be used. Internally, this flag directs Firefly to compute SS gradients for
two states independently on each other. When set to .FALSE., the SS gradient is
computed only for state ISTATE after which the gradient for state JSATET is computed
based on the averaged effective gradient and on the gradient of state ISTATE. The second
approach is approximately 5/3 times faster but is only possible if there are no additional
states in the state averaging.

JSTATE N Selects the second state of interest. Normally JSTATE should be equal to
ISTATE + 1, unless you are interested in searching for the simultaneous crossing of
several states. A value of 0 indicates there is no second state of interest. (Default is
0)

 .TRUE. Causes the code to assume that additional states to ISTATE and JSTATE are
present in the MCSCF averaging procedure.

 .FALSE. Causes the code to assume that only ISTATE and JSTATE are present in the
MCSCF averaging procedure. (Default)

TARGET Provides control over the use of ISTATE and JSTATE in the penalty functions and

Lagrange functions.
 MIXED Sets alpha in equation (1) to 0.5, i.e. use half-sum of state energies. This directs

Firefly to use equation (3) for the computation of the Lagrange function.
(Default)

 PURE Directs Firefly to use the pure energy of state ISTATE in equation (1) and use
equation (2) for the Lagrange multiplier based method.

 PURE2 Directs Firefly to use the pure energy of state JSTATE in equation (1) and use
equation (2) for the Lagrange multiplier based method.

PENLTY Selects one of the three programmed penalty functions. Note that these functions will only

be used in MECP/MECI location runs which do not use Lagrange multiplier approach.
 1 Penalty(Δ) = B*ln(1.0 + (Δ/A)2) This is the so-called Ciminelli penalty function.
 2 Penalty(Δ) = B*(Δ2)/(Δ+A) This is a penalty function suggested by Levine, Coe, and

Martinez.
 3 Penalty(Δ) = B*((Δ2 + A2)1/2) - B*|A| This is a penalty function specific to Firefly.

XGRAD

Flag that selects the use of either the penalty function code or the Lagrange multiplier
based code.

 .TRUE. Use the Lagrange multiplier based code. (Default when $STATPT
METHOD=CONIC)

 .FALSE. Use the penalty function code. (Default when $STATPT METHOD ≠
CONIC)

XHESS

Flag that requests the use of a specially optimized form of the approximate Hessian used
by all quasi-Newton type geometry optimizers. This option is only supported for

SHIFT N The value of energy difference shift during the location of MECIs/MECPs. Firefly
always searches for geometries such that Ej(R) - Ei(R) = SHIFT. A value of 0.0
directs Firefly to search only for true MECIs/MECPs. This option only affects
penalty function based code. (Default is 0.0)

A
B

N These keywords specify values of parameters A and B used in the penalty functions
(selected with the PENLTY keyword). Their default values are:

PENLTY=1 A = 0.008 and B = 0.2
PENLTY=2 A = 0.02 and B = 3.5
PENLTY=3 A = 0.01 and B = 3.5

PENLTY=1 penalty function and does not have any effect otherwise.
 .TRUE. Use the specially optimized form of the approximate Hessian.
 .FALSE. Use normal approximate Hessian. (Default)

SSGRAD Flag that can be used to disable all features requesting Firefly's state-specific gradients for

SA-MCSCF. The jobs depending on these features will then abort. This option is now
obsolete and should not be used.

 .TRUE. Enable SS gradients for SA-MCSCF. (Default)
 .FALSE. Disable SS gradients for SA-MCSCF.

$TRACK group

The $TRACK input group is used to control MCSCF state tracking. Tracking is enabled with the
NTRACK keyword of the $MCSCF group.

UPDATE Flag that controls the updating and replacement of reference vectors.
 .TRUE. Reference vectors will be updated and replaced by remapped current CI

vectors at the end of each MCSCF iteration.
 .FALSE. The CI vectors from the very first MCSCF iteration at the initial geometry

will be used as the reference vectors throughout all calculations. (Default)

FREEZE Flag that controls remapping during the calculation of state-specific gradients for SA-

MCSCF. Normally, this flag must be set .TRUE. to get reliable results if two or more
MCSCF states are quasi-degenerated.

 .TRUE. The final remapping scheme of the first of three MCSCF calculations used to
compute SS gradient for SA-MCSCF will be applied “as is” during the
second and third stage of gradient computations. (Default)

 .FALSE. The dynamic tracking will be active throughout all three MCSCF procedures.

RESET Flag that controls the resetting of the state tracking. See also the STICKY keyword.
 .TRUE. State tracking will be reset at the beginning of each MCSCF computation and

the reference vectors will be re-initialized by the vectors from the first CI
step.

 .FALSE. Do not reset state tracking. (Default)

STICKY Flag that controls the reuse of the existing reference vectors. This option is designed to be

used together with the RESET keyword.
 .TRUE. If RESET is also set .TRUE., state tracking will be reset at the beginning of

each MCSCF computation but the existing reference vectors will be reused.
 .FALSE. Do not reuse existing reference vectors. (Default)

DELCIV Flag that controls the storage of converged CI vectors.
 .TRUE. Delete the file with converged CI vectors of the previous CI stage before

each new CI step so that the old vectors will not be used as the initial guess
for the new CI procedure.

 .FALSE. Reuse old CI vectors as the initial guess and thus keep the file intact.
(Default)

TOL N The scaling factor for diagonal of the overlap matrix. (Default is 1.2)

The following two keywords should be used together and provide a way to restart an interrupted tracking-
based run as if it was not interrupted at all.

READMAP Flag that allows manually setting the initial mapping of states.
 .TRUE. Set the initial mapping of states as specified by the user. The order of states

can be specified with the MAP keyword.
 .FALSE. No manual mapping of states. (Default)

MAP N An array that specified the initial mapping of states. As an example, if set to
MAP(1)=1,3 the states will be mapped 1 → 1 and 2 → 3.

$XMCQDPT and $MCQDPT groups

These groups provide control over XMCQDPT2 and MCQDPT2 calculations respectively and are
relevant when SCFTYP=MCSCF with MPLEVL=2. As they share exactly the same input keywords, both
methods are referred as (X)MCQDPT below, with their input groups collectively labeled as
$(X)MCQDPT.

Printout control:

LPOUT N Printout control option. LPOUT=0 gives normal printout. LPOUT>0 removes most

of the output, while LPOUT<0 gives debug printout (e.g. -1, -5, -10, -100). Default is
LPOUT=0.

General execution modifiers:

INORB Instructs Firefly whether to use orbitals from the preceding MCSCF step or read in

orbitals from the input file.

 0 Perform a MCSCF calculation before the (X)MCQDPT calculation and use the
converged MCSCF orbitals for the (X)MCQDPT calculation. (Default)

 1 Do not perform an MCSCF calculation before the (X)MCQDPT calculation. Instead,
read converged orbitals directly from the $VEC group of the input file and skip
immediately to the (X)MCQDPT computation. A complete $VEC group including
virtual orbitals must be given. It is recommended to use extra high precision when
punching orbitals for subsequent use with this option (WIDE=.TRUE. in
$CONTRL).

 2 Do not perform an MCSCF calculation before the (X)MCQDPT calculation. Instead,
read converged orbitals using Firefly's standard protocol (i.e. as directed by the
directives of the $GUESS group) and skip immediately to the (X)MCQDPT
computation. A complete $VEC group including virtual orbitals must be given. The
benefit of this option as compared with INORB=1 is that orbitals are orthogonalized
and optionally purified, symmetrized, etc. It is recommended to use extra high
precision when punching orbitals for subsequent use with this option
(WIDE=.TRUE. in $CONTRL).

IFORB Provides further control over the orbitals used for the (X)MCQDPT calculation.

 0 Omit canonicalization of input orbitals.

 1 Determine the semi-canonical Fock orbitals. (Default)

 -1 Reuse semi-canonical Fock orbitals generated during the preceding MCSCF
calculation, if semi-canonical orbitals are available. Otherwise, compute them. This
option has a special extended form, namely IFORB(1)=-1,1,1 which means to reuse
as much information from the preceding MCSCF calculation as possible. This option

can save a lot of CPU time.

 2 Determine and use natural orbitals for QDPT calculations rather than semi-canonical
orbitals. This option is generally not recommended.

IROT Enables/disables the use of the simplified MP2-like formula for excitations from double

occupied inactive orbitals to external orbitals. The MP2-like formula is used to compute
(X)MCQDPT2' energies instead of (X)MCQDPT2 ones.

 0 Disable the use of the MP2-like formula. (Default)

 1 Enable the use of the MP2-like formula.

ISELCT Provides control over CSF selection.

 0 No CSF selection is allowed. (Default)

 1 to 4 Allow selection of important CSFs to reduce memory needs and CPU time. The
values of 1, 2, 3, and 4 select slightly different schemes for CSF selection based
on their weights (see the description of THRWGT below for more information).
The least advanced and simplest method of selection is method #1. The most
advanced and recommended scheme is the method #4, although the difference
between the different methods is rather subtle. Values of 2, 3, and 4 allows the
use of the second element of the ISELCT() array, i.e. ISELCT(2). The value of
ISELCT(2), if given, is interpreted as the maximum allowed number of CSFs to
select. If ISELCT(2) is in effect, the actual threshold used in selection procedure
may exceed THRWGT.

 -1 to -4 The values of -1, -2, -3, and -4 for ISELCT(1) are the counterparts of their
positive analogs which, in addition, perform the rotation of CI roots computed in
the incomplete space after CSF selection. This rotation is within the space
spanned by these CI roots and is constructed to maximize the overlap of rotated
states with the initial CASCI states before CSF selection. This option can be
important for MCQDPT2 but is ignored for XMCQDPT2 because XMCQDPT2
depends only on the subspace spanned by the CI vectors rather than on the
particular basis in this subspace (i.e. CI vectors).

THRWGT N Weight threshold for retaining CSFs in runs that use CSF selection. The weight of a

CSF is the maximum over CI states included in PT of the square of its CI coefficient.
(Default is 1.0D-6)

State specification and (X)MCQDPT-related details:

ISTSYM N The state symmetry of the target state(s). This is given as an integer. Note that only

Abelian groups are supported in $DATA. The default is 1, the totally symmetric
state. ISTSYM= –1 disables the use of symmetry by the (X)MCQDPT2 code and
allows one to compute states having different symmetries in a single run.

ISTSYM= 1 2 3 4 5 6 7 8
C1 A
Ci Ag Au
Cs A' A''
C2 A B
C2v A1 A2 B1 B2
C2h Ag Bg Au Bu
D2 A B1 B2 B3
D2h Ag B1g B2g B3g Au B1u B2u B3u

MULT= N The spin multiplicity of the target states. By default, its value is identical to that of

the MULT keyword of the $CONTRL group.

NMOACT= N The (positive) number of active orbitals forming the CAS space. The default is to use

the number of active orbitals as defined in $DET or $DRT, depending on the choice
of CISTEP in $MCSCF.

NMODOC N The (non-negative) number of orbitals which are doubly occupied in every MCSCF

configuration, i.e. the number of inactive orbitals, which are to be included in the
perturbation calculation. The default is to use all valence orbitals between the
chemical core and the active space.

NMOFZC N The (non-negative) number of frozen core orbitals, NOT correlated in the

perturbation calculation. The default is the number of chemical core orbitals.

NMOFZV N The (non-negative) number of frozen virtual orbitals, NOT occupied in the

perturbation calculation. (Default is zero, i.e. no virtual orbitals are frozen)

NSTATE N The number of target states, i.e. the dimension of the effective Hamiltonian. For

example, NSTATE=5 selects the first five CASCI states for the PT treatment.
(Default is 1)

KSTATE N1,N2,... One-dimension array of integer numbers that defines which CASCI states are

used for the PT treatment. A maximum of 105 elements, including zeros, is
allowed. KSTATE(i)=1 means that state #i should be used in the perturbation
calculation, while KSTATE(i)=0 means the opposite. For example, if you want
the perturbation correction to the second and the fourth roots, specify
KSTATE(1)=0,1,0,1. The default is not to use the KSTATE array if it was not

explicitly set by user, and use NSТATE instead. Notes: if KSTATE and
NSTATE are given in the same input, KSTATE has priority over NSTATE. If
a non-trivial KSTATE array is given, NSTATE will be redefined accordingly.
Hereby, the numbering of the CASCI states will be redefined to skip any
CASCI states disabled in KSTATE.

ISTATE N1,N2 An integer array of two elements that defines the state(s) of interest. ISTATE(1)

(or just ISTATE) is the number of the primary target state, i.e. the state which
energy is considered as the final result of (X)MCQDPT2 calculations. The
default is ISTATE(1)=1. If given, ISTATE(2) defines the number of the
secondary target state. The latter option can be used for the purpose of state
tracking and to indicate the secondary state for MECI/MECP location runs.

NS Provides control over the effective Hamiltonian to use.

 .TRUE. Use eigenvalues of a non-symmetric effective Hamiltonian as the energies of
the target states. This corresponds to the theory with intermediate
normalization.

 .FALSE. Use eigenvalues of a symmetric effective Hamiltonian as the energies of the
target states. This corresponds to the theory with isometric (i.e. unitary)
normalization. (Default)

WSTATE N1,N2,... One-dimension array of double precision numbers, maximum of 105 elements.

WSTATE defines the weights of the CASCI states when computing the state-
averaged density matrix used in the construction of a closed shell-like Fock
matrix during the orbital canonicalization procedure. The default is to use
weights equal for all states entering PT if no AVECOE array is given (i.e.
states requested by NSTATE and/or KSTATE are used with equal weights). If
an AVECOE array is specified, this array is used instead. Note that elements
of WSTATE refer to the already renumbered states (see the description of
KSTATE above).

AVECOE N1,N2,... One-dimension array of double precision numbers, maximum of 105 elements.

AVECOE defines the weights of the CASCI states when computing the state-
averaged density matrix used in the construction of a closed shell-like Fock
matrix during computation of orbital energies. The default is to use weights
equal for all states entering PT if no WSTATE array is given (i.e. states
requested by NSTATE and/or KSTATE are used with equal weights). If a
WSTATE array is specified, this array is used instead. Note that elements of
AVECOE refer to the already renumbered states (see the description of
KSTATE above).

EDSHFT N The Intruder State Avoidance (ISA) energy denominator shift, in Hartree. The ISA
shift changes the energy denominators around poles where the denominator is zero.
Each denominator x is replaced by x + EDSHFT/x, so that far from the poles (when x
is large) the effect of such change is small. Setting this value to zero selects 'ordinary'
(X)MCQDPT, and infinitely collapses to the MCSCF reference. A suggested value is
0.02, but experimentation with your system is recommended. In order to study the
potential surface for any extended range of geometries, it is strongly recommended to
use ISA, as it is quite likely that one or more regions of the PES will be unphysical
due to intruder states. In order to maintain continuity when studying a PES, one
usually uses the same EDSHFT value for all points on a PES. For a discussion of
intruder state removal with (X)MCQDPT, see H.A.Witek, Y.-K.Choe, J.P.Finley,
K.Hirao J. Comput. Chem. 23, 957-965 (2002) (Default is 0.0 i.e. no shift is used)

DFTOE Provides control over the use of a DFT-based Fock matrix.

 0 Do not use a DFT-based Fock matrix when computing semi-canonical orbitals and
their energies. (Default)

 N Construct and use a DFT-based Fock matrix when computing semi-canonical
orbitals and their energies as described below. DFTTYP must be given in
$CONTRL.
DFTOE is the integer variable which is treated as a bitfield and interpreted as
described below. Any combination of bits is allowed.

Bits 0 to 3 trigger the use of the blocks of a DFT Fock matrix instead of the blocks
of a closed-shell Hartee-Fock-like Fock matrix for definition of orbitals:

Bit 0. Redefine frozen core orbitals from the diagonalization of the frozen core -
frozen core block of a DFT Fock matrix.

Bit 1. Redefine double occupied orbitals from the diagonalization of the double
occupied - double occupied block of a DFT Fock matrix.

Bit 2. Redefine active orbitals from the diagonalization of the active - active block
of a DFT Fock matrix.

Bit 3. Redefine external orbitals from the diagonalization of the external - external
block of a DFT Fock matrix

Bits 4 to 7 trigger the use of the diagonal values of a DFT Fock matrix in the basis of
the computed MOs instead of the diagonal values of a closed-shell Hartee-Fock-like
Fock matrix in the basis of the computed MOs, for a definition of orbital energies:

Bit 4. Define energies of frozen core orbitals using the diagonal values of a DFT
Fock matrix.

Bit 5. Define energies of double occupied orbitals using the diagonal values of a
DFT Fock matrix.

Bit 6. Define energies of active orbitals using the diagonal values of a DFT Fock
matrix.

Bit 7. Define energies of external orbitals using the diagonal values of a DFT Fock
matrix.

UNICOR Provides further control over the use of a DFT-based Fock matrix, when DFTOE is non-

zero.

 .TRUE. Combine frozen core and double occupied orbitals into a single block, then
redefine the orbitals and their energies thus allowing intermixing of the initial
subspaces of core and double occupied orbitals.

 .FALSE. Do not modify the standard behavior of the DFTOE keyword. (Default)

IFITD Allows the modification of the orbital energies of active orbitals.

 0 Do not modify orbital energies of active orbitals. (Default)

 1 to 5 Modify computed orbital energies of active orbitals to provide the best possible
one-particle fit to the diagonal of the CASCI Hamiltonian. Options 1 to 5 differ in
minor details of how this fit is constructed exactly. The most advanced and thus
recommended options are IFITD=4 and IFITD=2. Note, IFITD=4 should not be
used with the DFTOE option. The use of modified orbital energies may improve
the description of bi-radical states.

State tracking:

TRACK Provides control over tracking of (X)MCQDPT states.

 NONE Do not track states. (Default)

 DIPOLE Track (X)MCQDPT states based on their energies and zero-order dipole
moments. This option requires ISTATE(1) and optionally ISTATE(2) input
which define the states to track.

TRKPRS N1,N2 Array of two double precision elements that affects the details of the tracking.

TRKPRS(1) is the penalty (dimensionless) for the swap of states. The default
value is 0.1. TRKPRS(2) defines the sensitivity of tracking to the change of the
state's energies. The larger the value of TRKPRS(2), the less sensitive the
tracking is. The default value is 0.04 Hartree. Smaller values of TRKPRS(1) and
TRKPRS(2) will more likely trigger false alarms.

Control over CASCI procedure used by the (X)MCQDPT code:

NSTCI N Number of lowest states to be converged in the Davidson's CI diagonalization

method. Diagonalization stops when at least a number of states equal to NSTCI has
been converged. The default is either NSTCI=NSTATE or computed from the
KSTATE input, if any. NSTCI must include at least all CASCI states to be included
into the PT treatment.

NSOLUT N Number of states to be solved for in the Davidson's CI diagonalization method.
Sometimes this might need to exceed the value of NSTCI in order to "capture" the
correct roots using "extra" states. The default is NSOLUT=NSTCI i.e. no extra
states.

MDI N Dimension of small Hamiltonian to be diagonalized to prepare initial guess CI states.

(Default is 300)

MXBASE N Maximum number of expansion vectors in the Davidson diagonalization subspace

(corresponds to MXXPAN in $GUGDIA and $DET). (Default is 300)

NSTOP N Maximum number of macro-iterations permitted in the Davidson diagonalization.

(Default is 1000)

BLKSIZ N Block size to use when forming the matrix-vector product in the Davidson

diagonalization. Blocking may (or may not) improve the performance of the
diagonalization. Negative values of BLKSIZ mean to use internally stored machine-
dependent block sizes. BLKSIZ=1 disables blocking. (Default is 1)

MAINCS N1,N2,N3 Integer array of up to three elements with which the user can optionally

specify the reference CFSs numbers belonging to the symmetries of the
target states. This will be used to select CASCI states of proper symmetries.
Can be useful in computations in which symmetry is disabled. The default is
not use any reference CSFs.

THRCON N Threshold for the vector convergence in the Davidson's method CASCI. See

THRGEN for more information. (Default is 1.0D-6)

Control over integral transformation procedures used by the (X)MCQDPT code:

ALTTRF Provides control over the integral transformation for PT.

 .TRUE. Use a semi-direct high performance integral transformation code. This is the
default and only possible option for direct runs.

When ALTTRF is set to .TRUE., one can specify two additional elements of
ALTTRF variable: ALTTRF(2) and ALTTRF(3). These options are only
available when the semi-direct integral transformation code is enabled.

If set, ALTTRF(2) allows an even more efficient implementation of integral

transformation with no integral sorting stages. This option is only allowed for
(X)MCQDPT2 runs which use Resolvent fitting code (see the $MCQFIT
section for details) or runs with IROT set to 1. The default option is
ALTTRF(2)=. TRUE.

ALTTRF(3) is a modifier to ALTTRF(2) option which requests a different
scheme for how disk I/O is performed. Typically, large jobs are even (much)
faster with this option set, i.e. ALTTRF(3)=. TRUE. The default option is
ALTTRF(3)=. TRUE.

 .FALSE. Use a disk-based integral transformation code. This is the default option for
conventional runs. Note, this default setting is not optimal for large jobs where
the use of ALTTRF=. TRUE. option together with DIRTRF=. TRUE. in
$TRANS is highly recommended.

THRERI N Threshold to keep transformed 2-electron integrals. See THRGEN for more

information. (Default is 1.0D-12)

MAXERI N Length of the buffer used for I/O associated with 2-electron integrals. (Default is

4096)

MXTRFR N Maximum number of passes allowed during disk-based conventional integral

transformation stage. Note, this option does not affect ALTTRF-based code. (Default
is 1000)

SVDISK Logical variable affecting the optimization of the disk space used during (X)MCQDPT2

runs.

 .TRUE. Optimize disk space usage. (Default)

 .FALSE. Do not optimize disk space usage.

Numerical cutoffs used by the (X)MCQDPT code:

GENZRO N Threshold to discard small contributions when computing one, two, and three body

coupling constants. See THRGEN for more information. (Default is 1.0D-12)

THRGEN N Threshold to discard small one, two, and three body coupling constants. (Default is

1D-8)

Suggested values of various thresholds to be used for numerical gradients are:
THRGEN=1D-20 THRERI=1D-20 GENZRO=1D-20 THRCON=1D-8

Memory control:

HALLOC Provides control over the use of the heap.

 .TRUE. Allow the use of the heap as a source of additional memory during
(X)MCQDPT calculations.

 .FALSE. Normal operation, i.e. the default option.

Seldom used keywords controlling lengths of various records used for I/O and other buffers:

LENGTH N Length of the buffer used for I/O associated with the calculation of coupling

constants. Default is LENGTH=4096 for standard calculations and
LENGTH=65536 for Resolvent fitting calculations.

MAXCSF N Maximum allowed length of the one-particle coupling constant buffer. The use of

extra large active spaces might require larger buffers. Firefly will abort and warn if
larger buffer is needed. (Default is 4096)

MAXROW N Maximum allowed number of rows in the Distinct Row Table (DRT). The use of

extra large active spaces might require a larger value of MAXROW. Firefly will
abort and warn if a larger value of MAXROW is needed. (Default is 10000)

$MCQFIT group

Activates and controls the Resolvent fitting-based MCQDPT2 and XMCQDPT2 code. Relevant to
SCFTYP=MCSCF if MPLEVL=2.

The use of the Resolvent fitting-based code is triggered by the presence of the $MCQFIT group in the
input file. In most cases, it is sufficient to specify only $MCQFIT $END without changing any
parameters of the $MCQFIT group – the default parameters are selected so that the errors introduced in
the computed energies are typically less than 10-8 Hartree. The use of the Resolvent fitting-based code is
strongly recommended for large (X)MCQDPT2 jobs as it is much faster than the default code.

There are four adjustable parameters in the $MCQFIT group:

DELTAE= N Double precision variable. If nonzero, this variable is used to define the step of the

interpolation grid. (Default is 0)

NPOINT= N Integer variable. Together with DELTAE, this variable is used to define the step size

and the number of points of the interpolation grid. The actual grid size will be the
least of the two, i.e. the number specified using the NPOINT variable and the
number of points computed based on the value of DELTAE. Increasing NPOINT
will result in an increase of the required CPU time while reducing errors in the
computed energy. For IORDER=7 (see below), a step size of 0.01 to 0.02 is usually
the optimal one. For XMCQDPT2, the step size is printed as the part of output of the
MQLPR1 routine. (Default is 400)

IORDER= N Integer variable. Available values are 3, 5, and 7. Defines the order of the

polynomial to use in interpolation. It is not recommended to change the default
settings. (Default is 7)

IFMASK= N Integer variable. Interpreted as a bitfield. Can be used to selectively enable (if the

corresponding bit is set to 1) or disable (if the corresponding bit is zeroed) the
Resolvent fitting code for the calculation of one-body contributions (routine
MQLMB1, controlled by the bit 0), two-body contributions (routine MQLMB2,
controlled by the bit 1), three-body contributions (routine MQLMB3, controlled by
the bit 2), and contributions from 2-electon integrals with two external orbitals
(routines MQLMBR/MQLMBR0/MQLMBR1/MQLMBR2, controlled by the bit 3).
The default value is that all bits are turned on.

The reference for the Resolvent fitting approach is:

A. A. Granovsky; URL: http://classic.chem.msu.su/gran/gamess/table_qdpt2.pdf

	Firefly manual
	Firefly 8.0.0 manual
	Table of Contents
	Introduction
	About this manual
	Overview of capabilities
	Firefly and GAMESS (US)
	Release history
	Citing Firefly

	Installing and Running Firefly
	General information
	Windows
	Windows MPI implementations
	Windows and CUDA
	Linux
	Linux MPI implementations
	Linux and CUDA
	Installing Firefly on an InfiniBand network 64-bit Linux cluster with Intel MPI v. 3.x
	Command line options

	Creating an input file
	Input file structure
	Chemical control data
	Computer related control data
	Formatted input sections
	Input checking
	Input preprocessing

	Performance
	Introduction
	64-bit processing support
	The P2P communication interface
	The XP and extended XP parallel modes of execution
	Utilizing HyperThreading
	CUDA
	The Fastdiag dynamic library
	Fast two-electron integrals code
	Quantum fast multipole method

	Output
	Main output
	The PUNCH file
	The IRCDATA file
	The MCQD files

	Restart capabilities
	Coordinate types
	Introduction
	Cartesian coordinates
	Z-Matrix and natural internal coordinates
	Delocalized coordinates
	Utilizing symmetry
	Isotopic substitution

	Basis sets
	Introduction
	Built-in basis sets
	Using spherical functions
	Using an external basis set file
	Specifying a basis set in $DATA
	Using effective core potentials
	Partial linear dependence in a basis set
	Basis set superposition error (BSSE) correction

	Starting orbitals
	General accuracy switches
	Semi-empirical methods
	Introduction
	Available methods

	Hartree-Fock
	Introduction
	Restricted Hartree-Fock
	Unrestricted Hartree-Fock
	Restricted-open Hartree-Fock
	Direct vs conventional
	Convergence options

	General valence bond
	Introduction
	Open-shell SCF with GVB
	True GVB perfect pairing runs
	The special case of TCSCF
	A caution about symmetry

	Møller-Plesset correlation corrections
	Introduction
	MP2 calculations
	Performance of the MP2 code
	MP3 and MP4 calculations

	Density Functional Theory
	General information
	Available functionals
	Making modifications to functionals

	Time-Dependent Theories
	General information
	Excited state calculations with TDHF (RPA)
	Excited state calculations with TDDFT

	Configuration Interaction methods
	Introduction
	CI singles
	Higher order CI

	Multi-configurational SCF methods
	General information
	Orbital optimization options
	Determinants vs CSFs
	Determinant CI code (ALDET)
	CSF CI code (GUGA)
	Performance
	Performing state-specific MCSCF calculations
	Performing state-averaged MCSCF calculations
	MCSCF state-tracking
	Strategies for selecting an MCSCF active space
	Multireference configuration interaction

	(Extended) Multi-configurational quasi-degenerate perturbation theory
	Introduction
	Overview of MCQDPT
	The XMCQDPT theory
	XMCQDPT vs XMS-CASPT2
	Useful hints and best practices
	References

	Geometry optimizations
	Introduction
	Optimizations towards a minimum
	The Hessian
	Optimizations towards a transition state
	Optimizations and symmetry
	Mode Following
	Constrained optimization
	Locating Conical Intersections (CIs) and Interstate Crossings (ISCs)
	Using numerical gradients
	Non-gradient total energy minimizations

	Hessian calculations
	General information
	Vibrational data
	Thermochemistry
	Raman activities

	Potential energy surface scans
	Rigid PES scans
	Relaxed PES scans

	Reaction coordinate scans
	Intrinsic reaction coordinate
	Dynamic reaction coordinate
	Gradient extremal following

	Solvation models
	Introduction
	Self-consistent reaction field
	Polarizable continuum model
	Effective fragment potentials

	Calculating single geometry properties
	Introduction
	Electrostatic moments, electrostatic potential, electron density, electrostatic field, and electric field gradient
	Cube files
	Radiative transition moment
	Polarizabilities
	Transition moments and spin-orbit coupling
	Stone's distributed multipole analysis

	Additional capabilities
	Orbital localization
	The NBO program
	Morokuma energy decomposition
	Interfacing with other programs

	Keywords
	000 - Front page
	001 - CONTRL_group
	$CONTRL group

	002 - MOORTH_group
	$MOORTH group

	003 - GUESS_group
	$GUESS group

	004 - BASIS_group
	$BASIS group

	006 - D5_group
	$D5 group

	010 - ZMAT_group
	$ZMAT group

	011 - LIBE_group
	$LIBE group

	013 - SYSTEM_group
	$SYSTEM group

	014 - SMP_group
	$SMP group

	025 - NUMGRD_group
	$NUMGRD group

	027 - RAMAN_group
	$RAMAN group

	029 - CONIC_group
	$CONIC group

	034 - FMM_group
	$FMM group

	040 - SCF_group
	$SCF group

	042 - DFT_group
	$DFT group

	043 - DFTD_group
	$DFTD group

	044 - MP2_group
	$MP2 group

	045 - MP2GRD_group
	$MP2GRD group

	063 - MCSCF_group
	$MCSCF group

	064 - MCAVER_group
	$MCAVER group

	066 - TRACK_group
	$TRACK group

	067 - XMCQDPT_group
	$XMCQDPT and $MCQDPT groups

	069 - MCQFIT_group
	$MCQFIT group

