

# Technical Manual **TNC 122**



This Technical Manual for the HEIDENHAIN TNC 122 straight cut control applies for the NC software version 246 117 08 and is subject to change without notice.

# Foreword

The HEIDENHAIN TNC 122 is a compact, three-axis straight cut control for machine tools with central drive. It has been developed as the successor model for the TNC 121, to which it is compatible for installation. The TNC 122 has an expanded range of functions.

This Technical Manual is intended for all machine tool builders and machine tool distributors, and for retrofitting companies who wish to replaced an installed TNC 121 with a TNC 122. It provides the information required for mounting, electrical connection and commissioning the control.

For information on the new and improved operating features, please refer to the User's Manual.

# Contents

| 1       | Specifications                           | 4  |
|---------|------------------------------------------|----|
| 2       | Hardware                                 | 6  |
| 3       | Software                                 | 6  |
| 4       | EPROM Sockets                            | 7  |
| 5       | Power Supply                             | 8  |
| 6       | Grounding Diagram                        | 9  |
| 7       | Connections                              | 10 |
| 8       | Pin Layout                               | 11 |
| 8.1     | Data interface                           | 15 |
| 9       | Machine Integration                      | 16 |
| 9.1     | Encoders                                 | 16 |
| 9.2     | Traverse ranges                          | 17 |
| 9.3     | Reference marks                          | 18 |
| 9.4     | Position feedback control of the NC axes | 24 |
| 9.5     | Monitoring functions                     | 29 |
| 9.6     | Display and operation                    | 31 |
| 9.7     | EMERGENCY STOP circuit                   | 33 |
| 10      | Exchanging the control                   | 36 |
| 11      | Machine Parameters                       | 37 |
| 11.1    | Entering and changing machine parameters | 37 |
| 11.2    | Machine parameter list                   | 38 |
| 12      | PLC Description                          | 45 |
| 12.1    | PLC-EPROM                                | 45 |
| 12.2    | PLC Commands                             | 46 |
| 12.2.1  | Load and store commands                  | 46 |
| 12.2.2  | Set commands                             | 49 |
| 12.2.3  | Logical connective operations            | 50 |
| 12.2.4  | Arithmetic commands                      | 52 |
| 12.2.5  | Comparisons                              | 54 |
| 12.2.6  | Parenthetical expressions                | 55 |
| 12.2.7  | Shift commands                           | 56 |
| 12.2.8  | Bit commands                             | 57 |
| 12.2.9  | Stack operations                         | 57 |
| 12.2.10 | Jump commands                            | 59 |
| 12.3    | Classes of markers and bytes             | 60 |
| 12.4    | Marker list                              | 61 |
| 13      | Error Messages                           | 65 |
| 14      | Dimensions                               | 66 |
| 15      | Subject Index                            | 69 |
|         |                                          |    |

# 1 Specifications

| Type of control       | Straight cut control for 3 axes and paraxial positioning                                                                                                                                                                                    |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program memory        | Memory for up to 500 NC blocks,<br>20 NC programs                                                                                                                                                                                           |
| Design                | Compact control for panel mounting<br>7-segment LED for actual position display<br>LED dot matrix 5 x 7 for preset display                                                                                                                  |
| Tool memory           | One tool for length and radius compensation                                                                                                                                                                                                 |
| Modes of operation    | Manual operation<br>Positioning with manual data input<br>Program run single block<br>Program run automatic<br>Programming and editing                                                                                                      |
| Program input         | Manually through TNC keyboard<br>Through RS-232-C/ V.24                                                                                                                                                                                     |
| Display step          | 1 μm or 5 μm (0.000 05 in., 0.000 2 in.)                                                                                                                                                                                                    |
| Programmable function | Nominal position in absolute or incremental dimensions<br>Subprograms, program section repeats<br>Tool radius compensation R+/R-<br>Bolt-hole circle, hole circle segment, linear hole pattern<br>Feed rate / rapid traverse<br>M functions |
| Languages             | Dutch, English, French, German, Spanish                                                                                                                                                                                                     |
| Max. traverse         | ± 9999.999 mm                                                                                                                                                                                                                               |
| Max. traversing speed | 30 000 mm/min                                                                                                                                                                                                                               |
| Position encoders     | Incremental HEIDENHAIN position encoders, optionally<br>with distance-coded reference marks<br>16 μA <sub>PP</sub> /40 μA <sub>PP</sub> selectable<br>Grating Periods: 4, 10, 20, 40, 100, 200 μm                                           |
| PLC cycle time        | 24 ms                                                                                                                                                                                                                                       |
| Control inputs        | 3 position encoder inputs (sinusoidal inputs)<br>15 PLC inputs +1 PLC input for a control-is-ready<br>acknowledgment                                                                                                                        |
| Control outputs       | One analog output (for central drive)<br>15 PLC outputs + 1 PLC input for control-is-ready signal                                                                                                                                           |
| Data interface        | RS-232-C/ V.24, up to 38 400 baud                                                                                                                                                                                                           |

4

| Power supply         | Primary-clocked power supply 100 V to 240 V                                                                                                                |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power consumption    | 19 W                                                                                                                                                       |
| Ambient requirements | Operation : 0° to +45° C<br>Storage : –30° to +70° C<br>Relative humidity, mean annual: < 75%, for max. 30 days<br>per annum, naturally distributed: < 95% |
| Weight               | Approx. 3 kg                                                                                                                                               |

# 2 Hardware

ld. Nr. 284 083 xx



# 3 Software

## Software versions

The NC software 246 117 07, together with the PLC software 277 938 13 of the TNC 122 replaces the following software versions of the TNC 121:

## Software Version of TNC 121

| 205 438                   |
|---------------------------|
| 205 443                   |
| 205 444                   |
| 205 446                   |
| 205 455                   |
| 205 456 unipolar standard |
| 205 457 bipolar standard  |
| 205 430                   |
|                           |

6

# **4 EPROM Sockets**

| IC-P1 NC  |  |  |
|-----------|--|--|
| IC-P2 PLC |  |  |
|           |  |  |
|           |  |  |
|           |  |  |

The PLC EPROM is a 2 MB or 4 MB chip.



#### Danger of electrical shock!

Unplug the power cord before opening the housing.



#### Danger to internal components!

When handling components that can be damaged by electrostatic discharge (ESD), observe the safety recommendations in DIN EN 100 015. Use only antistatic packaging material. Be sure that the work station and the technician are properly grounded during installation.

# 5 Power Supply

| Component | Power supply                                                    | Voltage range                                              | Max. power<br>consumption               | Power consumption |
|-----------|-----------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|-------------------|
| NC        | Primary clocked power supply                                    | 100 – 240 V<br>(–15% to +10%)<br>48 – 62 Hz                | _                                       | Approx. 19 W      |
| PLC       | 24 V<br>(with basis<br>insulation<br>according to<br>EN 50 178) | Lower limit<br>20.4 V<br>Upper limit<br>31 V <sup>1)</sup> | Max. 10 mA per inp<br>Max. 100 mA per c | but<br>utput      |

The voltage must comply with specifications:

<sup>1)</sup> Voltage surges up to 36 V  $\overline{\dots}$  for t < 100 ms are permissible.

All small contactors and relays must have a quenching diode.

#### PLC power supply

The PLC (PLC inputs and outputs) of the TNC 122 is powered from the 24 V machine control voltage supply.



#### Danger to internal components!

Connect inductive loads only with a quenching diode parallel to the inductance.

Superposed AC components as they arise from a three-phase bridge rectifier without smoothing (see DIN 40110/1075, Section 1.2) must not exceed 5%. This results at the upper limit in the absolute value 33.4 V and at the lower limit the absolute value of 18.5 V.



8

To increase the noise immunity, connect the ground terminal on the rear panel to the central ground point of the machine. (Minimum cross-section: 6 mm<sup>2</sup>)

The 0 V line of the PLC power supply must be grounded with an earth lead ( $\emptyset \ge 6 \text{ mm}^2$ ) to the main frame ground of the machine.





TNC 122

4/97

# 7 Connections



X1 = Encoder 1

- X2 = Encoder 2
- X3 = Encoder 3
- X21 = RS-232-C/V.24 data interface

X41 = PLC inputs/PLC outputs/analog output/feed rate override/24 V PLC X51 = Power supply

B = Signal ground



#### Danger to internal components!

Do not engage or disengage any connections while the unit is under power.



Interfaces X1, X2, X3, X21 comply with the recommendations in EN 50 178 for separation from line power.



10

The outputs at connection X41 are metallically isolated from the device electronics by means of optocouplers.

# 8 Pin Layout

| X1, X2, X3          | Pin number | Assignment       |
|---------------------|------------|------------------|
| Encoder input       | 1          | I <sub>1</sub> + |
|                     | 2          | I <sub>1</sub> - |
| Flange socket with  | 5          | l <sub>2</sub> + |
| 9-pin female insert | 6          | I <sub>2</sub> - |
|                     | 7          | l <sub>0</sub> + |
|                     | 8          | I <sub>0</sub> - |
|                     | 3          | + 5 V            |
|                     | 4          | 0 V              |
|                     | 9          | Internal shield  |
|                     | Housing    | External shield  |

| X21 Data interface   | Pin number | Assignment        |
|----------------------|------------|-------------------|
| RS-232-C/V.24        | 1          | Housing           |
|                      | 2          | RXD               |
| D-sub connector with | 3          | TXD               |
| 25-pin female insert | 4          | CTS               |
|                      | 5          | RTS               |
|                      | 6          | DTR               |
|                      | 7          | GND signal ground |
|                      | 8 – 19     | Do not use        |
|                      | 20         | DSR               |
|                      | 21 – 25    | Do not use        |

| X51 Power connector    | Pin number | Assignment                |
|------------------------|------------|---------------------------|
|                        | L1         | Live (230 V, F2.5 A fuse) |
| Terminal board, 3-pole | Ν          | Neutral                   |
|                        |            | Protective ground         |

Power consumption: typically 10 W

| X41                | TNC 122 Connection-assignment |                                                                                                                             | TNC 121 |  |
|--------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------|--|
| Contact            |                               |                                                                                                                             | Contact |  |
| PLC inputs         | 1                             | 18 High=M26/ Low=M27                                                                                                        |         |  |
| PLC outputs 2      |                               | 19 High=M24/ Low=M25                                                                                                        |         |  |
| Feed rate override | 3                             | 110 High=M22/ Low=M23 or M09                                                                                                |         |  |
| PLC power supply   | 4                             | 111 High=M20/ Low=M21 or M05                                                                                                |         |  |
|                    | 5                             | I12 M08 coolant ON/ M09 OFF                                                                                                 |         |  |
| Terminal board,    | 6                             | I13 M04 left spindle ON/ M05 OFF                                                                                            |         |  |
| 48 contacts        | 7                             | 114 M03 right spindle ON/ M05 OFF                                                                                           |         |  |
|                    | 8                             | I15 acknowledgment M function                                                                                               |         |  |
|                    | 9                             | +24 V PLC                                                                                                                   |         |  |
|                    | 10                            | Control-is-ready output                                                                                                     |         |  |
|                    | 11                            | O13 M04 left spindle ON/ M05 OFF or High=M18/<br>Low M19                                                                    |         |  |
|                    | 12                            | O11 High=M20/ Low=M21 or M05                                                                                                |         |  |
|                    | 13                            | O9 High=M24/ Low=M25                                                                                                        |         |  |
|                    | 14                            | O7 High=M28/ Low=M29                                                                                                        |         |  |
|                    | 15                            | O5 Output for negative traverse direction (for one-<br>quadrant drives)<br>Erosion (205430) M02,M30 switches the output = 0 | 13      |  |
|                    | 16                            | O4 Output for rapid traverse<br>(erosion 205430 M02,M30 Stop-erosion output=0)                                              | 11      |  |
|                    | 17                            | O3 Output for Z axis enable                                                                                                 | 18      |  |
|                    | 18                            | O2 Output for Y axis enable                                                                                                 | 20      |  |
|                    | 19                            | O1 Output for X axis enable                                                                                                 | 22      |  |
|                    | 20                            | O0 Output for Manual operating mode                                                                                         | 16      |  |
|                    | 21                            | not assigned                                                                                                                |         |  |
|                    | 22                            | 0 V Analog voltage                                                                                                          | 8       |  |
|                    | 23                            | +/- 10 V Analog voltage (depending on MP 70)                                                                                | 9       |  |
|                    | 24                            | Feed rate override (wiper)                                                                                                  | 4       |  |
|                    | 25                            | I0 Input NC start                                                                                                           | 1       |  |
|                    | 26                            | 11 Input NC stop                                                                                                            | 2       |  |
|                    | 27                            | I2 Input rapid traverse key (Erosion 205430 erosion ended, acknowledge with M36)                                            | 7       |  |
|                    | 28                            | I3 Input for control-is-ready acknowledgment                                                                                |         |  |
|                    | 29                            | l4 not assigned                                                                                                             |         |  |
|                    | 30                            | 15 not assigned                                                                                                             |         |  |
|                    | 31                            | 16 High=M23/ Low=M33                                                                                                        |         |  |
|                    | 32                            | 17 High=M28/ Low=M29                                                                                                        |         |  |
|                    | 33                            | 0 V PLC                                                                                                                     | 6       |  |

| TNC 122 | Connection-assignment                                     | TNC 121 |  |
|---------|-----------------------------------------------------------|---------|--|
| Contact |                                                           | Contact |  |
| 34      | O14 M04 right spindle ON/ M05 OFF or High=M16/<br>Low=M17 |         |  |
| 35      | O12 M08 coolant ON/ M09 OFF                               |         |  |
| 36      | O10 High=M22/ Low=M23 or M09                              |         |  |
| 37      | O8 High= M26/ Low=M27                                     |         |  |
| 38      | O6 High=M32/ Low= M33                                     |         |  |
| 39      | 24 V for neg. traverse direction output                   | 12      |  |
| 40      | 24 V for rapid traverse output                            | 10      |  |
| 41      | 24 V for Z axis enable output                             | 17      |  |
| 42      | 24 V for Y axis enable output                             | 19      |  |
| 43      | 24 V for X axis enable output                             | 21      |  |
| 44      | 24 V for "manual" / "not manual" output                   | 15      |  |
| 45      | "Not manual" output (inverted O0)                         | 14      |  |
| 46      | not assigned                                              |         |  |
| 47      | Feed rate override 0 V                                    | 3       |  |
| 48      | Feed rate override 15 V                                   | 5       |  |

The assignments are in accordance with the PLC Standard Program Id. Nr. 277 938 13!

The 24 Vdc power supply is monitored for reverse polarity and overvoltage. Reverse polarity blows a fuse (F 2.0 A). Overvoltage above 47 V destroys the damping diode and blows the fuse. Maximum current load is 300 mA.

PLC outputs: Inductive loads are permitted only with anti-surge diode!

## Change of the I/O assignment only if Program 205 430 is active:

With the M functions M02 an M30 the output is switched to zero. Through the M function M36 the output O5 is switched to 1 and is used to start the erosion process. Through input I2 the function M36 is acknowledged and indicates that erosion has ended. In this case the feed-rate potentiometer is without function.

X41 continued

衂

## Installation of the Potentiometer:



#### X21 Data Interface

The TNC 122 is equipped with an RS-232-C/V.24 data interface for operation in FE or EXT mode (see the User's Manual). Programs and a list of the machine parameters can be output though this interface. An RS-232-C adapter must be provided for a peripheral unit, such as a PC, FE 401, or printer, to be connected to the control panel. The following drawing illustrates how to connect the adapter block to X21.

HEIDENHAIN guarantees that, if properly connected, the RS-232-C/V.24 serial interface will reliably transmit data between the TNC and a peripheral unit up to a distance of 20 meters.

HEIDENHAIN provides a standard cable 3 meters in length (Id.-Nr. 274 545 01) for connecting peripheral units.

The data format in FE and EXT mode is fixed at 7 data bits, 2 stop bits and even parity. The FE mode operates with ACK/NAK handshake, the EXT mode with DC1/DC3 handshake and RTS/CTS. The data transfer rates are 9600 baud in FE mode and 2400 baud in EXT.





The interface complies with the recommendations in EN 50 178 for separation from line power.

# 9 Machine Integration

# 9.1 Encoders

You can continue to use the same incremental position feedback encoders on the TNC 122, as you used on the TNC 121.

## Signal period

The signal period of the linear encoder is entered in machine parameter MP330.x (in  $\mu$ m). On linear encoders with sinusoidal output signals, the signal period is the same as the grating period:

Signal period (~) = Grating period

The standard linear encoders from HEIDENHAIN have a grating period of 20  $\mu m.$  Older encoders have a grating period of 40  $\mu m.$ 

If linear position feedback is carried out with a rotary encoder on the ballscrew, then to calculate the signal period you must consider not only the line count of the encoder (see the technical data for the encoder) but also the pitch of the ballscrew:

Signal period (~) =  $\frac{\text{Screw pitch [mm]} \cdot 1000 \, [\mu\text{m/mm]}}{\text{Line count}}$ 

MP330 Signal period Input values: 4, 10, 20, 40, 100, 200 [μm]

MP330.0 Axis 1 MP330.1 Axis 2

MP330.2 Axis 3

Machine parameter MP7320 can set the encoder amplitude so that older encoder models (on machines with TNC 121) can be adapted to the TNC 122.

MP7320 Switchover of encoder input amplitude Input values: 0 to 7

| Bit 0 | Axis | Х | +0 = 16 µA |
|-------|------|---|------------|
|       |      |   | +1 = 40 µA |
| Bit 1 | Axis | Υ | +0 = 16 μA |
|       |      |   | +2 = 40 µA |
| Bit 2 | Axis | Ζ | +0 = 16 μA |
|       |      |   | +4 = 40 µA |

#### **Traverse direction**

Machine parameters MP210 and MP1040 define the axis traverse direction. The traverse directions for the axes on numerically controlled machine tools are specified in DIN.

MP210 defines the counting direction of the encoder signals. The counting direction depends on the mounting configuration of the encoders.

| MP210 | Counting direction of encoder signals<br>Input values: 0 to 7 |        |                                |
|-------|---------------------------------------------------------------|--------|--------------------------------|
|       | Bit 0                                                         | Axis X | +0 = positive                  |
|       | Bit 1                                                         | Axis Y | +1 = negative<br>+0 = positive |
|       | Bit 2                                                         | Axis Z | +2 = negative<br>+0 = positive |
|       |                                                               |        | +4 = negative                  |

MP1040 defines the polarity of the nominal voltage for positive direction of traverse.

**MP1040** Polarity of the nominal voltage with positive direction of traverse Input values: 0 to 7 (must be "0" if MP70 is on "1" or "2")

| Bit 0 | Axis X | +0 = positive |
|-------|--------|---------------|
|       |        | +1 = negative |
| Bit 1 | Axis Y | +0 = positive |
|       |        | +2 = negative |
| Bit 2 | Axis Z | +0 = positive |
|       |        | +4 = negative |

#### Assignment of encoder inputs

The individual axes can be assigned to the encoder inputs X1 to X3 with machine parameter MP110.

MP110 Assignment of axes to encoder inputs Input values: 0 to 2 0 = encoder input X1 1 = encoder input X2 2 = encoder input X3

 MP110.0
 Axis 1

 MP110.1
 Axis 2

 MP110.2
 Axis 3

# 9.2 Traverse Ranges

The traverse ranges are set with machine parameters. The traverse ranges are defined by software limit switches. The input values for the software limit switches are based on the scale datum.

If the machine moves to a software limit switch, the following error message appears:

LIMIT SWITCH <axis>...

and the corresponding marker is set (M2624 to M2629).

| MP 910                                             | Positive traverse di<br>Entry range: –9999.                                                                                                  | rection<br>.999 to +9                  | 999.999 [mm]                              |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| MP910.0<br>MP910.1<br>MP910.2                      | Software limit swite<br>Software limit swite<br>Software limit swite                                                                         | ch axis X+<br>ch axis Y+<br>ch axis Z+ |                                           |
| MP 920                                             | Negative traverse c<br>Entry range: –9999                                                                                                    | lirection<br>.999 to +9                | 999.999 [mm]                              |
| MP920.0<br>MP920.1<br>MP920.2                      | Software limit swite<br>Software limit swite<br>Software limit swite                                                                         | ch axis X–<br>ch axis Y–<br>ch axis Z– |                                           |
| M2624<br>M2625<br>M2626<br>M2627<br>M2628<br>M2629 | Limit switch axis X+<br>Limit switch axis X–<br>Limit switch axis Y+<br>Limit switch axis Y–<br>Limit switch axis Z+<br>Limit switch axis Z– | Set<br>NC<br>NC<br>NC<br>NC<br>NC      | Reset<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC |

# 9.3 Reference Marks

For workpiece machining, the datum setting procedure assigns a unique position value (coordinate) to each axis position. Since the actual position values are generated incrementally by the encoder, this relationship between axis positions and position values must be restored each time the power is interrupted.

HEIDENHAIN linear encoders are provided with one or more reference marks. When a reference mark is traversed, a signal is generated that identifies that position as a reference point. After a power interruption, crossing over the reference marks will restore the relationship between axis slide positions and position values that was last established through the datum setting procedure. Crossing over the reference marks also restores all machine-based references.

Since it is inconvenient to move the axes over large traverses to restore the reference point, HEIDENHAIN recommends position encoders with distance-coded reference marks. On these encoders the absolute position value is available after crossing two reference marks.

# 9.3.1 Traversing the Reference Marks

The reference marks of the axes should be traversed after the control is switched on. Machines with the TNC 121 are usually equipped with scales that have a reference mark at each end. To prevent the software limit switch ranges from being shifted, always traverse the reference mark upon which the software limit switches are based.

If referencing is not desired, it can be deactivated with machine parameter MP1340.x or by pressing the NO ENT key.

To traverse the reference marks, press the machine axis direction buttons. The sequence of axes is determined by the user.

When the reference marks are crossed over,

- the software limit switches are activated
- the datum point last set is restored

If the position encoders have distance-coded reference marks, the machine datum is based on the scale reference point (on linear encoders the scale reference point is the first reference mark after the start of the measuring length; on angle encoders the scale reference point is marked).

#### Manual execution (standard process)

The reference mark is traversed with the axis-direction keys.

#### Automatic execution (not in TNC 122)

The direction of traverse and the speed when crossing over the reference marks is defined with machine parameters (MP1320.x, MP1330.x). The sequence of functions when crossing over the reference marks can be defined separately for each axis with MP1350.x.

A trip dog for the reference end position is necessary to prevent the traverse range from being exceeded when the reference marks are crossed over. Install the trip dog at the end of the traverse range. The trigger signal line from the trip dog is connected to a vacant PLC input. In the PLC program, this PLC input is combined with the markers for "Reference end position" (M2556 to M2558)

#### Encoders with distance-coded reference marks

Machine parameter MP1350.x=0







## Encoders with one reference mark

Machine parameter MP1350.x = 1







| MP1320                           | Trave<br>Input                      | erse direc<br>values:               | ction for<br>0 to 7                                 | crossing ove                                            | r the refere                           | ence marks with EXT start    |
|----------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------|---------------------------------------------------------|----------------------------------------|------------------------------|
|                                  | Bit 0                               | Axis X                              |                                                     | +0 = positive<br>+1 = negative                          | 9                                      |                              |
|                                  | Bit 1                               | Axis Y                              |                                                     | +0 = positive                                           |                                        |                              |
|                                  | Bit 2                               | Axis Z                              |                                                     | +2 = negative<br>+0 = positive<br>+4 = negative         | 9                                      |                              |
| MP1330                           | Feed<br>Entry                       | rate for<br>range: 8                | crossing<br>30 to 30                                | over the refe<br>000[mm/min]                            | erence mar<br>I                        | ks                           |
| MP1330.0<br>MP1330.1<br>MP1330.2 |                                     | Axis X<br>Axis Y<br>Axis Z          |                                                     |                                                         |                                        |                              |
| MP1340                           | Sequ<br>Input                       | ence wh<br>values:                  | en cross<br>0 = no<br>1 = 1st<br>2 = 2nc<br>3 = 3rd | sing over the<br>reference ma<br>axis<br>I axis<br>axis | reference i<br>rk evaluatio            | marks<br>on                  |
| MP1340.0<br>MP1340.1<br>MP1340.2 |                                     | Axis X<br>Axis Y<br>Axis Z          |                                                     |                                                         |                                        |                              |
| MP1350                           | Sequ<br>Input                       | ence for<br>values:                 | crossing<br>0 = enc<br>1 = enc                      | g over referer<br>oder with dis<br>oder with one        | nce marks<br>tance-code<br>e reference | ed reference marks<br>e mark |
| MP1350.0<br>MP1550.1<br>MP1350.2 |                                     | Axis X<br>Axis Y<br>Axis Z          |                                                     |                                                         |                                        |                              |
| M2556<br>M2557<br>M2558          | Reference<br>Reference<br>Reference | ce end po<br>ce end po<br>ce end po | osition fo<br>osition fo<br>osition fo              | or axis X<br>or axis Y<br>or axis Z                     | Set<br>PLC<br>PLC<br>PLC               | Reset<br>PLC<br>PLC<br>PLC   |

# 9.4 Position Feedback Control of the NC Axes

The TNC 122 operates according to the principle of closed-loop control with servo lag. Servo lag means that there is always a difference (trailing error) between the nominal position commanded by the NC and the actual position of the axes. Closed-loop control would not be possible without this difference.

The  $k_v$  factor (position loop gain) must be matched to the machine (see also "Characteristic kink"). If a very high  $k_v$  factor is chosen the servo lag will be very small, but this may cause oscillations in the machine axis. If the  $k_v$  factor is too small, the new position will be reached too slowly.

The maximum feed rate (not the rapid traverse) is defined in machine parameter MP1010.0–2. It represents the feed rate at an analog voltage of 11 V at the servo input.

The acceleration can be entered in machine parameter MP1060.x. It determines the ramp gradient of the rising edge (MP1060.0–2) and the approach to the position (MP1060.3–5).

To improve the positioning behavior, machine parameter MP1051.x can be used to define a bottom voltage below which the control will not go.

When the axis is in position (the positioning window has been reached) the "axis in position" marker is set. The PLC program must then disable the position controller for the axes to come to a stop.

The optimum  $k_v$  factor must be determined empirically. The following diagram illustrates traversing behavior at different  $k_v$  factors:



The  $k_v$  factor (MP1810) is generally determined by the maximum feed rate of the machine (MP1010) and the servo lag according to the following formula:

$$\begin{aligned} k_v &= \frac{Ve}{s_a} & k_v = \text{position loop gain } [\frac{m/\text{min}}{\text{mm}}] \\ v_e &= \text{maximum feed rate } [\frac{m}{\text{min}}] \\ s_a &= \text{servo lag } [\text{mm}] \end{aligned}$$

or

 $S_a = \frac{Ve}{k_v}$ 

#### Rapid traverse control

For operation at rapid traverse, both programmed and manually actuated, MP80 determines the analog supply voltage for the motor controllers. The machine's circuit diagram will indicate whether the controller input should be supplied by external analog voltage or the analog voltage of the control, and whether amplified tachometer signals are used.

**Programming of rapid traverse:** Select the axis, enter the value, press and hold the machine rapid traverse button, confirm by pressing the "ENT" key.

#### External analog voltage for rapid traverse at the controller input (MP80 =1):

If MP80 = 1, the controller will be switched to external analog voltage supply when the machine axes are moving at rapid traverse. The control loop remains closed although the control is not monitoring it. The control does not begin monitoring the loop until the axis comes within a certain distance to the target position. This distance is defined in MP4210 and is transmitted to the PLC. To resume feedback control, the PLC resets the "rapid traverse" output (X41, pin 16).

In order to ensure that servo lag monitoring does not respond during rapid traverse, the control operates internally with a rapid traverse from MP1010.3-5 and a "servo lag" is internally adjusted such that it remains within the permissible range of servo lag monitoring (floating nominal value). The servo lag internal adjustment is defined with machine parameter MP1850 such that no oscillations result. The rapid traverse in MP1010.3-5 must correspond with the actual rapid traverse.

The correct setting for the internal adjustment can be checked in a special display (activated with MP7322) showing the actual feed rate, the analog voltage of the control and the internal nominal servo lag as a percentage of the actual servo lag.

If the display sways between 80% and 120% this results in oscillations within the control. These oscillations can be prevented by properly setting MP1850. The setting in MP1010.x is correct if the display remains stable at approx. 100%. The behavior of the floating nominal value can also be measured at the analog output with an oscilloscope.

#### Analog voltage of the control for rapid traverse at the servo input of (MP80 = 2):

If the feedback input is supplied from the control during rapid traverse and the tachometer voltage must be switched, then enter the value 2 in MP80. In MP1010.3-5 enter the same rapid traverse rate as the machine had with the TNC 121.

| MP1010   | Feed rate at 10 V analog voltage<br>Input: 80 to 30 000 [mm/min]                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------|
| MP1010.0 | Axis X                                                                                                                   |
| MP1010.1 | Axis Y                                                                                                                   |
| MP1010.2 | Axis Z                                                                                                                   |
|          | Rapid traverse for amplified tachometer signals or external rapid traverse voltage<br>Input range: 80 to 30 000 [mm/min] |
| MP1010.3 | Axis X                                                                                                                   |
| MP1010.4 | Axis Y                                                                                                                   |
| MP1010.5 | Axis Z                                                                                                                   |

| MP1050                           | Analog voltage for rapid traverse<br>Input range: 4.5 to 11.0 [V]                                                                                                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MP1050.0<br>MP1050.1<br>MP1050.2 | Axis X<br>Axis Y<br>Axis Z                                                                                                                                                         |
| MP1051                           | Lower limit of analog voltage<br>Input range: 0 to 35 [transformer increment]<br>(1 transformer increment = 2.93 mV)                                                               |
| MP1051.0<br>MP1052.1<br>MP1053.2 | Axis X<br>Axis Y<br>Axis Z                                                                                                                                                         |
| MP70                             | Bipolar or unipolar analog voltage<br>Input: 0 or 2                                                                                                                                |
|                                  | <ul> <li>0 = bipolar</li> <li>1 = unipolar, traversing the position outputs 0 volt</li> <li>2 = unipolar, traversing the position inverts the voltage</li> </ul>                   |
| MP80                             | Supply voltage for position controller during rapid traverse Input range: 0 to 2                                                                                                   |
|                                  | <ul> <li>0 = Reserved</li> <li>1 = Controller input supplied with external voltage (MP1850)</li> <li>2 = Controller input supplied with analog voltage from the control</li> </ul> |
| MP1060                           | Acceleration during position approach<br>Input range: 0.001 to 3.0 [m/s²]                                                                                                          |
| MP1060.0<br>MP1060.1<br>MP1060.2 | Axis X<br>Axis Y<br>Axis Z                                                                                                                                                         |
|                                  | Deceleration during position approach<br>Input range: 0.001 to 3.0 [m/s²]                                                                                                          |
| MP1060.3<br>MP1060.4<br>MP1060.5 | Axis X<br>Axis Y<br>Axis Z                                                                                                                                                         |
| MP1810                           | k <sub>v</sub> factor                                                                                                                                                              |
|                                  | Input range: 0.10 to 10.00 [ <sup>m/min</sup> ]                                                                                                                                    |
| MP1810.0<br>MP1810.1<br>MP1810.2 | Axis 1<br>Axis 2<br>Axis 3                                                                                                                                                         |

**MP1850** Proportion for internal adjustment of servo lag (if MP80 = 1) Input range: 0 to 65535

#### Characteristic kink

To enable correct processing of the internal nominal value on machines that have a high rapid traverse speed, the  $k_V$  factor must be adjusted to this speed range. In such cases a characteristic kink can be entered, providing the following advantages:

- a normal ky factor for the machining feed rate
- $\bullet$  a separate  $k_V$  factor for rapid traverse

The position of this characteristic kink is defined in machine parameter MP1830. In the upper range the  $k_v$  factor is multiplied by the factor in MP1820.



The kink point must lie above the range of machining feed rates. Under these conditions the lag can be calculated as follows:

 $s_{a} = \frac{Ve}{k_{v}} \cdot \left[ \frac{MP1830[\%]}{100[\%]} + \frac{100[\%] - MP1830[\%]}{MP1820 \cdot 100[\%]} \right]$ **MP1820** Multiplication factor for the ky factor Input range: 0.001 to 9.000 MP1820.0 Axis X MP1820.1 Axis Y MP1820.2 Axis Z **MP1830** Characteristic kink Input range: 0.000 to 100.000 [%] MP1830.0 Axis X Axis Y MP1830.1 MP1830.2 Axis Z

#### Offset compensation

An offset error can be compensated. An offset error exists if the axis drifts when the controller input is supplied with 0V analog voltage. If the axis does drift, an offset voltage must be output to prevent the drifting. To define the analog offset voltage, press MOD and enter the code number 75 368 to call the "AV OFFSET" dialog prompt. The optimum input value (a multiple of 2.93 mV = 1 transformer step) must be determined empirically. Before this, the bottom voltage must be set to zero with MP1051. For bipolar drives, enter the proper algebraic sign for the voltage.

#### Feed rate enable

It is only possible to move the axes if the feed rate enable is present in marker M2451 and complementary marker M2467. If the feed rate enable is removed, the analog voltage output is 0 V and the axes stop moving immediately.

|       |                                | Set | Reset |
|-------|--------------------------------|-----|-------|
| M2451 | Feed rate enable               | PLC | PLC   |
| M2467 | Complementary feed rate enable | PLC | PLC   |

#### Axes in position

When the axes have reached the defined positioning window (MP1030.x), the "Axis in position" markers are set by the NC. This is also done when the control voltage is switched on.

The markers will only be reset by the NC if the axes leave the positioning window when being traversed. This also applies when the reference marks are crossed over.

|       |                    | Set | Reset |
|-------|--------------------|-----|-------|
| M2008 | Axis X in position | NC  | NC    |
| M2009 | Axis Y in position | NC  | NC    |
| M2010 | Axis Z in position | NC  | NC    |

#### Open the control loop

In order to lock or disengage an axis, the control loop must be opened by the PLC. As soon as the "Axis in position" markers (M2008 to M2010) are reset, the control loop must be closed again so that the axis can be moved. Before the control loop is closed, an actual and nominal value transfer must be performed.

|       |                          | Set | Reset |
|-------|--------------------------|-----|-------|
| M2544 | Open control loop axis X | PLC | PLC   |
| M2545 | Open control loop axis Y | PLC | PLC   |
| M2546 | Open control loop axis Z | PLC | PLC   |

#### Actual/nominal value transfer

If markers M2552 to M2554 are set, the momentary actual position value is taken as the nominal position value.

| Set | Reset                    |
|-----|--------------------------|
| PLC | PLC                      |
| PLC | PLC                      |
| PLC | PLC                      |
|     | Set<br>PLC<br>PLC<br>PLC |

# 9.5 Monitoring Functions

The NC monitors the axis positions and the dynamic behavior of the machine. If the fixed values in the machine parameters are exceeded, an error message is displayed and the machine is stopped. Position, standstill and movement are monitored.

#### Position monitoring

Machine parameters MP1720.x determine the range for the continuous position monitoring of the machine (servo lag monitoring). Monitoring goes into effect as soon as the axes are under control of the position control loop. If the limits in MP1720 are exceeded, the following blinking error message appears:

#### POS. ERROR A <axis>

The control must be switched off to correct this error. Realistic input values are approximately 1 to 1.4 times the servo lag at rapid traverse.

MP1720 Position monitoring Input range: 0.001 to 200.000 [mm]

#### Movement monitoring

At short intervals (several control cycles) the path actually traversed is compared with the nominal path as calculated by the NC. If the path traversed during this interval deviates from the calculated path, the following blinking error message will appear:

#### POS. ERROR C <axis>

Movement monitoring is not active below the voltage entered in machine parameter MP1140.

If 12 [V] is entered in this machine parameter, no movement monitoring will be in effect. It is not possible to safely operate the machine without movement monitoring.

MP1140 Movement monitoring Input range: 0.03 to 12.00 [V]

#### Standstill monitoring

ար

This monitoring goes into effect when the axes have reached the positioning window. The range within which the axes may move is defined in MP1110. As soon as the position deviation is larger than the value in MP1110, the following blinking error message is displayed:

#### POS.ERROR D <axis>

The message will also appear during approach to a target position if an overshoot is larger than the value entered in MP1110, or if the axis moves in the opposite direction at the beginning of a positioning move.

MP1110 Standstill monitoring Entry range: 0.001 to 30.000 [mm]

#### Positioning window

The positioning window defines the range within which the control considers a position to have been reached. When the position has been reached, the control starts the execution of the next block. The size of the positioning window is defined in MP1030.x.

When the axes reach the positioning window, markers M2008 to M2010 are set.

MP1030 Positioning window Entry range: 0.001 to 2.000 [mm]

| MP1030.0 | Axis X |
|----------|--------|
| MP1030.1 | Axis Y |
| MP1030.2 | Axis Z |

#### **Encoder monitoring**

Monitoring of the encoder signals must be activated with MP31. If the signal amplitude is faulty the following error messages can appear:

| ENCODER <axis> DEFECT</axis> | If the signal amplitude is no longer being evaluated |
|------------------------------|------------------------------------------------------|
| AMPL <axis> TOO SMALL</axis> | If the signal amplitude is too small                 |
| OVERLOAD <axis></axis>       | If the signal amplitude is too large                 |

| MP31 | Monitoring of the amplitude of the encoder signals |
|------|----------------------------------------------------|
|      | Input values: 0 to 7                               |

| Bit 0 | Axis X | +0 = no monitoring     |
|-------|--------|------------------------|
|       |        | +1 = monitoring active |
| Bit 1 | Axis Y | +0 = no monitoring     |
|       |        | +2 = monitoring active |
| Bit 2 | Axis Z | +0 = no monitoring     |
|       |        | +4 = monitoring active |

# 9.6 Display and Operation

The position display can be set with MP7322 to show:

- the actual position referenced to the currently set datum
- the actual position referenced to the scale reference point
- the current trailing error
- the actual feed rates and the nominal voltage and % value for servo lag
- MP7322 Position display Input values: 0 to 3
  - 0 = Actual position referenced to the currently set datum
  - 1 = Current servo lag
  - 2 = Position referenced to scale reference point
  - 3 = Actual feed rates, nominal voltage, % value for trailing error

The display step for the axis positions can be selected with MP7290.

- MP7290 Display step Input values: 0 or 1
  - 0 = 1 μm 1 = 5 μm

Machine parameter MP7285 can be used to define whether the position of the tool tip or the face of the spindle (zero tool) is displayed as the actual value.

- MP7285 Take tool length into account in position display Input values: 0 or 10 = position of tool tip is displayed
  - 1 = position of zero tool is displayed

The TNC 122 can switched to different dialog languages with machine parameter MP7230.

- MP7230 Dialog language Input values: 0 to 7
  - 0 = German 1 = English 2 = French 3 = Dutch 4 = Spanish 5 to 7 = *reserved*

Machine parameters can select whether the RAM and the EPROM are to be tested when the control is switched on. When commissioning it is recommended that the memory test be deactivated. The message "Memory test" is displayed during the memory test.

- MP7690 Memory test at switch-on Input values: 0 to 3
  - 0 = EPROM and RAM test at switch-on
  - 1 = EPROM test at switch-on
  - 2 = RAM test at switch-on
  - 3 = No memory test at switch-on

The TNC 122 can also be used when no machine is connected to it. MP7210 sets the modes it can then be used in.

MP7210 Programming station Input values: 0 to 2

0 = Control

- 1 = Programming station, PLC active
- 2 = Programming station, PLC not active

# 9.7 EMERGENCY STOP Circuit

The control has one PLC input (X41/28) and one PLC output (X41/10) with the designation "Control is ready" for the EMERGENCY STOP routine.

If a malfunction is recognized in the control, the TNC switches the control-is-ready output off, a blinking error message appears on the screen, the PLC program is halted and the outputs are reset. This error message cannot be cleared. When the error has been corrected it is necessary to run through the switch-on routine again.

If the control-is-ready input is switched off by an event outside the control, the following error message will appear:

#### **EMERGENCY STOP**

The NC then sets markers M2190 and M2191. This error message cannot be cleared until the control voltage is switched on again.

When an EMERGENCY STOP occurs all outputs are reset.

The control evaluates an external EMERGENCY STOP like an external and internal stop. If the EMERGENCY STOP button is pressed while an axis is moving, the axis is brought to a stop. I

If the EMERGENCY STOP causes the servo amplifier to block, the output nominal values can exceed the position monitoring defined by machine parameters. In such a case the following error message will be displayed:

## POS. ERROR <axis>

|       |                                      | Set | Reset |
|-------|--------------------------------------|-----|-------|
| M2190 | Non-blinking error message displayed | NC  | NC    |
| M2191 | EMERGENCY STOP displayed             | NC  | NC    |

# 9.7.1 EMERGENCY STOP Connection Diagram

In case of a malfunction, the control-is-ready output should switch the 24 V supply voltage off. Because this function is so critical, the TNC 122 checks this output each time the power supply is switched on.

HEIDENHAIN recommends the following wiring:



If the control is not to be part of the EMERGENCY STOP circuit, output X41/10 must be short-circuited with input X41/28.

# 9.7.2 EMERGENCY STOP Flowchart

The external electronics must fulfill the prescribed basic requirements. In particular, the acknowledgment for "control is ready" must be received within 200 ms.



|   |                                                                                                                           | Display                |
|---|---------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1 | Waiting for control voltage.                                                                                              | NO CONTROL VOLTG       |
| 2 | Recognition of the control voltage at X41/28 and reset control-<br>is-ready output at X41/10.                             |                        |
| 3 | Maximum time until control-is-ready signal at X41/28 must go to 0 (t < 200 ms). If time limit is exceeded, error message: | EMERG STOP DEFEC       |
| 4 | Recognition of acknowledgment, output X41/10 set.                                                                         |                        |
| 5 | Waiting for control voltage.                                                                                              | NO CONTROL VOLTG       |
| 6 | Normal control operation. Output and control-is-ready acknowledgment are set.                                             |                        |
| 7 | Control voltage switched off by external event.                                                                           | EMERGENCY STOP         |
| 8 | When the control voltage is switched on again the error message can be cleared; then return to normal operation.          |                        |
| 9 | If an error is detected, the control switches off the control-is-<br>ready output (X41/10).                               | Blinking error message |

# 10 Exchanging the Control

The control should be exchanged only on machines that are recommended by HEIDENHAIN. If you wish to retrofit other machines, contact your HEIDENHAIN service representative.

The PLC EPROM contains the appropriate machine parameters and the PLC program for the following software types of the TNC 121. These are activated with a code number (see below).

| Software of the<br>TNC 121 | PLC software no.<br>TNC 122 | NC software no.<br>TNC 122 | Code no. |
|----------------------------|-----------------------------|----------------------------|----------|
| 205 438                    |                             |                            | 1        |
| 205 443                    |                             |                            | 2        |
| 205 329                    |                             |                            | 2        |
| 205 444                    |                             |                            | 3        |
| 205 446                    | 277 939 14                  | 246 117 08                 | 4        |
| 205 455                    |                             |                            | 5        |
| 205 456                    |                             |                            | 6        |
| 205 457                    |                             |                            | 7        |
| 205 430                    |                             |                            | 8        |

The TNC 122 with standard PLC program can also replace a TNC 121 with SE 121 (see machine parameters MP4xxx for more information on this.)

Proceed as follows to replace the TNC 121 by the TNC 122:

#### Before removing the TNC 121

- Check the software number to see whether the PLC and NC software number of the TNC122 can perform the functions of the TNC 121 (see the above table). If there is any doubt, contact your HEIDENHAIN service representative.
- Determine the following parameters and functions of the machine with the TNC 121 still installed: What is the maximum feed rate? What is the analog voltage at the maximum feed rate? Is the analog voltage for the rapid traverse supplied by the control or by an external source (shown on wiring diagram)? Are the drives bipolar or unipolar? Axis lock yes/no? Reference mark traverse desired yes/no?
- Determine the pin layout of the terminal board using the circuit diagram and mark the wires for the connection to X41 of the TNC 122.

#### Removing the TNC 121

- Disconnect the power supply, disconnect the cable from the terminal board, remove the encoder connector.
- Remove the mounting screws, remove the housing.

#### Installing the TNC 122

- Insert sponge rubber gasket, slide unit into position, tighten screws.
   Insert encoder connectors, wire connector X41 according to the documented layout of the TNC 121 (see connector layout X41).
   Connect power supply.
- Differences compared to TNC 121: Connect signal ground to the central ground point of the machine. Include control-is-ready output (X41/10) and control-is-ready input (X41/28) in the emergency stop circuit (see Section 9.7).

## Commissioning the TNC 122:

- Switch on the control.
- Activate the appropriate PLC program and machine parameters with the code number as follows:
  - Press the MOD key
  - Enter code number 77 80 83
  - Press the ENT key
  - Press the MOD key
  - Enter the appropriate code number from the above list
  - Press the ENT key

Depending on the model of machine and its mechanical condition it may be necessary to re-optimize the machine parameters that affect the control loop. especially parameters MP1010, MP1030, MP1050, MP1051, MP1060, MP1810 and MP1850. This requires checking the analog output and the tachometer voltage with an oscilloscope.

 If desired, set the software limit switch ranges to conform to maximum permissible traverse.
 Note: The software limit switches are always referenced to a fixed reference mark! Ensure that the same reference mark is always used for referencing.

Test all functions.

# **11 Machine Parameters**

# **11.1 Entering and Changing Machine Parameters**

A list of machine parameters is accessible through the MOD function **Code number** in the manual operation mode. To call the complete list of machine parameters, enter the code number 95148. A subset of MOD functions is more readily available through the MOD function **User parameters**. The machine parameters included in the user parameters are indicated in the following list with \*). It is possible to change these parameters.

The values of the machine parameters can be changed as follows:

- Select the list of machine parameters.
- Use the arrow key to select the desired machine parameter.
- Enter the new value.
- Confirm your entry by pressing ENT.

To leave the list of machine parameters, press DEL.

# 11.2 Machine Parameter List

| Machine<br>Parameter | Function and input                                                                                                                                                                                                                                  | t                                                                                                                       | Input value |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------|
| MP 31                | Monitoring of encod<br>Input values: 0 to 7<br>Bit 0 Axis X                                                                                                                                                                                         | ler signal amplitude<br>+0 inactive                                                                                     |             |
|                      | Bit 1 Axis Y                                                                                                                                                                                                                                        | +1 active<br>+0 inactive<br>+2 active                                                                                   |             |
|                      | Bit 2 Axis Z                                                                                                                                                                                                                                        | +0 inactive<br>+4 active                                                                                                |             |
| MP 40                | Displayed axes<br>Input values: 0 to 7<br>Bit 0 Axis X<br>Bit 1 Axis Y                                                                                                                                                                              | +0 not displayed<br>+1 displayed<br>+0 not displayed<br>+2 displayed                                                    |             |
|                      | Bit 2 Axis Z                                                                                                                                                                                                                                        | +0 not displayed<br>+4 displayed                                                                                        |             |
| MP70                 | Analog output bipolar or unipolar<br>Input values: 0 or 2<br>0 = bipolar<br>1 = unipolar (ensure that MP1040 = 0!)<br>traversing the end position outputs 0 V<br>2 = unipolar, traversing the end position inverts<br>the nominal-value voltage     |                                                                                                                         | s           |
| MP80                 | Analog voltage source for rapid traverse from<br>the control or from external source<br>Input values: 0 to 2<br>0 = <i>reserved</i><br>1 = analog voltage from external source<br>2 = analog voltage from control<br>(Position control loop closed) |                                                                                                                         |             |
| MP110.0-2            | Assignment of encoder inputs to the machine<br>axes<br>Input values: 0 to 2<br>0 = encoder input X1<br>1 = encoder input X2<br>2 = encoder input X3                                                                                                 |                                                                                                                         |             |
| MP210                | Counting direction o<br>Input values: 0 to 7<br>Bit 0 Axis X<br>Bit 1 Axis Y<br>Bit 2 Axis Z                                                                                                                                                        | f encoder signals<br>+0 = positive<br>+1 = negative<br>+0 = positive<br>+2 = negative<br>+0 = positive<br>+4 = negative |             |
| MP330.0-2            | Grating period<br>Input values: 4, 10, 2                                                                                                                                                                                                            | 20, 40, 100, 200 [µm]                                                                                                   |             |

| Machine<br>Parameter | Function and input                                                                                                                                                                                  | t                                                                                                                                                                                          | Input value                               |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| MP910.0-2            | Software limit switch max. value<br>Input range:<br>–9 999.99 to +9 999.99 [mm]                                                                                                                     |                                                                                                                                                                                            |                                           |
| MP920.0-2            | Software limit swite<br>Input range:<br>–9 999.99 to +9 999                                                                                                                                         | h min. value<br>9.99 [mm]                                                                                                                                                                  |                                           |
| MP1010.0-5           | Rapid traverse for normal and amplified<br>tachometer signals<br>Input range: 80 to 30 000 [mm/min]<br>MP1010.0-2 normal rapid traverse for X, Y, Z<br>MP1010.3-5 increased rapid trav. for X, Y, Z |                                                                                                                                                                                            |                                           |
| MP1030.0-2           | Positioning window<br>Input values: 0.005                                                                                                                                                           | to 2.000 [mm]                                                                                                                                                                              |                                           |
| MP1040               | Polarity of nominal v<br>traversing direction<br>Input values: 0 to 7<br>Bit 0 Axis X<br>Bit 1 Axis Y<br>Bit 2 Axis Z                                                                               | +0 = positive<br>+1 = negative<br>+0 = positive<br>+2 = negative<br>+0 = positive<br>+4 = negative                                                                                         | If MP70 = 1, then MP1040 must<br>equal 0. |
| MP1050.0-2           | Analog voltage for ra<br>Input values: 4.5 to                                                                                                                                                       | apid traverse<br>11 [V]                                                                                                                                                                    | 10 V                                      |
| MP1051.0-2           | Lower limit of analo<br>Input values: 0 to 35                                                                                                                                                       | g voltage<br>5 [ factor 2.93 mV]                                                                                                                                                           |                                           |
| MP1060.0-5           | Acceleration<br>Input values: 0.001<br>1060.0 to 1060.2: ad<br>1060.3 to 1060.5: do                                                                                                                 | to 3.000 [m/s²]<br>ocelerate<br>ecelerate                                                                                                                                                  |                                           |
| MP1110               | Standstill monitoring<br>Input values: 0.001                                                                                                                                                        | 9<br>to 30.000 [mm]                                                                                                                                                                        |                                           |
| MP1140               | Motion monitoring<br>Input values: 0.03 to 10 [V]                                                                                                                                                   |                                                                                                                                                                                            |                                           |
| MP1320               | Traverse direction w<br>reference marks<br>Input values: 0 to 7<br>Bit 0 Axis X:<br>Bit 1 Axis Y:<br>Bit 2 Axis Z:                                                                                  | <ul> <li>then crossing over the</li> <li>+ 0 = positive</li> <li>+ 1 = negative</li> <li>+ 0 = positive</li> <li>+ 2 = negative</li> <li>+ 0 = positive</li> <li>+ 4 = negative</li> </ul> |                                           |

| Machine<br>Parameter | Function and input                                                                                                                                              | Input value      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| MP1330.0-2           | Feed rate for crossing over the reference marks<br>Input values: 80 to 30 000 [mm/min]                                                                          |                  |
| MP1340.0-2           | Sequence of axes for crossing over the<br>reference marks<br>Input values: 0 to 3<br>0 = no reference mark evaluation<br>1 = Axis X<br>2 = Axis Y<br>3 = Axis Z |                  |
| MP1350.0-2           | Type of referencing<br>Input values: 0 or 1<br>0 = encoder with distance-coded reference<br>marks<br>1 = encoder with one reference mark                        |                  |
| MP1720               | Position monitoring with servo lag<br>(EMERGENCY OFF)<br>Input values: 0 to 200 [mm]                                                                            |                  |
| MP1810.0-2           | k <sub>v</sub> factor for operation with servo lag<br>Input values: 0.1 to 10 [1/min]                                                                           |                  |
| MP1820               | Multiplication factor for the kv factor Input values: 0.001 to 9                                                                                                |                  |
| MP1830               | Characteristic kink for the ky factor<br>Input values: 0 to 100 [%]                                                                                             |                  |
| MP1850               | Factor for internal servo-lag adjustment with<br>external rapid traverse voltage<br>Input values: 0 to 65535                                                    | Only if MP80 = 1 |

| Machine<br>Parameter                             | Function and input                                                                                     | Input value                                                                                   |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| MP4110                                           | Time for timers T0 to T15<br>Input values: 0 to 65 535 [24 ms]                                         |                                                                                               |
| MP4110.0                                         |                                                                                                        | Waiting time controller enable X                                                              |
| MP4110.1                                         |                                                                                                        | Waiting time unclamp X start                                                                  |
| MP4110.2                                         |                                                                                                        | Waiting time clamp X stop                                                                     |
| MP4110.3                                         |                                                                                                        | Waiting time controller enable Y                                                              |
| MP4110.4                                         |                                                                                                        | Waiting time unclamp Y start                                                                  |
| MP4110.5                                         |                                                                                                        | Waiting time clamp Y stop                                                                     |
| MP4110.6                                         |                                                                                                        | Waiting time controller enable Z                                                              |
| MP4110.7                                         |                                                                                                        | Waiting time unclamp Z start                                                                  |
| MP4110.8                                         |                                                                                                        | Waiting time clamp Z stop                                                                     |
| MP4110.9                                         |                                                                                                        | SE pulse formation / duration                                                                 |
| MP4110.10                                        |                                                                                                        | Waiting time O5 traverse<br>direction, delay erosion start M36                                |
| MP4110.11                                        |                                                                                                        | Delay time for rapid traverse<br>output O4 (night erosion switch-<br>off)                     |
| MP4110.12<br>MP4110.13<br>MP4110.14<br>MP4110.15 |                                                                                                        |                                                                                               |
| MP4120.0<br>to<br>MP4120.7                       | Preset value for counters C0 to C7<br>Input values: 0 to 65 535                                        |                                                                                               |
| MP4210                                           | Setting a number in the PLC word range<br>D768 to D804<br>Input values: –9 999.999 to +9 999.999 [mm]  |                                                                                               |
| MP4210.0                                         |                                                                                                        | X switch-off point for rapid trav.                                                            |
| MP4210.1                                         |                                                                                                        | Y switch-off point for rapid trav.                                                            |
| MP4210.2                                         |                                                                                                        | Z switch-off point for rapid trav.                                                            |
| MP4210.3                                         | Position control loop to XYZ potentiometer=0, NC stop, lag<0.5                                         | Only with MP 4310.4 and .5 =1                                                                 |
| MP4210.4                                         | Number of D/A converter steps per PLC cycle with control by PLC                                        | Input approx. 0.4                                                                             |
| MP4210.5                                         | Multiplication factor for the feed rate<br>potentiometer<br>Potentiometer value * MP4210.5= NC % block | Input approx. 0.1 to 1.2<br>External pot. 100%: factor 0.66<br>External pot. 150%: factor 1.0 |
| MP4210.6                                         |                                                                                                        |                                                                                               |
| MP4210.7                                         | Selection of code no. for software level for position control loop via PLC                             | Input 1 to 8 (for software level of TNC 121, see Chapter 10)                                  |
| MP4210.8<br>MP4210.9                             |                                                                                                        |                                                                                               |

| Machine<br>Parameter | Function and input                                                                 | Input value                                                                                                                                                                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MP4220               | Setting a number in the PLC word range<br>W960 to W968<br>Input values: 0 to 65535 |                                                                                                                                                                                                                                                                                                |
| MP4220.0             |                                                                                    | <ul> <li>1 = bipolar without SE functions</li> <li>2 = unipolar without SE functions</li> <li>5 = bipolar with SE functions</li> <li>6 = unipolar with SE functions</li> <li>12 = erosion with SE functions</li> </ul>                                                                         |
| MP4220.1             |                                                                                    | 0 = Static M output<br>+1 = M03/M05 impulse or<br>M16/M17 impulse<br>+2 = M04/M05 impulse or<br>M18/M19 impulse<br>+4 = M08/M09 impulse<br>+8 = M20/M21 impulse<br>+16 = M22/M23 impulse<br>+32 = M24/M25 impulse<br>+64 = M26/M27 impulse<br>+128 = M28/M29 impulse<br>+256 = M32/M33 impulse |
| MP4220.2             |                                                                                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                           |
| MP4220.3             | If potentiometer closed, NC stop feed rate potentiometer minimum                   | Minimum potentiometer feed rate 0%                                                                                                                                                                                                                                                             |
| MP4220.4             | If potentiometer closed, NC stop feed rate potentiometer maximum                   | Active minimum potentiometer feed rate 0%                                                                                                                                                                                                                                                      |



A change to the machine parameters MP4220.x only becomes active after a power interruption.

| Machine<br>Parameter                                                                    | Function and input                                                                 | Input value                                                                                                                             |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| MP4310                                                                                  | Setting a number in the PLC marker range<br>M2192 to M2211<br>Input values: 0 or 1 |                                                                                                                                         |
| MP4310.0                                                                                |                                                                                    | X trav. direction 0=neg., 1=pos.                                                                                                        |
| MP4310.1                                                                                |                                                                                    | Y trav. direction 0=neg., 1=pos.                                                                                                        |
| MP4310.2                                                                                |                                                                                    | Z trav. direction 0=neg., 1=pos.                                                                                                        |
| MP4310.3                                                                                |                                                                                    | Actual and nominal value transfer<br>in automated operational mode<br>0 = no, 1=yes                                                     |
| MP4310.4                                                                                |                                                                                    | 1 = open position control loop<br>when override closed or NC stop                                                                       |
| MP4310.5                                                                                | Only effective if MP 4310.4 is active                                              | 1 = no controller enable when<br>override closed or NC stop                                                                             |
| MP4310.6                                                                                |                                                                                    | 1 = rapid traverse output O4 set<br>in automated operating mode                                                                         |
| MP4310.7                                                                                |                                                                                    | 1 = M05 output via O11<br>(M20/M21) and reset via M03,<br>M04, M13, M14;<br>M09 output via O10 (M22/M23)<br>and reset via M08, M13, M14 |
| MP4310.8                                                                                |                                                                                    | 0 = EMERGENCY STOP cancels<br>the SE outputs<br>1 = EMERGENCY STOP does not<br>cancel the SE outputs                                    |
| MP4310.9                                                                                |                                                                                    | Position control loop<br>0 = NC control<br>1 = PLC control                                                                              |
| MP4310.10                                                                               |                                                                                    | 0 = M functions active in MDI<br>1 = M functions not active in MDI                                                                      |
| MP4310.11                                                                               |                                                                                    | 1= switch off PLC position<br>control loop monitoring                                                                                   |
| MP4310.12                                                                               |                                                                                    | 1= rapid traverse information (MP block) is not switched when the advance switch point is reached                                       |
| MP4310.13<br>MP4310.14<br>MP4310.15<br>MP4310.16<br>MP4310.17<br>MP4310.18<br>MP4310.19 |                                                                                    |                                                                                                                                         |



A change to the machine parameters MP4310.x only becomes active after a power interruption.

| Machine<br>Parameter | Function and input                                                                                                                                                                                   | Input value |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| MP7210 *)            | Programming station or machine control<br>Input values: 0 to 2<br>0 = control<br>1 = programming station, PLC active<br>2 = programming station, PLC not active                                      |             |
| MP7230 *)            | Dialog language<br>Input: 0 to 7<br>0 = German<br>1 = English<br>2 = French<br>3 = Dutch<br>4 = Spanish<br>5 = reserved<br>6 = reserved<br>7 = reserved                                              |             |
| MP7285 *)            | Tool length is included in the position display<br>value for the tool axis<br>Input values: 0 or 1<br>0 = tool length is included<br>1 = tool length is not included                                 |             |
| MP7290 *)            | Display step 1 µm or 5 µm<br>Input values: 0 or 1<br>0 = 1µm<br>1 = 5 µm                                                                                                                             |             |
| MP7320               | Encoder signal amplitude<br>Input values: 0 to 7<br>0 = 16µA encoders<br>+1 = 40µA encoders on X-axis<br>+2 = 40µA encoders on Y-axis<br>+4 = 40µA encoders on Z-axis                                |             |
| MP7322 *)            | Position display mode<br>Input values: 0 to 3<br>0 = display actual position<br>1 = display servo lag<br>2 = display reference position<br>3 = display actual feed rate and nominal value<br>voltage |             |
| MP7680 *)            | Memory function for axis direction buttons<br>Input values: 0 or 1<br>0 = not stored<br>1 = stored                                                                                                   |             |
| MP7690               | Memory test during switch-on or after reset<br>Input values: 0 to 3<br>+0 = memory test during switch-on<br>+1 = no RAM test during switch-on<br>+2 = no EPROM test during switch-on                 |             |

# 12 PLC Description

The TNC 122 features an integrated PLC for 15 inputs and 15 outputs. PLC programs for specific machine models (see Chapter 10) have been prepared and stored by HEIDENHAIN in the EPROM.

If in rare cases the PLC program must be altered or rewritten, we recommend using the **PLC.EXE programming software**, version 2.2 from HEIDENHAIN. This program can also generate the binary code for the PLC EPROM (see the User's Manual for PLC.EXE).

The PLC program assigns fixed functions to the inputs and outputs at the X41 terminal block (see Chapter 8 "Pin Layout."

In the TNC 122 the PLC program is run directly from the EPROM; there is no RAM memory for this task.

For servicing purposes the logical status of the markers, inputs, outputs, timers and counters can be transmitted through the RS-232-C/V.24 port to a computer. Transmission is activated by entering the code number 807 667 in the TNC 122.

Under menu item "File/TNC 12x Monitor" the program PLC.EXE provides a function (PLCMONI.EXE) for immediately displaying the logical status of operands, provided that the code number was entered.

- Use the rightward cursor key on the TNC to scroll through the markers.
- Use the "R+/-" key on the TNC to scroll back through the markers.
- Press the NO ENT key to leave the display.

# 12.1 PLC EPROM

The PLC EPROM is a 2-MB or 4 MB chip with 16-bit data organization. It is programmed in Motorola format, which means that the most significant byte of a word is located at the first (lowest) address.

| Addresses: |
|------------|
|------------|

| \$00000 | \$0000                                         |
|---------|------------------------------------------------|
| <u></u> |                                                |
| \$00400 | PLC Program start address                      |
| \$00402 | Chip identifier (1 word)                       |
| \$00403 | PLC program length                             |
| \$00405 | \$0000                                         |
| \$00406 | 10 <sup>th</sup> MP list                       |
|         |                                                |
| \$0041C | 2 <sup>nd</sup> MP list                        |
| \$0041E | 1 <sup>st</sup> MP list                        |
| \$00420 | \$0000                                         |
| \$007E0 | PLC Program in binary format                   |
|         | and                                            |
|         | up to 10 machine parameter tables              |
|         |                                                |
| \$1C000 | 20 PLC error messages in 7 languages           |
|         | 20 dialogs in 7 languages (30 characters each) |
| \$1FF00 | PLC software number                            |
| \$1FFFC | Checksum                                       |
| \$1FFFE | One's complement checksum                      |

The error messages and dialogs are filed in the individual languages in the sequence and syntax ('...',0). Each dialog can have up to 16 characters (see also the User's Manual for PLC.EXE).

| German  | '',0 |
|---------|------|
| English | '',0 |
| French  | '',0 |

# 12.2 PLC Commands

# 12.2.1 Load and store commands

# LOAD (L)

## Logic execution with the LOAD command

Operands: M, I, O, T, C

The addressed operand is copied into the Logic Accumulator. An L command is always used at the start of a logic chain to enable subsequent gating commands.

#### Word execution with the LOAD command

Operands: B, W, D, K

The addressed operand (B, W, D) or a Constant (K) is copied or loaded into the Word Accumulator. The sign is added if necessary. In contrast to logic execution, an L command must always be used at the start of a word gating chain. It is not possible to use a gating command.

# LOAD NOT (LN)

#### Logic execution with the LOAD NOT command

Operands: M, I, O, T, C

The complement of the addressed operand is loaded into the Logic Accumulator. A load command is always used at the start of a logic chain to enable subsequent gating commands.

#### Word execution with the LOAD NOT command

Operands: B, W, D, K

The content of the addressed operands (B, W, D) or a Constant (K) is loaded into the Word Accumulator as a complement. The sign is added if necessary. In contrast to logic execution, a load command must always be used at the start of a word gating chain. It is not possible to use a gating command.

# LOAD TWO'S COMPLEMENT (L-)

Operands: B, W, D, K

The contents of the addressed operand (B, W, D) or a Constant (K) is loaded into the Word Accumulator as a two's complement. The sign is added if necessary. The two's complement allows negative numbers to be stored, i.e. if a number is loaded with L–, it appears in the Accumulator with the opposite sign. This command can only be used with Word execution.

# LOAD BYTE (LB)

#### Operands: M, I, O, T, C

The LB command copies 8 Markers, Inputs, Outputs, Timers or Counters with ascending numbering into the Word Accumulator. Each operand occupies 1 bit in the Accumulator. The designated operand address occupies the LSB in the Accumulator, the designated address + 1 the LSB + 1 and so on. In this way, the last affected operand occupies the MSB. The sign is added if necessary.

#### LOAD WORD (LW)

#### Operands: M, I, O, T, C

The LW command copies 16 Markers, Inputs, Outputs, Timers or Counters with ascending numbering into the Word Accumulator. Each operand occupies 1 bit in the Accumulator. The designated operand address occupies the LSB in the Accumulator, the designated address + 1 the LSB + 1 and so on. In this way, the last affected operand occupies the MSB The sign is added if necessary.

## LOAD DOUBLEWORD (LD)

#### Operands: M, I, O, T, C

The LD command copies 32 Markers, Inputs, Outputs, Timers or Counters with ascending numbering into the Word Accumulator. Each operand occupies 1 bit in the Accumulator. The designated operand address occupies the LSB in the Accumulator, the designated address + 1 the LSB + 1 and so on. In this way, the last affected operand occupies the MSB.

#### ASSIGN (=)

#### Logic execution with the ASSIGN command

#### Operands: M, I, O, T, C

In conjunction with a Logic Operand (M, I, O, T, C), ASSIGN copies the contents of the Logic Accumulator into the addressed operand. ASSIGN is only used at the end of a logic chain to ensure that a gating result is available. The command can be used several times in succession.

#### Word execution with the ASSIGN command

#### Operands: B, W, D

ASSIGN in conjunction with a Word Operand (B, W, D) copies the contents of the Word Accumulator into the addressed operand. In contrast to bit execution, ASSIGN can also be used within a word logic chain. The command can be used several times in succession.

## ASSIGN BYTE (B=)

#### Operands: M, I, O, T, C

ASSIGN BYTE copies 8 bits from the Word Accumulator to Markers, Inputs, Outputs, Timers or Counters with ascending numbering. Each bit corresponds to one operand. The LSB in the Accumulator is copied to the designated operand address, the LSB + 1 to the designated address + 1 and so on. The last affected operand is occupied by the MSB.

## ASSIGN WORD (W=)

#### Operands: M, I, O, T, C

ASSIGN WORD copies 16 bits from the Word Accumulator to Markers, Inputs, Outputs, Timers or Counters with ascending numbering. Each bit corresponds to one operand. The LSB in the Accumulator is copied to the designated operand address, the LSB + 1 to the designated address + 1 and so on. The last affected operand is occupied by the MSB.

#### ASSIGN DOUBLEWORD (D=)

Operands: M, I, O, T, C

ASSIGN DOUBLEWORD copies 32 bits from the Word Accumulator to Markers, Inputs, Outputs, Timers or Counters with ascending numbering. Each bit corresponds to one operand. The LSB in the Accumulator is copied to the designated operand address, the LSB + 1 to the designated address + 1 and so on. The last affected operand is occupied by the MSB.

## ASSIGN NOT (=N)

#### Logic execution

Operands: M, I, O, T, C In conjunction with a logic operand (M, I, O, T, C), ASSIGN NOT copies the complement of the contents of the Logic Accumulator into the addressed operand. See ASSIGN (=) for the sequence of operations.

#### Word execution

Operands: B, W, D In conjunction with a word operand (B, W, D), ASSIGN NOT copies the complement of the contents of the Word Accumulator into the addressed operand.

## ASSIGN TWO'S COMPLEMENT (=-)

Operands: B, W, D

ASSIGN TWO'S COMPLEMENT copies the TWO'S COMPLEMENT of the contents of the Word Accumulator into the addressed operand.

# 12.2.2 Set commands

## SET (S)

Operands: M, I, O, T, C

The function of this command depends on the contents of the Logic Accumulator. If the Logic Accumulator = 1, the addressed operand is set to 1; otherwise the operand remains unchanged. An S command is used at the end of a logic chain so that the gating result influences the operand. The command can be used several times in succession.

#### RESET (R)

Operands: M, I, O, T, C

The function of this command depends on the contents of the Logic Accumulator. If the Logic Accumulator = 1, the addressed operand is set to 0; otherwise the operand remains unchanged. An R command is used at the end of a logic chain so that the gating result influences the operand. The command can be used several times in succession.

## SET NOT (SN)

#### Operands: M, I, O, T, C

The function of this command depends on the contents of the Logic Accumulator. If the Logic Accumulator = 0, then the addressed operand is set to 1; otherwise the operand remains unchanged. An SN command is used at the end of a logic chain so that the gating result influences the operand. The command can be used several times in succession.

#### RESET NOT (RN)

#### Operands: M, I, O, T, C

The function of this command depends on the contents of the Logic Accumulator. If the Logic Accumulator = 0, then the addressed operand is set to 0; otherwise the operand remains unchanged. An RN command is used at the end of a logic chain so that the gating result influences the operand. The command can be used several times in succession

# 12.2.3 Logical Connective Operations

# AND (A)

## Logic execution with the AND command

Operands: M, I, O, T, C

This command functions in different ways depending on its position in the program:

- a) At the start of a logic chain the command functions as an L command. That is, the logic state of the operand is loaded into the Logic Accumulator.
- b) Within a logic chain the contents of the Logic Accumulator and the logic state of the operand (M, I, O, T, C) are gated with AND. The result of the operation is stored in the Logic Accumulator.

## Word execution with the AND Command

Operands: B, W, D, K

The contents of the Word Accumulator and the contents of the operand (B, W, D, K) are gated with AND. In accordance with the different sizes of operand (B = 8 bits; W = 16 bits; D = K = 32 bits), 8, 16 or 32 bits will be influenced in the Accumulator.

Thus: Bit 0 of the Accumulator is gated with bit 0 of the operand

Bit 1 of the Accumulator is gated with bit 1 of the operand, and so on.

# AND NOT (AN)

## Logic execution with the AND NOT command

Operands: M, I, O, T, C

This command functions in different ways depending on its position in the program:

- a) At the start of a logic chain the command functions as an LN command. That is, the complement of the operand is loaded into the Logic Accumulator.
- b) Within a logic chain, the contents of the Logic Accumulator and the logic state of the operand (M, I, O, T, C) are gated with AND NOT. The result of the operation is stored in the Logic Accumulator.

## Word execution with the AND NOT command

Operands: B, W, D, K

The contents of the Word Accumulator and the contents of the operand (B, W, D, K) are gated with AND NOT. In accordance with the different sizes of operand (B = 8 bits; W = 16 bits;  $D = 16 \text{ prime} = 22 \text{ bits} + 22 \text{ bit$ 

D = K = 32 bits), 8, 16 or 32 bits will be influenced in the Accumulator.

Thus: Bit 0 of the Accumulator is gated with bit 0 of the operand

Bit 1 of the Accumulator is gated with bit 1 of the operand, and so on.

The result of the operation is stored in the Word Accumulator.

## OR (O)

## Logic execution with the OR command

Operands: M, I, O, T, C

This command functions in different ways depending on its position in the program:

- a) At the start of a logic chain the command functions as an L command. That is. the logic state of the operand is loaded into the Logic Accumulator.
- b) Within a logic chain, the contents of the Logic Accumulator and the logic state of the operand (M, I, O, T, C) are gated with OR. The result of the operation is stored in the Logic Accumulator.

#### Word execution with the OR command

Operands: B, W, D, K

The contents of the Word Accumulator and the contents of the operand (B, W, D, K) are gated with OR. In accordance with the different sizes of operand (B = 8 bits; W = 16 bits; D = K = 32 bits), 8. 16 or 32 bits will be influenced in the Accumulator.

Thus: Bit 0 of the Accumulator is gated with bit 0 of the operand

Bit 1 of the Accumulator is gated with bit 1 of the operand, and so on.

The result of the operation is stored in the Word Accumulator.

## OR NOT (ON)

#### Logic execution with the OR NOT command

Operands: M, I, O, T, C

This command functions in different ways depending on its position in the program:

- a) At the start of a logic chain this command functions as an LN command. That is, the complement of the operand is loaded into the Logic Accumulator.
- b) Within a logic chain, the contents of the Logic Accumulator and the logic state of the operand (M, I, O, T, C) are gated with OR NOT. The result of the operation is stored in the Logic Accumulator.

#### Word execution with the OR NOT command

#### Operands: B, W, D, K

The contents of the Word Accumulator and the contents of the operand (B, W, D, K) are gated with OR NOT. In accordance with the different sizes of operand (B = 8 bits; W = 16 bits; D = K = 32 bits), 8, 16 or 32 bits will be influenced in the Accumulator.

Thus: Bit 0 of the Accumulator is gated with bit 0 of the operand

Bit 1 of the Accumulator is gated with bit 1 of the operand, and so on.

The result of the operation is stored in the Word Accumulator.

# EXCLUSIVE OR (XO)

#### Logic execution with the EXCLUSIVE OR command

Operands: M, I, O, T, C

This command functions in different ways depending on its position in the program:

- a) At the start of a logic chain the command functions as an L command. That is, the logic state of the operand is loaded into the Logic Accumulator.
- b) Within a logic chain the contents of the Logic Accumulator and the logic state of the operand (M, I, O, T, C) are gated with EXCLUSIVE OR. The result of the operation is stored in the Logic Accumulator.

#### Word execution with the EXCLUSIVE OR command

Operands: B, W, D, K

The contents of the Word Accumulator and the contents of the operand (B, W, D, K) are gated with EXCLUSIVE OR. In accordance with the different sizes of operand (B = 8 bits; W = 16 bits; D = K = 32 bits), 8, 16 or 32 bits will be influenced in the Accumulator. Thus: Bit 0 of the Accumulator is gated with bit 0 of the operand

Bit 1 of the Accumulator is gated with bit 1 of the operand, and so on.

The result of the operation is stored in the Word Accumulator.

# EXCLUSIVE OR NOT (XON)

#### Logic execution with the EXCLUSIVE OR NOT command

Operands: M, I, O, T, C

This command functions in different ways depending on its position in the program:

- a) At the start of a logic chain this command functions as a LN command. That is, the complement of the operand is loaded into the Logic Accumulator.
- b) Within a logic chain the contents of the Logic Accumulator and the logic state of the operand (M, I, O, T, C) are gated with EXCLUSIVE OR NOT. The result of the operation is stored in the Logic Accumulator.

## Word execution with the EXCLUSIVE OR NOT command

Operands: B, W, D, K

The contents of the Word Accumulator and the contents of the operand (B, W, D, K) are gated with EXCLUSIVE OR NOT. In accordance with the different sizes of operand (B = 8 bits; W = 16 bits; D = K = 32 bits), 8, 16 or 32 bits will be influenced in the Accumulator.

Thus: Bit 0 of the Accumulator is gated with bit 0 of the operand

Bit 1 of the Accumulator is gated with bit 1 of the operand, and so on.

The result of the operation is stored in the Word Accumulator.

# 12.2.4 Arithmetic Commands

# ADDITION (+)

Operands: B, W, D, K

With arithmetic functions the operand is first expanded to the size of the Accumulator (32 bits). Then the contents of the operand are added to the Word Accumulator. The result of the operation is stored in the Word Accumulator and can be processed further.

# SUBTRACTION (-)

Operands: B, W, D, K

With arithmetic functions the operand is first expanded to the size of the Accumulator (32 bits). Then the contents of the operand are subtracted from the contents of the Word Accumulator. The result of the operation is stored in the Word Accumulator and can be processed further.

## MULTIPLICATION (x)

#### Operands: B, W, D, K

With arithmetic functions the operand is first expanded to the size of the Accumulator (32 bits). Then the contents of the operand are multiplied with the contents of the Word Accumulator. The result of the operation is stored in the Word Accumulator and can be processed further. If the result of multiplication causes an overflow, Marker M3168 is set; otherwise it is reset.

## DIVISION (/)

Operands: B, W, D, K

With arithmetic functions the operand is first expanded to the size of the Accumulator (32 bits). Then the contents of the Word Accumulator are divided by the contents of the operand. The result of the operation is stored in the Word Accumulator and can be processed further. If division by 0 is attempted, the Marker M3169 is set; otherwise it is reset.

#### **REMAINDER (MOD)**

#### Operands: B, W, D, K

With arithmetic functions the operand is firstly expanded to the size of the Accumulator (32 bits). Then the REMAINDER is determined by dividing the contents of the Word Accumulator by the contents of the operand. The REMAINDER is stored in the Word Accumulator and can be processed further. If the MOD command is not correctly executed then the Marker M3170 is set; otherwise it is reset.

#### **INCREMENT (INC, INCW)**

#### **INCREMENT** operand (INC)

Operands: B, W, D The content of the addressed operand is increased by one.

#### **INCREMENT Word Accumulator (INCW)**

The content of the Word Accumulator is increased by one.

## DECREMENT (DEC, DECW)

#### **DECREMENT** operand (DEC)

Operands: B, W, D The content of the addressed operand is decreased by one.

#### DECREMENT Word Accumulator (DECW)

The content of the Word Accumulator is decreased by one.

# 12.2.5 Comparisons

# EQUAL TO (==)

#### Operands: B, W, D, K

With this command a direct transfer from Word to Logic processing occurs. The content of the Word Accumulator is compared with the content of the addressed operand. If the Word Accumulator is equal to the operand, the condition is true and the Logic Accumulator is set to 1. If they are not equal, the Logic Accumulator is set to 0. The comparison takes place over the number of bits corresponding to the operand, i.e. B = 8 bits, W = 16 bits and D = K = 32 bits.

## LESS THAN (<)

#### Operands: B, W, D, K

With this command, a direct transfer from Word to Logic processing occurs. The content of the Word Accumulator is compared with the content of the addressed operand. If the Word Accumulator is smaller than the operand, the condition is true and the Logic Accumulator is set to 1. If the Word Accumulator is greater than or equal to the operand, the Logic Accumulator is set to 0. The comparison takes place over the number of bits in the operand, i.e. B = 8 bits, W = 16 bits and D = K = 32 bits.

## GREATER THAN (>)

#### Operands: B, W, D, K

With this command, a direct transfer from Word to Logic processing occurs. The content of the Word Accumulator is compared with the content of the addressed operand. If the Word Accumulator is greater than the operand, the condition is true and the Logic Accumulator is set to 1. If the Word Accumulator is less than or equal to the operand, the Logic Accumulator is set to 0. The comparison takes place over the number of bits in the operand, i.e. B = 8 bits, W = 16 bits and D = K = 32 bits.

## LESS THAN OR EQUAL TO (<=)

#### Operands: B, W, D, K

With this command, a direct transfer from Word to Logic processing occurs. The content of the Word Accumulator is compared with the content of the addressed operand. If the Word Accumulator is less than or equal to the operand, the condition is true and the Logic Accumulator is set to 1. If the Word Accumulator is greater than the operand, the Logic Accumulator is set to 0. The comparison takes place over the number of bits in the operand i.e. B = 8 bits, W = 16 bits and D = K = 32 bits.

## GREATER THAN OR EQUAL TO (>=)

#### Operands: B, W, D, K

With this command, a direct transfer from Word to Logic execution occurs. The content of the Word Accumulator is compared with the content of the addressed operand. If the Word Accumulator is greater than or equal to the operand, the condition is true and the Logic Accumulator is set to 1. If the Word Accumulator is smaller than the operand, the Logic Accumulator is set to 0. The comparison takes place over the number of bits corresponding to the operand, i.e. B = 8 bits, W = 16 bits and D = K = 32 bits.

## UNEQUAL (<>)

#### Operands: B, W, D, K

With this command, a direct transfer from Word to Logic execution occurs. The content of the Word Accumulator is compared with the content of the addressed operand. If the Word Accumulator and the operand are not equal, the condition is true and the Logic Accumulator is set to 1. If the Word Accumulator is equal to the operand, the Logic Accumulator is set to 0. The comparison takes place over the number of bits corresponding to the operand, i.e. B = 8 bits, W = 16 bits and D = K = 32 bits.

# **12.2.6 Parenthetical Expressions**

#### Parentheses with logical commands

The execution sequence in an instruction list can be altered by using parentheses. The openparentheses command loads the contents of the Accumulator onto the Program Stack. If the Logic Accumulator is addressed in the last command before an open-parentheses instruction, the content of the Logic Accumulator is loaded into the Program Stack. By addressing the Word Accumulator, the content of the Word Accumulator will be distributed.

The close-parentheses instruction initiates the gating of the buffered value from the Program Stack with the Logic Accumulator and/or the Word Accumulator, depending on which Accumulator was addressed before the open-parentheses instruction. The result is then available in the corresponding Accumulator. The maximum nesting level is 16 parentheses.

| AND [ ]             | (A[ ])   |
|---------------------|----------|
| AND NOT [ ]         | (AN[ ])  |
| OR []               | (O[ ])   |
| OR NOT []           | (ON[ ])  |
| EXCLUSIVE OR []     | (XO[])   |
| EXCLUSIVE OR NOT [] | (XON[ ]) |

#### Parentheses with arithmetic commands

With arithmetic commands, only word execution is possible. The execution sequence in an instruction list may be altered by using parentheses. The open-parentheses command loads the content of the Word Accumulator onto the Program Stack. The Accumulator is then available for the calculation of intermediate results. The close-parentheses instruction initiates the gating of the buffered value from the Program Stack with the content of the Word Accumulator. The result is again loaded into the Accumulator. The maximum nesting level is 16 parentheses.

| ADDITION [ ]      | (+[])    |
|-------------------|----------|
| SUBTRACTION []    | ([])     |
| MULTIPLICATION [] | (x[])    |
| DIVISION []       | (/[])    |
| REMAINDER [ ]     | (MOD[ ]) |
|                   |          |

#### Parentheses with comparison commands

The execution sequence in an instruction list can be altered by using parentheses. The openparentheses command loads the contents of the Word Accumulator onto the Program Stack. The Accumulator is now available for the calculation of intermediate results.

The "close-parentheses" instruction initiates the gating of the buffered value from the Program Stack with the content of the complete Word Accumulator. The result is again loaded into the Accumulator. The maximum nesting depth is 16 parentheses.

A direct transition from Word to Logic execution takes place with comparison commands. If the comparison condition is true, the Logic Accumulator is set to 1. If the condition is not true, the Logic Accumulator is set to 0.

| EQUAL TO []                  | (==[]) |
|------------------------------|--------|
| LESS THAN [ ]                | (<[])  |
| GREATER THAN [ ]             | (>[])  |
| LESS THAN OR EQUAL TO [ ]    | (<=[]) |
| GREATER THAN OR EQUAL TO [ ] | (>=[]) |
| UNEQUAL []                   | (<>[]) |

# 12.2.7 Shift Commands

# SHIFT LEFT (<<)

Operands: B, W, D, K

Since the sign bit (MSB) is included with this command, it is grouped in with arithmetic commands. For this reason and out of time considerations, this command should not be used for the isolation of bits. A SHIFT LEFT instruction causes the contents of the Word Accumulator to be multiplied by two. For this purpose the bits in the Accumulator are simply shifted one place to the left. The result must be within the range of -2 147 483 648 to +2 147 483 647, otherwise the Accumulator will contain an undefined value. The number of shift operations is determined by the operand; the right side of the Accumulator is filled with zeros.

# SHIFT RIGHT (>>)

#### Operands: B, W, D, K

Since the sign bit (MSB) is included with this command, it is grouped in with arithmetic commands. For this reason and out of time considerations, this command should not be used for the isolation of bits. A SHIFT RIGHT instruction causes the contents of the Word Accumulator to be divided by two. For this purpose the bits in the Accumulator are simply shifted one place to the right. The number of shift operations is determined by the operand. The set bits, which are shifted beyond the Accumulator to the right, are lost; the Accumulator is filled from the left-hand side including the sign.

56

# 12.2.8 Bit Commands

## BIT SET (BS)

#### Operands: B, W, D, K

With this command, each bit in the Accumulator can be accessed. The BS command sets the addressed bit to 1. The selection (addressing) of the corresponding bit is derived from the content of the specified Operand or a Constant. In the bit-numbering, bit 0 corresponds to the LSB and bit 31 corresponds to the MSB. For operand contents larger than 32, the operand value Modulo 32 is used — that is, the integer remainder from the division (operand value)/32.

## BIT CLEAR (BC)

#### Operands: B, W, D, K

With this command, each bit in the Accumulator can be accessed. The BC command sets the addressed bit to 0. The selection (addressing) of the corresponding bit is derived from the content of the specified Operand or a Constant. In the bit-numbering, bit 0 corresponds to the LSB and bit 31 corresponds to the MSB. For operand contents larger than 32, the operand value Modulo 32 is used — that is, the integer remainder from the division (operand value)/32.

## BIT TEST (BT)

#### Operands: B, W, D, K

With this command, the status of each bit in the Accumulator can be interrogated. With BT commands, a direct transition from Word to Logic execution takes place. The BIT TEST tests the status of a bit from the Word Accumulator and then acts correspondingly on the Logic Accumulator. If the tested bit is 1, the Logic Accumulator is set to 1; if it is 0, the Logic Accumulator is set to 0. The program continues in logic execution. The selection (addressing) of the corresponding bit is derived from the content of the specified Operand or a Constant. In the bit numbering, bit 0 corresponds to the LSB and bit 31 corresponds to the MSB. For operand contents larger than 32, the operand value Modulo 32 is used — that is, the integer remainder from the division (operand value)/32.

# 12.2.9 Stack Operations

#### Load Data onto the Data Stack (PS)

#### Logic Execution with the PS Command

Operands: M, I, O, T, C

With the PS command, data is buffered by loading the addressed operand onto the Data Stack. Since the Data Stack is 16-bit, a minimum width of one Word must be used when writing to it. During this the operand value is copied into bit 7 of the current address in the Data Stack. The free bits of the reserved memory are undefined or unused. If there is a stack overflow, an error message will be issued.

#### Word execution with the PS command

Operands: B, W, D, K

With the PS command data is buffered by copying the addressed memory area (B, W, D, K) into the current address of the Data Stack. With Word execution, two Words are reserved as standard on the Data Stack per PS command. The operand is extended in the Stack with sign justification corresponding to the MSB. If there is a stack overflow, an error message will be issued.

## Load Logic Accumulator onto the Data Stack (PSL)

The Logic Accumulator can be buffered with the PSL command. For this purpose, the Logic Accumulator is loaded onto the Data Stack. Since the Data Stack is 16-bit, it must be written to with a minimum width of one Word. During this the content of the Logic Accumulator is copied into the current address of the Data Stack. The free bits of the reserved memory are undefined or unused. If there is a stack overflow, an error message will be issued.

## Load Word Accumulator onto the Data Stack (PSW)

The content of the Word Accumulator can be buffered with the PSW command. For this purpose, the Word Accumulator is copied into the Data Stack. The content of the Word Accumulator (32 bits) reserves two Words on the Data Stack. If there is a stack overflow, an error message results.

# Acquire data from the Data Stack (PL)

#### Logic execution with the PL command

Operands: M, I, O, T, C

The PL command complements the PS command. Data that have been saved with PUSH can be taken from the Data Stack again with PULL. With logic execution, bit 7 is copied from the current address of the Data Stack into the addressed operand with a PL command. If the Stack is empty, an error message will be issued.

#### Word execution with the PL command

#### Operands: B, W, D

The PL command complements the PS command. Data that have been saved with PUSH can be taken from the Data Stack again with PULL. With Word execution, two Words are copied from the current address of the Data Stack into the addressed memory area with a PL command. If the Stack is empty, an error message will be issued.

# Acquire Logic Accumulator from the Data Stack (PLL)

The PLL command complements the PSL command. With a PLL instruction, bit 7 from the current address of the Data Stack is copied into the Logic Accumulator. If the stack is empty, an error message will be issued.

# Acquire Word Accumulator from the Data Stack (PLW)

The PLW command complements the PSW command. With a PLW instruction, two Words are copied from the Data Stack into the Word Accumulator. If the stack is empty, an error message will be issued.

58

# 12.2.10 Jump Commands

## Unconditional jump (JP)

Operands: jump address (LBL)

The JP command instructs the processor to continue the program at the specified jump address (Label). This command interrupts a logic sequence.

## Jump if Logic Accumulator = 1 (JPT)

Operands: jump address (LBL)

The JPT command is a conditional jump command. If the Logic Accumulator is 1, the program is continued from the specified jump address (Label). If the Logic Accumulator is 0, the jump is not processed. This command interrupts a logic sequence.

## Jump if Logic Accumulator = 0 (JPF)

#### Operands: jump address (LBL)

The JPF command is a conditional jump command. If the Logic Accumulator is 0, the program is continued from the specified jump address (Label). If the Logic Accumulator is 1, the jump is not processed. This command interrupts a logic sequence.

## Call Module (CM)

#### Operands: jump address (LBL)

CM instructs the processor to leave the main program and process the Module designated by the jump address (LBL). Modules are independent subprograms and are terminated by the EM command. They can also be called at multiple points in the main program. This command interrupts a logic sequence.

#### Call Module if Logic Accumulator = 1 (CMT)

#### Operands: jump address (LBL)

The CMT command is a conditional module call. If the Logic Accumulator is 1, the Module with the specified jump address (Label) is processed. If the Logic Accumulator is 0, the main program continues without a module call. This command interrupts a logic sequence.

#### Call Module if Logic Accumulator = 0 (CMF)

#### Operands: jump address (LBL)

The CMF command is a conditional module call. If the Logic Accumulator is 0, the Module with the specified jump address (Label) is processed. If the Logic Accumulator is 1, the main program continues without a module call. This command interrupts a logic sequence.

## End of Module, End of Program (EM)

Every program and/or every subprogram (Module) is terminated with an EM command. EM in a Module initiates the return jump to the Call Module (CM, CMT, CMF). The program is continued with the instruction following the Call Module. EM is handled as program end criterion; thus subsequent program instructions can only be reached using a jump address.

# End of Module if Logic Accumulator = 1 (EMT)

The EMT command only initiates the return jump to the Call Module (CM, CMT, CMF) if the Logic Accumulator is 1.

# End of Module if Logic Accumulator = 0 (EMF)

The EMF command only initiates the return jump to the Call Module (CM, CMT, CMF) if the Logic Accumulator is 0.

## Jump Label (LBL)

Operands: ASCII name (with up to 32 characters)

The jump label defines a program position as an entry point for the CM and JP commands. Up to 1000 jump labels per file can be defined.

The ASCII name of the jump label can be up to 32 characters long, although only the first 16 characters are used to differentiate between jump labels.

# 12.3 Classes of Markers and Bytes

| Marker         | Application                                                                  |
|----------------|------------------------------------------------------------------------------|
| M1000 to M1999 | To be assigned as desired. Settings erased after power interruption (Reset). |
| M0 to M999     | To be assigned as desired. Settings erased after power interruption (Reset). |
| M2000 to B3000 | Reserved for NC-to-PLC interface.                                            |

| Byte          | Application                                                                  |
|---------------|------------------------------------------------------------------------------|
| B0 to B127    | To be assigned as desired. Settings erased after power interruption (Reset). |
| B128 to B255  | To be assigned as desired. Settings erased after power interruption (Reset). |
| B256 to B1023 | Reserved for NC-to-PLC interface.                                            |

# 12.4 Marker List

| Marker      | Function                      | Set | Reset |
|-------------|-------------------------------|-----|-------|
| M0000       | To be assigned as desired     | PLC | PLC   |
| to<br>M1499 |                               |     |       |
| M1500       | Rising edge I0 if M2497 set   | NC  | NC    |
| M1501       | Rising edge I1 if M2497 set   | NC  | NC    |
| M1502       | Rising edge I2 if M2497 set   | NC  | NC    |
| M1503       | Rising edge I3 if M2497 set   | NC  | NC    |
| M1504       | Rising edge I4 if M2497 set   | NC  | NC    |
| M1505       | Rising edge I5 if M2497 set   | NC  | NC    |
| M1506       | Rising edge I6 if M2497 set   | NC  | NC    |
| M1507       | Rising edge I7 if M2497 set   | NC  | NC    |
| M1508       | Rising edge I8 if M2497 set   | NC  | NC    |
| M1509       | Rising edge I9 if M2497 set   | NC  | NC    |
| M1510       | Rising edge I10 if M2497 set  | NC  | NC    |
| M1511       | Rising edge I11 if M2497 set  | NC  | NC    |
| M1512       | Rising edge I12 if M2497 set  | NC  | NC    |
| M1513       | Rising edge I13 if M2497 set  | NC  | NC    |
| M1514       | Rising edge I14 if M2497 set  | NC  | NC    |
| M1515       | Rising edge I15 if M2497 set  | NC  | NC    |
| M1700       | Falling edge I0 if M2497 set  | NC  | NC    |
| M1701       | Falling edge I1 if M2497 set  | NC  | NC    |
| M1702       | Falling edge I2 if M2497 set  | NC  | NC    |
| M1703       | Falling edge I3 if M2497 set  | NC  | NC    |
| M1704       | Falling edge I4 if M2497 set  | NC  | NC    |
| M1705       | Falling edge I5 if M2497 set  | NC  | NC    |
| M1706       | Falling edge I6 if M2497 set  | NC  | NC    |
| M1707       | Falling edge I7 if M2497 set  | NC  | NC    |
| M1708       | Falling edge I8 if M2497 set  | NC  | NC    |
| M1709       | Falling edge I9 if M2497 set  | NC  | NC    |
| M1710       | Falling edge I10 if M2497 set | NC  | NC    |
| M1711       | Falling edge I11 if M2497 set | NC  | NC    |
| M1712       | Falling edge I12 if M2497 set | NC  | NC    |
| M1713       | Falling edge I13 if M2497 set | NC  | NC    |
| M1714       | Falling edge I14 if M2497 set | NC  | NC    |
| M1715       | Falling edge I15 if M2497 set | NC  | NC    |
| M2008       | Axis X in position            | NC  | NC    |

| Marker               | Function                                                             | Set | Reset |
|----------------------|----------------------------------------------------------------------|-----|-------|
| M2009                | Axis Y in position                                                   | NC  | NC    |
| M2010                | Axis Z in position                                                   | NC  | NC    |
| M2045                | Strobe signal M Code                                                 | NC  | NC    |
| M2050                | Operating mode: Programming and Editing                              | NC  | NC    |
| M2051                | Operating mode: Manual                                               | NC  | NC    |
| M2054                | Operating mode: Single block                                         | NC  | NC    |
| M2055                | Operating mode: Automatic                                            | NC  | NC    |
| M2057                | Operating mode: Cross over reference marks                           | NC  | NC    |
| M2072                | M code bit 1                                                         | NC  | NC    |
| M2073                | M code bit 2                                                         | NC  | NC    |
| M2074                | M code bit 3                                                         | NC  | NC    |
| M2075                | M code bit 4                                                         | NC  | NC    |
| M2076                | M code bit 5                                                         | NC  | NC    |
| M2077                | M code bit 6                                                         | NC  | NC    |
| M2078                | M code bit 7                                                         | NC  | NC    |
| M2079                | M code bit 8                                                         | NC  | NC    |
| M2160                | Traversing direction ( $0 = positive, 1 = negative$ )                | NC  | NC    |
| M2176                | Code operating mode (Isb)                                            | NC  | NC    |
| M2177                | Code operating mode                                                  | NC  | NC    |
| M2178                | Code operating mode                                                  | NC  | NC    |
| M2179                | Code operating mode (msb)                                            | NC  | NC    |
| M2180                | 1st PLC scan after power on                                          | NC  | NC    |
| M2183                | Program interruption (control-in-operation symbol is blinking)       | NC  | NC    |
| M2184                | Control in operation (control-in-operation symbol is on or blinking) | NC  | NC    |
| M2185                | 1st PLC scan after an interruption of the PLC program                | NC  | NC    |
| M2190                | Non-blinking error message is displayed                              | NC  | NC    |
| M2191                | EMERGENCY STOP error message is displayed                            | NC  | NC    |
| M2192<br>to<br>M2211 | Can be set by MP4310.0 to MP 4310.19                                 | NC  | NC    |
| M2448                | NC start                                                             | PLC | PLC   |
| M2449                | Rapid traverse                                                       | PLC | PLC   |
| M2450                | Memory function for axis direction keys                              | PLC | PLC   |
| M2451                | Feed rate enable                                                     | PLC | PLC   |
| M2456                | Manual traverse X+                                                   | PLC | PLC   |
| M2457                | Manual traverse X–                                                   | PLC | PLC   |
| M2458                | Manual traverse Y+                                                   | PLC | PLC   |
|                      |                                                                      |     |       |

| Marker               | Function                                                                                                                     | Set | Reset      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| M2459                | Manual traverse Y-                                                                                                           | PLC | PLC        |
| M2460                | Manual traverse Z+                                                                                                           | PLC | PLC        |
| M2461                | Manual traverse Z-                                                                                                           | PLC | PLC        |
| M2464                | Complement of NC-Start                                                                                                       | PLC | PLC        |
| M2465                | Complement of rapid traverse                                                                                                 | PLC | PLC        |
| M2466                | Complement of memory function for axis direction keys                                                                        | PLC | PLC        |
| M2467                | Complement of feed rate enable                                                                                               | PLC | PLC        |
| M2472                | Complement of manual traverse X+                                                                                             | PLC | PLC        |
| M2473                | Complement of manual traverse X–                                                                                             | PLC | PLC        |
| M2474                | Complement of manual traverse Y+                                                                                             | PLC | PLC        |
| M2475                | Complement of manual traverse Y–                                                                                             | PLC | PLC        |
| M2476                | Complement of manual traverse Z+                                                                                             | PLC | PLC        |
| M2477                | Complement of manual traverse Z–                                                                                             | PLC | PLC        |
| M2482                | Acknowledgment of M code                                                                                                     | PLC | PLC        |
| M2488                | NC stop (0 = stop)                                                                                                           | PLC | PLC        |
| M2497                | Activate the edge evaluation for PLC inputs<br>Rising edges: Markers M1500 to M1659<br>Falling edges: Markers M1700 to M1859 | PLC | PLC        |
| M2544                | Open the control loop for axis X                                                                                             | PLC | PLC        |
| M2545                | Open the control loop for axis Y                                                                                             | PLC | PLC        |
| M2546                | Open the control loop for axis Z                                                                                             | PLC | PLC        |
| M2552                | Actual and nominal value transfer in axis X                                                                                  | PLC | PLC        |
| M2553                | Actual and nominal value transfer in axis Y                                                                                  | PLC | PLC        |
| M2554                | Actual and nominal value transfer in axis Z                                                                                  | PLC | PLC        |
| M2556                | Reference end position for axis X                                                                                            | PLC | PLC        |
| M2557                | Reference end position for axis Y                                                                                            | PLC | PLC        |
| M2558                | Reference end position for axis Z                                                                                            | PLC | PLC        |
| M2624                | Limit switch X+                                                                                                              | NC  | NC         |
| M2625                | Limit switch X–                                                                                                              | NC  | NC         |
| M2626                | Limit switch Y+                                                                                                              | NC  | NC         |
| M2627                | Limit switch Y–                                                                                                              | NC  | NC         |
| M2628                | Limit switch Z+                                                                                                              | NC  | NC         |
| M2629                | Limit switch Z–                                                                                                              | NC  | NC         |
| M2924<br>to<br>M2963 | Error messages and dialogs                                                                                                   | PLC | NC;<br>PLC |

#### Word addresses

| Word            | Function                                               |
|-----------------|--------------------------------------------------------|
| D288 to<br>D296 | Actual values in the X, Y and Z axes                   |
| D300 to<br>D308 | Nominal values in the X, Y and Z axes                  |
| D312 to<br>D320 | Reference values in the X, Y and Z axes                |
| D324 to<br>D332 | Servo lag in the X, Y and Z axes                       |
| D360            | Current feed rate in mm/min                            |
| D364            | Maximum feed rate in mm/min                            |
| D768 to<br>D804 | Values from MP4210.0 to MP4210.9 (deceleration signal) |
| W969 to<br>W968 | Values from MP4310.0 to MP4310.4                       |
| W766            | % factor for feed rate override                        |

# **13 Error Messages**

| PROCESSOR CHECK X              | $X \Rightarrow$ | 0 = Checksum NC-EPROM incorrect             |
|--------------------------------|-----------------|---------------------------------------------|
|                                |                 | 1 = CRC sum MP incorrect                    |
|                                |                 | 2 = CRC sum NC memory incorrect             |
|                                |                 | 4 = Cross feed between data bits in the RAM |
|                                |                 | 5 = Checksum PLC-EPROM incorrect            |
|                                |                 | 6 = Stack overflow                          |
|                                |                 | 7 = Timeout EEPROM                          |
|                                |                 | A = Software error                          |
|                                |                 | B = Incorrect interrupt                     |
|                                |                 | C = Overflow time slice                     |
| ENCODER <axis> DEFECT X</axis> | $X \Rightarrow$ | A = Signal amplitude too low                |
|                                |                 | B = Frequency exceeded                      |
| POS. ERROR X <axis></axis>     | $X \Rightarrow$ | A = Servo lag monitoring                    |
|                                |                 | C = Movement monitoring                     |
|                                |                 | D = Standstill monitoring                   |
|                                |                 |                                             |

# 14 Dimensions













# 15 Subject Index

| Acceleration during approach           | 26       | Marker list                     | 61     |
|----------------------------------------|----------|---------------------------------|--------|
| Analog voltage, bipolar/unipolar       | 26       | Memory test                     | 32     |
| Analog voltage, lower limit            | 26       | Monitoring functions            | 29     |
| Axis positions                         | 29       | Monitoring, encoder             | 30     |
| Bottom voltage                         | 24       | Monitoring, movement            | 29     |
| Byte, classes                          | 60       | Monitoring, position            | 29     |
| Characteristic kink                    | 27       | Monitoring, standstill          | 29     |
| Commissioning the TNC 122              | 27<br>27 | Movement monitoring             | 29     |
| Connections                            | 37<br>10 | NO CONTROL VOLTG                | 35     |
| Controlis-roady acknowledgment         | 33       | Nominal voltage, polarity of    | 17     |
| Control-is-ready acknowledgment        | 33       | Offset componsation             | 20     |
| Controller input                       | 25       |                                 | 20     |
| Counting direction                     | 17       | Pin layout X1, X2, X3           | 11     |
|                                        | 17       | PLC commands                    | 46     |
| Data interface                         | 15       | PLC EPROM 7;                    | 45     |
| Data interface X21                     | 11       | PLC EPROM addresses             | 45     |
| Datum setting                          | 18       | PLC inputs                      | 12     |
| Dialog language                        | 31       | PLC outputs                     | 12     |
| Dimensions                             | 66       | POS. ERROR                      | 33     |
| Display step                           | 31       | Position display                | 31     |
| EMERG STOP DEFEC                       | 35       | Position feedback control       | 24     |
| EMERGENCY STOP                         | 35       | Position loop gain              | 24     |
| EMERGENCY STOP circuit                 | 33       | Position monitoring             | 29     |
| EMERGENCY STOP connection diagram      | 34       | Positioning window              | 29     |
| EMERGENCY STOP flowchart               | 35       | Power connector X51             | 11     |
| Encoder inputs, assignments of         | 17       | Power supply                    | 8      |
| Encoder monitoring                     | 30       | Programming station             | 32     |
| Encoders                               | 16       | Ramp gradient                   | 24     |
| Encoders, old models                   | 16       | Rapid traverse control          | 25     |
| EPROM sockets                          | 7        | Rapid traverse, analog voltage  | 26     |
| Error message AMPL.TOO SMALL           | 30       | Reference end position          | 19     |
| Error message EMERGENCY STOP           | 33       | Reference marks                 | 18     |
| Error message ENCODER DEFECT           | 30       | Reference marks, distance-coded | 19     |
| Error message OVERLOAD                 | 30       | Removing the TNC 121            | 36     |
| Error message POS. ERROR A             | 29       | RS-232-C                        | 15     |
| Error message POS. ERROR C             | 29       | Screw pitch                     | 16     |
| Error message POS.ERROR D              | 29       | Servo lag                       | 24     |
| Exchanging the control                 | 36       | Servo lag, internal adjustment  | 25     |
| Grating period                         | 16       | Signal period                   | 16     |
| Grounding diagram                      | 9        | Software limit switches         | 17; 19 |
| Hardware, ID number                    | 6        | Software, ID number             | 6      |
| Installing the TNC 122                 | 37       | Specifications                  | 4      |
| k factor                               | 24       | Standstill monitoring           | 29     |
| ky factor multiplication factor for    | 24<br>07 | Tool length in position display | 31     |
|                                        | 27       | Traverse direction              | 17     |
| Line count                             | 16       | Traverse ranges                 | 17     |
| Machine datum                          | 19       | Trip dog                        | 19     |
| Machine integration                    | 16       | \/ 24                           | 15     |
| Machine parameter list                 | 38       | Voltage bottom                  | 2/     |
| Machine parameter software identifiers | 36       | voltago, bottorri               | 24     |