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Introduction

About this manual

The goal of this manual is to provide users with a description of all capa-
bilities of the Firefly QC software package. It consists of two parts: a
multi-chapter document that describes Firefly’s core functionality and a
list of all keywords that are available in Firefly.

The main document provides an overview of all important functionality pre-
sent in Firefly. It deals with several theories and calculation types and,
in addition, explains also how to set up Firefly in both Windows and Linux
environments. It is intended for users new to Firefly (or new to a specific
feature in Firefly) and assumes a basic to moderate level of QC knowledge.
However, as this document contains several tips, users with a higher level
of knowledge might also find this document useful. Note that as only an
overview of Firefly’s functionality is provided, many of the less important
(but not necessarily less useful) keywords are not discussed here. Instead,
these can be found in the list of keywords.

The list of keywords provides a complete listing of all options accessible
in Firefly. This document contains very specific information for each fea-
ture in Firefly and will foremost be useful to the more experienced users.
However, beginning users are also encouraged to read through the list -
they might come across some useful keywords not mentioned in the main docu-
ment. In the list, keywords are organized by the keyword group (e.g. $CON-
TRL, $SYSTEM, etc.) they belong to. The list is also available as a sepa-
rate PDF document for the quick lookup of keywords.

This manual is freely available from the Firefly website and falls under

the copyright policy of the Firefly website. It may not be printed or re-
published without the explicit permission of the copyright holder.

Overview of capabilities

The table below summarizes the current main capabilities of Firefly:

Wavefunction RHF UHF ROHF  GVB  MCSCF
Semiempirical SCF dm dm dm dm -

SCF energy cdp cdp cdp cdp cdp
SCF analytical gradient cdp cdp cdp cdp cdp
SCF analytical Hessian cdp* - cdp* cdp* -

DFT energy cdp cdp cdp - -

DFT analytical gradient cdp cdp cdp - -

CIS energy cdp - - - -



CIS analytical gradient cdp - - - -

TDHF (RPA) energy cdp - - - -
TDDFT energy cdp - - - -
MP2 energy cdp cdp cdp - cdmp
MP2 analytical gradient cdp - - - -
MP3 energy cdm - - - -
MP4 energy cdmp* - - - -

CI energy cdp - cdp cdp cdp

CI analytical gradient cd* - - - -

- conventional

- direct/semidirect

multithreaded

- parallel

- additional notes:

- CI analytical gradients and SCF analytical Hessians are
programmed for spd basis sets only (note that CIS gradi-
ents are available for any supported basis sets);

- For GVB, SCF analytical Hessians are available only for
a selected subset of possible GVB-type wavefunctions;

- The MP4(SDQ) code is multithreaded but not parallel
while the MP4(SDTQ) code is both multithreaded and paral-
lel for (T) part.

Legend:
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Firefly and GAMESS (US)

Due to historical reasons, Firefly and GAMESS (US) share a lot of function-
ality. When the Firefly project started in 1993 at MSU, it was based on the
source code of the GAMESS (US) package developed by members of Mark Gor-
don's group at ISU. Modifications to the source code were made by Alex
Granovsky (who at that time was working at MSU), and the modified package
was known as “PC GAMESS”. Initially, PC GAMESS was only available locally
at MSU, but in 1997 it became available outside of MSU as part of the pub-
lic GAMESS (US) distribution.

Up until 1999, features added to GAMESS (US) were also incorporated in PC
GAMESS. The latest release of GAMESS (US) of which the source code was used
is the October 25, 1999 release. After this release, the development of
PC GAMESS and GAMESS (US) became independent. However, PC GAMESS did remain
part of the GAMESS (US) distribution and a certain degree of compatibility
between the two packages was maintained. With the release of version 7.1.C
in 2008, PC GAMESS became completely forked from GAMESS (US) as an inde-
pendent package and the name was changed to “Firefly” (though the PC GAMESS
name was also used till the release of version 7.1.G).

An overview of similarities and differences between Firefly and GAMESS (US)
is given below.

Similarities with GAMESS (US)
Firefly supports all functionalities of GAMESS (US) up to the October 25,
1999 release of GAMESS (US). Many additional features added to GAMESS (US)
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since 1999 are supported as well. Ab initio SCF wavefunctions for RHF, UHF,
ROHF, GVB and MCSCF cases are available. Correlation corrections include
configuration interaction (CI) and Mgller-Plesset (MP) perturbation theory.
For MCSCF wavefunctions, correlation corrections can be calculated with
MCQDPT2. Excited electronic states can also be described with configuration
interaction with singles (CIS), RPA (i.e. TDHF), and TDDFT. Support for
effective core potentials and a variety of density functional (DFT) func-
tionals is available. Geometry optimizations can be performed with analyti-
cal gradients at the HF, MP2, CI, DFT, and MCSCF levels. Analytical Hessi-
ans can be computed for RHF, ROHF and GVB wavefunctions while numerical
Hessians are available for all methods that support analytic gradients.
Finally, numerical gradients and double-numerical Hessians are available
for all methods.

Differences with GAMESS (US)

Firefly provides fast and efficient algorithms for Mgller-Plesset second,
third, and fourth order energy corrections. The DFT code in the Firefly is
completely different with respect to that of GAMESS (US) and the two pro-
grams support different density functionals. In Firefly, MCSCF gradients
can be calculated semi-numerically from state-averaged orbitals, whereby
state-tracking is supported. MCSCF can be used for the location of conical
intersections and interstate crossings. MCQDPT2 calculations in Firefly can
be sped up through a Resolvent fitting technique, and an improved theory,
namely XMCQDPT2, is available. Finally, Firefly has different engines for
geometry optimizations and relaxed surface scans.

Firefly lacks some features that have been implemented in later versions of
GAMESS (US). For example, Firefly does not support coupled cluster and
fragment molecular orbitals methods. ORMAS-type CI and MCSCF calculations
are not possible. Also, it is not possible to do all-electron relativistic
calculations with Firefly. Note that both Firefly and GAMESS (US) lack sup-
port for h and higher angular momentum basis functions.

Release history

Firefly 8.0.0, build #8240. Official Firefly binaries released to the pub-
lic September 5, 2013

System-wide changes:

- New hierarchical eXtreme Parallel (xp) parallel execution model

- Improved performance of threaded code with all presently known issues
fixed

- Improved memory management which is capable to allocate more memory
and to handle it in a more intelligent way

- Improved support of Lustre and other non-local filesystems with all
presently known compatibility issues resolved

- Support of Intel's AVX-enabled processors

- Support of Intel's AVX2-enabled processors and FMA3

- Support of AMD Bulldozer processors and FMA4

- New high-performance intelligent numerical gradients mode



- New, updated documentation for Firefly. This documentation combines
information taken from the old manual, the various README files, and
the forums, and also many new chapters

Changes to HF and DFT code:

- Improved DIIS code with lots of additional modes of operation, con-
figurable using dedicated input options

- Better parallel scalability of DFT code due to faster DIIS

- Improved accuracy of DFT quadratures

- DFT-D empirical dispersion correction

- New GGA and hybrid GGA functionals

- Support of double-hybrid functionals

- New HFX parameter allowing users to modify the fraction of the exact
HF exchange used in hybrid functionals. Helpful in TDDFT calculations
of Rydberg and charge-transfer states.

Changes to MP2 code:

- SCS and SOS MP2
- More intelligent handling of I/O errors while running in parallel

Changes to CUDA-enabled MP4 code:
- Changes for CUDA 4.x and 5.x
Changes to CASSCF, MCQDPT, and XMCQDPT2 code:

- New high-performance determinant-based CASCI/CASSCF code with better
parallel scalability and efficiency, and very modest memory demands

- Multiple functional and performance improvements and extensions to
MCQDPT and XMCQDPT module

- Improved conical intersection location code now capable to deal with
arbitrary averaging of multiple states in SA-CASSCF

Other changes:

- CPCM solvent model

- Fully variational DPCM and CPCM-like extended solvent models
- PCM is enabled for UHF/UDFT and ROHF/RODFT

- Extended restart capabilities

- Improvements and extensions to surface scan module

- Multiple bugfixes and minor improvements

7.1.G (i.e., 7.1.16), build #5618. Official Firefly binaries released to
the public December 4, 2009.
Main new features are:

- Multiple minor bugfixes and improvements.

- More aggressive set of default settings for better performance and
stability.



- Improved performance on AMD Phenom/Phenom
II/Barcelona/Shanghai/Istanbul processors.

- Improved performance of MP2 Energy/Energy Gradient method=1 code.

- Improved DLC engine.

- Improved code for relaxed PES scans using DLCs.

- Improvements to P2P communication interface.

- Completely redesigned threading model for better multithreaded per-
formance and CUDA interoperability.

- Improved MP4 code with CUDA support.

- Program name changed to Firefly.

7.1.F (i.e., 7.1.15), build #5211. Official PC GAMESS/Firefly binaries re-
leased to the public February 24, 2009.

This is mainly the maintenance/bugfix release over PC GAMESS/Firefly ver-
sion 7.1.E. Main new features and bugfixes are:

- Support of Mac 0S X/Intel platform.

- Better multithreaded performance on some platforms/hardware.

- Workaround for nasty CPUID bug.

- New fully dynamically linked MPICH/NPTL binaries for Linux.

- Faster GVB/MCSCF gradients.

- State-Specific gradient code for State-Averaged MCSCF allows use of
PCM solvation model for excited states optimization and location of
Conical Intersections.

7.1.E (i.e., 7.1.14), build #5190. Official PC GAMESS/Firefly binaries re-
leased to the public January 11, 2009.

This is mainly the maintenance/bugfix release over PC GAMESS/Firefly ver-
sion 7.1.C. However, it adds some new important features:

- Completely new DLC engine and improved default geometry optimizer.

- Better support of Core i7 (as well as other Nehalem core processors).
- More efficient I/O under Windows Vista/Windows Server 2008 R1.

- Support of httfix option under Linux.

- New mpich2-linked binaries for Linux.

- Fixes for compatibility with the most recent Linux distributions.

7.1.C (i.e., 7.1.12), build #5014. Official PC GAMESS/Firefly binaries re-
leased to the public October 17, 2008.

Accumulates multiple bugfixes, performance improvements, and new function-
ality introduced since the release of PC GAMESS v. 7.1.5:

- Massive internal engine rewrites.

- Extended P2P interface with support of up to 1024 nodes.

- New eXtended MultiConfiguration QuasiDegenerate Perturbation Theory
(XMCQDPT) code (see
http://classic.chem.msu.su/gran/gamess/xmcqdpt.pdf).



7.1.6

7.1.5,

Improved CPHF=A0O code for analytical RHF second derivatives with re-
duced memory requirements and better parallel scalability. Note it is
now turned on by default!

Improved, much more stable and faster SOSCF code available for
RHF /ROHF /UHF /GVB/MCSCF wavefunctions optimization

Improved METHOD=GDIIS geometry optimizations.

Updated NBO version 5.G module.

Relaxed 1D and 2D PES scans over bonds, angles, or torsions in DLCs
(list of new available options is to be published soon in "Manuals"
section).

Added RM1 parameterization to MOPAC code.

Improved stability of the ALDET's Davidson CI diagonalization code.
Improved state-averaged MCSCF gradient code.

Improved MCSCF state-tracking feature.

New code for location of conical intersections (CI).

Improved DIIS code with reduced memory demands.

More accurate memory demands estimation for CIS/TD code.

New, much more stable code to convert internals to Cartesians.

DFT gradients are now slightly more accurate.

Support of Gaussian-style O3LYP functional.

Support of Intel Atom processors.

Initial optimization for Intel Core i7 (codename Nehalem) microarchi-
tecture.

Improved compatibility with some buggy Linux versions.

Linux/MPICH version of PC GAMESS now uses SSH by default.

-7.1.11 (i.e., 7.1.B), internal builds.

build #4630, December 23, 2007.

Available as the set of the update patches to the original PC GAMESS ver-
sion 7.1 build # 4471 from the Downloads section of the PC GAMESS homepage
at MSU. Incorporates multiple bugfixes and performance improvements (espe-
cially for AMD Phenom/Barcelona and Intel Core 2 processors), as well as
some new functionality.

7.1.4,

7.1.3,

7.1.2,

7.1.1,

November 2007, internal build.

October 2007, internal build.

October 2007, internal build.

September 2007, internal build.

7.1, Official PC GAMESS binaries released to the public, build #4471, Sep-
tember 5, 2007.
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This version accumulates all the changes introduced in intermediate releas-
es versions 7.0.2-7.0.7, as well as state-specific analytic gradients for
state-averaged MCSCF and completely new state of the art serial and paral-
lel semidirect MP2 gradient program with excellent performance, scalability
and very modest memory demands.

7.1 final RC, build #4400, June 27, 2007.

New PC GAMESS version features completely new state of the art parallel
semidirect MP2 gradient program with excellent performance, scalability and
very modest memory demands. The updated PC GAMESS binaries were available
from MSU for registered PC GAMESS users for testing purposes upon request.

7.0.7, build #4194, April 23, 2007.

Dynamically linked Linux binaries of PC GAMESS are now fully nptl compati-
ble and were carefully tested with MPICH, MPICH-GM, MPICH-MX, OpenMPI,
Scali MPI, HP-MPI, Intel MPI 3.0 and Infinipath MPI implementations. The

updated PC GAMESS binaries were available from MSU for registered PC GAMESS
users for testing purposes upon request.

7.0.6, April 2007, internal build.

7.0.5, March 2007, internal build.

7.90.4, build #4102, February 16, 2007, internal build.

- More numerically stable PCM energy and gradient code

- Serious improvements of parallel scalability of ALDET CASCI and
CASSCF code The updated PC GAMESS binaries were available from MSU
for registered PC GAMESS users for testing purposes upon request.

7.0.3, build #4063, January 21, 2007, internal build.
- Shared memory version of P2P interface (Windows)
- support of OPTX, OLYP, and O3LYP XC functionals
- Parallel PCM with enlarged PCM dimensions
The updated PC GAMESS binaries were available from MSU for registered PC
GAMESS users for testing purposes upon request.
7.0.2, build #4020, October 8, 2006, internal build.
Added completely new, much faster MCQDPT2 code developed at MSU. The updat-

ed PC GAMESS binaries were available from MSU for registered PC GAMESS us-
ers for testing purposes upon request.
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7.0.1, build #3970, August 17, 2006

7.0,

Better optimization for Intel Core 2 (Woodcrest/Conroe/Merom proces-
sors) microarchitecture
Minor bugfixes and improvements

build #3910, May 11, 2006

Initial optimization for Intel Core 2 (Woodcrest/Conroe/Merom proces-
sors) microarchitecture

Time-dependent Hartree-Fock (TDHF) and density functional theory
(TDDFT)

Configuration Interaction Singles (CIS)

Static and dynamic hyperpolarizabilities via TDDFT

Large-scale direct and conventional parallel MCSCF

Semidirect MCQDPT

Support of general contraction basis sets

Faster PCM

Improved Linux compatibility

Unified support of different MPI implementations under Windows

Release Candidate #9, January 2005, was available to beta testers only

Support for spherical basis functions

Quantum Fast Multipole Method and Linear Exchange for linear scaling
HF and DFT

Faster direct SCF/DFT code

New 2-e integrals code

Much faster MCQDPT code with SMP support

March 2004

Fast hybrid DFT

Support of AMD Opteron and Intel Pentium M processors

Improved performance and stability

Dynamic load balancing on the top of P2P interface

Improvements to P2P parallel MP2 energy code

Better support of SMP including HTT environment

Several other enhancements and extensions (cube facility etc...)

June 2003

Optimized binaries for AMD Athlon and Intel Pentium 4 processors

New parallel mode P2P communication interface

Efficient parallel MP2 energy code based on P2P model allowing thou-
sands of basis functions

Various bugfixes and enhancements
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6.2,

5.4,

5.2,

2001

Optimized binaries for AMD Athlon
Cumulative bugfixes and improvements

2001, Internal release

May 2000

PC GAMESS is now based on updated GAMESS (US) sources

Pentium/Pentium Pro/Pentium II/Pentium III-optimized native Linux
SMP-aware PC GAMESS ELF binaries

Pentium Pro/Pentium II/Pentium III-optimized 0S/2-based SMP & IJFS-
aware binaries

Large files are supported via transparent file splitting on all 32-
bit file systems (2 or 4 GB limit)

Enhanced convergence options for solving MP2 CPHF equations

PG GAMESS can now write out cube files for visualization

Advanced surface scan interface

NBO module is incorporated into PC GAMESS

Support of direct MP3/MP4

GDIIS method for geometry optimization

1999

Changes for faster MP3/MP4

Changes to better support SMP throughout the code
0S and CPU autodetection

1999, Internal release

Changes to use updated MKL libraries
Changes to support parallel execution

May 1999

New RHF MP4(SDTQ) (i.e., full MP4) energy module is added

The SMP scaling properties of MP3/MP4 calculations are improved con-
siderably

The speed of MP2 gradient calculations for non-abelian symmetry
groups is increased

The speed of Conjugated Gradient solver (used mainly during calcula-
tions of analytical second derivatives) is improved significantly

The Finite Field module is changed to avoid reevaluations of 2-e in-
tegrals if possible

The ECP integrals module is rewritten to avoid numerical instability
problems

It is now possible to run the PC GAMESS under Linux using customized
Wine
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5.1, Build #1519, October 1998

- RHF MP3/MP4(SDQ) energy modules are added.

- Memory management is improved again (Win32 and 0S/2-specific).

- The CPHF solver used during MP2-level geometry optimization/hessian
runs is now faster.

- GAMESS bugs concerning PCM-level geometry optimization/hessian runs
are fixed.

- The precision of the HF density matrix generated by SOSCF converger
is enhanced

5.0, August 1998
- Based on May 8, 1998 GAMESS code
- Faster TDHF, MCQDPT, MP2 energy, and MP2 energy gradient calculations
- The disk usage is reduced for non-FORS GUGA CI jobs
- Improved support of SMP (Windows NT specific)

4.5, Internal Release

4.4, March 1998

- Completely new RHF/ROHF/UHF MP2 energy program

- Additional GUGA CI Hamiltonian packing

- Improved memory management (Windows NT specific)
4.3, October 1997

- Updated MP2, MP2 gradient, and CI gradient codes

- Large direct access files (> 2 GB) are supported under Windows NT
- Ctrl-C and Ctrl-Break signal handling is implemented

4.2, Internal Release

4.1, Build number 1220
- The fast (non-Fortran) file I/O as well as the AO integrals and GUGA
CI Hamiltonian packing are implemented
- Large sequential access files (> 2 GB) are supported under Windows NT

4.0, Build number 1080

- First public release based on the original GAMESS sources dated March
18, 1997
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Versions 1.0 - 3.0 were used locally at MSU.

Citing Firefly
You must use the following Firefly reference in your publications:

Alex A. GranovsRy, Firefly version 8.0.9, www
http://classic.chem.msu.su/gran/firefly/index. html

This reference should be explicitly given in the appropriate section of
your paper just like any other regular references are. Specifically, this
should not be just a reference given in pass within the main body of paper.

The recommended form is as follows:

Firefly QC package [1], which 1is partially based on the GAMESS (US)
[2] source code.

1. Alex A. GranovsRy, Firefly version 8.0.09, www
http://classic.chem.msu.su/gran/firefly/index. html

M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon,

2.
J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus,
M.Dupuis, J.A.Montgomery J.Comput.Chem. 14, 1347-1363 (1993)
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Installing and Running Firefly

General information

Firefly is freely available and can be obtained from the Firefly website.
The Windows and Linux versions of the program are distributed as a com-
pressed archive - to be precise, as a RAR file inside a ZIP file. The RAR
file is password protected; one first has to register in order to obtain
the password which 1is necessary for decompression. Instructions for the
registration can be found inside the ZIP file. The Mac 0S X version is as
an encrypted installation image (the password will be asked during instal-
lation process).

Before downloading, one has to decide which version to download. First of
all, Firefly can be obtained for Windows, Linux, and OS X. The Windows ver-
sion can run in serial and parallel mode, and is compatible with various
MPI implementations. The Linux version can also work with various MPI im-
plementations, however, a separate download is provided for each MPI type.
Archives for MPI implementations not listed in the download section on the
Firefly website can be provided upon request.

Up until version 8.0.09, one could also choose from various com-
piled/optimized versions of Firefly, designed to run with maximum efficien-
cy on a certain CPU architecture. However, as of Firefly 8.0.0 only the so-
called “P4” version is available from the Firefly website. The P4 version
is optimized for Intel Pentium 4, Intel Pentium D, Intel Xeon, Intel Core
2, and Intel Core 1i3/i5/i7 processors as well as for AMD Phenom, AMD “Bar-
celona” Opteron, and newer AMD processors. It is also possible to run this
version on older processors provided that they support SSE2, but perfor-
mance might not be optimal in such a case. Binaries optimized for older
processors are available upon request. Note that a 64-bit version of Fire-
fly is currently not available.

Specifics regarding the installation and execution of Firefly on Windows
and Linux are given in the following sections.

An important bit of information which applies to all versions of Firefly is
that the execution of a job results in the creation of many new files. Some
of these contain formatted data (such as the PUNCH file), others are tempo-
rary files (such as the DICTNRY file). Firefly will refuse to start a new
job if the formatted data file(s) from a previous job are still in the
working directory (as they may contain something useful), these should
therefore either be deleted or moved to a different directory. Temporary
files don’t necessarily have to be deleted, though it is advisable to do so
(unless a job is restarted).

Windows
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The installation of Firefly under Windows 1is quite straightforward. The
first step is to extract the contents of the downloaded RAR archive to a
directory for which Firefly has read and write permissions. This is all
that is required for executing a single instance of Firefly in serial mode.
Running multiple, separate jobs is possible, the only requirement is that
each instance of Firefly runs from its own directory.

When executing Firefly, the program will look for input in a file called
"input" in the directory which contains the firefly.exe executable, though
it is also possible to specify an input file with the “-i” command 1line
option. By default, the output is written to the “stdout” device (i.e., it
will appear onscreen if no I/0 redirection is used). Therefore, if one
would like the output to be saved to a file, an I/0 redirection has to be
used. When executing Firefly on an NT-based version of Windows, one could
for example specify:

firefly.exe >test.out 2>&1

This will cause the output to appear in the file test.out. The addition of
“2>&1” will cause most severe error messages normally sent to console also
to be send to test.out instead. (Firefly high-level error messages will be
written to test.out anyway). This however does not work on Windows 95/98/ME
as command interpreter's I/0 redirection is more limited on these operating
systems. In these cases, one can only specify:

firefly.exe >test.out

If one is executing Firefly from the Windows Powershell, it is also possi-
ble to send the output simultaneously to the screen and to a file by using
the tee command. This is not recommended though, as the output file pro-
duced in this way cannot easily be opened by other programs like ChemCraft
due to an ASCII/binary problem.

Additionally, it is also possible to tell Firefly to write the output to a
file of your choosing with the “-0” command line option:

firefly.exe -o test.out

Windows MPI implementations

The instructions in the previous section cover the basic steps needed to
get Firefly installed and running in serial mode. Running Firefly in paral-
lel mode however requires some additional work. Specifically, one has to
choose an MPI implementation, even if Firefly will be run on a standalone
SMP/multicore system (i.e. a single multicore computer).

The Windows version of Firefly is supplied with a series of DLL files which
after extraction of the RAR archive will be in a directory named BINDINGS.
Each of these files makes Firefly compatible with a particular MPI imple-
mentation. The list of supported MPI implementations and corresponding DLL
files is as follows:
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* MPIBIND.SEQ.DLL - no MPI implementation is used, this file converts Fire-
fly into a purely sequential program

* MPIBIND.NT-MPICH-SMP.DLL - to be used with mpich_smp.dll library (includ-
ed into the Firefly distribution, taken from NT-MPICH version 1.3) on
standalone SMP/multicore systems

* MPIBIND.NT-MPICH.DLL - to be used with NT-MPICH
* MPIBIND.DEINOMPI.DLL - to be used with Deino MPI
* MPIBIND.INTELMPI.DLL - to be used with Intel MPI
* MPIBIND.MPICH.NT.DLL - to be used with MPICH.NT
* MPIBIND.MPICH2.DLL - to be used with MPICH2

* MPIBIND.WMPI-1.3.DLL - to be used with WMPI v. 1.3 (included into the
Firefly distribution)

* MPIBIND.WMPI-1.6.DLL - to be used with WMPI v. 1.6 and above
* MPIBIND.WMPI-II.DLL - to be used with WMPI-II
* MPIBIND.MPIPRO.DLL - to be used with MPI Pro

* MPIBIND.MSMPI.DLL - to be used with Microsoft MPI library for Windows
Compute Cluster Edition/Compute Cluster Server

The recommended MPI implementation for Firefly on pure SMP/multicore sys-
tems is NT-MPICH-SMP. For self-made (non CCS-based) Windows clusters the
recommended implementation is NT-MPICH. Finally, for Windows CCS systems,
the recommended MPI implementation is MS MPI.

Making Firefly compatible with a certain MPI implementation requires one to
copy the appropriate DLL file from the BINDINGS directory into the Firefly
installation directory and rename it to “mpibind.d11” (after deleting the
old version of mpibind.dll). Note that because Firefly is 32-bit program
you will need to use 32-bit MPI libraries, even when you are is using a 64-
bit version of Windows.

Getting Firefly to run in parallel on a single SMP/multicore system is
quite straightforward - the mpich_smp.dll library, which is needed for NT-
MPICH-SMP implementation, is included in the downloaded Firefly RAR archive
and will already be present in the Firefly directory if the full archive
was extracted. The only thing that has to be done is to copy and rename the
file mpibind.nt-mpich-smp.dll. A job can then be started with the following
command:

firefly.exe -i c:\jobs\jobl.inp -o c:\jobs\jobl.out -t c:\ff\ -np 2
Here, the -i and -o switches give the input and output file names. The -t
command line switch specifies a directory in which Firefly will place its

temporary files. To be more specific, Firefly will create a separate direc-
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tory in c:\ff\ for each instance of Firefly in which the temporary files of
that instance will be placed. It should hereby be noted that it is possible
to run multiple jobs in a single directory without any filename conflicts.
Formatted data files such as the PUNCH file will be placed in the first of
these automatically created directories. Finally, the -np switch gives the
amount of instances of Firefly that should be started.

When your computer system has more than one physical hard drive, it is ad-
visable to let Firefly use all of them in order to spread the I/O workload.
For such a case, you can explicitly specify working directories as follows:

firefly.exe DIRp, DIR; DIR, ... DIRy -np number_of_cpu_cores_to_use

where DIR, is the master directory (where the formatted data files will be
created, and where the input file is assumed to be). Prior to execution,
all of the directories specified should be manually created. As an example,
when launching a single job on two cores and two separate hard disks, one
could write:

firefly.exe d:\mydir\wrke "e:\my dir\wrkl" -np 2

Command line switches such as -i and -o should precede the list of directo-
ries. It is also possible to use relative paths; these will be relative to
the master directory.

Detailed instructions for setting up Firefly with other MPI implementations
are not included in this documentation as the documentation for each MPI
implementation itself is already a good source of information (we recommend
reading this before attempting to setup up Firefly in an MPI environment).
However, some general tips can be given for a few MPI implementations:

WMPI 1.3

The installation package for this implementation is distributed with Fire-
fly and is one of few that supports Windows 98 and Me. After installation,
the cvwmpi.dll file should be somewhere in your path, and the wp4 daemon
(wmpi_daemon.exe, Windows 98/Me) or service (wmpi_service.exe, Windows
NT/2000,XP, etc...) has to be running on all systems. Note, the -p4dialog
option is currently not supported by the Firefly and that this will not be
changed in the future. The simplest command line for executing Firefly with
WMPI 1.3 is as follows:

FIREFLY.EXE DIR, DIR; DIR, ... DIRy < wp4 options >
where “wp4 options” are optional wp4-specific options (see the WMPI docu-
mentation for the list). For example, you can use something like the fol-

lowing:

firefly.exe d:\mydir\wrk® e:\mydir\wrkl "f:\my dir\wrk2" -p4gm
10000000

In this example, the -p4gm 10000000 option sets the size of the global
memory used by the WMPI libraries and the wp4 device to 10 MB.
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Finally, it's a good idea to look at the more detailed instructions written
by Prof. Ernst Schumacher at http://www.chemsoft.ch/qc/pcgamess.htm

NT-MPICH

Setup requires the installation of the 32-bit NT-MPICH package (the part of
MP-MPICH), including MPI dynamic link libraries and cluster management ser-
vice, on all computers that will be used to run Firefly in parallel. Also
create an appropriate machinefile (machines.txt) following directions in
the NT-MPICH documentation. Afterwards, a Firefly job is executed with
mpiexec. A simple command line is as follows:

mpiexec.exe < mpiexec options > FIREFLY.EXE DIRy DIR; DIR, ... DIRy
An example:

mpiexec.exe -n 3 -account local/administrator C:\FIREFLY\FIREFLY.EXE
-0 C:\FIREFLY\MP2LARGE\mp2.out C:\FIREFLY\MP2LARGE D:\FIREFLY\MP2LARGE
E:\FIREFLY\MP2LARGE

MPICH.NT

Setup requires the installation of the 32-bit MPICH.NT package on all com-
puters to be used to run Firefly in parallel. After installation, an appro-
priate config file has to be created. Below is an example:

exe C:\FIREFLY\FIREFLY.EXE

args -o C:\WORK\chk.out D:\FIREFLY\1 C:\FIREFLY\1 C:\FIREFLY\2
hosts

P4 1

DUATH 2

In this example, D:\FIREFLY\1l must exist on host P4, while C:\FIREFLY\1l and
C:\FIREFLY\2 must exist on host DUATH2 prior to execution of the Firefly
job. The job can be executed with the mpirun program.

Finally, some general advice that applies to all MPI implementations can be
given. First of all, it is important to keep in mind that, when running
Firefly in parallel, it is possible to experience performance degradation
due to simultaneous I/O operations. In such a case, the use of a high-
quality RAID setup, or the use of a separate physical disk for each in-
stance of Firefly can help. If the problem persist, one solution is to use
direct computation methods which require much less disk I/O.

It should be noted that the default value for AOINTS is DUP. This is proba-
bly optimal for low-speed networks (10 and 100 Mbps Ethernet). On the other
hand, for faster networks and SMP systems the optimal value could be
AOINTS=DIST which distributes the AO integral file across all nodes. One
can change this behavior through the AOINTS keyword in the $SYSTEM group.

In the case of MPI-related problems, there are four keywords in the $SYSTEM
group which might be of help. These are MXBCST, MPISNC, MXBNUM, and LENSNC.

For a description of these keywords, please see the list with keywords. It
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is recommended not to modify the default values unless you are absolutely
sure that this is needed.

Windows and CUDA

Documentation on the use of CUDA under Windows 0Ss will be provided in the
future. Some information on this topic can be found in the forums on the
Firefly website.

Linux

As we have seen in the previous section, the Windows version of Firefly can
be made compatible with a certain MPI implementation by copying the appro-
priate binding DLL into the main Firefly directory. Things however work a
bit different for the Linux version of Firefly as here the compatibility
with a certain MPI type is incorporated in the main Firefly executable.
Therefore, an individual download is available for each MPI implementation.
Additionally, for the MPICH version, one can choose between statically and
dynamically linked libraries as well as between rsh and ssh supporting li-
braries.

Getting Firefly up and running in serial mode under Linux is very straight-
forward. The easiest is to download and decompress the Linux MPICH version
that is statically linked with MPICH and dynamically linked with other 1li-
braries, as this version does not require an MPI implementation to be in-
stalled for serial runs. After decompression, the main firefly binary has
to be made executable with the following command:

chmod a+x ./firefly

This is all that is required for executing Firefly in serial mode. Running
multiple, separate jobs is possible. Note that with Firefly 8.0.0, it is
possible to run multiple jobs in a single directory without any filename
conflicts.

When executing Firefly, the program will look for input in a file called
"input" in the directory which contains the firefly executable, though it
is also possible to specify an input file with the “-i*” command line op-
tion. By default, the output is written to the “stdout” device. Therefore,
if one would like the output to be saved to a file, an I/O redirection has
to be used, for example:

./firefly >test.out 2>&1
This will cause the output to appear in the file test.out. The addition of
“2>&1” will cause some severe error messages also to be send to test.out
(Firefly high-level error messages will be written to test.out anyway).
Additionally, it is also possible to tell Firefly to write the output to a
specific file by using the “-0” command line option:

./firefly -o test.out
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Linux MPI implementations

For Linux, Firefly binaries are available for the following MPI implementa-
tions. Note that all fully dynamically linked versions are NPTL-based.

e MPICH (using ssh as remote shell by default), statically linked with
MPICH and dynamically linked with other libraries.

e MPICH (using rsh as remote shell by default), statically linked with
MPICH and dynamically linked with other libraries.

e MPICH, fully dynamically linked

e MPICH2, dynamically linked

e LAM/MPI version 7.1.X, dynamically linked

e OpenMPI version 1.4.X, dynamically linked

e OpenMPI version 1.6.X, dynamically linked

e MVAPICH, dynamically linked

e MVAPICH2, dynamically linked

e MPICH-MX, dynamically linked

MPICH-GM, dynamically linked

Intel MPI, dynamically linked

Scali MPI, dynamically linked

Parastation, dynamically linked

Infinipath MPI, dynamically linked

HP-MPI, dynamically linked

Platform MPI, dynamically linked

The MPICH binaries exist in two versions, namely one statically linked with
MPICH library only, and one fully dynamically linked. All other binaries
are fully dynamically linked and you therefore need to compile and/or in-
stall the particular MPI implementation you want to use with support of the
shared libraries enabled. Note that because all the currently available
Firefly versions are 32-bit executables, so you need 32-bit shared librar-
ies even when using a 64-bit system!

In addition to the above MPI implementations, Firefly has also been suc-
cessfully linked and tested with other MPI implementations, including
LAM/MPI v6.5.9, INTEL MPI v1.x-2.Xx, MPICH-GM (statically 1linked),
MVAPICH/libvapi, etc. If you would like to obtain Firefly binaries 1linked
with these (or other) MPI implementations, please register for the MPICH
version of Firefly, then contact us to obtain customized binaries.

Detailed instructions for setting up Firefly with these MPI implementations
are not included in this documentation as the documentation of the MPI im-
plementation itself is already a good source of information (we recommend
reading this before attempting to setup up Firefly in an MPI environment).
However, some general pointers can be given for the statically linked MPICH
version of Firefly, which is probably the easiest to set up for a single
multicore node as it does not need the installation of MPICH.

The first step is to unpack the statically linked MPICH version of Firefly
into a directory of your choosing. Let’s assume its path is
/home/alex/firefly. Next, after unpacking Firefly, you will need to make a
procgroup file (filename: “procgrp”) in Firefly’s main directory. Details
on how to do this are in the MPICH documentation. Unfortunately, since the
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inception of MPICH2, the original MPICH documentation is somewhat hard to
find. Pedro Silva is therefore gracefully hosting an old MPICH manual on

http://www2.ufp.pt/~pedros/procgroup.htm

For a single node with only 2 CPU cores, the procgroup file can be kept
simple. It only has to contain the string “local 1”. If the single node has
4 cores, the string should be “local 3”. Etcetera.

Then, assuming your input file is in /home/alex/firefly, Firefly can be
executed as follows:

/home/alex/firefly/firefly -r -f -p -stdext -i /home/alex/test.inp -o
/home/alex/test.out -ex /home/alex/firefly -t /tmp/scratch/test -pdpg
/home/alex/firefly/procgrp &

Finally, it is recommended to install the “cleanipcs” script, which is a
part of MPICH1 distribution but which can also be found separately on the
web after some googling (this script is also included into some Linux dis-
tributions).

For running Firefly on an Infiniband interconnect based cluster, we recom-
mend using MVAPICH or recent versions of Intel MPI.

Please see the Windows MPI section for some general advice that applies to
all MPI implementations.

Linux and CUDA

Documentation on the use of CUDA under Linux-based 0Ss will be provided in
the future. Some information on this topic can be found in the forums on
the Firefly website.

Installing Firefly on an InfiniBand network 64-bit Linux cluster
with Intel MPI v. 3.x

Because of the popularity of Linux computing clusters with InfiniBand in-
terconnect, this section contains instructions specifically on how to set
up Intel MPI version of Firefly on such a cluster. In the following we as-
sume that Intel MPI is already installed on the cluster.

To get maximum performance of Firefly on a cluster with InfiniBand inter-
connect, we need to configure our system and the Firefly to use Infini-
band. In addition, some parts of Firefly will benefit if IP over InfiniBand
(IPoIB) is enabled and functioning. Keep in mind that 32-bit libraries are
required to setup Firefly on 64-bit cluster. Most clusters use a Linux-
based 0S. Therefore, all information below corresponds to the Linux-based
0S. Requirements:

. A cluster with preinstalled Linux OS.
. A high speed adapter InfiniBand installed on it.
. Intel MPI v. 3.x
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If you are not sure whether Infiniband adapters are installed on your clus-
ter, type at the command prompt (commands to type are preceded by a '$’
sign):

$ /sbin/ifconfig -a

If you see a string beginning with "ib"™ then you have IB installed. In the
case where several devices are installed on the cluster (ib@, ibl ..),
check all of them carefully. Only one device should normally be marked as
active. Also, we need to check whether or not 32-bit dat and dapl libraries
are installed. These libraries are used by Intel MPI to communicate with
the IB device.

All examples and outputs below pertain to a particular cluster. The outputs
you get may differ in some details, and so may the scripts and configura-
tion files to use in your environment.

$ /sbin/ldconfig -p | grep dat

libicudata.so.34 (libc6,x86-64) => /usr/Lib64/libicudata.so.34
libdat.so.1 (lLibc6,x86-64) => Jusr/Lib64/libdat.so.1
Libdat.so.1 (Libc6) => /usr/Llib/libdat.so.1

Libdat.so (lLibc6,x86-64) => /usr/Lib64/Llibdat.so

Llibdat.so (lLibc6) => /usr/lib/libdat.so
Libboost_date_time.so.1.33.1 (Libc6,x86-64) =>
/usr/Lib64/Libboost date time.so.1.33.1

$

As we can see, 32-bit and 64-bit dat libraries are installed on the clus-
ter. As the system-wide settings of Intel MPI installed on a 64-bit cluster
are to use 64-bit libraries, we need to override the defaults and force
Intel MPI to use 32-bit dapl libraries. In order to achieve this, we need
to create our own dat configuration file "dat.conf". This file contains a
user defined list of dapl providers for the IB adapter and can be created
anywhere within a user's folder. It 1is good 1idea to «create user's
"dat.conf" file based on the system wide one.

$ cp /etc/dat.conf ~/

$ cat ~/dat.conf

# This is example of the dat.con file

OpenIB-cma ul.2 nonthreadsafe default Libdaplcma.so.1 dapl.1.2 "ibo 6" ""
OpenIB-cma-1 ul.2 nonthreadsafe default Llibdaplcma.so.1 dapl.1.2 "ibl ©" ""
OpenIB-cma-2 ul.2 nonthreadsafe default Llibdaplcma.so.1 dapl.1.2 "ib2 0" ""
OpenIB-cma-3 ul.2 nonthreadsafe default Llibdaplcma.so.1 dapl.1.2 "ib3 @" ""
OpenIB-bond ul.2 nonthreadsafe default Llibdaplcma.so.1 dapl.1.2 "bondo o"

"

$

The first word of the strings ("OpenIB-cma", "OpenIB-cma-1", etc.) is a
name of a dapl provider. Now, we need to find our device (remember the out-
put from "ifconfig" above). In our case it should be ib@. A part of the
string "libdaplcma.so.1" is a name of the library that should be used by
IB. Of course, on a 64-bit cluster it is a 64-bit library by default. We
need to redefine that library and make sure it points out on 32-bit 1i-
brary.
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Now, we need to check whether or not the 32-bit library is installed on our
cluster:

§ /sbin/ldconfig -p | grep Libdaplcma

Libdaplcma.so.1 (Llibc6,x86-64) => /usr/Lib64/libdaplcma.so.1
Libdaplcma.so.1 (Libc6) => Jusr/lib/libdaplcma.so.1 # 32-bit Library
Libdaplcma.so (Libc6,x86-64) => /usr/Lib64/libdaplcma.solibdaplcma.so
(Libc6) => Jusr/lib/libdaplcma.so # 32-bit Library

Libraries that do not contain x86-64 are 32-bit. Based on that, we conclude
that we have 32-bit libraries installed. Now we need to change the string
"libdaplcma.so.1" in our "dat.conf" file to "/usr/lib/libdaplcma.so.1”

The new file dat.conf looks as follows:

$ cat ~/dat.conf
OpenIB-cma ul.2 nonthreadsafe default /usr/lib/libdaplcma.so.1 dapl.1.2
",ib@ e” mnmn

To start Firefly via PBS, we need to add a couple of extra strings to a pbs
script. We need to use the 32-bit version of the Intel MPI libraries. In
the case they are not installed system-wide, we need to inform the dynamic
loader where to look for them. You need to know where exactly they are in-
stalled. You may ask your system administrator or use the “locate” or
“find” commands.

Let’s assume we found that the 32-bit libraries are installed here:
/opt/intel/ict32/impi/3.2.1.009/1ib

Now, we need to modify the LD_LIBRARY_PATH environment variable accordingly
(note the line below is a single wrapped line):

export LD _LIBRARY _PATH=/opt/intel/ict32/impi/3.2.1.009/Lib:$LD LIBRARY PATH
To call Intel MPI's mpirun/mpiexec we need to add the directory "bin" with-
in the Intel MPI installation to the PATH environment variable:

export PATH=/opt/intel/ict32/impi/3.2.1.009/bin:$PATH

By default, the dat layer uses a system wide dat configuration file such as
"/etc/dat.conf". We can override these settings by defining a DAT_OVERRIDE

environment variable:

export DAT_OVERRIDE=$HOME/dat.conf

Now it points to our version of the dat.conf file.
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Below you will find a sample PBS script that can be used to run Intel MPI
version of Firefly over an InfiniBand network.

#!/bin/sh -x

#PBS -N jobname

#PBS -l nodes=3:ppn=8 # we are going to use 3 nodes and
# 8 CPU's on each node

#PBS -L mem=5600mb

#PBS -L walltime=6:00:00

#PBS -e jobname.e

#PBS -0 jobname.o

### COMMON SETTINGS ###

export IMPI HOME=/soft/intel/ict32/impi/3.2.2.006
export PATH=$IMPI_HOME/bin:$PATH

export LD LIBRARY PATH=$IMPI HOME/Lib:$LD LIBRARY PATH
export TMP_DIR=/scratchl/$USER/$PBS_JOBID

export FFHOME=$HOME/bin

export WORK DIR=$PBS O WORKDIR

#HHE Intel MPI ###H

# I_MPI _DEVICE=< device >:< provider >

# see user manual for Intel MPI

# "rdssm" - Combined sockets + shared memory + DAPL

# (for clusters with SMP nodes and RDMA-capable network fabrics)
# Provider 1is "OpenIB-cma" as defined in our dat.conf file.
export I_MPI _DEVICE="rdssm:OpenIB-cma"

# Just in case, let us setup extra output information for IntelMPI
# This should not however be used in production runs

export I_MPI_DEBUG=10

#

# Below we need to add appropriate commands to start Firefly.

# It is recommended to read the Quick Start guide for IntelMPI.

mkdir $TMP_DIR
cd $WORK_DIR

mpiexec -n $NCPUS $FFHOME/firefly -r -f -p -stdext -ex $FFHOME -1i
$WORK_DIR/filename.inp -o $WORK_DIR/filename.out -b $WORK _DIR/basis.lib -t
$TMP_DIR

# or

mpirun -np $NCPUS $FFHOME/firefly -r -f -p -stdext -ex $FFHOME -1
$WORK_DIR/filename.inp -o $WORK DIR/filename.out -b $WORK DIR/basis.lib -t
$TMP_DIR

cd $WORK DIR && rm -rf $TMP_DIR
rm -rf $TMP_DIR.*

The script can be queued by the command:

$ gsub myscript.pbs
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The next step is to obtain the IP address and network mask of the ib@ in-
terface, which will be used to direct the P2P interface to use fast IPoIB
network. Note that this is usually not required on modern clusters.

Start by typing

$ /sbin/ifconfig -a

Go to the part "ib@" and look at the strings "inet addr .. " and "Mask ..."
These should be something like:

"inet addr:192.168.5.5 Mask:255.255.0.0"

or

$ cat /etc/sysconfig/network/ifcfg-ib@ | grep IPADDR IPADDR=192.168.5.5
$

Now we first need to convert the IP address and Mask to hexadecimal. After
that, we need to perform a logical AND of the IP address with the Mask. The
result is the network address of the IpoIB network. To speed up P2P, we
need to put extra settings directly into Firefly INPUT file:

$P2P BIND=.t. NET=<hexadecimal value of the IPoIB network address>
MASK=<hexadecimal value for the IPoIB network mask> $END

$SYSTEM MXBCST=-1  $end

$MPI MXGSUM=1048576 $end

$MPI MNPDOT=1000000 $end

Note that you need to specify leading zeros, if any (e.g. net=0al@0e00 in-
stead of net=al00000).

Command line options

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

All Firefly versions can take optional command line arguments. The support-
ed format of command line is as follows:

firefly [optional command Line options 1in any order] [optional List of
working directories]

The Firefly accepts both -option and /option syntax. All options are case-
insensitive. A list of the most widely used command line options is given

below:

The following list is currently incomplete and will be completed in the
future.
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-i <filename>

Specifies input file to use. Filename is the com-
plete absolute name of the file to be used as input.
If no path is specified, Firefly will assume the
file resides in the initial working directory from
which Firefly was launched. The file will be read
in, optionally preprocessed (in the case it contains
any preprocessing directives), and result will be
copied into the assigned working directory of the
master Firefly process using the plain "INPUT" file-
name. If this option is omitted, the file named "IN-
PUT" will be searched for in the assigned working
directory of the master Firefly process, and used
directly as the input file to Firefly.

-0 <filename>

Specifies output file to use. Filename is the com-
plete absolute name of the file to be used as out-
put. If this option is omitted, output will be sent
to standard output (stdout) device.

-b <path
name>

or

file-

Specifies the complete absolute location and/or name
of the external basis set library file. If the file-
name is given, it will be used to read in the exter-
nal basis sets. If the filename was not found, Fire-
fly tries to interpret it as path and looks for file
called "BASIS.LIB" at this location.

-t <path>

Directs the Firefly to use the specified path as the
template to create per-instance unique temporary
working directories to be used to store all the in-
termediate working files.

-ex <path>

Linux specific: directs the Firefly to copy runtime
extension files (pcgp2p.ex, fastdiag.ex, and option-
ally pdstuff.ex) into its working directory(ies)
from the location specified by path.

Directs the Firefly to remove all the temporary
scratch files opened using FSF routines at the end
of the job.

Forces the Firefly execution in the presence of the
old PUNCH or IRCDATA files. Windows specific: also
forces execution if the assigned working directory
is on the network drive or is the root directory of
the volume (e.g., C:\). This option can also be giv-
en three times followed by an -o option (i.e., "-f -
f -f -o OUTPUT.out") in order to force Firefly to
overwrite the output file specified with -o.

Redirects all the text output files (PUNCH, IRCDATA,
etc...) from working directory to the directory
where the main output file resides.

-stdext

Changes naming convention used for PUNCH and IRCDATA
files. Provided that output filename was set using -
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o option, the last extension of this name, if any,
will be removed and then .dat/.irc extension will be
added to the end to form the filename to use instead
of plain PUNCH or IRCDATA names.

-daf <mode>

Specifies the mode used to work with primary dic-
tionary file DICTNRY. Mode is a number, it can be
one of 0, 1, or 2.

<mode> = @

Default strategy is used to handle requests to
DICTNRY file.

<mode> =1

Increases the size of messages used to broadcast
contents of DICTNRY file to the slave processes.
This may reduce overhead of communications on some
interconnects and/or for some MPI implementations
resulting in better performance and scalability.
<mode> = 2

Allows DICTNRY file to be replicated over all
slaves. This mode completely eliminates overhead
caused by all DICTNRY-related communications by the
cost of performing some extra I/0. Typically, this
is the fastest and the best scalable mode.

-ncores <number>

Allows one to override the automatically detected
number of physical cores per CPU. Useful when run-
ning the Firefly on buggy processors, or in the vir-
tualized environment like Hyper-V etc... . Passing
correct value (in the case it was not properly de-
tected automatically) will generally improve the
Firefly performance.

-nthreads <number>

Allows one to override the automatically detected
number of active logical cores per single physical
core. Useful when running the Firefly on buggy pro-
cessors, or in the virtualized environment like Hy-
per-V etc... . Passing correct value (in the case it
was not properly detected automatically) will gener-
ally improve the Firefly performance.

_]_p

Windows specific: Allows Firefly to use large memory
pages. The hardware and 0S must support large pages,
and user account must have enough rights to allow
Firefly to allocate large pages. Otherwise, this op-
tion will be ignored. Running in large pages mode,
Firefly prints information message on their use at
the beginning of its output.

-nocheck

Disables validity check of the command 1line argu-
ments (e.g., check for valid names of files and di-
rectories, etc.) passed to the Firefly.

-nompi

Forces purely sequential execution avoiding any MPI
calls even if initially launched in parallel.

Directs the Firefly to trace each MPI call on each
node. This will create additional pseudo- output
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files for all slaves.

-prof Directs the Firefly to gather some real-time profil-
ing statistics. This option is useful while fine-
tuning the performance and provides some insight on
the possible performance bottlenecks.

-Xp or -xp=<number> |Given without <number>, this option enables the XP
parallel mode of execution. With <number>, it ena-
bles the extended XP parallel mode of execution,
where <number> defines the amount of processes in
each group. This option may also be written in the
form of -xp:<number>

-legacy Causes output to be more in the style of older ver-
sion of Firefly (useful when a third-party program
has difficulties parsing Firefly 8.0.0 output).

-run Forces the job to be an actual run, regardless of
the value of EXETYP in $CONTRL.

-check Forces the job to be a check run, regardless of the
value of EXETYP in $CONTRL.

-prealloc:<number> Instructs Firefly to preallocate <number> MW of
memory in the virtual address space at the very be-
ginning of the job initialization. Such behavior is
different from Firefly’s normal behavior, which is
to allocate memory after MPI initialization. This
can be of help when trying to run Firefly with a
large amount of memory (400 - 500 MW) as the memory
allocated has to be a single continuous address
range, but MPI initialization might cause the virtu-
al address space to be fragmented. There is no guar-
antee that the pre-allocation will be successful
though.

The optional list of working directories, if any, must follow the list of
command-line options. It has no effect if the -t < path > option was al-
ready specified. However, if this option is not given, one must provide the
list of working directories when running the Firefly in parallel mode. The
format of this list is very simple:

DIR, DIR; DIR, ... DIRn.

One must specify exactly the same number of directories as the total number
of Firefly instances is. For example, to run the Firefly in parallel on 16
cores, one has to specify sixteen directories. The master instance of the
parallel Firefly process will use DIR,, the first slave will use DIR;, and
so on. Unlike temporary directories created using -t < path > option, the
explicitly passed directories must exist and have proper access rights pri-
or to the Firefly execution, as they will not be created automatically! In
most cases, it is much more convenient to use -t < path > syntax; however,
there are some situations when the old-style "directories list" syntax is
very helpful.
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Creating an input file

Input file structure

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Input to Firefly may be in upper or lower case. There are three types of
input groups in Firefly:

1. A pseudo-namelist, free format, keyword driven group. Almost all input
groups fall into this first category.

2. A free format group which does not use keywords. The only examples of
this category are $DATA, $ECP, $POINTS, and $STONE.

3. Formatted data. This data is never typed by the user, but rather is gen-
erated in the correct format by some earlier Firefly run.

All input groups begin with a $ sign in column 2, followed by a name iden-
tifying that group. The group name should be the only item appearing on the
input line for any group in category 2 or 3.

All input groups terminate with a $END. For any group in category 2 and 3,
the $END must appear beginning in column 2, and thus is the only item on
that input line.

Type 1 groups may have keyword input on the same line as the group name,
and the $END may appear anywhere.

Because each group has a unique name, the groups may be given in any order
desired. In fact, multiple occurrences of category 1 groups are permissi-
ble.

Most of the groups can be omitted if the program defaults are adequate. An
exception is $DATA, which is always required. A typical free format $DATA
group is

$DATA
STO-3G test case for water
CNV 2
OXYGEN 8.0
STO 3
HYDROGEN 1.0 -0.758 0.0 0.545
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STO 3
$END

Here, position is important. For example, the atom name must be followed by
the nuclear charge and then the x,y,z coordinates. Note that missing values
will be read as zero, so that the oxygen is placed at the origin.

The zero Y coordinate must be given for the hydrogen, so that the final
number is taken as Z.

The free format scanner code used to read $DATA is adapted from the ALIS
program. Note that the characters ;>! mean something special to the free
format scanner, and so use of these characters in $DATA and $ECP should
probably be avoided.

Because the default type of calculation is a single point (geometry) closed
shell SCF, the $DATA group shown is the only input required to do a
RHF/STO-3G water calculation.

* ok kx

As mentioned, the most common type of input is a namelist-like, keyword
driven, free format group. These groups must begin with the $ sign in col-
umn 2, but have no further format restrictions. You are not allowed to ab-
breviate the keywords, or any string value they might expect. They are ter-
minated by a $END string, appearing anywhere. The groups may extend over
more than one physical card. In fact, you can give a particular group more
than once, as multiple occurrences will be found and processed. We can re-
write the STO-3G water calculation using the keyword groups $CONTRL and
$BASIS as

$CONTRL SCFTYP=RHF RUNTYP=ENERGY $END
$BASIS GBASIS=STO NGAUSS=3 $END

$DATA
STO-3G TEST CASE FOR WATER
CNV 2
Oxygen 8.0 0.0 0.0 0.9
Hydrogen 1.0 -0.758 0.0 0.545
$END

Keywords may expect logical, integer, floating point, or string values.
Group names and keywords never exceed 6 characters. String values assigned
to keywords never exceed 8 characters. Spaces or commas may be used to sep-
arate items:

$CONTRL MULT=3 SCFTYP=UHF,TIMLIM=30.0 $END

Floating point numbers need not include the decimal, and may be given in
exponential form, i.e. TIMLIM=30, TIMLIM=3.E1l, and TIMLIM=3.0D+01 are all
equivalent.

Numerical values follow the FORTRAN variable name convention. All keywords

which expect an integer value begin with the letters I-N, and all keywords
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which expect a floating point value begin with A-H or 0-Z. String or logi-
cal keywords may begin with any letter.

Some keyword variables are actually arrays. Array elements are entered by
specifying the desired subscript:

$SCF NO(1)=1 NO(2)=1 $END

When contiguous array elements are given this may be given in a shorter
form:

$SCF NO(1)=1,1 $END

When just one value is given to the first element of an array, the sub-
script may be omitted:

$SCF NO=1 NO(2)=1 $END

Logical variables can be .TRUE. or .FALSE. or .T. or .F. The periods are
required. Logical variables may also be input as 1 or 0.

The program rewinds the input file before searching for the namelist group
it needs. This means that the order in which the namelist groups are given
is immaterial, and that comment cards may be placed between namelist
groups.

Furthermore, the input file is read all the way through for each free-form
namelist so multiple occurrences will be processed, although only the LAST
occurrence of a variable will be accepted. Comment fields within a free-
form namelist group are turned on and off by an exclamation point (!). Com-
ments may also be placed after the $END's of free format namelist groups.
Usually, comments are placed in between groups,

$CONTRL SCFTYP=RHF RUNTYP=GRADIENT $END
--$CONTRL EXETYP=CHECK $END

$DATA

molecule goes here...

The second $CONTRL is not read, because it does not have a blank and a $ in
the first two columns. Here a careful user has executed a CHECK job, and is
now running the real calculation. The CHECK card is now just a comment
line.

* X x

The final form of input is the fixed format group.

The formatted groups are $VEC, $HESS, $GRAD, $DIPDR, and $VIB. Each of
these is produced by some earlier Firefly run, in exactly the correct for-
mat for reuse. Thus, the format by which they are read is not documented in
this manual.

* ok kx

Each group is described in the 'Input Description' chapter.
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Fixed format groups are indicated as such, and the conditions for which
each group is required and/or relevant are stated.

Chemical control data

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

The most important settings are provided through the $CONTRL group, which
can be used to specify the calculation type, wave function type, multiplic-
ity, charge, etc.

Computer related control data

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

Settings that pertain to the computer operations are mostly part of the
$SYSTEM, $P2P, $LP2P, and $SMP groups. A few very specific settings can be
found in various other groups (for example, I/O control switches for the
MP2 program are part of the $MP2 group).

Formatted input sections

A run can produce one or more formatted input groups, depending on the type
of run and the settings used during the run. Below is an overview of for-
matted input groups which are used by Firefly. Note that some groups allow
one to use the first line as a title card, while other groups are very
strict about whether such a group can be used.

Name Content Location Title card?
$VEC Orbitals PUNCH and MCQD* files Allowed
$HESS Force constant matrix PUNCH file Required
$GRAD Gradient vector PUNCH file Required
$DIPDR Dipole derivative tensor  PUNCH file Not allowed
$ALPDR Alpha polarizability PUNCH file Required
$viB Restart data for a nu- PUNCH and IRCDATA Not allowed
merical RUNTYP=HESSIAN files
and RUNTYP=RAMAN runs
$CISVEC CIS orbitals PUNCH file Allowed
$TDVEC TDHF and TDDFT orbitals PUNCH file Allowed
(from a CITYP=TDHF/TDDFT
run)
$TWOEI Transformed two-electron  PUNCH file Not allowed
coulomb and exchange
integrals
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Input checking

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Because some of the data in the input file may not be processed until well
into a lengthy run, a facility to check the validity of the input has been
provided. If EXETYP=CHECK is specified in the $CONTRL group, Firefly will
run without doing much real work so that all the input sections can be exe-
cuted and the data checked for correct syntax and validity to the extent
possible. The one-electron integrals are evaluated and the distinct row
table is generated. Problems involving insufficient memory can be identi-
fied at this stage. To help avoid the inadvertent absence of data, which
may result in the inappropriate use of default values, Firefly will report
the absence of any control group it tries to read in CHECK mode. This is of
some value in determining which control groups are applicable to a particu-
lar problem.

The use of EXETYP=CHECK is HIGHLY recommended for the initial execution of
a new problem.

Input preprocessing

Starting from version 7.1, Firefly has a useful preprocessing function that
retrieves parts of the input from one or more external files. The idea be-
hind this function is to keep the input file as small as possible while
giving flexible and versatile control over large blocks in the input file,
examples of such blocks being the specification of the basis set and effec-
tive core potential (ECP), the orbital data (the $VEC group), the Hessian
data (the $HESS group), etc. In order to activate the preprocessing func-
tion, Firefly should be run with the -i <filename> command line parameter,
where <filename> is the name of the main input file.

In the main input, the notation "@filename" is used to retrieve the con-
tents of a specific external file and insert its content as a block into
the input file. Here, "filename" is a plain text file containing the infor-
mation of interest. By default, Firefly will look for the specified file in
the working directory of Firefly’s master process. It is, however, possible
to specify additional directories with the "#libdir ./directory"” directive.
To clarify this, let us consider the following example:

#libdir /home/ff/ECP
#libdir /home/ff/basis
#libdir /home/ff/jobl/guess
$CONTRL DFTTYP=PBE® RUNTYP=OPTIMIZE SCFTYP=RHF EXETYP=RUN
COORD=UNIQUE NZVAR=39 ICHARG=0 MULT=1 MAXIT=500
ECP=READ D5=.T. $END
$CONTRL EXETYP=CHECK $END
$ZMAT DLC=.T. AUTO=.T.
NONVDW(1)= 1,2 1,15
IFZMAT(1)= 3,15,1,2,11
SYMREP=-1 $END
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$SCF

$DATA
RhP3N
CN

H

[ Vo RRVoTRNo Ry i

20O mMmmm™mTU =X
OO0

7.

NCONV=5 DIRSCF=.T. $END
$STATPT NSTEP=100 OPTTOL=0.0001 METHOD=GDIIS $END
$GUESS GUESS=MOREAD NORB=200 $END
$SYSTEM TIMLIM=6000 MWORDS=10 $END
$BASIS EXTFIL=.T. GBASIS=SVP $END

OF9

[

OO NONMNEFEO

.000000000
.414965727
.431892386
.861955322
.477768601
. 000000000
. 000000000

OO NNEFEPEFLRO

. 000000000
.465467346
.029806465
.810425007
.138622865
. 000000000
. 000000000

.569919578
.382720422
.546074422
.062902422
.615240578
.566541578
.392496578

@Rh_svp.bas

@P_svp.
@F_svp.
@F _svp.
@F_svp.
@0_svp.

bas
bas
bas
bas
bas
bas

@N_svp.
$END

$ECP
@Rh_def2_SvP.
P-ECP NONE
P-ECP
P-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
F-ECP
O-ECP
N-ECP
$END
@MO_to_read.txt

ecp

NONE

NONE
NONE

At the top, the three #libdir preprocessing directives define three direc-
tories (ECP, basis and guess) from which Firefly will retrieve all files
specified with the '@' marker. These files can be named as desired. In the
example, the "basis" directory contains files with basis sets (Rh_svp.bas,
P_svp.bas, F_svp.bas etc.), the "ECP" directory contains the file
Rh_def2_SVP.ecp with ECP data for the Rh atom, and the "guess" directory
contains the file (MO_to read.txt) with molecular vectors extracted from
the PUNCH file of a previous run. Since information from @filename is cop-
ied directly into the input file (the inserted text is not preprocessed),
special attention should be paid to the format of these files - their con-
tents should fit seamlessly into the input file. In the above example, the
files should start immediately with the basis set or ECP definition (no
atom name is allowed) and should be terminated by empty line in case of the
basis set data. Group names such as $DATA and $BASIS should not be given as
they're already in the input file. However, for the file with the MO vec-
tors, the $VEC and $END keywords must be present since these are not yet
specified in the input file - the whole block with MO vectors has to be
inserted.
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Note that the path specified with "#libdir" can be absolute or relative to
scratch directory. It is usually recommended to use absolute paths as this
is the most convenient.
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Performance

Introduction

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

This chapter discusses a few important settings that are important for
Firefly’s performance (i.e. speed).

64-bit processing support

Though a fully 64-bit version of Firefly is not yet available, the current
version of Firefly is able to use some 64-bit CPU instructions. More pre-
cisely, the base 32-bit code can call some 64-bit computational kernels for
faster processing. The use of 64-bit code is especially important when us-
ing newer processors (Intel Core 2 and newer, AMD Barcelona core and new-
er). We recommend all Firefly users running Firefly on these processors to
use a 64-bit operating system in order to allow the use of the 64-bit code.

The use of 64-bit code is enabled through the CALL64 keyword of the $SMP
group:

$SMP CALL64=.T. $END

In Firefly 8.0.0, this option is enabled by default. For older version of
Firefly, it is by default enabled for the Windows binaries, but disabled
for the Linux binaries.

The P2P communication interface

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Starting from the PC GAMESS version 6.3, the support of the new proprietary
parallel mode communication interface (which is called P2P interface) was
implemented as a part of the software. This interface is very flexible and
was specifically designed to overwhelm the limitations of MPI & DDI inter-
faces. The Firefly specific parallel MP2 energy and energy gradient meth-
od=1 modules supports P2P communication model. It is expected that in the
future more and more computational methods and algorithms in the Firefly
will support P2P.

To take advantages of this interface, you need:

1. Firefly running in parallel mode over MPI as usually.
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2. The dynamic library in which the P2P interface is implemented.
It is called pcgp2p.dll (Win32) or pcgp2p.ex (Linux). The Firefly
distribution contains the library that is suitable for your 0S. It
should be placed into the Firefly home directories on each computing
node in the case of Windows OS and into the Firefly working directo-
ries (note not into the Firefly home directories, or /usr/lib,
etc...) on each node in the case of Linux 0S. It should be renamed to
be all lowercase (Linux).

3. You should activate the P2P interface adding $P2P P2P=.T. $END
to the input file.

Starting from the PC GAMESS v. 6.4, the DLB (dynamic load balancing) func-
tionality was added to P2P interface. To activate DLB, add the following
line to your input:

$P2P P2P=.T. DLB=.T. $END

Many of the parallel-aware Firefly parts transparently use DLB over P2P
interface if DLB is enabled, including 2-e part of direct SCF and DFT,
etc...

For some jobs you may find that extended DLB model (XDLB) results in
slightly better performance than standard DLB model. XDLB can be activated
by specifying:

$P2P P2P=.T. XDLB=.T. $END

The difference between these DLB and XDLB modes is in the additional
thread(s) created by Firefly to handle P2P requests. In DLB mode, a single
additional thread is created which operates in multiplexed mode, serving
both P2P requests and DLB requests In XDLB mode, two additional threads are
created, one of which serves to handle DLB requests exclusively. XDLB mode
requires more system and program resources but may result in better 1load
balancing. This is most frequently observed for parallel MP2 METHOD=1 runs.

Details on the MP2 energy code and P2P interface implementation in the
Firefly can be found here. Information on how the DLB affects performance
can be found on this page.

Windows specific:

The file pcgp2psm.dll contains implementation of the P2P interface that is
specific to shared memory SMP/multicore systems. If you run Firefly on a
standalone SMP/multicore system, rename this file to pcgp2p.dll and replace
the default P2P library in the Firefly home directory. This will provide
better performance than the default library (which uses TCP/IP rather than
shared memory).

For better efficiency of shared memory implementation of P2P, it is recom-
mended to use the following additional P2P settings in the input files:

$P2P MXBUF=2048 $END

Below is the sample Firefly input file which uses P2P for DLB-driven direct
SCF calculations in parallel mode:
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$CONTRL SCFTYP=RHF RUNTYP=ENERGY UNITS=ANGS $END
$SYSTEM TIMLIM=600 MEMORY=3000000 $END

! to activate P2P inteface and DLB:

$P2P P2P=.T. DLB=.T. $END

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

! to speed up Huckel guess:

$GUESS GUESS=HUCKEL KDIAG=0 $END

$SCF DIRSCF=.T. $END

$DATA
6-31G*//RHF/3-21G* Silacyclobutane
Cs
SILICON 14.0 -0.081722 1.055710
CARBON 6.0 -0.081722 -0.395331 1.217568
CARBON 6.0 0.319935 -1.329102
HYDROGEN 1.0 -1.222554 1.998369
HYDROGEN 1.0 1.168317 1.848237
HYDROGEN 1.0 0.604981 -0.419640 2.052727
HYDROGEN 1.0 -1.077445 -0.641554 1.572232
HYDROGEN 1.0 1.388834 -1.500162
HYDROGEN 1.0 -0.184517 -2.285408
$END

The XP and extended XP parallel modes of execution

Firefly version 8.0 and above supports two new parallel modes of execution,
namely the standard eXtreme Parallel (XP) and extended XP modes. The idea
behind these modes is to efficiently utilize the multi-level parallelism
inherent to many typical QC calculations by splitting the entire job into
quasi-independent pieces which can be processed at high level in parallel.
In the standard XP mode, each instance of the entire parallel Firefly su-
per-process most of the time acts as if it were a separate master process
working on its own task, in serial or using multi-threading. In the extend-
ed XP mode, there are several groups of processes, each group consisting of
its own local master and slave processes. The global master process is at
the same time the local master of the first group. The members of each
group are working together on the task or tasks which are specifically as-
signed to them. For instance, in runs involving numerical gradients, the
energy at each displaced geometry used in finite differencing can be calcu-
lated independently. If the underlying theoretical method is not programmed
to run in parallel, it is then natural to use the standard XP mode to run
multiple serial energy calculations at once and in parallel. If it is, any
of three parallel modes (standard parallel, standard XP, and extended XP)
could be used, with extended XP being the most scalable and most highly-
performing alternative. For example, if a typical single point energy com-
putation for a particular combination of QC method and model system is
scalable to e.g. 64 cores, and the numerical gradient code requires ca. 100
reevaluations of energy, the calculations of numerical gradients in extend-
ed XP modes would be scalable up to 64*100=6400 cores and would be extreme-
ly fast.
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The current implementation of XP modes in Firefly supports two levels of
parallelism. This will be changed in the future to support the arbitrary
number of parallelism levels provided there will be a need for this. Pres-
ently, any job involving numerical gradients can be run in either standard
XP or extended XP modes, or both. Other jobs types are not currently al-
lowed to run in XP modes. This limitation will be relaxed in the future by
allowing semi-numerical Hessian computations, semi-analytic Raman activi-
ties computations, surface scans and some other types of jobs to run in XP
modes as well.

The XP or extended XP modes are invoked by running Firefly in parallel us-
ing dedicated command line options. There is no way to force XP modes using
information in the input file as preparations for these modes of operation
need to be done at the very early stages of Firefly's initialization.
Namely, to launch Firefly in standard XP mode, use the -xp command 1line
option. Similarly, to launch Firefly in extended XP mode, the -xp:N (or,
alternatively, -xp=N) command line options can be used. Here, N is the num-
ber of processes belonging to each process group. For instance, launching
Firefly on 32 cores using -xp=4 (or -xp:4) command line option will create
eight groups of processes, with each group consisting of four separate pro-
cesses.

Firefly's P2P interface and dynamic load balancing over P2P can be used in
any of three parallel modes of execution. Working in the extended XP mode,
Firefly supports two levels of P2P communications and dynamic load balanc-
ing. The high-level one is global for the entire parallel Firefly process,
and serves primarily for the communications between the local masters of
separate groups. For instance, high-level dynamic load balancing is used to
distribute the high-level jobs between individual process groups. The glob-
al P2P interface is controlled by the usual $P2P control group of the input
file. Each separate group of processes can be interconnected via its own
local P2P interface which is virtually identical to the global one but is
limited in its scope to the members of its group only. The behavior of the
second-level, local P2P interfaces is controlled using the new $LP2P con-
trol group of the input file. The $LP2P input group has exactly the same
keywords as the standard $P2P input group.

Utilizing HyperThreading

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

HyperThreading is a CPU technology that causes each physical CPU core to be
seen as two virtual cores. For some calculations types, Firefly is able to
make use of these extra cores in order to provide a modest speedup. Typi-
cally, Firefly will automatically detect the presence of virtual cores and
use them in an intelligent manner. However, if one finds that Firefly mis-
takenly uses more than one virtual core on one physical core without ex-
hausting all physical cores, one can correct this behavior by specifying:

$SMP HTTFIX=.F. $END
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Which disables explicit binding to cores at all. Alternatively, you can
use:

$SMP HTTPAR=.T. $END

to allow the binding of each process to different logical processors for
parallel runs.

Finally, in the case of two independent jobs on one SMP system, you should
add:

$SMP HTTALT=.T. $END

to the second input file to resolve binding conflict between two Firefly
instances.

CUDA

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

The MP4 code in Firefly can be executed using CUDA. CUDA is not supported
by any other functionality in Firefly.

The Fastdiag dynamic library

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

The Fastdiag dynamic library (fastdiag.dll for Windows Firefly distribu-
tions, fastdiag.ex for Linux distributions) contains fast optimized modern
algorithms of symmetric matrix diagonalization and inversion and is intend-
ed to improve the performance of initial guess generation, DIIS extrapola-
tion, as well as some other computationally-intensive steps. Windows users
should put this library into the folder where the Firefly executables re-
side, while Linux users should put it into the Firefly working/scratch di-
rectories. Under Linux, the name of the file should be all lower-case.

There are three related options in $SYSTEM and $GUESS groups, namely:

$SYSTEM KDIAG= < one of 3,2,1,0,-1,-2 > $END - Controls the system-wide
diagonalization routine used.

$SYSTEM NOJAC= < N > $END - Instructs Firefly to never use Jacobi diago-
nalization for matrices of size NxN and above, even if Jacobi code was ex-
plicitly requested.

$GUESS KDIAG= < one of 3,2,1,0,-1,-2 > $END - Controls the diagonalization
routine used during initial guess generation.
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The values of 3, 2, 1 have the same meaning as in the regular GAMESS (US),
the values of 0,-1,-2 are the Firefly specific Fastdiag values.

KDIAG=0 selects very stable, fast and precise diagonalization routine based
on the Divide and Conquer (DC) algorithm. However, DC-based code requires
large amount of extra memory.

KDIAG=-1 selects a potentially less stable, less precise but even faster
diagonalization routine based on the Relatively Robust Representation (RRR)
approach. This method requires less memory than DC code.

Finally, KDIAG=-2 selects a combination of RRR and DC methods, which falls
back to DC in the cases when RRR fails completely resulting in NANs and
INFs. It is usually as fast as KDIAG=-1 but requires as much memory as KDI-
AG=0. However, as in the most cases results are obtained using RRR ap-
proach, KDIAG=-2 is still less precise than purely DC-based kdiag=0.

Note, KDIAG=-1 and KDIAG=-2 options are currently considered as the experi-
mental ones and are intended mainly for large MOPAC jobs. Otherwise, they
should not normally be used! The most serious issue one can encounter using
RRR-based code is the sporadic program hangs inside RRR-based diagonaliza-
tion code. This seems to be the intrinsic property of the RRR approach and
there does not seem to exist any solution to this problem.

The default value of KDIAG found in $SYSTEM and $GUESS groups is @ (as -1
and -2 are the experimental options at present), which is reasonable. For
better compatibility with GAMESS (US), the default value of NOJAC is -1,
meaning that this variable has no effect at all. It is generally recommend-
ed to set NOJAC to some small value, e.g., 30 or so, especially if the num-
ber of basis functions is large enough.

Note that fast diagonalization routines use extra memory which is not taken
into account during check runs! Hence it 1is recommended to reserve some
additional amount of memory for diagonalization routines. For example, if
the system of interest has ca. 1000 basis functions, it is a good idea to
add about 2.5-3 MW of memory for diagonalization purposes. If the amount of
memory is not enough to use fast routines, the slower built-in routine will
be called.

Finally, it should be noted that fastdiag is not compatible with and is not
used by the generic Pentium Firefly versions.

Fast two-electron integrals code

The ‘fastints’ 2-electron integrals/fock matrix build/integral transfor-
mation modules are intended to speed up direct HF/DFT/CIS/TDHF/TDDFT/MCSCF
runs. They are presently implemented for direct
RHF /UHF/ROHF /CIS/TDHF/TDDFT/MCSCF-type calculations only. The performance
gain as compared with standard GAMESS (US)-based direct SCF implementation
depends on the particular basis set type and the processor architecture
used and usually varies from 50% to 200-400%. The only situation where old
integral code can be faster than fastints is in the case of a pure L-shell
basis set while using the Pople integral package. Even for the 6-31* basis
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set, which contains a relatively large number of L shells per atom, the new
code is considerably faster than the old code (mainly due to the presence
of d functions), especially on Pentium 4-type processors. Note that in many
situations the new direct SCF modules are faster than the corresponding
conventional SCF. The precision of the two-electron integrals calculated by
the new code is comparable with that of GAMESS (US)’s old INTTYP=HONDO 2-e
integral code package. By code design, the time required for Fock matrix
formation using new routines depends strictly quadratically on the number
of atoms in molecule for sufficiently large molecular systems.

The new code can be run in parallel using both static and dynamic load bal-
ancing modes, though the latter is preferred. For very large molecular sys-
tems and HF/DFT, the new code can be used in conjunction with the linear
scaling QFMM code - see the QFMM section for additional information on QFMM
implementation in Firefly. Options specific to MCSCF calculations are docu-
mented elsewhere. Generic input is described below.

There are three options related to the new code in the $CONTRL group:

FSTINT=.TRUE./.FALSE. Enables (default)/disables the use of the new direct
SCF code.

REORDR=.TRUE./.FALSE. Enables (default)/disables shells reordering for even
better direct SCF performance.

GENCON=.TRUE./.FALSE. Enables (default)/disables the use of the special
version of the fastints code designed for general contraction (GC) type
basis sets. It is mainly intended to dramatically speedup calculations in-
volving large GC-type basis sets 1like ANO basis sets by Roos et al (the
example of pure GC basis sets), and to some degree cc-pVXZ basis sets
(which are only partially of GC type), and many others. The code is very
efficient, but requires some additional amount of memory and has minor ad-
dition computational overhead for setup. It can result in slightly differ-
ent energies than the standard fastints code using the same value of ICUT
and ITOL parameters, and does not improve performance for pure segmented
contraction basis sets at all. This is why the gencon code automatically
disables itself if the basis set is not of the GC type. At present, it has
no effect on QFMM calculations.

Quantum fast multipole method

New modules implementing linear scaling methods based on QFMM were added to
the Firefly in order to speed up large-scale direct HF and DFT runs. The
QFMM code is partially based on optimized and bugfixed GAMESS (US) QFMM
code (refs. 3 and 4 below), as well as on new modules developed at MSU. It
is currently implemented for RHF/UHF/ROHF-type calculations only. A CI or
MP stage is allowed to be performed after the QFMM calculation stage, and
conventional gradients (not QFMM-based) are available. The QFMM code can be
run in parallel using both static and dynamic load balancing modes, the
latter is preferred in most cases.
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QFMM calculations consist of two or possibly three different steps, depend-
ing on whether exact HF exchange is required (for HF and hybrid DFT) or not
(for pure DFT). These steps are:

1. Calculation of the so-called Coulomb (J) far-field contribution to
the Fock matrix. This step is performed using the FMM (fast multipole
method) technique. For this step, Firefly uses a set of routines
based on the original GAMESS (US) sources which were bugfixed and
tuned for better performance.

2. Calculation of the so-called Coulomb (J) near-field contribution
to the Fock matrix. This step is performed using two-electron inte-
gral and modified direct SCF-1like routines. At present, there are two
algorithms implemented in Firefly to perform this step. The first one
is based on bugfixed and performance tuned GAMESS (US) code, the sec-
ond approach is completely different and is based on the new fastints
code.

3. The so-called linear-scaling exact exchange (K) contribution to
the Fock matrix (also known as LEX or 1inK). This step is also per-
formed using two-electron integral and modified direct SCF-like rou-
tines. At present, there are three algorithms implemented in Firefly
to perform this step. The first one is based on bugfixed and perfor-
mance tuned GAMESS (US) code, the second and third approaches are
completely different and are based on the fastints code.

The QFMM input in Firefly is compatible with that of GAMESS (US). QFMM is
turned on by the logical variable QFMM in the $INTGRL group (its default
value is .FALSE., 1i.e., no QFMM calculations). You must select
DIRSCF=.TRUE. in $SCF and SCHWRZ=.TRUE. (default) in $INTGRL if you use
this option. Most of the QFMM-related options are controlled by the corre-
sponding $FMM group. Some keywords in the $CONTRL group affect QFMM as
well, namely ICUT, ITOL, FSTINT and REORDR. Another keyword affecting the
performance of all linear exchange routines is the RCRIT value in the
$MOORTH group, which controls the density matrix pruning. If RCRIT is
greater than zero, all matrix elements of the density matrices will be set
to zero if the distance between two orbital centers is greater than RCRIT.
This option can speed up LEX (the routine used to calculate HF exchange
terms), but should be used with a caution, especially for conjugated sys-
tems, metal clusters, etc. For alkanes, RCRIT=25 a.u. seems to be safe
enough. The default is zero.

Note that the default values of the keywords of the $FMM group are quite
reasonable, so there is usually no need to alter them.

Some additional comments:

1. Near-field J and linear exchange routines require more CPU time than
direct SCF in the case of small and even medium-size systems due to addi-
tional logic and computational overhead. Thus, QFMM should be used for
large systems only and it is usually a good idea to check what the fastest
method is in your particular case.
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2. There is no or little use of molecular symmetry during QFMM runs. Thus,
direct SCF with fastints code can be faster than QFMM for very large sym-
metrical systems (like fullerenes, etc.)

3. Time required for QOPS far-field J FMM is usually much smaller than that
of near-field J, especially on the first SCF iterations. The time used by
LEX is usually comparable with or larger than that of near-field J, espe-
cially on the very first SCF iterations. There is some additional overhead
in near-field J routines if HF exchange is required as well. Thus, the
speedup of pure DFT calculations due to QFMM is more serious than that of
HF and hybrid DFT.

4. There is an EXETYP=QFMM option in the $CONTRL group which is used to get
the timing statistics of the various QFMM stages during SCF.

Selected QFMM references:

1. E.O.Steinborn, K.Ruedenberg Adv.Quantum Chem. 7, 1-81 (1973)

2. L.Greengard "The Rapid Evaluation of Potential Fields in Particle Sys-
tems" (MIT, Cambridge, 1987)

3. C.H.Choi, J.Ivanic, M.S.Gordon, K.Ruedenberg J.Chem.Phys. 111, 8825-8831
(1999)

4, C.H.Choi, K.Ruedenberg, M.S.Gordon J.Comput.Chem. 22, 1484-1501 (2001)
5. C.H.Choi J.Chem.Phys. 120, 3535-3543 (2004)
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Output

Main output

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

The main output is by default printed onscreen. One can send the output to
a file as follows:

firefly.exe >test.out 2>&1

Alternatively, one can use the -o parameter:
firefly.exe -o test.out

The amount of information printed can be changed through various keywords
in Firefly. The most important of these is the NPRINT keyword in $CONTRL.

The PUNCH file

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

The PUNCH file contains various data produced by the calculation. Much of
this data is of the formatted type and can be cope/pasted to the input of a

second run. Examples of data punched is geometry information, basis set
information, orbitals, the force constant matrix, etc.

The IRCDATA file

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

The IRCDATA file serves multiple functions. For example, it contains molec-

ular geometries found during an IRC run. Also, it contains restart data
from a numerical Hessian calculations and Raman calculations.

The MCQD files

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

The MCQD files <contain data from (X)MCQDPT2 runs. MCQD63 contains
(X)MCQDPT2 MOs, MCQD64 contains information on the CSFs used.
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Restart capabilities

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

The program checks for CPU time, and will stop if time is running short.
Restart data are printed and punched out automatically, so the run can be
restarted where it left off.

At present all SCF modules will place the current orbitals in the punch
file if the maximum number of iterations is reached. These orbitals may be
used in conjunction with the GUESS=MOREAD option to restart the iterations
where they quit. Also, if the TIMLIM option is used to specify a time limit
just slightly less than the job's batch time 1limit, Firefly will halt if
there is insufficient time to complete another full iteration, and the cur-
rent orbitals will be punched.

When searching for equilibrium geometries or saddle points, if time runs
short, or the maximum number of steps is exceeded, the updated Hessian ma-
trix is punched for restart. Optimization runs can also be restarted with
the dictionary file. See $STATPT for details.
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Coordinate types

Introduction

Firefly is capable of working with various types of coordinates. Possible
input coordinates are Cartesian coordinates, Hilderbrandt style internals
and Z-Matrix internal coordinates (Gaussian and MOPAC style). In addition,
Firefly can internally work with 'plain' Z-matrix coordinates, symmetrized
Z-matrix coordinates (e.g. natural internals), and delocalized internal
coordinates (DLCs).

The input coordinate type can be set with the COORD keyword in the $CONTRL
group. Possible values are:

- UNIQUE: only the symmetry unique atoms will be given, in Cartesian coor-
dinates (this is the default; use this unless you have a good reason to use
COORD=CART) ;

- HINT: only the symmetry unique atoms will be given, in Hilderbrandt style
internals;

- CART: Cartesian coordinates will be input (this option is generally not
recommended, see below);

- ZMT: GAUSSIAN style internals will be input;

- ZMTMPC: MOPAC style internals will be input;

- FRAGONLY: this means no part of the system is treated by ab initio means,
hence $DATA is not given. The system is to be fully specified by $EFRAG.

The CART, ZMT, and ZMTMPC choices require input of all atoms in the mole-
cule. These three also orient the molecule, and then determine which atoms
are unique. The reorientation is very likely to change the order of the
atoms from what you input. When the point group contains a 3-fold or higher
rotation axis, the degenerate moments of inertia often cause problems
choosing correct symmetry unique axes, in which case you must wuse
COORD=UNIQUE rather than Z-matrices. It is also important to realize that
the reorientation into principal axes is done only for atomic coordinates,
and is not applied to the axis dependent data of the groups $VEC, $HESS,
$GRAD, $DIPDR, and $VIB, nor to Cartesian coordinates of effective frag-
ments in $EFRAG. COORD=UNIQUE avoids reorientation, and is thus the safest
way to read these.

Note that the choices CART, ZMT, ZMTMPC require the use of a $BASIS group
to define the basis set. The first two choices might or might not use $BA-
SIS, as you wish.

Furthermore, it is important to note that the choice COORD=CART currently
forces the job to be a check run (i.e., EXETYP=CHECK). The reason for this
is that it is generally not recommended to use this coordinate type. For
users who need this coordinate input type and know what they’re doing,

COORD=CART jobs can be forced to run by using the "-run" command line
switch.
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For Cartesian coordinates, the distance unit is set with the keyword UNITS
in the $CONTRL group. Possible values are ANGS (for Angstroms, the default)
and BOHR (for Bohr atomic unites).

In the next three sections, Cartesian coordinates, Z-Matrix coordinates,
and the use of DLCs will be discussed separately. In addition, there will
be two sections devoted to the use of symmetry and isotopic substitution,
respectively. Hilderbrandt internals will not be discussed in detail. In-
stead, for this coordinate type, we would like to refer the reader to the
list of keywords as well as to the following reference:

R.L. Hilderbrandt, J. Chem. Phys. 51, 1654 (1969).

Cartesian coordinates
Cartesian coordinates should be input in the form of:
NAME NUCLEAR_CHARGE X-COORD Y-COORD Z-COORD

Here, NAME is an arbitrary name. One could use the elements name or symbol,
but in principal any name is allowed, e.g. CAT, MOUSE, or, if in the case
of a heavier element, ELEPHANT. NUCLEAR_CHARGE is the atom's nuclear
charge. An example:

$DATA

Water
C1
OXYGEN
HYDROGEN
HYDROGEN

$END

-0.708955260 -0.940298490 0.000000000
0.251044740 -0.940298490 0.000000000
-1.029409850 -0.035362660 0.000000000

B R o0
OO0

Coordinates may be omitted when they equal @, starting from Z coordinate.
The above example when oriented differently:

$DATA

Water
C1
OXYGEN
HYDROGEN
HYDROGEN

$END

-0.062007499
0.721968395 0.554059380
-0.845983394 0.554059380

B R o0
[N W]

Note that optimizations in Cartesian coordinates have a reputation of con-
verging slowly. This is largely due to the fact that translations and rota-
tions are usually left in the problem. Numerical problems caused by the
small eigenvalues associated with these degrees of freedom are the source
of this poor convergence. The methods in Firefly project the Hessian matrix
to eliminate these degrees of freedom, which should not cause a problem.
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Nonetheless, Cartesian coordinates are in general the most slowly conver-
gent coordinate system.

Z-Matrix and natural internal coordinates

Internal coordinates are able to provide convergence faster than with Car-
tesian coordinates. They can be specified with NZVAR in $CONTRL and with
$ZMAT group. An simple input example (taken from the example job EXAM®6):

$CONTRL NZVAR=3 COORD=ZMT $END
$DATA

Methylene

Chv 2

rCH

C
H
H rCH 2 aHOH

1
1
rCH=1.09

aHOH=99.0

$END
$ZMAT  IZMAT(1)=1,1,2, 1,1,3, 2,2,1,3 $END

Benefits of this coordinate type are the elimination of the six rotational
and translational degrees of freedom and that the GUESS Hessian is able to
use empirical information about bond stretches and bends. On the other
hand, there are many possible choices for the internal coordinates, some of
which may lead to much poorer convergence of the geometry search than oth-
ers. Particularly poorly chosen coordinates may not even converge at all.

One thing to keep in mind 1is that internal coordinates are frequently
strongly coupled. A very common example to illustrate this might be a bond
length in a ring, and the angle on the opposite side of the ring. Clearly,
changing one changes the other simultaneously. A more mathematical defini-
tion of "coupled"” is to say that there is a large off-diagonal element in
the Hessian. In this case convergence may be unsatisfactory, especially
with a diagonal GUESS Hessian, where a "good" set of internals is one with
a diagonally dominant Hessian. Of course, if you provide an accurately com-
puted Hessian, it will have large off-diagonal values where those are truly
present. Even so, convergence may be poor if the coordinates are coupled
through large 3rd or higher derivatives. The best coordinates are therefore
those which are the most "quadratic”.

One very popular set of internal coordinates is the usual "model builder"
Z-matrix input, where for N atoms, one uses N-1 bond lengths, N-2 bond an-
gles, and N-3 bond torsions. The popularity of this choice is based on its
ease of use in specifying the initial molecular geometry. Typically, howev-
er, it is the worst possible choice of internal coordinates, and in the
case of rings, is not even as good as Cartesian coordinates.

However, Firefly does not require this particular mix of the common types.
Firefly's only requirement is that you use a total of 3N-6 coordinates,
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chosen from these 3 basic types, or several more exotic possibilities. (Of
course, we mean 3N-5 throughout for linear molecules.) These additional
types of internal coordinates include linear bends for 3 collinear atoms,
out of plane bends, and so on. There is no reason at all why you should
place yourself in a straightjacket of N-1 bonds, N-2 angles, and N-3 tor-
sions. If the molecule has symmetry, be sure to use internals which are
symmetrically related.

For example, the most effective choice of coordinates for the atoms in a
four membered ring is to define all four sides, any one of the internal
angles, and a dihedral defining the ring pucker. For a six membered ring,
the best coordinates seem to be 6 sides, 3 angles, and 3 torsions. The an-
gles should be every other internal angle, so that the molecule can
"breathe" freely. The torsions should be arranged so that the central bond
of each 1is placed on alternating bonds of the ring, as if they were pi
bonds in Kekule benzene. For a five membered ring, we suggest all 5 sides,
2 internal angles, again alternating every other one, and 2 dihedrals to
fill in. The internal angles of necessity skip two atoms where the ring
closes. Larger rings should generalize on the idea of using all sides but
only alternating angles. If there are fused rings, start with angles on the
fused bond, and alternate angles as you go around from this position.

Rings and more especially fused rings can be tricky. For these systems,
especially, we suggest the Cadillac of internal coordinates, the "natural
internal coordinates" of Peter Pulay. For a description of these, see:

P. Pulay, G. Fogarosi, F. Pang, J. E. Boggs, J. Am. Chem. Soc. 101, 2550-
2560 (1979)

G. Fogarasi, X. Zhou, P. W. Taylor, P. Pulay J.Am.Chem.Soc. 114, 8191-8201
(1992)

These are linear combinations of local coordinates, except in the case of
rings. The examples given in these two papers are very thorough.

An illustration of natural internal coordinates is given in the example job
EXAM25. This is a nonsense molecule, designed to show many kinds of func-
tional groups. It is defined using standard bond distances with a classical
Z-matrix input, and the angles in the ring are adjusted so that the start-
ing value of the unclosed 00 bond is also a standard value. Using Cartesian
coordinates is easiest, but takes a very large number of steps to converge.
This however, is better than using the classical Z-matrix internals given
in $DATA, which is accomplished by setting NZVAR to the correct 3N-6 value.
The geometry search changes the 00 bond length to a very short value on the
1st step, and the SCF fails to converge. (Note that if you have used dummy
atoms in the $DATA input, you cannot simply enter NZVAR to optimize in in-
ternal coordinates, instead you must give a $ZMAT which involves only real
atoms).

The third choice of internal coordinates in EXAM25, natural internal coor-
dinates, is the best set which can be made from the simple coordinates. It
follows the advice given above for five membered rings, and because it in-
cludes the 00 bond it has no trouble with crashing this bond. It takes 20
steps to converge, so the trouble of generating this $ZMAT can be worth it
when compared to the use of Cartesians. Natural internal coordinates are
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defined in the final group of input. The coordinates are set up first for
the ring, including two linear combinations of all angles and all torsions
within the ring. After this the methyl is hooked to the ring as if it were
a NH group, using the usual terminal methyl hydrogen definitions. The H is
hooked to this same ring carbon as if it were a methine. The NH and the CH2
within the ring follow Pulay's rules exactly. The amount of input is much
greater than a normal Z-matrix. For example, 46 internal coordinates are
given, which are then placed in 3N-6=33 linear combinations. Note that nat-
ural internals tend to be rich in bends, and short on torsions.

The energy results for the three coordinate systems which converge are as
follows:

NSERCH Cart good Z-mat nat. int.
©  -48.6594935049  -48.6594935049  -48.6594935049

1 -48.6800538676 -48.6806631261 -48.6838361406
2 -48.6822702585 -48.6510215698 -48.6874045449
3 -48.6858299354 -48.6882945647 -48.6932811528
4 -48.6881499412 -48.6849667085 -48.6946836332
5 -48.6890226067 -48.6911899936 -48.6959800274
6 -48.6898261650 -48.6878047907 -48.6973821465
7 -48.6901936624 -48.6930608185 -48.6987652146
8 -48.6905304889 -48.6940607117 -48.6996366016
9 -48.6908626791 -48.6949137185 -48.7006656309
10 -48.6914279465 -48.6963767038 -48.7017273728
11 -48.6921521142 -48.6986608776 -48.7021504975

12 -48.6931136707 -48.7007305310 -48.7022405019
13 -48.6940437619 -48.7016095285 -48.7022548935
14 -48.6949546487 -48.7021531692 -48.7022569328
15 -48.6961698826 -48.7022080183 -48.7022570260
16 -48.6973813002 -48.7022454522 -48.7022570662
17 -48.6984850655 -48.7022492840

18 -48.6991553826 -48.7022503853

19 -48.6996239136 -48.7022507037

20 -48.7002269303 -48.7022508393

21 -48.7005379631

22 -48.7008387759

50 -48.7022519950

from which you can see that the natural internals are actually the best
set. The $ZMAT exhibits upward burps in the energy at step 2, 4, and 6, so
that for the same number of steps, these coordinates are always at a higher
energy than the natural internals.

The initial Hessian generated for these three columns contains @, 33, and
46 force constants. This assists the natural internals, but is not the ma-
jor reason for its superior performance. The computed Hessian at the final
geometry of this molecule, when transformed into the natural internal coor-
dinates is almost diagonal. This almost complete uncoupling of coordinates
is what makes the natural internals perform so well. The conclusion is of
course that not all coordinate systems are equal, and natural internals are
the best. As another example, we have run the ATCHCP molecule, which is a
popular geometry optimization test, due to its two fused rings:
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H. B. Schlegel, Int. J. Quantum Chem., Symp. 26, 253-264 (1992)
T. H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768-9774 (1992)
J. Baker, J. Comput. Chem. 14, 1085-1100 (1993)

Here, we have compared the same coordinate types, using a guess Hessian, or
a computed Hessian. The latter set of runs is a test of the coordinates
only, as the initial Hessian information is identical. The results show
clearly the superiority of the natural internals, which like the previous
example, give an energy decrease on every step:

HESS=GUESS = HESS=READ

Cartesians 65 41 steps
good Z-matrix 32 23
natural internals 24 13

A final example is phosphinoazasilatrane, with three rings fused on a com-
mon SiN bond, in which 112 steps in Cartesian space became 32 steps in nat-
ural internals. The moral here is: "A little brain time can save a lot of
CPU time".

Delocalized coordinates

A relatively new type of internal coordinate is the delocalized internal
coordinate (DLC), which generally provides fast convergence and is easier
to set up than Z-matrix coordinates. It is described by J. Baker, A. Kessi,
and B. Delley (J. Chem. Phys. 1996, 105, 192-212), although the implementa-
tion in Firefly is not exactly the same. Bonds are kept as independent co-
ordinates while angles are placed in linear combination by the DLC process.
There are some interesting options for applying constraints, and other op-
tions to assist the automatic DLC generation code by either adding or de-
leting coordinates.

It is simple to use DLCs in their most basic form. One has to specify:

$CONTRL NZVAR=value $END
$ZMAT DLC=.T. AUTO=.T. $END

where the value of NZVAR is nonzero. As with ZMAT input, setting NZVAR=0
disables the use of DLCs. This can be used as an easy way of switching be-
tween internal and Cartesian coordinates without the need to remove of com-
ment out additional DLC related directives from the input.

Because of the popularity of DLCs, it is also possible to enable them using
a 'shortcut'. If NZVAR is nonzero, input coordinates are in Cartesian for-
mat, and no $ZMAT group is given, then Firefly will act as if the input
contains $ZMAT DLC=.T. AUTO=.T. $END with a nonzero value of NZVAR.

Though the quality of DLCs are not as good as explicitly constructed natu-

ral internals (which benefit from human chemical knowledge), they are al-
most always better than carefully crafted $ZMATs using only the primitive
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internal coordinates. Because of their relative ease to use, we recommend
their use highly.

As mentioned earlier, DLCs are generated from Cartesian or Z-matrix coordi-
nates by Firefly’s DLC generator. The generation process, however, is not
entirely black box as there are cases in which the generator can fail. In
many such cases it might help to set:

$ZMAT DLCTOL=1D-7 ORTTOL=1D-7 $END
which lowers the threshold used to check the quality/completeness of DLCs.

Another possible remedy might be to choose a different method for freezing
internals in DLCs with the IFDMOD keyword in $ZMAT. Possible values are ©
(the most stable method), 1 (a less stable method), and 2 (an experimental
method). Setting IFDMOD=2 has been found to help in a number of cases.

There are, however, a few important general cases in which these settings
do not help. Important examples of these are multimolecular systems and
systems in which four or more atoms lie on a straight line (in some cases,
three atoms on one line may also pose a problem). For such cases, one has
to manually define one or more additional bonds through the NONVDW keyword
in the $ZMAT group in order to reach the necessary amount of linearly inde-
pendent coordinates. NONVDW should be given as an array that describes atom
pairs. For example, NONVDW(1)=2,3,5,6 describes bonds between atoms 2 and
3, and between atoms 5 and 6. You may add as many bonds as you want through
NONVDW. However, beware that the addition of too many bonds may degrade the
performance of the optimization algorithm.

For clarity, let us consider two basic examples.

The first example is a system consisting of water and ethene, as depicted
in the first image. Here, one or more additional bonds have to be added
through the NONVDW array. Typically, these additional bonds should be (by
order of importance):

a) bonds that are expected to be broken (or formed)
s in the process under study
9|| b) if the system under investigation includes more
than one fragment, at least one “inter-fragment”

5 3 For this particular system, one should specify one

\'E - G of the following:

6 4 $ZMAT NONVDW(1)= 1,7 $END or
$ZMAT NONVDW(1)= 1,8 $END or
$ZMAT NONVDW(1)= 1,9 $END

Again, it is not recommended to add too many bonds. In this example, addi-
tion of two explicit bonds, rather than one, increased the number of opti-
mization steps from around 50 to almost 90.
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However, if you want to study the addition of the water to the ethylene
above, your NONVDW group should read:

$ZMAT NONVDW(1)=1,7,2,8,2,9 $END

since the addition of the water to the ethylene may (depending on your ba-
sis set and theory level) immediately cause one of the O-H bonds to break
and the migration of that H nucleus to carbon number 2.

As a second example, let us consider the allene
molecule, which is depicted in the second image.
Because of the 180 degree bond angle between atoms
1, 2, and 3, at least one additional bond has to be
specified. The specification of

¢

$ZMAT NONVDW(1)=4,2 $END

allows the DLC generator the find enough linearly independent coordinates.
A different atom pair (such as 5,2) can also be specified to get the same
result.

Utilizing symmetry

The symmetry group of the system under investigation can be specified in
the $DATA group, below the title card, in the form:

GROUP NAXIS

Here, GROUP is the Schoenflies symbol of the symmetry group. You may choose
from:

€1, CS, CI, CN, S2N, CNH, CNV, DN, DNH, DND, T, TH, TD, O, OH

NAXIS is the order of the highest rotation axis, and must be given when the
name of the group contains an N. For example, "CNV 2" is C2v. "S2N 3" means
S6. For linear molecules, choose either CNV or DNH, and enter NAXIS as 4.
Enter single atoms as DNH with NAXIS=2 (see also input example "EXAM16").

When group C1 is specified, the atom input can directly start on the line
after "C1".

$DATA
Water
Cc1
OXYGEN
HYDROGEN
HYDROGEN
$END

-0.708955260 -0.940298490 0.000000000
0.251044740 -0.940298490 0.000000000
-1.029409850 -0.035362660 0.000000000

B R 00
OO0

When a different point group is specified, two additional input lines have
to be given prior to the atom input. These two cards specify the coordi-
nates and orientation of the axis/planes of symmetry. As input structures
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are nowadays usually prepared with external molecule building programs
(which are able to orient the system correctly with respect to axis/planes
of symmetry), these two input lines have little use. They can be skipped
over by providing a single blank line, as in the example below:

$DATA
H20
CNV 2

OXYGEN
HYDROGEN
$END

0.000000000 0.000000000 -0.066188278
-0.751549274 0.000000000 0.525227863

= 00
[

Armed with only the name of the group, Firefly is able to exploit the mo-
lecular symmetry throughout almost all of the program, and thus save a
great deal of computer time. Firefly does not require that you know very
much else about group theory, although a deeper knowledge (character ta-
bles, irreducible representations, term symbols, and so on) is useful when
dealing with the more sophisticated wavefunctions.

It should finally be noted that the use of symmetry can be disabled/enabled
through the NOSYM keyword in the $CONTRL group. By default, symmetry is
enabled (NOSYM=0). When NOSYM=1 is specified, symmetry is only used to
build the molecule and not in any calculations. Disabling symmetry is nec-
essary

- for GVB and MCSCF runs in which the charge density is not fully symmet-
ric;

- for polarizability calculations with RUNTYP=TDHF;

- for effective fragment potential calculations;

- for many DRC runs;

- in some cases when rotating alpha and beta HOMO and LUMO orbitals in the
initial guess with $GUESS MIX=.T $END.

Isotopic substitution

Isotopic substitution can be controlled with the AMASS keyword in the $MASS
group. AMASS is an array that specifies the atomic masses of elements in
$DATA, in amu. The default is to use the mass of the most abundant isotope.
Masses through element 104 are stored. For example:

$MASS AMASS(3)=2.0140 $END

will make the third atom in the molecule a deuterium. Masses affect only
the frequencies and normal modes of vibration.
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Basis sets

Introduction

Firefly uses Gaussian basis functions for the construction of the molecular
orbitals. It can handle basis sets of the segmented contraction and of the
general contraction type, with support for s, p, d, f, and g functions, as
well as Pople style sp functions. Higher functions such as h and i are not
supported, which is important to keep in mind when using basis sets that
include these functions (such as Dunning’s cc-pV5Z set). Additionally,
there is support for effective core potentials (i.e. pseudopotentials).

This chapter will start with a description of the basis sets included in
Firefly, followed by a brief explanation on the use of spherical or Carte-
sian functions. It will then discuss ways in which one can manually specify
a basis set, making it possible to either modify a basis set or use a basis
set that is not included in Firefly. The specification of effective core
potentials will also be discussed. Finally, the chapter will conclude with
a short discussion on how to handle partial linear dependence in a basis
set.

Built-in basis sets
The following built-in basis sets can be requested through the GBASIS key-
word. References for these basis sets can be found at the end of this sec-
tion.
* GBASIS=STO - Pople's STO-NG minimal basis set

Available H-Xe, for NGAUSS=2,3,4,5,6

* GBASIS=N21 - Pople's N-21G split valence basis set

Available H-Xe, for NGAUSS=3
Available H-Ar, for NGAUSS=6

* GBASIS=N31 - Pople's N-31G split valence basis set
Available H-Ne,P-Cl for NGAUSS=4
Available H-He,C-F for NGAUSS=5
Available H-Ar, for NGAUSS=6
For Ga-Kr, N31 selects the BC basis
* GBASIS=N311 - Pople's "triple split" N-311G basis set

Available H-Ne, for NGAUSS=6
Selecting N311 implies MC for Na-Ar
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* GBASIS=MC - MclLean/Chandler "triple split" basis

(12s,9p)/[6s,5p] for Na-Ar
Selecting MC implies 6-311G for H-Ne

The first four basis sets are designed by Pople and coworkers, the last
basis set is by McLean and Chandler and is often used together with 6-311G.
Specifically, if N-311G is requested on a second row atom, the McLean Chan-
dler basis set is used on this atom instead (and in the same manner, when
McLean/Chandler is requested on H, He, or a first row atom, 6-311G will be
used). For the N-31G basis sets, the ‘BC’ basis set (a double-zeta valence
basis set by Binning and Curtiss) will be used on Ga-Kr. For all four Pople
basis sets, the number of primitive gaussians to be used for core orbitals
should be set with the NGAUSS keyword. Popular choices are to use STO-3G,
3-21G, and 6-31G.

* GBASIS=MINI - Huzinaga's 3 gaussian minimal basis set
Available H-Rn.

* GBASIS=MIDI - Huzinaga's 21 split valence basis set
Available H-Rn.

These two basis sets were designed by Huzinaga and coworkers. The MINI ba-
sis consists of three gaussian expansions of each atomic orbital. The expo-
nents and contraction coefficients are optimized for each element, and s
and p exponents are not constrained to be equal. As a result these bases
give much lower energies than does STO-3G. The valence MINI orbitals of
main group elements are scaled by factors while transition metal MINI bases
are not scaled.

The MIDI bases are derived from the MINI sets by decontracting the outer
valence function, thus making them of the split valence type. MIDI bases
are not scaled by Firefly. The transition metal bases are taken from the
lowest SCF terms in the s**1,d**n configurations.

Note that nowadays multiple basis sets carry the MINI or MIDI name. The
MINI and MIDI basis sets incorporated in Firefly are in literature commonly
referred to as MINI-1 and MIDI-1.
* GBASIS=DH - Dunning/Hay "double zeta" basis set

(3s)/[2s] for H

(9s,4p)/[3s,2p] for Li

(9s,5p)/[3s,2p] for Be-Ne

(11s,7p)/[6s,4p] for Al-Cl
* GBASIS=DZV - "double zeta valence" basis set

A synonym for DH for H, Li, Be-Ne, Al-Cl
(14s,9p,3d)/[5s,3p,1d] for K-Ca
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(14s,11p,5d/[6s,4p,1d] for Ga-Kr (= the BC basis)
* GBASIS=TZV - "triple zeta valence" basis set

(5s)/[3s] for H

(10s,3p)/[4s,3p] for Li
(10s,6p)/[5s,3p] for Be-Ne

A synonym for MC for Na-Ar
(14s,9p)/[8s,4p] for K-Ca
(14s,11p,6d)/[10s,8p,3d] for Sc-Zn

The DZV and DH sets are identical for H, Li, Be-Ne, and Al-Cl - both use
the double zeta set by Dunning and Hay. The only difference is that DZV can
also be used on K-Ca and Ga-Kr. This basically makes the DH set redundant;
it is actually only included in Firefly for backwards compatibility rea-
sons. The TZV set uses a triple zeta set by Dunning for H and Li-Ne, the
McLean/Chandler set for Na-Ar, and Wachters’ bases for K-Ca and Sc-Zn.

* GBASIS=SBKJIC - Stevens/Basch/Krauss/Jasien/Cundari valence
basis set, for Li-Rn. This choice implies an
unscaled -31G basis for H-He.

* GBASIS=HW - Hay/Wadt valence basis. This is a -21 split,
available for Na-Xe, except for the transition metals.
This implies a 3-21G basis for H-Ne.

These two options request valence only basis sets, meant to be used in com-
bination with effective core potentials (which describe the core orbitals).
Effective core potentials are discussed in a later section.

GBASIS=MNDO
GBASIS=AM1
GBASIS=PM3
GBASIS=RM1

* ¥ ¥ %

These four options do not request a basis set, but request the use of a
semi-empirical method. They are discussed in separate chapter. Requesting
one of these methods causes all other keywords in $BASIS to be ignored.

The addition of polarization functions to the basis set can be requested
with the NDFUNC, NPFUNC, and NFFUNC keywords. NDFUNC specifies the amount
of d functions on ‘heavy’ atoms, except for MINI/MIDI where it requests
additional p functions. For the STO, HW, and N21 sets ‘heavy’ means Na and
heavier, for other basis sets it means Li and heavier. NPFUNC specifies the
amount of p functions that should be added to H and He. Finally, NFFUNC
specifies the amount of f functions that is to be added to Li-Cl. NDFUNC
and NPFUNC may not exceed 3. The only permitted values for NFFUNC are © and
1.
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Five different sets of polarization exponents are available in Firefly.
Which set of polarization exponents is used is determined by the keyword
POLAR, which can be set to following values:

- POPLE (chooses exponents designed for GBASIS=STO, N21, N31, SBKJC, HW)
- POPN311 (chooses exponents designed for GBASIS=N311, MC)

- DUNNING (chooses exponents designed for GBASIS=DH, DZV)

- HUZINAGA (chooses exponents designed for GBASIS=MINI, MIDI)

- HONDO7 (chooses exponents designed for GBASIS=TZV)

It is normally not necessary to specify POLAR as Firefly will automatically
pick the set of polarization exponents that matches the basis set chosen
with GBASIS. A detailed list of exponents as well as references is given
later on in this section.

Two more keywords that pertain to the specification of polarization func-
tions are SPLIT2 and SPLIT3. These keywords specify the splitting factors
when NDFUNC and/or NPFUNC is chosen as >1. In such a case, the 1d and/or 1p
single values are split according to the chosen values. For example,
SPLIT2=2.0,0.5 means to double and halve the single polarization exponent.
The default values (SPLIT2=2.0,0.5 and SPLIT3=4.00,1.00,0.25) are from the
Pople school, and as they were derived with correlation in mind they are
probably too far apart for Hartree-Fock. The default SPLIT2 value will usu-
ally cause an >increase< over the 1d energy at the HF level for hydrocar-
bons. For HF, SPLIT2=0.4,1.4 will always lower the SCF energy. For SPLIT3,
we might suggest 3.0,1.0,1/3. For more information, see also:

M.J.Frisch, J.A.Pople, J.S.Binkley J.Chem.Phys. 80, 3265-3269 (1984).

The addition of diffuse basis functions to the basis set can be controlled
with the DIFFSP and DIFFS keywords (possible values being .T. or .F.). The
first keyword requests diffuse functions on ‘heavy atoms’, i.e. Li-F, Na-
Cl, Ga-Br, In-I, and Tl-At. The latter keyword requests diffuse functions
on H and He. A 1list of diffuse exponents used in Firefly is given at the
end of this section. As opposed to the case with polarization exponents,
Firefly contains only a single set of diffusion exponents that is used for
all basis sets available through GBASIS.

By default, DIFFSP requests diffuse functions for all heavy atoms present
in $DATA. It is however possible to limit the addition of diffuse functions
to specific elements. When DIFFSP is set to .T., this can be done with the
ELNEG keyword. For example,

DIFFSP=.T. ELNEG(1)=7,8,9
adds diffuse functions to N, O, and F, but not to other elements. ELNEG

only affects heavy atoms, it cannot be used to include or exclude diffuse
functions on H and He (this can only be controlled through DIFFS).

This section will conclude with a list of details and references for all
included basis sets, polarization functions, and diffuse functions.
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STO-NG

H-Ne Ref.
Na-Ar Ref.

1 and 2
2
K,Ca,Ga-Kr Ref. 4
5
6

and 3 **

Rb,Sr,In-Xe Ref.
Sc-Zn,Y-Cd Ref.

1) W.J.Hehre, R.F.Stewart, J.A.Pople J.Chem.Phys. 51, 2657-2664(1969).

2) W.J.Hehre, R.Ditchfield, R.F.Stewart, J.A.Pople J.Chem.Phys. 52, 2769-
2773(1970).

3) M.S.Gordon, M.D.Bjorke, F.J.Marsh, M.S.Korth J.Am.Chem.Soc. 100, 2670-
2678(1978). ** the valence scale factors for Na-Cl are taken from this pa-
per, rather than the "official" Pople values in Ref. 2.

4) W.J.Pietro, B.A.Levi, W.J.Hehre, R.F.Stewart, Inorg.Chem. 19, 2225-
2229(1989).

5) W.J.Pietro, E.S.Blurock, R.F.Hout,Jr., W.J.Hehre, D.J. DeFrees,
R.F.Stewart Inorg.Chem. 20, 3650-3654(1980).

6) W.J.Pietro, W.J.Hehre J.Comput.Chem. 4, 241-251(1983).

MINI/MIDI
H-Xe Ref. 7
7) "Gaussian Basis Sets for Molecular Calculations" S.Huzinaga, J.Andzelm,

M.Klobukowski, E.Radzio-Andzelm, Y.Sakai, H.Tatewaki Elsevier, Amsterdam,
1984.

3-21G
H-Ne Ref. 8 (also 6-21G)
Na-Ar Ref. 9 (also 6-21G)
K,Ca,Ga-Kr,Rb,Sr,In-Xe Ref. 10
Sc-Zn Ref. 11
Y-Cd Ref. 12

8) J.S.Binkley, J.A.Pople, W.J.Hehre J.Am.Chem.Soc. 102, 939-947(1989).

9) M.S.Gordon, J.S.Binkley, J.A.Pople, W.J.Pietro, W.J.Hehre J.Am.Chem.Soc.
104, 2797-2803(1982).

10) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 7, 359-378(1986)

11) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 8, 861-879(1987)

12) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 8, 880-893(1987)

N-31G
references for 4-31G 5-31G 6-31G
H 13 13 13
He 21 21 21
Li 17,22 17
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Be 18,22 18

B 15 17
C-F 13 14 14
Ne 21 21
Na-Ga 20
Si 19 **
P-C1 16 20
Ar 20
K-Zn 23
13) R.Ditchfield, W.J.Hehre, J.A.Pople J.Chem.Phys. 54, 724-728(1971).
14) W.J.Hehre, R.Ditchfield, J.A.Pople J.Chem.Phys. 56, 2257-2261(1972).
15) W.J.Hehre, J.A.Pople J.Chem.Phys. 56, 4233-4234(1972).
16) W.J.Hehre, W.A.Lathan J.Chem.Phys. 56, 5255-5257(1972).
17) J.D.Dill, J.A.Pople J.Chem.Phys. 62, 2921-2923(1975).
18) J.S.Binkley, J.A.Pople J.Chem.Phys. 66, 879-880(1977).
19) M.S.Gordon Chem.Phys.Lett. 76, 163-168(1989)
** - Note that the built in 6-31G basis for Si is not that given by
Pople in reference 20. The basis by Mark Gordon gives a better wave-
function for a ROHF calculation in full atomic (Kh) symmetry:
6-31G Energy virial
Gordon  -288.828573  1.999978
Pople -288.828405 2.000280
See the input example "EXAM16" for information on how to run in Kh.
20) M.M.Francl, W.J.Pietro, W.J.Hehre, J.S.Binkley, M.S.Gordon,
D.J.DeFrees, J.A.Pople J.Chem.Phys. 77, 3654-3665(1982).
21) Unpublished, copied out of GAUSSIANS2.
22) For Li and Be, 4-31G is actually a 5-21G expansion.
23) V.A.Rassolov, J.A.Pople, M.A.Ratner, T.L.Windus J.Chem.Phys. 109, 1223-
1229(1998)
6-311G
24) R.Krishnan, 3J.S.Binkley, R.Seeger, J.A.Pople J.Chem.Phys. 72, 650-
654(1980).

DH / DZV / BC

25)

DH basis H Ref. 25
DH basis Li-Ne Ref. 25
DH basis Al-Ar Ref. 25
DZV basis K,Ca Ref. 26
DZV basis  Ga-Kr Ref. 27 (a.k.a. the BC basis)

T.H.Dunning, Jr., P.J.Hay Chapter 1 in "Methods of Electronic Structure

Theory"”, H.F.Shaefer III, Ed. Plenum Press, N.Y. 1977, pp 1-27.
Note that Firefly uses inner/outer scale factors of 1.2 and 1.15 for DH's
hydrogen. To get Thom's usual basis, scaled 1.2 throughout:

HYDROGEN 1.0 x, y, z
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DH © 1.2 1.2

26) J.-P.Blaudeau, M.P.McGrath, L.A.Curtiss, L.Radom J.Chem.Phys. 107,
5016-5021(1997)
27) R.C.Binning, Jr., L.A.Curtiss J.Comput.Chem. 11, 1206-1216(1999)

TZV / MC

H Ref. 28

Li-Ne Ref. 28

Na-Ar Ref. 29 (a.k.a. the MC basis)
K,Ca Ref. 30

Ga-Kr Ref. 30**

28) T.H. Dunning, J.Chem.Phys. 55 (1971) 716-723.

29) A.D.McLean, G.S.Chandler J.Chem.Phys. 72,5639-5648(19890).

30) A.J.H. Wachters, J.Chem.Phys. 52 (1970) 1033-1036 (see Table VI, Con-
traction 3).

** Ga-Kr is taken from HONDO 7 and is Wachters' (14s9p5d) basis (ref. 30)
contracted to (10s8p3d) with the following modifications:
1. the most diffuse s removed;
2. additional s spanning 3s-4s region;
3. two additional p functions to describe the 4p;
4. (6d) contracted to (411) from ref. 31, except for Zn where
Wachter's (5d)/[41] and Hay's diffuse d are used.

31) A.K. Rappe, T.A. Smedley, and W.A. Goddard III, J.Phys.Chem. 85 (1981)
2607-2611

SBKJC -31G splits, bigger for trans. metals (available Li-Rn)

32) W.J.Stevens, H.Basch, M.Krauss J.Chem.Phys. 81, 6026-6033 (1984)
33) W.J.Stevens, H.Basch, M.Krauss, P.Jasien Can.J.Chem, 70, 612-630 (1992)
34) T.R.Cundari, W.J.Stevens J.Chem.Phys. 98, 5555-5565(1993)

HW -21 splits (sp exponents not shared; transition metals are not built in
at present, although they will work if you type them in)

35) P.J.Hay, W.R.Wadt J.Chem.Phys. 82, 270-283 (1985) main group (available
Na-Xe)

36) W.R.Wadt, P.J.Hay J.Chem.Phys. 82, 284-298 (1985)

see also

37) P.J.Hay, W.R.Wadt J.Chem.Phys. 82, 299-310 (1985)

Polarization exponents

STO-NG* ref. 38
3-21G* ref. 39 (see also ref. 10)
6-31G* ref. 40 (see also ref. 20)
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6-31G** ref. 40 (see also ref. 20)

38) J.B.Collins, P. von R. Schleyer, J.S.Binkley, J.A.Pople J.Chem.Phys.
64, 5142-5151(1976).

39) W.J.Pietro, M.M.Francl, W.J.Hehre, D.J.DeFrees, J.A. Pople, J.S.Binkley
J.Am.Chem.Soc. 104,5039-5048(1982)

40) P.C.Hariharan, J.A.Pople Theoret.Chim.Acta 28, 213-222(1973)

Multiple polarization, and f functions

41) M.J.Frisch, J.A.Pople, J.S.Binkley J.Chem.Phys. 80, 3265-3269 (1984).

Polarization exponents built into Firefly are listed in the table below.
The values are for d functions unless otherwise indicated. Please note that
the names associated with each column are only generally descriptive. For
example, the column marked "POPLE" contains a value for Si with which John
Pople would not agree, and the Ga-Kr values in this column are actually
from the Huzinaga "green book". The exponents for K-Kr under "DUNNING" are
from Curtiss, et al., not Thom Dunning. And so on. A blank means the value
equals the "POPLE" column.

POPLE POPN311  DUNNING  HUZINAGA HONDO7

H 1.1(p) 0.75(p) 1.0(p) 1.0(p) 1.0(p)
He 1.1(p) 0.75(p) 1.0(p) 1.0(p) 1.0(p)
Li .2 0.200 0.076(p)
Be 0.4 0.255 0.164(p) 0.32
B 0.6 0.401 0.70 0.388 .50
C 0.8 0.626 0.75 0.600 9.72
N 0.8 0.913 .80 0.864 0.98
0 0.8 1.292 .85 1.154 1.28
F 0.8 1.750 0.90 1.496 1.62
Ne 0.8 2.304 1.00 1.888 2.00
Na ©0.175 0.061(p) ©0.157
Mg ©0.175 0.101(p) 0.234
Al 0.325 0.198 0.311
Si  0.395 0.262 9.388
P  0.55 0.340 0.465
S  0.65 0.421 0.542
cl 0.75 9.514 9.619
Ar  0.85 0.617 0.696
K 0.2 0.260 9.039(p)
Ca 0.2 0.229 0.059(p)

Sc-Zn 0.8(f) N/A N/A N/A N/A
Ga ©0.207 0.141
Ge ©0.246 0.202
As  ©.293 0.273
Se 0.338 0.315
Br ©0.389 0.338
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Kr 0.443 0.318

Rb  ©.11 0.034(p)
Sr .11 0.048(p)

Common d polarization used for all basis sets (from the "green book") are
as follows:

In Sn Sb Te I Xe
0.160 ©0.183 ©0.211 0.237 0.266 0.297
T1 Pb Bi Po At Rn

0.146 0.164 0.185 0.204 0.225 0.247

Firefly uses the following f polarization functions (these are from refer-
ence 41):

Li Be B C N 0] F Ne
0.15 0.26 ©0.50 ©.80 1.00 1.40 1.85 2.50
Na Mg Al Si P S Ccl Ar

0.15 0.20 0.25 0.32 0.45 0.55 0.70 --

Diffuse exponents

42) T.Clark, J.Chandrasekhar, G.W.Spitznagel, P. von R. Schleyer J. Comput.
Chem. 4, 294-301 (1983)
43) G.W.Spitznagel, Diplomarbeit, Erlangen, 1982.

The following exponents are for L shells, except those for H and He. For H-
F, they are taken from ref 42. For Na-Cl, they are taken directly from ref-
erence 43. These values may be found in footnote 13 of reference 41. For
Ga-Br, In-I, and T1l-At the exponents were optimized for the atomic ground
state anion, using ROHF with a flexible ECP basis set, by Ted Packwood at
NDSU.

H He
0.0360 0.0860
Li Be B C N 0 F
0.0074 0.0207 ©0.0315 0.0438 ©0.0639 0.0845 0.1076
Na Mg Al Si P S Cl
0.0076 0.0146 ©0.0318 ©0.0331 ©0.0348 0.0405 0.0483

Ga Ge As Se Br
0.0205 0.0222 ©0.0287 0.0318 0.0376
In Sn Sb Te I
0.0223 0.0231 ©0.0259 0.0306 ©0.0368
Tl Pb Bi Po At

0.0170 0.0171 0.0215 0.0230 0.0294

Additional information about diffuse functions and also Rydberg type expo-
nents can be found in reference 25. The following atomic energies are from
UHF calculations (RHF on 1-S states), with p orbitals not symmetry equiva-
lenced, and using the default molecular scale factors. They should be use-
ful in picking a basis of the desired energy accuracy, and estimating the
correct molecular total energies.

Atom state STO-2G STO-3G 3-21G 6-31G
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H 2-S -
He 1-S -2
Li 2-S -7
Be 1-S -13
B 2-P -23
C 3-P -36
N 4-S -53
0 3-P -71
F 2-P -95
Ne 1-S -122
Na 2-S -155
Mg 1-S -191
Al 2-P -233
Si 3-p -277
P 4-S -327
S 3-P -382
Cl 2-P -442
Ar 1-S -507
Atom state

H 2-S -

He 1-S

Li 2-S -7.
Be 1-S -14.
B 2-P -24.
C 3-P -37.
N 4-S -54,
0 3-P -74

F 2-P -99

Ne 1-S -128.
Na 2-S

Mg 1-S

Al 2-P -241.
Si 3-P -288.
P 4-S -340.
S 3-P -397.
Cl 2-P -459.
Ar 1-S

* M.W.Schmidt and
ROHF energies in Kh symmetry.

K.Ruedenberg, J.Chem.Phys. 71, 3951-3962(1979). These are

.454397
.702157
.070809
.890237
.395284
.060274
.093007
.572305
.015084
.360485
.170019
.507082
.199965
.506857
.564244
.375012
.206260
.249273

DH

.498189

431736
570907
526601
685571
397260

. 802707
.395013

522354

855079
829617
689043
468667
435938

Using spherical functions

Full support of spherical basis functions (also referred to as pure func-
tions) has been implemented in Firefly. By default, spherical functions are

6-
-2.
-7.

-14.
=24,
-37.
-54,
-74
-99
-128.

.466582
.807784
.315526
.351880
.148989
.198393
.719010
.804150
.986505
.132546
.797148
.185978
.026471
.563052
.944863
.178951
.546015
.222881

311G

.499810

859895
432026
571874
527020
686024
3979860

.802496
.394158

522553

-161.
-199.
-241.
-288.
-340.
-397.
-459.
-526.

disabled. They can be enabled by specifying:

$CONTRL D5=.T. $END
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-.496199
.835680
.381513
.486820
.389762
.481070
.105390
.393657
.845009
.803825
.854065
.468103
.551046
.344431
.000079
.551336
.276552
.342962

845587
606558
870014
847782
711346
498023
473412
806626

SC

1i
-0.
-2.
-7.
-14.
-24.
-37.
-54.
-74.
-99.
-128.
-161.
-199.
-241.
-288.
-340.
-397.
-459.
-526.

.498233
.855160
.431236
.566764
.519492
.677837
.385008
.780310
.360860
.473877
.841425
.595219
.854186
.828598
.689008
.471414
.442939
.772151

*

F

mit
5

861680
432727
573023
529061
688619
400935
809400
409353
547104
858917
614636
876699
854380
718798
504910
482088
817528



The $D5 group provides further control through the D5, F7, and G9 keywords,
which pertain to d, f, and g functions, respectively. Their default values
are .T. meaning that spherical functions are used for these three types of
functions, provided of course that spherical functions are enabled in the
first place by setting $CONTRL D5=.T.

As an example, if one would like to use Cartesian d functions but spherical
f and g functions, one should specify:

$CONTRL D5=.T. $END
$D5 D5=.F. $END

Whether one should use Cartesian or spherical functions depends on what the
basis set used has been designed for. As a general rule, older basis sets
are usually designed to use Cartesian d functions, while newer sets should
generally be used with spherical d functions. Higher functions (f and g)
should almost always be spherical.

The following sets in Firefly should be used with Cartesian d functions:
STO-NG, N-21G, N-31G, SBKJC, HW, DH, DzV, TZV, MINI, and MIDI

As spherical functions are disabled by default, one does not have to speci-
fy anything special when augmenting these basis sets with d functions. On
the other hand, f functions with these sets are usually spherical. There-
fore, when using a basis set such as 6-31G(2df,2p), one should use Carte-
sian d and spherical f functions (giving input as in the example above).

The N-311G/MC set in Firefly was designed to use spherical polarization
functions, so setting $CONTRL D5=.T. for this basis set is a requirement.
The same goes for many popular basis sets not incorporated in Firefly such
as. Examples are:

- Ahlrichs’ Sv, TzV, QzV (both def and def2 generation), and all sets de-
rived from these (such as def2-TZVPPD)

- Dunning's cc-pVXZ family and all sets derived from these (such as aug-cc-
pVTZ, cc-pwCVTZ, and cc-pVTZ-PP)

- Jensen's pc-X family and all sets derived from these (such as aug-pc-2
and pcS-2)

- LANL2DZdp, LANL2TZ, and LANLO8d

- Roos' augmented DZ and TZ ANO, and ANO-RCC

- Sadlej's pVTZ

- The Sapporo family of sets

Not using spherical functions for these sets can result in discrepancies in
energies and/or poor SCF convergence.

Note that the current implementation of the D5 option is incompatible with
non-standard molecular input frames (i.e. custom orientations of axes).

Using an external basis set file
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Firefly can be instructed to get the basis set from an external file by
specifying:

$BASIS EXTFIL=.T. GBASIS=name $END
where “name” is the name of the basis set as specified in the external
file. “name” must be a string of 8 or less characters, and should obviously
not be identical to any of the internally stored names.
By default, Firefly will assume that the external file is called BASIS.LIB
(in uppercase when using Linux) and is present in the same directory as the
input file. A different file name (and path) can be specified using the “-

b” command line argument, e.g.:

firefly -o test.out -b ccpvtz.lib

It is also possible to specify only the path to BASIS.LIB:
firefly -o test.out -b c:\basis_sets\ (Windows)
firefly -o test.out -b /home/alex/basis_sets/ (Linux)
The structure of the external basis set file should be as follows:

element basis_name
shell n_Gauss

1 exponent  contr_coeffs
2 exponent contr_coeffs
3 exponent contr_coeffs
etc...
shell n_Gauss
1 exponent  contr_coeffs
2 exponent  contr_coeffs
3 exponent contr_coeffs
etc...

<terminate with a blank line>

In here,
- element is the element’s symbol (as in the periodic table).
- basis_name is the basis set name specified with GBASIS.
- shell is the shell type. This can be S, P, D, F, G, or L. Here, L
defines a Pople style SP shell.
- n_Gauss is the number of Gaussian primitives which the shell is
made up from.
- exponent gives the Gaussian’s exponent.
- contr_coeffs are the contraction coefficients. When specifying two
or more contraction coefficients for one exponent, the coefficients
should be separated by one or more spaces.

As an example, a 6-31+G(d) set on carbon looks as follows:

C 631pGd
S 6
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1 3047.5249000 0.0018347

2 457 .3695100 0.0140373

3 103.9486900 0.0688426

4 29.2101550 0.2321844

5 9.2866630 0.4679413

6 3.1639270 0.3623120
L 3

1 7.8682724 -0.1193324 0.0689991

2 1.8812885 -0.1608542 0.3164240

3 0.5442493 1.1434564 0.7443083
L 1

1 0.1687144 1.0000000 1.0000000
L 1

1 0.0438000 1.0000000 1.0000000
D 1

1 0.8000000 1.0000000

It is also possible to use internally stored names. The above example can,
for example, also be written as:

C 631pGd
N31 6
L 1
1 0.0438000  1.00000000 1.0000000
D 1
1 0.8000000  1.00000000

When using internally stored names, the number of Gaussian primitives only
has to be specified for Pople sets (i.e. for STO, N21, N31, N311).

Several basis set files ready for use can be downloaded from the downloads
section on the Firefly website. Another good source for basis sets is the
EMSL Basis Set Exchange, which can be accessed on
https://bse.pnl.gov/bse/portal. Here, basis sets obtained in the “GAMESS-
US” format are fully compatible with Firefly.

One final tip: though one might choose to make a separate file for each
basis set, it is also possible to have several basis sets in the same file,
each identified by a unique GBASIS string.

Specifying a basis set in $DATA

In addition to the above basis input methods, it is possible to specify a
basis set in $DATA. This can be useful if one would like to use different
sets on different atoms of the same element. For example, one may desire to
use diffuse functions on one carbon atom, but not on another carbon atom. A
$BASIS group should in this case be omitted from the input.

Basis set information in $DATA should be structured in the same way as the

external basis set file (see previous section), except that for each atom
“element basis_name” should be replaced with the element name (which can be
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arbitrary), atomic nuclear charge, and Cartesian coordinates of the atom on
which the set is used. As with the external basis file, it is possible to
fully specify a set as well use internally stored names.

Note that a basis set input in $DATA can be easily generated by taking the
$DATA block in the PUNCH file of an earlier calculation as this block al-
ready has the desired format. As an example, if one would like to use a 6-
31+G(d,p) basis but remove the diffuse function from one of the carbon at-
oms, one can first run a test calculation (EXETYP=CHECK) using

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=1 DIFFSP=.T. $END

After this, one can take the $DATA block from the PUNCH file, remove the
desired function, and replace the $DATA part in the input file with it
(and, as mentioned, the $BASIS group should then be omitted).

Using effective core potentials

Effective core potentials (ECPs), also referred to as pseudopotenials
(PPs), can be used instead of basis functions to describe the core part of
an element. This has two advantages. First, heavier elements have a lot of
core electrons, which would make it necessary to employ a large number of
basis functions in order to accurately describe its core. The use of an ECP
in such a case will dramatically reduce the number of basis functions of
the system. Secondly, from the third row of the periodic table onwards,
relativistic effects become increasingly important. However, these cannot
be accounted for by a basis set (at least, not without carrying out an ad-
ditional relativistic calculation). An ECP on the other hand can include
relativistic effects, making for a more accurate description for the ele-
ments of the lower half of the periodic table. ECPs, together with spin-
orbit coupling calculations, are currently the only way to account for rel-
ativistic effects as all-electron relativistic calculations such as
Douglass-Kroll-Hess and the Zeroth Order Relativistic Approximation (ZORA)
are not (yet) possible with Firefly.

Two sets of ECPs are incorporated in Firefly: the Ste-
vens/Basch/Krauss/Jasien/Cundari (SBKJC) potentials which are available for
Li to Rn, and the Hay/Wadt (HW) potentials which are available for Na to
Xe. These should be used in conjunction with the SBKJC and HW valence-only
basis set (e.g. $BASIS GBASIS=SBKJIC $END). In addition, it also possible to
manually specify ECPs.

Input for ECPs can be given in three different ways.
The first applies only to the SBKJC and HW ECPs included in Firefly. By
using the ECP keyword in the group $CONTRL, one of these two ECPs can be
chosen. For example:

$CONTRL ECP=SBKJIC $END

The specified potentials will then be used on all atoms given in $DATA they
are available for.
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If one would prefer more control over which potentials are used on which
atoms, one should specify

$CONTRL ECP=READ $END

and provide an $ECP group. The way the $ECP group should be formatted is
explained in detail in the keyword list and will thus not be given fully
here. An example for a formic acid molecule looks as follows:

$ECP

C-ECP SBK3C
H-ECP NONE
O-ECP SBK3C
O-ECP

H-ECP

$END

An ECP should be specified for every (real) atom present in $DATA. “NONE”
means that no core electrons will be removed for an element. In the above
example, the second oxygen atom uses the same ECP as the first.

Thirdly, it is possible to specify a potential explicitly. For the formal-
dehyde example above, this could look as follows:

$ECP
C-ECP GEN 2 1
1 ----- CARBON U(P) -----
-0.89371 1 8.56468
2 - CARBON U(S)-U(P) -----
1.92926 © 2.81497
14.88199 2 8.11296
H-ECP NONE
0-ECP GEN 2 1
1 -=--- OXYGEN U(P) -----
-0.92550 1 16.11718
2 ----- OXYGEN U(S)-U(P) -----
1.96069 © 5.05348
29.13442 2 15.95333
0-ECP
H-ECP
$END

Here also, the second oxygen copies from the first.
Constructing an $ECP group for a large molecule can be a labor-intensive

task, however, there are some scripts which provide help with this. They
can be found in the download section on the Firefly website.

Partial linear dependence in a basis set
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When using a large basis set, the situation can arise where some basis
functions can be written as linear combinations of other basis functions.
This happens most often when diffuse functions are used. This situation is
referred to as partial linear dependence in the basis set and can be a
problem as it can cause numerical instabilities, possibly leading to poor
SCF convergence.

When partial linear dependence is detected, Firefly will print the follow-
ing message:

* k% WARNING * * *
THE OVERLAP MATRIX HAS X EIGENVALUES BELOW 1.0E-05. THE SMALLEST OF
THESE IS x. THIS INDICATES A PARTIAL LINEAR DEPENDENCE IN YOUR ATOMIC
BASIS.

TO OBTAIN SCF CONVERGENCE MAY REQUIRE MORE ACCURATE INTEGRAL EVALUA-
TION (INTTYP=HONDO, ICUT=11, ITOL=30 IN $CONTRL), MORE ACCURATE DI-
RECT SCF FOCK MATRIX FORMATION (FDIFF=.FALSE. IN $SCF), OR CHANGING
CONVERGERS (DIIS=.T. SOSCF=.F. IN $SCF).

EIGENVALUES BELOW 1.0D-07 PROBABLY WON'T CONVERGE. EIGENVALUES BE-
TWEEN 1.0D-07 AND 1.0D-06 MAY REQUIRE TIGHTENING OF -NCONV- DENSITY
CONVERGENCE IN $SCF.

THE OVERALL DEGREES OF AOS LINEAR INDEPENDENCE ARE:
--list of values --

YOU MAY CONSIDER DROPPING ONE OR MORE AOS, STARTING FROM THE END OF
THIS LIST.

When encountering this message, the required course of action depends on
severity of the linear dependence. As the output suggests, eigenvalues
above 1.0D-07 might converge but require higher accuracy. More accurate
integrals ($CONTRL INTTYP=HONDO, ICUT=11) would be a good starting point.
As the message suggests one can also disable FDIFF ($SCF FDIFF=.F - this
applies to HF, DFT, and GVB convergence), but this should not be necessary
as Firefly will disable FDIFF automatically when it encounters difficult
convergence. Finally, it is recommended to use tighter convergence criteria
as the linear dependence can cause inaccuracies in the results when normal
criteria are used. This is important when the calculated wavefunction will
be used for further calculations (e.g., gradient after energy, MP2 after
HF, TDDFT after DFT).

When the partial linear dependence results in eigenvalues below 1.0D-07,
convergence might not be reached. In such a case, the dependence can be
decreased by manually removing one or more functions from the basis. Which
functions are best to be removed can be seen from the list of values given
in the output. Take for example a situation in which the list ends with:

0.2043E-06 - c 23 S, SHELL 86, A0 230
0.1455E-06 - C 5 5, SHELL 20, A0 62
0.1147E-06 - c 12 S, SHELL 49, A0 157
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0.1015E-06 - c 13 S, SHELL 53, A0 170
0.8695E-07 - C 1 5, SHELL 4, A0 10

As can be seen from this 1list, the smallest eigenvalue originates from
shell nr. 4, situated on atom nr. 1. Looking at the atomic basis set
printout:

SHELL TYPE PRIM  EXPONENT CONTRACTION COEFFICIENTS
C

1 S 1  3047.524880  ©.536345 ( 0.001835)

1 s 2 457.369518  ©.989452 ( 0.014037)

1 S 3 103.948685 1.597283 ( 0.068843)

1 S 4 29.210155 2.079187 ( 0.232184)

1 S 5 9.286663 1.774174 ( ©.467941)

1 S 6 3.163927  0.612580 ( ©.362312)

2 L 7 7.868272  -0.399556 ( -0.119332) 1.296082 (
9.068999)

2 L 8 1.881289  -0.184155 ( -0.160854) 0.993754 (
9.316424)

2 L 9 0.544249 ©.516390 ( 1.143456) 0.495953 (
0.744308)

3 L 10 9.168714 9.187618 ( 1.000000) 9.154128 (
1.000000)

4 L 11 0.043800 0.068236 ( 1.000000) 0.028562 (
1.000000)

it can be seen that shell 4 is a diffuse function on atom 1. The course of
action would now be to take the $DATA block from the PUNCH file, remove
this function, and restart the calculation with the modified basis. Most
likely, convergence will be much better with the function removed. If not,
then the whole procedure needs to be repeated until all problematic func-
tions have been eliminated.

Note that if an internally stored basis set was used, the $DATA block from
the PUNCH file will use the GBASIS name as opposed to specifying each shell
individually (to be more precise, polarization and diffuse functions are
specified individually, but the f‘basic’ basis set will be abbreviated as
its GBASIS name, for example, as N31 or TZV). This makes it difficult to
remove core shells. There currently is no easy way to solve this - one ei-
ther will have to replace the abbreviation with the individual shells the
set consists of, or one should use an external basis set file which does
not use abbreviations from the start (hint: Firefly’s basis sets are avail-
able from the EMSL basis set exchange, though there is no guarantee that
they are exactly the same as the internal sets - be sure to verify this).

Finally, a word of caution: removing functions can of course change the
energy, gradient, and other properties of the system under investigation.
This should always be kept in mind when resolving a partial linear depend-
ence in such a way. For example, one should be careful comparing the ener-
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gies of two isomers when one of the isomers has less functions than the
other.

Basis set superposition error (BSSE) correction

A problem inherent to the use of an incomplete basis set with fixed posi-
tions (i.e., with basis functions that are centered on the positions of the
nuclei) is that the situation can arise where basis functions positioned on
one part of the molecular system can be used in the description of other
parts of the molecular system. This situation, commonly referred to as ba-
sis set superposition error (BSSE), can cause problems as it artificially
lowers the total energy of the system, thus causing the calculated energy
to be incorrect. This is encountered most often when studying weak interac-
tions, such as van der Waals bonding, between separate molecules. Circum-
venting the BSSE problem is in practice difficult - as it is the result of
basis set incompleteness in combination with fixed positions for basis
functions, the only real solutions are to either a) use a basis set close
to the complete basis set limit, or b) use a delocalized basis set designed
to describe the system as a whole. Both of these solutions are impractical.
There are, however, a few ways to correct for the problem. These will be
discussed in this section.

The most simple correction that can be applied with Firefly is the counter-
poise correction scheme proposed by Boys and Bernardi[l]. In this scheme,
the energy error is evaluated by a set of separate energy calculations. Let
us, for example, consider a water dimer with water molecules 'A' and 'B'.
Because of BSSE, basis functions on A can be used in the description of B
and vice versa, causing the calculated total energy of the dimer A+B to be
too low. The counterpoise correction on the total energy of the dimer can
be obtained through four energy calculations. All of these use the geome-
tries of the two water molecules as they are in the dimer (so, one should
not reoptimize them). The four energy calculations are:

- the energy of A+B with a basis set on both molecules, but with ghost at-
oms specified for B; E(A)ab

- the energy of A+B with a basis set on both molecules, but with ghost at-
oms specified for A; E(B)ab

- the energy of A, using the geometry of A as in A+B; E(A)a

- the energy of B, using the geometry of B as in A+B; E(B)b

Here, a ghost atom is an atom with basis functions but without charge. A
ghost atom can be specified by adding a negative sign to the charge as is
shown in the example below (where the three atoms of water molecule B are
ghost atoms):

0O 8.0 -1.411087 -1.022605 -1.001415
H 1.0 -2.196224 -0.454859 -1.004828
H 1.0 -1.111711 -1.052794 -1.922420
0O -8.0 0.616682 0.473774 0.420136
H -1.0 0.973421 -0.026190 1.167563
H -1.0 -0.051557 -0.112528 0.012392

The use of COORD=UNIQUE in $CONTRL is highly recommended.
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With the four energy calculations carried out, the correction itself can be
obtained as follows:

Ecorr = E(A)ab - E(A)a + E(B)ab - E(B)b

Finally, the corrected energy of the dimer can then obtained as follows:

E(AB)ab_corr = E(AB)ab + Ecorr

A second approach to correcting for BSSE is the so-called SCF-MI method
[2]. This method is a modification of the Roothaan equations that avoids
BSSE in intermolecular interaction calculations by expanding each monomer's
orbitals using only its own basis set. As a result, the resulting orbitals
are not orthogonal. The use of this method is triggered by the presence of
the $SCFMI group in the input. Its current implementation is limited to two
monomers and only works with restricted Hartree-Fock calculations. Energies
and gradients are available, analytical Hessians are not. Furthermore, this
type of calculation cannot be run in parallel.

An SCF-MI run requires that the following four keywords are specified:

NA = number of doubly occupied MOs on fragment A
NB = number of doubly occupied MOs on fragment B
MA = number of basis functions on fragment A
MB = number of basis functions on fragment B

Note that, in $DATA, all atoms of monomer A must be given before the atoms
of monomer B. Additional keywords belonging to the $SCFMI group are dis-
cussed in the 1list of keywords.

A third way of correcting for BSSE is to calculate the BSSE correction by
means of a Morokuma energy decomposition calculation[3]. This calculation
is requested by specifying RUNTYP=MOROKUMA in $CONTRL and MOROKM=.T. in
$MOROKM. In addition, BSSE=.T. and CTPSPL=.T. should be specified in the
$MOROKM. During a MOROKM=.T. decomposition, a basis set superposition error
is automatically generated by the RVS scheme. Note however that this is not
the full Boys counterpoise correction, as is explained in the reference.
More information on this type of calculation can be found in the section on
Morokuma energy decompositions.

(1) S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970)

(2) "Modification of Roothan Equations to Exclude BSSE from Molecular In-
teraction Calculations” E. Gianinetti, M. Raimondi, E. Tornaghi Int. 3J.
Quantum Chem. 60, 157 (1996)

(3) R.Cammi, R.Bonaccorsi, J.Tomasi Theoret.Chim.Acta 68, 271-283(1985) and
"Energy decomposition analysis for many-body interactions, and application
to water complexes" W.Chen, M.S.Gordon J.Phys.Chem. 100, 14316-14328(1996)
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Starting orbitals

All methods in Firefly require the selection of a set of starting orbitals.
The selection of starting orbitals is controlled through the $GUESS input
group. The GUESS keyword selects the type of starting orbitals.

GUESS=HUCKEL (the default for all runs except restarts) and GUESS=HCORE
select methods that automatically generate starting orbitals. HUCKEL per-
forms an extended Hiickel calculation using a Huzinaga MINI-1 basis that is
projected onto the current basis set, and is available for all elements up
to Rn. With HCORE, the one electron Hamiltonian is diagonalized in order to
obtain the initial guess, a method that can be used for any element. In
general, HUCKEL works better, but HCORE might give better results for sys-
tems containing transition metals. This is because HUCKEL does not always
treat ECPs on transition metals properly.

Orbitals from earlier calculations can be used through GUESS=MOREAD,
GUESS=MOSAVED, GUESS=RDMINI, or GUESS=SKIP. MOREAD requests that the start-
ing orbitals are read in from the input file (from a $VEC group). MOSAVED
requests that orbitals are read in from the DICTNRY file of an earlier run;
this value of GUESS is the default for restarts. RDMINI can be used to read
in the $VEC deck from a converged calculation that used GBASIS=MINI without
any polarization functions, and project these orbitals onto the current
basis. Note that this option should not be used if the current basis in-
volves ECP basis sets. Finally, SKIP skips the initial orbitals selection.
Instead, Firefly will assume that the initial orbitals and density matrix
are in the DICTNRY file.

All GUESS types except SKIP carry out an orthonormalization of the orbit-
als, and generate the correct initial density matrix. However, the initial
density matrix cannot be generated for CI and MCSCF calculations, so prop-
erty restarts for these wavefunctions will require 'SKIP'. Other possible
uses for SKIP are for a EXETYP=CHECK job, or a RUNTYP=HESSIAN job where the
Hessian is supplied. Apart from these scenarios, SKIP is a seldom used op-
tion (that may not always work correctly).

Note that all GUESS types (again except SKIP) permit reordering of the or-
bitals through the NORDER and IORDER keywords. NORDER is used to enable the
reordering (through NORDER=1) while IORDER is an array that supplies reor-

dering instructions. As an example, if one would like to switch the posi-
tions of orbitals 9 and 11, the reordering instructions can be as follows:

NORDER=1 IORDER(9)=11,10,9

Alternatively, one could also write

NORDER=1 IORDER(9)=11 IORDER(11)=9

Finally, it is possible to give the above reorder instructions as:
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IORDER(9)=-11  or  IORDER(11)=-9

which have the same effect.

For UHF orbitals, the IORDER keyword pertains to the alpha orbitals only.
Reordering of the beta orbitals can be specified with the JORDER keyword.

Finally, it should be noted that it is possible to project orbitals ob-
tained with a small basis set upon a larger basis set. This is achieved
through the EXTRA keyword which instructs Firefly that the larger basis has
extra functions. The NEXTRA keyword in $EXTRAF should hereby be used to
provide projection instructions.

An example of projection onto a larger basis is given below for a RHF cal-
culation on water. Here, the orbitals of a converged calculation with the
cc-pVDZ basis are projected onto an aug-cc-pVDZ basis. The NEXTRA keyword
provides a list of the number of Cartesian functions that will be added for
each atom (where atom 1 is oxygen, atom 2 is hydrogen, etc.). In the case
of symmetry, this array should still be specified for all atoms, as if the
point group is set as C1.

In this example, Firefly is instructed that 10 Cartesian functions will be
added for oxygen (s, p, and d) and 4 will be added for hydrogen (s and p).
Note that, despite the D5=.T. option (which enables the use of spherical
functions), 6 functions are requested for the oxygen’s d function. This is
because Firefly does not explicitly work with spherical basis functions -
it works with Cartesian components but limits the entire Cartesian AO space
to its pure spherical subspace. In other words, in the case of a d func-
tion, all six Cartesian functions are required to form five spherical func-
tions.

$CONTRL SCFTYP=RHF D5=.T. $END
$SYSTEM TIMLIM=1 MEMORY=500000 $END

$GUESS GUESS=MOREAD NORB=25 EXTRA=.T. $END
$EXTRAF NEXTRA(1)=10,4,4 $END

$DATA
RHF/aug-cc-pVDZ run that uses converged RHF/cc-pVDZ orbitals
CNV 2

0] 8.0 0.0000000000 ©0.0000000000 ©.7205815395
S 8

1 11720.00000 0.710000000E-03

2 1759.00000 0.547000000E-02

3 400.80000 0.278370000E-01

4 113.70000 0.104800000

5 37.03000 0.283062000

6 13.27000 0.448719000

7 5.02500 0.270952000

8 1.01300 0.154580000E-01
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1 11720.0000 -0.160000000E-03
2 1759.0000 -0.126300000E-02
3 400.80000 -0.626700000E-02
4 113.70000 -0.257160000E-01
5 37.03000 -0.709240000E-01
6 13.27000 -0.165411000
7 5.02500 -0.116955000
8 1.01300 0.557368000
S 1
1 0.30230 1.000000000
P 3
1 17.70000 0.430180000E-01
2 3.85400 0.228913000
3 1.04600 0.508728000
P 1
1 0.27530 1.000000000
D 1
1 1.18500 1.000000000
s 1
1 0.07896 1.000000000
P 1
1 0.06856 1.000000000
D 1
1 0.33200 1.000000000
H 1.0 0.0000000000 0.7565140024 ©.1397092302
S 3
1 13.01000 0.196850000E-01
2 1.96200 0.137977000
3 0.44460 0.478148000
S 1
1 0.12200 1.000000000
P 1
1 0.72700 1.000000000
S 1
1 0.02974 1.000000000
P 1
1 0.14100 1.000000000
$END
$VEC
---orbitals from a converged RHF/cc-pVDZ run---
$END

In addition, it is possible to reduce the basis set size by removing func-
tions. This can be requested with the DELETE keyword in $GUESS. The DELIST
keyword in $AODEL should hereby be used to specify deletion instructions.
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General accuracy switches

There are a few accuracy options that are universal amongst all calculation
types. These are discussed in this chapter.

First of all, the choice of integral code is controlled by two keywords the
in $CONTRL group: INTTYP and FSTINT. INTTYP selects the integral routine
that is used by the 'old' parts of Firefly’s code. Two values are possible,
namely INTTYP=POPLE and INTTYP=HONDO. POPLE (the default) selects the use
of fast Pople-Hehre routines for s, p, and sp integrals whereby HONDO/Rys
code is used for all other integrals. HONDO selects the use of the HON-
DO/Rys code for all integrals. HONDO is somewhat slower than POPLE, but it
is also more accurate.

There are a number of scenarios where the use of HONDO is important because
POPLE can lead to inaccurate results. One such a scenarios is when diffuse
functions are used, as the error in SCF (meaning anything from RHF to
MCSCF) energies with POPLE is generally small, but the error in computa-
tions that occupy the virtual orbitals may be much larger. In fact, energy
errors up to 1D-4 Hartree have been observed for MP2 energy calculations
when diffuse functions were wused. It 1is thus recommended to set
INTTYP=HONDO for any calculation that uses diffuse functions. A second sce-
nario where the use of INTTYP=HONDO is recommended is in case of a partial
linear dependence in the basis.

The FSTINT keyword can be used to select to select the fastints/gencon
code, which is a new, faster integral code available for direct runs only.
It can be set for many calculation types (for a list, see the Performance
chapter) and has an accuracy similar to INTTYP=HONDO, but has not been in-
corporated throughout all of Firefly yet. That means that many methods that
use fastints/gencon will occasionally use the old code specified by INTTYP.
As a result, for these runs, INTTYP still remains a relevant keyword and
INTTYP=HONDO is still recommended for the scenarios mentioned above.

Then, two other important keywords of the $CONTRL group are ICUT, the cut-
off used in deciding which integrals to discard, and ITOL, the cutoff used
in deciding which primitives to skip. The default value for ICUT is 9,
which is usually fine but not high enough in cases that require a higher
accuracy. For such cases, we recommend to increase ICUT to 11 or higher.
The standard value of ITOL is 20. As with ICUT, it is possible to increase
ITOL for cases in which a higher accuracy is required. However, in our ex-
perience ITOL is much less important than ICUT. Therefore, it is typically
not necessary to change ITOL’s default value.

The choice of diagonalization routine can be specified by the KDIAG keyword
(in $SYSTEM and/or in $GUESS). More information on this can be found in the

performance chapter.

Accuracy options specific to each method (SCF, MCSCF, CI, etc.) are dis-
cussed in the chapters corresponding to these methods.
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Semi-empirical methods

Introduction

Semi-empirical methods are based on Hartree-Fock theory, but strive to re-
duce the computational cost of Hartree-Fock calculations by simplifying the
quantum mechanical problem. This 1is achieved through a number of ways.
First, the number of basis functions is reduced by only treating the va-
lence electrons explicitly, hereby using a minimal Slater-type orbitals
basis set. A second important approximation is the Zero Differential Over-
lap (ZDO) approximation, an approach in which various small two-electron
repulsion integrals are neglected.

Through these simplifications, semi-empirical calculations run significant-
ly faster than Hartree-Fock calculations though, obviously, at the cost of
accuracy. To compensate for the loss of accuracy, semi-empirical methods
use parameters which are based on experimental data or quantum mechanical
calculations. At present, various semi-empirical methods exist, which dif-
fer in which integrals are neglected and what parameters are used.

One popular program for semi-empirical quantum chemistry calculations is
MOPAC, written by J. Stewart. To allow semi-empirical calculations to be
carried out with Firefly, Firefly contains parts of the MOPAC 6.0 program.
The quantum mechanical nature of semi-empirical theory actually makes it
quite compatible with the ab initio methodology in Firefly. As a result,
very little of the MOPAC code has actually been incorporated. The part that
has been incorporated is the code that evaluates:

1) the one- and two-electron integrals,

2) the two-electron part of the Fock matrix,

3) the Cartesian energy derivatives, and

4) the ZDO atomic charges and molecular dipole.

Everything else is Firefly: coordinate input (including point group sym-
metry), the SCF convergence procedures, the matrix diagonalizer, the geome-
try searcher, the numerical Hessian driver, and so on. Therefore, the out-
put will look mostly like “regular” Firefly output. Semi-empirical methods
will however not work with every option in Firefly. It is currently only
possible to use RHF, UHF, and ROHF type wavefunctions in any combination
with RUNTYP=ENERGY, GRADIENT, OPTIMIZE, SADPOINT, HESSIAN, and IRC (whereby
HESSIAN runs use numerical finite differencing instead of calculating the
Hessian analytically). In addition, it is possible to use GVB wavefunc-
tions, though this method currently lacks analytical gradients. It should
be noted that the CI and half electron methods present in MOPAC are not
supported.

The use of empirical parameters gives semi-empirical theory the potential
to be more accurate than Hartree-Fock theory, a potential that is frequent-
ly realized by some of the more recently proposed methods. It should be
stressed though that semi-empirical methods are not nearly as robust as ab
initio or DFT methods and can perform extremely poorly with more complex
systems. As a tip, one good question to ask before using a semi-empirical
method is "How well is my system modeled with an ab initio minimal basis
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sets, such as STO0-3G?". If the answer is "not very well" there is a good
chance that a semi-empirical description is poor.

On the flipside, semiempirical calculations are very fast. Actually, one of
the motives for the MOPAC implementation within Firefly is to take ad-
vantage of this speed. Semiempirical models can rapidly provide reasonable
starting geometries for ab initio or DFT optimizations. Also, a semiempiri-
cal Hessian can be obtained at virtually no computational cost and is very
useful as a starting Hessian for a geometry optimization (much better than
a guessed Hessian, and often almost as useful as a Hessian calculated at a
higher level). Simply use HESS=READ in $STATPT to read a semi-empirically
obtained $HESS group in at the start of an ab initio or DFT geometry opti-
mization.

Available methods

Using a semi-empirical method in Firefly is extremely simple. All one needs
to do is specify GBASIS=MNDO, AM1, PM3, or RM1 in the $BASIS group. This
not only picks a particular Slater orbital basis, but it also selects a
particular "Hamiltonian", namely a particular parameter set. Note that re-
questing one of these methods causes all other keywords in $BASIS to be
ignored (as they have no function).

Information on the four individual methods is given below.
MNDO

The MNDO, or Modified Neglect of Differential Overlap, method was developed
by Dewar and Thiel and published in 1977. MNDO has a number of limitations,
one of the most important ones being that it calculates the repulsion be-
tween two atom 2 to 3 Angstroms apart as too high. As a result, it does not
perform well for modeling hydrogen bonds and calculating activation ener-
gies. Nowadays, it has been surpassed by newer methods with respect to ac-
curacy.

AM1

The AM1, or Austin Model 1, method was developed by Dewar and coworkers,
and published in 1985. It improves upon the MNDO method by using Gaussian
functions to improve the core-core interaction function and by being re-
parameterized. As a result, it is overall more accurate than the MNDO meth-
od.

PM3

Parametric Model 3 was developed by J. Stewart and published in 1989. It is
very similar to the AM1 method, the most important difference being that it
uses different, more optimized parameters. It usually outperforms the MNDO
and AM1 methods with respect to accuracy, though there are cases where AM1

still performs better.

RM1
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Recife Model 1 was developed by J. Stewart and coworkers and published in
2006. It is a re-parameterized version of AM1 with the intent of improving
its accuracy for organic molecules and biochemical systems. For these sys-
tems, it is generally more accurate than AM1 and PM3.

The above four methods can be used for the following elements. Note that
for MNDO, Na and K are so-called "sparkles". This means that a basis is
defined for these atoms have a basis set, however, it is not used in any
calculations.

For MNDO
H
Li |Be B [C N |0 |F
Na' |Mg Al |Si |P S Ccl
K'" |Ca |... |Cr |... Zn |* |Ge |* * |Br
* * * * Sn * * I
(' = sparkle)
For AM1:
H
Li' |Be' B |[C [N 0 |F
Na |Mg Al |Si |P S |l
K Ca |... e e Zn |* |Ge |* * |Br
* * . ce e * * * * * I
kL0 L. ... Hg |* x x|k |
(" = MNDO parameters are used)
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For PM3

H
Li |Be * C N 0 |F
Na |Mg Al |si ([P |S |Cl
K Ca Zn |Ga |Ge |As |Se |Br
* * Cd |In |Sn |Sb |[Te |I

* | Hg |T1 |Pb |Bi |* |*
For RM1

H

Li' |Be' B" |[C N 0 |F
Na" |Mg" Al" |Si" [P |S |Cl
K" ca" B 4 e Ge" |* * |Br
* * F O * * * * I
* * N 1 - S . R N E R
(" = MNDO parameters are used)

(" = AM1 parameters are used)

The AM1 and RM1 methods use parameters from other methods for some ele-
ments. Use this with caution - mixing parameters from different methods has
not been fully tested and is therefore not recommended.
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Hartree-Fock

Introduction

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Four SCF wavefunction methods are present in Firefly: restricted Hartree-
Fock (RHF), unrestricted Hartree-Fock (UHF), restricted-open Hartree-Fock
(ROHF), and generalized valence bond (GVB). This chapter discusses RHF,
UHF, and ROHF, as well as direct vs conventional runs and options pertain-
ing to the convergence procedure. GVB is discussed in a separate chapter.

RHF, UHF, and ROHF all have an intrinsic N* time dependence, because they
are all driven by integrals in the AO basis. Analytic gradients are imple-
mented for all three, and therefore numerical Hessians are also available
for each. Analytic Hessian calculations are implemented for RHF, ROHF, but
not for UHF. Analytic Hessians are more accurate, and computed much more
quickly than numerical Hessians, but require additional disk storage to
perform the integral transformation, and also more physical memory.

Restricted Hartree-Fock

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

Restricted HF calculations are requested with SCFTYP=RHF in the $CONTRL
group.
Unrestricted Hartree-Fock

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

Restricted HF calculations are requested with SCFTYP=UHF in the $CONTRL
group. The multiplicity of the system can be controlled with the MULT key-
word, also of $CONTRL.

Restricted-open Hartree-Fock
The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but

will be improved in the future.

Open shell SCF calculations in Firefly can be performed by both the ROHF
code and the GVB code. Note that when the GVB code is executed with no

- 85 -



pairs, the run is NOT a true GVB run, and should be referred to in publica-
tions and discussion as a ROHF calculation.

The ROHF module in Firefly can handle any number of open shell electrons,
provided these have a high spin coupling. Some commonly occurring cases
are:
one open shell, doublet:

$CONTRL SCFTYP=ROHF MULT=2 $END
two open shells, triplet:

$CONTRL SCFTYP=ROHF MULT=3 $END
m open shells, high spin:

$CONTRL SCFTYP=ROHF MULT=m+1 $END

The Fock matrix in the MO basis has the form

closed open virtual
closed F2 | Fb | (Fa+Fb)/2
open Fb | F1 | Fa
virtual (Fa+Fb)/2 | Fa | Fo

where Fa and Fb are the usual alpha and beta Fock matrices any UHF program
produces. The Fock operators for the doubly, singly, and zero occupied
blocks can be written as

F2 = Acc*Fa + Bcc*Fb
F1 = Aoo*Fa + Boo*Fb
FO = Avv*Fa + Bvv*Fb

Some choices found in the 1literature for these canonicalization coeffi-
cients are

Acc Bcc Aoo Boo Avv Bvv

Guest and Saunders 1/2 1/2 1/2 1/2 1/2 1/2
Roothaan single matrix -1/2 3/2 1/2 1/2 3/2 -1/2
Davidson 1/2 1/2 1 (7} 1 0

Binkley, Pople, Dobosh 1/2 1/2 1 0 0 1
McWeeny and Diercksen 1/3 2/3 1/3 1/3 2/3 1/3
Faegri and Manne 1/2 1/2 1 9] 1/2 %

The choice of the diagonal blocks is arbitrary, as ROHF is converged when
the off diagonal blocks go to zero. The exact choice for these blocks can
however have an effect on the convergence rate. This choice also affects
the MO coefficients, and orbital energies, as the different choices produce
different canonical orbitals within the three subspaces. All methods, how-
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ever, will give identical total wavefunctions, and hence identical proper-
ties such as gradients and Hessians.

The default coupling case in Firefly is the Roothaan single matrix set. If
one would like to try any other canonicalizations, the Acc, Aoo, Avv and
Bcc, Boo, Bvv parameters can be input as the first three elements of ALPHA
and BETA in $SCF.

Direct vs conventional

The following text was 1inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Direct SCF is implemented for every possible HF type calculation. The di-
rect SCF method may not be used with DEM convergence. Direct SCF may be
used during energy, gradient, numerical or analytic Hessian, CI or MP2 en-
ergy correction, or localized orbitals computations.

Normally, HF calculations proceed by evaluating a large number of two elec-
tron repulsion integrals, and storing these on a disk. This integral file
is read back in during each HF iteration to form the appropriate Fock oper-
ators. In a direct HF, the integrals are not stored on disk, but are in-
stead reevaluated during each HF iteration. The default for DIRSCF in $SCF
is .FALSE.

You can estimate the disk storage requirements for conventional HF using a
P or PK file by the following formulae:

nint = 1/sigma * 1/8 * N**4
Mbytes = nint * x / 1024**2

Here N is the total number of basis functions in your run, which you can
learn from an EXETYP=CHECK run. The 1/8 accounts for permutational symmetry
within the integrals. Sigma accounts for the point group symmetry, and is
difficult to estimate accurately. Sigma cannot be smaller than 1, in no
symmetry (C1l) calculations. For benzene, sigma would be almost six, since
you generate 6 C's and 6 H's by entering only 1 of each in $DATA. For water
sigma is not much larger than one, since most of the basis set is on the
unique oxygen, and the C2v symmetry applies only to the H atoms. The factor
X is 12 bytes per integral for RHF, and 20 bytes per integral for ROHF,
UHF, and GVB. Finally, since integrals very close to zero need not be
stored on disk, the actual power dependence is not as bad as N**4, and in
fact in the limit of very large molecules can be as low as N**2., Thus plug-
ging in sigma=1 should give you an upper bound to the actual disk space
needed. If the estimate exceeds your available disk storage, your only re-
course is direct HF.

What are the economics of direct HF? Naively, if we assume the run takes 10
iterations to converge, we must spend 10 times more CPU time doing the in-
tegrals on each iteration. However, we do not have to waste any CPU time
reading blocks of integrals from disk, or in unpacking their indices. We
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also do not have to waste any wall clock time waiting for a relatively slow
mechanical device such as a disk to give us our data.

There are some less obvious savings too, as first noted by Almlof. First,
since the density matrix is known while we are computing integrals, we can
use the Schwarz inequality to avoid doing some of the integrals. In a con-
ventional SCF this inequality is used to avoid doing small integrals. In a
direct SCF it can be used to avoid doing integrals whose contribution to
the Fock matrix is small (density times integral=small). Secondly, we can
form the Fock matrix by calculating only its change since the previous it-
eration. The contributions to the change in the Fock matrix are equal to
the change in the density times the integrals. Since the change in the den-
sity goes to zero as the run converges, we can use the Schwarz screening to
avoid more and more integrals as the calculation progresses. The input op-
tion FDIFF in $SCF selects formation of the Fock operator by computing only
its change from iteration to iteration. The FDIFF option is not implemented
for GVB since there are too many density matrices from the previous itera-
tion to store, but is the default for direct RHF, ROHF, and UHF.

So, in our hypothetical 10 iteration case, we do not spend as much as 10
times more time in integral evaluation. Additionally, the run as a whole
will not slow down by whatever factor the integral time is increased. A
direct run spends no additional time summing integrals into the Fock opera-
tors, and no additional time in the Fock diagonalizations. So, generally
speaking, a RHF run with 10-15 iterations will slow down by a factor of 2-4
times when run in direct mode. The energy gradient time is unchanged by
direct HF, and this is a large time compared to HF energy, so geometry op-
timizations will be slowed down even less. This is really the converse of
Amdahl's law: if you slow down only one portion of a program by a large
amount, the entire program slows down by a much smaller factor.

Convergence options

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Generally speaking, the simpler the function, the better its convergence.
In our experience, the majority of RHF, ROHF, and UHF runs will converge
readily from GUESS=HUCKEL. GVB runs typically require GUESS=MOREAD, alt-
hough the Hiickel guess usually works for NPAIR=0. RHF convergence is the
best, closely followed by ROHF. In the current implementation in Firefly,
ROHF is always better convergent than the closely related unrestricted high
spin UHF. GVB calculations require much more care, and cases with NPAIR
greater than one are particularly difficult.

Unfortunately, not all HF runs converge readily. The best way to improve
your convergence 1is to provide better starting orbitals! In many cases,
this means to MOREAD orbitals from a simpler HF case. For example, if you
want to do a doublet ROHF, and the HUCKEL guess does not seem to converge,
try to do an RHF calculation on the +1 cation. RHF is typically more stable
than ROHF, UHF, or GVB, and cations are usually readily convergent. Then
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MOREAD the cation's orbitals into the neutral calculation which you wanted
to do at first.

GUESS=HUCKEL does not always guess the correct electronic configuration. It
may be useful to use PRTMO in $GUESS during a EXETYP=CHECK run to examine
the starting orbitals, and then reorder them with NORDER if that seems ap-
propriate.

Of course, by default Firefly uses the convergence procedures which are
usually most effective. Still, there are cases which are difficult, so the
$SCF group permits you to select several alternative methods for improving
convergence. Briefly, these are:

EXTRAP. This extrapolates the three previous Fock matrices, in an attempt
to jump ahead a bit faster. This is the most powerful of the old-fashioned
accelerators, and normally should be used at the beginning of any SCF run.
When an extrapolation occurs, the counter at the left of the SCF printout
is set to zero.

DAMP. This damps the oscillations between several successive Fock matrices.
It may help when the energy is seen to oscillate wildly. Thinking about
which orbitals should be occupied initially may be an even better way to
avoid oscillatory behaviour.

SHIFT. This shifts the diagonal elements of the virtual part of the Fock
matrix up, in an attempt to uncouple the unoccupied orbitals from the occu-
pied ones. At convergence, this has no effect on the orbitals, just their
orbital energies, but will produce different (and hopefully better) orbit-
als during the iterations.

RSTRCT. This limits mixing of the occupied orbitals with the empty ones,
especially the flipping of the HOMO and LUMO to produce undesired electron-
ic configurations or states. This should be used with caution, as it makes
it very easy to converge on incorrect electronic configurations, especially
if DIIS is also used. If you use this, be sure to check your final orbital
energies to see if they are sensible. A lower energy for an unoccupied or-
bital than for one of the occupied ones is a sure sign of problems.

DIIS. Direct Inversion in the Iterative Subspace is a modern method, due to
Pulay, using stored error and Fock matrices from a large number of previous
iterations to interpolate an improved Fock matrix. This method was devel-
oped to improve the convergence at the final stages of the SCF process, but
turns out to be quite powerful at forcing convergence in the initial stages
of SCF as well. By giving ETHRSH as 10.0 in $SCF, you can practically guar-
antee that DIIS will be in effect from the first iteration. The default is
set up to do a few iterations with conventional methods (extrapolation)
before engaging DIIS. This is because DIIS can sometimes converge to solu-
tions of the SCF equations that do not have the lowest possible energy. For
example, the 3-A-2 small angle state of SilLi2 (see M.S.Gordon and
M.W.Schmidt, Chem.Phys.Lett., 132, 294-8(1986)) will readily converge with
DIIS to a solution with a reasonable S**2, and an energy about 25 milli-
Hartree above the correct answer. A SURE SIGN OF TROUBLE WITH DIIS IS WHEN
THE ENERGY RISES TO ITS FINAL VALUE. However, if you obtain orbitals at one
point on a PES without DIIS, the subsequent use of DIIS with MOREAD will
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probably not introduce any problems. Because DIIS is quite powerful, EX-
TRAP, DAMP, and SHIFT are all turned off once DIIS begins to work. DEM and
RSTRCT will still be in use, however.

SOSCF. Approximate second-order (quasi-Newton) SCF orbital optimization.
SOSCF will converge about as well as DIIS at the initial geometry, and
slightly better at subsequent geometries. There's a bit less work solving
the SCF equations, too. The method kicks in after the orbital gradient
falls below SOGTOL. Some systems, particularly transition metals with ECP
basis sets, may have Huckel orbitals for which the gradient is much larger
than SOGTOL. In this case it is probably better to use DIIS instead, with a
large ETHRSH, rather than increasing SOGTOL, since you may well be outside
the quadratic convergence region. SOSCF does not exhibit true second-order
convergence since it uses an approximation to the inverse Hessian. SOSCF
will work for MOPAC runs, but is slower in this case. SOSCF will work for
UHF, but the convergence is slower than DIIS. SOSCF will work for non-
Abelian ROHF cases, but may encounter problems if the open shell is degen-
erate.

DEM. Direct energy minimization should be your last recourse. It explores
the "line" between the current orbitals and those generated by a conven-
tional change in the orbitals, looking for the minimum energy on that line.
DEM should always lower the energy on every iteration, but is very time
consuming, since each of the points considered on the line search requires
evaluation of a Fock operator. DEM will be skipped once the density change
falls below DEMCUT, as the other methods should then be able to affect fi-
nal convergence. While DEM is working, RSTRCT is held to be true, regard-
less of the input choice for RSTRCT. Because of this, it behooves you to be
sure that the initial guess is occupying the desired orbitals. DEM is
available only for RHF. The implementation in Firefly resembles that of R.
Seeger and J. A. Pople, J. Chem. Phys. 65, 265-271 (1976). Simultaneous use
of DEM and DIIS resembles the ADEM-DIOS method of H. Sellers, Chem. Phys.
Lett. 180, 461-465 (1991). DEM does not work with direct SCF.
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General valence bond

Introduction

The following text is a 'stub' and contains only minimal information. It
will be expanded in the future.

Just as RHF, UHF, and ROHF, GVB wavefunctions have an intrinsic N* time
dependence. Analytic gradients are implemented, and therefore numerical
Hessians are also available for each. Analytic Hessian calculations are
implemented only GVB cases with NPAIR=0 or NPAIR=1. Information on the con-
vergence accelerators and conventional vs direct runs can be found in the
chapter on Hartree-Fock.

Open-shell SCF with GVB

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Genuine GVB-PP runs will be discussed later in this Section. First, we will
consider how to do open shell SCF with the GVB part of the program.

It is possible to do other open shell cases with the GVB code, which can
handle the following cases:

one open shell, doublet:

$CONTRL SCFTYP=GVB MULT=2 $END

$SCF NCO=xx NSETO=1 NO(1)=1 $END
two open shells, triplet:

$CONTRL SCFTYP=GVB MULT=3 $END

$SCF NCO=xx NSETO=2 NO(1)=1,1 $END
two open shells, singlet:

$CONTRL SCFTYP=GVB MULT=1 $END

$SCF NCO=xx NSETO=2 NO(1)=1,1 $END

Note that the first two cases duplicate runs which the ROHF module can do
better. Note that all of these cases are really ROHF, since the default
for NPAIR in $SCF is @.

Many open shell states with degenerate open shells (for example, in diatom-
ic molecules) can be treated as well.

If you would like to do any cases other than those shown above, you must
derive the coupling coefficients ALPHA and BETA, and input them with the

occupancies F in the $SCF group.

Mariusz Klobukowski of the University of Alberta has shown how to obtain
coupling coefficients for the GVB open shell program for many such open
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shell states. These can be derived from the values in Appendix A of the
book "A General SCF Theory" by Ramon Carbo and Josep M. Riera, Springer-
Verlag (1978). The basic rule is

(1) F(i) = 1/2 * omega(i)
(2) ALPHA(i) = alpha(i)
(3) BETA(i) = - beta(i),

where omega, alpha, and beta are the names used by Ramon in his Tables.

The variable NSETO should give the number of open shells, and NO should
give the degeneracy of each open shell. Thus the 5-S state of carbon would
have NSETO=2, and NO(1)=1,3.

Some specific examples, for the lowest term in each of the atomic P**N con-
figurations are

! p**1 2-P state
$CONTRL SCFTYP=GVB MULT=2  $END
$SCF NCO=xx  NSETO=1 NO=3  COUPLE=.TRUE.
F(1)= 1.0 0.16666666666667
ALPHA(1)= 2.0 ©.33333333333333 0.00000000000000
BETA(1)= -1.0 -0.16666666666667 -0.00000000000000 $END

! p**2  3-P state
$CONTRL SCFTYP=GVB MULT=3  $END
$SCF NCO=xx NSETO=1 NO=3 COUPLE=.TRUE.
F(1)= 1.0 ©.333333333333333
ALPHA(1)= 2.0 0.66666666666667 0.16666666666667
BETA(1)= -1.0 -0.33333333333333 -0.16666666666667 $END

! p**3  4-S state
$CONTRL SCFTYP=ROHF MULT=4 $END

! p**4  3-P state
$CONTRL SCFTYP=GVB MULT=3 $END
$SCF NCO=xx NSETO=1 NO=3  COUPLE=.TRUE.
F(1)= 1.0 0.66666666666667
ALPHA(1)= 2.0 1.33333333333333 0.83333333333333
BETA(1)= -1.0 -0.66666666666667 -0.50000000000000 $END

! p**5 2-P state
$CONTRL SCFTYP=GVB MULT=2  $END
$SCF NCO=xx NSETO=1 NO=3 COUPLE=.TRUE.
F(1)= 1.0 ©.83333333333333
ALPHA(1)= 2.0 1.66666666666667 1.33333333333333
BETA(1)= -1.0 -0.83333333333333 -0.66666666666667 $END

Be sure to give all the digits, as these are part of a double precision
energy formula.
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Coupling constants for d**N configurations are

d**1 2-D state

$CONTRL SCFTYP=GVB MULT=2 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, ©.20, 0.00
BETA(1)=-1.0,-0.10, 0.00 $END

d**2  average of 3-F and 3-P states

$CONTRL SCFTYP=GVB MULT=3 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, 0.40, 0.05
BETA(1)=-1.0,-0.20,-0.05 $END

d**3  average of 4-F and 4-P states

$CONTRL SCFTYP=GVB MULT=4 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, 0.60, 0.15
BETA(1)=-1.0,-0.30,-0.15 $END

d**4 5-D state

$CONTRL SCFTYP=GVB MULT=5 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, 0.80, 0.30
BETA(1)=-1.0,-0.40,-0.30 $END

d**5 6-S state

$CONTRL SCFTYP=ROHF MULT=6 $END

d**6 5-D state

$CONTRL SCFTYP=GVB MULT=5 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, 1.20, 0.70
BETA(1)=-1.0,-0.60,-0.50 $END

d**7  average of 4-F and 4-P states

$CONTRL SCFTYP=GVB MULT=4 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, 1.40, 0.95
BETA(1)=-1.0,-0.70,-0.55 $END

d**8  average of 3-F and 3-P states

$CONTRL SCFTYP=GVB MULT=3 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, 1.60, 1.25
BETA(1)=-1.0,-0.80,-0.65 $END

d**9 2-D state

$CONTRL SCFTYP=GVB MULT=2 $END

$SCF

NCO=xx NSETO=1 NO=5 COUPLE=.TRUE.
ALPHA(1)= 2.0, 1.80, 1.60
BETA(1)=-1.0,-0.90,-0.80 $END
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The source for these values is R.Poirier, R.Kari, and I.G.Csizmadia's book
"Handbook of Gaussian Basis Sets", Elsevier, Amsterdam, 1985.

Note that Firefly can do a proper calculation on the ground terms for the
d**2, d**3, d**7, and d**8 configurations only by means of state averaged
MCSCF. For d**8, use

$CONTRL SCFTYP=MCSCF MULT=3 $END

$DRT GROUP=C1 FORS=.TRUE. NMCC=xx NDOC=3 NALP=2 $END
$GUGDIA NSTATE=10 $END

$GUGDM2 WSTATE(1)=1,1,1,1,1,1,1,0,0,0 $END

Open shell cases such as s**1,d**n are probably most easily tackled with
the state-averaged MCSCF program.

True GVB perfect pairing runs

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

True GVB runs are obtained by choosing NPAIR nonzero. If you wish to have
some open shell electrons in addition to the geminal pairs, you may add the
pairs to the end of any of the GVB coupling cases shown above. The GVB mod-
ule assumes that you have reordered your MOs into the order: NCO double
occupied orbitals, NSETO sets of open shell orbitals, and NPAIR sets of
geminals (with NORDER=1 in the $GUESS group).

Each geminal consists of two orbitals and contains two singlet coupled
electrons (perfect pairing). The first MO of a geminal is probably heavily
occupied (such as a bonding MO u), and the second is probably weakly occu-
pied (such as an antibonding, correlating orbital v). If you have more than
one pair, you must be careful that the initial MOs are ordered ul, v1, u2,
v2..., which is -NOT- the same order that RHF starting orbitals will be
found in. Use NORDER=1 to get the correct order.

These pair wavefunctions are actually a limited form of MCSCF. GVB runs are
much faster than MCSCF runs, because the natural orbital u,v form of the
wavefunction permits a Fock operator based optimization. However, conver-
gence of the GVB run is by no means assured. The same care in selecting the
correlating orbitals that you would apply to an MCSCF run must also be used
for GVB runs. In particular, look at the orbital expansions when choosing
the starting orbitals, and check them again after the run converges.

GVB runs will be carried out entirely in orthonormal natural u,v form, with
strong orthogonality enforced on the geminals. Orthogonal orbitals will
pervade your thinking in both initial orbital selection, and the entire
orbital optimization phase (the CICOEF values give the weights of the u,v
orbitals in each geminal). However, once the calculation is converged, the
program will generate and print the nonorthogonal, generalized valence bond
orbitals. These GVB orbitals are an entirely equivalent way of presenting
the wavefunction, but are generated only after the fact.
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Convergence of true GVB runs is by no means as certain as convergence of
RHF, UHF, ROHF, or GVB with NPAIR=0. You can assist convergence by doing a
preliminary RHF or ROHF calculation, and wuse these orbitals for
GUESS=MOREAD. Few, if any, GVB runs with NPAIR non-zero will converge with-
out using GUESS=MOREAD. Generation of MVOs during the prelimnary SCF can
also be advantageous. In fact, all the advice outlined for MCSCF computa-
tions below is germane, for GVB-PP is a type of MCSCF computation.

The total number of electrons in the GVB wavefunction is given by the fol-
lowing formula:

NE = 2*NCO + sum 2*F(i)*NO(i) + 2*NPAIR

The charge is obtained by subtracting the total number of protons given in
$DATA. The multiplicity is implicit in the choice of alpha and beta con-
stants. Note that ICHARG and MULT must be given correctly in $CONTRL any-
way, as the number of electrons from this formula is double checked against
the ICHARG value.

The special case of TCSCF

The following text was inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

The wavefunction with NSETO=0 and NPAIR=1 is called GVB-PP(1) by Goddard,
two configuration SCF (TCSCF) by Schaefer or Davidson, and CASSCF with two
electrons in two orbitals by others. Note that this is just semantics, as
these are all identical. This is a very important type of wavefunction, as
TCSCF is the minimum acceptable treatment for singlet biradicals. The TCSCF
wavefunction can be obtained with SCFTYP=MCSCF, but it is wusually much
faster to use the Fock based SCFTYP=GVB. Because of its importance, the
TCSCF function (if desired, with possible open shells) permits analytic
Hessian computation.

A caution about symmetry

The following text was 1inherited from an old version of the Firefly manual.
It might currently not be complete and/or contain outdated information, but
will be improved in the future.

Caution! Some exotic calculations with the GVB program do not permit the
use of symmetry. The symmetry algorithm in Firefly was "derived assuming
that the electronic charge density transforms according to the completely
symmetric representation of the point group", Dupuis/King, 3JCP, 68, 3998
(1978). This may not be true for certain open shell cases, and in fact dur-
ing GVB runs, it may not be true for closed shell singlet cases!

First, consider the following correct input for the singlet-delta state of
NH:

$CONTRL SCFTYP=GVB NOSYM=1 $END

$SCF NCO=3 NSETO=2 NO(1)=1,1 $END
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for the x**1y**1 state, or for the x**2-y**2 state,

$CONTRL SCFTYP=GVB NOSYM=1 $END
$SCF NCO=3 NPAIR=1 CICOEF(1)=0.707,-0.707 $END

Neither gives correct results, unless you enter NOSYM=1.

The electronic term symbol is degenerate, a good tip off that symmetry can-
not be used. However, some degenerate states can still use symmetry, be-
cause they use coupling constants averaged over all degenerate states with-
in a single term, as is done in EXAM15 and EXAM16. Here the "state averaged
SCF" leads to a charge density which is symmetric, and these runs can ex-
ploit symmetry.

Secondly, since GVB runs exploit symmetry for each of the "shells", or type
of orbitals, some calculations on totally symmetric states may not be able
to use symmetry. An example is CO or N2, using a three pair GVB to treat
the sigma and pi bonds. Individual configurations such as (sigma)**2,(pi-
x)**2,(pi-y*)**2 do not have symmetric charge densities since neither the
pi nor pi* level is completely filled. Correct answers for the sigma-plus
ground states result only if you input NOSYM=1.

Problems of the type mentioned should not arise if the point group is Abe-
lian (C;, C,, Ci, Cs, Cuyy Con, Dy, and Dy,), but will be fairly common in lin-
ear molecules. Since Firefly cannot detect that the GVB electronic state is
not totally symmetric (or averaged to at least have a totally symmetric
density), it is left up to you to decide when to input NOSYM=1. If you have
any question about the use of symmetry, try it both ways. If you get the
same energy, both ways, it remains valid to use symmetry to speed up your
run.

And beware! Brain dead computations, such as RHF on singlet 02, which actu-
ally is a half-filled degenerate shell, violate the symmetry assumptions,
and also violate nature. Use of partially filled degenerate shells always
leads to very wild oscillations in the RHF energy, which is how the program
tries to tell you to think first, and compute second. Configurations such
as pi**2, e**1, or f2u**4 can be treated, but require GVB wavefunctions and
F, ALPHA, BETA values from the sources mentioned.
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Mgpller-Plesset correlation corrections

Introduction

One important approximation made in the Hartree-Fock model is that, for
each electron, the interaction of this electron with the other electrons in
a system is simplified by considering only an average interaction. As a
result, the energy of a system as obtained with the Hartree-Fock model is
higher than the energy that would be obtained if all electron-electron in-
teractions would individually be taken into account. This difference in
energy is commonly referred to as the dynamic electron correlation energy.

One theory for recovering this dynamic correlation energy that is absent
from the Hartree-Fock solution is Mgller-Plesset perturbation theory. 1In
Firefly, it is possible to perform second-order, third-order, and fourth-
order Mgller-Plesset energy corrections (commonly abbreviated as MP2, MP3,
and MP4), where higher-order methods obtain more of the missing correlation
energy than lower-order methods (but also require more computational re-
sources). MP2 is implemented for RHF, UHF, and ROHF wavefunctions with ana-
lytic gradients available only with RHF. MP3 and MP4 theories on the other
hand are implemented for RHF wavefunctions only and can only be used to
obtain energies.

The MP2 code in Firefly has been optimized for performance to a great ex-
tent. MP2 performance is discussed in a section of its own, and it is rec-
ommended to read through this section before commencing with MP2 calcula-
tions.

Second-order Mgller-Plesset theory is also implemented for MCSCF wavefunc-
tions in the form of MRMP2 and (X)MCQDPT2 theory. This theory is discussed
in the (X)MCQDPT2 chapter.

MP2 calculations

MP2 calculations can be requested by specifying MPLEVL=2 in $CONTROL, in
combination with SCFTYP=RHF, UHF, or ROHF. Keywords that pertain to MP2
calculations are found in the $MP2 group. Additionally, keywords in the
$MP2GRD group can be used to control the calculation of gradients.

There is little that has to be said with respect to RHF and UHF MP2 calcu-
lations. The most important thing is that the description of the system
under investigation should already be good at the zeroth-order level (i.e.
at the Hartree-Fock level). If this is not the case, it is probably better
to use MCSCF theory and recover the correlation energy using (X)MCQDPT2.

One point which may not be commonly appreciated is that the density matrix
for the first-order wavefunction for the RHF case, which is generated dur-
ing gradient runs or if properties are requested in the $MP2 group
(MP2PRP=.TRUE.), is of the type known as "response density", which differs
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from the more usual "expectation value density". The eigenvalues of the
response density matrix (which are the occupation numbers of the MP2 natu-
ral orbitals) can therefore be greater than 2 for frozen core orbitals, or
even negative values for the highest ‘'virtual' orbitals. The sum is of
course exactly the total number of electrons. We have seen values outside
the range 0-2 in several cases where the single configuration RHF wavefunc-
tion was not an appropriate description of the system, and thus these occu-
pancies may serve as a guide to the wisdom of using a RHF reference.

The case of ROHF MP2 deserves more explanation. There are a number of open
shell perturbation theories described in the literature. It is important to
note that these methods give different results for the second-order energy
correction, reflecting ambiguities in the selection of the zeroth-order
Hamiltonian and in defining the ROHF Fock matrices. Two of these are avail-
able in Firefly.

One theory is known as RMP which, it should be pointed out, is entirely
equivalent to the ROHF-MBPT2 method. This theory is as UHF-like as possible
and can be chosen by selection of OSPT=RMP in $MP2 (though this is actually
not necessary as it is the default method). The RMP method diagonalizes the
alpha and beta Fock matrices separately so that their occupied-occupied and
virtual-virtual blocks are canonicalized. This generates two distinct or-
bital sets whose double excitation contributions are processed by the usual
UHF MP2 program, but an additional energy term from single excitations is
required.

RMP's use of different orbitals for different spins adds to the CPU time
required for integral transformations, of course. RMP is invariant under
all of the orbital transformations for which the ROHF itself is invariant.
Unlike UHF MP2, the second-order RMP energy does not suffer from spin con-
tamination, since the reference ROHF wavefunction has no spin contamina-
tion. The RMP wavefunction, however, is spin contaminated at 1st and higher
order, and therefore the 3rd and higher order RMP energies are spin contam-
inated

The ZAPT (Z-averaged perturbation theory) formalism is also implemented in
Firefly, and can be requested by specifying OSPT=ZAPT in $MP2. Characteris-
tics of this theory is that it is partially noninvariant, is not spin con-
taminated at any order, and has only a single set of orbitals in the MO
transformation. It should be noted that, at present, the new MP2 code can
only execute ROHF MP2 calculations of the RMP kind. ZAPT2 calculations
should be run with old MP2 code (see the section on MP2 performance for
more information on the new MP2 code). In addition, these calculations can-
not be run in parallel.

There are a number of other open shell theories with names such as HC,
OPT1, OPT2, and IOPT. These are not implemented in Firefly but results
equivalent to the results of these methods can be obtained by using GUGA-
style MCSCF followed by (X)MCQDPT2. The same is true for GVB-based MP2. For
example, one could use a $DRT input such as

NMCC=N/2-1 NDOC=0 NAOS=1 NBOS=1 NVAL=0
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which generates a single CSF if the two open shells have different sym-
metry. For a one pair GVB function, one can specify

NMCC=N/2-1 NDOC=1 NVAL=1

which generates a 3 CSF function entirely equivalent to the two configura-
tion TCSCF, also known as GVB-PP(1). And if one would attempt a triplet
state with the GUGA MCSCF program

NMCC=N/2-1 NDOC=0 NALP=2 NVAL=0

one would get a result equivalent to the OPT1 open shell method instead of
the RMP result. For details on $DRT input, please see the chapter on MCSCF.

A feature new to Firefly 8.0.0 is the possibility to scale the two MP2 spin
components by certain factors. This functionality is controlled through the
SCS keyword and is programmed for RHF, UHF, and ROHF (though only RMP, not
ZAPT2). Currently, only energies are available. Input should be of the
form:

$MP2 SCS(1)=singlet_pairs_multiplier,triplet_pairs_multiplier $END

As an example, Grimme’s SCS-MP2 scheme can be specified as:

$MP2 SCS(1)=1.2,0.333333333333333 $END

while the S0S-MP2 scheme from Head-Gordon and co-workers can be specified
as:

$MP2 SCS(1)=1.3,0 $END

Note that use of spin scaling forces the use of MP2 METHOD=1 code (see next
section), which is faster than Laplace-transform based code even for SO0S-
MP2.

Performance of the MP2 code

Over the years, the MP2 code in Firefly has been optimized greatly. There-
fore, some information with respect to performance should be given.

One of the most important things to note is that, in comparison to the
GAMESS(US) code on which Firefly is originally based, Firefly has a new
RHF/ROHF/UHF MP2 energy program which is designed to handle large systems
(e.g., 500 AOs or more). It is direct, very fast, and requires much less
memory compared to other MP2 methods. Use of this new program can be re-
quested by specifying METHOD=1 in $MP2 and is recommended for all medium
and large jobs. For small jobs (100 to 150 basis functions), the old method
is still faster due to less overhead (the new program always requires the
2-electron AO integrals to be reevaluated four times, regardless of the
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size of the job). It is for this reason that the old method has remained
the default one.

The memory requirements of the new program scale as approximately N°. This
as opposed to the other MP2 programs currently implemented, which scale as
at least N’ for the segmented transformation and as A * N? for the alterna-
tive integral transformation. Here, A and N are the number of active orbit-
als and the total number of MOs, respectively. Disk requirements of the new
code scale as constl * A°N?, whereas they scale as const2 * A*(N-A)? for the
alternative integral transformation. The new code is very light on I/0:
only two passes over its disk file are needed, as opposed to the alterna-
tive transformation which performs multiple passes over its (huge) disk
file. The segmented transformation does not use temporary disk storage.
Disk I/O is used, but to a very limited degree. Therefore, the CPU utiliza-
tion is usually 90% or even better. The CPU utilization is usually less
than 50% for other MP2 transformation methods working in the conventional
mode, while, in the direct mode, there is a very serious overhead because
of the multiple reevaluation of 2-electron integrals.

Asymptotically, the FLOPs count with the new program is about a half or
even better as compared to other MP2 energy transformation methods.

Please note that the new MP2 code requires use of P2P when running in par-
allel. See the section on P2P for more details.

Then, it is important to discuss some specifics about the MP2 gradient
code. Since version 7.1, Firefly has new and efficient semidirect MP2 gra-
dient (and properties) program that is based on fastints code and runs in
parallel using the P2P interface. The new MP2 gradient program is used by
default when running in parallel. Gradients are available only for RHF
wavefunctions.

The memory demands of the new gradient program are quite modest: asymptoti-
cally, they are proportional to Nocc * (Nocc + Ncore) * Nvir, where Nocc is
the number of active occupied orbitals (i.e., excluding frozen core orbit-
als), Ncore is the number of frozen core occupied orbitals, and Nvir is the
number of virtual orbitals. Parallel scalability is good, with most of the
memory demands reducing linearly with the number of used computing nodes.

As for disk I/0, the new MP2 gradient program uses (large) temporary files
to store half-transformed 2-electron integrals (in the DASORT file) and the
non-separable part of the MP2 2-particle density matrix (DM2, stored in
DAFL30 file during gradient runs only). Therefore, disk I/O can be quite
intensive. When running in parallel, the contents of these files is evenly
distributed across all nodes. If one is running this code in parallel on an
SMP or multicore system, it is recommended to assign a separate physical
disk to each Firefly process.

Unfortunately, the exact amount of disk space required to store files
DASORT and DAFL3@ cannot be predicted exactly because of two reasons.
First, the Firefly uses sparsity of half-transformed integrals and DM2 to
save disk space by storing only non-zero values. Second, half-transformed
integrals, DM2 elements as well as their labels are further packed, and it
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is impossible to predict the exact packing ratio. However, it is possible
to provide upper bounds on the overall maximum sizes of DASORT and DAFL30.
Note, these bounds usually seriously overestimate the real size of these
files!

Namely, the overall size of all DASORT files is less or equal than:

6 * Nocc * Nvirt * Nao * (Nao + 1) bytes

Similarly, the overall size of all DAFL30 files is less or equal than:
8 * Nocc * Nvirt * Nao * (Nao + 1) bytes

Here, Nocc is the number of active occupied orbitals, Nvirt is the number
of virtual orbitals, and Nao is the number of Cartesian atomic orbitals.

When using the new gradient program, it is recommended to use the following
input:

$CONTRL INTTYP=HONDO $END

$P2P P2P=.T. DLB=.T. XDLB=.T. $END
$SMP CSMTX=.T. $END

$MP2 METHOD=1 $END

Depending on your operating system (e.g., under some Windows systems), the
use of the following addition options:

$SYSTEM SPLITF=.T./.F. $END (large file splitting enabled/disabled)
and/or

$SYSTEM IOFLGS(30)=1 $END (activates file cache write through mode for
unit # 30 which contains DM2 elements)

may have serious positive or negative impact on the overall performance as
well.

The following set of parameters of the new MP2 gradient code seems to be
optimal in the case you are running large problems in parallel on Linux-
based SMP or multicore system which do not have a separate physical disks
for each instance of the parallel Firefly processes.

$SYSTEM SPLITF=.F. $END
$SYSTEM IOFLGS(30)=0 $END
$MP2GRD DBLBF=.F. FUSED=.F. ASYNC=.T. $END

The following set of additional I/O parameters seem to be optimal for
large-scale jobs running under Windows Vista and Windows Server 2008 R1:

$MP2 IOFLGS(1)=65536,65536 IOFLGS(3)=65536,65536 $END

These settings turn on direct unbuffered disk I/O for the files DASORT and
DICTNRY and disable standard buffered disk reads and writes.
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If the I/0 remains a significant bottleneck, or if the amount of available
disk space is not sufficient for carrying out an MP2 calculation, one can
enable the direct evaluation of AO integrals. This is done by specifying
DIRECT=.T. in $MP2, which will somewhat reduce the amount of disk space
used at the cost of additional CPU time.

Finally, it should be noted that the new gradient code requires higher ac-
curacy when there is a partial linear dependence in the AO basis set. We
recommend the use of the following settings (tighter values can be used if
desired):

$CONTRL ICUT=11 INTTYP=HONDO $END
$SCF NCONV=7 $END
$MP2GRD TOL1=1D-12 TOL2=1D-12 $END

MP3 and MP4 calculations

MP3 and MP4 type calculations can be requested by specifying MPLEVL=3 and
MPLEVL=4 in $CONTROL in combination with SCFTYP=RHF. Related keywords can
be found in the groups $MP3 and $MP4. As noted earlier, these calculations
are only implemented for RHF wavefunctions - ROHF and UHF MP3/MP4 calcula-
tions are currently not possible. For MP4, it is possible to perform three
types of calculations, namely MP4(SDQ), MP4(SDTQ), and MP4(T). The default
MP4 type is MP4(SDQ).

MP3 and MP4(SDQ) calculations are multithreaded and cannot be executed in
parallel mode as the corresponding code was written many years ago and was
not allowed to run in parallel at the time. Despite this, the code is still
quite efficient and scales well with increasing numbers of threads. The
MP4(T) code on the other hand was written more recently, is more advanced,
and is written to run in parallel, though it also benefits from multi-
threading. This makes performing an MP4(SDTQ) calculation in the most opti-
mal way a bit complicated.

To explain this a bit more: it is perfectly possible to perform an MP4 cal-
culation in a single job (which can done by specifying $MP4 SDTQ=.T. $END).
However, in terms of computational time this is not the most optimal way.
When run in parallel, the MP4(SDQ) part of the calculation cannot run in
parallel and will therefore just be duplicated on all instances of Firefly.
At the same time, multithreaded execution is also not optimal as the MP4(T)
part of the calculation will not benefit as much from multithreading as it
does from parallel execution. Also, the Hartree-Fock part of the calcula-
tion does not benefit from multithreading.

Because of this, it is advised to split an MP4(SDTQ) calculation up in
three separate steps (i.e., jobs). The first step is to perform a parallel
Hartree-Fock calculation. The option $CONTRL WIDE=.T. $END can hereby be
used to punch the HF orbitals with double accuracy. The second step is then
to perform a multithreaded MP4(SDQ) calculation, using the orbitals from
the previous step as the initial guess. The third and final step is to per-
form an MP4(T) calculation (which can be requested using $MP4 TONLY=.T.
$END), again using the HF orbitals as the initial guess. As noted, the
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MP4(T) code can run parallel and multithreaded at the same time and it is
advisable to do so. The optimal number of threads per process depends here
on the particular computer architecture that is used. In most cases, it is
equal to the number of physical cores sharing the same memory domain on the
cc-NUMA system. E.g., assuming that a 2-way four-core Xeon 5500 system is
used, the best way is to use 2 processes per box with four working threads
each. However, this can be adjusted to minimize I/O or scratch storage, and
the code is flexible here.

The usage of Abelian symmetry can greatly decrease the required CPU time
for any MP3 or MP4 calculations. Unlike MP2 case, where the speed up due to
the use of symmetry is roughly proportional to the first power of the order
of the symmetry group (Ng) used, in the case of MP3 and MP4 jobs, the speed
up is proportional to Ng® on the average.

It finally should be noted that, in practice, there might not be much of a
reason for performing MP3 calculations, as the computational cost of a
large MP4(SDQ) calculation is typically only 2-3 times greater than that of
a similar MP3 job. Also, the memory demands of both types of calculations
are very similar. MP4(SDTQ) jobs are always much more demanding.
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Density Functional Theory

General information

Density functional theory in Firefly is implemented for restricted, unre-
stricted, and restricted-open wavefunctions. For each wavefunction, ener-
gies and analytical gradients are available. Analytical Hessians are cur-
rently not available. Instead, Hessians can be calculated in a semi-
numerical fashion. Double hybrid functionals are an exception - for these
functionals, only energies are currently available. Various functionals can
be used, a list of these is provided in the next section. It should be not-
ed that the DFT code in Firefly is completely different from that of GAMESS
(US) with respect to both implementation and input specification.

A DFT calculation can be requested by specifying a functional using the
DFTTYP keyword in $CONTRL. The value of SCFTYP determines which type of
wavefunction is used. For example, a RO-BLYP calculation can be requested
using

SCFTYP=ROHF DFTTYP=BLYP

Additional DFT-related input is provided with the optional $DFT group. The
majority of the keywords in this group can be used to change the accuracy
of various aspects of the DFT calculation. The default values are fine for
most cases, so providing this input usually isn’t necessary.

Information on the convergence accelerators and conventional vs direct runs
can be found in the chapter on Hartree-Fock.

A few things should be mentioned about performance. First of all, the cur-
rent DFT implementation in Firefly does not support multithreading. It is
therefore recommended to run calculations in parallel mode. Secondly, the
molecular symmetry specified in $DATA is used only partially during calcu-
lation of the DFT contributions to the Fock matrix. To be more precise, the
so-called octant symmetry is not used at present.

Resolution of identity / Coulomb fitting techniques, which serve to speed
up calculations that use pure DFT functionals, are currently not implement-
ed. As a result, one might expect that other DFT programs that exploit
these techniques (for example, TURBOMOLE) will outperform Firefly on pure
DFT calculations. This is especially true with large molecules. For such
molecules, the time for the pure DFT part of calculations depends approxi-
mately linearly on the number of atoms in molecule. The reason for this is
that, while for small molecular systems the pure DFT part of the calcula-
tions is usually the time-limiting step, for large systems the cost of the
standard Coulomb (and possible exchange for hybrid functionals) contribu-
tions to the Fock matrix due to two-electron integrals becomes the dominant
part of the calculations. The implementation of Coulomb fitting techniques
should overcome this shortcoming.
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It should also be noted that the RODFT energy/gradient code is routed
through the generic UDFT code, therefore, the RODFT performance is identi-
cal to that of UDFT. This situation might be changed in the future by add-
ing separate RODFT routines which should provide a speedup of approximately
15 to 20 % for small and medium size molecules.

Double hybrid functionals, which use an MP2-1like perturbation term in the
correlation part of the functional, can make use of any of the MP2 methods
in Firefly. Just as with MP2 calculations, $MP2 METHOD=1 is the preferred
method except for small jobs. Please see the chapter on MP2 for more infor-
mation.

An example input file for a BLYP geometry optimization and subsequent vi-
brational analysis for a water molecule:

$CONTRL SCFTYP=RHF DFTTYP=BLYP RUNTYP=OPTIMIZE $END
$SYSTEM TIMLIM=3000 MEMORY=3000000 $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
$STATPT HSSEND=.T. NPRT=-2 $END
$FORCE NVIB=2 VIBSIZ=0.005 $END
$DATA
H20
CNV 2

0 8. 0.0000000000 0.0000000000 ©.7205815395
H 1. 0.0000000000 0.7565140024  0.1397092302
$END

0
0

Finally, some technical details should be mentioned. The DFT implementation
in Firefly is grid-based. Angular integration is based on Lebedev quadra-
tures, while radial integration is based on Mura-Knowles quadratures. The
atomic partitioning function wused is the modification of Stratmann,
Scuseria and Frisch (Chem. Phys. Lett. (1996) 257, 213).

Available functionals

Before providing the full list of functionals available in Firefly, it is
important to mention that the specification of a functional in the input is
unambiguous except for a few specific cases that will discussed below.

Firstly, there are two variations of the VWN functional available as compo-
nents of the B3LYP and O3LYP functionals, namely VWN formula 1 RPA and VWN
formula 5. The reason for the inclusion of both variants is to improve com-
patibility with other QC programs, which can use either of the two formu-
lae. Formula 1 RPA type B3LYP is used by for example NWCHEM and GAUSSIAN,
while formula 5 type B3LYP is the default with GAMESS (US). The use of VWN
formula 1 RPA in B3LYP and O3LYP can be specified with DFTTYP=B3LYP1 and
DFTTYP=03LYP1, respectively. Similarly, the use of VWN formula 5 can be
specified with DFTTYP=B3LYP5 and DFTTYP=03LYP5. Note that some QC programs
refer to VNW formula 1 RPA as “VWN functional III” and that these are the
same functionals.
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For B3LYP, it is also possible to specify DFTTYP=B3LYP. The choice of VWN
formula will then depend on the value of B3LYP in the $DFT group. Possible
values are NWCHEM (formula 1 RPA, the default) and GAMESS (formula 5). DFT-
TYP=03LYP will always be interpreted as O3LYP5.

For the O3LYP functionals, the weight of the non-local exchange can be ad-
justed with the O3LYP keyword in $DFT. The reason for including this option
is that recent versions of Gaussian use a weight different from the one
used by most other QC programs. Setting O3LYP to GAUSSIAN changes the
weight so that the resulting functional will be identical to one used in
Gaussian ©3 Rev D.@1 and above. Specifying O3LYP=DEFAULT (which is, not
entirely surprising, the default value) enables compatibility with the im-
plementation used in other QC programs. Note that the reason for the exist-
ence of two different implementations is that there are some ambiguities in
O3LYP-related papers. Due to these ambiguities, is not possible to say
which implementation is “correct”. Instead, these two implementations
should be considered as two different functionals.

There is also a keyword pertaining to the Perdew-Zunger 1981 LDA correla-
tion that should be mentioned. In the paper defining this functional, its
parameters were given with only four digits. As there are two branches in
the fit, two parameters of the fit were selected in such a manner that Exc
and Vxc are globally continuous functions, even at the branch point itself.
However, the four-digit precision is not enough for this purpose as it
causes small deviations from exact continuity that in turn result in errors
such as non-precise gradients. Tight geometry optimizations in particular
are not possible with this functional. By default, the parameters of the
fit are used with increased precision (for P81LDA as well as for all func-
tionals using P81 local correlation), hereby achieving smooth Exc and Vxc.
However, this corrected fit does result in a slightly different functional.
If desired, the functional can be reverted to its slightly discontinuous
form by specifying FIXP81=.F. in the $DFT group.

With respect to double hybrid functionals, it should be mentioned that most
of these functionals by default do not freeze any cores. This behavior is
forced by Firefly, but can be overridden by specifying a negative value for
NCORE. This keyword belongs to the $MP2 group (not the $DFT group), and
input should look like this:

$MP2 NCORE=-5 $END

Here, the minus sign tells Firefly to override the default behavior and the
number is the amount of cores to be frozen.

Note that there are two functionals which by default do use frozen cores,
namely D-LYP and D-PBEP86 (as these functionals were designed to be used
together with the frozen core approximation). This behavior is not forced
though so, if desired, it can be changed using the NCORE keyword without
having to use the minus sign.

The list of available functionals is as follows:
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Exchange functionals (no correlation)

DFTTYP value Functional Refs.

LDA exchange

SLATER Slater exchange 1

LSDA A synonym of SLATER

GGA exchange

B88 Becke 1988 exchange 2

XPW91 Perdew-Wang 1991 exchange 3

XMPW91 Modified Perdew-Wang 1991 exchange. Modification by 11
Adamo and Barone

GILL96 Gill 1996 exchange 4

XPBE96 Perdew-Burke-Ernzerhof 1996 exchange

OPTX Handy-Cohen 2001 OPTX exchange 6

XSOGGA The exchange part of the SOGGA functional by Zhao and 20
Truhlar

XSO0GGA11 The exchange part of the SOGGA-11 functional by 21
Peverati, Zhao, and Truhlar

Hybrid exchange

XSOGGAX The exchange part of the SOGGA-11X hybrid functional 31
by Peverati and Truhlar

Pure correlation functionals - these use 100 % exact (i.e., Hartree-Fock)
exchange)

DFTTYP value Functional Refs.

LDA correlation

VWNIRPA VWN formula 1 RPA local correlation. This functional is 7
referred to as “VWN formula 3” by some programs (such as
Gaussian, Q-Chem).

VWN5 VWN formula 5 local correlation 8

P81LDA Perdew-Zunger 1981 local correlation 36

PW91LDA Perdew-Wang 1991 local correlation 9

GGA correlation

P86 Perdew 1986 nonlocal (1.9) + Perdew-Zunger 1981 1local | 37,36
(1.9) correlation

LYP Lee-Yang-Parr 1988 correlation 10

CPBE96 Perdew-Burke-Ernzerhof 1996 nonlocal (1.0) + Perdew-Wang | 5,9
1991 local (1.0) correlation

CPW91 Perdew 1991 nonlocal (1.9) + Perdew-Wang 1991 1local | 12,9
(1.9) correlation

CSOGGA11 The correlation part of the SOGGA-11 functional by 21
Peverati, Zhao, and Truhlar
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CSOGGAX The correlation part of the SOGGA-11X functional by 31
Peverati and Truhlar

Exchange-correlation functionals

DFTTYP Functional Refs.
value

SVWN1RPA Slater exchange, VWN formula 1 RPA local correlation 1,7

BVWN1RPA Becke 1988 exchange, VWN formula 1 RPA local 2,7
correlation

SVWN5 Slater exchange, VWN formula 5 local correlation 1,8

BVWN5 Becke 1988 exchange, VWN formula 5 local correlation 2,8

SP81LDA Slater exchange, Perdew-Zunger 1981 local correlation 1,36

BP81LDA Becke 1988 exchange, Perdew-Zunger 1981 local 2,36
correlation

BP86 Becke 1988 exchange, Perdew 1986 nonlocal (1.9) +|2,37,36
Perdew-Zunger 1981 local (1.9) correlation

PBEP86 Perdew-Burke-Ernzerhof 1996 exchange, Perdew 1986 |5,37,36
nonlocal (1.9) + Perdew-Zunger 1981 local (1.0)
correlation

SLYP Slater exchange, Lee-Yang-Parr 1988 correlation 1,10

BLYP Becke 1988 exchange, Lee-Yang-Parr 1988 correlation 2,10

GLYP Gill 1996 exchange, Lee-Yang-Parr 1988 correlation 4,10

MPW91LYP Modified Perdew-Wang 91 exchange, Lee-Yang-Parr 1988 | 11,10
correlation

OLYP OPTX exchange, Lee-Yang-Parr 1988 correlation 6,10

XLYP Extended exchange functional (a combination of Slater 13
local (1.0), Becke 88 nonlocal (0.722), and Perdew-Wang
91 nonlocal (0.347) exchange), Lee-Yang-Parr 1988
correlation

BPW91 Becke 1988 exchange, Perdew 1991 nonlocal (1.0) + | 2,12,9
Perdew-Wang 1991 local (1.9) correlation

PW91 Perdew-Wang 1991 exchange, Perdew 1991 nonlocal (1.0) + | 3,12,9
Perdew-Wang 1991 local (1.9) correlation

MPW91 Modified Perdew-Wang 91 exchange, Perdew 1991 nonlocal | 11,12,9
(1.9) + Perdew-Wang 1991 local (1.9) correlation

PBEPW91 Perdew-Burke-Ernzerhof 1996 exchange, Perdew 1991 | 5,12,9
nonlocal (1.9) + Perdew-Wang 1991 local (1.0)
correlation

PBE96 Perdew-Burke-Ernzerhof 1996 exchange, Perdew-Burke- 5,9
Ernzerhof 1996 nonlocal (1.9) + Perdew-Wang 1991 1local
(1.9) correlation

MPW91PBE Modified Perdew-Wang 91  exchange, Perdew-Burke- | 11,5,9

Ernzerhof 1996 nonlocal (1.0) + Perdew-Wang 1991 local
(1.9) correlation
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HCTH93 HCTH/93 exchange-correlation functional 14

HCTH120 HCTH/120 exchange-correlation functional 15

HCTH147 HCTH/147 exchange-correlation functional 15

HCTH407 HCTH/407 exchange-correlation functional 16

HCTH407P HCTH/407+ exchange-correlation functional 17

HCTHP14 HCTH potential-fitted 1/4 functional 18

B97GGA1 Becke 97, reparametrized as pure GGA by Cohen and Handy 19
(2000)

B97D Becke 97-D, another pure GGA reparameterization of B97, 30
by Grimme (2006). To be used with DFT-D. Selection of
this functional automatically enables the use of the
DFT-D2 scheme (unless the user chooses a different
scheme or explicitly disables the use of DFT-D)

SOGGA SOGGA exchange-correlation functional by Zhao and 20
Truhlar

SOGGA11 SOGGA-11 exchange-correlation functional by Peverati, 21
Zhao, and Truhlar

Hybrid functionals

DFTTYP Functional Refs.
value

B1P86 Becke 1988 (©.75) + Hartree-Fock (0.25) exchange, | 2,37,36
Perdew 1986 nonlocal (1.9) + Perdew-Zunger 1981 local
(1.9) correlation

B1LYP Becke 1988 (©.75) + Hartree-Fock (0.25) exchange, Lee- 2,10
Yang-Parr 1988 correlation

BHHLYP Becke 1988 (©.5) + Hartree-Fock (©.5) exchange, Lee- 24,10
Yang-Parr 1988 correlation

B1PW91 Becke 1988 (©.75) + Hartree-Fock (©.25) exchange, | 2,12,9
Perdew 1991 nonlocal (1.9) + Perdew-Wang 1991 local
(1.9) correlation

B3P86 Becke 1988 nonlocal (©.72) + Slater 1local (0.890) +|22,37,36
Hartree-Fock (0.20) exchange, Perdew 1986 nonlocal
(1.9) + Perdew-Zunger 1981 LDA local (1.9) correlation

B3LYP1 Becke 1988 nonlocal (©.72) + Slater 1local (©.89) + | 22,10
Hartree-Fock (0©.20) exchange, Lee-Yang-Parr 1988
(0.81) + VWN formula 1 RPA local (©.19) correlation.
This is B3LYP as implemented in NWCHEM and GAUSSIAN

B3LYP5 Same as B3LYP1l, but with VWN formula 5 instead of VWN formula 1
RPA local correlation. This is B3LYP as implemented in GAMESS
(Us)

B3LYP Either B3LYP1 or B3LYP5, depending on the value of the B3LYP
keyword in the $DFT group (default is B3LYP1)

B3PW91 Becke 1988 nonlocal (©.72) + Slater local (0.890) +| 22,12,9
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Hartree-Fock (0.20) exchange, Perdew 1991 nonlocal
(0.81) + Perdew-Wang 1991 LDA local (1.0) correlation

O3LYP1

OPTX nonlocal (©.8133) + Slater local (©.9262) +
Hartree-Fock (©.1161) exchange, Lee-Yang-Parr 1988
(0.81) + VWN formula 1 RPA local (0.19) correlation

23

O3LYP5

Same as O3LYP1l, but with VWN formula 5 instead of VWN formula 1

RPA local correlation

O3LYP

A synonym of O3LYP5

X3LYP

Extended hybrid exchange functional (a combination of
Slater local (©.782), Becke 88 nonlocal (©.542), and
Perdew-Wang 91 nonlocal (0.167) exchange + Hartree-
Fock (©.218)), Lee-Yang-Parr (0.871) + VWN formula 1
RPA local (©.129) correlation

13

PBE1P86

Perdew-Burke-Ernzerhof 1996 (0.75) + Hartree-Fock
(0.25) exchange, Perdew 1986 nonlocal (1.0) + Perdew-
Zunger 1981 local (1.0) correlation

5,37,36

PBE1PW91

Perdew-Burke-Ernzerhof 1996 (0.75) + Hartree-Fock
(0.25) exchange, Perdew 1991 nonlocal (1.0) + Perdew-
Wang 1991 LDA local (1.0) correlation

25,12,9

PBE®O

Perdew-Burke-Ernzerhof 1996 (©.75) + Hartree-Fock
(0.25) exchange, Perdew-Burke-Ernzerhof 1996 nonlocal
(1.9) + Perdew-Wang 1991 LDA local (1.9) correlation.
This functional is also known as PBE1PBE

25

MPW1LYP

Modified Perdew-Wang 91 (©.75) + Hartree-Fock (0.25)
exchange, Lee-Yang-Parr 1988 correlation

11,10

MPW1PW91

Modified Perdew-Wang 91 (©.75) + Hartree-Fock (90.25)
exchange, Perdew 1991 nonlocal (1.9) + Perdew-Wang
1991 LDA local (1.0) correlation

11

MPW1K

Modified Perdew-Wang 91 (©.572) + Hartree-Fock (0.428)
exchange, Perdew 1991 nonlocal (1.0) + Perdew-Wang
1991 LDA 1local (1.0) correlation. Functional by
Truhlar and coworkers.

41

MPW1PBE

Modified Perdew-Wang 91 (©.75) + Hartree-Fock (©.25)
exchange, Perdew-Burke-Ernzerhof 1996 nonlocal (1.0) +
Perdew-Wang 1991 local (1.9) correlation

11,5,9

MPW3PBE

Modified Perdew-Wang 91 local and nonlocal (©.72) +
Slater 1local (©.08) + Hartree-Fock (©.20) exchange
Perdew-Burke-Ernzerhof 1996 nonlocal (0.81) + Perdew-
Wang 1991 local (1.9) correlation

11,1,5,9

B970

Becke 97 hybrid exchange-correlation functional

26

B980

Becke 98 hybrid exchange-correlation functional

27

B971

Becke 97-1, a 1998 reparametrized version of B97 by
Handy, Tozer, and coworkers

14

B972

Becke 97-2, a 2001 reparametrized version of B97 by
Wilson, Bradley, and Tozer

28

B973

Becke 97-3, a 2005 reparametrized version of B97 by
Keal and Tozer

29
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SOGGAX

SOGGA-11X hybrid exchange-correlation functional by
Peverati and Truhlar

31

Double hybrid functionals

DFTTYP value

Functional

Refs.

Self-consistent functionals

B2PLYP

Becke 1988 (©.47) + Hartree-Fock (©.53) exchange,
Lee-Yang-Parr 1988 (©.73) + MP2 (0.27) correlation

32

B2GPPLYP

Becke 1988 (©.35) + Hartree-Fock (©.65) exchange,
Lee-Yang-Parr 1988 (©0.64) + MP2 (0.36) correlation

33

MPW2PLYP

Modified Perdew-Wang 91 (©.45) + Hartree-Fock (0.55)
exchange, Lee-Yang-Parr 1988 (©0.75) + MP2 (0.25)
correlation

42

DSD-BLYP

Initial version of DSD-BLYP(full), which uses the
following terms and parameters: Becke 1988 (0.31) +
Hartree-Fock (©0.69) exchange, Lee-Yang-Parr 1988
(0.54) + opposite spin MP2 (0.46) + same spin MP2
(0.37) correlation + DFT-D version 2 with an alpha
value of 60.0. Selection of this functional
automatically sets DFTD=.T.

38

D-BLYP

Newer version DSD-BLYP(fc), which uses the following
terms and parameters: Becke 1988 (©.29) + Hartree-
Fock (0.71) exchange, Lee-Yang-Parr 1988 (©.55) +
opposite spin MP2 (0.46) + same spin MP2 (0.43)
correlation + DFT-D version 2 with an alpha value of
20.0. Selection of this functional automatically sets
DFTD=.T.

39

D-PBEP86

DSD-PBEP86(fc) functional: Perdew-Burke-Ernzerhof
1996 (©.32) + Hartree-Fock (0.68) exchange, Perdew
1986 nonlocal (©.45) + Perdew-Zunger 1981 LDA local
(0.45) + opposite spin MP2 (©.51) + same spin MP2
(0.23) correlation + DFT-D version 2. Selection of
this functional automatically sets DFTD=.T.
Functional and empirical dispersion parameters
recommended for the use of D-PBEP86 with DFT-D
version 4 are not implemented but can be given
manually.

39

Non-self-consistent functionals

XYG3

Becke 1988 nonlocal (©.2107) + Slater local (0.1967)
+ Hartree-Fock (0.8033) exchange, Lee-Yang-Parr 1988
(0.6789) + MP2 (©.3211) correlation. Each term in
this functional (incl. +the MP2-like term) is
evaluated using B3LYP1 orbitals and density.

34

XYGJ-0S

Slater local (0.2269) + Hartree-Fock (0.7731)
exchange, Lee-Yang-Parr 1988 (0.2754) + VWN formula 1
RPA local (0.2309) + MP2 (0.4364) correlation. Each
term in this functional (incl. the MP2-1like term) is

40

- 111 -




evaluated using B3LYP1 orbitals and density. From the
MP2-1ike term, only the opposite spin part is used.

XDH-PBE® Perdew-Burke-Ernzerhof 1996 (0.1665) + Hartree-Fock 35

(0.8335) exchange, Perdew-Burke-Ernzerhof 1996
nonlocal (©.5292) + Perdew-Wang 1991 LDA local
(0.5292) + MP2 (©.5428) correlation. Each term in
this functional (incl. the MP2-like term) is
evaluated using PBE® orbitals and density. From the
MP2-1ike term, only the opposite spin part is used.
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Making modifications to functionals

Firefly has four important keywords, all belonging to the $DFT group, which
can be used to modify some of the (double) hybrid functionals implemented.
These are:

- HFX, which provides control over the amount of exact exchange;

- CPT2, which provides control over the amount of MP2-like correlation;

- SCS, which controls scaling of spin components of the MP2-like perturba-
tion;

- PARENT, which selects the parent functional used in non-self-consistent
double hybrid functionals (such as XYG3, for which the parent functional is
B3LYP1).

Changing the amount of exact exchange used in a functional can, for exam-
ple, be useful in TDDFT calculations to distinguish between Rydberg and
valence states. The amount of exact exchange can be controlled through the
HFX option. Formally, HFX should be given as an array (for reasons that
will be discussed later), e.g.

HFX(1)=0.75
However, it is possible to specify HFX as a single variable:
HFX=0.75

The HFX option is available for most hybrid functional and all double hy-
brid functionals. However, for the B97/B98 type functionals as well as for
the SOGGA-X functional this option has not been implemented. These func-
tionals were parameterized for a certain amount of exact exchange, so
changing this amount doesn’t make much sense. Note that there is no limit
to HFX - it is possible to set its value larger than 1.0 for experimenta-
tion purposes.

For (double) hybrid functionals that combine exact exchange with only one
type of DFT exchange, such as BHHLYP, PBEO, and MPW1PW91, the way the HFX
keyword works is quite straightforward. Setting HFX(1)=0@ for example re-
moves all exact exchange from the functional, while HFX(1)=1 makes the ex-
change part of the functional fully exact. For example, setting HFX(1)=0
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for PBE1PW91 makes the functional identical to PBEPW91, while HFX(1)=1
makes the functional identical to PW91l. Naturally, any value between © and
1 is possible. HFX(1)=0.25 will use the default amount of exact exchange
for the PBE1PW91l.

For the B3LYP, O3LYP, MPW3PBE, and XYG3 functionals, the HFX interpolation
is a bit more complex and is best explained by an example. The exchange
part of B3LYP consists of the following parameters (default values in pa-
rentheses):

B88X - the amount of Becke 88 local and nonlocal (0.72)
LDAX - the amount of excess Slater local (0.08)

(because Becke 88 non-local + Slater local = Becke 88 GGA)
HFX - the amount of exact exchange (0.2)

When the value of HFX is changed, B88X and LDAX change as follows:

B88X_new
LDAX_new

B88X * (1 - HFX) / (B88X + LDAX)
LDAX * (1 - HFX) / (B88X + LDAX)

For X3LYP, the interpolation scheme 1is different as this functional com-
bines 4 types of exchange. Its parameters in the exchange part are as fol-
lows:

B88X - the amount of Becke 88 local and nonlocal (0.542)

PW91X - the amount of Perdew-Wang 91 local and nonlocal (0.167)
LDAX - the amount of excess Slater local (0.073)

HFX - the amount of exact exchange (0.218)

When the value of HFX is changed, the other parameters change as follows:
B88X_new = B88X * (1 - HFX) / (1 - HFX_default)
PW91X_new = PW91X * (1 - HFX) / (1 - HFX_default)
LDAX_new = LDAX * (1 - HFX) / (1 - HFX_default)

where HFX_default is the default value of 0.218.

For non-self-consistent double hybrid functionals, HFX can be used to con-
trol the amount of exact exchange for the double hybrid functional as well
as its parent function. This can be done by giving an array of two varia-
bles. As an example, for xDH-PBE@, the default values can be specified as:

HFX(1)=0.8335,0.25
where the first value specifies the amount of exact exchange in the double

hybrid functional and the second value specified the amount of exact ex-
change in the parent functional.
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The CPT2 keyword works in the same way as the HFX keyword. As noted earli-
er, it can be used to control the amount of MP2-like correlation in double
hybrid functionals.

Finally, the SCS keyword can be used to scale the spin components of the
MP2-1ike part by certain factors. It functions the same way as the SCS key-
word in the $MP2 group. For more information, please see the MP2 section.

Of course, the HFX, CPT2, and SCS can be used to define a few functionals
currently not present in Firefly, provided that these are of the same form
as a functional already implemented. For example, the B2K-PLYP functional
can be specified as follows:

$CONTRL DFTTYP=B2PLYP $END
$DFT HFX(1)=0.72 CPT2=0.42 $END

Here, DFTTYP is set to B2PLYP as this functional is of the same form as
B2K-PLYP - only the fractions of exact exchange and MP2-like correlation
are different. It would also have been possible to specify DFTTYP=B2GPPLYP
as this functional is of the same form.

The DSD-PBEP86 functional implemented in Firefly was designed to be used
with DFT-D version 2. However, reference 39 also contains parameters opti-
mized for use with version 4. As a second example, this functional can be
specified as follows:

$CONTRL DFTTYP=D-PBEP86 DFTD=.T. $END

$DFT HFX(1)=0.70 CPT2=0.57
SCS(1)=0.9298245614035088,0.4385964912280702 $END

$DFTD VERSN=4 S6=0.418 RS6=0.0 S18=0.25 RS18=5.65 ALP=14.0 $END

More information on DFT-D can be found in the next section.

Lastly, the PARENT keyword should be discussed. This keyword is only used
for non-self-consistent double hybrid functionals such as XYG3 and selects
the parent functional. This parent functional is used for generating the
orbitals and density used for the evaluation of each term in the double
hybrid functional. Any GGA exchange, GGA correlation, exchange-correlation,
and hybrid functional may be specified. LDA functionals and double hybrid
functionals cannot be used.

Empirical dispersion correction (DFT-D)

Newly available in Firefly 8.0.0 is the empirical dispersion correction to
DFT proposed by Grimme and co-workers, a method commonly abbreviated as
DFT-D. Three versions of the correction are available:

- DFT-D version 2, which was proposed in 2006 as part of the B97-D func-

tional and which is an update of the original DFT-D version.
- DFT-D version 3, proposed in 2010.
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- DFT-D version 3 with Becke-Johnson damping (from here on referred to as
‘version 4°’), proposed in 2011.

The corresponding references are:

- Version 2: S. Grimme, J. Comput. Chem., 27 (2006), 1787-1799
- Version 3: S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J.
132 (2010), 154104

- The BJ-damping used in version 4: S. Grimme, S.
J. Comput. Chem. 32 (2011), 1456-1465

Chem. Phys.

Ehrlich, and L. Goerigk,

It is important to point out that the available range of versions (together
with their default parameters) is defined by the DFT-D extension file in
use (either dftd.dll or dftd.ex). Consequently, the empirical dispersion
correction functionality is only available if Firefly is capable to find
and load this extension file.

The empirical dispersion correction is designed to improve the long-range
behavior of DFT methods. However, its use is not limited to DFT only - it
can actually be used with any computational method present in Firefly. Both
energies and analytical gradients are available with DFT-D, provided of
course that analytical gradients are available for the method the correc-
tion is used with. Analytical second derivatives are not available, in-
stead, second derivatives should be obtained numerically.

The use of the correction can be enabled by specifying DFTD=.T. in the
$CONTRL group. Control over the correction is provided by keywords in the
$DFTD group. Here, the VERSN keyword can be used to specify the DFT-D ver-
sion to be used (default is VERSN=3). Thus, if one would like to use DFT-D
version 4, one should specify:

$CONTRL DFTD=.T. $END
$DFTD VERSN=4 $END

Parameters for many functionals (as well as for Hartree-Fock) are stored
internally in Firefly. Their availability is as follows:

Version 2 Version 3 Version 3 with Version 4
TZ=.T. (*)
BP86 Hartree-Fock BP86 Hartree-Fock
BLYP Slater (LSDA) BLYP BP86
B3LYP1 BP86 B3LYP1 BLYP
B3LYP5 BLYP B3LYP5 B3LYP1
PBE96 B3LYP1 PBE96 B3LYP5
PBEO B3LYP5 PBE® BHHLYP
B97-D BHHLYP MPWO1LYP B3PW91
B2PLYP B3PW9O1 B97-D PBE96
B2GP-PLYP PBE96 B2PLYP PBE©O
DSD-BLYP PBE© MPWO1LYP
D-BLYP HCTH/120 HCTH/120
D-PBEP86 OLYP OLYP
B97-D B97-D
B2PLYP B2PLYP
B2GP-PLYP B2GP-PLYP
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(*) The TZ keyword selects the use of a special set of DFT-D version 3 parameters optimized
for Ahlrichs' TZVPP basis set. Its default value is .FALSE.

The parameters of the correction model can be changed with the S6, RS6,
S18, RS18, and ALP keywords. These should be used if one uses a function-
al/method for which parameters are not stored internally, or if one would
like to use custom parameters. Their functions are:

S6 The ss global scaling factor, the main scaling factor in DFT-D
version 2. For DFT-D version 3 and 4 it is of lesser importance
and is usually set to 1.0 (except with double hybrid function-
als).

RS6 For DFT-D version 2, this parameter is used in calculating the
dampening factor - its value is 1.1 (for all functionals). For
DFT-D version 3, this parameter corresponds to the s, scaling
factor, which is the main scaling factor in this version. For
DFT-D version 4, it corresponds to the a; free fit parameter.

S18 The sg scaling factor used in DFT-D version 3 and 4. For DFT-D
version 2, this parameter has no function.

RS18 For DFT-D version 3, this parameter is used in calculating the
dampening factor, its value being 1.0 except with Slater ex-
change (where its value is ©.697). For DFT-D version 4, this
parameter corresponds to the a, free fit parameter. For DFT-D
version 2, this parameter has no function.

ALP The global scaling parameter of the damping function (which
dampens the dispersion correction at short ranges). Its value is
usually 20 for DFT-D version 2, and 14 for DFT-D version 3 and
4. For DFT-D version 4, this parameter is only used when ABC=.T.
(see below).

The above parameter naming scheme is identical to the one used in the DFT-
D3 program by Grimme. However, a few of these parameters have names which
do not correspond to the parameters they represent, or have different mean-
ings depending on the DFT-D version used. As we assume this can be confus-
ing for some, aliases have been created for these parameters. Available
aliases are:

Keyword | Aliases

RS6 SR6, ALPHA1l
S18 S8
RS18 ALPHA2
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It is important to note that, when specifying a custom set of parameters,
all five of the above parameters should be given a value, even those which
are zero or not used by the DFT-D version used!

In addition to the above parameters, there are a few other parameters and
keywords that should be mentioned. First of all, it is possible to control
the coordination number dependent dispersion (used in DFT-D version 3 and
4) through the K1, K2, and K3 keywords, which correspond to the k;, k,, and
ks parameter, respectively. Their default values are Kil=16, K2=4/3, and
K3=-4. Typically, there is no need to change thenm.

Furthermore, it is possible to enable the three-body non-additive contribu-
tion to the dispersion correction. This is done by specifying ABC=.T. and
pertains to DFT-D versions 3 and 4. By default, the three-body contribution
is disabled as Grimme and co-workers found that inclusion of three-body
terms had only a marginal impact overall while leading to poorer results in
a few specific cases.

It should finally be noted that some parameters, such as Cs; and R, cannot

be controlled. The values of these parameters are used as specified in the
references mentioned at the start of this section.
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Time-Dependent Theories

General information

Time-dependent Hartree-Fock (TDHF; also known as RPA, random phase approxi-
mation) and time-dependent density functional theory (TDDFT) are theories
used to investigate properties of a system in the presence of an external
field such an electric or magnetic field. In Firefly, these theories can be
used to calculate the properties of excited state such as energies and os-
cillator strengths. Furthermore, it is possible to calculate various static
and/or frequency dependent polarizabilities (with an emphasis on important
NLO properties such as second and third harmonic generation). Both types of
calculations can be performed by direct type calculations using the ‘fast-
ints’ computation module (see the "Performance" chapter for details). Only
an RHF reference is allowed at present. Analytical gradients are not yet
programmed for both TDHF and TDDFT theories.

It is important to emphasize that time-dependent excited state calculations
and time-dependent polarizability calculations take place through two dif-
ferent modules and therefore need very different input. Excited state cal-
culations are requested through the CITYP keyword in $CONTRL group. The
$TDHF or $TDDFT group can hereby be used to specify additional keywords.
Two examples:

$CONTRL SCFTYP=RHF CITYP=TDHF RUNTYP=ENERGY $END
$TDHF <additional keywords> $END

$CONTRL SCFTYP=RHF CITYP=TDDFT DFTTYP=PBE® RUNTYP=ENERGY $END
$TDDFT <additional keywords> $END

Polarizability calculations on the other hand are requested by RUNTYP=TDHF
in $CONTRL and do not use the CITYP keyword. Two examples:

$CONTRL SCFTYP=RHF RUNTYP=TDHF NOSYM=1 $END
$TDHF <additional keywords> $END

$CONTRL SCFTYP=RHF DFTTYP=PBE@ RUNTYP=TDHF NOSYM=1 $END
$TDHF <additional keywords> $END

As can be seen, both runs use RUNTYP=TDHF, even though the second one is a
TDDFT calculation. Furthermore, in both cases any additional keywords have
to be specified through the $TDHF group; the $TDDFT group is not used. The
specification of NOSYM=1 is required because the Fock matrices computed
during the time-dependent Hartree-Fock CPHF are not symmetric.

- 119 -



It is currently not possible to use all of the available DFT functionals
for TDDFT calculations. Supported values of DFTTYP are:

Exchange Correlation | Exchange-correlation Hybrid
SLATER VWN1RPA SVWN1RPA B1LYP
B88 VWN5 BVWN1RPA BHHLYP
XPW91 PW91LDA SVWN5 B1PW91
GILLO96 LYP BVWN5 B3PW91
XPBE96 CPWO1 SLYP B3LYP1
OPTX CPBE96 BLYP B3LYP5

GLYP O3LYP1
OLYP O3LYP5
XLYP X3LYP
BPWO1 PBE1PW91
PW9O1 PBE@
PBEPW91

PBE9S6

Finally, with respect to the calculation of static and dynamic (hyper) po-
larizabilities by TDDFT, it should be noted that while alpha values are
exact, beta and gamma are only approximate at present as second-order (and
higher) exchange-correlation kernels are not properly taken into account.
This might be fixed in a future version of Firefly.

Excited state calculations with TDHF (RPA)

As shown in the examples above, TDHF theory for excited state calculations
can be requested by the presence of the CITYP=TDHF keyword in the $CONTRL
group. Current implementation allows the use of only RHF references, but
can pick up both singlet and triplet excited states. Properties are availa-
ble using "unrelaxed" density. Due to efficiency considerations, TDHF 1is
programmed for SAPS (spin-adapted antisymmetrized product) basis only, so
you cannot get both singlet and triplet states at once.

The number of states to be found (excluding the ground state) is controlled
by NSTATE keywords. Specification of a state of interest for which proper-
ties will be calculated can be done via the ISTATE keyword. Only one state
can be chosen. The state-tracking feature of the Firefly's TDHF code may be
activated by selecting a negative value for ISTATE in the $TDHF group. Mul-
tiplicity (1 or 3) of the singly excited states can, as usual, be requested
via the MULT keyword in $CONTRL.

Another important keyword is ISTSYM, which is used to specify the symmetry
of the states of interest. Its default value is zero, which disables the
use of symmetry during the TD calculation (i.e., states of all symmetries
will be considered). Setting its value to the index of the desired irreduc-
ible representation (according to Firefly numbering) will produce only
states of the desired symmetry and will also exploit the full (including
non-abelian) symmetry of molecule, thus significantly reducing the computa-
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tion time. Values for ISTSYM can be found in the output under "DIMENSIONS
OF THE SYMMETRY SUBSPACES ARE". A tip: when using a UNIX-like 0S, one can
use grep -A 3 "DIMENSIONS OF THE SYMMETRY SUBSPACES ARE" outputfile to find
this string quickly.

As an example, below is the output for butadiene, a molecule with C2h sym-
metry.

DIMENSIONS OF THE SYMMETRY SUBSPACES ARE
AG = 28 AU = 8 BU = 28 BG = 8

From the order in which the irreps are printed, one can see that:

>

¢ corresponds to ISTSYM=1,
uw corresponds to ISTSYM=2,
v corresponds to ISTSYM=3,
¢ corresponds to ISTSYM=4,

w W >

For a better understanding of the ISTSYM keyword, let us take a closer look
this butadiene example. We have seen now that the C2h point group contains
four irreducible representations: Ag, By, A, and B,. Hereby, only the tran-
sitions Ag->Ay, Ag->Bu, Bg->A,, Bg->B, are symmetry allowed. As a result, on-
ly two symmetry allowed excited states can be formed by single electron
excitations: Au and Bu. Instead of solving TDHF for all four possible types
of states, we can consider only symmetry allowed states and thus save on
computation time. However, forbidden states can play a significant role in
non-radiative relaxation processes such as intersystem crossing and inter-
nal conversion and should be considered if needed. It is important to note
that oscillator strengths printed in the TDHF summary table are calculated
using transition dipoles length form only.

There is an option to re-read vectors from a previous run. This can be
helpful especially when one would like to obtain properties for more than
one state. In this case, there is no need to recalculate the TDHF equations
- all information can be read from $TDVEC group. This is achieved by speci-
fying RDTDVC=.T. in the $TDHF group and copying the $TDVEC block from the
PUNCH file of the converged TDHF run to the input file of the next run.

In the first example below, a TDHF calculation was performed for six single
excited singlets (NSTATE=6); properties for the first excited state will be
printed out (ISTATE=1); states of all possible summitries will be consid-
ered (ISTSYM=9).

Example 1:

$CONTRL CITYP=TDHF RUNTYP=ENERGY $END
$SYSTEM TIMLIM=525600 MEMORY=10000000 $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
$TDHF NSTATE=6 ISTSYM=0 ISTATE=1 $END

$DATA
1,3-butadiene TDHF/6-31G(d)//RHF/6-31G(d)
CNH 2
C 6.0 0.5262888328 0.5113710450 0.0000000000
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C
H
H
H
$

END

PR RO
OO0

1.8213687868
0.1953148875
2.5595257633
2.1906083178

0.2431548398
1.5374180614
1.0243655101
-0.7681578804

0.0000000000
0.0000000000
0.0000000000
0.0000000000

In the second example, a TDHF calculation is performed for four single ex-
cited singlets (NSTATE=4); properties for the second excited state will be
printed out using the state-tracking feature (ISTATE=-2); only states of Bu

symmetry will be considered (ISTSYM=3).

Example 2:

$CONTRL CITYP=TDHF RUNTYP=ENERGY $END
$SYSTEM TIMLIM=525600 MEMORY=10000000 $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
$TDHF NSTATE=4 ISTSYM=3 ISTATE=-2 $END

$DATA

1,3-butadiene TDHF/6-31G(d)//RHF/6-31G(d)

CNH 2

C 6.0 0.5262888328 0.5113710450 0.0000000000
C 6.0 1.8213687868 0.2431548398 0.0000000000
H 1.0 0.1953148875 1.5374180614 0.0000000000
H 1.0 2.5595257633 1.0243655101 0.0000000000
H 1.0 2.1906083178 -0.7681578804 0.0000000000
$END

As was mentioned earlier, consideration of the symmetry specific states
significantly speed up computation. In the presented examples the speed up
was an approximate 2.3 times (!).

Excited state calculations with TDDFT

Excited state calculations with TDDFT are executed the same way as those
with TDHF. Virtually everything mentioned in the previous section also ap-
plies to TDDFT. The only difference is that TDDFT excited state calcula-
tions are requested by specifying CITYP=TDDFT instead of CITYP=TDHF. Addi-
tionally, keywords pertaining to the TDDFT calculation belong to the $TDDFT
group instead of the $TDHF group (keywords remain the same).

In addition to ‘normal’ TDDFT calculations, it is also possible to use the
Tamm-Dancoff approximation to TDDFT (TDDFT/TDA). This can be requested by
specifying TDA=.T. in the $TDDFT group.

In the example below a TDDFT calculation is performed in order to obtain
four single excited triplet states (NSTATE=4 MULT=3); properties for the
first excited state will be printed out (ISTATE=1); the states of all pos-
sible symmetries will be considered (ISTSYM=90).

Example 1:
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$CONTRL CITYP=TDDFT DFTTYP=PBE@® RUNTYP=ENERGY $END
$SYSTEM TIMLIM=525600 MEMORY=10000000 $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
$TDDFT NSTATE=4 ISTSYM=0 ISTATE=1 $END

$DATA

1,3-butadiene TDDFT/6-31G(d)//RHF/6-31G(d)

CNH 2

C 6.0 0.5262888328 0.5113710450 0.0000000000
C 6.0 1.8213687868 0.2431548398 0.0000000000
H 1.0 0.1953148875 1.5374180614 0.0000000000
H 1.0 2.5595257633 1.0243655101 0.0000000000
H 1.0 2.1906083178 -0.7681578804 0.0000000000
$END

The second example illustrates a TDDFT calculation performed for five sin-
gly excited singlet states (NSTATE=5); properties for the first excited
state will be printed out (ISTATE=1); only states of Au symmetry will be
considered (ISTSYM=2).

Example 2:

$CONTRL CITYP=TDDFT DFTTYP=PBE@ RUNTYP=ENERGY $END
$SYSTEM TIMLIM=525600 MEMORY=10000000 $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
$TDDFT NSTATE=5 ISTSYM=2 ISTATE=1 $END

$DATA

1,3-butadiene TDDFT/6-31G(d)//RHF/6-31G(d)

CNH 2

C 6.0 0.5262888328 0.5113710450 0.0000000000
C 6.0 1.8213687868 0.2431548398 0.0000000000
H 1.0 0.1953148875 1.5374180614 ©0.0000000000
H 1.0 2.5595257633 1.0243655101  ©0.0000000000
H 1.0 2.1906083178 -0.7681578804 0.0000000000
$END

The third and final example illustrates a TDDFT calculation using the Tamm-
Dancoff approximation to TDDFT (TDA=.T.). Six singly excited singlet states
are requested (NSTATE=6); properties for the first excited state will be
printed out (ISTATE=1); no symmetry will be used during the calculation
(ISTSYM=0).

Example 3:

$CONTRL CITYP=TDDFT DFTTYP=PBE@ $END

$SYSTEM TIMLIM=525600 MEMORY=10000000 $END
$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
$TDDFT NSTATE=6 ISTSYM=0 ISTATE=1 TDA=.T. $END
$DATA

1,3-butadiene TDDFT/6-31G(d)//RHF/6-31G(d)
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CNH 2

C 6.0 0.5262888328 0.5113710450 0.0000000000
C 6.0 1.8213687868 0.2431548398 0.0000000000
H 1.0 0.1953148875 1.5374180614 ©.0000000000
H 1.6 2.5595257633 1.0243655101  0.0000000000
H 1.0 2.1906083178 -0.7681578804 0.0000000000
$END
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Configuration Interaction methods

Introduction

Configuration interaction (CI) is a theory in which the wavefunction is
described as a linear combination of Slater determinants. CI calculations
in Firefly can be performed in a few different ways. First, there is a CI-
singles (CIS) program which performs single excitations from a RHF refer-
ence wavefunction. Analytic gradients are available for this method.

Then, it is also possible to perform higher order CI calculations with the
ALDET and GUGA programs. These programs were designed to perform MCSCF cal-
culations such as FORS-MCSCF (also known as CASSCF), and multireference (I,
but the GUGA program can also be used for performing single-reference (I
calculations. The ALDET program is not capable of performing truncated CI
calculations, it can only do full CI. This chapter will only focus on how
to perform single-reference CI calculations. Multireference CI is discussed
in the MCSCF chapter.

CI singles and higher-order CI calculations will be separately discussed in
the next two sections.

CI singles

The CIS method is the simplest way to treat excited states. By Brillouin's
Theorem, a single determinant reference such as RHF will have zero matrix
elements with singly substituted determinants. The ground state reference
therefore has no mixing with the excited states treated with singles only.
The CIS method can be thought of as a non-correlated method, rigorously so
for the ground state, and effectively so for the various excited states.
Some issues making CIS not quite a black box method are:

a) Any states characterized by important doubles are simply missing from
the calculation.

b) Excited states commonly possess Rydberg (diffuse) character, so the AO
basis used must allow this.

c) Excited states often have different point group symmetry than the ground
state, so the starting geometries for these states must reflect their actu-
al symmetry.

d) Excited state surfaces frequently cross, and thus root flipping may very
well occur.

The CIS code in the Firefly is based on heavily modified source code of the
original GAMESS (US) AO-basis CIS program written by Simon P. Webb. Its
current implementation allows the use of RHF reference wavefunctions only,
but it can pick up both singlet and triplet excited states. Nuclear gradi-
ents are available, as are properties.
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A CIS calculation can be requested with the keyword CITYP=CIS in the $CON-
TRL group. The input group with relevant keywords is the $CIS group. The
most important keywords are NSTATE, which determines the amount of excited
states to be found, and ISTATE, which determines for which state properties
or a gradient should be calculated. Naturally, the value of NSTATE should
be at least as high as the value of ISTATE. However, no error message is
produced is this requirement is not met. In such a case, ISTATE will be set
to be identical to NSTATE. In other words, be sure to check your input as
the Firefly will not warn you if you set NSTATE too low. Setting ISTATE=0
will cause the Firefly to default to ISTATE=1.

It is possible to request only states of a specific symmetry using the
ISTSYM keyword, provided you specified a point group in $DATA. ISTSYM=@
disables the use of symmetry while a non-zero value of ISTSYM requests
states belonging to a certain irreducible representation. For more infor-
mation on symmetry and the ISTSYM keyword, please see the section on TDHF.

Contrary to the TDHF and TDDFT codes, the CIS code can pick up singlet and
triplet states at the same time, however it is not able to do this by de-
fault. In order to achieve this, it is necessary to choose a different CI
type by using the HAMTYP keyword. The default CI type is HAMTYP=SAPS, which
uses a spin-adapted antisymmetrized product basis and which can obtain
states of only one multiplicity. The determinant based CI type, set through
HAMTYP=DETS, can pick up both multiplicities, however, this CI type does
have the downside that it will disable the use of fastints/gencon code dur-
ing direct CIS runs (which will be detrimental to computation time).

The CIS program has a state-tracking feature which is activated by select-
ing a negative value of ISTATE. It is intended to be used for the geometry
optimization of excited states in the case of root flipping.

An example input file for a CIS calculation on a water molecule:

$CONTRL SCFTYP=RHF CITYP=CIS RUNTYP=ENERGY UNITS=ANGS $END
$SYSTEM TIMLIM=3000 MWORDS=10 $END

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

$CIS NSTATE=3 ISTSYM=0 ISTATE=1 $END

$DATA
H20
CNV 2
O 8.0 0.000000000 ©.000000000 0.715595046
H 1.0 0.000000000 -0.754094334 0.142202477
$END

Note that oscillator strengths printed in the CIS summary table in the out-
put are calculated using transition dipoles length form only. In addition,
for degenerate irreps, computed oscillator strengths are for pure quantum
states, so for most purposes one needs to multiply them by the factor equal
to the degeneracy of the electronic states.

Instructions for the generation of state-averaged CIS natural orbitals can
be found here:
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http://classic.chem.msu.su/gran/gamess/forum/attach/cisnos averaged.rar

Higher order CI

Higher order CI calculations can be performed with the ALDET and GUGA pro-
grams. These programs have two different approaches for doing CI calcula-
tions. ALDET, the Ames Labs DETerminant CI program, uses determinants to
form the many electronic basis set. GUGA, the Graphical Unitary Group Ap-
proach CI program, on the other hand forms the many electronic basis set
using configuration state functions (CSFs). As noted earlier, these two
programs were designed for performing MCSCF (and MRCI) calculations. There-
fore, many aspects related to these programs, including the difference be-
tween determinants and CSFs, are discussed in the chapter on MCSCF. This
section will only focus on single-reference CI calculations. Since the
ALDET program is only capable of full CI, the remainder of this section
will discuss GUGA-style CI.

GUGA CSF-based CI can be requested with the keyword CITYP=GUGA in the $CON-
TRL group. The GUGA program was originally a set of different programs, so
the input to control it is spread over several input groups. The CSFs are
specified by a $CIDRT group. Other relevant input groups are $CISORT, $GUG-
EM, $GUGDIA, and $GUGDM. The $LAGRAN group can possible be relevant as
well. Perhaps the most interesting variables outside the $CIDRT group are
NSTATE in $GUGDIA to include excited states in the CI computation, and
IROOT in $GUGDM to select the state for which properties and/or the gradi-
ent are to be calculated.

With CSF-based CI, the CSFs are ordinarily specified by giving a reference
CSF together with a maximum degree of electron excitation from that single
CSF. The MOs in the reference CSF are filled in the order of FZC first,
followed by DOC, AOS, BOS, ALP, VAL, and EXT (the Aufbau principle). A0S,
BOS, and ALP are singly occupied MOs (note that the amount of AOS should
always be equal to the amount of NBOS). ALP means a high spin alpha cou-
pling, while AOS/BOS are an alpha/beta coupling to an open shell singlet.
For a single-reference CI calculation, this input can be kept very simple,
an example being:

NFZC=3 NDOC=5 NVAL=34
which means the reference RHF wavefunction is:
FZC FZC FZC DOC DOC DOC DOC DOC VAL VAL ... VAL

In this case, NVAL is a large number conveying the total number of virtual
orbitals into which electrons are excited. Note that NVAL's spelling was
chosen to make the most sense for MCSCF calculations, and so it is a bit of
a misnomer here. The excitation level can be set with the IEXCIT keyword,
where IEXCIT=2 for example requests a CISD calculation. All excitations
smaller than the value of IEXCIT are automatically included in the CI.

Before going on, there is a quirk related to single-reference CI that

should be mentioned. Whenever the single-reference wavefunction contains
unpaired electrons, such as
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NFZC=3 NDOC=4 NALP=2 NVAL=33

some "extra" CSFs will be generated. The reference here can be abbreviated
2222 11 000 000 00O 00O 0O QPO 0VO VPO 0O 00O 00O

In the case of IEXCIT=2, the following CSF

2200 22 000 011 000 000 VOO QPO 0O VPO 0V VO 00O

will be generated and used in the CI. Most people would prefer to think of
this as a quadrupole excitation from the reference, but acting solely on
the reasoning that no more than two electrons went into previously vacant
NVAL orbitals, the GUGA CSF program decides it is a double. The result is
that an open shell CISD calculation with Firefly will not give the same
result as would be obtained with other programs, although the result for
any such calculation with these "extras" is correctly computed.

Analytical gradients are available for CSF-based CI, however, at present
gradient calculations cannot run in parallel and benefit little from multi-
threading. Therefore, these calculations do not run very efficiently and
might not be feasible with larger systems.

It is possible to request only states of a certain symmetry. This is done
with the keywords GROUP and ISTSYM, which both belong to the $CIDRT group.
GROUP can be used to specify the point group. The following point groups
are supported: C1, C2, CI, CS, C2V, C2H, D2, D2H, C4V, D4, D4H. The desired
irrep can be requested with ISTSYM. Note that, contrary to what is the case
for CIS calculations, ISTSYM=@ does not disable symmetry (setting this will
set the symmetry to be defined by the symmetry of the reference CSF). In-
stead, this is done by specifying GROUP=Cl. For more information on the use
of symmetry, please see the MCSCF chapter.

An example input file for a CISD energy calculation on a water molecule:

$CONTRL SCFTYP=RHF CITYP=GUGA RUNTYP=ENERGY UNITS=ANGS $END
$SYSTEM TIMLIM=10000 MWORDS=10 $END

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

$CIDRT GROUP=C1 ISTSYM=1 NFZC=1 NDOC=4 NVAL=14 IEXCIT=2 $END
$GUGDIA NSTATE=5 $END

$DATA

H20

CNV 2

O 8.0 0.000000000 ©.000000000 0©.715595046
H 1.0 0.000000000 -0.754094334 0.142202477
$END

Additional, performance related keywords are discussed in the MCSCF chap-
ter.
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Multi-configurational SCF methods

General information

Multi-configuration self-consistent field (MCSCF) wavefunctions are the
most general SCF type, offering a description of chemical processes involv-
ing the separation of electrons (i.e. bond breaking, electronically excited
states, etc.), which are often not well represented using single configura-
tion SCF methods.

MCSCF wavefunctions, as the name implies, contain more than one configura-
tion, each of which is multiplied by a "configuration interaction (CI) co-
efficient", determining its weight. In addition, the orbitals which form
each of the configurations are optimized, just as in a simpler SCF, to
self-consistency.

Typically, the uniqueness of each chemical problem requires that the design
of an MCSCF wavefunction to treat it has to be done on a case by case ba-
sis. For example, one may be interested in describing the reactivity of a
particular functional group instead of elsewhere in the molecule. This
means that one has to choose carefully which configurations should be in-
cluded in the MCSCF procedure in order to achieve a good description of the
chemical problem. A popular way of doing this is by dividing the molecular
orbitals into an “active” and an “inactive” space, where the active space
contains the orbitals that are best described using multiple configura-
tions. If within the active space all possible configurations are consid-
ered (similar to a full CI calculation within the active space), the ap-
proach is usually referred to as FORS-MCSCF (fully optimized reactive space
MCSCF) or CASSCF (complete active space SCF), the latter name being used
more often. Because of the importance of CASSCF, a large part of this chap-
ter will focus on this theory. If within the active space only a part of
all possible configurations is considered, the approach can be referred to
as 'incomplete active space SCF'.

Using CASSCF allows one to calculate the static correlation energy in a
chemical problem, but it does not calculate the dynamic correlation energy.
A follow-up CI calculation, a method known as multireference CI, is one way
to obtain the dynamic correlation, but has the drawbacks of not being size
consistent and requiring a lot of computational resources. A more efficient
technique implemented in Firefly for finding the dynamic correlation energy
is second-order perturbation theory, in the variants known as MCQDPT and
XMCQDPT. MRCI (though not a SCF method) is discussed in this chapter, while
the MCQDPT and XMCQDPT theories are discussed in a separate chapter.

With the exception of the QUAD converger, the CASSCF program in Firefly is
of the type termed "unfolded two step" by Roos. This means the orbital and
CI coefficient optimizations are separated. The latter are obtained in a
conventional CI diagonalization, while the former are optimized by a sepa-
rate orbital improvement step.
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Simplified, each CASSCF iteration consists of the following steps:

1) transformation of AO integrals to the current MO basis,

2) generation of the Hamiltonian matrix (not needed with direct CI),

3) optimization of the CI coefficients by means of a Davidson diagonaliza-
tion,

3) generation of the first and second-order density matrix,

4) improvement of the molecular orbitals.

As was discussed in the previous chapter, the CI problem in steps 2 and 3
has two options, namely to use a determinant based CI code (ALDET) or a
configuration state function (CSF) based CI code (GUGA). The choice between
these is determined by the keyword CISTEP in the $MCSCF group: CISTEP=ALDET
will request determinant-based MCSCF while CISTEP=GUGA will request CSF-
based MCSCF. The differences between determinants and CSFs will be dis-
cussed later on.

The orbital problem in step 4 has four options. These are FOCAS, SOSCF,
FULLNR, and QUAD, listed here in order of their computer resource require-
ments. These options will be discussed in the next section.

Information on the selection of the active space, ways to interpret the
resulting MCSCF wavefunction, and the treatment for dynamical correlation
not included in the MCSCF wavefunction can be found in the following refer-
ences:

"The Complete Active Space Self-Consistent Field Method and its Applica-
tions in Electronic Structure Calculations” K. P. Lawley and B. 0. Roos,
Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part
2, Volume 69, 399-445 (1987)

"The Construction and Interpretation of MCSCF wavefunctions™ M. W. Schmidt
and M. S. Gordon, Ann. Rev. Phys. Chem. 49, 233-266 (1998)

"Multiconfigurational quantum chemistry for ground and excited states" B.
0. Roos, Challenges and Advances in Computational Chemistry and Physics
Vol. 5: Radiation Induced Molecular Phenomena in Nucleic Acids, 125-156
(2008)

"How to select active space for multiconfigurational quantum chemistry?" V.
Veryazov, P. A. Malmgvist, and B. 0. Roos, Int. J. Quantum. Chem. 111,
3329-3338 (2011)

Orbital optimization options

There are presently four orbital improvement options, namely FOCAS, SOSCF,
FULLNR, and QUAD. All four MCSCF orbital optimization methods were designed
to efficiently run in parallel.

FOCAS is a first-order, complete active space MCSCF optimization procedure.
The FOCAS code was written by Michel Dupuis and Antonio Marquez at IBM. It
is based on a novel approach due to Meier and Staemmler, using very fast
but numerous microiterations to improve the convergence of what is intrin-
sically a first-order method. Since FOCAS requires only one virtual orbital
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index in the integral transformation to compute the orbital gradient (aka
the Lagrangian), the total MCSCF job may take less time than a second-order
method, even though it may require twice as many iterations to converge.
The use of microiterations is crucial to FOCAS' ability to converge. It is
important to take a great deal of care choosing the starting orbitals.

SOSCF is a method built upon the FOCAS code, which seeks to combine the
speed of FOCAS with second-order convergence properties. It is an approxi-
mate Newton-Raphson method which starts at the diagonal guess to the or-
bital Hessian and then uses the limited memory BFGS (LBFGS) update approach
to attain a quasi-linear, i.e. approximately quadratic convergence. Its
time requirements per iteration are like FOCAS, with a convergence rate
better than FOCAS but not as good as true second-order. LBFGS allows the
SOSCF method to be used with much larger basis sets than exact second-order
methods. Good convergence by the SOSCF method requires that you prepare
starting orbitals carefully, and read in all MOs in $VEC, as the provision
of canonicalized virtual orbitals increases the diagonal dominance of the
orbital Hessian. It is important to note that the SOSCF converger in Fire-
fly is much improved compared to the original SOSCF converger from GAMESS
US. In most cases, SOSCF is better than FULLNR.

FULLNR means a full Newton-Raphson orbital improvement step is taken, using
the exact orbital Hessian. FULLNR is a quite powerful convergence method,
and normally takes the fewest iterations to converge. Computing the exact
orbital Hessian requires two virtual orbital indices to be included in the
transformation, making this step quite time consuming, and of course memory
for storage of the orbital Hessian must be available. Because both the
transformation and orbital improvement steps of FULLNR are time consuming,
FULLNR is not the default. The FULLNR MCSCF code in Firefly uses the aug-
mented Hessian matrix approach to solve the Newton-Raphson equations. There
are two suboptions for computation of the orbital Hessian. DM2 is the fast-
est but takes more memory than TEI.

QUAD uses a fully quadratic, or second-order approach and is thus the most
powerful MCSCF converger. QUAD runs begin with unfolded FULLNR iterations,
until the orbitals approach convergence sufficiently. QUAD then begins the
simultaneous optimization of CI coefficients and orbitals, and convergence
should be obtained in 3-4 additional MCSCF iterations. The QUAD method re-
quires building the full Hessian, including orbital/orbital, orbital/CI,
and CI/CI blocks, which is a rather big matrix. QUAD may be helpful in con-
verging excited electronic states, but note that you may not use state av-
eraging with QUAD. QUAD is a memory hog, and so may be used only for fairly
small numbers of configurations.

The default converger is SOSCF because it usually requires the least CPU
time, disk space, and memory needs. Depending on the size of your calcula-
tion, however, there can be cases where FOCAS is faster so it is recommend-
ed you give this converger a try when convergence with SOSCF is generally
smooth. If you cannot reach convergence with the SOSCF method, you can try
to use the FULLNR method. However, this method should always be used with
caution as it is able to reach convergence even with badly chosen active
spaces, resulting in orbitals which from a chemical point of view make no
sense anymore. When doing MCSCF calculations, it is always wise to regular-
ly visualize your orbitals, but this goes double when using the FULLNR
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method. Alternatively, SOSCF convergence can be often be improved by per-
forming several FOCAS iterations to improve the active space followed by an
inspection of the natural orbitals, which can then be used in a subsequent
SOSCF calculation.

The input to choose the convergence method can be given in the $MCSCF group
(e.g. SOSCF=.T.). The keywords MAXIT, ACURCY, and ENGTOL, which control the
convergence behavior, also belong to this group. In some circumstances the
diagonalizations of the core and virtual orbitals to canonicalize these
(after overall MCSCF convergence) may produce spatial orbital symmetry
loss, particularly in point groups with degeneracy present. The SD=.T. op-
tion can be used to preserve symmetry in this case.

Determinants vs CSFs

Either determinants or configuration state functions (CSFs) may be used to
form the many electron basis set. It is necessary to explain these in a bit
of detail so that you can understand the advantages of each.

A determinant is a simple object: an antisymmetrized product of spin orbit-
als with a given Sz quantum number, that is, the number of alpha spins and
number of beta spins are a constant. Matrix elements involving determi-
nants are correspondingly simple, but unfortunately determinants are not
necessarily eigenfunctions of the S**2 operator.

To expand on this point, consider the four familiar 2e- functions which
satisfy the Pauli principle. Here u,v are space orbitals, and a, b are the
alpha and beta spin functions. As you know, the singlet and triplets are:

S1 = (uv + vu)/sqrt(2) * (ab - ba)/sqrt(2)
T1 = (uv) * aa
T2 = (uv - vu)/sqgrt(2) * (ab + ba)/sqrt(2)
T3 = (uv) * bb

It is a simple matter to multiply out S1 and T2, and to expand the two de-
terminants which have Sz=0,

D1 = |ua vb]| D2 = |va ub]
This reveals that

S1
T2

(D1+D2)/sqrt(2) or D1
(D1-D2)/sqrt(2) D2

(S1 + T2)/sqrt(2)
(S1 - T2)/sqrt(2)

Thus, one must take a linear combination of determinants in order to have a
wavefunction with the desired total spin.

There are two important points to note:
a) A two by two Hamiltonian matrix over D1 and D2 has eigenfunctions with -
different- spins, S=0 and S=1.

b) use of all determinants with Sz=0 does allow for the construction of
spin adapted states. D1+D2, or D1-D2, are -not- spin contaminated.
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By itself, a determinant such as D1 is said to be "spin contaminated", be-
ing a fifty-fifty admixture of singlet and triplet (it is curious that cal-
culations with just one such determinant are often called "singlet UHF").
Of course, some determinants are spin adapted all by themselves, for exam-
ple the spin adapted functions Tl and T3 above are single determinants, as
are the closed shells

S2
S3

(uu) * (ab - ba)/sqrt(2).
(vv) * (ab - ba)/sqrt(2).

It is possible to perform a triplet calculation, with no singlet states
present, by choosing determinants with Sz=1 such as T1, since then no state
with Sz=0 as is required when S=0 exists in the determinant basis set. To
summarize, the eigenfunctions of a Hamiltonian formed by determinants with
any particular Sz will be spin states with S=Sz, S=Sz+1, S=Sz+2, ... but
will not contain any S values smaller than Sz.

CSFs are an antisymmetrized combination of a space orbital product, and a
spin adapted linear combination of simple alpha-beta products. Namely, the
following CSF

Cl1 = A (uv) * (ab-ba)/sqrt(2)

which has a singlet spin function is identical to S1 above if you write out
what the antisymmetrizer A does, and the CSFs

C2 = A (uv) * aa
C3 = A (uv - vu)/sqrt(2) * ((ab + ba)/sqrt(2))
C4 = A (uv) * bb

equal T1-T3. Since the three triplet CSFs have the same energy, Firefly
works with the simpler form C2. Singlet and triplet computations using CSFs
are done in separate runs, because when spin-orbit coupling is not consid-
ered, the Hamiltonian is block diagonal in a CSF basis.

Technical information about the CSFs are that they use Yamanouchi-Kotani
spin couplings, and matrix elements are obtained using a GUGA, or graphical
unitary group approach.

The determinant implementation in Firefly can perform only full CI computa-
tions, meaning its primary use is for MCSCF wavefunctions of the complete
active space type. The CSF code is capable of more general CI computations,
and so can be used for first- or second-order CI computations. Other com-
parisons between the determinant and CSF implementations, as they exist in
Firefly today, are

determinants CSFs
parallel execution yes yes
direct CI yes yes
exploits space symmetry yes yes
state average mixed spins yes no
first-order density yes yes
state averaged densities yes yes
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can form CI Lagrangian yes yes

The default CISTEP in $MCSCF is ALDET, the Ames Laboratory determinant CI
code.

The next two sections describe in detail the input for specification of the
configurations, using determinants or CSFs.

Determinant CI code (ALDET)

The determinant CI code is capable only of full CI wavefunctions. Keywords
associated with the determinant CI code belong to the $DET and $CIDET
groups. The first of these is used for CASSCF calculations while the latter
is used for full CI calculations. Despite having a different name, these
two groups use almost the same keywords. Input for these groups is rela-
tively simple -- many runs can be done by specifying only the orbital and
electron counts: NCORE, NACT, and NELS.

The number of electrons is 2*NCORE+NELS and will be checked against the
charge implied by ICHARG. The MULT given in $CONTRL is used to determine
the desired Sz value, by extracting S from MULT=2S+1, then by default Sz=S.
If you wish to include lower spin multiplicities, which will increase the
CPU time of the run but will let you know what the energies of such states
are, just input a smaller value for SZ. The states whose orbitals will be
MCSCF optimized will be those having the requested MULT value, unless you
choose otherwise with the PURES flag. An interesting feature that should be
mentioned is that runs with Sz=0 use so-called NA = NB simplification and
therefore, on average, twice as fast compared to runs with other values of
Sz. This way, triplets can sometimes be computed faster using Sz=0 than the
native Sz.

When one would like to obtain many states of a certain multiplicity, diffi-
culties can be encountered when using the ALDET program as NSTATE will need
to be set to a very high value. For example, if one would like to obtain 20
singlet states, NSTATE possibly might need be set as high as 60. With this
many states, the Davidson diagonalization routine might fail due to loss of
orthogonality and spin purity as a consequence of the multiple repeated re-
orthogonalizations and reconstructions of the expansion basis. In such a
case, the ISPIN keyword can be used to filter out a part of the states pri-
or to Davidson diagonalization. ISPIN=0 filters out states with odd S val-
ues (triplets, heptaplets, etc.) while ISPIN=1 filters out states with even
S values (singlets, quintets, etc.). The NSTGSS keyword should be used to
request enough states prior to filtering. An example for obtaining 20
states with an even S value:

NSTATE=20 ISPIN=0 NSTGSS=60

The remaining parameters in $DET/$CIDET give extra control over the diago-
nalization process. Most are not given in normal circumstances, except
NSTATE, which you may need to adjust in order to produce enough roots of
the desired MULT value. The only important keyword which has not been dis-
cussed is the WSTATE array, which gives the weights for each state in form-
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ing the first- and second-order density matrix elements, which drive the
orbital update methods during MCSCF runs. Note that truly analytic gradi-
ents are available only when a pure state 1is specified, such as
WSTATE(1)=0,1,0 which requests gradients of the first excited state to be
computed. For state averaged MCSCF, gradients are instead obtained semi-
numerically using a state-specific gradient calculation over state-averaged
orbitals using a very efficient and accurate dedicated procedure based on
the differentiation of the averaged gradient of SA-MCSCF (which is dis-
cussed in more detail further on in this chapter). When used for state av-
eraged MCSCF, WSTATE is normalized to a unit sum, thus WSTATE(1)=1,1,1 re-
ally means a weight of 0.33333... for each of the states being averaged.

The ALDET code is able to exploit spatial symmetry, which, 1like the spin
and charge, is implicitly determined by the choice of the reference CSF.
The keyword GROUP in $DET/$CIDET governs the use of spatial symmetry. The
ALDET code works with Abelian point groups, which are D2h and any of its
subgroups. Fhe following point groups are supported: Cl1l, C2, CI, CS, C2V,
C2H, D2, D2H. For non-Abelian groups, the program automatically assigns the
orbitals to an irrep in the highest possible Abelian subgroup. For the oth-
er non-Abelian groups, you must at present select an Abelian subgroup of
the full point group or no symmetry at all (i.e. GROUP=C1l). When symmetry
is used, the desired irrep can be chosen with the keyword ISTSYM. Note that
when you are computing a Hessian matrix, many of the displaced geometries
are asymmetric, hence the program will automatically choose C1 in
$DET/$CIDET (however, be sure to use the highest symmetry possible in $DA-
TAD).

CSF CI code (GUGA)

The GUGA CSF package was originally a set of different programs, so the
input to control CSF-based MCSCF is spread over several input groups, name-
ly $DRT/$CIDRT, $GUGEM, $GUGDIA, $GUGDM, $GUGDM2, $CISORT, and $GUGDRT. The
CSFs are specified by a $DRT group for MCSCF wavefunctions and by a $CIDRT
group in the case of CITYP=GUGA. Thus, it is possible to perform an MCSCF
calculation defined by a $DRT group (or a $DET group, which is also possi-
ble), and follow this up with a CI calculation defined by a $CIDRT group
(or even a $CIDET group), in the same run.

Apart from the $DRT group, $GUGDIA, and $GUGDM2 are probably the most im-
portant groups for MCSCF runs. The most interesting variables outside the
$DRT group are NSTATE in $GUGDIA to include additional states in the CI
computation and WSTATE in $GUGDM2 to control which (average) state's ener-
gies are optimized. As with determinant-based MCSCF, truly analytic gradi-
ents are only available for pure states while state specific gradients for
state averaged MCSCF are obtained semi-numerically (which will be discussed
further on in this chapter).

The CSFs are specified by giving a reference CSF, together with a maximum
degree of electron excitation from that single CSF. The MOs in the refer-
ence CSF are filled in the order MCC (MCSCF) / FZC (CI) first, followed by
DOC, A0S, BOS, ALP, VAL, and EXT (the Aufbau principle). AOS, BOS, and ALP
are singly occupied MOs. ALP means a high spin alpha coupling, while
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AOS/BOS are an alpha/beta coupling to an open shell singlet. This requires
the value NAOS=NBOS, and their MOs alternate. An example is

NMCC=1 NDOC=2 NAOS=2 NBOS=2 NALP=1 NVAL=3
which gives the reference CSF
Mmcc,DbocC,DbocC, A0S, BOS, A0S, BOS,ALP, VAL, VAL, VAL

This is a doublet state with five unpaired electrons. VAL orbitals are un-
occupied only in the reference CSF, they will become occupied as the other
CSFs are generated. This is done by giving an excitation level, either ex-
plicitly by the IEXCIT variable, or implicitly by the FORS, FOCI, or SOCI
flags. One of these four keywords must be chosen, however, it is possible
to use specify IEXCIT in addition to FORS/FOCI/SOCI to limit the excitation
level inside the active space (thus creating an incomplete active space).
More information on FOCI and SOCI can be found in the section on multi-
reference CI.

Consider another simpler example:
NMCC=3 NDOC=3 NVAL=2

which gives the reference CSF
mcc,Mcc,Mcc, boc,DboC,DoC, VAL, VAL

having six electrons in five active orbitals. Usually, MCSCF calculations
are of the CASSCF/FORS type. These are enabled using the FORS keyword. In
the present instance, choosing FORS=.T. gives an excitation level of 4, as
the 6 valence electrons have only 4 holes available for excitation. MCSCF
runs typically have only a small number of VAL orbitals. It is common to
summarize this example as "six electrons in five orbitals" (which is often
written as 'CASSCF(6,5)').

Note that, if you choose an excitation level IEXCIT smaller than that need-
ed to generate the complete active space, you must use the FULLNR or SOSCF
method (as FOCAS assumes complete active spaces). Be sure to set FORS=.F.
in $MCSCF or else very poor convergence will result. Actually, the conver-
gence for incomplete active spaces is likely to be poor anyway.

As was discussed above, the CSFs are automatically spin-symmetry adapted,
with S implicit in the reference CSF. The spin quantum number you appear to
be requesting in $DRT (basically, S = NALP/2) will be checked against the
value of MULT in $CONTRL, and the total number of electrons, 2*NMCC(or
NFZC) + 2*NDOC + NAOS + NBOS + NALP will be checked against the input given
for ICHARG.

Like the ALDET code, the GUGA code is ab