
L

CM50S User Manual

CM11-430

L

Implementation
CM50S

CM50S User Manual
CM11-430

Release 4.1
7/93

Copyright, Trademarks, and Notices

Printed in U.S.A. – © Copyright 1992 by Honeywell Inc.

Revision 02 – July 1, 1993

While this information is presented in good faith and believed to be accurate,
Honeywell disclaims the implied warranties of merchantability and fitness for a
particular purpose and makes no express warranties except as may be stated in its
written agreement with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential
damages. The information and specifications in this document are subject to
change without notice.

Trademark Acknowledgments:

TDC 3000 is a trademark of Honeywell, Inc.
DEC, DECnet, VAX, MicroVAX, and VMS all are trademarks of the Digital Equipment
Corporation.

CM50S User Manual 7/93

About This Publication
This publication provides information on the writing, installation, testing, and modification
of Application Programs that execute in the CM50S (Rel 4.1) environment as an integral
part of a TDC 3000 Process Control System. It does not, by itself, cover everything you
need to know to develop advanced control schemes. Essential topics covered elsewhere
include

• TDC 3000 System Concepts

• TDC 3000 System Configuration

• FORTRAN, "C," and Pascal Programming Languages

A list of related publications is located in paragraph 1.3 of this publication.

Users of previous CM50S releases will find a discussion of support for vintage interface
routines at paragraph 1.4

You should be aware that all programmatic interface calls to CM50S are grouped by
programming language. Tab 2 precedes the FORTRAN calls (sections 9 thru 12), Tab 3
precedes the Pascal calls (sections 13 thru 16), and Tab 4 precedes the C language calls
(sections 17 thru 20).

NOTE

This publication supports Release 4.0 and 4.1 of CM50S.

NOTE

Change bars in this publication are used to indicate the technical changes that were made at
Release 4.1

CM50S User Manual 7/93

Table of Contents

CM50S User Manual i 7/93

1 INTRODUCTION

1.1 DEC VAX Interface to TDC 3000
1.2 DEC VAX Interface Architecture
1.3 References
1.3.1 Publications Found in the TDC 3000 LCN Bookset
1.4 Support for Vintage Interface Routines
1.5 Restrictions on Entity Name Lengths

TAB 1 —GENERAL USE INFORMATION

2 CONCEPTS AND MECHANISMS

2.1 Exchanging Data with an LCN
2.1.1 Single Point Transfers
2.1.2 Data Definition Tables
2.1.3 Multi-Point List Transfers
2.1.4 Point List Transfers
2.1.5 Dynamic Indirection
2.2 User Program Characteristics
2.2.1 Data Acquisition Programs (DAPs)
2.2.2 Advanced Control Programs (ACPs)
2.2.3 Indirect Control Programs
2.2.4 Program Execution Control
2.2.5 Summary of Program Execution Options
2.2.6 ACP Execution Example
2.3 CG/PLNM Database
2.3.1 Advanced Control Interface Data Points (ACIDPs)
2.3.2 Calculated Results Data Points (CRDPs)
2.3.3 Resident Data Definition Tables
2.4 Operator Interfaces to Application Programs
2.4.1 Process Operator Interfaces
2.4.2 Computer Operator Interfaces
2.5 CM50S Programmatic Interface
2.5.1 Programmatic Interface Include Files
2.5.2 Programmatic Interface Flag Parameter
2.5.3 Linking Application Programs to CM50S
2.6 Implementation Steps
2.6.1 System Start Up
2.6.2 Prepare CG/PLNM-Resident Data Points
2.6.3 Prepare Data Definition Tables
2.6.4 Compile, Link, and Install Programs
2.6.5 Test and Modify Programs and DDTs

3 ACCESS AND SECURITY

3.1 User Access to CM50S
3.1.1 User Registration Requirements
3.1.2 Log In Procedures
3.1.3 Menu-Driven Operations
3.1.4 DCL Commands and Error Messages
3.2 Starting Up CM50S
3.2.1 Using the CM50S_MGR Account
3.2.2 Submitting a Start Up Request

Table of Contents

CM50S User Manual ii 7/93

3.3 Shutting Down CM50S
3.3.1 User Notification
3.3.2 User Specified Delay
3.3.3 User Friendly Termination
3.3.4 Commnad

3.4 Limiting Access to Functions
3.4.1 Restrictive Rights
3.4.2 Access Control Lists
3.5 ACP Security
3.5.1 ACIDPs
3.5.2 Limiting Triggers
3.5.3 Running Under Specified Accounts
3.5.4 Privileges and Quotas
3.5.5 ACP Installation Log
3.6 Sending Modified Files to the LCN
3.6.1 ASCII File Extensions
3.6.2 Customizing File Extension Control

4 CG/PLNM POINT PREPARATION

4.1 CG/PLNM Point Building Overview
4.2 Custom Data Segment Construction
4.2.1 Custom Data Segment Heading
4.2.2 Custom Data Segment Parameters
4.2.3 Custom Data Segment Example
4.2.4 Custom Data Segment Compilation Recommendation
4.3 ACIDP/CRDP Point Building
4.3.1 ACIDP Scheduling Recommendations
4.3.2 The ACCESSKEY Parameter
4.3.3 Support for Continuous Control
4.4 ACIDP and CRDP Displays
4.4.1 CG/PLNM Parameter Descriptions
4.5 CG/PLNM Database Displays
4.5.1 CG Database Display
4.5.2 Status of Computer Gateways Display
4.5.3 Resident DDT Summary Display
4.5.4 Calculated Results Data Points Display
4.5.5 ACIDP Detail Display
4.5.6 ACIDP Summary Display
4.5.7 LCN Configuration Display

5 PROGRAM INSTALLATION AND TESTING

5.1 Program Linking
5.2 ACP Operations Screen
5.2.1 ACP Operations Screen Fields
5.2.2 ACP Operations Screen Function Keys
5.3 Modify Program Connection with ACIDP Screen
5.3.1 Modify Program Connection with ACIDP Screen Data Fields
5.3.2 Modify Program Connection with ACIDP Screen Function Keys
5.4 ACP List Screen
5.4.1 ACP List Screen Fields

Table of Contents

CM50S User Manual iii 7/93

5.4.2 ACP List Screen Function Keys
5.5 ACP Installation Screens
5.5.1 ACP Installation Screen 1 Fields
5.5.2 ACP Installation Screen 1 Function Keys
5.5.3 ACP Installation Screen 2 Fields
5.5.4 ACP Installation Screen 2 Function Keys
5.5.5 Use of DCL Within an ACP
5.6 ACP Installer Activity Log Screen
5.6.1 ACP Installer Activity Log Screen Fields
5.6.2 ACP Installer Activity Log Screen Function Keys
5.7 Test and Restricted Modes of ACP Operation
5.7.1 Test Mode Operation
5.7.2 Restricted Mode Operation
5.8 Recovery of an ACP From Abort State

6 DATA DEFINITION TABLES

6.1 Overview of DDT Preparation
6.2 DDT Operations Screen
6.2.1 DDT Operations Screen Fields
6.2.2 DDT Operations Screen Function Keys
6.3 Edit DDT Screens
6.3.1 DDT Table Entry Rules
6.3.2 Input DDT Data Entry Screens
6.3.3 Output DDT Data Entry Screens
6.3.4 History DDT Data Entry Screen
6.4 ACIDP-DDT Prefetch Screen
6.5 DDT Error Summary Display
6.6 DDT Detail Description Displays
6.6.1 Function Keys for DDT Detail Displays
6.6.2 Data Presentation Rules for DDT Detail Displays
6.6.3 DDT Display Screens for Input Tables
6.6.4 DDT Display Screens for Output Tables
6.6.5 DDT Display Screen for History Tables
6.7 DDT List Display
6.7.1 DDT List Screen Data Fields
6.7.2 DDT List Screen Function Keys
6.8 DDT Source File Preparation Rules
6.8.1 Data Type Records
6.8.2 Point Identification Records
6.8.3 Point Option Records
6.8.4 Description Record
6.8.5 DDT File Data Entry Rules

7 UTILITY OPERATIONS

7.1 Task Scheduler
7.1.1 Task Scheduler Operation
7.1.2 Scheduler Command Table File
7.1.3 Command Table Modification
7.1.4 Task Scheduler Menu
7.1.5 Scheduler DCL Command Files
7.2 Makeinc Utility

Table of Contents

CM50S User Manual iv 7/93

7.2.1 Running the Makeinc Program
7.2.2 Makeinc Error Screen
7.2.3 Using the List Format
7.2.4 Using the Item and Typed Item Formats
7.3 LCN File Transfer Operations
7.3.1 File Transfer Menu
7.3.2 Read File From LCN
7.3.3 Write File To LCN
7.3.4 Catalog File LIst
7.3.5 File Attributes
7.3.6 Volume List
7.3.7 Retrieve Volumes
7.3.8 Copy File
7.3.9 Move File
7.3.10 Rename File
7.3.11 Create Directory
7.3.12 Delete Directory
7.3.13 Delete File
7.3.14 Dataout Status
7.3.15 Abort Transfer

8 DCL COMMAND INTERFACE

8.1 Using the Command Interpreter
8.1.1 Incorporating CM50S Commands into DCL
8.1.2 Options and Qualifiers
8.1.3 Help and Error Handling
8.2 Retrieving LCN Data
8.2.1 Viewing LCN Value
8.2.2 History Module Collection Rate
8.3 Manipulating ACPs
8.3.1 Activate an ACP
8.3.2 Deactivate an ACP
8.3.3 Install an ACP
8.3.4 Uninstall an ACP
8.3.5 Connect an ACP to an ACIDP
8.3.6 Disconnect an ACP
8.3.7 Change Program Mode of an ACP
8.3.8 Display Status of an ACP
8.3.9 Display List of ACPs
8.4 Manipulating DDTs
8.4.1 Build a DDT
8.4.2 Delete a DDT
8.4.3 Install a DDT as CG Resident
8.4.4 Remove a DDT from the CG
8.4.5 Connect a DDT to an ACIDP
8.4.6 Disconnect a DDT from an ACIDP
8.4.7 Modify the Prefetch Triggers for a DDT
8.4.8 Display Summary Information for a DDT
8.4.9 Display Detailed Information for a DDT
8.4.10 Display List of DDTs
8.5 Transferring LCN Files
8.5.1 LCN File Read
8.5.2 LCN File Write

Table of Contents

CM50S User Manual v 7/93

8.5.3 List LCN Filenames
8.5.4 List LCN File Attributes
8.5.5 List File Attributes to Dataout
8.5.6 List LCN Volumes
8.5.7 Listing LCN Volumes to Dataout
8.5.8 Copy LCN File
8.5.9 Move LCN Files
8.5.10 Rename LCN File
8.5.11 Delete LCN File
8.5.12 Directory Transactions
8.5.13 Dataout Request
8.5.14 Dataout Status
8.5.15 Abort File Transfer

TAB 2—FORTRAN INTERFACE

9 FORTRAN LANGUAGE CONSIDERATIONS

9.1 CM50S Include Files
9.1.1 Include Files for Data Transfer Functions
9.1.2 Include Files for DDT and ACP Management
9.1.3 Programmatic Interface Flag Parameters
9.2 Calling Conventions
9.3 Compatibility of Application Program with its DDTs
9.4 Data Representations
9.5 Commonly Made Errors
9.6 Error Detection by Interface Functions
9.7 Summary of User-Program Interfaces

10 LCN DATA TRANSFERS (FORTRAN)

10.1 Multipoint (DDT) Data Transfers
10.1.1 DDT Get Data Interface
10.1.2 DDT Store Data Interface
10.1.3 Generic DDT Get Data Interface
10.1.4 Generic DDT Store Data Interface
10.1.5 Multi-Point List Get Data Interface
10.1.6 Multi-Point List Store Data Interface
10.1.7 Generate Multi-Point List
10.1.8 Read Multi-Point List
10.1.9 Write Multi-Point List
10.1.10 Create Include File for Multi-Point List
10.2 Point List Transfers
10.2.1 Point List Get Values Interface
10.2.2 Point List Get by Value Type Interface
10.2.3 Point List Store Values Interface
10.2.4 Point List Store by Value Type Interface
10.3 Single Point Data Transfers
10.3.1 Single Point Get Data (External ID) Interface
10.3.2 Single Point Store Data (External ID) Interface
10.3.3 Single Point Get Data (Internal ID) Interface
10.3.4 Single Point Store Data (Internal ID) Interface
10.3.5 Get LCN Clock Value Interface
10.4 Raw Data Transfers

Table of Contents

CM50S User Manual vi 7/93

10.4.1 Get Raw Data Interface
10.4.2 Store Raw Data Interface
10.4.3 Convert Raw Data
10.5 History Data Transfers
10.5.1 Selecting Records from the History Module
10.5.2 Get History Snapshots (Relative Time)
10.5.3 Get History Snapshots (Absolute Times)
10.5.4 Get History Averages (Relative Times)
10.5.5 Get History Averages (Absolute Times)
10.5.6 Get Monthly Averages (Relative Times)
10.5.7 Get Monthly Averages (Absolute Times)
10.5.8 Historization Sampling Rate Queries
10.6 Text Message Transfers
10.6.1 Get Message Interface
10.6.2 Send Message Interface

11 PROGRAM CONTROL AND SUPPORT (FORTRAN)

11.1 ACP Execution Support
11.1.1 ACP Initialization Interface
11.1.2 Get ACP Status Interface
11.1.3 ACP Delay Interface
11.1.4 ACP Hibernate Interface
11.1.5 ACP Termination Interface
11.2 Entity Name Conversions
11.2.1 Convert External to Internal ID
11.2.2 Convert List of External IDs
11.3 Value Conversions
11.3.1 Valid Number Check
11.3.2 Set Bad Value
11.3.3 Convert Time Values

12 CM50S ADMINISTRATION (FORTRAN)

12.1 Programmatic Interfaces to ACP Operations
12.1.1 Install ACP
12.1.2 Uninstall ACP
12.1.3 Activate ACP
12.1.4 Deactivate ACP
12.1.5 Connect ACP to an ACIDP
12.1.6 Disconnect ACP from an ACIDP
12.1.7 Change ACP Mode
12.1.8 Get ACP Summary
12.1.9 Get List of ACPs
12.2 Programmatic Interface to DDT Operations
12.2.1 Build/Rebuild DDT
12.2.2 Delete DDT
12.2.3 Get DDT Summary
12.2.4 Get List of DDTs
12.2.5 Get DDT Detail
12.2.6 Connect DDT to ACIDP
12.2.7 Disconnect DDT from ACIDP
12.2.8 Modify Triggers
12.2.9 Install DDT Into CG
12.2.10 Uninstall DDT from CG

Table of Contents

CM50S User Manual vii 7/93

12.3 Programmatic Interface to CG Database
12.3.1 Resident DDT Summary
12.3.2 Calculated Results Data Points List
12.3.3 ACIDP Detail
12.3.4 ACIDP Summary
12.3.5 LCN Configuration
12.4 Programmatic Interface to File Transfer
12.4.1 Read LCN File
12.4.2 Write LCN File
12.4.3 List LCN File Attributes
12.4.4 List LCN File Names
12.4.5 List LCN Volumes/Directories
12.4.6 Cataloging LCN Files to Dataout
12.4.7 Cataloging LCN Volumes to Dataout
12.4.8 LCN File Copy
12.4.9 LCN File Move
12.4.10 LCN File Rename
12.4.11 LCN File Delete
12.4.12 LCN Directory Maintenance
12.4.13 Dataout Status
12.4.14 Abort File Transfer Transaction

TAB 3—PASCAL INTERFACE

13 PASCAL LANGUAGE CONSIDERATIONS

13.1 CM50S Include Files
13.1.1 Include Files for Data Transfer Functions
13.1.2 Include Files for DDT and ACP Management
13.1.3 Programmatic Interface Flag Parameters
13.2 Calling Conventions
13.3 Compatibility of Application Program with its DDTs
13.4 Data Representations
13.5 Commonly Made Errors
13.6 Error Detection by Interface Functions
13.7 Summary of User-Program Interfaces

14 LCN DATA TRANSFERS (PASCAL)

14.1 Multipoint (DDT) Data Transfers
14.1.1 DDT Get Data Interface
14.1.2 DDT Store Data Interface
14.1.3 Generic DDT Get Data Interface
14.1.4 Generic DDT Store Data Interface
14.1.5 Multi-Point List Get Data Interface
14.1.6 Multi-Point List Store Data Interface
14.1.7 Generate Multi-Point List
14.1.8 Read Multi-Point List
14.1.9 Write Multi-Point List
14.1.10 Create Include File for Multi-Point List
14.2 Point List Transfers
14.2.1 Point List Get Values Interface
14.2.2 Point List Get by Value Type Interface
14.2.3 Point List Store Values Interface

Table of Contents

CM50S User Manual viii 7/93

14.2.4 Point List Store by Value Type Interface
14.3 Single Point Data Transfers
14.3.1 Single Point Get Data (External ID) Interface
14.3.2 Single Point Store Data (External ID) Interface
14.3.3 Single Point Get Data (Internal ID) Interface
14.3.4 Single Point Store Data (Internal ID) Interface
14.3.5 Get LCN Clock Value Interface
14.4 Raw Data Transfers
14.4.1 Get Raw Data Interface
14.4.2 Store Raw Data Interface
14.4.3 Convert Raw Data
14.5 History Data Transfers
14.5.1 Selecting Records from the History Module
14.5.2 Get History Snapshots (Relative Time)
14.5.3 Get History Snapshots (Absolute Times)
14.5.4 Get History Averages (Relative Times)
14.5.5 Get History Averages (Absolute Times)
14.5.6 Get Monthly Averages (Relative Times)
14.5.7 Get Monthly Averages (Absolute Times)
14.5.8 Historization Sampling Rate Queries
14.6 Text Message Transfers
14.6.1 Get Message Interface
14.6.2 Send Message Interface

15 PROGRAM CONTROL AND SUPPORT (PASCAL)

15.1 ACP Execution Support
15.1.1 ACP Initialization Interface
15.1.2 Get ACP Status Interface
15.1.3 ACP Delay Interface
15.1.4 ACP Hibernate Interface
15.1.5 ACP Termination Interface
15.2 Entity Name Conversions
15.2.1 Convert External to Internal ID
15.2.2 Convert List of External IDs
15.3 Value Conversions
15.3.1 Valid Number Check
15.3.2 Set Bad Value
15.3.3 Convert Time Values

16 CM50S ADMINISTRATION (PASCAL)

16.1 Programmatic Interfaces to ACP Operations
16.1.1 Install ACP
16.1.2 Uninstall ACP
16.1.3 Activate ACP
16.1.4 Deactivate ACP
16.1.5 Connect ACP to an ACIDP
16.1.6 Disconnect ACP from an ACIDP
16.1.7 Change ACP Mode
16.1.8 Get ACP Summary
16.1.9 Get List of ACPs
16.2 Programmatic Interface to DDT Operations
16.2.1 Build/Rebuild DDT
16.2.2 Delete DDT

Table of Contents

CM50S User Manual ix 7/93

16.2.3 Get DDT Summary
16.2.4 Get List of DDTs
16.2.5 Get DDT Detail
16.2.6 Connect DDT to ACIDP
16.2.7 Disconnect DDT from ACIDP
16.2.8 Modify Triggers
16.2.9 Install DDT Into CG
16.2.10 Uninstall DDT from CG
16.3 Programmatic Interface to CG Database
16.3.1 Resident DDT Summary
16.3.2 Calculated Results Data Points List
16.3.3 ACIDP Detail
16.3.4 ACIDP Summary
16.3.5 LCN Configuration
16.4 Programmatic Interface to File Transfer
16.4.1 Read LCN File
16.4.2 Write LCN File
16.4.3 List LCN File Attributes
16.4.4 List LCN File Names
16.4.5 List LCN Volumes/Directories
16.4.6 Cataloging LCN Files to Dataout
16.4.7 Cataloging LCN Volumes to Dataout
16.4.8 LCN File Copy
16.4.9 LCN File Move
16.4.10 LCN File Rename
16.4.11 LCN File Delete
16.4.12 LCN Directory Maintenance
16.4.13 Dataout Status
16.4.14 Abort File Transfer Transaction

TAB 4—"C" INTERFACE

17 "C" LANGUAGE CONSIDERATIONS

17.1 CM50S Include Files
17.1.1 Include Files for Data Transfer Functions
17.1.2 Include Files for DDT and ACP Management
17.1.3 Programmatic Interface Flag Parameters
17.2 Calling Conventions
17.3 Compatibility of Application Program with its DDTs
17.4 Data Representations
17.5 Commonly Made Errors
17.6 Error Detection by Interface Functions
17.7 Summary of User-Program Interfaces

18 LCN DATA TRANSFERS ("C")

18.1 Multipoint (DDT) Data Transfers
18.1.1 DDT Get Data Interface
18.1.2 DDT Store Data Interface
18.1.3 Generic DDT Get Data Interface
18.1.4 Generic DDT Store Data Interface
18.1.5 Multi-Point List Get Data Interface
18.1.6 Multi-Point List Store Data Interface

Table of Contents

CM50S User Manual x 7/93

18.1.7 Generate Multi-Point List
18.1.8 Read Multi-Point List
18.1.9 Write Multi-Point List
18.1.10 Create Include File for Multi-Point List
18.2 Point List Transfers
18.2.1 Point List Get Values Interface
18.2.2 Point List Get by Value Type Interface
18.2.3 Point List Store Values Interface
18.2.4 Point List Store by Value Type Interface
18.3 Single Point Data Transfers
18.3.1 Single Point Get Data (External ID) Interface
18.3.2 Single Point Store Data (External ID) Interface
18.3.3 Single Point Get Data (Internal ID) Interface
18.3.4 Single Point Store Data (Internal ID) Interface
18.3.5 Get LCN Clock Value Interface
18.4 Raw Data Transfers
18.4.1 Get Raw Data Interface
18.4.2 Store Raw Data Interface
18.4.3 Convert Raw Data
18.5 History Data Transfers
18.5.1 Selecting Records from the History Module
18.5.2 Get History Snapshots (Relative Time)
18.5.3 Get History Snapshots (Absolute Times)
18.5.4 Get History Averages (Relative Times)
18.5.5 Get History Averages (Absolute Times)
18.5.6 Get Monthly Averages (Relative Times)
18.5.7 Get Monthly Averages (Absolute Times)
18.5.8 Historization Sampling Rate Queries
18.6 Text Message Transfers
18.6.1 Get Message Interface
18.6.2 Send Message Interface

19 PROGRAM CONTROL AND SUPPORT ("C")

19.1 ACP Execution Support
19.1.1 ACP Initialization Interface
19.1.2 Get ACP Status Interface
19.1.3 ACP Delay Interface
19.1.4 ACP Hibernate Interface
19.1.5 ACP Termination Interface
19.2 Entity Name Conversions
19.2.1 Convert External to Internal ID
19.2.2 Convert List of External IDs
19.3 Value Conversions
19.3.1 Valid Number Check
19.3.2 Set Bad Value
193.3 Convert Time Values

20 CM50S ADMINISTRATION ("C")

20.1 Programmatic Interfaces to ACP Operations
20.1.1 Install ACP
20.1.2 Uninstall ACP
20.1.3 Activate ACP
20.1.4 Deactivate ACP

Table of Contents

CM50S User Manual xi 7/93

20.1.5 Connect ACP to an ACIDP
20.1.6 Disconnect ACP from an ACIDP
20.1.7 Change ACP Mode
20.1.8 Get ACP Summary
20.1.9 Get List of ACPs
20.2 Programmatic Interface to DDT Operations
20.2.1 Build/Rebuild DDT
20.2.2 Delete DDT
20.2.3 Get DDT Summary
20.2.4 Get List of DDTs
20.2.5 Get DDT Detail
20.2.6 Connect DDT to ACIDP
20.2.7 Disconnect DDT from ACIDP
20.2.8 Modify Triggers
20.2.9 Install DDT Into CG
20.2.10 Uninstall DDT from CG
20.3 Programmatic Interface to CG Database
20.3.1 Resident DDT Summary
20.3.2 Calculated Results Data Points List
20.3.3 ACIDP Detail
20.3.4 ACIDP Summary
20.3.5 LCN Configuration
20.4 Programmatic Interface to File Transfer
20.4.1 Read LCN File
20.4.2 Write LCN File
20.4.3 List LCN File Attributes
20.4.4 List LCN File Names
20.4.5 List LCN Volumes/Directories
20.4.6 Cataloging LCN Files to Dataout
20.4.7 Cataloging LCN Volumes to Dataout
20.4.8 LCN File Copy
20.4.9 LCN File Move
20.4.10 LCN File Rename
20.4.11 LCN File Delete
20.4.12 LCN Directory Maintenance
20.4.13 Dataout Status
20.4.14 Abort File Transfer Transaction

TAB 5—APPENDICES

APPENDIX A—STATUS AND ERROR CODES

A.1 Data Access Status Codes
A.2 Return_Status Codes
A.3 CM50S System Status Messages
A.3.1 Informational Messages
A.3.2 Warning Messages
A.3.3 Severe Messages
A.3.4 Fatal Messages
A.4 File Transfer Management Status Codes
A.4.1 LCN File Manager Status Codes
A.4.2 LCN Utility Manager Status Codes

Table of Contents

CM50S User Manual xii 7/93

APPENDIX B—SYSTEM SOFTWARE ISSUES

B.1 Configuration of a CG or PLNM
B.1.1 PLNM Configuration Choices
B.1.2 CG Configuration Choices
B.2 Assignment of CG/PLNM Ports
B.2.1 PLNM Ports
B.2.2 CG Ports
B.3 CM50S Software Installation
B.4 CM50S Directories and Files
B.5 Restart Procedure
B.6 Communications Troubleshooting
B.7 Data Link Status Information
B.8 System Backup

APPENDIX C—CM50S CAPACITIES SUMMARY

APPENDIX D—CALLABLE FUNCTIONS AND PROCEDURES LIST

APPENDIX E—ASSIGNMENT OF PROCESS UNITS TO CG

APPENDIX F—INSTALLATION OF HDLC MODULES

F.1 Installation of HDLC Module on VAX BI Bus
F.1.1 Verification of Resources
F.1.2 Inserting the HDLC Board
F.1.3 Installing the Interface Connector
F.2 Installation of HDLC Module on Q-Bus
F.2.1 Verification of Resources
F.2.2 Inserting the HDLC Board
F.2.3 Installing the Interface Connector
F.3 Installation of HDLC Module on VAX Unibus
F.3.1 Verification of Resources
F.3.2 Inserting the HDLC Board
F.3.3 Installing the Interface Connector
F.3.4 HDLC Connections to Computer Gateways

APPENDIX G—VINTAGE PROCEDURES

G.1 Introduction to Vintage Interface Routines
G.1.1 Summary of Rel 1 User-Program Interfaces
G.1.2 Summary of Replaced Rel 2 User-Program Interfaces
G.1.3 Summary of Replaced Rel 3 User-Program Interfaces
G.2 Multipoint Data Transfers
G.2.1 Get Data Interface
G.2.2 Store Data Interface
G.3 Single Point Data Transfers
G.3.1 Get Single Point (External ID) Interface
G.3.2 Store Single Point (External ID) Interface
G.3.3 Get Single Point (Internal ID) Interface
G.3.4 Store Single Point (Internal ID) Interface

 G.4 History Data Transfers
G.4.1 Get History (Absolute Times) Interface
G.4.2 Get History (Relative Time) Interface

Table of Contents

CM50S User Manual xiii 7/93

G.4.3 History Data Return Formats
G.4.4 History Data Format Conversion
G.5 Text Message Transfers
G.5.1 Get Message Interface
G.5.2 Send Message Interface
G.6 ACP Execution Support
G.6.1 ACP Trap Handler Interface
G.6.2 Get ACP Status Interface
G.6.3 ACP Delay Interface
G.6.4 ACP Termination Interface
G.7 Utility Routines
G.7.1 Check Bad Value Interface
G.7.2 Set Bad Value Interface
G.7.3 Convert External to Internal ID Interface
G.7.4 Convert LCN Time (Time Stamp)
G.8 Single Point Data Transfers
G.8.1 Get Single Point (External ID) Interface
G.8.2 Store Single Point (External ID) Interface
G.8.3 Get LCN Clock Value Interface
G.9 Point Arrays Without DDTs
G.9.1 Point List Get Values Interfaces
G.9.2 Point List Store Values Interfaces
G.10 Single-Point History Calls
G.10.1 Single-Point Get History Interfaces
G.11 ACP Execution Support
G.11.1 ACP Trap Handler Interface
G.12 Utility Routines
G.12.1 Convert External to Internal ID Interface
G.12.2 Convert LCN Time (Time Stamp)
G.13 Replaced Rel 3 User-Program Interfaces
G.13.1 Connect ACP to ACIDP
G.13.2 Connect DDT to ACIDP
G.13.3 Disconnect DDT from ACIDP
G.13.4 Modify Triggers

APPENDIX H—SAMPLE PROGRAMS

H.1 Linker Procedures (CM50_LNK)
H.2 Using DDTs (DDTACP)
H.3 Using Multi-Point Lists (MPLACP)
H.4 Using Point List Arrays (PT_LIST)
H.5 Using Single Point Functions (SINGL_PT)
H.6 Accessing History (HISTORY)
H.7 Managing ACPs (ACP_ADMIN)
H.8 Managing DDTs (DDT_ADMIN)
H.9 Reading the CG Database (CG_BASE)
H.10 Using LCN File Transfer Functions (LCN_XFER)

INDEX

CM50S User Manual xiv 7/93

CM50S User Manual 1-1 7/93

1

INTRODUCTION
Section 1

This section discusses uses for a DEC VAX in a TDC 3000 system; reviews the most significant
hardware and software components of CM50S; and lists the other publications you need to
consult during implementation and operation of CM50S.

1.1 DEC VAX INTERFACE TO TDC 3000

By the addition of CM50S hardware and software, your DEC VAX can become a fully
integrated node in a TDC 3000 control system, thus enabling it to exchange information
with all other nodes on the same LCN. At the same time, the DEC VAX communications
capabilities enable it to serve as a data-gathering node within an overall plant-wide
management information system. This combination of capabilities provides a broad range
of potential applications.

Among the expected advanced applications for a DEC VAX in a TDC 3000 system are

• Custom Report Generation

• Long Term Data Storage

• Process Scheduling

• Process Optimization

• Plant Management Tasks

1.2 DEC VAX INTERFACE ARCHITECTURE

The DEC VAX interface to TDC 3000 consists of three pieces:

• A DEC VAX or MicroVAX computer with VAX/VMS (Release 5.4.1 or later), the
FMS Runtime Package and, if connected to a PLNM, the LAT Master Package and
LAT Patch CSC 511.

• Either a Computer Gateway (CG) with an HDLC connection (and a CM50S
communications board installed in the VAX) or a Plant Network Module (PLNM)
connected to the VAX by the Local Area Terminal (LAT) protocol.

• CM50S software from Honeywell IAC. This CM50S software consists of IAC-
provided extensions to VMS that handle the details of communication between user-
written application programs in the VAX and other LCN nodes.

See Figure 1-1 for an overview of the DEC VAX interface architecture. (Note that CM50S
can support either up-to four CGs or up-to four PLNMs and that each CG/PLNM can be
connected to the same or to different LCNs.)

CM50S User Manual 1-2 7/93

1.3

The CG and PLNM are standard LCN nodes. The CG hardware components include an
LCN interface board, an MCPU, a memory, a power supply, and a communication
interface board for an HDLC connection link to the VAX. Its memory contains the
standard TDC 3000 node-environment software along with CG-specific application
software and a user-defined database loaded from the LCN.

The PLNM differs from the CG by the replacement of the HDLC interface with a Computer
Network Interface (CNI) board for the DECnet connection. The CNI board is downloaded
with communications software from the VAX.

The CG/PLNM database includes two data point types that are used for controlling the
scheduling of user programs in the VAX and for holding data to be exchanged between the
VAX and other nodes on the TDC 3000 Local Control Network.

1.3 REFERENCES

The following TDC 3000 publications contain additional information required to
understand functions of the CM50S package. For VAX/VMS-related questions, refer to
the appropriate DEC manuals.

1.3.1 Publications Found in the TDC 3000 LCN Bookset

Title Binder

Network Form Instructions Implementation/Startup & Reconfiguration - 1
System Control Functions Implementation/Startup & Reconfiguration - 2
Computer Gateway Forms Implementation/Configuration Forms
Computer Gateway Form Instructions Implementation/CM50S
Computer Gateway Parameter Reference
Dictionary

Implementation/CM50S

Data Entity Builder Manual Implementation/Engineering Operations - 1
Picture Editor Reference Manual Implementation/Engineering Operations - 2
Hiway Gateway Parameter Reference
Dictionary

Implementation/Hiway Gateway - 1

Hiway Gateway Control Functions Implementation/Hiway Gateway - 1
Process Manager Parameter Reference
Dictionary

Implementation/Process Manager - 2

Process Manager Control Functions and
Algorithms

Implementation/Process Manager - 2

Application Module Parameter Reference
Dictionary

Implementation/Application Module - 1

Control Language/Application Module
Reference Manual

Implementation/Application Module - 2

Control Language/Application Module Data
Entry

Implementation/Application Module - 2

CM50S User Manual 1-3 7/93

1.3.1

VAX

CG CG

CG CG

HDLC Interface

LAT Interface

VAX

PLNM PLNM PLNM PLNM

HDLC Interface

LAT Interface

Figure 1-1 — Alternative CM50S Hardware Organizations 4664

CM50S User Manual 1-4 7/93

1.4

1.4 SUPPORT FOR VINTAGE INTERFACE ROUTINES

Improvements in user-interface routines since the first release have allowed CM50S to
become a more integrated and user-friendly product. In cases where additional options are
defined for future TDC 3000 releases, the interface routines allocate space for those options
to ease the migration path. For the convenience of existing CM50S users, the old
procedure calls (both Pascal and FORTRAN) continue to be supported to allow you to use
existing programs without change; however, Honeywell IAC strongly recommends
converting existing programs to use of the new interface calls to simplify future system
maintenance and to take advantage of new capabilities.

See Appendix G—Vintage Procedures—for a complete reiteration of the old user-interface
procedure calls.

1.5 RESTRICTIONS ON ENTITY NAME LENGTHS

CM50S internally supports 16-character ACIDP names and 20-character LCN entities (a
16-character point name that can be preceded by an optional "pinid" prefix for Network
Gateway routing) for all current calls. However, not all LCNs will recognize point names
longer than eight characters.

Any LCN running under TDC 3000 Release 320 or earlier will receive only the first eight
characters of the point name from the VAX. Any LCN running under TDC 3000 Release
400 or later will receive the full-length entity names, even if the system-wide values on that
LCN limit point names to eight characters. If an entity name greater than eight characters is
sent to a Release 320 or earlier, it is truncated (so as to match an LCN name with the first
eight characters). If the same entity name is sent to a Release 400 or later LCN that has
only short point names, it will cause a "point not found" return.

All point name arguments used in CM50S calls must be declared to be their full length and
have values that are either filled with trailing blanks (FORTRAN & Pascal standard) or are
terminated with a null character ("C" standard).

The earlier CM50 calls that used eight-character point names are still supported as vintage
calls. The vintage calls may be used with any release of TDC 3000 as long as the actual
point name being addressed contains no more than eight non-blank characters.

CM50S User Manual 2-1 7/93

2

CONCEPTS AND MECHANISMS
Section 2

This section introduces you to the use of the software features that have been added to a VAX
computer to provide a simple, efficient interface to data in devices on the TDC 3000 Local Control
Network.

CM50S serves as a platform for computer applications connected to one to four LCNs. It
provides routines for activation of programs, moving sets of data values between the LCN
and the host computer, and for managing those programs and data sets.

2.1 EXCHANGING DATA WITH AN LCN

Before starting an explanation of how application programs get and give LCN data, a short
explanation of the TDC 3000 database organization and data access is appropriate.

Because the TDC 3000 is a distributed system, its data is spread among the various nodes.
Each piece of data is assigned to a data owner (program) in the node where it resides. To
address a specific data item on the LCN, you provide character strings that identify both a
point name and the name of a parameter applicable to that point type (referred to together as
point.parameter). This information is used in a request that is broadcast to all nodes on the
LCN. The data owner responds with a numeric "internal address" that can be used for
direct access to the data. When a program requests a piece of data by point.parameter
name, the "internal address" must be obtained each time. Time and LCN loading is saved
by having the program obtain the "internal address" and saving it for use each time the data
is requested.

Because CM50S can be connected to up-to-four Computer Gateways or Plant Network
Modules (on the same or different LCNs), data access requests must specify which
CG/PLNM is being addressed. Within the VAX, CG/PLNMs are addressed by a VAX
port number (not by its LCN node number).

Several sets of interface routines are provided to enable access to process values held by
data points on the LCN. Your choice of which type of Get/Store interface routine to use is
affected by characteristics of the data to be processed.

For example, to access one parameter (or one element of a parameter array) of a single data
point, you would use a single-point interface routine. To get the same type of single-value
data for multiple points, you could use either a Multipoint or a Point List request. On the
other hand, if you need an efficient way to get all the data in a parameter array, you could
use a single-point or a Raw Data request.

• Get/Store Current Process Values: Current process values are obtained from the
CG/PLNM, the Applications Module, the Hiway Gateway (data from Hiway boxes),
or the Network Interface Manager (data from UCN boxes). The value of any
point.parameter on the LCN may be read by CM50S. Storing of values from CM50S
to the LCN is subject to restrictions established by LCN configuration choices and by
the control mode in effect for the destination point.

CM50S User Manual 2-2 7/93

2.1.1

• Get History Values: History-value accumulations stored on the History Module (HM)
may be retrieved into CM50S as either snapshots or averages. Averages are available
for periods ranging from a configurable minimum of 3 to 30 minutes to a maximum of
a month. For each average, the minimum and maximum values and the number of
valid snapshots collected during the period are also returned.

• Get/Send Messages: A control program can send character-string messages to all
operator stations within its operating area by using the Send Message interface routine.
An option to wait for operator confirmation is provided. Other devices on the LCN can
send character-string messages to CM50S. These messages are received by the
CG/PLNM and held, pending the control program's call of the Get Message interface
routine. Presence of a pending message at the CG/PLNM is detected by the Get Status
interface routine.

2.1.1 Single Point Transfers

Single-point calls get or store a value for one point.parameter per request. For array
parameters, the request can be for the entire array or for a specific array element (by its
index value). Note: Although single point transfers are generally less efficient than multi-
point transfers, they are the most efficient mechanism for transferring arrays—since the
multi-point calls request each element of an array as a distinct value.

For the special case of transferring Real values between LCNs through CM50S, a special
set of single point calls bypasses the normal conversions between LCN and VAX floating-
point formats. These raw data requests get or store all values of a parameter array in
unconverted (LCN) format, one point for each request. Raw data requests work only with
arrays of data type Real.

2.1.2 Data Definition Tables

Multipoint requests get or store data for a single parameter (or parameter array element) for
each specified point. (You could use this type of request to process a parameter array, but
it would require a separate entry for each individual array element.) This type of request is
controlled by a Data Definition Table (DDT). The DDT specifies the set of point.parameter
values to be accessed and how each value is to be processed.

DDT tables are of three distinct types: Input, Output, and History. Within an Input or
Output table the points are grouped by data type (real, integer, ASCII, enumeration, etc.).
Individual point and parameter names are specified along with individual point-value
processing information.

A Data Definition Table provides a list of up to 300 tagnames (of a maximum of 4 different
data types) whose values are to be transferred as a synchronized unit. All points specified
in a DDT must be on the same LCN (i.e. addressable through the same CG/PLNM. A
DDT may also define data filters ("table processing") that are to be applied by CM50S. For
DDTs, the validation of the point.parameters is done ahead of time so that the run-time
calls reference the values efficiently by their internal addresses. Note that the DDT is not
part of the calling program; it is separately constructed and installed.

The use of DDTs is supported by a comprehensive set of routines for managing multi-point
data transfers, but does involve some disk overhead at run time. This run-time overhead
can be avoided by using the Multi-Point List routines.

CM50S User Manual 2-3 7/93

2.1.2

A DDT can be referenced by more than one application program, but this practice is not
recommended. If the DDT uses the option of updating a values file, the concurrent use of
that DDT by multiple processes is not permitted.

2.1.2.1 DDT Management

DDTs are generated from source text files that specify the points and parameters to be
transferred along with any option Table Processing operations. It is recommended that
users build and revise DDT source files through the Edit screens of the DDT operations
interface, as this interface will assure that all the syntax requirements are met.

When a DDT is built from a source file, its characteristics are recorded in the CM50S global
common and a set of disk files are created to support the management of DDT data
transfers. The DDT management utilities include reports of the status of all built DDTs and
detailed information about any specific DDT along with options to change the
characteristics or delete a DDT or associate it with a specific control program and ACIDP.

The DDT management functions may be executed through the forms-driven terminal
interface, DCL commands or programmatic calls within the VAX.

2.1.2.2 Table Processing Options

Value transformations for input and output DDTs are performed by the Table Processor.
The data filtering options are:

• Test mode value substitution (input only)

• Bad Value substitution (input only)

• Value scaling (for Real values, a choice of 9 transformation algorithms)

• Limit checking

• Value clamping

• Source/Destination reordering of data arrays

Table processing also allows for the values (both before and after filtering) for the most
recent transfer to be recorded in a disk file. This Value Table option allows complete
monitoring of the data transfer process, but can have a significant performance effect on a
system with heavy disk utilization.

Run-time options allow multi-point data transfers to bypass the table processing operations
and place the data directly into the appropriate data arrays specified by the call.

CM50S User Manual 2-4 7/93

2.1.3

2.1.3 Multi-Point List Transfers

A Multi-Point List (MPL) is a memory-resident list of internal identifiers of a group of up
to 300 tags. An MPL can contain tags of up to four different data types. The structure of a
Multi-Point List is identical to the structure used by the CG/PLNM to process DDT
requests.

The CM50S MPL interface routines use memory-resident MPL definitions (instead of
reading DDT disk files at run time). Thus, performance conscious users can improve
throughput by using MPLs to bypass the management overhead of DDTs.

MPLs offer increased flexibility over DDTs in that the same MPL can be used for both
input and output, multiple users can make concurrent data requests using the same MPL,
and an MPL request can be redirected through a different CG/PLNM at runtime. There is
no limit to the number of MPLs that can be generated. On the other hand, the Table
Processing options and DDT management utilities are not available to MPLs.

The Multi-Point List routines support getting and storing current process values, retrieving
history data, generating MPLs for lists of tagnames, and saving/reading MPLs to/from
disk. Note: Any DDT may be used by the MPL routines by reading its Internal Identifiers
file (.II).

2.1.4 Point List Transfers

Point List data requests get or store data of a specified type from/to groups of points
without the use of DDTs. Each entry in a Point List request affects a single point.parameter
or a single element of a parameter array. Each call may transfer up to 300 values of the
same data type (real, integer, ASCII, enumeration, time, point_id, etc.)

2.1.5 Dynamic Indirection

Some LCN applications use dynamic indirection to reference a tag whose Entity Id is stored
in a custom data segment. A program in the VAX can follow this indirection by making a
pair of Single Point calls. The first call retrieves the Entity Id (using value type = 15) from
the custom data segment. The returned value then is used as the entity name in a Single
Point Get or Store (External Id) function call to access the referenced value.

CM50S User Manual 2-5 7/93

2.2

2.2 USER PROGRAM CHARACTERISTICS

User-written application programs supported by CM50S execute within the environment
provided by the VMS operating system, but also uses special interface routines that
simplify the tasks required in the exchange of data with other TDC 3000 nodes and boxes.
These interface routines are compatible with your use of FORTRAN, Pascal, or "C"
programming languages. Specifics of interfacing routines in each of these programming
languages are found following Tabs 2, 3, and 4 respectively.

Each CM50 application program falls into one of the following categories:

• Data Acquisition Programs (DAPs)—use a one-way interface to retrieve values from
the LCN for analysis and storage in the VAX but have no affect on any control
operations.

• Advanced Control Programs (ACPs)—provide a two-way interface for exchanging data
between the VAX and the LCN and thus need to be more tightly bound to process
control operations.

• Indirect Control Programs—use "surrogate" ACPs that enable them to store data in
LCN points without meeting all the requirements of an ACP.

Each program normally includes three stages, each with its related interface routines.

Setup stage—The first executable statement of an ACP should call the ACP Initialization-
interface routine (CM50_SET_ACP) to map the ACIDP connection and
establish the CM50 exit handler. Use of this interface routine is optional for
DAPs and Indirect control programs.

If the program can be activated from the LCN, the Get ACP Status-interface
routine (GETSTS) should be used to obtain information that indicates why
the ACP has been activated (and clear the pending-request flags), thereby
establishing what actions may be necessary at this specific activation.

Run stage—The main body of the program handles the desired data manipulation and
logical processing. Routines for exchange of data with LCN-resident modules
are available to get point data, store point data, receive messages, send
messages, and get history data.

Also available are bad-data handling routines, an external to internal address-
conversion routine, LCN time to external time conversions, a program delay
routine, and a program hibernate routine.

Cleanup stage— If the program is subject to demand execution from the LCN, then
program termination should be preceded by another use of the Get ACP Status
interface routine to determine if an additional processing cycle has been
requested while the program was running.

As a final call, the ACP Termination routine (PRGTRM) provides status
information for trap handling by the CM50S exit handler. Use of this interface
routine is optional for DAPs and Indirect control programs).

CM50S User Manual 2-6 7/93

2.2.1

2.2.1 Data Acquisition Programs (DAPs)

A Data Acquisition Program retrieves data from LCNs for processing in the host computer.
A DAP may retrieve data from multiple LCNs. A DAP is not connected to an ACIDP and
does not have any affect on process control operations. (Therefore use of the CM50S
initialization and termination routines is optional.) Typical applications of Data Acquisition
Programs are:

• Long term history collection and periodic reporting, where the DAP is activated in the
host on a regular schedule to retrieve data from the LCN and store it in a database or
format it into a printed report. These programs generally run as detached processes,
have no direct user interaction, and use MPL or Point List calls to retrieve a large
number of values during each processing cycle.

• On-line analysis, where the DAP is activated interactively from a user terminal to
monitor and/or perform analytic calculations on current process conditions. These
programs may be executed concurrently by several users, may use a graphics interface
(such as X windows), and are apt to use single point calls for ad hoc selection of points
to retrieve or MPLs for predefined data sets.

• Event capture, which is similar to long term history collection except that the DAP is
activated based on an asynchronous event or computer operator demand. (In order to
detect LCN events, an application program must be installed as an ACP.)

2.2.1.1 General Restrictions

• A DAP can only Get point data, not Store it.

• A DAP cannot use the Get Message or Send Message interfaces.

• A DAP cannot be activated from the LCN.

2.2.1.2 DAP Activation

Data acquisition programs are activated using the standard VMS facilities, such as the RUN
command. Periodic scheduling of a DAP is normally done using the CM50 Scheduler
utility.

2.2.1.3 DAP Trap Handling

Use of the ACP Initialization routine by a DAP is optional, but recommended.

2.2.1.4 DAP Program Suspension

A DAP can use the ACP Delay function to suspend its operation for up to 60 seconds.

2.2.1.5 DAP Termination

Use of the ACP Termination function by a DAP is only used (and then is required) when it
has used the ACP Initialization routine.

CM50S User Manual 2-7 7/93

2.2.2

2.2.2 Advanced Control Programs (ACPs)

Any program that directly stores values to an LCN or must react to events on the LCN is
considered to be an Advanced Control Program (ACP). These programs are tightly bound
to a specific LCN through an ACIDP (see heading 2.3). An ACP can retrieve data from
multiple LCNs, but is allowed to store data only through the CG/PLNM containing its
associated ACIDP. Typical ACP applications are:

• Information download—to obtain economic and management data from VAX files
and/or data from laboratory instruments or other LCNs and stores it in custom data
segments on an LCN for use on operator displays. In the event of VAX or link
failures, these displays continue to show the most recently stored values.

• Recipe/Target update—to perform analytical calculations in the VAX to optimize recipe
or target values used by CL programs for process control. These programs rely on the
CL code (in an AM or other device) to confirm the success of the download and to
respond to failures with appropriate control shedding.

• Direct control—to store calculated values to set points or other parameters that have a
direct effect on the control process. These programs should be connected to an ACIDP
that is configured with Remote Cascade Enabled so that control will be shed
appropriately in the event that communication fails or the CM50S is shut down.

2.2.2.1 General Restrictions

• Each ACP must be connected to an ACIDP, therefore a maximum of 250 ACPs may be
installed per CG/PLNM.

• An ACP cannot be executed concurrently by multiple users.

• An ACP must include the setup and cleanup stages

• An ACP does not require user interaction.

• The standard system input and output files for an ACP must be simple text files (no
graphics interface). By default, the standard SYS$OUTPUT is directed to the NULL
device.

2.2.2.2 ACP Activation

An ACP normally is initiated from the LCN through its associated ACIDP. Scheduling by
an ACIDP can be configured as time-based (periodic or cyclic), operator demand initiated,
or a combination. The ACP also is activated when the the ACIDP's Point Process Special
(PPS) flag is set by an Event Initiated Point (EIP) or a programmatic store from another
LCN node.

An ACP can be activated from the VAX using the CM50S interface. The ACP activation
routine may be invoked through the ACP Operations forms, a DCL command or
programmatically. The standard VMS program activation facilities (such as RUN) do NOT
provide the ACIDP synchronization required for advanced control applications.

CM50S User Manual 2-8 7/93

2.2.2

If sophisticated scheduling is required (for example, activating the ACP at different times
depending on the day of the week), then the ACP Activation command may be placed
under the CM50S scheduler utility.

2.2.2.3 ACP Trap Handling

Use of the ACP initialization routine is required.

2.2.2.4 ACP Suspension

An ACP can use the ACP Delay function to suspend its operation for up-to-60 seconds
and/or use the ACP Hibernate function to suspend its operation until the next external
activation (EIP, operator demand, or schedule).

2.2.2.5 ACP Termination

Use of the ACP Termination function is required.

2.2.2.6 ACP Status Table

The connections between Advanced Control Programs and ACIDPs are maintained in the
ACP Status Table.

Programs are installed as ACPs, connected to ACIDPs and deleted from this table using the
ACP Operations utility (or the ACP DCL command or programmatic calls). All of the
VMS options (standard file assignments, process name, priority, special privileges and
quotas) used to run the ACP as a detached process are specified when the ACP is installed
and are maintained in this table.

2.2.2.7 ACP Installation Modes

Data transfer by an ACP is affected by the program's installation mode, as specified in the
ACP status table.

• Normal Mode Operation: When a program is installed as an ACP in Normal mode, all
forms of ACP activation are permitted and live data values are used in the data transfers.
Acceptance of stores to regulatory parameters are controlled by the current mode of the
destination point on the LCN and Data Hiway or UCN.

• Restricted Mode Operation: When a program is installed as an ACP in Restricted mode,
any attempts to store data or to send messages are blocked. Time-based scheduling is
replaced by ACP Operations screen activation. Programs cannot be disconnected from
their corresponding ACIDPs while in Restricted Mode. An ACP from ACIDP disconnect
can be done only after a change of mode to Normal or Test.

• Test Mode Operation: Test mode operation is the most restrictive mode of ACP
operation. All store or send message requests are blocked. Test values are substituted
for live input data when provided for in the DDT Get Data request's Data Definition Table
(no test value substitution is done for non-DDT data transfers). Time-based activation of
any ACP in test mode is disabled.

CM50S User Manual 2-9 7/93

2.2.2

2.2.2.8 ACP Execution States

An installed ACP will be in one of the following Execution states:

• ABORT—The program has aborted and the ACIDP must be cleared from the US, or by
disconnecting it from the ACP and then reconnecting it, before the program can be
triggered again.

• ACCESS—The ACIDP is controlling an active LCN Data Access request to transfer
values. The ACP program is suspended while waiting completion of the I/O request.

• DELAY—The program is not running in the VAX, but it is scheduled to be triggered by
its ACIDP.

• FAIL—The program aborted in the VAX without sending an abort message to the LCN.

• HIBR—The program is resident in the VAX, waiting for a trigger before it resumes
processing. Note that this state is visible only on the VAX; the ACIDP shows RUN state
on the LCN.

• OFF—The program is not running in the VAX, but can be activated normally.

• PEND—The program has been spawned by the VAX but has not started execution. This
state should be very transitive. If a program remains in this state it means that either
1) the program does not call CM50_SET_ACP (or ACPTRP) as its first statement; or
2) the VAX priorities are such that the program never gets a chance to execute; or
3) a VAX access control problem has occurred when opening SYS$INPUT,

SYS$OUTPUT, or SYS$ERROR and the process has been killed without executing
the program.

Note that this state is visible only on the VAX; the ACIDP shows RUN state on the
 LCN.

• RUN—The program is currently running.

• WAIT—The program has suspended itself using the CM50_ACPDELAY function. It
will resume running in from 1 to 60 seconds. Note that this state is visible only on the
VAX; the ACIDP shows RUN state on the LCN.

CM50S User Manual 2-10 7/93

2.2.3

2.2.3 Indirect Control Programs

Some applications must store values to an LCN but do not meet the restrictions imposed on
an ACP. Examples are: storing values to more than one LCN, multiple concurrent users
with occasional writes to an LCN, or a graphics program with an option to send calculated
results to an LCN. These applications can be implemented by writing Indirect Control
Programs that use ACIDPs connected to Surrogate ACPs.

A Surrogate ACP is a program that does no real processing but is connected to an ACIDP
for the sole purpose of allowing other programs to communicate to the LCN through its
ACIDP connection. The surrogate ACP spends most of its time suspended, leaving its
ACIDP in RUN state. Deactivating the ACP will block stores to the LCN for all Indirect
Control Programs using that ACIDP.

An Indirect Control Program behaves exactly like a Data Acquisition Program except that it
stores values to an LCN by specifying an ACIDP name in the data transfer request. Note
that while an ACIDP is servicing a data transfer request from one user, it shifts from RUN
to ACCESS state thereby blocking concurrent transactions from other users. Since
successful completion of the store data request is dependent on the current state of the
ACIDP, the use of retry logic is recommended.

2.2.3.1 General Restrictions

• An Indirect Control Program needs a surrogate ACP connected to an ACIDP in order for
it to store data on the LCN.

• An Indirect Control Program can use the MPL and/or Point List routines to store data on
the LCN, but cannot use DDT or Single Point calls.

• An Indirect Control program in a multi-user environment must include retry logic to
handle ACIDP contention situations.

2.2.3.2 Indirect Control Program Activation

Indirect Control programs are activated using the standard VMS facilities, such as the RUN
command. Periodic scheduling normally is done using the CM50 Scheduler utility.

2.2.3.3 Indirect Control Program Trap Handling

Use of the ACP initialization routine by Indirect Control Programs is optional, but
recommended.

2.2.3.4 Indirect Control Program Suspension

An Indirect Control Program can use the ACP Delay function to suspend its operation for
up-to-60 seconds.

CM50S User Manual 2-11 7/93

2.2.3

2.2.3.5 Indirect Control Program Termination

Use of the ACP Termination function by an Indirect Control program is only used (and
then is required) when it has used the ACP Initialization routine.

2.2.4 Program Execution Control

Programs that access data on an LCN need stronger controls on their execution states than
the normal procedures provided by VMS. CM50S includes routines that maintain the
necessary synchronization between processes running on the VAX and the status
information kept in the CG/PLNM.

2.2.4.1 Trap Handling

The CM50S trap handler updates the ACIDP status and ACP Status Table during the VMS
wrap-up processing which is invoked by both normal and abnormal terminations (but not
by the VMS STOP/ID= command or Delete_Process system service). This trap handler is
connected to an ACP by the CM50_SET_ACP function (or the vintage ACPTRP
procedure). The CM50_SET_ACP function allows the user to specify whether the ACIDP
status is set to ABORT (blocking reactivation) or OFF/DELAY in the event of abnormal
program termination.

This function also informs the system that the process is using the CM50S shared image,
so it is recommended the CM50_SET_ACP be the first executable statement in every
program that accesses the LCN.

NOTE

To ensure that ACP terminations are handled correctly and that VMS CM50S data structures
reflect the correct termination status, a call to establish the Trap Handler must be the first
operating instruction of each ACP.

When an ACP terminates, the CG/PLNM is informed that the ACP has gone from "Run" to
"Off/Delay" state or to "Abort" state. Once in "Abort" state, the CG/PLNM suspends
periodic or cyclic scheduling of the ACP. Reactivation of the ACP requires Universal
Station operator demand or a CM50S restart. A program abort alarm is sent to the Real-
Time Journal whenever an ACP terminates in "Abort" state.

• Normal Termination: Under most circumstances, the CG/PLNM is informed of
program completion by a call to the ACP Termination routine (PRGTRM).

• VMS-Induced Termination: If VMS terminates an ACP because of a detected error
(e.g., an I/O error or divide by zero) an abort code of VMSF is stored in the ACIDP's
ABORTCOD parameter.

CM50S User Manual 2-12 7/93

2.2.4

• ACP Deactivate/Terminate Request: The ACP Operations screen Deactivate/Terminate
function halts an ACP in either "Off/Delay" or "Abort" state as specified by operator
entry.

• VMS Stop/Identifier Operation: Use of this privileged VMS DCL function to terminate
an ACP bypasses the normal CM50S exit handling. This results in both CG/PLNM
and CM50S data structures erroneously showing the ACP to still be in the "Run" state.
This problem can be corrected by invoking the ACP Operations screen
Deactivate/Terminate function to inform CM50S and the CG/PLNM that the ACP has
been terminated.

2.2.4.2 Suspending Execution

• Program Delay: A running application program can suspend its operation for a period of
from 1 to 60 seconds. During that time, ACP schedule status is unaffected by activities
of its ACIDP or by ACP Operations screen activation. (The associated ACIDP remains
in RUN state during the suspension.)

• Program Hibernate: A running ACP can request suspension until it is reactivated by a
CM50S turn-on request from either its ACIDP or the VAX. This allows the ACP to
remain memory-resident so that it can respond quickly to a triggering event at the
CG/PLNM. When an ACP goes into Hibernate state, the next time it is activated, VMS
will not need to create a new process but can immediately wake-up the existing ACP.
The ACP will resume processing with the first statement following the call to Hibernate.

2.2.4.3 Trigger Resolution

The Get ACP Status routine retrieves the trigger parameters from the ACIDP, allowing the
program to determine whether it was activated based on the CG/PLNM scheduler, operator
demand, process demand (EIP), or CG/PLNM initialization. In addition to reading in the
current values, this routine resets all of the pending triggers to OFF, so this call can be used
to prevent excessive reactivation of an ACP.

CM50S User Manual 2-13 7/93

2.2.5

2.2.5 Summary of Program Execution Options

The following table summarizes the data exchange and program activation options for the
different types of CM50S application programs.

Table 2-1 — CM50S Program Attributes
PROGRAM TYPE

ATTRIBUTE ACP
Normal
Mode

ACP
Rstrct
Mode

ACP
Test
Mode

Indirect
Control

Program
DAP

Interface routines effective?
- DDT Get Data yes yes test* yes yes
- DDT Store Data yes no no no no
- MPL Get Data yes yes yes yes yes
- MPL Store Data yes acidp** acidp** yes no
- Single Point Get Data yes yes yes yes yes
- Single Point Store Data yes no no no no
- Point List Get Data yes yes yes yes yes
- Point List Store Data yes acidp** acidp** yes no
- Raw Data Get yes yes yes yes yes
- Raw Data Store yes no no no no

- DDT Get History yes yes yes yes yes
- MPL Get History yes yes yes yes yes
- Single Point Get History yes yes yes yes yes
- Get Message yes yes yes no no
- Send Message yes no no yes no
- ACP Initialization must must must option option
- Get ACP Status yes yes yes no no
- ACP Delay yes yes yes yes yes
- ACP Hibernate yes yes yes no no
- ACP Terminate must must must option option
- Check Bad Value yes yes yes yes yes
- Set Bad Value yes yes yes yes yes
- Convert Ext to Int id yes yes yes yes yes
- Convert Raw Data yes yes yes yes yes
- Get LCN Clock Value yes yes yes yes yes
- Convert LCN Time yes yes yes yes yes

ACIDP activation?
- Cyclic yes no no no no
- Periodic yes no no no no
- Operator Demand yes yes yes no no
- Process Special yes yes yes no no
- Message Waiting at CG/PLNM yes yes yes no no

VAX activation?
- ACP Operations screen yes yes yes no no
- Programmatic Activate yes yes yes no no
- VMS RUN command no no no yes yes

 *Test values specified in the DDT are substituted for live input data .
** If an ACIDP is explicitly named in the call, the success of the store depends on the
 Access_Key and Execution_State of that ACIDP. If the ACIDP name is defaulted,
 placing the ACP in Restricted or Test mode blocks the store.

CM50S User Manual 2-14 7/93

2.2.6

2.2.6 ACP Execution Example

The following is an example of the processing flow during ACP execution. The example is
based on activation by an operator on the LCN.

AT A UNIVERSAL STATION

1. The ACP is demanded through its ACIDP's Detail Display

IN THE CG/PLNM

2. The CG/PLNM Scheduler program creates and sends a message requesting the
CG/PLNM Communication Handler to turn on the ACP. Data collection from the
LCN starts if DDT Prefetch is triggered (the DDT must be CG/PLNM-resident and
attached to the ACIDP).

3. The CG/PLNM Communication Handler sends the turn on message to the VAX
Communication Handler.

IN THE VAX

4. The VAX Communication Handler sends the turn on message to the VAX
Dispatcher.

5. The VAX Dispatcher creates a detached process (unless the ACP is memory resident
in Hibernate state) then sends a message to the CG/PLNM to set the ACIDP to RUN
state, updates the ACP Status table and wakes up the ACP.

6. VMS opens the preassigned files (SYS$INPUT & SYS$OUTPUT) then the ACP
calls the CM50S trap handler as its first statement.

7. The ACP calls the trigger resolution routine to retrieve (and clear) the current values
of the ACIDP status parameters and determines how it was activated.

8. A call to a Get Data routine creates a message based on the DDT referenced and
sends it to the VAX Communication Handler. The message contents include

• Sender's Process identification
• Identification of the CG/PLNM receiver
• Message length
• Internal ID and parameter file if needed

9. The ACP task is suspended.

10. The VAX Communication Handler sends the message to the CG/PLNM
Communication Handler.

IN THE CG/PLNM

11. The CG/PLNM Communication Handler issues LCN Data Access calls to obtain the
value for each tag from its Data Owner node (unless the data was already gathered by
a Prefetch trigger).

12. When all the values have been returned and formatted into a return message, the
CG/PLNM Communication Handler sends it to the VAX Communication Handler.

CM50S User Manual 2-15 7/93

2.2.6

IN THE VAX

13. The VAX Communication Handler "wakes up" the suspended task and the interface
routine writes the retrieved information into storage allocated by the ACP.

14. The ACP performs calculations on the retrieved data, placing the calculated results in
an array.

15. A call to a Store Data routine creates a message based on the DDT referenced and
sends it to the VAX Communication Handler.

16. The ACP task is suspended.

17. The VAX Communication Handler sends the message to the CG/PLNM
Communication Handler.

IN THE CG/PLNM

18. The CG/PLNM Communication Handler issues LCN Data Access calls to write the
value for each tag to its Data Owner node.

19. When the completion status of all the writes have been returned and formatted into a
return message, the CG/PLNM Communication Handler sends it to the VAX
Communication Handler.

IN THE VAX

20. The VAX Communication Handler "wakes up" the suspended task and the interface
routine writes the retrieved status information into storage allocated by the ACP.

21. The ACP checks the success of the store. In case of error, it takes appropriate
action, such as sending a message to an operator or setting the termination code to an
ABORT value to prevent additional processing until the error condition has been
corrected.

22. Upon successful completion of processing, the ACP calls the trigger resolution
routine to retrieve (and clear) the current values of the ACIDP status parameters. If
another processing cycle has been triggered, it jumps back to step 8.

23. The ACP calls the program termination routine indicating normal completion.
(Alternately it calls the CM50_HIBER routine to remain memory resident. This call
is followed by a jump back to step 7, which will be executed when the ACP is
reactivated.)

24. The CM50S exit handler sends a message to the CG/PLNM to reset the ACIDP to
OFF/DELAY and updates ACP Status table.

25. VMS deletes the process and recovers the resources used by the ACP.

CM50S User Manual 2-16 7/93

2.3

2.3 CG/PLNM DATABASE

NOTE

Other nodes on the LCN cannot directly access data in the VAX. Other nodes can, however,
read data that has been stored by VAX-resident programs to the CG/PLNM's ACIDP and
CRDP data points.

2.3.1 Advanced Control Interface Data Points (ACIDPs)

The Advanced Control Interface Data Point (ACIDP) has the multiple duties of controlling
the execution of ACPs in the VAX, of being a message buffer between the VAX and other
LCN nodes, and of providing Custom Data Segments for storage of calculated values from
the VAX or other LCN nodes (see heading 4.2).

Each ACIDP can be connected to a single ACP in the VAX, or none at all. The ACIDP's
Custom Data Segments are normally used to hold values associated with the specific
program connected to that ACIDP. However if the ACIDP's Access Key value permits
LCN writes, the connected ACP can write to the parameters of any point on the LCN
unless the target point's access is limited to Entity Builder only.

2.3.1.1 Impact on Data Transfers

Access to LCN data is affected by the status of a connected ACIDP. No application
program can write data to an LCN unless that program is connected (directly or indirectly)
to an ACIDP and that ACIDP is in RUN state at the time of the write request. (An ACIDP
is placed in RUN state by the CM50S trap handling routine when the program connected to
it is legally activated.) Writing to an LCN also requires that the ACIDP be built with an
Access Key of READWRITE.

Retrieving data from an LCN does not require an ACIDP connection, but if an ACIDP
connection exists (for DDT and Single Point calls) or is explicitly named (for MPL and
Point List calls) the data transfer will be blocked at run time unless the ACIDP is in RUN
state.

2.3.1.2 Impact on Program Activation

A program that is connected to an ACIDP can be activated only when that ACIDP is in the
OFF/DELAY state and is in PERMIT mode. Requests for program activation while the
program is running are maintained in the ACIDP, allowing immediate reactivation when the
current processing cycle is completed. If an abnormal termination of a program places an
ACIDP in Abort state, then all requests to activate that program are ignored until the ACIDP
is reset (presumably after the cause of the program failure has been identified and fixed).

CM50S User Manual 2-17 7/93

2.3.1

The process operator can prevent a program's activation from the LCN by selecting the
INH_STAT target on the associated ACIDP's Universal Station Detail Display and setting
it to INHIBIT. The same target is used to unblock program activation by setting it to
PERMIT. Alternatively, you can construct a custom display that performs this function by
a store of INHIBIT/PERMIT to the ACIDP's INH_STAT parameter.

NOTE

Because the INH_STAT parameter is initially set to the "inhibit" state, first-time CG/PLNM
scheduling of an ACP cannot begin until after operator action to "permit" operation through
the ACIDP's Detail Display or a custom display allowing access to that parameter. See the CG
Parameter Reference Dictionary for details.

• ACIDP Scheduling

Scheduled activation of a program is requested by the CG/PLNM only if its associated
ACIDP shows it to be installed and in Normal (not Restricted or Test) mode, and not
inhibited by Process Operator action.

Periodic programs first run at a specified daily start time (STIME) and thereafter run at a
specified time interval (RTPERIOD). The STIME value must be less than RTPERIOD.
The next scheduled activation time is calculated from the start time and time interval.

Example 1: RTPERIOD = 24:00:00 STIME = 17:00:00
This program runs each day at 17:00:00 hours.

Example 2: RTPERIOD = 08:00:00 STIME = 07:00:00
This program runs each day at the following hours: 07:00:00, 15:00:00 and 23:00:00.

Cyclic programs run at a specified time interval (RTPERIOD). The next scheduled
activation time is calculated by adding the specified time interval to the current LCN time
whenever the ACIDP is activated (whether by schedule or demand).

Example 3: RTPERIOD = 00:10:00
This program runs every 10 minutes.

The time-interval range for both periodic and cyclic programs is 10 seconds to 24 hours.
The subcategories of periodic/demand and cyclic/demand programs also allow for
activation by process-operator demand from the Universal Station.

Note that this scheduling is done by the CG/PLNM based on the LCN's clock. Time
change at the VAX does not affect scheduling of programs that stay in phase with LCN
processing.

• Process Initiated Activation

When a node on the LCN stores a value of 'ON' in the PPS parameter of an ACIDP, the
program connected to that ACIDP is immediately activated. Stores to the PPS parameter

generally come from an HG (Event Initiated Processing) or an AM (CL/AM program), but

CM50S User Manual 2-18 7/93

2.3.2

another program running on a VAX can also use this mechanism. This activation method
is also used by the CG/PLNM upon receipt of a Message to an ACIDP. Event-activation
by PPS is independent of scheduling type or installation mode.

• LCN Operator Activation

An ACP can be activated from a Universal Station through the PROCESS target on its
ACIDP's Detail Display if its activation type is demand, cyclic/demand, or periodic/
demand. You can also create custom displays that provide for the activation of programs
using the OPER_DMD parameter of the ACIDP. See the Picture Editor Reference Manual
for details.

Operators may also use the PROCESS target to reset an ACIDP from Abort state to
Off/Delay.

• Run on Initialization

If an ACIDP is built specifying RUN_INIT = ON and is connected to a program in
Normal Mode, it will be activated whenever CM50S is initialized by either a CM50 start up
on the VAX or a CG/PLNM initialization/reload on the LCN.

2.3.2 Calculated Results Data Points (CRDPs)

The Calculated Results Data Point (CRDP) role is restricted to that of Custom Data
Segment storage for calculated values (see heading 4.2). They generally are used for
variables that are not associated with a single program and ACIDP. The use of a CRDP
requires the creation a Custom Data Segment defining the parameters that will hold the
stored values. The same Custom Data Segment may be assigned to multiple CRDPs.

2.3.3 Resident Data Definition Tables

Two related options provide enhanced performance for data retrieval using a DDT without
any changes in the calling program.

Up to 40 data Input DDTs can be memory-resident in each CG/PLNM memory. This
eliminates the data-link traffic associated with moving the DDT from the VAX to the
CG/PLNM each time it is needed.

You can enable the CG/PLNM to start data collection in parallel with ACP activation. This
prefetch of data can be established for any Input DDT stored in CG/PLNM memory by
associating it with a specific ACIDP (see heading 6.4).

CM50S User Manual 2-19 7/93

2.4

2.4 OPERATOR INTERFACES TO APPLICATION PROGRAMS

Different types of operator access to operation of an application program are provided at the
TDC 3000 Universal Station (process operator) and at the VAX programmer's terminal
(computer operator).

2.4.1 Process Operator Interfaces

The process operator can affect application program operation from the Universal Station
only if that program is connected to an ACIDP (i.e., the program is an ACP).

The process operator can view ACP status, inhibit ACP operation, demand immediate ACP
execution (if permitted for that ACP), view ACIDP and CRDP point.parameter values, and
view or change ACIDP and CRDP Custom Data Segment values. The operator's ability to
change Custom Data Segment values is controlled by access restrictions established at
point-build time.

Some of the ACP-initiated screen messages require operator confirmation.

2.4.2 Computer Operator Interfaces

A user on a VAX terminal can execute CM50S functions through either a menu-driven
interface or through command language directives. The menu-driven interface to CM50S
functions is described in Section 3, and the use of DCL level commands to invoke CM50S
functions is described in Section 8.

The menu-driven interface supplies specialized interactive displays that enable the computer
operator to install or uninstall an ACP, change its operating mode, and start and stop
individual ACP execution. He also can view ACP status by examination of ACIDP
parameters in the CG/PLNM. Other VAX terminal interactive displays affecting application
programs are the DDT Operations display, the Task Scheduler display, and the Makeinc
Utility display.

CM50S User Manual 2-20 7/93

2.5

2.5 CM50S PROGRAMMATIC INTERFACE

CM50S functions can be invoked by function calls from within a user-written application
program. (An exception is the generation and editing of source code for a DDT, which can
be done using standard text file handling logic.) The function calls can be made from
Pascal, FORTRAN, or "C" programs, providing all arguments are passed by reference.

The calling program does not need to be an ACP, but some functions (particularly
activating an ACP) require that the user have appropriate VMS privileges. All users of the
CM50S programmatic interface must be registered with the SYSLCK privilege.

The programmatic interface is divided into two sections, one for LCN data transfers (all
application programs), and one for DDT and ACP management functions.

2.5.1 Programmatic Interface Include Files

The Programmatic Interface is supported by include files for user application programs that
define data structures, constants, and subroutines required to make the Programmatic
Interface calls. These include files are language specific. The Pascal definitions establish
all arrays at there maximum allowable size; if smaller arrays are used as actual arguments,
they should be passed explicitly by reference to avoid conflicts with Pascal's strong data
typing restrictions. The C function definitions include prototyping of the arguments.

2.5.1.1 Data Transfer Routines

One of these files will normally be included in each application program:

CM50$LIB:CM50_INCLUDE.PAS Pascal types and definitions for the
standard functions.

CM50$LIB:CM50_DDT_INCLUDE.H C definitions for the standard functions.
CM50$LIB:CM50_DDT_INCLUDE.FOR FORTRAN definitions for the standard

functions.

2.5.1.2 DDT and ACP Management

DDT and ACP management functions use some shared data structures, which are defined
in the CM50_FLAGS_INCLUDE files. Therefore, this file should be included in any
program that calls either DDT or ACP functions before the include file defining those
specific functions.

CM50$LIB:CM50_FLAGS_INCLUDE.PAS Pascal definitions for the shared data
structures in the programmatic interface
calls.

CM50$LIB:CM50_DDT_INCLUDE.PAS Pascal types and definitions for all
programmatic DDT operations.

CM50$LIB:CM50_ACP_INCLUDE.PAS Pascal types and definitions for all
programmatic ACP management
operations.

CM50S User Manual 2-21 7/93

2.5.1

CM50$LIB:CM50_FLAGS_INCLUDE.H C definitions for the shared data
structures in the programmatic interface
calls.

CM50$LIB:CM50_DDT_INCLUDE.H C definitions for all programmatic DDT
operations.

CM50$LIB:CM50_ACP_INCLUDE.H C definitions for all programmatic ACP
management operations.

CM50$LIB:CM50_FLAGS_INCLUDE.FOR FORTRAN definitions for the shared data
structures in the programmatic interface
calls.

CM50$LIB:CM50_DDT_INCLUDE.FOR FORTRAN definitions for all
programmatic DDT operations.

CM50$LIB:CM50_ACP_INCLUDE.FOR FORTRAN definitions for all
programmatic ACP management
operations.

2.5.1.3 LCN File Transfer Routines

The LCN File Transfer functions share some data declaration with the DDT and ACP
management functions. These common declarations are defined in the
CM50_FLAGS_INCLUDE files. Therefore, this file should be included before the
CM50_FTF_INCLUDE file in any program that calls a file transfer program.

CM50$LIB:CM50_FLAGS_INCLUDE.PAS Pascal definitions for the shared data
structures in the programmatic calls.

CM50$LIB:CM50_FTF_INCLUDE.PAS Pascal declarations specific to LCN file
transfer functions.

CM50$LIB:CM50_FLAGS_INCLUDE.H C definitions for the shared data
structures in the programmatic calls.

CM50$LIB:CM50_FTF_INCLUDE.H C declarations specific to LCN file
transfer functions.

CM50$LIB:CM50_FLAGS_INCLUDE.FOR FORTRAN definitions for the shared
data structures in the programmatic
calls.

CM50$LIB:CM50_FTF_INCLUDE.FOR FORTRAN declarations specific to
LCN file transfer functions.

CM50S User Manual 2-22 7/93

2.5.1

2.5.2 Programmatic Interface Flag Parameter

A 32-bit parameter called FLAGS (in FORTRAN declare as INTEGER*4) is included in
every programmatic DDT and ACP management function to control some of the handling
options. Some of the flags apply to only the DDT calls, some to only the ACP calls, and
some can be used by both. All user-visible flags are described below.

• CM50$M_HANDLER—(Bit 0) Indicates that the user has provided a custom exception
handler. The default is OFF.

• CM50$M_MSGON—(Bit 1) Prints all diagnostic messages to SYS$OUTPUT. The
default is OFF.

• CM50$M_CGRES—(Bit 5) Installs the DDT as CG/PLNM resident. The default is
OFF.

• CM50$M_REBUILD_DDT—(Bit 6) Rebuilds an existing DDT. The default is OFF.

• CM50$M_NO_SOURCE_DEBUG—(Bit 7) Produces no error file during DDT build.
The default is OFF.

• CM50$M_DMP_DDT_ERRORS—(Bit 8) After building the DDT, sends the error file
produced by the DDT build to SYS$OUTPUT. If this flag is set, then the
CM50$M_NO_SOURCE_DEBUG flag must be OFF.

• CM50$M_ACIDP_ACTIVATE—(Bit 9) Reserved for internal CM50S use.

• CM50$M_WRITE_VT—(Bit 10) Creates the .VT file with write privilege.

All of the flags described above, represent bit masks that can be added together to enable
any combination of the flags. These flag values also can be used to see if a particular flag
is set. A Pascal example is shown below.

%include 'CM50$LIB:CM50_FLAGS_INCLUDE.PAS'
%include 'CM50$LIB:CM50_DDT_INCLUDE.PAS'

var
DDT_Name : DDT_NAME_TYPE;
Summary : DDT_SUMMARY_REC;
Flags : CM50_FLAG_TYPE;
Return_Status : FUNC_RET_STAT;

begin
DDT_Name := 'test ';
flags := 0;
.
.
flags := CM50$M_HANDLER + CM50$M_MSGON;
Return_Status := DDT_SUMMARY(DDT_Name, Summary, Flags)

end;

CM50S User Manual 2-23 7/93

2.5.3

2.5.3 Linking Application Programs to CM50S

User application programs must be linked with the programmatic interface routines in order
to invoke those functions.The following link command links the TEST application program
to all the programmatic interface routines:

1 $ LINK /EXEC=USER_DIRECTORY: USER_DIRECTORY:TEST -
2 CM50$LIB:CM50_CONTROL.OBJECT,-
3 SYS$INPUT/OPT
4 CM50$EXE:CM50_SHARE.EXE/SHARE
5 CM50$EXE:CM50_FTF_SHARE.EXE/SHARE

Line 2 directly links the CM50S trap handling routines to the executable program.
Line 4 maps the program to the CM50S global common and is required for every program

that uses any of the programmatic routines.
Line 5 maps the program to the File Transfer global section and is required for programs

that issue calls to any of the LCN file transfer functions.

2.6 IMPLEMENTATION STEPS

The exact sequence varies depending on specific circumstances, but all the following steps
are necessary to complete the installation of an application program. Number references
included in the following headings point to later sections in this manual where more
detailed information is found.

NOTE

You should consider initiating a checkpoint of the CG database any time that it is modified (by
the addition or deletion of points, by ACP connect or disconnect, by creating a CG/PLNM-
resident DDT, etc). If there is no checkpoint, either demand or automatic, the CG database
reverts to the previous contents at its next restart.

2.6.1 System Start Up

Follow the instructions in the CM50S Release Notes to configure the CG/PLNM(s), then
see Appendix B in this manual for instructions on adding CM50S software to the
VAX/VMS computer system, and the starting of VAX to CG/PLNM communications.

2.6.2 Prepare CG/PLNM-Resident Data Points (Section 4)

The ACIDP and CRDP point types are built at a Universal Station, using the Engineering
Personality (preceded by use of the CL compiler to define any Custom Data Segments
associated with them). Installed ACIDPs and CRDPs can be displayed at a Universal
Station (Point Detail Display) and at the VAX (using the CG Database displays).

CM50S User Manual 2-24 7/93

2.6.3

2.6.3 Prepare Data Definition Tables (Section 6)

Data Definition Table source files are built or modified at the VAX, using the DDT
Operations and Edit screens. Any referenced points must be built and be accessible
through the data owner before the table build can be completed. ACP references to
nonexistent or incomplete DDTs are rejected by the interface routines.

2.6.4 Compile, Link, and Install Programs (Headings 5.1 - 5.6)

The interface routines are designed to support programs written in either FORTRAN,
Pascal, or “C.” Each application program is separately compiled and linked; ACPs must
also be installed in the CM50S system.. Compilation is done through standard VMS
software; a special CM50S .COM file is used for all linking of CM50S programs;
installation is done through the CM50S ACP Operation screen.

2.6.5 Test and Modify Programs and DDTs (Heading 5.7)

Program testing is assisted by the two special installation modes, "Test" and "Restricted."
Data Definition Tables can be viewed by use of the DDT Detail Description and List
displays. Certain ACIDP parameters can be manipulated from the Universal Station Point
Detail Display.

CM50S User Manual 3-1 7/93

3

ACCESS AND SECURITY
Section 3

This section describes the procedures necessary to access CM50S from the host computer and
the security measures that are supported to limit access for selected uses.

CM50S operates as a layered product on top of VMS. It uses the standard VMS
mechanisms for user access and security. The section describes the specific requirements
for CM50S. For more detailed information on the security mechanisms see Guide to VMS
System Security (DEC order number AA-LA40B-TE). In general, each site should
implement the minimal set of measures that meet the actual security needs of its
environment, because use of advanced security options 1) adds system overhead
(degrading overall performance), 2) requires additional staff time to administer, and 3)
makes the system more difficult to use.

3.1 USER ACCESS TO CM50S

3.1.1 User Registration Requirements

In order to access CM50S from a VAX terminal, a person must be a registered user on the
VAX system and must be granted a VMS Rights Identifier of "CM50S_SYS." In order to
activate an ACP interactively, the user must also have the VMS "TMPMBX" privilege.
Any program (process or image) that makes calls to CM50S must have the VMS
"SYSLCK" privilege. (If a user is going to interact with CM50S only through the menus
and DCL interface, then he does not need to be registered with the SYSLCK privilege
because that privilege is granted to installed CM50S images.) In addition, it is
recommended that each user be registered with a distinct home directory, to minimize
problems of maintaining work files.

The standard installation procedure for CM50S protects all of the CM50S files with an
ACL (VMS Access Control List) that limits access to users with the "CM50S_SYS rights
identifier (or the VMS "BYPASS" privilege).

Note: Earlier releases of CM50S required users to have the VMS "WORLD" and
"DETACH" privileges. These privileges do not have to be granted to users of the current
CM50S release.

3.1.2 Log In Procedures

Logging on to use CM50S requires only the standard VAX log in procedures of typing in a
user name and then a password. Appropriate assignment and protection of passwords
must be considered the foundation for all terminal access security.

CM50S User Manual 3-2 7/93

3.1.3

Use of CM50S is made simpler if the user's LOGIN.COM file automatically points him to
components of the CM50S software by including the following sequence of commands:

$! check to see if cm50 is running:
$ cm50_ok = f$search("CM50$LIB:CM50_ERROR_MSG.EXE;0")
$ if cm50_ok .eqs. "" then goto NO_CM50S
$ set message CM50$LIB:CM50_ERROR_MSG
$ set command CM50$LIB:ACP_COMMAND
$ set command CM50$LIB:DDT_COMMAND
$ set command CM50$LIB:FTF_COMMAND
$ goto CM50_DONE
$ NO_CM50S:
$! put out an appropriate message
$ CM50_DONE:
$! continue with other log in commands

To have a user start off with the CM50S main menu (described below), include the
following command in his LOGIN.COM file: $ @CM50$LIB:CM50

3.1.3 Menu-Driven Operations

All CM50S interactive functions can be accessed through the CM50S Main Menu (invoked
by the DCL command line: @CM50$LIB:CM50).

Any item on this menu can be invoked by either using the arrow keys to highlight the
desired entry and then pressing <return>, or by typing the item's two-character entry code
and then pressing <return>. Note that the choice field on the screen allows multiple entries
(separated by spaces), so the experienced user can skip through additional layers of menus.

CM50S User Manual 3-3 7/93

3.1.3

For example: an entry of SC CT <return> would jump directly to the Command Table
Maintenance function (entry CT on the Task Scheduler submenu).

The CM50S Main Menu provides access to five CM50S function categories and three
indexes. The functions are:

(AP) The ACP Operations displays (see heading 5.2) can also be invoked by the
command line: RUN CM50$EXE:ACPOPER. These displays allow you to:

– Install or remove ACPs in the VAX
– Connect or disconnect ACPs to ACIDPs in the CG
– Activate or deactivate/terminate ACPs
– Change an installed ACP's status (Normal, Restricted, Test)
– Examine the ACP Status Table
– Examine the ACP Installer activity file

(DT) The DDT Operations displays (see heading 6.2) can also be invoked by the
command line: RUN CM50$EXE:DDTOPER. These displays allow you to:

– Create and modify DDT source files
– Build or rebuild DDTs from the DDT source files
– Examine contents of DDTs

(CG) CG Database displays (see heading 4.5) can also be invoked by the command
line: RUN CM50$EXE:CGDSP. These displays allow you to:

– Display status of the configured VAX-CG data links
– Display status information on a selected ACIDP
– Display lists of all ACIDPs and CRDPs installed in the CG
– Display a list of all CG-resident DDTs

(FT) The File Transfer facility (see heading 7.3) is used to transfer files between the
VAX and the LCN. This facility invokes the LCN file utilities and does not
support multiple concurrent users. The available options include:

— Read an LCN file into the VAX
— Write a file from the VAX into an LCN History Module
— List the file and directory names from an LCN History Module
— Copy, Move, Rename, and Delete files on an LCN History Module
— Create and Delete a directory on an LCN History Module
— Abort a file transfer operation that is in progress

(SC) The Task Scheduler menu (see heading 7.1) is used to

- Start the Task Scheduler
- Stop the Task Scheduler
- Modify the Scheduler's Command Table
- Modify the Scheduler's Configuration value

(MI) The Makeinc utility (see heading 7.2) can also be invoked by the command line:
RUN CM50$EXE:MAKEINC. It allows you to create "include" files that are
used with certain types of data get/store user interface routines.

CM50S User Manual 3-4 7/93

3.1.3

The three on-line indexes are available to look up references in the CM50S User Manual,
and to translate LCN Value Status and CM50S Return Status codes. Each of these menu
options prompts for appropriate search criteria (words or character strings). To search for
multiple words with a single entry, separate the words by commas; then only occurrences
that contain all of the listed words are displayed. Search strings that contain spaces or other
special characters must be enclosed in double quotes (" "). The three on-line indexes are:

(UG) The User Manual index locates sections of the CM50S User Manual based on
keywords. When you choose this option, CM50S prompts you to enter a word
to search for. Reply to this prompt by typing a word (or any string of characters)
and press <return>. All entries in the index to the user manual that contain the
specified character string are displayed.

(VS) The Value Status index translates LCN codes that are returned with each value
transferred to (or from) the LCN. This index includes the File Manager codes
(prefaced by FILE-) and Utility Manager codes (prefaced by UTIL-) that are
returned as secondary error status from the File Transfer routines (in addition to
the LCN Data Access codes). Response to the prompt for this option is the three-
digit numeric value of the LCN code. Be sure to include any leading zeros (e.g.,
006, not just 6).

(RS) The Return Status index translates the return status codes for CM50S functions.
Response to the prompt for this option is either mnemonic error condition name
or the decimal integer value of the status code (e.g., CM50_ACP_EXEC or
215001786). Note that the index does not contain the hexadecimal representation
of these codes.

3.1.3.1 Display Screen Format

All CM50S display screens share the following format characteristics:

• The top line of every screen identifies the application and includes date and time. Note
that the time shown indicates when the display data was last refreshed. The clock does
not update for static displays.

• Active function keys are shown on lines 22 and 23 of the display.

• Interactive messages and prompts appear on line 24 of the display.

• All fields into which data can be entered appear underlined on the form and the current
field for data entry is highlighted by reverse video.

3.1.3.2 Screen Data Entry

Whenever a CM50S display appears on your screen, the cursor will be positioned at the
first data entry point. You then enter/modify the required data through the keyboard, then
press the Enter key on the keypad at the right-hand side of the keyboard. Depending on the
display, you may need to follow this by use of one of the function keys:

• Left/Right Arrows—move the cursor one character position
• Backspace—delete prior character
• Up Arrow—move cursor to prior field
• Down Arrow, Tab, or Return—move cursor to next field

CM50S User Manual 3-5 7/93

3.1.3

3.1.3.3 Use of Function Key Menus

A function key menu appears at the bottom of every CM50S screen. Each function key
menu shows the names of the valid function keys for that screen, along with an abbreviated
description of what action the function key performs. These functions are invoked by
using the keypad on the right-hand side of the keyboard. Function selections prefixed by
KP indicate a numbered key on the keypad (KP2 = keypad key 2). Function selections
prefixed by PFn indicate one of the keypad keys PF1 through PF4. Function selections
prefixed by G indicate that the Gold key (PF1) must be pressed before pressing the key
following (G. = press PF1, then the "." keypad key). Real values can be entered as
integers, fixed decimal point, or using exponential notation.

Screen menu entries can be selected either by typing the entry code or number into a
selection field or by moving the cursor to the desired entry (it will be highlighted in reverse
video) and then pressing Enter. Function keys are labeled at the bottom of the screen. For
displays with more function capabilities than can be shown at one time, the PF3/MORE key
brings up an alternate function key menu for that display. Note that the full set of function
keys for a display is always active, independent of which partial set is shown. Two
function keys that appear on the Main Menu have a consistent meaning across all CM50S
displays:

PF4/QUIT—Cancels data entry and backs up one level in the display tree. (In this
instance, exits the CM50S Interactive User Interface and returns to DCL or logs off,
depending on the user registration option.) In some instances, you will be asked to
verify that you wish to quit without saving changes.

PF2/HELP—Displays a short help message at the bottom of the screen. Press PF2 again
for a display describing the entire form. Pressing <PF4> from this screen returns to the
originating display.

NOTE

Because of space limitations, the PF2 / HELP function may not be shown on every screen;
however, the PF2 key provides Help functions for all CM50S screens.

3.1.4 DCL Commands and Error Messages

CM50S includes support utilities that allow the execution of ACP and DDT maintenance
functions and translation of the CM50S error codes into text messages. To enable the DCL
command interface, the user (or the LOGIN.com file) must first map the CM50S
commands to the command processor by
"SET COMMAND CM50$LIB:ACP_COMMAND" and
"SET COMMAND CM50$LIB:DDT_COMMAND" and
"SET COMMAND CM50$LIB:FTF_COMMAND" for the ACP, DDT, and File_Transfer
functions respectively. The custom commands (described in Section 8) may then be
invoked interactively or through command procedures exactly like standard DCL
commands.

CM50S User Manual 3-6 7/93

3.2

"SET MESSAGE CM50$LIB:CM50_ERROR_MSG" maps the CM50S error messages to
the system message handler. This makes translation of the status codes accessible through
the F$MESSAGE lexical function. For example, the commands:

a = F$MESSAGE (215000036)
SHOW SYMBOL a

would display the text error message "Unable to access LCN -- datalink failure."

3.2 STARTING UP CM50S

No user can access CM50S unless its shared images are installed and the base
communications processes are running. These tasks are accomplished by the protected
CM50_STARTUP.com procedure. As normally installed, this procedure may only be run
from a privileged user account named CM50S_MGR (or SYSTEM).

3.2.1 Using the CM50S_MGR Account

The CM50S_MGR account is established as part of the normal CM50S installation. This
account is the owner of all the shared files created by CM50S. Since it is a privileged
account, the system administrator should carefully control its password.

NOTE

The CM50S_MGR must be granted the "CM50S_SYS" rights identifier and all of the VMS
system privileges (including SETPRV) active.

Before CM50S can be accessed from the user level, certain tasks must be performed to
establish the databases and synchronize with the CG. In order to ensure that the detached
processes have all the appropriate privileges and quotas and create files with the standard
protections, the CM50S startup procedure must be run under the UIC of an account named
CM50S_MGR (or SYSTEM).

From the DCL prompt, the CM50S_MGR starts the CM50S software with the command:

$@CM50$:[R040]CM50_STARTUP.COM

This procedure assumes the existence of a logical volume name "CM50$" pointing the the
root directory for the CM50S software. The "[R040]" specifies the release subdirectory.
A release subdirectory carries the name of the version number (e.g., R040 for Release
4.0).

If for any reason the CM50S startup procedure is terminated prematurely, it will be
necessary to execute the CM50_STOP.COM procedure (or to reboot the VAX) to release
memory-resident modules before CM50S can be restarted successfully.

CM50S User Manual 3-7 7/93

3.2.2

3.2.2 Submitting a Start Up Request

In most sites it is desirable to start CM50S as part of an automatic procedure run by the
system manager without having to log on to the VAX system specifically as the
CM50S_MGR. This can be accomplished by a privileged user submitting the request to be
run under the UIC of the CM50S_MGR. Submitting a start up request requires two
commands:

1. Define a system-wide logical device name CM50$ pointing to the CM50S root
directory.

$ DEFINE/SYSTEM/EXEC/NOLOG -
 /TRANSLATION=(TERMINAL,CONCEALED) -
 CM50$ DUA0:[CM50.]

2. Invoked the CM50$[RO40]CM50_STARTUP.COM command procedure either
directly within the REBOOT command procedure or by submitting it to a batch
queue. This startup can only be done from the CM50S_MGR or SYSTEM
account. In either case, the CM50S processes will be run under the CM50S_MGR
UIC.

The "[R040]" specifies the release subdirectory. A release subdirectory carries the
name of the version number (e.g., R040 for release 4.0).

Usually it is desirable to have CM50S activated automatically when VMS boots. This can
be achieved by placing the two defined commands in the system-wide startup command
procedure.

3.3 SHUTTING DOWN CM50S

NOTE

This function must be performed from the CM50S_MGR account with full system privileges
(including SETPRV) active.

Because critical database changes are checkpointed as they occur, it is not necessary to shut
down CM50S before shutting down VMS; however, if the need arises to shut down
CM50S without rebooting VMS, the command procedure CM50_STOP.COM can be
invoked from the CM50S_MGR account. This procedure resides in the release
subdirectory.

$@CM50$VER:CM50_STOP

This operation deactivates all detached processes, removes all installed images, and
effectively purges CM50S from the operating system. It is necessary to invoke this
procedure when a new release of CM50S is loaded, before its activation.

CM50S User Manual 3-8 7/93

3.3.1

3.3.1 User Notification

All users that are mapped to the CM50S shareable images will be given two warning
messages when the CM50S product is being shutdown. These messages will be sent to all
users whose mode is determined to be “interactive.” For example, a user with the CM50S
Menu Screen displayed would receive a warning; a user running an interactive ACP with a
login terminal name (JPI$_TERMINAL) would also receive a message.

3.3.2 User Specified Delay

The option of a minimum delay period between Notification Messages has been provided.
The default minimum delay time is 00:00:00. The delay period is in effect after all the
interactive users have received the first warning message. For example it may require 30
seconds to notify all the interactive users, followed by a 1 minute user-specified delay
period, then another 20 seconds to issue the second warning message to users still
connected to CM50S. This 00:01:50 second delay period is followed by a second 1 minute
user-specified delay period. Thus, the elapsed time before the first user is force-terminated
by CM50S is 00:02:50

3.3.3 User Friendly Termination

Previous releases of CM50S performed a “STOP/ID=xxxxxxxx” termination on all
processes found mapped to CM50S sharable images. This modified procedure will now
issue a “forced exit” command and allow the user the option of executing a user-written
procedure. This method of image shutdown is preferable to an arbitrary stop/id=xxxxxxxx
exit. Users should not create extensive time consuming exit handlers because the next time
the delay period expires, the process will be terminated using the stop/id=xxxxxxxx
scenario.

3.3.4 Command

The CM50S stop procedure has not changed; that is, entering the command
“@CM50_STOP.COM” will still shutdown the system. Two additional arguments are
supported. Typing a question mark at the end of the command will provide on-line help of
the stop procedure command line format. The first optional argument is a [CONFIRM Y/N];
the stop procedure will display information on processes mapped to CM50S. The default is
[N]. The second argument permitted is the User-Specified Delay. The period must be in the
format HH:MM:SS. This is a minimum delay time period that is added to the normal
message notification period.

NOTE

If the delay period is not defaulted and the confirm is defaulted, the confirm default is [Y].

EXAMPLE: COMMAND CONFIRM DELAY

@CM50_STOP [Y/N] [HH:MM:SS]

@CM50_STOP [N] 00:00:00 (*DEFAULT)

CM50S User Manual 3-9 7/93

3.4

3.4 LIMITING ACCESS TO FUNCTIONS

3.4.1 Restrictive Rights

At sites where the security requirements distinguish different levels of CM50S access for
different users, the system administrator may assign Restrictive Rights identifiers to
selected CM50S user accounts to prevent them from performing specific functions. By
default, any user with the CM50S_SYS rights identifier may perform any CM50S
function.

To implement this additional layer of security, the system administrator must create a VMS
Rights Identifier for each of the restrictions to be implemented and grant those identifiers to
the user accounts which are not to be permitted to perform the specific functions listed
below:

Rights Identifier Prohibited functions

NO_ACP_INSTALL Install or Uninstall an ACP
Install or Remove DDT from CG
Connect or Disconnect ACP or

DDT with ACIDPs
Change ACP installation mode
Change DDT prefetch triggers

NO_ACP_START Activate an ACP at a VAX
terminal

NO_ACP_STOP Deactivate an ACP

NO_DDT_CREATE Build, Edit or Delete a DDT

NO_LCNFILE_READ Read LCN Files (or use DataOut)

NO_LCNFILE_WRITE Modify files on the LCN (Write, Copy,
Move, Rename, Delete, Create directory, or
Abort transfer)

3.4.2 Access Control Lists

Access to specific ACPs and DDTs can be controlled by applying VMS ACLs (access
control lists) to the appropriate files. Care must be exercised in assigning ACLs since, if
they are overly restrictive, they can prevent the remote execution of an ACP triggered from
the LCN.. If the ACPs are installed to run under a specific UIC, then that UIC must have
access to both the ACP and DDT files; otherwise, the default user "CM50S_MGR" must
have access to all the files needed by the ACP.

The DDT files (except the user's source) are maintained in the CM50$DDT directory with
the file name equal to the DDT name and different extensions for different functions. If the
DDT was built with a values table specified, then the file with extension .VT must be
available to the ACP or Data Access Program with Write access. Read access on the other
DDT files is sufficient for all operations (except building/rebuilding or deleting the DDT).

CM50S User Manual 3-10 7/93

3.5

3.5 ACP SECURITY

Installing a program as an ACP allows different users to activate it remotely from the LCN.
Thus, there are several security mechanisms that are designed specifically for ACPs.

3.5.1 ACIDPs

ACIDPs provide security within the LCN to limit the execution of remote programs. In
order for any program in the VAX to be activated from the LCN, or to store any data to the
LCN, that program must be installed as an ACP and connected to an ACIDP. ACIDP
configuration on the LCN determines whether the program can be activated from a
Universal Station and/or from the LCN scheduler. Note that any ACIDP can be triggered
by CL code, so it is not safe to assume that an ACIDP that is configured for only
PERIODIC triggers is only activated by the scheduler. The details of ACIDP security are
described in section 4.

3.5.2 Limiting Triggers

An ACP can limit its own functioning based on the way it was activated. It does this by
issuing a call to the GETSTS procedure (FORTRAN section 11.1.2, Pascal section 15.1.2,
or C language section 19.1.2) to determine which trigger(s) caused the current activation;
the ACP then takes appropriate action.

For example: An ACP is designed to be executed only when requested by an operator on a
Universal Station. Before performing any data transfers, it would call GETSTS and test
the returned demand argument. That argument will be true only if the ACIDP was
triggered by an operator. If demand were false, the ACP would terminate, preventing its
functions from being initiated by a VAX user or the LCN scheduler.

3.5.3 Running Under Specified Accounts

By default, a remotely activated ACP runs under the CM50S_MGR account, using the file
protections assigned to that account. If it is desired, a different user account can be
specified when the ACP is installed. The account used for a remote ACP activation will
determine which group flags it can reference as well as the file protections. Note: A user
must have VMS privileges (Group or World) to install an ACP under a user account other
than the default CM50S_MGR or his own account name.

3.5.4 Privileges and Quotas

By default, a remotely activated ACP will have only the SYSLCK VMS privilege and the
default user quotas. In order to activate an ACP interactively, the user must have the VMS
"TMPMBX" privilege (which allows the creation of a termination mailbox to receive notice
of the ACP's completion). If an ACP needs special privileges or quotas, they can be
assigned at the time the ACP is installed, with the limitation that no user can install an ACP
with privileges that are not assigned to his own account.

CM50S User Manual 3-11 7/93

3.5.5

3.5.5 ACP Installation Log

The ACP Installation Log maintains a history of actions which affect the installation status
of any ACP. The actions that are recorded are:

• ACP Installation
• ACP De-installation
• ACP Connect to an ACIDP
• ACP Disconnection from an ACIDP
• Change Installation Mode of an ACP
• Interactive ACP Activation
• ACP Deactivation
• DDT Connection to an ACP for Prefetch
• DDT Disconnection from an ACP
• Change of DDT prefetch triggers

NOTE

Changes in the ACP code are not logged until the ACP is reinstalled. To maintain this
information in the log, the VMS file version number should be specified as part of the
execution path whenever ACPs are installed.

The ACP Installation log is maintained as a direct access text file
(CM50$CONTROL:ACPI_REC.DAT) with an associated set of pointers
(CM50$CONTROL:ACPI_PTR.DAT). The system administrator can configure the
number of actions to be maintained in the log by running the
CM50$SUPPORT:CM50_ACPLOG_CONFIG utility from the CM50S_MGR account.
This utility will prompt for the desired size of the log and create a new log file of the
appropriate size. ACP activity logging can be suppressed, causing a trivial improvement in
performance, by specifying a log size of zero. By default, the ACP Installation log will
contain the most recent 1000 entries.

CM50S does no archiving of prior versions of the Installation log, and will overwrite old
entries with new data once the log has been filled. Archiving of the log files (if desired) is
the responsibility of the local system administrator.

3.6 SENDING MODIFIED FILES TO THE LCN

The File Transfer software restricts the types of file modifications permitted at the History
Module. You cannot read a binary file from the LCN, modify it at the VAX, and then write
it back to the LCN, since the modification could cause the node to crash. A file that has
been edited/modified on the VAX can only be written to an LCN if its extension identifies it
as an ASCII file.

Every file to be transferred to the LCN must have an LCN attributes file. This is created at
the time of the original transfer. No software tools are provided to allow the origination of
a file of either type (ASCII or binary) and its LCN attributes at the VAX. If the file is of
type binary the attributes are checked against the original LCN file attributes preserved
when the file was first transferred. If they are different, a transfer error will occur.

CM50S User Manual 3-12 7/93

3.6.1

3.6.1 ASCII File Extensions

The following file extensions have been identified as default ASCII file types. They are
specified in the CM50$CONTROL:FTF_CONFIG.DAT file that is installed with CM50S.
Files with any of these extensions can be modified on the VAX and returned to the same or
a different LCN running the same release of TDC 3000. Note that changes in the LCN file
attributes between releases of the operating system can prevent the transfer of a file back to
the LCN.

 FILE SUFFIX LCN FILE TYPE

 BU Backup Text
 CL CL Source
 EB Exception Build Source
 EC Execute Command
 EF Error File (DEB)
 EL Edited List, Entity Names
 ER Error Report Buffer File
 JL Logic Block Listing
 JS Logic Block Source
 LE CL Error Listing
 LS CL Listing
 SL Successful Entity List
 UL Unsuccessful Entity List
 X User Text
 Y User Text
 Z User Text

3.6.2 Customizing File Extension Control

Additional files can be modified and transferred to the LCN if their extensions are placed in
the CM50$CONTROL:FTF_CONFIG.DAT file. The standard installation restricts
updating of this file to the CM50S_MGR (or other fully privileged VMS SYSTEM
account). These changes will become effective dynamically (that is, there is no need to
shutdown and restart CM50S for the new list of extensions to become effective).

This one record file contains an array of up to 40 file extensions that define an "ASCII file"
type. The File Transfer software checks this file to verify that the file to be written to the
LCN is of type ASCII. If the file extension is not in the FTF_CONFIG.DAT then it is
considered to be a binary file which may only be written to the LCN if it has not been
modified.

The "ASCII" extensions are written as a single string of characters. Each pair of characters
represents an extension that will be treated as an ASCII file. One-character extensions are
followed by a space; otherwise, there are no delimiters between extensions. The
characteristics of the file are:

File Organization: sequential
Record Format: variable
Maximum Record Size: 255
Record Length: 80 bytes max
Record Attributes: carriage-return

CM50S User Manual 4-1 7/93

4

CG/PLNM POINT PREPARATION
Section 4

This section summarizes the requirements for preparation of specialized CG/PLNM data points
that regulate the execution of control programs and hold results of control calculations for
exchange with other LCN nodes.

4.1 CG/PLNM POINT BUILDING OVERVIEW

As explained in Section 2, there are two types of data points that reside in the CG/PLNM,
the Advanced Control Interface Data Point (ACIDP) and the Calculated Results Data Point
(CRDP). Both point types can be used to store calculated results that are to be exchanged
between the CM50S and other LCN nodes. The ACIDP also contains the parameters that
control the scheduling and execution of an associated ACP in the VAX. Both point types
are built at an Operator Station that is running in the Engineering Personality.

Each CRDP and those ACIDPs that include data storage reference Custom Data Segments
(CDS) that define the special parameters to be added to that point; therefore, Custom Data
Segments must be prepared in advance of ACIDP/CRDP point building.

4.2 CUSTOM DATA SEGMENT CONSTRUCTION

NOTE

The following information, on preparation of Custom Data Segments, is intended only as an
introduction. Please consult the Control Language/AM Reference Manual for details of CL
program preparation and the System Control Functions manual for additional information on
Custom Data Segments.

Custom Data Segments allow you to define new (nonstandard) parameters and add them to
data points. Once you define new parameters and add them to data points, they can be
accessed in the same manner as standard parameters. Up-to-10 Custom Data Segments can
be associated with any ACIDP or CRDP.

Custom Data Segments are constructed as Control Language/AM (CL/AM) Packages, each
consisting of a single CDS. These CL/AM "packages" are compiled, then stored on the
History Module or on Floppy Disk for use when the individual data points are built. The
Data Entity Builder (DEB) is used to add instances of a CDS to one or more data points.

Each CDS consists of a Heading, plus one or more parameters.

CM50S User Manual 4-2 7/93

4.2.1

4.2.1 Custom Data Segment Heading

The Custom Data Segment Heading consists of the word CUSTOM followed by three
optional attribute assignments, which change the default values for Class, Access, and
Build Visible for this CDS. Either the standard or heading-specified default values are
overridden by any individual parameter attribute assignments. Always use the default value
for Class when preparing a CDS to be used with an ACIDP or CRDP.

4.2.2 Custom Data Segment Parameters

Each CDS parameter has a heading that begins with the word PARAMETER followed by
an up-to-8-character name, an optional data-type specifier, and an optional character string
to be displayed by the DEB. This is followed by a set of optional attribute assignments.

Data type can be Number, Time, Logical, Enumeration, String, or Data Point Identifier (or
single-dimension arrays of any of these). The default data type is Number.

The parameter attributes are

ACCESS—The Access Attribute defines write access restrictions for the parameter.
Read access is never restricted. The access levels are View Only, Operator, Supervisor,
Engineer, Program, and Entity Builder. The standard default access level is Engineer.
For additional information on parameter access-level significance, see the System
Control Functions manual.

BLD_VISIBLE (or NOT BLD_VISIBLE)—Determines whether or not a preset
parameter value can be changed at point-build time. The standard default value is
BLD_VISIBLE.

VALUE—The data type of the constant expression must match the parameter's assigned
(or default) type. If no VALUE is specified and NOT BLD_VISIBLE is specified, a
default value is assigned. The default values vary by data type as specified in the
Control Language Reference Manual.

EU—The Engineering Units attribute is a character string that is displayed with other
point.parameter information. The default is blanks.

CLASS—For an ACIDP or CRDP CDS, always use the standard default value of
General.

CM50S User Manual 4-3 7/93

4.2.3

4.2.3 Custom Data Segment Example

CUSTOM

PARAMETER swdbd1:NUMBER "switch deadband value"
ACCESS engineer
EU "psi"
VALUE 0.5
BLD_VISIBLE

PARAMETER swdbd2
EU "psi"
VALUE 0.5

END CUSTOM

Notice that the two parameters generated by this example are identical in all but their names.
There is no name associated with the CDS because it is identified by the name of the file
into which it is compiled (only one CDS per file).

CM50S User Manual 4-4 7/93

4.2.4

4.2.4 Custom Data Segment Compilation Recommendation

The CL compiler maintains a library file that includes the names of all nonstandard
parameter names used in every CDS ever compiled in your system. This file allows for
1000 names, which is normally more than adequate because any of these parameters can be
arrays of values and a particular name is entered only once no matter how many times it is
used by multiple Custom Data Segments.

Once a name is entered into the library file, however, there is no convenient way to delete
the name. Because it is not desirable to clutter the file with parameter names that were
accidentally mistyped, the compiler does not update the library file unless the compiler
directive -UL (Update Library) is invoked. You should obey the following sequence when
compiling a CDS:

1. First, compile without the -UL directive to ensure that the CDS parameters are free of
errors. Every new parameter is followed by an error indicating that the -UL option
should be used. If any other errors appear, they should be corrected.

2. Recompile with the -UL directive to update the system library file with the CDS
parameter names. There should not be any errors.

It is a good idea on subsequent recompilations to compile without the -UL directive unless
a new parameter name is purposely being added to the CDS. This guards against
erroneous additions that might occur if a parameter name is accidentally mistyped while
editing the file.

You can see all the parameters that have been defined by using File Manager Utilities to
print the system library file &ASY>PARAMETER.SP. The file &ASY>SEGMENTS.SP can be
printed to see all CDS file names that have been used. The -UL directive also controls
whether CDS file names are entered into the library.

Compiling a CDS does not set aside storage for the parameter values; it simply defines the
parameters to the system. The next required step is to build a point that uses the CDS
parameters. Once a data point is built, the parameters of the CDS are part of the data point
and are undifferentiated from other parameters of the data point.

At this point, you should back up the .SE and .SP files on &ASY, and should also
checkpoint the CG portion of the CG/PLNM database.

CM50S User Manual 4-5 7/93

4.3

4.3 ACIDP/CRDP POINT BUILDING

CG point data can be recorded on Computer Gateway Forms in preparation for the actual
point-configuration process. Explanation of the entries is found in the Computer Gateway
Parameter Reference Dictionary and the point-entry process is described in the Data Entity
Builder Manual.

A brief outline of ACIDP/CRDP building follows:

1. From the Engineering Personality Main Menu, select the COMPUTING MODULE
target in the Point Building column. This calls up the CM BUILD AND
CONFIGURATION menu.

2. Select the target appropriate to the point type to be built.

3. Enter the desired information into the CM ACIDP/CRDP POINT ASSIGNMENT
display; save the point data in an IDF and then load the point.

If the point is a CRDP, it must have at least one associated "package," i.e., a CDS. For an
ACIDP, any CDS is optional.

NOTE

Before deleting an ACIDP from the CG, you should first uninstall its ACP; otherwise, the VAX
status table will incorrectly show the ACP still to be connected to its ACIDP. There is no other
effect from this and the table is automatically corrected after a restart, or a later uninstall.

4.3.1 ACIDP Scheduling Recommendations

Set long RTPERIOD values for cyclic and periodic ACPs, or set them to demand-only, and
determine how long they actually run before selecting the normal running period.

If the RTPERIOD in an ACIDP is short (close to the time required for the associated ACP
to execute), it will be difficult or impossible to disconnect the ACIDP or to uninstall the
ACP. If this happens, change the parameter INH_STAT to INHIBIT from the point's
Detail Display at a Universal Station. Wait for the ACP to terminate as indicated by a
change of Execution State to DELAY, then disconnect the ACP from the ACIDP.

4.3.2 The ACCESSKEY Parameter

In order for an ACP to be able to store data to points on the LCN or to send messages,
these conditions must be met:

• The ACP must be connected to an ACIDP.
• The ACP installation mode must be NORMAL.
• The ACIDP parameter ACCESSKEY value must equal READWRIT.

If the ACP is intended neither to store data on the LCN, nor to send messages, the
ACCESSKEY value of its ACIDP should be set to READONLY.

CM50S User Manual 4-6 7/93

4.3.3

4.3.3 Support for Continuous Control

To allow direct process control from an ACP, the RCASENB parameter of the connected
ACIDP must be set to ON. This parameter provides the capability to enable continuous
(AM like) control to a slot on a process connected box (Hiway or UCN devices).
Continuous or cascade control implies that the process connected slot/point will fail to its
local backup control mode if a SP or OP store is not performed within the time span of the
slot's shed timer (BOXTOGn/SHEDTIME). The SP or OP store is performed by an ACP
program in an upper level processor (e.g., a CM50S) which is attached to an ACIDP point
in the CG.

When this parameter's value is ON, continuous control is enabled; when its value is OFF,
control reverts to the normal control state which is program control.

To properly use continuous control, the ACP program must conform to these continuous
control rules:

• The process connected box and Hiway/UCN must be in FULL control.
• The ACP establishes cascade to the process-connected slot by storing the value of Cas

to the MODE parameter when the ACP detects that the CASREQ parameter's value is
Request.

• The ACP program should delay for at least one second after storing the MODE
parameter value before storing the SP or OP parameter (this allows the process
connected slot to initialize).

• The ACP needs to make use of secondary point parameters that reside in the process
connected slot. Some of the important secondary point parameters are:

- CASREQ - RCASENB/RCASOPT
- MODE and MODATTR - PVEUHI and PVEULO
- SP and OP - SPEUHI and SPEULO
- INITVAL and INITMAN - ARWNET and ARWOP
- TRACK - RCASSHED

ACIDPs that will not be connected to an ACP that directly controls process operations
should be configured with the parameter RCASENB (Remote CAScade ENaBle) set to
OFF to prevent the accidental storing of SP and OP parameter values.

CM50S User Manual 4-7 7/93

4.4

4.4 ACIDP AND CRDP DISPLAYS

The current values of certain ACIDP and CRDP parameters can be viewed—and some
scheduling-related parameters can be changed—from the area Universal Station in the
Operator Personality. Some of the ACIDP parameters also can be viewed —but not
changed—from a VAX terminal through the ACIDP Detail display (reached through the
CG/PLNM Database displays). See heading 4.5.5 for ACIDP Detail display information.

Display and change access to ACIDP parameters is summarized in Table 4-1. Display
access to CRDP parameters is summarized in Table 4-2.

Brief descriptions of user-visible ACIDP and CRDP parameters follow at paragraph 4.4.1.
The definitions also include the parameter names as shown in ACIDP Detail display.

Table 4-1 — Display and Change of ACIDP Standard Parameters

PARAMETER UNIVERSAL STATION UNIVERSAL STATION VAX ACIDP
NAME DETAIL DISPLAY GROUP DISPLAY DISPLAY

Display Change Display Change Display

ABORTCOD no* no no no no
ACCESKEY yes no no no yes
ACPROG yes no no no yes
ACT_TYPE yes no no no yes

CONF_RQD no no no no yes
CONFWAIT yes no no no yes
EXECSTAT yes no yes no yes

INH_STAT yes operator no no yes
KEYWORD yes no yes no yes
NAME yes no yes no yes
NEXT_RTM yes no no no yes

OPER_DMD yes** operator no no no
PROGSTAT yes no no no yes
PTDESC yes no yes*** no yes
RCASENB yes yes no no no
RTPERIOD yes no no no yes

RUN_INIT yes no no no yes
STIME yes no no no yes
TAKE_I_P no no no no yes
UNIT no no no no yes

* Visible as EXECSTAT value when nonzero
** Target used to request ACP activation

*** Only shown when point is selected

CM50S User Manual 4-8 7/93

4.4.1

Table 4-2 — Display of CRDP Parameters

PARAMETER UNIVERSAL STATION UNIVERSAL STATION
NAME DETAIL DISPLAY GROUP DISPLAY

Display Change Display Change

KEYWORD yes no yes no
NAME yes no yes no
PTDESC yes no no no
UNIT yes no no no

4.4.1 CG/PLNM Parameter Descriptions

The following are brief descriptions of the user-visible ACIDP and CRDP standard
parameters. For details, see the Computer Gateway Parameter Reference Dictionary.

ABORTCOD—Four-character code that indicates the reason for abort of the ACP. See the
ACP Termination Interface (heading 11.1.5, 15.1.5, or 19.1.5) for an explanation of abort
code assignments. When not zero, this value replaces EXECSTAT value in the US Detail
display.

ACCESSKEY—Determines whether or not the ACP can execute writes to the LCN. Values
are READWRIT or READONLY. (Shown by ACIDP Detail display as LCN Access.)

ACPROG—The abbreviated pathname (bound-unit name) of the ACP as stored in the VAX.
(Shown by ACIDP Detail display as ACP Name.)

ACT_TYPE—The activation method for the ACP. Values are CYCLIC, PERIODIC,
CYC_DMD, PER_DMD, DEMAND. (Shown by ACIDP Detail display as Point
Schedule.)

CONF_RQD—Set ON when an operator message requiring confirmation is sent. Must be
true before a message confirmation is processed. (Shown by ACIDP Detail display as
Waiting for Message Confirm.)

CONFWAIT—Time (in seconds) remaining before a pending message confirmation times
out. (Equal to zero when CONF_RQD equals OFF.)

EXECSTAT—The present execution state of the ACP. Values are ABORT, ACCESS,
DELAY, OFF, RUN, WAIT, FAIL. When state is ABORT, the Universal Station Detail
display shows the current value for ABORTCOD. (Shown by ACIDP Detail display as
Execute State.) Note that the CG/PLNM is unaware of the CM50S ACP operating
states of Hibernate and Delay, and continues to show the ACP state as RUN.

INH_STAT—An operator-changeable parameter that controls activation of the ACP. Values
are INHIBIT or PERMIT. (Shown by ACIDP Detail display as ACP Activation.)

KEYWORD—Optional point descriptor shown on ACIDP displays.

CM50S User Manual 4-9 7/93

4.4.1

NAME—Name of the ACIDP/CRDP point. (Shown by ACIDP Detail display as Point
Name.)

NEXT_RTM—Next runtime, used by both Periodic and Cyclic activation. The parameter is
in form HH:MM:SS∆MM:DD:YY∆ (where ∆ indicates a space). Blank if activation type is
demand-only. (Shown by ACIDP Detail display as Next Run Time.)

OPER_DMD—An operator-accessible parameter, which when set ON, turns on the ACP if
its activation type permits demand activation and ABORTCOD = 0. (See the Computer
Gateway Parameter Reference Dictionary for effect of OPER_DMD on an Aborted ACP.)

PROGSTAT—Installation mode of the ACP. Values are NOT INST, TEST, RESTRICT,
NORMAL. (Shown by ACIDP Detail display as ACP Status.)

PTDESC—Description of the variable. (Shown by ACIDP Detail display as
Description.)

RCASENB—This is the Remote Cascade Enable Flag which can be used to enable
continuous control through a process connected box on a Data Hiway or UCN on a
connected LCN. Continuous or cascade control implies that the process connected
slot/point will fail to its local backup control if a SP or OP store is not performed by an
ACP within the time span of the slot's shed timer. When the value of this parameter is ON,
continuous control is enabled; OFF reverts to normal control.

RTPERIOD—The time period between runs of a scheduled ACP, in format HH:MM:SS.
Minimum period is 10 seconds; maximum period is 24 hours. Not used if ACP activation
is demand-only. (Shown by ACIDP Detail display as Period.)

RUN_INIT—When ON, tells the scheduler to turn on the ACP immediately after an
"initialization event" (see note below). (Shown by ACIDP Detail display as Run at CG
Initialize.)

STIME—The first time of day that a periodic program runs, in format HH:MM:SS. The
maximum time is 24:00:00. Not used if ACP activation is cyclic, cyclic-demand, or
demand. (Shown by ACIDP Detail display as Start Time.)

TAKE_I_P—Set ON at every "initialization event" (see note below) to inform the ACP to
take its initialize path. Also can be set ON by CL programs and ACPs. (Shown by ACIDP
Detail display as Take Initialize Path)

UNIT—Unit identification number.

NOTE

There are three initialization event types:
1. CG/PLNM power up and software load (cold restart)
2. CM50S initialization or HDLC data-link restart (warm restart)
3. ACIDP initialization

a. Connecting an ACP using ACP Operations displays
b. Removing an Abort condition from an ACP

CM50S User Manual 4-10 7/93

4.5

4.5 CG/PLNM DATABASE DISPLAYS

The CG/PLNM Database displays are activated from the CM50S Main Menu (see
paragraph 2.8). The hierarchy of displays for the CG/PLNM Database displays is

CG Database Display
Status of Computer Gateways—KP1
Resident DDT Summary—KP3
Calculated Results Data Points—KP6
ACIDP Detail—KP7
ACIDP Summary—KP9

4.5.1 CG Database Display

All major CG/PLNM Display Operations are invoked from the CG Database Display
screen. Lists of CG/PLNM Resident DDTs, CRDPs, and ACIDPs can be viewed. Other
options show the link status of all CGs connected by the CM50S configuration procedure
as well,and the parameter values for a specified ACIDP.

4.5.1.1 CG Database Display Entry Fields

• CG Port Number—This field indicates the number of the CG Port to be used for data
requests. This must be a number from 1 to 4. The default value is 1. Entry in this field
is required for all functions on this screen except for Help and Status.

• ACIDP Name—This is the 1-to-16-character name of the ACIDP to be viewed. Entry in
this field is required for only the KP7/ACIDP DETAIL function.

CM50S User Manual 4-11 7/93

4.5.1

4.5.1.2 CG Database Display Function Keys

PF4/QUIT—Exits CG Database Display screen and returns to the CM50S Main Menu.

PF2/HELP—See Heading 3.1.3.

KP1/STATUS—Calls up the Status of Computer Gateways display. See heading 4.5.2.

KP3/RES DDTS—Lists the names of all CG-Resident DDTs for the CG identified in the
CG Port Number field. See heading 4.5.3.

KP4/CONFIG—Displays the LCN configuration parameters for the CG identified in the
CG Port Number field. This function works only if the CG is running TDC 3000 release
400 or later. See heading 4.5.7.

KP6/CRDPs—Lists the names of all CRDPs (Calculated Results Data Points) for the CG
identified in the CG Port Number field. See heading 4.5.4.

KP7/ACIDP DETAIL—Brings up the detail display for the Advanced Control Data
Interface Point identified in the ACIDP Name and CG Port fields. See heading 4.5.5.

KP9/ACIDPs—Lists the names of all ACIDPs for the CG identified in the CG Port
Number field. See heading 4.5.6.

CM50S User Manual 4-12 7/93

4.5.2

4.5.2 Status of Computer Gateways Display

4.5.2.1 Status of Computer Gateways Display Fields

• CG Port—The logical connection number (1-4) that identifies a CG to the CM50S
software. This number is assigned by the CM50S configuration program and is not
related to the CG's node number on the LCN.

• Device—For a PLNM connection, this displays the last 5 hexidecimal characters of the
ethernet address. For an HDLC connection, this displays the physical device name/slot
number of the HDLC I/O board on the VAX.

• Link State—Identifies the state of the I/O communications board. The possible
values are

ACTIVE - normal operation
INACTIVE - logically unavailable (probably software initialization underway)
DISABLED - electrically disconnected

• Station State—Identifies the state of the specific I/O port. The possible values are

ACTIVE - normal operation
INACTIVE - logically unavailable (suspect CG is powered down)
DISABLED - electrically disconnected (suspect loose cable)
LAT PORT - I/O is configured to use the LAT protocol over ethernet

CM50S User Manual 4-13 7/93

4.5.2

• Request State—Identifies current message activity over the link. The possible
values are

IDLE - no message being processed
TRANSMIT - active I/O, a message is being transmitted or received

CONFIRM - the VAX is waiting for a confirmation message from the CG
SEGMENT - a large transaction is being assembled/disassembled into segmented
message packets for transmission

• Restart in Progress—FALSE during normal operation; CG database is
synchronized with the VAX. TRUE means either that the CG has signaled a link reset
and its database is being re-synchronized with the VAX, or that the CG has remained
down since the CM50S software was started (no synchronization signal has been
received).

• LCN node number—Identifies the node number of the CG within its LCN. This
value is displayed only if the LCN software is TDC 3000 release 400 or later.

• Release—Identifies the release of TDC 3000 software running on the LCN. This
value is displayed only if the LCN software is TDC 3000 release 400 or later.

4.5.2.2 Status of Computer Gateways Display Function Keys

PF4/QUIT—Exits Status of Computer Gateways Display screen and returns to the
CM50S Main Menu.

PF2/HELP—See heading 3.1.3.

G7/PRINT—Causes the Status of Computer Gateways display to be printed to the default
printer.

KP1/REFRESH—Causes the Status of Computer Gateways display to be refreshed on the
screen.

CM50S User Manual 4-14 7/93

4.5.3

4.5.3 Resident DDT Summary Display

4.5.3.1 Resident DDT Summary Data Display Fields

This screen lists all of the DDTs that are installed in the specified CG. Up-to-30 entries can
be displayed at a time. If the DDT is connected to an ACIDP, the ACIDP name appears
next to the DDT name.

4.5.3.2 Resident DDT Summary Function Keys

PF4/QUIT—Cancels viewing of the List CG-Resident DDTs Display and returns to the
CG Database Display.

PF2/HELP—See heading 3.1.3.

G9/PRINT—Prints the entire list of CG resident DDT names to the default printer.

JUMP TO—Type the entry number or the name of the DDT to be displayed and press
<RETURN>. The line containing that DDT name then is displayed as the first data line on
the screen.

G8/FIRST—Displays the first page of the DDT List. If the first page of entries is
already on display, a message stating so appears at the bottom of the screen.

KP8/PAGE UP—Displays the previous page of DDT entries. If the first page of entries is
already on display, a message stating so appears at the bottom of the screen.

CM50S User Manual 4-15 7/93

4.5.3

KP2/PAGE DOWN—Displays the next page of DDT entries. If the last page of entries is
already on display, a message stating so appears at the bottom of the screen.

G2/LAST—Displays the last page of the DDT entries. If the last page of entries is already
on display, a message stating so appears at the bottom of the screen.

CM50S User Manual 4-16 7/93

4.5.4

4.5.4 Calculated Results Data Points Display

4.5.4.1 Calculated Results Data Points Display Fields

This screen lists the names of all Calculated Results Data Points that can be accessed
through the specified CG. The data is displayed in two columns, and up-to-30 CRDP
names can be displayed on the screen at a time.

4.5.4.2 Calculated Results Data Points Display Function Keys

PF4/QUIT—Cancels viewing of the List CRDPs Display and returns to the CG Database
Display screen.

PF2/HELP—See heading 3.1.3.

G9/PRINT—Prints the entire list of CRDP names to the default printer.

JUMP TO—Type the entry number or the name of the CRDP to be displayed and press
<RETURN>. The line containing that CRDP name is then displayed as the first data line on
the screen.

G8/FIRST—Displays the first page of the CRDP list. If the first page of entries is already
on display, a message stating so appears at the bottom of the screen.

CM50S User Manual 4-17 7/93

4.5.4

KP8/PAGE UP—Displays the previous page of CRDP entries. If the first page of
entries is already on display, a message stating so appears at the bottom of the screen.

KP2/PAGE DOWN—Displays the next page of CRDP entries. If the last page of
entries is already on display, a message stating so appears at the bottom of the screen.

G2/LAST—Displays the last page of the CRDP entries. If the last page of entries is
already on display, a message stating so appears at the bottom of the screen.

CM50S User Manual 4-18 7/93

4.5.5

4.5.5 ACIDP Detail Display

4.5.5.1 ACIDP Detail Display Fields

For a full explanation of all the parameters shown on this display, see the Computer
Gateway Parameter Reference Dictionary. For a summary explanation, see heading 4.4.1
in this document. The following list equates ACIDP Detail display field names to formal
CG Parameter Names used elsewhere.

Point Name—NAME
Unit—UNIT
ACP Name—ACPROG
Execute State—EXECSTAT
DDT Name—The name of a CG-resident DDT connected to this ACIDP.
Point Schedule—ACT_TYPE
ACP Activation—INH_STAT
Start Time—STIME
Period—RTPERIOD
Next Run Time—NEXT_RTM
Description—PTDESC
Keyword—KEYWORD
ACP Status—PROGSTAT
LCN Access—ACCESKEY
Take Initialize Path—TAKE_I_P
Run at CG Initialize—RUN_INIT
Waiting for Message Confirm—CONF_RQD

CM50S User Manual 4-19 7/93

4.5.5

4.5.5.2 ACIDP Detail Display Function Keys

PF4/QUIT—Cancels viewing of the ACIDP Detail display and returns to the CG Database
display.

PF2/HELP—See heading 3.1.3.

G7/PRINT—Prints the ACIDP Detail display to the default printer.

KP1/REFRESH—Refreshes the display with any changes that have been made since the
screen was first displayed (or last refreshed).

KP9/LIST—Calls up the ACIDP Summary display at its first page.

CM50S User Manual 4-20 7/93

4.5.6

4.5.6 ACIDP Summary Display

4.5.6.1 ACIDP Summary Display Fields

This screen lists all of the existing ACIDPs on the TDC 3000 that can be accessed through
the specified CG. Next to each ACIDP name are shown the ACP status, any associated
ACP and (CG-resident) DDT names, and execution status. Up to 15 ACIDP names can be
displayed on the screen at once. Note that this display is not dynamically updated, thus any
changes to ACP Status or Execution State that occur after the list is requested are not
shown.

4.5.6.2 ACIDP Summary Display Function Keys

PF4/QUIT—Cancels viewing of the ACIDP Summary and returns to the CG Database
Display screen.

PF2/HELP—See heading 3.1.3.

G9/PRINT—Prints the entire list of ACIDP names to the default printer.

KP7/DETAIL—Type the entry number or the name of the ACIDP to be displayed and
press KP7. The ACIDP Detail display for the named ACIDP appears on the screen. See
heading 4.5.5.

KP5/ACIDP—Type the entry number or the name of the ACIDP to be displayed and press
KP5. The line containing that ACIDP name is then displayed as the first data line on the
screen.

CM50S User Manual 4-21 7/93

4.5.6

KP3/DDT—Type the name of the DDT to be displayed and press KP3. The line containing
that DDT name is then displayed as the first data line on the screen.

KP4/ACP—Type the name of the ACP to be displayed and press KP4. The line containing
that ACP name is then displayed as the first data line on the screen.

G8/FIRST—Displays the first page of ACIDP entries. If the first page of entries is
already on display, a message stating so appears at the bottom of the screen.

KP8/PAGE UP—Displays the previous page of ACIDP entries. If the first page of entries
is already on display, a message stating so appears at the bottom of the screen.

KP2/PAGE DOWN—Displays the next page of ACIDP entries. If the last page of entries is
already on display, a message stating so appears at the bottom of the screen.

G2/LAST—Displays the last page of ACIDP entries. If the last page of entries is already
on display, a message stating so appears at the bottom of the screen.

CM50S User Manual 4-22 7/93

4.5.7

4.5.7 LCN Configuration Display

If the CG is running TDC 3000 release 400 or later, then the following display is available
to view LCN configuration values:

4.5.7.1 LCN Configuration Display Fields

LCN System-Wide Values:

• Pinid—The 1 or 2 character LCN identifier for Network Gateway routing.
• TDC 3000 release—The software release level running on the LCN.
• Max. tag—The maximum length of points on the LCN (either 8 or 16 characters).

CG Configuration Parameters:

• Node #—The node number of this CG on the LCN
• version—The CG personality release and revision levels (separated by a period).
• Descr.—The Description Parameter for the CG
• Speed—The communications baud rate configured at the CG
• Station—The communications station number of the CG. (This should be 1 or 3 and

not match the station number of the CG port on the VAX.)
• Float point—The format of floating point numbers received from the LCN. This

should be "IEEE".
• Time synch.—The maximum time between communications transactions sent by the

CG. Normal is 15 seconds.
• Confirm time—The time out limit for the CG to wait for a message confirmation.

Normal is 2 seconds.
• T1 Time—The CG's T1 time out counter. Normal is 14.
• N2 Time—The CG's retry counter. Normal is 3.

CM50S User Manual 4-23 7/93

4.5.7

History Module configuration values:

• User Aver.—The number of minutes for User Averages.
• Shifts/week—The number of shifts per week.
• Month type—The type of monthly averages, either Calendar month or 28-day fiscal

months.
• Week start Hr.—The starting hour of the week for averages. 0 is the start of Sunday,

12 is noon Sunday, 24 is the start of Monday, etc.

4.5.7.2 LCN Configuration Display Function Keys

PF4/QUIT—Exits from the display and returns to the main CG Database display.

PF2/HELP—See heading 3.1.3.

KP1/STATUS—Exits from the display and jumps to the CG Status display.

G7/PRINT—Prints the LCN Configuration display to the default printer.

CM50S User Manual 4-24 7/93

CM50S User Manual 5-1 7/93

5

PROGRAM INSTALLATION AND TESTING
Section 5

This section explains the process of application program installation, testing, and revision.

5.1 PROGRAM LINKING

References to several libraries are required to link your application programs. The DCL
command file named ACP_LINK is provided to supply those references. To link an
application program and place it in the default ACP directory (CM50$ACP:), enter the
following command at the DCL prompt:

$ @CM50$LIB:ACP_LINK acp_name (where acp_name is any user-written
program)

5.2 ACP OPERATIONS SCREEN

All major ACP operations such as INSTALL, CONNECT, ACTIVATE, and LIST are
invoked from the ACP Operations screen. This screen is accessed through the CM50S
Main Menu.

CM50S User Manual 5-2 7/93

5.2.1

The hierarchy of displays that start from the ACP Operations screen is:

ACP Operations
Modify Program Connection with ACIDP—G3
ACP List—KP9
ACP Installation (edit)—KP1
Installer Activity Log—KP4

5.2.1 ACP Operations Screen Fields

• ACP Name—This is the 1 to 12 character name of the ACP. This field must be filled in
for all cases except Quit, List, Display Log, Print All and More. After the ACP name has
been entered, a user action routine checks to see if the ACP has already been installed. If
the ACP is installed, then all pertinent fields on the screen are automatically filled in to
show the existing parameters. The cursor is positioned on the DDT Name field. At this
time, modifications can be made to any field on the screen.

• Execution State—Display only. Shows current execution state of the ACP at the
time the screen was called up. See heading 2.2.2.8.

• ACP Pathname—This is the full (up to 80 characters) pathname of the ACP executable
file. This field allows operations to be performed on ACPs that do not reside in the
standard CM50$ACP directory, and also allows the ACP name to be different than the
ACP executable file name. If the ACP is already installed, then this field is filled in
automatically. If this field is left blank, the pathname defaults to the "CM50$ACP:"
directory with a file name identical to the ACP name, with an extension of ".EXE".
Optionally, the pathname can include a file version number. If an ACP is installed
without specifying a file version number, then each activation will use the current version
of the executable file, even if it has been modified after the installation. Note that the
pathname is dynamically expanded to specify the volume and extension names, and that
the 80-character length maximum applies to the expanded pathname.

• Installation Mode—This field is used to select or change ACP installation mode.
For a currently installed ACP, the existing mode selection is shown. Refer to heading
2.2.2.7 for information on the three ACP installation modes.

• ACIDP Name—The name (up to 16 characters) of an ACIDP that the ACP is to be
connected to. This is an optional entry. If the ACP is already installed with this
parameter entered, then this field is filled in automatically.

• CG Port—This field identifies the port number of the CG that is to contain the ACIDP.
This must be a number from 1 to 4. The default is 1. Entry in this field is required only
for the Install and Modify Connection functions.

• DDT Name—Display only. Appears only when the ACIDP has been set up for data
prefetch (see heading 6.4).

• Activation/Deactivation Mode—When activating an ACP, enter I for
Interactive or R for Remote. When deactivating an ACP, enter O for Off/Delay or A for
Abort.

CM50S User Manual 5-3 7/93

5.2.2

Interactive activation of an ACP runs the program as a subprocess, with the current
user's privileges and quotas, and allows you to use the terminal to interact with the
program. Interactive mode must be selected if the ACP has been linked with the VMS
DEBUG utility.

Remote activation runs the ACP as a detached process with the privileges and quotas
specified during ACP installation.

The deactivate feature provides an orderly shutdown regardless of ACIDP connection or
installation mode. It is useful to terminate an ACP caught in an endless loop or to change
an ACP's Execution State (EXECSTAT) at the ACIDP from Abort to Off or Delay.

5.2.2 ACP Operations Screen Function Keys

The menu on the bottom of the screen displays the names of the function keys that can be
pressed to perform ACP functions such as installing, uninstalling, activating, or
deactivating an ACP. And also the making or breaking of an ACP/ACIDP connection.
Each function on this menu is described below.

PF4/QUIT—Exits ACP Operations and returns to the CM50S Main Menu.

G0/INSTALL—Installs the ACP and adds it to the ACP Table. All fields except for the
Activation/Deactivation Mode field are used for ACP installation; however, the ACP
Pathname, and ACIDP Name fields are optional entries. Default values are used for all of
the additional installation parameters (process name, user identification code,
SYS$INPUT, SYS$OUTPUT, SYS$ERROR, privileges, process quotas and status flags)
described at heading 5.5. On completion, either an installation complete message or an
error message is displayed at the bottom of the screen.

G./UNINST—Uninstalls the ACP and removes it from the ACP Table. The ACP Name
field must contain the name of the ACP to be uninstalled. If the ACP name is invalid, then
an error message is displayed at the bottom of the screen. Entries in all other fields are
ignored.

KP0/ACTIVATE—Activates the ACP according to the contents of the ACP Name and
Activation/Deactivation Mode fields. If the ACP name or the activation mode is invalid,
then an error message is displayed at the bottom of the screen. Entries in all other fields are
ignored. Note that remote activation creates a detached process similar to triggering the
ACIDP, while interactive activation runs the ACP as a subprocess using the terminal as
SYS$INPUT and SYS$OUTPUT.

KP./DEACTIVATE—Deactivates (forces termination of) the ACP according to the
contents of the ACP Name and Activation/Deactivation Mode fields. If the ACP name or
the deactivation mode is not valid, then an error message is displayed at the bottom of the
screen. Entries in all other fields are ignored.

Note that deactivating an ACP issues a VMS STOP process command that kills the ACP
without waiting for completion of any pending LCN call. If the ACP is accessing a DDT
when it is deactivated, that DDT may be left locked.

To unlock a DDT: RUN CM50$SUPPORT:CM50_CLEAR_DDTUSE. This utility
prompts for the DDT name, then informs the user of its success.

CM50S User Manual 5-4 7/93

5.2.2

G3/MOD CONNECTION—Causes the MODIFY PROGRAM CONNECTION WITH
ACIDP screen to be displayed. Refer to heading 5.3 for additional details.

KP9/LIST—Displays all of the installed ACP names and other pertinent information on
the screen. This includes each ACP's name, source path, installation status, ACIDP name,
execution state, CG port, and process identification number. The entries in all fields will
be ignored. The user can page forward and backward through the ACP names. Refer to
heading 5.4 for more information.

PF3/MORE—Displays the alternate function key menu (shown following) at the bottom of
the screen.

The additional functions on this menu are described below.

PF2/HELP—See heading 3.1.3

KP1/EDIT PARAMS—Displays the first of two ACP installation screens that allow
modification of the default parameters for ACP installation. The parameters that appear on
the first installation screen are the process name, user identification code, SYS$INPUT,
SYS$OUTPUT, SYS$ERROR and privileges. The second installation screen allows the
process priority, quotas, and status flags to be modified, if necessary. Refer to heading
5.5 for detailed information.

G1/CHG INST MODE—Changes the installation mode of the ACP according to the
contents of the ACP Name and Installation Mode fields. If the ACP name is invalid, then
an error message is displayed at the bottom of the screen. Entries in all other fields are
ignored.

KP4/DISP LOG—Displays the Installer Activity Log which records any significant
changes in the status of individual ACPs. Refer to heading 5.6 for detailed information.

G9/PRT ALL—Prints all of the installed ACP names and other pertinent information to
the default printer. This includes each ACP's name, source path, installation status,
ACIDP name, execution state, CG number, and process identification number. (The same
information provided by the ACP List Screen.) The entries in all fields are ignored. After
the ACP Table has been sent to the printer, the message “Print complete” appears at the
bottom of the screen.

CM50S User Manual 5-5 7/93

5.3

5.3 MODIFY PROGRAM CONNECTION WITH ACIDP SCREEN

This screen is displayed as the result of the G3/MOD CONNECTION selection from the
ACP Operations Screen. From this display the user can modify the ACP/ACIDP
connection, the ACIDP/DDT connection, and/or the Triggers.

5.3.1 Modify Program Connection With ACIDP Screen Data Fields

• ACP Name—This is the up-to-12 character name of the ACP entered at the ACP
Operations screen. It cannot be changed from this screen.

• ACIDP Name—This is the one-to-eight character name of the ACIDP to connect the
ACP to. If the ACP is already installed with this parameter entered, then this field is
filled in automatically.

• CG Port Number—This field indicates the CG port number to be used for data
requests. This must be a number from 1 to 4. The default is 1.

• DDT Name—This is the one-to-nine character name of a DDT to be connected to the
same ACIDP as the ACP (for precollection of data). If the ACP is already installed and
this parameter has been entered previously, then this field is filled in automatically.
Associating a DDT with an ACIDP allows the CG to fetch data for the DDT immediately
on occurrence of predefined scheduling events. This minimizes time lag between the EIP
and data capture.

• PREFETCH on—The three Y/N field selections (SCHEDULE, EIP/PPS, and OPER
DEMAND) allow for the selection of up to three types of "triggers" for prefetch of data
when the ACP-ACIDP-DDT connections exist. See heading 6.4 for more information on
data prefetch.

CM50S User Manual 5-6 7/93

5.3.2

5.3.2 Modify Program Connection with ACIDP Screen Function Keys

G0/CONNECT—Connects the ACP to the named ACIDP. If the ACP or ACIDP name is
invalid or if the ACP is already connected to another ACIDP, an error message is
displayed on the bottom of the screen. If the DDT Name field contains a valid DDT name,
the DDT is made CG Resident (if necessary) and the DDT is attached to the named ACIDP
for pre-collect of data.

G./DISCONNECT—Disconnects the ACP from the ACIDP. If the ACP name is invalid or
if the ACP is not connected to an ACIDP, then an error message is displayed at the bottom
of the screen. If a DDT is attached to the named ACIDP, that connection also is broken.

KP1/CHANGE TRIGGERS—Changes the Triggers based on the entries in the fields for
"Prefetch on."

CM50S User Manual 5-7 7/93

5.4

5.4 ACP LIST SCREEN

When KP9/LIST is chosen from the ACP Operations screen, the ACP List screen is
displayed. This screen displays the name of every installed ACP, its full pathname,
installation mode, ACIDP name, execution state, CG Port Number, and process
identification number. Up to eight entries can be displayed on the screen at one time. Note
that this display is not dynamically updated, thus any changes of ACP State that occur after
the ACP list is requested are not shown.

5.4.1 ACP List Screen Fields

• ACP Name—The name of an installed ACP.

• Pathname—This is the full pathname of the ACP executable file. The executable
filename may be different than the ACP name. This field is never blank.

• Mode—This is the installation mode of the ACP. It contains one of the following
keywords: Normal, Test, or Restricted. See heading 2.2.2.7 for more
information on ACP installation modes.

• ACIDP Name—This is the name of the ACIDP that the ACP is connected to. This field
is blank if no ACIDP connection exists.

• Execution State—This is the execution state of the ACP. It contains one of the
following keywords: ABORT, ACCESS, DELAY, FAIL, OFF, PEND, RUN,
HIBR, or WAIT. See heading 2.2.2.8.

• CG—A value of 1-4 represents a CG Port Number that the ACP is associated with. A
value of zero (0) indicates that the ACP is not connected to an ACIDP.

CM50S User Manual 5-8 7/93

5.4.2

• PID—This is the VMS process identification number (PID) of the ACP. It is displayed
only when the ACP is in ACCESS, DELAY, RUN, HIBR, or WAIT state.

5.4.2 ACP List Screen Function Keys

PF4/QUIT—Cancels viewing of the ACP List and returns to the ACP Operations screen.

PF2/HELP—See heading 3.1.3

ACP NAME—Type the name of an ACP and press <RETURN>. That ACP is then
displayed as the first entry on the screen. Pressing <RETURN> without entering an ACP
name has no effect on this display.

G9/PRINT—Prints the entire list of ACPs to the default printer.

G8/FIRST—Displays the first page of ACP entries.

KP8/PRIOR—Displays the previous page of ACP entries. If the first page of ACP entries
is already on display, a message stating so appears at the bottom of the screen.

KP2/NEXT—Displays the next page of ACP entries. If the last page of ACP entries is
already on display, a message stating so appears at the bottom of the screen.

G2/LAST—Displays the last page of ACP entries. If the last page of ACP entries is
already on display, a message stating so appears at the bottom of the screen.

CM50S User Manual 5-9 7/93

5.5

5.5 ACP INSTALLATION SCREENS

When the KP1/EDIT PARAMS key is pressed from the ACP Operations screen (with the
ACP Name, Installation Mode, and CG Port Number fields filled in), the
first of two ACP Installation screens is displayed. Refer to the $CREPRC system service
call in the VAX/VMS System Services Reference Manual for more information about the
fields on the installation screens. All of the fields on either screen are shown with default
values.

CAUTION

The default privileges, priority, and quotas are picked up from the VAX Sysgen parameters
tuned for your site's hardware and load. They should be overridden only when there is a
specific need. Injudicious change of these parameters can result in serious performance
problems.

Note that these installation parameters apply only to ACPs running as detached processes.
When an ACP is run interactively, the user's terminal, privileges, quotas, etc. are used by
the system.

The default values for the process name, user identification code, SYS$INPUT,
SYS$OUTPUT, SYS$ERROR, and ACP privileges can be modified from the first ACP
Installation screen.

CM50S User Manual 5-10 7/93

5.5.1

5.5.1 ACP Installation Screen 1 Fields

• Process Name—This is the up to 15-character name of the process that the ACP will
run under. The default is the ACP name that was entered on the ACP Operations screen.

• UIC (Name)—This is the up to 12-character name of the VMS account under which the
ACP will run. The default is CM50S_MGR. This field can be used to run an ACP
under a different group so that it can access resources in that group. Note that in order to
install an ACP with an account other than the default or his own name, a user must be
registered with VMS privileges (Group or World).

• Sys$Input—This is the up to 80-character full pathname of a file from which the ACP
will receive input data. If the ACP is run in interactive mode, the default is the terminal.

• Sys$Output—This is the up to 80-character full pathname of a file to which the ACP
will write output data. If the ACP is run in interactive mode, the default is the terminal;
otherwise, the default is the null device (NL:).

• Sys$Error—This is the up to 80-character full pathname of a file to which the ACP
will write error messages. If the ACP is run in interactive mode, the default is the
terminal; otherwise, the default is the null device (NL:).

• Privileges—A list of 36 privileges is displayed on this portion of the screen, with a
1-character field to the left of each keyword. The default privilege (SYSLCK) always is
displayed with an "X" next to it. Type an "X" in the field next to each privilege that the
ACP needs during execution and use the space bar to blank out the fields next to the
privileges that are not needed. Note that a user must be registered with the VMS privilege
before he can assign it to an ACP.

5.5.2 ACP Installation Screen 1 Function Keys

PF4/QUIT—Exits ACP Installation and returns to the ACP Operations screen without
installing the ACP.

PF2/HELP—See heading 3.1.3.

G0/INSTALL—Installs the ACP and adds it to the ACP Table. Any newly entered values
on the two installation screens (process name, user identification code, sys$input,
sys$output, sys$error, and privileges) are used to install the ACP. After the ACP has been
installed without errors, the message ACP has been successfully installed
is displayed at the bottom of the screen. If an error occurs during the ACP installation, an
error message is displayed at the bottom of the screen.

KP2/NEXT—Displays the second ACP Installation screen. From this screen, the default
process priority, quotas, and status flags can be modified before installing the ACP.

CM50S User Manual 5-11 7/93

5.5.3

5.5.3 ACP Installation Screen 2 Fields

• Base Priority—This the runtime priority of the ACP. Enter an integer from 0 to
30, with 0 being the lowest priority. Normal priorities are in the range 0 to 15, and real-
time priorities are in the range 16 to 31. The default is 4; caution should be used above
that value.

• Mailbox Name—40 ASCII characters or less. Used only by applications needing a
VMS termination mailbox.

• Process Quotas—A list of 14 process quotas is displayed on this portion of the
screen, with the default values appearing in the fields. All of the fields can be modified
by typing over the existing values.

• Status Flags—A list of 13 status flags is displayed on this portion of the screen,
with a 1-character field to the left of each keyword. The default flags are displayed with
an X next to them. Type an X in the field next to each desired option and use the space
bar to blank out the fields next to options that are not needed.

5.5.4 ACP Installation Screen 2 Function Keys

PF4/QUIT—Exits ACP Installation and returns to the CM50S Main Menu without
installing the ACP.

PF2/HELP—See heading 3.1.3.

CM50S User Manual 5-12 7/93

5.5.4

G0/INSTALL—Installs the ACP and adds it to the ACP Table. Any newly entered values
on the first and second installation screens (process name, user identification code,
SYS$INPUT, SYS$OUTPUT, SYS$ERROR, privileges, process quotas, and status
flags) are used to install the ACP. After the ACP has been installed without errors, the
message ACP has been successfully installed is displayed at the bottom of
the screen. If an error occurs during the ACP installation, an error message is displayed at
the bottom of the second installation screen.

KP8/PRIOR—Returns to the first ACP Installation screen to allow the process name, user
identification code, SYS$INPUT, SYS$OUTPUT, SYS$ERROR, and privileges to be
modified before installing the ACP.

CM50S User Manual 5-13 7/93

5.5.5

5.5.5 Use of DCL Within an ACP

There is a significant performance penalty incurred when a process is created with a
mapping of the command interpreter. Therefore, access to DCL is not provided to ACPs in
the normal remote dispatching of ACPs. For applications that require a combination of
ACP functionality (ACIDP triggering and/or LCN stores) and DCL procedures (invoked
through the VMS LIB$SPAWN function), the following ACP installation options should
be used:

• ACP Pathname – must be specified as: SYS$SYSTEM:LOGINOUT.EXE. This will
map the DCL command processor.

• SYS$INPUT – must be installed as the complete file specification of a DCL
command file. Example: CM50$ACP:myacp.com. This command file should
consist of the following two lines:

 $ RUN CM50$ACP:myacp.EXE {where myacp.EXE is the
 executable ACP image }

 $ EXIT {to terminate the process }

• ACP Process Name – must be specified, conventionally with the name of the ACP
image. If allowed to default, a duplicate ACP name error will occur if any other
installed ACP uses the LOGINOUT mapping.

• UIC – should be set to match a user account that has, as defaults, all the VMS
privileges and quotas needed to run the ACP. (Otherwise, LOGINOUT will
constrain the ACP to the privileges and quotas of the account that was used to start up
CM50S, regardless of the privileges and quotas specified on the ACP installation
screens.) When a UIC is specified for LOGINOUT, the ACP must be installed with
the “NOUAF” status flag set. (Otherwise, the User Authorization File for the
dispatching user will override the UIC requested in the process creation.)

Note that if a more complex command file is used as SYS$INPUT for an ACP, then its
first command must invoke an image that calls CM50_SET_ACP (or ACPTRP) as its first
executable statement and its next-to-last command (just before the $ EXIT) must invoke an
image that calls PRGTRM as its final executable statement. No additional calls to either
CM50_SET_ACP or PRGTRM may be made by any image invoked in the command file.

CM50S User Manual 5-14 7/93

5.6

5.6 ACP INSTALLER ACTIVITY LOG SCREEN

When KP4/DISP LOG is selected from the ACP Operations screen, the Installer Activity
Log screen is displayed. This screen displays the 1000 most recent changes that have been
made to all ACPs in the system. The date and time of the change, ACP name, full
pathname, installation mode, ACIDP name, CG Port Number, and the change that was
made to the ACP are all shown. Up to eight entries can be displayed on the screen at one
time.

5.6.1 ACP Installer Activity Log Screen Fields

• Date—The date and time that the change was made to the ACP. The number to the left
of the name corresponds to that entry's position in the Installer Activity Log.

• ACP Name—This is the name that the ACP was installed under. It is displayed directly
underneath the date and time and may differ from the executable filename. This field is
never blank.

• Action—This identifies the change that was recorded, using one of the following
keywords:
ACTIVATED—The ACP was activated interactively.
CHANGED—The ACP's installation mode was changed. Both old and new mode

values are shown.
CONNECTED—The ACP was connected to an ACIDP. The mode (Test, Restricted, or

Normal) is shown on the next line.

CM50S User Manual 5-15 7/93

5.6.2

DEACTIVATED—The ACP was deactivated from the VAX. The next line shows
whether the ACP was set to ABORT or to OFF.

INSTALLED—The ACP was installed. The next line shows the pathname of the
executable image.

UNINSTALLED—The ACP was uninstalled.

• ACIDP—This is the name of the ACIDP that the ACP is connected to. This field may be
blank if the ACIDP name is not relevant to the change that was made.

• CG—This is the CG Port Number that the ACP is associated with. This is an integer
from one to four. This field may be blank if the CG number is not relevant to the change
that was made.

5.6.2 ACP Installer Activity Log Screen Function Keys

PF4/QUIT—Cancels viewing of the Installer Activity Log and returns to the ACP
Operations screen.

PF2/HELP—See heading 3.1.3.

JUMP TO:____________—Type the starting date in the format DDMMMYY (such as
20DEC88) and press <RETURN>. The first entry for that date is then displayed as the first
entry on the screen. If an invalid date is entered, then an error message is displayed at the
bottom of the screen. In either case, the screen then awaits user input. Pressing
<RETURN> without entering a date causes an error message to be displayed at the bottom
of the screen.

KP8/SCROLL UP—Scrolls to prior entries in the Installer Activity Log.

KP2/SCROLL DOWN—Scrolls to later entries in the Installer Activity Log.

CM50S User Manual 5-16 7/93

5.7

5.7 TEST AND RESTRICTED MODES OF ACP OPERATION

The "Test" and "Restricted" modes of ACP operation help in the checkout of new or
revised Advanced Control Programs by providing a controlled environment. Table 2-1
summarizes the ACP operating attributes for each operating mode.

Operation mode selection and change are made through the ACP Operations screen. For
example, a program can be installed in "Test" mode. Then, after testing, its mode can be
changed to "Restricted" or "Normal" mode.

5.7.1 Test Mode Operation

This is the most tightly controlled mode of operation. It uses preassigned test values for
input and prevents the export of any output values to the LCN.

The test-input values are established when you build the Data Definition Tables to be
referenced by the ACP. If a test value is not defined for a referenced input parameter,
currently accessed data is stored as the input value.

ACPs in test mode are activated through the ACP Operations screen. While in test mode,
an ACP also can be activated by operator demand at a Universal Station if the ACT_TYPE
parameter value of its attached ACIDP includes demand.

5.7.2 Restricted Mode Operation

Restricted mode operation differs from test mode only in the use of "live" values from the
LCN rather than test input values. Outputs to the LCN are blocked and program activation
is the same as in test mode.

5.8 RECOVERY OF AN ACP FROM ABORT STATE

When an ACP has been aborted by its own action, it can be restored by operator action at a
Universal Station (see the parameter OPER_DMD in the Computer Gateway Parameter
Reference Dictionary). The ACIDP also can be reset from a VAX terminal by
disconnecting and then reconnecting the ACP.

If the ACP was aborted by VMS and is still shown to be in RUN state by the Universal
Station or by the ACP Status display, it can be forced to the ABORT or OFF state by
deactivation through the ACP Operations screen.

CM50S User Manual 6-1 7/93

6

DATA DEFINITION TABLES
Section 6

This section explains how you prepare, view, and modify the special tables that are used by some
of the User Interface routines.

6.1 OVERVIEW OF DDT PREPARATION

The use of Data Definition Tables was discussed at heading 2.1.2. In this section you will
find out how DDT tables are created and modified. Each DDT table begins with the
preparation of a source file that contains all the information required by its type. Table 6-1
illustrates some characteristics of the five table types.

Table 6-1 — DDT Table Types and Data Types

DDT TABLE TYPES ALLOWED DATA TYPES PT COUNT MAX
IN THE SAME DDT TABLE

Input Real 300
Integer or Time or Internal Entity ID (see note following
ASCII or String or External Entity ID
Enumeration or Ordinal

Generic Input Up to four of the following types: 300
Real (see note following)
Integer
Time
Internal Entity ID
ASCII
String
External Entity ID
Enumeration or Ordinal

Output Real 300
Integer or Time or Internal Entity ID (see note following)
ASCII or String
Enumeration or Ordinal

Generic Output Up to four of the following types: 300
Real (see note following)
Integer
Time
Internal Entity ID
ASCII
String
Enumeration or Ordinal

History Real & Integer (See paragraph 6.3.4) 24

CM50S User Manual 6-2 7/93

6.1

NOTE

The number of values (Pt. Count Max) that can be transferred using a DDT is limited by internal
buffering on the LCN. While each DDT can include up to four different data types, the total
values for all types cannot exceed 300. The buffer can transfer a total of only 152 ASCII,
String, and External Entity ID data types. For DDTs that contain a mix of ASCII and other data
types, the exact maximum is difficult to compute but the total point count can be 300 if the
number of the ASCII types plus enumerations is less than 91.

Note that the standard input and output DDTs can be used with either the normal DDT Get
and DDT Store functions or with the Generic DDT calls. However, Generic input and
output DDTs can be used only with the Generic DDT calls.

You begin creation (or modification) of a DDT with selection of the "Edit" function (KP1)
on the DDT Operations screen after entering the table name and identifying its type. A DDT
Data Entry screen suitable to the specified type appears and provides you with a "template"
to be filled in. You continue with the Edit function until information on all the
point.parameters to be accessed has been entered. The command that saves the source file
brings you back to the DDT Operations screen for the "Build" step.

The Build command (G1) prepares the DDT in two stages. It first reads and verifies the
source file, meanwhile creating several component files to hold information about this
DDT. While a DDT is being built (or rebuilt), it cannot be accessed by any other process.

If the source file is error free, the Builder program proceeds to the second stage, the
external-to-internal name conversion. Source-file verification can be done without the CG,
but external-to-internal name conversion requires access to the LCN.

NOTE

Data Definition Tables need to be rebuilt whenever the LCN database is changed in a
significant manner, such as by the rebuild or deletion of data points referenced by that DDT.

As indicated above, the Data Definition Table is not a single file, but includes both the
source file and a set of files that are created during the build process. Each component file
of a DDT is identified by the table name and a suffix that denotes the file type and use.

Details of the DDT Operations screen and the hierarchy of subsidiary displays that it
invokes begin at heading 6.2.

CM50S User Manual 6-3 7/93

6.2

6.2 DDT OPERATIONS SCREEN

All Data Table operations such as EDIT, BUILD, DELETE, LIST, and PRINT begin at the
DDT Operations screen (accessed from the CM50S Main Menu). At this screen you enter
preliminary information before proceeding to other displays to complete the desired work.

The hierarchy of displays that start from the DDT Operations screen is

DDT Operations
Edit DDT—KP1
DDT Error Summary —KP4
DDT Detail Description —KP7
DDT List —KP9
ACIDP-DDT Prefetch —G3

6.2.1 DDT Operations Screen Fields

• Table Name—Enter the one-to-nine-character name of a new DDT or the name of a
DDT that has already been built. This field must be filled in for all cases except Quit,
Help, Print All, and List. After the DDT name is entered, a user action routine
checks to see if the DDT already exists. If the DDT exists, the rest of the screen is
automatically filled in to show the existing parameters. Modifications can be made to
any field on the screen.

• Description—This is a 36-character description of the DDT and is an optional entry.
If the specified DDT exists, this field is filled in automatically. This field can either be
filled in or left blank.

CM50S User Manual 6-4 7/93

6.2.2

• Source Path—This is the full, up to 80-character pathname of the DDT source file.
This field allows operations to be performed on DDTs that do not reside in the current
working directory and also allows the DDT name to be different than the DDT source file
name. If this field is left blank, it is assumed that the DDT source file resides in the
current working directory and has the same DDT name. The ".DDT" suffix in the
pathname is an automatic default. Note that the pathname is dynamically expanded to
specify the volume and extension names, and that the 80-character maximum length
applies to the expanded pathname.

When an existing DDT is displayed, the source path is shown automatically and includes
the version number of the source file used to build it. (The version number is shown as
";nn" at the end of the source path.) Note that if the source file has been changed since
the last successful build, the initial display still shows the old version number. To call up
the most recent version of the source file, either delete the version number from the
screen, or replace it with version 0.

• Table Type—This field indicates whether the DDT is for Input, Output, or History.
If the DDT already exists, this field is filled in automatically. This field is used only
when creating or modifying a DDT. The possible values for table type are:

I — DDT will be used for input from the LCN.
i — Input DDT, but can only be used with the CM50_DDT_GETGEN function.
O — DDT will be used for output to the LCN.
0 — Output DDT, but can only be used with the CM50_DDT_STORGEN function.
H — DDT will be used for input from the History Module on the LCN.

• CG Port Number—This field indicates the number of the CG port that is used for data
requests. This must be a number from 1 to 4. The default is 1. Entry in this field is
required for only the Build, Install in CG, Remove from CG, and
Modify connection functions.

• Install in CG—This field indicates whether or not the DDT is to be CG resident.
The default is N. It is used only when performing the Build function on Input DDTs.

• Connected ACIDP—If the DDT is connected to an ACIDP, the ACIDP name appears
in this field, otherwise the field is blank. This is a display-only field.

• Make .VT File—Normally set to “N” to maximize throughput. If set to “Y”
(generally for debugging), the most recently transferred values are kept on disk so that
they can be viewed using the DDT Detail Description displays (see heading 6.6).

Note that use of a .VT file reduces performance and keeps the DDT locked until the
values are recorded on disk. This blocks the concurrent use of that DDT by more than
one process.

6.2.2 DDT Operations Screen Function Keys

The menu on the bottom of the screen displays the names of the function keys that can be
pressed to perform DDT functions such as editing, building, printing, and deleting a DDT.
Each function on this menu is described below.

PF4/QUIT—Exits DDT Operations and returns to the CM50S Main Menu.

CM50S User Manual 6-5 7/93

6.2.2

KP1/EDIT—This operation allows for the creation and modification of DDT source
files. The Table Name and Table Type fields must be filled in, otherwise an
error message is displayed on the bottom of the screen. A data entry screen for the type
specified by the Table Type field is displayed. Refer to heading 6.3 for more
information on editing DDTs.

G1/BUILD—Verifies that all of the point.parameters referenced by the DDT exist on the
LCN and then adds the DDT to the CM50S known list of DDTs. The Table Name,
Table Type, CG Port Number, and Install in CG fields must be filled
in, otherwise an error message is displayed at the bottom of the screen. If an error occurs
while building the DDT, an error message appears on the bottom of the screen. If the
DDT is built without errors, a "success" message appears at the bottom of the screen. In
either case, the screen then awaits user input.

If you are rebuilding an existing DDT, the system deletes and replaces the existing set of
DDT files automatically.

NOTE

Before invoking the Build command, you first need to consider three available options:

• If the DDT is to reside in the CG, you must change the value of "Install in CG:" to Y.

• If data prefetch is wished, you must use the ACIDP-DDT Prefetch display (heading 6.4)
to select the ACIDP and the trigger types.

• If you want the most recently transferred values to be available on disk for viewing, you
must specify that a .VT file is to be made.

If the source file has been modified, make certain that the source path shows the desired
version number. A blank version number (no ";nn" at the end of the source path) causes the
latest version of the source to be used for the build.

G./DEL—Removes the DDT from the CM50S list of known DDTs and deletes all of that
DDT's binary files. The source file is not deleted. The Table Name field must be
filled in, otherwise an error message is displayed on the bottom of the screen. If an error
occurs while deleting the DDT's binary files, an error message appears at the bottom of
the screen. If the DDT is deleted without errors, a "success" message appears at the
bottom of the screen. In either case, the screen then awaits user input.

KP4/DISPLAY ERRORS—This operation displays the error file created during a DDT
build. The Table Name field must be filled in with the name of an existing DDT. If
the DDT does not exist, an error message is displayed at the bottom of the screen. The
user can scroll up and down through the error file. Refer to heading 6.5 for more
information on this display.

CM50S User Manual 6-6 7/93

6.2.2

KP7/DISPLAY DDT—This operation displays the description of one DDT on the
screen. The Table Name field must be filled in with the name of a previously built
DDT. If the DDT does not exist, an error message is displayed at the bottom of the
screen. The user can page forward and backward through the DDT definition or jump to
specific Point.Parameters in the DDT. Refer to heading 6.6 for more detailed information
on this function.

KP9/LIST—This operation displays all of the installed DDT names and other pertinent
information on the screen. This includes each DDT's name, description, status, number
of points, whether it is for input, output, or history, the CG number, and whether or not
it is CG-resident. The data in all fields is ignored. The user can page forward and
backward through the DDT names. The format is the same as for the DDT Detail
Description displays (see heading 6.6).

G7/PRINT DDT—This operation prints the description of the DDT to the default
printer. The Table Name field must be filled in with the name of an existing DDT. If
the DDT does not exist, an error message is displayed at the bottom of the screen. After
the DDT description has been sent to the printer, the message DDT description
has been printed appears at the bottom of the screen.

G9/PRINT ALL—This operation prints all of the built DDT names and other pertinent
information to the default printer. The report contains each DDT's name, description,
status, number of points, whether it is for input, output, or history, the CG Port number,
and whether or not it is CG-resident. The data in all fields is ignored. After the DDT
Table has been sent to the printer, the message DDT List has been printed
appears at the bottom of the screen. Refer to heading 6.6 for the screen equivalent of this
function.

PF3/MORE—Displays the alternate function key menu (shown following) at the bottom
of the screen.

The additional functions on this menu are

PF2/HELP—See heading 3.1.3.

G0/INSTALL IN CG—Installs the DDT in the CG. The Table Name field must be
filled in.

G,/REMOVE FROM CG—Removes the DDT from the CG. The Table Name field
must be filled in. Note that on most personal computer keyboards this VT00 keypad
comma key is labeled as "+".

G3/MOD CONNECTION—Causes the ACIDP - DDT PREFETCH screen to be
displayed.

CM50S User Manual 6-7 7/93

6.3

6.3 EDIT DDT SCREENS

When the KP1/EDIT key is pressed at the DDT Operations screen with all required fields
filled in, a DDT Entry template is displayed. The type of template (Input, Output, or
History) to appear depends on the type of DDT specified. While in this edit mode, all field
entries are checked for syntax errors before accepting data from the screen. Fields
identified as having errors will blink. All identified errors must be corrected before any
function other than QUIT (PF4) or DELETE (G.) will be executed.

NOTE

When a new Input or Output DDT is specified, a blank template for data type Real is the first
template displayed. If the Input or Output DDT already exists, the first template appears with
field information filled in. Its data type depends on what type(s) have previously been
entered. A screen function key (KP,) controls change of I/O template data type.

LCN tags can be entered in any order, but the DDT Source file generated by this utility is
sorted so that all tags of the same data type are grouped together. A maximum of four
different data types can be included in a DDT. Any Reals will come first, followed by Integers,
24-character ASCII, Enumerations, Ordinals, Internal Point IDs, External Point IDs, Times, and
40-character ASCII (in that order).

Entry templates exist for

Input-Real Output-Real
Input-Integer Output-Integer
Input-ASCII Output-ASCII
Input-Enumerated Output-Enumerated
Input-Ordinal Output-Ordinal
Input-Time Output-Time
Input-String Output-String
Input-Internal_ID Output-Internal_ID
Input-External_ID
History

The table type and data type appear in the upper left-hand corner of the screen. Also shown
at the top of the screen are the table name and an entry number (within the data type).
History DDT screens do not have entry numbers.

The same function key menu is used by all Input and Output template displays; the History
template display uses a different function key menu.

6.3.1 DDT Table Entry Rules

The paragraphs that follow explain the general requirements for DDT Source Table data
entry. Then, starting at paragraph 6.3.2, the specific data-entry requirements for each
individual data point-type are discussed. (See the Hiway Gateway Parameter Reference
Dictionary, Application Module Parameter Reference Dictionary, and Computer Gateway
Parameter Reference Dictionary for valid parameter names and their data types.)

CM50S User Manual 6-8 7/93

6.3.1

NOTE

For values of Enumeration type there is a choice between character-string and ordinal-value
presentations. You can include one type or the other, but not both, in an Input or Output
DDT.

Output of enumeration strings is limited to the set of standard enumerations as defined in the
Parameter Reference Dictionaries. Parameters of type self-defining enumeration accept only
ordinal values of the enumerations.

6.3.1.1 General Information

The following rules apply to data entry for all DDT templates:

All data is entered left-justified (no leading blanks). Trailing blanks are ignored.

Real numbers between 0 and 1 do not require a zero to precede the decimal point (e.g.,
0.05 and .05 are both acceptable). Whole real numbers need not contain a decimal point
(e.g., 10, 10., and 10.0 are all acceptable).

There is no need to segregate points whose data is held in differing nodes on the same
LCN into separate DDTs. On the contrary, the combining of points with different data
owners into a single DDT makes better use of the LCN's distributed processing.

6.3.1.2 Data-Specific Information

POINT NAME and PARAMETER—Both point name and parameter must be entered for all
template types. For input tables, the point name and parameter specify where the input
value is to be fetched from. For output tables, the point name and parameter specify where
the value is to be sent.

Note that several template types use additional point and parameter name entries—for Bad
Value Substitution and for use in algorithms 6 through 9.

The point name must be from one-to-16 characters long and begin with "A..Z," "0..9," or
"$"(for system data entities). Characters within the point name must be "A..Z," "0..9" or
"_" (underscore). Consecutive underscore characters within a name are not permitted.
Any trailing underscores are ignored.

The point name can be preceded by a pinid (1 or 2 characters followed by a backslash "\"
delimiter) if the LCN supports Network Gateway routing. The name may not include
embedded spaces. A space or null character (hex 00) is treated as a terminator, so any
following characters will be lost.

The parameter must be from one to eight characters long and begin with "A..Z."
Characters within the parameter must be "A..Z," "0..9," or "_" (underscore). Any trailing
underscore characters are ignored.

Parameters can be subscripted (to allow accessing single elements of parameter arrays) by
enclosing the subscript value in parentheses immediately following the parameter name; for
example, name(nn). A maximum of 14 character positions is allowed for a subscripted
parameter name.

CM50S User Manual 6-9 7/93

6.3.1

DESTINATION—The destination field specifies where in the application program's data array
for that data type the value is to be stored. (Used only if you do not wish values to be
stored in locations corresponding one-to-one with positioning of entries in the DDT.) The
destination value is an offset from the base location for that data type's data array. Thus, if
the input-array table name is INTVAL, a destination of 23 results in that value being stored
in array-location INTVAL(23).

If no destination is entered (either blanks or underscores), the value is placed into the
program's array in a location corresponding to its position in the DDT for that data type.
For example, if the DDT is comprised of 15 data points of type Real followed by 25 data
points of type Integer and no destination is entered for any of the points, the values are
stored as follows: The real values are stored in the real-array REAVAL(1) through
REAVAL(15), and the integer values are stored in the integer-array INTVAL(1) through
INTVAL(25). (REAVAL and INTVAL represent the names for the real array and integer
array used in the program call to the interface routine.)

If the destination is specified as 0, the value is not returned to the calling program in its data
array. This feature may be useful when an LCN parameter is included in a DDT solely for
use in a bad value substitution or algorithm calculation. If a Value Table is saved for the
DDT, the value for this point is included in the DDT Detail displays.

CAUTION

If a DESTINATION or SOURCE location is specified, the user is responsible for avoiding
duplicate assignments. The default assigns the sequential entry number as the destination
or source without checking for conflicts. It is recommended that you either leave the
destination/source blank for every entry in a DDT, or that you assign an explicit
destination/source to every entry.

SOURCE—The source parameter specifies from where in the program's data array the value
is to be taken. As with "destination," this value identifies which element of that data type's
value array is to be stored in this tag. A source value of 0 (zero) is invalid.

CM50S User Manual 6-10 7/93

6.3.1

6.3.1.3 Input/Output DDT Data Entry Screen Function Keys

Following is an illustration of the first set of common Function Keys that appear with any
of the Input or output DDT data entry displays.

Each function on this primary input DDT menu is described below.

PF4/QUIT—Cancels data entry and returns to the DDT Operations screen. If any
changes have been made, you will be asked to verify that you wish to quit without saving
changes.

G0/DONE—Sorts the defined points by data type then writes the file to the Source
Pathname. Control then returns to the DDT Operations screen.

KP0/VERIFY—Makes a single-point call to see if the point.parameter exists on the
LCN. The call is made to the CG port that was specified on the DDT Operations screen.
A message appears at the bottom of the screen stating whether or not the point.parameter
exists on the LCN. This allows you to create DDT source files without the CG being
connected, then verify them later.

KP,/NEW TYPE—Allows you to change the type of data being entered. The cursor is
placed at the entry field at the bottom of the screen, and the prompt: "Real, Integer,
ASCII, Enum, Ord, Ptid, Xtern, Time or Stri & <RETURN>"
appears on the bottom line of the screen. Type the first letter of the new type and press
<RETURN>. An entry screen for that data type then appears on the screen, ready for
input. Pressing PF4 cancels the operation. Note that there is no restriction on the order
of data entry; the system orders the filled in templates by data type at the end of the entry
session. Within each data type, the filled in templates are maintained in order of entry.

G./DELETE—Deletes the current entry being displayed on the screen. You are
prompted to confirm the deletion. The entry that follows the deleted entry is then
displayed. If the current entry is the last one of the current data type, a blank entry screen
is displayed. If the Deletion request is cancelled (by answering NO to the confirmation
prompt), the screen is restored to show the previous values for that entry.

KP./INSERT—Inserts a blank entry of the current data type BEFORE the current entry.

KP3/DUPLICATE—Adds a duplicate of the current entry directly AFTER the current
entry. This is useful when multiple entries with the same format are desired.

G8/FIRST—Displays the first entry of the current data type.

KP8/PRIOR—Displays the previous entry of the DDT. If the current entry is the first
one, an error message is displayed at the bottom of the screen.

KP2/NEXT—Displays the next entry of the current data type. If the current entry is the
last one, a blank entry screen is displayed.

CM50S User Manual 6-11 7/93

6.3.1

G2/LAST—Displays the last entry of the DDT.

PF3/MORE—Displays the alternate function key menu (shown following) at the bottom
of the screen.

The additional functions on the alternate Input DDT menu are described below.

PF2/HELP—See heading 3.1.3

G7/PRINT—Prints the current entry to the default printer.

G9/PRINT ALL—Prints a summary of all entries in the DDT to the default printer. The
Point Name, Parameter, Source/Destination, Data Type, is shown for each entry. Refer
to heading 6.3.2.4 for the screen equivalent of this function.

KP9/LIST—Displays all of the entries on the screen in the same format as the PRINT
ALL function. Refer to Section 6.3.2.4 for more detailed information on this function.

KP5/JUMP TO—Allows you to move from existing entry template to entry template
within the DDT. The cursor is positioned at the first JUMP TO field at the bottom of the
screen. If the function key menu containing the JUMP TO field is not visible on the
screen, it will be displayed before the cursor is positioned. Type the entry number,
point.parameter, or .parameter and press <RETURN>. If the point.parameter is not
found or if the entry number is not valid, an error message is displayed at the bottom of
the screen. To cancel the operation without jumping to a new entry, press PF4.

6.3.1.4 Data Type Compatibilities

The DDT edit operation will not allow the creation of a DDT that violates the Data type
requirements for the DDT interface. Therefore, the source DDT may never include more
than four different data types. Enumerations and Ordinal values may not be mixed within
the same DDT. Entity IDs may be stored only in internal (Ptid) format, so the Xtern data
type is permitted only in Input DDTs.

No distinction is made between standard and generic DDTs during the edit operation.
However, if a DDT includes more than one member of either of the following lists of data
types, it will be flagged as Generic when the DDT is built:

1) Integer, Ptid (internal entity id), and Time;
2) ASCII, String, and Xtern (external entity id).

CM50S User Manual 6-12 7/93

6.3.2

6.3.2 Input DDT Data Entry Screens

6.3.2.1 Input-Real Data Entry Screen

The only required entries are Point Name and Parameter.

Point Name, Parameter, and Destination—As described at heading 6.3.1.2.

Use Test?—Specifies whether or not a test value is to be used when the ACP's
Installation Mode is "Test." If a test value is to be used, change to Y and enter the value in
Test Value. Otherwise, Test Value remains blank.

Bad Val Sub?—Specifies whether or not to perform a Bad Value Substitution, and
source of the substitution value.

If the default value of N remains, the Constant, Point Name, and Parameter
fields remain blank.

If C is entered, the Constant field must be filled in.

If P is entered, both the Point Name and Parameter fields must be filled in. The
substitution Point Parameter named must be defined in a previous Point Name in this
DDT and be of the same data type as this point. Note: The substituted point.parameter
value is the input value, not its calculated-result value. Scaling is performed as specified
by ALGO for this data point.

CM50S User Manual 6-13 7/93

6.3.2

If L is entered, Constant, Point Name, and Parameter remain blank. This bad
value replacement option retains the algorithm's most recently calculated output value.
Note that this substitution can only occur if a values table (.VT) is maintained, for this
DDT and that a good value has been returned at least once.

ALGO—The choice of scaling algorithm defines the type of calculation to be performed on
the input value. The legal algorithm entries are

0 – No action—K1 and K2 are ignored.

1 – V + K1
2 – V - K1
3 – V * K1
4 – V / K1

Enter K1.

(When algorithm 4 is selected, K1 cannot be 0.0)

5 – V * K1 + K2—Enter both K1 and K2.

6 – V + VI
7 – V - VI
8 – V * VI
9 – V / VI

Enter both Point Name and Parameter.

Where:

V = this point/parameter's input value.
K1 and K2 = real-number constants, either positive or negative.
VI = the input value of a point/parameter previously defined in this table and of the

same data type as this point/parameter.

Limit Check—Allows for the returned value (after any value substitution and value
calculation) to be checked against limiting values. If Y is entered, one or both of Low
Limit and High Limit must be filled in depending on whether one limit or both are to
be checked. Limit-check values are real-number constants, either positive or negative.
When either limit is exceeded, and the corresponding clamp option is not selected, the value
is changed to NaN.

Clamp Low?/Clamp High?—When clamping is selected, if the corresponding limit
value is exceeded, the value is clamped (set) at the limit. If clamping is not selected and the
limit is exceeded, the value is replaced by the bad value constant (-0).

CM50S User Manual 6-14 7/93

6.3.2

6.3.2.2 Input-Integer Data Entry Screen

The only required entries are Point Name and Parameter.

Point Name, Parameter, and Destination—As described at heading 6.3.1.2.

Use Test?—Specifies whether or not a test value is to be used when the ACP's
Installation Mode is "Test." If a test value is to be used, change to Y and enter the value in
Test Value. Otherwise, Test Value remains blank.

Bad Val Sub?—Specifies whether or not to perform a Bad Value Substitution, and
source of the substitution value.

If the default value of N remains, the Constant, Point Name, and Parameter
fields remain blank.

If C is entered, the Constant field must be filled in.

If P is entered, both the Point Name and Parameter fields must be filled in. The
substitution Point. Parameter named must be defined in a previous Point Name in this
DDT and be of the same data type as this point. Note: The substituted point.parameter
value is the input value, not its calculated-result value. Scaling is performed as specified
by ALGO for this data point.

If L is entered, Constant, Point Name, and Parameter remain blank. The actual
substitution cannot be made until at least one good value for the point has been obtained.

CM50S User Manual 6-15 7/93

6.3.2

6.3.2.3 Other Input Data Entry Screens

The template as shown below is for ASCII values. The screens for the remaining data
types are the same except for the data-type identifier in the upper left-hand corner which
identifies the value type with the appropriate keyword: ASCII, ENUMERATED,
ORDINAL, INTERN. ID, EXTERN. ID, TIME or STRING.

The only required entries are Point Name and Parameter.

Point Name, Parameter, and Destination—As described at heading 6.3.1.2.

Use Test?—Specifies whether or not a test value is to be used when the ACP's
Installation Mode is "Test." If a test value is to be used, change to Y and enter the value in
Test Value. Otherwise, Test Value remains blank. The format of the Test Value
depends on the data type:

ASCII -- up to 24 ASCII characters
ENUMERATED -- up to 8 ASCII characters
ORDINAL -- Integer value of a defined Enumeration
INTERN. ID -- 4 Integer values separated by commas (e.g., 256,01,-234,0)
EXTERN. ID -- 16-character point name, optionally followed by a 2-character pinid

(in positions 17 & 18)
TIME -- Integer number of seconds (The .1 millisecond tick count will be zero)
STRING -- up to 24 ASCII characters

Note that you can include only one or the other of the data types ENUMERATED or
ORDINAL in an Input DDT.

CM50S User Manual 6-16 7/93

6.3.2

6.3.2.4 Input DDT Point Summary Screen

This screen is reached by pressing KP9/LIST from any of the DDT entry screens while
editing an Input DDT. The Table Name and Table Type appear at the top of the screen.
Within a data type, the entries are listed in the order they were entered. Up to 12 entries
can be displayed on the screen at one time.

Each column of the Point Summary screen is described below.

• Entry—The entry number of the point.parameter. This is equivalent to the index of
the STATUS TABLE that is described in the CM50S User Manual.

• Point—Point names as specified on the DDT entry screens.

• Parameter—Parameter names as specified on the DDT entry screens.

• Type—This is the Data Type of the value to be retrieved or stored to the LCN. This
column always contains one of the following keywords: REAL, INTEGER,
ASCII, ENUMERATED, ORDINAL, INTERN. ID, EXTERN. ID, TIME,
or STRING.

• Dest(ination)—For an Input DDT, this column shows the array element in which
to store the value being retrieved from the LCN. The array would be the REAL_
VALUES_ARRAY, INTEGER_VALUES_ARRAY, etc. as described in Section 3. If
applicable, this column shows the user-specified destination; otherwise the calculated
relative destination is displayed.

CM50S User Manual 6-17 7/93

6.3.2

The following function keys are used to manipulate this display.

PF4/QUIT—Cancels viewing of the entry list and returns to the DDT Operations screen.
If any changes were made while editing, the user is asked to verify that they want to quit
without saving changes.

PF2/HELP—Displays a short help message on the bottom of the screen. If more help is
needed, press PF2 again and an entire screen of help is displayed. Pressing <RETURN>
from this help screen re-displays the entry screen.

G9/PRINT—Prints the entire list of entries to the default printer.

ENT/RETURN—Returns to the Data Entry screen that was being displayed when the
LIST function was requested.

G8/FIRST—Displays the first page of entries.

KP8/PRIOR—Displays the previous page of entries. If the first page of entries is
already on display, an error message is displayed.

KP2/NEXT—Displays the next page of entries. If the last page of entries is already on
display, the first page of entries appears.

G2/LAST—Displays the last page of entries.

CM50S User Manual 6-18 7/93

6.3.3

6.3.3 Output DDT Data Entry Screens

6.3.3.1 Output-Real Data Entry Screen

The only required entries are Point Name and Parameter.

Point Name, Parameter, and Source—As described at heading 6.3.1.2.

ALGO—The choice of scaling algorithm defines the type of calculation to be performed on
the point.parameter value. The legal algorithm values are

0 – No action—K1 and K2 are ignored.

1 – V + K1
2 – V - K1
3 – V * K1
4 – V / K1

Enter K1.

(When algorithm 4 is selected, K1 cannot be 0.0)

5 – V * K1 + K2—Enter both K1 and K2.

6 – V + VI
7 – V - VI
8 – V * VI
9 – V / VI

Enter both Point Name and Parameter.

Where:

V = this point/parameter's value as stored in the output-data array.
K1 and K2 = real-number constants, either positive or negative.
VI = the output data-array value of a point/parameter previously defined in this table

and of the same data type as this point/parameter.

CM50S User Manual 6-19 7/93

6.3.3

Limit Check—Allows for the value to be stored (after any algorithmic calculation) to be
checked against limiting values. If Y is entered, one or both of Low Limit and High
Limit must be filled in depending on whether one limit or both must be checked. Limit-
check values are real-number constants, either positive or negative. When either limit is
exceeded, and the corresponding clamp option is not selected, the value is changed to NaN.

Clamp Low?/Clamp High?—When clamping is selected, if the corresponding limit is
exceeded, the value is clamped (set) at the limit.

6.3.3.2 Other Output Data Entry Screens

The template as shown below is for Enumeration values. The screens for the remaining
data types are the same except for the data-type identifier in the upper left-hand corner
which identifies the value type with the appropriate keyword: ASCII, ENUMERATED,
ORDINAL, INTERN. ID, TIME or STRING.

The only required entries are Point Name and Parameter.

Point Name, Parameter, and Source—As described at heading 6.3.1.2.

Note that you can include only one, or the other, of the data types ENUMER or ORDINAL
in an Output DDT.

CM50S User Manual 6-20 7/93

6.3.3

6.3.3.3 Output DDT Point Summary Screen

This screen is reached by pressing KP9/LIST from any of the DDT entry screens while
editing an Output DDT. This screen is the same as the one for the Input DDT except that
the Dest column has been changed to Src.

The information on this screen is the same as the Point Summary screen for Input DDTs
described at heading 6.3.2.4, except for the Source column described below.

• Src—This column shows the array element number that contains the value to be stored
to the LCN. The array would the REAL_VALUES_ARRAY, INTEGER_VALUES_
ARRAY, etc. as described in Section 3. If applicable, this column shows the user-
specified source; otherwise, the calculated relative source is displayed.

CM50S User Manual 6-21 7/93

6.3.4

6.3.4 History DDT Data Entry Screen

6.3.4.1 History DDT Data Entry Fields

Point and Parameter—Enter the names of up to 24 point.parameters as specified in
6.3.1.2. This is the only information needed for a History DDT.

Note that continuous history averages consist only of Real values. Snapshots can be either
Real values or ordinal enumerations of digitals. Because of message-size limitations, the
maximum number of point.parameters in a request for one hour of snapshots is 19.

6.3.4.2 History DDT Function Key Menu

PF4/QUIT—Cancels data entry and returns to the DDT Operations screen. If any changes
were made, you are asked to verify that you want to quit without saving changes.

PF2/HELP—See heading 2.8.3

G9/PRINT—Prints all entries in the DDT to the default printer.

G0/DONE—Saves the data into a .DDT file and returns to the DDT Operations screen.

KP0/VERIFY—Makes single point calls to the CG port specified on the DDT Operations
screen to see if the point.parameters exist on the LCN. Because there can be up to 24
point.parameters, this can take some time. If some point.parameters are not found on the
LCN, the erroneous entries blink and an appropriate error message appears at the bottom of
the screen. If all point.parameters exist on the LCN, a message appears on the bottom of
the screen to signal completion of this function.

CM50S User Manual 6-22 7/93

6.4

6.4 ACIDP-DDT PREFETCH SCREEN

This screen is displayed as the result of the G3/MOD CONNECTION selection from the
DDT Operation Screen. From this display you can modify the ACIDP-DDT connection
and/or Triggers by making the appropriate entries on the screen then invoking the desired
operation from the function key menu at the bottom of the screen.

You enable data prefetch for the points specified by an input DDT by making it CG-
resident, connecting it to an ACIDP, and selecting one or more event "triggers." Data
prefetch means that the LCN data requests are made in parallel with the ACP turn-on
request, thus reducing the lag time between ACP activation and availability of LCN data to
it. The events that can trigger an ACIDP are Schedule (cyclic or periodic), Point Process
Special (PPS), and operator demand.

The unique functions on this screen are

G0/CONNECT—Connects the specified ACIDP and DDT.

G,/DISCONNECT—Disconnects the specified ACIDP and DDT.

KP1/CHANGE TRIGGERS—Establishes/changes the Triggers based on the entries in
the "Prefetch on" fields.

CM50S User Manual 6-23 7/93

6.5

6.5 DDT ERROR SUMMARY DISPLAY

The DDT Error Summary screen is displayed as the result of KP4/Display Errors
selection from the DDT Operations Screen and shows the error file created during a DDT
installation.

The following function keys are used to manipulate this display.

PF4/QUIT—Cancels viewing of the Installer Activity Log and returns to the ACP
Operations screen.

PF2/HELP—See heading 3.1.3.

KP8/SCROLL UP—Scrolls to prior entries in the DDT Error Summary.

KP2/SCROLL DOWN—Scrolls to later entries in the DDT Error Summary.

CM50S User Manual 6-24 7/93

6.6

6.6 DDT DETAIL DESCRIPTION DISPLAYS

When KP7/DISP DDT is selected at the DDT Operations screen, the detailed description of
a DDT can be viewed. The table name, table type, description, build status, CG Port
Number, ACIDP name, and source path are all displayed at the top of the screen. A CG
Port Number with an asterisk (*) next to it means that the DDT is CG-resident.

The full description of each entry in the DDT is shown, including the test value, bad value
substitution, algorithm, low and high limits, value in, value out, and source/destination.
Input, Output, and History DDTs have slightly different formats; therefore, a sample of
each screen is shown.

The DDT Display screens list the entries of the DDT in a specific order. All of the Real
entries are shown first, followed by Integer, ASCII, and Enumerated (or Ordinal) entries in
that order. If the DDT does not contain any Real entries, the display starts with Integers; if
there are no Integers, the display starts with ASCII entries, and so on.

6.6.1 Function Keys for DDT Detail Displays

All of the Detail Description Displays use the same set of Function Key attributes.

PF4/QUIT—Cancels viewing of the DDT Display and returns to the DDT Operations
screen.

PF2/HELP—See heading 3.1.3.

KP5/JUMP TO:—Type the "point_name," "point.parameter," ".parameter," or the
number of the point to be displayed and press <RETURN>. That point is then displayed
as the first entry on the screen. The valid entry numbers appear to the left of the point
names. If an invalid entry is made, an error message is displayed on the bottom of the
screen. In either case, the screen then awaits user input. Pressing <RETURN> without
entering a point number causes an error message to be displayed at the bottom of the
screen.

G9/PRINT—Prints the entire DDT Display to the default printer.

G8/FIRST—Displays the first page of the DDT's Display. If the first page of entries is
already on display, a message stating so appears at the bottom of the screen.

KP8/PRIOR—Displays the previous page of the DDT Display. If the first page of
entries is already on display, a message stating so appears at the bottom of the screen.

KP2/NEXT—Displays the next page of the DDT Display. If the last page of DDT entries
is already on display, a message stating so appears at the bottom of the screen.

G2/LAST—Displays the last page of the DDT Display. If the last page of DDT entries is
already on display, a message stating so appears at the bottom of the screen.

CM50S User Manual 6-25 7/93

6.6.2

6.6.2 Data Presentation Rules for DDT Detail Displays

One of the options of a DDT is the maintenance of a Values Table (.VT) that holds the
values (before and after any transformations) from the last use of the DDT. The values in
this table are included in the Detail Displays. The "In value" is the raw value received by
the DDT call. The "Out values" reflect any changes made by Bad Value substitutions and
algorithm calculations. The form and amount of data presented by xxx is determined by the
"Build Status" of the table to be examined/changed.

When Table Build Status is Complete and the Make .VT File option was used — All
information is presented. If the table has not yet been used by an application program, or
no .VT file was made, the date and time field in the heading is blank, as are the value fields
for each item and the ACP ST field. Once the table has been used by an application
program, all fields are shown. Note: If Table Processing is suppressed on a DDT call, that
call will not update the .VT file, so the displayed values would reflect the most recent time
that Table Processing was invoked.

Any bad values are displayed as ????-NNN-???, where NNN is a code that indicates why
the value is considered to be bad. See Appendix A for a listing of these codes.

Good values are displayed as required by data type.

Real—If the absolute value is greater than 999999 or less than 0.0001, it is shown in
exponential form as n.nnnnnE+ee; otherwise, the value is displayed as
nnnnnn.nnnn. A leading sign is shown only if the value is negative.

Integer—Shown as 1-to-5 digits, with a leading sign only if the value is negative.

ASCII—Shown as a character string of 1-to-24 characters.

Enumerations—Shown as a character string of 1-to-8 characters.

Ordinals—Shown as a positive integer of 1-to-5 digits.

Internal Id—Shown as 4 integer values, separated by commas.

External Id—Shown as a character string of 1 to 18 characters (point name in positions
1-16, and pinid in positions 17-18).

Time—Shown as a positive integer of Seconds followed by a comma and a positive
integer count of Ticks.

String—Shown as a character string of 1-to-24 characters; the contents of characters
25 through 40 are not saved in the .VT file.

When Table Build Status is Incomplete or Complete-Errors—The source file is good,
but the internal-point IDs and the parameter table are not complete. The table cannot be used
by an application program. The date and time field and ACP ST field are shown as blanks.
The values-in and values-out fields are displayed as blanks. All other information is
shown.

When Table Build Status is Source Errs—The source file is not valid and the transform
file is not complete. Only the table name, table description, table purpose, and table-build
status are shown.

CM50S User Manual 6-26 7/93

6.6.3

6.6.3 DDT Display Screens for Input Tables

The Value In and Value Out fields of these displays show the actual data values
that are passed between the VAX and the LCN if Table Processing is used.

• Value In—This is the value that was retrieved from the LCN. It is shown only if
the DDT build status is COMPLETE and if the DDT has previously been used to access
LCN data by an application program.

• Value Out—This is the processed value that is passed to the application program
after a bad value substitution or an algorithm has been performed on it. It is shown
only if the DDT build status is COMPLETE and if the DDT has previously been used to
access LCN data. If the entry has a DESTINATION of 0 (zero), then the value is
followed by two asterisks (**), meaning that the value was not stored in the application
program's array.

• Destination—This is the array element in which to store the value being retrieved
from the LCN. The values would be stored in the REAL_VALUES_ARRAY,
INTEGER_VALUES_ARRAY, etc., as described in Section 3.

6.6.3.1 Input-Real DDT Display

CM50S User Manual 6-27 7/93

6.6.3

6.6.3.2 Input-Integer DDT Display

6.6.3.3 Input-Other DDT Point Types

CM50S User Manual 6-28 7/93

6.6.4

6.6.4 DDT Display Screens for Output Tables

The Value In and Value Out fields for these displays show the actual data values
that are passed between the VAX and the LCN if Table Processing is used.

• Value In—This is the value that was retrieved from the ACP's array. It is shown
only if the DDT build status is COMPLETE, and if the DDT has previously been used
by an ACP to access the LCN.

• Value Out—This is the processed value that is stored to the LCN after a bad value
substitution or an algorithm has been performed on it. It is shown only if the DDT
build status is COMPLETE, and if the DDT has previously been used by an ACP to
access the LCN. If the entry has been marked No Store by the ACP, the value is
followed by two asterisks (**), meaning that the value was not stored to the LCN.

• Source—This is the array element that holds the value to be stored to the LCN. The
values would be found in the REAL_VALUES_ARRAY, INTEGER_VALUES_
ARRAY, etc., as described in Section 3.

6.6.4.1 Output-Real DDT Display

CM50S User Manual 6-29 7/93

6.6.4

6.6.4.2 Output-Integer DDT Display

6.6.4.3 Output-Other DDT Point Types

CM50S User Manual 6-30 7/93

6.6.5

6.6.5 DDT Display Screen for History Tables

The History DDT Display screen lists the entries of the DDT in the same order as the Point
Summary screen. Up to seven points can be displayed on the screen at one time.

CM50S User Manual 6-31 7/93

6.7

6.7 DDT LIST DISPLAY

When KP9/LIST is chosen from the DDT Operations screen, the DDT List screen is
displayed. This screen displays the name of every built DDT, its description, status,
number of points, type, CG Port Number and whether or not the DDT is CG resident. Up
to 15 entries can be displayed on the screen at one time.

6.7.1 DDT List Screen Data Fields

• DDT Name—The name of a DDT that has already been built.

• Description—This is the up to 36 character description that was associated with the
DDT when it was built. If no description was entered upon building the DDT, this field
is blank.

• Status—This is the completion status of the DDT. It contains one of the following
keywords:

Comp—The only status where the table is available for ACP use.

Src Err—The table build could not be complete because of source file errors.

Incomp—No source file errors, but the table could not be built because of errors
between the VAX and the CG. See the error file for the reason.

Errors—One or more point or parameter names are in error. See the error file for the
reason.

CM50S User Manual 6-32 7/93

6.7.2

• # Points—This is the number of points in the DDT.

• Type—This is the type of the DDT and contains one of the following keywords: In for
an Input DDT, G.In for a Generic-only Input DDT, Out for an Output DDT, G.Out
for a Generic-only Output DDT, or Hist for a History DDT.

• CG—This is the CG Port Number that the DDT is associated with. An asterisk (*)
displayed to the right of the CG Port Number means that the DDT is CG resident.

6.7.2 DDT List Screen Function Keys

PF4/QUIT—Cancels viewing of the DDT Summary and returns to the DDT Operations
screen.

PF2/HELP—See heading 3.1.3

DDT NAME:—Type the name of the DDT to be displayed and press <RETURN>. That
DDT is displayed as the first entry on the screen. If an invalid DDT Name is entered, an
error message is displayed at the bottom of the screen. In either case, the screen then
awaits user input. Pressing <RETURN> without entering a DDT name causes an error
message to be displayed at the bottom of the screen.

G9/PRINT—Prints the entire list of DDTs to the default printer.

G8/FIRST—Displays the first page of DDTs If the first page of entries is already on
display, a message stating so appears at the bottom of the screen.

KP8/PRIOR—Displays the previous page of DDT entries. If the first page of entries is
already on display, a message stating so appears at the bottom of the screen.

KP2/NEXT—Displays the next page of DDT entries. If the last page of entries is already
on display, a message stating so is displayed at the bottom of the screen.

G2/LAST—Displays the last page of DDTs. If the last page of entries is already on
display, a message stating so is displayed at the bottom of the screen.

CM50S User Manual 6-33 7/93

6.8

6.8 DDT SOURCE FILE PREPARATION RULES

DDT source files can be created programmatically as text files with a maximum per-record
length of 80 characters. The points must be grouped by data type and ENUMERation and
ORDINAL points cannot be requested in the same DDT.

Each DDT Source file is composed of point definitions grouped by data type and separated
by data type identifier records. Each point definition is composed of a point identifier
record which can be followed by optional records to specify processing option values.
Blank records can be embedded anywhere within the file to make it easier for humans to
read. A DDT Source file containing three different data types would be organized thus:

Table Purpose & Data Type record
Description record (optional)
Point Definition
Point Definition
 etc.
New Data Type record
Point Definition
Point Definition
 etc.
New Data Type record
Point Definition
 etc.

Each Point Definition is composed of a Point Name record followed by zero or more
optional records that define how the point's data is to be processed. Note that when an
optional record is omitted, a specific default value is used in the point's processing.

Note also that the DDT source files are data location sensitive and require fixed locations
within the record for specified data items.

6.8.1 Data Type Records

The first record in a DDT source file is a special data type identifier record that also defines
the table purpose (input, output, or history). The first record's format is:

purpos TABLE, DATA TYPE =type

Where "purpos" (in positions 1-6) is one of the following strings:
INPUT∆ (where "∆" represents a required space)
OUTPUT
HISTOR

And "type" (in positions 26-31) specifies the data type of the first set of points and
must equal one of the following strings:

REAL
INTEGE
ASCII
ENUMER
ORDINA
INTERN
EXTERN
TIME
STRING

CM50S User Manual 6-34 7/93

6.8.2

 The only allowed data types in a History DDT are REAL, INTEGE, and ORDINA.

If the DDT includes more than one data type, then the point definitions for each new data
type must be introduced by a record with the following format:

 *** NEW DATA TYPE = type

Where positions 1 through 22 must contain the string
∆***∆∆NEW∆DATA∆TYPE∆=∆ ("∆" represents a required space).

And "type" (in positions 23-28) specifies the data type of the next set of points as
one of the following

REAL
INTEGE
ASCII
ENUMER
ORDINA
INTERN
EXTERN
TIME
STRING

6.8.2 Point Identification Record

The point definitions vary according to data type and table purpose and can contain optional
records. Each DDT point definition begins with a point identification record formatted as
follows:

POINT NAME =pt_name PARAMETER=par_nm(n) DESTINATION=

or

POINT NAME =longer_pt_name par_nm(n) SOURCE=

Where positions 1-12 must contain the string: POINT∆NAME =
Positions 13-32 contain the desired LCN Point name terminated by a space.
Positions 33-46 contain the LCN parameter name
Positions 61-66 can contain an optional ASCII representation of an integer to be
used as an index into the value array (see SOURCE and DESTINATION field
descriptions at heading 6.3.1.2). The word SOURCE or the word DESTINATION
is required to specify which option is desired.

CM50S User Manual 6-35 7/93

6.8.3

6.8.3 Point Option Records

The point identification record is followed by zero or more option records—again
depending on data type and purpose of the DDT.

6.8.3.1 Test Option Record

For INPUT DDTs only, the record immediately following the point identification record
can specify a value to be used with the test option:

 USE TEST? =N (Y/N) TEST VALUE=

Where positions 1-12 must contain the string ∆USE∆TEST?
Position 13 is Y or N (if N, the following value is ignored)
Positions 34- contain the test value (following spaces are optional). The maximum
value length varies by type: 12 characters for numbers (no imbedded spaces)

 8 characters for enumerations
24 characters for other ASCII (embedded spaces ok)

The default (if this record is omitted) is the same as an "N" record—no test value.

6.8.3.2 Input Integer Option Records

The following optional record pair is allowed with INPUT INTEGER point definitions:

 BV SUBST? =
 Constant = pt_name par_nm(n)

The upper record must begin with the string ∆BV∆SUBST?∆= in positions 1-12.
The character in position 13 determines the type of bad value substitution to be
made: (N or a blank = no substitution, C = substitution of a constant, P =
substitution of a value from another point.parameter, L = substitute the last good
value from this point). The default (if this record pair is omitted) is the same as an
"N" value—no bad value substitution.

The lower record is used only when the BV SUBST option of C or P is specified
and must begin with the string ∆∆Constant∆= in positions 1 through 12.
If the substitution value is C then:

positions 13-24 must contain the constant to be substituted (an embedded
space terminates the field)

If the substitution value is P then:
positions 35-54 must contain the name of the alternate LCN point,
terminated by a space, and
positions 59-72 must contain the name (and subscript if it is an element of
an array) of the alternate parameter.
The alternate point and parameter must be defined in a previous Point
Definition Record.

CM50S User Manual 6-36 7/93

6.8.3

6.8.3.3 Input Real Option Records

The following optional records are allowed with INPUT REAL point definitions:

 BV SUBST? =
 Constant = pt_name par_nm(n)
 ALGO n
 LIMIT CK? =
 LOW LIMIT =
 HI LIMIT =

The bad value substitution record pair have the same format used by input integers.

The Algorithm definition record specifies which algorithmic filter is to be applied to
the data (the default is algorithm 0—no filter). This record must have the string
ALGO in positions 6-9.
Position 13 contains the algorithm number (0 through 9). See heading 6.2.3.1 for
a description of the INPUT REAL algorithms.
For Algorithms 1-5—positions 34-45 contain the constant value for K1.
For Algorithm 5—positions 55-66 contain the constant value for K2.
For Algorithms 6-9— positions 35-54 contain the related LCN point name and

positions 59-72 contain the related LCN parameter name.

The Limit Check definition record specifies whether or not limit checking is to be
done. This record must have the string ∆LIMIT∆CK? in positions 1-10. Position
13 should contain "Y" for yes; "N" or a space indicates no. If this record is
omitted, the default is no. When limit checking is set to yes and the value falls
outside the limits, the returned status table will indicate an error.

The Low Limit definition record specifies whether or not limit checking applies to
low values. This record must have the string ∆LOW∆LIMIT in positions 1-10.

Positions 13-24 should contain the constant to use as the low limit. If left
blank, no low limit check is made (default).
Position 35 should contain "Y" if the value is to be clamped to to be not less
than its low limit; "N" or space indicate no low limit clamp is to be set.

The High Limit definition record specifies whether or not limit checking applies to
high values. This record must have the string ∆HI∆LIMIT∆ in positions 1-10.

Positions 13-24 should contain the constant to use as the high limit. If left
blank, no high limit check is made (default).
Position 35 should contain "Y" if the value is to be clamped to be not greater
than its high limit; "N" or space indicate no high limit clamp is to be set.

CM50S User Manual 6-37 7/93

6.8.3

6.8.3.4 Output Real Option Records

The following optional records are allowed with OUTPUT REAL point definitions:

 ALGO n
 LIMIT CK? =
 LOW LIMIT =
 HI LIMIT =

The Algorithm definition record and the High/Low limit checks and clamp
records for OUTPUT REAL follow the same descriptions used for INPUT
REAL above.

6.8.4 Description Record

The following optional record is allowed only as the second record in the source file
(immediately following the "purpose" record):

DESCRIPTION=text description for the DDT

Where position 1-12 contain the string:DESCRIPTION=
Positions 13-48 contain the desired descriptive text.

Note: If the DDT source file contains a Description record, that description will override
any description when the DDT is built or rebuilt. If the DDT source is edited from the DDT
Operations screen, the description displayed on the screen becomes part of the stored
source file.

6.8.5 DDT File Data Entry Rules

Conversion of ASCII values into numbers follows the standard Pascal/FORTRAN
conventions. Also, preceding blanks are permitted (to a maximum of 8); permitted
characters are + - 0 1 2 3 4 5 6 7 8 9 . E (with . and E permitted only for real values; any
other character is a terminator.

The use of preceding or embedded blanks in names is not permitted. The first blank
character in a name field terminates that field.

CM50S User Manual 6-38 7/93

CM50S User Manual 7-1 7/93

7

UTILITY OPERATIONS
Section 7

This section introduces you to use of these CM50S Utility functions: the Task Scheduler, the
MAKEINC utility, and LCN file transfer operations.

7.1 TASK SCHEDULER

In most environments a number of reports and routine operations need to be invoked on a
regularly scheduled basis. The CM50S Task Scheduler runs these scheduled tasks in the
background without operator intervention. While the Task Scheduler was designed for
CM50S reporting, it is flexible enough to be used with any VAX/VMS command file or
executable image.

The scheduler uses a Command Table of tasks to be scheduled. The user makes one entry
in this table for each task that is to be run. Task Scheduler monitors the Command Table
and automatically invokes each task whose scheduling parameters are met.

Task Scheduler is very similar to the UNIX scheduler function CRON. Familiarity with
one implies familiarity with the other.

7.1.1 Task Scheduler Operation

The Task Scheduler invokes listed tasks at a scheduled time. On each cycle, it processes
commands read from the user-created Command Table and sequentially invokes each of the
tasks whose schedule matches the current time, date, and day-of-week criteria.

The scheduler is invoked on an "as needed" basis; CM50S does not require that the
scheduler be used. The scheduler runs as a detached process and is initiated from the Task
Scheduler menu (see heading 7.5). It can be stopped at any time using the "Stop
Scheduler" selection option from the same menu. It is invoked for system-wide use under
the process name CM50_SCHEDULER. This is the name you will see when doing a
SHOW SYSTEM command. Once invoked, the scheduler remains active until the operator
stops the scheduler, using the menu stop option.

Scheduled tasks can include executable images and DCL command files. Any required
logical names must be in the System Logical Names table. Note that the console is the
default SYS$INPUT and SYS$OUTPUT for all tasks run by the scheduler. These defaults
can be redirected within .COM files to user-specified files. Programs that use terminal
forms for I/O should not be run under the scheduler. Most CM50S terminal displays have
an alternate form that can be run under the scheduler to produce printed output.

NOTE

Since the CM50_SCHEDULER is shared by multiple users:
1) All path names should be given in full (not assuming any home directory).
2) Jobs executed by the CM50_SCHEDULER cannot require any special VMS privileges or
quotas.

CM50S User Manual 7-2 7/93

7.1.2

7.1.2 Scheduler Command Table File

The Command Table file is named CM50_SCHED.TBL, and resides in a directory named
CM50$CONTROL. You define and maintain it through the system editor. It is read
initially when the scheduler is first invoked and is reread at 2-minute refresh intervals.

The Command Table file is free form, but each field must be separated by one or more
spaces and there must be six fields for each line entry. It is recommended that the fields be
maintained as aligned columns with a fixed number of spaces separating the fields. This is
not a scheduler requirement. It is only needed to improve readability.

Figure 7-1 illustrates some example schedules that are explained following.

MINUTE HOUR DAY-OF- MONTH DAY-OF- COMMAND
MONTH WEEK

0 17 J1,J32 * * @DIA0:[user]NEW_MONTH
0 8 * * 1-5 @DIA0:[user]DAILY_REPORT
0,15,30,45 17-23 * 1-3 6 RUN DIA0:[user]FIRSTQ
0 0 1 * 0 PURGE CM50$DDT
* * * * * @DIA0:[user]MINUTES
This is a comment line.

 Figure 7-1 — Command Table Example

7.1.2.1 Command Line Explanations

Line 1. Invoke the command file named DIA0:[user]NEW_MONTH on January 1, and on
February 1 at 5:00 P.M.

Line 2. Invoke the command file named DIA0:[user]DAILY_REPORT Monday through
Friday at 8:00 A.M.

Line 3. Invoke the command file named DIA0:[user]FIRSTQ every Saturday during the
months of January through March. The image is invoked at 15-minute intervals
from 5:00 P.M. to 11:45 P.M.

Line 4. Execute the DCL command PURGE CM50$DDT on the first of each month, only
if the first falls on a Sunday (0 = Sunday). The image is invoked at midnight.

Line 5. Invoke the command file @DIA0:[user]MINUTES every minute of every hour, of
every day, of every week, of every month.

Line 6. The scheduler allows comments to be inserted in the Command Table file. All
commented lines must begin with a pound sign (#).

CM50S User Manual 7-3 7/93

7.1.2

7.1.2.2 Conventions Used in the Command Table

The only format requirements for the file are that each line entry must contain all six fields
and each field must be separated by one or more spaces.

Each entry in the table must appear on a separate line of the file. The line is limited to 80
characters in length. The exact minute, hour, day, month, and day-of-week fields (values),
dictate when the corresponding command field is invoked. The day-of-month field value
can be represented in Gregorian or Julian form. (If you use the Julian form, be careful of
leap years.)

There are several ways to specify the values for the first five fields of each line entry. A
single numerical value, a range of values, or a list of values can be specified. An asterisk
(*) placed in a field, specifies "at all times" during that interval.

Any line beginning with the number sign (#) is ignored by the scheduler and can be used
for comments.

Day Of Week Values are: 0=Sunday . . 6=Saturday

7.1.3 Command Table Modification

The Command Table can be modified at any time. The scheduler rereads the table each 2-
minute interval period. This updates (refreshes) the scheduling parameters and the
scheduler re-schedules all tasks accordingly. This allows you to change the schedules
without stopping the scheduler.

The system editor is invoked from the Task Scheduler menu (see heading 7.6). It
automatically loads the Command Table for creation or modification. The values shown in
Figure 7-2 represent all possible values for each field.

MINUTE HOUR DAY-OF-MONTH MONTH DAY-OF-WEEK COMMAND

0-59 0-23 1-31 1-12 0-6 @(filename) or
* * * * * executable image

J1-J366 name

 Figure 7-2 — Command Table Fields

Remember, the file is free form, but one or more spaces must separate each field and there
must be six fields. The table is more easily understood if the fields are maintained in
columnar order, with sufficient distance apart for readability.

To invoke the system editor, select the Task Scheduler menu and key the characters CT
(Command Table Maintenance), or use the cursor bar selection for CT. The system editor
begins execution and automatically loads the Command Table file. (If the Editor comes up
with a single display and an asterisk (*) prompt, type "chan<Enter>" to change it to full
screen editing mode. When you are finished with the edit, return to the edit command line
(control Z) and type EXIT. This saves the edited file. If you do not want to save the edits,
type QUIT. In either case, you will be returned to the Task Scheduler menu.

CM50S User Manual 7-4 7/93

7.1.4

7.1.4 Task Scheduler Menu

All operator interaction with the scheduler is through the Task Scheduler Menu. This menu
is a submenu of, and is selected from, the CM50S Operations Main Menu.

The Task Scheduler menu appears on the screen as follows:

The top line of the menu displays the screen ID CM50S R2.0 (left-hand corner), the menu
title (center), and the current date and time (right-hand corner).

The next four lines are the selection options. The selection can be made by keying the
corresponding 2-character code into the choice field. A selection can also be made by using
the reverse video cursor bar that highlights the selection option and then pressing return for
the selection.

Selection option codes:

SS—Starts the Task Scheduler when selected. Scheduler is invoked as a detached
process with the name of CM50_SCHEDULER. It remains active until stopped
from this menu.

ST—Stops the Task Scheduler and removes the CM50_SCHEDULER process plus any
subprocesses associated with it.

CT—Invokes the system editor and loads the Command Table file for editing.

PT—Purges all but two command table versions. Retains the current table and the
immediately previous version.

CM50S User Manual 7-5 7/93

7.1.5

Choice field:

This field is displayed on the bottom line and accepts the 2-character selection code for
the option choice.

Function Keys:

GPF4/Exit—Exits the Task Scheduler Menu and returns to the CM50S Main Menu.

PF2/Help—See heading 3.1.3.

PF4/Prior—Returns to previous menu.

G-Enter/Main Menu = Returns to the Main Menu.

The Task Scheduler menu file, CM50_MENU_SCHED.TBL, resides in a directory named
CM50$FORMS.

7.1.5 Scheduler DCL Command Files

The Task Scheduler utilizes two DCL command files named
CM50_SCHED_START.COM and CM50_SCHED.COM. They reside in the command
file directory named CM50$LIB. The command files are invoked by selecting SS (Start
Task Scheduler) from the Task Scheduler menu. In turn, the command files invoke Task
Scheduler as a detached process with the name of CM50_Scheduler.

CM50S User Manual 7-6 7/93

7.2

7.2 MAKEINC UTILITY

This routine is used to create "include" files that contain arrays of Internal IDs of LCN
point.parameters in the form required by these types of data get/store interface routines:

• Point List Transfers—heading 10.2 (FORTRAN), 14.2 (Pascal), or 18.2 (C)
• Raw Data Transfers—heading 10.4 (FORTRAN), 14.4 (Pascal), or 18.4 (C)
• Get/Store Single Point (Internal ID)—headings 10.3.3 and 10.3.4 (FORTRAN),

14.3.3 and 14.3.4 (Pascal), or 18.3.3 and 18.3.4 (C)

You first prepare an input file that contains a list of all point.parameters to be addressed.
This is a text file with one LCN point.parameter name for each line. A sample input file
follows.

AMCDS.RL0020(1)
AMCDS.RL0020(3)
AMCDS.ASC(2)
AMCDS.ENM(2)

Point.parameter name restrictions—The point name can consist of up to sixteen characters,
but cannot contain any spaces. If the LCN includes a Network Gateway, the point name
may be preceded by a 1- or 2-character LCN identifier (pinid) and a backslash (\) delimiter.
The parameter name can be up to eight characters long, but cannot contain any spaces. For
an element within an LCN array, the parameter name may be followed by a one to four
digit array index enclosed in parentheses. A period must separate the Point and Parameter
names. The total length of the Point.parameter entry cannot exceed 40 characters.

CM50S User Manual 7-7 7/93

7.2.1

7.2.1 Running the Makeinc Program

Once the input file has been prepared, select Makeinc from the CM50S Main Menu.
The Create Include Files screen is then displayed.

NOTE

The arrays of internal point.parameter addresses need to be rebuilt and the program(s) using
them need to be recompiled whenever the LCN database is changed in a significant manner,
such as by the rebuild or deletion of data points referenced in the address array.

The fields on the Create Include Files screen are

• Full Pathname of Input File—Enter the VMS pathname of the input file.

• Output Directory—Enter the VMS pathname of the output directory. Do not
include a file name. If this field is left blank, Makeinc defaults to the current working
directory.

• Include Files to be Created—Makeinc automatically creates three include
files; one each for FORTRAN, for Pascal, and for C. Type N in any of the three fields
to stop creation of an include file for that language.

CM50S User Manual 7-8 7/93

7.2.1

• Output Format— Determines whether the include file creates one variable name for
all point.parameters of the same value type or creates separate variable names for each
point.

L — List: Creates a named array of internal IDs for each value type. Input is limited to
300 point.parameters in each array. This format is intended for use with the
Point List calls.

I — Items: Creates separate named variables for each point.parameter. This format is
intended for use with the Single Point data transfers.

T — Typed Items: Provides the same output as the Items options, plus adds an
additional variable—containing the val_type code—for each
point.parameter. This option is useful in the preparation of generalized
routines where the parameter data type cannot be known and also can be
used to verify that the actual data type matches the expected data type (see
headings 11.2.1.2, 15.2.1.2, and 19.2.1.2 for val_type value
assignments).

• CG Number—Enter the CG Port number through which the data is to be accessed.
The default is port 1.

The following function keys are used to manipulate this screen.

PF4/QUIT—Exits the Makeinc utility and returns to the ACP Operations screen.

PF2/HELP—See heading 3.1.3.3.

KP0/ACTIVATE—Activates the program that creates the specified include files. Each
include file has a language-specific extension appended to its name (.INF for
FORTRAN, .INP for Pascal, and .INC for C). On completion either a file(s) created
message or an error message is displayed on the bottom of the screen.

KP4/DISPLAY ERRORS—Displays the Makeinc error file created during processing.

CM50S User Manual 7-9 7/93

7.2.2

7.2.2 Makeinc Error Screen

Makeinc Error Screen Functions

PF4/QUIT—Exits the Makeinc Error screen and returns to the Create Include Files
screen.

PF2/HELP—See heading 3.1.3.

KP8/SCROLL UP—Displays the previous line of the error file. If the first line of the
error file is already on display, a message stating so appears at the bottom of the screen.

KP2/SCROLL DOWN—Displays the next line of the error file. If the last line of the error
file is already on display, a message stating so appears at the bottom of the screen.

7.2.3 Using the List Format

A shortword integer array is created for each type of parameter listed in the include file.
Each array contains a list of internal point id_blocks. You then "include" the .INF,
.INP, or .INC file in your source code to make the information available to the compiled
program.

If the input file contained any errors, that fact is noted on the first line of the include and the
include file will contain references only to the correctly translated point.parameter
id_blocks.

CM50S User Manual 7-10 7/93

7.2.3

The normal first line of the include file is a comment that identifies the number of lists
generated and the value types for each. The value type names are truncated to 4 letters:
REAL, INTE, ASCI, and ENUM, etc. Additional comment lines follow the declarations
for each list to identify the tag names of each point included in the list.

The input file name is used to create variable names for the Internal ID array and size of the
list as shown below.

1. The Id_block array variable for each list is generated by appending the input file name
(without directory or extension) to a prefix that identifies the value type of all the
items in the list. The value type prefixes are:

REAL_ reals
INTE_ integers
ASCI_ ASCII 24-character strings
ENUM_ enumerations
PTID_ internal entity IDs
TIME_ time values
STRI_ 40-character strings

2. The shortword variable that is initialized to the number of points in the list is named
by adding the prefix CT_ to the Id_block array name.

CM50S User Manual 7-11 7/93

7.2.3

7.2.3.1 Sample FORTRAN (.INF) Include File

*** input contained errors ***
* 3 lists: REAL ASCI ENUM

 INTEGER*2 CT_REAL_SAMPLE
 DATA CT_REAL_SAMPLE / 2/
 INTEGER*2 REAL_SAMPLE (8, 2)
 DATA REAL_SAMPLE /
 - 256, 315, 6912, 258, 21504, 18336, 256, 0,

 - 256, 315, 6912, 258, 21504, 18336, 256, 0 /

* lcn points in this list:
* 1 R_TEST02.NUM(1)
* 2 R_TEST02.NUM(2)

 INTEGER*2 CT_ASCI_SAMPLE
 DATA CT_ASCI_SAMPLE / 1/
 INTEGER*2 ASCI_SAMPLE (8, 1)
 DATA ASCI_SAMPLE /
 - 768, 315, 6912, 258, 20224, 18592, 0, 0 /

* lcn points in this list:
* 1 R_TEST02.STR

 INTEGER*2 CT_ENUM_SAMPLE
 DATA CT_ENUM_SAMPLE / 1/
 INTEGER*2 ENUM_SAMPLE (8, 1)
 DATA ENUM_SAMPLE /
 - 1024, 315, 6912, 258, 20224, 18848, 0, 1032 /

* lcn points in this list:
* 1 R_TEST02.CENM

CM50S User Manual 7-12 7/93

7.2.3

7.2.3.2 Sample Pascal (.INP) Include File

{*** input contained errors ***}
{* 3 lists: real asci enum *}
{*---*}

 var
 CT_REAL_SAMPLE : [word] -32768..32767 := 2;
 REAL_SAMPLE : array [1..002]

of array [1..8] of [word] -32768..32767 := (
 (256, 315, 6912, 258, 21504, 18336, 256, 0),
 (256, 315, 6912, 258, 21504, 18336, 256, 0));

{* lcn points in this list:
{* 1 R_TEST02.NUM(1)
{* 2 R_TEST02.NUM(2)
{*---*}

 var
 CT_ASCI_SAMPLE : [word] -32768..32767 := 1;
 ASCI_SAMPLE : array [1..001]

of array [1..8] of [word] -32768..32767 := (
 (768, 315, 6912, 258, 20224, 18592, 0, 0));

{* lcn points in this list:
{* 1 R_TEST02.STR
{*---*}

 var
 CT_ENUM_SAMPLE : [word] -32768..32767 := 1;
 ENUM_SAMPLE : array [1..001]

of array [1..8] of [word] -32768..32767 := (
 (1024, 315, 6912, 258, 20224, 18848, 0, 1032));

{* lcn points in this list:
{* 1 R_TEST02.CENM
{*---*}

CM50S User Manual 7-13 7/93

7.2.3

7.2.3.3 Sample "C" (.INC) Include File

/*** input contained errors ***/
/* 3 lists: real asci enum */
/*---*/

 short int ct_real_SAMPLE = 2;
 short int real_SAMPLE [2][8] = {
 256, 315, 6912, 258, 21504, 18336, 256, 0,
 256, 315, 6912, 258, 21504, 18336, 256, 0 };

/* lcn points in this list:
/* 1 R_TEST02.NUM(1)
/* 2 R_TEST02.NUM(2)
/*---*/

 short int ct_asci_SAMPLE = 1;
 short int asci_SAMPLE [1][8] = {
 768, 315, 6912, 258, 20224, 18592, 0, 0 };

/* lcn points in this list:
/* 1 R_TEST02.STR
/*---*/

 short int ct_enum_SAMPLE = 1;
 short int enum_SAMPLE [1][8] = {
 1024, 315, 6912, 258, 20224, 18848, 0, 1032 };

/* lcn points in this list:
/* 1 R_TEST02.CENM
/*---*/

CM50S User Manual 7-14 7/93

7.2.4

7.2.4 Using the Item and Typed Item Formats

For the Item and Typed Item formats, a shortword integer array is created for each
point.parameter listed in the include file. Each array contains the point.parameter's
id_block (and, optionally, the parameter's val_typ). You then "include" the .INF,
.INP, or .INC file in your source code to make the information available to the compiled
program.

The point and parameter names specified in the input file are used to create variable names
for the Internal ID and Value Type as shown below.

1. If the point name begins with a number, the three characters “CM_” are placed in
front of the number.

2. The period used to separate the point name from the parameter name is converted to a
double underscore ('__'). For example, AMCDS.ASC is converted to
AMCDS__ASC.

3. Parentheses indicating an index of an array are changed to a pair of dollar signs ($)
surrounding the index value. For example, AMCDS.RL(1) is converted to
AMCDS__RL1. Note that a negative array subscript generates a single underbar
character preceding the index value. For example, AMCDS.RL(-1) is converted to
AMCDS__RL$_1$.

4. If type information has been included, the variable containing the type is the same as
the ID block variable, but has _TYPE appended to it. For example,
AMCDS__RL1_TYPE.

5. If the tagname includes a Network pinid, the backslash delimiter is converted to a
dollar sign ($).

CM50S User Manual 7-15 7/93

7.2.4

7.2.4.1 Sample FORTRAN (.INF) Include File

INTEGER*2 AMCDS__RL0020$1$(8)
DATA AMCDS__RL0020$1$

- / 256, 278, 3840, 514,
- -26880, 8352, 256, 0/

INTEGER*2 AMCDS__RL0020$1$_TYPE
DATA AMCDS__RL0020$1$_TYPE / 1/

INTEGER*2 AMCDS__RL0020$3$(8)
DATA AMCDS__RL0020$3$

- / 256, 278, 3840, 514,
- -26880, 8352, 768, 0/

INTEGER*2 AMCDS__RL0020$3$_TYPE
DATA AMCDS__RL0020$3$_TYPE / 1/

INTEGER*2 AMCDS__ASC2(8)
DATA AMCDS__ASC2

- / 768, 278, 3840, 514,
- -26880, 2976, 512, 0/

INTEGER*2 AMCDS__ASC2_TYPE
DATA AMCDS__ASC2_TYPE / 3/

INTEGER*2 AMCDS__ENM2(8)
DATA AMCDS__ENM2

- / 1024, 278, 3840, 514,
- -26880, 2464, 512, -505/

INTEGER*2 AMCDS__ENM2_TYPE
DATA AMCDS__ENM2_TYPE / 4/

CM50S User Manual 7-16 7/93

7.2.4

7.2.4.2 Sample Pascal (.INP) Include File

VAR
AMCDS__RL0020$1$: ARRAY[1..8] OF [WORD] -32768..32767;
AMCDS__RL0020$1$_TYPE : [WORD] -32768..32767;

VALUE
AMCDS__RL0020$1$[1] := 256;
AMCDS__RL0020$1$[2] := 278;
AMCDS__RL0020$1$[3] := 3840;
AMCDS__RL0020$1$[4] := 514;
AMCDS__RL0020$1$[5] := -26880;
AMCDS__RL0020$1$[6] := 8352;
AMCDS__RL0020$1$[7] := 256;
AMCDS__RL0020$1$[8] := 0;
AMCDS__RL0020$1$_TYPE := 1;

VAR
AMCDS__RL0020$3$: ARRAY[1..8] OF [WORD] -32768..32767;
AMCDS__RL0020$3$_TYPE : [WORD] -32768..32767;

VALUE
AMCDS__RL0020$3$[1] := 256;
AMCDS__RL0020$3$[2] := 278;
AMCDS__RL0020$3$[3] := 3840;
AMCDS__RL0020$3$[4] := 514;
AMCDS__RL0020$3$[5] := -26880;
AMCDS__RL0020$3$[6] := 8352;
AMCDS__RL0020$3$[7] := 256;
AMCDS__RL0020$3$[8] := 0;
AMCDS__RL0020$3$_TYPE := 1;

VAR
AMCDS__ASC2 : ARRAY[1..8] OF [WORD] -32768..32767;
AMCDS__ASC2_TYPE : [WORD] -32768..32767;

VALUE
AMCDS__ASC2[1] := 768;
AMCDS__ASC2[2] := 278;
AMCDS__ASC2[3] := 3840;
AMCDS__ASC2[4] := 514;
AMCDS__ASC2[5] := -26880;
AMCDS__ASC2[6] := 2976;
AMCDS__ASC2[7] := 512;
AMCDS__ASC2[8] := 0;
AMCDS__ASC2_TYPE := 3;

VAR
AMCDS__ENM2 : ARRAY[1..8] OF [WORD] -32768..32767;
AMCDS__ENM2_TYPE : [WORD] -32768..32767;

VALUE
AM001__ENM2[1] := 512;
AM001__ENM2[2] := 276;
AM001__ENM2[3] := 3840;
AM001__ENM2[4] := 2;
AM001__ENM2[5] := 19456;
AM001__ENM2[6] := 31753;
AM001__ENM2[7] := 0;
AM001__ENM2[8] := 0;
AM001__ENM2_TYPE := 2;

CM50S User Manual 7-17 7/93

7.2.4

7.2.4.3 Sample "C" (.INC) Include File

SHORT INT AMCDS__RL0020$1$[8] = { 256, 278, 3840, 514,
- -26880, 8352, 256, 0};
SHORT INT AMCDS__RL0020$1$_TYPE = { 1};

SHORT INT AMCDS__RL0020$3$[8] = { 256, 278, 3840, 514,
- -26880, 8352, 768, 0};
SHORT INT AMCDS__RL0020$3$_TYPE = { 1};

SHORT INT AMCDS__ASC2[8] = { 768, 278, 3840, 514,
- -26880, 2976, 512, 0};
SHORT INT AMCDS__ASC2_TYPE = { 3};

SHORT INT AMCDS__ENM2[8] = { 1024, 278, 3840, 514,
- -26880, 2464, 512, -505};
SHORT INT AMCDS__ENM2_TYPE = { 4};

CM50S User Manual 7-18 7/93

7.3

7.3 LCN FILE TRANSFER OPERATIONS

This facility allows execution of LCN File Transfer functions from a VAX terminal,
including the archiving of LCN Files on the VAX.

The file transfer operations are supported only by LCNs running TDC 3000 release 400 or
later. Also, concurrent execution of file transfer requests is limited to one user on each CG
port. When a File Transfer session is initiated the CG port number is defaulted to 1, but
once the user has specified a CG port number the specified CG is used for any subsequent
operations within the session (until it is explicitly changed by the user).

The DATAOUT facility allows the user, when requesting the execution of specific file
transfer transactions, to place relevant data in the dataout or catalog file. This dataout file is
a shared file for all users of file transfer on the LCN. For example, user "Jones" executes a
List Volume Names request, the results of which are placed into the current dataout file.
User "Smith" then requests a List File Attributes. These results also are placed into the
same (current) dataout file.

List Volume Names and List File Attributes are the only file transfer operations that require
a dataout file. Other file transfer transactions treat dataout as an option that can be used to
log file copies, moves, renames and deletes. For any operation that allows the use of
dataout, the file currently assigned for dataout in the specified CG is displayed (and
automatically changed when the CG selection is changed). Generally, the dataout file
should be given an extension (like ".X") that identifies it as a User Text file on the LCN.

An LCN ATTRIBUTES file is created on the VAX (with an extension of .LA) whenever
an LCN file is read into the VAX. This file is always newly created (since a unique file
name is required for the file READ) and therefore should always be version 1. The
purpose of the LCN attributes file is two-fold.

• The unique LCN attributes such as file descriptor are kept here as are the actual attributes
of record size, block size, etc.

• The creation date, version number and other parameters are kept to insure that binary files
are not modified and then written back to the LCN NET volume. The Attributes file is
used to format the file sent to the LCN by the file WRITE requests. Part of this
verification prevents modified binary files from being written to the LCN.

CM50S User Manual 7-19 7/93

7.3.1

7.3.1 File Transfer Menu

All File Transfer processes can be invoked through the File Transfer Menu selection on the
CM50S Main Menu. Select the desired function by typing the selection code or by using
the arrow keys to tab through the menu until the desired choice is highlighted, then press
<RETURN>.

7.3.1.1 File Transfer Choices

Each of the file transfer choices brings up a data entry form with a unique function.

• RD—Transfers a single file from the LCN NET volume to CM50S.

• WT—Transfers a single file from CM50S to the LCN NET volume.

• LS—Lists into a specified catalog or dataout file the attributes of one or more LCN NET
resident files. The catalog file of results can be transferred to CM50S using the RD
process.

• RT—Displays at the terminal the LCN file attributes of a specific LCN NET file.

• LSV—Lists into a specified catalog or dataout file the LCN NET VOLUME names and
directories of one or all History Modules.

• RTV—Displays at the terminal the volume names, directory names, and sector usage of a
specific History Module.

• CP—Copies one or more LCN NET files from one NET volume to another NET volume.

CM50S User Manual 7-20 7/93

7.3.1

• MV—Moves one or more LCN NET files from one directory to another, within the same
LCN NET volume.

• RN—Permits the renaming of one or more LCN NET files within a LCN NET volume
directory.

• CD—Creates a directory under a volume on the History Module.

• DD—Deletes a directory from under a volume on the History Module.

• DL—Deletes one or more LCN NET files from the specified volume on the History
Module. Once deleted the files cannot be recovered.

• DO—Manipulates the dataout or catalog file. The file can be created and opened or
closed. The file can be deleted using the DL process.

• AT—Aborts the file transfer operation that is currently in process.

7.3.1.2 File Transfer Menu Function Keys

PF4/QUIT—Exit File Transfer, return to CM50S Main Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

ENTER/SELECT—Displays the form for the selected file transfer function The selected
function is identified in the CHOICE: field and is highlighted.

7.3.2 Read File From LCN

The RD menu option provides a screen to read a file from the LCN and store it in the VAX.

CM50S User Manual 7-21 7/93

7.3.2

7.3.2.1 Read File Fields

The READ FILE fields are:

• CG Port—Number of the CG Port (1- 4) to be used for the file transfer request.

• LCN SOURCE—LCN file pathname of the file to be read. The device may be specified
either by node number (PN:nn>) or as NET>. If the LCN includes a Network Gateway,
remote nodes can be addressed by including a prefix—consisting of the one- or two-
character "pinid" followed by a backslash—to the pathname.

Example pathname formats: NET>&D01>FILENAME.DO
ab\NET>&D01>FILENAME.DO

• VAX DESTINATION—VMS pathname of the recipient file, including an extension (but
not version number). The volume and directory names default to the user's current
directory. If no extension is specified, the VMS default of .DAT is used. This pathname
also controls where the companion LCN attributes file will be stored. The LCN attributes
file uses the following naming convention: The original extension becomes part of the
filename preceded by an underscore (_), and a new extension of ".LA" is appended. For
example, the VAX destination of FORMULAE.CL would have a companion attributes file
of FORMULAE_CL.LA.

NOTE

In order to maintain consistency of attributes and data files, the VAX Destination cannot match
the VMS pathname of an existing file.

7.3.2.2 Read File Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the file transfer process. Error and Information messages will be
displayed at the bottom of the screen. Errors that are detected by either the LCN File or
Utility Manager also return a secondary error code that identifies the specific error (see
Appendix A.4 for translation). The secondary error message code will be highlighted and
flashing. Pressing any field termination key, such as <Return>, will clear the error
condition and allow for further processing.

CM50S User Manual 7-22 7/93

7.3.3

7.3.3 Write File to LCN

The WT menu option provides a screen used to copy a file that has been archived on the
VAX back to the LCN. If the LCN file exists, it is replaced without warning or error
indication. (This is unlike the programmatic interface to File Transfer, which requires the
user to select whether the write transaction should be aborted or allowed if the file to be
written already exists at the LCN destination.) Any file that has been read from an LCN
can be written back to that same LCN, but only ASCII files can be modified on the VAX
and then written to an LCN.

7.3.3.1 Write File Fields

The WRITE FILE fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• VAX SOURCE—VMS pathname of the file to be copied to the LCN. This file must also
have a companion LCN attributes file. The LCN attributes file uses the following naming
convention: The original extension becomes part of the filename preceded by an
underscore (_), and a new extension of ".LA" is appended. For example, the VAX
destination of FORMULAE.CL would have a companion attributes file named
FORMULAE_CL.LA.

• LCN DESTINATION—LCN file pathname of the file to be written. The device may be
specified either by node number (PN:nn>) or as NET>. If the LCN includes a Network
Gateway, remote nodes can be addressed by including a prefix—consisting of the one- or
two-character "pinid" followed by a backslash—to the pathname.

Example pathname formats: NET>&D01>FILENAME.DO
ab\NET>&D01>FILENAME.DO

CM50S User Manual 7-23 7/93

7.3.3

7.3.3.2 Write File Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the file transfer process. Error and Information messages will be
displayed at the bottom of the screen. Errors that are detected by either the LCN File or
Utility Manager also return a secondary error code that identifies the specific error (see
Appendix A.4 for translation). The secondary error message code will be highlighted and
flashing. Pressing any field termination key, such as <Return>, will clear the error
condition and allow for further processing.

7.3.4 Catalog File List

Use the LS menu option to capture the file attributes of one or more files into a dataout or
catalog file.

CM50S User Manual 7-24 7/93

7.3.4

7.3.4.1 Catalog File List Fields

The FILE LIST fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN file pathname of the files to be listed. The device may be specified
either by node number (PN:nn>) or as NET>. Wildcards (*) may be used for the filename
and/or extension. Example format: NET>&D01>*.DO. Additional data may be included
in the catalog file by specifying one or more of the following options at the end of the
pathname:

-FD include file descriptors
-REC include record/block information

If the LCN includes a Network Gateway, remote nodes can be addressed by adding a
prefix—consisting of the one- or two-character "pinid" followed by a backslash (\)—to the
pathname.

• Dataout—LCN pathname of dataout file to be used as a journal/cataloging file using form:
NET>&DIR>FILENAME.xx

7.3.4.2 Catalog File List Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the file list process. Error and Information messages will be
displayed at the bottom of the screen. Errors that are detected by either the LCN File or
Utility Manager also return a secondary error code that identifies the specific error (see
Appendix A.4 for translation). The secondary error message code will be highlighted and
flashing. Pressing any field termination key, such as <Return>, will clear the error
condition and allow for further processing.

CM50S User Manual 7-25 7/93

7.3.5

7.3.5 File Attributes

Use the RT menu option to retrieve the file attributes for a specific LCN file. Wildcard
characters are not permitted. The following attributes will be displayed:

 LABEL ATTRIBUTE
• CONF LCN File Configuration
• REV LCN File Revision
• EXT File Extension
• TYP LCN File Type: C=contiguous, L=linked
• P LCN File Protection: 0=no, 1=yes
• RECS Logical number of records
• RECSIZ Record size
• BLKS Logical number of blocks
• BLKSIZ Block size
• START Starting Sector
• END Ending Sector
• TIME STAMP Timestamp (MM/DD/YY hh:mm)
• File Descriptor (optional)

7.3.5.1 File Attributes Fields

The FILE ATTRIBUTES fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

CM50S User Manual 7-26 7/93

7.3.5

• LCN Source—LCN pathname of the file whose attributes are to be displayed. The device
may be specified either by node number (PN:nn>) or as NET>. If the LCN includes a
Network Gateway, remote nodes can be addressed by adding a prefix—consisting of the
one- or two-character "pinid" followed by a backslash—to the pathname.

Example pathname formats: NET>&D01>FILENAME.DO
ab\NET>&D01>FILENAME.DO

If the option " -FD" is appended to the path, then the File Descriptor will be displayed.

7.3.5.2 File Attributes Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Requests the file attributes. If the request is successful, the attributes
will be displayed on the same screen, otherwise Error and Information messages will be
displayed at the bottom of the screen. Errors that are detected by either the LCN File or
Utility Manager also return a secondary error code that identifies the specific error (see
Appendix A.4 for translation). The secondary error message code will be highlighted and
flashing. Pressing any field termination key, such as <Return>, will clear the error
condition and allow for further processing.

7.3.6 Volume List

The LSV menu option provides a screen to capture the Volume and Directories of one or
more History Modules into a dataout or catalog file.

CM50S User Manual 7-27 7/93

7.3.6

7.3.6.1 Volume List Fields

The VOLUME LIST fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN file pathname using the required form: NET.

• Dataout—LCN pathname of dataout file to be used as a journal/cataloging file using form:
NET>&DIR>FILENAME.xx

7.3.6.2 Volume List Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the file transfer process. Error and Information messages will be
displayed at the bottom of the screen. Errors that are detected by either the LCN File or
Utility Manager also return a secondary error code that identifies the specific error (see
Appendix A.4 for translation). The secondary error message code will be highlighted and
flashing. Pressing any field termination key, such as <Return>, will clear the error
condition and allow for further processing.

CM50S User Manual 7-28 7/93

7.3.7

7.3.7 Retrieve Volumes

The RTV menu option provides a screen to display all the Volume and Directory names on
a History Module. Successful completion of the request will bring up a secondary display
that allows the user to scroll through the volumes.

7.3.7.1 Retrieve Volumes Fields

The RETRIEVE VOLUMES fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN node name using the required form PN:nn, where nn is the node
number of the History Module to be queried.

7.3.7.2 Retrieve Volumes Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the Retrieve Volumes process. If the information is successfully
retrieved, it will appear on the following display; otherwise, Error and Information
messages are displayed at the bottom of the screen. Errors that are detected by either the
LCN File or Utility Manager also return a secondary error code that identifies the specific
error (see Appendix A.4 for translation). The secondary error message code will be
highlighted and flashing. Pressing any field termination key, such as <Return>, will clear
the error condition and allow for further processing.

CM50S User Manual 7-29 7/93

7.3.7

7.3.7.3 Volumes & Directories Display

This screen displays the returned volumes and the directories that exist within them.

The following function keys are active:

PF4/QUIT—Return to the Retrieve Volumes Selection screen.

PF2/HELP—Provides help information -- see Section 3.1.3.

KP2/NEXT—Scroll forward one volume.

KP8/PRIOR—Scroll backward one volume.

G2/LAST —Jump to display the last volume in the list.

G8/FIRST—Jump to display the start of the list.

CM50S User Manual 7-30 7/93

7.3.8

7.3.8 Copy File

The CP menu option provides a screen to copy a file from one LCN NET directory to
another or to a different filename (but the extension must remain the same). Wildcards
permit copying multiple files. Optionally, the actions can be journalized to a dataout file.

7.3.8.1 Copy File Fields

The COPY FILE parameters are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN pathname of the file to be copied. The device may be specified either
by node number (PN:nn>) or as NET>. If the LCN includes a Network Gateway, remote
nodes can be addressed by adding a prefix—consisting of the one- or two-character "pinid"
followed by a backslash—to the pathname.

Example pathname formats: NET>&D01>FILENAME.DO
ab\NET>&D01>FILENAME.DO

Wildcards (*) are permitted for the filename and/or extension.

• LCN Destination—LCN pathname of the new copy of the file. If the LCN includes a
Network Gateway, remote nodes can be addressed by adding a prefix—consisting of the
one- or two-character "pinid" followed by a backslash—to the pathname.

Including a suffix of " -D" will cause the actions to be journalized to Dataout.

CM50S User Manual 7-31 7/93

7.3.8

• Dataout—LCN pathname of dataout file to be used as a journal/cataloging file using form:
NET>&dir>filename.DO if the " -D" option is specified on the end of the LCN Source
pathname. Failure to specify the -D option will not produce an error message and the file
copies will not be journaled. Using the -D option with a blank (unassigned) dataout will
result in an error. The dataout assignment can be changed by typing in the desired
pathname on this screen. If a dataout file is changed, the dataout assignment request will
be executed before the files are copied.

7.3.8.2 Copy File Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the COPY FILE process using the CG Port and LCN Source
parameters provided. If the dataout path is defined and the -D option is specified in the
destination pathname, then journal the copied files to the dataout file. Error and
Information messages will be displayed at the bottom of the screen. Errors that are detected
by either the LCN File or Utility Manager also return a secondary error code that identifies
the specific error (see Appendix A.4 for translation). The secondary error message code
will be highlighted and flashing. Pressing any field termination key, such as <Return>,
will clear the error condition and allow for further processing.

7.3.9 Move File

Use the MV menu option to move a file from one directory to another within the same Net
volume. Neither the volume nor the filename can be changed during the move. Wildcards
permit renaming multiple files. Optionally, the actions can be journalized to a dataout file.

CM50S User Manual 7-32 7/93

7.3.9

7.3.9.1 Move File Fields

The MOVE FILE parameters are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN pathname of the file to be moved. The device may be specified either
by node number (PN:nn>) or as NET>. Example format: NET>&D01>FILENAME.DO.
Wildcards (*) are permitted for the filename and/or extension.

• LCN Destination— Name of the LCN directory where the file(s) will reside after the
move. Do not include either a device prefix or filename. Including a suffix of
"-D" will cause the actions to be journalized to Dataout.

• Dataout—LCN pathname of dataout file to be used as a journal/cataloging file using form:
NET>&dir>filename.DO if the " -D" option is specified on the end of the LCN Source
pathname. Failure to specify the -D option will not produce an error message and the file
moves will not be journaled. Using the -D option with a blank (unassigned) dataout will
result in an error. The dataout assignment can be changed by typing in the desired
pathname on this screen. If a dataout file is changed, the dataout assignment request will
be executed before the files are moved.

7.3.9.2 Move File Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the MOVE FILE process using the CG Port and LCN Source
parameters provided. If the dataout path is defined and the -D option is specified in the
destination pathname, then journal the file moves to the dataout file. Error and Information
messages will be displayed at the bottom of the screen. Errors that are detected by either
the LCN File or Utility Manager also return a secondary error code that identifies the
specific error (see Appendix A.4 for translation). The secondary error message code will
be highlighted and flashing. Pressing any field termination key, such as <Return>, will
clear the error condition and allow for further processing.

CM50S User Manual 7-33 7/93

7.3.10

7.3.10 Rename File

The RN menu option provides a screen to rename a file on the History Module. Wildcards
permit renaming multiple files. Optionally, the actions can be journalized to a dataout file.

7.3.10.1 Rename File Fields

The RENAME FILE parameters are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN pathname of the file to be moved. The device may be specified either
by node number (PN:nn>) or as NET>. Example format: NET>&D01>FILENAME.DO.
Wildcards (*) are permitted for the filename and/or extension.

• LCN Destination— New name of the LCN file. Do not include either a directory or
extension specification. Including a suffix of " -D" will cause the actions to be journalized
to Dataout.

• Dataout—LCN pathname of dataout file to be used as a journal/cataloging file using form:
NET>&dir>filename.DO if the " -D" option is specified on the end of the LCN Source
pathname. Failure to specify the -D option will not produce an error message and the file
renames will not be journaled. Using the -D option with a blank (unassigned) dataout will
result in an error. The dataout assignment can be changed by typing in the desired
pathname on this screen. If a dataout file is changed, the dataout assignment request will
be executed before the files are renamed.

CM50S User Manual 7-34 7/93

7.3.10

7.3.10.2 Rename File Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the RENAME FILE process using the CG Port and LCN Source
parameters provided. If the dataout path is defined and the -D option is specified in the
destination pathname, then journal the file renames to the dataout file. Error and
Information messages will be displayed at the bottom of the screen. Errors that are detected
by either the LCN File or Utility Manager also return a secondary error code that identifies
the specific error (see Appendix A.4 for translation). The secondary error message code
will be highlighted and flashing. Pressing any field termination key, such as <Return>,
will clear the error condition and allow for further processing.

7.3.11 Create Directory

The CD menu option provides a screen to create a directory under a volume on the History
Module. No wildcard characters or dataout options are applicable.

CM50S User Manual 7-35 7/93

7.3.11

7.3.11.1 Create Directory Fields

The CREATE DIRECTORY fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN pathname of the directory to be created. The device may be specified
either by node number (PN:nn>) or as NET>. Example format: NET>VOL> DIR. Note
the space delimiter before the Directory name.

7.3.11.2 Create Directory Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the CREATE DIRECTORY process. Error and Information
messages will be displayed at the bottom of the screen. Errors that are detected by either
the LCN File or Utility Manager also return a secondary error code that identifies the
specific error (see Appendix A.4 for translation). The secondary error message code will
be highlighted and flashing. Pressing any field termination key, such as <Return>, will
clear the error condition and allow for further processing.

7.3.12 Delete Directory

The DD menu option provides a screen to delete a directory under a volume on the History
Module. No wildcard characters or dataout options are applicable.

CM50S User Manual 7-36 7/93

7.3.12

7.3.12.1 Delete Directory Fields

The DELETE DIRECTORY fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN pathname of the directory to be deleted. The device may be specified
either by node number (PN:nn>) or as NET>. Example format: NET>VOL> DIR (Note
the space delimiter before the directory name.)

7.3.12.2 Delete Directory Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Starts the DELETE DIRECTORY process. Error and Information
messages will be displayed at the bottom of the screen. Errors that are detected by either
the LCN File or Utility Manager also return a secondary error code that identifies the
specific error (see Appendix A.4 for translation). The secondary error message code will
be highlighted and flashing. Pressing any field termination key, such as <Return>, will
clear the error condition and allow for further processing.

7.3.13 Delete File

The DL menu option provides a screen to delete a file from the specified volume on the
History Module. Wildcards permit deleting multiple files. Optionally, the actions can be
journalized to a dataout file.

CM50S User Manual 7-37 7/93

7.3.13

7.3.13.1 Delete File Fields

The DELETE FILE fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• LCN Source—LCN pathname of the file to be copied. The device may be specified either
by node number (PN:nn>) or as NET>. If the LCN includes a Network Gateway, remote
nodes can be addressed by including a prefix—consisting of the one- or two-character
"pinid" followed by a backslash—to the pathname. Example format:
NET>&D01>FILENAME.DO. Wildcards (*) are permitted for the filename and/or
extension.

• Dataout—LCN pathname of dataout file to be used as a journal/cataloging file using form:
NET>&dir>filename.DO if the " -D" option is specified on the end of the LCN Source
pathname. Failure to specify the -D option will not produce an error message and the file
deletes will not be journaled. Using the -D option with a blank (unassigned) dataout will
result in an error. The dataout assignment can be changed by typing in the desired
pathname on this screen. If a dataout file is changed, the dataout assignment request will
be executed before the file deletions.

7.3.13.2 Delete File Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G-Ø/ACTIVATE—Start the DELETE FILE process using the CG Port and LCN Source
parameters provided. If the dataout path is defined and the -D option is specified in the
destination pathname, then journal the file deletes to the dataout file. Error and Information
messages will be displayed at the bottom of the screen. Errors that are detected by either
the LCN File or Utility Manager will also return a secondary error code (see Appendix A.4
for translation) that identifies the specific error. The secondary error message code will be
highlighted and flashing. Pressing any field termination key, such as <Return>,will clear
the error condition.

CM50S User Manual 7-38 7/93

7.3.14

7.3.14 Dataout Status

The DO menu option provides a screen to view and change the current DATAOUT file
assignment. This screen will display in the dataout field the current dataout assignment for
the designated Computer Gateway. If a change is required, enter a new dataout pathname.
Information messages will be received as the dataout status changes. If a reset of dataout is
required, blank out the displayed data.

7.3.14.1 Dataout Status Fields

The DATAOUT STATUS fields are:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

• Dataout—LCN pathname of dataout file to be used as a journal/cataloging file using form:
NET>&DIR>FILENAME.xx

If the LCN includes a Network Gateway, remote nodes can be addressed by including a
prefix—consisting of the one- or two-character "pinid" followed by a backslash—to the
pathname.

7.3.14.2 Dataout Status Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Sends the Dataout Request to the specified CG. Error and Information
messages will be displayed at the bottom of the screen.

CM50S User Manual 7-39 7/93

7.3.15

7.3.15 Abort Transfer

The AT menu option provides a screen to send an abort message to the Computer gateway.
The current file transfer transaction will be terminated. The initiator of the aborted
transaction will receive a CM50_FTF_ABORT error code. This screen will display on the
25th line the message "abort transfer request complete" even if no transaction was in
progress at the time of the request.

7.3.15.1 Abort Transfer Fields

Only one field is used:

• CG Port—This field indicates the number of the CG Port (1- 4) to be used for the file
transfer request.

7.3.15.2 Abort Transfer Function Keys

PF4/QUIT—Return to the File Transfer Menu.

PF2/HELP—Provides help information -- see Section 3.1.3.

G0/ACTIVATE—Sends the Abort Transfer Request to the specified CG. Error and
Information messages will be displayed at the bottom of the screen.

CM50S User Manual 7-40 7/93

CM50S User Manual 8-1 7/93

8

DCL COMMAND INTERFACE
Section 8

This section explains how to invoke specific CM50S functions as DCL level commands.

8.1 USING THE COMMAND INTERPRETER

The DCL Interface to CM50S provides an easy to use, low volume, method for performing
most of the standard CM50S functions. This interface follows the standard VMS DCL
syntax rules and conventions.

8.1.1 Incorporating CM50S Commands into DCL

The CM50S ACP and DDT commands may be incorporated into DCL on either a system
wide basis, or only for selected users.

8.1.1.1 System Wide Implementation

The CM50S ACP and DDT commands can be inserted into the system's DCL Table (by a
user with full VMS privileges) by issuing the commands:

SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES -
/OUTPUT=SYS$LIBRARY:DCLTABLES CM50$LIB:ACP_COMMAND

and
SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES -
/OUTPUT=SYS$LIBRARY:DCLTABLES CM50$LIB:DDT_COMMAND

This will make the CM50S commands act like normal DCL commands, available to all
users on the system. (Note: TheVAX system must be rebooted to activate the new DCL
table; also these commands will need to be reissued whenever a new release of either VMS
or CM50S is installed on the system.)

These commands can be removed from the system-wide DCL Table (by a user with full
VMS privileges) by issuing the commands:

SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES/DELETE=ACP
SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES/DELETE=DDT

8.1.1.2 Providing Commands to Selected Users

The CM50S command interpreters are stored in the CM50$SUPPORT: logical directory.
(Note: VMS ACLs [Access Control Lists] can be applied to this directory to limit the
availability of the CM50S tools that it contains.) The DCL command:

SET COMMAND CM50$LIB:ACP_COMMAND, -
CM50$LIB:DDT_COMMAND

CM50S User Manual 8-2 7/93

8.1.1

adds the CM50S commands to the user's process table for the current terminal session.
Once these special commands have been placed in the process table, they are accessible
through the standard VMS Command Interpreter.

This command should be included in the LOGIN.COM file of users who will regularly
exercise these commands.

8.1.1.3 Translating Error Codes

All CM50S commands return status codes in the standard VMS format. In order for a user
to see the text message associated with these codes, his process must have issued the
command:

SET MESSAGE CM50$LIB:CM50_ERROR_MSG

This command should be included in the LOGIN.COM file of those who will regularly use
CM50S.

8.1.2 Options and Qualifiers

All CM50 command functions are grouped under two general commands: ACP and DDT.
The specific functions to be performed are specified using Options and Qualifiers. The
syntax for these commands matches the standard VMS DCL formatting rules.

The Options are positional and must be separated by one of more blank spaces. The first
option specifies the function to be executed, and is always required. The remaining options
depend on the function and must appear in the order shown.

The Qualifiers provide the ability to override the default settings for a function. Qualifiers
are not positional, they may be placed at the end of any option preceded by a slash (/). All
qualifiers are optional.

Both Option and Qualifier keywords may be abbreviated to 4 characters (or less if the result
is still unique within the command). These keywords are not case sensitive.

8.1.3 Help and Error Handling

Whenever a DCL command function failures, a standard VMS error message is displayed
pinpointing the cause. The return_status code is also stored in the symbol $STATUS so it
can be tested using the DCL lexical functions.

On-line help is available within each command. The request for help is made by:

ACP HELP topic
or DDT HELP topic

The keyword HELP can be abbreviated to the single letter 'H'. The topics are the names of
the functions that can be executed. If no topic is specified, a general help screen listing the
available topics is displayed.

CM50S User Manual 8-3 7/93

8.2

8.2 RETRIEVING LCN DATA

These commands retrieve current data about a tagname (point.parameter) from the LCN.

8.2.1 Viewing LCN Values

This command retrieves the value for a specified tag name from the LCN and displays it to
the user. If the requested tagname is accessible, the output is a single line on the user's
SYS$OUTPUT (normally the terminal screen) that reports its data type (Real, ASCII, etc.)
and current value.

8.2.1.1 Example Commands to View an LCN Value

Minimum form:

ACP VAL tagname

Complete form:

ACP VALUE/CG=n/TYPE=nn tagname

8.2.1.2 Options for View Value

VALUE — Keyword identifying the view value function.

tagname — A string of up to 40 characters that identifies the LCN value to be retrieved. If
the tagname string includes any embedded spaces, it must be enclosed in
quotes. A tag name string is formatted as: point.param[param_ix]

where point is the ASCII name of the LCN point, optionally preceded by a
pinid (1 or 2 characters and a backslash delimiter) for Network
Gateway routing. It must be separated from the parameter name
by a period (.).

param is the ASCII name of the LCN parameter whose value is to be
displayed.

[param_ix] is the optional index to an element within an array of
parameters, used only with arrays. When used, it must be an
integer enclosed in square brackets ([]). If an array index is not
specified, it is assumed to be zero.

8.2.1.3 Qualifiers for View Value

/CG=n—(CG_port_number) The port number (n = 1 to 4) of the CG where the ACIDP is
resident. Defaults to 1.

CM50S User Manual 8-4 7/93

8.2.2

/TYPE=nn—Specifies the data type to be returned. Defaults to 1. If the actual data type is
not compatible with the requested type, the actual data type is reported with the
value. If an array type is specified, the correct size of the array is returned
along with the value. The legal data types are:

1 = Real 7 = Array of Reals
2 = Integer 8 = Array of Integers
3 = ASCII (24-char)
4 = Enumeration 9 = Array of Enumerations
5 = Ordinal 10 = Array of Ordinals

13 = Internal ID 14 = Array of Internal IDs
15 = External ID 16 = Array of External IDs
17 = Time 18 = Array of Times
19 = String (24-char) 20 = Array of Strings

8.2.2 History Module Collection Rate

This command displays the frequency with which Continuous History is being collected
for a specified tag name from the LCN. If the requested tagname is accessible, the output
is a single line on the user's SYS$OUTPUT (normally the terminal screen).

8.2.2.1 Example Commands to Retrieve Collection Rate

Minimum form:

ACP RATE tagname

Complete form:

ACP RATE/CG=n tagname

8.2.2.2 Options for Collection Rate

RATE — Keyword identifying the view value function.

tagname — A string of up to 40 characters that identifies the LCN entity to be retrieved. If
the tagname string includes any embedded spaces, it must be enclosed in
quotes. A tag name string is formatted as: point.param[param_ix]

where point. is the ASCII name of the LCN point,. It must be separated from
the parameter name by a period (.).

param is the ASCII name of the LCN parameter whose value is to be
displayed.

[param_ix] is the optional index to an element within an array of
parameters, used only with arrays. When used, it must be an
integer enclosed in square brackets ([]). If an array index is not
specified, it is assumed to be zero.t

8.2.2.3 Qualifiers for Collection Rate

/CG=n—(CG_port_number) The port number (n = 1 to 4) of the CG where the ACIDP is
resident. Defaults to 1.

CM50S User Manual 8-5 7/93

8.3

8.3 MANIPULATING ACPS

These commands are functionally equivalent to the ACP Operations described in Chapter 5
of this manual.

8.3.1 Activate an ACP

This command causes an ACP to be triggered. By default, nothing (except the next DCL
prompt) is displayed upon successful completion.

8.3.1.1 Example Commands to Activate an ACP

Minimum form:

ACP ACTI acpname

Complete form:

ACP ACTIVATE/REMOTE acpname

8.3.1.2 Options for ACP Activate

ACTIVATE — Keyword identifying the activation function.

acpname — The name of the ACP to be activated.

8.3.1.3 Qualifiers for ACP Activate

/REMOTE — (Default) The ACP to be activated as a detached process.
 OR
/INTERACTIVE — The ACP to be run interactively within the current process.

CM50S User Manual 8-6 7/93

8.3.2

8.3.2 Deactivate an ACP

This command causes a running ACP to be terminated. By default, nothing (except the
next DCL prompt) is displayed upon successful completion.

Note that deactivating an ACP issues a VMS STOP process command that kills the ACP
without waiting for completion of any pending LCN call. If the ACP is accessing a DDT
when it is deactivated, that DDT may be left locked.

To unlock a DDT: RUN CM50$SUPPORT:CM50_CLEAR_DDTUSE. This utility
prompts for the DDT name, then informs the user of its success.

8.3.2.1 Example Commands to Deactivate an ACP

Minimum form:

ACP DEAC acpname

Complete form:

ACP DEACTIVATE/ABORT acpname

8.3.2.2 Options for ACP Deactivate

DEACTIVATE — Keyword identifying the deactivate function.

acpname — The name of the ACP to be deactivated.

8.3.2.3 Qualifiers for ACP Deactivate

/OFF — (Default) Set the ACP status to OFF, allowing it to be re-started from the LCN.
 OR
/ABORT — Sets the ACP execution status to ABORT, preventing it from being restarted

from the LCN

CM50S User Manual 8-7 7/93

8.3.3

8.3.3 Install an ACP

This command causes a program/image to be installed as an ACP. Nothing (except the
next DCL prompt) is displayed upon successful completion. Note: This command always
uses the default quotas. If the ACP requires special privileges and/or quotas, the
installation cannot be done at the DCL level.

8.3.3.1 Example Commands to Install an ACP

Minimum form:

ACP INST acpname

Complete form:

ACP INSTALL/PATH=file/TEST/INPUT=inputfile/OUTPUT=outputfile: -
PROCESS_NAME=name/UIC=uic/PRIORITY=nn -
/SYSERROR=errorfile acpname

8.3.3.2 Options for ACP Installation

INSTALL — Keyword identifying the installation function.

acpname — The name (up to 12 characters long) of the ACP to be installed.

8.3.3.3 Qualifiers for ACP Installation

/PATH —(executable_file) The pathname of the executable image to be run when the ACP
is triggered. If a simple file name (no directory specification) is
given, the default directory of CM50$ACP is assumed. By
default the executable_file has the same name as the ACP. If no
extension is specified, the extension defaults to .EXE.

/NORMAL — (Default) The ACP will run normally through ACIDP triggers.
 OR
/RESTRICTED — The ACP will not store any values and initiation by the LCN scheduler

will be suppressed.
 OR
/TEST — The ACP will not store any values and DDT Get operations will use the Test

values instead of actual LCN values.

/INPUT—(inputfile) Allows a specified pathname of a file to be used as SYS$INPUT for
the ACP. If given, inputfile should include the directory
specification. ".DAT" is the default extension.

CM50S User Manual 8-8 7/93

8.3.3

/OUTPUT—(outputfile) Allows a specified pathname of a file to be used as
SYS$OUTPUT for the ACP. If given, outputfile should include
the directory specification. ".DAT" is the default extension. To
suppress the creation of an output file, specify the null device
(NL:).

/PROCESS_NAME—(proc_name) Allows the name (up to 15 characters) of the detached
process executing the ACP to be specified. By default, the ACP
name is used as the process name.

/UIC—(UICname) Allows a UIC name (of up to 12 characters) to be specified for running
the ACP. By default, ACPs run under the same UIC as the
initiating process.

/SYSERROR—(errorfile) Allows a specified pathname of a file to be used as
SYS$ERROR when the ACP is executed remotely. If specified,
errorfile should include the directory specification. ".DAT" is
the default extension. To suppress the creation of an error file,
specify the null device (NL:).

/PRIORITY—(integer) Allows the priority of the ACP when executed remotely to be set
between 1 and 30. The default priority is 4.

CM50S User Manual 8-9 7/93

8.3.4

8.3.4 Uninstall an ACP

This command causes an program to be removed from the ACP status table. Nothing
(except the next DCL prompt) is displayed upon successful completion. If the ACP is
connected to an ACIDP, it will be disconnected as part of this command. Note that the
disconnect will fail if the ACP is in RESTRICTED mode.

8.3.4.1 Example Commands to Uninstall an ACP

Minimum form:

ACP UNIN acpname

Complete form:

ACP UNINSTALL acpname

8.3.4.2 Options for ACP Uninstall

UNINSTALL — Keyword identifying the uninstall function.

acpname — The name of the ACP to be uninstalled.

8.3.4.3 Qualifiers for ACP Uninstall

There are no qualifiers for this command.

8.3.5 Connect an ACP to an ACIDP

This command causes an ACP to be connected to an ACIDP. Nothing (except the next
DCL prompt) is displayed upon successful completion.

8.3.5.1 Example Commands to Connect an ACP

Minimum form:

ACP CONN acpname acidp

Complete form:

ACP CONNECT/CG=n acpname acidp

CM50S User Manual 8-10 7/93

8.3.5

8.3.5.2 Options for ACP Connect

CONNECT — Keyword identifying the connect function.

acpname — The name of the ACP to be connected.

acidp — The name of the ACIDP to be connected to the ACP.

8.3.5.3 Qualifiers for ACP Connect

/CG=n—(CG_port_number) The number of the CG (n = 1 to 4) where the ACIDP is
resident. Defaults to 1.

8.3.6 Disconnect an ACP

This command causes an ACP to be disconnected from its ACIDP. Nothing (except the
next DCL prompt) is displayed upon successful completion. Note that if the ACP is in
RESTRICTED mode, its installation mode must be change to NORMAL or TEST before it
can be disconnected.

8.3.6.1 Example Commands to Disconnect an ACP

Minimum form:

ACP DISC acpname

Complete form:

ACP DISCONNECT acpname

8.3.6.2 Options for ACP Disconnect

DISCONNECT — Keyword identifying the disconnect function.

acpname — The name of the ACP to be disconnected.

8.3.6.3 Qualifiers for ACP Disconnect

There are no qualifiers for this command.

CM50S User Manual 8-11 7/93

8.3.7

8.3.7 Change Program Mode of an ACP

This command changes the installation mode of an ACP. Nothing (except the next DCL
prompt) is displayed upon successful completion.

8.3.7.1 Example Commands to Change Installation Mode

Minimum form:

ACP CHAN acpname

Complete form:

ACP CHANGEMODE/RESTRICTED acpname

8.3.7.2 Options for Change Mode

CHANGEMODE — Keyword identifying the change mode function.

acpname — The name of the ACP to be affected.

8.3.7.3 Qualifiers for Change Mode

/NORMAL — (Default) The ACP will run normally through ACIDP triggers.
 OR
/RESTRICTED — The ACP will not store any values and initiation by the LCN scheduler

will be suppressed.
 OR
/TEST — The ACP will not store any values and DDT Get operations will use the Test

values instead of actual LCN values.

8.3.8 Display Status of an ACP

This command displays the current status of an ACP.

8.3.8.1 Example Commands to Display the Status of an ACP

Minimum form:

ACP SUM acpname

Complete form:

ACP SUMMARY acpname

CM50S User Manual 8-12 7/93

8.3.8

8.3.8.2 Options for Display ACP Status

SUMMARY — Keyword identifying the display summary function.

acpname — The name of the ACP whose status is to be displayed.

8.3.8.3 Qualifiers for Display ACP Status

There are no qualifiers for this command.

8.3.9 Display List of ACPs

This command displays summary information on all installed ACPs.

8.3.9.1 Example Commands to List ACPs

Minimum form:

ACP LIS

Complete form:

ACP LIST/PAGE/BEGIN=nn/END=nn/NOLIST

8.3.9.2 Options for ACP List

LIST — Keyword identifying the list function.

8.3.9.3 Qualifiers for ACP List

/PAGE — The output is displayed one screen at a time. At the end of each page, the user
must press <Return> to view the next screen. Typing: Q<Return>. Without
this qualifier, the entire list will be displayed (scrolling as needed).

/BEGIN—(starting_index) The index number of the first ACP entry to be displayed.
Default = 1.

/END—(ending_index) The index number of the last ACP to be displayed. Defaults to the
end of the ACP table.

/NOLIST — The output is limited to a single line giving the current count of installed
ACPs.

CM50S User Manual 8-13 7/93

8.4

8.4 MANIPULATING DDTs

These commands are functionally equivalent to the DDT Operations described in Section 6
of this manual.

8.4.1 Build a DDT

This command causes a DDT to be built from a source text file. Nothing (except the next
DCL prompt) is displayed upon successful completion. Note that rebuilding a CG-resident
DDT breaks any existing ACIDP connection. Thus, if prefetching is desired, the DDT
BUILD/REBUILD command should be followed by a DDT CONNECT command (see
section 8.4.5).

8.4.1.1 Example Commands to Build a DDT

Minimum form:

DDT BUIL ddtname

Complete form:

DDT BUILD/SOURCE=sourcefile/DESCR=description/CG=n -
/RESIDENT/REBUILD/VT/LIST_ERRORS -
/NOERROR_FILE ddtname

8.4.1.2 Options for DDT Build

BUILD — Keyword identifying the build function.

ddtname — The name (up to 9 characters long) to be assigned to the DDT.

8.4.1.3 Qualifiers for DDT Build

/SOURCE_PATH—(sourcefile) The pathname of the source file for the DDT. If no
directory is specified, the user's current default directory will be assumed. if no
extension is given, an extension of ".DDT" will be assumed. By default, the
sourcefile name is the same as the ddtname.

/DESCRIPTION—("text ") — A description of up to 36 characters to be associated with
the DDT. If the description contains any embedded spaces, it must be enclosed
in quotes.

/CG—(CG_port_number) The CG (n = 1 to 4) through which the data is to be transferred.
Default = 1.

/NORESIDENT — (Default) The DDT to be maintained in the VAX and transferred to the
CG at run time.

 OR
/RESIDENT — The DDT to be installed as CG-resident.

CM50S User Manual 8-14 7/93

8.4.2

/NOREBUILD — (Default) This is a new DDT; it will not overlay an existing DDT.
 OR
/REBUILD — The existing DDT is to be replaced using the current source file.

/NOVT — (Default) The values transferred at run time are not recorded on disk.
 OR
/VT — A Values_Table file is to be generated, recording the most recent values transferred.

(Note: This option reduces run-time throughput.)

/NOLIST — (Default) The source error file is not automatically displayed.
 OR
/LIST_ERRORS — The source error file is displayed.

/ERROR_FILE — (Default) Errors in the source file are recorded in an error file (.ER) .
 OR
/NOERROR_FILE — Errors in the source file are not not stored in a file.

8.4.2 Delete a DDT

This command deletes a DDT (except for its source file). Nothing (except the next DCL
prompt) is displayed upon successful completion.

8.4.2.1 Example Commands to Delete a DDT

Minimum form:

DDT DELE ddtname

Complete form:

DDT DELETE ddtname

8.4.2.2 Options for DDT Delete

DELETE — Keyword identifying the Delete function.

ddtname — The name of the DDT to be deleted.

8.4.2.3 Qualifiers for DDT Delete

There are no qualifiers for this command.

CM50S User Manual 8-15 7/93

8.4.3

8.4.3 Install a DDT as CG Resident

This command causes a DDT to be installed as CG resident. Nothing (except the next DCL
prompt) is displayed upon successful completion.

8.4.3.1 Example Commands to Install a Resident DDT

Minimum form:

DDT INST ddtname

Complete form:

DDT INSTALL ddtname

8.4.3.2 Options for DDT Install

INSTALL — Keyword identifying the install function.

ddtname — The name of the DDT to be installed.

8.4.3.3 Qualifiers for DDT Install

There are no qualifiers for this command.

8.4.4 Remove a DDT from the CG

This command causes a resident DDT to be removed from its CG. If the DDT is connected
to an ACIDP, that connection is also removed. Nothing (except the next DCL prompt) is
displayed upon successful completion.

8.4.4.1 Example Commands to Remove a DDT

Minimum form:

DDT UNIN ddtname

Complete form:

DDT UNINSTALL ddtname

8.4.4.2 Options for DDT Uninstall

UNINSTALL — Keyword identifying the removal function.

ddtname — The name of the DDT to be removed from the CG.

CM50S User Manual 8-16 7/93

8.4.4

8.4.4.3 Qualifiers for DDT Uninstall

There are no qualifiers for this command.

8.4.5 Connect a DDT to an ACIDP

This command causes a DDT to be built connected to an ACIDP, allowing its data to be
prefetched. Nothing (except the next DCL prompt) is displayed upon successful
completion.

8.4.5.1 Example Commands to Connect a DDT to an ACP

Minimum form:

DDT CONN ddtname acpname
 OR

DDT CONN/ACID=acidpname ddtname

Complete form:

DDT CONNECT/ACIDP=acidpname/NOSCHEDULE/NODEMAND/NOPPS -
ddtname acpname

8.4.5.2 Options for DDT Connect

CONNECT — Keyword identifying the connect function.

ddtname — The name of the DDT to be connected for prefetch.

acpname — (Optional) The name of the ACP that will use the prefetched data. This ACP
must already be connected to an ACIDP. If the ACP name is not given, then
the /ACIDP qualifier must be used to specify the name of the ACIDP for the
connection.

CM50S User Manual 8-17 7/93

8.4.5

8.4.5.3 Qualifiers for DDT Connect

/ACIDP—(acidp_name) The name of the ACIDP for the connection. This ACIDP must
already be connected to an ACP.

/SCHEDULE — (Default) The data will be prefetched when the ACP is triggered by the
LCN Scheduler.

 OR
/NOSCHEDULE — The data will be fetched only when requested if the ACP is triggered

by the LCN Scheduler.

/DEMAND — (Default) The data will be prefetched when the ACP is triggered by
Operator Demand.

 OR
/NODEMAND — The data will be fetched only when requested if the ACP is triggered by

Operator Demand.

/PPS — (Default) The data will be prefetched when the ACP is initiated by an LCN Event
or program.

 OR
/NOPPS — The data will be fetched only when requested if the ACP is initiated by an LCN

Event or program.

8.4.6 Disconnect a DDT from an ACIDP

This command disconnects a DDT from its ACIDP. Nothing (except the next DCL
prompt) is displayed upon successful completion.

8.4.6.1 Example Commands to Disconnect a DDT

Minimum form:

DDT DISC ddtname
 or
DDT DISC/ACP=acpname
 or
DDT DISC/ACIDP=acidname

Complete form:

DDT DISCONNECT/ACIDP=acidpname/ACP=acpname ddtname

8.4.6.2 Options for DDT Disconnect

DISCONNECT — Keyword identifying the disconnect function.

ddtname — (Optional) The name of the DDT to be disconnected. If not specified, then
either the /ACIDP or /ACP qualifier must be used to identify the connection
that is to be broken.

CM50S User Manual 8-18 7/93

8.4.6

8.4.6.3 Qualifiers for DDT DISCONNECT

/ACIDP—(acidp_name) — The name of the connected ACIDP.

/ACP—(acp_name) — The name of the connected ACP.

8.4.7 Modify the Prefetch Triggers for a DDT

This command changes the triggers that cause data for a DDT to be prefetched. Nothing
(except the next DCL prompt) is displayed upon successful completion.

8.4.7.1 Example Commands to Modify Prefetch Triggers

Minimum form:

DDT MOD ddtname
 or
DDT MOD/ACP=acpname
 or
DDT MOD/ACIDP=acidpname

Complete form:

DDT MODTRIGGERS/ACIDP=acidpname/ACP=acp_name -
/NOSCHEDULE/NODEMAND/NOPPS ddtname

8.4.7.2 Options for Modify Triggers

MODTRIGGERS — Keyword identifying the modify triggers function.

ddtname — (Optional) The name of the DDT to be disconnected. If not specified, then
either the /ACIDP or /ACP qualifier must be used to identify the connection
that is to be modified.

CM50S User Manual 8-19 7/93

8.4.7

8.4.7.3 Qualifiers for Modify Triggers

/ACIDP—(acidp_name) The name of the connected ACIDP.

/ACP—(acp_name) The name of the connected ACP.

/SCHEDULE — (Default) The data will be prefetched when the ACP is triggered by the
LCN Scheduler.

 OR
/NOSCHEDULE — The data will be fetched only when requested if the ACP is triggered

by the LCN Scheduler.

/DEMAND — (Default) The data will be prefetched when the ACP is triggered by
Operator Demand.

 OR
/NODEMAND — The data will be fetched only when requested if the ACP is triggered by

Operator Demand.

/PPS — (Default) The data will be prefetched if the ACP is initiated by an LCN Event or
program.

 OR
/NOPPS — The data will be fetched only when requested if the ACP is initiated by an LCN

Event or program.

8.4.8 Display Summary Information for a DDT

This command displays summary information about a DDT. The output shows the
description and status (but not the component points) of the named DDT.

8.4.8.1 Example Commands to Display a DDT Summary

Minimum form:

DDT SUM ddtname

Complete form:

DDT SUMMARY ddtname

8.4.8.2 Options for DDT Summary

SUMMARY — Keyword identifying the summary display function.

ddtname — The name of the DDT to be displayed.

8.4.8.3 Qualifiers for DDT Summary

There are no qualifiers for this command.

CM50S User Manual 8-20 7/93

8.4.9

8.4.9 Display Detailed Information for a DDT

This command displays a DDT including all of its points.

8.4.9.1 Example Commands to Display a DDT's Details

Minimum form:

DDT DETA ddtname

Complete form:

DDT DETAIL/PAGE ddtname

8.4.9.2 Options for DDT Detail

DETAIL — Keyword identifying the detailed display function.

ddtname — The name of the DDT to be displayed.

8.4.9.3 Qualifiers for DDT Detail

/PAGE — The output is displayed one screen at a time. At the end of each page, the user
must press either <Return> to view the next screen, or Q<Return> to terminate
the command with displaying the rest of the list. If the /PAGE qualifier is not
used, the entire list of points is displayed at once (scrolling as needed).

CM50S User Manual 8-21 7/93

8.4.10

8.4.10 Display List of DDTs

This command displays a list of DDTs, with a summary entry for each DDT and a count of
the current number of DDTs.

8.4.10.1 Example Commands to List DDT

Minimum form:

DDT LIS

Complete form:

DDT LIST/BEGIN=nn/END=nn/NOLIST/PAGE

8.4.10.2 Options for DDT List

LIST — Keyword identifying the list function.

8.4.10.3 Qualifiers for DDT List

/PAGE —The output is displayed one screen at a time. At the end of each page, the user
must press either <Return> to view the next screen, or Q<Return> to terminate
the command with displaying the rest of the list. If the /PAGE qualifier is not
used, the entire list of points is displayed at once (scrolling as needed).

/BEGIN—(starting_index) Index number of the first DDT to be displayed. Defaults to 1.

/END—(ending_index) Index number of the last DDT to be displayed. Defaults to the
end of the list.

/NOLIST — Limits the output to a single line that reports the total number of DDTs.

CM50S User Manual 8-22 7/93

8.5

8.5 TRANSFERRING LCN FILES

These commands are functionally equivalent to the LCN File Transfer Operations described
in Section 7.3 of this manual.

The Dataout facility allows the user, when requesting the execution of specific file transfer
transactions, to place relevant data in the dataout or catalog file. This dataout file is a
shared file for all users of file transfer on the LCN. For example, user "Jones" executes a
D_ATTRIBUTES command, the results of which are placed into the current dataout file.
User "Smith" then requests a D_VOLUME command. These results also are placed into
the same (current) dataout file. The D_ATTRIBUTES and D_VOLUME commands are the
only file transfer operations that require a dataout file. Other file transfer transactions treat
dataout as an option.

8.5.1 LCN File Read

This command will transfer a single file from an LCN NET volume to CM50S. Wildcard
transfers of files are not supported. This command also creates an "LCN ATTRIBUTES"
file for every LCN file that is transferred. Multiple transfers of the same LCN file, within
the same VMS directory, are not allowed. The version number of the attributes file should
remain 1. The attributes file contains the necessary information for transferring the file
back to the LCN. This includes block and record size, file size and type, and file descriptor
data.

8.5.1.1 Example Command to Read an LCN Resident File.

Minimum form:

FTF READ lcnfile vaxfile

Complete form:

FTF READ/CG=n lcnfile vaxfile /ACIDP=acidp_name

8.5.1.2 Options for File Read

READ—Keyword identifying the File Read function.

lcnfile—Pathname (up to 28 characters) of the LCN file to be read. Use the form:
PN:nn>&DIR>FILENAME.xx or NET>&DIR>FILENAME.xx. If the LCN
includes a Network Gateway, remote nodes can be addressed by adding a prefix—
consisting of the one- or two-character "pinid" followed by a backslash—to the
pathname.

vaxfile—VMS file pathname (up to 80 characters) where the file will be stored in the
VAX. If no directory is specified, the user's current default directory will be used.
If no extension is specified, the VMS default of .DAT will be used. The LCN
attributes file will use the following naming convention: the filename suffix or
extension will be preceded by an under-bar character, followed by a period "LA"
extension. For example; the LCN filename of FORMULAE.CL would have an
attribute file of FORMULAE_CL.LA.

CM50S User Manual 8-23 7/93

8.5.1

8.5.1.3 Qualifiers for File Read

/CG=(cg_port_number)—Specifies which Computer Gateway (1-4) to use for access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

8.5.2 LCN File Write

This command will transfer a single file from CM50S to LCN NET volume. This
command requires the LCN ATTRIBUTES file for every LCN file that is transferred.
Multiple copies of an LCN file within the same VMS directory are allowed. These files
would have been created by modifying the original LCN file which was transferred as
version 1. The version number of the attributes file should remain 1. The attributes file
should not be modified.

8.5.2.1 Example Command to Write an LCN Resident File.

Minimum form:

FTF WRIT vaxfile lcnfile

Complete form:

FTF WRITE/CG=n/REPLACE vaxfile lcnfile -
/ACIDP=acidp_name

8.5.2.2 Options for File Write

WRITE—Keyword identifying the file write function.

vaxfile—VMS file pathname (up to 80 characters) of the VAX resident file to transfer
to the LCN NET volume. A valid attributes file must also reside in the same
directory. The LCN attributes file uses the following naming convention:
the filename suffix or extension will be preceded by an under-bar character,
followed by a period "LA" extension. For example, the LCN filename of
FORMULAE.CL would have an attribute file of FORMULAE_CL.LA.

lcnfile—LCN file pathname (up to 28 characters) using the form:
PN:nn>&DIR>FILENAME.xx or NET>&DIR>FILENAME.xx

If the LCN includes a Network Gateway, remote nodes can be addressed by adding
a prefix—consisting of the one- or two-character "pinid" followed by a backslash—
to the pathname.

CM50S User Manual 8-24 7/93

8.5.3

8.5.2.3 Qualifiers for File Write

/REPLACE—If the named LCN file already exists, replace it.
 OR
/ABORT—(default) Abort the transfer if the named LCN file already exists. Do not

overwrite any existing file.

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

8.5.3 List LCN Filenames

This command will list up to 1180 file names and extensions from a LCN NET volume. If
the number of files exceeds the buffer capacity of 1180, then multiple requests by
directory, file type extension, or filename syntax must be executed. Wildcards are
permitted. The list format is one filename.extension per line.

8.5.3.1 Example Command to List Filenames and Extensions.

Minimum form:

FTF FILE lcnfile

Complete form:

FTF FILE_LIST/CG=n/OUTPUT=comfil lcnfile
/ACIDP=acidp_name

8.5.3.2 Options for List Filenames

FILE_LIST—Keyword identifying the file list function.

lcnfile—LCN file pathname (up to 28 characters), usually with a wildcard in one of the
forms:

NET>&DIR>FILENAME.*
NET>&DIR>*.xx
PN:nn>&DIR>*.*

If the LCN includes a Network Gateway, remote nodes can be addressed by adding
a prefix—consisting of the one- or two-character "pinid" followed by a backslash—
to the pathname.

8.5.3.3 Qualifiers for List Filenames

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

CM50S User Manual 8-25 7/93

8.5.2

/OUTPUT=(comfile)—Specifies the VAX pathname for a command file. If this qualifier is
used, the list of file names is formatted into a command procedure for reading all of
the files into the current default directory in the VAX. Thus, the simplest way to
archive all of the files from a directory on the LCN to a directory on the VAX is
with a pair of commands like these:

$FTF FILE/OUTPUT=ARCHIV.com NET>CL>*.*
$@ARCHIV

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

8.5.4 List LCN File Attributes

This command will list the file attributes for a specific LCN file. Wildcard characters and
dataout options are not permitted. File attributes are:

• LCN file type—contiguous or linked
• LCN file protection
• Record size
• Block size
• LCN file configuration
• LCN file revision
• Directory timestamp (MM/DD/YY hh:mm)
• Logical number of blocks
• Logical number of records
• File Descriptor
• Starting Sector
• Ending Sector

8.5.4.1 Example Command to List File Attributes.

Minimum form:

FTF ATTR lcnfile

Complete form:

FTF ATTRIBUTES/CG=n lcnfile /ACIDP=acidp_name

8.5.4.2 Options for List File Attributes

ATTRIBUTES—Keyword identifying the file transfer function.

lcnfile—LCN file pathname (up to 28 characters) using the form:
PN:nn>VDIR>FILENAME.xx or NET>VDIR>FILENAME.xx.

If the LCN includes a Network Gateway, remote nodes can be addressed by adding
a prefix—consisting of the one- or two-character "pinid" followed by a backslash—
to the pathname.

CM50S User Manual 8-26 7/93

8.5.5

8.5.4.3 Qualifiers for List File Attributes

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

8.5.5 List File Attributes to Dataout

This file transfer command will list the LCN FILE ATTRIBUTES of 1 or more files into
the current dataout file. Wildcards (*) may be used for the filename and/or extension. Two
options allow selection of which attributes are listed: -FD lists file descriptors, -REC lists
record & block attributes.

The dataout file need not have been previously established. The complete absence of a
dataout specification will result in an error return. By using the CAT_FILE qualifier a
dataout file may be specified at execution time. Failure to specify a dataout file either prior
to command execution or by using the CAT_FILE qualifier will result in an error return.

8.5.5.1 Example Command to List File Attributes using Dataout.

Minimum form:

FTF D_AT lcnfile

Complete form:

FTF D_ATTRIBUTES/CAT_FILE=dataout "lcnfile -FD -REC" -
/CG=n /ACIDP=acidp_name

8.5.5.2 Options for List Attributes to Dataout

D_ATTRIBUTES—Keyword identifying this listing function.

lcnfile—LCN file pathname (up to 28 characters) using the form:
PN:nn>&DIR>filename.xx or
NET>&DIR>filename.xx. or
NET>&DIR>*.xx or
NET>&DIR>filename.* if wildcards are used, or
"NET>&DIR>FILE.xx -FD -REC" (with double quotes) if options are used.

8.5.5.3 Qualifiers for List Attributes to Dataout

/CAT_FILE=(dataout)—Dataout file pathname on the LCN (up to 28 characters) where the
listing will be stored. Use the form NET>&DIR>FILENAME.xx.

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-27 7/93

8.5.6

8.5.6 List LCN Volumes

This command will list History Module volume and directory names as well as sector usage
figures. Wildcards and dataout options are not permitted for this transaction type.

8.5.6.1 Example Command to List LCN Volumes by Device.

Minimum form:

FTF VOL lcnnode

Complete form:

FTF VOLUME/CG=n lcnnode /ACIDP=acidpname

8.5.6.2 Options for Listing LCN Volumes

VOLUME—Keyword identifying this listing function.

lcnnode—LCN node name using the form: PN:nn (where nn is the node number).

8.5.6.3 Qualifiers for Listing LCN Volumes

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-28 7/93

8.5.7

8.5.7 Listing LCN Volumes to Dataout

This file transfer command will list the LCN Volumes and Directories for all History
modules on the NET or for a specific History Module. The dataout file need not have been
previously established. The complete absence of a dataout specification will result in an
error return. By using the CAT_FILE qualifier the dataout file may be specified at
execution time.

8.5.7.1 Example Command to List Volumes to Dataout.

Minimum form:

FTF D_VO lcnnode

Complete form:

FTF D_VOLUME/CG=n/CAT_FILE=dataout lcnnode -
/ACIDP=acidpname

8.5.7.2 Options for Listing Volumes to Dataout

D_VOLUME—Keyword identifying this listing function.

lcnnode—LCN node name using the form: PN:nn (where nn is the node number) or NET

8.5.7.3 Qualifiers for Listing Volumes to Dataout

/CAT_FILE=(dataout)—Dataout file pathname on the LCN (up to 28 characters) where the
listing will be stored. Use the form NET>&DIR>FILENAME.xx.

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-29 7/93

8.5.8

8.5.8 Copy LCN File

This file transfer command will copy a single file or all files from one NET volume to
another Net volume. Wildcards are permitted; however, the destination suffix must always
be the same as the source suffix.

The -D option is supported for journalizing all copies to a dataout file. The dataout file
must have been previously established. Note that using the -D option without having
previously defined a dataout path will result in an error and the copy function will not be
executed.

8.5.8.1 Example Command to Copy Files.

Minimum form:

FTF COPY lcnfile1 lcnfile2

Complete form:

FTF COPY/CG=n lcnfile1 "lcnfile2 -D" /ACIDP=acidpname

8.5.8.2 Options for File Copy

COPY—Keyword identifying file copy function.

lcnfile1—Source LCN file pathname (up to 28 characters) using the form:
PN:nn or NET>FILENAME.nn, or
NET>&DIR>*.* if using wildcards.

lcnfile2—Recipient LCN file pathname (up to 28 characters) using the form:
NET>VDIR>FILENAME. The file extension must remain the same and will be
automatically retained. The form "NET>VDIR>FILENAME -D" would be used if
a dataout journal is being used. (The double quotes are required.)

If the LCN includes a Network Gateway, remote nodes can be addressed by adding a
prefix—consisting of the one- or two-character "pinid" followed by a backslash—to the
pathname.

8.5.8.3 Qualifiers for File Copy

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-30 7/93

8.5.9

8.5.9 Move LCN Files

This file transfer command will move a single file or all files from one directory to another
directory within the same NET volume. Wildcards are permitted.

The -D option is supported for journalizing all moves to a dataout file. The dataout file
must have been previously established. Note that using the -D option without having
previously defined a dataout path will result in an error and the move function will not be
executed.

8.5.9.1 Example Command to Move an LCN File

Minimum form:

FTF MOVE lcnfile lcndir

Complete form:

FTF MOVE/CG=n lcnfile "lcndir -D" /ACIDP=acidpname

8.5.9.2 Options for File Move

MOVE—Keyword identifying move file function.

lcnfile—LCN file pathname (up to 28 characters) using the form:
using the form NET>DIR1>FILENAME.nn, or
NET>DIR1>*.* if using wildcards.

lcndir—Name of the LCN directory that will receive the file.name. Only the directory
name is required because the move must be within the same volume. Example:
FTF MOVE NET>VDIR>FILENAME.xx DIR2. The form "DIR2 -D" in double
quotes would be specified if a dataout journal is to be used.

8.5.9.3 Qualifiers for File Move

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-31 7/93

8.5.10

8.5.10 Rename LCN File

This file transfer command will rename a single file or all files on the History Module.
Wildcards are permitted.

The -D option is supported for journalizing all renames to a dataout file. The dataout file
must have been previously established. Note that using the -D option without having
previously defined a dataout path will result in an error and the rename function will not be
executed.

8.5.10.1 Example Command to Rename an LCN File

Minimum form:

FTF RENA lcnfile1 lcnfile2

Complete form:

FTF RENAME/CG=n lcnfile1 "lcnfile2 -D"
/ACIDP=acidpname

8.5.10.2 Options for File Rename

RENAME—keyword identifying file rename function.

lcnfile1—Old LCN file pathname (up to 28 characters) using the form:
NET>DIR1>FILENAME.nn, or NET>DIR1>*.nn if using wildcards.

lcnfile2—New LCN filename (up to 28 characters). The Directory and extension will be
automatically provided (The extension cannot be changed with this command.)
The form: "FILENAME -D" may be used to journal the change to Dataout. The
double quotes are required with the -D option.

8.5.10.3 Qualifiers for File Rename

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-32 7/93

8.5.11

8.5.11 Delete LCN File

This file transfer command will delete a single file or all files from the specified volume on
the History Module. Wildcards are permitted. Once deleted the file cannot be recovered.

The -D option is supported for journalizing all deleted files to a dataout file. The dataout file
must have been previously established. Note that using the -D option without having
previously defined a dataout path will result in an error and the delete file function will not
execute.

8.5.11.1 Example Command to Delete an LCN File

Minimum form:

FTF DELE lcnfile

Complete form:

FTF DELETE/CG=n "lcnfile -D" /ACIDP=acidpname

8.5.11.2 Options for File Delete

DELETE—keyword identifying file delete function.

lcnfile—LCN file pathname (up to 28 characters) using the form:
NET>&DIR>FILENAME.nn, or
NET>&DIR>*.* if using wildcards, or
"NET>&DIR>*.* -D" if using dataout.

If the LCN includes a Network Gateway, remote nodes can be addressed by adding a
prefix—consisting of the one- or two-character "pinid" followed by a backslash—to the
pathname.

8.5.11.3 Qualifiers for File Delete

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-33 7/93

8.5.12

8.5.12 Directory Transactions

This file transfer command will create or delete a directory under a volume on the History
Module. No wildcards characters or options are permitted.

8.5.12.1 Example Command to Create or Delete an LCN Directory

Minimum form:

FTF DIR "lcndir"

Complete forms:

FTF DIRECTORY/CREATE/CG=n "lcndir" /ACIDP=acidpname

FTF DIRECTORY/DELETE/CG=n "lcndir" /ACIDP=acidpname

8.5.12.2 Options for Directory Maintenance

DIRECTORY—Keyword identifying directory maintenance function.

lcndir—LCN directory pathname using the form:"NET>VOL> DIR" (note the
space delimiter before the directory name). Directory names are up to 4 characters,
and the double quotes are required.

8.5.12.3 Qualifiers for Directory Maintenance

/DELETE—Delete the named LCN directory.
 OR
/CREATE—(default) Create the named LCN directory.

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-34 7/93

8.5.13

8.5.13 Dataout Request

The dataout function allows the user, when requesting the execution of specific file transfer
transactions, to place relevant data in the dataout or catalog file. This dataout file is a
shared file by all concurrent users of file transfer. For example, user "Jones" requests a
DATA_OUT_FILE command, the results of which are placed into the current dataout file.
User "Smith" then executes a DATA_OUT_VOLUME command. These results also are
placed into the same (current) dataout file. The dataout file may be transferred to the VAX
host using the file transfer READ request. The DATA_OUT_REQUEST command is
provided to enable or disable the file transfer dataout file definition.

8.5.13.1 Example of Dataout Request

Minimum form:

FTF DATA lcnfile

Complete form:

FTF DATA_OUT_REQUEST/CG=n/ENABLE lcnfile -
/ACIDP=acidpname

8.5.13.2 Options for Dataout Request

DATA_OUT_REQUEST—Keyword identifying the Dataout Request function.

lcnfile—LCN file pathname (up to 28 characters) for Dataout using the form:
NET>&DIR>FILENAME.nn.

If the LCN includes a Network Gateway, remote nodes can be addressed by adding a
prefix—consisting of the one- or two-character "pinid" followed by a backslash—to the
pathname.

8.5.13.3 Qualifiers for Dataout Request

/ENABLE—Causes the named LCN file to be opened as the recipient of Dataout
cataloging for subsequent file transfer operations.

 OR
/DISABLE—(Default) This LCN file name although required, is not verified against the

current dataout assignment. The current dataout file will be unconditionally
disabled.

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-35 7/93

8.5.14

8.5.14 Dataout Status

The D_STATUS command identifies the current dataout assignment on a CG.

8.5.14.1 Example Command to Report Dataout Status

Minimum form:

FTF D_ST lcnfile

Complete form:

FTF D_STATUS/CG=n lcnfile /ACIDP=acidpname

8.5.14.2 Options for Dataout Status

D_STATUS—Keyword identifying the Dataout Status function.

lcnfile—LCN file pathname (up to 28 characters) of the Dataout file using the form:
NET>&DIR>FILENAME.nn.

8.5.14.3 Qualifiers for Dataout Status

/CG=(cg_port_number)—Specifies which Computer gateway (1-4) to use to access to the
LCN. Default value is 1.

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 8-36 7/93

8.5.15

8.5.15 Abort File Transfer

This command ABORT_TRANSFER will terminate the current transaction in progress.
The initiator of the transaction in progress will receive a CM50_FTF_ABORT error return
status. No error is reported to the requestor if there is not a current process to abort.

8.5.15.1 Example of Command to Abort a File Transfer

Minimum form:

FTF ABOR CGnbr

Complete form:

FTF ABORT_TRANSFER CGnbr /ACIDP=acidpname

8.5.15.2 Options for Abort Transfer

ABORT_TRANSFER—Keyword identifying the file transfer abort function.

CGnbr—Number (1-4) specifying which Computer Gateway is to have its File Transfer
aborted. No Default CG Port Number is provided.

8.5.15.3 Qualifiers for Abort Transfer

/ACIDP=(acidp_name)—Reserved for future security use (will specify an ACIDP that
controls the LCN data access).

CM50S User Manual 9-1 7/93

9

FORTRAN LANGUAGE CONSIDERATIONS
Section 9

This section discusses each of the program interfaces that provide necessary services that enable
FORTRAN programs to communicate with other nodes on the TDC 3000 Local Control Network.

9.1 CM50S INCLUDE FILES

Each user interface routine has language-specific interfaces that are supported by include
files that contain data declarations that match the argument names and symbolic constants
used in the example calls in this section. Any program that uses any of these interface
routines should be compiled with the matching language-specific include files.

9.1.1 Include Files for Data Transfer Functions

These include files generally are needed by Advanced Control Programs and Data
Acquisition programs.

CM50$LIB:CM50_INCLUDE.FOR Contains the declarations used by the
LCN data interfaces (Sections 10 & 11)
and the Vintage Routines (Appendix G).

CM50$LIB:CM50_ERROR_INCLUDE.FOR Contains the symbolic names for all
CM50S error codes (Appendix A.2).

CM50$LIB:CM50_FTF_INCLUDE.FOR Definitions for all LCN file transfer
operations (section 12.4)

9.1.2 Include Files for DDT and ACP Management

These include files are needed by applications that use the CM50S administration calls
described in Section 12. DDT and ACP management functions use some shared data
structures that are defined in the file CM50_FLAGS_INCLUDE.FOR. Therefore, that file
should be included with any program that calls either DDT or ACP functions and must
precede the include file(s) defining those specific functions.

CM50$LIB:CM50_FLAGS_INCLUDE.FOR Definitions for the shared data structures
in the ACP & DDT Management Interface
calls. Must be included prior to either
CM50_ACP_INCLUDE.FOR or
CM50_DDT_INCLUDE.FOR.

CM50$LIB:CM50_ACP_INCLUDE.FOR Definitions for all ACP Management
operations (section 12.1).

CM50$LIB:CM50_DDT_INCLUDE.FOR Definitions for all the DDT Management
operations (section 12.2).

CM50$LIB:CM50_CGDATA_INCLUDE.FOR Definitions for all the CG Database
retrievals (section 12.3).

CM50S User Manual 9-2 7/93

9.1.3

9.1.3 Programmatic Interface Flag Parameters

An INTEGER*4 parameter called FLAGS is included in every ACP and DDT management
function to control some of the handling options. Some of the flags apply to only the DDT
calls, some to only the ACP calls, and some can be used by both. All user-visible flags (as
defined in CM50_FLAGS_INCLUDE.FOR) are described below.

• CM50$M_HANDLER—(Bit 0) Indicates that the user has provided a custom exception
handler. The default is OFF.

• CM50$M_MSGON—(Bit 1) Prints all diagnostic messages to SYS$OUTPUT. The
default is OFF.

• CM50$M_CGRES—(Bit 5) Installs the DDT as CG resident. The default is OFF.

• CM50$M_REBUILD_DDT—(Bit 6) Rebuilds an existing DDT. The default is OFF.

• CM50$M_NO_SOURC_DEBUG—(Bit 7) Produces no error file during DDT build.
The default is OFF.

• CM50$M_DMP_DDT_ERRORS—(Bit 8) After building the DDT, sends the error file
produced to SYS$OUTPUT. If set, then the CM50$M_NO_SOURCE_DEBUG flag
must be OFF.

• CM50$M_ACIDP_ACTIVATE—(Bit 9) Reserved for internal CM50S use.

• CM50$M_WRITE_VT—(Bit 10) Creates the .VT file with write privilege.

All of the flags described above, represent bit masks that can be added together to enable
any combination of the flags. These flag values also can be used to see if a particular flag
is set. An example is shown below.

 Flags = CM50$M_HANDLER + CM50$M_MSGON
 Return_Status = DDT_SUMMARY(%REF(DDT_Name),
 %REF(Summary), Flags)

9.2 CALLING CONVENTIONS

CM50S interface routines follow the VMS language-independent calling conventions.
With the exception of some housekeeping procedures that have no error handling (such as
ACPTRP and PRGTRM), they are written as functions.

We recommend that each function call be followed by a logical test of the return_status
value. If return_status is true (odd valued), the call was successful (although individual
data items may require checking). If not true (even valued status codes), appropriate error
handling should be invoked. Note that if the application does not check return_status, the
interface routine can be invoked as a called subroutine or procedure in the same manner as
VMS system services.

CM50S User Manual 9-3 7/93

9.3

All the calling sequence examples shown in this section are appropriate for FORTRAN
programs. However, they do not show the continuation line key (-) required by that
language.

Shortword arguments should be declared as INTEGER*2 and must be passed as variables
because FORTRAN assumes that any integer constant is INTEGER*4.

Longword arguments should be declared as INTEGER*4.

Character-string and array arguments must be passed with the explicit %REF qualifier
(FORTRAN defaults to passing strings by descriptor).

Boolean (True/False) arguments should be declared as INTEGER*2, with a value of 1 for
True and 0 for False. (The FORTRAN Logical data type is evaluated as .True. only for a
value of -1 which is never returned from the LCN.)

9.3 COMPATIBILITY OF APPLICATION PROGRAM WITH ITS DDTS

Because each application program and its Data Definition Tables (and Multi_Point List
structures) are separately built, the system cannot enforce compatibility between a program
and any DDT(s) that it uses. That responsibility is up to you.

In particular, it is vital that the dimensions set for data-receiving arrays be large enough to
accommodate the maximum data amounts permitted by the named DDT.

Specific points to remember for DDT Get Data and DDT Store Data are

• Dimensions set for each value-type's program array must be equal-to or greater-than the
value-type's point count in the referenced DDT. The values can be stored one-for-one
or they can be scattered as defined in the DDT. If the program arrays are too small,
data or program code may be corrupted (DDT Get Data) or inappropriate data may be
exported (DDT Store Data).

• The dimension values for status table arrays must be equal-to or greater-than the total
number of points of all types in the referenced DDT because this array is to receive a
status code for each returned value, positioned according to its location in the DDT.

CM50S User Manual 9-4 7/93

9.4

9.4 DATA REPRESENTATIONS

Differences between data representations in the VAX and the CG normally are resolved by
the CG-VAX Communications Handlers, thus are invisible to the user (Exception: raw data
transfers, see heading 10.3). The LCN data formats are:

Real—32 bit floating point matches normal REAL format except that bad values (NaN)
from the LCN have the bit pattern for -0. This value will cause a
FORTRAN trap if used in an arithmetic statement, so real values returned
from the LCN should always be tested (using either the CM50_VALIDN
function or the associated value_status_table entry for the value).

Integer—INTEGER*2.

ASCII—CHARACTER*24 variable.

String—CHARACTER*40 variable.

Enumeration—There are two ways to represent LCN enumerations: as CHARACTER*8
ASCII strings (Enumerated) or as INTEGER*2 values (Ordinal). The
choice of representation is made when the data transfer is requested,
except that self-defined enumerations should be transferred only as
Ordinals. For information on standard enumerations, see the Application
Module Parameter Reference Dictionary, Hiway Gateway Parameter
Reference Dictionary, and Computer Gateway Parameter Reference
Dictionary. For information on Custom Data Segments, see the System
Control Functions manual. For information on self-defined
enumerations, see Section 2 of the Hiway Gateway Control Functions
manual.

Time—LCN Internal Time is defined as a record structure /TIME_PT_VALS/ consisting
of an INTEGER*4 count of Seconds (since the start of 1979) followed by
an INTEGER*2 count of Ticks (tenths of milliseconds). Some of the
calls will return LCN External Time, an ASCII string of format
MM/DD/YY∆HH:MM:SS, where ∆ represents a space. See heading
11.3.3 for time format conversions.

Entity ID—Internally stored as an 64-bit value (array of 4 INTEGER*2) identifying a
specific point (Ptid or Internal_id). Also can be retrieved as a
CHARACTER*18 variable (External_id) consisting of the up-to-16-
character point name followed by the two-character pinid for Network
Gateway references.

CM50S User Manual 9-5 7/93

9.5

9.5 COMMONLY MADE ERRORS

• Character string arguments must be the declared length If string constants are used for
arguments, they must be padded with spaces (or terminated with a null character). Use
of the wrong length for a string probably will result in a FORTRAN runtime error.

• Failure to use the CM50_SET_ACP function (or ACPTRP call) as the first executable
program statement of an ACP and/or failure to use the PRGTRM call as the last
executable statement of an ACP.

• Attempting to run an application program with unresolved compile or link errors or the
use of a DDT that is incomplete or complete with errors.

• Failure to specify array sizes and data types that match DDT definitions.

• Failure to specify all parameters required by the interface routines. Also, failure to
specify the correct data type for parameters. Make sure the %REF qualifier is used
everywhere it is shown in the examples.

• Attempting to activate an ACP through an ACIDP while the ACP is linked to the VMS
DEBUG utility. Use of the DEBUG utility is supported only for execution of ACPs
while run interactively from a terminal.

• Terminating an ACP by use of the STOP/IDENTIFIER function of VMS DCL. ACPs
should only be aborted through the CM50S Deactivate ACP procedure.

9.6 ERROR DETECTION BY INTERFACE FUNCTIONS

There are three categories of error that can be detected during the execution of a program
when using the interface functions. These are indicated through one of these methods:

• Request completion status code

• Individual parameter status codes

• Program abort

The RETURN_STATUS value returned by the Function shows whether or not the request
was successfully processed and, if not, what error type was involved. Some typical errors
flagged by the return status are

• LCN access problems or data link failure

• ACP installation or mode problems

• Data problems in the call or with a referenced DDT

• Call rules violations

CM50S User Manual 9-6 7/93

9.6

The RETURN_STATUS code follows the standard VAX/VMS condition status code
format. In general, even number codes indicate fatal system problems or program bugs,
while odd number codes indicate success (code 000000001) or partial success (e.g., code
215000051). See Appendix A.2 for additional information and a listing of all
RETURN_STATUS values and their meanings.

Most of the interface calls also return LCN point.parameter values that are to be processed
by the calling application program. Accompanying each value (or array) is a status code
that must be checked for indications of problems that would invalidate the requested data.
See the call arguments STATUS_TABLE or VALUE_STATUS in the individual interface
descriptions. There are over 200 different data access-status codes that can be returned.
See Appendix A.1 for a listing of these codes.

Some errors in use of the interface routines result in the application program being aborted.
An error message is logged at the VAX operator console and is shown on the Universal
Station Detail Display for a connected ACIDP. These errors can be of the following types:

• File access errors

• Communication Interface errors

• Format conversion errors

• Various program logic errors

CM50S User Manual 9-7 7/93

9.7

9.7 SUMMARY OF USER-PROGRAM INTERFACES

Heading Interface Descriptions Function Names

Multipoint (DDT) Data Transfers
10.1.1 DDT Get Data CM50_DDT_GET

CM50_DDT_GETNT
10.1.2 DDT Store Data CM50_DDT_STORE

CM50_DDT_STORENT
10.1.3 Generic DDT Get Data CM50_DDT_GETGEN
10.1.4 Generic DDT Store Data CM50_DDT_STOREGEN
10.1.5 Multi-Point List Get Data CM50_MPL_GET
10.1.6 Multi-Point List Store Data CM50_MPL_STORE
10.1.7 Generate Multi-Point List CM50_MPL_GENLIST

CM50_MPL_GENTAGS
CM50_MPL_GENFILE

10.1.8 Read Multi-Point List CM50_MPL_READ
10.1.9 Write Multi-Point List CM50_MPL_WRITE
10.1.10 Create Include File for Multi-Point List CM50_MPL_GENINCL

Point List Data Transfers
10.2.1 Point List Get Values CM50_GET_PT_LIST
10.2.2 Point List Get by Value Type

Real Values CM50_GET_REALNBR
Integer Values CM50_GET_INTNBR
ASCII Values CM50_GET_ASC24
Enumeration Values CM50_GET_ENUM
Ordinal Values CM50_GET_ORD
Internal IDs CM50_GET_PTID
External IDs CM50_GET_EXID
Time Values CM50_GET_TIME
String Values CM50_GET_STRI

10.2.3 Point List Store Values CM50_STORE_PT_LIST
10.2.4 Point List Store by Value Type

Real Values CM50_STORE_REALNBR
Integer Values CM50_STORE_INTNBR
ASCII Values CM50_STORE_ASC24
Enumeration Values CM50_STORE_ENUM
Ordinal Values CM50_STORE_ORD
Internal Ids CM50_STORE_PTID
Time Values CM50_STORE_TIME
String Values CM50_STORE_STRI

Single Point Data Transfers
10.3.1 Single Point Get Data(External ID) CM50_GET_ID

CM50_GET_TAG
10.3.2 Single Point Store Data(External ID) CM50_STORE_ID

CM50_STORE_TAG
10.3.3 Single Point Get Data (Internal ID) CM50_GETPT_ID
10.3.4 Single Point Store Data (Internal ID) CM50_STOREPT_ID
10.3.5 Get LCN Clock Value CM50_TIMNOW_LCN

CM50_TIMNOW_ASC

Raw Data Transfers
10.4.1 Raw Data Get CM50_SPGRAW
10.4.2 Raw Data Store CM50_SPSRAW
10.4.3 Convert Raw Data CM50_SPCRAW

CM50S User Manual 9-8 7/93

9.7

Heading Interface Descriptions Function Names

History Data Transfers
10.5.2 Get History Snapshots (Relative Time) CM50_DDTHIS_SNAP

CM50_DDTHIS_FAST
CM50_MPLHIS_SNAP
CM50_PTHIS_SNAP

10.5.3 Get History Snapshots (Absolute Time) CM50_DDTHIS_SNAPT
CM50_DDTHIS_FASTT
CM50_MPLHIS_SNAPT
CM50_PTHIS_SNAPT

10.5.4 Get History Averages (Relative Time) CM50_DDTHIS_AVER
CM50_MPLHIS_AVER
CM50_PTHIS_AVER

10.5.5 Get History Averages (Absolute Time) CM50_DDTHIS_AVERT
CM50_MPLHIS_AVERT
CM50_PTHIS_AVERT

10.5.6 Get Monthly Averages (Relative Time) CM50_DDTHIS_MNTH
CM50_MPLHIS_MNTH
CM50_PTHIS_MNTH

10.5.7 Get Monthly Averages (Absolute Time) CM50_DDTHIS_MNTHT
CM50_MPLHIS_MNTHT
CM50_PTHIS_MNTHT

10.5.8 Find History Collection Rate CM50_DDTHIS_RATE
CM50_MPLHIS_RATE
CM50_PTHIS_RATE
CM50_TAGHIS_RATE

Text Message Transfers
10.6.1 Get Message CM50_GETMSG
10.6.2 Send Message CM50_STOREMSG

ACP Execution Support
11.1.1 ACP Initialization CM50_SET_ACP
11.1.2 Get ACP Status GETSTS*
11.1.3 ACP Delay CM50_ACPDELAY
11.1.4 ACP Hibernate CM50_HIBER
11.1.5 ACP Termination PRGTRM*

Entity Name Conversions
11.2.1 Convert External to Internal ID CM50_CONV_PT

CM50_CONV_TAG
11.2.2 Convert List of External Ids CM50_CONV_PT_LIST

CM50_CONV_TAG_LIST

Value Conversions
11.3.1 Valid Number Check CM50_VALIDN
11.3.2 Set Bad Value CM50_SETBAD
11.3.3 Convert Time Values CM50_TIMLCN_ARY

CM50_TIMLCN_ASC
CM50_TIMLCN_EURO
CM50_TIMLCN_VAXA
CM50_TIMLCN_VAXB
CM50_TIMARY_LCN
CM50_TIMARY_ASC
CM50_TIMARY_EURO
CM50_TIMARY_VAXA
CM50_TIMARY_VAXB
CM50_TIMASC_LCN

* GETSTS and PRGTRM do not have a RETURN_STATUS, so they cannot be used as functions, but must be
invoked by CALL statements.

CM50S User Manual 9-9 7/93

9.7

Heading Interface Descriptions Function Names

11.3.3 Convert Time Values—continued CM50_TIMASC_ARY
CM50_TIMASC_EURO
CM50_TIMASC_VAXA
CM50_TIMASC_VAXB
CM50_TIMEURO_LCN
CM50_TIMEURO_ARY
CM50_TIMEURO_ASC
CM50_TIMEURO_VAXA
CM50_TIMEURO_VAXB
CM50_TIMVAXA_LCN
CM50_TIMVAXA_ARY
CM50_TIMVAXA_ASC
CM50_TIMVAXA_EURO
CM50_TIMVAXA_VAXB
CM50_TIMVAXB_LCN
CM50_TIMVAXB_ARY
CM50_TIMVAXB_ASC
CM50_TIMVAXB_EURO
CM50_TIMVAXB_VAXA

ACP Management
12.1.1 Install an ACP CM50_ACP_INSTALL
12.1.2 Uninstall an ACP CM50_ACP_UNINST
12.1.3 Activate (run) an ACP CM50_ACP_ACT
12.1.4 Deactivate (abort) an ACP CM50_ACP_DEACTIVATE
12.1.5 Connect an ACP to an ACIDP CM50_ACP_CONNECT
12.1.6 Disconnect ACP from its ACIDP CM50_ACP_DISCON
12.1.7 Change ACP installation mode CM50_ACP_CHG_MODE
12.1.8 Get ACP summary CM50_ACP_SUM
12.1.9 Get list of ACPs CM50_ACP_LISTALL

DDT Management
12.2.1 Build/Rebuild a DDT CM50_DDT_BUILD
12.2.2 Delete a DDT CM50_DDT_DELETE
12.2.3 Get DDT summary information CM50_DDT_SUM
12.2.4 Get list of DDT summaries CM50_DDT_LIST
12.2.5 Get DDT detailed information CM50_DDT_DETAIL
12.2.6 Connect a DDT to an ACIDP CM50_DDT_CONNECT
12.2.7 Disconnect a DDT from its ACIDP CM50_DDT_DISCONNECT
12.2.8 Modify DDT prefetch triggers CM50_DDT_TRIGGERS
12.2.9 Install a DDT as CG resident CM50_DDT_INSTALL
12.2.10 Remove a DDT from CG residency CM50_DDT_UNINST

CG Database Routines
12.3.1 Get list of resident DDTs CM50_CG_RDDT
12.3.2 Get list of CRDPs CM50_CG_CRDP
12.3.3 Get detailed ACIDP information CM50_CG_ADETAIL
12.3.4 Get list of ACIDPs CM50_CG_ACIDP
12.3.5 Get LCN Configuration CM50_CG_CONFIG

LCN File Transfer Routines
12.4.1 Read File from LCN CM50_LCN_READ
12.4.2 Write File to LCN CM50_LCN_WRITE
12.4.3 List LCN File Attributes CM50_ATTR_LIST
12.4.4 List LCN Files & Extensions CM50_FILE_LIST
12.4.5 List LCN Volumes/Directories CM50_HM_LIST

CM50S User Manual 9-10 7/93

9.7

12.4.6 List LCN Files to Dataout CM50_FILE_CATALOG
12.4.7 List LCN Volumes to Dataout CM50_VOLUME_CATALOG
12.4.8 LCN File Copy CM50_LCN_COPY
12.4.9 LCN File Move CM50_LCN_MOVE
12.4.10 LCN File Rename CM50_LCN_RENAME
12.4.11 LCN File Delete CM50_LCN_DELETE
12.4.12 LCN Directory Maintenance CM50_LCN_DIRECTORY
12.4.13 LCN Dataout Status CM50_DATA_OUT
12.4.14 Abort LCN File Transfer CM50_ABORT_TRANSFER

CM50S User Manual 10-1 7/93

10

LCN DATA TRANSFERS (FORTRAN)
Section 10

This section discusses each of the program calls that FORTRAN programs use to transfer data
between the host computer and the TDC 3000 Local Control Network.

10.1 MULTIPOINT (DDT) DATA TRANSFERS

The interface routines in this group require the use of separately prepared Data Definition
Tables (DDT) that specify which points are to be accessed and what pre/post processing is
to be done on data values. See Section 6 for DDT preparation and installation details.

Each DDT may reference a maximum of four different data types. The standard DDT
functions assume the data types are grouped into a "normal" order. It is possible to build
DDTs with unusual combinations of data types that do not follow these assumptions.
These special-case DDTs are tagged as GenIn (Generic Input) or GenOut (Generic Output)
and may only be used with the Generic DDT Transfers described in Sections 10.1.3 and
10.1.4. Standard Input and Output DDTs may be used with either the Generic DDT
transfers or the traditional DDT data interface routines.

Single elements of parameter arrays (but not whole arrays) can be specified in the DDT.

10.1.1 DDT Get Data Interface

This routine fetches data from the DDT's associated CG or elsewhere on its LCN. The
specification of which data is to be fetched and where it is to be stored in the calling
program's data arrays is contained in the Data Definition Table referenced by the call.

10.1.1.1 Example FORTRAN Call for DDT Get Data

return_status = CM50_DDT_GET or CM50_DDT_GETNT
(%REF(ddt_name),
 real_values_array,
 intg_values_array,
 or ptid_values_array,
 or time_values_array,
 %REF(asci_values_array),
 or %REF(string_values_array),
 or %REF(exid_values_array),
 %REF(enum_array),
 or ord_array,
 status_table)

Use the function name CM50_DDT_GET if you want data transformation operations
performed by the Table Processor, and CM50_DDT_GETNT if you do not want data
transformation operations performed (to decrease processing time).

CM50S User Manual 10-2 7/93

10.1.1

The DDT Get Data call must specify four data types in the order shown (three of these can
be dummy arguments that receive no data). Note that there are restrictions on the
combinations of data types.

10.1.1.2 Parameter Definitions for DDT Get Data

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a CHARACTER*9 variable that contains the name of the input
Data Definition Table to be used.

real_values_array—The name of a Real array where the fetched Real values are to be stored.
Bad values are returned as NaN (-0).

intg_values_array—The name of an INTEGER*2 array where the fetched Integer values are
to be stored.

ptid_values_array—The name of an array of internal entity ids (where each element is an
array of 4 Integer*2 values declared as: INTEGER*2 variable (4,n) where n is
the number of ids to be returned.

time_values_array—The name of an array of LCN internal time values (declare as RECORD
/TIME_PT_VALS/).

asci_values_array—The name of an array of CHARACTER*24 variables where the fetched
ASCII values are to be stored. Bad values are returned as strings of question
marks.

string_values_array—The name of an array of CHARACTER*40 variables where the
fetched LCN string values are to be stored.

exid_values_array—The name of an array of CHARACTER*18 variables where the fetched
external entity names are to be stored.

enum_array—The name of an array of CHARACTER*8 variables where the fetched
Enumeration values are to be stored. Bad values are returned as strings of
question marks.

ord_array—The name of an INTEGER*2 array where the fetched ordinal values of
enumerations are to be stored.

status_table—The name of an INTEGER*2 array for the storage of returned point-related
error/status information. A value_status code is returned for each requested tag
(in the same order as the DDT source file). See Appendix A.1 for a listing of
Data Access error/status codes.

CM50S User Manual 10-3 7/93

10.1.2

10.1.2 DDT Store Data Interface

This routine sends data to points in the DDT's associated CG or elsewhere on its LCN.
The specification of what points are to receive data and the location of data within the
calling program's data arrays is contained in the Data Definition Table referenced by the
call. Errors encountered during execution of the routine as well as individual point-data
errors are returned to the calling program.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

10.1.2.1 Example FORTRAN Call for DDT Store Data

return_status = CM50_DDT_STORE or CM50_DDT_STORENT
(%REF(ddt_name),
 real_values_array,
 intg_values_array,
 or ptid_values_array,
 or time_values_array,
 %REF(asci_values_array),
 or %REF(string_values_array),
 %REF(enum_array),
 or ord_array,
 store_array,
 status_table)

Use the function name CM50_DDT_STORE if you want data transformation operations
performed by the Table Processor and CM50_DDT_STORENT if you do not want
transformation operations performed (to decrease processing time).

The DDT Store Data call must specify four data types in the order shown (three of these
can be dummy arguments that export no data). Note that there are restrictions on the
combinations of data types.

10.1.2.2 Parameter Definitions for DDT Store Data

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the status_table status code for each requested store value
must be checked.

CM50S User Manual 10-4 7/93

10.1.2

ddt_name—The name of a CHARACTER*9 variable that contains the name of the output
Data Definition Table to be used in the "Store Data" operation.

real_values_array—The name of a Real array that contains the Real values to be stored.

intg_values_array—The name of an INTEGER*2 array that contains the Integer values to be
stored.

ptid_values_array—The name of an array of internal entity ids (where each element is an
array of 4 Integer*2 values declared as: INTEGER*2 variable (4,n) where n is
the number of ids to be stored.

time_values_array—The name of an array of LCN internal time values (declare as RECORD
/TIME_PT_VALS/).

asci_values_array—The name of an array of CHARACTER*24 variables that contains the
ASCII values to be stored.

string_values_array—The name of an array of CHARACTER*40 variables where LCN
string values are stored.

enum_array—The name of an array of CHARACTER*8 variables that contains the
Enumeration values to be stored. Use of enumeration strings by Store Data is
limited to standard enumerations (including Custom Data Segments). All self-
defined enumerations (such as digitals) must be accessed through their ordinal
values.

ord_array—The name of an INTEGER*2 array that contains the Ordinal values of
Enumerations to be stored.

store_array—The name of an INTEGER*2 array that contains a control code entry for each
value to be stored. These codes control what—if any—value is to be stored.
The store code values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value.

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

status_table—The name of an INTEGER*2 array for the storage of returned point-related
error/status information. A value_status code is returned for each requested tag
(in the same order as the DDT source file). See Appendix A for a listing of
Data Access error/status codes.

CM50S User Manual 10-5 7/93

10.1.3

10.1.3 Generic DDT Get Data Interface

This routine fetches data for any Input or Generic Input DDT. The specification of which
data is to be fetched and where it is to be stored in the calling program's data arrays is
contained in the Data Definition Table referenced by the call.

10.1.3.1 Example FORTRAN Call for Generic DDT Get

return_status = CM50_DDT_GETGEN
(%REF(ddt_name),
 %REF(values_array1),
 %REF(values_array2),
 %REF(values_array3),
 %REF(values_array4),
 status_table,
 tbl_proc)

10.1.3.2 Parameter Definitions for Generic DDT Get

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a CHARACTER*9 variable that contains the name of the Data
Definition Table to be used.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array where the fetched values are
to be stored. The data type for each array must match the corresponding data
type in the DDT definition. Each array may be declared to match the specific
type and number of elements returned by the DDT; if the DDT contains fewer
than 4 data types, the unused arguments may be omitted (but the correct number
of commas is required).

status_table—The name of an INTEGER*2 array for the storage of returned point-related
error/status information. A value_status code is returned for each requested tag
(in the same order as the DDT source file). See Appendix A.1 for a listing of
Data Access error/status codes.

tbl_proc—The name of an INTEGER*2 that determines whether or not table processing is
to be suppressed. If tbl_proc is set to 1, all table processing (saving values to
disk and/or data transformations) will be suppressed. Use a value of 0 for
normal processing.

CM50S User Manual 10-6 7/93

10.1.4

10.1.4 Generic DDT Store Data Interface

This routine sends data to points defined in any Output or Generic Output DDT. The
specification of what points are to receive data and the location of data within the calling
program's data arrays is contained in the Data Definition Table referenced by the call.
Errors encountered during execution of the routine as well as individual point-data errors
are returned to the calling program.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions Manual for other write access
restrictions.

10.1.4.1 Example FORTRAN Call for Generic DDT Store

return_status = CM50_DDT_STOREGEN
(%REF(ddt_name),
 %REF(values_array1),
 %REF(values_array2),
 %REF(values_array3),
 %REF(values_array4),
 store_array,
 status_table,
 tbl_proc)

10.1.4.2 Parameter Definitions for Generic DDT Store

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the status_table status code for each requested store value
must be checked.

ddt_name—The name of a CHARACTER*9 variable that contains the name of the Data
Definition Table to be used in the "Store Data" operation.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array that contains the data to be
stored. The data type for each array must match the corresponding data type in
the DDT definition. Each array may be declared to match the specific type and
number of elements returned by the DDT; if the DDT contains fewer than 4
data types, the unused arguments may be omitted (but the correct number of
commas is required).

store_array—The name of an INTEGER*2 array that contains a control code entry for each
value to be stored. These codes control what—if any—value is to be stored.
The store code values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value.

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

CM50S User Manual 10-7 7/93

10.1.5

status_table—The name of an INTEGER*2 array for the storage of returned point-related
error/status information. A value_status code is returned for each requested tag
(in the same order as the DDT source file). See Appendix A for a listing of
Data Access error/status codes.

tbl_proc—The name of an INTEGER*2 that determines whether or not table processing is
to be suppressed. If tbl_proc is set to 1, all table processing (saving values to
disk and/or data transformations) will be suppressed. Use a value of 0 for
normal processing.

10.1.5 Multi-Point List Get Data Interface

This routine fetches data for the LCN tags specified in an internal data block. An internal
Data Block is a memory-resident equivalent of a DDT. The specification of which data is
to be fetched and where it is to be stored in the calling program's data arrays can be
prepared using any of the generate MPL routines (see 10.1.7) or you can read in a DDT
from its disk file (see 10.1.8).

10.1.5.1 Example FORTRAN Call for Multi-Point List Get

return_status = CM50_MPL_GET
(%REF(mpl_name),
 %REF(acidp_name),
 %REF(values_array1),
 %REF(values_array2),
 %REF(values_array3),
 %REF(values_array4),
 status_table,
 cg_port_num)

10.1.5.2 Parameter Definitions for Multi-Point List Get

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

mpl_name—The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as RECORD /CM50_IDB_REC/.

acidp_name—A CHARACTER*16 variable containing the name of an ACIDP. If the
ACIDP is spaces, then the data will be retrieved without any ACIDP controls.
If an ACIDP is named, then the data access will be completed only if that
ACIDP is in RUN state.

CM50S User Manual 10-8 7/93

10.1.6

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array where the fetched values are
to be stored. The data type for each array must match the corresponding data
type in the MPL definition. Each array may be declared to match the specific
type and number of elements returned by the MPL; if the MPL contains fewer
than 4 data types, the unused arguments may be omitted (but the correct number
of commas is required).

status_table—The name of an INTEGER*2 array for the storage of returned point-related
error/status information. A value_status code is returned for each requested tag
in the list. See Appendix A.1 for a listing of Data Access error/status codes.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

10.1.6 Multi-Point List Store Data Interface

This routine stores data for the LCN tags specified in an internal data block. An internal
Data Block is a memory-resident equivalent of a DDT. The specification of which tags are
to receive data and the location of the values within the calling program's data arrays can be
prepared using any of the generate MPL routines (see 10.1.7) or you can read in a DDT
from its disk file (see 10.1.8).

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

10.1.6.1 Example FORTRAN Call for Multi-Point List Store

return_status = CM50_MPL_STORE
(%REF(mpl_name),
 %REF(acidp_name),
 %REF(values_array1),
 %REF(values_array2),
 %REF(values_array3),
 %REF(values_array4),
 store_array,
 status_table,
 cg_port_num)

10.1.6.2 Parameter Definitions for Multi-Point List Store

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

CM50S User Manual 10-9 7/93

10.1.6

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

mpl_name—The name of a Multi-Point List structure defining the data to be stored. This
should be declared as RECORD /CM50_IDB_REC/.

acidp_name—A CHARACTER*16 variable containing the name of an ACIDP. If the
ACIDP is spaces, then the ACIDP currently connected to the ACP will control
the data transfer. If an ACIDP is named, then the data access will be completed
only if that ACIDP is in RUN state.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array that contains the data to be
stored. The data type for each array must match the corresponding data type in
the MPL definition. Each array may be declared to match the specific type and
number of elements returned by the MPL; if the MPL contains fewer than 4
data types, the unused arguments may be omitted (but the correct number of
commas is required).

store_array—The name of an INTEGER*2 array that contains a control code entry for each
value to be stored. These codes control what—if any—value is to be stored.
The store code values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value
16386 - Store IEEE negative infinity instead of Real value
16387 - Store IEEE positive infinity instead of Real value

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

status_table—The name of an INTEGER*2 array for the storage of returned point-related
error/status information. A value_status code is returned for each requested tag
in the list. See Appendix A.1 for a listing of Data Access error/status codes.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

CM50S User Manual 10-10 7/93

10.1.7

10.1.7 Generate Multi-Point List

These routines generate an Internal data block for transfer arrays of up to four data types
between the LCN and host computer. Internal data blocks are subject to exactly the same
restrictions as DDTs (see Table 6-1).

A Multi-Point List may be generated from either a set of ID Block Arrays (such as those
produced using the Convert Lists calls—see section 11.2.2), or a text file of type
declarations and tag names, or an array of text entries.

NOTE

The arrays of internal point.parameter addresses need to be rebuilt and the program(s) using
them need to be recompiled whenever the LCN database is changed in a significant manner,
such as by the rebuild or deletion of data points referenced in the address array.

10.1.7.1 Example FORTRAN Calls to Generate Multi-Point Lists

To combine point lists, use:

 return_status = CM50_MPL_GENLIST
(list_size,
 id_block_arr1,
 id_block_arr2,
 id_block_arr3,
 id_block_arr4,
 mpl_name)

When the external ids are expressed as a Tag name list, use:

 return_status = CM50_MPL_GENTAGS
(%ref(tagname_arr),
 number_of_values,
 mpl_name,
 cg_port_num
 return_arr)

When the external ids are contained in a Text file, use:

 return_status = CM50_MPL_GENFILE
(%ref(tag_file),
 mpl_name,
 cg_port_num
 return_arr)

CM50S User Manual 10-11 7/93

10.1.7

10.1.7.2 Parameter Definitions for Generate Multi-Point Lists

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the return_array status code for each returned value must be
checked.

tagname_arr—The name of an array of up to 304 CHARACTER*40 variables that contains
the ASCII tagname (formatted as Point.Param, optionally with the parameter
index enclosed in parentheses) of the LCN entity for which the internal ID is to
be obtained. All tagnames of the same data type must be grouped together and
different data types must be separated by the reserved "tag" of:

**NEW∆TYPE=type where ∆ is a required space,
and "type" (starting in position 12) is one of the following:

REAL real number
INTE integer
ASCI 24 character ASCII
ENUM enumeration
ORDN ordinal
PTID internal entity id
EXID external entity id
TIME lcn time type
STRI 40 CHARACTER* variable

If the first item in the array does not contain "**NEW TYPE=" in positions 1
through 11, then the first set of tagnames is assumed to identify Real numbers.

number_of_values —The name of an INTEGER*2 specifying the number of tags defined in
the tagname_arr. The maximum number of values is 304.

tag_file—The CHARACTER*80 pathname of a text file whose content is a tagname_array,
with each line containing either a valid tagname or a "**NEW TYPE=" tag as
described above. Note that if the file is created by a FORTRAN program, the
OPEN statement that creates the file should specify:
FORM = UNFORMATTED, CARRIAGECONTROL = NONE

list_size —The name of an array of 4 INTEGER*2 values that specify the number of tags
defined in each id_block_arr. The maximum number of values is 300.

id_block_arrn —(where n is 1 to 4) The name of an array of point addresses in internal
format (declare as array of RECORD /ID_BLOCK_STRUCT/) from which
values will be requested. If fewer than four ID Block Arrays are required, the
unused arguments may be omitted (but the correct number of commas is
required).

mpl_name—The name of a Multi-Point List structure where the generated definition is to be
stored. This should be declared as RECORD /CM50_IDB_REC/.

cg_port_num—An INTEGER*2 (with a value of 1-4) identifying the CG to be accessed.

return_arr—The name of an array of up to 304 INTEGER*4 to receive the status of the
conversion of each tag and data type declaration, including field type records.
See Appendix A.2 for an explanation and a listing of all assigned return code
values.

CM50S User Manual 10-12 7/93

10.1.8

10.1.8 Read Multi-Point List

This routine reads an MPL from a disk file that has been created using either the DDT Build
procedures or the Write Multi-Point List routine.

10.1.8.1 Example FORTRAN Call to Read Multi-Point Lists

 return_status = CM50_MPL_READ
(%REF(idb_file),
 mpl_name)

10.1.8.2 Parameter Definitions for Read Multi-Point List

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

idb_file—The CHARACTER*80 pathname of a file containing the Multi-Point List. To
reference a DDT, use the pathname of CM50$DDT:ddtname.II. If no
extension is specified, the default of .MPL will be used.

mpl_name—The name of a Multi-Point List structure in memory. This should be declared
as RECORD /CM50_IDB_REC/.

10.1.9 Write Multi-Point List

This routine creates a disk file containing an MPL produced through the Generate Multi-
Point List interface (section 10.1.7).

10.1.9.1 Example FORTRAN Call to Write Multi-Point Lists

 return_status = CM50_MPL_WRITE
(%REF(idb_file),
 mpl_name)

10.1.9.2 Parameter Definitions for Write Multi-Point List

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

CM50S User Manual 10-13 7/93

10.1.10

idb_file—The CHARACTER*80 pathname of a file to contain the Multi-Point List. If a file
by that name already exists, a new version will be created. By default, an
extension of .MPL will be used. The use of .II as an extension is prohibited
because that extension is reserved for DDTs. It is the user's responsibility to
purge obsolete versions.

mpl_name—The name of an Multi-Point List structure in memory. This should be declared
as RECORD /CM50_IDB_REC/.

10.1.10 Create Include File for Multi-Point List

This routine creates a disk file containing the text description of an MPL in a format
suitable for use as an include file for a FORTRAN source program. The MPL should be
previously produced through the Generate Multi-Point List interface (see heading 10.1.7).

10.1.10.1 Example FORTRAN Call to Generate a Multi-Point List Include File

 return_status = CM50_MPL_GENINCL
(%REF(mpl_name),
 %REF(text_file),
 %REF(Language))

10.1.10.2 Parameter Definitions for Generate Multi-Point List Include File

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

mpl_name—The name of a Multi-Point List structure in memory. This should be declared
as RECORD /CM50_IDB_REC/.

text_file—The CHARACTER*80 pathname of the include file to be written. If a file by that
name already exists, a new version will be created. No default extension is
provided. It is the users responsibility to purge obsolete versions.

language— A CHARACTER*1 code identifying the format of the include file:
'P' = Pascal
'C' = C
'F' = FORTRAN

Any other value will default to FORTRAN.

CM50S User Manual 10-14 7/93

10.2

10.2 POINT LIST TRANSFERS

These routines enable you to address multiple points with a single call without needing to
build DDT tables. In the place of a DDT reference, you will have to provide a pointer to an
array of "internal" point.parameter addresses. These internal addresses can be obtained by
conversion calls at program runtime (see heading 11.2), or in advance by creating an
include file through the Utility MAKEINC (see heading 7.2).

10.2.1 Point List Get Values Interface

This function returns data values to up to 300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal Point-parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.
The data type of the values is determined from the Internal Id of the first point in the list.

10.2.1.1 Example FORTRAN Call for Point List Get Values

return_status = CM50_GET_PT_LIST
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(values_array),
 status_table,
 number_of_values)

10.2.1.2 Parameter Definitions for Point List Get Values

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

cg_port_num—The name of an INTEGER*2 identifying the CG (1-4) to be accessed.

priority—The name of an INTEGER*2 that contains the requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual 10-15 7/93

10.2.1

acidp_name—The name of a CHARACTER*16 variable that contains the name of an
ACIDP. If the ACIDP name value is blank (all spaces), then the data is
retrieved without any ACIDP controls. If an ACIDP is named, then the data
access is completed only if that ACIDP is in RUN state.

point_list_array—The name of an array of point addresses in internal format (declare as an
array of RECORD/ID_BLOCK_STRUCT/) from which the values are
requested. See the function CM50_CONV_PT_LIST or
CM50_CONV_TAG_LIST (heading 11.2.2) for additional information.

values_array—The name of an array from which the individual values are to be returned.
This array is passed by reference, so no type checking is done. It is the
application’s responsibility to insure that this argument is declared in a manner
that is compatible with the value type of the list.

status_table—The name of an INTEGER*2 array where the value status for individual
point values are to be stored. See Appendix A.1 for a listing of Data Access
error/status codes.

number_of_values—The name of an INTEGER*2 that specifies the actual number of values
(300 or less) to be processed.

CM50S User Manual 10-16 7/93

10.2.2

10.2.2 Point List Get by Value Type

These functions are identical to the CM50_GET_PT_LIST function, except that the value
type is part of the function name and the generic "values_array" argument is replaced by an
array whose data type explicitly matches the specified data type.

These specific functions and their corresponding value arrays are described below. Refer
to heading 10.2.1.2 for explanations of all of the other arguments.

10.2.2.1 FORTRAN Call for Point List Get Real Values

return_status = CM50_GET_REALNBR
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 real_values_array,
 status_table,
 number_of_values)

real_values_array—The name of a Real array where the individual point values are to be
stored. Bad values are left as NaN (-0).

10.2.2.2 FORTRAN Call for Point List Get Integer Values

return_status = CM50_GET_INTNBR
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 intg_values_array,
 status_table,
 number_of_values)

intg_values_array—The name of an INTEGER*2 array where the individual point values
are to be stored.

10.2.2.3 FORTRAN Call for Point List Get ASCII Values

return_status = CM50_GET_ASC24
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(asci_values_array),
 status_table,
 number_of_values)

asci_values_array—The name of an array of CHARACTER*24 variables where the
individual point values are to be stored.

CM50S User Manual 10-17 7/93

10.2.2

10.2.2.4 FORTRAN Call for Point List Get Enumerated Values

return_status = CM50_GET_ENUM
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(aenm_values_array),
 status_table,
 number_of_values)

aenm_values_array—The name of an array of CHARACTER*8 variables where the
individual point values are to be stored.

10.2.2.5 FORTRAN Call for Point List Get Ordinal Values

return_status = CM50_GET_ORD
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 oenm_values_array,
 status_table,
 number_of_values)

oenm_values_array—The name of an INTEGER*2 array where the ordinal values of the
fetched enumerations are to be stored.

10.2.2.6 FORTRAN Call for Point List Get Internal IDs

return_status = CM50_GET_PTID
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 ptid_values_array,
 status_table,
 number_of_values)

ptid_values_array—The name of an array of 4-word internal entity IDs where the individual
point values are to be stored.

CM50S User Manual 10-18 7/93

10.2.2

10.2.2.7 FORTRAN Call for Point List Get External IDs Values

return_status = CM50_GET_EXID
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(exid_values_array),
 status_table,
 number_of_values)

exid_values_array—The name of an array of CHARACTER*18 variables to hold the
returned values.

10.2.2.8 FORTRAN Call for Point List Get Time Values

return_status = CM50_GET_TIME
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 time_values_array,
 status_table,
 number_of_values)

time_values_array—The name of an array of TIME_PT_VALS records (Integer*4 Seconds
followed by Integer*2 Ticks) where the individual point values are to be stored.

10.2.2.9 FORTRAN Call for Point List Get String Values

return_status = CM50_GET_STRI
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(stri_values_array),
 status_table,
 number_of_values)

stri_values_array—The name of an array of CHARACTER*40 variables where the
individual point values are to be stored.

CM50S User Manual 10-19 7/93

10.2.3

10.2.3 Point List Store Values Interface

This function exports data values to up-to-300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal Point-parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.
The data type of the values is determined from the Internal Id of the first point in the list.
Note: Entity ids can only be stored using their internal form.

10.2.3.1 Example FORTRAN Call for Point List Store Values

return_status = CM50_STORE_PT_LIST
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(values_array),
 store_code_table,
 status_table,
 number_of_values)

10.2.3.2 Parameter Definitions for Point List Store

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

cg_port_num—The name of an INTEGER*2 identifying the CG (1-4) to be accessed.

priority—The name of an INTEGER*2 that contains the requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

acidp_name—The name of a CHARACTER*16 variable that contains the name of an
ACIDP. If the ACIDP name value is blank (all spaces), then the ACIDP
currently connected to the ACP will control the data transfer. The data access is
completed only if the named or implied ACIDP is in RUN state.

CM50S User Manual 10-20 7/93

10.2.3

point_list_array—The name of an array of point addresses in internal format (declare as an
array of RECORD/ID_BLOCK_STRUCT/) from which the values are
requested. See the function CM50_CONV_PT_LIST or
CM50_CONV_TAG_LIST (heading 11.2.2) for additional information.

values_array—The name of an array from which the individual values are to be obtained.
This array is passed by reference, so no type checking is done. It is the
applications responsibility to insure that this argument is declared in a manner
that is compatible with the value type of the list.

store_code_table—The name of an INTEGER*2 array where the calling program has
stored a control code for each value to be stored. These codes control what—if
any—value is to be stored. The store code values are:

0 = Store the value from Values Array
1 = Store the bad value representation instead of Real or ASCII value
2 = Do not store any value
16386 = Store IEEE negative infinity instead of Real value
16387 = Store IEEE positive infinity instead of Real value

status_table—The name of an INTEGER*2 array where the value status for each individual
point value is to be stored. See Appendix A.1 for interpretation of values.

number_of_values—The name of an INTEGER*2 that specifies the actual number of values
(300 or less) to be processed.

CM50S User Manual 10-21 7/93

10.2.4

10.2.4 Point List Store by Value Type

These functions are identical to the CM50_STORE_PT_LIST function, except that the
value type is part of the function name and the generic "values_array" argument is replaced
by an an array whose data type explicitly matches the specified data type.

These specific functions and their corresponding value arrays are described below. Refer
to heading 10.2.3.2 for explanations of all of the other arguments.

10.2.4.1 FORTRAN Call for Point List Store Real Values

return_status = CM50_STORE_REALNBR
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 real_values_array,
 store_code_table,
 status_table,
 number_of_values)

real_values_array—The name of a Real array from which the individual values are to be
obtained.

10.2.4.2 FORTRAN Call for Point List Store Integer Values

return_status = CM50_STORE_INTNBR
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 intg_values_array,
 store_code_table,
 status_table,
 number_of_values)

intg_values_array—The name of an INTEGER*2 array from which the individual values are
to be obtained.

CM50S User Manual 10-22 7/93

10.2.4

10.2.4.3 FORTRAN Call for Point List Store ASCII Values

return_status = CM50_STORE_ASC24
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(asci_values_array),
 store_code_table,
 status_table,
 number_of_values)

asci_values_array—The name of an array of CHARACTER*24 variables from which the
individual point values are to be obtained.

10.2.4.4 FORTRAN Call for Point List Store Enumerated Values

return_status = CM50_STORE_ENUM
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(aenm_values_array),
 store_code_table,
 status_table,
 number_of_values)

aenm_values_array—The name of an array of CHARACTER*8 variables from which the
individual point values are to be obtained.

10.2.4.5 FORTRAN Call for Point List Store Ordinal Values

return_status = CM50_STORE_ORD
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 oenm_values_array,
 store_code_table,
 status_table,
 number_of_values)

oenm_values_array—The name of an INTEGER*2 array from which the individual point
values are to be obtained.

CM50S User Manual 10-23 7/93

10.2.4

10.2.4.6 FORTRAN Call for Point List Store Internal IDs

return_status = CM50_STORE_PTID
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 ptid_values_array,
 store_code_table,
 status_table,
 number_of_values)

ptid_values_array—The name of an array of 64-bit (array of 4 INTEGER*2 values) Internal
entity IDs from which the individual point values are to be obtained.

10.2.4.7 FORTRAN Call for Point List Store Time Values

return_status = CM50_STORE_TIME
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(time_values_array),
 store_code_table,
 status_table,
 number_of_values)

time_values_array—The name of an array of TIME_PT_VALS records (Integer*4 Seconds
followed by Integer*2 Ticks) from which the individual point values are to be
obtained.

10.2.4.8 FORTRAN Call for Point List Store String Values

return_status = CM50_STORE_STRI
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(stri_values_array),
 store_code_table,
 status_table,
 number_of_values)

stri_values_array—The name of an array of CHARACTER*40 variables from which the
individual point values are to be obtained.

CM50S User Manual 10-24 7/93

10.3

10.3 SINGLE POINT DATA TRANSFERS

The interface routines in this group Get or Store values from or to one named
point.parameter (or parameter array) at a time. For parameter arrays, up to the whole array
is accessed. The External ID version of Get Single Point is also used to get LCN date and
time.

10.3.1 Single Point Get Data (External ID) Interface

This routine fetches data for a single point from a specified CG or elsewhere on its LCN.
The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element, the whole array, or an array subset
starting with the first element can be specified. The point may be identified by either a
combination of point and parameter names or by a single tag name.

10.3.1.1 Example FORTRAN Calls for Single Point Get

Using point and parameter names as separate variables:

return_status = CM50_GET_ID
(%REF(entity),
 %REF(param),
 param_ix,
 %REF(val_loc),
 val_st,
 val_typ,
 cg_port_num)

Using a complete tag name:

return_status = CM50_GET_TAG
(%REF(tag_name),
 %REF(val_loc),
 val_st,
 val_typ,
 cg_port_num)

10.3.1.2 Parameter Definitions for Single Point Get

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially the following return codes:

215000051 (CM50_LCN_PART)—the val_st status code for each returned
value must be checked.

215000322 (CM50_ACC_SIZE)—the array size specified by param_ix is
larger than the actual size.

tag_name—The name of a CHARACTER*40 variable that identifies the LCN value(s) to be
retrieved. The tag name is formatted as "point.param (param_ix)".

CM50S User Manual 10-25 7/93

10.3.1

entity—The name of a CHARACTER*20 variable that contains the ASCII Point ID. It
should contain a point name of up to 16 characters, optionally preceded by a 1-
or 2-character pinid and a backslash (\) delimiter for Network Gateway routing.

param—The name of a CHARACTER*8 variable that contains the ASCII name of a
parameter (or parameter array) from which the value(s) is retrieved.

param_ix—The name of an INTEGER*2 positive value. Use of this value is controlled by
val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 15, 17 or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 16, 18 or 20, a whole array (or a subset of
the array starting with the first element) is to be accessed and param_ix is
used to specify the number of elements to be accessed—If param_ix is
smaller than the actual array size, only that number of elements is returned; if it
is larger than the actual array size, no elements are returned and the
return_status value is CM50_ACC_SIZE.

val_loc—The name of a program variable where the value(s) are to be stored.
The type of variable must match what is declared in val_typ.

val_typ val_loc type
1 Real (REAL)
2 Integer (INTEGER*2)
3 ASCII (CHARACTER*24)
4 Enumeration (CHARACTER*8)
5 Ordinal (INTEGER*2)
6 External Time (CHARACTER*18), see heading 10.3.5
7 Array [1..n] of Real
8 Array [1..n] of Integer
9 Array [1..n] of Enumeration
10 Array [1..n] of Ordinal
13 Internal_id (ARRAY [1..4] OF INTEGER*2)
14 Array [1..n] of Internal_id
15 External_id (CHARACTER*18)
16 Array [1..n] External_id
17 Internal Time (TIME_PT_VALS record)
18 Array [1..n] of Internal Time
19 String (CHARACTER*40)
20 Array [1..n] of String

val_st—The name of an INTEGER*2 where point-related status information is to be stored.
This value is meaningful only when the return_status value indicates
either normal (000000001) or complete with errors (215000051). See
Appendix A.1 for a listing of Data-Access error/status codes. When val_typ
specifies an array, val_st refers to status of the whole array.

CM50S User Manual 10-26 7/93

10.3.2

val_typ—The name of an INTEGER*2 that contains a number that designates value type of
the accessed parameters as listed for val_loc.

cg_port_num—The name of an INTEGER*2 (1-4) identifying the CG to be accessed.

10.3.2 Single Point Store Data (External ID) Interface

This routine stores data to a single point in a specified CG or elsewhere on its LCN. The
specification of where the data is to be found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this call the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions Manual for other write access
restrictions.

10.3.2.1 Example FORTRAN Calls for Single Point Store

Using point and parameter names as separate variables:

return_status = CM50_STORE_ID
(%REF(entity),
 %REF(param),
 param_ix,
 %REF(val_loc),
 val_typ,
 store_cd,
 store_st)

Using a complete tag name:

return_status = CM50_STORE_TAG
(%REF(tag_name),
 %REF(val_loc),
 val_typ,
 store_cd,
 store_st)

10.3.2.2 Parameter Definitions for Single Point Store

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the store_st status code for each returned value must be
checked.

tag_name—The name of a CHARACTER*40 variable that identifies the LCN value(s) to be
stored. The tag name is formatted as "point.param (param_ix)".

entity—The name of a CHARACTER*20 variable that contains the ASCII Point ID. It
should contain a point name of up to 16 characters, optionally preceded by a 1-
or 2-character pinid and a backslash (\) delimiter for Network Gateway routing.

CM50S User Manual 10-27 7/93

10.3.2

param—The name of CHARACTER*8 variable that contains the ASCII parameter name for
the point.parameter where the value is to be stored.

param_ix—The name of an INTEGER*2 positive value. Use of this value is controlled by
val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 17, or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 18, or 20, a whole array is to be accessed
and param_ix is used to specify the number of array elements—If
param_ix does not match the actual array size, no elements are stored and
return_status value is 5 with a store_st indicating an invalid array
size.

val_loc—The name of a program variable containing the value(s) to be stored.
The type of variable must match what is declared in val_typ.

val_typ val_loc type
1 Real (REAL)
2 Integer (INTEGER*2)
3 ASCII (CHARACTER*24)
4 Enumeration (CHARACTER*8)
5 Ordinal (INTEGER*2)
6 External Time (CHARACTER*18), see heading 10.3.5
7 Array [1..n] of Real
8 Array [1..n] of Integer
9 Array [1..n] of Enumeration
10 Array [1..n] of Ordinal
13 Internal_id (ARRAY [1..4] OF INTEGER*2)
14 Array [1..n] of Internal_id
17 Internal Time (TIME_PT_VALS record)
18 Array [1..n] of Internal Time
19 String (CHARACTER*40)
20 Array [1..n] of String

val_typ—The name of an INTEGER*2 that contains a number that designates value type of
the accessed parameters as listed for val_loc.

store_cd—Name of an INTEGER*2 that contains a code that allows the substitution of a
bad value representation in place of the provided value(s). The store code
values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

CM50S User Manual 10-28 7/93

10.3.3

store_st—The name of an INTEGER*2 to contain point-related store status information on
completion. This value is meaningful only when the return_status value
indicates either normal (000000001) or complete with errors (215000051). See
Appendix A.1 for a listing of Data-Access error/status codes. When the
val_typ is an array, store_st refers to status of the whole array.

10.3.3 Single Point Get Data (Internal ID) Interface

This routine fetches data for a single point from the CG or elsewhere on the LCN. Use of
the Internal point.parameter ID (obtained by previous use of the CM50_CONV_PT or
CM50_CONV_TAG interface, see 11.2.1) reduces the overhead required for repetitive
single-point requests.

The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element or the whole array can be specified.

10.3.3.1 Example FORTRAN Call for Single Point Get

return_status = CM50_GETPT_ID
(%REF(id_block),
 %REF(val_loc),
 val_st,
 cg_port_num)

10.3.3.2 Parameter Definitions for Single Point Get

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the val_st status code for each returned value must be checked.

id_block—The name of a 16-byte variable (declare as RECORD/ID_BLOCK_STRUCT/)
that contains the internal ID data block obtained by a previous Convert External
to Internal ID call. When the data is of array type, that call returns the array size
in word 7 of the ID block. Thus, if you wish to get less than the entire array
you can change the parameter qualifier in the seventh word of the ID block to be
smaller than the actual array size. Do not change any other words in the ID
block. See heading 4.7.8 in the Computer Gateway User Manual for ID block
details.

CM50S User Manual 10-29 7/93

10.3.3

val_loc—The name of a program variable where the value is to be stored. The type of
variable must match what was declared in val_typ in the earlier Convert ID
call.

val_typ val_loc type
1 Real (REAL)
2 Integer (INTEGER*2)
3 ASCII (CHARACTER*24)
4 Enumeration (CHARACTER*8)
5 Ordinal (INTEGER*2)
6 External Time (CHARACTER*18), see heading 10.3.5
7 Array [1..n] of Real
8 Array [1..n] of Integer
9 Array [1..n] of Enumeration
10 Array [1..n] of Ordinal
13 Internal_id (ARRAY [1..4] OF INTEGER*2)
14 Array [1..n] of Internal_id
15 External_id (CHARACTER*18)
16 Array [1..n] External_id
17 Internal Time (TIME_PT_VALS record)
18 Array [1..n] of Internal Time
19 String (CHARACTER*40)
20 Array [1..n] of String

val_st—The name of an INTEGER*2 where point-related status information is to be stored.
This value is meaningful only when the return_status value indicates
either normal (000000001) or complete with errors (CM50_LCN_PART).
When the val_typ specifies an array, val_st refers to status of the whole
array.

cg_port_num—The name of an INTEGER*2 identifying the CG (1-4) to be accessed.

CM50S User Manual 10-30 7/93

10.3.4

10.3.4 Single Point Store Data (Internal ID) Interface

This routine stores data to a single point in the CG or elsewhere on the LCN. Use of the
Internal point.parameter ID (obtained by previous use of the CM50_CONV_PT or
CM50_CONV_TAG interface, see 11.2.1) reduces the overhead required for repetitive
single-point requests.

The specification of where the data is found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this function the ACP must be connected to an ACIDP with read/write access and be
in Normal mode. See the System Control Functions manual for other write access
restrictions.

10.3.4.1 Example FORTRAN Call for Single Point Store

return_status = CM50_STOREPT_ID
(%REF(id_block),
 %REF(val_loc),
 store_cd,
 store_st)

10.3.4.2 Parameter Definitions for Single Point Store

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the store_st status code for each returned value must be
checked.

id_block—The name of a 16-byte variable (for FORTRAN declare as
RECORD/ID_BLOCK_STRUCT/) that contains the internal ID data block
obtained by a previous Convert External to Internal ID call. Do not change any
words in the ID block. If the array size is changed, the array is not stored and
the return_status value is 215000051, with a store_st that indicates an
invalid array size. See heading 4.7.8 in the Computer Gateway User Manual for
ID block details.

CM50S User Manual 10-31 7/93

10.3.4

val_loc—The name of a program variable that contains the value to be stored. The type of
variable must match what was declared in val_typ in the earlier Convert ID
call.

val_typ val_loc type
1 Real (REAL)
2 Integer (INTEGER*2)
3 ASCII (CHARACTER*24)
4 Enumeration (CHARACTER*8)
5 Ordinal (INTEGER*2)
6 External Time (CHARACTER*18), see heading 10.3.5
7 Array [1..n] of Real
8 Array [1..n] of Integer
9 Array [1..n] of Enumeration
10 Array [1..n] of Ordinal
13 Internal_id (ARRAY [1..4] OF INTEGER*2)
14 Array [1..n] of Internal_id
17 Internal Time (TIME_PT_VALS record)
18 Array [1..n] of Internal Time
19 String (CHARACTER*40)
20 Array [1..n] of String

store_cd—The name of an INTEGER*2 that contains a code that allows the substitution of
a bad value representation in place of the provided value(s). The store code
values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

store_st—The name of an INTEGER*2 where point-related status information is to be
stored. This value is meaningful only when the return_status value
indicates either normal (000000001) or complete with errors
(CM50_LCN_PART). When the val_typ specifies an array, store_st
refers to status of the whole array.

CM50S User Manual 10-32 7/93

10.3.5

10.3.5 Get LCN Clock Value Interface

The current date and time as kept by the LCN, can be obtained in either internal or ASCII
format. The internal format is a 4-byte integer count of the number of seconds since
January 1, 1979. The ASCII format is MM/DD/YY∆HH:MM:SS∆ (where ∆ is used to
indicate a space).

10.3.5.1 Example FORTRAN Calls to Get the LCN Clock

Internal Time Format:
 return_status = CM50_TIMNOW_LCN

(Integer_Clock,
 cg_port_num)

ASCII Time Format:
 return_status = CM50_TIMNOW_ASC

(%REF(ASCII_Clock),
 cg_port_num)

10.3.5.2 Parameter Definitions for Get LCN Clock

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

Integer_clock—The name of an INTEGER*4 where the clock value, in seconds, is to be
stored.

ASCII_clock—The name of a CHARACTER*18 variable where the clock value, formatted
as 'MM/DD/YY hh:mm:ss ', is to be stored.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

CM50S User Manual 10-33 7/93

10.4

10.4 RAW DATA TRANSFERS

The interface routines in this group get, store, and convert only LCN Real data arrays in
LCN format. Each request works only with a single data point's parameter array. These
functions allow you to pass Real data arrays from one LCN to another without needing to
go through the LCN/VAX data conversions.

10.4.1 Get Raw Data Interface

This function fetches data for a single point from the CG or elsewhere on the LCN. Use
of the Internal point.parameter ID (obtained by previous use of the Convert External to
Internal ID interface, see 11.2.1) is required.

The specification of which data is to be fetched and where it is to be stored is contained in
the call.

10.4.1.1 Example FORTRAN Call for Get Raw Data

return_status = CM50_SPGRAW
(%REF(id_block),
 value_loc,
 priority,
 value_status,
 cg_port_num)

10.4.1.2 Parameter Definitions for Get Raw Data

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the value_status status code for each returned value must be
checked.

id_block—The name of a 16-byte variable (declare as RECORD/ID_BLOCK_STRUCT/),
that contains the internal ID data block obtained by a previous Convert External
to Internal ID request. When the data is of array type, the conversion returns
the array size in word 7 of the ID block. Thus, if you wish to get less than the
entire array you can change the parameter qualifier in the seventh word of the
ID block to be smaller than the actual array size. Do not change any other
words in the ID block. See heading 4.7.8 in the Computer Gateway User
Manual for ID block details.

value_loc—The name of a Real array where the values are to be stored. The id_block
should identify the value type as 7 (Real array).

priority—The name of an INTEGER*2 that contains the requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual 10-34 7/93

10.4.2

value_status—The name of an INTEGER*2 where point-related status information is to be
stored. This value is meaningful only when the return_status value indicates
normal, complete with errors, or array-size error. See Appendix A.1 for a
listing of Data Access error/status codes. Since val_typ is 7 (a Real array),
value_status refers to status of the whole array.

cg_port_num—The name of an INTEGER*2 identifying the CG (1-4) to be accessed.

10.4.2 Store Raw Data Interface

This function stores data to a single point in the CG or elsewhere on the LCN. Use of the
Internal point.parameter ID (obtained by previous use of the Convert External to Internal
ID interface, see 11.2.1) is required.

The specification of where the data is found and where it is to be stored is contained in the
call.

To use this function the ACP must be connected to an ACIDP with read/write access and
be in Normal mode. See the System Control Functions manual for other write access
restrictions.

10.4.2.1 Example FORTRAN Call for Store Raw Data

return_status = CM50_SPSRAW
(%REF(id_block),
 value_loc,
 priority,
 store_code,
 value_status,
 cg_port_num)

10.4.2.2 Parameter Definitions for Store Raw Data

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the value_status status code for each returned value must be
checked.

id_block—The name of a 16-byte variable (declare as RECORD/ID_BLOCK_STRUCT/),
that contains the internal ID data block obtained by a previous Convert External
to Internal ID call. Do not change any words in the ID block. If the array size
is changed, the array is not stored and the return_status value is 5 with a
value_status that indicates an invalid array size. See heading 4.7.8 in the
Computer Gateway User Manual for ID block details.

value_loc—The name of a Real array that contains the value or values to be stored. The
id_block should identify the value type as 7 (Real array).

CM50S User Manual 10-35 7/93

10.4.2

priority—The name of an INTEGER*2 that contains the requested data-access priority:

1 = High priority (provided for control operations)
2 = Low priority (provided for noncontrol operations)

store_code—The name of an INTEGER*2 that contains a code that allows the substitution
of a bad value representation in place of the provided value(s):

0 = Store the data value(s) provided
1 = Store the bad value representation (NaN) instead

value_status—The name of an INTEGER*2 where point-related status information is to be
stored. This value is meaningful only when the return_status value indicates
normal or complete with errors. See Appendix A.1 for a listing of Data-Access
error/status codes. Since the val_typ is 7 (a Real array), value_status
refers to status of the whole array.

cg_port_num—The name of an INTEGER*2 identifying the CG (1-4) to be accessed.

CM50S User Manual 10-36 7/93

10.4.3

10.4.3 Convert Raw Data

This function converts the elements of a Real array from LCN format to VAX format.

10.4.3.1 Example FORTRAN Call for Convert Raw Data

return_status = CM50_SPCRAW
(%REF(id_block),
 raw_val_loc,
 vax_val_loc,
 value_type,
 convert_status)

10.4.3.2 Parameter Definitions for Convert Raw Data

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the convert_status status code for each returned value must
be checked.

id_block—The name of a 16-byte variable (declare as RECORD/ID_BLOCK_STRUCT/),
that contains the internal ID data block obtained by a previous Convert External
to Internal ID call. Do not change any words in the ID block. See heading
4.7.8 in the Computer Gateway User Manual for ID block details.

raw_val_loc—The name of a Real array that contains previously obtained raw values that
are to be converted from LCN format.

vax_val_loc—The name of a Real array to contain the converted values.

value_type—The name of an INTEGER*2 value that must =7 (Real array).

convert_status—The name of an INTEGER*2 array where the request-completion status
for each data array element is to be stored. Value meanings are

0 = Normal return; this element was converted successfully
1 = Unable to convert this element to VAX format
2 = Bad value substitution was done on this element

CM50S User Manual 10-37 7/93

10.5

10.5 HISTORY DATA TRANSFERS

The interface routines in this group get previously stored averages or 1-minute snapshot
data from a History Module on the LCN. The data may be requested using a DDT, Internal
Data Block or the internal address of a single tag. The History calls provide for concurrent
Get History requests by up-to-four application programs. A fifth request is rejected with a
queue-full status return.

10.5.1 Selecting Records from the History Module

The History Module uses a specialized set of circular files to hold historized values
collected from data points on the LCN. Effective use of the CM50S history functions
requires an understanding of data organization on the History Module.

10.5.1.1 Relative and Absolute Time References

The History Module may be searched using either Relative or Absolute time references.
Relative references request data based on a number of records offset from the current value.
Absolute Time reference request data for all records whose timestamps fall within a
specified Date/Time interval.

For Absolute Time references, the Begin Date/Time specifies the timestamp of the most
recent value to be retrieved and the End Date/Time specifies the timestamp of the oldest
value to be retrieved. If a seasonal time change has occurred during a specified Absolute
History interval, the number of samples returned can differ from the expected number of
samples. For example, if it is desired to obtain a day's worth of hourly averages (24) and a
forward time change of one hour has occurred, 23 samples are returned. If the time change
is in the backward direction, 25 samples are returned.

Relative requests are based on beginning and ending offsets which are counts of records
back from the current time. The direction of search can be either forward (oldest to newest
data) or backwards (newest to oldest data); however, a forward search requires at least
twice as long to execute. To execute a backward search, set the starting offset value less-
than or equal-to the ending offset value. The number of samples returned is calculated as
the positive difference between the starting offset and the ending offset plus one. If this
difference exceeds 262, the request is truncated at 262 samples. The number of samples
returned by a Relative History request is immune to time changes.

Offset values less than one have special meanings. When the starting or ending offset
value is zero (i.e., current LCN time) in the case of averages, the first sample returned is
the current running average for the period. A starting offset of -1 has special meaning in
the cases of snapshots and user averages. In those cases only, LCN time is rounded to the
beginning of the last hour. This permits an ACP to be sure of obtaining the last full hour of
snapshots or user averages. In calculating the number of samples returned, a -1 is treated
as an offset of 0 and its number of samples and direction of search follows those rules. An
ending offset of -1 for snapshots and user averages means the search direction is forward
and the ending time is on the hour starting "n" units back from current time.

The following table summarizes results of combinations of starting and ending offsets for
Relative History requests with numbers of samples returned and reasons for zero sample
returns.

CM50S User Manual 10-38 7/93

10.5.1

History Starting Ending Number Direction Partial
Type Offset Offset of Samples of Search First Sample

for Averages?

any 0 0 1 Backward yes
any 1 1 1 Backward no
any 2 3 2 Backward no
any 3 2 2 Forward no
any 0 300 262 Backward yes
0,5 3 -1 4 Forward no
1 to 4 3 -1 0 Error, end offset invalid
0,5 -1 3 4 Backward no
0,5 -1 -3 0 Error, end offset invalid
1 to 4 -1 -3 0 Error, begin/end offset

invalid

10.5.1.2 Number of Values Retrieved in a Single Call

The number of values that can be obtained from the History Module for each point is
limited both by the size of the buffer used to transfer the values and by the History type.
The maximum number of values for monthly averages is 12, and for shift averages is 21.
The maximum for user averages is configuration dependent, but will not exceed the number
of values shown below for hourly averages. The other maximums are shown in the
following table.

Number of Maximum Maximum Maximum
Points in Snapshots Hourly Daily
DDT or List Averages Averages

1-3 262 168 31
4 262 149 31
5 238 119 31
6 198 99 31

7 170 85 31
8 149 74 31
9 132 66 31

10 119 59 31
11 108 54 31
12 99 49 31

13 91 45 31
14 85 42 31
15 79 39 31
16 74 37 31
17 69 34 31
18 66 33 31

19 62 31 31
20 59 29 29
21 56 28 28
22 53 26 27
23 51 25 25
24 49 24 24

CM50S User Manual 10-39 7/93

10.5.2

10.5.2 Get History Snapshots (Relative Time)

These routines are used to fetch history snapshots from the HM, using a relative offset
from current LCN time.

10.5.2.1 Example FORTRAN Calls for Get History Snapshots (Relative Time)

for standard 1-minute snapshots:

return_status = CM50_DDTHIS_SNAP
(%REF(ddt_name),
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset)

for fast (5, 10 or 20 second) snapshots:

return_status = CM50_DDTHIS_FAST
(%REF(ddt_name),
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset)

for Multi-Point Lists (instead of DDT):

return_status = CM50_MPL_SNAP
(mpl_name,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset,
 cg_port_num)

CM50S User Manual 10-40 7/93

10.5.2

for a single data point.parameter:

return_status = CM50_PTHIS_SNAP
 id_block,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset,
 cg_port_num)

10.5.2.2 Parameter Definitions for Get History Snapshots (Relative Time)

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000651 (CM50_HIS_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a CHARACTER*9 variable that contains the ASCII name of the
DDT to be used.

mpl_name—The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as RECORD /CM50_IDB_REC/.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag.
(declare as RECORD /ID_BLOCK_STRUCT/). This value will have been
obtained through a previous Convert External to Internal ID call. Note: Array
elements must be specified individually; this argument cannot be used to obtain
history for an entire array.

sample_rate —The name of an INTEGER*2 identifying the number of snapshots to be
returned for each minute. This value does not have to match the rate at which
snapshots are historized. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

Note: Retrieval of more than 1 snapshot per minute is only supported by LCN
 release 400.

number_of_values—The name of an INTEGER*2 that specifies the maximum number of
history items (1..262) to be returned for each point.parameter included in the
DDT. If this value is smaller than the actual number of samples found between
begin_offset and end_offset, the number of samples gathered are
truncated at this value. If the number_of_values is greater than the number
of samples returned by the History Module, then the returned arrays are padded
with status_table entries of 99 to match the requested number_of_values.
For multi-point retrievals, values for some of the points will be lost if the
number_of_values times the number of points is greater than 1197.

CM50S User Manual 10-41 7/93

10.5.2

real_values_array—The name of a REAL array where the history data is to be stored (with a
dimension of at least number_of_values times the number of points listed
in the DDT). A Get Snapshot History call can return up to 1197 values.

status_table—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
contain the value status for each returned snapshot. If the return_status value is
CM50_HIS_PART (complete with errors), then for any point that could not be
accessed, the first status_table entry is the Data Access Error Code (see
Appendix A.1) for that point. Otherwise, each status_table entry is one of the
value status codes for the corresponding real_values_array entry:

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is the Real equivalent of an ordinal value

for a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is

missing; value field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field

contains NaN
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: not applicable
99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an INTEGER*4 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the time stamp in seconds for each returned snapshot. See heading
11.3.3 for time-stamp conversion from internal LCN format to external format.

begin_offset—The name of an INTEGER*2 that indicates a relative offset in minutes from
current LCN time that represents the starting period for the history to be
fetched.

end_offset—The name of an INTEGER*2 that indicates a relative offset in minutes from
current LCN time representing the ending period for the history to be fetched.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

CM50S User Manual 10-42 7/93

10.5.3

10.5.3 Get History Snapshots (Absolute Times)

These routines are used to fetch history snapshots from the HM, using absolute begin and
end times. Separate calls are provided for snapshot and averages histories.

If a seasonal time change has occurred during a specified Absolute History interval, the
number of samples returned can differ from the expected number of samples. For
example, if it is desired to obtain a day's worth of hourly averages (24) and a forward time
change of one hour has occurred, 23 samples are returned. If the time change is in the
backward direction, 25 samples are returned.

10.5.3.1 Example FORTRAN call for Get History Snapshots (Absolute Times)

for standard 1-minute snapshots:

return_status = CM50_DDTHIS_SNAPT
(%REF(ddt_name),
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 %REF(begin_date_time),
 %REF(end_date_time))

for fast (5, 10 or 20 second) snapshots:

return_status = CM50_DDTHIS_FASTT
(%REF(ddt_name),
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 %REF(begin_date_time),
 %REF(end_date_time))

for Multi-Point Lists (instead of DDT):

return_status = CM50_MPL_SNAPT
(mpl_name,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 %REF(begin_date_time),
 %REF(end_date_time),
 cg_port_num)

CM50S User Manual 10-43 7/93

10.5.3

for a single data point.parameter:

return_status = CM50_PTHIS_SNAPT
(id_block,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 %REF(begin_date_time),
 %REF(end_date_time),
 cg_port_num)

10.5.3.2 Parameter Definitions for Get History Snapshots (Absolute Times)

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000651 (CM50_HIS_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a CHARACTER*9 variable that contains the ASCII name of the
DDT to be used.

mpl_name—The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as a RECORD /CM50_IDB_REC/.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag.
(declare as RECORD /ID_BLOCK_STRUCT/). This value will have been
obtained through a previous Convert External to Internal ID call. Note: Array
elements must be specified individually; this argument cannot be used to obtain
history for an entire array.

sample_rate —The name of an INTEGER*2 identifying the number of snapshots to be
returned for each minute. This value does not have to match the rate at which
snapshots are historized. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

Note: Retrieval of more than 1 snapshot per minute is only supported by LCN
 release 400.

number_of_values—The name of an INTEGER*2 that specifies the maximum number of
history items (1..261) to be returned for each point.parameter included in the
DDT. If this value is smaller than the actual number of samples found between
begin and end times, the number of samples gathered are truncated at this value.
If the number_of_values is greater than the number of samples returned by
the History Module, then the returned arrays are padded with status_table
entries of 99 to match the requested number_of_values. For multi-point
retrievals, values for some points are lost if the number_of_values times
(1 + the number of points) is greater than 1197.

CM50S User Manual 10-44 7/93

10.5.3

real_values_array—The name of a REAL array where the history data is to be stored (at least
number_of_values times the number of points listed in the DDT). A Get
Snapshot History call can return a maximum of 1197 values.

status_table—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
contain the value type for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is the Real equivalent of an ordinal value

for a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is

missing; value field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field

contains NaN
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: not applicable
99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an INTEGER*4 array (with a length of at least
number_of_values times the number of points specified in the DDT) that
will contain the time stamp in seconds for each returned snapshot. See heading
11.3.3 for time-stamp conversion from internal LCN format to external format.

begin_date_time—The name of a CHARACTER*14 variable in the format
MM/DD/YY∆HH:MM (where ∆ indicates a blank character) specifying the date
and time for the most recent record to be fetched from the History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

CM50S User Manual 10-45 7/93

10.5.4

end_date_time—The name of a CHARACTER*14 variable in the format
MM/DD/YY∆HH:MM, specifying the date and time for the oldest record to be
fetched from the History Module. The end_date_time must be earlier than
begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

10.5.4 Get History Averages (Relative Times)

These calls return the average, minimum and maximum values of a point for specified time
periods.

10.5.4.1 Example FORTRAN call for Get History Averages (Relative Times)

return_status = CM50_DDTHIS_AVER
(%REF(ddt_name),
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 history_type)

for Multi-Point Lists (instead of DDT):

return_status = CM50_MPLHIS_AVER
(mpl_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 history_type,
 cg_port_num)

CM50S User Manual 10-46 7/93

10.5.4

for a single data point.parameter:

return_status = CM50_PTHIS_AVER
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 history_type,
 cg_port_num)

10.5.4.2 Parameter Definitions for Get History Averages (Relative Times)

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000651 (CM50_HIS_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a CHARACTER*9 variable that contains the ASCII name of the
DDT to be used.

mpl_name—The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as RECORD /CM50_IDB_REC/.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag.
(declare as RECORD /ID_BLOCK_STRUCT/). This value will have been
obtained through a previous Convert External to Internal ID call. Note: Array
elements must be specified individually; this argument cannot be used to obtain
history for an entire array.

number_of_values—The name of an INTEGER*2 that specifies the maximum number of
history items (1..262) to be returned for each point.parameter included in the
DDT. If this value is smaller than the actual number of samples found between
begin_offset and end_offset, the number of samples gathered are
truncated at this value. If the number_of_values is greater than the number
of samples returned by the History Module, then the returned arrays are padded
with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some of the
points are lost if the number_of_values times the number of points is
greater than 598.

real_values_array—The name of a REAL array where the history data is to be stored (at least
number_of_values times the number of points listed in the DDT). A Get
Averages History call can return a maximum of 598 values.

CM50S User Manual 10-47 7/93

10.5.4

status_table—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
contain the value type for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)

For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an INTEGER*4 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the time stamp in seconds for each returned average. See heading
11.3.3 for time-stamp conversion from internal LCN format to external format.

max_array—The name of a REAL array (of length at least number_of_values times the
number of points specified in the DDT) that will contain the maximum process
value recorded in the averaged period. Due to the data compression algorithm
on the History module, there can be a rounding error of no more than 1% in the
reported maximum value for a point.

min_array—The name of a REAL array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the minimum process value recorded in the averaged period. Due
to the data compression algorithm on the History module, there can be a
rounding error of no more than 1% in the reported minimum value for a point.

CM50S User Manual 10-48 7/93

10.5.5

num_samples_array—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the number of samples used in calculating each returned average
value. Note that monthly averages can contain up to 44,640 samples, and any
16-bit number larger than 32,767 appears as a negative value in FORTRAN.
To see accurate values for monthly samples, use the following logic with an
INTEGER*4 variable named TEMP:

IF (num_samples_array(i) .LT. 0) THEN
TEMP = 65536 + num_samples_array(i)

ELSE
TEMP = num_samples_array(i)

ENDIF

begin_offset—The name of an INTEGER*2 that indicates a relative offset from current
LCN time that represents the first history record to be fetched.

end_offset—The name of an INTEGER*2 that indicates a relative offset from the current
LCN time representing the last history record to be fetched.

history_type—The name of an INTEGER*2 that contains the number specifying the type of
average requested. The available types and maximum number of records on the
History Module for each are:

1 = Hourly (168 records)
2 = Shift (21 records)
3 = Daily (31 records)
4 = Monthly (12 records)
5 = User (configuration dependent)

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

10.5.5 Get History Averages (Absolute Times)

These calls return the average, minimum and maximum values of a point for specified time
periods.

10.5.5.1 Example FORTRAN call for Get History Averages (Absolute Times)

return_status = CM50_DDTHIS_AVERT
(%REF(ddt_name),
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 %REF(begin_date_time),
 %REF(end_date_time),
 history_type)

CM50S User Manual 10-49 7/93

10.5.5

for Multi-Point Lists (instead of DDT):

return_status = CM50_MPLHIS_AVERT
(MPL,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 %REF(begin_date_time),
 %REF(end_date_time),
 history_type,
 cg_port_num)

for single point requests:

return_status = CM50_PTHIS_AVERT
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 %REF(begin_date_time),
 %REF(end_date_time),
 history_type,
 cg_port_num)

10.5.5.2 Parameter Definitions for Get History Averages (Absolute Times)

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000651 (CM50_HIS_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a 9-CHARACTER* variable that contains the ASCII name of the
DDT to be used.

mpl —The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as RECORD /CM50_IDB_REC/.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag.
(declare as RECORD /ID_BLOCK_STRUCT/). This value will have been
obtained through a previous Convert External to Internal ID call. Note: Array
elements must be specified individually; this argument cannot be used to obtain
history for an entire array.

CM50S User Manual 10-50 7/93

10.5.5

number_of_values—The name of an INTEGER*2 that specifies the maximum number of
history items (1..261) to be returned for each point.parameter included in the
DDT. If this value is smaller than the actual number of samples found between
begin and end times, the number of samples gathered are truncated at this value.
If the number_of_values is greater than the number of samples returned by
the History Module, then the returned arrays are padded with status_table
entries of 99 to match the requested number_of_values. For multi-point
retrievals, values for some of the points are lost if the number_of_values
times (1 + the number of points) is greater than 598.

real_values_array—The name of a REAL array where the history data is to be stored (at least
number_of_values times the number of points listed in the DDT). A Get
Averages History call can return a maximum of 598 values.

status_table—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
contain the value type for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

CM50S User Manual 10-51 7/93

10.5.5

lcn_time_stamp_array—The name of an INTEGER*4 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
receive the time stamp in seconds for each returned average. See heading
11.3.3 for time-stamp conversion from internal LCN format to external format.

max_array—The name of a REAL array (of length at least number_of_values times the
number of points specified in the DDT) that will contain the maximum process
value recorded in the averaged period. Note: Due to the data compression
algorithm on the History module, there may be a rounding error of no more
than 1% in the reported maximum value for a point.

min_array—The name of a REAL array (of length at least number_of_values times the
number of points specified in the DDT) that will contain the minimum process
value recorded in the averaged period. Note: Due to the data compression
algorithm on the History module, there may be a rounding error of no more
than 1% in the reported minimum value for a point.

num_samples_array—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the number of samples used in calculating each returned average
value. Note that monthly averages can contain up to 44,640 samples, and any
16-bit number larger than 32,767 appears as a negative value in FORTRAN.
To see accurate values for monthly samples, use the following logic with an
INTEGER*4 variable named TEMP:

IF (num_samples_array(i) .LT. 0) THEN
TEMP = 65536 + num_samples_array(i)

ELSE
TEMP = num_samples_array(i)

ENDIF

begin_date_time—The name of a CHARACTER*14 variable in the format
MM/DD/YY∆HH:MM (where ∆ indicates a blank character) specifying the date
and time for the most recent record to be fetched from the History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

end_date_time—The name of a CHARACTER*14 variable in the format
MM/DD/YY∆HH:MM, specifying the date and time for the oldest record to be
fetched from the History Module. The end_date_time must be earlier than the
begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

CM50S User Manual 10-52 7/93

10.5.6

history_type—The name of an INTEGER*2 that contains the number specifying the type of
average requested. The available types and maximum time retained on the
History Module for each are:

1 = Hourly (7 days)
2 = Shift (7 days)
3 = Daily (31 days)
4 = Monthly (1 year)
5 = User (8 hours to 7 days, depending on configuration)

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

10.5.6 Get Monthly Averages (Relative Times)

When a point is historized more often than once per minute, it is possible for the number of
samples taken during a month to exceed the capacity of a 16-bit integer. This call provides
a 32-bit integer count of the number of samples in a monthly average using relative time.

NOTE

Retrieval of monthly averages using this call is only supported by LCN release 400 or later.

10.5.6.1 Example FORTRAN call for Get Monthly Averages (Relative Times)

return_status = CM50_DDTHIS_MNTH
(%REF(ddt_name),
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset)

for Multi-Point Lists (instead of DDT):

return_status = CM50_MPLHIS_MNTH
(mpl_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 cg_port_num)

CM50S User Manual 10-53 7/93

10.5.6

for a single data point.parameter:

return_status = CM50_PTHIS_MNTH
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 cg_port_num)

10.5.6.2 Parameter Definitions for Get Monthly Averages (Relative Times)

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000651 (CM50_HIS_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a CHARACTER*9 variable that contains the ASCII name of the
DDT to be used.

mpl_name—The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as RECORD /CM50_IDB_REC/.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag
(declare as RECORD /ID_BLOCK_STRUCT/). This value will have been
obtained through a previous Convert External to Internal ID call. Note: Array
elements must be specified individually; this argument cannot be used to obtain
history for an entire array.

number_of_values—The name of an INTEGER*2 that specifies the maximum number of
history items (1..262) to be returned for each point.parameter included in the
DDT. If this value is smaller than the actual number of samples found between
begin_offset and end_offset, the number of samples gathered are
truncated at this value. If the number_of_values is greater than the number
of samples returned by the History Module, then the returned arrays are padded
with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some of the
points are lost if the number_of_values times the number of points is
greater than 598.

real_values_array—The name of a REAL array where the history data is to be stored (at least
number_of_values times the number of points listed in the DDT). A Get
Averages History call can return a maximum of 598 values.

CM50S User Manual 10-54 7/93

10.5.6

status_table—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
contain the value type for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)

For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an INTEGER*4 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the time stamp in seconds for each returned average. See heading
11.3.3 for time-stamp conversion from internal LCN format to external format.

max_array—The name of a REAL array (of length at least number_of_values times the
number of points specified in the DDT) that will contain the maximum process
value recorded in the averaged period. Due to the data compression algorithm
on the History module, there can be a rounding error of no more than 1% in the
reported maximum value for a point.

min_array—The name of a REAL array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the minimum process value recorded in the averaged period. Due
to the data compression algorithm on the History module, there can be a
rounding error of no more than 1% in the reported minimum value for a point.

CM50S User Manual 10-55 7/93

10.5.7

num_samples_array—The name of an INTEGER*4 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the number of samples used in calculating each returned average.

begin_offset—The name of an INTEGER*2 that indicates a relative offset from current
LCN time that represents the first history record to be fetched.

end_offset—The name of an INTEGER*2 that indicates a relative offset from the current
LCN time representing the last history record to be fetched.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG.

10.5.7 Get Monthly Averages (Absolute Times)

When a point is historized more often than once per minute, it is possible for the number of
samples taken during a month to exceed the capacity of a 16-bit integer. This call provides
a 32-bit integer count of the number of samples in a monthly average using absolute time.

NOTE

Retrieval of monthly averages using this call is only supported by LCN release 400 or later.

10.5.7.1 Example FORTRAN call for Get Monthly Averages (Absolute Times)

return_status = CM50_DDTHIS_MNTHT
(%REF(ddt_name),
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 %REF(begin_date_time),
 %REF(end_date_time))

for Multi-Point Lists (instead of DDT):

return_status = CM50_MPLHIS_MNTHT
(MPL,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 %REF(begin_date_time),
 %REF(end_date_time),
 cg_port_num)

CM50S User Manual 10-56 7/93

10.5.7

for single point requests:

return_status = CM50_PTHIS_MNTHT
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 %REF(begin_date_time),
 %REF(end_date_time),
 cg_port_num)

10.5.7.2 Parameter Definitions for Get Monthly Averages (Absolute Times)

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000651 (CM50_HIS_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a 9-CHARACTER* variable that contains the ASCII name of the
DDT to be used.

mpl —The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as RECORD /CM50_IDB_REC/.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag.
(declare as RECORD /ID_BLOCK_STRUCT/). This value will have been
obtained through a previous Convert External to Internal ID call. Note: Array
elements must be specified individually; this argument cannot be used to obtain
history for an entire array.

number_of_values—The name of an INTEGER*2 that specifies the maximum number of
history items (1..261) to be returned for each point.parameter included in the
DDT. If this value is smaller than the actual number of samples found between
begin and end times, the number of samples gathered are truncated at this value.
If the number_of_values is greater than the number of samples returned by
the History Module, then the returned arrays are padded with status_table
entries of 99 to match the requested number_of_values. For multi-point
retrievals, values for some of the points are lost if the number_of_values
times (1 + the number of points) is greater than 598.

real_values_array—The name of a REAL array where the history data is to be stored (at least
number_of_values times the number of points listed in the DDT). A Get
Averages History call can return a maximum of 598 values.

CM50S User Manual 10-57 7/93

10.5.7

status_table—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
contain the value type for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an INTEGER*4 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) to
receive the time stamp in seconds for each returned average. See heading
11.3.3 for time-stamp conversion from internal LCN format to external format.

max_array—The name of a REAL array (of length at least number_of_values times the
number of points specified in the DDT) that will contain the maximum process
value recorded in the averaged period. Note: Due to the data compression
algorithm on the History module, there may be a rounding error of no more
than 1% in the reported maximum value for a point.

min_array—The name of a REAL array (of length at least number_of_values times the
number of points specified in the DDT) that will contain the minimum process
value recorded in the averaged period. Note: Due to the data compression
algorithm on the History module, there may be a rounding error of no more
than 1% in the reported minimum value for a point.

CM50S User Manual 10-58 7/93

10.5.8

num_samples_array—The name of an INTEGER*2 array (with a dimension of at least
number_of_values times the number of points specified in the DDT) that
will contain the number of samples used in calculating each returned average
value.

begin_date_time—The name of a CHARACTER*14 variable in the format
MM/DD/YY∆HH:MM (where ∆ indicates a blank character) specifying the date
and time for the most recent record to be fetched from the History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

end_date_time—The name of a CHARACTER*14 variable in the format
MM/DD/YY∆HH:MM, specifying the date and time for the oldest record to be
fetched from the History Module. The end_date_time must be earlier than the
begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

10.5.8 Historization Sampling Rate Queries

These functions query the LCN and return the current Historization Sampling Rate (number
of snapshots recorded each minute) for a point or set of points.

NOTE

Retrieval of sampling rates using this call is only supported by LCN release 400 or later.

10.5.8.1 Example FORTRAN calls for Query Sampling Rate

For Points referenced in a History DDT:

return_status = CM50_DDTHIS_RATE
(%REF(ddt_name),
 history_rate_array,
 status_table)

CM50S User Manual 10-59 7/93

10.5.8

For a List of Internal Point ids:

return_status = CM50_MPLHIS_RATE
(mpl_name,
 history_rate_array,
 status_table,
 cg_port_number)

For a Point addressed by its internal id:

return_status = CM50_PTHIS_RATE
(id_block,
 history_rate,
 cg_port_number)

For a Point addressed by its internal id:

return_status = CM50_TAGHIS_RATE
(%REF(tagname),
 history_rate,
 cg_port_number)

10.5.8.2 Parameter Definitions for History Sampling Rate Queries

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000651 (CM50_HIS_PART), which
indicates that the status_table status code for each returned value must be
checked.

ddt_name—The name of a CHARACTER*9 variable that contains the ASCII name of the
DDT to be used.

mpl_name—The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as a RECORD /CM50_IDB_REC/.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag
(declare as RECORD /ID_BLOCK_STRUCT/). This value will have been
obtained through a previous Convert External to Internal ID call. Note: Array
elements must be specified individually; this argument cannot be used to obtain
history for an entire array.

tagname—The name of a CHARACTER*40 variable that contains an LCN tagname in the
form "point.parameter(index)", where the "(index)" is used only to identify
elements of an array.

CM50S User Manual 10-60 7/93

10.5.8

history_rate —The name of an INTEGER*2 identifying the number of snapshots to
collected each minute. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

history_rate_array —The name of an INTEGER*2 array (with a dimension of at least the
number of points in the DDT or list) identifying the number of snapshots
collected each minute. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

status_table—The name of an INTEGER*2 array (with a dimension of at least the number
of points specified in the DDT or list) to contain the data access code for each
point (See appendix A.1).

CM50S User Manual 10-61 7/93

10.6

10.6 TEXT MESSAGE TRANSFERS

The two interface routines in this group are used to send and receive character-string
messages over the LCN.

10.6.1 Get Message Interface

This routine is used to fetch a character-string message held in a buffer by this program's
ACIDP. The message presence is determined as the result of a Get ACP Status request.

10.6.1.1 Example FORTRAN Call for Get Message

return_status = CM50_GETMSG
(%REF(msg),
 msg_len)

10.6.1.2 Parameter Definitions for Get Message

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. There are three non-normal return_status values for this call that
indicate the need for additional processing:

 215000521 CM50_MSG_TRUNC Received message was truncated
 215000561 CM50_MSG_QUE Message was received and another one is queued
 215000571 CM50_MSG_QUET Received message was truncated & another one is queued

msg—The name of a CHARACTER*120 variable where the message is to be stored.

msg_len—The name of an INTEGER*2 that specifies the maximum number of characters
to accept (120-character limit).

CM50S User Manual 10-62 7/93

10.6.2

10.6.2 Send Message Interface

This routine is used to send a message to all operator stations assigned to the same unit as
this program's ACIDP. A request to wait for operator confirmation is optional. If operator
confirmation is requested, execution of the requesting program is suspended until either the
confirmation occurs, or until its specified wait time expires. The requesting program
receives an indication of whether confirmation or a time out occurs.

10.6.2.1 Example FORTRAN Call for Send Message

return_status = CM50_STOREMSG
(%REF(msg),
 msg_len,
 confirm,
 timeout,
 dest)

10.6.2.2 Parameter Definitions for Send Message

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

msg—The name of a CHARACTER*120 (or less)variable that contains the message to be
sent.

msg_len—The name of an INTEGER*2 that specifies the number of characters to be
transmitted. The maximum number of characters depends on message
destination: 60 for CRT displays and 72 for printing. Over-length messages are
truncated. All messages are archived if the HM is so configured.

confirm—The name of a Boolean INTEGER*2 (1 = TRUE and 0 = FALSE) that specifies
whether or not a message confirmation is required. Note that this parameter is
treated as FALSE if the message destination is printer only.

timeout—The name of an INTEGER*2 that specifies the number of seconds (0 to 3600) the
system is to wait for confirmation before returning control to the requesting
program with a "no confirm" return_status. (Allow for a built-in time lag of up-
to-10 seconds.) The Wait Time parameter is ignored if the Confirm parameter
is set to OFF or the message destination is printer only.

dest—The name of an INTEGER*2 that specifies where the message is to be sent, as
follows:

0 – CRT only
1 – Printer only
2 – Both

CM50S User Manual 10-63 7/93

10.6.2

10.6.2.3 Event-Initiated Reports

Two types of Event-Initiated Reports can be invoked by specially formatted messages from
an ACP or an Indirect Control Program to the Area Universal Stations:

• Logs, reports journals, and trends configured in the Area database

• Event History reports

Details of message requirements are given in Section 30 of the Engineer's Reference
Manual located in the Implementation/Startup & Reconfiguration - 2 binder.

CM50S User Manual 10-64 7/93

CM50S User Manual 11-1 7/93

11

PROGRAM CONTROL AND SUPPORT (FORTRAN)
Section 11

This section discusses program interfaces that support and control Advanced Control programs

11.1 ACP EXECUTION SUPPORT

These interface routines affect the orderly execution and termination of application
programs.

11.1.1 ACP Initialization Interface

This routine (or the vintage ACPTRP procedure) must be the first executable statement in
each ACP but is optional for DAPs and Indirect Control Programs. It establishes a
termination handler and ensures proper ACP table setup. Failure to invoke this interface
routine as the first statement of an ACP may not appear to cause immediate problems, but
will result in improper termination handling. The termination status is not reported to the
CG, and the ACP appears to both the CM50S and the CG to still be in the RUN state even
though the process has terminated.

The call to CM50_SET_ACP also establishes a system lock that allows the program to be
terminated cleanly if CM50S is shut down. Therefore, it is advisable to include this call in
every program that is mapped to the CM50S shareable image.

11.1.1.1 Example FORTRAN Call for ACP Initialization

 return_status = CM50_SET_ACP
(reset)

11.1.1.2 Parameter Definitions for ACP Initialization

return_status—The name of an INTEGER*4 to receive the overall return status of the
function. This function always returns as a success (return_status = 1).

reset—The name of an INTEGER*2 that specifies the reaction of the trap handler to an
abort. If the ACP is aborted for any reason, the Abort code is recorded in the
CG/PLNM database and the ACP Status table. If the value of reset is 1, then
the execution status of the ACP is reset to OFF/DELAY regardless of how the
program terminated. For any other value of reset, the execution status of the
ACP becomes OFF/DELAY only after normal termination and is set to ABORT
after an abnormal program termination.

CM50S User Manual 11-2 7/93

11.1.2

11.1.2 Get ACP Status Interface

This routine fetches a set of parameters that enables the requesting ACP to determine why
the system has turned it on and what special processing may be required at this time. It
should be used during both the "setup" and "cleanup" program stages each time an ACP
runs. After servicing this request, the interface routine resets its copy of these values in
preparation for any subsequent ACP turn on.

NOTE

GETSTS is one of the few CM50S user-interface routines that is not implemented as a
function. It is called as a FORTRAN subroutine.

11.1.2.1 Example FORTRAN Call for Get ACP Status

CALL GETSTS
(take_i_p,
 ps_msg,
 demand,
 procspec,
 scheduled,
 upper_level)

11.1.2.2 Parameter Definitions for Get ACP Status

take_i_p—The name of a Boolean INTEGER*2 (-1 = TRUE and 0 = FALSE) that returns
TRUE the first time this program is turned on by the CG, following an
initialization event (see heading 4.4.1). take_i_p should be ignored when
upper_level is TRUE.

ps_msg—The name of a Boolean INTEGER*2 (-1 = TRUE and 0 = FALSE) that returns
TRUE if a message for the program is waiting at the CG.

demand—The name of a Boolean INTEGER*2 (-1 = TRUE and 0 = FALSE) that returns
TRUE if the program was turned on as the result of a process operator request.

procspec—The name of a Boolean INTEGER*2 (-1 = TRUE and 0 = FALSE) that returns
TRUE if the program was turned on as the result of a process special to its
ACIDP from an HG, AM, or another ACP.

scheduled—The name of a Boolean INTEGER*2 (-1 = TRUE and 0 = FALSE) that
returns TRUE if the program was turned on by periodic or cyclic scheduling.

upper_level—The name of a Boolean INTEGER*2 (-1 = TRUE and 0 = FALSE) that
returns TRUE if the program was turned on by the VAX.

CM50S User Manual 11-3 7/93

11.1.3

11.1.3 ACP Delay Interface

This routine suspends execution of the calling program for a specified number of seconds.
Program execution resumes at the statement following the delay call.

11.1.3.1 Example FORTRAN Call for ACP Delay

sleep = CM50_ACPDELAY
(delay_time)

11.1.3.2 Parameter Definitions for ACP Delay

sleep—The name of a Boolean INTEGER*2 (1 = TRUE and 0 = FALSE) that contains the
overall return status of the function call. The value will be FALSE when the
call has been rejected because of an invalid delay time value.

delay_time—The name of an INTEGER*2 that contains the length of time (1 to 60 seconds)
that the requesting program is to be suspended.

11.1.4 ACP Hibernate Interface

This routine suspends execution of the calling ACP (through a VMS SYS$HIBER request)
until the next turn on request. The program and associated data remain in memory during
hibernation, in effect making it memory-resident. Program execution resumes at the
statement following the CM50_HIBER call.

11.1.4.1 Example FORTRAN Call for ACP Hibernate

hiber_stat = CM50_HIBER ()

Note: The empty argument list "()" is required when calling the function from FORTRAN.

11.1.4.2 Parameter Definitions for ACP Hibernate

hiber_stat—The name of an INTEGER*4 to receive the overall return status of the function
call. This value should always = 1 (SS$_NORMAL). Any other value
indicates a fatal error. The program should call the GETSTS routine (see
heading 11.1.2) to determine how the Wake call was issued.

CM50S User Manual 11-4 7/93

11.1.5

11.1.5 ACP Termination Interface

This routine terminates the execution of the calling ACP. It must be used as the last
operating statement of each ACP but is optional for DAPs and Indirect Control Programs.

For ACPs, this call stores a termination-status code in the associated ACIDP's
ABORTCOD parameter. The termination code can be viewed at a Universal Station (see
the definitions for ABORTCOD and EXECSTAT at heading 4.4.1), but in a revised form.
The integer value assigned here is translated into two hexadecimal digits (00 to FF) and
appended to the major code of 'EA'. Thus, an ACP-assigned abnormal termination code
of 15 appears at the Universal Station display as 'EA0F'.

If an ACP is aborted by the VMS operating system, an abort code of 'VMSF' is stored in
its ACIDP's ABORTCOD.

The execution state of an ACIDP can be changed from ABORT to normal by operator
demand through a Universal Station or by invoking the ACP Operation screen’s
Deactivate/Terminate function. See heading 5.8 for abort recovery details.

NOTE

PRGTRM is one of the few user-interface routines that is not implemented as a function. It is
called as a FORTRAN subroutine.

11.1.5.1 Example FORTRAN Call for ACP Termination

CALL PRGTRM
(terminate_code)

11.1.5.2 Parameter Definitions for ACP Termination

terminate_code—The name of an INTEGER*4 that must contain zero or a positive value (1
to 255). Zero value indicates normal termination. Nonzero values are user-
specified codes for nonnormal termination (abort). Note that if you provide a
value outside the valid range, ABORTCOD will contain EA∆∆ (where.∆
represents a blank).

CM50S User Manual 11-5 7/93

11.2

11.2 ENTITY NAME CONVERSIONS

The interface routines in this group convert ASCII names of LCN points and parameters
into their internal LCN identifiers.

NOTE

The arrays of internal point.parameter addresses need to be rebuilt and the program(s) using
them need to be recompiled whenever the LCN database is changed in a significant manner,
such as by the rebuild or deletion of data points referenced in the address array.

11.2.1 Convert External to Internal ID

These routines fetch the internal ID of a point.parameter for the calling program. Use of
the internal ID by repetitive single-value data gets and stores reduces system overhead and
provides faster return of data. The specification of which point.parameter internal ID is
wanted and where it is to be stored is contained in the call.

11.2.1.1 Example FORTRAN Calls for Convert ID

Using point and parameter names as separate variables:

 return_status = CM50_CONV_PT
(%REF(entity),
 %REF(param),
 param_ix,
 id_block,
 val_typ,
 cg_port_num)

When the external id is expressed as a Tag name (not separate point and parameter), use:

 return_status = CM50_CONV_TAG
(%REF(tag_name),
 id_block,
 val_typ,
 cg_port_num)

11.2.1.2 Parameter Definitions for Convert ID

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially the following return codes:

215000146 (CM50_LCN_ARRAY)—the array size specified by param_ix is
smaller the actual array size.

CM50S User Manual 11-6 7/93

11.2.1

215000322 (CM50_ACC_SIZE)—the array size specified by param_ix is
larger than the actual array size.

tag_name—The name of a CHARACTER*40 variable that identifies the LCN value(s) to be
stored. The tag name is formatted as "point.param (param_ix)".

entity—The name of a CHARACTER*20 variable that contains the ASCII Point ID. It
should contain a point name of up to 16 characters, optionally preceded by a 1-
or 2-character pinid and a backslash (\) delimiter for Network Gateway routing.

param—The name of a CHARACTER*8 variable that contains the ASCII name of the
parameter to be converted.

param_ix—The name of an INTEGER*2 positive value. Use of this value is controlled by
val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 15, 17 or 19, a single value is to be
accessed—This may be an element of a parameter array in which case
param_ix identifies the element within the array. If the parameter being
accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 16, 18 or 20, a whole array (or a subset of
the array starting with the first element) is to be accessed and param_ix is
used to specify the size of the array. If param_ix is smaller than the actual
array size, the conversion is made; if it is larger than the actual array size, the
conversion is not made. Both conditions cause non-normal return_status
values to be returned.

id_block—The name of a 16-byte variable where the internal ID data block is to be returned
(declare as RECORD /ID_BLOCK_STRUCT/). Save these eight values for
later use in calls on this point.parameter. The ID data block contents are as
follows:

Word 1— Data type
Words 2..5— Internal point identifier
Word 6— Parameter subscript
Word 7— Parameter qualifier (array size)
Word 8— Enumeration set identifier

CM50S User Manual 11-7 7/93

11.2.1

val_typ—The name of an INTEGER*2 that contains a number that designates value type.
If the incorrect value is supplied on input, this value will be updated as an
output variable. The coded values:

 1 = Real (or single element of real array)
 2 = Integer (or single element of integer array)
 3 = ASCII
 4 = Enumeration (or single element of enumeration array)
 5 = Ordinal value of enumeration (or single element of ordinal array)
 6 = not used
 7 = Real array
 8 = Integer array
 9 = Enumeration array

 10 = Ordinal value of enumeration array
13 = Internal entity id
14 = Internal entity id array
15 = External entity id
16 = External entity id array
17 = Time value
18 = Time value array
19 = String value
20 = String value array

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

CM50S User Manual 11-8 7/93

11.2.2

11.2.2 Convert List of External IDs

These routines fetch an array of internal IDs for a list of point.parameters. These calls are
designed for use with the Point Array calls described in section 10.2. All of the
point.parameters in each list must be of the same data type (Real, ASCII, etc.).

11.2.2.1 Example FORTRAN Call for Convert Lists

When the point & parameter names are maintained separately, use:

 return_status = CM50_CONV_PT_LIST
(%REF(entity_arr),
 %REF(param_arr),
 param_ix_arr,
 number_of_values,
 val_typ,
 cg_port_num
 id_block_arr,
 return_arr)

When the external id is expressed as a Tag name (not separate point and parameter), use:

 return_status = CM50_CONV_TAG_LIST
(%REF(Tagname_arr),
 number_of_values,
 val_typ,
 cg_port_num
 id_block_arr,
 return_arr)

11.2.2.2 Parameter Definitions for Convert Lists

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values. Note especially return code 215000051 (CM50_LCN_PART), which
indicates that the return_arr array entry for each returned id block must be
checked for errors.

return_arr—The name of an array of up to 300 INTEGER*4 variables to receive the status
of the conversion of each point or tag. See Appendix A.2 for an explanation
and a listing of all assigned return code values.

CM50S User Manual 11-9 7/93

11.2.2

tagname_arr—The name of an array of up to 300 CHARACTER*40 variables. Each
variable contains the ASCII tagname of the LCN entity for which the internal ID
is to be obtained. The tagnames are formatted as Point.Parameter or
Point.Parameter(ix), where (ix) is an array element index used only
with array parameters.

entity_arr—The name of an array of up to 300 CHARACTER*20 variables, each containing
an ASCII Point id. Each variable should contain the point name of up to 16
characters, optionally preceded by a 1- or 2-character pinid and a backslash (\)
delimiter for Network Gateway routing, of a point for which the internal ID is
to be obtained.

param_arr—The name of an array of up to 300 CHARACTER*8 variables, each containing
the ASCII parameter name of a point.parameter for which the internal ID is to
be obtained.

param_ix_arr—The name of an array of up to 300 INTEGER*2 variables used as array
element index values corresponding to the individual parameter names in
param_arr. For each non-array parameter named in that array, the
corresponding value in this array should be zero.

cg_port_num—The name of an INTEGER*2 (with a value of 1-4) identifying the CG to be
accessed.

id_block_arr—The name of an array of up to 300 16-byte variables where the internal ID
data blocks are to be returned (declare as array of
RECORD /ID_BLOCK_STRUCT/). The ID data block contents are as
follows:

Word 1— Data type
Words 2..5— Internal point identifier
Word 6— Parameter subscript
Word 7— Parameter qualifier (array size)
Word 8— Enumeration set identifier

number_of values—The name of an INTEGER*2 that contains the number of points/tags in
the list to be converted.

val_typ—The name of an INTEGER*2 that contains a number that designates LCN value
type. This value must be supplied in the calling argument. The acceptable
values are:

 1 = Real (or single element of real array)
 2 = Integer (or single element of integer array)
 3 = ASCII
 4 = Enumeration (or single element of enumeration array)
 5 = Ordinal value of enumeration (or single element of ordinal array)
13 = Internal entity id
15 = External entity id
17 = Internal Time
19 = String

CM50S User Manual 11-10 7/93

11.3

11.3 VALUE CONVERSIONS

The interface routines in this group convert values from one internal format to another.

11.3.1 Valid Number Check

This routine checks a value of type "Real" to determine if it is a valid single-precision,
floating-point number. Its primary purpose is to check for the "Bad Value" indicator, NaN
(-0).

11.3.1.1 Example FORTRAN Call for Valid Number Check

value_st = CM50_VALIDN
(value)

11.3.1.2 Parameter Definitions for Valid Number Check

value_st—The name of a Boolean INTEGER*2 (1 = TRUE and 0 = FALSE) that returns
TRUE if "Value" is found to be a valid floating-point number. It returns
FALSE for minus zero (NaN) or other invalid bit configurations.

value—The name of a REAL variable that contains a single-precision, floating-point value
that is to be checked. When value_st returns FALSE, the contents of
value have been changed to 0.0.

11.3.2 Set Bad Value

This routine stores the bad value constant, NaN (-0), into the specified Real variable.

11.3.2.1 Example FORTRAN Call for Set Bad Value

return_status = CM50_SETBAD (var_name)
or

CALL CM50_SETBAD (var_name)

11.3.2.2 Parameter Definitions for Set Bad Value

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For this function, return_status = 1 always.

var_name—The name of a REAL variable where the bad value constant for the LCN is to be
stored. Note that attempting to perform arithmetic operations using a variable
that has been set to Bad Value can cause a fatal error within the program.

CM50S User Manual 11-11 7/93

11.3.3

11.3.3 Convert Time Values

Within the CM50 environment, Date/time variables are often maintained in a variety of
formats. The following routines convert time values from any one of the following
formats to any other:

abbrev. format use
 LCN 4-byte integer internal LCN clock, number of

seconds since January 1, 1979
 VAXB 8-bytes VAX binary system clock format

(array of two 4-byte integers)
 VAXA 22 characters VAX standard ASCII time display:

'dd-MON-yyyy hh:mm:ss'
 ASC 18 characters LCN standard ASCII time display

'mm/dd/yy hh:mm:ss'
 EURO 18 characters European ASCII time display

'dd/mm/yy hh:mm:ss'
 ARY 12 bytes FORTRAN integer*2 array

(equivalenced to with element:
six 2-byte integers) 1 = year

2 = month
3 = day
4 = hour
5 = minute
6 = second

In each routine, the first argument must be assigned the input value and the second
argument is the returned converted value.

11.3.3.1 Example FORTRAN Calls to Convert Time

Convert internal LCN time to an INTEGER*2 array:
 return_status = CM50_TIMLCN_ARY

(lcn,
 ary)

Convert internal LCN time to an ASCII string:
 return_status = CM50_TIMLCN_ASC

(lcn,
 %REF(asc))

Convert internal LCN time to a European string:
 return_status = CM50_TIMLCN_EURO

(lcn,
 %REF(euro))

Convert internal LCN time to VAX display format:
 return_status = CM50_TIMLCN_VAXA

(lcn,
 %REF(vaxa))

CM50S User Manual 11-12 7/93

11.3.3

Convert internal LCN time to VAX binary:
 return_status = CM50_TIMLCN_VAXB

(lcn,
 vaxb)

Convert an INTEGER*2 array to internal LCN:
 return_status = CM50_TIMARY_LCN

(ary,
 lcn)

Convert an INTEGER*2 array to an ASCII string:
 return_status = CM50_TIMARY_ASC

(ary,
 %REF(asc))

Convert an INTEGER*2 array to a European string:
 return_status = CM50_TIMARY_EURO

(ary,
 %REF(euro))

Convert an INTEGER*2 array to VAX display format:
 return_status = CM50_TIMARY_VAXA

(ary,
 %REF(vaxa))

Convert an INTEGER*2 array to VAX binary:
 return_status = CM50_TIMARY_VAXB

(ary,
 vaxb)

Convert an ASCII string to internal LCN:
 return_status = CM50_TIMASC_LCN

(%REF(asc),
 lcn)

Convert an ASCII string to an INTEGER*2 array:
 return_status = CM50_TIMASC_ARY

(%REF(asc),
 ary)

Convert an ASCII string to a European string:
 return_status = CM50_TIMASC_EURO

(%REF(asc),
 %REF(euro))

Convert an ASCII string to VAX display format:
 return_status = CM50_TIMASC_VAXA

(%REF(asc),
 %REF(vaxa))

CM50S User Manual 11-13 7/93

11.3.3

Convert an ASCII string to VAX binary:
 return_status = CM50_TIMASC_VAXB

(%REF(asc),
 vaxb)

Convert a European string to internal LCN:
 return_status = CM50_TIMEURO_LCN

(%REF(euro),
 lcn)

Convert a European string to an INTEGER*2 array:
 return_status = CM50_TIMEURO_ARY

(%REF(euro),
 ary)

Convert a European string to an ASCII string:
 return_status = CM50_TIMEURO_ASC

(%REF(euro),
 %REF(asc))

Convert a European string to VAX display format:
 return_status = CM50_TIMEURO_VAXA

(%REF(euro),
 %REF(vaxa))

Convert a European string to VAX binary:
 return_status = CM50_TIMEURO_VAXB

(%REF(euro),
 vaxb)

Convert VAX display format to internal LCN:
 return_status = CM50_TIMVAXA_LCN

(%REF(vaxa),
 lcn)

Convert VAX display format to an INTEGER*2 array:
 return_status = CM50_TIMVAXA_ARY

(%REF(vaxa),
 ary)

Convert VAX display format to an ASCII string:
 return_status = CM50_TIMVAXA_ASC

(%REF(vaxa),
 %REF(asc))

Convert VAX display format to a European string:
 return_status = CM50_TIMVAXA_EURO

(%REF(vaxa),
 %REF(euro))

Convert VAX display format to VAX binary:
 return_status = CM50_TIMVAXA_VAXB

(%REF(vaxa),
 vaxb)

CM50S User Manual 11-14 7/93

11.3.3

Convert VAX binary to internal LCN:
 return_status = CM50_TIMVAXB_LCN

(vaxb,
 lcn)

Convert VAX binary to an INTEGER*2 array:
 return_status = CM50_TIMVAXB_ARY

(vaxb,
 ary)

Convert VAX binary to an ASCII string:
 return_status = CM50_TIMVAXB_ASC

(vaxb,
 %REF(asc))

Convert VAX binary to a European string:
 return_status = CM50_TIMVAXB_EURO

(vaxb,
 %REF(euro))

Convert VAX binary to VAX display format:
 return_status = CM50_TIMVAXB_VAXA

(vaxb,
 %REF(vaxa))

11.3.3.2 Parameter Definitions for Convert Time Values

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

lcn—The name of an INTEGER*4 that contains a value representing internal LCN time to
the nearest second.

ary—The name of a 12-byte string (or array of 6 INTEGER*2 values) that contains a value
representing a date and time.

asc—The name of a CHARACTER*18 variable representing time in the format :
'mm/dd/yy hh:mm:ss '.

euro—The name of a CHARACTER*18 variable representing time in the format :
'dd/mm/yy hh:mm:ss '.

vaxa—The name of a CHARACTER*22 variable representing time in the format:
'dd-MON-yyyy hh:mm:ss', where MON represents the first three letters (in
upper case) of the English name of the month.

vaxb—The name of a 64-bit variable (array of 2 INTEGER*4s) that contains a value
representing internal VAX binary time.

CM50S User Manual 12-1 7/93

12

CM50S ADMINISTRATION (FORTRAN)
Section 12

This section discusses the programmatic calls that can be used to manage the ACPs and DDTs
installed in a CM50S system.

12.1 PROGRAMMATIC INTERFACES TO ACP OPERATIONS

A programmatic interface to all ACP Operations gives users programmatic access to the
same ACP functions that are available through the ACP Operations user interface. In order
to use the ACP Programmatic Interface, the user should include the ACP Include files
(CM50_FLAGS_INCLUDE.FOR and CM50_ACP_INCLUDE.FOR). These files define
data types and routines required by the Programmatic Interface calls. The following
sections discuss the ACP Programmatic Interface calls in detail.

12.1.1 Install ACP

This routine is called to install an ACP. The ACP can be installed under a different name
than the executable filename.

12.1.1.1 Example FORTRAN Call for Install ACP

return_status = CM50_ACP_INSTALL
(%REF(acp_name),
 %REF(process_name),
 %REF(mailbox_name),
 %REF(exe_path),
 mode,
 %REF(input_path),
 %REF(output_path),
 %REF(error_path),
 %REF(privilege),
 %REF(uic),
 priority,
 creprc_flags,
 %REF(quota_list),
 flags)

12.1.1.2 Parameter Definitions for Install ACP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the ACP to be installed. Must be specified.

CM50S User Manual 12-2 7/93

12.1.1

process_name—The CHARACTER*15 Name to be assigned to the created process. If set
to spaces, the ACP name will be used. Note: Each process must have an
unique name. The activation of an ACP will fail if a process with the specified
process_name is active on the system.

mailbox_name—A CHARACTER*40 Mailbox name (normally set to spaces) to receive a
termination message when the created process (ACP) is complete. This is a
temporary termination mailbox created by the Programmatic Interface and
ACPOPER utility. For more information, refer to the VMS System Services
Reference Manual. This mailbox parameter is applicable only when the ACP is
executed as a remote (detached) process. An ACP run interactively ignores the
mailbox parameter in the ACP table. The mailbox is created using VMS
defaults.

exe_path—CHARACTER*80 Full pathname of the executable file. If set to spaces, the
default is the executable file specified by the acp_name in the CM50$ACP
directory.

mode—BYTE value that specifies what mode to install the ACP in. The values are:

1 = TEST
2 = RESTRICTED
3 = NORMAL

input_path—CHARACTER*80 Pathname of the alternate input filename.

output_path—CHARACTER*80 Pathname of the alternate output filename. If left blank,
SYS$OUTPUT will be directed to the NULL device.

error_path—CHARACTER*80 Pathname of the alternate error filename. If left blank,
SYS$ERROR will be directed to the NULL device.

privilege—Privileges specification. Declared as RECORD /PRIV_MASK_TYPE/ assigns
special VMS privileges to the ACP. Set both components (.L0 and .L1) to zero
for a normal, unprivileged ACP.

uic—CHARACTER*12 name of user whose UIC is to be used when the ACP is executed
remotely. Only the first 12 characters are significant; the remainder should be
blank filled.

priority—INTEGER*4 specifying the VMS priority (0-30) of the ACP process.

creprc_flags—INTEGER*4 VMS Create Process flags specification. Normally set to zero.

quota_list—Quotas specification. Declare as an array of RECORD /QUOTA_TYPE/. The
last element of the array must have a QUOTA_TAG = zero. To use the system
defaults, pass a single element with a value of zero.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_ACIDP_ACTIVATE (required to activate an ACP which is
 connected to an ACIDP)

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-3 7/93

12.1.2

12.1.2 Uninstall ACP

This routine is called to uninstall an ACP.

12.1.2.1 Example FORTRAN Call for Uninstall ACP

return_status = CM50_ACP_UNINST
(%REF(acp_name),
 flags)

12.1.2.2 Parameter Definitions for Uninstall ACP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the ACP that is to be uninstalled.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-4 7/93

12.1.3

12.1.3 Activate ACP

This routine is called to activate an installed ACP under a mode specified by the user.

12.1.3.1 Example FORTRAN Call for Activate ACP

return_status = CM50_ACP_ACT
(%REF(acp_name),
 mode,
 flags)

12.1.3.2 Parameter Definitions for Activate ACP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the ACP to be activated.

mode—INTEGER*2 that specifies whether the ACP is to be activated as a REMOTE
detached process (mode = 0) or as an INTERACTIVE subprocess (mode = 1).

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-5 7/93

12.1.4

12.1.4 Deactivate ACP

This routine is called to deactivate an installed ACP, placing it in a specified state.

12.1.4.1 Example FORTRAN Call for Deactivate ACP

return_status = CM50_ACP_DEACTIVATE
(%REF(acp_name),
 state,
 flags)

12.1.4.2 Parameter Definitions for Deactivate ACP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the running ACP to be deactivated.

state—INTEGER*2 that specifies whether to set the ACIDP to an ABORT (state = 0) or
OFF/DELAY (state = 3).

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-6 7/93

12.1.5

12.1.5 Connect ACP to an ACIDP

This routine is called to connect an installed ACP to an ACIDP on the LCN.

12.1.5.1 Example FORTRAN Call for Connect ACP to an ACIDP

return_status = CM50_ACP_CONNECT
(%REF(acp_name),
 %REF(acidp_name),
 cg_port_number,
 flags)

12.1.5.2 Parameter Definitions for Connect ACP to an ACIDP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the ACP to be connected.

acidp_name—The CHARACTER*16 name of the ACIDP to connect the to the ACP.

cg_port_number—INTEGER*2 that specifies which CG (1-4) contains the ACIDP.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-7 7/93

12.1.6

12.1.6 Disconnect ACP from an ACIDP

This routine is called to disconnect an installed ACP from an ACIDP on the LCN.

12.1.6.1 Example FORTRAN Call for Disconnect ACP from an ACIDP

return_status = CM50_ACP_DISCON
(%REF(acp_name),
 flags)

12.1.6.2 Parameter Definitions for Disconnect ACP from an ACIDP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the ACP to be disconnected.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-8 7/93

12.1.7

12.1.7 Change ACP Mode

This routine is called to change the installation mode of an ACP.

12.1.7.1 Example FORTRAN Call for Change ACP Mode

return_status = CM50_ACP_CHG_MODE
(%REF(acp_name),
 mode,
 flags)

12.1.7.2 Parameter Definitions for Change ACP Mode

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the ACP whose mode is to be changed.

mode—INTEGER*2 that specifies the new mode of the ACP. Permitted values are:
1 = TEST
2 = RESTRICTED
3 = NORMAL

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-9 7/93

12.1.8

12.1.8 Get ACP Summary

This routine is called to get summary information for an installed ACP. The output
optionally can be sent to the printer.

12.1.8.1 Example FORTRAN Call for Get ACP Summary

return_status = CM50_ACP_SUM
(%REF(acp_name),
 %REF(acp_summary),
 flags)

12.1.8.2 Parameter Definitions for Get ACP Summary

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

acp_name—The CHARACTER*12 name of the ACP for which summary information is to
be returned.

acp_summary—This parameter specifies where the summary information is to be returned.
Declared as a RECORD /ACP_SUMMARY_STRUCT/; the specific contents
are described in the CM50_ACP_INCLUDE file.

Note that the ACP_SUMMARY_STRUCT record can vary for different
releases of CM50S, so programs using this call should be recompiled when
CM50S is upgraded.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-10 7/93

12.1.9

12.1.9 Get List of ACPs

This routine is called to get a list of installed ACPs. Up to 400 ACPs will be reported in a
single call, if more than 400 ACPs are installed on a system, repeating the call with a
start_rec of 1, 401 and 801 will return additional ACPs until the system maximum of 1000
have been returned.

12.1.9.1 Example FORTRAN Call for Get List of ACPs

RETURN_STATUS = CM50_ACP_LISTALL
(start_rec,
 end_rec,
 total_returned,
 %REF(list),
 flags)

12.1.9.2 Parameter Definitions for Get List of ACPs

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

start_rec—An INTEGER*4 specifying the starting (lowest) record number within the ACP
status table to be reported.

end_rec—An INTEGER*4 specifying the ending (highest)record number within the ACP
status table to be reported.

total_returned—An INTEGER*4 value specifying the number of records actually returned.
This may be less than the number requested if the end of the table was reached.

list—An array of RECORD /ACP_SUMMARY_STRUCT/ receives the data requested. It
must be dimensioned large enough to for the number of records requested (1 +
end_rec - start_rec).

Note that the ACP_SUMMARY_STRUCT record can vary for different
releases of CM50S, so programs using this call should be recompiled when
CM50S is upgraded.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-11 7/93

12.2

12.2 PROGRAMMATIC INTERFACE TO DDT OPERATIONS

All CM50S DDT operations except for Edit can be accessed through the Programmatic
Interface. All Programmatic Interface routines are called as functions, and the status of
each call is returned as the value of the function call. The calling program should include
both CM50_FLAGS_INCLUDE.FOR and CM50_DDT_INCLUDE.FOR.

Exception handling is provided by standard VMS condition handling routines or by custom
routines written by the user. The Programmatic calls for all DDT functions are described in
detail in the following paragraphs.

12.2.1 Build/Rebuild DDT

This routine is called to build, or rebuild, a DDT binary file from a DDT source file. Flag
options include CG residence for the DDT and DDT Rebuild.

12.2.1.1 Example FORTRAN Call for Build/Rebuild DDT

return_status = CM50_DDT_BUILD
(%REF(ddt_name),
 %REF(source_path),
 cg_port_number,
 %REF(description),
 flags)

12.2.1.2 Parameter Definitions for Build/Rebuild DDT

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT to be used to retrieve data. It may be
left blank if the full source path is specified.

source_path—CHARACTER*80 pathname of the DDT source file. If set to spaces, the
default is the DDT name in the current directory.

cg_port_number—INTEGER*2 which specifies which CG the DDT is associated with.

description—A CHARACTER*36 text description of the DDT being built. Note that if the
DDT source file specifies a description, that description will be used and the
value of this argument is ignored.

CM50S User Manual 12-12 7/93

12.2.2

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_REBUILD_DDT
CM50$M_DMP_DDT_ERRORS
CM50$M_MSGON
CM50$M_NO_SOURCE_DEBUG
CM50$M_CG_RES
CM50$M_WRITE_VT

NOTE

If the DDT (or another DDT by the same name) has already been built, then the
CM50$M_REBUILD_DDT must be set ON.

For a new DDT, the CM50$M_REBUILD_DDT flag must be OFF.

12.2.2 Delete DDT

This routine is called to delete a DDT that already exists in the DDT table. If the DDT is
installed in the CG, it is removed.

12.2.2.1 Example FORTRAN Call for Delete DDT

return_status = CM50_DDT_DELETE
(%REF(ddt_name),
 flags)

12.2.2.2 Parameter Definitions for Delete DDT

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT to be deleted.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-13 7/93

12.2.3

12.2.3 Get DDT Summary

This routine is called to summarize the specifications of a particular DDT.

12.2.3.1 Example FORTRAN Call for Get DDT Summary

return_status = CM50_DDT_SUM
(%REF(ddt_name),
 %REF(summary),
 flags)

12.2.3.2 Parameter Definitions for Get DDT Summary

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT that is to be summarized.

summary—This argument (declared as RECORD /DDT_SUMMARY_STRUCT/) receives
the requested information. Its contents are:

- Name of the DDT being summarized
- Pathname of the DDT's source file
- Description of the DDT
- Date that the DDT was first built
- Name of the original builder
- Most recent time the DDT was modified
- Installation status of the DDT
- Number of points in the DDT
- DDT Type—Input, Generic Input, Output, Generic Output, or History
- CG number that the DDT is associated with
- Whether or not DDT is installed in CG
- Name of ACIDP DDT is connected to
- Prefetch triggers

Note that the DDT_SUMMARY_STRUCT record can vary for different
releases of CM50S, so programs using this call should be recompiled when
CM50S is upgraded.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-14 7/93

12.2.4

12.2.4 Get List of DDTs

This routine is called to retrieve a list of DDT summaries. Up to 500 DDT summaries can
be returned in a single call. More than 500 DDTs can be retrieved by repeating this call
with start_record set to 1, 501, 1001, etc., on successive calls.

12.2.4.1 Example FORTRAN Call for Get List of DDTs

return_status = CM50_DDT_LIST
(start_record,
 end_record,
 count,
 %REF(list),
 flags)

12.2.4.2 Parameter Definitions for Get List of DDTs

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

start_record—This INTEGER*2 specifies the number of the first DDT to retrieve.

end_record—This INTEGER*2 specifies the number of the last DDT to retrieve.

count—This INTEGER*2 receives the actual number of DDT records returned to the
caller.

list—This argument will receive an array of DDTs information. Declare as an array of up
to 500 RECORD /DDT_SUMMARY_STRUCT/. The information returned for
each record is

- Name of the DDT being summarized
- Pathname of the DDT's source file
- Description of the DDT
- Date that the DDT was first built
- Name of the original builder
- Most recent time the DDT was modified
- Installation status of the DDT
- Number of points in the DDT
- DDT Type—Input, Generic Input, Output, Generic Output, or History
- CG number that the DDT is associated with
- Tells whether DDT is installed in CG
- Name of ACIDP DDT is connected to

Note that the DDT_SUMMARY_STRUCT record can vary for different
releases of CM50S, so programs using this call should be recompiled when
CM50S is upgraded.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The flags
that apply to this call are CM50$M_HANDLER and CM50$M_MSGON.

CM50S User Manual 12-15 7/93

12.2.5

12.2.5 Get DDT Detail

This routine is called to retrieve the detail information for the named DDT.

12.2.5.1 Example FORTRAN Call for Get DDT Detail

return_status = CM50_DDT_DETAIL
(%REF(ddt_name),
 %REF(summary),
 %REF(data),
 %REF(points),
 %REF(details),
 %REF(values),
 flags)

12.2.5.2 Parameter Definitions for Get DDT Detail

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—CHARACTER*9 name of the DDT being summarized.

summary—A record declared as RECORD /DDT_SUMMARY_STRUCT/ containing:

DDT_Name Name of the DDT being summarized
DDT_Sourc_Loc Pathname to the DDT’s source file
DDT_Desc Description of the DDT
Built_On Date that the DDT was first built
Built_By Tells who the original builder was
Modified_On Most recent time the DDT was modified
DDT_Status Installation status of the DDT
Number_of_Pts Number of points in the DDT
DDT_Type Input, Output, or History DDT
CG_Port_Num CG that the DDT is associated with
In_CG Tells whether DDT is installed in CG

Note that the DDT_SUMMARY_STRUCT record can vary for different
releases of CM50N, so programs using this call should be recompiled when
CM50S is upgraded.

data—A record declared as RECORD /DATA_TYPE_STRUCT/ containing:

DDT_Types Names data types found in the DDT
TTL_Each_Type Counts for each data type found

CM50S User Manual 12-16 7/93

12.2.5

points—An array of up to 300 RECORD /POINTS_STRUCT/ (one record for each point
in the DDT) containing:

Point_Name Point name
Param_Name Parameter name (with index)

Note that the POINTS_STRUCT record can vary for different releases of
CM50N, so programs using this call should be recompiled when CM50S is
upgraded.

details—An array of up to 300 records (one per point) declared as RECORD
/DETAIL_STRUCT/ containing:

Process_Type Real, Integer, ASCII, Enumeration, or Ordinal
Dest_Src Destination or Source offset value
Test Use test Y/N and test data value
BVS Bad value substitution Y/N and data
Algo Algorithm number selection and data
Limits Limit check Y/N and data

values—An array of up to 300 records (one per point) declared as RECORD
/SUBST_STRUCT/. This argument will contain useful information only if full
Table Processing (including a Values Table) is being used with the DDT. It
contains the values from the last use of the DDT showing the values before and
after table processing conversions. Any LCN Real data Bad Values are
returned as zeros.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-17 7/93

12.2.6

12.2.6 Connect DDT to ACIDP

This routine is called to connect a DDT to an ACIDP for the purpose of enabling the Data
Prefetch Function in the CG. The ACIDP-ACP connection must already exist and the DDT
must be CG-resident and not already connected to an ACIDP.

The ddt_name, and either the acp_name, or acidp_name parameters are required in
the call. The Schedule, PPS and Demand parameters also are required.

12.2.6.1 Example FORTRAN Call for Connect DDT to ACIDP

return_status = CM50_DDT_CONNECT
(%REF(ddt_name),
 %REF(acidp_name),
 %REF(acp_name),
 %REF(trigger),
 flags)

12.2.6.2 Parameter Definitions for Connect DDT to ACIDP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT that is to be connected to an ACIDP.

acidp_name—The CHARACTER*16 name of the ACIDP to which the DDT is to be
connected. The acidp_name can be blanks if a valid acp_name is
provided.

acp_name—The CHARACTER*12 name of the ACP connected to the ACIDP to which the
DDT is to be connected. The acp_name can be blanks if a valid
acidp_name is provided

trigger—CHARACTER*1 code with the three high-order bits assigned these meanings:
• Bit 7 : Schedule—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."
• Bit 6 : PPS (Point_Process_Special)—one (1) = "set prefetch on" and zero

(0) = "set prefetch off.”
• Bit 5 : Demand—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-18 7/93

12.2.7

12.2.7 Disconnect DDT from ACIDP

This routine is called to disconnect a DDT from an ACIDP. At least one of the three
parameters, ddt_name, acp_name, or acidp_name is required in the call (the others
are passed as blanks). The ACIDP-ACP-DDT connection must already exist.

12.2.7.1 Example FORTRAN Call for Disconnect DDT from ACIDP

return_status = CM50_DDT_DISCONNECT
(%REF(ddt_name),
 %REF(acidp_name),
 %REF(acp_name),
 flags)

12.2.7.2 Parameter Definitions for Disconnect DDT from ACIDP

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT that is to be disconnected. Can be
blanks if either acidp_name or acp_name contains a valid name.

acidp_name—The CHARACTER*16 name of the ACIDP from which the DDT is to be
disconnected. Can be blanks if either ddt_name or acp_name contains a
valid name.

acp_name—The CHARACTER*12 name of the ACP connected to the ACIDP from which
the DDT is to be disconnected. Can be blanks if either ddt_name or
acidp_name contains a valid name.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-19 7/93

12.2.8

12.2.8 Modify Triggers

This routine is called to modify the Triggers associated with a DDT that is connected to an
ACIDP. At least one of the three parameters, ddt_name, acp_name, or acidp_name,
is required in the call (the others are passed as blanks). The ACIDP-ACP-DDT connection
must already exist.

12.2.8.1 Example FORTRAN Call for Modify Triggers

return_status = CM50_DDT_TRIGGERS
(%REF(ddt_name),
 %REF(acidp_name),
 %REF(acp_name),
 %REF(trigger),
 flags)

12.2.8.2 Parameter Definitions for Modify Triggers

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT that is connected to the specified
ACIDP. Can be blanks if either acidp_name or acp_name contains a valid
name.

acidp_name—The CHARACTER*16 name of the ACIDP to which the specified DDT is
connected. Can be blanks if either ddt_name or acp_name contains a valid
name.

acp_name—The CHARACTER*12 name of the ACP connected to the specified ACIDP.
Can be blanks if either ddt_name or acidp_name contains a valid name.

trigger—CHARACTER*1 code with the three high-order bits assigned these meanings:
• Bit 7 : Schedule—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."
• Bit 6 : PPS (Point_Process_Special)—one (1) = "set prefetch on" and zero

(0) = "set prefetch off.”
• Bit 5 : Demand—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-20 7/93

12.2.9

12.2.9 Install DDT Into CG

This routine is called to install the DDT into the CG.

12.2.9.1 Example FORTRAN Call for Install DDT Into CG

return_status = CM50_DDT_INSTALL
(%REF(ddt_name),
 flags)

12.2.9.2 Parameter Definitions for Install DDT Into CG

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT to be installed into the CG.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

12.2.10 Uninstall DDT from CG

This routine is called to remove a DDT from the CG.

12.2.10.1 Example FORTRAN Call for Uninstall DDT from CG

return_status = CM50_DDT_UNINST
(%REF(ddt_name),
 flags)

12.2.10.2 Parameter Definitions for Uninstall DDT from CG

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

ddt_name—The CHARACTER*9 name of the DDT to be removed from the CG.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3. The
following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 12-21 7/93

12.3

12.3 PROGRAMMATIC INTERFACE TO CG DATABASE

These functions return information about the current points configured in the database of
any CG connected to the CM50. The language specific declarations for these functions are
contained in CM50_CGDATA_INCLUDE.for

12.3.1 Resident DDT Summary

This function returns a list of all of the DDTs currently resident in the CG.

12.3.1.1 Example FORTRAN Function Call for Resident DDT List

return_status = CM50_CG_RDDT
(cg_port_num,
 number_of_values,
 %REF(ddt_list))

12.3.1.2 Parameter Definitions for Resident DDT List

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

cg_port_num—The name of an INTEGER*2 identifying the CG to be accessed.

number_of_values—The name of an INTEGER*4 that returns the number of DDTs
currently installed as resident in the CG.

ddt_list—The name of an array of up to 40 CHARACTER*10 variables that will contain
the names of the resident DDTs.

CM50S User Manual 12-22 7/93

12.3.2

12.3.2 Calculated Results Data Points List

This function returns a list of all of the CRDPs currently configured in the CG.

12.3.2.1 Example FORTRAN Call for CRDP List

return_status = CM50_CG_CRDP
(cg_port_num,
 number_of_values,
 %REF(crdp_list))

12.3.2.2 Parameter Definitions for CRDP List

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

cg_port_num—The name of an INTEGER*2 identifying the CG to be accessed.

number_of_values—The name of an INTEGER*4 that returns the number of CRDPs
currently configured in the CG.

crdp_list—The name of an array of 500 CHARACTER*8 variables that will contain the
names of the CRDPs.

Note that the CRDP_LIST structure can vary for different releases of CM50S,
so programs using this call should be recompiled when CM50S is upgraded.

CM50S User Manual 12-23 7/93

12.3.3

12.3.3 ACIDP Detail

This function returns information about the current status of a specific ACIDP.

12.3.3.1 Example FORTRAN Call for ACIDP Detail

return_status = CM50_CG_ADETAIL
(cg_port_num,
 %REF(acidp_record))

12.3.3.2 Parameter Definitions for ACIDP Detail

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

cg_port_num—The name of an INTEGER*2 identifying the CG to be accessed.

number_of_values—The name of an INTEGER*4 that returns the number of DDTs
currently installed as resident in the CG.

acidp_record—The name of a record declared as RECORD /CM50_ACIDP_REC/ with the
following format:

ACIDP : 8-character name of the ACIDP
DESC : 24-character descriptor of the ACIDP
UNIT : 2-character LCN Unit to which the ACIDP is assigned
KEYWORD : 8-character LCN alias for the ACIDP
ACP : 12-character name of the connected ACP
MODE : 8-character enumerated value of the Program Mode
EXEC : 8-character enumerated value of the Execution State
ACCES : 8-character enumerated value of the Data Access Mode
DDT : 9-character name of attached DDT
ACTYP : 8-character enumerated value of the Activation Type
INHIB : 8-character enumerated value of the Inhibit flag
STIME : 8-character value of the Scheduled Start Time
PERIOD : 8-character value of the Schedule Cycle Period
NXTTIM : 18-character value of the Next Scheduled Activation Time
TAKEIP : 4-character enumerated value of the Take_Initial_Path flag
RUNINIT : 4-character enumerated value of the Run_on_Initialization flag
CONFWT : 4-character enumerated value of the Confirm_Wait flag
CONFRQ : 4-character enumerated value of the Confirm_Request flag
SCH : 4-character enumerated value of the Schedule Activation flag
PPS : 4-character enumerated value of Program_Special Activation flag
DMD : 4-character enumerated value of Operator_Demand Activation flag
GROUP : unsigned INTEGER*2 value of the Group code.

Note that the CM50_ACIDP_REC can vary for different releases of CM50N,
so programs using this call should be recompiled when CM50S is upgraded.

CM50S User Manual 12-24 7/93

12.3.4

12.3.4 ACIDP Summary

This function returns a list of all of the ACIDPs configured in the CG.

12.3.4.1 Example FORTRAN Call for ACIDP Summary

return_status = CM50_CG_ACIDP
(cg_port_num,
 number_of_values,
 %REF(acidp_list),
 %REF(acp_list),
 mode_list,
 state_list,
 %REF(ddt_list),
 trigger_list)

12.3.4.2 Parameter Definitions for ACIDP Summary

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and a listing of all assigned return code
values.

cg_port_num—The name of an INTEGER*2 identifying the CG to be accessed.

number_of_values—The name of an INTEGER*4 that returns the number of ACIDPs
currently configured in the CG.

acidp_list—The name of an array of 250 CHARACTER*8 variables that will contain the
names of the resident ACIDPs.

Note that the ACISP_LIST can vary for different releases of CM50S, so
programs using this call should be recompiled when CM50S is upgraded.

acp_list—The name of an array of 250 CHARACTER*12 variables that will contain the
names of the ACPs connected to the corresponding ACIDP.

mode_list—The name of an array of 250 INTEGER*2 variables that will contain the integer
code for the installation mode of each ACIDP.

state_list—The name of an array of 250 INTEGER*2 variables that will contain the integer
code for the current execution state of each ACIDP.

ddt_list—The name of an array of 250 CHARACTER*10 variables that will contain the
names of the DDT (if any) connected to the corresponding ACIDP.

trigger_list—The name of an array of 250 Trigger records,where each Trigger record is an
array of 3 boolean INTEGER*2 values (indicating by 1 or 0 whether or not the
connected DDT will be prefetched when the ACIDP is triggered on Schedule,
Operator_Demand, or PPS).

CM50S User Manual 12-25 7/93

12.3.5

12.3.5 LCN Configuration

This function returns information about the LCN configuration parameters for a specified
CG. Note that the specified CG must be running TDC 3000 release 400 or later for this
function to get a successful return_status.

12.3.5.1 Example FORTRAN Call for LCN Configuration

return_status = CM50_CG_CONFIG
(cg_prot_num,
 %REF(CGconfig_record))

12.3.5.2 Parameter Definitions for LCN Configuration

return_status—The name of an Integer*4 to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for an
explanation and a listing of all assigned return code values.

cg_prot_number—The name of an INTEGER*2 identifying the CG (1 to 4) to be accessed.

cgconfig_record—The name of a record declared as RECORD /CM50_CGCONFIG_REC/
with the following fields:

LCN_VER : INTEGER*2 TDC 3000 software release level
LCN_REV : INTEGER*2 TDC 3000 revision level (future)
LCN_NODE : INTEGER*2 LCN node number of this CG
CG_VER : INTEGER*2 CG personality software release
CG_REV : INTEGER*2 CG personality software revision
TIME_SYNCH : INTEGER*2 CG Time synchronization period
CONFIRM_TIME : INTEGER*2 CG Time out for message confirm
CG_STATION : INTEGER*2 HDLC station number of the LCN
T1_TIME : INTEGER*2 CG T1 timer
N2_COUNT : INTEGER*2 CG Retry count
FLOAT_FORMAT : INTEGER*2 Floating point format (should be 2 for IEEE)
BAUD_RATE : INTEGER*2 enumeration (0= 1200; 1= 1760, 3= 2400,

5= 4800, 7= 9600, 8= 19200, 13= 38400,
14= 56700, 15= 76800)

TAG_SIZE : INTEGER*2 (0 for 8-character maximum, 1 for 16-
characters)

HM_USER_MIN : INTEGER*2 number of minutes in a user average
HM_SHIFT_WK : INTEGER*2 number of shifts per week
HM_START_HR : INTEGER*2 daily/weekly averages starting hour (0 starts

Sunday morning just after midnight)
HM_MONTH_TYP : INTEGER*2 (0 is calendar, 1 is 28-day cycles)
PINID : CHARACTER*2 identifier of this LCN for Network

Gateway routing
DESCR : CHARACTER*40 CG descriptor on the LCN

CM50S User Manual 12-26 7/93

12.4

12.4 PROGRAMMATIC INTERFACE TO FILE TRANSFER

These functions execute LCN file transfer commands programmatically. The calling
program must include both the CM50_FLAGS_INCLUDE.FOR and the
CM50_FTF_INCLUDE.FOR files in its source to insure that the functions and arguments
are properly declared.

The DATAOUT facility allows the user, when requesting the execution of specific file
transfer transactions, to place relevant data in the dataout or catalog file. This dataout file is
a shared file by all concurrent users of file transfer. For example, user "Jones" requests a
CM50_FILE_CATALOG transaction, the results of which are placed into the current
dataout file. User "Smith" then requests a CM50_VOLUME_CATALOG transaction.
These results also are placed into the same (current) dataout file.

CM50_FILE_CATALOG and CM50_VOLUME_CATALOG are the only file transfer
operations that require a dataout file. Other file transfer transactions treat dataout as an
option for journalizing activity.

12.4.1 Read LCN File

This procedure will transfer a single file from an LCN NET volume to CM50S. Wildcard
transfers of files are not supported. This procedure also creates an "LCN ATTRIBUTES"
file for every LCN file that is transferred. Multiple copies of the same file, within the same
VMS directory, are not allowed. The version number of the attributes file should remain 1.
For more information regarding file attributes refer to the WRITE file procedure.

12.4.1.1 Example FORTRAN Call for File Read

Return_status = CM50_LCN_READ
(%REF(lcn_file),
 %REF(host_file),
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

12.4.1.2 Parameter Definitions for File Read

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file to be transferred from the
LCN. Use the form NET>VDIR>FILENAME.xx.

CM50S User Manual 12-27 7/93

12.4

host_file—VMS pathname (CHARACTER*80) to be used to store the LCN file (and its
associated attributes file). If no extension is specified, the VMS default of
.DAT will be used. If no directory is specified, the user's current default
directory will be used. The LCN attributes file uses the following naming
convention: The filename suffix or extension is preceded by an under-bar
character and followed by a period "LA" extension. For example; the LCN
filename of FORMULAE.CL would have an attribute file of
FORMULAE_CL.LA. Note: The transfer will fail if the pathname matches
that of an existing file.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.2 Write LCN File

This procedure will transfer a single file from CM50S to LCN NET volume. An LCN
ATTRIBUTES file is required for every LCN file that is transferred. Multiple copies of an
LCN FILE within the same VMS directory are allowed. These files would have been
created by modifying the original LCN FILE which was transferred as version 1. The
version number of the attributes file should be 1.

12.4.2.1 Example FORTRAN Call for File Write

Return_status = CM50_LCN_WRITE
(%REF(host_file),
 %REF(lcn_file),
 %REF(acidp_name),
 file_code,
 cg_port_number,
 lcn_sts,
 flags)

12.4.2.2 Parameter Definitions for File Write

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

CM50S User Manual 12-28 7/93

12.4.2

host_file—VMS pathname (CHARACTER*80) of the file to be transferred to the LCN If
no directory is specified, the user's current default directory will be used. The
associated LCN attributes file (with an extension of .LA) must be in the same
directory.

lcn_file—LCN pathname (CHARACTER*28) where the file is to be stored on the LCN.
Use the form NET>VDIR>FILENAME.xx.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

file_code—Name of an INTEGER*2 variable that determines whether the LCN file is to be
replaced if it already exists at the LCN NET volume. The default is to abort the
write if the file already exists. The values are:

0: Replace existing file
1: Return an error if the file already exists.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.3 List LCN File Attributes

This request will retrieve the file attributes for a specific LCN file. Wildcard characters,
and dataout options are not permitted. The file attributes are :

• Lcn file type—contiguous or linked
• Lcn file protection
• Record size
• Block size
• Lcn file configuration
• Lcn file revision
• Directory timestamp (Mo/Dd/Yr Mm:Ss)
• Logical number of blocks
• Logical number of records
• File Descriptor
• Starting Sector
• Ending Sector

CM50S User Manual 12-29 7/93

12.4.3

12.4.3.1 Example FORTRAN Call for File Attributes

Return_status = CM50_ATTR_LIST
(%REF(lcn_file),
 %REF(acidp_name),
 %REF(attributes),
 cg_port_number,
 lcn_sts,
 flags)

12.4.3.2 Parameter Definitions for File Attributes

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file whose attributes are to be
returned. Use the form NET>VDIR>FILENAME.xx.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

attributes—Buffer (declared as RECORD /FILE_ATTRIBUTE_BLOCK/, and described in
CM50$LIB:CM50_FTF_INCLUDE.for) that will receive requested data.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.4 List LCN File Names

This transaction will retrieve up to 1180 file names and extensions from an LCN NET
volume. If the number of files exceeds the buffer capacity of 1180, then multiple requests
by directory, file type extension, or filename syntax must be used. Wildcards are
permitted.

12.4.4.1 Example FORTRAN Call for List Files

Return_status = CM50_FILE_LIST
(%REF(lcn_file),
 %REF(acidp_name),
 %REF(file_list,
 cg_port_number,
 lcn_sts,
 flags)

CM50S User Manual 12-30 7/93

12.4.4

12.4.4.2 Parameter Definitions for List Files

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file to be transferred from the
LCN. Use the form NET>VDIR>FILENAME.xx. Wildcards (*) are
permitted for the file name and/or extension. Formats are:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

file_list—Buffer (declared as RECORD /FILE_LIST_ARRAY/, and described in
CM50$LIB:CM50_FTF_INCLUDE.for) that will receive the list of file names
and attributes.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.5 List LCN Volumes/Directories

This transaction will fetch from the History Module volume and directory names and sector
usage figures. Wildcards and options are not permitted for this transaction type.

12.4.5.1 Example FORTRAN Call for List Volumes

Return_status = CM50_HM_LISTF
(%REF(cn_device),
 %REF(acidp_name),
 %REF(vol_record),
 cg_port_number,
 lcn_sts,
 flags)

CM50S User Manual 12-31 7/93

12.4.5

12.4.5.2 Parameter Definitions for List Volumes

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_device—LCN pathname (CHARACTER*28) identifying the device to be cataloged.
Use the form PN:nn where nn is the lcn node number.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

vol_record—Buffer (declared as RECORD /VOLUME_STRUCTURES/, and described in
CM50$LIB:CM50_FTF_INCLUDE.for) that will receive the Volume and
directory information. This information includes:

• Number of Volumes
• Number of Sectors / Device
• Sectors in Use / Device
• Volume Name(s)
• Directory Name(s) on each volume

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.6 Cataloging LCN Files to Dataout

This file transfer transaction will list the LCN FILE ATTRIBUTES of one or more files
into the current dataout file. The dataout file must have been previously established. The
absence of a dataout specification will result in an error return.

Further processing requires that the dataout or catalog file be transferred to the VAX using
the CM50_LCN_READ programmatic function.

12.4.6.1 Example FORTRAN Call for File Catalog

Return_status = CM50_FILE_CATALOG
(%REF(lcn_file),
 %REF(cat_file),
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

CM50S User Manual 12-32 7/93

12.4.6

12.4.6.2 Parameter Definitions for File Catalog

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file to be transferred from the
LCN. Use the form NET>VDIR>FILENAME.xx. Wildcards (*) are
permitted for the file name and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

Optional suffixes will increase the amount of information returned:
-FD will cause file descriptors to be listed
-REC will cause record and block data to be listed

cat_file—LCN pathname (CHARACTER*28) identifying the file to receive the catalog.
Use the form NET>VDIR>FILENAME.xx.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.7 Cataloging LCN Volumes to Dataout

This file transfer transaction will list the LCN Volumes and Directories for all History
modules on the NET or for a specific History Module. The dataout file must have been
previously established. The absence of a dataout specification will result in an error return.

12.4.7.1 Example FORTRAN Call for Volume Catalog

Return_status = CM50_VOLUME_CATALOG
(%REF(lcn_device),
 %REF(cat_file),
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

CM50S User Manual 12-33 7/93

12.4.7

12.4.7.2 Parameter Definitions for Volume Catalog

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_device—LCN pathname (CHARACTER*28) identifying the device to be cataloged.
Use the form NET or PN:nn where nn is the lcn node number.

cat_file—LCN pathname (CHARACTER*28) identifying the file to receive the catalog.
Use the form NET>VDIR>FILENAME.xx.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.8 LCN File Copy

This file transfer transaction will copy a single file or all files from one NET volume to
another Net volume. The -D option is supported for journalizing all copies to a dataout
file. The dataout file must have been previously established. Wildcards are permitted;
however, the destination suffix must always be the same as the source suffix. Note that
using the -D option without having previously defined a dataout path will result in an error
and the copy function will not be completed.

12.4.8.1 Example FORTRAN Call for LCN File Copy

Return_status = CM50_LCN_COPY
(%REF(lcn_file),
 %REF(out_file),
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

CM50S User Manual 12-34 7/93

12.4.8

12.4.8.2 Parameter Definitions for LCN File Copy

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file to be copied. Use the
form NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file
name and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_file—Recipient filename (CHARACTER*28) specifying the pathname of the new file.
The actions will be journalized if a DATAOUT file has been enabled and the

"-D" option suffix is appended to the filename.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

12.4.9 LCN File Move

This file transfer transaction will move a single file or all files from one directory to another
directory within the same NET volume. Wildcards are permitted and the -D option is
supported for journalizing all moves to a dataout file. The dataout file must have been
previously established. Note that using the -D option without having previously defined a
dataout path will result in an error and the move function will not have been completed.

12.4.9.1 Example FORTRAN Call for LCN File Move

Return_status = CM50_LCN_MOVE
(%REF(lcn_file),
 %REF(out_directory),
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

CM50S User Manual 12-35 7/93

12.4.9

12.4.9.2 Parameter Definitions for LCN File Move

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file to be moved. Use the
form NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file
name and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_directory—Directory name (CHARACTER*28) specifying the directory to receive the
moved file. This directory must be on the same HM volume as the original file.
(The file name and extensions will remain unchanged.) The actions will be
journalized if a DATAOUT file has been enabled and the " -D" option suffix is
appended to the filename.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

CM50S User Manual 12-36 7/93

12.4.10

12.4.10 LCN File Rename

This file transfer transaction will rename a single file or all files on the History Module.
Wildcards are permitted and the -D option is supported for journalizing all renames to a
dataout file. The dataout file must have been previously established. Note that using the
-D option without having previously defined a dataout path will result in an error and the
rename function will not have been completed.

12.4.10.1 Example FORTRAN Call for LCN File Rename

Return_status = CM50_LCN_RENAME
(%REF(lcn_file),
 %REF(out_file),
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

12.4.10.2 Parameter Definitions for LCN File Rename

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file to be renamed. Use the
form NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file
name and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_file—Recipient filename (CHARACTER*28) specifying the new file name. (The
directory and extensions will remain unchanged.) The actions will be
journalized if a DATAOUT file has been enabled and the " -D" option suffix is
appended to the filename.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

CM50S User Manual 12-37 7/93

12.4.11

12.4.11 LCN File Delete

This file transfer transaction will delete a single file or all files from the specified volume on
the History Module. Wildcards are permitted and the -D option is supported for
journalizing all deleted files to a dataout file. The dataout file must have been previously
established. Note that using the -D option without having previously defined a dataout
path will result in an error and the delete file function will not be completed.
Once deleted the file cannot be recovered.

12.4.11.1 Example FORTRAN Call for LCN File Delete

Return_status = CM50_LCN_DELETE
(%REF(lcn_file),
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

12.4.11.2 Parameter Definitions for LCN File Delete

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (CHARACTER*28) identifying the file to be copied. Use the
form NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file
name and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

The actions will be journalized if a DATAOUT file has been enabled and the
" -D" option suffix is appended to the pathname.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

CM50S User Manual 12-38 7/93

12.4.12

12.4.12 LCN Directory Maintenance

These file transfer transactions will create or delete a directory under a volume on the
History Module. No wildcards characters or options are permitted.

12.4.12.1 Example FORTRAN Call for Directory Maintenance

Return_status = CM50_LCN_DIRECTORY
(%REF(lcn_directory),
 action,
 %REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

12.4.12.2 Parameter Definitions for Directory Maintenance

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

lcn_directory—LCN pathname (CHARACTER*28) identifying the LCN directory to be
created or deleted. Use the form NET>VDIR> DIR (Note the space delimiter
before the directory name.)

action—An INTEGER*2 variable that specifies whether the named directory is to be
created or deleted. The acceptable values are:

0 = create_directory
1 = delete_directory

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

CM50S User Manual 12-39 7/93

12.4.13

12.4.13 Dataout Status

The dataout function allows the user, when requesting the execution of specific file transfer
transactions, to place relative data in the dataout or catalog file. This dataout file is a shared
file by all concurrent users of file transfer. For example, user "Jones" requests a
CM50_FILE_CATALOG transaction, the results of which are placed into the current
dataout file. User "Smith" then requests a CM50_VOLUME_CATALOG transaction.
These results also are placed into the same (current) dataout file. The dataout file may be
transferred to the VAX host using a CM50_LCN_READ request. The
CM50_DATA_OUT transaction is provided to enable, disable, or query the file transfer
dataout status.

12.4.13.1 Example FORTRAN Call for DATAOUT status

Return_status = CM50_DATA_OUT
(%REF(cat_file),
 %REF(acidp_name),
 do_action,
 cg_port_number,
 lcn_sts,
 flags)

12.4.13.2 Parameter Definitions for DATAOUT status

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

cat_file—LCN pathname (CHARACTER*28) identifying the file to be used as the dataout
journal. Use the form NET>VDIR>FILENAME.xx.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

do_action—An INTEGER*2 variable that specifies the action to be taken. The values are:
0 = Disable dataout journaling
1 = Enable dataout journaling using the specified path
2 = Return the current dataout path

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

CM50S User Manual 12-40 7/93

12.4.14

12.4.14 Abort File Transfer Transaction

This transaction CM50_ABORT_TRANSFER will terminate the current transaction in
progress. The initiator of the transaction will receive a CM50_FTF_ABORT error return
status. The initiator of the CM50_ABORT_TRANSFER request will receive a normal
return status. No error is generated if there is not a current process to abort.

12.4.14.1 Example FORTRAN Call for Abort Transfer

Return_status = CM50_ABORT_TRANSFER
(%REF(acidp_name),
 cg_port_number,
 lcn_sts,
 flags)

12.4.14.2 Parameter Definitions for Abort Transfer

return_status—The name of an INTEGER*4 to receive the overall return status of the
function call. For fully successful calls, return_status = 1. See
Appendix A.2 for an explanation and listing of all assigned return code values.

acidp_name—A CHARACTER*16 ACIDP name reserved for future security use. This
field should be set to all spaces.

cg_port_number—The name of an INTEGER*2 variable that specifies which Computer
Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of an INTEGER*2 variable which will receive the detailed error code
from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—INTEGER*4 parameter (optionally declared as CM50_FLAG_TYPE) that sets
options as described in section 9.1.3. The CM50$M_HANDLER option is the
only flag applicable to File Transfer functions.

CM50S User Manual 13-1 7/93

13

PASCAL LANGUAGE CONSIDERATIONS
Section 13

This section discusses each of the program interfaces that provide necessary services that enable
Pascal programs to communicate with other nodes on the TDC 3000 Local Control Network.

13.1 CM50S INCLUDE FILES

Each user interface routine has language-specific interfaces that are supported by include
files that contain data declarations that match the argument names and symbolic constants
used in the example calls in this section. Any program that uses any of these interface
routines should be compiled with the matching language-specific include files.

13.1.1 Data Transfer Functions

These include files generally are needed by ACPs and Data Acquisition programs.

CM50$LIB:CM50_INCLUDE.PAS Contains the declarations used by the
LCN data interfaces (Sections 14 & 15)
and the Vintage Routines (Appendix G).

CM50$LIB:CM50_ERROR_INCLUDE.PAS Contains the symbolic names for all of
the CM50S error codes (Appendix A.2).

CM50$LIB:CM50_FTF_INCLUDE.PAS Definitions for all LCN file transfer
operations (section 16.4)

13.1.2 DDT and ACP Management

These include files are needed by applications that use the CM50S administration, calls
described in Section 16. DDT and ACP management functions use some shared data
structures, that are defined in the file CM50_FLAGS_INCLUDE.PAS. Therefore, that file
should be included with any any program that calls either DDT or ACP functions and must
precede the include file defining those specific functions.

CM50$LIB:CM50_FLAGS_INCLUDE.PAS Definitions for the shared data structures
in the ACP & DDT Management Interface
calls. Must be included prior to either
CM50_ACP_INCLUDE.PAS or
CM50_DDT_INCLUDE.PAS.

CM50$LIB:CM50_ACP_INCLUDE.PAS Definitions for all ACP Management
operations (section 16.1).

CM50$LIB:CM50_DDT_INCLUDE.PAS Definitions for all the DDT Management
operations (section 16.2).

CM50$LIB:CM50_CGDATA_INCLUDE.PAS Definitions for all the CG Database
retrievals (section 16.3).

CM50S User Manual 13-2 7/93

13.1.3

13.1.3 Programmatic Interface Flag Parameters

An INTEGER*4 parameter called FLAGS is included in every ACP and DDT management
function to control some of the handling options. Some of the flags apply to only the DDT
calls, some to only the ACP calls, and some can be used by both. All user-visible flags (as
defined in CM50_FLAGS_INCLUDE.PAS) are described below.

• CM50$M_HANDLER—(Bit 0) Indicates that the user has provided a custom exception
handler. The default is OFF.

• CM50$M_MSGON—(Bit 1) Prints all diagnostic messages to SYS$OUTPUT. The
default is OFF.

• CM50$M_CGRES—(Bit 5) Installs the DDT as CG resident. The default is OFF.

• CM50$M_REBUILD_DDT—(Bit 6) Rebuilds an existing DDT. The default is OFF.

• CM50$M_NO_SOURC_DEBUG—(Bit 7) Produces no error file during DDT build.
The default is OFF.

• CM50$M_DMP_DDT_ERRORS—(Bit 8) Sends the error file produced by a DDT build
to SYS$OUTPUT after building the DDT. If set, then the
CM50$M_NO_SOURCE_DEBUG flag must be OFF.

• CM50$M_ACIDP_ACTIVATE—(Bit 9) Reserved for internal CM50S use.

• CM50$M_WRITE_VT—(Bit 10) Creates the .VT file with write privilege.

All of the flags described above, represent bit masks that can be added together to enable
any combination of the flags. These flag values also can be used to see if a particular flag
is set. An example is shown below.

 flags := CM50$M_HANDLER + CM50$M_MSGON;
 Return_Status = DDT_SUMMARY(DDT_Name,
 - Summary, Flags)

13.2 CALLING CONVENTIONS

CM50S interface routines follow the VMS language-independent calling conventions.
With the exception of some housekeeping procedures that have no error handling (such as
ACPTRP and PRGTRM), they are written as functions.

We recommend that each function call be followed by a logical test of the return_status
value. If ODD(return_status) is true, the call was successful (although individual data
items may require checking); otherwise (even valued status codes), appropriate error
handling should be invoked. Note that if the application does not check return_status, the
interface routine can be invoked as a called subroutine or procedure in the same manner as
VMS system services.

CM50S User Manual 13-3 7/93

13.3

All the calling sequence examples shown in this section are appropriate for Pascal
programs.

A VMS shortword is a 16-bit integer (declared as CM50$int2).

Arguments should be declared 'var' of the appropriate type, so that their addresses (pass by
REFerence) are passed instead of their values.

Arguments should normally be declared using the types shown in the documentation.
These declarations support the maximum array sizes that CM50S will process. Compatible
types (different sizes of arrays, for examples) may be used provided that the argument is
passed with the explicit %REF qualifier.

Variant arguments (e.g., enumeration/ordinal arrays) are normally passed using the explicit
%REF qualifier (to bypass internal testing of data typing).

Boolean (True/False) arguments are shortwords (declared as CM50$bool2), with a value of
1 for True and 0 for False.

13.3 COMPATIBILITY OF APPLICATION PROGRAM WITH ITS DDTS

Because each application program and its Data Definition Tables (and Multi_Point List
structures) are separately built, the system cannot enforce compatibility between a program
and any DDT(s) that it uses. That responsibility is up to you.

In particular, it is vital that the dimensions set for data-receiving arrays be large enough to
accommodate the maximum data amounts permitted by the named DDT.

Specific points to remember for DDT Get Data and DDT Store Data are

• Dimensions set for each value-type's program array must be equal-to or greater-than the
value-type's point count in the referenced DDT. The values can be stored one-for-one
or they can be scattered as defined in the DDT. If the program arrays are too small,
data or program code may be corrupted (DDT Get Data) or inappropriate data may be
exported (DDT Store Data).

• The dimension values for status table arrays must be equal-to or greater-than the total
number of points of all types in the referenced DDT because this array is to receive a
status code for each returned value, positioned according to its location in the DDT.

CM50S User Manual 13-4 7/93

13.4

13.4 DATA REPRESENTATIONS

Differences between data representations in the VAX and the CG normally are resolved by
the CG-VAX Communications Handlers, thus are invisible to the user (Exception: raw data
transfers, see heading 14.3). The LCN data formats are:

Real—32 bit floating point matches normal REAL format except that bad values (NaN)
from the LCN have the bit pattern for -0. This value will cause a Pascal
trap if used in an arithmetic or assignment statement, so real values
returned from the LCN should always be tested (using either the
CM50_VALIDN function or the associated value_status_table entry for
the value).

Integer—shortword value -32768..+32767.

ASCII—packed array of 24 characters.

String—packed array of 40 characters.

Enumeration—There are two ways to represent LCN enumerations: as a packed array of
8 ASCII characters (Enumerated) or as shortword integer values
(Ordinal). The choice of representation is made when the data transfer is
requested, except that self-defined enumerations should be transferred
only as Ordinals. For information on standard enumerations, see the
Application Module Parameter Reference Dictionary, Hiway Gateway
Parameter Reference Dictionary, and Computer Gateway Parameter
Reference Dictionary. For information on Custom Data Segments, see the
System Control Functions manual. For information on self-defined
enumerations, see Section 2 of the Hiway Gateway Control Functions
manual.

Time—LCN Internal Time is defined as a record structure (CM50_Time_Vals) consisting
of an integer count of Seconds (since the start of 1979) followed by a
shortword count of Ticks (tenths of milliseconds). Some of the calls will
return LCN External Time, an ASCII string of format
MM/DD/YY∆HH:MM:SS, where ∆ represents a space. See heading
15.3.3 for time format conversions.

Entity ID—Internally stored as an 64-bit value (CM50_PTID_VALS type) identifying a
specific point (Ptid or Internal_id). Also can be retrieved as a packed
array of 18 characters (External_id) consisting of the up to 16-character
point name followed by the two-character pinid for Network Gateway
references.

CM50S User Manual 13-5 7/93

13.5

13.5 COMMONLY MADE ERRORS

• Arguments must be declared as the correct data type. If string constants are used for
arguments, they must be padded with spaces (or terminated with a null character). Use
of the wrong length for a string will probably result in a Pascal runtime error. Make sure
the %REF qualifier is used everywhere it is shown in the examples.

• Failure to use the 'VAR' specification in declaring a CM50S function. This will be
avoided in the appropriate Include files are used.

• Failure to use the CM50_SET_ACP function (or ACPTRP call) as the first executable
program statement of an ACP and/or failure to use the PRGTRM call as the last
executable statement of an ACP.

• Attempting to run an application program with unresolved compile or link errors or the
use of a DDT that is incomplete or complete with errors.

• Failure to specify array sizes and data types that match DDT definitions.

• Failure to specify all parameters required by the interface routines.

• Attempting to activate an ACP through an ACIDP while the ACP is linked to the VMS
DEBUG utility. Use of the DEBUG utility is supported only for execution of ACPs
while run interactively from a terminal.

• Terminating an ACP by use of the STOP/IDENTIFIER function of VMS DCL. ACPs
should only be aborted through the CM50 Deactivate ACP procedure.

13.6 ERROR DETECTION BY INTERFACE FUNCTIONS

There are three categories of error that can be detected during the execution of a program
when using the interface functions. These are indicated through one of these methods:

• Request completion status code

• Individual parameter status codes

• Program abort

The RETURN_STATUS value returned by the Function shows whether or not the request
was successfully processed and, if not, what error type was involved. Some typical errors
flagged by the return status are

• LCN access problems or data link failure

• ACP installation or mode problems

• Data problems in the call or with a referenced DDT

• Call rules violations

CM50S User Manual 13-6 7/93

13.6

The RETURN_STATUS code follows the standard VAX/VMS condition status code
format. In general, even number codes indicate fatal system problems or program bugs,
while odd number codes indicate success (code 000000001) or partial success (e.g., code
215000051). See Appendix A.2 for additional information and a listing of all
RETURN_STATUS values and their meanings.

Most of the interface calls also return LCN point.parameter values that are to be processed
by the calling application program. Accompanying each value (or array) is a status code
that must be checked for indications of problems that would invalidate the requested data.
See the call arguments STATUS_TABLE or VALUE_STATUS in the individual interface
descriptions. There are over 200 different data access-status codes that can be returned.
See Appendix A.1 for a listing of these codes.

Some errors in use of the interface routines result in the application program being aborted.
An error message is logged at the VAX operator console and is shown on the Universal
Station Detail Display for a connected ACIDP. These errors can be of the following types:

• File access errors

• Communication Interface errors

• Format conversion errors

• Various program logic errors

CM50S User Manual 13-7 7/93

13.7

13.7 SUMMARY OF USER-PROGRAM INTERFACES

Heading Interface Descriptions Function Names

Multipoint (DDT) Data Transfers
14.1.1 DDT Get Data CM50_DDT_GET

CM50_DDT_GETNT
14.1.2 DDT Store Data CM50_DDT_STORE

CM50_DDT_STORENT
14.1.3 Generic DDT Get Data CM50_DDT_GETGEN
14.1.4 Generic DDT Store Data CM50_DDT_STOREGEN
14.1.5 Multi-Point List Get Data CM50_MPL_GET
14.1.6 Multi-Point List Store Data CM50_MPL_STORE
14.1.7 Generate Multi-Point List CM50_MPL_GENTLIST

CM50_MPL_GENTAGS
CM50_MPL_GENFILE

14.1.8 Read Multi-Point List CM50_MPL_READ
14.1.9 Write Multi-Point List CM50_MPL_WRITE
14.1.10 Create Include File for Multi-Point List CM50_MPL_GENINCL

Point List Data Transfers
14.2.1 Point List Get Values CM50_GET_PT_LIST
14.2.2 Point List Get by Value Type

Real Values CM50_GET_REALNBR
Integer Values CM50_GET_INTNBR
ASCII Values CM50_GET_ASC24
Enumeration Values CM50_GET_ENUM
Ordinal Values CM50_GET_ORD
Internal IDs CM50_GET_PTID
External IDs CM50_GET_EXID
Time Values CM50_GET_TIME
String Values CM50_GET_STRI

14.2.3 Point List Store Values CM50_STORE_PT_LIST
14.2.4 Point List Store by Value Type

Real Values CM50_STORE_REALNBR
Integer Values CM50_STORE_INTNBR
ASCII Values CM50_STORE_ASC24
Enumeration Values CM50_STORE_ENUM
Ordinal Values CM50_STORE_ORD
Internal Ids CM50_STORE_PTID
Time Values CM50_STORE_TIME
String Values CM50_STORE_STRI

Single Point Data Transfers
14.3.1 Single Point Get Data(External ID) CM50_GET_ID

CM50_GET_TAG
14.3.2 Single Point Store Data(External ID) CM50_STORE_ID

CM50_STORE_TAG
14.3.3 Single Point Get Data (Internal ID) CM50_GETPT_ID
14.3.4 Single Point Store Data (Internal ID) CM50_STOREPT_ID
14.3.5 Get LCN Clock Value CM50_TIMNOW_LCN

CM50_TIMNOW_ASC

Raw Data Transfers
14.4.1 Raw Data Get CM50_SPGRAW
14.4.2 Raw Data Store CM50_SPSRAW
14.4.3 Convert Raw Data CM50_SPCRAW

CM50S User Manual 13-8 7/93

13.7

Heading Interface Descriptions Function Names

History Data Transfers
14.5.2 Get History Snapshots (Relative Time) CM50_DDTHIS_SNAP

CM50_DDTHIS_FAST
CM50_MPLHIS_SNAP
CM50_PTHIS_SNAP

14.5.3 Get History Snapshots (Absolute Time) CM50_DDTHIS_SNAPT
CM50_DDTHIS_FASTT
CM50_MPLHIS_SNAPT
CM50_PTHIS_SNAPT

14.5.4 Get History Averages (Relative Time) CM50_DDTHIS_AVER
CM50_MPLHIS_AVER
CM50_PTHIS_AVER

14.5.5 Get History Averages (Absolute Time) CM50_DDTHIS_AVERT
CM50_MPLHIS_AVERT
CM50_PTHIS_AVERT

14.5.6 Get Monthly Averages (Relative Time) CM50_DDTHIS_MNTH
CM50_MPLHIS_MNTH
CM50_PTHIS_MNTH

14.5.7 Get Monthly Averages (Absolute Time) CM50_DDTHIS_MNTHT
CM50_MPLHIS_MNTHT
CM50_PTHIS_MNTHT

14.5.8 Find History Collection Rate CM50_DDTHIS_RATE
CM50_MPLHIS_RATE
CM50_PTHIS_RATE
CM50_TAGHIS_RATE

Text Message Transfers
14.6.1 Get Message CM50_GETMSG
14.6.2 Send Message CM50_STOREMSG

ACP Execution Support
15.1.1 ACP Initialization CM50_SET_ACP
15.1.2 Get ACP Status GETSTS*
15.1.3 ACP Delay CM50_ACPDELAY
15.1.4 ACP Hibernate CM50_HIBER
15.1.5 ACP Termination PRGTRM*

Entity Name Conversions
15.2.1 Convert External to Internal ID CM50_CONV_PT

CM50_CONV_TAG
15.2.2 Convert List of External IDs CM50_CONV_PT_LIST

CM50_CONV_TAG_LIST

Value Conversions
15.3.1 Valid Number Check CM50_VALIDN
15.3.2 Set Bad Value CM50_SETBAD
15.3.3 Convert Time Values CM50_TIMLCN_ARY

CM50_TIMLCN_ASC
CM50_TIMLCN_EURO
CM50_TIMLCN_VAXA
CM50_TIMLCN_VAXB
CM50_TIMARY_LCN
CM50_TIMARY_ASC
CM50_TIMARY_EURO
CM50_TIMARY_VAXA
CM50_TIMARY_VAXB
CM50_TIMASC_LCN

* GETSTS and PRGTRM do not have a RETURN_STATUS, so they cannot be used as functions, but must be
invoked as procedures.

CM50S User Manual 13-9 7/93

13.7

Heading Interface Descriptions Function Names

15.3.3 Convert Time Values—continued CM50_TIMASC_ARY
CM50_TIMASC_EURO
CM50_TIMASC_VAXA
CM50_TIMASC_VAXB
CM50_TIMEURO_LCN
CM50_TIMEURO_ARY
CM50_TIMEURO_ASC
CM50_TIMEURO_VAXA
CM50_TIMEURO_VAXB
CM50_TIMVAXA_LCN
CM50_TIMVAXA_ARY
CM50_TIMVAXA_ASC
CM50_TIMVAXA_EURO
CM50_TIMVAXA_VAXB
CM50_TIMVAXB_LCN
CM50_TIMVAXB_ARY
CM50_TIMVAXB_ASC
CM50_TIMVAXB_EURO
CM50_TIMVAXB_VAXA

ACP Management
16.1.1 Install an ACP CM50_ACP_INSTALL
16.1.2 Uninstall an ACP CM50_ACP_UNINST
16.1.3 Activate (run) an ACP CM50_ACP_ACT
16.1.4 Deactivate (abort) an ACP CM50_ACP_DEACTIVATE
16.1.5 Connect an ACP to an ACIDP CM50_ACP_CONNECT
16.1.6 Disconnect ACP from its ACIDP CM50_ACP_DISCON
16.1.7 Change ACP installation mode CM50_ACP_CHG_MODE
16.1.8 Get ACP summary CM50_ACP_SUM
16.1.9 Get list of ACPs CM50_ACP_LISTALL

DDT Management
16.2.1 Build/Rebuild a DDT CM50_DDT_BUILD
16.2.2 Delete a DDT CM50_DDT_DELETE
16.2.3 Get DDT summary information CM50_DDT_SUM
16.2.4 Get list of DDT summaries CM50_DDT_LIST
16.2.5 Get DDT detailed information CM50_DDT_DETAIL
16.2.6 Connect a DDT to an ACIDP CM50_DDT_CONNECT
16.2.7 Disconnect a DDT from its ACIDP CM50_DDT_DISCONNECT
16.2.8 Modify DDT prefetch triggers CM50_DDT_TRIGGERS
16.2.9 Install a DDT as CG resident CM50_DDT_INSTALL
16.2.10 Remove a DDT from CG residency CM50_DDT_UNINST

CG Database Routines
16.3.1 Get list of resident DDTs CM50_CG_RDDT
16.3.2 Get list of CRDPs CM50_CG_CRDP
16.3.3 Get detailed ACIDP information CM50_CG_ADETAIL
16.3.4 Get list of ACIDPs CM50_CG_ACIDP
16.3.5 Get LCN Configuration CM50_CG_CONFIG

File Transfer Routines
16.4.1 Read File from LCN CM50_LCN_READ
16.4.2 Write File to LCN CM50_LCN_WRITE
16.4.3 List LCN File Attributes CM50_ATTR_LIST
16.4.4 List LCN Files & Extensions CM50_FILE_LIST
16.4.5 List LCN Volumes/Directories CM50_HM_LIST

CM50S User Manual 13-10 7/93

13.7

16.4.6 List LCN Files to Dataout CM50_FILE_CATALOG
16.4.7 List LCN Volumes to Dataout CM50_VOLUME_CATALOG
16.4.8 LCN File Copy CM50_LCN_COPY
16.4.9 LCN File Move CM50_LCN_MOVE
16.4.10 LCN File Rename CM50_LCN_RENAME
16.4.11 LCN File Delete CM50_LCN_DELETE
16.4.12 LCN Directory Maintenance CM50_LCN_DIRECTORY
16.4.13 LCN Dataout Status CM50_DATA_OUT
16.4.14 Abort LCN File Transfer CM50_ABORT_TRANSFER

CM50S User Manual 14-1 7/93

14

LCN DATA TRANSFERS (Pascal)
Section 14

This section discusses program interfaces for Pascal programs to transfer data between the host
VAX computer and the TDC 3000 Local Control Network.

14.1 MULTIPOINT (DDT) DATA TRANSFERS

The interface routines in this group require the use of separately prepared Data Definition
Tables (DDT) that specify which points are to be accessed and what pre/post processing is
to be done on data values. See Section 6 for DDT preparation and installation details.

Each DDT may reference a maximum of four different data types. The standard DDT
functions assume the data types are grouped into a "normal" order. It is possible to build
DDTs with unusual combinations of data types that do not follow these assumptions.
These special-case DDTs are tagged as GenIn (Generic Input) or GenOut (Generic Output)
and may only be used with the Generic DDT Transfers described in Sections 14.1.3 and
14.1.4. Standard Input and Output DDTs may be used with either the Generic DDT
transfers or the traditional DDT data interface routines.

Single elements of parameter arrays (but not whole arrays) can be specified in the DDT.

14.1.1 DDT Get Data Interface

This routine fetches data from the DDT's associated CG or elsewhere on its LCN. The
specification of which data is to be fetched and where it is to be stored in the calling
program's data arrays is contained in the Data Definition Table referenced by the call.

14.1.1.1 Example Pascal Call for DDT Get Data

return_status := CM50_DDT_GET or CM50_DDT_GETNT
ddt_name,
 real_values_array,
 intg_values_array,
 or %REF ptid_values_array,
 or %REF time_values_array,
 asci_values_array,
 or %REF string_values_array,
 or %REF exid_values_array,
 %REF enum_array,
 or %REF ord_array,
 status_table);

Use the Interface Name CM50_DDT_GET if you want data transformation operations
performed by the Table Processor, and CM50_DDT_GETNT if you do not want data
transformation operations performed (to decrease processing time).

CM50S User Manual 14-2 7/93

14.1.1

The DDT Get Data call must specify four data types in the order shown (three of these can
be dummy arguments that receive no data). Note that there are restrictions on the
combinations of data types.

14.1.1.2 Parameter Definitions for DDT Get Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (declared as type cm50$DDT_STRING) that
contains the name of the input Data Definition Table to be used.

real_values_array—The name of a Real array (declared as type cm50$real300) where the
fetched Real values are to be stored. Bad values are returned as NaN (-0).

intg_values_array—The name of a shortword array (declared as type cm50$int300) where
the fetched Integer values are to be stored.

ptid_values_array—The name of an array of internal entity ids (declared as
cm50_Ptid_array_type).

time_values_array—The name of an array of LCN internal time values (declared as
cm50_Time_array_type).

asci_values_array—The name of an array of 24-character strings (declared as
cm50_asci_array_type) where the fetched ASCII values are to be stored. Bad
values are returned as strings of question marks.

string_values_array—The name of an array of 40-character strings (declared as
cm50_Stri_array_type) where the fetched LCN string values are to be stored.

exid_values_array—The name of an array of 18-character strings (declared as
cm50_Exid_array_type) where the fetched external entity names are to be
stored.

enum_array—The name of an array of 8-character strings (declared as type
cm50_AEnm_array_type) where the fetched Enumeration values are to be
stored. Bad values are returned as strings of question marks.

ord_array—The name of a shortword array (declared as type cm50$INT300) where the
fetched ordinal values of enumerations are to be stored.

status_table—The name of a shortword array (declared as type cm50$INT300) for the
storage of returned point-related error/status information. A value_status code
is returned for each requested tag (in the same order as the DDT source file).
See Appendix A.1 for a listing of Data Access error/status codes.

CM50S User Manual 14-3 7/93

14.1.2

14.1.2 DDT Store Data Interface

This routine sends data to points in the DDT's associated CG or elsewhere on its LCN.
The specification of what points are to receive data and the location of data within the
calling program's data arrays is contained in the Data Definition Table referenced by the
call. Errors encountered during execution of the routine as well as individual point-data
errors are returned to the calling program.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

14.1.2.1 Example Pascal Call for DDT Store Data

return_status := CM50_DDT_STORE or CM50_DDT_STORENT
(ddt_name,
 real_values_array,
 intg_values_array,
 or %REF ptid_values_array,
 or %REF time_values_array,
 asci_values_array,
 or %REF string_values_array,
 %REF enum_array,
 or %REF ord_array,
 store_array,
 status_table)

Use the Interface Name CM50_DDT_STORE if you want data transformation operations
performed by the Table Processor and CM50_DDT_STORENT if you do not want
transformation operations performed (to decrease processing time).

The DDT Store Data call must specify four data types in the order shown (three of these
can be dummy arguments that export no data). Note that there are restrictions on the
combinations of data types.

14.1.2.2 Parameter Definitions for DDT Store Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
status_table status code for each requested store value must be checked.

CM50S User Manual 14-4 7/93

14.1.2

ddt_name—The name of a 9-character string (declared as type cm50$DDT_STRING) that
contains the name of the output Data Definition Table to be used in the "Store
Data" operation.

real_values_array—The name of a Real array (declared as type cm50$real300) that contains
the Real values to be stored.

intg_values_array—The name of a shortword array (declared as type cm50$int300) that
contains the Integer values to be stored.

ptid_values_array—The name of an array of internal entity ids (declared as
cm50_Ptid_array_type) .

time_values_array—The name of an array of LCN internal time values (declared as
cm50_Time_array_type) .

asci_values_array—The name of an array of 24-character strings (declared as
cm50_Asci_array_type) that contains the ASCII values to be stored.

string_values_array—The name of an array of 40-character strings (declared as
cm50_Stri_array_type) where LCN string values are stored.

enum_array—The name of an array of 8-character strings (declared as type cm50$int1200)
that contains the Enumeration values to be stored. Use of enumeration strings
by Store Data is limited to standard enumerations (including Custom Data
Segments). All self-defined enumerations (such as digitals) must be accessed
through their ordinal values.

ord_array—The name of a shortword array (declared as type cm50$int300) that contains the
Ordinal values of Enumerations to be stored.

store_array—The name of a shortword array (declared as type cm50$int300) that contains a
control code entry for each value to be stored. These codes control what—if
any—value is to be stored. The store code values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value.

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

status_table—The name of a shortword array (declared as type cm50$int300) for the
storage of returned point-related error/status information. A value_status code
is returned for each requested tag (in the same order as the DDT source file).
See Appendix A for a listing of Data Access error/status codes.

CM50S User Manual 14-5 7/93

14.1.3

14.1.3 Generic DDT Get Data Interface

This routine fetches data for any Input or Generic Input DDT. The specification of which
data is to be fetched and where it is to be stored in the calling program's data arrays is
contained in the Data Definition Table referenced by the call.

14.1.3.1 Example Pascal Call for Generic DDT Get

return_status := CM50_DDT_GETGEN
(ddt_name,
 values_array1,
 values_array2,
 values_array3,
 values_array4,
 status_table,
 tbl_proc);

14.1.3.2 Parameter Definitions for Generic DDT Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (declared as type cm50$DDT_STRING) that
contains the name of the Data Definition Table to be used.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array where the fetched values are
to be stored. The data type for each array must match the corresponding data
type in the DDT definition. Each array should be declared as a
CM50$VALUE_RECORD type.

status_table—The name of a shortword array (declared as type cm50$int300) for the
storage of returned point-related error/status information. A value_status code
is returned for each requested tag (in the same order as the DDT source file).
See Appendix A.1 for a listing of Data Access error/status codes.

tbl_proc—The name of a Boolean shortword (declared as type cm50$int2) that determines
whether or not table processing is to be suppressed. If tbl_proc is set to 1, all
table processing (saving values to disk and/or data transformations) will be
suppressed. Use a value of 0 for normal processing.

CM50S User Manual 14-6 7/93

14.1.4

14.1.4 Generic DDT Store Data Interface

This routine sends data to points defined in any Output or Generic Output DDT. The
specification of what points are to receive data and the location of data within the calling
program's data arrays is contained in the Data Definition Table referenced by the call.
Errors encountered during execution of the routine as well as individual point-data errors
are returned to the calling program.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

14.1.4.1 Example Pascal Call for Generic DDT Store

return_status := CM50_DDT_STOREGEN
(ddt_name,
 values_array1,
 values_array2,
 values_array3,
 values_array4,
 store_array,
 status_table,
 tbl_proc);

14.1.4.2 Parameter Definitions for Generic DDT Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
status_table status code for each requested store value must be checked.

ddt_name—The name of a 9-character string (declared as type cm50$DDT_STRING) that
contains the name of the Data Definition Table to be used in the "Store Data"
operation.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array that contains the data to be
stored. The data type for each array must match the corresponding data type in
the DDT definition. Each array should be declared as a
CM50$VALUE_RECORD type.

store_array—The name of a shortword array (declared as type cm50$int300) that contains a
control code entry for each value to be stored. These codes control what—if
any—value is to be stored. The store code values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value.

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

CM50S User Manual 14-7 7/93

14.1.5

status_table—The name of a shortword array (declared as type cm50$int300) for the
storage of returned point-related error/status information. A value_status code
is returned for each requested tag (in the same order as the DDT source file).
See Appendix A for a listing of Data Access error/status codes.

tbl_proc—The name of a shortword (declared as type cm50$int2) that determines whether
or not table processing is to be suppressed. If tbl_proc is set to 1, all table
processing (saving values to disk and/or data transformations) will be
suppressed. Use a value of 0 for normal processing.

14.1.5 Multi-Point List Get Data Interface

This routine fetches data for the LCN tags specified in an internal data block. An internal
Data Block is a memory-resident equivalent of a DDT. The specification of which data is
to be fetched and where it is to be stored in the calling program's data arrays can be
prepared using any of the generate MPL routines (see 14.1.7) or you can read in a DDT
from its disk file (see 14.1.8).

14.1.5.1 Example Pascal Call for Multi-Point List Get

return_status := CM50_MPL_GET
(mpl_name,
 acidp_name,
 %REF values_array1,
 %REF values_array2,
 %REF values_array3,
 %REF values_array4,
 status_table,
 cg_port_num);

14.1.5.2 Parameter Definitions for Multi-Point List Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

mpl_name—The name of a Multi-Point List structure (declared as type cm50_idb_rec)
defining the data to be retrieved.

CM50S User Manual 14-8 7/93

14.1.5

acidp_name—A 16-character string (declared as type cm50_long_ACIDP) containing the
name of an ACIDP. If the ACIDP is spaces, then the data will be retrieved
without any ACIDP controls. If an ACIDP is named, then the data access will
be completed only if that ACIDP is in RUN state.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array where the fetched values are
to be stored. The data type for each array must match the corresponding data
type in the MPL definition. Each array should be declared as a
CM50$VALUE_RECORD type.

status_table—The name of a shortword array (declared as type cm50$int300) for the
storage of returned point-related error/status information. A value_status code
is returned for each requested tag in the list. See Appendix A.1 for a listing of
Data Access error/status codes.

cg_port_num—The name of a shortword (declared as type cm50$int2 with a value of 1-4)
identifying the CG to be accessed.

14.1.6 Multi-Point List Store Data Interface

This routine stores data for the LCN tags specified in an internal data block. An internal
Data Block is a memory-resident equivalent of a DDT. The specification of which tags are
to receive data and the location of the values within the calling program's data arrays can be
prepared using any of the generate MPL routines (see 14.1.7) or you can read in a DDT
from its disk file (see 14.1.8).

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

14.1.6.1 Example Pascal Call for Multi-Point List Store

return_status := CM50_MPL_STORE
(mpl_name,
 acidp_name,
 %REF values_array1,
 %REF values_array2,
 %REF values_array3,
 %REF values_array4,
 store_array,
 status_table,
 cg_port_num);

CM50S User Manual 14-9 7/93

14.1.6

14.1.6.2 Parameter Definitions for Multi-Point List Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

mpl_name—The name of a Multi-Point List structure (declared as type cm50_idb_rec)
defining the data to be stored.

acidp_name—A 16-character string (declared as type cm50_long_ACIDP) containing the
name of an ACIDP. If the ACIDP is spaces, then the ACIDP currently
connected to the ACP will control the data transfer. If an ACIDP is named,
then the data access will be completed only if that ACIDP is in RUN state.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array that contains the data to be
stored. The data type for each array must match the corresponding data type in
the MPL definition. Each array should be declared as a
CM50$VALUE_RECORD type.

store_array—The name of a shortword array (declared as type cm50$int300) that contains a
control code entry for each value to be stored. These codes control what—if
any—value is to be stored. The store code values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value
16386 - Store IEEE negative infinity instead of Real value
16387 - Store IEEE positive infinity instead of Real value
16389 - Store IEEE negative zero instead of Real value

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

status_table—The name of a shortword array (declared as type cm50$int300) for the
storage of returned point-related error/status information. A value_status code
is returned for each requested tag in the list.. See Appendix A.1 for a listing of
Data Access error/status codes.

cg_port_num—The name of a shortword (declared as type cm50$int2 with a value of 1-4)
identifying the CG to be accessed.

CM50S User Manual 14-10 7/93

14.1.7

14.1.7 Generate Multi-Point List

These routines generate an Internal data block for transfer arrays of up to four data types
between the LCN and host computer. Internal data blocks are subject to exactly the same
restrictions as DDTs (see Table 6-1).

A Multi-Point List may be generated from either a set of ID Block Arrays (such as those
produced using the Convert Lists calls—see section 15.2.2), or a text file of type
declarations and tag names, or an array of text entries.

NOTE

The arrays of internal point.parameter addresses need to be rebuilt and the program(s) using
them need to be recompiled whenever the LCN database is changed in a significant manner,
such as by the rebuild or deletion of data points referenced in the address array.

14.1.7.1 Example Pascal Calls to Generate Multi-Point Lists

To combine point lists, use:

 return_status := CM50_MPL_GENLIST
(list_size,
 id_block_arr1,
 id_block_arr2,
 id_block_arr3,
 id_block_arr4,
 mpl_name);

When the external ids are expressed as a Tag name list, use:

 return_status := CM50_MPL_GENTAGS
(tagname_arr,
 number_of_values,
 mpl_name,
 cg_port_num
 return_arr);

When the external ids are contained in a Text file, use:

 return_status := CM50_MPL_GENFILE
(tag_file,
 mpl_name,
 cg_port_num
 return_arr);

CM50S User Manual 14-11 7/93

14.1.7

14.1.7.2 Parameter Definitions for Generate Multi-Point Lists

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
return_array status code for each returned value must be checked.

tagname_arr—The name of an array of up to 304 40-character strings (declared as
cm50_tag_list_type) that contains the ASCII Tagname (formatted as
Point.Param, optionally with the parameter index enclosed in parentheses) of
the LCN entity for which the internal ID is to be obtained. All tags of the same
data type must be grouped together and different data types must be separated
by the reserved "tag" of: **NEW∆TYPE=type,
where ∆ is a required space, and "type" (starting in position 12) is one of the
following:

REAL real number
INTE integer
ASCI 24 character ASCII
ENUM enumeration
ORDN ordinal
PTID internal entity id
EXID external entity id
TIME LCN internal time type
STRI 40 character string

If the first item in the array does not contain "**NEW TYPE=" in positions 1
through 11, then the first set of tags is assumed to identify Real numbers.

number_of_values —The name of a shortword (declared as type cm50$int2) specifying the
number of tags defined in the tagname_arr. The maximum number of values is
304.

tag_file—The 80-character name (declared as cm50_file_name_type) of a text file whose
content is a tagname_array, with each line containing either a valid tagname or a
"**NEW TYPE=" tag as described above.

list_size —The name of an array of 4 shortwords (declared as type cm50_Ptid_vals)
specifying the number of tags defined in each id_block_arr. The maximum
number of values is 300.

id_block_arrn —(where n is 1 to 4) The name of a point list array (declared as
cm50_point_list_array_type) which may combine up to 4 different data
different types, with a maximum of 300 16-byte variables. If multiple data
types are included, then all entries of the same type must be grouped together.
The size of the point list must match that specified in list_size[n]. If there are
fewer than 4 data types, the unused arguments may be omitted (but the correct
number of commas is required).

mpl_name—The name of a Multi-Point List structure (declared as type cm50_idb_rec)
where the generated definition is to be stored.

CM50S User Manual 14-12 7/93

14.1.8

cg_port_num—The name of a shortword (declared as type cm50$INT2 with a value of 1-4)
identifying the CG to be accessed.

return_arr—The name of an array of up to 304 integers (declared as cm50_return_arr_type)
to receive the status of the conversion of each tag and data type declaration,
including field type records. See Appendix A.2 for an explanation and a listing
of all assigned return code values.

14.1.8 Read Multi-Point List

This routine reads an MPL from a disk file that has been created using either the DDT Build
procedures or the Write Multi-Point List routine.

14.1.8.1 Example Pascal Calls to Read Multi-Point Lists

 return_status := CM50_MPL_READ
(idb_file,
 mpl_name);

14.1.8.2 Parameter Definitions for Read Multi-Point List

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

idb_file—The 80-character pathname (declared as cm50_file_name_type) of a file containing
the Multi-Point List. To reference a DDT, use the pathname of
CM50$DDT:ddtname.II. If no extension is specified, the default of .MPL
will be used.

mpl_name—The name of a Multi-Point List structure (declared as type cm50_idb_rec) in
memory.

14.1.9 Write Multi-Point List

This routine creates a disk file containing an MPL produced through the Generate Multi-
Point List interface (section 14.1.7).

14.1.9.1 Example Pascal Calls to Write Multi-Point Lists

 return_status := CM50_MPL_WRITE
(idb_file,
 mpl_name);

CM50S User Manual 14-13 7/93

14.1.9

14.1.9.2 Parameter Definitions for Write Multi-Point List

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

idb_file—The 80-character pathname (declared as cm50_file_name_type) of a file to contain
the Multi-Point List. If a file by that name already exists, a new version will be
created. By default, an extension of .MPL will be used. The use of .II as an
extension is prohibited because that extension is reserved for DDTs. It is the
user's responsibility to purge obsolete versions.

mpl_name—The name of an Multi-Point List structure (declared as type cm50_idb_rec) in
memory.

14.1.10 Create Include File for Multi-Point List

This routine creates a disk file containing the text description of an MPL in a format
suitable for use as an include file for a Pascal source program. The MPL should be
previously produced through the Generate Multi-Point List interface (see heading 14.1.7).

14.1.10.1 Example Pascal Call to Generate a Multi-Point List Include File

 return_status := CM50_MPL_GENINCL
(mpl_name,
 text_file,
 Language);

14.1.10.2 Parameter Definitions for Generate Multi-Point List Include File

return_status—The name of a integer to receive the overall return status of the function call.
For fully successful calls, return_status = 1. See Appendix A.2 for an
explanation and a listing of all assigned return code values.

mpl_name—The name of a Multi-Point List structure (declared as type cm50_idb_rec) in
memory. This should be declared as a record using the CM50_IDB_REC
structure defined in the CM50_INCLUDE files.

text_file—The 80-character pathname (declared as cm50_file_name_type) of the include file
to be written. If a file by that name already exists, a new version will be
created. No default extension is provided. It is the user's responsibility to
purge obsolete versions.

language— A single-character string (declared as type cm50_char) identifying the format of
the include file:

'P' = Pascal
'C' = C
'F' = FORTRAN

Any other value will default to FORTRAN.

CM50S User Manual 14-14 7/93

14.2

14.2 POINT LIST TRANSFERS

These routines enable you to address multiple points with a single call without the necessity
to build DDT tables. In the place of a DDT reference, you will have to provide a pointer to
an array of "internal" point.parameter addresses. These internal addresses can be obtained
by conversion calls at program runtime (see heading 15.2), or in advance by creating an
include file through the Utility MAKEINC (see heading 7.2).

14.2.1 Point List Get Values Interface

This function returns data values to up-to-300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal Point-parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.
The data type of the values is determined from the Internal Id of the first point in the list.

14.2.1.1 Example Pascal Call for Point List Get Values

return_status := CM50_GET_PT_LIST
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 values_array,
 status_table,
 number_of_values);

14.2.1.2 Parameter Definitions for Point List Get Values

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

cg_port_num—The name of a shortword (declare as CM50_Uword) identifying the CG (1-
4) to be accessed.

priority—The name of a shortword (declare as CM50_Uword) that contains the requested
data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual 14-15 7/93

14.2.1

acidp_name—The name of a 16-character string (declare as CM50_long_ACIDP) that
contains the name of an ACIDP. If the ACIDP name value is blank (all spaces),
then the data is retrieved without any ACIDP controls. If an ACIDP is named,
then the data access is completed only if that ACIDP is in RUN state.

point_list_array—The name of an array of 300 point addresses in internal format (declare as
cm50_Point_List_array_type) from which the values are requested. See the
Convert External to Internal ID functions (section 15.2) for additional
information.

values_array—The name of a record structure (declare as CM50$Value_Record -- which
has variant arrays for each data type) where the individual point values are to be
stored.

status_table—The name of an array of 300 shortwords (declare as CM50_Intg_Array_type)
where the value status for individual point values are to be stored. See
Appendix A.1 for a listing of Data Access error/status codes.

number_of_values—The name of a shortword (declare as cm50_integer_2_type) that
specifies the actual number of values (300 or less) to be processed.

CM50S User Manual 14-16 7/93

14.2.2

14.2.2 Point List Get By Value Types

These functions are identical to the CM50_GET_PT_LIST function, except that the value
type is part of the function name and the generic "values_array" argument is replaced by an
array whose data type explicitly matches the specified data type.

These specific functions and their corresponding value arrays are described below. Refer
to heading 14.2.1.2 for explanations of all of the other arguments.

14.2.2.1 Pascal Call for Point List Get Real Values

return_status := CM50_GET_REALNBR
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 real_values_array,
 status_table,
 number_of_values);

real_values_array—The name of an array of 300 Reals (declare as CM50_Real_Array_type)
where the individual point values are to be stored.

14.2.2.2 Pascal Call for Point List Get Integer Values

return_status := CM50_GET_INTNBR
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 intg_values_array,
 status_table,
 number_of_values);

intg_values_array—The name of an array of 300 shortwords (declare as
cm50_Intg_Array_type) where the individual point values are to be stored.

14.2.2.3 Pascal Call for Point List Get ASCII Values

return_status := CM50_GET_ASC24
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 asci_values_array,
 status_table,
 number_of_values);

ascii_values_array—The name of an array of 24-character strings (declare as
cm50_ASCI_Array_type) where the individual point values are to be stored.

CM50S User Manual 14-17 7/93

14.2.2

14.2.2.4 Pascal Call for Point List Get Enumerated Values

return_status := CM50_GET_ENUM
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 aenm_values_array,
 status_table,
 number_of_values);

aenm_values_array—The name of an array of 300 8-character strings (declare as
cm50_Aenm_Array_type) where the individual point values are to be stored.

14.2.2.5 Pascal Call for Point List Get Ordinal Values

return_status := CM50_GET_ORD
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 oenm_values_array,
 status_table,
 number_of_values);

oenm_values_array—The name of an array of 300 shortwords (declare as
cm50_Intg_Array_type) where the individual point values are to be stored.

14.2.2.6 Pascal Call for Point List Get Internal IDs

return_status := CM50_GET_PTID
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 ptid_values_array,
 status_table,
 number_of_values);

ptid_values_array—The name of an array of 300 64-bit internal entity ids (declare as
cm50_Ptid_Array_type) where the individual point values are to be stored.

CM50S User Manual 14-18 7/93

14.2.2

14.2.2.7 Pascal Call for Point List Get External IDs Values

return_status := CM50_GET_EXID
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 exid_values_array,
 status_table,
 number_of_values);

exid_values_array—The name of an array of 18-character strings (16 character point name
followed by 2 character networked LCN identifier) where the individual point
values are to be stored.

14.2.2.8 Pascal Call for Point List Get Time Values

return_status := CM50_GET_TIME
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 time_values_array,
 status_table,
 number_of_values);

time_values_array—The name of an array of 300 LCN time values (declare as
cm50_Time_Array_type) where the individual point values are to be stored.

14.2.2.9 Pascal Call for Point List Get String Values

return_status := CM50_GET_STRI
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 stri_values_array,
 status_table,
 number_of_values);

stri_values_array—The name of an array of 40-character strings (declare as
cm50_Stri_Array_type) where the individual point values are to be stored.

CM50S User Manual 14-19 7/93

14.2.3

14.2.3 Point List Store Values Interface

This function exports data values to up to 300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal Point-parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.
The data type of the values is determined from the Internal Id of the first point in the list.
Note: Entity ids can only be stored using their internal form.

14.2.3.1 Example Pascal Call for Point List Store Values

return_status := CM50_STORE_PT_LIST
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 values_array,
 store_code_table,
 status_table,
 number_of_values);

14.2.3.2 Parameter Definitions for Array Store Values

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (CM50_ACP_RUN)—The data access could not be completed
because the specified ACIDP is not in RUN state; Indirect Control programs
should retry (indicates contention for ACIDP).

215000051 (CM50_LCN_PART)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

cg_port_num—The name of a shortword (declare as CM50_Uword) identifying the CG (1-
4) to be accessed.

priority—The name of a shortword (declare as CM50_Uword) that contains the requested
data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

acidp_name—The name of a 16-character string (declare as CM50_long_ACIDP) that
contains the name of an ACIDP. If the ACIDP name value is blank (all spaces),
then the ACIDP currently connected to the ACP will control the data transfer.
The data access is completed only if the named or implied ACIDP is in RUN
state.

CM50S User Manual 14-20 7/93

14.2.3

point_list_array—The name of an array of 300 point addresses in internal format (declare as
cm50_Point_List_array_type) identifying where the values are to be stored.
See the Convert External to Internal ID functions (section 15.2) for additional
information.

values_array—The name of a record structure (declare as CM50$Value_Record -- which
has variant arrays for each data type) where the individual point values are
stored.

store_code_table—The name of an array of 300 shortwords (declare as
cm50_Intg_Array_type) where the calling program has stored a control code for
each value to be stored. These codes control what—if any—value is to be
stored. The store code values are:

0 = Store the value from the Values Array
1 = Store the bad value representation for Real or ASCII only
2 = Do not store any value
16386 = Store IEEE negative infinity instead of Real value
16387 = Store IEEE positive infinity instead of Real value

status_table—The name of an array of 300 shortwords (declare as cm50_Intg_Array_type)
where the value status for individual point values are to be stored. See
Appendix A.1 for a listing of Data Access error/status codes.

number_of_values—The name of a shortword (declare as cm50_Uword) that specifies the
actual number of values (300 or less) to be processed.

14.2.4 Point List Store By Value Type

These functions are identical to the CM50_STORE_PT_LIST function, except that the
value type is part of the function name and the generic "values_array" argument is replaced
by an array whose data type explicitly matches the specified data type.

These specific functions and their corresponding value arrays are described below. Refer
to heading 14.2.3.2 for explanations of all of the other arguments.

14.2.4.1 Pascal Call for Point List Store Real Values

return_status := CM50_STORE_REALNBR
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 real_values_array,
 store_code_table,
 status_table,
 number_of_values);

real_values_array—The name of an array of 300 Reals (declare as cm50_Real_Array_type)
containing the values to be stored.

CM50S User Manual 14-21 7/93

14.2.4

14.2.4.2 Pascal Call for Point List Store Integer Values

return_status := CM50_STORE_INTNBR
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 intg_values_array,
 store_code_table,
 status_table,
 number_of_values);

intg_values_array—The name of an array of 300 shortwords (declare as
cm50_Intg_Array_type) containing the values to be stored.

14.2.4.3 Pascal Call for Point List Store ASCII Values

return_status := CM50_STORE_ASC24
(cg_port_num,
 priority,
 acidp_name),
 point_list_array,
 asci_values_array,
 store_code_table,
 status_table,
 number_of_values);

asci_values_array—The name of an array of 300 24-character strings (declare as
cm50_ASCI_Array_type) containing the values to be stored.

14.2.4.4 Pascal Call for Point List Store Enumerated Values

return_status := CM50_STORE_ENUM
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 aenm_values_array,
 store_code_table,
 status_table,
 number_of_values);

aenm_values_array—The name of an array of 300 8-character strings (declare as
cm50_Aenm_Array_type) containing the values to be stored.

CM50S User Manual 14-22 7/93

14.2.4

14.2.4.5 Pascal Call for Point List Store Ordinal Values

return_status := CM50_STORE_ORD
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 oenm_values_array,
 store_code_table,
 status_table,
 number_of_values);

oenm_values_array—The name of an array of 300 shortwords (declare as
cm50_Intg_Array_type) containing the values to be stored.

14.2.4.6 Pascal Call for Point List Store Internal IDs

return_status := CM50_STORE_PTID
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 ptid_values_array,
 store_code_table,
 status_table,
 number_of_values);

ptid_values_array—The name of an array of 300 internal point ids (declare as
cm50_Ptid_Array_type) containing the values to be stored.

14.2.4.7 Pascal Call for Point List Store Time Values

return_status := CM50_STORE_TIME
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 time_values_array,
 store_code_table,
 status_table,
 number_of_values);

time_values_array—The name of an array of 300 LCN time values (declare as
cm50_Time_Array_type) containing the values to be stored.

CM50S User Manual 14-23 7/93

14.2.4

14.2.4.8 Pascal Call for Point List Store String Values

return_status := CM50_STORE_STRI
(cg_port_num,
 priority,
 acidp_name,
 point_list_array,
 stri_values_array,
 store_code_table,
 status_table,
 number_of_values);

stri_values_array—The name of an array of 300 40-character strings (declare as
cm50_Stri_Array_type) containing the values to be stored.

CM50S User Manual 14-24 7/93

14.3

14.3 SINGLE POINT DATA TRANSFERS

The interface routines in this group Get or Store values from or to one named
point.parameter (or parameter array) at a time. For parameter arrays, up-to the whole array
is accessed. The External ID version of Get Single Point is also used to get LCN date and
time.

14.3.1 Single Point Get Data (External ID) Interface

This routine fetches data for a single point from a specified CG or elsewhere on its LCN.
The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element, the whole array, or an array subset
starting with the first element can be specified. The point may be identified by either a
combination of point and parameter names or by a single tag name.

14.3.1.1 Example Pascal Calls for Single Point Get

Using point and parameter names as separate variables:

return_status := CM50_GET_ID
(entity,
 param,
 param_ix,
 val_loc,
 val_st,
 val_typ,
 cg_port_num);

Using a complete tag name:

return_status := CM50_GET_TAG
(tag_name,
 val_loc,
 val_st,
 val_typ,
 cg_port_num);

14.3.1.2 Parameter Definitions for Single Point Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000051 (CM50_LCN_PART)—the val_st status code for each returned
value must be checked.

215000322 (CM50_ACC_SIZE)—the array size specified by param_ix is
larger than the actual size.

tag_name—The name of a 40-character string (declared as CM50_tag_name_type) that
identifies the LCN value to be retrieved. The tag name is formatted as
"point.param (param_ix)".

CM50S User Manual 14-25 7/93

14.3.1

entity—The name of a 20-character string (declared as CM50_entity_name_type) that
contains the ASCII Point ID. It should contain a point name of up to 16
characters, optionally preceded by a 1- or 2-character pinid and a backslash (\)
delimiter for Network Gateway routing.

param—The name of an 8-character string (declared as type CM50_ASCII_param_arr) that
contains the ASCII name of a parameter (or parameter array) from which the
value(s) is retrieved.

param_ix—The name of a shortword (declare as cm50$int2) that contains the parameter
index. Use of this value is controlled by val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 15, 17 or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 16, 18 or 20, a whole array (or a subset of
the array starting with the first element) is to be accessed and param_ix is
used to specify the number of elements to be accessed—If param_ix is
smaller than the actual array size, only that number of elements is returned; if it
is larger than the actual array size, no elements are returned and the
return_status value is 215000322.

val_loc—The name of a program variable (declared as a CM50$value_record) where the
value(s) are to be stored. The CM50$value_record has variants that match
each value type:

val_typ variant data type
1 .a Real (32 bits)
2 .b Integer (shortword)
3 .c ASCII values (24-character string)
4 .d Enumeration (8-character string)
5 .e Ordinal (shortword)
6 .f External Time (18-character string)
7 .g Array [1..n] of Real
8 .h Array [1..n] of Integer
9 .i Array [1..n] of Enumeration
10 .j Array [1..n] of Ordinals
13 .m Internal_id (CM50_Ptid_vals)
14 .n Array [1..n] Internal_id
15 .o External_id (18-character string))
16 .p Array [1..n] of External_id
17 .q Internal Time (CM50_Time_Vals record)
18 .r Array [1..n] of Internal Time
19 .s String (40 characters)
20 .t Array [1..n] of String

CM50S User Manual 14-26 7/93

14.3.2

val_st—The name of a shortword (declared as CM50$int2) where point-related status
information is to be stored. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (CM50_LCN_PART). When val_typ specifies an array, val_st
refers to status of the whole array.

val_typ—The name of a shortword that contains a number that designates value type of the
accessed parameters as listed for val_loc.

cg_port_num—The name of a shortword (declared as CM50$int2) identifying the CG to be
accessed.

14.3.2 Single Point Store Data (External ID) Interface

This routine stores data to a single point in a specified CG or elsewhere on its LCN. The
specification of where the data is to be found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this call the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

14.3.2.1 Example Pascal Calls for Single Point Store

Using point and parameter names as separate variables:

return_status := CM50_STORE_ID
(entity,
 param,
 param_ix,
 val_loc,
 val_typ,
 store_cd,
 store_st);

Using a complete tag name:

return_status := CM50_STORE_TAG
(tag_name,
 val_loc,
 val_typ,
 store_cd,
 store_st);

14.3.2.2 Parameter Definitions for Single Point Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
store_st status code for each returned value must be checked.

CM50S User Manual 14-27 7/93

14.3.2

tag_name—The name of a 40-character string (declared as CM50_tag_name_type) that
identifies the LCN value(s) to be stored. The tag name is formatted as
"point.param (param_ix)".

entity—The name of a 20-character string (declared as CM50_Entity_name_type) that
contains the ASCII Point ID. It should contain a point name of up-to-16
characters, optionally preceded by a 1- or 2-character pinid and a backslash (\)
delimiter for Network Gateway routing.

param—The name of 8-character string (declared as CM50_ASCII_Param_arr) that contains
the ASCII parameter name for the point.parameter where the value is to be
stored.

param_ix—The name of a shortword (declared as CM50$int2) containing the parameter
index. Use of this value is controlled by val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 17, or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 18, or 20, a whole array is to be accessed
and param_ix is used to specify the number of array elements—If
param_ix does not match the actual array size, no elements are stored and
return_status value is 5 with a store_st indicating an invalid array
size.

val_loc—The name of a program variable (declared as a CM50$value_record) containing the
value(s) to be stored. The CM50$value_record has variants that match each
value type:

val_typ variant data type
1 .a Real (32 bits)
2 .b Integer (shortword)
3 .c ASCII values (24-character string)
4 .d Enumeration (8-character string)
5 .e Ordinal (shortword)
6 .f External Time (18-character string)
7 .g Array [1..n] of Real
8 .h Array [1..n] of Integer
9 .i Array [1..n] of Enumeration
10 .j Array [1..n] of Ordinals
13 .m Internal_id (CM50_Ptid_vals)
14 .n Array [1..n] Internal_id
17 .q Internal Time (CM50_Time_Vals record)
18 .r Array [1..n] of Internal Time
19 .s String (40 characters)
20 .t Array [1..n] of String

CM50S User Manual 14-28 7/93

14.3.3

val_typ—The name of a shortword (declared as CM50$int2) that contains a number that
designates value type as listed above.

store_cd—Name of a shortword (declared as CM50$int2) that contains a code that allows
the substitution of a bad value representation in place of the provided value(s).
The store code values are:

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

store_st—The name of a shortword (declared as CM50$int2) to contain point-related store
status information on completion. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (CM50_LCN_PART). When the val_typ is an array, store_st
refers to status of the whole array.

14.3.3 Single Point Get Data (Internal ID) Interface

This routine fetches data for a single point from the CG or elsewhere on the LCN. Use of
the Internal point.parameter ID (obtained by previous use of the Entity Name conversion
functions -- section 15.2.1) reduces the overhead required for repetitive single-point
requests.

The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element or the whole array can be specified.

14.3.3.1 Example Pascal Call for Single Point Get

return_status := CM50_GETPT_ID
(id_block,
 %REF val_loc,
 val_st,
 cg_port_num)

14.3.3.2 Parameter Definitions for Single Point Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
val_st status code for each returned value must be checked.

id_block—The name of a 16-byte variable (declared as CM50$int8) that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. When the data is of array type, that call returns the array size in word 7 of
the ID block. Thus, if you wish to get less than the entire array you can change
the parameter qualifier in the seventh word of the ID block to be smaller than the
actual array size. Do not change any other words in the ID block. See heading
4.7.8 in the Computer Gateway User Manual for ID block details.

CM50S User Manual 14-29 7/93

14.3.3

val_loc—The name of a program variable (declared as a CM50$value_record) where the
value(s) are to be stored. The CM50$value_record has variants that match each
value type:

val_typ variant data type
1 .a Real (32 bits)
2 .b Integer (shortword)
3 .c ASCII values (24-character string)
4 .d Enumeration (8-character string)
5 .e Ordinal (shortword)
6 .f External Time (18-character string)
7 .g Array [1..n] of Real
8 .h Array [1..n] of Integer
9 .i Array [1..n] of Enumeration
10 .j Array [1..n] of Ordinals
13 .m Internal_id (CM50_Ptid_vals)
14 .n Array [1..n] Internal_id
15 .o External_id (18-character string))
16 .p Array [1..n] of External_id
17 .q Internal Time (CM50_Time_Vals record)
18 .r Array [1..n] of Internal Time
19 .s String (40 characters)
20 .t Array [1..n] of String

val_st—The name of a shortword (declared as CM50$int2) where point-related status
information is to be stored. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (215000051). See Appendix A.1 for a listing of Data-Access
error/status codes. When the val_typ specifies an array, val_st refers to
status of the whole array.

cg_port_num—The name of a shortword (declared as CM50$int2) identifying the CG (1-4)
to be accessed.

CM50S User Manual 14-30 7/93

14.3.4

14.3.4 Single Point Store Data (Internal ID) Interface

This routine stores data to a single point in the CG or elsewhere on the LCN. Use of the
Internal point.parameter ID (obtained by previous use of the Entity Name conversion
functions -- section 15.2.1) reduces the overhead required for repetitive single-point
requests.

The specification of where the data is found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this function the ACP must be connected to an ACIDP with read/write access and be
in Normal mode. See the System Control Functions manual for other write access
restrictions.

14.3.4.1 Example Pascal Call for Single Point Store

return_status := CM50_STOREPT_ID
(id_block,
 %REF val_loc,
 store_cd,
 store_st);

14.3.4.2 Parameter Definitions for Single Point Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
store_st status code for each returned value must be checked.

id_block—The name of a 16-byte variable (declared as CM50$int8) that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. Do not change any words in the ID block. If the array size is changed, the
array is not stored and the return_status value is 215000051, with a
store_st that indicates an invalid array size. See heading 4.7.8 in the
Computer Gateway User Manual for ID block details.

CM50S User Manual 14-31 7/93

14.3.4

val_loc—The name of a program variable (declared as a CM50$value_record) containing the
value(s) to be stored. The CM50$value_record has variants that match each value
type:

val_typ variant data type
1 .a Real (32 bits)
2 .b Integer (shortword)
3 .c ASCII values (24-character string)
4 .d Enumeration (8-character string)
5 .e Ordinal (shortword)
6 .f External Time (18-character string)
7 .g Array [1..n] of Real
8 .h Array [1..n] of Integer
9 .i Array [1..n] of Enumeration
10 .j Array [1..n] of Ordinals
13 .m Internal_id (CM50_Ptid_vals)
14 .n Array [1..n] Internal_id
17 .q Internal Time (CM50_Time_Vals record)
18 .r Array [1..n] of Internal Time
19 .s String (40 characters)
20 .t Array [1..n] of String

store_cd—The name of a shortword (declared as CM50$int2) that contains a code that
allows the substitution of a bad value representation in place of the provided
value(s). The store code values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

store_st—The name of a shortword (declared as CM50$int2) where point-related status
information is to be stored. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (215000051). See Appendix A.1 for a listing of Data-Access error/status
codes. When the val_typ specifies an array, store_st refers to status of
the whole array.

CM50S User Manual 14-32 7/93

14.3.5

14.3.5 Get LCN Clock Value Interface

The current date and time as kept by the LCN, can be obtained in either internal or ASCII
format. The internal format is a 4-byte integer count of the number of seconds since
January 1, 1979. The ASCII format is MM/DD/YY∆HH:MM:SS∆ (where ∆ is used to
indicate a space).

14.3.5.1 Example Pascal Calls to Get the LCN Clock

Internal Time Format:
 return_status := CM50_TIMNOW_LCN

(Integer_Clock,
 cg_port_num);

ASCII Time Format:
 return_status := CM50_TIMNOW_ASC

(ASCII_Clock,
 cg_port_num);

14.3.5.2 Parameter Definitions for Get LCN Clock

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

Integer_clock—The name of an integer where the clock value, in seconds, is to be returned.

ASCII_clock—The name of an 18-character string (declared as type CM50$Time_arr) where
the clock value, formatted as 'MM/DD/YY hh:mm:ss ', is to be returned.

cg_port_num—The name of a shortword (declare as CM50$INT2, with a value of 1-4)
identifying the CG to be accessed.

CM50S User Manual 14-33 7/93

14.4

14.4 RAW DATA TRANSFERS

The interface routines in this group get, store, and convert only LCN Real data arrays in
LCN format. Each request works only with a single data point's parameter array. These
functions allow you to pass Real data arrays from one LCN to another without needing to
go through the LCN/VAX data conversions.

14.4.1 Get Raw Data Interface

This function fetches data for a single point from the CG or elsewhere on the LCN. Use of
the Internal point.parameter ID (obtained by previous use of the Convert External to
Internal ID interface, see 15.2.1) is required.

The specification of which data is to be fetched and where it is to be stored is contained in
the call.

14.4.1.1 Example Pascal Call for Get Raw Data

return_status := CM50_SPGRAW
(id_block,
 value_loc,
 priority,
 value_status,
 cg_port_num);

14.4.1.2 Parameter Definitions for Get Raw Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
value_status status code for each returned value must be checked.

id_block—The name of a 16-byte variable (declare as type CM50$int8) that contains the
internal ID data block obtained by a previous Convert External to Internal ID
request. When the conversion returns the array size in word 7 of the ID block.
Thus, if you wish to get less than the entire array you can change the parameter
qualifier in the seventh word of the ID block to be smaller than the actual array
size. Do not change any other words in the ID block. See heading 4.7.8 in the
Computer Gateway User Manual for ID block details.

value_loc—The name of a Real array (declare as type CM50$real1000) where the values are
to be stored. The id_block should identify the value type as 7 (Real array).

priority—The name of a shortword (declare as type CM50$int2) that contains the requested
data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual 14-34 7/93

14.4.2

value_status—The name of a shortword (declare as type CM50$int2) where point-related
status information is to be stored. This value is meaningful only when the
return_status value indicates normal, complete with errors, or array-size error.
See Appendix A.1 for a listing of Data Access error/status codes. The value
refers to status of the whole array.

cg_port_num—The name of a shortword (declare as type CM50$int2) identifying the CG
(1-4) to be accessed.

14.4.2 Store Raw Data Interface

This function stores data to a single point in the CG or elsewhere on the LCN. Use of the
Internal point.parameter ID (obtained by previous use of the Convert External to Internal
ID interface, see 15.2.1) is required.

The specification of where the data is found and where it is to be stored is contained in the
call.

To use this function the ACP must be connected to an ACIDP with read/write access and
be in Normal mode. See the System Control Functions manual for other write access
restrictions.

14.4.2.1 Example Pascal Call for Store Raw Data

return_status := CM50_SPSRAW
(id_block,
 value_loc,
 priority,
 store_code,
 value_status,
 cg_port_num);

14.4.2.2 Parameter Definitions for Store Raw Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
value_status status code for each returned value must be checked.

id_block—The name of a 16-byte variable (declare as type CM50$int8) that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. Do not change any words in the ID block. If the array size is changed, the
array is not stored and the return_status value is 5 with a value_status that
indicates an invalid array size. See heading 4.7.8 in the Computer Gateway
User Manual for ID block details.

value_loc—The name of a Real array (declare as type CM50$real1000) that contains the
value or values to be stored. The id_block should identify the value type as 7
(Real array).

CM50S User Manual 14-35 7/93

14.4.2

priority—The name of a shortword (declare as type CM50$int2) that contains the requested
data-access priority:

1 = High priority (provided for control operations)
2 = Low priority (provided for noncontrol operations)

store_code—The name of a shortword (declare as type CM50$int2) that contains a code
that allows the substitution of a bad value representation in place of the
provided value(s):

0 = Store the data value(s) provided
1 = Store the bad value representation (NaN) instead

value_status—The name of a shortword (declare as type CM50$int2) where point-related
status information is to be stored. This value is meaningful only when the
return_status value indicates normal or complete with errors. See Appendix
A.1 for a listing of Data-Access error/status codes. The value refers to status of
the whole array.

cg_port_num—The name of a shortword (declare as type CM50$int2) identifying the CG
(1-4) to be accessed.

CM50S User Manual 14-36 7/93

14.4.3

14.4.3 Convert Raw Data

This function converts the elements of a Real array from LCN format to VAX format.

14.4.3.1 Example Pascal Call for Convert Raw Data

return_status := CM50_SPCRAW
(id_block,
 raw_val_loc,
 vax_val_loc,
 value_type,
 convert_status);

14.4.3.2 Parameter Definitions for Convert Raw Data

return_status—The name of a longword to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
convert_status status code for each returned value must be checked.

id_block—The name of a 16-byte variable (declare as type CM50$int8) that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. Do not change any words in the ID block. See heading 4.7.8 in the
Computer Gateway User Manual for ID block details.

raw_val_loc—The name of a Real array (declare as type CM50$real1000) that contains
previously obtained raw values that are to be converted from LCN format.

vax_val_loc—The name of a Real array (declare as type CM50$real1000) to contain the
converted values.

value_type—The name of a shortword value (declare as type CM50$int2) that must =7
(Real array).

convert_status—The name of a shortword array (declare as type CM50$int1000) where the
request-completion status for each data array element is to be stored. Value
meanings are

0 = Normal return; this element was converted successfully
1 = Unable to convert this element to VAX format
2 = Bad value substitution was done on this element

CM50S User Manual 14-37 7/93

14.5

14.5 HISTORY DATA TRANSFERS

The interface routines in this group get previously stored averages or 1-minute snapshot
data from a History Module on the LCN. The data may be requested using a DDT, Internal
Data Block or the internal address of a single tag. The History calls provide for concurrent
Get History requests by up-to-four application programs. A fifth request is rejected with a
queue-full status return.

14.5.1 Selecting Records From the History Module

The History Module uses a specialized set of circular files to hold historized values
collected from data points on the LCN. Effective use of the CM50S history functions
requires an understanding of data organization on the History Module.

14.5.1.1 Relative and Absolute Time References

The History Module may be searched using either Relative or Absolute time references.
Relative references request data based on a number of records offset from the current value.
Absolute Time reference request data for all records whose timestamps fall within a
specified Date/Time interval.

For Absolute Time references, the Begin Date/Time specifies the timestamp of the most
recent value to be retrieved and the End Date/Time specifies the timestamp of the oldest
value to be retrieved. If a seasonal time change has occurred during a specified Absolute
History interval, the number of samples returned can differ from the expected number of
samples. For example, if it is desired to obtain a day's worth of hourly averages (24) and a
forward time change of one hour has occurred, 23 samples are returned. If the time change
is in the backward direction, 25 samples are returned.

Relative requests are based on beginning and ending offsets which are counts of records
back from the current time. The direction of search can be either forward (oldest to newest
data) or backwards (newest to oldest data); however, a forward search requires at least
twice as long to execute. To execute a backward search, set the starting offset value less-
than or equal-to the ending offset value. The number of samples returned is calculated as
the positive difference between the starting offset and the ending offset plus one. If this
difference exceeds 262, the request is truncated at 262 samples. The number of samples
returned by a Relative History request is immune to time changes.

Offset values less than one have special meanings. When the starting or ending offset
value is zero (i.e., current LCN time) in the case of averages, the first sample returned is
the current running average for the period. A starting offset of -1 has special meaning in
the cases of snapshots and user averages. In those cases only, LCN time is rounded to the
beginning of the last hour. This permits an ACP to be sure of obtaining the last full hour of
snapshots or user averages. In calculating the number of samples returned, a -1 is treated
as an offset of 0 and its number of samples and direction of search follows those rules. An
ending offset of -1 for snapshots and user averages means the search direction is forward
and the ending time is on the hour starting "n" units back from current time.

The following table summarizes results of combinations of starting and ending offsets for
Relative History requests with numbers of samples returned and reasons for zero sample
returns.

CM50S User Manual 14-38 7/93

14.5.1

History Starting Ending Number Direction Partial
Type Offset Offset of Samples of Search First Sample

for Averages?

any 0 0 1 Backward yes
any 1 1 1 Backward no
any 2 3 2 Backward no
any 3 2 2 Forward no
any 0 300 262 Backward yes
0,5 3 -1 4 Forward no
1 to 4 3 -1 0 Error, end offset invalid
0,5 -1 3 4 Backward no
0,5 -1 -3 0 Error, end offset invalid
1 to 4 -1 -3 0 Error, begin/end offset

invalid

14.5.1.2 Number of Values Retrieved in a Single Call

The number of values that can be obtained from the History Module for each point is
limited both by the size of the buffer used to transfer the values and by the History type.
The maximum number of values for monthly averages is 12, and for shift averages is 21.
The maximum for user averages is configuration dependent, but will not exceed the number
of values shown below for hourly averages. The other maximums are shown in the
following table.

Number of Maximum Maximum Maximum
Points in Snapshots Hourly Daily
DDT or List Averages Averages

1-3 262 168 31
4 262 149 31
5 238 119 31
6 198 99 31

7 170 85 31
8 149 74 31
9 132 66 31

10 119 59 31
11 108 54 31
12 99 49 31

13 91 45 31
14 85 42 31
15 79 39 31
16 74 37 31
17 69 34 31
18 66 33 31

19 62 31 31
20 59 29 29
21 56 28 28
22 53 26 27
23 51 25 25
24 49 24 24

CM50S User Manual 14-39 7/93

14.5.2

14.5.2 Get History Snapshots (Relative Time)

These routines are used to fetch history snapshots from the HM, using a relative offset
from current LCN time.

14.5.2.1 Example Pascal Calls for Get History Snapshots (Relative Time)

for standard 1-minute snapshots:

return_status := CM50_DDTHIS_SNAP
(ddt_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset);

for fast (5, 10 or 20 second) snapshots:

return_status := CM50_DDTHIS_FAST
(ddt_name,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset);

for Multi-Point Lists (instead of DDT):

return_status := CM50_MPL_SNAP
(mpl_name,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset,
 cg_port_num);

CM50S User Manual 14-40 7/93

14.5.2

for a single data point.parameter:

return_status := CM50_PTHIS_SNAP
(id_block,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_offset,
 end_offset,
 cg_port_num);

14.5.2.2 Parameter Definitions for Get History Snapshots (Relative Time)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (CM50_HIS_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (declared as type CM50$DDT_string) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of an Multi-Point List structure (declared as type CM50_idb_rec)
defining the data to be retrieved.

id_block—The name of a 16-byte variable (declared as type CM50$int8) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

sample_rate —The name of a shortword (declared as type CM50$int2) identifying the
number of snapshots to be returned for each minute. This value does not have
to match the rate at which snapshots are historized. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

Note: Retrieval of more than 1 snapshot per minute is only supported by LCN
 release 400.

number_of_values—The name of a shortword (declared as type CM50$int2) that specifies
the maximum number of history values (1..262) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin_offset and end_offset, the
number of samples gathered are truncated at this value. If the
number_of_values is greater than the number of samples returned by the
History Module, then the returned arrays are padded with status_table entries of
99 to match the requested number_of_values. For multi-point retrievals,
values for some of the points will be lost if the number_of_values times
the number of points is greater than 1197.

CM50S User Manual 14-41 7/93

14.5.2

real_values_array—The name of a Real array (declared as type CM50$snap_array) where
the history data is to be stored.

status_table—The name of a shortword array (declared as type CM50$hist_array) to
contain the value status for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is the Real equivalent of an ordinal value

for a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is

missing; value field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field

contains NaN
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: not applicable
99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an integer array (declared as type CM50$time_array)
that will contain the time stamp in seconds for each returned snapshot. See
heading 15.3 for time-stamp conversions.

begin_offset—The name of a shortword (declared as type CM50$int2) that indicates a
relative offset in minutes from current LCN time that represents the starting
period for which history is to be fetched.

end_offset—The name of a shortword (declared as type CM50$int2) that indicates a relative
offset in minutes from the current LCN time representing the ending period for
which history is to be fetched.

cg_port_num—The name of a shortword (declared as type CM50$int2, with a value of 1-4)
identifying the CG to be accessed.

CM50S User Manual 14-42 7/93

14.5.3

14.5.3 Get History Snapshots (Absolute Times)

These routines are used to fetch history snapshots from the HM, using absolute begin and
end times. Separate calls are provided for snapshot and averages histories.

If a seasonal time change has occurred during a specified Absolute History interval, the
number of samples returned can differ from the expected number of samples. For
example, if it is desired to obtain a day's worth of hourly averages (24) and a forward time
change of one hour has occurred, 23 samples are returned. If the time change is in the
backward direction, 25 samples are returned.

14.5.3.1 Example Pascal call for Get History Snapshots (Absolute Times)

for standard 1-minute snapshots:

return_status := CM50_DDTHIS_SNAPT
(ddt_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time);

for fast (5, 10 or 20 second) snapshots:

return_status := CM50_DDTHIS_FASTT
(ddt_name,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time);

for Multi-Point Lists (instead of DDT):

return_status := CM50_MPL_SNAPT
(mpl_name,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time,
 cg_port_num);

CM50S User Manual 14-43 7/93

14.5.3

for a single data point.parameter:

return_status := CM50_PTHIS_SNAPT
(id_block,
 sample_rate,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time,
 cg_port_num);

14.5.3.2 Parameter Definitions for Get History Snapshots (Absolute Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (CM50_HIS_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (declared as type CM50$DDT_string) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of an Multi-Point List structure (declared as type CM50_idb_rec)
defining the data to be retrieved.

id_block—The name of a 16-byte variable (declared as type CM50$int8) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

sample_rate —The name of a shortword (declared as type CM50$int2) identifying the
number of snapshots to be returned for each minute. This value does not have
to match the rate at which snapshots are historized. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

Note: Retrieval of more than 1 snapshot per minute is only supported by LCN
 release 400.

number_of_values—The name of a shortword (declared as type CM50$int2) that specifies
the maximum number of history values (1..261) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin and end times, the number of samples
gathered are truncated at this value. If the number_of_values is greater
than the number of samples returned by the History Module, then the returned
arrays are padded with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some points are
lost if the number_of_values times (1 + the number of points) is greater
than 1197.

CM50S User Manual 14-44 7/93

14.5.3

real_values_array—The name of a Real array (declared as type CM50$snap_array) where
the history data is to be stored.

status_table—The name of a shortword array (declared as type CM50$hist_array) to
contain the value status for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is the Real equivalent of an ordinal value

for a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is

missing; value field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field

contains NaN
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: not applicable
99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an integer array (declared as type CM50$time_array)
that will contain the time stamp in seconds for each returned snapshot. See
heading 15.3 for time-stamp conversions.

begin_date_time—The name of a 14-character string (declared as CM50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM (where ∆ indicates a blank character)
specifying the date and time for the most recent record to be fetched from the
History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

CM50S User Manual 14-45 7/93

14.5.4

end_date_time—The name of a 14-character string (declared as CM50_lcn_asctim) in the
format MM/DD/YY∆HH:MM, specifying the date and time for the oldest record
to be fetched from the History Module. The end_date_time must be earlier than
begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

cg_port_num—The name of a shortword (declared as type CM50$int2 with a value of 1-4)
identifying the CG to be accessed.

14.5.4 Get History Averages (Relative Times)

These calls return the average, minimum and maximum values of a point for specified time
periods.

14.5.4.1 Example Pascal call for Get History Averages (Relative Times)

return_status := CM50_DDTHIS_AVER
(ddt_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 history_type);

for Multi-Point Lists (instead of DDT):

return_status := CM50_MPLHIS_AVER
(mpl_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 history_type,
 cg_port_num);

CM50S User Manual 14-46 7/93

14.5.4

for a single data point.parameter:

return_status := CM50_PTHIS_AVER
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 history_type,
 cg_port_num);

14.5.4.2 Parameter Definitions for Get History Averages (Relative Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (CM50_HIS_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character array (declared as type CM50$DDT_string) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of an Multi-Point List structure (declared as type CM50_idb_rec)
defining the data to be retrieved.

id_block—The name of a 16-byte variable (declared as type CM50$int8) containing the
internal ID for an LCN tag.. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

number_of_values—The name of a shortword (declared as type CM50$int2) that specifies
the maximum number of history items (1..262) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin_offset and end_offset, the
number of samples gathered are truncated at this value. If the
number_of_values is greater than the number of samples returned by the
History Module, then the returned arrays are padded with status_table
entries of 99 to match the requested number_of_values. For multi-point
retrievals, values for some of the points are lost if the number_of_values
times the number of points is greater than 598.

real_values_array—The name of a Real array (declared as type CM50$aver_array) where the
history data is to be stored.

CM50S User Manual 14-47 7/93

14.5.4

status_table—The name of a shortword array (declared as type CM50$hist_array) to
contain the value status for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)

For Floating point values that cannot be represented on the VAX
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an integer array (declared as type CM50$time_array)
that will contain the time stamp in seconds for each returned average. See
heading 15.3 for time-stamp conversions.

max_array—The name of a real array (declared as type CM50$aver_array) that will contain
the maximum process value recorded in the averaged period. Due to the data
compression algorithm on the History module, there can be a rounding error of
no more than 1% in the reported maximum value for a point.

min_array—The name of a real array (declared as type CM50$aver_array) that will contain
the minimum process value recorded in the averaged period. Due to the data
compression algorithm on the History module, there can be a rounding error of
no more than 1% in the reported minimum value for a point.

num_samples_array—The name of an array of unsigned shortwords (declared as type
CM50_num_samples_array_type) that will contain the number of samples used
in calculating each returned average value.

CM50S User Manual 14-48 7/93

14.5.5

begin_offset—The name of a shortword (declared as type CM50$int2) that indicates a
relative offset from current LCN time that represents the first history record to
be fetched.

end_offset—The name of a shortword (declared as type CM50$int2) that indicates a relative
offset from the current LCN time representing the last history record to be
fetched.

history_type—The name of a shortword (declared as type CM50$int2) that contains the
number specifying the type of average requested. The available types and
maximum number of records on the History Module for each are:

1 = Hourly (168 records)
2 = Shift (21 records)
3 = Daily (31 records)
4 = Monthly (12 records)
5 = User (configuration dependent)

cg_port_num—The name of a shortword (declared as type CM50$int2 with a value of 1-4)
identifying the CG to be accessed.

14.5.5 Get History Averages (Absolute Times)

These calls return the average, minimum and maximum values of a point for specified time
periods.

14.5.5.1 Example Pascal call for Get History Averages (Absolute Times)

return_status := CM50_DDTHIS_AVERT
(ddt_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 history_type);

CM50S User Manual 14-49 7/93

14.5.5

for Multi-Point Lists (instead of DDT):

return_status := CM50_MPLHIS_AVERT
(mpl,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 history_type,
 cg_port_num);

for single point requests:

return_status := CM50_PTHIS_AVERT
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 history_type,
 cg_port_num);

14.5.5.2 Parameter Definitions for Get History Averages (Absolute Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (CM50_HIS_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (declared as type CM50$DDT_string) that
contains the ASCII name of the DDT to be used.

mpl —The name of an Multi-Point List structure (declared as type CM50_idb_rec) defining
the data to be retrieved.

id_block—The name of a 16-byte variable (declared as type CM50$int8) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

CM50S User Manual 14-50 7/93

14.5.5

number_of_values—The name of a shortword (declared as type CM50$int2) that specifies
the maximum number of history items (1..261) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin and end times, the number of samples
gathered are truncated at this value. If the number_of_values is greater
than the number of samples returned by the History Module, then the returned
arrays are padded with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some of the
points are lost if the number_of_values times (1 + the number of points) is
greater than 598.

real_values_array—The name of a Real array (declared as type CM50$aver_array) where the
history data is to be stored.

status_table—The name of a shortword array (declared as type CM50$hist_array) to
contain the value status for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an integer array (declared as type CM50$time_array) to
receive the time stamp in seconds for each returned average. See heading 15.3
for time-stamp conversions.

CM50S User Manual 14-51 7/93

14.5.5

max_array—The name of a real array (declared as type CM50$aver_array) that will contain
the maximum process value recorded in the averaged period. Note: Due to the
data compression algorithm on the History module, there may be a rounding
error of no more than 1% in the reported maximum value for a point.

min_array—The name of a real array (declared as type CM50$aver_array) that will contain
the minimum process value recorded in the averaged period. Note: Due to the
data compression algorithm on the History module, there may be a rounding
error of no more than 1% in the reported minimum value for a point.

num_samples_array—The name of an array of unsigned shortwords (declared as type
CM50_num_samples_array_type) that will contain the number of samples used
in calculating each returned average value.

begin_date_time—The name of a 14-character string (declared as CM50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM (where ∆ indicates a blank character)
specifying the date and time for the most recent record to be fetched from the
History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

end_date_time—The name of a 14-character string (declared as CM50_lcn_asctim_type) in
the format MM/DD/YY∆HH:MM, specifying the date and time for the oldest
record to be fetched from the History Module. The end_date_time must be
earlier than the begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

history_type—The name of a shortword (declared as type CM50$int2) that contains the
number specifying the type of average requested. The available types and
maximum time retained on the History Module for each are:

1 = Hourly (7 days)
2 = Shift (7 days)
3 = Daily (31 days)
4 = Monthly (1 year)
5 = User (8 hours to 7 days, depending on configuration)

cg_port_num—The name of a shortword (declared as type CM50$int2 with a value of 1-4)
identifying the CG to be accessed.

CM50S User Manual 14-52 7/93

14.5.6

14.5.6 Get Monthly Averages (Relative Times)

When a point is historized more often than once per minute, it is possible for the number of
samples taken during a month to exceed the capacity of a 16-bit integer. This call provides
a 32-bit integer count of the number of samples in a monthly average using relative time.

NOTE

Retrieval of monthly averages using this call is only supported by LCN release 400 or later.

14.5.6.1 Example Pascal call for Get Monthly Averages (Relative Times)

return_status := CM50_DDTHIS_MNTH
(ddt_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset);

for Multi-Point Lists (instead of DDT):

return_status := CM50_MPLHIS_MNTH
(mpl_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 cg_port_num);

CM50S User Manual 14-53 7/93

14.5.6

for a single data point.parameter:

return_status := CM50_PTHIS_MNTH
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_offset,
 end_offset,
 cg_port_num);

14.5.6.2 Parameter Definitions for Get Monthly Averages (Relative Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (CM50_HIS_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character array (declared as type CM50$DDT_string) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of a Multi-Point List structure (declared as type CM50_idb_rec)
defining the data to be retrieved.

id_block—The name of a 16-byte variable (declared as type CM50$int8) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

number_of_values—The name of a shortword (declared as type CM50$int2) that specifies
the maximum number of history items (1..262) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin_offset and end_offset, the
number of samples gathered are truncated at this value. If the
number_of_values is greater than the number of samples returned by the
History Module, then the returned arrays are padded with status_table
entries of 99 to match the requested number_of_values. For multi-point
retrievals, values for some of the points are lost if the number_of_values
times the number of points is greater than 598.

real_values_array—The name of a Real array (declared as type CM50$aver_array) where the
history data is to be stored.

CM50S User Manual 14-54 7/93

14.5.6

status_table—The name of a shortword array (declared as type CM50$hist_array) to
contain the value status for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)

For Floating point values that cannot be represented on the VAX
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an integer array (declared as type CM50$time_array)
that will contain the time stamp in seconds for each returned average. See
heading 15.3 for time-stamp conversions.

max_array—The name of a real array (declared as type CM50$aver_array) that will contain
the maximum process value recorded in the averaged period. Due to the data
compression algorithm on the History module, there can be a rounding error of
no more than 1% in the reported maximum value for a point.

min_array—The name of a real array (declared as type CM50$aver_array) that will contain
the minimum process value recorded in the averaged period. Due to the data
compression algorithm on the History module, there can be a rounding error of
no more than 1% in the reported minimum value for a point.

num_samples_array—The name of an array of integers (declared as type CM50$time_array)
that will contain the number of samples used in calculating each returned
average value.

CM50S User Manual 14-55 7/93

14.5.7

begin_offset—The name of a shortword (declared as type CM50$int2) that indicates a
relative offset from current LCN time that represents the first history record to
be fetched.

end_offset—The name of a shortword (declared as type CM50$int2) that indicates a relative
offset from the current LCN time representing the last history record to be
fetched.

cg_port_num—The name of a shortword (declared as type CM50$int2 with a value of 1-4)
identifying the CG to be accessed.

14.5.7 Get Monthly Averages (Absolute Times)

When a point is historized more often than once per minute, it is possible for the number of
samples taken during a month to exceed the capacity of a 16-bit integer. This call provides
a 32-bit integer count of the number of samples in a monthly average using absolute time.

NOTE

Retrieval of monthly averages using this call is only supported by LCN release 400 or later.

14.5.7.1 Example Pascal call for Get Monthly Averages (Absolute Times)

return_status := CM50_DDTHIS_MNTHT
(ddt_name,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time);

for Multi-Point Lists (instead of DDT):

return_status := CM50_MPLHIS_MNTHT
(mpl,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 cg_port_num);

CM50S User Manual 14-56 7/93

14.5.7

for single point requests:

return_status := CM50_PTHIS_MNTHT
(id_block,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 cg_port_num);

14.5.7.2 Parameter Definitions for Get Monthly Averages (Absolute Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (CM50_HIS_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (declared as type CM50$DDT_string) that
contains the ASCII name of the DDT to be used.

mpl —The name of an Multi-Point List structure (declared as type CM50_idb_rec) defining
the data to be retrieved.

id_block—The name of a 16-byte variable (declared as type CM50$int8) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

number_of_values—The name of a shortword (declared as type CM50$int2) that specifies
the maximum number of history items (1..261) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin and end times, the number of samples
gathered are truncated at this value. If the number_of_values is greater
than the number of samples returned by the History Module, then the returned
arrays are padded with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some of the
points are lost if the number_of_values times (1 + the number of points) is
greater than 598.

real_values_array—The name of a Real array (declared as type CM50$aver_array) where the
history data is to be stored.

CM50S User Manual 14-57 7/93

14.5.7

status_table—The name of a shortword array (declared as type CM50$hist_array) to
contain the value status for each returned snapshot. If the return_status is
CM50_HIS_PART (complete with errors) then for any point that could not be
accessed, the first status_table entry will be the Data Access error code
(Appendix A.1) for that point. Otherwise, each status_table entry is one of the
following value status codes for the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX:
CM50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
CM50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
CM50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
CM50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
CM50_NaN (16388) = Bad Value returned as a legitimate (custom data

segment) value.

lcn_time_stamp_array—The name of an integer array (declared as type CM50$time_array) to
receive the time stamp in seconds for each returned average. See heading 15.3
for time-stamp conversions.

max_array—The name of a real array (declared as type CM50$aver_array) that will contain
the maximum process value recorded in the averaged period. Note: Due to the
data compression algorithm on the History module, there may be a rounding
error of no more than 1% in the reported maximum value for a point.

min_array—The name of a real array (declared as type CM50$aver_array) that will contain
the minimum process value recorded in the averaged period. Note: Due to the
data compression algorithm on the History module, there may be a rounding
error of no more than 1% in the reported minimum value for a point.

num_samples_array—The name of an array of integers (declared as type CM50$time_array)
that will contain the number of samples used in calculating each returned
average value.

CM50S User Manual 14-58 7/93

14.5.7

begin_date_time—The name of a 14-character string (declared as CM50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM (where ∆ indicates a blank character)
specifying the date and time for the most recent record to be fetched from the
History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

end_date_time—The name of a 14-character string (declared as CM50_lcn_asctim_type) in
the format MM/DD/YY∆HH:MM, specifying the date and time for the oldest
record to be fetched from the History Module. The end_date_time must be
earlier than the begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

cg_port_num—The name of a shortword (declared as type CM50$int2 with a value of 1-4)
identifying the CG to be accessed.

CM50S User Manual 14-59 7/93

14.5.8

14.5.8 Historization Sampling Rate Queries

These functions query the LCN and return the current Historization Sampling Rate (number
of snapshots recorded each minute) for a point or set of points.

NOTE

Retrieval of sampling rates using this call is only supported by LCN release 400 or later.

14.5.8.1 Example Pascal calls for Query Sampling Rate

For Points referenced in a History DDT:

return_status := CM50_DDTHIS_RATE
(ddt_name,
 history_rate_array,
 status_table);

For a List of Internal Point ids:

return_status := CM50_MPLHIS_RATE
(mpl_name,
 history_rate_array,
 status_table,
 cg_port_number);

For a Point addressed by its internal id:

return_status := CM50_PTHIS_RATE
(id_block,
 history_rate,
 cg_port_number);

For a Point addressed by its internal id:

return_status := CM50_TAGHIS_RATE
(tagname,
 history_rate,
 cg_port_number);

CM50S User Manual 14-60 7/93

14.5.8

14.5.8.2 Parameter Definitions for History Sampling Rate Queries

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (CM50_HIS_PART), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (declared as type CM50$DDT_string) that
contains the ASCII name of the DDT to be used.

mpl —The name of an Multi-Point List structure (declared as type CM50_idb_rec) defining
the data to be retrieved.

id_block—The name of a 16-byte variable (declared as type CM50$int8) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

tagname—The name of a 40-character string (declared as cm50_tagname_type) that contains
an LCN tagname in the form "point.parameter(index)", where the "(index)" is
used only to identify elements of an array.

history_rate —The name of a shortword (declared as CM50$int2) identifying the number of
snapshots to collected each minute. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

history_rate_array —The name of an array of short words (declared as CM50$hist_array)
identifying the number of snapshots collected each minute. Acceptable values
are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

status_table—The name of an array of short words (declared as CM50$hist_array) to
contain the data access code for each point (See appendix A.1).

CM50S User Manual 14-61 7/93

14.6

14.6 TEXT MESSAGE TRANSFERS

The two interface routines in this group are used to send and receive character-string
messages over the LCN.

14.6.1 Get Message Interface

This routine is used to fetch a character-string message held in a buffer by this program's
ACIDP. The message presence is determined as the result of a Get ACP Status request.

14.6.1.1 Example Pascal Call for Get Message

return_status := CM50_GETMSG
(msg,
 msg_len);

14.6.1.2 Parameter Definitions for Get Message

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. There are three
non-normal return_status values for this call that indicate the need for additional
processing:

 215000521 CM50_MSG_TRUNC Received message was truncated
 215000561 CM50_MSG_QUE Message was received and another one is queued
 215000571 CM50_MSG_QUET Received message was truncated & another one is queued

msg—The name of a 120-character string (declared as type CM50$msg_string) where the
message is to be stored.

msg_len—The name of a shortword (declared as type CM50$int2) that specifies the
maximum number of characters to accept (120-character limit).

CM50S User Manual 14-62 7/93

14.6.2

14.6.2 Send Message Interface

This routine is used to send a message to all operator stations assigned to the same unit as
this program's ACIDP. A request to wait for operator confirmation is optional. If operator
confirmation is requested, execution of the requesting program is suspended until either the
confirmation occurs, or until its specified wait time expires. The requesting program
receives an indication of whether confirmation or a time out occurs.

14.6.2.1 Example Pascal Call for Send Message

return_status := CM50_STOREMSG
(msg,
 msg_len,
 confirm,
 timeout,
 dest);

14.6.2.2 Parameter Definitions for Send Message

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

msg—The name of a character string (declared as type CM50$msg_string) that contains the
message to be sent.

msg_len—The name of a shortword (declared as type CM50$int2) that specifies the number
of characters to be transmitted. The maximum number of characters depends on
message destination: 60 for CRT displays and 72 for printing. Over-length
messages are truncated. All messages are archived if the HM is so configured.

confirm—The name of a Boolean shortword (declared as type CM50$bool2 where 1 =
TRUE and 0 = FALSE) that specifies whether or not a message confirmation is
required. Note that this parameter is treated as FALSE if the message
destination is printer only.

timeout—The name of a shortword (declared as type CM50$int2) that specifies the number
of seconds (0 to 3600) the system is to wait for confirmation before returning
control to the requesting program with a "no confirm" return_status. (Allow for
a built-in time lag of up-to-10 seconds.) The Wait Time parameter is ignored if
the Confirm parameter is set to OFF or the message destination is printer only.

dest—The name of a shortword (declared as type CM50$int2) that specifies where the
message is to be sent, as follows:

0 – CRT only
1 – Printer only
2 – Both

CM50S User Manual 14-63 7/93

14.6.2

14.6.2.3 Event-Initiated Reports

Two types of Event-Initiated Reports can be invoked by specially formatted messages from
an ACP or an Indirect Control Program to the Area Universal Stations:

• Logs, reports journals, and trends configured in the Area database

• Event History reports

Details of message requirements are given in Section 30 of the Engineer's Reference
Manual located in the Implementation/Startup & Reconfiguration - 2 binder.

CM50S User Manual 14-64 7/93

CM50S User Manual 15-1 7/93

15

PROGRAM CONTROL AND SUPPORT (Pascal)
Section 15

This section discusses program interfaces that control the execution of ACPs and convert values
between formats used in the VAX and on the TDC 3000 Local Control Network.

15.1 ACP EXECUTION SUPPORT

These interface routines affect the orderly execution and termination of application
programs.

15.1.1 ACP Initialization Interface

This routine (or the vintage ACPTRP procedure) must be the first executable statement in
each ACP but is optional for DAPs and Indirect Control Programs. It establishes a
termination handler and ensures proper ACP table setup. Failure to invoke this interface
routine as the first statement of an ACP may not appear to cause immediate problems, but
will result in improper termination handling. The termination status is not reported to the
CG, and the ACP appears to both the CM50S and the CG to still be in the RUN state even
though the process has terminated.

The call to CM50_SET_ACP also establishes a system lock that allows the program to be
terminated cleanly if CM50S is shut down. Therefore, it is advisable to include this call in
every program that is mapped to the CM50S shareable image.

15.1.1.1 Example Pascal Call for ACP Initialization

 return_status := CM50_SET_ACP (reset);

15.1.1.2 Parameter Definitions for ACP Initialization

return_status—The name of an integer to receive the overall return status of the function.
This function always returns as a success (return_status = 1).

reset—The name of an INTEGER*2 that specifies the reaction of the trap handler to an
abort. If the ACP is aborted for any reason, the Abort code is recorded in the
CG/PLNM database and the ACP Status table. If the value of reset is 1, then
the execution status of the ACP is reset to OFF/DELAY regardless of how the
program terminated. For any other value of reset, the execution status of the
ACP becomes OFF/DELAY only after normal termination and is set to ABORT
after an abnormal program termination.

CM50S User Manual 15-2 7/93

15.1.2

15.1.2 Get ACP Status Interface

This routine fetches a set of parameters that enables the requesting ACP to determine why
the system has turned it on and what special processing may be required at this time. It
should be used during both the "setup" and "cleanup" program stages each time an ACP
runs. After servicing this request, the interface routine resets its copy of these values in
preparation for any subsequent ACP turn on.

NOTE

GETSTS is one of the few CM50S user-interface routines that is not implemented as a
function. It is called as a Pascal subroutine.

15.1.2.1 Example Pascal Call for Get ACP Status

GETSTS (take_i_p,
 ps_msg,
 demand,
 procspec,
 scheduled,
 upper_level);

15.1.2.2 Parameter Definitions for Get ACP Status

take_i_p—The name of a Boolean shortword (declare as type CM50$bool2 with 1 = TRUE
and 0 = FALSE) that returns TRUE the first time this program is turned on by
the CG, following an initialization event (see heading 4.4.1). take_i_p
should be ignored when upper_level is TRUE.

ps_msg—The name of a Boolean shortword (declare as type CM50$bool2 with 1 = TRUE
and 0 = FALSE) that returns TRUE if a message for the program is waiting at
the CG.

demand—The name of a Boolean shortword (declare as type CM50$bool2 with 1 = TRUE
and 0 = FALSE) that returns TRUE if the program was turned on as the result
of a process operator request.

procspec—The name of a Boolean shortword (declare as type CM50$bool2 with 1 =
TRUE and 0 = FALSE) that returns TRUE if the program was turned on as the
result of a process special to its ACIDP from an HG, AM, or another ACP.

scheduled—The name of a Boolean shortword (declare as type CM50$bool2 with 1 =
TRUE and 0 = FALSE) that returns TRUE if the program was turned on by
periodic or cyclic scheduling.

upper_level—The name of a Boolean shortword (declare as type CM50$bool2 with 1 =
TRUE and 0 = FALSE) that returns TRUE if the program was turned on by the
VAX.

CM50S User Manual 15-3 7/93

15.1.3

15.1.3 ACP Delay Interface

This routine suspends execution of the calling program for a specified number of seconds.
Program execution resumes at the statement following the delay call.

15.1.3.1 Example Pascal Call for ACP Delay

sleep := CM50_ACPDELAY
(delay_time);

15.1.3.2 Parameter Definitions for ACP Delay

sleep—The name of a Boolean shortword (declare as type CM50$bool2 with 1 = TRUE
and 0 = FALSE) that contains the overall return status of the function call. The
value will be FALSE when the call has been rejected because of an invalid
delay time value.

delay_time—The name of a shortword (declare as type CM50$int2) that contains the length
of time (1 to 60 seconds) that the requesting program is to be suspended.

15.1.4 ACP Hibernate Interface

This routine suspends execution of the calling ACP (through a VMS SYS$HIBER request)
until the next turn on request. The program and associated data remain in memory during
hibernation, in effect making it memory-resident. Program execution resumes at the
statement following the CM50_HIBER call.

15.1.4.1 Example Pascal Call for ACP Hibernate

hiber_stat := CM50_HIBER;

15.1.4.2 Parameter Definitions for ACP Hibernate

hiber_stat—The name of an integer to receive the overall return status of the function call.
This value should always = 1 (SS$_NORMAL). Any other value indicates a
fatal error. The program should call the GETSTS routine (see heading 15.1.2)
to determine how the Wake call was issued.

CM50S User Manual 15-4 7/93

15.1.5

15.1.5 ACP Termination Interface

This routine terminates the execution of the calling ACP. It must be used as the last
operating statement of each ACP but is optional for DAPs and Indirect Control Programs.

For ACPs, this call stores a termination-status code in the associated ACIDP's
ABORTCOD parameter. The termination code can be viewed at a Universal Station (see
the definitions for ABORTCOD and EXECSTAT at heading 4.4.1), but in a revised form.
The integer value assigned here is translated into two hexadecimal digits (00 to FF) and
appended to the character string EA. Thus, an ACP-assigned abnormal termination code
of 15 appears at the Universal Station display as EA0F.

If an ACP is aborted by the VMS operating system, an abort code of VMSF is stored in its
ACIDP's ABORTCOD.

The execution state of an ACIDP can be changed from ABORT to normal by operator
demand through a Universal Station or by invoking the ACP Operation screen’s
Deactivate/Terminate function. See heading 5.8 for abort recovery details.

NOTE

PRGTRM is one of the few user-interface routines that is not implemented as a function. It is
called as a Pascal subroutine.

15.1.5.1 Example Pascal Call for ACP Termination

PRGTRM (terminate_code);

15.1.5.2 Parameter Definitions for ACP Termination

terminate_code—The name of an integer that must contain zero or a positive value (1 to
255). Zero value indicates normal termination. Nonzero values are user-
specified codes for nonnormal termination (abort). Note that if you provide a
value outside the valid range, ABORTCOD will contain EA∆∆ (where.∆
represents a blank).

CM50S User Manual 15-5 7/93

15.2

15.2 ENTITY NAME CONVERSIONS

The interface routines in this group convert ASCII references to tags on the LCN to their
internal LCN identifiers.

NOTE

The all internal point.parameter addresses need to be rebuilt and the program(s) using them
need to be recompiled whenever the LCN database is changed in a significant manner, such
as by the rebuild or deletion of data points referenced in the address array.

15.2.1 Convert External to Internal ID

These routines fetch the internal ID of a point.parameter for the calling program. Use of
the internal ID by repetitive single-value data gets and stores reduces system overhead and
provides faster return of data. The specification of which point.parameter internal ID is
wanted and where it is to be stored is contained in the call.

15.2.1.1 Example Pascal Calls for Convert ID

Using point and parameter names as separate variables:

 return_status := CM50_CONV_PT
(entity,
 param,
 param_ix,
 id_block,
 val_typ,
 cg_port_num);

When the external id is expressed as a Tag name (not separate point and parameter), use:

 return_status := CM50_CONV_TAG
(tag_name,
 id_block,
 val_typ,
 cg_port_num);

15.2.1.2 Parameter Definitions for Convert ID

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000146 (CM50_LCN_ARRAY)—the array size specified by param_ix is
smaller the actual array size.

CM50S User Manual 15-6 7/93

15.2.1

215000322 (CM50_ACC_SIZE)—the array size specified by param_ix is
larger than the actual array size.

tag_name—The name of a 40-character string (declare as CM50_tag_name_type) that
identifies the LCN value(s) to be stored. The tag name is formatted as
"point.param (param_ix)".

entity—The name of a 20-character string (declare as CM50_Entity_name_type) that
contains the ASCII Point ID. It should contain a point name of up to 16
characters, optionally preceded by a 1- or 2-character pinid and a backslash (\)
delimiter for Network Gateway routing.

param—An 8-character string that contains the ASCII name of the parameter to be
converted.

param_ix—The name of a shortword (declare as type CM50$int2) specifying the parameter
index. Use of this value is controlled by val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 15, 17 or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 16, 18 or 20, a whole array (or a subset of
the array starting with the first element) is to be accessed and param_ix is
used to specify the number of elements to be accessed. If param_ix is
smaller than the actual array size, the conversion will be made; if it is larger
than the actual array size, the conversion is not made. Both conditions cause
non-normal return_status values to be returned.

id_block—The name of a 16-byte variable (declare as type CM50$int8) where the internal
ID data block is to be returned. Save these eight values for later use in calls on
this point.parameter. The ID data block contents are as follows:

Word 1— Data type
Words 2..5— Internal point identifier
Word 6— Parameter subscript
Word 7— Parameter qualifier (array size)
Word 8— Enumeration set identifier

CM50S User Manual 15-7 7/93

15.2.1

val_typ—The name of a shortword (declare as type CM50$int2) that contains a number that
designates value type. If the incorrect value is supplied on input, this value will
be updated as an output variable. The coded values:

 1 = Real (or single element of real array)
 2 = Integer (or single element of integer array)
 3 = ASCII
 4 = Enumeration (or single element of enumeration array)
 5 = Ordinal value of enumeration (or single element of ordinal array)
 6 = not used
 7 = Real array
 8 = Integer array
 9 = Enumeration array

 10 = Ordinal value of enumeration array
13 = Internal entity id
14 = Internal entity id array
15 = External entity id
16 = External entity id array
17 = Time value
18 = Time value array
19 = String value
20 = String value array

cg_port_num—The name of a shortword (declare as type CM50$int2 with a value of 1-4)
identifying the CG to be accessed.

CM50S User Manual 15-8 7/93

15.2.2

15.2.2 Convert List of External IDs

These routines fetch an array of internal IDs for a list of point.parameters. These calls are
designed for use with the Point Array calls described in section 14.2. All of the
point.parameters in each list must be of the same data type (Real, ASCII, etc.).

15.2.2.1 Example Pascal Call for Convert Lists

When the point and parameter names are maintained separately, use:

 return_status := CM50_CONV_PT_LIST
(entity_arr,
 param_arr,
 param_ix_arr,
 number_of_values,
 val_typ,
 cg_port_num
 id_block_arr,
 return_arr);

When the external id is expressed as a Tag name (not separate point and parameter), use:

 return_status := CM50_CONV_TAG_LIST
(tagname_arr,
 number_of_values,
 val_typ,
 cg_port_num
 id_block_arr,
 return_arr);

15.2.2.2 Parameter Definitions for Convert Lists

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
return_arr array entry for each returned id block must be checked for
errors.

return_arr—The name of an array of up to 300 integers (declare as CM50_return_arr_type)
to receive the status of the conversion of each point or tag. See Appendix A.2
for an explanation and a listing of all assigned return code values.

CM50S User Manual 15-9 7/93

15.2.2

tagname_arr—The name of an array of up to 300 40-character strings (declare as
CM50_tag_list_type). Each string contains the ASCII tagname of an LCN
entity for which the internal ID is to be obtained. The tagnames are formatted
as Point.Parameter or Point.Parameter(ix), where (ix) is an array
element index used only with array parameters.

entity_arr—The name of an array of up to 300 20-character strings (declare as
CM50_entity_list_type), each containing an ASCII Point id. Each string
should contain a point name of up to 16 characters, optionally preceded by a 1-
or 2-character pinid and a backslash (\) delimiter for Network Gateway routing.

param_arr—The name of an array of up to 300 8-character strings (declare as
CM50_param_names_type), each containing the ASCII parameter name of a
point.parameter for which the internal ID is to be obtained.

param_ix_arr—The name of an array of up to 300 shortwords (declare as type
CM50_integer_array_type) used as array element index values corresponding
to the individual parameter names in param_arr. For each non-array parameter
named in that array, the corresponding value in this array should be zero.

cg_port_num—The name of a shortword (declare as type CM50$int2 with a value of 1-4)
identifying the CG to be accessed.

id_block_arr—The name of an array of up to 300 16-byte variables (declare as
CM50_point_list_array_type) where the internal ID data blocks are to be
returned The ID data block contents are as follows:

Word 1— Data type
Words 2..5— Internal point identifier
Word 6— Parameter subscript
Word 7— Parameter qualifier (array size)
Word 8— Enumeration set identifier

number_of_values—The name of a shortword (declare as type CM50$int2) that contains the
number of points/tags in the list to be converted.

val_typ—The name of a shortword (declare as type CM50$Int2) that contains a number that
designates LCN value type. This value must be supplied in the calling
argument. The acceptable values are:

 1 = Real (or single element of real array)
 2 = Integer (or single element of integer array)
 3 = ASCII
 4 = Enumeration (or single element of enumeration array)
 5 = Ordinal value of enumeration (or single element of ordinal array)
13 = Internal entity id
15 = External entity id
17 = Internal Time
19 = String

CM50S User Manual 15-10 7/93

15.3

15.3 VALUE CONVERSIONS

The interface routines in this group convert values between different formats used in the
LCN and the host computer.

15.3.1 Valid Number Check

This routine checks a value of type "Real" to determine if it is a valid single-precision,
floating-point number. Its primary purpose is to check for the "Bad Value" indicator, NaN
(-0).

15.3.1.1 Example Pascal Call for Valid Number Check

value_st := CM50_VALIDN (value);

15.3.1.2 Parameter Definitions for Valid Number Check

value_st—The name of a Boolean shortword (declare as type cm50$bool2 where 1 =
TRUE and 0 = FALSE) that returns TRUE if "Value" is found to be a valid
floating-point number. It returns FALSE for minus zero (NaN) or other invalid
bit configurations.

value—The name of a Real variable that contains a single-precision, floating-point value
that is to be checked. When value_st returns FALSE, the contents of
value have been changed to 0.0.

15.3.2 Set Bad Value

This routine stores the bad value constant, NaN (-0), into the specified Real variable.

15.3.2.1 Example Pascal Call for Set Bad Value

return_status := CM50_SETBAD (var_name);
or

CALL CM50_SETBAD (var_name)

15.3.2.2 Parameter Definitions for Set Bad Value

return_status—The name of an integer to receive the overall return status of the function
call. For this function, return_status = 1 always.

var_name—The name of a Real variable where the bad value constant for the LCN is to be
stored. Note that attempting to use a variable that has been set to Bad Value in
an arithmetic or assignment statement will cause a fatal Pascal error at run time.

CM50S User Manual 15-11 7/93

15.3.3

15.3.3 Convert Time Values

Within the CM50 environment, Date/time variables are often maintained in a variety of
formats. The following routines convert time values from any one of the following
formats to any other:

abbrev. format use
 LCN 4-byte integer internal LCN clock, number of

seconds since January 1, 1979
 VAXB 8-bytes VAX binary system clock format

(array of two 4-byte integers)
 VAXA 22 characters VAX standard ASCII time display:

'dd-MON-yyyy hh:mm:ss'
 ASC 18 characters LCN standard ASCII time display

'mm/dd/yy hh:mm:ss'
 EURO 18 characters European ASCII time display

'dd/mm/yy hh:mm:ss'
 ARY 12 bytes shortword array

(equivalenced to with element:
six 2-byte integers) 1 = year

2 = month
3 = day
4 = hour
5 = minute
6 = second

In each routine, the first argument must be assigned the input value and the second
argument is the returned converted value.

15.3.3.1 Example Pascal Calls to Convert Time

Convert internal LCN time to a shortword array:
 return_status := CM50_TIMLCN_ARY

(lcn,
 ary);

Convert internal LCN time to an ASCII string:
 return_status := CM50_TIMLCN_ASC

(lcn,
 asc);

Convert internal LCN time to a European string:
 return_status := CM50_TIMLCN_EURO

(lcn,
 euro);

Convert internal LCN time to VAX display format:
 return_status := CM50_TIMLCN_VAXA

(lcn,
 vaxa);

Convert internal LCN time to VAX binary:
 return_status := CM50_TIMLCN_VAXB

(lcn,
 vaxb);

CM50S User Manual 15-12 7/93

15.3.3

Convert a shortword array to internal LCN:
 return_status := CM50_TIMARY_LCN

(ary,
 lcn);

Convert a shortword array to an ASCII string:
 return_status := CM50_TIMARY_ASC

(ary,
 asc);

Convert a shortword array to a European string:
 return_status := CM50_TIMARY_EURO

(ary,
 euro);

Convert a shortword array to VAX display format:
 return_status := CM50_TIMARY_VAXA

(ary,
 vaxa);

Convert a shortword array to VAX binary:
 return_status := CM50_TIMARY_VAXB

(ary,
 vaxb);

Convert an ASCII string to internal LCN:
 return_status := CM50_TIMASC_LCN

(asc,
 lcn);

Convert an ASCII string to a shortword array:
 return_status := CM50_TIMASC_ARY

(asc,
 ary);

Convert an ASCII string to a European string:
 return_status := CM50_TIMASC_EURO

(asc),
 euro);

Convert an ASCII string to VAX display format:
 return_status := CM50_TIMASC_VAXA

(asc,
 vaxa);

Convert an ASCII string to VAX binary:
 return_status := CM50_TIMASC_VAXB

(asc,
 vaxb);

Convert a European string to internal LCN:
 return_status := CM50_TIMEURO_LCN

(euro,
 lcn);

CM50S User Manual 15-13 7/93

15.3.3

Convert a European string to a shortword array:
 return_status := CM50_TIMEURO_ARY

(euro,
 ary);

Convert a European string to an ASCII string:
 return_status := CM50_TIMEURO_ASC

(euro,
 asc);

Convert a European string to a VAX display format:
 return_status := CM50_TIMEURO_VAXA

(euro,
 vaxa);

Convert a European string to VAX binary:
 return_status := CM50_TIMEURO_VAXB

(euro,
 vaxb);

Convert VAX display format to internal LCN:
 return_status := CM50_TIMVAXA_LCN

(vaxa,
 lcn);

Convert VAX display format to a shortword array:
 return_status := CM50_TIMVAXA_ARY

(vaxa,
 ary);

Convert VAX display format to an ASCII string:
 return_status := CM50_TIMVAXA_ASC

(vaxa,
 asc);

Convert VAX display format to a European string:
 return_status = CM50_TIMVAXA_EURO

(vaxa,
 euro);

Convert VAX display format to VAX binary:
 return_status := CM50_TIMVAXA_VAXB

(vaxa,
 vaxb);

Convert VAX binary to internal LCN:
 return_status := CM50_TIMVAXB_LCN

(vaxb,
 lcn);

Convert VAX binary to a shortword array:
 return_status := CM50_TIMVAXB_ARY

(vaxb,
 ary);

CM50S User Manual 15-14 7/93

15.3.3

Convert VAX binary to an ASCII string:
 return_status := CM50_TIMVAXB_ASC

(vaxb,
 asc);

Convert VAX binary to a European string:
 return_status := CM50_TIMVAXB_EURO

(vaxb,
 euro);

Convert VAX binary to VAX display format:
 return_status := CM50_TIMVAXB_VAXA

(vaxb,
 vaxa);

15.3.3.2 Parameter Definitions for Convert Time Values

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

lcn—The name of an integer that contains a value representing internal LCN time to the
nearest second.

ary—The name of a 12-byte string (declare as CM50_integer_time_type) that contains a
value representing a date and time.

asc—The name of an 18-character string (declare as CM50$Time_arr) representing time in
the format : 'mm/dd/yy hh:mm:ss '.

euro—The name of an 18-character string (declare as CM50$Time_arr) representing time in
the format : 'dd/mm/yy hh:mm:ss '.

vaxa—The name of a 22-character string (declare as CM50_lcn_ASCII_time_type)
representing time in the format: 'dd-MON-yyyy hh:mm:ss', where MON
represents the first three letters (in upper case) of the English name of the
month.

vaxb—The name of a 64-bit variable (declare as CM50_VMS_Binary_time_type) that
contains a value representing internal VAX binary time.

CM50S User Manual 16-1 7/93

16

CM50S ADMINISTRATION (Pascal)
Section 16

This section discusses the programmatic calls that can be used to manage the ACPs and DDTs
installed in a CM50S system.

16.1 PROGRAMMATIC INTERFACES TO ACP OPERATIONS

A programmatic interface to all ACP Operations gives users programmatic access to the
same ACP functions that are available through the ACP Operations user interface. In order
to use the ACP Programmatic Interface, the user should include the ACP Include files
(CM50_FLAGS_INCLUDE.PAS and CM50_ACP_INCLUDE.PAS). These files define
data types and routines required by the Programmatic Interface calls. The following
sections discuss the ACP Programmatic Interface calls in detail.

16.1.1 Install ACP

This routine is called to install an ACP. The ACP can be installed under a different name
than the executable filename.

16.1.1.1 Example Pascal Call for Install ACP

return_status := CM50_ACP_INSTALL
(acp_name,
 process_name,
 mailbox_name,
 exe_path,
 mode,
 input_path,
 output_path,
 error_path,
 privilege,
 uic,
 priority,
 creprc_flags,
 quota_list,
 flags);

16.1.1.2 Parameter Definitions for Install ACP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) to be installed. Must be specified.

CM50S User Manual 16-2 7/93

16.1.1

process_name—The Name (packed array of 15 characters, declare as
PROC_NAME_TYPE) to be assigned to the created process. If set to spaces,
the ACP name will be used. Note: Each process must have a unique name.
The activation of an ACP will fail if a process with the specified process_name
is active on the system.

mailbox_name—A VMS termination mailbox name (packed array of 40 characters, declare
as MBX_LOG_TYPE --normally set to spaces) to receive a termination
message when the created process (ACP) is complete. This is a temporary
termination mailbox created by the Programmatic Interface and ACPOPER
utility. For more information, refer to the VMS System Services Reference
Manual. This mailbox parameter is applicable only when the ACP is executed
as a remote (detached) process. An ACP run interactively ignores the mailbox
parameter in the ACP table. The mailbox is created using VMS defaults.

exe_path—Full pathname (packed array of 80 characters, declare as
PATH_NAME_TYPE) of the executable file. If set to spaces, the default is the
executable file specified by the acp_name in the CM50$ACP directory.

mode— 16-bit integer (declare as ACP_MODE_TYPE) Specifies what mode to install the
ACP in. The values (and their symbolic names) are:

1 = TEST
2 = RESTRICTED
3 = NORMAL

input_path—Pathname (packed array of 80 characters, declare as PATH_NAME_TYPE)
of the alternate input filename.

output_path—Pathname (packed array of 80 characters, declare as PATH_NAME_TYPE)
of the alternate output filename. If left blank, SYS$OUTPUT will be directed
to the NULL device.

error_path—Pathname (packed array of 80 characters, declare as PATH_NAME_TYPE) of
the alternate error filename. If left blank, SYS$ERROR will be directed to the
NULL device.

privilege—Privileges specification. Declared as PRIV_MASK_TYPE assigns special VMS
privileges to the ACP. Set both components (.L0 and .L1) to zero for a
normal, unprivileged ACP.

uic—Name of user (packed array of 12 characters, declare as UIC_TYPE) whose UIC is
to be used when the ACP is executed remotely. Only the first 12 characters are
significant, the remainder should be blank filled.

priority—32-bit integer (declare as PRIORITY_TYPE) specifying the VMS priority (0-30)
of the ACP process.

creprc_flags—32-bit integer (declare as CREPRC_FLAG_TYPE) VMS Create Process
flags specification. Normally set to zero.

quota_list—Quotas specification. Declared as QUOTA_LIST_TYPE (an array of 14
QUOTA_TYPE records). The last element of the array must have a
QUOTA_TAG = zero. To use the system defaults, pass a single element with a
value of zero.

CM50S User Manual 16-3 7/93

16.1.2

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_ACIDP_ACTIVATE (required to activate an ACP which is
 connected to an ACIDP)

CM50$M_HANDLER
CM50$M_MSGON

16.1.2 Uninstall ACP

This routine is called to uninstall an ACP.

16.1.2.1 Example Pascal Call for Uninstall ACP

return_status := CM50_ACP_UNINST
(acp_name,
 flags);

16.1.2.2 Parameter Definitions for Uninstall ACP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) that is to be uninstalled.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-4 7/93

16.1.3

16.1.3 Activate ACP

This routine is called to activate an installed ACP under a mode specified by the user.

16.1.3.1 Example Pascal Call for Activate ACP

return_status := CM50_ACP_ACT
(acp_name,
 mode,
 flags);

16.1.3.2 Parameter Definitions for Activate ACP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) to be activated.

mode—16-bit integer (declare a ACT_MODE_TYPE) that specifies whether the ACP is to
be activated as a REMOTE detached process (mode := 0) or as an
INTERACTIVE subprocess (mode := 1).

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-5 7/93

16.1.4

16.1.4 Deactivate ACP

This routine is called to deactivate an installed ACP, placing it in a specified state.

16.1.4.1 Example Pascal Call for Deactivate ACP

return_status := CM50_ACP_DEACTIVATE
(acp_name,
 state,
 flags);

16.1.4.2 Parameter Definitions for Deactivate ACP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the running ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) to be deactivated.

state—16-bit integer (declare as EXEC_STATE_TYPE) that specifies whether to set the
ACIDP to an ABORT (state := 0) or OFF (state := 3).

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-6 7/93

16.1.5

16.1.5 Connect ACP to an ACIDP

This routine is called to connect an installed ACP to an ACIDP on the LCN.

16.1.5.1 Example Pascal Call for Connect ACP to an ACIDP

return_status := CM50_ACP_CONNECT
(acp_name,
 acidp_name,
 cg_port_number,
 flags);

16.1.5.2 Parameter Definitions for Connect ACP to an ACIDP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) to be connected.

acidp_name—The name of the ACIDP (packed array of 16 characters, declare as
CM50_LONG_ACIDP) to connect the to the ACP.

cg_port_number—16-bit integer (declare as CG_NUM_TYPE) that specifies which CG (1-
4) contains the ACIDP.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-7 7/93

16.1.6

16.1.6 Disconnect ACP from an ACIDP

This routine is called to disconnect an installed ACP from an ACIDP on the LCN.

16.1.6.1 Example Pascal Call for Disconnect ACP from an ACIDP

return_status := CM50_ACP_DISCON
(acp_name,
 flags);

16.1.6.2 Parameter Definitions for Disconnect ACP from an ACIDP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) to be disconnected.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-8 7/93

16.1.7

16.1.7 Change ACP Mode

This routine is called to change the installation mode of an ACP.

16.1.7.1 Example Pascal Call for Change ACP Mode

return_status := CM50_ACP_CHG_MODE
(acp_name,
 mode,
 flags);

16.1.7.2 Parameter Definitions for Change ACP Mode

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) whose mode is to be changed.

mode—16-bit integer (declare as ACP_MODE_TYPE) that specifies the new mode of the
ACP. Permitted values (and their symbolic names) are:

1 = TEST
2 = RESTRICTED
3 = NORMAL

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-9 7/93

16.1.8

16.1.8 Get ACP Summary

This routine is called to get summary information for an installed ACP. The output
optionally can be sent to the printer.

16.1.8.1 Example Pascal Call for Get ACP Summary

return_status := CM50_ACP_SUM
(acp_name,
 acp_summary,
 flags);

16.1.8.2 Parameter Definitions for Get ACP Summary

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) for which summary information is to be returned.

acp_summary—This parameter specifies where the summary information is to be returned.
Declared as an ACP_SUMMARY_REC; the specific contents are described in
the CM50_ACP_INCLUDE file.

Note that the ACP_SUMMARY_REC record can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-10 7/93

16.1.9

16.1.9 Get List of ACPs

This routine is called to get a list of installed ACPs. Up to 400 ACPs will be reported in a
single call, if more than 400 ACPs are installed on a system, repeating the call with a
start_rec of 1, 401 and 801 will return additional ACPs until the system maximum of 1000
have been returned.

16.1.9.1 Example Pascal Call for Get List of ACPs

RETURN_STATUS := CM50_ACP_LISTALL
(start_rec,
 end_rec,
 total_returned,
 list,
 flags);

16.1.9.2 Parameter Definitions for Get List of ACPs

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

start_rec—An Integer specifying the starting (lowest) record number within the ACP status
table to be reported.

end_rec—An Integer specifying the ending (highest)record number within the ACP status
table to be reported.

total_returned—An integer value specifying the number of records actually returned. This
may be less than the number requested if the end of the table was reached.

list—An array 400 of ACP_SUMMARY_REC records (declare as ACP_LIST_REC type)
receives the data requested. It must be dimensioned large enough to for the
number of records requested (1 + end_rec - start_rec).

Note that the ACP_SUMMARY_REC record can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-11 7/93

16.2

16.2 PROGRAMMATIC INTERFACE TO DDT OPERATIONS

All CM50S DDT operations except for Edit can be accessed through the Programmatic
Interface. All Programmatic Interface routines are called as functions, and the status of
each call is returned as the value of the function call. The calling program must include the
CM50_FLAGS_INCLUDE file and the CM50_DDT_INCLUDE file. Both files must be
appropriate to the language being used (see heading 2.9.1).

Exception handling is provided by standard VMS condition handling routines or by custom
routines written by the user. The Programmatic calls for all DDT functions are described
in detail in the following paragraphs.

16.2.1 Build/Rebuild DDT

This routine is called to build, or rebuild, a DDT binary file from a DDT source file. Flag
options include CG residence for the DDT and DDT Rebuild.

16.2.1.1 Example Pascal Call for Build/Rebuild DDT

return_status := CM50_DDT_BUILD
(ddt_name,
 source_path,
 cg_port_number,
 description,
 flags);

16.2.1.2 Parameter Definitions for Build/Rebuild DDT

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) to be used to retrieve data. It may be left blank if the full
source path is specified.

source_path—Pathname of the DDT source file (packed array of 80 characters, declare as
PATH_NAME_TYPE). If set to spaces, the default is the DDT name in the
current directory.

cg_port_number—16-bit integer (declare as CG_NUM_TYPE) which specifies which CG
the DDT is associated with.

description—A text description (packed array of 36 characters, declare as
DDT_DESC_TYPE) of the DDT being built. If the DDT source file specifies a
Description, that description will be used and the value of this argument is
ignored.

CM50S User Manual 16-12 7/93

16.2.2

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_REBUILD_DDT
CM50$M_DMP_DDT_ERRORS
CM50$M_MSGON
CM50$M_NO_SOURCE_DEBUG
CM50$M_CG_RES
CM50$M_WRITE_VT

NOTE

If the DDT (or another DDT by the same name) has already been built, then the
CM50$M_REBUILD_DDT must be set ON.

For a new DDT, the CM50$M_REBUILD_DDT flag must be OFF.

16.2.2 Delete DDT

This routine is called to delete a DDT that already exists in the DDT table. If the DDT is
installed in the CG, it is removed.

16.2.2.1 Example Pascal Call for Delete DDT

return_status := CM50_DDT_DELETE
(ddt_name,
 flags);

16.2.2.2 Parameter Definitions for Delete DDT

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) to be deleted.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-13 7/93

16.2.3

16.2.3 Get DDT Summary

This routine is called to summarize the specifications of a particular DDT.

16.2.3.1 Example Pascal Call for Get DDT Summary

return_status := CM50_DDT_SUM
(ddt_name,
 summary,
 flags);

16.2.3.2 Parameter Definitions for Get DDT Summary

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) that is to be summarized.

summary—This argument (declare as type DDT_SUMMARY_REC) receives the requested
information. Its contents are:

- Name of the DDT being summarized
- Pathname of the DDT's source file
- Description of the DDT
- Date that the DDT was first built
- Name of the original builder
- Most recent time the DDT was modified
- Installation status of the DDT
- Number of points in the DDT
- DDT Type—Input, Generic Input, Output, Generic Output, or History
- CG number that the DDT is associated with
- Whether or not DDT is installed in CG
- Name of ACIDP DDT is connected to
- Prefetch triggers (A packed array of 8 Booleans where:

prefetch_trig[8] is the SCHeduled prefetch,
prefetch_trig[7] is the PPS prefetch, and
prefetch_trig[6} is the DMD (demand) prefetch.

Note that the DDT_SUMMARY_REC record can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-14 7/93

16.2.4

16.2.4 Get List of DDTs

This routine is called to retrieve a list of DDT summaries. Up to 500 DDT summaries may
be returned in a single call. If more DDTs are installed on your system, they may all be
retrieved by repeating this all with start_record set to 1, 501, 1001 and 1501 on successive
calls.

16.2.4.1 Example Pascal Call for Get List of DDTs

return_status := CM50_DDT_LIST
(start_record,
 end_record,
 count,
 list,
 flags);

16.2.4.2 Parameter Definitions for Get List of DDTs

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

start_record—This shortword (declare as type INTV) specifies the number of the first DDT
to retrieve.

end_record—This shortword (declare as type INTV) specifies the number of the last DDT
to retrieve.

count—This shortword (declare as type INTV) receives the actual number of DDT records
returned to the caller.

list—This argument will receive an array of DDTs information. This array of 500
DDT_SUMMARY_RECs is declared as DDT_ITEMS_ARR. The information
returned for each record is

- Name of the DDT being summarized
- Pathname of the DDT's source file
- Description of the DDT
- Date that the DDT was first built
- Name of the original builder
- Most recent time the DDT was modified
- Installation status of the DDT
- Number of points in the DDT
- DDT Type—Input, Generic Input, Output, Generic Output, or History
- CG number that the DDT is associated with
- Tells whether DDT is installed in CG
- Name of ACIDP DDT is connected to

Note that the DDT_SUMMARY_REC record can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

CM50S User Manual 16-15 7/93

16.2.5

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

16.2.5 Get DDT Detail

This routine is called to retrieve the detail information for the named DDT.

16.2.5.1 Example Pascal Call for Get DDT Detail

return_status := CM50_DDT_DETAIL
(ddt_name,
 summary,
 data,
 points,
 details,
 values,
 flags);

16.2.5.2 Parameter Definitions for Get DDT Detail

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) being summarized.

summary—A record (declare as type DDT_SUMMARY_REC) containing:

DDT_Name Name of the DDT being summarized
DDT_Sourc_Loc Pathname to the DDT’s source file
DDT_Desc Description of the DDT
Built_On Date that the DDT was first built
Built_By Tells who the original builder was
Modified_On Most recent time the DDT was modified
DDT_Status Installation status of the DDT
Number_of_Pts Number of points in the DDT
DDT_Type Input, Output, or History DDT
CG_Port_Num CG that the DDT is associated with
In_CG Tells whether DDT is installed in CG

Note that the DDT_SUMMARY_REC record can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

data—A record (declare as DDT_DATA_TYPE) containing:

DDT_Types Names data types found in the DDT
TTL_Each_Type Counts for each data type found

CM50S User Manual 16-16 7/93

16.2.5

points—An array of 300 point name records (declare as type POINTS_ARR) containing:

Point_Name Point name
Param_Name Parameter name (with index)

Note that the POINTS_ARR record can vary for different releases of CM50S,
so programs using this call should be recompiled when CM50S is upgraded.

details—An array of 300 records (declare as type DETAIL_REC_ARR) containing:

Process_Type Real, Integer, ASCII, Enumeration, or Ordinal
Dest_Src Destination or Source offset value
Test Use test Y/N and test data value
BVS Bad value substitution Y/N and data
Algo Algorithm number selection and data
Limits Limit check Y/N and data

values—An array of 300 records (declare as type VALUES_ARR). This argument will
contain useful information only if full Table Processing (including a Values
Table) is being used with the DDT. It contains the values from the last use of
the DDT showing the values before and after table processing conversions.
Any LCN Real data Bad Values are returned as zeros.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-17 7/93

16.2.6

16.2.6 Connect DDT to ACIDP

This routine is called to connect a DDT to an ACIDP for the purpose of enabling the Data
Prefetch Function in the CG. The ACIDP-ACP connection must already exist and the
DDT must be CG-resident and not already connected to an ACIDP.

The ddt_name, and either the acp_name, or acidp_name parameters are required in
the call. The Schedule, PPS and Demand parameters also are required.

16.2.6.1 Example Pascal Call for Connect DDT to ACIDP

return_status := CM50_DDT_CONNECT
(ddt_name,
 acidp_name,
 acp_name,
 trigger,
 flags);

16.2.6.2 Parameter Definitions for Connect DDT to ACIDP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) that is to be connected to an ACIDP.

acidp_name—The name of the ACIDP (packed array of 16 characters, declare as
CM50_LONG_ACIDP) to which the DDT is to be connected. The
acidp_name can be blanks if a valid acp_name is provided.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) connected to the ACIDP to which the DDT is to be
connected. The acp_name can be blanks if a valid acidp_name is provided

trigger—A code (packed array of 8 Boolean values, declare as DDT_TRIGGER_TYPE)
with the three high-order bits assigned these meanings:
• Element 1 (bit 7): Schedule—one (1) = "set prefetch on" and zero (0) =

"set prefetch off."
• Element 2 (bit 6): PPS (Point_Process_Special)—one (1) = "set prefetch on"

and zero (0) = "set prefetch off.”
• Element 3 (bit 5): Demand—one (1) = "set prefetch on" and zero (0) = "set

prefetch off."

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-18 7/93

16.2.7

16.2.7 Disconnect DDT from ACIDP

This routine is called to disconnect a DDT from an ACIDP. At least one of the three
parameters, ddt_name, acp_name, or acidp_name is required in the call (the others
are passed as blanks). The ACIDP-ACP-DDT connection must already exist.

16.2.7.1 Example Pascal Call for Disconnect DDT from ACIDP

return_status := CM50_DDT_DISCONNECT
(ddt_name,
 acidp_name,
 acp_name,
 flags);

16.2.7.2 Parameter Definitions for Disconnect DDT from ACIDP

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) that is to be disconnected. Can be blanks if either
acidp_name or acp_name contains a valid name.

acidp_name—The name of the ACIDP (packed array of 16 characters, declare as
CM50_LONG_ACIDP) from which the DDT is to be disconnected. Can be
blanks if either ddt_name or acp_name contains a valid name.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) connected to the ACIDP from which the DDT is to be
disconnected. Can be blanks if either ddt_name or acidp_name contains a
valid name.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-19 7/93

16.2.8

16.2.8 Modify Triggers

This routine is called to modify the Triggers associated with a DDT that is connected to an
ACIDP. At least one of the three parameters, ddt_name, acp_name, or acidp_name,
is required in the call (the others are passed as blanks). The ACIDP-ACP-DDT connection
must already exist.

16.2.8.1 Example Pascal Call for Modify Triggers

return_status := CM50_DDT_TRIGGERS
(ddt_name,
 acidp_name,
 acp_name,
 trigger,
 flags);

16.2.8.2 Parameter Definitions for Modify Triggers

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) that is connected to the specified ACIDP. Can be blanks
if either acidp_name or acp_name contains a valid name.

acidp_name—The name of the ACIDP (packed array of 16 characters, declare as
CM50_LONG_ACIDP) to which the specified DDT is connected. Can be
blanks if either ddt_name or acp_name contains a valid name.

acp_name—The name of the ACP (packed array of 12 characters, declare as
ACP_NAME_TYPE) connected to the specified ACIDP. Can be blanks if
either ddt_name or acidp_name contains a valid name.

trigger—A code (packed array of 8 Boolean values, declare as DDT_TRIGGER_TYPE)
with the three high-order bits assigned these meanings:
• Element 1 (bit 7): Schedule—one (1) = "set prefetch on" and zero (0) =

"set prefetch off."
• Element 2 (bit 6): PPS (Point_Process_Special)—one (1) = "set prefetch on"

and zero (0) = "set prefetch off.”
• Element 3 (bit 5): Demand—one (1) = "set prefetch on" and zero (0) = "set

prefetch off."

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-20 7/93

16.2.9

16.2.9 Install DDT Into CG

This routine is called to install the DDT into the CG.

16.2.9.1 Example Pascal Call for Install DDT Into CG

return_status := CM50_DDT_INSTALL
(ddt_name,
 flags);

16.2.9.2 Parameter Definitions for Install DDT Into CG

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) to be installed into the CG.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

16.2.10 Uninstall DDT from CG

This routine is called to remove a DDT from the CG.

16.2.10.1 Example Pascal Call for Uninstall DDT from CG

return_status := CM50_DDT_UNINST
(ddt_name,
 flags);

16.2.10.2 Parameter Definitions for Uninstall DDT from CG

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name of the DDT (packed array of 9 characters, declare as
DDT_NAME_TYPE) to be removed from the CG.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The following flags apply to this call:

CM50$M_HANDLER
CM50$M_MSGON

CM50S User Manual 16-21 7/93

16.3

16.3 PROGRAMMATIC INTERFACE TO CG DATABASE

These functions return information about the current points configured in the database of
any CG connected to the CM50. The language specific declarations for these functions are
contained in CM50_CGDATA_INCLUDE.pas

16.3.1 Resident DDT Summary

This function returns a list of all of the DDTs currently resident in the CG.

16.3.1.1 Example Pascal Call for Resident DDT List

return_status := CM50_CG_RDDT
(cg_port_num,
 number_of_values,
 ddt_list);

16.3.1.2 Parameter Definitions for Resident DDT List

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of an 16-bit integer (declare as CM50_CG_BASE_TYPE)
identifying the CG to be accessed.

number_of_values—The name of an Integer that returns the number of DDTs currently
installed as resident in the CG.

ddt_list—The name of an array of 40 DDT names (packed array of 10 characters, declare as
type CM50_ResDDT_LIST) that will receive the list.

CM50S User Manual 16-22 7/93

16.3.2

16.3.2 Calculated Results Data Points List

This function returns a list of all of the CRDPs currently configured in the CG.

16.3.2.1 Example Pascal Call for CRDP List

return_status := CM50_CG_CRDP
(cg_port_num,
 number_of_values,
 crdp_list);

16.3.2.2 Parameter Definitions for CRDP List

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of an 16-bit integer (declare as CM50_CG_BASE_TYPE)
identifying the CG to be accessed.

number_of_values—The name of an Integer that returns the number of CRDPs currently
configured in the CG.

crdp_list—The name of an array of 500 variables (packed arrays of 8 characters, declare as
type CM50_CRDP_LIST) that will contain the names of the CRDPs.

Note that the CM50_CRDP_LIST structure can vary for different releases of
CM50S, soprograms using this call should be recompiled when CM50S is
upgraded.

CM50S User Manual 16-23 7/93

16.3.3

16.3.3 ACIDP Detail

This function returns information about the current status of a specific ACIDP.

16.3.3.1 Example Pascal Call for ACIDP Detail

return_status := CM50_CG_ADETAIL
(cg_port_num,
 acidp_record);

16.3.3.2 Parameter Definitions for ACIDP Detail

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of an 16-bit integer (declare as CM50_CG_BASE_TYPE)
identifying the CG to be accessed.

number_of_values—The name of an Integer that returns the number of ACIDPs currently
configured in the CG.

acidp_record—The name of a record (declare as type CM50_ACIDP_REC) with the
following format:

ACIDP : 8-character name of the ACIDP
DESC : 24-character descriptor of the ACIDP
UNIT : 2-character LCN Unit to which the ACIDP is assigned
KEYWORD : 8-character LCN alias for the ACIDP
ACP : 12-character name of the connected ACP
MODE : 8-character enumerated value of the Program Mode
EXEC : 8-character enumerated value of the Execution State
ACCES : 8-character enumerated value of the Data Access Mode
DDT : 9-character name of attached DDT
ACTYP : 8-character enumerated value of the Activation Type
INHIB : 8-character enumerated value of the Inhibit flag
STIME : 8-character value of the Scheduled Start Time
PERIOD : 8-character value of the Schedule Cycle Period
NXTTIM : 18-character value of the Next Scheduled Activation Time
TAKEIP : 4-character enumerated value of the Take_Initial_Path flag
RUNINIT : 4-character enumerated value of the Run_on_Initialization flag
CONFWT : 4-character enumerated value of the Confirm_Wait flag
CONFRQ : 4-character enumerated value of the Confirm_Request flag
SCH : 4-character enumerated value of the Schedule Activation flag
PPS : 4-character enumerated value of Program_Special Activation flag
DMD : 4-character enumerated value of Operator_Demand Activation flag
GROUP : unsigned 16-bit integer (type INTV) value of the Group code.

Note that the CM50_ACIDP_REC structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

CM50S User Manual 16-24 7/93

16.3.4

16.3.4 ACIDP Summary

This function returns a list of all of the ACIDPs configured in the CG.

16.3.4.1 Example Pascal Call for ACIDP Summary

return_status := CM50_CG_ACIDP
(cg_port_num,
 number_of_values,
 acidp_list,
 acp_list,
 mode_list,
 state_list,
 ddt_list,
 trigger_list);

16.3.4.2 Parameter Definitions for ACIDP Summary

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of an 16-bit integer (declare as CM50_CG_BASE_TYPE)
identifying the CG to be accessed.

number_of_values—The name of an Integer that returns the number of ACIDPs currently
configured in the CG.

acidp_list—The name of an array of 250 variables (packed arrays of 8 characters, declare as
type CM50_ACIDP_LIST) that will hold the names of the resident ACIDPs.

The CM50_ACIDP_LIST structure can vary for different releases of CM50S,
so programs using this call should be recompiled when CM50S is upgraded.

acp_list—The name of an array of 250 variables (packed arrays of 12 characters, declare as
type CM50_cgACP_LIST) that will contain the names of the ACPs connected
to the corresponding ACIDP.

mode_list—The name of an array of 250 variables (16-bit integers declare as
typeCM50_cgENUM_LIST) that will contain the numeric code for the
installation mode of each ACIDP.

state_list—The name of an array of 250 variables (16-bit integers declare as
typeCM50_cgENUM_LIST) that will contain the numeric code for the current
execution state of each ACIDP.

ddt_list—The name of an array of 250 variables (packed arrays of 10 characters, declare as
type CM50_cgDDT_LIST) that will contain the names of the DDT (if any)
connected to the corresponding ACIDP.

trigger_list—The name of an array of 250 Trigger records (declare as type
CM50_TRIG_LIST),where each Trigger record is an array of 3 Boolean 16-bit
integers (indicating by 1 or 0 whether or not the connected DDT will be
prefetched when the ACIDP is triggered on Schedule, Operator_Demand, or
PPS).

CM50S User Manual 16-25 7/93

16.3.5

16.3.5 LCN Configuration

This function returns information about the LCN configuration parameters for a specified
CG. Note that the specified CG must be running TDC 3000 release 400 or later for this
function to get a successful return_status.

16.3.5.1 Example Pascal Call for LCN Configuration

return_status := CM50_CG_CONFIG
(cg_prot_num,
 cgconfig_record) ;

16.3.5.2 Parameter Definitions for LCN Configuration

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for an
explanation and a listing of all assigned return code values.

cg_prot_number—The name of a 16-bit integer (declare as CM50_CG_BASE_TYPE)
identifying the CG (1 to 4) to be accessed.

cgconfig_record—The name of a record (declare as type CM50_CGCONFIG_REC) with
the following fields:

LCN_VER : 16-bit integer (type INVT) TDC 3000 software release level
LCN_REV : 16-bit integer (type INVT) TDC 3000 revision level (future)
LCN_NODE : 16-bit integer (type INVT) LCN node number of this CG
CG_VER : 16-bit integer (type INVT) CG personality software release
CG_REV : 16-bit integer (type INVT) CG personality software revision
TIME_SYNCH : 16-bit integer (type INVT) CG Time synchronization period
CONFIRM_TIME : 16-bit integer (type INVT) CG Time out for message confirm
CG_STATION : 16-bit integer (type INVT) HDLC station number of the LCN
T1_TIME : 16-bit integer (type INVT) T1 timer
N2_COUNT : 16-bit integer (type INVT) Retry count
FLOAT_FORMAT : 16-bit integer (type INVT) Floating point format (should be 2

for IEEE)
BAUD_RATE : 16-bit integer (type INVT) enumeration (0= 1200,

1= 1760, 3= 2400, 5= 4800, 7= 9600, 8=
19200, 13= 38400, 14= 56700, 15= 76800)

TAG_SIZE : 16-bit integer (type INVT) (0 for 8-character maximum, 1 for
16-characters)

HM_USER_MIN : 16-bit integer (type INVT) number of minutes in a user
average

HM_SHIFT_WK : 16-bit integer (type INVT) number of shifts per week
HM_START_HR : 16-bit integer (type INVT) daily/weekly averages starting hour

(0 starts Sunday morning just after midnight)
HM_MONTH_TYP : 16-bit integer (type INVT) (0 is calendar, 1 is 28-day cycles)
PINID : 2-character identifier of this LCN for Network Gateway

routing
DESCR : 40-character CG descriptor on the LCN

CM50S User Manual 16-26 7/93

16.4

16.4 PROGRAMMATIC INTERFACE TO FILE TRANSFER

These functions execute LCN file transfer commands programmatically. The calling
program must include the CM50_FLAGS_INCLUDE.PAS and
CM50_FTF_INCLUDE.PAS files in its source to insure that the functions and arguments
are properly declared.

The DATAOUT facility allows the user, when requesting the execution of specific file
transfer transactions, to place relevant data in the dataout or catalog file. This dataout file is
a shared file by all concurrent users of file transfer. For example, user "Jones" requests a
CM50_FILE_CATALOG transaction, the results of which are placed into the current
dataout file. User "Smith" then requests a CM50_VOLUME_CATALOG transaction.
These results also are placed into the same (current) dataout file.

CM50_FILE_CATALOG and CM50_VOLUME_CATALOG are the only file transfer
transactions that require a dataout file. Other file transfer transactions treat dataout as an
option for journalizing activity.

16.4.1 Read LCN File

This procedure will transfer a single file from an LCN NET volume to CM50S. Wildcard
transfers of files are not supported. This procedure will also create an "LCN
ATTRIBUTES" file for every LCN file that is transferred. Multiple copies of the same
file, within the same VMS directory, are not allowed. The version number of the attributes
file should remain 1. For more information regarding file attributes refer to the WRITE file
procedure.

16.4.1.1 Example Pascal Call for File Read

Return_status := CM50_LCN_READ
(lcn_file,
 host_file,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.1.2 Parameter Definitions for File Read

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to be transferred from the LCN. Use
the form NET>VDIR>FILENAME.xx.

CM50S User Manual 16-27 7/93

16.4.2

host_file—VMS pathname (packed array of 80 characters, declare as
PATH_NAME_TYPE) to be used to store the LCN file (and its associated
attributes file). If no extension is specified, the VMS default of .DAT will be
used. If no directory is specified, the user's current default directory will be
used. The LCN attributes file will use the following naming convention: the
filename suffix or extension will be preceded by an under-bar character,
followed by a period "LA" extension. For example; the LCN filename of
FORMULAE.CL would have an attribute file of FORMULAE_CL.LA. Note:
The transfer will fail if the pathname matches that of an existing file.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable to
File Transfer functions.

16.4.2 Write LCN File

This procedure will transfer a single file from CM50S to LCN NET volume. This
procedure requires the LCN ATTRIBUTES file for every LCN file that is transferred.
Multiple copies of an LCN FILE within the same VMS directory, are allowed. These files
would have been created by modifying the original LCN FILE which was transferred as
version 1. The version number of the attributes file should be 1.

16.4.2.1 Example Pascal Call for File Write

Return_status := CM50_LCN_WRITE
(host_file,
 lcn_file,
 acidp_name,
 file_code,
 cg_port_number,
 lcn_sts,
 flags);

CM50S User Manual 16-28 7/93

16.4.2

16.4.2.2 Parameter Definitions for File Write

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

host_file—VMS pathname (packed array of 80 characters, declare as
PATH_NAME_TYPE) of the file to be transferred to the LCN If no
directory is specified, the user's current default directory will be used. The
associated LCN attributes file (with an extension of .LA) must be in the same
directory.

lcn_file—LCN pathname (packed array of 28 characters declare as type
LCN_PATH_NAME) where the file is to be stored on the LCN. Use the
form NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

file_code—Name of a shortword (declare as WRITE_FILE_TYPE) that determines
whether the LCN file is to be replaced if it already exists at the LCN NET
volume. The default is to abort the write if the file already exists. The
enumerated values are:
replace_write = 0: Replace existing file
abort_write = 1: Return an error if the file already exists.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-29 7/93

16.4.3

16.4.3 List LCN File Attributes

This request will retrieve the file attributes for a specific LCN file. Wildcard characters,
and dataout options are not permitted. The file attributes are:

• LCN file type—contiguous or linked
• LCN file protection
• Record size
• Block size
• LCN file configuration
• LCN file revision
• Directory timestamp (Mo/Dd/Yr Mm:Ss)
• Logical number of blocks
• Logical number of records
• File Descriptor
• Starting Sector
• Ending Sector

16.4.3.1 Example Pascal Call for File Attributes

Return_status := CM50_ATTR_LIST
(lcn_file,
 acidp_name,
 attributes,
 cg_port_number,
 lcn_sts,
 flags);

16.4.3.2 Parameter Definitions for File Attributes

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters declare as type
LCN_PATH_NAME) identifying the file whose attributes are to be returned.
Use the form NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

attributes—Buffer (declare as FILE_ATTRIBUTE_BLOCK, and described in
CM50$LIB:CM50_FTF_INCLUDE.pas) that will receive requested data.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-30 7/93

16.4.4

16.4.4 List LCN File Names

This transaction will retrieve up to 1180 file names and extensions from an LCN NET
volume. If the number of files exceeds the buffer capacity of 1180 then multiple requests
by directory, file type extension, or filename syntax must be used. Wildcards are
permitted.

16.4.4.1 Example Pascal Call for List Files

Return_status := CM50_FILE_LIST
(lcn_file,
 acidp_name,
 file_list,
 cg_port_number,
 lcn_sts,
 flags);

16.4.4.2 Parameter Definitions for List Files

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters declare as type
LCN_PATH_NAME) identifying the file to be transferred from the LCN.
Use the form NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for
the file name and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

file_list—Buffer (declare as FILE_LIST_ARRAY, and described in
CM50$LIB:CM50_FTF_INCLUDE.pas) that will receive the list of file
names and attributes.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-31 7/93

16.4.5

16.4.5 List LCN Volumes/Directories

This transaction will fetch from the History Module volume and directory names and sector
usage figures. Wildcards and options are not permitted for this transaction type.

16.4.5.1 Example Pascal Call for List Volumes

Return_status := CM50_HM_LISTF
(lcn_device,
 acidp_name,
 vol_record,
 cg_port_number,
 lcn_sts,
 flags);

16.4.5.2 Parameter Definitions for List Volumes

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_device—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the device to be cataloged. Use the form
PN:nn where nn is the lcn node number.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

vol_record—Buffer (declared as VOLUME_STRUCTURES, and described in
CM50$LIB:CM50_FTF_INCLUDE.pas) that will receive the Volume and
directory information. This information includes:

• Number of Volumes
• Number of Sectors / Device
• Sectors in Use / Device
• Volume Name(s)
• Directory Name(s) on each volume

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-32 7/93

16.4.6

16.4.6 Cataloging LCN Files to Dataout

This file transfer transaction will list the LCN FILE ATTRIBUTES of one or more files
into the current dataout file. The dataout file must have been previously established. The
absence of a dataout specification will result in an error return.

Further processing requires that the dataout or catalog file be transferred to the VAX using
the CM50_LCN_READ programmatic function.

16.4.6.1 Example Pascal Call for File Catalog

Return_status := CM50_FILE_CATALOG
(lcn_file,
 cat_file,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.6.2 Parameter Definitions for File Catalog

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to be transferred from the LCN.
Use the form NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for
the file name and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

Optional suffixes will increase the amount of information returned:
-FD will cause file descriptors to be listed
-REC will cause record and block data to be listed

cat_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to receive the catalog. Use the form
NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-33 7/93

16.4.7

16.4.7 Cataloging LCN Volumes to Dataout

This file transfer transaction will list the LCN Volumes and Directories for all History
modules on the NET or for a specific History Module. The dataout file must have been
previously established. The absence of a dataout specification will result in an error return.

16.4.7.1 Example Pascal Call for Volume Catalog

Return_status := CM50_VOLUME_CATALOG
(lcn_device,
 cat_file,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.7.2 Parameter Definitions for Volume Catalog

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_device—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the device to be cataloged. Use the form
NET or PN:nn where nn is the lcn node number.

cat_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to receive the catalog. Use the form
NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-34 7/93

16.4.8

16.4.8 LCN File Copy

This file transfer transaction will copy a single file or all files from one NET volume to
another Net volume. The -D option is supported for journalizing all copies to a dataout
file. The dataout file must have been previously established. Wildcards are permitted;
however, the destination suffix must always be the same as the source suffix. Note that
using the -D option without having previously defined a dataout path will result in an error
and the copy function will not have been completed.

16.4.8.1 Example Pascal Call for LCN File Copy

Return_status := CM50_LCN_COPY
(lcn_file,
 out_file,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.8.2 Parameter Definitions for LCN File Copy

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to be copied. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_file—Recipient filename (packed array of 28 characters, declare as type
LCN_PATH_NAME) specifying the pathname of the new file. The actions
will be journalized if a DATAOUT file has been enabled and the" -D" option
suffix is appended to the filename.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-35 7/93

16.4.9

16.4.9 LCN File Move

This file transfer transaction will move a single file or all files from one directory to another
directory within the same NET volume. Wildcards are permitted and the -D option is
supported for journalizing all moves to a dataout file. The dataout file must have been
previously established. Note that using the -D option without having previously defined a
dataout path will result in an error and the move function will not have been completed.

16.4.9.1 Example Pascal Call for LCN File Move

Return_status := CM50_LCN_MOVE
(lcn_file,
 out_directory,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.9.2 Parameter Definitions for LCN File Move

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to be moved. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_directory—Directory name (packed array of 28 characters, declare as type
LCN_PATH_NAME) specifying the directory to receive the moved file.
This directory must be on the same HM volume as the original file. (The file
name and extensions will remain unchanged.) The actions will be journalized
if a DATAOUT file has been enabled and the" -D" option suffix is appended
to the filename.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-36 7/93

16.4.10

16.4.10 LCN File Rename

This file transfer transaction will rename a single file or all files on the History Module.
Wildcards are permitted and the -D option is supported for journalizing all renames to a
dataout file. The dataout file must have been previously established. Note that using the
-D option without having previously defined a dataout path will result in an error and the
rename function will not have been completed.

16.4.10.1 Example Pascal Call for LCN File Rename

Return_status := CM50_LCN_RENAME
(lcn_file,
 out_file,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.10.2 Parameter Definitions for LCN File Rename

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to be renamed. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_file—Recipient filename (packed array of 28 characters, declare as type
LCN_PATH_NAME) specifying the new file name. (The directory and
extensions will remain unchanged.) The actions will be journalized if a
DATAOUT file has been enabled and the " -D" option suffix is appended to
the filename.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options
as described in section 13.1.3. The CM50$M_HANDLER option is the

only flag applicable to File Transfer functions.

CM50S User Manual 16-37 7/93

16.4.11

16.4.11 LCN File Delete

This file transfer transaction will delete a single file or all files from the specified volume
on the History Module. Wildcards are permitted and the -D option is supported for
journalizing all deleted files to a dataout file. The dataout file must have been previously
established. Note that using the -D option without having previously defined a dataout
path will result in an error and the delete file function will not have been completed.
Once deleted the file cannot be recovered.

16.4.11.1 Example Pascal Call for LCN File Delete

Return_status := CM50_LCN_DELETE
(lcn_file,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.11.2 Parameter Definitions for LCN File Delete

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to be copied. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

The actions will be journalized if a DATAOUT file has been enabled and the
"-D" option suffix is appended to the pathname.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-38 7/93

16.4.12

16.4.12 LCN Directory Maintenance

These file transfer transactions will create or delete a directory under a volume on the
History Module. No wildcard, characters or options are permitted.

16.4.12.1 Example Pascal Call for Directory Maintenance

Return_status := CM50_LCN_DIRECTORY
(lcn_directory,
 action,
 acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.12.2 Parameter Definitions for Directory Maintenance

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_directory—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the LCN directory to be created or deleted.
Use the form NET>VDIR> DIR. (Note the space delimiter before the
directory name.)

action—A shortword (declare as DIR_FUNC_TYPE) that specifies whether the named
directory is to be created or deleted. The enumerated values are:
create_directory = 0
delete_directory = 1

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-39 7/93

16.4.13

16.4.13 Dataout Status

The dataout function allows the user, when requesting the execution of specific file transfer
transactions, to place relative data in the dataout or catalog file. This dataout file is a shared
file by all concurrent users of file transfer. For example, User "Jones" requests a
CM50_FILE_CATALOG transaction, the results of which are placed into the current
dataout file. User "Smith" then requests a CM50_VOLUME_CATALOG transaction.
These results also are placed into the same or current dataout file. The dataout file may be
transferred to the VAX host using a CM50_LCN_READ request. The
CM50_DATA_OUT transaction is provided to enable, disable, or query the file transfer
dataout status.

16.4.13.1 Example Pascal Call for DATAOUT status

Return_status := CM50_DATA_OUT
(cat_file,
 acidp_name,
 do_action,
 cg_port_number,
 lcn_sts,
 flags);

16.4.13.2 Parameter Definitions for DATAOUT status

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

cat_file—LCN pathname (packed array of 28 characters, declare as type
LCN_PATH_NAME) identifying the file to be used as the dataout journal.
Use the form NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

do_action—A shortword (declare as DO_FUNC_TYPE) that specifies the action to be
taken. The values are:
Disable = 0: Disable dataout journaling
Enable = 1: = Enable dataout journaling using the specified path
Request_status =2: Return the current dataout path

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 16-40 7/93

16.4.14

16.4.14 ABORT FILE TRANSFER TRANSACTION

This transaction CM50_ABORT_TRANSFER will terminate the current transaction in
progress. The initiator of the transaction will receive a CM50_FTF_ABORT error return
status. The initiator of the CM50_ABORT_TRANSFER request will receive a normal
return status. No error is generated if there is not a current process to abort.

16.4.14.1 Example Pascal Call for Abort Transfer

Return_status := CM50_ABORT_TRANSFER
(acidp_name,
 cg_port_number,
 lcn_sts,
 flags);

16.4.14.2 Parameter Definitions for Abort Transfer

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

acidp_name—A 16-character string (declare as ACIDPoint_Type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a shortword (declare as CG_NUM_TYPE) that specifies
which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a shortword (declare as INTV) which will receive the detailed error
code from the LCN if the overall return_status is CM50_FTF_FILMGR
(215004012) or CM50_FTF_UTILITY (215004146). See Appendix A.4 for
specific meanings.

flags—Integer parameter (declare as CM50_FLAG_TYPE) that sets options as described in
section 13.1.3. The CM50$M_HANDLER option is the only flag applicable
to File Transfer functions.

CM50S User Manual 17-1 7/93

17

“C” LANGUAGE CONSIDERATIONS
Section 17

This section discusses each of the program interfaces that provide necessary services that enable
"C" programs to communicate with other nodes on the TDC 3000 Local Control Network.

17.1 CM50S INCLUDE FILES

Each user interface routine has language-specific interfaces that are supported by include
files that contain data declarations that match the argument names and symbolic constants
used in the example calls in this section. Any program that uses any of these interface
routines should be compiled with the matching language-specific include files.

17.1.1 Include Files for Data Transfer Functions

These include files will generally be used by Advanced Control Programs and Data
Acquisition programs.

CM50$LIB:CM50_INCLUDE.H Contains the declarations used by the
LCN data interfaces (Sections 18 & 19)
and the Vintage Routines (Appendix G).

CM50$LIB:CM50_ERROR_INCLUDE.H Contains the symbolic names for all of
the CM50S error codes (see Appendix
A.2).

CM50$LIB:CM50_FTF_INCLUDE.H Definitions for all LCN file transfer
operations (section 20.4)

17.1.2 DDT and ACP Management

These include files are needed by applications that use the CM50S administration calls
described in Section 20. DDT and ACP management functions use some shared data
structures, that are defined in the file CM50_FLAGS_INCLUDE H. Therefore, that file
should be included with any program that calls either DDT or ACP functions and must
precede the include file defining those specific functions.

CM50$LIB:CM50_FLAGS_INCLUDE.H Definitions for the shared data structures
in the ACP & DDT Management Interface
calls. Must be included prior to either
CM50_ACP_INCLUDE.H or
CM50_DDT_INCLUDE.H.

CM50$LIB:CM50_ACP_INCLUDE.H Definitions for all ACP Management
operations (section 20.1).

CM50$LIB:CM50_DDT_INCLUDE.H Definitions for all the DDT Management
operations (section 20.2).

CM50S User Manual 17-2 7/93

17.1.3

CM50$LIB:CM50_CGDATA_INCLUDE.H Definitions for all the CG Database
retrievals (section 20.3).

17.1.3 Programmatic Interface Flag Parameters

An Integer parameter called flags is included in every ACP and DDT management
function to control some of the handling options. Some of the flags apply to only the DDT
calls, some to only the ACP calls, and some can be used by both. All user-visible flags (as
defined in CM50_FLAGS_INCLUDE.H) are described below.

• cm50$m_handler—(Bit 0) Indicates that the user has provided a custom exception
handler. The default is OFF.

• cm50$m_msgon—(Bit 1) Prints all diagnostic messages to SYS$OUTPUT. The
default is OFF.

• cm50$m_cgres—(Bit 5) Installs the DDT as CG resident. The default is OFF.

• cm50$m_rebuild_ddt—(Bit 6) Rebuilds an existing DDT. The default is OFF.

• cm50$m_no_sourc_debug—(Bit 7) Produces no error file during DDT build.
The default is OFF.

• cm50$m_dmp_ddt_errors—(Bit 8) Sends the error file produced by a DDT build
to SYS$OUTPUT after building the DDT. If set, then the
cm50$m_no_sourc_debug flag must be OFF.

• cm50$m_acidp_activate—(Bit 9) Reserved for internal CM50S use.

• cm50$m_write_vt—(Bit 10) Creates the .VT file with write privilege.

All of the flags described above, represent bit masks that can be added together to enable
any combination of the flags. These flag values also can be used to see if a particular flag
is set. An example is shown below.

 flags = cm50$m_handler + cm50$m_msgon;
 Return_Status = ddt_summary(DDT_Name,
 &Summary, &Flags)

17.2 CALLING CONVENTIONS

CM50S interface routines follow the VMS language-independent calling conventions.
With the exception of some housekeeping procedures that have no error handling (such as
ACPTRP and PRGTRM), they are written as functions.

We recommend that each function call be followed by a logical test of the return_status
value. If return_status is odd valued (test as "if (return_status &1)"), the call
was successful (although individual data items may require checking). Otherwise (even
valued status codes), appropriate error handling should be invoked. Note that if the
application does not check return_status, the interface routine can be invoked as a called
procedure in the same manner as VMS system services.

CM50S User Manual 17-3 7/93

17.3

Shortword arguments should be declared as short int and must be passed as variables
because "C" assumes that any integer constant is a 32-bit integer.

Boolean (True/False) arguments are normally declared as short int (or type: cm50$bool2),
with a value of 1 for True and 0 for False. ("C" evaluates all nonzero values as true, but 1
is the only acceptable true value to the LCN.)

A distinction is made between strings and character arrays. Arguments that are described
as character arrays have a fixed size and are filled with trailing spaces. (The LCN does not
recognize the null character as a field terminator.) Arguments that are described as strings
may be passed as either null-terminated strings or as space-padded character arrays. Using
a null-terminated string in an argument declared as a character array will cause the function
to return with an error.

Character-string and array arguments are passed using the "C" default conventions. All
other arguments must be explicitly passed by reference (using the "&" prefix). Strings and
arrays may also by passed using the "&" qualifier. This may be desirable in applications
that use arguments with dimensions other than those declared in the prototype declarations
in the include files.

17.3 COMPATIBILITY OF APPLICATION PROGRAM WITH ITS DDTS

Because each application program and its Data Definition Tables (and Multi_Point List
structures) are separately built, the system cannot enforce compatibility between a program
and any DDT(s) that it uses. That responsibility is up to you.

In particular, it is vital that the dimensions set for data-receiving arrays be large enough to
accommodate the maximum data amounts permitted by the named DDT.

Specific points to remember for DDT Get Data and DDT Store Data are

• Dimensions set for each value-type's program array must be equal-to or greater-than the
value-type's point count in the referenced DDT. The values can be stored one-for-one
or they can be scattered as defined in the DDT. If the program arrays are too small,
data or program code may be corrupted (DDT Get Data) or inappropriate data may be
exported (DDT Store Data).

• The dimension values for status table arrays must be equal-to or greater-than the total
number of points of all types in the referenced DDT because this array is to receive a
status code for each returned value, positioned according to its location in the DDT.

CM50S User Manual 17-4 7/93

17.4

17.4 DATA REPRESENTATIONS

Differences between data representations in the VAX and the CG normally are resolved by
the CG-VAX Communications Handlers, thus are invisible to the user (Exception: raw data
transfers, see heading 18.3). The LCN data formats are:

Real—32 bit floating point matches normal float format except that bad values (NaN)
from the LCN have the bit pattern for -0. This value will cause a VMS
trap if used in an arithmetic statement, so real values returned from the
LCN should always be tested (using either the CM50_VALIDN function
or the associated value_status_table entry for the value).

Integer—short int.

ASCII—fixed-length array of 24 characters, padded with trailing spaces if necessary.
(Not terminated by a null character.)

String—fixed-length array of 40 characters, padded with trailing spaces if necessary.
(Not terminated by a null character.)

Enumeration—There are two ways to represent LCN enumerations: Enumerated ASCII
as fixed-length arrays of 8 characters, padded with trailing spaces if
necessary, (Not terminated by a null character); or Ordinal (short int)
values. The choice of representation is made when the data transfer is
requested, except that self-defined enumerations should be transferred
only as Ordinals. For information on standard enumerations, see the
Application Module Parameter Reference Dictionary, Hiway Gateway
Parameter Reference Dictionary, and Computer Gateway Parameter
Reference Dictionary. For information on Custom Data Segments, see the
System Control Functions manual. For information on self-defined
enumerations, see Section 2 of the Hiway Gateway Control Functions
manual.

Time—LCN Internal Time is defined as a record structure (cm50_time_vals) consisting
of an integer count of Seconds (since the start of 1979) followed by a
short int count of Ticks (tenths of milliseconds). Some of the calls return
LCN External Time as an array of 18 ASCII characters formatted as
MM/DD/YY∆HH:MM:SS∆, where ∆ represents a space. See heading
19.3.3 for time format conversions.)

Entity ID—Internally stored as a 64-bit value (array of 4 short integers defined as type
cm50_ptid_vals) identifying a specific point (Ptid or Internal_id). Also
can be retrieved as an External_id, a fixed-length array of 18 characters,
padded with trailing spaces if necessary. (Not terminated by a null
character.) Note that the External_id array consists of the up-to-16-
character point name followed by the 2-character pinid for Network
Gateway references.

CM50S User Manual 17-5 7/93

17.5

17.5 COMMONLY MADE ERRORS

• Character array arguments must be the declared length. If string constants are used for
arguments, they must be padded with spaces. (Character string arguments may be of
any appropriate length provided that they are terminated with a null character.)

• Failure to use the CM50_SET_ACP function (or ACPTRP call) as the first executable
program statement of an ACP and/or failure to use the PRGTRM call as the last
executable statement of an ACP.

• Attempting to run an application program with unresolved compile or link errors or the
use of a DDT that is incomplete or complete with errors.

• Failure to specify array sizes and data types that match DDT definitions.

• Failure to specify all parameters required by the interface routines. Also, failure to
specify the correct data type for parameters. Make sure the & prefix is used (to pass
arguments by address instead of by value) everywhere it is shown in the examples.

• Attempting to activate an ACP through an ACIDP while the ACP is linked to the VMS
DEBUG utility. Use of the DEBUG utility is supported only for execution of ACPs
while run interactively from a terminal.

• Terminating an ACP by use of the STOP/IDENTIFIER function of VMS DCL. ACPs
should only be aborted through the CM50 Deactivate ACP procedure.

17.6 ERROR DETECTION BY INTERFACE FUNCTIONS

There are three categories of error that can be detected during the execution of a program
when using the interface functions. These are indicated through one of these methods:

• Request completion status code

• Individual parameter status codes

• Program abort

CM50S User Manual 17-6 7/93

17.6

The RETURN_STATUS value returned by the Function shows whether or not the request
was successfully processed and, if not, what error type was involved. Some typical errors
flagged by the return status are

• LCN access problems or data link failure

• ACP installation or mode problems

• Data problems in the call or with a referenced DDT

• Call rules violations

The RETURN_STATUS code follows the standard VAX/VMS condition status code
format. In general, even number codes indicate fatal system problems or program bugs,
while odd number codes indicate success (code 000000001) or partial success (e.g., code
215000051). See Appendix A.2 for additional information and a listing of all
RETURN_STATUS values and their meanings.

Most of the interface calls also return LCN point.parameter values that are to be processed
by the calling application program. Accompanying each value (or array) is a status code
that must be checked for indications of problems that would invalidate the requested data.
See the call arguments STATUS_TABLE or VALUE_STATUS in the individual interface
descriptions. There are over 200 different data access-status codes that can be returned.
See Appendix A.1 for a listing of these codes.

Some errors in use of the interface routines result in the application program being aborted.
An error message is logged at the VAX operator console and is shown on the Universal
Station Detail Display for a connected ACIDP. These errors can be of the following types:

• File access errors

• Communication Interface errors

• Format conversion errors

• Various program logic errors

CM50S User Manual 17-7 7/93

17.7

17.7 SUMMARY OF USER-PROGRAM INTERFACES

Heading Interface Descriptions Function Names

Multipoint (DDT) Data Transfers
18.1.1 DDT Get Data cm50_ddt_get

cm50_ddt_getnt
18.1.2 DDT Store Data cm50_ddt_store

cm50_ddt_storent
18.1.3 Generic DDT Get Data cm50_ddt_getgen
18.1.4 Generic DDT Store Data cm50_ddt_storegen
18.1.5 Multi-Point List Get Data cm50_mpl_get
18.1.6 Multi-Point List Store Data cm50_mpl_store
18.1.7 Generate Multi-Point List cm50_mpl_genlist

cm50_mpl_gentags
cm50_mpl_genfile

18.1.8 Read Multi-Point List cm50_mpl_read
18.1.9 Write Multi-Point List cm50_mpl_write
18.1.10 Create Include File for Multi-Point List cm50_mpl_genincl

Point List Data Transfers
18.2.1 Point List Get Values cm50_get_pt_list
18.2.2 Point List Get by Value Type

Real Values cm50_get_realnbr
Integer Values cm50_get_intnbr
ASCII Values cm50_get_asc24
Enumeration Values cm50_get_enum
Ordinal Values cm50_get_ord
Internal Ids cm50_get_ptid
External Ids cm50_get_exid
Time Values cm50_get_time
String Values cm50_get_stri

18.2.3 Point List Store Values cm50_store_pt_list
18.2.4 Point List Store by Value Type

Real Values cm50_store_realnbr
Integer Values cm50_store_intnbr
ASCII Values cm50_store_asc24
Enumeration Values cm50_store_enum
Ordinal Values cm50_store_ord
Internal Ids cm50_store_ptid
Time Values cm50_store_time
String Values cm50_store_stri

Single Point Data Transfers
18.3.1 Single Point Get Data(External ID) cm50_get_id

cm50_get_tag
18.3.2 Single Point Store Data(External ID) cm50_store_id

cm50_store_tag
18.3.3 Single Point Get Data (Internal ID) cm50_getpt_id
18.3.4 Single Point Store Data (Internal ID) cm50_storept_id
18.3.5 Get lcn Clock Value cm50_timnow_lcn

cm50_timnow_asc

Raw Data Transfers
18.4.1 Raw Data Get cm50_spgraw
18.4.2 Raw Data Store cm50_spsraw
18.4.3 Convert Raw Data cm50_spcraw

CM50S User Manual 17-8 7/93

17.7

Heading Interface Descriptions Function Names

History Data Transfers
18.5.2 Get History Snapshots (Relative Time) cm50_ddthis_snap

cm50_ddthis_fast
cm50_mplhis_snap
cm50_pthis_snap

18.5.3 Get History Snapshots (Absolute Time) cm50_ddthis_snapt
cm50_ddthis_fastt
cm50_mplhis_snapt
cm50_pthis_snapt

18.5.4 Get History Averages (Relative Time) cm50_ddthis_aver
cm50_mplhis_aver
cm50_pthis_aver

18.5.5 Get History Averages (Absolute Time) cm50_ddthis_avert
cm50_mplhis_avert
cm50_pthis_avert

18.5.6 Get Monthly Averages (Relative Time) cm50_ddthis_mnth
cm50_mplhis_mnth
cm50_pthis_mnth

18.5.7 Get Monthly Averages (Absolute Time) cm50_ddthis_mntht
cm50_mplhis_mntht
cm50_pthis_mntht

18.5.8 Find History Collection Rate cm50_ddthis_rate
cm50_mplhis_rate
cm50_pthis_rate

Text Message Transfers
18.6.1 Get Message cm50_getmsg
18.6.2 Send Message cm50_storemsg

ACP Execution Support
19.1.1 ACP Initializaton cm50_set_acp
19.1.2 Get ACP Status getsts*
19.1.3 ACP Delay cm50_acpdelay
19.1.4 ACP Hibernate cm50_hiber
19.1.5 ACP Termination prgtrm*

Entity Name Conversions
19.2.1 Convert External to Internal ID cm50_conv_pt

cm50_conv_tag
19.2.2 Convert List of External Ids cm50_conv_pt_list

cm50_conv_tag_list

Value Conversions
19.3.1 Valid Number Check cm50_validn
19.3.2 Set Bad Value cm50_setbad
19.3.3 Convert Time Values cm50_timlcn_ary

cm50_timlcn_asc
cm50_timlcn_euro
cm50_timlcn_vaxa
cm50_timlcn_vaxb
cm50_timary_lcn
cm50_timary_asc
cm50_timary_euro
cm50_timary_vaxa
cm50_timary_vaxb
cm50_timasc_lcn

* GETSTS and PRGTRM do not have a RETURN_STATUS, so they cannot be used as functions,
but must be invoked as procedures.

CM50S User Manual 17-9 7/93

17.7

Heading Interface Descriptions Function Names

19.3.3 Convert Time Values—continued cm50_timasc_ary
cm50_timasc_euro
cm50_timasc_vaxa
cm50_timasc_vaxb
cm50_timeuro_lcn
cm50_timeuro_ary
cm50_timeuro_asc
cm50_timeuro_vaxa
cm50_timeuro_vaxb
cm50_timvaxa_lcn
cm50_timvaxa_ary
cm50_timvaxa_asc
cm50_timvaxa_euro
cm50_timvaxa_vaxb
cm50_timvaxb_lcn
cm50_timvaxb_ary
cm50_timvaxb_asc
cm50_timvaxb_euro
cm50_timvaxb_vaxa

ACP Management
20.1.1 Install an ACP cm50_acp_install
20.1.2 Uninstall an ACP cm50_acp_uninst
20.1.3 Activate (run) an ACP cm50_acp_act
20.1.4 Deactivate (abort) an ACP cm50_acp_deactivate
20.1.5 Connect an ACP to an ACIDP cm50_acp_connect
20.1.6 Disconnect ACP from its ACIDP cm50_acp_discon
20.1.7 Change ACP installation mode cm50_acp_chg_mode
20.1.8 Get ACP summary cm50_acp_sum
20.1.9 Get list of ACPs cm50_acp_listall

DDT Management
20.2.1 Build/Rebuild a DDT cm50_ddt_build
20.2.2 Delete a DDT cm50_ddt_delete
20.2.3 Get DDT summary information cm50_ddt_sum
20.2.4 Get list of DDT summaries cm50_ddt_list
20.2.5 Get DDT detailed information cm50_ddt_detail
20.2.6 Connect a DDT to an ACIDP cm50_ddt_connect
20.2.7 Disconnect a DDT from its ACIDP cm50_ddt_disconnect
20.2.8 Modify DDT prefetch triggers cm50_ddt_triggers
20.2.9 Install a DDT as CG resident cm50_ddt_install
20.2.10 Remove a DDT from CG residency cm50_ddt_uninst

CG Database Routines
20.3.1 Get list of resident DDTs cm50_cg_rddt
20.3.2 Get list of CRDPs cm50_cg_crdp
20.3.3 Get detailed ACIDP information cm50_cg_adetail
20.3.4 Get list of ACIDPs cm50_cg_acidp
20.3.5 Get LCN Configuration cm50_cg_config

File Transfer Routines
20.4.1 Read File from LCN cm50_lcn_read
20.4.2 Write File to LCN cm50_lcn_write
20.4.3 List LCN File Attributes cm50_attr_list
20.4.4 List LCN Files & Extensions cm50_file_list
20.4.5 List LCN Volumes/Directories cm50_HM_list

CM50S User Manual 17-10 7/93

17.7

20.4.6 List LCN Files to Dataout cm50_file_catalog
20.4.7 List LCN Volumes to Dataout cm50_volume_catalog
20.4.8 LCN File Copy cm50_lcn_copy
20.4.9 LCN File Move cm50_lcn_move
20.4.10 LCN File Rename cm50_lcn_rename
20.4.11 LCN File Delete cm50_lcn_delete
20.4.12 LCN Directory Maintenance cm50_lcn_directory
20.4.13 LCN Dataout Status cm50_data_out
20.4.14 Abort LCN File Transfer cm50_abort_transfer

CM50S User Manual 18-1 7/93

18

LCN DATA TRANSFERS (“C”)
Section 18

This section discusses each of the program calls that "C"programs use to transfer data between
the host computer and the TDC 3000 Local Control Network.

18.1 MULTIPOINT (DDT) DATA TRANSFERS

The interface routines in this group require the use of separately prepared Data Definition
Tables (DDT) that specify which points are to be accessed and what pre/post processing is
to be done on data values. See Section 6 for DDT preparation and installation details.

Each DDT may reference a maximum of four different data types. The standard DDT
functions assume the data types are grouped into a "normal" order. It is possible to build
DDTs with unusual combinations of data types that do not follow these assumptions.
These special-case DDTs are tagged as GenIn (Generic Input) or GenOut (Generic Output)
and may only be used with the Generic DDT Transfers described in subsections 18.1.3
and 18.1.4. Standard Input and Output DDTs may be used with either the Generic DDT
transfers or the traditional DDT data interface routines.

Single elements of parameter arrays (but not whole arrays) can be specified in the DDT.

18.1.1 DDT Get Data Interface

This routine fetches data from the DDT's associated CG or elsewhere on its LCN. The
specification of which data is to be fetched and where it is to be stored in the calling
program's data arrays is contained in the Data Definition Table referenced by the call.

18.1.1.1 Example "C" Call for DDT Get Data

return_status = cm50_ddt_get or cm50_ddt_getnt
(ddt_name,
 real_values_array,
 intg_values_array,
 or &ptid_values_array,
 or &time_values_array,
 asci_values_array,
 or &string_values_array,
 or &exid_values_array,
 enum_array,
 or &ord_array,
 status_table);

Use the interface name CM50_DDT_GET if you want data transformation operations
performed by the Table Processor, and CM50_DDT_GETNT if you do not want data
transformation operations performed (to decrease processing time). The DDT Get Data

CM50S User Manual 18-2 7/93

18.1.1

call must specify four data types in the order shown (three of these can be dummy
arguments that receive no data). Note that there are restrictions on data-type combinations.

18.1.1.2 Parameter Definitions for DDT Get Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a string of 9 characters (prototyped as type:
cm50_ddt_name_type) that contains the name of the input Data Definition Table
to be used.

real_values_array—The name of an array of up to 300 float numbers (prototyped as type:
cm50$real300) where the fetched Real values are to be stored. Bad values are
returned as NaN (-0).

intg_values_array—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) where the fetched Integer values are to be stored.

ptid_values_array—The name of an array of up to 300 internal entity ids (prototyped as
type: cm50_ptid_vals).

time_values_array—The name of an array of up to 300 LCN internal time values
(prototyped as type: cm50_time_array_type).

asci_values_array—The name of an array of 24-character arrays (prototyped as type:
cm50_asci_array_type) where the fetched ASCII values are to be stored. Bad
values are returned as strings of question marks.

string_values_array—The name of an array of up to 300 40-character arrays (prototyped as
type: cm50_stri_array_type) where the fetched LCN string values are to be
stored.

exid_values_array—The name of an array of up to 300 18-character arrays (prototyped as
type: cm50_exid_array_type) where the fetched external entity names are to be
stored.

enum_array—The name of an array of up to 300 8-character arrays (prototyped as type:
cm50_aenm_array_type) where the fetched Enumeration values are to be
stored. Bad values are returned as strings of question marks.

ord_array—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) where the fetched ordinal values of enumerations are to be
stored.

status_table—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) for the storage of returned point-related error/status information.
A value_status code is returned for each requested tag (in the same order as the
DDT source file). See Appendix A.1 for a listing of Data Access error/status
codes.

CM50S User Manual 18-3 7/93

18.1.2

18.1.2 DDT Store Data Interface

This routine sends data to points in the DDT's associated CG or elsewhere on its LCN.
The specification of what points are to receive data and the location of data within the
calling program's data arrays is contained in the Data Definition Table referenced by the
call. Errors encountered during execution of the routine as well as individual point-data
errors are returned to the calling program.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

18.1.2.1 Example "C" Call for DDT Store Data

return_status = cm50_ddt_store or cm50_ddt_storent
(ddt_name,
 real_values_array,
 intg_values_array,
 or &ptid_values_array,
 or &time_values_array,
 asci_values_array,
 or &string_values_array,
 enum_array,
 or &ord_array,
 store_array,
 status_table);

Use the Interface Name CM50_DDT_STORE if you want data transformation operations
performed by the Table Processor and CM50_DDT_STORENT if you do not want
transformation operations performed (to decrease processing time).

The DDT Store Data call must specify four data types in the order shown (three of these
can be dummy arguments that export no data). Note that there are restrictions on the
combinations of data type.

18.1.2.2 Parameter Definitions for DDT Store Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the
status_table status code for each requested store value must be checked.

CM50S User Manual 18-4 7/93

18.1.2

ddt_name—The name of a string of 9 characters (prototyped as type:
cm50_ddt_name_type) that contains the name of the output Data Definition
Table to be used in the "Store Data" operation.

real_values_array—The name of an array of up to 300 float numbers (prototyped as type:
cm50$real300) containing the Real values to be stored.

intg_values_array—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) containing the Integer values to be stored.

ptid_values_array—The name of an array of up to 300 internal entity ids (prototyped as
type: cm50_ptid_vals).

time_values_array—The name of an array of up to 300 LCN internal time values
(prototyped as type: cm50_time_array_type).

asci_values_array—The name of an array of 24-character arrays (prototyped as type:
cm50_asci_array_type) containing the ASCII values to be stored.

string_values_array—The name of an array of up to 300 40-character arrays (prototyped as
type: cm50_stri_array_type) containing the LCN string values to be stored.

enum_array—The name of an array of up to 300 8-character arrays (prototyped as type:
cm50_aenm_array_type) containing the Enumeration values to be stored.

ord_array—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) containing the ordinal values of enumerations to be stored.

store_array—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) that contains a control code entry for each value to be stored.
These codes control what—if any—value is to be stored. The store code
values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value.

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

status_table—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) for the storage of returned point-related error/status information.
A value_status code is returned for each requested tag (in the same order as the
DDT source file). See Appendix A for a listing of Data Access error/status
codes.

CM50S User Manual 18-5 7/93

18.1.3

18.1.3 Generic DDT Get Data Interface

This routine fetches data for any Input or Generic Input DDT. The specification of which
data is to be fetched and where it is to be stored in the calling program's data arrays is
contained in the Data Definition Table referenced by the call.

18.1.3.1 Example "C" Call for Generic DDT Get

return_status = cm50_ddt_getgen
(ddt_name,
 &values_array1,
 &values_array2,
 &values_array3,
 &values_array4,
 status_table,
 &tbl_proc);

18.1.3.2 Parameter Definitions for Generic DDT Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a string of 9 characters (prototyped as type:
cm50_ddt_name_type) that contains the name of the output Data Definition
Table to be used in the "Store Data" operation.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array where the fetched values are
to be stored. The data type for each array must match the corresponding data
type in the DDT definition. In "C", each array may be declared to match the
specific type and number of elements returned by the DDT; if the DDT contains
fewer than 4 data types, the unused arguments may be omitted (but the correct
number of commas is required).

status_table—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) for the storage of returned point-related error/status information.
A value_status code is returned for each requested tag (in the same order as the
DDT source file). See Appendix A.1 for a listing of Data Access error/status
codes.

tbl_proc—The name of a short integer that determines whether or not table processing is to
be suppressed. If tbl_proc is set to 1, all table processing (saving values to
disk and/or data transformations) will be suppressed. Use a value of 0 for
normal processing.

CM50S User Manual 18-6 7/93

18.1.4

18.1.4 Generic DDT Store Data Interface

This routine sends data to points defined in any Output or Generic Output DDT. The
specification of what points are to receive data and the location of data within the calling
program's data arrays is contained in the Data Definition Table referenced by the call.
Errors encountered during execution of the routine as well as individual point-data errors
are returned to the calling program.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

18.1.4.1 Example "C" Call for Generic DDT Store

return_status = cm50_ddt_storegen
(ddt_name,
 &values_array1,
 &values_array2,
 &values_array3,
 &values_array4,
 store_array,
 status_table,
 &tbl_proc);

18.1.4.2 Parameter Definitions for Generic DDT Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the
status_table status code for each requested store value must be checked.

ddt_name—The name of a string of 9 characters (prototyped as type:
cm50_ddt_name_type) that contains the name of the output Data Definition
Table to be used in the "Store Data" operation.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array that contains the data to be
stored. The data type for each array must match the corresponding data type in
the DDT definition. In "C", each array may be declared to match the specific
type and number of elements returned by the DDT; if the DDT contains fewer
than 4 data types, the unused arguments may be omitted (but the correct
number of commas is required).

store_array—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) that contains a control code entry for each value to be stored.
These codes control what—if any—value is to be stored. The store code
values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value.

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

CM50S User Manual 18-7 7/93

18.1.5

status_table—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) for the storage of returned point-related error/status information.
A value_status code is returned for each requested tag (in the same order as the
DDT source file). See Appendix A for a listing of Data Access error/status
codes.

tbl_proc—The name of a short integer that determines whether or not table processing is to
be suppressed. If tbl_proc is set to 1, all table processing (saving values to
disk and/or data transformations) will be suppressed. Use a value of 0 for
normal processing.

18.1.5 Multi-Point List Get Data Interface

This routine fetches data for the LCN tags specified in an internal data block. An internal
Data Block is a memory-resident equivalent of a DDT. The specification of which data is
to be fetched and where it is to be stored in the calling program's data arrays can be
prepared using any of the generate MPL routines (see 18.1.7) or you can read in a DDT
from its disk file (see 18.1.8).

18.1.5.1 Example "C" Call for Multi-Point List Get

return_status = cm50_mpl_get
(&mpl_name,
 acidp_name,
 &values_array1,
 &values_array2,
 &values_array3,
 &values_array4,
 status_table,
 &cg_port_num);

18.1.5.2 Parameter Definitions for Multi-Point List Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (cm50_acp_run)—The data access could not be completed because
the specified ACIDP is not in RUN state; Indirect Control programs should
retry (indicates contention for ACIDP).

215000051 (cm50_lcn_part)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

mpl_name—The name of a Multi-Point List structure defining the data to be retrieved. This
should be declared as a record of type cm50_idb_rec.

CM50S User Manual 18-8 7/93

18.1.6

acidp_name—A string of 16 characters (prototyped as type: cm50_long_acidp) containing
the name of an ACIDP. If the ACIDP is spaces, then the data will be retrieved
without any ACIDP controls. If an ACIDP is named, then the data access will
be completed only if that ACIDP is in RUN state.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array where the fetched values are
to be stored. The data type for each array must match the corresponding data
type in the MPL definition. In "C", each array may be declared to match the
specific type and number of elements returned by the MPL; if the MPL
contains fewer than 4 data types, the unused arguments may be omitted (but the
correct number of commas is required).

status_table—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) for the storage of returned point-related error/status information.
A value_status code is returned for each requested tag in the list. See Appendix
A.1 for a listing of Data Access error/status codes.

cg_port_num—The name of a short integer (with a value of 1-4) identifying the CG to be
accessed.

18.1.6 Multi-Point List Store Data Interface

This routine stores data for the LCN tags specified in an internal data block. An internal
Data Block is a memory-resident equivalent of a DDT. The specification of which tags are
to receive data and the location of the values within the calling program's data arrays can be
prepared using any of the generate MPL routines (see 18.1.7) or you can read in a DDT
from its disk file (see 18.1.8).

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

18.1.6.1 Example "C" Call for Multi-Point List Store

return_status = cm50_mpl_store
(&mpl_name,
 acidp_name,
 &values_array1,
 &values_array2,
 &values_array3,
 &values_array4,
 store_array,
 status_table,
 &cg_port_num);

CM50S User Manual 18-9 7/93

18.1.6

18.1.6.2 Parameter Definitions for Multi-Point List Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (cm50_acp_run)—The data access could not be completed because
the specified ACIDP is not in RUN state; Indirect Control programs should
retry (indicates contention for ACIDP).

215000051 (cm50_lcn_part)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

mpl_name—The name of an Multi-Point List structure defining the data to be stored. This
should be declared as a record of type cm50_idb_rec.

acidp_name—A string of 16 characters containing the name of an ACIDP. If the ACIDP is
spaces, then the ACIDP currently connected to the ACP will control the data
transfer. If an ACIDP is named, then the data access will be completed only if
that ACIDP is in RUN state.

values_arrayn—(where n is 1, 2, 3 or 4) The name of an array that contains the data to be
stored. The data type for each array must match the corresponding data type in
the MPL definition. Each array may be declared to match the specific type and
number of elements returned by the MPL; if the MPL contains fewer than 4
data types, the unused arguments may be omitted (but the correct number of
commas is required).

store_array—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) that contains a control code entry for each value to be stored.
These codes control what—if any—value is to be stored. The store code
values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value
16386 - Store IEEE negative infinity instead of Real value
16387 - Store IEEE positive infinity instead of Real value

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

status_table—The name of an array of up to 300 short integers (prototyped as type:
cm50$int300) for the storage of returned point-related error/status information.
A value_status code is returned for each requested tag in the list. See Appendix
A.1 for a listing of Data Access error/status codes.

cg_port_num—The name of a short integer (with a value of 1-4) identifying the CG to be
accessed.

CM50S User Manual 18-10 7/93

18.1.7

18.1.7 Generate Multi-Point List

These routines generate an Internal data block for transfer arrays of up to four data types
between the LCN and host computer. Internal data blocks are subject to exactly the same
restrictions as DDTs (see Table 6-1).

A Multi-Point List may be generated from either a set of ID Block Arrays (such as those
produced using the Convert Lists calls—see section 19.2.2), or a text file of type
declarations and tag names, or an array of text entries.

NOTE

The arrays of internal point.parameter addresses need to be rebuilt and the program(s) using
them need to be recompiled whenever the LCN database is changed in a significant manner,
such as by the rebuild or deletion of data points referenced in the address array.

18.1.7.1 Example "C" Calls to Generate Multi-Point Lists

To combine point lists, use:

 return_status = cm50_mpl_genlist
(list_size,
 id_block_arr1,
 id_block_arr2,
 id_block_arr3,
 id_block_arr4,
 &mpl_name);

When the external ids are expressed as a Tag name list, use:

 return_status = cm50_mpl_gentags
(tagname_arr,
 &number_of_values,
 &mpl_name,
 &cg_port_num
 return_arr);

When the external ids are contained in a Text file, use:

 return_status = cm50_mpl_genfile
(tag_file,
 &mpl_name,
 &cg_port_num
 return_arr);

CM50S User Manual 18-11 7/93

18.1.7

18.1.7.2 Parameter Definitions for Generate Multi-Point Lists

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_LCN_PART), which indicates that the
return_arr status code for each returned value must be checked.

tagname_arr—The name of an array of up to 304 strings of 40 characters (prototyped as
type: cm50_tag_list_type) that contains the ASCII Tagname (formatted as
Point.Param, optionally with the parameter index enclosed in parentheses) of
the LCN entity for which the internal ID is to be obtained. All tags of the same
data type must be grouped together and different data types must be separated
by the reserved "tag" of: **NEW∆TYPE=type
where "∆" is a required space and "type" (starting in position 11) is one of the
following:

REAL float number
INTE 16-bit integer
ASCI 24 character ASCII
ENUM enumeration
ORDN ordinal
PTID internal entity id
EXID external entity id
TIME lcn time type
STRI 40 character string

If the first item in the array does not contain a "**NEW TYPE=" in positions 0
through 10, then the first set of tags is assumed to identify Real numbers.

number_of_values —The name of a short integer specifying the number of tags defined in
the id_block_arr. The maximum number of values is 304.

tag_file—A string of 80 characters (prototyped as type: cm50_file_name_type) that names a
text file whose content is a tagname_array, with each line containing either a
valid tagname or a "**NEW TYPE=" tag as described above.

list_size —The name of an array of 4 short integers (prototyped as type: cm50_ptid_vals)
specifying the number of tags defined in each id_block_arr. The maximum
number of values is 300.

id_block_arrn —(where n is 1 to 4) The name of a point list array (declared as
cm50_point_list_array_type) which may combine up to 4 different data
different types, with a maximum of 300 16-byte variables. If multiple data
types are included, then all entries of the same type must be grouped together.
The size of the point list must match that specified in list_size[n]. If there are
fewer than 4 data types, the unused arguments may be omitted (but the correct
number of commas is required).

mpl_name—The name of an Multi-Point List structure where the generated definition is to
be stored. This should be declared as a record of type cm50_idb_rec.

CM50S User Manual 18-12 7/93

18.1.8

cg_port_num—The name of a short integer (with a value of 1-4) identifying the CG to be
accessed.

return_arr—The name of an array of up to 304 integers (prototyped as type:
cm50_return_arr_type) that receives the status of the conversion of each tag and
data type declaration, including field type records. See Appendix A.2 for an
explanation and a listing of all assigned return code values.

18.1.8 Read Multi-Point List

This routine reads an MPL from a disk file that has been created using either the DDT
Build procedures or the Write Multi-Point List routine.

18.1.8.1 Example "C" Calls to Read Multi-Point Lists

 return_status = cm50_mpl_read
(idb_file,
 &mpl_name);

18.1.8.2 Parameter Definitions for Read Multi-Point List

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

idb_file—A string of 80 characters (prototyped as type: cm50_file_name_type) that names
the path to a file containing the Multi-Point List. To reference a DDT, use the
pathname of CM50$DDT:ddtname.II. If no extension is specified, the
default of .MPL will be used.

mpl_name—The name of a Multi-Point List structure in memory. This should be declared
as a record of type cm50_idb_rec.

CM50S User Manual 18-13 7/93

18.1.9

18.1.9 Write Multi-Point List

This routine creates a disk file containing an MPL produced through the Generate Multi-
Point List interface (section 18.1.7).

18.1.9.1 Example "C" Calls to Write Multi-Point Lists

 return_status = cm50_mpl_write
(idb_file,
 &mpl_name);

18.1.9.2 Parameter Definitions for Write Multi-Point List

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

idb_file—A string of 80 characters (prototyped as cm50_file_name_type) that names the
path to a file to contain the Multi-Point List. If a file by that name already
exists, a new version will be created. By default, an extension of .MPL will be
used. The use of .II as an extension is prohibited because that extension is
reserved for DDTs. It is the user's responsibility to purge obsolete versions.

mpl_name—The name of an Multi-Point List structure in memory. This should be declared
as a record of type cm50_idb_rec.

CM50S User Manual 18-14 7/93

18.1.10

18.1.10 Create Include File for Multi-Point List

This routine creates a disk file containing the text description of an MPL in a format
suitable for use as an include file for a "C" source program. The MPL should be
previously produced through the Generate Multi-Point List interface (see heading 18.1.7).

18.1.18.1 Example "C" Call to Generate a Multi-Point List Include File

 return_status = cm50_mpl_genincl
(&mpl_name,
 text_file,
 &language);

18.1.18.2 Parameter Definitions for Generate Multi-Point List Include File

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

mpl_name—The name of an Multi-Point List structure in memory. This should be declared
as a record of type cm50_idb_rec.

text_file—A string of 80 characters (prototyped as cm50_file_name_type) that names the
path of the include file to be written. If a file by that name already exists, a new
version will be created. No default extension is provided. It is the users
responsibility to purge obsolete versions.

language— A single character (declared as char) code identifying the format of the include
file:

'P' = Pascal
'C' = C
'F' = FORTRAN

Any other value will default to FORTRAN.

CM50S User Manual 18-15 7/93

18.2

18.2 POINT LIST TRANSFERS

These routines enable you to address multiple points with a single call without the necessity
to build DDT tables. In the place of a DDT reference, you will have to provide a pointer to
an array of "internal" point.parameter addresses. These internal addresses can be obtained
by conversion calls at program runtime (see heading 19.2), or in advance by creating an
include file through the Utility MAKEINC (see heading 7.2).

18.2.1 Point List Get Values Interface

This function returns data values to up-to-300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal Point-parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.
The data type of the values is determined from the Internal ID of the first point in the list.

18.2.1.1 Example "C" Call for Point List Get Values

return_status = cm50_get_pt_list
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 &values_array,
 status_table,
 &number_of_values);

18.2.1.2 Parameter Definitions for Point List Get Real Values

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (cm50_acp_run)—The data access could not be completed because
the specified ACIDP is not in RUN state; Indirect Control programs should
retry (indicates contention for ACIDP).

215000051 (cm50_lcn_part)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

cg_port_num—The name of a short integer (prototyped as cm50$uword) identifying the CG
(1-4) to be accessed.

CM50S User Manual 18-16 7/93

18.2.1

priority—The name of a short integer (prototyped as cm50$uword) that contains the
requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

acidp_name—The name of a 16-character string (prototyped as cm50_long_acidp) that
contains the name of an ACIDP. If the ACIDP name value is blank (all spaces),
then the data is retrieved without any ACIDP controls. If an ACIDP is named,
then the data access is completed only if that ACIDP is in RUN state.

point_list_array—The name of an array of point addresses in internal format (declare as an
array of up to 300 cm50_idblk records) See the function Convert External to
Internal ID functions (heading 19.2) for additional information.

values_array—The name of an array of up to 300 values (whose type is compatible with the
requested value type) containing the individual values to be stored.

status_table—The name of an array of up to 300 short integers (prototyped as
cm50$int300) where the value status for individual point values are to be
stored. See Appendix A.1 for a listing of Data Access error/status codes.

number_of_values—The name of a short integer (prototyped as cm50$int2) that specifies
the actual number of values (300 or less) to be processed.

CM50S User Manual 18-17 7/93

18.2.2

18.2.2 Point List Get By Value Type

These functions are identical to the CM50_GET_PT_LIST function, except that the value
type is part of the function name and the generic "values_array" argument is replaced by an
an array whose data type explicitly matches the specified data type.

This specific functions and their corresponding value arrays are described below. Refer to
heading 18.2.1.2 for explanations of all of the other arguments.

18.2.2.1 "C" Call for Point List Get Real Values

return_status = cm50_get_realnbr
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 real_values_array,
 status_table,
 &number_of_values);

real_values_array—The name of an array of up to 300 float numbers (prototyped as
cm50$real300) where the individual point values are to be stored.

18.2.2.2 "C" Call for Point List Get Integer Values

return_status = cm50_get_intnbr
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 intg_values_array,
 status_table,
 &number_of_values);

intg_values_array—The name of an array of up to 300 short integer (prototyped as
cm50$int300) where the individual point values are to be stored.

18.2.2.3 "C" Call for Point List Get ASCII Values

return_status = cm50_get_asc24
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 asci_values_array,
 status_table,
 &number_of_values);

asci_values_array—The name of an array of up to 300 fixed-length 24-character arrays
(prototyped as cm50$asci300) where the individual point values are to be
stored.

CM50S User Manual 18-18 7/93

18.2.2

18.2.2.4 "C" Call for Point List Get Enumerated Values

return_status = cm50_get_enum
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 aenm_values_array,
 status_table,
 &number_of_values);

aenm_values_array—The name of an array of up to 300 fixed-length 8-character arrays
(prototyped as cm50$enum300) where the individual point values are to be
stored.

18.2.2.5 "C" Call for Point List Get Ordinal Values

return_status = cm50_get_ord
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 oenm_values_array,
 status_table,
 &number_of_values);

oenm_values_array—The name of an array of up to 300 short integers (prototyped as
cm50$int300) where the ordinal values of the fetched enumerations are to be
stored.

18.2.2.6 "C" Call for Point List Get Internal IDs

return_status = cm50_get_ptid
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 ptid_values_array,
 status_table,
 &number_of_values);

ptid_values_array—The name of an array of up to 300 64-bit internal entity ids (prototyped
as cm50_idblk) where the individual point values are to be stored.

CM50S User Manual 18-19 7/93

18.2.2

18.2.2.7 "C" Call for Point List Get External IDs Values

return_status = cm50_get_exid
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 exid_values_array,
 status_table,
 &number_of_values);

exid_values_array—The name of an array of up to 300 fixed-length 18-character arrays
(prototyped as cm50$exid_vals) where the individual point values are to be
stored.

18.2.2.8 "C" Call for Point List Get Time Values

return_status = cm50_get_time
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 time_values_array,
 status_table,
 &number_of_values);

time_values_array—The name of an array of up to 300 cm50_time_vals records where the
individual point values are to be stored.

18.2.2.9 "C" Call for Point List Get String Values

return_status = cm50_get_stri
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 stri_values_array,
 status_table,
 &number_of_values);

stri_values_array—The name of an array of up to 300 fixed-length 40-character arrays
(prototyped as cm50_stri_vals) where the individual point values are to be
stored.

CM50S User Manual 18-20 7/93

18.2.3

18.2.3 Point List Store Values Interface

This function exports data values to up-to-300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal Point-parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.
The data type of the values is determined from the Internal Id of the first point in the list.
Note that entity ids can only be stored using their internal form.

18.2.3.1 Example "C" Call for Point List Store Values

return_status = cm50_store_pt_list
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 &values_array,
 store_code_table,
 status_table,
 &number_of_values);

18.2.3.2 Parameter Definitions for Array Store Values

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000042 (cm50_acp_run)—The data access could not be completed because
the specified ACIDP is not in RUN state; Indirect Control programs should
retry (indicates contention for ACIDP).

215000051 (cm50_lcn_part)—The returned data contains errors, thus the
status_table status code for each returned value must be checked.

cg_port_num—The name of a short integer (prototyped as cm50$uword) identifying the CG
(1-4) to be accessed.

priority—The name of a short integer (prototyped as cm50$uword) that contains the
requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

acidp_name—The name of a 16-character string (prototyped as cm50_long_acidp) that
contains the name of an ACIDP. If the ACIDP name value is blank (all spaces),
then the ACIDP currently connected to the ACP will control the data transfer.
The data access is completed only if the named or implied ACIDP is in RUN
state.

CM50S User Manual 18-21 7/93

18.2.3

point_list_array—The name of an array of point addresses in internal format (declare as an
array of up to 300 cm50_idblk records) See the function Convert External to
Internal ID functions (heading 19.2) for additional information.

values_array—The name of an array of up to 300 values (whose type is compatible with the
requested value type) containing the individual values to be stored.

store_code_table—The name of an array of up to 300 short integers (prototyped as
cm50$int300) array where the calling program has stored a control code for
each value to be stored. These codes control what—if any—value is to be
stored. The store code values are:

0 = Store the value from the Real Values Array
1 = Store the bad value representation (NaN) instead
2 = Do not store any value
16386 = Store IEEE negative infinity instead of Real value
16387 = Store IEEE positive infinity instead of Real value

status_table—The name of an array of up to 300 short integers (prototyped as
cm50$int300) where the value status for individual point values are to be
stored. See Appendix A.1 for a listing of Data Access error/status codes.

number_of_values—The name of a short integer (prototyped as cm50$int2) that specifies
the actual number of values (300 or less) to be processed.

18.2.4 Point List Store By Value Type

These functions are identical to the CM50_STORE_PT_LIST function, except that the
value type is part of the function name and the generic "values_array" argument is replaced
by an an array whose data type explicitly matches the specified data type.

This specific functions and their corresponding value arrays are described below. Refer to
heading 18.2.3.2 for explanations of all of the other arguments.

18.2.4.1 "C" Call for Point List Store Real Values

return_status = cm50_store_realnbr
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 real_values_array,
 store_code_table,
 status_table,
 &number_of_values);

real_values_array—The name of an array of up to 300 float values (prototyped as
cm50$real300) containing the individual values to be stored.

CM50S User Manual 18-22 7/93

18.2.4

18.2.4.2 "C" Call for Point List Store Integer Values

return_status = cm50_store_intnbr
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 intg_values_array,
 store_code_table,
 status_table,
 &number_of_values);

intg_values_array—The name of an array of up to 300 short integers (prototyped as
cm50$int300) containing the individual values to be stored.

18.2.4.3 "C" Call for Point List Store ASCII Values

return_status = cm50_store_asc24
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 asci_values_array,
 store_code_table,
 status_table,
 &number_of_values);

asci_values_array—The name of an array of up to 300 fixed-length 24-character arrays
(prototyped as cm50$asci300) containing the individual point values to be
stored.

18.2.4.4 "C" Call for Point List Store Enumerated Values

return_status = cm50_store_enum
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 aenm_values_array,
 store_code_table,
 status_table,
 &number_of_values);

aenm_values_array—The name of an array of up to 300 fixed-length 8-character arrays
(prototyped as cm50$enum300) containing the individual point values to be
stored.

CM50S User Manual 18-23 7/93

18.2.4

18.2.4.5 "C" Call for Point List Store Ordinal Values

return_status = cm50_store_ord
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 oenm_values_array,
 store_code_table,
 status_table,
 &number_of_values);

oenm_values_array—The name of an array of up to 300 short integers (prototyped as
cm50$int300) containing the individual point values to be stored.

18.2.4.6 "C" Call for Point List Store Internal IDs

return_status = cm50_store_ptid
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 ptid_values_array,
 store_code_table,
 status_table,
 &number_of_values);

ptid_values_array—The name of an array of up to 300 64-bit Internal entity ids (prototyped
as cm50_ptid_vals) containing the individual point values to be stored.

18.2.4.7 "C" Call for Point List Store Time Values

return_status = cm50_store_time
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 time_values_array,
 store_code_table,
 status_table,
 &number_of_values);

time_values_array—The name of an array of up to 300 cm50_time_vals records containing
the individual point values to be stored.

CM50S User Manual 18-24 7/93

18.2.4

18.2.4.8 "C" Call for Point List Store String Values

return_status = cm50_store_stri
(&cg_port_num,
 &priority,
 acidp_name,
 point_list_array,
 stri_values_array,
 store_code_table,
 status_table,
 &number_of_values);

stri_values_array—The name of an array of up to 300 fixed-length 40-character arrays
(prototyped as cm50_stri_vals) containing the individual point values to be
stored.

CM50S User Manual 18-25 7/93

18.3

18.3 SINGLE POINT DATA TRANSFERS

The interface routines in this group Get or Store values from or to one named
point.parameter (or parameter array) at a time. For parameter arrays, up to the whole array
is accessed. The External ID version of Get Single Point is also used to get LCN date and
time.

18.3.1 Single Point Get Data (External ID) Interface

This routine fetches data for a single point from a specified CG or elsewhere on its LCN.
The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element, the whole array, or an array subset
starting with the first element can be specified. The point may be identified by either a
combination of point and parameter names or by a single tag name.

18.3.1.1 Example "C" Calls for Single Point Get

Using point and parameter names as separate variables:

return_status = cm50_get_id
(entity,
 param,
 ¶m_ix,
 &val_loc,
 &val_st,
 &val_typ,
 &cg_port_num);

Using a complete tag name:
return_status = cm50_get_tag

(tag_name,
 &val_loc,
 &val_st,
 &val_typ,
 &cg_port_num);

18.3.1.2 Parameter Definitions for Single Point Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000051 (cm50_lcn_part)—the val_st status code for each returned value
must be checked.

215000322 (cm50_acc_size)—the array size specified by param_ix is larger
than the actual size.

tag_name—The name of a string of 40 characters (prototyped as cm50_tag_name_type) that
identifies the LCN value(s) to be retrieved. The tag name is formatted as
"point.param (param_ix)".

CM50S User Manual 18-26 7/93

18.3.1

entity—The name of a string of 20 characters (prototyped as cm50_entity_name_type) that
contains the ASCII Point ID. It should contain a point name of up to 16
characters, optionally preceded by a 1- or 2-character pinid and a backslash (\)
delimiter.

param—The name of a string of 8 characters (prototyped as cm50_ascii_param_arr) that
contains the ASCII name of a parameter (or parameter array) from which the
value(s) is retrieved.

param_ix—The name of an short integer (prototyped as cm50$int2). Use of this value is
controlled by val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 15, 17 or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 16, 18 or 20, a whole array (or a subset of
the array starting with the first element) is to be accessed and param_ix is
used to specify the number of elements to be accessed—If param_ix is
smaller than the actual array size, only that number of elements is returned; if it
is larger than the actual array size, no elements are returned and the
return_status value is 215000322.

val_loc—The name of a program variable where the value(s) are to be stored.
The type of variable must match what is declared in val_typ.

val_typ val_loc type
1 float (real)
2 cm50$int2 Integer (short integer)
3 cm50$ascii (fixed-length 24-character array)
4 cm50$enum (fixed-length 8-character array)
5 cm50$int2 Ordinal (short integer)
6 cm50$time_arr Time(fixed-length 18-character array)
7 Array of up to 1000 float
8 Array of up to 1000 cm50$int2 (short Integers)
9 Array of up to 1000 cm50$enum
10 Array of up to 1000 cm50$int2 (Ordinals)
13 cm50_ptid_vals (array of 4 short integers)
14 Array of up to 1000 cm50_ptid_vals
15 cm50_exid_vals (fixed-length 18-character array)
16 Array of up to 1000 cm50_exid_vals
17 cm50_time_vals (record of seconds and ticks)
18 Array of up to 1000 cm50_time_vals
19 cm50_stri_vals (fixed-length 40-character array)
20 Array of up to 1000 cm50_stri_vals

val_st—The name of an short integer (prototyped as cm50$int2) where point-related status
information is to be stored. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (215000051). See Appendix A.1 for a listing of Data-Access error/status
codes. When val_typ specifies an array, val_st refers to status of the
whole array.

CM50S User Manual 18-27 7/93

18.3.2

val_typ—The name of an short integer (prototyped as cm50$int2) that contains a number
that designates value type of the accessed parameters as listed for val_loc.

cg_port_num—The name of an short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

18.3.2 Single Point Store Data (External ID) Interface

This routine stores data to a single point in a specified CG or elsewhere on its LCN. The
specification of where the data is to be found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this call the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

18.3.2.1 Example "C" Calls for Single Point Store

Using point and parameter names as separate variables:

return_status = cm50_store_id
(entity,
 param,
 ¶m_ix,
 &val_loc,
 &val_typ,
 &store_cd,
 &store_st);

Using a complete tag name:

return_status = cm50_store_tag
(&tag_name,
 &val_loc,
 &val_typ,
 &store_cd,
 &store_st);

18.3.2.2 Parameter Definitions for Single Point Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the store_st
status code for each returned value must be checked.

tag_name—The name of a string of 40 characters (prototyped as cm50_tag_name_type) that
identifies the LCN value(s) to be stored. The tag name is formatted as
"point.param (param_ix)".

CM50S User Manual 18-28 7/93

18.3.2

entity—The name of a string of 20 characters (prototyped as cm50_entity_name_type) that
contains the ASCII Point ID. It should contain a point name of up to 16
characters, optionally preceded by a 1- or 2-character pinid and a backslash (\)
delimiter.

param—The name of a string of 8 characters (prototyped as cm50_ascii_param_arr) that
contains the ASCII parameter name for the point.parameter where the value is to
be stored.

param_ix—The name of an short integer (prototyped as cm50$int2). Use of this value is
controlled by val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 17, or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 18, or 20, a whole array is to be accessed
and param_ix is used to specify the number of array elements—If
param_ix does not match the actual array size, no elements are stored and
store_st indicates an invalid array size.

val_loc—The name of a program variable containing the value(s) to be stored.
The type of variable must match what is declared in val_typ.

val_typ val_loc type
1 real number (float)
2 cm50$int2 Integer (short integer)
3 cm50$ascii (fixed-length 24-character array)
4 cm50$enum (fixed-length 8-character array)
5 cm50$int2 Ordinal (short integer)
6 cm50$time_arr Time(fixed-length 18-character array)
7 Array of up to 1000 real numbers (float)
8 Array of up to 1000 cm50$int2 (short Integers)
9 Array of up to 1000 cm50$enum
10 Array of up to 1000 cm50$int2 (Ordinals)
13 cm50_ptid_vals (array of 4 short integers)
14 Array of up to 1000 cm50_ptid_vals
17 cm50_time_vals (record of seconds and ticks)
18 Array of up to 1000 cm50_time_vals
19 cm50_stri_vals (fixed-length 40-character array)
20 Array of up to 1000 cm50_stri_vals

val_typ—The name of an short integer (prototyped as cm50$int2) that contains a number
that designates value type of the accessed parameters as listed for val_loc.

CM50S User Manual 18-29 7/93

18.3.3

store_cd—Name of an short integer (prototyped as cm50$int2) that contains a code that
allows the substitution of a bad value representation in place of the provided
value(s). The store code values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

store_st—The name of an short integer (prototyped as cm50$int2) to contain point-related
store status information on completion. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (215000051). See Appendix A.1 for a listing of Data-Access error/status
codes. When the val_typ is an array, store_st refers to status of the
whole array.

18.3.3 Single Point Get Data (Internal ID) Interface

This routine fetches data for a single point from the CG or elsewhere on the LCN. Use of
the Internal point.parameter ID (obtained by previous use of the CM50_CONV_PT or
CM50_CONV_TAG interface, see 19.2.1) reduces the overhead required for repetitive
single-point requests.

The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element or the whole array can be specified.

18.3.3.1 Example "C" Call for Single Point Get

return_status = cm50_getpt_id
(id_block,
 &val_loc),
 &val_st,
 &cg_port_num);

18.3.3.2 Parameter Definitions for Single Point Get

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the val_st
status code for each returned value must be checked.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. When the data is of array type, that call returns the array size in word 7 of
the ID block. Thus, if you wish to get less than the entire array you can change
the parameter qualifier in the seventh word of the ID block to be smaller than the
actual array size. Do not change any other words in the ID block. See heading
4.7.8 in the Computer Gateway User Manual for ID block details.

CM50S User Manual 18-30 7/93

18.3.3

val_loc—The name of a program variable where the value is to be stored. The type of
variable must match what was declared in val_typ in the earlier Convert ID
call.

val_typ val_loc type
1 real number (float)
2 cm50$int2 Integer (short integer)
3 cm50$ascii (fixed-length 24-character array)
4 cm50$enum (fixed-length 8-character array)
5 cm50$int2 Ordinal (short integer)
6 cm50$time_arr Time(fixed-length 18-character array)
7 Array of up to 1000 real numbers (float)
8 Array of up to 1000 cm50$int2 (short Integers)
9 Array of up to 1000 cm50$enum
10 Array of up to 1000 cm50$int2 (Ordinals)
13 cm50_ptid_vals (array of 4 short integers)
14 Array of up to 1000 cm50_ptid_vals
15 cm50_exid_vals (fixed-length 18-character array)
16 Array of up to 1000 cm50_exid_vals
17 cm50_time_vals (record of seconds and ticks)
18 Array of up to 1000 cm50_time_vals
19 cm50_stri_vals (fixed-length 40-character array)
20 Array of up to 1000 cm50_stri_vals

val_st—The name of an short integer (prototyped as cm50$int2) where point-related status
information is to be stored. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (cm50_lcn_part). When the val_typ specifies an array, val_st
refers to status of the whole array.

cg_port_num—The name of an short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

CM50S User Manual 18-31 7/93

18.3.4

18.3.4 Single Point Store Data (Internal ID) Interface

This routine stores data to a single point in the CG or elsewhere on the LCN. Use of the
Internal point.parameter ID (obtained by previous use of the CM50_CONV_PT or
CM50_CONV_TAG interface, see 19.2.1) reduces the overhead required for repetitive
single-point requests.

The specification of where the data is found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this function the ACP must be connected to an ACIDP with read/write access and be
in Normal mode. See the System Control Functions manual for other write access
restrictions.

18.3.4.1 Example "C" Call for Single Point Store

return_status = cm50_storept_id
(id_block,
 &val_loc,
 &store_cd,
 &store_st);

18.3.4.2 Parameter Definitions for Single Point Store

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the store_st
status code for each returned value must be checked.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. Do not change any words in the ID block. If the array size is changed, the
array is not stored and the return_status value is 215000051, with a
store_st that indicates an invalid array size. See heading 4.7.8 in the
Computer Gateway User Manual for ID block details.

CM50S User Manual 18-32 7/93

18.3.4

val_loc—The name of a program variable that contains the value to be stored. The type of
variable must match what was declared in val_typ in the earlier Convert ID
call.

val_typ val_loc type
1 real number (float)
2 cm50$int2 Integer (short integer)
3 cm50$ascii (fixed-length 24-character array)
4 cm50$enum (fixed-length 8-character array)
5 cm50$int2 Ordinal (short integer)
6 cm50$time_arr Time(fixed-length 18-character array)
7 Array of up to 1000 real numbers (float)
8 Array of up to 1000 cm50$int2 (short Integers)
9 Array of up to 1000 cm50$enum
10 Array of up to 1000 cm50$int2 (Ordinals)
13 cm50_ptid_vals (array of 4 short integers)
14 Array of up to 1000 cm50_ptid_vals
17 cm50_time_vals (record of seconds and ticks)
18 Array of up to 1000 cm50_time_vals
19 cm50_stri_vals (fixed-length 40-character array)
20 Array of up to 1000 cm50_stri_vals

store_cd—The name of an short integer (prototyped as cm50$int2) that contains a code that
allows the substitution of a bad value representation in place of the provided
value(s). The store code values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

store_st—The name of an short integer (prototyped as cm50$int2) where point-related
status information is to be stored. This value is meaningful only when the
return_status value indicates either normal (000000001) or complete with
errors (cm50_lcn_part). When the val_typ specifies an array, store_st
refers to status of the whole array.

CM50S User Manual 18-33 7/93

18.3.5

18.3.5 Get LCN Clock Value Interface

The current date and time as kept by the LCN, can be obtained in either internal or ASCII
format. The internal format is a 4-byte integer count of the number of seconds since
January 1, 1979. The ASCII format is MM/DD/YY∆HH:MM:SS∆ (where ∆ is used to
indicate a space).

18.3.5.1 Example "C" Calls to Get the LCN Clock

Internal Time Format:
 return_status = cm50_timnow_lcn

(&Integer_Clock,
 &cg_port_num);

ASCII Time Format:
 return_status = cm50_timnow_asc

(&ASCII_Clock,
 &cg_port_num);

18.3.5.2 Parameter Definitions for Get LCN Clock

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

integer_clock—The name of an integer where the clock value, in seconds, is to be stored.

ASCII_clock—The name of a fixed-length 18-character array (prototyped as cm50$time_arr)
where the clock value, formatted as 'MM/DD/YY hh:mm:ss ', is to be stored.

cg_port_num—The name of an short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

CM50S User Manual 18-34 7/93

18.4

18.4 RAW DATA TRANSFERS

The interface routines in this group get, store, and convert only LCN Real data arrays in
LCN format. Each request works only with a single data point's parameter array. These
functions allow you to pass Real data arrays from one LCN to another without needing to
go through the LCN/VAX data conversions.

18.4.1 Get Raw Data Interface

This function fetches data for a single point from the CG or elsewhere on the LCN. Use
of the Internal point.parameter ID (obtained by previous use of the Convert External to
Internal ID interface, see 19.2) is required.

The specification of which data is to be fetched and where it is to be stored is contained in
the call.

18.4.1.1 Example "C" Call for Get Raw Data

return_status = cm50_spgraw
(id_block,
 value_loc,
 &priority,
 &value_status,
 &cg_port_num);

18.4.1.2 Parameter Definitions for Get Raw Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the
value_status status code for each returned value must be checked.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk), that contains the
internal ID data block obtained by a previous Convert External to Internal ID
request. When the data is of array type, the conversion returns the array size in
word 7 of the ID block. Thus, if you wish to get less than the entire array you
can change the parameter qualifier in the seventh word of the ID block to be
smaller than the actual array size. Do not change any other words in the ID
block. See heading 4.7.8 in the Computer Gateway User Manual for ID block
details.

value_loc—The name of an array of real numbers (declared as float) where the values are to
be stored. The id_block should identify the value type as 7 (Real array).

priority—The name of a short integer (prototyped as cm50$uword) that contains the
requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual 18-35 7/93

18.4.2

value_status—The name of a short integer (prototyped as cm50$int2) where point-related
status information is to be stored. This value is meaningful only when the
return_status value indicates normal, complete with errors, or array-size error.
See Appendix A.1 for a listing of Data Access error/status codes. Since
val_typ is 7 (a Real array), value_status refers to status of the whole
array.

cg_port_num—The name of a short integer (prototyped as cm50$uword) identifying the
CG (1-4) to be accessed.

18.4.2 Store Raw Data Interface

This function stores data to a single point in the CG or elsewhere on the LCN. Use of the
Internal point.parameter ID (obtained by previous use of the Convert External to Internal
ID interface, see 19.2) is required.

The specification of where the data is found and where it is to be stored is contained in the
call.

To use this function the ACP must be connected to an ACIDP with read/write access and
be in Normal mode. See the System Control Functions manual for other write access
restrictions.

18.4.2.1 Example "C" Call for Store Raw Data

return_status = cm50_spsraw
(id_block,
 value_loc,
 &priority,
 &store_code,
 &value_status,
 &cg_port_num);

18.4.2.2 Parameter Definitions for Store Raw Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the
value_status status code for each returned value must be checked.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk), that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. Do not change any words in the ID block. If the array size is changed,
the array is not stored and the return_status value is 5 with a value_status that
indicates an invalid array size. See heading 4.7.8 in the Computer Gateway
User Manual for ID block details.

CM50S User Manual 18-36 7/93

18.4.2

value_loc—The name of an array of real numbers (declared as float) that contains the value
or values (in LCN format) to be stored. The id_block should identify the value
type as 7 (Real array).

priority—The name of a short integer (prototyped as cm50$uword) that contains the
requested data-access priority:

1 = High priority (provided for control operations)
2 = Low priority (provided for noncontrol operations)

store_code—The name of a short integer (prototyped as cm50$uword) that contains a code
that allows the substitution of a bad value representation in place of the
provided value(s). The store code values are:

0 = Store the data value(s) provided
1 = Store the bad value representation (NaN) instead

value_status—The name of a short integer (prototyped as cm50$int2) where point-related
status information is to be stored. This value is meaningful only when the
return_status value indicates normal or complete with errors. See Appendix
A.1 for a listing of Data-Access error/status codes. Since the val_typ is 7 (a
Real array), value_status refers to status of the whole array.

cg_port_num—The name of a short integer (prototyped as cm50$uword) identifying the
CG (1-4) to be accessed.

CM50S User Manual 18-37 7/93

18.4.3

18.4.3 Convert Raw Data

This function converts the elements of a Real array from LCN format to VAX format.

18.4.3.1 Example "C" Call for Convert Raw Data

return_status = cm50_spcraw
(id_block,
 raw_val_loc,
 vax_val_loc,
 &value_type,
 &convert_status);

18.4.3.2 Parameter Definitions for Convert Raw Data

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (cm50_lcn_part), which indicates that the
convert_status status code for each returned value must be checked.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk), that contains the
internal ID data block obtained by a previous Convert External to Internal ID
call. Do not change any words in the ID block. See heading 4.7.8 in the
Computer Gateway User Manual for ID block details.

raw_val_loc—The name of an array of real numbers (declared as float) that contains
previously obtained raw values that are to be converted from LCN format.

vax_val_loc—The name of an array of real numbers (declared as float) to contain the
converted values.

value_type—The name of a short integer (prototyped as cm50$uword) value that must =7
(Real array).

convert_status—The name of a short integer (prototyped as cm50$int2) array where the
request-completion status for each data array element is to be stored. Value
meanings are

0 = Normal return; this element was converted successfully
1 = Unable to convert this element to VAX format
2 = Bad value substitution was done on this element

CM50S User Manual 18-38 7/93

18.5

18.5 HISTORY DATA TRANSFERS

The interface routines in this group get previously stored averages or 1-minute snapshot
data from a History Module on the LCN. The data may be requested using a DDT, Internal
Data Block or the internal address of a single tag. The History calls provide for concurrent
Get History requests by up-to-four application programs. A fifth request is rejected with a
queue-full status return.

18.5.1 Selecting Records from the History Module

The History Module uses a specialized set of circular files to hold historized values
collected from data points on the LCN. Effective use of the CM50S history functions
requires an understanding of data organization on the History Module.

18.5.1.1 Relative and Absolute Time References

The History Module may be searched using either Relative or Absolute time references.
Relative references request data based on a number of records offset from the current value.
Absolute Time reference request data for all records whose timestamps fall within a
specified Date/Time interval.

For Absolute Time references, the Begin Date/Time specifies the timestamp of the most
recent value to be retrieved and the End Date/Time specifies the timestamp of the oldest
value to be retrieved. If a seasonal time change has occurred during a specified Absolute
History interval, the number of samples returned can differ from the expected number of
samples. For example, if it is desired to obtain a day's worth of hourly averages (24) and a
forward time change of one hour has occurred, 23 samples are returned. If the time change
is in the backward direction, 25 samples are returned.

Relative requests are based on beginning and ending offsets which are counts of records
back from the current time. The direction of search can be either forward (oldest to newest
data) or backwards (newest to oldest data); however, a forward search requires at least
twice as long to execute. To execute a backward search, set the starting offset value less-
than or equal-to the ending offset value. The number of samples returned is calculated as
the positive difference between the starting offset and the ending offset plus one. If this
difference exceeds 262, the request is truncated at 262 samples. The number of samples
returned by a Relative History request is immune to time changes.

Offset values less than one have special meanings. When the starting or ending offset
value is zero (i.e., current LCN time) in the case of averages, the first sample returned is
the current running average for the period. A starting offset of -1 has special meaning in
the cases of snapshots and user averages. In those cases only, LCN time is rounded to the
beginning of the last hour. This permits an ACP to be sure of obtaining the last full hour of
snapshots or user averages. In calculating the number of samples returned, a -1 is treated
as an offset of 0 and its number of samples and direction of search follows those rules. An
ending offset of -1 for snapshots and user averages means the search direction is forward
and the ending time is on the hour starting "n" units back from current time.

The following table summarizes results of combinations of starting and ending offsets for
Relative History requests with numbers of samples returned and reasons for zero sample
returns.

CM50S User Manual 18-39 7/93

18.5.2

History Starting Ending Number Direction Partial
Type Offset Offset of Samples of Search First Sample

for Averages?

any 0 0 1 Backward yes
any 1 1 1 Backward no
any 2 3 2 Backward no
any 3 2 2 Forward no
any 0 300 262 Backward yes
0,5 3 -1 4 Forward no
1 to 4 3 -1 0 Error, end offset invalid
0,5 -1 3 4 Backward no
0,5 -1 -3 0 Error, end offset invalid
1 to 4 -1 -3 0 Error, begin/end offset

invalid

18.5.1.2 Number of Values Retrieved in a Single Call

The number of values that can be obtained from the History Module for each point is
limited both by the size of the buffer used to transfer the values and by the History type.
The maximum number of values for monthly averages is 12, and for shift averages is 21.
The maximum for user averages is configuration dependent, but will not exceed the number
of values shown below for hourly averages. The other maximums are shown in the
following table.

Number of Maximum Maximum Maximum
Points in Snapshots Hourly Daily
DDT or List Averages Averages

1-3 262 168 31
4 262 149 31
5 238 119 31
6 198 99 31

7 170 85 31
8 149 74 31
9 132 66 31

10 119 59 31
11 108 54 31
12 99 49 31

13 91 45 31
14 85 42 31
15 79 39 31
16 74 37 31
17 69 34 31
18 66 33 31

19 62 31 31
20 59 29 29
21 56 28 28
22 53 26 27
23 51 25 25
24 49 24 24

CM50S User Manual 18-40 7/93

18.5.2

18.5.2 Get History Snapshots (Relative Time)

These routines are used to fetch history snapshots from the HM, using a relative offset
from current LCN time.

18.5.2.1 Example "C" Calls for Get History Snapshots (Relative Time)

for standard 1-minute snapshots:

return_status = cm50_ddthis_snap
(ddt_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 &begin_offset,
 &end_offset);

for fast (5, 10 or 20 second) snapshots:

return_status = cm50_ddthis_fast
(ddt_name,
 &sample_rate,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 &begin_offset,
 &end_offset);

for Multi-Point Lists (instead of DDT):

return_status = cm50_mpl_snap
(&mpl_name,
 &sample_rate,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 &begin_offset,
 &end_offset,
 &cg_port_num);

CM50S User Manual 18-41 7/93

18.5.2

for a single data point.parameter:

return_status = cm50_pthis_snap
(id_block,
 &sample_rate,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 &begin_offset,
 &end_offset,
 &cg_port_num);

18.5.2.2 Parameter Definitions for Get History Snapshots (Relative Time)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (cm50_his_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (prototyped as cm50_ddt_name_type) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of an Multi-Point List structure defining the data to be retrieved.
This should be declared as type cm50_idb_rec.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag.
(prototyped as cm50_idblk). This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

sample_rate —The name of a short integer (prototyped as cm50_uword) identifying the
number of snapshots to be returned for each minute. This value does not have
to match the rate at which snapshots are historized. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

Note that retrieval of more than 1 snapshot per minute is only supported by
LCN release 400 or later.

number_of_values—The name of a short integer (prototyped as cm50_uword) that specifies
the maximum number of history items (1..262) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin_offset and end_offset, the
number of samples gathered are truncated at this value. If the
number_of_values is greater than the number of samples returned by the
History Module, then the returned arrays are padded with status_table entries of
99 to match the requested number_of_values. For multi-point retrievals,
values for some of the points will be lost if the number_of_values times
the number of points is greater than 1197.

CM50S User Manual 18-42 7/93

18.5.2

real_values_array—The name of an array of up to 1197 reals (float) where the history data is
to be stored. (The array must be dimensioned for at least
number_of_values times the number of points listed in the DDT.)

status_table—The name of an array of up to 1197 short integers (prototyped as cm50$int2)
to contain the value status for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) If the return_status is CM50_HIS_PART (complete
with errors) then for any point that could not be accessed, the first status_table
entry will be the Data Access error code (Appendix A.1) for that point.
Otherwise, each status_table entry is one of the following value status codes for
the corresponding real_values_array entry:

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is the Real equivalent of an ordinal value

for a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is

missing; value field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field

contains NaN
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: not applicable
99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX
cm50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
cm50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
cm50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
cm50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
cm50_NaN (16388) = Bad Value returned as a legitimate (custom data segment)

value.

lcn_time_stamp_array—The name of an array of up to 1197 integers that will contain the
time stamp in seconds for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) See heading 19.3.3 for time-stamp conversion from
internal LCN format to external format.

begin_offset—The name of a short integer (prototyped as cm50$int2) that indicates a
relative offset in minutes from current LCN time that represents the starting
period for which history is to be fetched.

end_offset—The name of a short integer (prototyped as cm50$int2) that indicates a relative
offset in minutes from the current LCN time representing the ending period for
which history is to be fetched.

CM50S User Manual 18-43 7/93

18.5.3

cg_port_num—The name of a short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

18.5.3 Get History Snapshots (Absolute Times)

These routines are used to fetch history snapshots from the HM, using absolute begin and
end times. Separate calls are provided for snapshot and averages histories.

If a seasonal time change has occurred during a specified Absolute History interval, the
number of samples returned can differ from the expected number of samples. For
example, if it is desired to obtain a day's worth of hourly averages (24) and a forward time
change of one hour has occurred, 23 samples are returned. If the time change is in the
backward direction, 25 samples are returned.

18.5.3.1 Example "C" call for Get History Snapshots (Absolute Times)

for standard 1-minute snapshots:

return_status = cm50_ddthis_snapt
(ddt_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time);

for fast (5, 10 or 20 second) snapshots:

return_status = cm50_ddthis_fastt
(ddt_name,
 &sample_rate,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time);

for Multi-Point Lists (instead of DDT):

return_status = cm50_mpl_snapt
(&mpl_name,
 &sample_rate,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time,
 &cg_port_num);

CM50S User Manual 18-44 7/93

18.5.3

for a single data point.parameter:

return_status = cm50_pthis_snapt
(id_block,
 &sample_rate,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 begin_date_time,
 end_date_time,
 &cg_port_num);

18.5.3.2 Parameter Definitions for Get History Snapshots (Absolute Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (cm50_his_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (prototyped as cm50_ddt_name_type) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of an Multi-Point List structure defining the data to be retrieved.
This should be declared as type: cm50_idb_rec.

id_block—The name of a 16-byte variable containing the internal ID for an LCN tag.
(prototyped as cm50_idblk). This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

sample_rate —The name of a short integer (prototyped as cm50_uword) identifying the
number of snapshots to be returned for each minute. This value does not have
to match the rate at which snapshots are historized. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

Note that retrieval of more than 1 snapshot per minute is only supported by
LCN release 400 or later.

number_of_values—The name of a short integer (prototyped as cm50_uword) that specifies
the maximum number of history items (1..261) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin and end times, the number of samples
gathered are truncated at this value. If the number_of_values is greater
than the number of samples returned by the History Module, then the returned
arrays are padded with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some points are
lost if the number_of_values times
(1 + the number of points) is greater than 1197.

CM50S User Manual 18-45 7/93

18.5.3

real_values_array—The name of an array of up to 1197 real numbers (float) where the
history data is to be stored. (The array must be dimensioned for at least
number_of_values times the number of points listed in the DDT).

status_table—The name of an array of up to 1197 short integers (prototyped as cm50$int2)
to contain the value status for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) If the return_status is CM50_HIS_PART (complete
with errors) then for any point that could not be accessed, the first status_table
entry will be the Data Access error code (Appendix A.1) for that point.
Otherwise, each status_table entry is one of the following value status codes for
the corresponding real_values_array entry:

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is the Real equivalent of an ordinal value

for a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is

missing; value field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field

contains NaN
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: not applicable
99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX
cm50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
cm50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
cm50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
cm50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
cm50_NaN (16388) = Bad Value returned as a legitimate (custom data segment)

value.

lcn_time_stamp_array—The name of an array of up to 1197 integers that will contain the
time stamp in seconds for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) See heading 19.3.3 for time-stamp conversion from
internal LCN format to external format.

begin_date_time—The name of a 14-character string (prototyped as cm50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM (where ∆ indicates a blank character)
specifying the date and time for the most recent record to be fetched from the
History Module.

CM50S User Manual 18-46 7/93

18.5.4

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

end_date_time—The name of a 14-character string (prototyped as cm50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM, specifying the date and time for the oldest
record to be fetched from the History Module. The end_date_time must be
earlier than begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

cg_port_num—The name of a short integer (prototyped as cm50_uword) identifying the CG
(1-4) to be accessed.

18.5.4 Get History Averages (Relative Times)

These calls return the average, minimum and maximum values for specified time periods.

18.5.4.1 Example "C" call for Get History Averages (Relative Times)

return_status = cm50_ddthis_aver
(ddt_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 &begin_offset,
 &end_offset,
 &history_type);

for Multi-Point Lists (instead of DDT):

return_status = cm50_mplhis_aver
(&mpl_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 &begin_offset,
 &end_offset,
 &history_type,
 &cg_port_num);

CM50S User Manual 18-47 7/93

18.5.4

for a single data point.parameter:

return_status = cm50_pthis_aver
(id_block,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 &begin_offset,
 &end_offset,
 &history_type,
 &cg_port_num);

18.5.4.2 Parameter Definitions for Get History Averages (Relative Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (cm50_his_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (prototyped as cm50_ddt_name_type) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of an Multi-Point List structure defining the data to be retrieved.
This should be declared as type cm50_idb_rec.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

number_of_values—The name of a short integer (prototyped as cm50_uword) that specifies
the maximum number of history items (1..262) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin_offset and end_offset, the
number of samples gathered are truncated at this value. If the
number_of_values is greater than the number of samples returned by the
History Module, then the returned arrays are padded with status_table
entries of 99 to match the requested number_of_values. For multi-point
retrievals, values for some of the points are lost if the number_of_values
times the number of points is greater than 598.

real_values_array—The name of an array of up to 598 real numbers (float) where the
history data is to be stored. (The array must be dimensioned for at least
number_of_values times the number of points listed in the DDT).

CM50S User Manual 18-48 7/93

18.5.4

status_table—The name of an array of up to 598 short integers (prototyped as cm50$int2)
to contain the value status for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) If the return_status is CM50_HIS_PART (complete
with errors) then for any point that could not be accessed, the first status_table
entry will be the Data Access error code (Appendix A.1) for that point.
Otherwise, each status_table entry is one of the following value status codes for
the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)

For Floating point values that cannot be represented on the VAX:
cm50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
cm50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
cm50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
cm50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
cm50_NaN (16388) = Bad Value returned as a legitimate (custom data segment)

value.

lcn_time_stamp_array—The name of an array of up to 598 integers that will contain the time
stamp in seconds for each returned average. (The array must be dimensioned
for at least number_of_values times the number of points specified in the
DDT.) See heading 19.3.3 for time-stamp conversion from internal LCN
format to external format.

max_array—The name of an array of up to 598 real numbers (float) that will contain the
maximum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Due to the data compression algorithm on the History
module, there can be a rounding error of no more than 1% in the reported
maximum value for a point.

CM50S User Manual 18-49 7/93

18.5.5

min_array—The name of an array of up to 598 real numbers (float) that will contain the
minimum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Due to the data compression algorithm on the History
module, there can be a rounding error of no more than 1% in the reported
minimum value for a point.

num_samples_array—The name of an array of up to 598 unsigned short integers
(prototyped as cm50_uword) that will contain the number of samples used in
calculating each returned average value. (The array must be dimensioned for at
least number_of_values times the number of points specified in the DDT.)

begin_offset—The name of a short integer (prototyped as cm50$int2) that indicates a
relative offset from current LCN time that represents the first history record to
be fetched.

end_offset—The name of a short integer (prototyped as cm50$int2) that indicates a relative
offset from the current LCN time representing the last history record to be
fetched.

history_type—The name of a short integer (prototyped as cm50_uword) that contains the
number specifying the type of average requested. The available types and
maximum number of records on the History Module for each are:

1 = Hourly (168 records)
2 = Shift (21 records)
3 = Daily (31 records)
4 = Monthly (12 records)
5 = User (configuration dependent)

cg_port_num—The name of a short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

18.5.5 Get History Averages (Absolute Times)

These calls return the average, minimum and maximum values of a point for specified time
periods.

18.5.5.1 Example "C" call for Get History Averages (Absolute Times)

return_status = cm50_ddthis_avert
(ddt_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 &history_type);

CM50S User Manual 18-50 7/93

18.5.5

for Multi-Point Lists (instead of DDT):

return_status = cm50_mplhis_avert
(&mpl,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 &history_type,
 &cg_port_num);

for single point requests:

return_status = cm50_pthis_avert
(id_block,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 &history_type,
 &cg_port_num);

18.5.5.2 Parameter Definitions for Get History Averages (Absolute Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (cm50_his_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (prototyped as cm50_ddt_name_type) that
contains the ASCII name of the DDT to be used.

mpl —The name of an Multi-Point List structure defining the data to be retrieved. This
should be declared type cm50_idb_rec.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

CM50S User Manual 18-51 7/93

18.5.5

number_of_values—The name of a short integer (prototyped as cm50_uword) that specifies
the maximum number of history items (1..261) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin and end times, the number of samples
gathered are truncated at this value. If the number_of_values is greater
than the number of samples returned by the History Module, then the returned
arrays are padded with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some of the
points are lost if the number_of_values times (1 + the number of points) is
greater than 598.

real_values_array—The name of an array of up to 598 real numbers (float) where the
history data is to be stored. (The array must be dimensioned for at least
number_of_values times the number of points listed in the DDT.)

status_table—The name of an array of up to 598 short integers (prototyped as cm50$int2)
to contain the value status for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) If the return_status is CM50_HIS_PART (complete
with errors) then for any point that could not be accessed, the first status_table
entry will be the Data Access error code (Appendix A.1) for that point.
Otherwise, each status_table entry is one of the following value status codes for
the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX
cm50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
cm50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
cm50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
cm50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
cm50_NaN (16388) = Bad Value returned as a legitimate (custom data segment)

value.

CM50S User Manual 18-52 7/93

18.5.5

lcn_time_stamp_array—The name of an array of up to 598 integers to receive the time stamp
in seconds for each returned average. (The array must be dimensioned for at
least number_of_values times the number of points specified in the DDT.)
See heading 19.3.3 for time-stamp conversion from internal LCN format to
external format.

max_array—The name of an array of up to 598 real numbers (float) that will contain the
maximum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Note that due to the data compression algorithm on the
History module, there can be a rounding error of no more than 1% in the
reported maximum value for a point.

min_array—The name of an array of up to 598 real numbers (float) that will contain the
minimum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Note that due to the data compression algorithm on the
History module, there can be a rounding error of no more than 1% in the
reported minimum value for a point.

num_samples_array—The name of an array of up to 598 unsigned short integers
(prototyped as cm50_uword) that will contain the number of samples used in
calculating each returned average value. (The array must be dimensioned for at
least number_of_values times the number of points specified in the DDT.)

begin_date_time—The name of a 14-character string (prototyped as cm50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM (where ∆ indicates a blank character)
specifying the date and time for the most recent record to be fetched from the
History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

end_date_time—The name of a 14-character string (prototyped as cm50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM, specifying the date and time for the oldest
record to be fetched from the History Module. The end_date_time must be
earlier than the begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

history_type—The name of a short integer (prototyped as cm50_uword) that contains the
number specifying the type of average requested. The available types and
maximum time retained on the History Module for each are:

1 = Hourly (7 days)
2 = Shift (7 days)
3 = Daily (31 days)
4 = Monthly (1 year)
5 = User (8 hours to 7 days, depending on configuration)

CM50S User Manual 18-53 7/93

18.5.6

cg_port_num—The name of a short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

18.5.6 Get Monthly Averages (Relative Times)

When a point is historized more often than once per minute, it is possible for the number of
samples taken during a month to exceed the capacity of a 16-bit integer. This call provides
a 32-bit integer count of the number of samples in a monthly average using relative time.

Note: Retrieval of monthly averages using this call is only supported by LCN release 400
and later.

18.5.6.1 Example "C" call for Get Monthly Averages (Relative Times)

return_status = cm50_ddthis_mnth
(ddt_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 &begin_offset,
 &end_offset);

for Multi-Point Lists (instead of DDT):

return_status = cm50_mplhis_mnth
(&mpl_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 &begin_offset,
 &end_offset,
 &cg_port_num);

CM50S User Manual 18-54 7/93

18.5.6

for a single data point.parameter:

return_status = cm50_pthis_mnth
(id_block,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 &begin_offset,
 &end_offset,
 &cg_port_num);

18.5.6.2 Parameter Definitions for Get Monthly Averages (Relative Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (cm50_his_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (prototyped as cm50_ddt_name_type) that
contains the ASCII name of the DDT to be used.

mpl_name—The name of an Multi-Point List structure defining the data to be retrieved.
This should be declared as type cm50_idb_rec.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

number_of_values—The name of a short integer (prototyped as cm50_uword) that specifies
the maximum number of history items (1..262) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin_offset and end_offset, the
number of samples gathered are truncated at this value. If the
number_of_values is greater than the number of samples returned by the
History Module, then the returned arrays are padded with status_table
entries of 99 to match the requested number_of_values. For multi-point
retrievals, values for some of the points are lost if the number_of_values
times the number of points is greater than 598.

real_values_array—The name of an array of up to 598 real numbers (float) where the
history data is to be stored. (The array must be dimensioned for at least
number_of_values times the number of points listed in the DDT).

CM50S User Manual 18-55 7/93

18.5.6

status_table—The name of an array of up to 598 short integers (prototyped as cm50$int2)
to contain the value status for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) If the return_status is CM50_HIS_PART (complete
with errors) then for any point that could not be accessed, the first status_table
entry will be the Data Access error code (Appendix A.1) for that point.
Otherwise, each status_table entry is one of the following value status codes for
the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)

For Floating point values that cannot be represented on the VAX:
cm50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
cm50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
cm50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
cm50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
cm50_NaN (16388) = Bad Value returned as a legitimate (custom data segment)

value.

lcn_time_stamp_array—The name of an array of up to 598 integers that will contain the time
stamp in seconds for each returned average. (The array must be dimensioned
for at least number_of_values times the number of points specified in the
DDT.) See heading 19.3.3 for time-stamp conversion from internal LCN
format to external format.

max_array—The name of an array of up to 598 real numbers (float) that will contain the
maximum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Due to the data compression algorithm on the History
module, there can be a rounding error of no more than 1% in the reported
maximum value for a point.

CM50S User Manual 18-56 7/93

18.5.6

min_array—The name of an array of up to 598 real numbers (float) that will contain the
minimum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Due to the data compression algorithm on the History
Module, there can be a rounding error of no more than 1% in the reported
minimum value for a point.

num_samples_array—The name of an array of up to 598 integers that will contain the
number of samples used in calculating each returned average value. (The array
must be dimensioned for at least number_of_values times the number of
points specified in the DDT.)

begin_offset—The name of a short integer (prototyped as cm50$int2) that indicates a
relative offset from current LCN time that represents the first history record to
be fetched.

end_offset—The name of a short integer (prototyped as cm50$int2) that indicates a relative
offset from the current LCN time representing the last history record to be
fetched.

cg_port_num—The name of a short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

18.5.7 Get Monthly Averages (Absolute Times)

When a point is historized more often than once per minute, it is possible for the number of
samples taken during a month to exceed the capacity of a 16-bit integer. This call provides
a 32-bit integer count of the number of samples in a monthly average using absolute time.

Note: Retrieval of monthly averages using this call is only supported by LCN release 400.

18.5.7.1 Example "C" call for Get Monthly Averages (Absolute Times)

return_status = cm50_ddthis_mntht
(ddt_name,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time);

CM50S User Manual 18-57 7/93

18.5.7

for Multi-Point Lists (instead of DDT):

return_status = cm50_mplhis_mntht
(&mpl,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 &cg_port_num);

for single point requests:

return_status = cm50_pthis_mntht
(id_block,
 &number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 begin_date_time,
 end_date_time,
 &cg_port_num);

18.5.7.2 Parameter Definitions for Get Monthly Averages (Absolute Times)

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (cm50_his_part), which indicates that the
status_table status code for each returned value must be checked.

ddt_name—The name of a 9-character string (prototyped as cm50_ddt_name_type) that
contains the ASCII name of the DDT to be used.

mpl —The name of an Multi-Point List structure defining the data to be retrieved. This
should be declared type cm50_idb_rec.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

CM50S User Manual 18-58 7/93

18.5.7

number_of_values—The name of a short integer (prototyped as cm50_uword) that specifies
the maximum number of history items (1..261) to be returned for each
point.parameter included in the DDT. If this value is smaller than the actual
number of samples found between begin and end times, the number of samples
gathered are truncated at this value. If the number_of_values is greater
than the number of samples returned by the History Module, then the returned
arrays are padded with status_table entries of 99 to match the requested
number_of_values. For multi-point retrievals, values for some of the
points are lost if the number_of_values times (1 + the number of points) is
greater than 598.

real_values_array—The name of an array of up to 598 real numbers (float) where the
history data is to be stored. (The array must be dimensioned for at least
number_of_values times the number of points listed in the DDT.)

status_table—The name of an array of up to 598 short integers (prototyped as cm50$int2)
to contain the value status for each returned snapshot. (The array must be
dimensioned for at least number_of_values times the number of points
specified in the DDT.) If the return_status is CM50_HIS_PART (complete
with errors) then for any point that could not be accessed, the first status_table
entry will be the Data Access error code (Appendix A.1) for that point.
Otherwise, each status_table entry is one of the following value status codes for
the corresponding real_values_array entry:

0 = Normal Data: 90% or more good samples
1 = Nonstandard: less than 90% good samples
2 = Digital Value: not applicable (If an average is requested for a parameter

of type digital, the value type returned is 12.)
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but

there are 90% or more good samples
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file;

value field contains NaN
13 = Time Change nonstandard: the average calculation was performed

according to the new time, and samples already collected are rolled into
the new average; there are fewer than 90% good samples.

99 = No value (used when fewer than number_of_values are returned)
For Floating point values that cannot be represented on the VAX
cm50_Negative_Overflow (16384) = Extremely low value has been clamped to

1.70e-38
cm50_Positive_Overflow (16385) = Extremely high value has been clamped to

1.70e+38
cm50_Negative_Infinity (16386) = IEEE negative infinity value has been

clamped to 1.70e-38
cm50_Positive_Infinity (16387) = IEEE positive infinity value has been

clamped to 1.70e+38
cm50_NaN (16388) = Bad Value returned as a legitimate (custom data segment)

value.

CM50S User Manual 18-59 7/93

18.5.7

lcn_time_stamp_array—The name of an array of up to 598 integers to receive the time stamp
in seconds for each returned average. (The array must be dimensioned for at
least number_of_values times the number of points specified in the DDT.)
See heading 19.3.3 for time-stamp conversion from internal LCN format to
external format.

max_array—The name of an array of up to 598 real numbers (float) that will contain the
maximum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Note that due to the data compression algorithm on the
History module, there can be a rounding error of no more than 1% in the
reported maximum value for a point.

min_array—The name of an array of up to 598 real numbers (float) that will contain the
minimum process value recorded in the averaged period. (The array must be
dimensioned for at least number_of_values times the number of points
listed in the DDT.) Note that due to the data compression algorithm on the
History Module, there can be a rounding error of no more than 1% in the
reported minimum value for a point.

num_samples_array—The name of an array of up to 598 integers that will contain the
number of samples used in calculating each returned average value. (The array
must be dimensioned for at least number_of_values times the number of
points specified in the DDT.)

begin_date_time—The name of a 14-character string (prototyped as cm50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM (where ∆ indicates a blank character)
specifying the date and time for the most recent record to be fetched from the
History Module.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
begin_date_time for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

end_date_time—The name of a 14-character string (prototyped as cm50_lcn_asctim_type)
in the format MM/DD/YY∆HH:MM, specifying the date and time for the oldest
record to be fetched from the History Module. The end_date_time must be
earlier than the begin_date_time.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, end_date_time should be set any time between
10:01 and 10:59.

cg_port_num—The name of a short integer (prototyped as cm50$int2) identifying the CG
(1-4) to be accessed.

CM50S User Manual 18-60 7/93

18.5.8

18.5.8 Historization Sampling Rate Queries

These functions query the LCN and return the current Historization Sampling Rate (number
of snapshots recorded each minute) for a point or set of points.

Note: Retrieval of sampling rates using this call is only supported by LCN release 400 or
later.

18.5.8.1 Example "C" calls for Query Sampling Rate

For Points referenced in a History DDT:

return_status = cm50_ddthis_rate
(ddt_name,
 history_rate_array,
 status_table);

For a List of Internal Point ids:

return_status = cm50_mplhis_rate
(mpl_name,
 history_rate_array,
 status_table,
 &cg_port_number);

For a Point addressed by its internal id:

return_status = cm50_pthis_rate
(id_block,
 &history_rate,
 &cg_port_number);

For a Point addressed by its internal id:

return_status = cm50_taghis_rate
(tagname,
 &history_rate,
 &cg_port_number);

18.5.8.2 Parameter Definitions for History Sampling Rate Queries

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000651 (cm50_his_part), which indicates that the
status_table status code for each returned value must be checked.

CM50S User Manual 18-61 7/93

18.5.8

ddt_name—The name of a 9-character string (prototyped as cm50_ddt_name_type) that
contains the ASCII name of the DDT to be used.

mpl —The name of an Multi-Point List structure defining the data to be retrieved. This
should be declared type cm50_idb_rec.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) containing the
internal ID for an LCN tag. This value will have been obtained through a
previous Convert External to Internal ID call. Note: Array elements must be
specified individually; this argument cannot be used to obtain history for an
entire array.

tagname—The name of a 40-character string (prototyped as cm50_tagname_type) that
contains an LCN tagname in the form "point.parameter(index)", where the
"(index)" is used only to identify elements of an array.

history_rate —The name of a short integer (prototyped as cm50$int2) identifying the number
of snapshots collected each minute. Acceptable values are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

history_rate_array —The name of an array of short integers (prototyped as cm50$hist_array)
identifying the number of snapshots collected each minute. Acceptable values
are:

 1 for 1-minute snapshots
 3 for 20-second snapshots
 6 for 10-second snapshots
12 for 5-second snapshots.

status_table—The name of an array of short integers (declared as cm50$hist_array) to
contain the data access code for each point (See appendix A.1).

CM50S User Manual 18-62 7/93

18.6

18.6 TEXT MESSAGE TRANSFERS

The two interface routines in this group are used to send and receive character-string
messages over the LCN.

18.6.1 Get Message Interface

This routine is used to fetch a character-string message held in a buffer by this program's
ACIDP. The message presence is determined as the result of a Get ACP Status request.

18.6.1.1 Example "C" Call for Get Message

return_status = cm50_getmsg
(msg,
 &msg_len);

18.6.1.2 Parameter Definitions for Get Message

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. There are three
non-normal return_status values for this call that indicate the need for additional
processing:

 215000521 CM50_MSG_TRUNC Received message was truncated
 215000561 CM50_MSG_QUE Message was received and another one is queued
 215000571 CM50_MSG_QUET Received message was truncated & another one is queued

msg—The name of a fixed-length 120-character array (prototyped as cm50$msg_string)
where the message is to be stored.

msg_len—The name of a short integer (prototyped as cm50_uword) that specifies the
maximum number of characters to accept (1 to 120).

CM50S User Manual 18-63 7/93

18.6.2

18.6.2 Send Message Interface

This routine is used to send a message to all operator stations assigned to the same unit as
this program's ACIDP. A request to wait for operator confirmation is optional. If operator
confirmation is requested, execution of the requesting program is suspended until either the
confirmation occurs, or until its specified wait time expires. The requesting program
receives an indication of whether confirmation or a time out occurs.

18.6.2.1 Example "C" Call for Send Message

return_status = cm50_storemsg
(msg,
 &msg_len,
 &confirm,
 &timeout,
 &dest);

18.6.2.2 Parameter Definitions for Send Message

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

msg—The name of an array of up to 120 characters (not terminated by a null character) that
contains the message to be sent.

msg_len—The name of a short integer (prototyped as cm50_uword) that specifies the
number of characters to be transmitted. The maximum number of characters
depends on message destination: 60 for CRT displays and 72 for printing.
Over-length messages are truncated. All messages are archived if the HM is so
configured.

confirm—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 = TRUE
and 0 = FALSE) that specifies whether or not a message confirmation is
required. Note that this parameter is treated as FALSE if the message
destination is printer only.

timeout—The name of a short integer (prototyped as cm50_uword) that specifies the
number of seconds (0 to 3600) the system is to wait for confirmation before
returning control to the requesting program with a "no confirm" return_status.
(Allow for a built-in time lag of up-to-10 seconds.) The Wait Time parameter is
ignored if the Confirm parameter is set to OFF or the message destination is
printer only.

dest—The name of a short integer (prototyped as cm50$int2) that specifies where the
message is to be sent, as follows:

0 – CRT only
1 – Printer only
2 – Both

CM50S User Manual 18-64 7/93

18.6.2

18.6.2.3 Event-Initiated Reports

Two types of Event-Initiated Reports can be invoked by specially formatted messages from
an ACP or an Indirect Control Program to the Area Universal Stations:

• Logs, reports journals, and trends configured in the Area Database

• Event History reports

Details of message requirements are given in Section 30 of the Engineer's Reference
Manual located in the Implementation/Startup & Reconfiguration - 2 binder.

CM50S User Manual 19-1 7/93

19

PROGRAM CONTROL AND SUPPORT (“C”)
Section 19

This section discusses program interfaces that control the execution of ACPs and convert values
between formats used in the VAX and on the TDC 3000 Local Control Network.

19.1 ACP EXECUTION SUPPORT

These interface routines affect the orderly execution and termination of application
programs.

19.1.1 ACP Initialization Interface

This routine (or the vintage ACPTRP procedure) must be the first executable statement in
each ACP but is optional for DAPs and Indirect Control Programs. It establishes a
termination handler and ensures proper ACP table setup. Failure to invoke this interface
routine as the first statement of an ACP may not appear to cause immediate problems, but
will result in improper termination handling. The termination status is not reported to the
CG, and the ACP appears to both the CM50S and the CG to still be in the RUN state even
though the process has terminated.

The call to CM50_SET_ACP also establishes a system lock that allows the program to be
terminated cleanly if CM50S is shut down. Therefore, it is advisable to include this call in
every program that is mapped to the CM50S shareable image.

19.1.1.1 Example "C" Call for ACP Initialization

 return_status = cm50_set_acp
(&reset);

19.1.1.2 Parameter Definitions for ACP Initialization

return_status—The name of an integer to receive the overall return status of the function.
This function always returns as a success (return_status = 1).

reset—The name of an INTEGER*2 that specifies the reaction of the trap handler to an
abort. If the ACP is aborted for any reason, the Abort code is recorded in the
CG/PLNM database and the ACP Status table. If the value of reset is 1, then
the execution status of the ACP is reset to OFF/DELAY regardless of how the
program terminated. For any other value of reset, the execution status of the
ACP becomes OFF/DELAY only after normal termination and is set to ABORT
after an abnormal program termination.

CM50S User Manual 19-2 7/93

19.1.2

19.1.2 Get ACP Status Interface

This routine fetches a set of parameters that enables the requesting ACP to determine why
the system has turned it on and what special processing may be required at this time. It
should be used during both the "setup" and "cleanup" program stages each time an ACP
runs. After servicing this request, the interface routine resets its copy of these values in
preparation for any subsequent ACP turn on.

NOTE

GETSTS is one of the few CM50S user-interface routines that is not implemented as a
function. It is called as a "C" procedure.

19.1.2.1 Example "C" Call for Get ACP Status

getsts (&take_i_p,
&ps_msg,

 &demand,
 &procspec,
 &scheduled,
 &upper_level);

19.1.2.2 Parameter Definitions for Get ACP Status

take_i_p—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 = TRUE
and 0 = FALSE) that returns TRUE the first time this program is turned on by
the CG, following an initialization event (see heading 4.4.1). take_i_p
should be ignored when upper_level is TRUE.

ps_msg—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 = TRUE
and 0 = FALSE) that returns TRUE if a message for the program is waiting at
the CG.

demand—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 = TRUE
and 0 = FALSE) that returns TRUE if the program was turned on as the result
of a process operator request.

procspec—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 =
TRUE and 0 = FALSE) that returns TRUE if the program was turned on as the
result of a process special to its ACIDP from an HG, AM, or another ACP.

scheduled—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 =
TRUE and 0 = FALSE) that returns TRUE if the program was turned on by
periodic or cyclic scheduling.

upper_level—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 =
TRUE and 0 = FALSE) that returns TRUE if the program was turned on by
the VAX.

CM50S User Manual 19-3 7/93

19.1.3

19.1.3 ACP Delay Interface

This routine suspends execution of the calling program for a specified number of seconds.
Program execution resumes at the statement following the delay call.

19.1.3.1 Example "C" Call for ACP Delay

sleep = cm50_acpdelay
(&delay_time);

19.1.3.2 Parameter Definitions for ACP Delay

sleep—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 = TRUE
and 0 = FALSE) that contains the overall return status of the function call. The
value will be FALSE when the call has been rejected because of an invalid
delay time value.

delay_time—The name of a short integer (prototyped as cm50_uword) that contains the
length of time (1 to 60 seconds) that the requesting program is to be suspended.

19.1.4 ACP Hibernate Interface

This routine suspends execution of the calling ACP (through a VMS SYS$HIBER request)
until the next turn on request. The program and associated data remain in memory during
hibernation, in effect making it memory-resident. Program execution resumes at the
statement following the CM50_HIBER call.

19.1.4.1 Example "C" Call for ACP Hibernate

hiber_stat = cm50_hiber ();

Note that the empty argument list "()" is required when calling the function from "C".

19.1.4.2 Parameter Definitions for ACP Hibernate

hiber_stat—The name of an integer to receive the overall return status of the function call.
This value should always = 1 (SS$_NORMAL). Any other value indicates a
fatal error. The program should call the GETSTS routine (see heading 19.1.2)
to determine how the Wake call was issued.

CM50S User Manual 19-4 7/93

19.1.5

19.1.5 ACP Termination Interface

This routine terminates the execution of the calling ACP. It must be used as the last
operating statement of each ACP but is optional for DAPs and Indirect Control Programs.

For ACPs, this call stores a termination-status code in the associated ACIDP's
ABORTCOD parameter. The termination code can be viewed at a Universal Station (see
the definitions for ABORTCOD and EXECSTAT at heading 4.4.1), but in a revised form.
The integer value assigned here is translated into two hexadecimal digits (00 to FF) and
appended to the character string EA. Thus, an ACP-assigned abnormal termination code
of 15 appears at the Universal Station display as EA0F.

If an ACP is aborted by the VMS operating system, an abort code of VMSF is stored in its
ACIDP's ABORTCOD.

The execution state of an ACIDP can be changed from ABORT to normal by operator
demand through a Universal Station or by invoking the ACP Operation screen’s
Deactivate/Terminate function. See heading 5.8 for abort recovery details.

NOTE

PRGTRM is one of the few user-interface routines that is not implemented as a function. It is
called as a "C" procedure.

19.1.5.1 Example "C" Call for ACP Termination

PRGTRM (&terminate_code);

19.1.5.2 Parameter Definitions for ACP Termination

terminate_code—The name of an integer that must contain zero or a positive value (1 to
255). Zero value indicates normal termination. Nonzero values are user-
specified codes for nonnormal termination (abort). Note that if you provide a
value outside the valid range, ABORTCOD will contain EA∆∆ (where.∆
represents a blank).

CM50S User Manual 19-5 7/93

19.2

19.2 ENTITY NAME CONVERSIONS

The interface routines in this group convert ASCII references to tags on the LCN to their
internal LCN identifiers.

NOTE

The all internal point.parameter addresses need to be rebuilt and the program(s) using them
need to be recompiled whenever the LCN database is changed in a significant manner, such
as by the rebuild or deletion of data points referenced in the address array.

19.2.1 Convert External to Internal ID

These routines fetch the internal ID of a point.parameter for the calling program. Use of
the internal ID by repetitive single-value data gets and stores reduces system overhead and
provides faster return of data. The specification of which point.parameter internal ID is
wanted and where it is to be stored is contained in the call.

19.2.1.1 Example "C" Calls for Convert ID

Using point and parameter names as separate variables:

 return_status = cm50_conv_pt
(entity,
 param,
 ¶m_ix,
 id_block,
 &val_typ,
 &cg_port_num);

When the external id is expressed as a Tag name (not separate point and parameter), use:

 return_status = cm50_conv_tag
(tag_name,
 id_block,
 &val_typ,
 &cg_port_num);

19.2.1.2 Parameter Definitions for Convert ID

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
the following return codes:

215000146 (cm50_lcn_array)—the array size specified by param_ix is
smaller the actual array size.

CM50S User Manual 19-6 7/93

19.2.1

215000322 (cm50_acc_size)—the array size specified by param_ix is larger
than the actual array size.

tag_name—The name of a 40-character string (prototyped as cm50_tag_name_type) that
identifies the LCN value(s) to be stored. The tag name is formatted as
"point.param (param_ix)".

entity—The name of a 20-character string (prototyped as cm50_entity_name_type) that
contains the ASCII Point ID. It should contain a point name of up to 16
characters, optionally preceded by a 1- or 2-character pinid and a backslash (\)
delimiter for Network Gateway routing.

param—The name of an 8-character string (protoyped as cm50_ascii_param_arr) that
contains the LCN parameter name.

param_ix—The name of a short integer (prototyped as cm50$int2). Use of this value is
controlled by val_typ.

When val_typ is 1, 2, 3, 4, 5, 13, 15, 17 or 19, a single value is to be
accessed—This may be an element of a parameter array (except for ASCII
values). If the parameter to be accessed is an array type, the value of
param_ix is used as an index and must be greater than zero. If the parameter
being accessed is not an array type, param_ix must be zero.

When val_typ is 7, 8, 9, 10, 14, 16, 18 or 20, a whole array (or a subset of
the array starting with the first element) is to be accessed and param_ix is
used to specify the number of elements to be accessed. If param_ix is
smaller than the actual array size, the conversion is made; if it is larger than the
actual array size, the conversion is not made. Both conditions cause non-
normal return_status values to be returned.

id_block—The name of a 16-byte variable (prototyped as cm50_idblk) where the internal ID
data block is to be returned. Save these eight values for later use in calls on this
point.parameter. The ID data block contents are as follows:

Word 1— Data type
Words 2..5— Internal point identifier
Word 6— Parameter subscript
Word 7— Parameter qualifier (array size)
Word 8— Enumeration set identifier

CM50S User Manual 19-7 7/93

19.2.1

val_typ—The name of a short integer (prototyped as cm50_uword) that contains a number
that designates value type. If the incorrect value is supplied on input, this value
will be updated as an output variable. The coded values:

 1 = Real (or single element of real array)
 2 = Integer (or single element of integer array)
 3 = ASCII
 4 = Enumeration (or single element of enumeration array)
 5 = Ordinal value of enumeration (or single element of ordinal array)
 6 = not used
 7 = Real array
 8 = Integer array
 9 = Enumeration array

 10 = Ordinal value of enumeration array
13 = Internal entity id
14 = Internal entity id array
15 = External entity id
16 = External entity id array
17 = Time value
18 = Time value array
19 = String value
20 = String value array

cg_port_num—The name of a short integer (prototyped as cm50_uword) identifying the
CG (1-4) to be accessed.

CM50S User Manual 19-8 7/93

19.2.2

19.2.2 Convert List of External IDs

These routines fetch an array of internal IDs for a list of point.parameters. These calls are
designed for use with the Point Array calls described in section 9.4. All of the
point.parameters in each list must be of the same data type (Real, ASCII, etc.).

19.2.2.1 Example "C" Call for Convert Lists

When the point & parameter names are maintained separately, use:

 return_status = cm50_conv_pt_list
(entity_arr,
 param_arr,
 param_ix_arr,
 &number_of_values,
 &val_typ,
 &cg_port_num
 id_block_arr,
 return_arr);

When the external id is expressed as a Tag name (not separate point and parameter), use:

 return_status = cm50_conv_tag_list
(tagname_arr,
 &number_of_values,
 &val_typ,
 &cg_port_num
 id_block_arr,
 return_arr);

19.2.2.2 Parameter Definitions for Convert Lists

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values. Note especially
return code 215000051 (CM50_lcn_part), which indicates that the
return_arr array entry for each returned id block must be checked for
errors.

return_arr—The name of an array of up to 300 longwords to receive the status of the
conversion of each point or tag. See Appendix A.2 for an explanation and a
listing of all assigned return code values.

CM50S User Manual 19-9 7/93

19.2.2

tagname_arr—The name of an array of up to 300 40-character strings (prototyped as
cm50_tag_list_type). Each string contains the ASCII tagname of an LCN
entity for which the internal ID is to be obtained. The tagames are formatted as
Point.Parameter or Point.Parameter(ix), where (ix) is an array
element index used only with array parameters.

entity_arr—The name of an array of up to 300 20-character strings (prototyped as
cm50_entity_list_type), each containing an ASCII Point id. It should contain a
point name of up-to-16 characters, optionally preceded by a 1- or 2-character
pinid and a backslash (\) delimiter for Network Gateway routing.

param_arr—The name of an array of up to 300 8-character strings (prototyped as
cm50_param_names_type), each containing the ASCII parameter name of a
point.parameter for which the internal ID is to be obtained.

param_ix_arr—The name of an array of up to 300 short integers (prototyped as
cm50_intg_array_type) used as array element index values corresponding to the
individual parameter names in param_arr. For each non-array parameter named
in that array, the corresponding value in this array should be zero.

cg_port_num—The name of a short integer (prototyped as cm50_uword) identifying the
CG (1-4) to be accessed.

id_block_arr—The name of an array of up to 300 16-byte variables (prototyped as
cm50_idblk) where the internal ID data blocks are to be returned. The ID data
block contents are as follows:

Word 1— Data type
Words 2..5— Internal point identifier
Word 6— Parameter subscript
Word 7— Parameter qualifier (array size)
Word 8— Enumeration set identifier

number_of_values—The name of a short integer (prototyped as cm50_uword) that contains
the number of points/tags in the list to be converted.

val_typ—The name of a short integer (prototyped as cm50_uword) that contains a number
that designates LCN value type. This value must be supplied in the calling
argument. The acceptable values are:

 1 = Real (or single element of real array)
 2 = Integer (or single element of integer array)
 3 = ASCII
 4 = Enumeration (or single element of enumeration array)
 5 = Ordinal value of enumeration (or single element of ordinal array)
13 = Internal entity id
15 = External entity id
17 = Internal Time
19 = String

CM50S User Manual 19-10 7/93

19.3

19.3 VALUE CONVERSIONS

The interface routines in this group convert values between different formats used in the
LCN and the host computer.

19.3.1 Valid Number Check

This routine checks a value of type "Real" to determine if it is a valid single-precision,
floating-point number. Its primary purpose is to check for the "Bad Value" indicator, NaN
(-0).

19.3.1.1 Example "C" Call for Valid Number Check

 value_st = cm50_validn (&value);

19.3.1.2 Parameter Definitions for Valid Number Check

value_st—The name of a Boolean short integer (prototyped as cm50$bool2 with 1 = TRUE
and 0 = FALSE) that returns TRUE if "Value" is found to be a valid floating-
point number. It returns FALSE for minus zero (NaN) or other invalid bit
configurations.

value—The name of a Real variable (float type) that contains the variable that is to be
checked. When value_st returns FALSE, the contents of value have been
changed to 0.0.

19.3.2 Set Bad Value

This routine stores the bad value constant, NaN (-0), into the specified Real variable.

19.3.2.1 Example "C" Call for Set Bad Value

return_status = cm50_setbad (&var_name);
or

cm50_setbad (&var_name);

19.3.2.2 Parameter Definitions for Set Bad Value

return_status—The name of an integer to receive the overall return status of the function
call. For this function, return_status = 1 always.

var_name—The name of a Real variable (float type) where the bad value constant for the
LCN is to be stored. Note that attempting to perform arithmetic operations or
numeric conversions using a variable that has been set to Bad Value can cause a
fatal error within the program.

CM50S User Manual 19-11 7/93

19.3.3

19.3.3 Convert Time Values

Within the CM50 environment, Date/time variables are often maintained in a variety of
formats. The following routines convert time values from any one of the following
formats to any other:

abbrev. format use
 LCN 4-byte integer internal LCN clock, number of

seconds since January 1, 1979
 VAXB 8-bytes VAX binary system clock format

(array of two 4-byte integers)
 VAXA 22 characters VAX standard ASCII time display:

'dd-MON-yyyy hh:mm:ss'
 ASC 18 characters LCN standard ASCII time display

'mm/dd/yy hh:mm:ss'
 EURO 18 characters European ASCII time display

'dd/mm/yy hh:mm:ss'
 ARY 12 bytes array of short int

(equivalenced to with element:
six short integers) 1 = year

2 = month
3 = day
4 = hour
5 = minute
6 = second

In each routine, the first argument must be assigned the input value and the second
argument is the returned converted value.

19.3.3.1 Example "C" Calls to Convert Time

Convert internal LCN time to an array of short integers (prototyped as cm50_uword):
 return_status = cm50_timlcn_ary

(&lcn,
 ary);

Convert internal LCN time to an ASCII string:
 return_status = cm50_timlcn_asc

(&lcn,
 asc);

Convert internal LCN time to a European string:
 return_status = cm50_timlcn_euro

(&lcn,
 euro);

Convert internal LCN time to VAX display format:
 return_status = cm50_timlcn_vaxa

(&lcn,
 vaxa);

Convert internal LCN time to VAX binary:
 return_status = cm50_timlcn_vaxb

(&lcn,
 &vaxb);

CM50S User Manual 19-12 7/93

19.3.3

Convert a short integer array to internal LCN:
 return_status = cm50_timary_lcn

(ary,
 &lcn);

Convert a short integer array to an ASCII string:
 return_status = cm50_timary_asc

(ary,
 asc);

Convert a short integer array to a European string:
 return_status = cm50_timary_euro

(ary,
 euro);

Convert a short integer array to VAX display format:
 return_status = cm50_timary_vaxa

(ary,
 vaxa);

Convert a short integer array to VAX binary:
 return_status = cm50_timary_vaxb

(ary,
 &vaxb);

Convert an ASCII string to internal LCN:
 return_status = cm50_timasc_lcn

(asc,
 &lcn);

Convert an ASCII string to a short integer array:
 return_status = cm50_timasc_ary

(asc,
 ary);

Convert an ASCII string to a European string:
 return_status = cm50_timasc_euro

(asc,
 euro);

Convert an ASCII string to VAX display format:
 return_status = cm50_timasc_vaxa

(asc,
 vaxa);

Convert an ASCII string to VAX binary:
 return_status = cm50_timasc_vaxb

(asc,
 &vaxb);

CM50S User Manual 19-13 7/93

19.3.3

Convert a European string to internal LCN:
 return_status = cm50_timeuro_lcn

(euro,
 &lcn);

Convert a European string to a short integer array:
 return_status = cm50_timeuro_ary

(euro,
 ary);

Convert a European string to an ASCII string:
 return_status = cm50_timeuro_asc

(euro,
 asc);

Convert a European string to VAX display format:
 return_status = cm50_timeuro_vaxa

(euro,
 vaxa);

Convert a European string to VAX binary:
 return_status = cm50_timeuro_vaxb

(euro,
 &vaxb);

Convert VAX display format to internal LCN:
 return_status = cm50_timvaxa_lcn

(vaxa,
 &lcn);

Convert VAX display format to a short integer array:
 return_status = cm50_timvaxa_ary

(vaxa,
 ary);

Convert VAX display format to an ASCII string:
 return_status = cm50_timvaxa_asc

(vaxa,
 asc);

Convert VAX display format to a European string:
 return_status = cm50_timvaxa_euro

(vaxa,
 euro);

Convert VAX display format to VAX binary:
 return_status = cm50_timvaxa_vaxb

(vaxa,
 &vaxb);

CM50S User Manual 19-14 7/93

19.3.3

Convert VAX binary to internal LCN:
 return_status = cm50_timvaxb_lcn

(&vaxb,
 &lcn);

Convert VAX binary to a short integer array:
 return_status = cm50_timvaxb_ary

(&vaxb,
 ary);

Convert VAX binary to an ASCII string:
 return_status = cm50_timvaxb_asc

(&vaxb,
 asc);

Convert VAX binary to a European string:
 return_status = cm50_timvaxb_euro

(&vaxb,
 euro);

Convert VAX binary to VAX display format:
 return_status = cm50_timvaxb_vaxa

(&vaxb,
 vaxa);

19.3.3.2 Parameter Definitions for Convert Time Values

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

lcn—The name of an integer that contains a value representing internal LCN time to the
nearest second.

ary—The name of an array of 6 short integers (prototyped as cm50_integer_time_type) that
contains a value representing a date and time.

asc—The name of a fixed-length 18-character array (prototyped as cm50$time_arr)
representing time in the format : 'mm/dd/yy hh:mm:ss '.

euro—The name of a fixed-length 18-character array (prototyped as cm50$time_arr)
representing time in the format : 'dd/mm/yy hh:mm:ss '.

vaxa—a fixed-length 22-character array (prototyped as cm50_lcn_ascii_time_type)
representing time in the format: 'dd-MON-yyyy hh:mm:ss', where MON
represents the first three letters (in upper case) of the English name of the
month.

vaxb—The name of a 64-bit variable (prototyped as cm50_vms_binary_time_type) that
contains a value representing internal VAX binary time.

CM50S User Manual 20-1 7/93

20

CM50S ADMINISTRATION (“C”)
Section 20

This section discusses the programmatic calls that can be used to manage the ACPs and DDTs
installed in a CM50S system.

20.1 PROGRAMMATIC INTERFACES TO ACP OPERATIONS

A programmatic interface to all ACP Operations gives users programmatic access to the
same ACP functions that are available through the ACP Operations user interface. In order
to use the ACP Programmatic Interface, the user should include the ACP Include files
(CM50_FLAGS_INCLUDE.H and CM50_ACP_INCLUDE.H). These files define data
types and routines required by the Programmatic Interface calls. The following sections
discuss the ACP Programmatic Interface calls in detail.

20.1.1 Install ACP

This routine is called to install an ACP. The ACP can be installed under a different name
than the executable filename.

20.1.1.1 Example "C" Call for Install ACP

return_status = cm50_acp_install
(acp_name,
 process_name,
 mailbox_name,
 exe_path,
 &mode,
 input_path,
 output_path,
 error_path,
 &privilege,
 uic,
 &priority,
 &creprc_flags,
 "a_list,
 &flags);

20.1.1.2 Parameter Definitions for Install ACP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the ACP to
be installed. Must be specified.

CM50S User Manual 20-2 7/93

20.1.1

process_name—The name (15-character string, prototyped as proc_name_type) to be
assigned to the created process. If set to spaces, the ACP name will be used.
Note: Each process must have a unique name. The activation of an ACP will
fail if a process with the specified process_name is active on the system.

mailbox_name—The name (40-character string, prototyped as mbx_log_type) of a Mailbox
(normally set to spaces) to receive a termination message when the created
process (ACP) is complete. This is a temporary termination mailbox created by
the Programmatic Interface and ACPOPER utility. For more information, refer
to the VMS System Services Reference Manual. This mailbox parameter is
applicable only when the ACP is executed as a remote (detached) process. An
ACP run interactively ignores the mailbox parameter in the ACP table. The
mailbox is created using VMS defaults.

exe_path—Full pathname (80-character string, prototyped as path_name_type) of the
executable file. If set to spaces, the default is the executable file specified by
the acp_name in the CM50$ACP directory.

mode— Short integer code (prototyped as acp_mode_type) Specifies what mode to install
the ACP in. The values are:

1 = TEST
2 = RESTRICTED
3 = NORMAL

input_path—Full pathname (80-character string, prototyped as path_name_type) of the
alternate input filename.

output_path—Full pathname (80-character string, prototyped as path_name_type) of the
alternate output filename. If left blank, SYS$OUTPUT will be directed to the
NULL device.

error_path—Full pathname (80-character string, prototyped as path_name_type) of the
alternate error filename. If left blank, SYS$ERROR will be directed to the
NULL device.

privilege—Privileges specification. Declared as type: priv_mask_type, it assigns special
VMS privileges to the ACP. Set both components (.L0 and .L1) to zero for a
normal, unprivileged ACP.

uic—The name (12-character string, prototyped as path_name_type) of the user whose
UIC is to be used when the ACP is executed remotely. Only the first 12
characters are signifcant; the remainder should be blank filled.

priority—Unsigned integer specifying the VMS priority (0-30) of the ACP process.

creprc_flags—Unsigned integer (prototyped as creprc_flag_type) VMS Create Process
flags specification. Normally set to zero.

quota_list—Quotas specification. Declare as type : quota_list_type.. The last element of
the array must have a quota_tag = zero. To use the system defaults, pass a
single integer with a value of zero.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-3 7/93

20.1.2

20.1.2 Uninstall ACP

This routine is called to uninstall an ACP.

20.1.2.1 Example "C" Call for Uninstall ACP

return_status = cm50_acp_uninst
(acp_name,
 &flags);

20.1.2.2 Parameter Definitions for Uninstall ACP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the ACP that
is to be uninstalled.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

20.1.3 Activate ACP

This routine is called to activate an installed ACP under a mode specified by the user.

20.1.3.1 Example "C" Call for Activate ACP

return_status = cm50_acp_act
(acp_name,
 &mode,
 &flags);

20.1.3.2 Parameter Definitions for Activate ACP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the ACP to
be activated.

mode—This short integer (prototyped as act_mode_type) specifies whether the ACP is to
be activated as a REMOTE detached process (mode = 0) or as an
INTERACTIVE subprocess (mode = 1).

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-4 7/93

20.1.4

20.1.4 Deactivate ACP

This routine is called to deactivate an installed ACP, placing it in a specified state.

20.1.4.1 Example "C" Call for Deactivate ACP

return_status = cm50_acp_deactivate
(acp_name,
 &state,
 &flags);

20.1.4.2 Parameter Definitions for Deactivate ACP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the running
ACP to be deactivated.

state—This short integer (prototyped as exec_state_type) specifies whether to set the
ACIDP to an ABORT (state = 0) or OFF/DELAY (state = 3).

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-5 7/93

20.1.5

20.1.5 Connect ACP to an ACIDP

This routine is called to connect an installed ACP to an ACIDP on the LCN.

20.1.5.1 Example "C" Call for Connect ACP to an ACIDP

return_status = cm50_acp_connect
(acp_name,
 acidp_name,
 &cg_port_number,
 &flags);

20.1.5.2 Parameter Definitions for Connect ACP to an ACIDP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the ACP to
be connected.

acidp_name—The name (16-character string, prototyped as cm50_long_acidp) of the
ACIDP to connect the to the ACP.

cg_port_number—This short integer specifies which CG (1-4) contains the ACIDP.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-6 7/93

20.1.6

20.1.6 Disconnect ACP from an ACIDP

This routine is called to disconnect an installed ACP from an ACIDP on the LCN.

20.1.6.1 Example "C" Call for Disconnect ACP from an ACIDP

return_status = cm50_acp_discon
(acp_name,
 &flags);

20.1.6.2 Parameter Definitions for Disconnect ACP from an ACIDP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the ACP to
be disconnected.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-7 7/93

20.1.7

20.1.7 Change ACP Mode

This routine is called to change the installation mode of an ACP.

20.1.7.1 Example "C" Call for Change ACP Mode

return_status = cm50_acp_chg_mode
(acp_name,
 mode,
 flags);

20.1.7.2 Parameter Definitions for Change ACP Mode

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the ACP
whose mode is to be changed.

mode—This short integer (prototyped as act_mode_type) specifies the new mode of the
ACP. Permitted values are:

1 = TEST
2 = RESTRICTED
3 = NORMAL

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-8 7/93

20.1.8

20.1.8 Get ACP Summary

This routine is called to get summary information for an installed ACP. The output
optionally can be sent to the printer.

20.1.8.1 Example "C" Call for Get ACP Summary

return_status = cm50_acp_sum
(acp_name,
 &acp_summary,
 &flags);

20.1.8.2 Parameter Definitions for Get ACP Summary

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

acp_name—The name (12-character string, prototyped as acp_name_type) of the ACP for
which summary information is to be returned.

acp_summary—This argument (declared as type: acp_summary_rec) specifies where the
summary information is to be returned.

Note that the acp_summary_rec structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-9 7/93

20.1.9

20.1.9 Get List of ACPs

This routine is called to get a list of installed ACPs. Up to 400 ACPs will be reported in a
single call, if more than 400 ACPs are installed on a system, repeating the call with a
start_rec of 1, 401 and 801 will return additional ACPs until the system maximum of 1000
have been returned.

20.1.9.1 Example "C" Call for Get List of ACPs

RETURN_STATUS = cm50_acp_listall
(&start_rec,
 &end_rec,
 &total_returned,
 &list,
 &flags);

20.1.9.2 Parameter Definitions for Get List of ACPs

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

start_rec—An integer specifying the starting (lowest) record number within the ACP status
table to be reported.

end_rec—An integer specifying the ending (highest) record number within the ACP status
table to be reported.

total_returned—An integer value specifying the number of records actually returned. This
may be less than the number requested if the end of the table was reached.

list—An array of up to 400 acp_summary_rec structures (prototyped as acp_list_rec)
receives the data requested. It must be dimensioned large enough to for the
number of records requested (1 + end_rec - start_rec).

Note that the acp_summary_rec structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-10 7/93

20.2

20.2 PROGRAMMATIC INTERFACE TO DDT OPERATIONS

All CM50S DDT operations except for Edit can be accessed through the Programmatic
Interface. All Programmatic Interface routines are called as functions, and the status of
each call is returned as the value of the function call. The calling program must include the
CM50_FLAGS_INCLUDE file and the cm50_ddt_INCLUDE file. Both files must be
appropriate to the language being used (see heading 2.9.1).

Exception handling is provided by standard VMS condition handling routines or by custom
routines written by the user. The Programmatic calls for all DDT functions are described
in detail in the following paragraphs.

20.2.1 Build/Rebuild DDT

This routine is called to build, or rebuild, a DDT binary file from a DDT source file. Flag
options include CG residence for the DDT and DDT Rebuild.

20.2.1.1 Example "C" Call for Build/Rebuild DDT

return_status = cm50_ddt_build
(ddt_name,
 source_path,
 &cg_port_number,
 description,
 &flags);

20.2.1.2 Parameter Definitions for Build/Rebuild DDT

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—The name (9-character string, prototyped as ddt_name_type) of the DDT to be
used to retrieve data. It may be left blank if the full source path is specified.

source_path—Full pathname (80-character string, prototyped as path_name_type) of the
DDT source file. If set to spaces, the default is the DDT name in the current
directory.

cg_port_number—A short integer which specifies which CG (1-4) the DDT is associated
with.

description—A text description (fixed-length 36-character array prototyped as
ddt_desc_type) of the DDT being built. Note that if the DDT source file
specifies a description, that description will be used and the value of this
argument is ignored.

CM50S User Manual 20-11 7/93

20.2.2

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon
cm50$m_rebuild_ddt
cm50$m_dmp_ddt_errors
cm50$m_no_source_debug
cm50$m_cg_res
cm50$m_write_vt

NOTE

If the DDT (or another DDT by the same name) has already been built, then the
cm50$m_rebuild_ddt flag must be set ON.

For a new DDT, the cm50$m_rebuild_ddt flag must be OFF.

20.2.2 Delete DDT

This routine is called to delete a DDT that already exists in the DDT table. If the DDT is
installed in the CG, it is removed.

20.2.2.1 Example "C" Call for Delete DDT

return_status = cm50_ddt_delete
(ddt_name,
 &flags);

20.2.2.2 Parameter Definitions for Delete DDT

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT to be deleted.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-12 7/93

20.2.3

20.2.3 Get DDT Summary

This routine is called to summarize the specifications of a particular DDT.

20.2.3.1 Example "C" Call for Get DDT Summary

return_status = cm50_ddt_sum
(ddt_name,
 &summary,
 &flags);

20.2.3.2 Parameter Definitions for Get DDT Summary

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT that is to be
summarized.

summary—This argument (declared as type ddt_summary_rec) receives the requested
information. Its contents are:

- Name of the DDT being summarized
- Pathname of the DDT's source file
- Description of the DDT
- Date that the DDT was first built
- Name of the original builder
- Most recent time the DDT was modified
- Installation status of the DDT
- Number of points in the DDT
- DDT Type—Input, Generic Input, Output, Generic Output, or History
- CG number that the DDT is associated with
- Whether or not DDT is installed in CG
- Name of ACIDP DDT is connected to
- Prefetch triggers

Note that the ddt_summary_rec structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-13 7/93

20.2.4

20.2.4 Get List of DDTs

This routine is called to retrieve a list of DDT summaries. Up to 500 DDT summaries may
be returned in a single call. If more DDTs are installed on your system, they may all be
retrieved by repeating this all with start_record set to 1, 501, 1001 and 1501 on successive
calls.

20.2.4.1 Example "C" Call for Get List of DDTs

return_status = cm50_ddt_list
(&start_record,
 &end_record,
 &count,
 &list,
 &flags);

20.2.4.2 Parameter Definitions for Get List of DDTs

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

start_record—This short integer specifies the number of the first DDT to retrieve.

end_record—This short integer specifies the number of the last DDT to retrieve.

count—This short integer receives the actual number of DDT records returned to the caller.

list—This argument will receive an array of DDTs information. Declare as an array of up
to 500 ddt_summary_rec (prototyped as ddt_summary_arr). The information
returned for each record is

- Name of the DDT being summarized
- Pathname of the DDT's source file
- Description of the DDT
- Date that the DDT was first built
- Name of the original builder
- Most recent time the DDT was modified
- Installation status of the DDT
- Number of points in the DDT
- DDT Type—Input, Generic Input, Output, Generic Output, or History
- CG number that the DDT is associated with
- Tells whether DDT is installed in CG
- Name of ACIDP DDT is connected to

Note that the ddt_summary_rec structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-14 7/93

20.2.5

20.2.5 Get DDT Detail

This routine is called to retrieve the detail information for the named DDT.

20.2.5.1 Example "C" Call for Get DDT Detail

return_status = cm50_ddt_detail
(ddt_name,
 &summary,
 &data,
 &points,
 &details,
 &values,
 &flags);

20.2.5.2 Parameter Definitions for Get DDT Detail

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT being
summarized.

summary—A record (declared as type: ddt_summary_rec) containing:

DDT_Name Name of the DDT being summarized
DDT_Sourc_Loc Pathname to the DDT’s source file
DDT_Desc Description of the DDT
Built_On Date that the DDT was first built
Built_By Tells who the original builder was
Modified_On Most recent time the DDT was modified
DDT_Status Installation status of the DDT
Number_of_Pts Number of points in the DDT
DDT_Type Input, Output, or History DDT
CG_Port_Num CG that the DDT is associated with
In_CG Tells whether DDT is installed in CG

Note that the ddt_summary_rec structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

data—A record (declared as type ddt_data_type) containing:

DDT_Types Names data types found in the DDT
TTL_Each_Type Counts for each data type found

CM50S User Manual 20-15 7/93

20.2.5

points—An array of up to 300 points_rec records (one record for each point in the DDT --
prototyped as points_arr) containing:

Point_Name Point name
Param_Name Parameter name (with index)

Note that the points_rec structure can vary for different releases of CM50S, so
programs using this call should be recompiled when CM50S is upgraded.

details—An array of up to 300 detail_rec records (one per point -- prototyped as
detail_rec_arr) containing:

Process_Type Real, Integer, ASCII, Enumeration, or Ordinal
Dest_Src Destination or Source offset value
Test Use test Y/N and test data value
BVS Bad value substitution Y/N and data
Algo Algorithm number selection and data
Limits Limit check Y/N and data

values—An array of up to 300 subst_type records (one per point -- prototyped as
values_arr). This argument will contain useful information only if full Table
Processing (including a Values Table) is being used with the DDT. It contains
the values from the last use of the DDT showing the values before and after
table processing conversions. Any LCN Real data Bad Values are returned as
zeros.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-16 7/93

20.2.6

20.2.6 Connect DDT to ACIDP

This routine is called to connect a DDT to an ACIDP for the purpose of enabling the Data
Prefetch Function in the CG. The ACIDP-ACP connection must already exist and the
DDT must be CG-resident and not already connected to an ACIDP.

The ddt_name, and either the acp_name, or acidp_name parameters are required in
the call. The Schedule, PPS and Demand parameters also are required.

20.2.6.1 Example "C" Call for Connect DDT to ACIDP

return_status = cm50_ddt_connect
(ddt_name,
 acidp_name,
 acp_name,
 &trigger,
 &flags);

20.2.6.2 Parameter Definitions for Connect DDT to ACIDP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT that is to be
connected to an ACIDP.

acidp_name—(16-character string, prototyped as cm50_long_acidp) of the ACIDP to
which the DDT is to be connected. The acidp_name can be blanks if a valid
acp_name is provided.

acp_name—(12-character string, prototyped as acp_name_type) of the ACP connected to
the ACIDP to which the DDT is to be connected. The acp_name can be
blanks if a valid acidp_name is provided

trigger—single character code with the three high-order bits assigned these meanings:
• Bit 7 : Schedule—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."
• Bit 6 : PPS (Point_Process_Special)—one (1) = "set prefetch on" and zero

(0) = "set prefetch off.”
• Bit 5 : Demand—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-17 7/93

20.2.7

20.2.7 Disconnect DDT from ACIDP

This routine is called to disconnect a DDT from an ACIDP. At least one of the three
parameters, ddt_name, acp_name, or acidp_name is required in the call (the others
are passed as blanks). The ACIDP-ACP-DDT connection must already exist.

20.2.7.1 Example "C" Call for Disconnect DDT from ACIDP

return_status = cm50_ddt_disconnect
(ddt_name,
 acidp_name,
 acp_name,
 &flags);

20.2.7.2 Parameter Definitions for Disconnect DDT from ACIDP

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT that is to be
disconnected. Can be blanks if either acidp_name or acp_name contains a
valid name.

acidp_name—(16-character string, prototyped as cm50_long_acidp) of the ACIDP from
which the DDT is to be disconnected. Can be blanks if either ddt_name or
acp_name contains a valid name.

acp_name—(12-character string, prototyped as acp_name_type) of the ACP connected to
the ACIDP from which the DDT is to be disconnected. Can be blanks if either
ddt_name or acidp_name contains a valid name.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-18 7/93

20.2.8

20.2.8 Modify Triggers

This routine is called to modify the Triggers associated with a DDT that is connected to an
ACIDP. At least one of the three parameters, ddt_name, acp_name, or acidp_name,
is required in the call (the others are passed as blanks). The ACIDP-ACP-DDT connection
must already exist.

20.2.8.1 Example "C" Call for Modify Triggers

return_status = cm50_ddt_triggers
(ddt_name,
 acidp_name,
 acp_name,
 &trigger,
 &flags);

20.2.8.2 Parameter Definitions for Modify Triggers

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT that is
connected to the specified ACIDP. Can be blanks if either acidp_name or
acp_name contains a valid name.

acidp_name—(16-character string, prototyped as cm50_long_acidp) of the ACIDP to
which the specified DDT is connected. Can be blanks if either ddt_name or
acp_name contains a valid name.

acp_name—(12-character string, prototyped as acp_name_type) of the ACP connected to
the specified ACIDP. Can be blanks if either ddt_name or acidp_name
contains a valid name.

trigger—A single character code with the three high-order bits assigned these meanings:
• Bit 7 : Schedule—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."
• Bit 6 : PPS (Point_Process_Special)—one (1) = "set prefetch on" and zero

(0) = "set prefetch off.”
• Bit 5 : Demand—one (1) = "set prefetch on" and zero (0) = "set prefetch

off."

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-19 7/93

20.2.9

20.2.9 Install DDT Into CG

This routine is called to install the DDT into the CG.

20.2.9.1 Example "C" Call for Install DDT Into CG

return_status = cm50_ddt_install
(ddt_name,
 &flags);

20.2.9.2 Parameter Definitions for Install DDT Into CG

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT to be installed
into the CG.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

20.2.10 Uninstall DDT from CG

This routine is called to remove a DDT from the CG.

20.2.10.1 Example "C" Call for Uninstall DDT from CG

return_status = cm50_ddt_uninst
(ddt_name,
 &flags);

20.2.10.2 Parameter Definitions for Uninstall DDT from CG

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

ddt_name—(9-character string, prototyped as ddt_name_type) of the DDT to be removed
from the CG.

flags—This short integer (prototyped as cm50_flag_type) sets options as described in
section 17.1.3. The following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual 20-20 7/93

20.3

20.3 PROGRAMMATIC INTERFACE TO CG DATABASE

These functions return information about the current points configured in the database of
any CG connected to the CM50. The language specific declarations for these functions are
contained in CM50_CGDATA_INCLUDE.H

20.3.1 Resident DDT Summary

This function returns a list of all of the DDTs currently resident in the CG.

20.3.1.1 Example "C" Call for Resident DDT List

return_status = cm50_cg_rddt
(&cg_port_num,
 &number_of_values,
 ddt_list);

20.3.1.2 Parameter Definitions for Resident DDT List

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of an short integer identifying the CG to be accessed.

number_of_values—The name of a short integer that returns the number of DDTs currently
installed as resident in the CG.

ddt_list—The name of an array of up to 40 cm50_resddt character-arrays (prototyped as
cm50_resddt_list) that will contain the names of the resident DDTs.

CM50S User Manual 20-21 7/93

20.3.2

20.3.2 Calculated Results Data Points List

This function returns a list of all of the CRDPs currently configured in the CG.

20.3.2.1 Example "C" Call for CRDP List

return_status = cm50_cg_crdp
(&cg_port_num,
 &number_of_values,
 crdp_list);

20.3.2.2 Parameter Definitions for CRDP List

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of a short integer identifying the CG to be accessed.

number_of_values—The name of a short integer that returns the number of CRDPs
currently configured in the CG.

crdp_list—The name of an array of up to 500 cm50_resacidp character-arrays (prototyped
as cm50_crdp_list) that will contain the names of the CRDPs.

Note that the cm50_resacidp structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

CM50S User Manual 20-22 7/93

20.3.3

20.3.3 ACIDP Detail

This function returns a information about the current status of a specific ACIDP.

20.3.3.1 Example "C" Call for ACIDP Detail

return_status = cm50_cg_adetail
(&cg_port_num,
 &acidp_record);

20.3.3.2 Parameter Definitions for ACIDP Detail

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of a short integer identifying the CG to be accessed.

number_of_values—The name of a short integer that returns the number of DDTs currently
installed as resident in the CG.

acidp_record—The name of a record (declared as type cm50_acidp_rec) with the following
format:

ACIDP : 8-character name of the ACIDP
DESC : 24-character descriptor of the ACIDP
UNIT : 2-character LCN Unit to which the ACIDP is assigned
KEYWORD : 8-character LCN alias for the ACIDP
ACP : 12-character name of the connected ACP
MODE : 8-character enumerated value of the Program Mode
EXEC : 8-character enumerated value of the Execution State
ACCES : 8-character enumerated value of the Data Access Mode
DDT : 9-character name of attached DDT
ACTYP : 8-character enumerated value of the Activation Type
INHIB : 8-character enumerated value of the Inhibit flag
STIME : 8-character value of the Scheduled Start Time
PERIOD : 8-character value of the Schedule Cycle Period
NXTTIM : 18-character value of the Next Scheduled Activation Time
TAKEIP : 4-character enumerated value of the Take_Initial_Path flag
RUNINIT : 4-character enumerated value of the Run_on_Initialization flag
CONFWT : 4-character enumerated value of the Confirm_Wait flag
CONFRQ : 4-character enumerated value of the Confirm_Request flag
SCH : 4-character enumerated value of the Schedule Activation flag
PPS : 4-character enumerated value of Program_Special Activation flag
DMD : 4-character enumerated value of Operator_Demand Activation flag
GROUP : unsigned short integer value of the Group code.

Note that the cm50_acidp_rec structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

CM50S User Manual 20-23 7/93

20.3.4

20.3.4 ACIDP Summary

This function returns a list of all of the ACIDPs configured in the CG.

20.3.4.1 Example "C" Call for ACIDP Summary

return_status = cm50_cg_acidp
(&cg_port_num,
 &number_of_values,
 acidp_list,
 acp_list,
 mode_list,
 state_list,
 ddt_list,
 trigger_list);

20.3.4.2 Parameter Definitions for ACIDP Summary

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for
an explanation and a listing of all assigned return code values.

cg_port_num—The name of a short integer identifying the CG to be accessed.

number_of_values—The name of a short integer that returns the number of ACIDPs
currently configured in the CG.

acidp_list—The name of an array of up to 250 cm50_resacidp character-arrays (prototyped
as cm50_acidp_list) that will contain the names of the resident ACIDPs.

Note that the cm50_resacidp structure can vary for different releases of
CM50S, so programs using this call should be recompiled when CM50S is
upgraded.

acp_list—The name of an array of up to 250 cm50_resacp character-arrays (prototyped as
cm50_cgacp_list) that will contain the names of the ACPs connected to the
corresponding ACIDP.

mode_list—The name of an array of up to 250 short integers (prototyped as
cm50_cgenum_list) that will contain the integer code for the installation mode
of each ACIDP.

state_list—The name of an array of up to 250 short integers (prototyped as
cm50_cgenum_list) that will contain the integer code for the current execution
state of each ACIDP.

ddt_list—The name of an array of up to 250 cm50_resddt character-arrays (prototyped as
cm50_cgddt_list) that will contain the names of the DDT (if any) connected to
the corresponding ACIDP.

trigger_list—The name of an array of up to 250 cm50_restrig records (prototyped as
cm50_trig_list),where each record is an array of 3 Boolean short integer values
(indicating by 1 or 0 whether or not the connected DDT will be prefetched
when the ACIDP is triggered on Schedule, Operator_Demand, or PPS).

CM50S User Manual 20-24 7/93

20.3.5

20.3.5 LCN Configuration

These functions return information about the LCN configuration parameters for a specified
CG. Note that the specified CG must be running TDC 3000 release 400 or later for this
function to get a successful return_status.

20.3.5.1 Example "C" Call for LCN Configuration

return_status = CM50_CG_CONFIG
(&cg_prot_num,
 &cgconfig_record);

20.3.5.2 Parameter Definitions for LCN Configuration

return_status—The name of an Integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2 for an
explanation and a listing of all assigned return code values.

cg_prot_number—The name of a short integer identifying the CG (1 to 4) to be accessed.

cgconfig_record—The name of a record (declared as type cm50_cgconfig_rec) with the
following fields:

LCN_VER : short integer TDC 3000 software release level
LCN_REV : short integer TDC 3000 revision level (future)
LCN_NODE : short integer LCN node number of this CG
CG_VER : short integer CG personality software release
CG_REV : short integer CG personality software revision
TIME_SYNCH : short integer CG Time synchronization period
CONFIRM_TIME : short integer CG Time out for message confirm
CG_STATION : short integer HDLC station number of the LCN
T1_TIME : short integer T1 timer
N2_COUNT : short integer Retry count
FLOAT_FORMAT : short integer Floating point format (should be 2 for IEEE)
BAUD_RATE : short integer enumeration (0= 1200, 1= 1760, 3= 2400,

5= 4800, 7= 9600, 8= 19200, 13= 38400,
14= 56700, 15= 76800)

TAG_SIZE : short integer (0 for 8-character maximum, 1 for 16-
characters)

HM_USER_MIN : short integer number of minutes in a user average
HM_SHIFT_WK : short integer number of shifts per week
HM_START_HR : short integer daily/weekly averages starting hour (0 starts

Sunday morning just after midnight)
HM_MONTH_TYP : short integer (0 is calendar, 1 is 28-day cycles)
PINID : 2-character identifier of this LCN for Network Gateway

routing
DESCR : 40-character CG descriptor on the LCN

CM50S User Manual 20-25 7/93

20.4

20.4 PROGRAMMATIC INTERFACE TO FILE TRANSFER

These functions execute LCN file transfer commands programmatically. The calling
program must include the CM50_FLAGS_INCLUDE.H and CM50_FTF_INCLUDE.H
files in its source to insure that the functions and arguments are properly declared.

The dataout facility allows the user, when requesting the execution of specific file transfer
transactions, to place relevant data in the dataout or catalog file. This dataout file is a
shared file by all concurrent users of file transfer. For example, user "Jones" requests a
CM50_FILE_CATALOG transaction, the results of which are placed into the current
dataout file. User "Smith" then requests a CM50_VOLUME_CATALOG transaction.
These results also are placed into the same (current) dataout file.

CM50_FILE_CATALOG and CM50_VOLUME_CATALOG are the only file transfer
transactions that require a dataout file. Other file transfer transactions treat dataout as an
option for journalizing activity.

20.4.1 Read LCN File

This procedure will transfer a single file from an LCN NET volume to CM50S. Wildcard
transfers of files are not supported. This procedure will also create an "LCN
ATTRIBUTES" file for every LCN file that is transferred. Multiple copies of the same
file, within the same VMS directory, are not allowed. The version number of the attributes
file should remain 1. For more information regarding file attributes refer to the WRITE file
procedure.

20.4.1.1 Example "C" Call for File Read

return_status = cm50_lcn_read
(lcn_file,
 host_file,
 acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.1.2 Parameter Definitions for File Read

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx.

CM50S User Manual 20-26 7/93

20.4.1

host_file—VMS pathname (packed array of 80 characters, prototyped as
PATH_NAME_TYPE) to be used to store the LCN file (and its asscociated
attributes file). If no extension is specified, the VMS default of .DAT will be
used. If no directory is specified, the user's current default directory will be
used. The LCN attributes file will use the following naming convention: the
filename suffix or extension will be preceded by an under-bar character, and
followed by a period "LA" extension. For example; the LCN filename of
FORMULAE.CL would have an attribute file of FORMULAE_CL.LA.
Note: The transfer will fail if the pathname matches that of an existing file.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

20.4.2 Write LCN File

This procedure will transfer a single file from CM50S to LCN NET volume. This
procedure requires the LCN ATTRIBUTES file for every LCN file that is transferred.
Multiple copies of an LCN FILE within the same VMS directory are allowed. These files
would have been created by modifying the original LCN FILE which was transferred as
version 1. The version number of the attributes file should be 1.

20.4.2.1 Example "C" Call for File Write

return_status = cm50_lcn_write
(host_file,
 lcn_file,
 acidp_name,
 &file_code,
 &cg_port_number,
 &lcn_sts,
 &flags);

CM50S User Manual 20-27 7/93

20.4.2

20.4.2.2 Parameter Definitions for File Write

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

host_file—VMS pathname (packed array of 80 characters, prototyped as
PATH_NAME_TYPE) of the file to be transferred to the LCN If no
directory is specified, the user's current default directory will be used. The
associated LCN attributes file (with an extension of .LA) must be in the same
directory.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

file_code—Name of a shortword (prototyped as write_file_type) that determines whether
the LCN file is to be replaced if it already exists at the LCN NET volume.
The default is to abort the write if the file already exists. The enumerated
values are:
replace_write = 0: Replace existing file
abort_write = 1: Return an error if the file already exists.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

20.4.3 List LCN File Attributes

This request will retrieve the file attributes for a specific LCN file. Wildcard characters and
dataout options are not permitted. The file attributes are :

• Lcn file type—contiguous or linked
• Lcn file protection
• Record size
• Block size
• Lcn file configuration
• Lcn file revision
• Directory timestamp (Mo/Dd/Yr Mm:Ss)
• Logical number of blocks
• Logical number of records
• File Descriptor
• Starting Sector
• Ending Sector

CM50S User Manual 20-28 7/93

20.4.3

20.4.3.1 Example "C" Call for File Attributes

return_status = cm50_attr_list
(lcn_file,
 acidp_name,
 &attributes,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.3.2 Parameter Definitions for File Attributes

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

attributes—Buffer (prototyped as file_attribute_block, and described in
CM50$LIB:CM50_FTF_INCLUDE.H) that will receive requested data.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-29 7/93

20.4.4

20.4.4 List LCN File Names

This transaction will retrieve up to 1180 file names and extensions from an LCN NET
volume. If the number of files exceeds the buffer capacity of 1180, then multiple requests
by directory, file type extension, or filename syntax must be used. Wildcards are
permitted.

20.4.4.1 Example "C" Call for List Files

return_status = cm50_file_list
(lcn_file,
 acidp_name,
 &file_list,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.4.2 Parameter Definitions for List Files

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

file_list—Buffer (prototyped as file_list_array, and described in
CM50$LIB:CM50_FTF_INCLUDE.h) that will receive the list of file names
and attributes.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-30 7/93

20.4.5

20.4.5 List LCN Volumes/Directories

This transaction will fetch from the History Module volume and directory names and sector
usage figures. Wildcards and options are not permitted for this transaction type.

20.4.5.1 Example "C" Call for List Volumes

return_status = cm50_hm_listf
(lcn_device,
 acidp_name,
 &vol_record,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.5.2 Parameter Definitions for List Volumes

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_device—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the device to be cataloged. Use the form PN:nn where nn is the
LCN node number.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

vol_record—Buffer (prototyped as volume_structures and described in
CM50$LIB:CM50_FTF_INCLUDE.h) that will receive the Volume and
directory information. This information includes:

• Number of Volumes
• Number of Sectors / Device
• Sectors in Use / Device
• Volume Name(s)
• Directory Name(s) on each volume

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-31 7/93

20.4.6

20.4.6 Cataloging LCN Fles to Dataout

This file transfer transaction will list the LCN FILE ATTRIBUTES of one or more files
into the current dataout file. The dataout file must have been previously established. The
absence of a dataout specification will result in an error return. Further processing requires
that the dataout or catalog file be transferred to the VAX using the CM50_LCN_READ
programmatic function.

20.4.6.1 Example "C" Call for File Catalog

return_status = cm50_file_catalog
(lcn_file,
 cat_file,
 acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.6.2 Parameter Definitions for File Catalog

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

Optional suffixes will increase the amount of information returned:
-FD will cause file descriptors to be listed
-REC will cause record and block data to be listed

cat_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to receive the catalog. Use the form
NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of an unsigned short integer (prototyped as cg_num_type)
that specifies which Computer Gateway (1-4) will be used for access to the
LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-32 7/93

20.4.7

20.4.7 Cataloging LCN Volumes to Dataout

This file transfer transaction will list the LCN Volumes and Directories for all History
Modules on the NET or for a specific History Module. The dataout file must have been
previously established. The absence of a dataout specification will result in an error return.

20.4.7.1 Example "C" Call for Volume Catalog

return_status = cm50_volume_catalog
(lcn_device,
 cat_file,
 acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.7.2 Parameter Definitions for Volume Catalog

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_device—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the device to be cataloged. Use the form NET or PN:nn where
nn is the LCN node number.

cat_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to receive the catalog. Use the form
NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-33 7/93

20.4.8

20.4.8 LCN File Copy

This file transfer transaction will copy a single file or all files from one NET volume to
another Net volume. The -D option is supported for journalizing all copies to a dataout
file. The dataout file must have been previously established. Wildcards are permitted;
however, the destination suffix must always be the same as the source suffix. Note that
using the -D option without having previously defined a dataout path will result in an error
and the copy function will not have been completed.

20.4.8.1 Example "C" Call for LCN File Copy

return_status = cm50_lcn_copy
(lcn_file,
 out_file,
 acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.8.2 Parameter Definitions for LCN File Copy

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_file—Recipient filename (28-character string prototyped as type lcn_path_name)
specifying the pathname of the new file. The actions will be journalized if a
DATAOUT file has been enabled and the " -D" option suffix is appended to
the filename.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-34 7/93

20.4.9

20.4.9 LCN File Move

This file transfer transaction will move a single file or all files from one directory to another
directory within the same NET volume. Wildcards are permitted and the -D option is
supported for journalizing all moves to a dataout file. The dataout file must have been
previously established. Note that using the -D option without having previously defined a
dataout path will result in an error and the move function will not have been completed.

20.4.9.1 Example "C" Call for LCN File Move

return_status = cm50_lcn_move
(lcn_file,
 out_directory,
 acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.9.2 Parameter Definitions for LCN File Move

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_directory—Directory name (28-character string prototyped as type lcn_path_name)
specifying the directory to receive the moved file. This directory must be

on the same HM volume as the original file. (The file name and extensions
will remain unchanged.) The actions will be journalized if a DATAOUT file has

been enabled and the" -D" option suffix is appended to the filename.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-35 7/93

20.4.10

20.4.10 LCN File Rename

This file transfer transaction will rename a single file or all files on the History Module.
Wildcards are permitted and the -D option is supported for journalizing all renames to a
dataout file. The dataout file must have been previously established. Note that using the -
D option without having previously defined a dataout path will result in an error and the
rename function will not have been completed.

20.4.10.1 Example "C" Call for LCN File Rename

return_status = cm50_lcn_rename
(lcn_file,
 out_file,
 acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.10.2 Parameter Definitions for LCN File Rename

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

out_file—Recipient filename (28-character string prototyped as type lcn_path_name)
specifying the pathname of the new file. (The directory and extensions will
remain unchanged.) The actions will be journalized if a DATAOUT file has
been enabled and the" -D" option suffix is appended to the filename.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-36 7/93

20.4.11

20.4.11 LCN File Delete

This file transfer transaction will delete a single file or all files from the specified volume
on the History Module. Wildcards are permitted and the -D option is supported for
journalizing all deleted files to a dataout file. The dataout file must have been previously
established. Note that using the -D option without having previously defined a dataout
path will result in an error and the delete file function will not have been completed.
Once deleted the file is cannot to be recovered.

20.4.11.1 Example "C" Call for LCN File Delete

return_status = cm50_lcn_delete
(lcn_file,
 acidp_name,
 &g_port_number,
 &lcn_sts,
 &flags);

20.4.11.2 Parameter Definitions for LCN File Delete

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to be transferred from the LCN. Use the form
NET>VDIR>FILENAME.xx. Wildcards (*) are permitted for the file name
and/or extension. Formats:

NET>VDIR>*.*
NET>VDIR>FILENAME.*
NET>VDIR>*.nn

The actions will be journalized if a DATAOUT file has been enabled and the
"-D" option suffix is appended to the pathname.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-37 7/93

20.4.12

20.4.12 LCN Directory Maintenance

These file transfer transactions will create or delete a directory under a volume on the
History Module. No wildcard characters or options are permitted.

20.4.12.1 Example "C" Call for Directory Maintenance

return_status = cm50_lcn_directory
(lcn_directory,
 &action,
 acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.12.2 Parameter Definitions for Directory Maintenance

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

lcn_directory—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the LCN directory to be created or deleted. Use the form
NET>VDIR> DIR (Note the space delimiter before the directory name.)

action—A shortword (prototyped as dir_func_type) that specifies whether the named
directory is to be created or deleted. The enumerated values are:
create_directory = 0
delete_directory = 1

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-38 7/93

20.4.13

20.4.13 Dataout Status

The dataout function allows the user, when requesting the execution of specific file transfer
transactions, to place relative data in the dataout or catalog file. This dataout file is a shared
file by all concurrent users of file transfer. For example, user "Jones" requests a
CM50_FILE_CATALOG transaction, the results of which are placed into the current
dataout file. User "Smith" then requests a CM50_VOLUME_CATALOG transaction.
These results also are placed into the same (current) dataout file. The dataout file may be
transferred to the VAX host using a CM50_LCN_READ request. The
CM50_DATA_OUT transaction is provided to enable, disable, or query the file transfer
dataout status.

20.4.13.1 Example "C" Call for DATAOUT status

return_status = cm50_data_out
(cat_file,
 acidp_name,
 &do_action,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.13.2 Parameter Definitions for DATAOUT status

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

cat_file—LCN pathname (28-character string prototyped as type lcn_path_name)
identifying the file to receive the catalog. Use the form
NET>VDIR>FILENAME.xx.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

do_action—A shortword (prototyped as do_func_type) that specifies the action to be taken.
The values are:
disable = 0: Disable dataout journaling
enable = 1: = Enable dataout journaling using the specified path
request_status =2: Return the current dataout path

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-39 7/93

20.4.14

20.4.14 Abort File Transfer Transaction

The transaction CM50_ABORT_TRANSFER will terminate the current transaction in
progress. The initiator of the transaction will receive a CM50_FTF_ABORT error return
status. The initiator of the CM50_ABORT_TRANSFER request will receive a normal
return status. No error is generated if there is not a current process to abort.

20.4.14.1 Example "C" Call for Abort Transfer

return_status = cm50_abort_transfer
(acidp_name,
 &cg_port_number,
 &lcn_sts,
 &flags);

20.4.14.2 Parameter Definitions for Abort Transfer

return_status—The name of an integer to receive the overall return status of the function
call. For fully successful calls, return_status = 1. See Appendix A.2
for an explanation and listing of all assigned return code values.

acidp_name—A 16-character string (prototyped as acidpoint_type) reserved for future
security use. This field should be set to all spaces.

cg_port_number—The name of a unsigned short integer (prototyped as cg_num_type) that
specifies which Computer Gateway (1-4) will be used for access to the LCN.

lcn_sts—The name of a short integer which will receive the detailed error code from the
LCN if the overall return_status is cm50_ftf_filmgr (215004012) or
cm50_ftf_utility (215004146). See Appendix A.4 for specific meanings.

flags—Integer parameter (optionally prototyped as cm50_flag_type) that sets options as
described in section 17.1.3. The cm50$m_handler option is the only flag
applicable to File Transfer functions.

CM50S User Manual 20-40 7/93

CM50S User Manual A-1 7/93

A

STATUS AND ERROR CODES
Appendix A

This appendix lists the status codes that are returned following data exchanges.

A.1 DATA ACCESS STATUS CODES

The following LCN data access status codes apply to the individual point.parameter values
and are included in the data returned to the ACP by the user interface routines (variously as
STATUS_TABLE, VALUE_STATUS, STORE_STATUS or DATA_ACCESS_STATUS
values).

Code Explanation

1 Value out of range, clamped value stored and clamped value returned
2 String was too long, truncated value was stored
3 Initialization warning
4 End of history-data file
5 End of user-specified samples or time
6 User-allocated buffer is full
7 Spare warning 05
8 Data item is valid
9 Access level invalid (HG)

10 Invalid algorithm for controller type
11 Algorithm must be DDC (tried op store)
12 Algorithm must be SPC (tried sp store)
13 Value type presented for store was not the expected type
14 Bias is undergoing initialization
15 Both init and tracking cannot be configured
16 HG box status is failed
17 HG box not configured
18 Mode must be manual
19 Cannot convert numeric variable to IEEE
20 Cannot convert numeric variable to JFP
21 Cannot reset timer unless stopped
22 Cascade request flag must be set
23 Change not permitted by operator
24 Cascade enable flag must be set (for change to computer mode)
25 Configuration mismatch error
26 Control output connection not configured
27 Current mode disallows mode change
28 Current mode disallows store
29 Failure of device where entity resides
30 Device where entity resides is in reset
31 Engineering unit span is too small
32 Given subscript is not implemented in entity
33 External mode switching is enabled
34 External switching option is not selected
35 Fatal error: no match for case selector
36 HG hiway status is failed

CM50S User Manual A-2 7/93

A.1

37 Hiway access failure
38 Illegal value
39 Init cannot be configured
40 Init must be configured
41 Value cannot be changed because of initialization
42 Invalid internal variable number
43 Invalid algorithm id in base segment
44 Invalid algorithm equation
45 Invalid control algorithm id error
46 Invalid destination parameter
47 Invalid destination point id
48 Invalid mode
49 Invalid mode attribute
50 Invalid pb option
51 Invalid point for point build
52 Invalid sp option
53 Invalid target value processor state
54 Max structural parameter exceeded error
55 Mode attribute error
56 Invalid PV control algorithm combination
57 Duplicate batch id
58 Current mode does not allow parameter value to be changed
59 Mode illegal for this point type
60 Mode keylock error
61 Mode not allowed with configured algo
62 Mode not currently legal
63 Mode not man or point active
64 Must have digital output
65 Currently there is no value for this parameter
66 Nocopts must be zero to change coptype
67 Normal attribute is not configured
68 Normal mode is not configured
69 Value cannot be changed, because parameter is not selected
70 Number of outputs must exceed zero
71 Entry only possible in off-process personality
72 Output is undergoing initialization
73 Operator override is required for store
74 Parameter cannot be changed
75 Parameter index is invalid
76 Parameter is invalid
77 Parameter is undergoing initialization
78 Parameter is not configured
79 Parameter is not valid for the configured control algorithm
80 Parameter is not valid for the configured pv algorithm
81 Status of entity is partial error
82 Point must be inactive
83 Point is red tagged
84 Point is undergoing initialization
85 Point is not available to point build
86 Definition of point is not complete enough to make point valid
87 Point not secondary
88 Point status error (HG status is in error)
89 Point type is invalid (HG configuration error)
90 PPS only active points error

CM50S User Manual A-3 7/93

A.1

91 Process box restore in operation
92 Process module off
93 PV source disallows PV change (HG cannot change PV)
94 Ratio is undergoing initialization
95 Read only parameter (HG cannot write)
96 Red tag error (all output entries are blocked)
97 Secondary has too many primaries
98 Secondary must be off node
99 Secondary point has no primary

100 HG slot number invalid
101 Source of request is invalid (HG change is prohibited)
102 Source of Y is not configured (HG change to casc mode is invalid)
103 SP is undergoing initialization
104 SP is undergoing pv tracking
105 Store not allowed with spc connection
106 Store not permitted
107 Store not permitted from off point
108 Subscript error
109 System error (HG data handler detected)
110 Tracking cannot be configured
111 Entry prohibited because of tracking
112 Tracking must be configured
113 Spare error 3
114 Y cannot be configured to own LSP
115 Point type id error
116 Segment class error
117 Invalid control algorithm error
118 Invalid pv algorithm error
119 Segment size exceeds maximum segment size
120 Memory unavailable
121 Get memory error
122 Structural parameter missing
123 Structural parameter maximum violated
124 Invalid cc rank
125 Store not permitted while casreq
126 Analog output used for modulating control
127 Y must be configured to own lsp
128 Store not permitted unless free variable
129 Control lock error
130 Point not primary
131 Off node parameter access error
132 Memory allocation error
133 Unit mismatch
134 Point must be scheduled
135 Before after period incompatible
136 Integer value required
137 Invalid PV equation
138 Invalid ctl equation
139 Invalid number of PV inputs
140 Invalid number of ctl inputs
141 Invalid number of ctl outputs
142 Invalid pv algorithm id
143 Invalid ctl algorithm id
144 Invalid pv algorithm

CM50S User Manual A-4 7/93

A.1

145 Invalid ctl algorithm
146 Invalid rb option
147 PV algorithm id cannot be null
148 CTL algorithm id cannot be null
149 PV algorithm id structural parameter fetch error
150 CTL algorithm id structural parameter fetch error
151 RB option structural parameter fetch error
152 SP option structural parameter fetch error
153 PV equation structural parameter fetch error
154 Control equation structural parameter fetch error
155 Number of pv inputs structural parameter fetch error
156 Number of ctl inputs structural parameter fetch error
157 Number of ctl outputs structural parameter fetch error
158 Copctype structural parameter fetch error
159 Structural parameter fetch error
160 Invalid structural parameter
161 Configuration error
162 Number of ctl outputs is zero
163 Fetch not permitted
164 Change restricted to engineering personality
165 Change restricted to on process personality
166 Access level error
167 Attribute id error
168 Function level error
169 Parameter id error
170 Parameter qualifier type error
171 Parameter type invalid
172 Prefetch item error
173 Data type error
174 Rev 20 disallows both SOPL and trend memory
175 Limit or range exceeded
176 Limit or range crossover
177 Inconsistent lrc for point build
178 Point build HG only
179 Must configure enough cl slots for standard actions
180 Point must be inactive or ready
181 Point not active or not configured in a History Group
182 No batch slot or no slot of sufficient size is available
183 Number of concurrent batches not established
184 Only active or inactive allowed
185 Prototype must have cls to be cloned
186 Only one dual output store permitted per request
187 Illegal timer state
188 Illegal counter state
189 Invalid number of ainpts
190 Invalid number of ordstns
191 Invalid number of orvals
192 Spare error 4
193 Alarm configuration mismatch
194 Control state read error
195 Control state basic error
196 Control state test error
197 Input and output required
198 Input and output box mismatch

CM50S User Manual A-5 7/93

A.1

199 Current state disallows operational state change
200 Configuration forcing in effect
201 Current procmod disallows store
202 Device must be in idle
203 Device must be in reset
204 Illegal box protocol
205 Invalid box status
206 Invalid characterization type
207 Invalid database index
208 Parameter not loaded
209 PV source invalid
210 Event overload
211 SP lock error
212 Improper access level
213 Invalid attribute id
214 No such entity id
215 No such function level in data owner
216 Initialization value
217 Communication path to data owner is disabled
218 Invalid parameter id
219 Improper parameter qualifier type
220 Given parameter type is invalid for the requested operation
221 Prefetch item number
222 Serial number in point id does not match
223 Value type presented for store was not of the expected type
224 Invalid store value supplied
225 Subscript out of range
226 Unable to perform specified limit check on store value
227 Value out of range, store not performed
228 Path to parameter cannot be completed
229 Spare error 14
230 Spare error 15
232 Invalid PV source
233 Event Overload
234 SP lock error
235 Improper access level
236 Invalid attribute ID
237 No such entity ID
238 Improper function level
239 Initialization value
240 Illegal No Good store—Enumeration member not found or out of range
241 Input status table error
242 Point not in history
243 Enum convert failure
244 SDE store not allowed
245 ACP value bad
246 Subst value bad
247 Bad Algo
248 Div by zero
249 Limit exceeded
250 Real value NaN
251 Data error
252 Wrong data type

CM50S User Manual A-6 7/93

A.1

253 Get set error
254 Get IDB item error
255 Directed no store (Not an error. Returned for all store data elements whose store

code value is not 0 or 1.)
256 Not enough contiguous memory
257 Data point is too large
258 Bad data returned (input was bad)
259 Total value size exceeded (The sizes of data for the elements in this DDT add up

to more than can be handled by LCN data access mechanisms. The DDT must be
redesigned.)

260 Value envelope in user-supplied buffer is inconsistent with the value returned
261 Process Manager—PPX task not terminated
262 Process Manager—PMM scan rate must be null
263 Process Manager—PMM scan rate must not be null
264 Process Manager—WM invalid
265 Process Manager—WM insufficient data
266 Process Manager—WM invalid state
267 Process Manager—scan table overflow
268 Process Manager—calculator syntax error
269 Process Manager—calculator expression too big
270 Process Manager—permissive error
271 Process Manager—interlock error
272 Process Manager—UCN communication error
273 Process Manager—entity ID error
274 Process Manager—slot checkpoint exceeds available extension memory
275 Process Manager—invalid state pa status
276 Process Manager—invalid for secondary pa status
277 Process Manager—checksum bad
278 Process Manager—invalid sequence execution state
279 Process Manager—invalid process module state
280 Process Manager—abnormal handler not available
281 Process Manager—sequence program must be loaded
282 Process Manager—sequence program exceeds configured slot size
283 Process Manager—no confirmable message pending
284 Process Manager—fatal sequence code errors
285 Process Manager—communications error
286 Process Manager—UCN encode error
287 Process Manager—UCN reception error
288 Process Manager—UCN transmit error
289 Process Manager—communication error
290 UCN data unavailable, target node status error
16384 (CM50_NEGATIVE_OVERFLOW) Extremely low value has been clamped to

-1.70e+38
16385 (CM50_POSITIVE_OVERFLOW) Extremely high value has been clamped to

1.70e+38
16386 (CM50_NEGATIVE_INFINITY) IEEE negative infinity value has been

clamped to -1.70e+38
16387 (CM50_POSITIVE_INFINITY) IEEE positive infinity value has been clamped

to 1.70e+38
16388 (CM50_NAN) Bad value has been returned as a legitimate custom data

segment value
16389 (CM50_MINUS_ZER0) IEEE -0.0 converted to zero.

CM50S User Manual A-7 7/93

A.2

A.2 RETURN_STATUS CODES

Each User Interface or Programmatic Interface function returns a return_status
doubleword integer value that reflects the overall return status of the function call. A
"normal" successful completion is signaled by a return_status = 1 (SS$_NORMAL).

CM50S return_status codes are integrated with the VMS system error codes. All error
codes generated specifically by CM50S have a nine-digit decimal representation that starts
with the decimal digits "2150" (equivalent to 0CD0 in 8-digit hexadecimal). CM50S
applications can also cause other error codes to be reported by VMS. Of particular interest
are VMS protection/access violations that can prevent the CM50S code from being
executed; these codes generally begin with the hexadecimal digits "1021." You should note
that CM50S displays error codes in decimal notation while the operator log of VMS aborts
uses hexadecimal notation.

The return_status value for a CM50S return that requires additional investigation
always begins with the base value of 215000000. To this is added a 4-digit status return
code (multiplied by 10) followed by a "severity" code. Thus, the returned status value of
215003202 is equivalent to a status return of 0320 with a severity code of 2.

Rule of Thumb: If the return_status value is not = 1 and is even, there is a problem;
if odd, the call was successful but individual data items may need checking.

Another way of looking at the non-normal return_status value is: 2150 nnnn s,
where nnnn = status return code

0001-0040 = LCN return codes
0051-0058 = LCN Send Message return (Rel 1 codes + 50
0061-0076 = Get_History returns (Rel 1 codes+ 60. Exception:

 Get_History return = 8 is set to SS$_NORMAL)
0081-0089 = Point List Access-specific errors
0100-0135 = CM50S File Access errors
0200-0299 = Communication errors
0300-0399 = Format Conversion errors
0400-0699 = LCN File Transfer errors

and where s = severity code
0 = warning
1 or 3 = informational
2 or 6 = error or failure

The following list contains all assigned return code/severity code combinations along with
the associated identifiers as found in the include-files:

CM50$LIB:CM50_ERROR_INCLUDE.FOR (or .PAS or .H).

The associated error messages may be retrieved using the DCL lexical function
F$MESSAGE provided that the process has previously issued a SET MESSAGE
CM50$LIB:CM50_ERROR_MSG command to link the CM50S message file with the
system messages.

NOTE

User programs should reference specific error conditions by identifier names. These will remain
constant even if future VMS releases change the underlying return_status numeric values.

CM50S User Manual A-8 7/93

A.2

return_
status Error Message
Value Identifier Cause/Corrective Action

000000001 SS$_NORMAL <none>

215000012 CM50_DDT_MISS DDT incomplete or not found
Named DDT or MPL file not found on disk or DDT was built with
errors and is not useable.

215000026 CM50_DDT_HIST DDT is not HISTORY type
Named DDT was built for Input or Output, or MPL history call
attempted for a list containing multiple data types.

215000036 CM50_LCN_FAIL Unable to access LCN—datalink failure
CG or communications link has failed or CM50_PKT_PROCESSOR
has been aborted.

215000042 CM50_ACP_RUN ACIDP not in RUN state or DDT not Input
The ACIDP named in the call (or connected to the calling ACP if not
named in the call) is not in RUN state because its ACP is not active or
the ACIDP is concurrently processing another data access request, or
DDT for a Get data request was built for Output or History.

215000051 CM50_LCN_PART Returned Data includes errors
One or more of the requested data elements had an error on the LCN,
see the Status table entries to identify the specific problems.

215000066 CM50_LCN_POINT ACIDP not found or not connected to ACP
Named Point is not defined in the LCN database, or Named ACIDP is
not in the CG that is being accessed, or Named ACIDP is not connected
to an ACP.

215000076 CM50_ACP_STAT ACP not installed or restricted
Store failed because the ACP is not connected to an ACIDP, or ACP is
installed in Restricted mode, blocking stores.

215000082 CM50_ACP_ACCE ACCESS key is Read only or DDT is in use
ACIPD is defined to be READ_ONLY, blocking stores, or DDT is
concurrently in use by another ACP, or ACIDP is currently servicing
another data request.

215000092 CM50_LCN_PRIOR Invalid Priority - must be 1 or 2
Error in LCN Priority argument.

215000106 CM50_LCN_PARAM Point or Parameter not found
Requested Tag not found on the LCN.

215000116 CM50_LCN_PARTYP Value Type does NOT match Parameter Type
Named Parameter has a different data type than the requested value.

215000122 CM50_GET_MEM Unable to Get Memory in VAX
215000132 CM50_LCN_GTX Invalid CG Transaction code

Attempt was made to use a new feature with an older release of
TDC3000 that does not support it.

215000146 CM50_LCN_ARRAY Array Size too small
The size of the parameter array in the LCN is greater than the stated size
of the array in the request. For a convert id request, this is an
information code; it is a fatal error only when attempting to store an
array.

215000156 CM50_LCN_WORD ACP connected ACIDP not in Run State
or Value not Word Aligned (vintage calls only)

215000162 CM50_ACP_CG ACIDP not CG resident
Named ACIDP does not exist within the CG being accessed

CM50S User Manual A-9 7/93

A.2

215000186 CM50_DDT_CONN DDT already connected to ACIDP
DDT already connected to an ACIDP.

215000196 CM50_DDT_DISC DDT is not connected to an ACIDP
DDT is not connected to the ACIDP.

215000202 CM50_ACP_DISC ACP is not connected to ACIDP
ACIDP -- ACP connection must exist before a DDT can be connected to
it for Prefetch.

215000212 CM50_LCN_OPT Invalid Option for this CG Transaction
215000226 CM50_LCN_RANGE Data Type Out of Range

Error in Value_Type argument (must be between 1 and 20, prior to
TDC release 300, maximum value is 10).

215000236 CM50_LCN_ZPAR Parameter Index must be zero
If Parameter is not an array, the index must be blank or zero.

215000252 CM50_LCN_ENUM Invalid Enumeration
No enumeration set is defined on the LCN for the named Parameter.

215000266 CM50_LCN_NOPAR Parameter name not defined on LCN
Named parameter is not defined anywhere on the LCN.

215000276 CM50_LCN_INDX Index Out of Range
Invalid value for Parameter Index argument

215000282 CM50_ACC_PRIOR Invalid data Access Priority
215000292 CM50_LCN_TYPE Invalid data Type code

Requested Value_Type is not accessible with this call.
215000306 CM50_LCN_PTIX Point Index not Zero

(Vintage calls only) Point Index argument must be set to 0.
215000316 CM50_LCN_MATCH Point does not have the named Parameter

Both Point and Parameter names are defined on the LCN but the named
point does not have the requested parameter.

215000322 CM50_ACC_SIZE Array pointer/size too Large
The Parameter Index, array size, in the call is larger than the size of the
array on the LCN.

215000332 CM50_DDT_TYPE DDT contains Invalid data Type
215000356 CM50_DDT_PURP DDT Purpose does Not match Request

DDT built for Input can be used only for Get Data calls; Generic DDTs
can only be used with Generic calls, etc.

215000362 CM50_DDT_HDR DDT header does not match table content
Corrupt DDT file, or IDB argument of a MPL call is not pointing to a
valid list.

215000372 CM50_DDT_DUP Data type repeated inside a DDT
Each Value_Type can appear only once in a DDT or MPL.

215000386 CM50_DDT_ENUM DDT contains both Enum & Ordinal types
A single DDT or MPL call cannot process both Enumerated and Ordinal
values.

215000396 CM50_DDT_SIZE DDT contains too many points
A DDT or Point List may not transfer more than 300 current parameters,
or 24 history parameters, on a single call.

215000402 CM50_LCN_HDR Header Size does not match Message Length
Corrupt DDT file, or IDB argument of a MPL call is not pointing to a
valid list.

215000412 CM50_LCN_OVR Array size too large
Value of Parameter Index (or word 7 of the internal point id) is larger
than the dimension of the array on the LCN.

215000426 CM50_LCN_CLOK Could not read internal clock
Internal error on the LCN in attempting to access the system clock.

CM50S User Manual A-10 7/93

A.2

215000436 CM50_LCNSTCOD Invalid Store Code
Value of store_cd argument is not a valid code for the requested data
type.

215000442 CM50_LCN_DUP Duplicate Entity name
Error in LCN point name database.

215000506 CM50_MSG_NULL No message
No message is available for retrieval by Get Message call or the CG was
unable to forward the message across the LCN on a Send Message call.
(Check the Area Database on the LCN)

215000516 CM50_MSG_TIME Time out before confirmation received
215000521 CM50_MSG_TRUNC Received message was truncated

Calling arguments did not allocate enough space for the entire message
or history values retrieved from the LCN.

215000532 CM50_MSG_CONF Invalid confirmation argument
Message confirmation must be 0 or 1.

215000546 CM50_MSG_WAIT Invalid wait time argument
Message time-out must be between 0 and 3600 seconds.

215000556 CM50_MSG_DEST Invalid destination
Message destination must be between 0 and 2.

215000561 CM50_MSG_QUE Message received & another one is queued
Successful call, another message is waiting.

215000571 CM50_MSG_QUET Message truncated & another one is queued
Requested message was longer than specified Message_size and another
message is waiting.

215000586 CM50_MSG_SIZE Invalid message array size
Message Size must be between 1 and 120 characters.

215000612 CM50_HIS_MISS DDT not found
Named DDT or MPL file not found on disk or DDT was built with
errors and is not useable.

215000626 CM50_HIS_DDT DDT not History type
Named DDT was built for Input or Output, or MPL history call
attempted for a list containing multiple data types.

215000636 CM50_HIS_FAIL Unable to access LCN
History Module has failed, or CG or communications link has failed, or
CM50_PKT_PROCESSOR has been aborted.

215000642 CM50_HIS_BEGIN Invalid BEGIN Offset
Invalid Begin_Offset for relative History call.

215000651 CM50_HIS_PART Request complete with some data errors
One or more of the requested data elements had an error on the LCN,
see the Status table entries to identify the specific problems.

215000666 CM50_HIS_END Invalid END Offset
Invalid End_offset for relative history call.

215000676 CM50_HIS_TYPE Requested History Type Not Available
History type argument is not a valid code number. Through TDC
release 300, History type ranges from 0 to 5.

215000682 CM50_HIS_TAG Requested Tag is Not Historized
The identified point.parameter is not in any History Group

215000692 CM50_HIS_HM Unable to access History Module
History node is not configured on the LCN or has failed.

215000716 CM50_HIS_TIME Request Timed Out -- retry
History module remained busy servicing other requests.

215000722 CM50_HIS_QUEUE History Request Queue id full -- retry
A maximum of 4 History requests can be pending concurrently.

215000732 CM50_HIS_OFFSET Invalid Begin/End Offsets

CM50S User Manual A-11 7/93

A.2

215000746 CM50_HIS_ARRAY Array Size is too Small
Values array is not large enough to hold the returned number of history
values. The arrays should be dimensioned to hold (number_of_values
times number of points in DDT) values.

215000756 CM50_HIS_STATE ACP not in RUN state
The ACIDP named in the call (or connected to the calling ACP if not
named in the call) is not in RUN state because its ACP is not active or
the ACIDP is concurrently.processing another data access request, or
DDT for a Get data request was built for Output or History.

215000762 CM50_HIS_ACP ACIDP not found
(Obsolete error code, ACIDP no longer required for History calls)

215000802 CM50_LAX_MONV Invalid Month in VAX date
215000812 CM50_LAX_MONL Invalid Month in LCN date
215000826 CM50_LAX_WRITV Numeric to ASCII conversion error

(Obsolete error code)
215000836 CM50_LAX_READV ASCII to Numeric conversion error

Date/time argument contains a non-numeric character.
215000842 CM50_LAX_NVAL Invalid Number of Values requested

Number of history values must be between 1 and 262. Note: The
Number_of_Values argument should be reinitialized before each call; a
previous, unsuccessful call could change this variable to zero.

215000852 CM50_LAX_UNIT Invalid History Units specified
For shift or user-averages, the seconds_in_units argument does not
allow for a valid calculation of the time span to be retrieved.

215000866 CM50_LAX_MATH Binary Math error
Valid Begin and End times could not be calculated from the specified
arguments.

215000876 CM50_LAX_CONA VMS to LCN ASCII conversion error
Invalid format for a VMS date/time variable.

215000882 CM50_LAX_ASCII ASCII to binary conversion error
Invalid ASCII Date/Time value.

215000892 CM50_LAX_BINARY Binary to ASCII conversion error
Binary Time value cannot be converted to a valid Date/time.

215000906 CM50_LAX_ARGRNG Argument out of Range
cg_port_num must be between 1 and 4, or priority must be 1 or 2.

215000916 CM50_LAX_MONTHR Month out of Range
Month portion of date must be between 1 and 12.

215000922 CM50_LAX_BADOFF Invalid History Offset
Negative offsets are not allowed in calls that specify a
common_start_time.

215000932 CM50_LAX_HISTYP Invalid History Type
215000946 CM50_LAX_TAG Invalid external tagname format

Tag cannot be parsed into Point.Parameter(index).
215001002 CM50_FIL_MISS Unable to access disk file

Could not open a required file on disk. For ACP operations, the
CM50$CONTROL:ACP.TABLE is unavailable, so the change to the
ACP Status table could not be checkpointed.

215001012 CM50_FIL_OP Invalid FileAccess Operation
Unable to access a DDT internal file. Make sure that the logical
directory CM50$DDT is properly defined.

215001026 CM50_FIL_TYP Invalid FileAccess File type
(Obsolete error message)

CM50S User Manual A-12 7/93

A.2

215001036 CM50_FIL_II Attempt to write to a .II file
The .II extension is reserved for DDTs, it cannot be used when storing
an MPL to disk.

215001042 CM50_FIL_DDTBL DDT not found in system DDT table
Named DDT is not installed, or the CM50$CONTROL:
TABLE_NAMES.NM file has been corrupted.

215001052 CM50_FIL_SLEEP Unable to wake CM50_FileAccess
(obsolete error code)

215001316 CM50_FIL_OPER Invalid FileAccess Operation
Another user is holding the DDT Names Table file open, blocking
concurrent DDT builds and deletes.

215001322 CM50_FIL_TYPE Invalid File Type
Requested file is not a valid MPL or DDT file. Check the file name.

215001332 CM50_FIL_NDDT Invalid DDT Number
Requests for DDTs by number must be between 1 and the maximum
number of DDTs installed (not to exceed 20000)

215001346 CM50_FIL_UNIT Low level communication error:
(FORTRAN) Invalid File Unit used to access a file or File unit already
assigned to another file.

215001356 CM50_FIL_CLOS File is already Closed
Request to close a file that is not currently open.

215001402 CM50_FIL_DDT DDT file not found
The referenced DDT is not found on disk. For a Delete request, this
means either that the DDT has been deleted previously or its name is
misspelled. For other requests, either a file was erroneously deleted or
the logical CM50$DDT is not pointing to the correct directory.

215001492 CM50_FIL_NAM DDT name doesn't match source file name
(obsolete error code -- this is now permitted)

215001506 CM50_DDT_NONAM DDT name must be specified
215001516 CM50_DDT_TIME DDT build request timed out

The LCN data access did not return information on all points in the DDT
or MPL definition.

215001522 CM50_DDT_SRCERR DDT built with Source Errors
read the error file: CM50$DDT:ddtname.ER for details.

215001532 CM50_DDT_COM No response from communication handler
The CM50_PKT_PROCESSOR has been aborted.

215001546 CM50_DDT_OPEN File open failure
Unable to open an internal DDT or MPL file. Check the requested file
name.

215001556 CM50_DDT_READ Error in reading system DDT file
Most likely, the requested MPL file does not have the correct format.
Check the file name in the IDB argument.

215001562 CM50_DDT_WRIT File update failed for DDT_IN_CIU file
Improper file protections or disk corruption in the CM50$CONTROL
directory.

215001571 CM50_DDT_DELE Delete attempt failed for binary file
File has already been deleted, or VMS file protections are set to block
deletion of DDT or MPL file.

215001586 CM50_DDT_SOURCE Unable to find DDT source file
Check specified file path and protections.

215001596 CM50_DDT_USE DDT is currently in use
Only one user/operation may alter a DDT or use it for data access at a
time.

CM50S User Manual A-13 7/93

A.2

215001602 CM50_DDT_DISAR DDT is in disarray and must be rebuilt
DDT build operation had been aborted in midstream.

215001612 CM50_DDT_SRCFIL Error in reading DDT source file
Specified source file does not have the proper format or file access
protection.

215001626 CM50_DDT_CGFUL CG Resident Table is full
A maximum of 40 DDTs may be installed as resident in each CG.

215001636 CM50_DDT_CGMEM Insufficient CG memory space available
215001642 CM50_DDT_CGDUP DDT is already CG resident

Redundant request to install a DDT as CG resident.
215001652 CM50_DDT_NAMLEN DDT name cannot exceed 9 characters
215001666 CM50_DDT_EXIST DDT is already built

To modify an existing DDT the REBUILD flag or command option
must be set.

215001676 CM50_DDT_QUEUE DDT processing queue is full
A CG can process a maximum of 10 DDT data requests concurrently.

215001682 CM50_DDT_INSTAL DDT is built, not CG resident
215001692 CM50_DDT_INCOM DDT is incomplete

The DDT build request had returned errors. The DDT cannot be used
for data transfer until those errors are corrected.

215001706 CM50_ACP_PATH ACP program file not found
The ACP needs to be reinstalled, specifying the correct full pathname of
the executable program file. If no directory was specified when the
ACP was installed, CM50S tries to read the .EXE file for the named
ACP from the CM50$ACP logical directory.

215001716 CM50_ACP_USED ACIDP is connected to another ACP
Connect the ACP to a different ACIDP or disconnect the ACIDP from
the other ACP before proceeding.

215001722 CM50_ACP_USE ACP entry is locked by another user
Concurrent use of an installed ACP by multiple processes is not
permitted.

215001732 CM50_ACP_LOCK ACP table is locked by another user
Multiple users are attempting to add or delete entries from the ACP
Status Table concurrently.

215001746 CM50_ACP_ARG Invalid ACP installation argument
215001756 CM50_ACP_MISS ACP is not installed

The requested ACP name is not found in the ACP status table.
215001762 CM50_ACP_DUP ACP name duplicates another ACP entry

Each ACP must be assigned a unique name when it is installed.
215001772 CM50_ACP_FUL ACP-ACIDP table is Full

The maximum number of ACPs (1000) has already been installed, or
the VMS disk quotas/file protection is preventing the addition of a new
entry in the CM50$CONTROL:ACP.TABLE file.

215001786 CM50_ACP_EXEC ACP is currently Executing
The installed options of an ACP cannot be changed while it is running.
If a change is needed, DEACTIVATE the ACP first.

215001796 CM50_ACP_MODE Invalid program installation mode
ACP installation mode must be 'N','R', or 'T'.

215001802 CM50_ACP_LIST Invalid number of ACPs requested
The status of a maximum of 400 ACPs can be retrieved in one list, and
the highest ACP index cannot exceed 1000.

215001812 CM50_ACP_CONECT ACP-ACIDP connection attempt failed
Named ACIDP is not in the specified CG or the ACP is not installed.

CM50S User Manual A-14 7/93

A.2

215001826 CM50_ACP_ACTIV ACP activation attempt failed
The dispatcher was unable to spawn a process for the ACP. Try
activating the ACP as Remote from the ACPOPER screen to get the
specific VMS error code. Possible causes include not having the CM50
logical names available system-wide or incorrect setting of VMS
privileges or quotas.

215001836 CM50_ACP_DEACT Deactivation attempt failed
The ACP was not actually running in the VAX or the requestor does not
have sufficient privileges to abort the ACP process.

215001843 CM50_ACP_NORUN ACP was not in run state
For data transfers, the ACIDP must be in run state. Note: a data access
request temporarily changes the state to 'ACCESS' so concurrent data
requests through a single ACIDP are blocked.

215001852 CM50_ACP_PID PID is locked by another user
Multiple processes on the VAX cannot use the same process name or
PID number.

215001866 CM50_ACP_NOPT ACIDP must be named
For data stores, the ACIDP name is not optional.

215001876 CM50_ACP_DETACH ACIDP is restricted
Remote spawning of ACP and data stores requires it to be installed in
Normal mode.

215001882 CM50_ACP_INDX Start_Index for ACP is out of range
ACP index must be between 1 and the number of ACPs installed (never
exceeding 1000).

215001892 CM50_ACP_NAME Invalid ACP name
ACP names must be legal VMS process names.

215001906 CM50_ACP_PRIOR Invalid priority for an ACP
The VMS priority for an ACP must be between 0 & 30.

215001916 CM50_ACP_DISC_FAIL ACP/ACIDP disconnect failed
Communications with the CG has failed.

215001922 CM50_DDT_DISC_FAIL DDT/ACIDP disconnect failed
Communications with the CG has failed or the DDT was not connected
to the named ACP/ACIDP combination.

215001932 CM50_ACP_CONN ACP already connected to ACIDP
Either the ACIDP or the ACP already has a connection.

215001946 CM50_ACP_PRIV User not authorized for required privilege
See system administrator to ensure that your user registration includes
the appropriate privileges and rights identifiers.

215001956 CM50_ACP_UIC No UIC found for named user
Either an attempt to install or execute an ACP using an account name not
registered as a VMS user or the user is not authorized to use other
account.

215002012 CM50_COM_ACPI ACP terminated by external request
ACP was Deactivated by an operator or DCL STOP/ID was issued for
the ACP.

215002116 CM50_COM_SIZE Low level communication error
Invalid arguments in internal CGPIO call.

215002122 CM50_COM_FUNC Invalid CGPIO function code
Invalid arguments in internal CGPIO call.

215002132 CM50_TBL_PRSW Invalid Print Switch value
Invalid arguments in internal CGPIO call.

215002146 CM50_TBL_CGST Unable to Map CG status table
CM50S shared images are not installed.

CM50S User Manual A-15 7/93

A.2

215002156 CM50_TBL_ACP ACP Table is full
The maximum number of permitted ACPs (1000) has already been
installed or the maximum number of concurrent ACP connections are in
use by active processes.

215002162 CM50_TBL_PID Error in obtaining a Process Id
Internal error in communications processing.

215002172 CM50_TBL_CG Invalid CG Port Number
Request for a CG port number that is not configured for this system.

215002186 CM50_COM_PACK Error Detected by Packet Processor
Internal error in communications processing.

215002196 CM50_COM_SYS VMS system service call failed
Internal error in communications processing may be the result of starting
CM50S from an unprivileged account or a user calling CM50S
functions without having the VMS "SYSLCK" privilege active.

215002202 CM50_COM_VAX VAX/VMS system error
215002236 CM50_COM_CG CG system error
215002316 CM50_COM_CTIME Message Confirmation Time Out

CG did not confirm the receipt of a transaction within the configured
time out period.

215002322 CM50_COM_RTIME Message Response Time Out
VAX did not receive a data buffer from the CG in response to a request
within the configured time out period.

215002332 CM50_COM_ETIME End Message Time Out

215002346 CM50_COM_BUFF Buffer too Small
Insufficient memory allocated for the data buffer.

215002356 CM50_COM_REST CG Restart in Progress
Data cannot be transferred until synchronization of CM50S and CG
databases is complete.

215002362 CM50_COM_NULL Null error
Suspect a communications hardware error.

215002372 CM50_COM_WAIT Wait for response
215002386 CM50_COM_SEG Communications Packet Segmentation error

Low level communications error.
215002986 CM50_COM_UNK Unidentified Communications error
215003116 CM50_TX_NS Non-supported Transaction code

CM50 is attempting a function which is not supported by the
TDC release currently on the LCN. Most likely, an attempt has been
made to access a new release 400 feature on TDC release 300 or earlier.

215003122 CM50_TX_UNK Invalid Transaction code
CGPIO was called using specifying an undefined Transaction.

215003202 CM50_PTR_START Invalid Start Pointer
Starting Offset/pointer is out of range.

215003212 CM50_PTR_END Invalid End Pointer
Ending Offset/pointer is out of range.

215003226 CM50_PTR_SEQ End pointer Greater than Start pointer
215003236 CM50_PTR_RANG Invalid Range
215003242 CM50_PTR_INC Invalid Increment pointer
215003316 CM50_PTR_HIST Invalid History Type

History type argument does not specify a value type retrievable from the
History module.

215003322 CM50_PTR_LIST Invalid List Indicator
Point list argument is in error or number_of_values specified for a Point
List call exceeds the number of points defined in the Point list array.

CM50S User Manual A-16 7/93

A.2

215003402 CM50_DDT_START Invalid Start Index
Starting Offset/pointer is out of range.

215003412 CM50_DDT_END Invalid End Index
Ending Offset/pointer is out of range.

215003426 CM50_DDT_SEQ End index Greater than Start index
215003516 CM50_LAX_YEAR Invalid Year

Check format of Date argument.
215003522 CM50_LAX_MONTH Invalid Month

Check format of Date argument. Depending on the call, the month
component must be either a number between 01 and 12, or a 3-character
(upper case) abbreviation.

215003532 CM50_LAX_DAY Day must be between 1 & 31
215003546 CM50_LAX_HOUR Hour must be between 0 & 23
215003556 CM50_LAX_MINUTE Minute must be between 0 & 59
215003562 CM50_LAX_SECOND Second must be between 0 & 59
215003986 CM50_PTR_UNK Unidentified Format error

CM50S could not interpret the transaction buffer contents.
215004012 CM50_FTF_FILMGR File Manager error

Check mgr_status (Appendix A.4 for details)
215004026 CM50_FTF_BUSY File Transfer utility is busy

Another File Transfer session is in progress
215004036 CM50_FTF_XFRHDR File Transfer internal error

error in buffer header -- call Honeywell TAC
215004042 CM50_FTF_EXISTS File name already in use
215004052 CM50_FTF_MISMATCH File Transfer internal error

error in buffer contents -- call Honeywell TAC
215004066 CM50_FTF_BFRSIZ File Transfer internal error

error in buffer size -- call Honeywell TAC
215004076 CM50_FTF_DATA File Transfer data exception error
215004082 CM50_FTF_RECSIZ File Transfer internal error

error in record size -- call Honeywell TAC
215004092 CM50_FTF_RECNBR File Transfer internal error

error in internal record number -- call Honeywell TAC
215004106 CM50_FTF_READ File Transfer read error
215004116 CM50_FTF_FILNME CG detected Invalid file name

path name not valid on the LCN
215004122 CM50_FTF_ABORT Requested Abort is complete

Transfer was aborted by user Abort File Transfer request
215004132 CM50_FTF_WRITE File Transfer write error
215004146 CM50_FTF_UTILITY Utility Manager error

Check the MGR_STATUS value (Appendix A.4) for details
215004156 CM50_FTF_DATAOUT Data Out file has not been established

Use the Change Dataout Status function
215006562 CM50_FTF_MISARG Missing argument
215006572 CM50_FTF_INVFUNC Invalid function code
215006586 CM50_FTF_INVCG Invalid CG Identifier

CG port number must be 1 to 4 and must be connected to an LCN
running release 400 or later.

215006596 CM50_FTF_INVFC Invalid file code
215006602 CM50_FTF_INVDOF Invalid data out function

DO_FUNC argument must be 0, 1 or 2
215006612 CM50_FTF_INVDFC Invalid directory function

DIR_FUNC argument must be 0 or 1

CM50S User Manual A-17 7/93

A.2

215006626 CM50_FTF_ATTR_ACC Attribute File access error
Attribute file is missing or corrupted. The search for the LCN Attribute
file is based on the VAX source file name. Only one or two character
LCN suffixes following the last underbar and preceding the “.LA;1”
VAX file extension are supported.

215006636 CM50_FTF_ATTR_REV File revision mismatch with Attributes
Data file has been revised so that is does not match the attributes file

215006642 CM50_FTF_ATTR_VER File Version mismatch with Attributes
Version numbers of the data and attribute file on the VAX do not match

215006652 CM50_FTF_SRC Source file OPEN error
Could not open the source file (path name or protections)

215006666 CM50_FTF_CONFIG CM50$CONTROL:FTF_CONFIG.DAT access error
The file identifying extensions for modifiable file extensions is missing
or corrupted.

215006676 CM50_FTF_TYPE Invalid record type detected
format of data record does not match type specified by the attribute file

215006682 CM50_FTF_FFB File Transfer internal error
error in file block -- call Honeywell TAC

215006692 CM50_FTF_RCVHDR File Transfer internal error
error in header contents -- call Honeywell TAC

215006706 CM50_FTF_DSTO Destination file open error
could not open requested file (VAX pathname, insufficient disk space or
protections)

215006716 CM50_FTF_ATTO Attribute file already exists
use a different name for the destination file

215006722 CM50_FTF_ATTRO Attribute file open error
could not open the attribute file (VAX pathname, insufficient disk space
or protections)

215007996 CM50_FTF_UNK_FIL Unable to transfer file
CM50S communications failure

CM50S User Manual A-18 7/93

A.3

A.3 CM50S SYSTEM STATUS MESSAGES

Numerous diagnostic messages are generated by the CM50S link-level software that are not
returned to ACPs as return status codes. These messages are displayed on the CM50S
operator console and stored in the VMS operator log file if logging is enabled. These
messages are displayed in the format

product - severity - task name - CG number
information further detailing the error

• The product is CM50S.
• Severity is a single character code: (I)nformational, (W)arning, (S)evere or (F)atal.
• The task name describes the ACP or CM50S module reporting the condition.
• The CG number is the number of the CG data link affected

Message descriptions below use the following notation:

XXXX—text that is dependent on the message.
0000—a number which is dependent on the message.
CG#n—will appear as CG#1, CG#2.

A.3.1 Informational Messages

(I)nformational messages announce an event which is normal, but may be of interest. No
user interaction is required.

Message: CM50S-I-CM50_PKT_PROC CG#n
LINK ACTIVE

Description: The HDLC controller has detected that the link became active after startup.

Message: CM50S-I-CM50_PKT_PROC CG#n
LINK REINITIALIZATION COMPLETE

Description: The HDLC controller has reinitialized the communication link.

Message: CM50S-I-CM50_PKT_PROC CG#n
STATION ACTIVE

Description: The HDLC controller detected that the station became active after startup.

Message: CM50S-I-CM50_PKT_PROC
PACKET PROCESSOR EXITING

Description: The link-level software is exiting because of a reload or restart of CM50S
software.

Message: CM50S-I-CM50_PKT_PROC CG#n
PROCESS DID NOT ABORT
PROCESS DELETED

Description: An abnormal event occurred causing CM50S to abort the current request. A
previous error message should have been logged detailing the problem. This
message indicates that during message abort, an ACP did not terminate as
expected and was stopped by CM50S.

Message: CM50S-I-CM50_PKT_PROC CG#n ROTATE WINDOW UNBLOCKING
Description: Internal package information only; no action is required.

CM50S User Manual A-19 7/93

A.3.2

A.3.2 Warning Messages

(W)arning messages indicate an abnormal condition has been detected but normal CM50S
operation can continue. No user interaction is required, however, messages may be lost
for one or more ACPs awaiting data from the CG link. One abnormal condition may result
in a series of warning messages being generated. A high frequency of abnormal condition
reporting should be investigated as a possible indicator of CM50 hardware failure.

Message: CM50S-W-CM50_PKT_PROC
UNSOLICITED MSG TIMEOUT -
XXXXXXXXXX MSG DISCARDED

Description: An unsolicited message was received from the CG, but no program requested
it before the timer expired.

Message: CM50S-W-CM50_PKT_PROC CG#n
RCVD INVALID XXXXXXXXXX
REQUEST STATE: XXXX

Description: A message was received when it was not expected for the current state.

Message: CM50S-W-CM50_PKT_PROC CG#n
RECEIVED NEGATIVE CONFIRMATION
FOR ACP 00000000

Description: The CG sent a NAK indicating the last message was received in error. The
message is automatically retransmitted.

Message: CM50S-W-CM50_PKT_PROC CG#n
ACP NOT FOUND FOR HOST TASK ID: 0000

Description: A message was received, but the ACP was not available to accept it. The
ACP has aborted or has been stopped.

Message: CM50S-W-CM50_PKT_PROC CG#n
ACP 00000000 - RCVD INVALID
XXXXXXXXXX MSG STATE: XXXX

Description: The first block of a message was received, but the requesting ACP is not
ready to receive it.

Message: CM50S-W-CM50_PKT_PROC CG#n
INVALID MSG RECEIVED FOR ACP 00000000
- TRANSACTION CODE ERROR IN
BLOCK 00 XXXXXXXX

Description: A message was received but its structure is inconsistent. Other associated
error messages should give additional information regarding the
inconsistency.

Message: CM50S-W-CM50_PKT_PROC CG#n
INVALID MSG RECEIVED FOR ACP 00000000
- NUMBER OF WORDS FIELD OUT OF
RANGE IN BLOCK 00 : 0000

Description: The number of blocks in the received message is not within the range
specified by HDLC protocol.

CM50S User Manual A-20 7/93

A.3.2

Message: CM50S-W-CM50_PKT_PROC CG#n
INVALID MSG RECEIVED FOR ACP 00000000
- "BLOCKS IN MSG"
ERROR IN BLOCK 00 : 0000

Description: The message received contained a block number that is inconsistent.

Message: CM50S-W-CM50_PKT_PROC CG#n
INVALID MSG RECEIVED FOR ACP 00000000
- BLOCK NUMBER ERROR IN
BLOCK 00 QUE ENTRY 00 : 0000

Description: The blocks of a multiblock message were received out of sequence.

Message: CM50S-W-CM50_PKT_PROC CG#n
INVALID MSG RECEIVED FOR ACP 00000000
- CGID ERROR IN BLOCK 00 : 0000

Description: The cg field of the received message did not contain the same cg number in all
blocks of the message.

Message: CM50S-W-CM50_PKT_PROC CG#n
INVALID MSG RECEIVED FOR ACP 00000000
-HOST TASK ID ERROR IN BLOCK 00 : 0000

Description: The host task id of the received message did not contain the same number in
all blocks of the multiblock message.

Message: CM50S-W-CM50_PKT_PROC CG#n
INVALID MSG RECEIVED FOR ACP 00000000
- MESSAGE TAG ERROR IN BLOCK 00 : 0000

Description: The message sequence number of the received message did not contain the
same number in all blocks.

Message: CM50S-W-CM50_PKT_PROC CG#n
XXXXXXXX COMMAND REJECTED

Description: The HDLC controller rejected a command. This error should be reported to
CM50S support personnel.

Message: CM50S-W-XXXXXXXX CG#n
PKT DID NOT CLEANUP THE CGST

Description: An ACP terminated abnormally leaving corrupted internal data structures.
The data structures are repaired on the next ACP message request, so no
further action is required.

Message: CM50S-W-XXXXXXXX CG#n
CGST NOT CLEANED-UP

Description: An ACP terminated abnormally leaving corrupted internal data structures.
CM50S attempts to correct the situation and should report the offending
reason.
NOTE: The terminated ACP should be identified and fixed. The ACP that
terminated abnormally and caused the problem is NOT the ACP identified in
this message. The XXXXXXX in this message refers to the next ACP that
attempted to send a message and encountered the corrupted data structures.

Message: CM50S-W-XXXXXXXX CG#n
PARTIAL CGST CLEANED-UP

Description: See above.

CM50S User Manual A-21 7/93

A.3.2

Message: CM50S-W-XXXXXXXX CG#n
ACP DELETION DURING SEGMENTATION

Description: The following five messages indicate possible reasons for the internal data
structure corruption errors described above.

Message: CM50S-W-XXXXXXXX CG#n
ACP DELETED BEFORE START OF TRANSMISSION

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ACP DELETED DURING TRANSMISSION

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ACP DELETED DURING WAIT FOR CONFIRMATION

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ACP DELETED AFTER MSG CONFIRMATION

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
Unknown ACP termination state

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
CGPIO BUFFER TOO SMALL FOR INCOMING
DATA: BUFSIZE = 0000 WORDS

Description: The buffer size argument passed to the link-level software was not large
enough to contain the message received.

Message: CM50S-W-XXXXXXXX CG#n
UNABLE TO PRINT MESSAGE -
ERROR LOCKING DUMP FILE
ERROR %X 00000000

Description: The diagnostic dump file could not be locked to dump a message. It can be
locked by a user viewing it with an editor.

Message: CM50S-W-XXXXXXXX CG#n
UNABLE TO PRINT MESSAGE - UNABLE TO OPEN DUMP MSG FILE,
STATUS = %X' 00000000

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
UNABLE TO PRINT MESSAGE - ERROR UNLOCKING DUMP FILE'
ERROR 00000000

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ERROR MAPPING TO CGST TABLE

Description: The XXXXXXX ACP was aborted because of a VMS system service failure.
The failure code was reported back to the ACP. Clues to the nature of the
failure can be found using the error codes returned to the ACP.

CM50S User Manual A-22 7/93

A.3.2

Message: CM50S-W-XXXXXXXX CG#n
ERROR REQUESTING ACP PID

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ERROR LOCKING TABLE NAME: XXXXXXXX
ERROR %X' 00000000

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ERROR UNLOCKING TABLE NAME: XXXXXXXX
ERROR %X' 00000000

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ERROR LOCKING CGST_CURRENT_HTID
ERROR %X' 00000000

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ERROR UNLOCKING CGST_CURRENT_HTID
ERROR %X' 00000000

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ERROR LOCKING TABLE NAME: XXXXXXXX
ERROR %X' 00000000

Description: See above.

Message: CM50S-W-XXXXXXXX CG#n
ERROR UNLOCKING TABLE NAME: XXXXXXXX
ERROR %X' 00000000

Description: See above.

Message: CM50S-W-XXXXXX
NON-ZERO FORWARD LINK

Description: An internal problem has been detected in the CM50S data structures. This
warning is always followed by a fatal packet processor message. This error
should be reported to CM50 support personnel.

Message: CM50S-W-XXXXXX
NON-ZERO BACKWARD LINK

Description: See above.

Message: CM50S-W-XXXXXX
ERROR APPENDING PACKET TO QUEUE
ERROR - %X 00000000

Description: See above.

Message: CM50S-W-XXXXXX
ERROR REMOVING PACKET FROM QUEUE
ERROR - %X 00000000

Description: See above.

CM50S User Manual A-23 7/93

A.3.3

Message: CM50S-W-XXXXXX
ATTEMPT TO REMOVE A PACKET FROM AN
EMPTY QUEUE

Description: See above.

Message: CM50S-W-XXXXXX
ERROR WAKING UP PACKET PROCESSOR
PROCESS ERROR - %X 00000000

Description: See above.

A.3.3 Severe Messages

A (S)evere message indicates that a serious problem has been detected impacting the
performance of the indicated CG link. In an attempt to recover the link, reinitialization is
automatically initiated. All ACPs awaiting data from the affected CG are aborted and must
be restarted.

Message: CM50S-S-CM50_PKT_PROC CG#n
ACP 00000000 - MESSAGE TRANSMIT
TIMEOUT

Description: The message to be transmitted for ACP with process id 00000000 was not
transmitted within the specified time. The link is probably down.

Message: CM50S-S-CM50_PKT_PROC CG#n
ACP 00000000 - MESSAGE CONFIRM
TIMEOUT

Description: Message confirmation for the last message sent by process 0000000 was not
received within the specified time.

Message: CM50S-S-CM50_PKT_PROC CG#n
ACP 00000000 - RESPONSE TIMEOUT

Description: The response to the last message sent by process 0000000 was not received
within the specified time.

Message: CM50S-S-CM50_PKT_PROC CG#n
ACP 00000000 - END OF MESSAGE TIMEOUT

Description: The last block of a multiblock message response was not received within the
specified time.

Message: CM50S-S-CM50_PKT_PROC CG#n
OUTGOING BLOCK NUMBER OUT OF SEQUENCE
Lstblk - 0000
Curblk - 0000
Lstnum blk - 0000
Curnum blk - 0000
Lst htid - 0000
Cur htid - 0000
Lst ACP - 0000
Cur ACP - 0000

Description: This message provides diagnostic information when an outgoing message
contains conflicting information.

CM50S User Manual A-24 7/93

A.3.3

Message: CM50S-S-CM50_PKT_PROC CG#n
OUTGOING NUMBER BLOCKS IS INCORRECT
Lstblk - 0000
Curblk - 0000
Lstnum blk - 0000
Curnum blk - 0000
Lst htid - 0000
Cur htid - 0000
Lst ACP - 0000
Cur ACP - 0000

Description: See above.

Message: CM50S-S-CM50_PKT_PROC CG#n
OUTGOING NUMBER WORDS IS INCORRECT
Num words - 0000
Lstblk - 0000
Curblk - 0000
Lstnum blk - 0000
Curnum blk - 0000
Lst htid - 0000
Cur htid - 0000
Lst ACP - 0000
Cur ACP - 0000

Description: See above.

Message: CM50S-S-CM50_PKT_PROC CG#n
OUTGOING DATA SIZE IS INCORRECT
Data size - 0000
Num words - 0000
Lstblk - 0000
Curblk - 0000
Lstnum blk - 0000
Curnum blk - 0000
Lst htid - 0000
Cur htid - 0000
Lst ACP - 0000
Cur ACP - 0000

Description: See above.

Message: CM50S-S-CM50_PKT_PROC CG#n
RETRY LIMIT EXCEEDED

Description: CM50S has attempted to retransmit a message, but has exceeded the retry
count.

Message: CM50S-S-CM50_PKT_PROC CG#n
FLAG TIMEOUT

Description: The HDLC controller has detected that flag synchronization has been lost.
The link is probably down.

Message: CM50S-W-CM50_PKT_PROC CG#n
UNKNOWN ICP EXCEPTION PACKET RECEIVED
CONTROL CODE - 00000000

Description: An unknown message has been received from the HDLC controller. This
warning should be reported to CM50 support personnel.

CM50S User Manual A-25 7/93

A.3.4

Message: CM50S-S-CM50_PKT_PROC CG#n
LINK INACTIVE

Description: The HDLC controller has detected that the physical link is inactive. The link
is probably disconnected.

Message: CM50S-S-CM50_PKT_PROC CG#n
STATION INACTIVE

Description: The HDLC controller has determined that the station is inactive. The link is
probably down.

Message: CM50S-S-CM50_PKT_PROC CG#n
STATION HAS BEEN RESET

Description: The HDLC station has been reset at a time other than startup. This message
should be reported to CM50 support personnel.

Message: CM50S-S-CM50_PKT_PROC CG#n
LINK REINITIALIZATION IN PROGRESS

Description: The link-level software is reinitializing the HDLC link. This is usually caused
by a previously reported severe condition.

A.3.4 Fatal Messages

A (F)atal message indicates that a very serious problem has been detected and must be
investigated. A fatal error message is generated only as the result of a nonrecoverable error
being detected in the CM50S software, the VMS operating system, or the CM50 hardware.
CM50S software is left in a nonfunctional state and must be stopped and restarted. Any
time a fatal error message is displayed these steps should be followed:

(1) Examine the CM50S operator console and/or the VMS system operator log file for
possible information relating to the problem. If a VMS system operator log file is
available, copy it to the directory CM50$LOG.

(2) Save the entire contents of the directory CM50$LOG for later analysis by CM50S
support personnel.

(3) Contact CM50S support personnel, if possible, before attempting to stop and restart
CM50S.

Message: CM50S-F-CM50_PKT_PROC
ERROR READING ICP XXXX - %X 0000000

Message: CM50S-F-CM50_PKT_PROC
PACKET RECEIVED WITH INVALID LINK ID.
LINK ID: 0000
STATION ID: 0000

Message: CM50S-F-CM50_PKT_PROC CG#n
ERROR POSTING READ TO ICP XXXX - %X 00000000

Message: CM50S-F-CM50_PKT_PROC
ERROR IN WRITE TO ICP XXXX - %X 00000000

CM50S User Manual A-26 7/93

A.3.4

Message: CM50S-F-CM50_PKT_PROC CG#n
ERROR RESETING ICP XXXX - %X 00000000

Message: CM50S-F-CM50_PKT_PROC CG#n
IOSB ERROR RESETING ICP %X 00000000

Message: CM50S-F-CM50_PKT_PROC
PACKET PROCESSOR EXITING -
DUMP FILE CREATED
STATUS - %X 00000000

Description: The low level communication module has exited, caused by a fatal error. A
dump file has been created for diagnostic purposes. CM50S must be
restarted.

Message: CM50S-F-CM50_PKT_PROC
ICP WRITE OVERLOAD

Message: CM50S-F-CM50_PKT_PROC
ERROR POSTING WRITE TO ICP XXXX %X 00000000

Message: CM50S-F-CM50_PKT_PROC
Error locking table: XXXXXXXX

Message: CM50S-F-CM50_PKT_PROC
Error unlocking table name: XXXXXXXX

Message: CM50S-F-CM50_PKT_PROC
ERROR SETTING 1 SECOND TIMER

Message: CM50S-F-CM50_PKT_PROC
ERROR MAPPING TO CGST TABLE

Message: CM50S-F-CM50_PKT_PROC
ERROR REQUESTING PACKET PROCESSOR PID

Message: CM50S-F-CM50_PKT_PROC CG#n
ERROR ASSIGNING CHANNEL TO ICP

Message: CM50S-F-CM50_PKT_PROC CG#n
ERROR POSTING READ TO ICP XXXX

Message: CM50S-F-CM50_PKT_PROC CG#n
ERROR WAKING UP PROCESS
PID - %X 00000000

CM50S User Manual A-27 7/93

A.4

A.4 FILE TRANSFER MANAGEMENT STATUS CODES

A.4.1 LCN File Manager Status codes

When an LCN File Transfer request has a return_status of CM50_FTF_FILMGR
(215004012) then the specific problem is identified by the mgr_status code:

0 Transfer in progress
1 End of File
2 Timeout expiration
3 Data hard error
4 FAB hard error
5 Directory hard error
6 Inconsistent command
7 Device timeout
8 Invalid command
9 Invalid LRN

10 Open files exhausted
11 LRNs exhausted
12 LRN unassigned
13 File access denied
14 Device access denied
16 Incompatible option
17 Invalid file name
18 Duplicate file name
19 File not found
20 Device not found
21 Access violation
22 Invalid buffer length
26 Insufficient storage space
27 No local request class system memory
28 End of directory
31 Buffer overflow
32 Volume not mounted
34 File in use
35 Volume in use
38 Internal error
43 Size conflict
44 Invalid variable record length
46 File not open
48 Unspecified device error
49 Invalid buffer address
50 LRN not on volume
51 Success
52 Invalid volume name
53 Volume not found
54 Duplicate volume
55 Duplicate volume alias
56 Volume alias not found
57 Logical device not found
58 Duplicate logical device
59 No local request class user memory

CM50S User Manual A-28 7/93

A.4.1

60 No remote request class memory
61 Heap manager failure
62 Unimplemented function
63 Attributes incompatible
64 LRN cancelled
65 LRN failed
66 Illegal LRN deallocation
67 LDIDs exhausted
68 Invalid device ID
69 Invalid CRB Identifier
70 Unsupported feature on personality
71 Corrupted directory data
72 VVAT table full
73 Maximum tracks exceeded
74 LRN allocation denied
75 Device failed
76 Request class table error
77 Invalid request class data
78 Volume access denied
79 Invalid physical node identifier
80 Invalid file configuration revision
81 Volume alias not empty
82 Device not redundant
83 Redundant device not available
84 Illegal device state transition
85 Option not purchased
86 Invalid device address
87 Descriptors not found
88 Remote LCN has not connected to local LCN
89 Local LCN has not connected to remote LCN
90 Volume Read permission on remote LCN denied
91 Volume Read/Write permission on remote LCN denied
92 Specified remote LCN not defined
93 Not mutually connected to remote LCN

CM50S User Manual A-29 7/93

A.4.2

A.4.2 LCN Utility Manager Status codes

When an LCN File Transfer request has a return_status of CM50_FTF__UTILITY
(215004146) then the specific problem is identified by the mgr_status code:

3 Incomplete command
4 Invalid pathname
6 No files on volume
8 Invalid option
9 Invalid command format

21 Extra characters
22 Out of memory
24 Function not implemented
30 Illegal use of wildcard
32 Bad destination file size
33 Destination pathname required
34 Source file error
35 Destination file error
36 Temporary file error
37 Max files out of range
38 Invalid directory
39 Blocksize out of range
40 Destination file extension not allowed
53 Illegal path format for create
56 File manager pointer error
57 Can not rename volume on HM
63 Bad source drive number
67 Bad destination drive number
68 Destination same as source
70 Error in perform PIO
73 Memory allocation error
77 Invalid physical node number
81 Invalid drive number
82 Synchronization was initiated
91 Duplicate volume ID
92 FMD too long
94 Dismount service error
95 Not a local device
97 Physical node nonexistent
98 Cannot file HM nodes on Network
99 No running HM nodes on Network

101 Maximum memory directory files
102 Memory directory no BS needed
103 Device not present
104 Device failed
105 Device offline
106 Volume corrupted
107 Device not formatted
108 Device not mounted
109 Device resource error
110 Device synchronizing
111 Device degraded
112 Device formatting
113 Device state unknown

CM50S User Manual A-30 7/93

CM50S User Manual B-1 7/93

B

SYSTEM SOFTWARE ISSUES
Appendix B

This appendix contains information on CG-VAX system-software issues such as CG/PLNM
configuration, system startup, tuning considerations, and failure restarts.

CAUTION

Because the CM50S has virtually unlimited access to data points on the LCN, all precautions
should be taken to ensure that only qualified personnel have access to ACP installation and
modification. There is no substitute for thorough preparation and testing of application
programs.

B.1 CONFIGURATION OF A CG OR PLNM

The first step in configuring the CG/PLNM is—from a TDC 3000 Universal Station—to
modify the system NCF to include the CG/PLNM node. Refer to Network Data Entry as a
starting point if this procedure is unfamiliar. As part of LCN Nodes Configuration, you
will assign one or more Process Units to the CG (see Network Form Instructions and
Appendix E of this manual for additional information).

Additional CG/PLNM configuration entries are made through the CG Configuration
display. To reach this display, call up the Engineering Main Menu at a Universal Station
on the same LCN as the CG/PLNM, then select the "Computing Module" target. This
brings up the Computer Gateway Build and Configuration menu from which you select the
"CG Configuration" target.

Your selection of CG configuration type is controlled by the hardware used to interface
your VAX to the LCN. Select "CNI" if the connection is through a PLNM, and "CLI-
HDLC" if connection is through a CG. Additional choices you will make depend on this
selection and are explained below.

NOTE

On completion of CG/PLNM configuration (or configuration change), you must demand a CG
checkpoint, then shutdown and restore the node before the changes take effect.

The final step in CG/PLNM configuration, ACIDP and CRDP point building (see Section 4
in this manual), can wait until just before you are ready to install an ACP.

CM50S User Manual B-2 7/93

B.1.1

B.1.1 PLNM Configuration Choices

The only configuration choice for a PLNM (after selecting "CNI" on the Computer
Gateway Configuration display) is "Confirmation Timeout." Normally, you will leave this
entry at its default value of 10 seconds.

B.1.2 CG Configuration Choices

There are several configuration choices to be made for a CG (after selecting "CLI-HDLC
on the Computer Gateway Configuration display). The following values are normal for
CM50S configuration of a CG:

Time Synch Period—15 seconds
Confirm Timeout—2 seconds
Floating Point Conv—IEEE 754
Baud Rate—57600
Link Protocol—HDLC_LAPB
Station Address—CG=1
T1 Time Unit—14
N2 Count—3

B.2 ASSIGNMENT OF CG/PLNM PORTS

All CM50S communications with CG/PLNMs use a port number as an address. These
port numbers are assigned to specific Plant Network Modules or Computer Gateway
addresses through a configuration utility. This utility should be run during initial CM50S
installation and whenever a CG/PLNM is added or its address is changed. Note that
replacing the CNI board on a PLNM will change its address.

The CG/PLNM configuration utility can be executed only from the CM50_MGR or other
priviledged system account. The display and validation criteria are determined by the
communications bus type specified during CM50S installation.

The logical CM50$VER must be defined as the current release (CM50$:[R040]) and
CM50$CONFIGURATION must be defined (normally as CM50$:[CONTROL]
CONFIGURATION.DAT). The CG/PLNM configuration utility is invoked by typing:

RUN CM50$EXE:CM50_CONFIGURE_CGS

If CG/PLNM ports previously have been configured, the values from the current file are
displayed. The following function keys are active:

PF4/QUIT—Exit the utility. The disk file is not affected. Note that when the display
shows "default values," there is no configuration file on the disk.

G0/STORE—Validate and store the currently configuration data to disk. If any errors are
detected, an appropriate message is displayed. Nothing is store to disk until any error(s)
are corrected and the STORE function is pressed again.

G7/PRINT—Prints the configuration as displayed on the default printer.

PF2/HELP—Displays a brief explanation of the field where the cursor is presently located.

CM50S User Manual B-3 7/93

B.2.1

B.2.1 PLNM Ports

The configuration of Plant Network Modules connected to the VAX by the Local Area
Terminal (LAT) ethernet protocol uses the display shown below.

CONFIG LAT CONFIGURATION OF PLANT NETWORK MODULES 5 OCT 92 14:01

 CG PORT Ethernet Address Alternate Address
 Description

1: HVN_ _08002B241065 HVN_ _08002B123999
 Node 16 on Main Process LCN

2: HVN_ _08002B123456 _____________
 Node 14 on Boiler Control LCN

3: HVN_ _____________

4: HVN_ _____________

PF4 PF2 G7 G9 G0
QUIT HELP PRINT ADD_HDLC STORE

The action required is to specify which primary ethernet addresses should be assigned to
each CG port. The CG ports must be assigned sequentially. That is, CG port 2 cannot be
assigned unless CG port 1 is also assigned. The Alternate Address is used to assign other
PLNMs as failover node The ethernet address (following the "HVN_" prefix) is 12
hexadecimal characters (0-9, A-F) and needs to match the address printed on the CNI board
in the PLNM.

• Description—Used to define a LAT service broadcast message for each primary
PLNM.

• ADD_HDLC—Used to configure Computer Gateways connected from HDLC links to the
VAX.

CM50S User Manual B-4 7/93

B.2.2

B.2.2 CG Ports

The configuration of Computer Gateways connected through HDLC links involves both the
addressing of the SIMPAC communications boards and the setting of options for each port
as shown below.

CONFIG HDLC CONFIGURATION OF COMPUTER GATEWAYS 5 OCT 92 14:04

 HDLC BOARD 1 2
 Device: ZQA0 _______
 CSR: 761000 __________

 CG PORT 1 2 3 4
 Device: ZQA0 08002B123456
 Link: 2
 Station: 3
 Alt.Device: _____________ 08002B123999

 Speed: 57600 _______ ________ ________
 Modem (Y/N): N __ __ __
 timeout: 2 _______ ________ ________
 retries: 3 _______ ________ ________

Desc.1:
 2: Node 14 on Boiler Control LCN
 3:
 4:

 PF4 PF2 G7 G0
 QUIT HELP PRINT STORE

CGs can be connected to ports on one or two HDLC boards in the VAX. The installation
of these boards is described in Appendix F. The appropriate VAX address (four characters
beginning with "Z") needs to be copied as the HDLC BOARD Device. For BI bus
systems, the BI slot number must also be copied as the HDLC BOARD Node. (For QBUS
and UNIBUS systems, the corresponding CSR address is calculated from the device
address, thus does not have to be entered.) The order of the boards (1 and 2) has no
significance.

The CG Ports must be assigned sequentially. That is, CG Port 2 cannot be assigned unless
CG Port 1 also is assigned. The following fields need to be specified for each CG.

• Device—Address of the HDLC board connected to the CG. This must match one of the
displayed board device names. To configure a CG port for an ethernet connection to a
PLNM, enter the 12-character hexadecimal ethernet address (following the "HVN_"
prefix) as the device and leave the remaining fields (Link through retries) blank.

• Link—The number of the port on the HDLC board. The possible range is 0 to 3 for BI
bus and QBUS systems, and 0 to 7 for UNIBUS systems. Note that only two links on a
board can be used with transmission speeds above 19200. For BI bus and QBUS
systems, the high speed links are ports 2 and 3; for UNIBUS systems, the high speed
links are ports 6 and 7.

CM50S User Manual B-5 7/93

B.3

• Station—The logical HDLC station number must be either 1 or 3 and cannot be the
same as configured on the LCN. Normally the LCN is configured for the CLI board in
the CG to be station 1, so the HDLC board in the VAX should be station 3.

• Alternate Device—An ethernet address of a PLNM used for failover. This is used only
when the primary CG port has been configured from the PLNM configuration menu.

• Speed—The baud rate for communications. This should match the baud rate of the CG
as configured on the LCN. Legal speeds are 1200, 2400, 4800, 9600, 38400, and
57600. Normally, 57600 is used for high speed links.

• Modem—Specifies whether or not the CG is connected by fiber optic modems. "N"
indicates a normal (direct cable) connection with the clock provided by the HDLC board.
"Y" indicates that an external clock signal is being provided by modems used to extend
the permissible distance between the VAX and the CG.

• timeout—The maximum wait time (in seconds) for acknowledtement of a transmission
before retrying or returning an error. Permitted range is 1 to 255. Normally set to 2.

• retries—The number of transmision attempts to make on an outgoing transaction
before returning a transmission error to the calling application. Permitted range is 1 to
255. Normally set to 3. Be aware that a retry value of 1 means a single transmission
attempt no retry after a communications error.

• Description—Used to define a LAT service broadcast message for a PLNM or to
describe the HDLC CG ports.

B.3 CM50S SOFTWARE INSTALLATION

Release 4.0 of CM50S uses approximately 10,000 blocks (5.2 Megabytes) of disk space.
Execution requires approximately 3800 free global page table entries and four global
sections. Recommended non-standard user account quotas are ENQLM = 250 and
PGFLQUO = 20000.

CM50S installation requires that the communications be properly configured on both the
VAX and the connected CGs.

CM50S uses the standard DEC VMSINSTAL facility for installation. Detailed installation
guidelines are incorporated into the CM50S Release Notes for a specific release. Please
refer to that documentation for CM50S product installation. Familiarity with the DEC
VMSINSTAL facility is helpful but not required.

CM50S User Manual B-6 7/93

B.4

B.4 CM50S DIRECTORIES AND FILES

CM50S is controlled through a collection of logical names. All logical names, except the
distribution root directory pointer CM50$, are defined in the startup command procedure
CM50_STARTUP.COM. If the defaults established for any of the logical names are not
compatible with the directory structure on a specific system, many of the logical names can
be redirected to provide load sharing across multiple disk drives at the system manager's
discretion. A brief explanation of the most important logical names follows.

CM50$CONFIGURATION Hardware configuration data file
CM50$DRIVER Device driver root directory
CM50$DDT DDT binary files

The following control the default locations referenced if the desired file is not found in the
user's default directory and a complete pathname is not specified.

CM50$DDT_SRC DDT source files
CM50$ACP ACP executable files

For all CM50S detached processes, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR are
directed to CM50$INPUT, CM50$OUTPUT, and CM50$ERROR.

CM50$INPUT Console Input
CM50$OUTPUT Console Output
CM50$ERROR Error Logger

CM50$OPERATOR determines the operator console (OPER1, OPER2, ... OPER12) to
receive CM50S system status messages.

CM50$OPERATOR Operator Console

CM50S images and data structures

CM50$EXE CM50S executables and controlling command files
CM50$LIB User-visible include files and command files
CM50$FORMS Forms and menus
CM50$SUPPORT Honeywell support tools
CM50$EXAMPLES Source code for sample programs
CM50$CONTROL Control files
CM50_SHARE Sharable image
CM50_COMM1 Data COMMON
CM50$LOG Status Log Directory

CM50S User Manual B-7 7/93

B.4

Examine the file CM50_STARTUP.COM for additional information. For ease of
maintenance, the following local symbols, defined at the beginning of CM50_STARTUP,
are used in defining various logical names:

LOG_TABLE A local symbol controlling the table in which logical names are
installed.

CONS_OUT A local symbol controlling the assignment of SYS$OUTPUT for
CM50S control programs that run in detached processes.

CONS_INP A local symbol controlling the assignment of SYS$INPUT for
CM50S control programs that run in detached processes. Must
be directed to NL: unless otherwise directed by Honeywell
TAC.

CONS_ERR A local symbol controlling the assignment of SYS$ERROR for
CM50S control programs that run in detached processes.

ACP_OUT A local symbol controlling the assignment of SYS$OUTPUT for
ACPs running in detached processes.

ACP_INP A local symbol controlling the assignment of SYS$INPUT for
ACPs running in detached processes.

ACP_ERR A local symbol controlling the assignment of SYS$ERROR for
ACPs running in detached processes.

OPER_CONS A local symbol controlling the destination for operator
messages. Must be a number in the range 1 to 12 (denoting
OPER1 to OPER12) to designate a specific operator terminal.

VER A local symbol containing the current release I.D.

CM50S User Manual B-8 7/93

B.4

CM50S DIRECTORY & FILE SUMMARY

[.ACP] Suggested directory for installed ACP
executable files

[.ACP.SOURCE] Suggested directory for ACP source files

[.CONTROL] This directory holds the checkpoint files for
the ACP and DDT control structures. Any
editing or other DCL-level access of these
files will endanger the integrity of CM50S
operations.

ACP.DETAIL Controls the proper activation of ACPs
ACP.TABLE Checkpoint of the ACP Status Table
ACPI_PTR.DAT Pointers for the ACP Installation Log
ACPI_REC.DAT Data for the ACP Installation Log
CM50_SCHED.TBL Controls scheduled execution of jobs
CONFIGURATION.DAT Controls the configuration of CG ports
DDT_IN_CIU Controls the loading of CG-resident DDTs
FTF_CONFIG.DAT List of LCN extensions treated as modifiable

ASCII files by the LCN File Transfer facility.
TBL_NAMES.NM Checkpoint of the Installed DDT list

[.DDT] Suggested directory for installed DDT binary
files

[.DDT.SOURCE] Suggested directory for installed DDT source
files

[.DRIVER] HDLC controller drivers directory. A sub-
directory is present for each required bus type

[.ERROR_LOG] System error and diagnostic logs directory

[.R040]
CM50.DOC Internal documentation of the release level

and communications bus type
CM50S_MGRSTART.COM To start up CM50S during reboot
CM50_STARTUP.COM Interactive startup of CM50S operations
CM50_STOP.COM Orderly shutdown of CM50S operations

[.R040.BLANK_CONTROL] Blank data tables. The system can be totally
reinitialized by copying these files to the
CM50$CONTROL directory, replacing the
existing files.

[.R040.EXAMPLES] Miscellaneous system examples directory

[.R040.EXE] This directory contains the executable images
used in CM50S operations. Many of these
are system configuration and control utilities.
Only those files marked with an asterisk (*)
should be run as applications programs.

* ACPOPER.EXE Interactive ACP operations
BUILD_HDLC_STARTUP Establishes communications directives

* CGDSP.EXE Interactive CG database displays
CM50_COMM1.SHR Global shared data section

CM50S User Manual B-9 7/93

B.5

* CM50_CONFIGURE_CGS Utility to configure CG ports
CM50_FTF_SHARE.EXE Global selection for LCN File Transfer
CM50_SHED.EXE Detached process for job scheduling
CM50_SHARE.EXE Global section of subroutines
CM50_USS.EXE Internal User System Services

* DDTOPER.EXE Interactive DDT operations
DELETE.EXE Part of orderly shutdown

* FTFXFER.EXE Interactive File Transfer operations
IASDMENU.EXE Menu driver utility
INITCOM.EXE Loads Global section from checkpoint files
LLCM_SHARE.EXE Global section for communications routines

* MAKEINC.EXE Interactive Include file generator
PKT.EXE Detached process for communications
RESTART.EXE Detached process for CG Link

synchronization
SHUTDOWN.EXE Part of orderly shutdown
SPATCH.EXE Detached process for remote activation of

ACPs
STARTUP.EXE Initializes communications

* TEST_LINK.EXE Interactive utility to confirm communications

[.R040.LIB] Include files
CM50.COM User entry point to CM50S software package
ACP_COMMAND.CLD DCL interface
DDT_COMMAND.CLD DCL interface
FTF_COMMAND.CLD DCL interface to LCN File Transfer
CM50_ERROR_MSG.EXE Message Library
CM50_ERROR_MSG.MSG Text for Message Library

[.R040.FORMS] Screen display format files
[.R040.SUPPORT] Honeywell TAC support tools directory
[.R040.HELP] Help text files
[.R040.US_IO] Communications routines used by Honeywell

layered products

B.5 RESTART PROCEDURE

Responsibility for establishing communication between the CG and VAX is left to the
CG/PLNM. Whenever the CG/PLNM is freshly loaded it attempts to make a Cold Restart.
If communications with VAX are interrupted following a successful Cold Restart, the
CG/PLNM then attempts a Warm Restart.

In either instance, the major purpose of restart is to resolve any mismatch of databases
between the CG and VAX. Upon completion of restart, the VAX displays a restart
message at the operator console and the CG/PLNM begins scheduling of ACPs.

If communication is broken at any time, the CG/PLNM waits for two minutes before trying
again. Some failures may require reload of the CG/PLNM.

The restart program on the VAX is the detached process CM50_RESTART.

CM50S User Manual B-10 7/93

B.6

B.6 COMMUNICATIONS TROUBLESHOOTING

There are many conditions that will cause a COMMDOWN status to be shown at the LCN.
Following are lists of things to check for HDLC and PLNM connections:

B.6.1 Troubleshooting HDLC Communications

1) CM50S must be running. From a VAX terminal, do a SHOW SYSTEM to confirm
that the CM50_PKT_PROC process is active.

2) The Computing Module configuration at the LCN must be set up for HDLC (CM50).

3) The cable between the CG and distribution panel in VAX must connect the right port
on back of the CG (JA) with the left port on the distribution panel (channel 2 and
single CG).

4) (QBUS HDLC Only) Simpact board:
- SW0-SW3 must be pinned all 2's
- Cable in J23 for high speed link (or cable in J01 for low speed link)

5) VAX control files: If you get LINK_INIT begin and complete messages and the VAX
shows BEGIN RESTART but the COMMDOWN indication remains, then one of the
following files in the CM50$CONTROL direct may be corrupt and should be replaced
by copying the file of the same name from the CM50:[R0xx.BLANK_CONTROL]
directory:

- DDT_IN_CIU (list of CG-resident DDTs)
- TBL_NAMES.NM (list of all installed DDTs)
- ACP_TABLE (list of all installed ACPs)

6) VAX configuration file CONFIGURATION.DAT
- use port 2 or 3 for high speed link
- HDLC protocol calls for a 1 or 3 in this file and the opposite (3 or 1) at the LCN

configuration

B.6.2 Troubleshooting PLNM Communications

1) CM50S must be running. From a VAX terminal, do a SHOW SYSTEM to confirm
that the CM50_PKT_PROC process is active.

2) The Computing Module configuration at the LCN must be set up for CNI (CM50).

3) The CM50_PKT_PROC process will display messages if it is unable to properly
connect fo the LAT service.

• Verify that the hardware address specified in the configuration file is correct.

• Verify that LATCP is able to "see" external services. (This is accomplished by
executing the command $ MCR LATCP SET NODE/CONNECTIONS = BOTH.)

• Verify that the CM50_PKT_PROC has enough quota to encompass the
TTY_ALTYPAHD and TTY_TYPAHDSZ specified.

CM50S User Manual B-11 7/93

B.6.3

B.6.3 Using the LAT Protocol

Local Area Transport (LAT) is a serial transport protocol included with VMS. LAT
originally was designed to support communications between a server and a "dumb" device
in a local area network. Starting with VMS release 5.4-1, LAT has been enhanced to allow
connection-oriented serial transmission between VAX nodes. CM50S uses LAT when it is
connected to the LCN through a PLNM.

B.6.3.1 LAT Startup

Addition of the new functionality has required a completely new LAT start-up procedure.

Old sequence: SYS$STARTUP:SYSTARTUP_V5.COM called the file
SYS$STARTUP:LTLOAD.COM.

New sequence: SYS$STARTUP:SYSTARTUP_V5.COM calls
SYS$STARTUP:LAT$STARTUP.COM which calls
SYS$MANAGER:LAT$SYSTARTUP.COM.

CM50S startup requires changes to SYS$MANAGER:LAT$SYSTARTUP.COM and to
SYS$STARTUP:SYSTARTUP_V5.COM. Figure B-1 illustrates the flow of the three
files and highlights the required changes.

The SYS$STARTUP:SYSTARTUP_V5.COM file requires the node name and an identity
string to follow the invocation of SYS$STARTUP:LAT$STARTUP.COM. Normally, the
node name is the same as the DECnet node name, and the identity string shows the node
name and VMS version. The SYS$MANAGER:LAT$SYSTARTUP.COM.file requires
the following line:

$lcp set node/connections=both

This line in a slightly different form already appears in the template startup file. It needs to
be modified to appear as above.

The SYS$STARTUP:SYSTARTUP_V5.COM file needs to have LATCP program
initiation removed. LATCP is started in the SYS$STARTUP:LAT$STARTUP.COM file.
DEC recommends that this latter file not be modified by users.

B.6.3.2 LAT Control Program

The LAT control program is the utility program that you use to configure and control the
LAT protocol. Systems that join a LAT configuration are called service nodes. The
commands of interest to maintaining and configuring CM50S are:

$MCR LATCP or RUN SYS$SYSTEM:LATCP—invokes LATCP

LCP> SHOW SERVICES—displays all the services on the LAT network. A service is
offered by all nodes that are configured to accept incoming connections.

LCP> SET NODE/CONNECTIONS = INCOMING—tells this node to accept connection
requests from other nodes (incoming connections). Executing the Show
Services command will display only this node. This node cannot connect to
other nodes.

CM50S User Manual B-12 7/93

B.6.3

-1"

Figure B-1 — LAT Startup Files 6403

CM50S User Manual B-13 7/93

B.6.3

LCP> SET NODE/CONNECTIONS = BOTH—tells this node that it can both initiate and
accept connection requests. This is the proper CM50S/PLNM
configuration. Executing the Show Services command will display all
nodes on the LAT network that are offering their service.

This command must be added to the
SYS$MANAGER:LAT$SYSTARTUP.COM file so that this is the
configuration when the VAX is rebooted. If CM50S is started at or near the
time that this command is executed (i.e., at system reboot), the initial
attempt to connect to the PLNM service could fail since the service may not
yet be visible to the host node. The PLNM broadcasts its service every
minute, and when the host receives this broadcast it has visibility to the
PLNM. The CM50S software retries the connection every 15 seconds and
thus should connect to the PLNM within 1.25 minutes.

LCP> SHOW PORT—displays the current ports assigned on this node. There will be a
port assigned to the PLNM node when CM50S is running. Using the
/full option will display characteristics and counters that LATCP has
compiled about the port.

LCP> SET NODE/ENABLE = () or LCP> SET NODE/DISABLE = ()—allows
you to selectively enable and disable LAT user groups and service groups.
This allows you to optimize the load on the LTDRIVER process by filtering
messages at the Ethernet controller. This is accomplished by configuring
your node to receive only certain transmissions. By associating user group
numbers and service group number to transmission, the Ethernet controller
can ignore these transmissions at the lowest level instead of passing them to
other processes to make that determination. This is an advanced feature
used by experienced system/network managers.

The PLNM offers a service using transmission user group 0 and service
group 0. The node from which CM50S is started must be configured to
receive transmissions of this type. Again, this should be done in the
SYS$MANAGER:LAT$SYSTARTUP.COM file to ensure that this is the
default configuration after a reboot. If your node is not configured to
receive transmissions on user group 0 and service group 0, then the PLNM
service will be displayed by a Show Services command, yet the connection
will fail during a CM50S startup.

LCP> SHOW NODE—displays the current node's configuration. This information shows
the LAT Circuit Timer value, the connection configuration (i.e., incoming,
outgoing), and the enabled and disabled user and service groups.

To exit LATCP, type either EXIT or ^Z.

CM50S User Manual B-14 7/93

B.6.3

B.6.3.3 The CM50S Service

As mentioned previously, a VAX node broadcasts a service to allow other nodes to
establish a connection. The PLNM broadcasts a service using the naming convention
HVN_08002Bxxxxxx, where xxxxxx is replaced by the hardware address that is stenciled
on the top of the rt-300. After the rt-300 has initialized itself, it broadcasts this service and
is ready to accept a connection request.

If you execute a $MCR LATCP SHOW SERVICES command, the service is displayed.
This service is visible by all nodes in the LAT network; the first CM50S startup requesting
this service will have it granted. The second CM50S startup requesting a connection to this
service will have it denied. If the CM50S startup fails to connect to the service, it will retry
every 15 seconds until it is successful or CM50S is shut down.

For more than one PLNM link in the CM50S startup, one link can be successful while the
other can fail. The first link will run normally while the second retries the connection.
This retry adds only a slight overhead to the system.

If the link fails for any reason, such as a cable break or the PLNM is powered off or reset,
then CM50S will output a disconnect message and start retrying to connect. Meanwhile,
the PLNM displays a COMM DOWN state on the LCN operator station.

When connection is successful, CM50S outputs a LINK REINITIALIZATION message.
When PLNM loading starts, CM50S outputs a RESTART IN PROGRESS message.
When PLNM loading is comnplete, CM50S outputs a RESTART COMPLETE message,
and the PLNM displays an OK state. At this time the communication link is established.

B.6.3.4 LAT Communications and Performance

There are several ways to tune your LAT network to achieve higher performance for the
CM50S/PLNM connection, but the most impactive performance parameter is the LAT
Circuit Timer.

The LAT Circuit Timer is the polling interval at which the Ethernet controller samples the
LAT ports for activity. This changeable interval ranges between 10 and 1000 milliseconds.
For a CM50S/PLNM connection, the lower the timer, the higher the throughput. Note that
the lowest timer value currently supported is 20 milliseconds.

To modify the LAT Circuit Timer, you must enter LATCP and execute the following
commands from the console.

LCP> STOP NODE
LCP> SET NODE/ CIRCUIT_TIMER = 20
LCP> START NODE

These commands stop the LTDRIVER process and modify the the LAT Circuit Timer (in
this example, to a value of 20 milliseconds), then restarts the LTDRIVER process.
Remember that the nominal interval range is between 10 and 1000 milliseconds.

CM50S User Manual B-15 7/93

B.7

It is necessary to stop LAT since the timer is not a dynamic parameter. This procedure
must be done from the console since stopping the LTDRIVER process disconnects all LAT
connections to the node. Therefore it is necessary that you notify any other users on the
system to log off, or that you perform these commands during off-hours.

In addition, you will also need to add the following command to the
SYS$MANAGER:LAT$SYSTARTUP.COM file (following the SET
NODE/CONNECTIONS=BOTH command) to keep this configuration when the VAX is
rebooted:

$ LCP SET NODE/CIRCUIT_TIMER = ##

It is not necessary to stop the LTDRIVER process since it is not running at this point in the
system startup.

Lowering the Circuit Timer value has no adverse effects on performance by the rest of the
system since the Ethernet controller is its own CPU. The Ethernet controller attempts to
optimize transactions within the Circuit Timer interval by combining smaller transactions
into larger transactions and sending only one packet. Evaluation of CM50S performance
has shown that LAT handles larger transactions much more efficiently than smaller
transactions.

B.7 DATA LINK STATUS INFORMATION

The CG holds data link status information in its Processor Status data point. To view this
data, place the point $PRSTSnn (where nn is the CG node number) in a custom schematic
display. The three data-link status parameters of this point and their value meanings are

ULP_STS = IN_SERV—Communications with the VAX have been established. This
value is set when Restart is complete.

=FAILED—Communications with the VAX are broken. This value is set
when a single link or both sides of a dual link have failed.

DL1_STS = IN_SERV—Link 1 has been connected and the CG is using or trying to
use the link.

=FAILED—The CG has disconnected Link 1 because of problems.

DL2_STS = IN_SERV—Link 2 has been connected and the CG is using or trying to
use the link.

=FAILED—The CG has disconnected Link 2 because of problems.
=NOT_INST—The CG has been configured for operation on Link 1 only

(normal state for CG-VAX).

B.8 SYSTEM BACKUP

In order to enhance performance, CM50S keeps some data files open even when no
applications are accessing them. Therefore, when backing up the system, always use the
optional version of the Backup command: BACKUP/IGNORE=INTERLOCK.

CM50S User Manual B-16 7/93

CM50S User Manual C-1 7/93

C

CM50S CAPACITIES SUMMARY
Appendix C

This appendix summarizes the most important size and timing limits of the CG-VAX.

The values shown are permissible limits. The actual limits may be less depending on the
combination of elements in a given database.

CG DATABASE LIMITS

ACIDPs per CG 250
CRDPs per CG 500
CG-resident DDTs 40
Units assigned to a CG 63

VAX/VMS DATABASE LIMITS

ACPs Installed 1000
Points per Input or Output DDT 300
Points per History DDT 24
DDTs Installed 2000

ACP SCHEDULING LIMITS

Delay maximum 60 seconds
Cyclic Program Run Intervals 10 seconds minimum,

24 hours maximum
Concurrent processes (active or 47
hibernating) with connections to
a CG/PLNM

MESSAGE SIZE LIMITS

For display 60 characters
For printing 72 characters
For archiving 120 characters

CUSTOM DATA SEGMENT LIMITS

CDS Parameter names 1000 per system
CDS per ACIDP or CRDP 10

CM50S User Manual C-2 7/93

C

CG MEMORY USE ESTIMATING

There are two sets of limits that must be considered in preparing the CG database: first, the
design limits on the number of each item that is allowed; second, the amount of memory
available and the size requirements for each item.

The built-in design limits (further restricted by memory availability) are

250 ACIDPs
500 CRDPs
10 Custom Data Segments per ACIDP or CRDP
40 CG-resident DDT/IDBs
300 parameters in a DDT/IDB
63 Units assigned to a CG

The amount of memory available in the CG for database use varies by product release. See
the applicable LCN Release Guide for information about use of the CG size display to
determine memory availability. Database memory requirements follow.

ACIDP—143 words each (plus CDS requirements)
CRDP—36 words each
DDT/IDB—40 + (25*the number of items in table) words each
Custom Data Segments—three factors are involved:

• Control Structure: 80 words of control structure are added to each ACIDP or CRDP
with one or more CDS.

• Descriptor Segment: 13 +(22 times the number of parameters) words are required by
each CDS for its descriptor segment.

• Data space: CDS data use varies with the mix of parameter types.
Each Real parameter requires 2 words
Each ASCII parameter requires 12 words
Each Enumeration parameter requires 1 word
Each Self-defining enumeration requires 4 words
Each Boolean parameter requires 1 word

Process Units—300 words for each 150 points (or fraction of 150) in the same Unit.

CM50S User Manual D-1 7/93

D

CALLABLE FUNCTIONS AND PROCEDURES LIST
Appendix D

This appendix lists all the CM50S user-callable functions and procedures with cross references to
detailed descriptions elsewhere in this manual.

 Heading
Name Description (FORTRAN / Pascal / C)

CM50_ABORT_TRANSFER Abort LCN File Transfer 12.4.14/16.12.14/20.12.14
CM50_ACP_ACT Activate (run) an ACP 12.1.3 / 16.1.3 / 20.1.3
CM50_ACP_CHG_MODE Change ACP installation mode 12.1.7 / 16.1.7 / 20.1.7
CM50_ACP_CONNECT Connect an ACP to an ACIDP 12.1.5/16.1.5/20.1.5
CM50_ACP_DEACTIVATE Deactivate (abort) an ACP 12.1.4 / 16.1.4 / 20.1.4
CM50_ACP_DISCON Disconnect ACP from its ACIDP 12.1.6 / 16.1.6 / 20.1.6
CM50_ACP_INSTALL Install an ACP 12.1.1 / 16.1.1 / 20.1.1
CM50_ACP_LISTALL Get list of ACPs 12.1.9 / 16.1.9 / 20.1.9
CM50_ACP_SUM Get ACP summary 12.1.8 / 16.1.8 / 20.1.8
CM50_ACP_UNINST Uninstall an ACP 12.1.2 / 16.1.2 / 20.1.2
CM50_ACPDELAY ACP Delay 11.1.3 / 15.1.3 / 19.1.3
CM50_ATTR_LIST List LCN File Attributes 12.4.3/16.4.3/20.4.3
CM50_CG_ACIDP Get list of ACIDPs 12.3.4 / 16.3.4 / 20.3.4
CM50_CG_ADETAIL Get detailed ACIDP information 12.3.3 / 16.3.3 / 20.3.3
CM50_CG_CONFIG Get LCN configuration 12.3.5/16.3.5/20.3.5
CM50_CG_CRDP Get list of CRDPs 12.3.2 / 16.3.2 / 20.3.2
CM50_CG_RDDT Get list of resident DDTs 12.3.1 / 16.3.1 / 20.3.1
CM50_CONV_PT Convert External to Internal ID 11.2.1 / 15.2.1 / 19.2.1
CM50_CONV_PT_LIST Convert List of External IDs 11.2.2 / 15.2.2 / 19.2.2
CM50_CONV_TAG Convert External to Internal ID 11.2.1 / 15.2.1 / 19.2.1
CM50_CONV_TAG_LIST Convert List of External IDs 11.2.2 / 15.2.2 / 19.2.2
CM50_DATA_OUT LCN Dataout Status 12.4.13/16.4.13/20.4.13
CM50_DDT_BUILD Build / Rebuild a DDT 12.2.1 / 16.2.1 / 20.2.1
CM50_DDT_CONNECT Connect a DDT to an ACIDP 12.2.6/16.2.6/20.2.6
CM50_DDT_DELETE Delete a DDT 12.2.2 / 16.2.2 / 20.2.2
CM50_DDT_DETAIL Get DDT detailed information 12.2.5 / 16.2.5 / 20.2.5
CM50_DDT_DISCONNECT Disconnect a DDT from an ACIDP 12.2.7/16.2.7/20.2.7
CM50_DDT_GET DDT Get Data 10.1.1 / 14.1.1 / 18.1.1
CM50_DDT_GETGEN Generic DDT Get Data 10.1.3 / 14.1.3 / 18.1.3
CM50_DDT_GETNT DDT Get Data 10.1.1 / 14.1.1 / 18.1.1
CM50_DDT_INSTALL Install a DDT as CG resident 12.2.9 / 16.2.9 / 20.2.9
CM50_DDT_LIST Get list of DDT summaries 12.2.4 / 16.2.4 / 20.2.4
CM50_DDT_STORE DDT Store Data 10.1.2 / 14.1.2 / 18.1.2
CM50_DDT_STOREGEN Generic DDT Store Data 10.1.4 / 14.1.4 / 18.1.4
CM50_DDT_STORENT DDT Store Data 10.1.2 / 14.1.2 / 18.1.2
CM50_DDT_SUM Get DDT summary information 12.2.3 / 16.2.3 / 20.2.3
CM50_DDT_TRIGGERS Modify DDT prefetch Triggers 12.2.8/16.2.8/20.2.8
CM50_DDT_UNINST Remove a DDT from CG residency 12.2.10 / 16.2.10 / 20.2.10
CM50_DDTHIS_AVER Get History Averages (Rel. Time) 10.5.4 / 14.5.4 / 18.5.4
CM50_DDTHIS_AVERT Get History Averages (Abs. Time) 10.5.5 / 14.5.5 / 18.5.5
CM50_DDTHIS_FAST Get Fast History Snapshots (Rel.) 10.5.2/14.5.2/18.5.2
CM50_DDTHIS_FASTT Get Fast History Snapshots (Abs.) 10.5.3/14.5.3/18.5.3
CM50_DDTHIS_MNTH Get Monthly Averages (Rel. Time) 10.5.6/14.5.6/18.5.6
CM50_DDTHIS_MNTHT Get Monthly Averages (Abs. Time) 10.5.7/14.5.7/18.5.7
CM50_DDTHIS_RATE Find History Collection Rate 10.5.8/14.5.8/18.5.8

CM50S User Manual D-2 7/93

D

CM50_DDTHIS_SNAP Get History Snapshots (Rel. Time) 10.5.2 / 14.5.2 / 18.5.2
CM50_DDTHIS_SNAPT Get History Snapshots (Abs. Time) 10.5.3 / 14.5.3 / 18.5.3
CM50_FILE_CATALOG List LCN Files to Dataout 12.4.6/16.4.6/20.4.6
CM50_FILE_LIST List LCN Files & Extensions 12.4.4/16.4.4/20.4.4
CM50_GET_ASC24 Point List Get Data—ASCII 10.2.2/14.2.2/18.2.2
CM50_GET_ENUM Point List Get Data—Enumeration 10.2.2/14.2.2/18.2.2
CM50_GET_EXID Point List Get External IDs 10.2.2/14.2.2/18.2.2
CM50_GET_ID Single Point Get Data(External ID) 10.3.1/14.3.1/18.3.1
CM50_GET_INTNBR Point List Get Data—Integer 10.2.2/14.2.2/18.2.2
CM50_GET_ORD Point List Get Data—Ordinal 10.2.2/14.2.2/18.2.2
CM50_GET_PT_LIST Point List Get Data 10.2.1/14.2.1/18.2.1
CM50_GET_PTID Point List Get Internal IDs 10.2.2/14.2.2/18.2.2
CM50_GET_REALNBR Point List Get Data—Real 10.2.2/14.2.2/18.2.2
CM50_GET_STRI Point List Get String Values 10.2.2/14.2.2/18.2.2
CM50_GET_TAG Single Point Get Data(External ID) 10.3.1 / 14.3.1 / 18.3.1
CM50_GET_TIME Point List Get Time Values 10.2.2/14.2.2/18.2.2
CM50_GETMSG Get Message 10.6.1 / 14.6.1 / 18.6.1
CM50_GETPT_ID Single Point Get Data (Internal ID) 10.3.3 / 14.3.3 / 18.3.3
CM50_HIBER ACP Hibernate 11.1.4 / 15.1.4 / 19.1.4
CM50_HM_LIST List LCN Volumes/Directories 12.4.5/16.4.5/20.4.5
CM50_LCN_COPY LCN File Copy 12.4.8/16.4.8/20.4.8
CM50_LCN_DELETE LCN File Delete 12.4.11/16.4.11/20.4.11
CM50_LCN_DIRECTORY LCN Directory Maintenance 12.4.12/16.4.12/20.4.12
CM50_LCN_MOVE LCN File Move 12.4.9/16.4.9/20.4.9
CM50_LCN_READ Read File from LCN 12.4.1/16.4.1/20.4.1
CM50_LCN_RENAME LCN File Rename 12.4.10/16.4.10/20.4.10
CM50_LCN_WRITE Write File to LCN 12.4.2/16.4.2/20.4.2
CM50_MPL_GENFILE Generate Multi-Point List—Text File 10.1.7 / 14.1.7 / 18.1.7
CM50_MPL_GENINCL Create Include File for Multi-Point List 10.1.10 / 14.1.10 / 18.1.10
CM50_MPL_GENLIST Generate Multi-Point List—ID Blocks 10.1.7 / 14.1.7 / 18.1.7
CM50_MPL_GENTAGS Generate Multi-Point List—Tag Names10.1.7 / 14.1.7 / 18.1.7
CM50_MPL_GET Multi-Point List Get Data 10.1.5 / 14.1.5 / 18.1.5
CM50_MPL_READ Read Multi-Point List 10.1.8 / 14.1.8 / 18.1.8
CM50_MPL_STORE Multi-Point List Store Data 10.1.6 / 14.1.6 / 18.1.6
CM50_MPL_WRITE Write Multi-Point List 10.1.9 / 14.1.9 / 18.1.9
CM50_MPLHIS_AVER Get History Averages (Rel. Time) 10.5.4 / 14.5.4 / 18.5.4
CM50_MPLHIS_AVERT Get History Averages (Abs. Time) 10.5.5 / 14.5.5 / 18.5.5
CM50_MPLHIS_MNTH Get Monthly Averages (Rel. Time) 10.5.6/14.5.6/18.5.6
CM50_MPLHIS_MNTHT Get Monthly Averages (Abs. Time) 10.5.7/14.5.7/18.5.7
CM50_MPLHIS_RATE Find History Collection Rate 10.5.8/14.5.8/18.5.8
CM50_MPLHIS_SNAP Get History Snapshots (Rel. Time) 10.5.2 / 14.5.2 / 18.5.2
CM50_MPLHIS_SNAPT Get History Snapshots (Abs. Time) 10.5.3 / 14.5.3 / 18.5.3
CM50_PTHIS_AVER Get History Averages (Rel. Time) 10.5.4 / 14.5.4 / 18.5.4
CM50_PTHIS_AVERT Get History Averages (Abs. Time) 10.5.5 / 14.5.5 / 18.5.5
CM50_PTHIS_MNTH Get Monthly Averages (Rel. Time) 10.5.6/14.5.6/18.5.6
CM50_PTHIS_MNTHT Get Monthly Averages (Abs. Time) 10.5.7/14.5.7/18.5.7
CM50_PTHIS_RATE Find History Collection Rate 10.5.8/14.5.8/18.5.8
CM50_PTHIS_SNAP Get History Snapshots (Rel. Time) 10.5.2 / 14.5.2 / 18.5.2
CM50_PTHIS_SNAPT Get History Snapshots (Abs. Time) 10.5.3 / 14.5.3 / 18.5.3
CM50_SET_ACP ACP Initialization 11.1.1 / 15.1.1 / 19.1.1
CM50_SETBAD Set Bad Value 11.3.2 / 15.3.2 / 19.3.2
CM50_SPCRAW Convert Raw Data 10.4.3 / 14.4.3 / 18.4.3
CM50_SPGRAW Raw Data Get 10.4.1 / 14.4.1 / 18.4.1
CM50_SPSRAW Raw Data Store 10.4.2 / 14.4.2 / 18.4.2
CM50_STORE_ASC24 Point List Store Data—ASCII 10.2.4/14.2.4/18.2.4
CM50_STORE_ENUM Point List Store Data—Enumeration 10.2.4/14.2.4/18.2.4
CM50_STORE_ID Single Point Store Data(External ID) 10.3.2 / 14.3.2 / 18.3.2
CM50_STORE_INTNBR Point List Store Data—Integer 10.2.4/14.2.4/18.2.4
CM50_STORE_ORD Point List Store Data—Ordinal 10.2.4/14.2.4/18.2.4

CM50S User Manual D-3 7/93

D

CM50_STORE_PT_LIST Point List Get Data 10.2.3/14.2.3/18.2.3
CM50_STORE_PTID Point List Store Internal IDs 10.2.4/14.2.4/18.2.4
CM50_STORE_REALNBR Point List Store Data—Real 10.2.4/14.2.4/18.2.4
CM50_STORE_STRI Point List Store String Values 10.2.4/14.2.4/18.2.4
CM50_STORE_TAG Single Point Store Data(External ID) 10.3.2 / 14.3.2 / 18.3.2
CM50_STORE_TIME Point List Store Time Values 10.2.4/14.2.4/18.2.4
CM50_STOREMSG Send Message 10.6.2 / 14.6.2 / 18.6.2
CM50_STOREPT_ID Single Point Store Data (Internal ID) 10.3.4 / 14.3.4 / 18.3.4
CM50_TAGHIS_RATE Find History Collection Rate 10.5.8/14.5.8/18.5.8
CM50_TIMARY_ASC Conv Integer arr Time to ASCII 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMARY_EURO Conv Integer arr Time to Euro str 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMARY_LCN Conv Integer arr Time to LCN int 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMARY_VAXA Conv Integer arr Time to VAX disp 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMARY_VAXB Conv Integer arr Time to VAX bin 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMASC_ARY Conv ASCII Time to Integer arr 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMASC_EURO Conv ASCII Time to Euro str 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMASC_LCN Conv ASCII Time to LCN int 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMASC_VAXA Conv ASCII Time to VAX disp 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMASC_VAXB Conv ASCII Time to VAX bin 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMEURO_ARY Conv Euro Time to Integer arr 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMEURO_ASC Conv Euro Time to ASCII 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMEURO_LCN Conv Euro Time to LCN int 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMEURO_VAXA Conv Euro Time to VAX disp 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMEURO_VAXB Conv Euro Time to VAX bin 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMLCN_ARY Conv LCN Time to Integer arr 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMLCN_ASC Conv LCN Time to ASCII 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMLCN_EURO Conv LCN Time to Euro str 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMLCN_VAXA Conv LCN Time to VAX disp 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMLCN_VAXB Conv LCN Time to VAX bin 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMNOW_ASC Get LCN Clock Value (ASCII format) 10.3.5 / 14.3.5 / 18.3.5
CM50_TIMNOW_LCN Get LCN Clock Value (internal format) 10.3.5 / 14.3.5 / 18.3.5
CM50_TIMVAXA_ARY Conv VAX disp Time to Integer arr 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXA_ASC Conv VAX disp Time to ASCII 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXA_EURO Conv VAX disp Time to Euro str 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXA_LCN Conv VAX disp Time to LCN int 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXA_VAXB Conv VAX disp Time to VAX bin 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXB_ARY Conv VAX bin Time to Integer arr 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXB_ASC Conv VAX bin Time to ASCII 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXB_EURO Conv VAX bin Time to Euro str 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXB_LCN Conv VAX bin Time to LCN int 11.3.3 / 15.3.3 / 19.3.3
CM50_TIMVAXB_VAXA Conv VAX bin Time to VAX disp 11.3.3 / 15.3.3 / 19.3.3
CM50_VALIDN Valid Number Check 11.3.1 / 15.3.1 / 19.3.1
CM50_VOLUME_CATALOG List LCN Volumes to Dataout 12.4.7/16.4.7/20.4.7
GETSTS Get ACP Status 11.1.2 / 15.1.2 / 19.1.2
PRGTRM ACP Termination 11.1.5 / 15.1.5 / 19.1.5

CM50S User Manual D-4 7/93

CM50S User Manual E-1 7/93

E

ASSIGNMENT OF PROCESS UNITS TO CG
Appendix E

This appendix contains information relating to the assignment of process units to the CG.

1. The number of process units that can be assigned to a CG is 63 minus the number of
CGs assigned to the same checkpoint volume. For example, if you have two CGs
assigned to one HM for checkpointing, there can be no more than 61 units assigned.

2. Because the CG node status display shows only points that are assigned to its area and
to the CG node, you can never see more than 36 (area limit).

3. ACP access to parameters in other LCN nodes, both read and write, is independent of
which units are assigned to the CG. That is, it does not matter to which unit the ACP's
ACIDP is assigned.

4. Event-Initiated Processing from the HG and CL Messages from the AM and MC are
independent of process unit assignment in the CG.

5. The operator demand of an ACP from its ACIDP detail display requires that the ACIDP
is in a unit assigned to that Universal Station's area, or that the US is in Engineer
keylock level. The same limitation applies to any CG point.parameter that you may
wish to store to from a custom display.

6. An ACP can send an operator message to only the Unit its ACIDP is assigned to.
Thus, only areas with that unit assigned will receive the message.

7. A process unit can be assigned to only one CG. If there are multiple CGs on the LCN,
each must have a unique assignment of process units.

To summarize, for most flexibility, all units assigned to CGs should be assigned to all
areas that need to communicate with that CG. The units that contain the points that are
accessed by the CG do not have to be assigned to that CG.

In most cases, there is no real need to assign more than one unit to a CG.

CM50S User Manual E-2 7/93

CM50S User Manual F-1 7/93

F

INSTALLATION OF HDLC MODULES
Appendix F

The contents of this Appendix explain the installation of the HDLC Modules for three types of
VAX data bus:

• The VAX BI Bus
• The VAX Q-Bus
• The VAX UNIBUS

F.1 INSTALLATION OF HDLC MODULE ON VAX BI BUS

The HDLC module functionally provides an interface between a VAX BI bus and TDC
3000 Computer Gateways. This document provides sufficient detail to install an HDLC
module in standard VAXBI configurations. It assumes the installer is already familiar
with installing options in VAXBI based processors.

Installation of the HDLC module requires three steps:

• Verification of resources

• Inserting the board

• Installing the interface connector.

All of the communication parameters such as clock source, speed, and interface are
controlled by software. There are no switches to be set on the board.

F.1.1 Verification of Resources

The first step is to verify that the computer has sufficient resources for the installation.
These resources include power, board slots, and I/O panel space.

1. Power Requirements +5 Vdc, 6 amps typical, 10 amps Max.
-12 Vdc, 0.5 amps typical, 1.0 amp Max.

2. Bus Slot Single BI Slot

3. I/O Panel 3 IOCP panel spaces

Verify that sufficient resources and board slots exist for your particular processor. Any
question about the capacity of your existing CPU should be referred to the System
Engineer.

BE VERY CAREFUL in computing the power capacity of the CPU buses. Do not
exceed any of the limitations listed in the Hardware Information Manual for your
particular processor. In particular, DO NOT USE the VAX Systems and Options
Catalog because the power capacity of CPUs and buses are subject to change.

Next, verify that your processor has sufficient mounting space for the relevant hardware.

CM50S User Manual F-2 7/93

F.1.2

CAUTION

Static discharges can damage your board! Take all standard antistatic precautions. Use of the
DEC-supplied ground straps and pads is mandatory. Wear the ESD wrist strap! Whenever you
remove a circuit board from a VAXBI card cage, place it in a conductive container.

F.1.2 Inserting the HDLC Board

1. After verifying the correct operation of the system, completely power off the system.

2. Set the system circuit breaker in the rear to OFF.

3. Open the VAXBI chassis and locate an open slot.

4. Make note of the NODE ID plug; this information is required for software
installation.

5. Lift the locking lever to open the slot.

6. Slide the module into the card cage slot until it stops. Note that this is a zero insertion
force card cage.

7. Close the locking lever.

8. Restore the BI covers.

F.1.3 Installing the Interface Connector

1. Remove three IOCP Panels from the VAXBI enclosure.

2. Route the interface cables from the BI slot to the opening of the IOCP panel.

3. Connect the cables at the VAXBI Transition Header as labeled.

4. Connect the appropriate cables to the termination panel as labeled.

5. Mount the panel to the IOCP.

6. Restore power to the CPU.

7. The HDLC module is tested as part of the CM50S software installation.

You may now connect the Computer Gateway(s) to their ports (see heading F.4)

CM50S User Manual F-3 7/93

F.2

F.2 INSTALLATION OF HDLC MODULE ON Q-BUS

The HDLC module functionally provides an interface between a Q-bus and TDC 3000
Computer Gateways. This document provides sufficient detail to install an HDLC
module in standard configurations. It assumes the installer is already familiar with
installing options in VAX based processors.

Installation of the HDLC module requires three steps:

• Verification of resources

• Inserting the board

• Installing the interface connector.

Some of the communication parameters such as clock source and interface are controlled
by switches.

F.2.1 Verification of Resources

The first step is to verify that the computer has sufficient resources for the installation.
These resources include power, board slots, and I/O panel space.

1. Power Requirements +5 Vdc 5.5 amps Max.
+12 Vdc 0.2 amps Max.

2. Bus Slot Quad Module

3. I/O Panel One panel space

Verify that sufficient resources and board slots exist for your particular processor. Be
sure to account for +12 Volt power. Any question about the capacity of your existing
CPU should be referred to the System Engineer.

BE VERY CAREFUL in computing the power capacity of the CPU buses. Do not
exceed any of the limitations listed in the Hardware Information Manual for your
particular processor or BA11. In particular, DO NOT USE the VAX Systems and
Options Catalog because the power capacity of CPUs and buses are subject to change.

Next, verify that your processor has sufficient mounting space for the relevant hardware.

CAUTION

Static discharges can damage your board! Take all standard antistatic precautions. Use of the
DEC-supplied ground straps and pads is mandatory. Wear the ESD wrist strap! Whenever you
remove a circuit board from a VAX card cage, place it in a conductive container.

CM50S User Manual F-4 7/93

F.2.1

The HDLC module must reside at one of the addresses specified in the following list:

 BOARD CSR VECTOR
 SLOT DEVICE (OCTAL) (OCTAL)

0 ZQA0 761000 740-340
1 ZQB0 761002 744-344
2 ZQC0 761004 750-350
3 ZQD0 761006 754-354
4 ZQE0 761010 760-360
5 ZQF0 761012 764-364
6 ZQG0 761014 770-370
7 ZQH0 761016 774-374

As supplied, the board's interrupt vector is 7xx. The vector can be changed to 3xx by
cutting the jumper located next to pins 14 and 15 of U010. If you have conflicts in
device addresses from nonstandard peripherals use the next available location from table
3. To determine the configuration of a system issue the following command from a login
with cmkrnl privilege:

$mc sysgen
SYSGEN> SHOW /CONFIG

The VAX responds with the CSRs and Vectors for all currently installed devices, for
example:

System CSR and Vectors on 2-MAR-1988 14:50:11.22
Name:PUA Units: 1 Nexus:0 (UBA) CSR: 772150 Vector1: 774 Vector2: 000
Name:PTA Units: 1 Nexus:0 (UBA) CSR: 774500 Vector1: 260 Vector2: 000
Name:XQA Units: 2 Nexus:0 (UBA) CSR: 774440 Vector1: 120 Vector2: 000
Name:TTA Units: 4 Nexus:0 (UBA) CSR: 760100 Vector1: 300 Vector2: 304
Name:PUB Units: 1 Nexus:0 (UBA) CSR: 760354 Vector1: 310 Vector2: 000
SYSGEN>

Verify that your selected CSR from the table does not conflict with existing units. Set the
CSR module dip switch SWA located near the board edge connector as specified in the
following table.

CSR Module SWA Switch Position
 1 2 3

 ZQA0 OPEN OPEN OPEN
 ZQB0 OPEN OPEN CLOSED
 ZQC0 OPEN CLOSED OPEN
 ZQD0 OPEN CLOSED CLOSED
 ZQE0 CLOSED OPEN OPEN
 ZQF0 CLOSED OPEN CLOSED
 ZQG0 CLOSED CLOSED OPEN
 ZQH0 CLOSED CLOSED CLOSED

Use A Pen or screwdriver to change DIP switch settings. DO NOT USE A PENCIL.
The remaining switches SW0 through SW7 should be set to 1-closed 2-open (that is,
Position 1 is down toward the LED side of the board, Position 2 is down on the side
furthest away from the LED side of the board).

CM50S User Manual F-5 7/93

F.2.2

F.2.2 Inserting the HDLC Board

1. After verifying the correct operation of the system, completely power off the system.

2. Set the system circuit breaker in the rear to OFF.

3. Open the Q-BUS chassis and locate an open slot.

4. Remove the bus grant card from the open slot.

5. Remove the NPG jumper from CA1 to CB1 on the rear of the card cage.

6. Insert the module in the slot, being careful not to contact the adjacent modules.

F.2.3 Installing the Interface Connector

1. Remove three IOCP Panels from the VAX enclosure.

2. Route the interface cables from the Q-BUS slot to the opening of the IOCP panel.

3. Connect the cables at the Q-BUS as labeled.

4. Connect the appropriate cables to the termination panel as labeled.

5. Mount the panel to the IOCP.

6. Restore Q-BUS covers.

7. Restore power to the CPU.

8. The HDLC module is tested as part of the CM50S software installation.

You may now connect the Computer Gateway(s) to their ports (see heading F.4)

CM50S User Manual F-6 7/93

F.3

F.3 INSTALLATION OF HDLC MODULE ON VAX UNIBUS

The HDLC module functionally provides an interface between a VAX UNIBUS bus and
TDC 3000 Computer Gateways. This document provides sufficient detail to install an
HDLC module in standard configurations. It assumes the installer is already familiar
with installing options in VAX based processors.

Installation of the HDLC module requires three steps:

• Verification of resources

• Inserting the board

• Installing the interface connector.

Some of the communication parameters such as clock source and interface are controlled
by switches.

F.3.1 Verification of Resources

The first step is one of verifying that the computer has sufficient resources for the
installation. These resources include power, board slots, and I/O panel space.

1. Power Requirements +5 Vdc, 5.5 amps Max.
-15 Vdc, 0.2 amps Max.

2. Bus Slot Single HEX SPC slot

3. I/O Panel 3 IOCP panel spaces

Verify that sufficient resources and board slots exist for your particular processor. Be
sure to account for -15 Volt power. Any question about the capacity of your existing
CPU should be referred to the System Engineer.

BE VERY CAREFUL in computing the power capacity of the CPU busses. Do not
exceed any of the limitations listed in the Hardware Information Manual for your
particular processor or BA11. In particular, DO NOT USE the VAX Systems and
Options Catalog because the power capacity of CPUs and buses are subject to change.

Next, verify that your processor has sufficient mounting space for the relevant hardware.

CAUTION

Static discharges can damage your board! Take all standard antistatic precautions. Use of the
DEC-supplied ground straps and pads is mandatory. Wear the ESD wrist strap! Whenever you
remove a circuit board from a VAX card cage, place it in a conductive container.

CM50S User Manual F-7 7/93

F.3.1

The HDLC module must reside at one of the addresses specified in the the following list:

1. 762000-762176 ZPA0

2. 762200-762376 ZPB0

3. 762400-762576 ZPC0

4. 762600-762776 ZPD0

5. 763000-763176 ZPE0

6. 763200-762376 ZPF0

7. 763400-763576 ZPG0

8. 763600-762776 ZPH0

If you have conflicts in device addresses from nonstandard peripherals use the next
available location. To determine the configuration of a system, issue the following
command from a login with cmkrnl privilege:

$ mc sysgen
SYSGEN> SHOW /CONFIG

The VAX responds with the CSR and Vectors for all currently installed devices, for
example:

System CSR and Vectors on 2-MAR-1988 14:50:11.22
Name:PUA Units: 1 Nexus:0 (UBA) CSR: 772150 Vector1: 774 Vector2: 000
Name:PTA Units: 1 Nexus:0 (UBA) CSR: 774500 Vector1: 260 Vector2: 000
Name:XQA Units: 2 Nexus:0 (UBA) CSR: 774440 Vector1: 120 Vector2: 000
Name:TTA Units: 4 Nexus:0 (UBA) CSR: 760100 Vector1: 300 Vector2: 304
Name:PUB Units: 1 Nexus:0 (UBA) CSR: 760354 Vector1: 310 Vector2: 000
SYSGEN>

Verify that your selected CSR from the table does not conflict with existing units. Set the
CSR module dip switch SWA located near the board edge connector as follows:

 CSR Module SWA Switch Position
 1 2 3

ZPA0 OPEN OPEN
OPEN
ZPB0 OPEN OPEN
CLOSED
ZPC0 OPEN CLOSED
OPEN
ZPD0 OPEN CLOSED
CLOSED
ZPE0 CLOSED OPEN
OPEN
ZPF0 CLOSED OPEN
CLOSED
ZPG0 CLOSED CLOSED
OPEN
ZPH0 CLOSED CLOSED
CLOSED

CM50S User Manual F-8 7/93

F.3.2

Use a pen or screwdriver to change DIP switch settings. DO NOT USE A PENCIL.
The remaining switches SW0 through SW7 should be set to 1-closed 2-open (that is,
Position 1 is down toward the LED side of the board, Position 2 is down on the side
furthest away from the LED side of the board).

F.3.2 Inserting the HDLC Board

1. After verifying the correct operation of the system, completely power off the system.

2. Set the system circuit breaker in the rear to OFF.

3. Open the UNIBUS chassis and locate an open slot.

4. Remove the bus grant card from the open slot.

5. Remove the NPG jumper from CA1 to CB1 on the rear of the card cage.

6. Insert the module in the slot, being careful not to contact the adjacent modules.

F.3.3 Installing the Interface Connector

1. Remove three IOCP Panels from the VAX enclosure.

2. Route the interface cables from the UNIBUS slot to the opening of the IOCP panel.

3. Connect the cables at the UNIBUS as labeled.

4. Connect the appropriate cables to the termination panel as labeled.

5. Mount the panel to the IOCP.

6. Restore Unibus covers.

7. Restore power to the CPU.

8. The HDLC module is tested as part of the CM50S software installation.

You may now connect the Computer Gateway(s) to their ports (see heading F.4)

CM50S User Manual F-9 7/93

F.4

F.4 HDLC CONNECTIONS TO COMPUTER GATEWAYS

Within CM50S, each CG is addressed by a logical CG Port number (1 to 4). Any CG Port
number can be assigned to any physical link on any installed HDLC board; however, the
CG Port numbers must be assigned sequentially.

Even if no physical connection is made for CG Port number 1, it will have to be assigned
before CG Port number 2. That is, the system will not address CG Port #2 unless a CG
Port #1 has been assigned.

Use the CM50S HDLC INSTALLATION WORKSHEET (on the following page) to keep
track of the assignment of your CG Ports and HDLC links.

Each CG should be connected (by a direct cable connection or a fiber optics modem) to one
of the physical links on the termination panel for an HDLC board. For BI Bus and Q-Bus
boards, the links are numbered 0 to 3. For a UNIBUS board the links are numbered 0 to
7.

The choice of physical link connections has an impact on the maximum communications
baud rate. On a BI Bus or Q-Bus board, only links 2 and 3 may be used for speeds above
19200 baud. On a UNIBUS board, only links 6 and 7 may operate at speeds above 19200
baud. Note that if more than two CG Ports are connected to one HDLC board, then none
of those CG boards will operate faster than 19200 baud.

CM50S User Manual F-10 7/93

F.4

CM50S HDLC INSTALLATION WORKSHEET

Hardware installation information:

HDLC BOARD 1: Device Name = ______________________

BI Bus Node = ______________________(decimal)

or Qbus/UNIBUS CSR = ______________________(octal)

vector = ______________________(octal)

CG connections:

CG Port #1: Board Device Name = _______________________

Physical Link = ______

Direct or Modem Connect: _______________________

Baud Rate = _______________________

CG Port #2: Board Device Name = _______________________

Physical Link = ______

Direct or Modem Connect: _______________________

Baud Rate = _______________________

CG Port #3: Board Device Name = _______________________

Physical Link = ______

Direct or Modem Connect: _______________________

Baud Rate = _______________________

CG Port #4: Board Device Name = _______________________

Physical Link = ______

Direct or Modem Connect: _______________________

Baud Rate = _______________________

CM50S User Manual G-1 7/93

G

VINTAGE PROCEDURES
Appendix G

The information in this appendix provides information on all CM50S Release 1 calls and those
Release 2 interface calls that have been replaced in this release.

G.1 INTRODUCTION TO VINTAGE INTERFACE ROUTINES

This appendix contains information on the use of all user interface routines available at Rel
1 of CM50S and those Rel 2 interface routines that have been replaced by improved
functions at Rel 3. All of these routines continue to be supported by Rel 3 as a convenience
for early system users.

NOTE

The Rel 1 user-program interface-routines are all implemented as external FORTRAN
subroutines; therefore, any Pascal program (ACP) that uses any of these interfaces must
contain one of the following include statements in its declaration section:

 %INCLUDE 'CM50$LIB:CM50_INCLUDE.PAS'
or %INCLUDE 'CM50$LIB:PASCAL.INCLUDE'

G.1.1 Summary of Rel 1 User-Program Interfaces

Paragraph Interface Descriptions Interface Names Interface Names
FORTRAN Pascal

G.2 Multipoint Data Transfers
G.2.1 Get Data GETDTF/GETDTF1 GETDTA/GETDTA1
G.2.2 Store Data STRDTF/STRDTF1 STRDTA/STRDTA1
G.3 Single Point Data Transfers
G.3.1 Get Single Point (External ID) SPGETF SP_GET
G.3.2 Store Single Point (External ID) SPSTRF SP_STR
G.3.3 Get Single Point (Internal ID) SPIGTF SP_IGT
G.3.4 Store Single Point (Internal ID) SPISTF SP_IST
G.4 History Data Transfers
G.4.1 Get History (Absolute Times) HISABF HISABP
G.4.2 Get History (Relative Time) HISRLF HISRLP
G.5 Text Message Transfers
G.5.1 Get Message GETMSF GETMSG
G.5.2 Send Message SNDMSF SNDMSG
G.6 ACP Execution Support
G.6.1 ACP Trap Handler ACPTRP ACPTRP
G.6.2 Get ACP Status GETSTS GETSTS
G.6.3 ACP Delay PRGDLY PRGDLY
G.6.4 ACP Termination PRGTRM PRGTRM
G.7 Utility Routines
G.7.1 Check Bad Value CHKBAD CHKBAD
G.7.2 Set Bad Value SETBAD SETBAD
G.7.3 Convert External to Internal ID SPCVTF SP_CVT
G.7.4 Convert LCN Time CONVTF CONVTP

CM50S User Manual G-2 7/93

G.1.2
G.1.2 Summary of Replaced Rel 2 User-Program Interfaces

Paragraph Interface Descriptions Interface Names
G.8 Single Point Data Transfers
G.8.1 Get Single Point (External ID) CM50_GETPT
G.8.2 Store Single Point (External ID) CM50_STOREPT
G.8.3 Get LCN Clock Value CM50_GETPT
G.9 Point Arrays without DDTs
G.9.1 Point List Get Data CM50_GET_REAL

CM50_GET_INTG
CM50_GET_ASCI
CM50_GET_AENM
CM50_GET_OENM

G.9.2 Point List Store Data CM50_STORE_REAL
CM50_STORE_INTG
CM50_STORE_ASCI
CM50_STORE_AENM
CM50_STORE_OENM

G.10 Single-Point Get History
G.10.1 Single-Point Get History CM50_GET_HIS

CM50_GET_REAL_HIS
CM50_GET_INTG_HIS

G.11 ACP Execution Support
G.11.1 ACP Trap Handler ACPTRP
G.12 Utility Routines
G.12.1 Convert External to Internal ID CM50_CONV_ID

CM50_CONV_TP

G.1.3 Summary of Replaced Rel 3 User-Program Interfaces

Paragraph Interface Descriptions Interface Names
G.13.1 Connect ACP to ACIDP CM50_ACP_CON
G.13.2 Connect DDT to ACIDP CM50_DDT_CON
G.13.3 Disconnect DDT from ACIDP CM50_DDT_DISCON
G.13.4 Modify Triggers CM50_MOD_TRIGGERS

CM50S User Manual G-3 7/93

G.2

G.2 MULTIPOINT DATA TRANSFERS

The interface routines in this group require the use of separately prepared Data Definition
Tables (DDT) that specify which points are to be accessed and what pre/post processing is
to be done on data values.

Single elements of parameter arrays (but not whole arrays) can be specified in the DDT.

G.2.1 Get Data Interface

This routine fetches data from the DDTs associated CG or elsewhere on its LCN. The
specification of which data is to be fetched and where it is to be stored in the calling
program's data arrays is contained in the Data Definition Table referenced by the call.

NOTE

Use the Interface Name GETDTF or GETDTA if you want data transformation operations
performed by the Table Processor, and GETDTF1 or GETDTA1 if you do not want
transformation operations performed.

G.2.1.1 Pascal Procedure Call for Get Data

GETDTA (DATA_TABLE_NAME, REAL_VALUES_ARRAY, INTEGER_VALUES_ARRAY,
 %DESCR ASCII_VALUES_ARRAY, %REF ENUM_VALUES_ARRAY or
 %REF ENUM_ORD_ARRAY, PRIORITY, STATUS_TABLE, RETURN_STATUS);

The call must contain the equivalent of either ENUM_VALUES_ARRAY or
ENUM_ORD_ARRAY, but not both, and must match the DDT when it includes either
ENUMER or ORDINAL points. Note the required use of %DESCR or %REF with certain
parameters.

G.2.1.2 Typical Pascal Data Definitions for Get Data

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 DATA_TABLE_NAME : PACKED ARRAY [1..9] OF CHAR;
 REAL_VALUES_ARRAY : ARRAY [1..300] OF REAL;
 INTEGER_VALUES_ARRAY: ARRAY [1..300] OF INTEGER_2_TYPE;
 ASCII_VALUES_ARRAY : ARRAY [1..300] OF ASCII_VALS;
 ENUM_VALUES_ARRAY : ARRAY [1..300] OF ENUM_VALS;
 ENUM_ORD_ARRAY : ARRAY [1..300] OF INTEGER_2_TYPE;
 PRIORITY : INTEGER_2_TYPE;
 STATUS_TABLE : ARRAY [1..300] OF INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;
 ASCII_VALS : PACKED ARRAY [1..24] OF CHAR;
 ENUM_VALS : PACKED ARRAY [1..8] OF CHAR;

(One only, must
match DDT)

CM50S User Manual G-4 7/93

G.2.1

The type-specification values for INTEGER_2_TYPE, ASCII_VALS, ENUM_VALS and
DATA_TABLE_NAME are fixed. The others show maximum values.

G.2.1.3 FORTRAN Subroutine Call for Get Data

CALL GETDTF (DATA_TABLE_NAME, REAL_VALUES_ARRAY, INTEGER_VALUES_ARRAY,
 ASCII_VALUES_ARRAY, %REF(ENUM_VALUES_ARRAY) or
 %REF(ENUM_ORD_ARRAY), PRIORITY, STATUS_TABLE,
 RETURN_STATUS)

You must include either %REF(ENUM_VALUES_ARRAY) or
%REF(ENUM_ORD_ARRAY), but not both, and must match the DDT if it includes either
ENUMER or ORDINAL points.

G.2.1.4 Typical FORTRAN Data Definitions for Get Data

CHARACTER*9 DATA_TABLE_NAME
REAL*4 REAL_VALUES_ARRAY(300)
INTEGER*2 INTEGER_VALUES_ARRAY(300)
CHARACTER*24 ASCII_VALUES_ARRAY(300)
CHARACTER*8 ENUM_VALUES_ARRAY(300)
INTEGER*2 ENUM_ORD_ARRAY(300)
INTEGER*2 PRIORITY
INTEGER*2 STATUS_TABLE(300)
INTEGER*2 RETURN_STATUS

(One only, must
match DDT)

G.2.1.5 Parameter Definitions for Get Data

DATA_TABLE_NAME—The name of a packed array of ASCII characters that contains the
name of the input Data Definition Table to be used. The table name is a
maximum of nine characters long.

REAL_VALUES_ARRAY—The name of a single-dimension array into which the fetched
Real values are to be stored. Bad values are returned as NaN (-0).

INTEGER_VALUES_ARRAY—The name of a single-dimension Integer array into which the
fetched 16-bit Integer values are to be stored.

ASCII_VALUES_ARRAY—The name of a packed array into which fetched ASCII strings
are to be stored. Bad values are returned as strings of 24 question marks.

ENUM_VALUES_ARRAY—The name of a packed array into which fetched Enumeration
strings are to be stored. Bad values are returned as strings of eight question
marks.

ENUM_ORD_ARRAY—The name of a single-dimension array of 16-bit Integers into which
the fetched ordinal values of the enumerations are to be stored.

PRIORITY—The name of a 16-bit Integer variable that contains the requested data-access
priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual G-5 7/93

G.2.1

STATUS_TABLE—The name of a single-dimension array of 16-bit Integers for the storage
of returned point-related error/status information. A status code is returned for
each requested value.

RETURN_STATUS—The name of a 16-bit Integer variable where the request completion
status is to be stored. The assigned meanings are

0 – Normal return—request successfully completed.
1 – Referenced DDT does not exist or is incomplete.
3 – Unable to access the LCN, or data link failed, or mailbox does not exist.
4 – Referenced DDT is not of type "input," or ACIDP not in RUN state.
5 – Request completed, but errors exist in data.
6 – Referenced CG-resident DDT was not found.
7 – ACP not installed or is restricted or was not turned on by CM50S

function.
8 – Referenced DDT is "in use."
9 – Illegal priority number (must be 1 or 2).

10 – Node not present
16 – Specified ACIDP not found in CG.
28 – Invalid data access priority
33 – Invalid data type specified in DDT/IDB
35 – DDT/IDB purpose not same as request
36 – DDT/IDB header number of words disagrees with table content
37 – Data type repeated in DDT/IDB
38 – DDT/IDB contains both enumeration and ordinal data
39 – DDT/IDB contains over 300 points
40 – Number of words specified in message header disagrees with message

content.

CM50S User Manual G-6 7/93

G.2.2

G.2.2 Store Data Interface

This routine sends data to points in the DDTs associated CG or elsewhere on its LCN. The
specification of what points are to receive data and the location of data within the calling
program's data arrays is contained in the Data Definition Table referenced by the call.
Errors encountered during execution of the routine as well as individual point-data errors
are returned to the calling program.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode.

NOTE

Use the Interface Name STRDTF or STRDTA if you want data transformation operations
performed by the Table Processor, and STRDTF1 or STRDTA1 if you do not want
transformation operations performed.

G.2.2.1 Pascal Procedure Call for Store Data

STRDTA (DATA_TABLE_NAME, REAL_VALUES_ARRAY, INTEGER_VALUES_ARRAY,
 %DESCR ASCII_VALUES_ARRAY, %REF ENUM_VALUES_ARRAY or
 %REF ENUM_ORD_ARRAY, PRIORITY, STORE_CODE_TABLE,
 STATUS_TABLE, RETURN_STATUS);

The call must contain the equivalent of either ENUM_VALUES_ARRAY or
ENUM_ORD_ARRAY, but not both, and must match the DDT if it includes either
ENUMER or ORDINAL points. Note the required use of %DESCR or %REF with certain
parameters.

G.2.2.2 Typical Pascal Data Definitions for Store Data

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 DATA_TABLE_NAME : PACKED ARRAY [1..9] OF CHAR;
 REAL_VALUES_ARRAY : ARRAY [1..300] OF REAL;
 INTEGER_VALUES_ARRAY: ARRAY [1..300] OF INTEGER_2_TYPE;
 ASCII_VALUES_ARRAY : ARRAY [1..300] OF ASCII_VALS;
 ENUM_VALUES_ARRAY : ARRAY [1..300] OF ENUM_VALS;
 ENUM_ORD_ARRAY : ARRAY [1..300] OF INTEGER_2_TYPE;
 PRIORITY : INTEGER_2_TYPE;
 STORE_CODE_TABLE : ARRAY [1..300] OF INTEGER_2_TYPE;
 STATUS_TABLE : ARRAY [1..300] OF INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE);
 ASCII_VALS : PACKED ARRAY [1..24] OF CHAR;
 ENUM_VALS : PACKED ARRAY [1..8] OF CHAR;

(One only, must
match DDT)

The type-specification values for INTEGER_2_TYPE, ASCII_VALS, ENUM_VALS and
DATA_TABLE_NAME are fixed; the others show maximum values.

CM50S User Manual G-7 7/93

G.2.2

G.2.2.3 FORTRAN Subroutine Call for Store Data

CALL STRDTF (DATA_TABLE_NAME, REAL_VALUES_ARRAY, INTEGER_VALUES_ARRAY,
 ASCII_VALUES_ARRAY, %REF(ENUM_VALUES_ARRAY) or
 %REF(ENUM_ORD_ARRAY),PRIORITY, STORE_CODE_TABLE,
 STATUS_TABLE, RETURN_STATUS)

You must include either %REF(ENUM_VALUES_ARRAY) or
%REF(ENUM_ORD_ARRAY), but not both, and must match the DDT if it includes either
ENUMER or ORDINAL points.

G.2.2.4 Typical FORTRAN Data Definitions for Store Data

CHARACTER*9 DATA_TABLE_NAME
REAL*4 REAL_VALUES_ARRAY(300)
INTEGER*2 INTEGER_VALUES_ARRAY(300)
CHARACTER*24 ASCII_VALUES_ARRAY(300)
CHARACTER*8 ENUM_VALUES_ARRAY(300)
INTEGER*2 ENUM_ORD_ARRAY(300)
INTEGER*2 PRIORITY
INTEGER*2 STORE_CODE_TABLE(300)
INTEGER*2 STATUS_TABLE(300)
INTEGER*2 RETURN_STATUS

(One only, must
match DDT)

G.2.2.5 Parameter Definitions for Store Data

DATA_TABLE_NAME—The name of a packed array of ASCII characters that contains the
name of the output Data Definition Table to be used in the "Store Data"
operation. The table name is a maximum of nine characters long.

REAL_VALUES_ARRAY—The name of a single-dimension array that contains the Real
values to be stored.

INTEGER_VALUES_ARRAY—The name of a single-dimension array of 16-bit Integers that
contains the Integer values to be stored.

ASCII_VALUES_ARRAY—The name of a packed array that contains the ASCII strings to be
stored.

ENUM_VALUES_ARRAY—The name of a packed array that contains the Enumeration
strings to be stored. Use of enumeration strings by Store Data is limited to
standard enumerations (including Custom Data Segments). All self-defined
enumerations (such as digitals) must be accessed through their ordinal values.

ENUM_ORD_ARRAY—The name of a single-dimension array of 16-bit integers that contains
the Ordinal values of the Enumerations that are to be stored.

PRIORITY—The name of a 16-bit Integer variable that contains the requested data-access
priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual G-8 7/93

G.3

STORE_CODE_TABLE—The name of a single-dimension array of 16-bit Integers that
contains a control code entry for each value to be stored. These codes control
what—if any—value is to be stored. The store code values are

0 – Store the value from the Values Array
1 – Store the bad value representation instead
2 – Do not store any value.

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

STATUS_TABLE—The name of a single-dimension array of 16-bit integers for the storage
of returned point-related error/status information. A status code is returned for
each requested store value.

RETURN_STATUS—The name of a 16-bit Integer variable where the request completion
status is to be stored. The assigned meanings are

0 – Normal return—request was successfully completed.
1 – Referenced Data Definition Table does not exist or is incomplete.
3 – Unable to access the LCN, or data link failed or mailbox does not exist.
4 – Referenced Data Definition Table is not of type "output."
5 – Request completed, but errors exist in data.
6 – Specified ACIDP not found, or ACP not connected to an ACIDP.
7 – Program is not installed, or is in "restricted" mode, or was not turned on

by CM50S function, or ACP execution state in the CG is not correct.
8 – Referenced Data Definition Table is "in use" or ACIDP's access key is

set to read only.
9 – Illegal priority number (must be 1 or 2).

15 – ACP connected ACIDP not in RUN state.
25 – Data must be enumeration type
28 – Invalid data access priority
33 – Invalid data type specified in DDT/IDB
35 – DDT/IDB purpose not same as request
36 – DDT/IDB header number of words disagrees with table content
37 – Data type repeated in DDT/IDB
38 – DDT/IDB contains both enumeration and ordinal data
39 – DDT/IDB contains over 300 points
40 – Number of words specified in message header disagrees with message

content

G.3 SINGLE POINT DATA TRANSFERS

The interface routines in this group Get or Store values from or to, one named
point.parameter (or parameter array) at a time. For parameter arrays, up to the whole array
is accessed. The External ID version of Get Single Point is also used to get LCN date and
time.

CM50S User Manual G-9 7/93

G.3.1

G.3.1 Get Single Point (External ID) Interface

This routine fetches data for a single point from a specified CG or elsewhere on its LCN.
The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element, the whole array, or an array subset
starting with the first element can be specified.

G.3.1.1 Pascal Procedure Call for Get Single Point

SP_GET (POINT_ID, POINT_ENT_INDEX, %REF PT_PARAM, PARAM_INDEX,
 %REF VALUE_LOC, VALUE_TYPE, PRIORITY, VALUE_STATUS, IUNIT,
 RETURN_STATUS);

Note the required use of %REF with certain parameters.

G.3.1.2 Typical Pascal Data Definitions for Get Single Point

TYPE
 INTEGER_2_TYPE : [WORD] -32678..32767;

VAR
 POINT_ID : PACKED ARRAY [1..8] OF CHAR;
 POINT_ENT_INDEX : INTEGER_2_TYPE;
 PT_PARAM : PACKED ARRAY [1..8] OF CHAR;
 PARAM_INDEX : INTEGER_2_TYPE;
 VALUE_LOC : (See Parameter Definitions);
 VALUE_TYPE : INTEGER_2_TYPE;
 PRIORITY : INTEGER_2_TYPE;
 VALUE_STATUS : INTEGER_2_TYPE;
 IUNIT : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

The data definitions that follow are examples for VALUE_LOC.

 ASCII_VALS : PACKED ARRAY [1..24] OF CHAR;
 ENUM_VALS : PACKED ARRAY [1..8] OF CHAR;
 TIME_ARR : PACKED ARRAY [1..17] OF CHAR;
 REAL_ARR : ARRAY [1..n] OF REAL;
 INTEGER_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;
 ENUM_ARR : ARRAY [1..n] OF ENUM_VALS;
 ORD_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;

G.3.1.3 FORTRAN Subroutine Call for Get Single Point

CALL SPGETF (POINT_ID, POINT_ENT_INDEX, PT_PARAM, PARAM_INDEX,
 VALUE_LOC, VALUE_TYPE, PRIORITY, VALUE_STATUS,
 IUNIT, RETURN_STATUS)

Note that if VALUE_TYPE equals 3, 4, 6, or 9 (character string types), the FORTRAN
call parameter must use pass by reference for VALUE_LOC, i.e., %REF(VALUE_LOC).

CM50S User Manual G-10 7/93

G.3.1

G.3.1.4 Typical FORTRAN Data Definitions for Get Single Point

CHARACTER*8 POINT_ID
INTEGER*2 POINT_ENT_INDEX
CHARACTER*8 PT_PARAM
INTEGER*2 PARAM_INDEX
(See Param Definitions) VALUE_LOC
INTEGER*2 VALUE_TYPE
INTEGER*2 PRIORITY
INTEGER*2 VALUE_STATUS
INTEGER*2 IUNIT
INTEGER*2 RETURN_STATUS

G.3.1.5 Parameter Definitions for Get Single Point

POINT_ID—The name of a packed array of eight characters that contains the ASCII Point ID
(name) of the point from which the value is to be retrieved.

POINT_ENT_INDEX—The name of a 16-bit Integer variable that contains an index for use
with point arrays. This feature is not implemented and the value must be zero.

PT_PARAM—The name of a packed array of eight characters that contains the ASCII name
of a parameter (or parameter array) from which the value(s) is retrieved.

PARAM_INDEX—The name of a 16-bit Integer variable whose interpretation is controlled by
VALUE_TYPE.

When VALUE_TYPE is 1, 2, 3, 4, or 5, a single value is to be accessed—This
may be an element of a parameter array (except for ASCII values). If the
parameter to be accessed is an array type, the value of PARAM_INDEX is used
as an index and must be greater than zero. If the parameter being accessed is
not an array type, PARAM_INDEX must be zero.

When VALUE_TYPE is 7, 8, 9, or 10, a whole array (or a subset of the array
starting with the first element) is to be accessed and PARAM_INDEX is used to
specify the number of elements to be accessed—If PARAM_INDEX is smaller
than the actual array size, only that number of elements is returned. If it is
larger than the actual array size, RETURN_STATUS equals 14 (no elements
are returned).

VALUE_LOC—The name of a program variable into which the value(s) are to be stored.
The type of variable must match what is declared in VALUE_TYPE.

VALUE_TYPE VALUE_LOC type

1 Real (32 bits)
2 Integer (16 bits)
3 ASCII_VALS (24 characters)
4 ENUM_VALS (8 characters)
5 Integer (16 bits)
6 TIME_ARR (18 characters, see note following)
7 ARRAY [1..n] OF REAL
8 ARRAY [1..n] OF INTEGER
9 ARRAY [1..n] OF ENUM_VALS

10 ARRAY [1..n] OF INTEGER

CM50S User Manual G-11 7/93

G.3.1

VALUE_TYPE—The name of a 16-bit Integer variable that contains a number that designates
value type of the accessed parameters as follows:

1 = Real (or single element of real array)
2 = Integer (or single element of integer array)
3 = ASCII
4 = Enumeration (or single element of enumeration array)
5 = Ordinal value of enumeration (or single element of ordinal array)
6 = LCN time (see following note)
7 = Real array
8 = Integer array
9 = Enumeration array

10 = Ordinal value of enumeration array

NOTE

For LCN Time requests, only the following parameter contents are significant: VALUE_LOC
(6), VALUE_TYPE (6), PRIORITY (1), VALUE_STATUS, and RETURN_STATUS. The other
parameters, including POINT_ID, should be blank. The format of TIME_ARR values is
MM/DD/YY∆HH:MM:SS∆ (where ∆ is used to indicate a space).

PRIORITY—The name of an Integer variable that contains the requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

VALUE_STATUS—The name of a 16-bit Integer variable into which point-related status
information is to be stored. This value is meaningful only when the
RETURN_STATUS value is 0 (normal), 5 (complete with errors), or 14 (array
size error). For any other RETURN_STATUS, VALUE_STATUS is zero (0).
When the VALUE_TYPE is an array, VALUE_STATUS refers to status of the
whole array.

IUNIT—The name of a 16-bit Integer variable (1-4) identifying the CG to be accessed.

CM50S User Manual G-12 7/93

G.3.1

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request successfully completed.
3 – Unable to access the LCN, or data link failed, or mailbox does not exist.
4 – ACP connected ACIDP not in RUN state.
5 – Data-link transaction complete, request had errors, see

VALUE_STATUS.
6 – Point entity or parameter was not found on the LCN, or ACP connected

ACIDP not found.
9 – Illegal priority number (must be 1 or 2).

10 – Invalid call parameters or array size is ≤ 0 or >1000.
11 – Invalid data type or data type does not match parameter type.
12 – Error when attempting to get a memory buffer in the VAX.
13 – CG message-transaction error—internal error.
14 – Array size error—more array elements were requested than exist in the

array.
15 – Point.parameter ID or ASCII/Enumeration value not on word boundary.
22 – Data type out of range
28 – Invalid data access priority
29 – Invalid data type code
30 – Point name index must be zero
32 – Parameter array pointer/size too large
40 – Number of words specified in message header disagrees with message

content

CM50S User Manual G-13 7/93

G.3.2

G.3.2 Store Single Point (External ID) Interface

This routine stores data to a single point in a specified CG or elsewhere on its LCN. The
specification of where the data is to be found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

G.3.2.1 Pascal Procedure Call for Store Single Point

SP_STR (POINT_ID, POINT_ENT_INDEX, PT_PARAM,
 PARAM_INDEX, %REF VALUE_LOC, VALUE_TYPE, PRIORITY,
 STORE_CODE, STORE_STATUS, RETURN_STATUS);

Note the required use of %REF with certain parameters.

G.3.2.2 Typical Pascal Data Definitions for Store Single Point

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 POINT_ID : PACKED ARRAY [1..8] OF CHAR;
 POINT_ENT_INDEX : INTEGER_2_TYPE;
 PT_PARAM : PACKED ARRAY [1..8] OF CHAR;
 PARAM_INDEX : INTEGER_2_TYPE;
 VALUE_LOC : (See Parameter Definitions);
 VALUE_TYPE : INTEGER_2_TYPE;
 PRIORITY : INTEGER_2_TYPE;
 STORE_CODE : INTEGER_2_TYPE;
 STORE_STATUS : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

The data definitions that follow are examples for VALUE_LOC.

 ASCII_VALS : PACKED ARRAY [1..24] OF CHAR;
 ENUM_VALS : PACKED ARRAY [1..8] OF CHAR;
 REAL_ARR : ARRAY [1..n] OF REAL;
 INTEGER_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;
 ENUM_ARR : ARRAY [1..n] OF ENUM_VALS;
 ORD_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;

G.3.2.3 FORTRAN Subroutine Call for Store Single Point

CALL SPSTRF (POINT_ID, POINT_ENT_INDEX, PT_PARAM, PARAM_INDEX,
 VALUE_LOC, VALUE_TYPE, PRIORITY, STORE_CODE,
 STORE_STATUS, RETURN_STATUS)

Note that if VALUE_TYPE equals 3, 4, or 9 (character string types), the FORTRAN call
parameter must use pass by reference for VALUE_LOC, i.e., %REF(VALUE_LOC).

CM50S User Manual G-14 7/93

G.3.2

G.3.2.4 Typical FORTRAN Data Definitions for Store Single Point

CHARACTER*8 POINT_ID
INTEGER*2 POINT_ENT_INDEX
CHARACTER*8 PT_PARAM
INTEGER*2 PARAM_INDEX
(See Param Definitions) VALUE_LOC
INTEGER*2 VALUE_TYPE
INTEGER*2 PRIORITY
INTEGER*2 STORE_CODE
INTEGER*2 STORE_STATUS
INTEGER*2 RETURN_STATUS

G.3.2.5 Parameter Definitions for Store Single Point

POINT_ID—The name of a packed array of eight characters that contains the ASCII Point ID
(name) of the point where the value is to be stored.

POINT_ENT_INDEX—The name of a 16-bit Integer variable that contains an index for use
with point arrays. This feature is not implemented and the value must be zero.

PT_PARAM—The name of a packed array of eight characters that contains the ASCII
parameter name for the point.parameter where the value is to be stored.

PARAM_INDEX—The name of a 16-bit Integer variable whose interpretation is controlled by
VALUE_TYPE.

When VALUE_TYPE is 1, 2, 3, 4, or 5, a single value is to be accessed—This
may be an element of a parameter array (except for ASCII values). If the
parameter to be accessed is an array type, the value of PARAM_INDEX is used
as an index and must be greater than zero. If the parameter being accessed is
not an array type, the PARAM_INDEX value must be zero.

When VALUE_TYPE is 7, 8, 9, or 10, a whole array is to be accessed and
PARAM_INDEX is used to specify the number of array elements—If
PARAM_INDEX does not match the actual array size, no elements are stored
and RETURN_STATUS value is 5 with a STORE_STATUS indicating an
invalid array size.

VALUE_LOC—The name of a program variable from which the value(s) are to be fetched.
The type of variable must match what is declared in VALUE_TYPE.

VALUE_TYPE VALUE_LOC type

1 Real (32 bits)
2 Integer (16 bits)
3 ASCII_VALS (24 characters)
4 ENUM_VALS (8 characters)
5 Integer (16 bits)
6 not used
7 ARRAY [1..n] OF REAL
8 ARRAY [1..n] OF INTEGER
9 ARRAY [1..n] OF ENUM_VALS

10 ARRAY [1..n] OF INTEGER

CM50S User Manual G-15 7/93

G.3.2

VALUE_TYPE—The name of a 16-bit Integer variable that contains a number that designates
value type as follows:

1 = Real (or single element of real array)
2 = Integer (or single element of integer array)
3 = ASCII
4 = Enumeration (or single element of enumeration array)
5 = Ordinal value of enumeration (or single element of ordinal array)
6 = not used
7 = Real array (conversion at CG)
8 = Integer array
9 = Enumeration array

10 = Ordinal value of enumeration array

PRIORITY—The name of a 16-bit Integer variable that contains the requested data-access
priority:

1 = High priority (provided for control operations)
2 = Low priority (provided for noncontrol operations)

STORE_CODE—Name of a 16-bit Integer variable that contains a code that allows the
substitution of a bad value representation in place of the provided value(s). The
store code values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

STORE_STATUS—The name of a 16-bit Integer variable into which point-related status
information is to be stored. This value is meaningful only when the
RETURN_STATUS value is 0 (normal) or 5 (complete with errors). For any
other RETURN_STATUS, VALUE_STATUS is zero (0). See Appendix A for
a listing of Data-Access error/status codes. When the VALUE_TYPE is an
array, STORE_STATUS refers to status of the whole array.

CM50S User Manual G-16 7/93

G.3.2

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request successfully completed.
3 – Unable to access the LCN, or data link failed, or mailbox does not exist.
4 – ACP connected ACIDP not in RUN state.
5 – Data-link transaction complete, request had errors, see STORE_

STATUS.
6 – Valid ACIDP not found, or point entity or parameter not found.
7 – ACP not installed, or is restricted, or was not turned on by CM50S

function.
8 – ACIDP access key incorrect
9 – Illegal priority number (must be 1 or 2)

10 – Invalid call parameters, or store code is invalid, or array size is ≤0 or >
1000.

11 – Invalid data type, or data type does not match parameter type.
12 – Insufficient memory space in the VAX
13 – CG message transaction error—internal error
14 – Array size too small
15 – Point.parameter ID or ASCII/Enumeration value not on word boundary.
22 – Data type out of range
28 – Invalid data access priority
29 – Invalid data type code
30 – Point name index must be zero
32 – Parameter array pointer/size too large
40 – Number of words specified in message header disagrees with message

content.

See also, error codes listed in paragraphs A.2, and A.3.

CM50S User Manual G-17 7/93

G.3.3

G.3.3 Get Single Point (Internal ID) Interface

This routine fetches data for a single point from the CG or elsewhere on the LCN. Use of
the Internal point.parameter ID (obtained by previous use of the SPCVTF interface, see
G.7.3) reduces the overhead required for repetitive single-point requests.

The specification of which data is to be fetched, and where it is to be stored, is contained in
the call. For parameter arrays, either a single element or the whole array can be specified.

G.3.3.1 Pascal Procedure Call for Get Single Point

SP_IGT (ID_BLOCK, %REF VALUE_LOC, PRIORITY, VALUE_STATUS, IUNIT,
 RETURN_STATUS);

Note the required use of %REF with certain parameters.

G.3.3.2 Typical Pascal Data Definitions for Get Single Point

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 ID_BLOCK : ARRAY [1..8] OF INTEGER_2_TYPE;
 VALUE_LOC : (See Parameter Definitions);
 PRIORITY : INTEGER_2_TYPE;
 VALUE_STATUS : INTEGER_2_TYPE;
 IUNIT : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

The data definitions that follow are examples for VALUE_LOC.

 ASCII_VALS : PACKED ARRAY [1..24] OF CHAR;
 ENUM_VALS : PACKED ARRAY [1..8] OF CHAR;
 REAL_ARR : ARRAY [1..n] OF REAL;
 INTEGER_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;
 ENUM_ARR : ARRAY [1..n] OF ENUM_VALS;
 ORD_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;

G.3.3.3 FORTRAN Subroutine Call for Get Single Point

CALL SPIGTF (ID_BLOCK, VALUE_LOC, PRIORITY, VALUE_STATUS,
 IUNIT, RETURN_STATUS)

Note that if VALUE_TYPE equals 3, 4, or 9 (character string types), the FORTRAN call
parameter must use pass by reference for VALUE_LOC, i.e., %REF(VALUE_LOC).

CM50S User Manual G-18 7/93

G.3.3

G.3.3.4 Typical FORTRAN Data Definitions for Get Single Point

INTEGER*2 ID_BLOCK(8)
(See Param Definitions) VALUE_LOC
INTEGER*2 PRIORITY
INTEGER*2 VALUE_STATUS
INTEGER*2 IUNIT
INTEGER*2 RETURN_STATUS

G.3.3.5 Parameter Definitions for Get Single Point

ID_BLOCK—The name of an array of eight 16-bit integer values that contains the internal ID
data block obtained by a previous SPCVTF call. When the data is of array
type, that call returns the array size in word 7 of the ID block. Thus, if you
wish to get less than the entire array, you can change the parameter qualifier in
the seventh word of the ID block to be smaller than the actual array size. Do not
change any other words in the ID block. See paragraph 4.7.8 of the Computer
Gateway User Manual for ID block details.

VALUE_LOC—The name of a program variable into which the value is to be stored. The
type of variable must match that which was declared in VALUE_TYPE in the
earlier SPCVTF call.

VALUE_TYPE VALUE_LOC type

1 Real
2 Integer
3 ASCII_VALS
4 ENUM_VALS
5 Integer
6 not used
7 ARRAY [1..n] OF REAL
8 ARRAY [1..n] OF INTEGER
9 ARRAY [1..n] OF ENUM_VALS

10 ARRAY [1..n] OF INTEGER

PRIORITY—The name of a 16-bit Integer variable that contains the requested data-access
priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

VALUE_STATUS—The name of a 16-bit Integer variable into which point-related status
information is to be stored. This value is meaningful only when the
RETURN_STATUS value is 0 (normal), 5 (complete with errors), or 14 (array
size error). For any other RETURN_STATUS value, VALUE_STATUS is
zero. See Appendix A for a listing of Data-Access error/status codes. When
the VALUE_TYPE is an array, VALUE_STATUS refers to status of the whole
array.

IUNIT—The name of a 16-bit Integer variable (1-4) identifying the CG to be accessed.

CM50S User Manual G-19 7/93

G.3.3

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request successfully completed
3 – Unable to access the LCN, or data link failed, or mailbox does not exist
4 – ACP connected ACIDP not in RUN state
5 – Data-link transaction complete, request had errors, see

VALUE_STATUS.
6 – Point entity or parameter not found on the LCN, or ACP connected

ACIDP not in RUN state.
9 – Illegal priority number (must be 1 or 2)

10 – Invalid parameters
11 – Invalid data type or data type does not match the parameter type.
12 – Error when attempting to get a memory buffer in the VAX
13 – Not the expected CG return transaction, internal CM50S communication

error.
14 – Array size error—more array elements were requested than exist in the

array. The returned VALUE_STATUS contains the actual array size.
15 – Point.parameter ID or ASCII/Enumeration value not on word boundary.
28 – Invalid data access priority
29 – Invalid data type code
40 – Number of words specified in message header disagrees with message

content.

CM50S User Manual G-20 7/93

G.3.4

G.3.4 Store Single Point (Internal ID) Interface

This routine stores data to a single point in the CG or elsewhere on the LCN. Use of the
Internal point.parameter ID (obtained by previous use of the SPCVTF interface, see G.7.3)
reduces the overhead required for repetitive single-point requests.

The specification of where the data is found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

G.3.4.1 Pascal Procedure Call for Store Single Point

SP_IST (ID_BLOCK, %REF VALUE_LOC, PRIORITY, STORE_CODE, STORE_STATUS,
 RETURN_STATUS);

G.3.4.2 Typical Pascal Data Definitions for Store Single Point

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 ID_BLOCK : ARRAY [1..8] OF INTEGER_2_TYPE;
 VALUE_LOC : (See Parameter Definitions);
 PRIORITY : INTEGER_2_TYPE;
 STORE_CODE : INTEGER_2_TYPE;
 STORE_STATUS : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

The data definitions that follow are examples for VALUE_LOC.

 ASCII_VALS : PACKED ARRAY [1..24] OF CHAR;
 ENUM_VALS : PACKED ARRAY [1..8] OF CHAR;
 REAL_ARR : ARRAY [1..n] OF REAL;
 INTEGER_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;
 ENUM_ARR : ARRAY [1..n] OF ENUM_VALS;
 ORD_ARR : ARRAY [1..n] OF INTEGER_2_TYPE;

G.3.4.3 FORTRAN Subroutine Call for Store Single Point

CALL SPISTF (ID BLOCK, VALUE_LOC, PRIORITY, STORE_CODE, STORE_STATUS,
 RETURN_STATUS)

Note that if VALUE_TYPE equals 3, 4, or 9 (character string types), the FORTRAN call
parameter must use pass by reference for VALUE_LOC, i.e., %REF(VALUE_LOC).

CM50S User Manual G-21 7/93

G.3.4

G.3.4.4 Typical FORTRAN Data Definitions for Store Single Point

INTEGER*2 ID_BLOCK(8)
(See Param Definitions) VALUE_LOC
INTEGER*2 PRIORITY
INTEGER*2 STORE_CODE
INTEGER*2 STORE_STATUS
INTEGER*2 RETURN_STATUS

G.3.4.5 Parameter Definitions for Store Single Value

ID_BLOCK—The name of an array of eight, 16-bit integer values that contains the internal
ID data block obtained by a previous SPCVTF call. Do not change any words
in the ID block. If the array size is changed, the array is not stored and the
RETURN_STATUS value is 5 with a STORE_STATUS that indicates an
invalid array size. See paragraph 4.7.8 of the Computer Gateway User Manual
for ID block details.

VALUE_LOC—The name of a program variable that contains the value to be stored. The
type of variable must match what was declared in VALUE_TYPE in the earlier
SPCVTF call.

VALUE_TYPE VALUE_LOC type
1 Real
2 Integer
3 ASCII_VALS
4 ENUM_VALS
5 Integer
6 not used
7 ARRAY [1..n] OF REAL
8 ARRAY [1..n] OF INTEGER
9 ARRAY [1..n] OF ENUM_VALS

10 ARRAY [1..n] OF INTEGER

PRIORITY—The name of a 16-bit Integer variable that contains the requested data-access
priority:

1 = High priority (provided for control operations)
2 = Low priority (provided for noncontrol operations)

STORE_CODE—The name of a 16-bit Integer variable that contains a code that allows the
substitution of a bad value representation in place of the provided value(s). The
store code values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

CM50S User Manual G-22 7/93

G.3.4

STORE_STATUS—The name of a 16-bit Integer variable into which point-related status
information is to be stored. This value is meaningful only when the
RETURN_STATUS value is 0 (normal), or 5 (complete with errors). For any
other RETURN_STATUS, STORE_STATUS is zero. See Appendix A for a
listing of Data-Access error/status codes. When the VALUE_TYPE is an
array, STORE_STATUS refers to status of the whole array.

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request successfully completed
3 – Unable to access the LCN, or data link failed, or mailbox does not exist
4 – ACP connected ACIDP not in RUN state
5 – Data-link transaction complete, request had errors, see

STORE_STATUS.
6 – Valid ACIDP not found, or point entity or parameter not found on the

LCN.
7 – ACP not installed, or not in normal status, or was not turned on by

CM50S function
8 – ACIDP access key incorrect
9 – Illegal priority number (must be 1 or 2)

10 – Invalid call parameters
11 – Invalid data type or data type does not match parameter name.
12 – Error when attempting to acquire a memory buffer in the VAX
13 – CG message transaction error—internal error
15 – ASCII/Enumeration value not on word boundary
28 – Invalid data access priority
29 – Invalid data type code
40 – Number of words specified in message header disagrees with message

content.

See also, error codes listed in paragraphs A.2, and A.3.

CM50S User Manual G-23 7/93

G.4

G.4 HISTORY DATA TRANSFERS

The interface routines in this group get previously stored averages or 1-minute snapshot
data from the History Module. Use of separately prepared DDTs is required.

The calls described in paragraphs G.4.1 and G.4.2 provide for concurrent Get History
requests by up-to-four ACPs. A fifth request is rejected with a queue-full status return.
These calls differ only, in how the start and end times are specified. The form of returned
data is the same for both.

G.4.1 Get History (Absolute Times) Interface

This routine is used to fetch history data from the HM using absolute begin and end times.
The specification of which data is to be collected is contained in a Data Definition Table,
while time bounds and the history type are calling parameters. There is a maximum of 262
samples that can be returned per call.

If a seasonal time change has occurred during a specified Absolute History interval, the
number of samples returned can differ from the expected number of samples. For
example, if it is desired to obtain a day's worth of hourly averages (24) and a forward time
change of one hour has occurred, 23 samples are returned. If the time change is in the
backward direction, 25 samples are returned.

G.4.1.1 Pascal Procedure call for Get History (Absolute Times)

HISABP (DATA_ARRAY_NAME, DATA_ARRAY_SIZE, DATA_TABLE_NAME,
 BEGIN_PERIOD, END_PERIOD, HISTORY_TYPE,
 NUMBER_OF_WORDS, RETURN_STATUS);

G.4.1.2 Typical Pascal Data Definitions for Get History (Absolute Times)

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 DATA_ARRAY_NAME : ARRAY [1..6000] OF INTEGER_2_TYPE;
 DATA_ARRAY_SIZE : INTEGER_2_TYPE;
 DATA_TABLE_NAME : PACKED ARRAY [1..9] OF CHAR;
 BEGIN_PERIOD : PACKED ARRAY [1..14] OF CHAR;
 END_PERIOD : PACKED ARRAY [1..14] OF CHAR;
 HISTORY_TYPE : INTEGER_2_TYPE;
 NUMBER_OF_WORDS : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

G.4.1.3 FORTRAN Subroutine Call for Get History (Absolute Times)

CALL HISABF (DATA_ARRAY_NAME, DATA_ARRAY_SIZE, DATA_TABLE_NAME,
 BEGIN_PERIOD, END_PERIOD, HISTORY_TYPE, NUMBER_OF_WORDS,
 RETURN_STATUS)

CM50S User Manual G-24 7/93

G.4.1

G.4.1.4 Typical FORTRAN Data Definitions for Get History (Absolute Times)

INTEGER*2 DATA_ARRAY_NAME(6000)
INTEGER*2 DATA_ARRAY_SIZE
CHARACTER*9 DATA_TABLE_NAME
CHARACTER*14 BEGIN_PERIOD
CHARACTER*14 END_PERIOD
INTEGER*2 HISTORY_TYPE
INTEGER*2 NUMBER_OF_WORDS
INTEGER*2 RETURN_STATUS

G.4.1.5 Parameter Definitions for Get History (Absolute Times)

DATA_ARRAY_NAME—The name of a single-dimension Integer array where the history
data is to be stored. A Get History call can return a maximum of 5986, 16-bit
words of data.

DATA_ARRAY_SIZE—The name of a 16-bit Integer variable that contains the size in words
of the data array.

DATA_TABLE_NAME—The name of a packed array of nine characters that contains the
ASCII name of the DDT to be used.

BEGIN_PERIOD—The name of a packed array that contains the 14-character ASCII
representation MM/DD/YY∆HH:MM (where ∆ indicates a blank character), of
the date and time starting the period for which history is to be fetched.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, BEGIN_PERIOD should be set any time
between 10:01 and 10:59.

END_PERIOD—The name of a packed array that contains the 14-character ASCII
representation, MM/DD/YY∆HH:MM, of the date and time ending the period
for which history is to be fetched.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
END_PERIOD for an 11:00 hourly average should be set to any time from
11:01 to 11:59.

HISTORY_TYPE—The name of a 16-bit Integer variable that contains the number specifying
the requested history type. The history types and their integer representations
are

1-minute snapshots = 0
Hourly averages = 1
Shift averages = 2
Daily averages = 3
Monthly averages = 4
User averages = 5

CM50S User Manual G-25 7/93

G.4.1

NUMBER_OF_WORDS—The name of a 16-bit Integer variable where HISABP/HISABF is
to store the total word count of history values returned to the program. Its
maximum value is 5986. It is zero if the request completion status is other than
0 or 5.

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request was successfully completed
1 – The named Data Definition Table does not exist or is incomplete.
2 – Referenced Data Definition Table is not of type "history."
3 – Unable to access the LCN, or Data Link failed, or mailbox does not exist.
4 – Begin Period is invalid.
5 – Request completed, but with errors.
6 – End Period is invalid.
7 – History Type is not valid or there was a Data Access failure during the

history query.
9 – Could not obtain history data from the HM.

11 – Get History request timed out.
12 – Get History request queue is full.
13 – Begin/End periods are invalid.
14 – Array size is too small.
15 – ACP connected to ACIDP not in RUN state.
16 – Specified ACIDP not found

See also, error codes listed in paragraphs A.2, and A.3.

CM50S User Manual G-26 7/93

G.4.2

G.4.2 Get History (Relative Time) Interface

This routine is used to fetch history data from the HM, using a relative offset from current
LCN time. The specification of which data is to be collected is contained in a Data
Definition Table, while time bounds and the history type are calling parameters.

The direction of search can be either forward (oldest to newest data) or backwards (newest
to oldest data); however, a forward search requires at least twice as long to execute. To
execute a backward search, set the starting offset value less-than or equal-to the ending
offset value.

The number of samples returned is calculated as the positive difference between the starting
offset and the ending offset, plus one. If this difference exceeds 262, the request is
truncated at 262 samples. The number of samples returned by a Relative History request is
immune to time changes.

Offset values less than one have special meanings. When the starting or ending offset
value is zero (i.e., current LCN time) in the case of averages, the first sample returned is
the current running average for the period.

A starting offset of -1 has special meaning in the cases of snapshots and user averages. In
those cases only, LCN time is rounded to the beginning of the last hour. This permits an
ACP to be sure of obtaining the last full hour of snapshots or user averages. In calculating
the number of samples returned, a -1 is treated as an offset of 0 and its number of samples
and direction of search follow those rules.

An ending offset of -1 for snapshots and user averages means the search direction is
forward and the ending time is on the hour starting "n" units back from current time.

The following table summarizes results of some possible combinations of starting and
ending offsets with numbers of samples returned and reasons for zero sample returns.

History Starting Ending Number Direction Partial
Type Offset Offset of Samples of Search First Sample

for Averages?

any 0 0 1 Backward yes
any 1 1 1 Backward no
any 2 3 2 Backward no
any 3 2 2 Forward no
any 0 300 262 Backward yes
0,5 3 -1 4 Forward no
1 to 4 3 -1 0 Error, end offset invalid
0,5 -1 3 4 Backward no
0,5 -1 -3 0 Error, end offset invalid
1 to 4 -1 -3 0 Error, begin/end offset

invalid

CM50S User Manual G-27 7/93

G.4.2

G.4.2.1 Pascal Procedure Call for Get History (Relative Time)

HISRLP (DATA_ARRAY_NAME, DATA_ARRAY_SIZE, DATA_TABLE_NAME,
 BEGIN_OFFSET, END_OFFSET, HISTORY_TYPE, NUMBER_OF_WORDS,
 RETURN_STATUS);

G.4.2.2 Typical Pascal Data Definitions for Get History (Relative Time)

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 DATA_ARRAY_NAME : ARRAY [1..6000] OF INTEGER_2_TYPE;
 DATA_ARRAY_SIZE : INTEGER_2_TYPE;
 DATA_TABLE_NAME : PACKED ARRAY [1..9] OF CHAR;
 BEGIN_OFFSET : INTEGER_2_TYPE;
 END_OFFSET : INTEGER_2_TYPE;
 HISTORY_TYPE : INTEGER_2_TYPE;
 NUMBER_OF_WORDS : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

G.4.2.3 FORTRAN Subroutine Call for Get History (Relative Time)

CALL HISRLF (DATA_ARRAY_NAME, DATA_ARRAY_SIZE, DATA_TABLE_NAME,
 BEGIN_OFFSET, END_OFFSET, HISTORY_TYPE, NUMBER_OF_WORDS,
 RETURN_STATUS)

G.4.2.4 Typical FORTRAN Data Definitions for Get History (Relative Time)

INTEGER*2 DATA_ARRAY_NAME(6000)
INTEGER*2 DATA_ARRAY_SIZE
CHARACTER*9 DATA_TABLE_NAME
INTEGER*2 BEGIN_OFFSET
INTEGER*2 END_OFFSET
INTEGER*2 HISTORY_TYPE
INTEGER*2 NUMBER_OF_WORDS
INTEGER*2 RETURN_STATUS

G.4.2.5 Parameter Definitions for Get History (Relative Time)

DATA_ARRAY_NAME—The name of a single-dimension array of 16-bit integers where the
history data is to be stored. A Get History call can return a maximum of 5986,
16-bit words of data.

DATA_ARRAY_SIZE—The name of a 16-bit Integer variable that contains the size in words
of the data array.

DATA_TABLE_NAME—The name of a packed array of nine characters that contains the
ASCII name of the DDT to be used in this Get History operation.

BEGIN_OFFSET—The name of a positive Integer variable that indicates a relative offset
from current LCN time that represents the starting period for which history is to
be fetched. The units for the offset are based on the type of history requested.

CM50S User Manual G-28 7/93

G.4.2

HISTORY TYPE UNITS OF OFFSET
1-minute snapshots Minutes
Hourly averages Hours
Shift averages not applicable
Daily averages Days
Monthly averages Months
User averages Number of user averages to skip

END_OFFSET—The name of a positive Integer variable that indicates a relative offset from
the current LCN time representing the ending period for which history is to be
fetched. The units for the offset are based on the type of history requested. See
values given with BEGIN_OFFSET.

HISTORY_TYPE—The name of a 16-bit Integer variable that contains the number specifying
the requested history type. The history types and their integer representations
are

1-minute snapshots = 0
Hourly averages = 1
Shift averages = 2
Daily averages = 3
Monthly averages = 4
User averages = 5

NUMBER_OF_WORDS—The name of a 16-bit Integer variable where HISRLP/HISRLF is
to store the total word count of history values returned to the program. Its
maximum value is 5986. It is zero if the request-completion status is other than
0 or 5.

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request was successfully completed.
1 – The named DDT does not exist or is incomplete.
2 – Referenced DDT is not of type "history."
3 – Unable to access the LCN, or Data Link failed, or mailbox does not

exist.
4 – Begin Offset is invalid.
5 – Request completed, but with errors.
6 – End Offset is invalid.
7 – History Type is not valid, or there was a Data Access failure during the

history query.
9 – Could not obtain history data from the HM.

11 – Get History request timed out.
12 – Get History request queue is full.
13 – Begin/End offsets are invalid.
14 – Array size is too small.
15 – ACP connected ACIDP not in RUN state.
16 – Specified ACIDP not found.

See also, error codes listed in paragraphs A.2 and A.3.

CM50S User Manual G-29 7/93

G.4.3

G.4.3 History Data Return Formats

G.4.3.1 Averages Data Format

The normal averages data returned for each point specified in the History DDT is preceded
by a 2-word header consisting of

Word 1—Data Access Status Code (16-bit Integer). See Appendix A for interpretation.

Word 2—Number of averages returned for this point (16-bit Integer).

This header is immediately followed by groups of 10 words for each returned average.
The content of each average record varies according to its Value Type (word 1 of each 10-
word record). There are two averages record forms:

Form 1—Word 1 = 0 (Normal data), or
= 1 (Nonstandard), or
= 5 (Time change), or
= 13 (Time change nonstandard) (16-bit Integer)

Word 2..3 = Average process value for period (Real*)
Word 4..5 = Time Stamp (Array [1..2] of 16-bit

Integers)
Word 6..7 = Maximum process value in period** (Real*)
Word 8..9 = Minimum process value in period** (Real*)
Word 10 = Number of samples for period (16-bit Integer)

Form 2—Word 1 = 6 (Outage), or
= 7 (No data), or
= 12 (Not in history) (16-bit Integer)

Word 2..3 = Unused (initialized to Integer -0)
Word 4..5 = Time Stamp (Array [1..2] of 16-bit

Integers)
Word 6..7 = Unused (initialized to Integer -0)
Word 8..9 = Unused (initialized to Integer -0)
Word 10 = Unused

Exceptions: If the Data Access Status code for a point (header word 1) is other than 4, 5, 6,
or 8, there are no average values for that point and no other words are used. If the number
of averages for a point is zero, only the two header words are used.

Record Word 1 (Value Type) definitions for averages data are

0 = Normal: 90% or more good samples
1 = Nonstandard: Less than 90% good samples
2 = Digital Value: not applicable (if an average is requested for a parameter of type

digital, the value type returned is "data not in history").
3-4 = not used
5 = Time Change: a time change occurred during the averaging period but there are

90% or more good samples.

 *See paragraph G.4.4 for required format conversion information.

** Because of the storage method used, Minimum/Maximum process values can have up to 1% error (+1%
for Maximum and -1% for Minimum).

CM50S User Manual G-30 7/93

G.4.3

6 = Outage: History Module was not in service for the entire period; value field
contains NaN.

7 = No Data: no values were available from the Data Owner for entire period; value
field contains NaN.

8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file; value field

contains NaN.
13 = Time Change nonstandard: the average calculation was performed according to

the new time, and samples already collected are rolled into the new average;
there are fewer than 90% good samples.

G.4.3.2 Snapshot Data Format

The normal snapshot data returned for each point specified in the History DDT is preceded
by a 2-word header consisting of

Word 1—Data Access Status Code (16-bit Integer). See Appendix A for interpretation.

Word 2—Number of snapshots returned for this point (16-bit Integer).

This header is immediately followed by groups of five words for each returned snapshot.
The content of each snapshot record varies according to its Value Type (word 1 of each 5-
word record). There are three snapshot record forms:

Form 1—Word 1 = 0 (Real value data) (16-bit Integer)
Word 2..3 = Process value (Real*)
Word 4..5 = Time Stamp (Array [1..2] of 16-bit

Integers)

Form 2—Word 1 = 2 (Digital value data) (16-bit Integer)
Word 2 = Digital process value (16-bit Integer)
Word 3 = Unused (initialized to Integer -0)
Word 4..5 = Time Stamp (Array [1..2] of 16-bit

Integers)

Form 3—Word 1 = 5 (Time change), or
= 6 (Outage), or
= 7 (No data), or
= 11 (Collection inhibited), or
= 12 (Not in history) (16-bit Integer)

Word 2..3 = Unused (initialized to Integer -0)
Word 4..5 = Time Stamp (Array [1..2] of 16-bit

Integers)

Exceptions: If the Data Access Status code for a point (header word 1) is other than 4, 5, 6,
or 8, there are no snapshot values for that point. When the number of snapshots for a point
is zero, only the two header words are used.

*See paragraph G.4.4 for required format conversion information

CM50S User Manual G-31 7/93

G.4.4

Record Word 1 (Value Type) definitions for Snapshot data are

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is missing; value

field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field contains

NaN
12 = Not in History: requested data was outside span of the history file; value field

contains NaN
13 = Time Change nonstandard: not applicable

G.4.4 History Data Format Conversion

Because values of type Real are returned by the Get History call, but the receiving array is
an array of 16-bit Integer values, the ACP must convert adjacent pairs of integers into reals.
Furthermore, it must provide for the detection of any bad values (see paragraph G.7.1) that
may have been returned by the call. Bad-value detection must be done before any floating-
point operations (including assignment) are performed on the data.

Following are sample FORTRAN and Pascal routines that examine a pair of 16-bit integers
and return either a real value, or an indication that the integers represent a bad value.

Sample FORTRAN Conversion Routine

 SUBROUTINE CONVIR (V1, V2, BADVAL, VALUE)
 16-BIT INTEGER2 V1, V2
 LOGICAL*2 BADVAL
 REAL VALUE
 LOGICAL*2 GOOD
 16-BIT INTEGER2 I(2)
 REAL R
 EQUIVALENCE (I, R)
 I(1) = V1
 I(2) = V2
 CALL CHKBAD (R, GOOD)
 BADVAL = .NOT. GOOD
 IF (GOOD) THEN
 VALUE = R
 ELSE
 VALUE = 0.0
 ENDIF
 END

CM50S User Manual G-32 7/93

G.4.4

Sample Pascal Conversion Routine

PROCEDURE Convert_Integer_to_Real (V1,V2 :INTEGER_2_TYPE;
 VAR Badvalue :Boolean;
 VAR Value :Real);

TYPE
INTEGER_2_TYPE = [WORD] -32768..32767;
Integer_Pair_Type = ARRAY [1..2] OF INTEGER_2_TYPE;

VAR
 Good: Boolean;
 Trix: [VOLATILE] PACKED RECORD
 CASE Boolean OF
 True: (I: Integer_Pair_Type);
 False: (R_VALUE: Real);
 END;

BEGIN
WITH Trix DO
 BEGIN
 I[1] := V1;
 I[2] := V2;
 R := R_VALUE;
 ChkBad (R, Good);
 Badvalue := NOT Good;
 IF Good THEN
 Value := R
 ELSE
 Value := 0.0;
 END;
END;

CM50S User Manual G-33 7/93

G.5

G.5 TEXT MESSAGE TRANSFERS

The two interface routines in this group are used to send and receive character-string
messages over the LCN.

G.5.1 Get Message Interface

This routine is used to fetch a character-string message held in a buffer by this program's
ACIDP. The message presence is determined as the result of a Get ACP Status request.

G.5.1.1 Pascal Procedure Call for Get Message

GETMSG (%DESCR TEXT_ARRAY, TEXT_ARRAY_SIZE, RETURN_STATUS);

Note the required use of %DESCR with some parameters.

G.5.1.2 Typical Pascal Data Definition for Get Message

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 TEXT_ARRAY : PACKED ARRAY [1..120] OF CHAR;
 TEXT_ARRAY_SIZE : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

The data definition shown for TEXT_ARRAY is its maximum.

G.5.1.3 FORTRAN Subroutine Call for Get Message

CALL GETMSF (TEXT_ARRAY, TEXT_ARRAY_SIZE, RETURN_STATUS)

G.5.1.4 Typical FORTRAN Data Definitions for Get Message

CHARACTER*120 TEXT_ARRAY
INTEGER*2 TEXT_ARRAY_SIZE
INTEGER*2 RETURN_STATUS

G.5.1.5 Parameter Definitions for Get Message

TEXT_ARRAY—The name of a packed array of characters where the message is to be
stored.

TEXT_ARRAY_SIZE—The name of a 16-bit Integer variable that specifies the maximum
number of characters you expect (120-character limit).

CM50S User Manual G-34 7/93

G.5.2

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request was successfully completed.
1 – Request completed, but trailing characters in excess of Text Array Size

have been deleted.
 2– No message has been sent.
 3– Unable to access the LCN.
 4– Request was successfully completed. A second message is now queued
 at the ACIDP.

5 – Request completed with trailing characters deleted. A second message
is now queued at the ACIDP.

6 – Valid ACIDP not found
8 – The specified number of characters to be received is negative or greater

than 120.
15 – ACP connected ACIDP not in RUN state.

See also, error codes listed in paragraphs A.2, and A.3.

G.5.2 Send Message Interface

This routine is used to send a message to all operator stations assigned to the same unit as
this program's ACIDP. A request to wait for operator confirmation is optional. If operator
confirmation is requested, execution of the requesting program is suspended until either the
confirmation occurs or until its specified wait time expires. The requesting program
receives an indication of whether confirmation or a time out occurs.

G.5.2.1 Pascal Procedure Call for Send Message

SNDMSG (%DESCR TEXT_ARRAY, MESSAGE_SIZE, CONFIRM, WAIT_TIME,
 DESTINATION, RETURN_STATUS);

Note the required use of %DESCR with some parameters.

G.5.2.2 Typical Pascal Data Definition for Send Message

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;
 BOOLEAN_2_TYPE : [WORD] BOOLEAN;

VAR
 TEXT_ARRAY : PACKED ARRAY [1..120] OF CHAR;
 MESSAGE_SIZE : INTEGER_2_TYPE;
 CONFIRM : BOOLEAN_2_TYPE;
 WAIT_TIME : INTEGER_2_TYPE;
 DESTINATION : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

G.5.2.3 FORTRAN Subroutine Call for Send Message

CALL SNDMSF (TEXT_ARRAY, MESSAGE_SIZE, CONFIRM, WAIT_TIME,
 DESTINATION, RETURN_STATUS)

CM50S User Manual G-35 7/93

G.5.2

G.5.2.4 Typical FORTRAN Data Definitions for Send Message

CHARACTER*120 TEXT_ARRAY
INTEGER*2 MESSAGE_SIZE
LOGICAL*2 CONFIRM
INTEGER*2 WAIT_TIME
INTEGER*2 DESTINATION
INTEGER*2 RETURN_STATUS

G.5.2.5 Parameter Definitions for Send Message

TEXT_ARRAY—The name of a packed array of characters that contains the message to be
sent.

MESSAGE_SIZE—The name of a 16-bit Integer variable that specifies the number of
characters to be transmitted. The maximum number of characters depends on
message destination: 60 for CRT displays and 72 for printing. Over-length
messages are truncated. All messages are archived if the HM is so configured.

CONFIRM—The name of a Boolean variable (TRUE or FALSE) that specifies whether or
not a message confirmation is required. Note that this parameter is treated as
FALSE if the message destination is printer only.

WAIT_TIME—The name of a 16-bit Integer variable (0 to 3600) that specifies the number of
seconds the system is to wait for confirmation before returning control to the
requesting program with a "no confirm" return status. (Allow for a built-in time
lag of up-to-10 seconds.) The Wait Time parameter is ignored if the Confirm
parameter is set to OFF or the message destination is printer only.

DESTINATION—The name of a 16-bit Integer variable that specifies where the message is to
be sent, as follows:

0 – CRT only
1 – Printer only
2 – Both

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request was successfully completed (and, if requested,
confirmed).

2 – Wait Time not within allowed range, or message could not be sent.
3 – Unable to access the LCN.
4 – Message was sent, but wait time elapsed with no confirmation.
5 – Destination not within allowed range.
6 – Valid ACIDP not found.
7 – Confirm parameter not ON or OFF.
8 – The number of characters to be transmitted is negative.

15 – ACP connected ACIDP not in RUN state.

See also, error codes listed in paragraphs A.2. and A.3.

CM50S User Manual G-36 7/93

G.5.2

G.5.2.6 Event-Initiated Reports

Two types of Event-Initiated Reports can be invoked by specially formatted messages from
an ACP to the Area Universal Stations:

• Logs, reports journals, and trends configured in the Area database.
• Event History reports.

Details of message requirements are given in Section 30 of the Engineer's Reference
Manual located in the Implementation/Startup & Reconfiguration - 2 binder.

G.6 ACP EXECUTION SUPPORT

These interface routines affect the orderly execution and termination of an ACP.

G.6.1 ACP Trap Handler Interface

This routine must be the first executable statement in each ACP. It establishes a termination
handler for the ACP and ensures proper ACPI table setup. Failure to invoke this interface
routine as the first statement of an ACP may not appear to cause immediate problems, but
results in improper termination handling. The termination status is not reported to the CG,
and the ACP appears to both the CM50S and the CG to still be in the RUN state even
though the process has terminated.

G.6.1.1 Pascal Procedure Call for ACP Trap Handler

ACPTRP;

G.6.1.2 FORTRAN Subroutine Call for ACP Trap Handler

CALL ACPTRP

G.6.1.3 Data Definitions for ACP Trap Handler

Not applicable

CM50S User Manual G-37 7/93

G.6.2

G.6.2 Get ACP Status Interface

This routine fetches a set of parameters that enables the requesting program to determine
why the system has turned it on and what special processing may be required at this time.
It should be used during both the "setup" and "cleanup" program stages each time a Type 1
ACP runs. After servicing this request, the interface routine resets its copy of these values
in preparation for any subsequent ACP turn on.

G.6.2.1 Pascal Procedure Call for Get ACP Status

GETSTS (TAKE_I_P, PS_MSG, DEMAND, PROCSPEC, SCHEDULED, UPPER_LEVEL);

G.6.2.2 Typical Pascal Data Definitions for Get ACP Status

VAR
 TAKE_I_P : BOOLEAN_2_TYPE;
 PS_MSG : BOOLEAN_2_TYPE;
 DEMAND : BOOLEAN_2_TYPE;
 PROCSPEC : BOOLEAN_2_TYPE;
 SCHEDULED : BOOLEAN_2_TYPE;
 UPPER_LEVEL : BOOLEAN_2_TYPE;
 BOOLEAN_2_TYPE : [WORD] BOOLEAN;

G.6.2.3 FORTRAN Subroutine Call for Get ACP Status

CALL GETSTS (TAKE_I_P, PS_MSG, DEMAND, PROCSPEC, SCHEDULED, UPPER_LEVEL)

G.6.2.4 Typical FORTRAN Data Definitions for Get ACP Status

LOGICAL*2 TAKE_I_P
LOGICAL*2 PS_MSG
LOGICAL*2 DEMAND
LOGICAL*2 PROCSPEC
LOGICAL*2 SCHEDULED
LOGICAL*2 UPPER_LEVEL

G.6.2.5 Parameter Definitions for Get ACP Status

TAKE_I_P—The name of a Boolean variable that returns TRUE the first time this program
is turned on by the CG, following an initialization event . TAKE_I_P should
be ignored when UPPER_LEVEL is TRUE.

PS_MSG—The name of a Boolean variable that returns TRUE if a message for the program
is waiting at the CG.

DEMAND—The name of a Boolean variable that returns TRUE if the program was turned on
as the result of a process operator request.

PROCSPEC—The name of a Boolean variable that returns TRUE if the program was turned
on as the result of a process special to its ACIDP from an HG, AM, or another
ACP.

CM50S User Manual G-38 7/93

G.6.3

SCHEDULED—The name of a Boolean variable that returns TRUE if the program was
turned on by periodic or cyclic scheduling.

UPPER_LEVEL—The name of a Boolean variable that returns TRUE if the program was
turned on by the ACP Installer.

G.6.3 ACP Delay Interface

This routine suspends execution of the calling program for a specified number of seconds.
Program execution resumes at the statement following the PRGDLY call.

G.6.3.1 Pascal Procedure Call for ACP Delay

PRGDLY (DELAY_TIME, RETURN_STATUS);

G.6.3.2 Typical Pascal Data Definitions for ACP Delay

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 DELAY_TIME : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

G.6.3.3 FORTRAN Subroutine Call for ACP Delay

CALL PRGDLY (DELAY_TIME, RETURN_STATUS)

G.6.3.4 Typical FORTRAN Data Definitions for ACP Delay

INTEGER*2 DELAY_TIME
INTEGER*2 RETURN_STATUS

G.6.3.5 Parameter Definitions for ACP Delay

DELAY_TIME—A 16-bit Integer variable (1 to 60) that contains the length of time, in
seconds, that the requesting program is to be suspended.

RETURN_STATUS—A 16-bit Integer variable where the request completion status is to be
stored. The assigned meanings are

0 – Request was successfully completed.
1 – Invalid delay time (not in 1-60 range).

CM50S User Manual G-39 7/93

G.6.4

G.6.4 ACP Termination Interface

This routine terminates the execution of the calling ACP. It must be used as the last
operating statement of each ACP. If there is an associated ACIDP, a termination-status
code is stored in its ABORTCOD parameter.

The termination code assigned by this call can be viewed at a Universal Station (see the
definitions for ABORTCOD and EXECSTAT) but in a revised form. The integer value
assigned here is translated into two hexadecimal digits (00 to FF) and appended to the
character string EA. Thus, an ACP-assigned abnormal termination code of 15 appears at
the Universal Station display as EA0F.

If an ACP is aborted by the VMS operating system, an abort code of UMSF is stored in its
ACIDP's ABORTCOD.

The execution state of an ACIDP can be changed from ABORT to normal by operator
demand through a Universal Station or by invoking the Deactivate/Terminate function of
ACPI.

G.6.4.1 Pascal Procedure Call for ACP Termination

PRGTRM (TERMINATE_CODE);

G.6.4.2 Pascal Data Definition for ACP Termination

VAR
 TERMINATE CODE : INTEGER;

G.6.4.3 FORTRAN Subroutine Call for ACP Termination

CALL PRGTRM (TERMINATE_CODE)

G.6.4.4 Typical FORTRAN Data Definitions for ACP Termination

INTEGER*4 TERMINATE_CODE

G.6.4.5 Parameter Definitions for ACP Termination

TERMINATE_ CODE—The name of a 32-bit Integer that must contain zero or a positive
value (1 to 255). Zero value indicates normal termination. Nonzero values are
user-specified codes for non-normal termination (abort).

CM50S User Manual G-40 7/93

G.7

G.7 UTILITY ROUTINES

The interface routines in this group provide support by the manipulation of data formats.

G.7.1 Check Bad Value Interface

This routine checks a value of type "real" to determine if it is a valid single-precision
floating-point number. Its primary purpose is to check for the "Bad Value" indicator, NaN
(-0).

G.7.1.1 Pascal Procedure Call for Check Bad Value

CHKBAD (VALUE, VALUE_STATUS);

G.7.1.2 Typical Pascal Data Definitions for Check Bad Value

VAR
 VALUE : REAL;
 VALUE_STATUS : BOOLEAN_2_TYPE;
 BOOLEAN_2_TYPE : [WORD] BOOLEAN;

G.7.1.3 FORTRAN Subroutine Call for Check Bad Value

CALL CHKBAD (VALUE, VALUE_STATUS)

G.7.1.4 Typical FORTRAN Data Definitions for Check Bad Value

REAL*4 VALUE
LOGICAL*2 VALUE_STATUS

G.7.1.5 Parameter Definitions for Check Bad Value

VALUE—The name of a variable of type "real" that contains a single-precision floating-point
value that is to be checked.

VALUE_STATUS—The name of a Boolean variable that returns TRUE if "Value" is found
to be a valid floating-point number. It returns FALSE for minus zero (NaN) or
other invalid bit configurations.

G.7.2 Set Bad Value Interface

This routine stores the bad value constant, NaN (-0), into the specified "real" variable.

G.7.2.1 Pascal Procedure Call for Set Bad Value

SETBAD (VARIABLE_NAME);

CM50S User Manual G-41 7/93

G.7.2

G.7.2.2 Typical Pascal Data Definitions for Set Bad Value

VAR
 VARIABLE_NAME : REAL;

G.7.2.3 FORTRAN Subroutine Call for Set Bad Value

CALL SETBAD (VARIABLE_NAME)

G.7.2.4 Typical FORTRAN Data Definitions for Set Bad Value

REAL*4 VARIABLE_NAME

G.7.2.5 Parameter Definitions for Set Bad Value

VARIABLE_NAME—The name of a variable of type "real" (single-precision floating-point).

G.7.3 Convert External to Internal ID Interface

This routine fetches the internal ID of a point.parameter for the calling program. Use of the
internal ID by repetitive single-value data gets and stores reduces system overhead and
provides somewhat faster return of data. The specification of which point.parameter
internal ID is wanted and where it is to be stored is contained in the call.

G.7.3.1 Pascal Procedure Call for Convert ID

SP_CVT (POINT_ID, POINT_ENT_INDEX, PT_PARAM, PARAM_INDEX,
 ID_BLOCK, VALUE_TYPE, PRIORITY, IUNIT, RETURN_STATUS);

G.7.3.2 Typical Pascal Data Definitions for Convert ID

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 POINT_ID : PACKED ARRAY [1..8] OF CHAR;
 POINT_ENT_INDEX : INTEGER_2_TYPE;
 PT_PARAM : PACKED ARRAY [1..8] OF CHAR;
 PARAM_INDEX : INTEGER_2_TYPE;
 ID_BLOCK : ARRAY [1..8] OF INTEGER_2_TYPE;
 VALUE_TYPE : INTEGER_2_TYPE;
 PRIORITY : INTEGER_2_TYPE;
 IUNIT : INTEGER_2_TYPE;
 RETURN_STATUS : INTEGER_2_TYPE;

G.7.3.3 FORTRAN Subroutine Call for Convert ID

CALL SPCVTF (POINT_ID, POINT_ENT_INDEX, PT_PARAM, PARAM_INDEX,
 ID_BLOCK, VALUE_TYPE, PRIORITY, IUNIT, RETURN_STATUS)

CM50S User Manual G-42 7/93

G.7.3

G.7.3.4 Typical FORTRAN Data Definitions for Convert ID

CHARACTER*8 POINT_ID
INTEGER*2 POINT_ENT_INDEX
CHARACTER*8 PT_PARAM
INTEGER*2 PARAM_INDEX
INTEGER*2 ID_BLOCK(8)
INTEGER*2 VALUE_TYPE
INTEGER*2 PRIORITY
INTEGER*2 IUNIT
INTEGER*2 RETURN_STATUS

G.7.3.5 Parameter Definitions for Convert ID

POINT_ID—The name of a packed array of eight characters that contains the ASCII Point ID
(name) of the point for which the internal ID is to be obtained.

POINT_ENT_INDEX—The name of a 16-bit Integer variable that contains an index for use
with point arrays. This feature is not implemented and the value must be zero.

PT_PARAM—The name of a packed array of eight characters that contains the ASCII
parameter name for the point.parameter for which the internal ID is to be
obtained.

PARAM_INDEX—The name of a 16-bit Integer variable whose interpretation is controlled by
VALUE_TYPE.

When VALUE_TYPE is 1, 2, 3, 4, or 5, a single value is to be accessed; this
can be an element of a parameter array (except for ASCII values). If the
parameter to be accessed is an array type, the value of PARAM_INDEX is used
as an index and must be greater than zero. If the parameter being accessed is
not an array type, the PARAM_INDEX value must be zero.

When VALUE_TYPE is 7, 8, 9, or 10, a whole array is to be accessed and
PARAM_INDEX is used to specify the expected number of elements in the
array. Its value must be greater than zero and not larger than 1000. The actual
size of the array is returned in the seventh word of the 8-word ID_BLOCK. If
the PARAM_INDEX value is ≤0 or >1000, RETURN_STATUS equals 10.

ID_BLOCK—The name of a 16-bit Integer array into which the internal ID data block is to be
stored. Save these eight values for later use in SPIGTF or SPISTF calls on this
point.parameter. See paragraph 4.7.8 of the Computer Gateway User Manual
for ID block details.

CM50S User Manual G-43 7/93

G.7.3

VALUE_TYPE—The name of a 16-bit Integer variable that contains a number that designates
value type as follows:

1 = Real (or single element of real array)
2 = Integer (or single element of integer array)
3 = ASCII
4 = Enumeration (or single element of enumeration array)
5 = Ordinal value of enumeration (or single element of ordinal array)
6 = not used
7 = Real array
8 = Integer array
9 = Enumeration array

10 = Ordinal value of enumeration array

PRIORITY—The name of a 16-bit Integer variable that contains the requested data-access
priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

IUNIT—The name of a 16-bit Integer variable (1-4) identifying the CG to be accessed.

RETURN_STATUS—The name of a 16-bit Integer variable where the request-completion
status is to be stored. The assigned meanings are

0 – Normal return—request successfully completed.
3 – Unable to access the LCN, or data link failed, or mailbox does not exist.
5 – Request had errors.
6 – Point entity or parameter not found on the LCN.
9 – Illegal priority number (must be 1 or 2).

10 – Invalid call parameters or the array size is ≤0 or >1000.
11 – Invalid data type or data type does not match the parameter type.
13 – CG message transaction error—internal error.
14 – Parameter Index is smaller than array size; request was completed

successfully
15 – Point.parameter ID or ASCII/Enumeration value not on word boundary.
22 – Data type out of range
27 – Index out of range
28 – Bad DA priority
29 – Bad data type
30 – Bad entity index
32 – Bad parameter index
40 – Number of words specified in message header disagrees with message

content.
41 – Parameter Index is greater than the array size

See also, error codes listed in paragraphs A.2, and A.3.

CM50S User Manual G-44 7/93

G.7.4

G.7.4 Convert LCN Time (Time Stamp)

This routine converts LCN time (a count in seconds since January 1, 1979) to external
time. It accepts the LCN-time value (typically received as time-stamp data in response to a
Get History request) and returns external time in the form MM/DD/YY∆HH:MM.

G.7.4.1 Pascal Procedure Call for Convert LCN Time

CONVTP (V1, V2, ASCTIME);

G.7.4.2 Typical Pascal Data Definitions for Convert LCN Time

TYPE
 INTEGER_2_TYPE : [WORD] -32768..32767;

VAR
 V1 : INTEGER_2_TYPE;
 V2 : INTEGER_2_TYPE;
 ASCTIME : PACKED ARRAY [1..14] OF CHAR;

G.7.4.3 FORTRAN Subroutine Call for Convert LCN Time

CALL CONVTF (V1,V2,ASCTIME)

G.7.4.4 Typical FORTRAN Data Definitions for Convert LCN Time

INTEGER*2 V1
INTEGER*2 V2
CHARACTER*14 ASCTIME

G.7.4.5 Parameter Definitions for Convert LCN Time

V1—The name of a 16-bit Integer variable that contains the upper-half of a value
representing LCN time.

V2—The name of a 16-bit Integer variable that contains the lower-half of a value
representing LCN time.

ASCTIME—The name of a character-string variable where the converted time is to be stored.

CM50S User Manual G-45 7/93

G.8

G.8 SINGLE POINT DATA TRANSFERS

The interface routines in this group Get or Store values from or to one named
point.parameter (or parameter array) at a time. For parameter arrays, up-to the whole array
is accessed. The External ID version of Get Single Point is also used to get LCN date and
time.

G.8.1 Get Single Point (External ID) Interface

This routine fetches data for a single point from a specified CG or elsewhere on its LCN.
The specification of which data is to be fetched and where it is to be stored is contained in
the call. For parameter arrays, either a single element, the whole array, or an array subset
starting with the first element can be specified.

G.8.1.1 Example FORTRAN Call for Get Single Point

return_status = CM50_GETPT
(%REF(point),
 %REF(param),
 param_ix,
 %REF(val_loc),
 val_st,
 val_typ,
 cg_port_num)

G.8.1.2 Parameter Definitions for Get Single Point

return_status—The name of a longword to receive the overall return status of the function
call. See Appendix A.2 for an explanation and a listing of all assigned return
code values. The most common return status values from this call follow.

CM50S User Manual G-46 7/93

G.8.1

return_
status Include-File
Value Identifier Error Message

000000001 SS$_NORMAL <none>
215000036 CM50_LCN_FAIL Unable to access LCN—data link failure
215000042 CM50_ACP_RUN ACIDP not in RUN state
215000051 CM50_LCN_PART Returned Data includes errors
215000066 CM50_LCN_POINT ACIDP not found or not connected to ACP
215000092 CM50_LCN_PRIOR Invalid Priority—must be 1 or 2
215000106 CM50_LCN_PARAM Point or Parameter not found
215000116 CM50_LCN_PARTYP Value Type does NOT match Parameter Type
215000122 CM50_GET_MEM Unable to Get Memory in VAX
215000156 CM50_LCN_WORD Value not Word Aligned
215000226 CM50_LCN_RANGE Data Type Out of Range
215000292 CM50_LCN_TYPE Invalid data Type code
215000322 CM50_ACC_SIZE Array pointer/size too Large

point—The name of an 8-character string that contains the ASCII Point ID (name) of the
point from which the value is to be retrieved.

param—The name of an 8-character string that contains the ASCII name of a parameter (or
parameter array) from which the value(s) is retrieved.

param_ix—The name of a shortword positive value. Use of this value is controlled by
val_typ.

When val_typ is 1, 2, 3, 4, or 5, a single value is to be accessed—This may
be an element of a parameter array (except for ASCII values). If the parameter
to be accessed is an array type, the value of param_ix is used as an index and
must be greater than zero. If the parameter being accessed is not an array type,
the param_ix value must be zero.

When val_typ is 7, 8, 9, or 10, a whole array (or a subset of the array
starting with the first element) is to be accessed and param_ix is used to
specify the number of elements to be accessed—If param_ix is smaller than
the actual array size, only that number of elements is returned; if it is larger than
the actual array size, return_status equals CM50_LCN_ARRAY (no
elements are returned).

CM50S User Manual G-47 7/93

G.8.1

val_loc—The name of a program variable where the value(s) are to be stored.
The type of variable must match what is declared in val_typ. (Pascal
programs must use explicit pass by reference.)

val_typ val_loc type

1 Real (32 bits)
2 Integer (shortword)
3 ASCII_VALS (24-character string)
4 ENUM_VALS (8-character string)
5 Integer (shortword)
6 TIME_ARR (18-character string, see heading G.8.3)
7 ARRAY [1..n] OF REAL (32 bit values)
8 ARRAY [1..n] OF INTEGER (shortwords)
9 ARRAY [1..n] OF ENUM_VALS (8-character strings)
10 ARRAY [1..n] OF INTEGER (shortwords)

val_st—The name of a shortword where point-related status information is to be stored.
This value is meaningful only when the return_status value indicates
either normal (000000001) or complete with errors (215000051). See
Appendix A.1 for a listing of Data-Access error/status codes. When val_typ
specifies an array, val_st refers to status of the whole array.

val_typ—The name of a shortword that contains a number that designates value type of the
accessed parameters as follows:

1 = Real (or single element of real array)
2 = Integer (or single element of integer array)
3 = ASCII
4 = Enumeration (or single element of enumeration array)
5 = Ordinal value of enumeration (or single element of ordinal array)
6 = LCN time (see heading G.8.3)
7 = Real array
8 = Integer array
9 = Enumeration array

10 = Ordinal value of enumeration array

cg_port_num—The name of a shortword identifying the CG (1-4) to be accessed.

CM50S User Manual G-48 7/93

G.8.2

G.8.2 Store Single Point (External ID) Interface

This routine stores data to a single point in a specified CG or elsewhere on its LCN. The
specification of where the data is to be found and where it is to be stored is contained in the
call. For parameter arrays, either a single element or the whole array can be specified.

To use this call, the ACP must be connected to an ACIDP with read/write access and be in
Normal mode. See the System Control Functions manual for other write access
restrictions.

G.8.2.1 Example FORTRAN Call for Store Single Point

return_status = CM50_STOREPT
(%REF(point),
 %REF(param),
 param_ix,
 %REF(val_loc),
 val_typ,
 store_cd,
 store_st)

G.8.2.2 Parameter Definitions for Store Single Point

return_status—The name of a longword to receive the overall return status of the function
call. See Appendix A.2 for an explanation and a listing of all assigned return
code values. The most common return status values from this call follow.

return_
status Include-File
Value Identifier Error Message

000000001 SS$_NORMAL <none>
215000012 CM50_DDT_MISS DDT incomplete or not found
215000036 CM50_LCN_FAIL Unable to access LCN—data link failure
215000042 CM50_ACP_RUN ACIDP not in RUN state
215000051 CM50_LCN_PART Returned Data includes errors
215000066 CM50_LCN_POINT ACIDP not found or not connected to ACP
215000076 CM50_ACP_STAT ACP not installed or restricted
215000082 CM50_ACP_ACCE ACCESS key is Read only or DDT is in use
215000106 CM50_LCN_PARAM Point or Parameter not found
215000116 CM50_LCN_PARTYP Value Type does NOT match Parameter Type
215000122 CM50_GET_MEM Unable to Get Memory in VAX
215000146 CM50_LCN_ARRAY Array Size too small
215000156 CM50_LCN_WORD Value not Word Aligned
215000226 CM50_LCN_RANGE Data Type Out of Range
215000292 CM50_LCN_TYPE Invalid data Type code
215000306 CM50_LCN_PTIX Point Index not Zero
215000322 CM50_ACC_SIZE Array pointer/size too Large

CM50S User Manual G-49 7/93

G.8.2

point—The name of an 8-character string that contains the ASCII Point ID (name) of the
point where the value is to be stored.

param—The name of 8-character string that contains the ASCII parameter name for the
point.parameter where the value is to be stored.

param_ix—The name of a shortword positive value. Use of this value is controlled by
val_typ.

When val_typ is 1, 2, 3, 4, or 5, a single value is to be accessed—This may
be an element of a parameter array (except for ASCII values). If the parameter
to be accessed is an array type, the value of param_ix is used as an index and
must be greater than zero. If the parameter being accessed is not an array type,
the param_ix value must be zero.

When val_typ is 7, 8, 9, or 10, a whole array is to be accessed and
param_ix is used to specify the number of array elements—If param_ix
does not match the actual array size, no elements are stored and
return_status value is CM50_LCN_PART with a store_st indicating an
invalid array size.

val_loc—The name of a program variable from which the value(s) are to be fetched.
The type of variable must match what is declared in val_typ. (Pascal
programs must use explicit pass by reference.)

val_typ val_loc type

1 Real (32 bits)
2 Integer (shortword)
3 ASCII_VALS (24-character string)
4 ENUM_VALS (8-character string)
5 Integer (shortword)
6 not used
7 ARRAY [1..n] OF REAL (32 bit values)
8 ARRAY [1..n] OF INTEGER (shortwords)
9 ARRAY [1..n] OF ENUM_VALS (8-character strings)
10 ARRAY [1..n] OF INTEGER (shortwords)

val_typ—The name of a shortword that contains a number that designates value type as
follows:

1 = Real (or single element of real array)
2 = Integer (or single element of integer array)
3 = ASCII
4 = Enumeration (or single element of enumeration array)
5 = Ordinal value of enumeration (or single element of ordinal array)
6 = not used
7 = Real array (conversion at CG)
8 = Integer array
9 = Enumeration array

10 = Ordinal value of enumeration array

CM50S User Manual G-50 7/93

G.8.3

store_cd—Name of a shortword that contains a code that allows the substitution of a bad
value representation in place of the provided value(s). The store code values are

0 = Store the data value(s) provided
1 = Store the bad value representation instead

Store code 1 is valid for only Real or ASCII data. The bad value
representations are NaN for Real values and question mark strings for ASCII.

store_st—The name of a shortword to contain point-related store status information on
completion. This value is meaningful only when the return_status value
indicates either normal (000000001) or complete with errors (215000051). See
Appendix A.1 for a listing of Data-Access error/status codes. When the
val_typ is an array, store_st refers to status of the whole array.

G.8.3 Get LCN Clock Value Interface

To get the current date and time as kept by the LCN, use the Get Single Point (External ID)
interface using the following definitions or values:

val_loc—type must be character array (CHARACTER*18)
val_typ = 6
cg_port_num = CG port number for the LCN (1-4)

The other arguments, including point and parameter, should be passed as blanks. The
format of the value returned in val_loc is MM/DD/YY∆HH:MM:SS∆ (where ∆ is used
to indicate a space).

See heading G.8.1 for Get Single Point call details.

CM50S User Manual G-51 7/93

G.9

G.9 POINT ARRAYS WITHOUT DDTS

These routines enable you to address multiple points with a single call without the necessity
to build DDT tables. In the place of a DDT reference, you will have to provide a pointer to
an array of "internal" point.parameter addresses. These internal addresses can be obtained
by a series of CM50_CONV_ID (or _TP) calls at program run time, or in advance by
creating an include file through the Utility MAKEINC.

G.9.1 Point List Get Values Interfaces

These functions return data values from up to 300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal point.parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.

G.9.1.1 Example FORTRAN Calls for Point List Get Values

for REAL values:

return_status = CM50_GET_REAL
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 real_values_array,
 status_table,
 number_of_values)

for INTEGER values:

return_status = CM50_GET_INTG
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 intg_values_array,
 status_table,
 number_of_values)

CM50S User Manual G-52 7/93

G.9.1

for ASCII values:

return_status = CM50_GET_ASCI
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(asci_values_array),
 status_table,
 number_of_values)

for ENUMERATED values:

return_status = CM50_GET_AENM
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(aenm_values_array),
 status_table,
 number_of_values)

for ORDINAL values

return_status = CM50_GET_OENM
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 oenm_values_array,
 status_table,
 number_of_values)

CM50S User Manual G-53 7/93

G.9.1

G.9.1.2 Common Parameter Definitions for Point List Get Values

return_status—The name of a longword to receive the overall return status of the function
call. See Appendix A.2 for an explanation and a listing of all assigned return
code values. The most common return status values from this call follow.

return_
status Include-File
Value Identifier Error Message

000000001 SS$_NORMAL <none>
215000036 CM50_LCN_FAIL Unable to access LCN - data link failure
215000042 CM50_ACP_RUN ACIDP not in RUN state
215000051 CM50_LCN_PART Returned Data includes errors
215000066 CM50_LCN_POINT ACIDP not found or not connected to ACP
215000092 CM50_LCN_PRIOR Invalid Priority—must be 1 or 2
215000146 CM50_LCN_ARRAY Array Size too small
215000906 CM50_LAX_ARGRNG Argument out of Range

cg_port_num—The name of a shortword identifying the CG (1-4) to be accessed.

priority—The name of a shortword that contains the requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

acidp_name—The name of an 8-character string that names the ACIDP that the calling ACP
(Type 1 program) is connected to. Left blank when the calling program is not
connected to an ACIDP (Type 2 program) or you do not want the CG to control
data gathering by a Type 1 program. When this argument is filled in, the CG
requires the named ACIDP to show EXECSTAT = RUN and INH_STAT =
PERMIT.

point_list_array—The name of an array of point addresses in internal format (for FORTRAN
declare as ARRAY OF RECORD/ID_BLOCK_STRUCT/, or for Pascal declare
as ARRAY OF CM50_IDBLK) from which the values are requested. See the
Convert External to Internal ID functions for additional information.

This must be a maximum-size array even if it is not fully used. Use the
constant CM50_MAXTBL to size this array.

CM50S User Manual G-54 7/93

G.9.1

status_table—The name of a shortword array of CM50_MAXTBL size where the value
status for individual point values are to be stored. See Appendix A.1 for a
listing of Data Access error/status codes. These additional values can replace
“Data item is valid” (code 008):

CM50_Out_Of_VAX_Range
CM50_Negative_Infinity
CM50_Positive_Infinity
CM50_Not_A_Number
CM50_Minus_Zero
CM50_Underflow

Use these symbolic identifiers (not their assigned numeric values which are
defined in the language-specific include files) in program statements since the
numeric values could change in future releases of CM50S.

number_of_values—The name of a shortword that specifies the actual number of values
(300 or less) to be processed.

G.9.1.3 Value Parameters for Each Data Type

real_values_array—The name of a Real array where the individual point values are to be
stored. This array must be of CM50_MAXTBL size.

intg_values_array—The name of a shortword array where the individual point values are to
be stored. This array must be of CM50_MAXTBL size.

asci_values_array—The name of an array of 24-character strings where the individual point
values are to be stored. This array must be of CM50_MAXTBL size.

aenm_values_array—The name of an array of 8-character strings where the individual point
values are to be stored. This array must be of CM50_MAXTBL size.

oenm_values_array—The name of a shortword array where the ordinal values of the fetched
enumerations are to be stored. This array must be of CM50_MAXTBL size.

CM50S User Manual G-55 7/93

G.9.2

G.9.2 Point List Store Values Interfaces

These functions export data values to up to 300 points on the LCN without using DDT
tables. The specification of which data is to be fetched and where it is to be stored is
contained in the call.

Use of Internal point.parameter IDs is required. Individual elements of parameter arrays
can be specified by repeating the point.parameter address using a changed parameter index.

G.9.2.1 Example FORTRAN Calls for Point List Store Values

for REAL values:

return_status = CM50_STORE_REAL
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 real_values_array,
 store_code_table,
 status_table,
 number_of_values)

for INTEGER values:

return_status = CM50_STORE_INTG
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 intg_values_array,
 store_code_table,
 status_table,
 number_of_values)

for ASCII values:

return_status = CM50_STORE_ASCI
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(asci_values_array),
 store_code_table,
 status_table,
 number_of_values)

CM50S User Manual G-56 7/93

G.9.2

for ENUMERATED values:

return_status = CM50_STORE_AENM
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 %REF(aenm_values_array),
 store_code_table,
 status_table,
 number_of_values)

for ORDINAL values:

return_status = CM50_STORE_OENM
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(point_list_array),
 oenm_values_array,
 store_code_table,
 status_table,
 number_of_values)

G.9.2.2 Common Parameter Definitions for Array Store Values

return_status—The name of a longword to receive the overall return status of the function
call. See Appendix A.2 for an explanation and a listing of all assigned return
code values. The most common return status values from this call follow.

return_
status Include-File
Value Identifier Error Message

000000001 SS$_NORMAL <none>
215000036 CM50_LCN_FAIL Unable to access LCN - data link failure
215000042 CM50_ACP_RUN ACIDP not in RUN state
215000051 CM50_LCN_PART Returned Data includes errors
215000066 CM50_LCN_POINT ACIDP not found or not connected to ACP
215000082 CM50_ACP_ACCE ACCESS key is Read only or DDT is in use
215000092 CM50_LCN_PRIOR Invalid Priority—must be 1 or 2
215000146 CM50_LCN_ARRAY Array Size too small
215000906 CM50_LAX_ARGRNG Argument out of Range

cg_port_num—The name of a shortword identifying the CG (1-4) to be accessed.

priority—The name of a shortword that contains the requested data-access priority:

1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

CM50S User Manual G-57 7/93

G.9.2

acidp_name—The name of an 8-character string that names the ACIDP that the calling ACP
(Type 1 program) is connected to. Required for LCN stores.

point_list_array—The name of an array of point addresses in internal format (for FORTRAN
declare as ARRAY OF RECORD/ID_BLOCK_STRUCT/, or for Pascal declare
as ARRAY OF CM50_IDBLK) from which the values are requested. See the
Convert External to Internal ID functions for additional information.

This must be a maximum-size array even if it is not fully used. Use the
constant CM50_MAXTBL to size this array.

store_code_table—The name of a shortword array where the calling program has stored a
control code for each referenced variable in the real_values_array. This
array must be of CM50_MAXTBL size. The store_code_table values
are

0 = Store the referenced Real variable
1 = Store the bad value representation (NaN) instead
2 = Do not store any value

status_table—The name of a shortword array where the value status for each individual
point value is to be stored. This array must be of CM50_MAXTBL size. See
Appendix A.1 for interpretation of values.

number_of_values—The name of a shortword that specifies the actual number of values
(300 or less) to be processed.

G.9.2.3 Value Parameters for Each Data Type

real_values_array—The name of a Real array from which the individual values are to be
obtained. This array must be of CM50_MAXTBL size.

intg_values_array—The name of a shortword array from which the individual values are to
be obtained. This array must be of CM50_MAXTBL size.

asci_values_array—The name of an array of 24-character strings from which the individual
point values are to be obtained. This array must be of CM50_MAXTBL size.

aenm_values_array—The name of an array of 8-character strings from which the individual
point values are to be obtained. This array must be of CM50_MAXTBL size.

oenm_values_array—The name of a shortword array from which the individual point values
are to be obtained. This array must be of CM50_MAXTBL size.

CM50S User Manual G-58 7/93

G.10

G.10 SINGLE-POINT HISTORY CALLS

G.10.1 Single-Point Get History Interfaces

There are three versions of Single-Point Get History—Generalized, Real values, and
Integer values.

• The generalized version handles both Relative history and Absolute history calls.

• The Real values version is used to obtain type Real data only and obtains history data by
using an offset relative to an absolute (specified) time (which can be the current time).

• The Integer values version is used to obtain 1-minute snapshots of Integer values
representing states of a self-defined enumeration, starting at an offset relative to a
specified time (which can be the current time).

All three versions return historized data values for a point.parameter on the LCN without
using DDT tables. The specification of which data is to be fetched and where it is to be
stored is contained in the call.

Use of Internal point.parameter IDs (obtained by previous use of the Convert External to
Internal ID interface) is required. Any parameter that can be historized, including an
individual element of a parameter array, can be selected.

G.10.1.1 Example FORTRAN Calls for Single-Point Get History

for the Generalized version:

return_status = CM50_GET_HIS
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(id_block),
 history_mode,
 history_type,
 %REF(begin_date_time),
 %REF(end_date_time),
 begin_offset,
 end_offset,
 number_of_values,
 real_values_array,
 intg_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 value_status)

CM50S User Manual G-59 7/93

G.10.1

for the Real values version:

return_status = CM50_GET_REAL_HIS
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(id_block),
 history_type,
 seconds_in_units,
 %REF(common_start_time),
 offset,
 number_of_values,
 real_values_array,
 status_table,
 lcn_time_stamp_array,
 max_array,
 min_array,
 num_samples_array,
 value_status)

for the Integer values version:

return_status = CM50_GET_INTG_HIS
(cg_port_num,
 priority,
 %REF(acidp_name),
 %REF(id_block),
 %REF(common_start_time),
 offset,
 number_of_values,
 intg_values_array,
 status_table,
 lcn_time_stamp_array,
 value_status)

G.10.1.2 Parameter Definitions for Single-Point Get History Calls

return_status—The name of a longword to receive the overall return status of the function
call. See Appendix A.2 for an explanation and a listing of all assigned return
code values. The most common return status values from this call follow.

CM50S User Manual G-60 7/93

G.10.1

return_
status Include-File
Value Identifier Error Message

000000001 SS$_NORMAL <none>
215000036 CM50_LCN_FAIL Unable to access LCN—data link failure
215000042 CM50_ACP_RUN ACIDP not in RUN state
215000051 CM50_LCN_PART Returned Data includes errors
215000066 CM50_LCN_POINT ACIDP not found or not connected to ACP
215000092 CM50_LCN_PRIOR Invalid Priority—must be 1 or 2
215000146 CM50_LCN_ARRAY Array Size too small
215000282 CM50_ACC_PRIOR Invalid data Access Priority
215000521 CM50_MSG_TRUNC Message truncated
215000802 CM50_LAX_MONV Invalid Month in VAX date
215000842 CM50_LAX_NVAL Invalid Number of Values requested
215000852 CM50_LAX_UNIT Invalid History Units specified
215000906 CM50_LAX_ARGRNG Argument out of Range
215000916 CM50_LAX_MONTHR Month out of Range
215000922 CM50_LAX_BADOFF Invalid History Offset
215000932 CM50_LAX_HISTYP Invalid History Type

cg_port_num—The name of a shortword identifying the CG (1-4) to be accessed.

priority—The name of a shortword that contains the requested data-access priority:
1= High priority (provided for control operations)
2= Low priority (provided for noncontrol operations)

acidp_name—The name of an 8-character string that names the ACIDP that the calling ACP
(Type 1 program) is connected to. Left blank when the calling program is not
connected to an ACIDP (Type 2 program), or you do not want the CG to
control data gathering by a Type 1 program. When this argument is filled in,
the CG requires the named ACIDP to show EXECSTAT = RUN and
INH_STAT = PERMIT.

id_block—The name of a 16-byte variable (for FORTRAN declare as
RECORD/ID_BLOCK_STRUCT/, or for Pascal declare as CM50_IDBLK) that
contains the internal ID data block of the point and parameter that history is
being requested for. See the Convert External to Internal ID interface for
additional information.

history_mode—The name of a shortword value that specifies an Absolute (0) or Relative (1)
history request.

history_type—The name of a shortword that contains the number specifying the requested
history type. The history types and their integer representations are

1-minute snapshots = 0
Hourly averages = 1
Shift averages = 2
Daily averages = 3
Monthly averages = 4
User averages = 5

CM50S User Manual G-61 7/93

G.10.1

seconds_in_units—The name of a shortword value that indicates the number of seconds in
the history interval. Used only for Shift averages (History type 2) or User
averages (History type 5); ignored for all other History types. Default values
are: Shift averages = 8 hours (28800 seconds)

User averages = 6 minutes (360 seconds)

NOTE

When entering date and time in VMS absolute format, be sure to enter the 3-character code
for the month in uppercase letters.

begin_date_time—The name of a 22-character string (in VMS "absolute" date and time
format), representing the date and time starting the period for which history is to
be fetched. For Relative history calls, this field has no meaning and should be
initialized to blanks.

The value entered for this parameter should be some time after the previous
period's collection, but before the desired time period begins. For example, to
get an hourly average at 11:00, begin_date_time should be set any time between
10:01 and 10:59.

end_date_time—The name of a 22-character string (in VMS "absolute" date and time
format), representing the date and time ending the period for which history is to
be fetched. For Relative history calls, this field has no meaning and should be
initialized to blanks.

The value entered for this parameter should be some time after the desired time
period begins, but before the next time period's collection time. For example,
end_date_time for an 11:00 hourly average should be set to any time from 11:01
to 11:59.

common_start_time—The name of a 23-character string that contains a beginning date and
time (in VMS "absolute" date and time format) for history data collection.

begin_offset—The name of a shortword that indicates a relative offset from current LCN
time that represents the starting period for which history is to be fetched. The
units for the offset are based on the type of history requested.

HISTORY TYPE UNITS OF OFFSET
1-minute snapshots Minutes
Hourly averages Hours
Shift averages not applicable
Daily averages Days
Monthly averages Months
User averages Number of user averages to skip

For Absolute history calls, this field has no meaning and should be initialized to
zero.

end_offset—The name of a shortword that indicates a relative offset from the current LCN
time representing the ending period for which history is to be fetched. The
units for the offset are based on the type of history requested. See values given
with BEGIN_OFFSET.

For Absolute history calls, this field has no meaning and should be initialized to
zero.

CM50S User Manual G-62 7/93

G.10.1

offset—The name of a shortword value that establishes a beginning offset (expressed as a
number of time units) to be subtracted from COMMON_START_TIME. The
units used for this value are established by the History type as follows:

HISTORY TYPE UNITS OF OFFSET
1-minute snapshots Minutes
Hourly averages Hours
Shift averages (see SECONDS_IN_UNITS argument)
Daily averages Days
Monthly averages Months
User averages (see SECONDS_IN_UNITS argument)

number_of_values—The name of a shortword that contains the number of values expected
to be returned by the history request (250 or fewer). This variable is used to
return to the caller, the actual number of values returned by the CG whenever
the actual number is less than the number of values requested; otherwise this
value is unchanged. If the actual number of values returned by the CG exceeds
this limit, then the message is truncated at the limit.

For Absolute history requests, this number should be (at least) the number of
intervals between the Beginning and Ending Date Times (note that it is easy to
be off by one, depending on starting and stopping boundaries).

For Relative history requests, this number can be initialized as zero, but is
checked as explained above. If provided, this number should be the absolute
value of (BEGIN_OFFSET - END_OFFSET) +1.

real_values_array—The name of a Real array where the requested history data values are to
be stored if the parameter's data type is Real.

intg_values_array—The name of a shortword array where the requested history data values
are to be stored if the parameter's data type is Integer.

status_table—The name of a shortword array to receive a value status associated with each
returned history data value. The value meanings are

For averages data:

0 = Normal: 90% or more good samples
1 = Nonstandard: Less than 90% good samples
2 = Digital Value: not applicable (if an average is requested for a parameter of type

digital, the value type returned is "data not in history")
3-4 = not used
5 = Time Change: a time change occurred during the averaging period, but there

are 90% or more good samples
6 = Outage: History Module was not in service for the entire period; value field

contains NaN
7 = No Data: no values were available from the Data Owner for entire period; value

field contains NaN
8-10 = not used
11 = Collection Inhibited: not applicable
12 = Not in History: requested data was outside span of the history file; value field

contains NaN

CM50S User Manual G-63 7/93

G.10.1

13 = Time Change nonstandard: the average calculation was performed according to
the new time, and samples already collected are rolled into the new average;
there are fewer than 90% good samples

For Snapshot data:

0 = Normal Data: value returned is analog (real) data
1 = Nonstandard: not applicable
2 = Digital Value: value returned is a self-defined enumeration
3-4 = not used
5 = Time Change: a time change occurred and data for one minute is missing; value

field contains NaN
6 = Outage: History Module was not in service; value field contains NaN
7 = No Data: the Data Owner was not in service; value field contains NaN
8-10 = not used
11 = Collection Inhibited: History collection was not enabled; value field contains

NaN
12 = Not in History: requested data was outside span of the history file; value field

contains NaN
13 = Time Change nonstandard: not applicable

For Real Values Only

These additional status values can replace Normal (code 0) for Real values in either
averages or snapshots.

CM50_Out_Of_VAX_Range
CM50_Negative_Infinity
CM50_Positive_Infinity
CM50_Minus_Zero
CM50_Underflow

Use these identifiers (not their assigned numeric values which are defined in the
language-specific include files) in your program statements, since the numeric values
could change in future releases of CM50S.

lcn_time_stamp_array—The name of a longword array to receive a time stamp (count of the
number of seconds since January 1, 1979) associated with each returned history
data value.

max_array—(Averages only) The name of a Real array to receive the maximum values*
used in calculating each returned Real_Values_Array average.

min_array—(Averages only) The name of a Real array to receive the minimum values* used
in calculating each returned Real_Values_Array average.

num_samples_array—(Averages only) The name of a shortword array to receive the number
of samples used in calculating each returned average value.

value_status—The name of a shortword to receive the Data Access Status Code returned
from the CG. See Appendix A.1 for interpretation.

*Because of the storage method used, Minimum/Maximum process values can have up to 1% error (+1% for Maximum
and -1% for Minimum).

CM50S User Manual G-64 7/93

G.11

G.11 ACP EXECUTION SUPPORT

These interface routines affect the orderly execution and termination of an ACP.

G.11.1 ACP Trap Handler Interface

This routine must be the first executable statement in each ACP. It establishes a termination
handler for the ACP and ensures proper ACP table setup. Failure to invoke this interface
routine as the first statement of an ACP may not appear to cause immediate problems, but
will result in improper termination handling. The termination status is not reported to the
CG, and the ACP appears to both the CM50S and the CG to still be in the RUN state even
though the process has terminated.

The call to ACPTRP also establishes a system lock that allows the program to be terminated
cleanly if CM50S is shut down. Therefore, it is advisable to include this call in every
program that is mapped to the CM50S shareable image.

NOTE

ACPTRP is one of the few CM50S user-interface routines that is not implemented as a
function. It is called as a FORTRAN subroutine or as a Pascal procedure.

G.11.1.1 Example Subroutine Call for ACP Trap Handler

CALL ACPTRP

G.11.1.2 Parameter Definitions for ACP Trap Handler

None required

CM50S User Manual G-65 7/93

G.12

G.12 UTILITY ROUTINES

The interface routines in this group provide support by the manipulation of data formats.

G.12.1 Convert External to Internal ID Interface

This routine fetches the internal ID of a point.parameter for the calling program. Use of the
internal ID by repetitive single-value data gets and stores reduces system overhead and
provides somewhat faster return of data. The specification of which point.parameter
internal ID is wanted and where it is to be stored is contained in the call.

NOTE

The arrays of internal point.parameter addresses need to be rebuilt and the program(s) using
them need to be recompiled, whenever the LCN database is changed in a significant manner,
such as by the rebuild or deletion of data points referenced in the address array.

G.12.1.1 Example FORTRAN Call for Convert ID

return_status = CM50_CONV_ID or CM50_CONV_TP
(%REF(point),
 %REF(param),
 param_ix,
 %REF(id_block),
 val_typ,
 cg_port_num)

CM50_CONV_ID requires you to specify val_typ. CM50_CONV_TP tries different
value type codes until it finds a match, then returns the actual val_typ code.

G.12.1.2 Parameter Definitions for Convert ID

return_status—The name of a longword to receive the overall return status of the function
call. See Appendix A.2 for an explanation and a listing of all assigned return
code values. The most common return_status values from this call follow.

return_
status Include-File
Value Identifier Error Message

000000001 SS$_NORMAL <none>
215000036 CM50_LCN_FAIL Unable to access LCN—data link failure
215000106 CM50_LCN_PARAM Point or Parameter not found
215000116 CM50_LCN_PARTYP Value Type does NOT match Parameter Type
215000146 CM50_LCN_ARRAY param_ix smaller than array size; conversion ok
215000156 CM50_LCN_WORD Value not Word Aligned
215000226 CM50_LCN_RANGE Data Type Out of Range
215000276 CM50_LCN_INDX Index Out of Range
215000292 CM50_LCN_TYPE Invalid data Type code

CM50S User Manual G-66 7/93

G.12.1

point—The name of an 8-character string that contains the ASCII Point ID (name) of the
point for which the internal ID is to be obtained.

param—The name of an 8-character string that contains the ASCII parameter name for the
point.parameter for which the internal ID is to be obtained.

param_ix—The name of a shortword whose interpretation is controlled by val_typ.

When val_typ is 1, 2, 3, 4, or 5, a single value is to be accessed; this can be
an element of a parameter array (except for ASCII values). If the parameter to
be accessed is an array type, the value of param_ix is used as an index and
must be greater than zero. If the parameter being accessed is not an array type,
the param_ix value must be zero.

When val_typ is 7, 8, 9, or 10, a whole array is to be accessed and
param_ix is used to specify the expected number of elements in the array.
Its value must be greater than zero and not larger than 1000. The actual size of
the array is returned in the seventh word of the 8-word id_block. If the
param_ix value is ≤0 or >1000, return_status equals CM50_LCN_INDX.

id_block—The name of a 16-byte variable where the internal ID data block is to be returned
(for FORTRAN, declare as RECORD/ID_BLOCK_STRUCT/, or for Pascal
declare as CM50_IDBLK).

The ID data block contents are as follows

Word 1— Data type
Words 2..5— Internal point identifier
Word 6— Parameter subscript
Word 7— Parameter qualifier (array size)
Word 8— Enumeration set identifier

val_typ—The name of a shortword that contains a number that designates value type as
follows:

1 = Real (or single element of real array)
2 = Integer (or single element of integer array)
3 = ASCII
4 = Enumeration (or single element of enumeration array)
5 = Ordinal value of enumeration (or single element of ordinal array)
6 = not used
7 = Real array
8 = Integer array
9 = Enumeration array

10 = Ordinal value of enumeration array

cg_port_num—The name of a shortword identifying the CG (1-4) to be accessed.

CM50S User Manual G-67 7/93

G.12.2

G.12.2 Convert LCN Time (Time Stamp)

This routine converts LCN time (a count in seconds since January 1, 1979) to external
time. It accepts the LCN-time value (received as time-stamp data in response to a Get
History request) and returns external time in the form MM/DD/YY∆HH:MM (where ∆
represents a space). Note that the converted time is rounded down to the nearest minute.

NOTE

CONVTP is one of the few user-interface routines that is not implemented as a function. It is
called as a FORTRAN subroutine or as a Pascal procedure.

G.12.2.1 Example Subroutine Call for Convert LCN Time

CALL CONVTP
(val1,
 val2,
 asctime)

G.12.2.2 Parameter Definitions for Convert LCN Time

val1—The name of a shortword that contains the upper-half of a value representing LCN
time.

val2—The name of a shortword that contains the lower-half of a value representing LCN
time.

asctime—The name of a 14-character string variable where the converted time is to be
stored. (For Pascal programs, this argument is passed by %DESCR.)

NOTE

In converting LCN Time from an lcn_time_stamp_array (as returned by the get history
interface calls) use the following techniques.

For FORTRAN, declare: INTEGER*4 lcn_time(n)
INTEGER*2 lcn_word(2,n)
EQUIVALENCE (lcn_time, lcn_word)

and use lcn_word(1,i) for val1 and lcn_word(2,i) for val2

For Pascal, declare: lcn_time : ARRAY[1..N] OF ARRAY[1..2] OF SHORTWORDS
and use lcn_time[i][1] for val1 and lcn_time[i][2] for val2

CM50S User Manual G-68 7/93

G.13

G.13 REPLACED REL 3 USER-PROGRAM INTERFACES

G.13.1 Connect ACP to an ACIDP

This routine is called to connect an installed ACP to an ACIDP on the LCN.

G.13.1.1 Example FORTRAN Call for Connect ACP to an ACIDP

return_status = CM50_ACP_CON
(%REF(acp_name),
 %REF(acidp_name),
 cg_port_number,
 flags)

G.13.1.2 Example Pascal Call for Connect ACP to an ACIDP

return_status := CM50_ACP_CON
(acp_name,
 acidp_name,
 cg_port_number,
 flags);

G.13.1.3 Example "C" Call for Connect ACP to an ACIDP

return_status = cm50_acp_con
(acp_name,
 acidp_name,
 &cg_port_number,
 &flags);

G.13.1.4 Parameter Definitions for Connect ACP to an ACIDP

return_status—The name of an INTEGER*4 to receive the overall return status of the function call.
For fully successful calls, return_status = 1. See Appendix A.2 for an
explanation and a listing of all assigned return code values.

acp_name—The CHARACTER*12 name of the ACP to be connected.

acidp_name—The CHARACTER*8 name of the ACIDP to connect the to the ACP.

cg_port_number—INTEGER*2 that specifies which CG (1-4) contains the ACIDP.

flags—This INTEGER*4 parameter sets options as described in section 9.1.3/13.1.3/17.1.3. The
following flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual G-69 7/93

G.13.2

G.13.2 Connect DDT to ACIDP

This routine is called to connect a DDT to an ACIDP for the purpose of enabling the Data Prefetch
Function in the CG. The ACIDP-ACP connection must already exist and the DDT must be CG-
resident and not already connected to an ACIDP.

The ddt_name, and either the acp_name, or acidp_name parameters are required in the call.
The Schedule, PPS and Demand parameters also are required.

G.13.2.1 Example FORTRAN Call for Connect DDT to ACIDP

return_status = CM50_DDT_CON
(%REF(ddt_name),
 %REF(acidp_name),
 %REF(acp_name),
 %REF(trigger),
 flags)

G.13.2.2 Example Pascal Call for Connect DDT to ACIDP

return_status := CM50_DDT_CON
(ddt_name,
 acidp_name,
 acp_name,
 trigger,
 flags);

G.13.2.3 Example "C" Call for Connect DDT to ACIDP

return_status = cm50_ddt_con
(ddt_name,
 acidp_name,
 acp_name,
 &trigger,
 &flags);

G.13.2.4 Parameter Definitions for Connect DDT to ACIDP

return_status—The name of an integer to receive the overall return status of the function call. For
fully successful calls, return_status = 1. See Appendix A.2 for an explanation
and a listing of all assigned return code values.

ddt_name—9-character name of the DDT that is to be connected to an ACIDP.

acidp_name—8-character name of the ACIDP to which the DDT is to be connected. The
acidp_name can be blanks if a valid acp_name is provided.

CM50S User Manual G-70 7/93

G.13.2

acp_name—12-character name of the ACP connected to the ACIDP to which the DDT is to be
connected. The acp_name can be blanks if a valid acidp_name is provided

trigger—single character code with the three high-order bits assigned these meanings:
• Bit 7 : Schedule—one (1) = "set prefetch on" and zero (0) = "set prefetch off."
• Bit 6 : PPS (Point_Process_Special)—one (1) = "set prefetch on" and zero (0) = "set

prefetch off.”
• Bit 5 : Demand—one (1) = "set prefetch on" and zero (0) = "set prefetch off."

flags—This short integer sets options as described in section 9.1.3/13.1.3/17.1.3. The following
flags apply to this call:

cm50$m_handler
cm50$m_msgon

G.13.3 Disconnect DDT from ACIDP

This routine is called to disconnect a DDT from an ACIDP. At least one of the three parameters,
ddt_name, acp_name, or acidp_name is required in the call (the others are passed as
blanks). The ACIDP-ACP-DDT connection must already exist.

G.13.3.1 Example FORTRAN Call for Disconnect DDT from ACIDP

return_status = CM50_DDT_DISCON
(%REF(ddt_name),
 %REF(acidp_name),
 %REF(acp_name),
 flags)

G.13.3.2 Example Pascal Call for Disconnect DDT from ACIDP

return_status := CM50_DDT_DISCON
(ddt_name,
 acidp_name,
 acp_name,
 flags);

G.13.3.3 Example "C" Call for Disconnect DDT from ACIDP

return_status = cm50_ddt_discon
(ddt_name,
 acidp_name,
 acp_name,
 &flags);

CM50S User Manual G-71 7/93

G.13.3

G.13.3.4 Parameter Definitions for Disconnect DDT from ACIDP

return_status—The name of an integer to receive the overall return status of the function call. For
fully successful calls, return_status = 1. See Appendix A.2 for an explanation
and a listing of all assigned return code values.

ddt_name—9-character name of the DDT that is to be disconnected. Can be blanks if either
acidp_name or acp_name contains a valid name.

acidp_name—8-character name of the ACIDP from which the DDT is to be disconnected. Can be
blanks if either ddt_name or acp_name contains a valid name.

acp_name—12-character name of the ACP connected to the ACIDP from which the DDT is to be
disconnected. Can be blanks if either ddt_name or acidp_name contains a valid
name.

flags—This short integer sets options as described in section 9.1.3/13.1.3/17.1.3. The following
flags apply to this call:

cm50$m_handler
cm50$m_msgon

G.13.4 Modify Triggers

This routine is called to modify the Triggers associated with a DDT that is connected to an ACIDP.
At least one of the three parameters, ddt_name, acp_name, or acidp_name, is required in
the call (the others are passed as blanks). The ACIDP-ACP-DDT connection must already exist.

G.13.4.1 Example FORTRAN Call for Modify Triggers

return_status = CM50_MOD_TRIGGERS
(%REF(ddt_name),
 %REF(acidp_name),
 %REF(acp_name),
 %REF(trigger),
 flags)

G.13.4.2 Example Pascal Call for Modify Triggers

return_status := CM50_MOD_TRIGGERS
(ddt_name,
 acidp_name,
 acp_name,
 trigger,
 flags);

CM50S User Manual G-72 7/93

G.13.4

G.13.4.3 Example "C" Call for Modify Triggers

return_status = cm50_mod_triggers
(ddt_name,
 acidp_name,
 acp_name,
 &trigger,
 &flags);

G.13.4.4 Parameter Definitions for Modify Triggers

return_status—The name of an integer to receive the overall return status of the function call. For
fully successful calls, return_status = 1. See Appendix A.2 for an explanation
and a listing of all assigned return code values.

ddt_name—9-character name of the DDT that is connected to the specified ACIDP. Can be blanks
if either acidp_name or acp_name contains a valid name.

acidp_name—8-character name of the ACIDP to which the specified DDT is connected. Can be
blanks if either ddt_name or acp_name contains a valid name.

acp_name—12-character name of the ACP connected to the specified ACIDP. Can be blanks if
either ddt_name or acidp_name contains a valid name.

trigger—A single character code with the three high-order bits assigned these meanings:
• Bit 7 : Schedule—one (1) = "set prefetch on" and zero (0) = "set prefetch off."
• Bit 6 : PPS (Point_Process_Special)—one (1) = "set prefetch on" and zero (0) = "set

prefetch off.”
• Bit 5 : Demand—one (1) = "set prefetch on" and zero (0) = "set prefetch off."

flags—This short integer sets options as described in section 9.1.3/13.1.3/17.1.3. The following
flags apply to this call:

cm50$m_handler
cm50$m_msgon

CM50S User Manual H-1 7/93

H

SAMPLE PROGRAMS
Appendix H

This appendix describes the sample source programs supplied with the CM50S software.

The CM50$EXAMPLES directory contains the source code for a set of sample programs in
FORTRAN, Pascal and "C" (and their supporting DDTs) that illustrate the use of the
different groups of CM50S calls.

This appendix describes each of these sample programs. The references to points on the
LCN are based on the database in the Honeywell Automation College and thus will need to
be altered to run at each site.

CAUTION

The sample programs alter values to demonstrate stores to the LCN, so they should not be
used with production control points in the LCN.

Remember successful stores to control parameters (SP, PV and OT) depend on the control
mode of the point and the installation mode of the ACP (must be Normal) as well as the
ACIDP connection.

Before running any of these programs: 1) The references to LCN points must be updated to
match the installed LCN database. 2) The DDTs (if applicable) must be built. 3) The
program must be compiled (using the default options for the FORTRAN, PASCAL or CC
commands). and 4) If the program is to store data to the LCN, it must be installed as an
ACP and attached to an ACIDP.

H.1 LINKER PROCEDURES (CM50_LNK)

The CM50_LNK.COM command file will link an ACP or DAP program to CM50S where
both the object file and the executable image are in the default directory. This link
procedure may be used with programs written in either FORTRAN or Pascal. Programs
written in "C" must also be linked to the C runtime library, so they should use the separate
CM50_LNK_C.COM command files.

Since these command procedures use the VMS default directory, the user should issue as
"SET DEFAULT CM50$EXAMPLES" command before compiling and linking the sample

CM50S User Manual H-2 7/93

H.2

programs. Note that additional user object modules may be linked simply by appending
their names to the argument list separated by comas (no spaces). For example:

@CM50$EXAMPLES:CM50_LNK testprog,myroutine

would create an executable image named TESTPROG.EXE in the current directory which
linked both the TESTPROG.OBJ and MYROUTINE.OBJ objects to the CM50S software.

Since ACPs linked using the CM50_LNK and CM50_LNK_C procedures are not placed in
the CM50$ACP directory, the full pathname of their executable files should be specified
when they are installed. Example, install the sample DDTACP specifying execution path as

CM50$EXAMPLES.DDTACP.EXE

H.2 USING DDTs (DDTACP)

The DDTACP sample ACP retrieves values from the LCN, performs trivial calculations
and writes the modified values back to the LCN.

It uses two DDTs, IN_SAMPLE for input, and OT_SAMPLE for output. Both of these
DDTs reference the same 3 Real parameters [FC1101.SP, FC1102.SP, and
CCMU20.CAPVS(1)], 1 Integer parameter [FC1101.OVERVAL], and 1 24-character
ASCII parameter [CCMU20.CATAGS(1)].

Functions Invoked: CM50_SET_ACP
CM50_DDT_GETNT
CM50_DDT_STORE
CM50_VALIDN
PRGTRM

H.3 USING MULTI-POINT LISTS (MPLACP)

The MPLACP sample ACP retrieves values from the LCN, performs trivial calculations
and writes the modified values back to the LCN.

It uses specific tagnames to generate a memory structure referencing LCN points and saves
that structure in a file named: MPL_SAMPLE.MPL in the user's default directory. It
references the same 3 Real parameters [FC1101.SP, FC1102.SP, and
CCMU20.CAPVS(1)], 1 Integer parameter [FC1101.OVERVAL] as the DDTACP
example.

Functions Invoked: CM50_SET_ACP
CM50_MPL_GENTAGS
CM50_MPL_WRITE
CM50_MPL_GET
CM50_MPL_STORE
PRGTRM

CM50S User Manual H-3 7/93

H.4

H.4 USING POINT LIST ARRAYS (PT_LIST)

The PT_LIST sample ACP converts a list of tagnames to an array of internal references,
retrieves the values from the LCN, performs trivial calculations and writes the modified
values back to the LCN.

It references the same 3 Real parameters [FC1101.SP, FC1102.SP, and
CCMU20.CAPVS(1)] as the DDTACP example.

Functions Invoked: CM50_SET_ACP
CM50_CONV_TAG_LIST
CM50_GET_REALNBR
CM50_STORE_REALNBR
CM50_VALIDN
PRGTRM

H.5 USING SINGLE POINT FUNCTIONS (SINGL_PT)

The SINGL_PT sample ACP retrieves a value from the LCN, performs trivial calculations
and writes the modified value back to the LCN.

It references two Real parameters [FC1101.SP and CCMU20.CAPVS(1)].

Functions Invoked: CM50_SET_ACP
CM50_CONV_TAG
CM50_GETPT_ID
CM50_GET_ID
CM50_STORE_ID
PRGTRM

H.6 ACCESSING HISTORY (HISTORY)

The HISTORY sample program retrieves values from the History Module LCN. It does
not have to be installed as an ACP, but the tags it references must be configured into a
history group on the LCN.

It uses one DDT, H_SAMPLE for history input, which references two Real parameters
[FC1101.SP and FC1102.SP]. FC1101.SP is also used directly for a single-point
retrieval., 1 Integer parameter [

Functions Invoked: CM50_SET_ACP
CM50_DDTHIS_SNAP
CM50_DDTHIS_AVERT
CM50_CONV_PT
CM50_PTHIS_AVER
CM50_VALIDN
CM50_TIMLCN_VAXA
CM50_TIMVAXA_ASC
PRGTRM

CM50S User Manual H-4 7/93

H.7

H.7 MANAGING ACPs (ACP_ADMIN)

The ACP_ADMIN sample program retrieves a list of installed ACPs, alters the installation
mode of the DDTACP sample ACP to "TEST", activates it and returns it back to
"NORMAL" mode.

Functions Invoked: CM50_ACP_LISTALL
CM50_ACP_CHG_MODE
CM50_ACP_ACT
CM50_ACPDELAY

H.8 MANAGING DDTs (DDT_ADMIN)

The DDT_ADMIN sample program retrieves a list of installed DDTs and the detailed
information about one of them, then rebuilds the fifth DDT, maintaining any existing
prefetch ACIDP connection.

Functions Invoked: CM50_DDT_LIST
CM50_DDT_DETAIL
CM50_DDT_DISCON
CM50_DDT_UNINST
CM50_DDT_BUILD
CM50_DDT_CON

H.9 READING THE CG DATABASE (CG_BASE)

The CG_BASE sample program retrieves lists of the ACIDPs, CRDPs and DDTs that are
resident in CG 1.

Functions Invoked: CM50_CG_RDDT
CM50_CG_CRDP
CM50_CG_ACIDP

H.10 USING LCN FILE TRANSFER FUNCTIONS (LCN_XFER)

The LCN_XFER sample program lists files and directories on a history module and
retrieves a file from the LCN.

It references two site-specific variables: HM_NODE (initially set to '49', should be
modified to match the node number on the local LCN), and FILE_PATH (should be
modified to match an ASCII file on the local LCN). The program will create two files in
the VAX: LCN_XFER.ASC (an ASCII file) and LCN_XFER_ASC.LA (its associated
Attributes file).

Functions Invoked: CM50_FILE_LIST
CM50_HM_LISTF
CM50_ATTR_LIST
CM50_LCN_READ

READER COMMENTS

Honeywell IAC Automation College welcomes your comments and suggestions to improve future
editions of this and other publications.

You can communicate your thoughts to us by fax, mail, or toll-free telephone call. We would like to
acknowledge your comments; please include your complet name and address

BY FAX: Use this form; and fax to us at (602) 313-4108

BY TELEPHONE: In the U.S.A. use our toll-free number 1*800-822-7673 (available in the 48
contiguous states except Arizona; in Arizona dial 1-602-313-5558).

BY MAIL: Use this form; detach, fold, tape closed, and mail to us.

Title of Publication: CM50S User Manual Issue Date: 7/93

Publication Number: CM11-430

Writer: Terry Rippstein

COMMENTS: ___

RECOMMENDATIONS:___

NAME _______________________________________ DATE ____________________

TITLE ___

COMPANY ___

ADDRESS __

CITY ________________________ STATE ___________ ZIP ____________________

TELEPHONE _____________________ FAX _________________________________

(If returning by mail, please tape closed; Postal regulations prohibit use of staples.)

Automation College
Industrial Automation and Control
Honeywell Inc.
2820 West Kelton Lane
Phoenix, Arizona 85023-3028

Communications concerning technical publications should be directed to:

FOLD FOLD

From: NO POSTAGE
NECESSARY

IF MAILED
IN THE USA

 BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY

Industrial Automation and Control
2820 West Kelton Lane
Phoenix, Arizona 85023-3028

Attention: Manager, Quality

Additional Comments:

C
ut

 A
lo

ng
 L

in
e

FOLD FOLD

FIRST CLASS PERMIT NO. 4332 PHOENIX, ARIZONA

Honeywell

L

Industrial Automation and Control Helping You Control Your World
Honeywell Inc.
16404 North Black Canyon Highway
Phoenix, Arizona 85023-3033

