
Note no SAND/08/04
Author Marita Stien, Heidi Kjønsberg, Odd Kolbjørnsen, Petter

Abrahamsen
Date 19th June 2008

An implementation of
conditional Markov
mesh simulation with
parameter estimation
Overview and user’s manual for
version 0.1

Marita Stien, Heidi Kjønsberg, Odd Kolbjørnsen, Petter Abrahamsen

Norwegian Computing Center
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, indepen-
dent, non-profit foundation established in 1952. NR carries out contract research
and development projects in the areas of information and communication tech-
nology and applied statistical modeling. The clients are a broad range of indus-
trial, commercial and public service organizations in the national as well as the
international market. Our scientific and technical capabilities are further devel-
oped in co-operation with The Research Council of Norway and key customers.
The results of our projects may take the form of reports, software, prototypes,
and short courses. A proof of the confidence and appreciation our clients have
for us is given by the fact that most of our new contracts are signed with previous
customers.

Title An implementation of conditional Markov
mesh simulation with parameter
estimation

Author Marita Stien, Heidi Kjønsberg, Odd Kolbjørnsen,
Petter Abrahamsen

Date 19th June 2008

Publication number SAND/08/04

Abstract

The main purpose of these notes is to provide documentation of version 0.1
of the Markov mesh implementation done for the Multipoint project. The report
is mainly meant for internal use in the project, serving as a user’s manual for
running the program and as a guide for further improvements and modifications
of the code.

Keywords Markov Mesh models, sequential simulation,
parameter estimation, data conditioning

Target group All employees, MPS project partners

Availability Open

Project Multipoint

Project number 808002

Research field

Number of pages 37

© Copyright Norwegian Computing Center

3

Contents

1 Introduction . 7

2 Main methods . 8
2.1 Markov mesh models 8
2.2 Estimation. 9

2.2.1 Parameter reduction 10
2.3 Simulation algorithm 10
2.4 Well conditioning . 10
2.5 Seismic conditioning 12
2.6 Local update . 12

3 Program structure. 14

4 Input parameters . 16
4.1 Main flow parameters 16
4.2 Realizations . 17
4.3 Simbox definition . 17
4.4 Training image . 18
4.5 Direction - Path . 18
4.6 Facies . 19
4.7 Neighborhood . 19

4.7.1 Two-point interactions. 19
4.7.2 Higher-point interactions 21

4.8 Well conditioning . 22
4.8.1 Correlation structure and shell search. 22
4.8.2 Well input file 24

4.9 Seismic conditioning 24
4.10 Local update . 25
4.11 Fill in from coarse grid 26

5 Program output . 27

6 Results . 28

7 Summary . 32

A Examples of model files . 33

An implementation of conditional Markov mesh simulation with parameter estimation
5

1 Introduction

These notes contain documentation of a prototype implementation of a Markov
mesh model. The model is developed as part of a larger project for development
of models for multipoint statistics, and is attractable due to its fast sequential
simulation scheme.

The program implementation can perform the following tasks:

1. estimate a statistical model from a training image

2. simulate realizations from a given model

· unconditional

· conditioned to well(s) and/or seismic data

3. update a given realization locally

4. down scale a realization

Facies grids can be in two or three dimensions and contain multiple facies. In
principle there are no limitations to the methodology, but in practice it is limited
by the memory on the computer. Local updating is a post process that involves
resimulation in local areas of the grid by using an McMC algorithm, and is typ-
ically used to modify existing realizations when new well data or new seismic
potentials are available. Down scaling is performed to create a model on a finer
level than the present realization.

In order to run the program the user needs to specify a model file containing
all necessary model parameters. The parameters are explained in Section 4, with
the basic theory of the applied methods being presented in Section 2. It is not
crucial to read and understand the theory of Section 2 in order to properly set the
input parameters, as Section 4 is attempted being self-explanatory.

The organization of the documentation is as follows. Section 2, Main methods,
presents the theory related to the model construction, estimation, conditioning
and the local updating. This establishes the notation. Section 3, Program struc-
ture, illustrates the main tasks enumerated above, showing how they are con-
nected. Section 4, Input parameters, explains the input parameters needed to run
the program. Section 5, Program output, describes the data, in terms of output
files, that are returned by the program. A few results are for illustrative purposes
included in Section 6, and a short summary and closing remarks are given i Sec-
tion 7. Appendix A provides examples of typical model files.

The user can on request to the authors be provided with examples of input
files such that some simple models can be run right away.

An implementation of conditional Markov mesh simulation with parameter estimation
7

2 Main methods

This section gives a description of the main methods used in the program. It will
be helpful for those interested to know the details of the various algorithms. The
main parts of the section involve model specification, estimation, data condition-
ing and local updating.

2.1 Markov mesh models
Consider a finite, regular grid in two or three dimensions, and let the one-dimensional
index i label the cells of the grid. The set of all cells is G = {1, 2, ..., N}, where cell
value xi can take K different facies values, i.e. xi = {0, 1, .., K − 1}.

Markov mesh models follow a sequential path. Probabilities are constructed
such that they depend on a subset of cell values from earlier in the path, and this
subset is called the sequential neighborhood. Figure 1 gives an illustration of a
sequential neighborhood on a two dimensional grid.

Figure 1. Illustration of sequential neighborhood. A snapshot of a simulation is displayed,
and the grey cells have not yet been sampled.

We write the conditional probability for the facies at cell i as

π(xi|xj<i) = π(xi|xδi), (1)

where xδi is the set of facies values for the cells in the sequential neighborhood.
Markov mesh models are fully specified through the conditional probabilities in
(1), i.e. the joint probability is

π(x1, x2, ..., xN) =
N∏
i=1

π(xi|xδi), (2)

and in order to define the conditional probabilities we turn to the class of gener-
alized linear models1.

The concept in generalized linear models is that a linear combination of inde-
pendent variables, z, is linked to the expected value, µ, of the dependent variable

1. P. McCullagh and J.A. Nelder, Generalized Linear Models, Chapman & Hall, 1989.

8 An implementation of conditional Markov mesh simulation with
parameter estimation

y, through a non-linear function, zTθ = η(µ). We use the link function

η(µ) = log

(
µ

1− µ

)
. (3)

We introduce the dependent variable yki ,

yki =

{
1 when xi = k, and
0 otherwise,

and let zi be a vector consisting of functions of the sequential neighbourhood
of node i, and a constant term, zi = [f1(xδi), ..., fP (xδi), 1]T . The functions are
discussed in more detail in Section 4.7. The expected value µ can be written

µki = 1 · π(yki = 1|zi,θ0, ...,θK−1),

for each facies k = 0, 1, ..., K − 1. The vectors θ0, ...,θK−1 are of size (P + 1) × 1

and represent coefficients for each facies corresponding to the functions in zi.
Combining the above result with (3) yields the following expression for the con-
ditional probabilities

π(yki |zi,θ0, ...,θK−1) =
exp{zTi θk}∑K−1
k=0 exp{zTi θ

k}
.

2.2 Estimation
The model coefficients are estimated by the maximum likelihood estimator. A
training image contains the data basis for the estimation. The likelihood function
is given by

L(θ0, ...,θK−1;Z,Y) =
∏
i

∏
k exp{zTi θkyki }∑K−1
k=0 exp{zTi θ

k}
,

where Z is an N × (P + 1) matrix of the full set of observations zi, and Y is an
N ×K matrix of the full set of observations yki for each facies. Simple derivations
yield the following system of equations to be solved

ZTyk = ZTµk(θ0, ...,θK−1),

for k = 0, 1, ..., K−1. The vectorµk(θ0, ...,θK−1) is theN×1 vector of µki (θ
0, ...,θK−1),

while yk = [yk1 , y
k
2 , ..., y

k
N]T . The above expressions are solved using the standard

approach of iterated weighted least squares. For each iteration the following ex-
pressions are computed

θkm+1 = θkm + (ZTW k
mZ)−1ZT (yk − µk(θ0, ...,θK−1))

for k = 0, 1, ..., K−1. HereW k
m = diag{(1−µk1(θm))µk1(θm), ..., (1−µkN(θm))µkN(θm)}

is an N ×N matrix of weights.

An implementation of conditional Markov mesh simulation with parameter estimation
9

2.2.1 Parameter reduction
The number of coefficients to estimate is P for each facies. It is often favorable to
reduce the number of parameters. We do this by removing the parameters that
have least influence on the model. More specifically, the number of parameters
is reduced by performing a matrix reduction of Z. A matrix Z∗ is the reduced
matrix of size N × P ′ where P ′ < P and is the product

Z∗ = ZV ,

where V is a (P + 1) × P ′ matrix of singular vectors, which correspond to the
P ′ largest singular values of the matrix Z. The columns of Z∗ are then linear
combinations of the columns in Z.

The set {θ∗0, ...,θ∗K−1} is the corresponding reduced set of coefficients. We
write

Z∗θ∗k = ZV θ∗k = Zθk.

Thus, the coefficients {θ∗0, ...,θ∗K−1} are estimated using Z∗, and then the true
coefficients {θ0, ...,θK−1} are computed from

θk = V θ∗k.

2.3 Simulation algorithm
Simulation from the Markov mesh model is performed by following the path
i = 1, 2, ..., N throughout the grid. For each cell the facies value is drawn accord-
ing to the conditional probability π(xi|xδi). It is crucial to the algorithm that when
updating cell i only information about previously visited cells is taken into ac-
count, no attention is payed to any cell along the future path. The grid is scanned
once, and the resulting grid configuration follows the joint probability distribu-
tion

π(x1, x2, ..., xN) =
N∏
i=1

π(xi|xδi). (4)

2.4 Well conditioning
In the case of unconditional simulation the algorithm of Section 2.3 produces grid
configurations that are consistent with the Markov mesh probability distribution
(4). This is not necessarily true if the simulation is to be conditioned on well data.
The reason is that update of any cell i does not condition on data located along
the future path from cell i. Hence it may happen that when the simulation hits
a well data point w the fixed value xw may be inconsistent with the probability
π(xw|xδw).

The probability that should be used for update of xi is p(xi|xj<i, xWi
). Here Wi

is the set of well data along the future path from cell i;
⋃
i Wi being the set of all

10 An implementation of conditional Markov mesh simulation with
parameter estimation

well data cells. We rewrite this as

p(xi|xj<i, xWi
) =

p(xi|xj<i, xWi
)

p(xi|xj<i)
p(xi|xj<i). (5)

Equation (5) can be considered a factorization of the posterior probability into
well likelihood (leftmost factor) and prior probability (rightmost factor). The un-
conditional Markov mesh probability is the prior information, whereas we have
chosen to approximate the likelihood via indicator kriging. That is, for p(xi|xj<i, xWi

)

we use the approximation

P (xi|xj<i, xWi
) =

Z(xi|xj<i, xWi
)

Z(xi|xj<i)
π(xi|xδi) ≡ Ψ(xi|xj<i, xWi

)π(xi|xδi), (6)

where Z(xi|xj<i) is the predictor for xi found by indicator kriging2 conditioned
on cells in the past of i, Z(xi|xj<i, xWi

) is the predictor conditioned also on fu-
ture data points, and π(·) is the unconditional Markov mesh probability. The joint
probability ∏

i

P (xi|xj<i, xWi
) (7)

is then an approximation to the true Markov mesh model, and defines what we
will refer to as the modified Markov mesh model.

Far away from any wells we expect Ψ ≈ 1, and hence the new model based
on equations (6) and (7) gives statistics similar to the prior Markov mesh model.
If cell i has a non-zero correlation with a future well, the kriging function Ψ af-
fects the overall probability P . A positive correlation implies that Z(xi|xj<i, xWi

)

increases the probability for xi to be updated to the same facies as the well, a neg-
ative correlation decreases the well’s contribution to this probability. The overall
effect of the well is modified by the past cells’ influence on the predictors.

Simple kriging is suitable when the mean volume fraction of each facies is
given. Let µk be the mean volume fraction of facies k, and let D be the set of
cells on which to condition in the kriging algorithm. Our choice for how to iden-
tify D is explained in Section 4.8.1. Let Σ be a matrix whose elements are the
covariances between the different data points j1, j2 ∈ D , Σj1,j2 = Cov(j1, j2);
and c is a vector of the covariance functions between the fixed update location i

and the data points, cj = Cov(i, j), j ∈ D. Define in addition the n × 1 vectors
ŷk = [ykj1 , y

k
j2
, ..., ykjn]T and e = [1, 1, ..., 1]T , where n is the number of cells in D,

and

ykj =

{
1 when xj = k, and
0 otherwise.

The predictor for facies k is then found via the linear expression

Z(xi = k|x{j∈D}) = µk + cTΣ−1(ŷk − µke). (8)

2. A.G. Journel, Nonparametric Estimation of Spatial Distributions, Math. Geol. 15(3), 1983.

An implementation of conditional Markov mesh simulation with parameter estimation
11

For each cell i this expression is used to find the predictors Z(xi|xj<i, xWi
) and

Z(xi|xj<i) of (6).

2.5 Seismic conditioning
If seismic data is present this should also contribute to Eq. (5). We assume that
the seismic data is available in the form of a full facies probability cube, i.e. that
the seismic probabilities p(xi|m), with m being the seismic raw data, are known
for all cells i in the grid. Equation (5) asks for the likelihood, and we therefore
calculate

l(xi) ≡
p(xi|m)

p(xi)
∝ p(m|xi), (9)

where p(xi|m) is taken from the seismic facies probability cube and p(xi) is the
marginal facies probability found from the training image. A weight factor β for
the seismic potential is manually included, which allows for some user’s adjust-
ment of the importance of the seismic. This is common procedure when taking
into account seismic data. With seismic data being present in addition to well
data the adjusting factor Ψ of (6) thus is replaced by

Ψ(xi|xj<i, xWi
)→ l(xi)

βΨ(xi|xj<i, xWi
), (10)

with β ∈ [0, 1]. If no well data is present Ψ(xi|xj<i, xWi
) = l(xi)

β .

2.6 Local update
The modified Markov mesh model (7) is well suited for iterations. A main mo-
tivation for establishing an iterative method is to render possible local update
in an already existing grid configuration, typically as a result of new well data
or modified seismic potentials. Iterations could also be used to clear unwanted
kriging effects during the initial establishment of a reservoir configuration, to en-
sure that it is consistent with the statistics of the prior model. We propose to use
a Metropolis Hastings algorithm, where proposal configurations are established
via block update based on the modified Markov model (7), and the accept prob-
ability ensures that sampling is done from the prior model conditioned on data.
In the following we describe one step in the Markov chain of the Monte Carlo
simulation.

Let ν be a label for the existing configuration of the grid, i.e. the grid configu-
ration is xν . The proposal configuration will be denoted µ. Pick according to some
rule a connected set of cells B ⊆ G, where G is the full grid. If the set B includes
data cells or cells that for some other reason are supposed to have fixed facies
throughout the iterations, let the set of these cells be denoted B0. Let B1 = B\B0,
and define ∂B1 as the set of cells in G \B1 that according to the prior model may
be affected by a change in the set B1. That is, j ∈ ∂B1 iff ∃k ∈ δj : k ∈ B1. Then

12 An implementation of conditional Markov mesh simulation with
parameter estimation

(B0 ∪ ∂B1) ∩ {j : j > i} is the union of the set of future cells from a fixed location
i that are within B and that we want to condition on, and the set of future cells
from position i that according to the prior model are affected by a change in the
set B1. The new configuration µ is established as follows: scan through the part of
the simulation path that is within B1, and for each cell i ∈ B1 draw its new facies
value xi for configuration µ from the probability

Ψ(xi|xj<i, xWi∪{(B0∪∂B1)∩{j:j>i}})π(xi|xδi); (11)

for all cells in G \ B1 let the facies be as in the state ν. This defines the proposal
configuration µ.

Acceptance or rejection of the configuration ν is done with probability

α = min

(
qνπ(xµ)

qµπ(xν)
, 1

)
, (12)

where qµ is the probability for suggesting the new configuration µ, starting from
ν, qν is the probability for suggesting the old configuration ν, starting from µ,
and π(xµ) and π(xν) are the prior Markov mesh probabilities. Since all suggested
states conform with data, this accept probability ensures that sampling is done
from the prior model conditioned on data. The accept probability can be rewritten
to

α = min

(∏
i∈B1

Ψ(xi)|ν
Ψ(xi)|µ

) ∏
i∈B0

⋃
∂B1

π(xi)|µ
π(xi)|ν

 , 1

 . (13)

In the notation of equation (13) the conditional dependencies in the function ar-
guments are suppressed for readability.

An implementation of conditional Markov mesh simulation with parameter estimation
13

3 Program structure

The main task supported by the present implementation are:

· Based on an input training image, estimate parameters for a Markov mesh
model.

· Create a number of independent realizations from the Markov mesh model
by using sequential simulation.

· Each realization can be conditioned on wells and/or seismic data.

In addition, the program can

· Do local update on an existing realization.

· Instead of estimation and subsequent sequential simulation the user can pro-
vide a grid realization on a coarse scale, then ask the program to fill in the
grid on a finer scale.

Figure 2 illustrates the logical structure of the program from a user’s perspective.
Parameters that control the behavior of the program are described in the next
section.

14 An implementation of conditional Markov mesh simulation with
parameter estimation

do simulation or fill in coarse grid?
<only_kriging_> = false, true

should estimation be done?
<estimate_> = false, true

read coarse grid from file, fill in using default method
<facies_fractions, true coarse grid or a set of wells >
exit

false true

do estimation
<neighbourhood parameters,TI>

read estimated parameters from file

false true

false1 true1

read wells from file

do sequential unconditioned
simulation
<path>
exit

do well conditioning?
<use_wells_> = false, true

do seismic conditioning?
<use_seismic_> = false, true

read data from file

true2

do local update on existing realisation?
<local_update_> = false, true

read existing realisation
from file

true3false2 false3

false1, false2, false3 false1, false2, true3

false1, true2, false3
or

true1, false2, false3
or

true1, true2, false3

false1, true2, true3
or

true1, false2, true3
or

true1, true2, true3

do sequential conditioned
simulation
<path>
exit

iterate
unconditioned
<path>
exit

iterate conditioned
<path>
exit

Figure 2. Graphical illustration of the program structure.

An implementation of conditional Markov mesh simulation with parameter estimation
15

4 Input parameters

In this section we explain how to set the input parameters in the model file. We
use a model file structure which is divided into commands. Each command starts
with the command name written in capital letters, and ends with a semicolon (;).
The input parameters to be specified by the user are written between the com-
mand name and the semicolon. The exclamation mark (!) is used in front of com-
ments, i.e. everything written on the line behind an exclamation mark is not read
by the program.

In some cases input files in addition to the model file are needed by the pro-
gram. These must all be located on the root directory of the program.

4.1 Main flow parameters
The first parameters to be set determine which workflow to run, using command
WORKFLOW. We refer to Figure 2, which shows various workflow actions and how
one follows the other. There are five boolean parameters to be set, where 1 means
true and 0 false.

1. estimate: Set to true if the coefficients θ should be estimated or false if the
coefficients should be read from an existing file. Further parameter input is
described in sections 4.4, 4.5, 4.6, and 4.7.

2. only_kriging: Set to true if coarse grid values from file should be filled into
a finer grid. The coarse grid values must be available via file. See Section
4.11 for further details. If the parameter is set to false sequential simulation is
run, either with or without conditioning. See sections 4.2, 4.3, 4.4, and 4.5 for
further parameter settings.

3. use_wells: Set to true if wells should be taken into account, and false if there
is no well conditioning. Further parameter input is described in Section 4.8.

4. use_seismic: Set to true if seismic should be taken into account, and false if
there is no seismic conditioning. Seismic input information is described in
Section 4.9.

5. do_iterate: Set to true if local update is to be performed. If so, the initial grid
must be provided in a file named initialgrid.txt. Further parameter input
is described in Section 4.10. If false then no local update is to be done.

16 An implementation of conditional Markov mesh simulation with
parameter estimation

Example of workflow parameters:

WORKFLOW

0 !estimate_ 1 = true 0 = false

0 !only_kriging_ 1 = true 0 = false

1 !use_wells_ 1 = true 0 = false

1 !use_seismic_ 1 = true 0 = false

0 !do_iterate_ 1 = true 0 = false

;

4.2 Realizations
The number of realizations, the output file format for writing the grid configu-
rations to file, and the location and filename prefix for the realizations must be
given under the REALIZATIONS command in the model file.

There are two options for the file format, either a header is included or not.
A header must be included if the realizations are to be run through the analysis
program FaProp3, otherwise only facies values from 0 to K − 1 are printed. The
program adds realization number and a .txt ending to the output prefix.

The prefix is also used for all other output files from the program. If Output
prefix ends with backslash (\) it refers only to the output folder, and all output
files will be given their default names (see Section 5). The file folder must be
manually created before simulation.

REALIZATIONS

10 !Number of realizations

1 !Header 1 = true 0 = false

C:\MarkovMeshSimulations\realization !Output prefix

;

4.3 Simbox definition
The simbox definitions, command SIMBOXDEFINITION, are for defining the area
for simulation. Only two-dimensional rectangles or three-dimensional boxes are
supported. The user must set the corner point x0 , y0 and z0 which is the upper
left corner at the top of the cube. Cell sizes are given by the parameters dx, dy and
dz, and the number of cells by the parameters nx, ny and nz. Padding to avoid
the edge effects is included in the program with default parameters. Note that for
two-dimensional grids nz is set to 1, see example:

3. H. Soleng, A.R. Syversveen and O. Kolbjørnsen, Comparing Facies Realizations - Defining Met-
rices on Realization Space, Proceedings of the 10th European Conference in the Mathematics of Oil
Recovery, 2006

An implementation of conditional Markov mesh simulation with parameter estimation
17

SIMBOXDEFINITION

0 0 0 !x0, y0, z0

1 1 1 !dx, dy, dz

100 100 1 !nx, ny, nz

;

The example above describes a simulation rectangle in two dimensions, where
the upper left corner is located at the origin. There are 100 cells in each direction
and they are all of size 12.

4.4 Training image
The training image must be either a 2D rectangle or a 3D box. Under the com-
mand TI, the first input to be specified is the name and location of the training
image file. The file format is a text file with no header, containing only the facies
values. The values are separated either by space or line break, and the order of
cell listings are fastest in x direction and slowest in the z direction. Next, the size
of the training image must be given, see example:

TI

C:\TrainingImages\channelTI.txt !Directory and filename of TI

40 40 50 !X, Y and Z dimension

;

4.5 Direction - Path
The program supports three main simulation paths, determined by the command
DIRECTION. The first main path is the usual left to right - top to bottom simulation
path. The second path is from left to right and right to left for every other row for
each vertical layer. Each of these two paths is suitable for sequential simulation.
The third choice of path is a random path, which is useful for the kriging_only

version of the program (see Section 4.1).
In addition, there is a fourth path choice. This choice is useful for local update.

The subpath traversing the cells to be updated then varies randomly between
a left to right - top to bottom simulation path (NorthWest), and a right to left
- bottom to top (SouthEast) simulation path in each vertical layer. The vertical
layers are traversed from top to bottom (TOP).

DIRECTION

!0 !One way simulation

!1 !Back and forth simulation, top to bottom

!2 !Random

3 !Subpaths vary between NW_TOP and SE_TOP

;

18 An implementation of conditional Markov mesh simulation with
parameter estimation

Be aware that regardless of simulation path, only one set of parameters is esti-
mated. This parameter set refers to the one way simulation path. The use of any
other path specification under DIRECTION implicitly assumes a symmetric model.

4.6 Facies
The number of facies in the training image and realizations must be given as an
input. If the only_kriging version of the program is being used, also the volume
fractions of the facies must be provided. Volume fractions are in all other cases
automatically calculated from the training image.

FACIES

2 !number of facies

0.723 !volume fraction facies 0, used iff only_kriging == 1

0.277 !volume fraction facies 1, used iff only_kriging == 1

;

4.7 Neighborhood
If the estimate parameter is set to true, neighborhood parameters must be pro-
vided. If estimate is set to false and the parameters are needed for simulation
(only_kriging is set to false), they are automatically read from the coefficient file,
see Section 5.

We have divided the neighborhood into two categories; two-point interac-
tions and higher-point interactions under the command names TWOPOINT and
NEIGHBORHOOD, respectively. The explanatory variables in the conditional prob-
abilites are functions of neighborhood variables, i.e.

zi = {f1(xδi), f2(xδi), ..., fP (xδi), 1}.

In the following two sections we explain how the f(·) functions have been chosen
and which input ranges that are to be determined by the user.

4.7.1 Two-point interactions
For two-point interactions we consider the strength between the variables xi and
all the variables in the two-point interaction neighborhood. For each facies k we
assign an indicator function fk(x2point

j) which yields

fk(x2point
j) =

{
1 if x2point

j = k

0 otherwise,

where x2point
j is a variable in the two-point interaction neighborhood, j labeling

the cell.
Figures 3(a)-(c) display the variables included in the two-point interaction

neighborhood. The figures show one plane at the time, where lx, ly and lz is the

An implementation of conditional Markov mesh simulation with parameter estimation
19

Figure 3. Illustration of the two-point interaction neighborhoods for all three planes (a) x-y
plane, (b) x-z plane and (c) y-z plane.

extension of the neighborhood in the corresponding direction. Note that we only
consider variables from the planes orthogonal to eachother. For the total num-
ber of N2point cells in the two-point interaction neighborhood of cell i, we get the
following set of explanatory variables

z2point
i = {f 1(x2point

1),, fK(x2point
1), ..., f 1(x2point

N2point),, f
K(x2point

N2point)}.

In the model file the user must give the parameters lx, ly and lz, for instance:

TWOPOINT

2 2 ! XY plane lx ly

1 1 ! XZ plane lx lz

1 1 ! YZ plane ly lz

;

20 An implementation of conditional Markov mesh simulation with
parameter estimation

Figure 4. Illustration of the strips of cells where higher-point interactions are considered.
Arrows indicates the directions and in which order the number of interaction terms in-
creases.

Figure 5. Example of a strip of cells and the interactions that are included in the explana-
tory variables.

4.7.2 Higher-point interactions
In addition to two-point interactions, three- to L-point interactions are also im-
plemented. The size of L must be given by the user for each direction x, y and
z. Not all possible higher-point interactions within a certain neighborhood range
are considered. Certain strips of cells are selected, see Figure 4 where each strip
in one plane is indicated by arrows. All three planes are similar. Four additional
strips are also included, going from the center cell i diagonally out one step in
each direction.

Figure 5 shows for one of the strips which interactions that are taken into
account. We let xlpointj be the set of cells included in a l-point interaction for strip
j, with the indicator function

fk(xlpointj) =

{
1 if all cells in xlpointj = k

0 otherwise,

For the total number of R strips rooted at cell i, we get the following sets of ex-

An implementation of conditional Markov mesh simulation with parameter estimation
21

planatory variables

z3point
i = {f 1(x3point

1),, fK(x3point
1), ..., f 1(x3point

R),, fK(x3point
R)}

z4point
i = {f 1(x4point

1),, fK(x4point
1), ..., f 1(x4point

R),, fK(x4point
R)}

...

zLpointi = {f 1(xLpoint1),, fK(xLpoint1), ..., f 1(xLpointR),, fK(xLpointR)}

In the model file the user must give the parameter L for the various directions,
both along the three main axes and the diagonal lengths, for instance:

NEIGHBOURHOOD

2 !X direction

2 !Y direction

1 !Z direction

1 !XY 2D diagnoals

1 !XZ 2D diagonals

1 !YZ 2D diagnoals

1 !XYZ 3D diagonals

;

4.8 Well conditioning
There are two aspects of the kriging algorithm for hard data conditioning (wells)
that are controlled by parameters: the correlation structure used to set up Σ and c,
see Eq. (8), and the number of cells from which the predictor is calculated. These
parameters are set under the model file command CONDITIONING. In addition the
locations and facies of wells must be provided via an input file that is specified
under the command WELLDATA.

4.8.1 Correlation structure and shell search
The parameters that determine the kriging details, command CONDITIONING, are
specified in the model file as

CONDITIONING

1 !variogram type !0 = spherical, 1 = empiric

30 !variogram range Rx (empiric), variogram range (spheric)

30 !variogram range Ry (empiric), variogram subrange (spheric)

10 !variogram range Rz (empiric), variogram angle (spheric)

1 !N, the max number of kriging neighbours

1 !N1, the max number of kriging neighbours forward, used in iterations

1 !N2, the max number of kriging neighbours backward, used in iterations

;

22 An implementation of conditional Markov mesh simulation with
parameter estimation

In the following we describe the details of the algorithms controlled by the pa-
rameters, and thereby explain what each parameter means.

Correlation structure
Two different variogram types are supported by our implementation: spherical
variogram and empiric variogram. The choice of variogram type is controlled by
the first parameter listed under CONDITIONING. If empiric variogram is chosen,
the program automatically calculates the variogram in the x, y and z-direction
from the input training image (see Section 4.4). The spherical variogram is all
synthetic, with (2D) range, subrange and angle relative to the x-axis specified
as input parameters. The variograms are subsequently used for the correlations
that enter the kriging matrix and kriging vector, with elements given by Σj1,j2 =

Cov(j1, j2) and cj = Cov(i, j), respectively.

The meaning of the three next parameters under CONDITIONING depends on
the choice of variogram type. If empiric variogram is chosen, the parameters de-
note range Rx in x-direction, range Ry in y-direction, and range Rz in z-direction.
For any fixed cell i these parameters define a box centered at cell i, with side
lengths 2Rx + 1, 2Ry + 1, and 2Rz + 1. This box defines the cells that are candi-
dates for being used as conditioning cells when doing kriging for cell position
i. Cells inside the box are taken into account provided they fulfil various crite-
ria (explained below), cells outside the box are not taken into account. Hence the
rangesRx, Ry andRz should have values that are roughly the same as the correla-
tion lengths of the TI. The output file correlations.txt (see Section 5) contains
the correlations of the training image, and can be used to identify appropriate
values for Rx, Ry and Rz.

If spherical variogram is chosen the three parameters signify (2D) range, sub-
range and angle relative to the x-axis. From these parameters the program auto-
matically calculates a box that encompasses the variogram range. This box de-
fines cells that are considered candidates for playing the role as kriging data.

Shell search
To identify the cells D used to calculate the predictor Z(xi = k|x{j∈D}) in Equation
(8), the basic algorithm is a shell search algorithm. That is, we search outwards
from cell i in cubic shells (if 2D in quadratic shells) and identify in each shell the
cells that either are future wells or have already been simulated, though with
some minor requirements that are listed below. We continue until the shell is
entirely outside the box defined by the range parameters described above, or until
the number of found cells reaches a set limit, whichever occurs first.

The details of the shell search algorithm differs slightly depending on the flow
parameters of the program, see Section 4.1.

An implementation of conditional Markov mesh simulation with parameter estimation
23

· only_kriging == 1 (filling in a coarse grid): In each shell of the shell search
the program identifies cells that are either future wells or have been filled in
before. The single parameter N under CONDITIONING defines the upper limit
for how many cells to include.

· only_kriging == 0, use_wells == 1, do_iterate_ == 0 (sequential simula-
tion with hard data conditioning): Before shell search is started, the program
accepts as kriging data future wells that are inside the box defined by the
variogram range parameters. If the number of these future wells exceeds N, a
subset of the wells is randomly chosen. If the number of wells is lower than N

the shell search algorithm starts, and previsouly simulated cells are included
until the limit N is reached or shell search is beyond variogram range.

· only_kriging == 0, use_wells == 1, do_iterate == 1 (local update of the
initial configuration): Two parameters are used for the iterative phase of the
simulation: N1 and N2 are maximal limits for the number of conditioning cells
along the forward and backward path, respectively. Shell search is used for
each direction independently.

4.8.2 Well input file
Well positions and well facies must be specified in an input file. The name of the
file is specified as in this example:

WELLDATA

welldata.txt !Name of the welldata file

;

The file format is, assuming n well positions with facies values k1, k2, ..., kn:

x1 y1 z1 k1

x2 y2 z2 k2

x3 y3 z3 k3

...

xn yn zn fn

The coordinates x, y, z must refer to the same unit system as is used to define the
simulation box, see Section 4.2.

4.9 Seismic conditioning
If seismic conditioning is to be done the name of a file specifying the seismic prob-
ability cube must be provided. In addition the seismic weight factor must be set,
see Eq. (10). The following example illustrates how to set the seismic parameters:

24 An implementation of conditional Markov mesh simulation with
parameter estimation

SEISMICATTRIBUTES

0.5 !0 <= seis_factor_ <= 1

seismicattributes.txt !Name of the seismic attributes file

;

The file format is, assuming K facies values:

p(x1 = 0) p(x2 = 0) ... p(xN = 0)

p(x1 = 1) p(x2 = 1) ... p(xN = 1)

...

p(x1 = K-1) p(x2 = K-1) ... p(xN = K-1)

Here x1, x2, ..., xN are facies variables, one for each cell of the grid. N is the total
number of grid cells listed in the file, and this number must be consistent with the
simbox definitions of Section 4.3. The indices 1, 2, ..., N label the cells according
to the ordering: first run over x, then over y, last over z.

4.10 Local update
Local update requires two commands to be specified in the model file: LOCALUPDATE
and ITERATIONS. The first command simply specifies the name of the required in-
put file listing the cells where update is allowed to happen, the second command
specifies the number of iterations and the possible sizes of the update boxes used
during the iterations.

The input file must be specified as in this example:

LOCALUPDATE

maskslocalupdate.txt !Name of the local update mask file

;

The file format is, assuming n cells are allowed updated:

x1 y1 z1

x2 y2 z2

x3 y3 z3

...

xn yn zn

The coordinates x, y, z must refer to the same unit system as is used to define the
simulation box, see Section 4.2.

An implementation of conditional Markov mesh simulation with parameter estimation
25

Input parameters that control the iteration algorithm are specified as follows:

ITERATIONS

1000 !the number of iterations if do_iterate_ == true

25 !lxmin

25 !lymin

0 !lzmin

50 !lxmax

50 !lymax

50 !lzmax

The first parameter describes the number of iteration steps that are to be car-
ried out. The remaining parameters are understood as follows: Each step of the
Markov chain that defines the iterative process uses a connected set of cells B ⊆ G,
where G is the full grid. See Section 2.6 for a detailed description of the theory be-
hind the method. The present implementation uses a rectangular box for B. The
six parameters lxmin,..., lzmax defines this box according to the following algo-
rithm, which is used once for each step of the Markov chain:

1. Pick randomly one of the cells that are allowed to change facies during the it-
erative phase, i.e. a cell from the set C specified by the input file’s LOCALUPDATE,
provided the cell is not a well.

2. Pick randomly the size parameters lx, ly and lz, such that each parameter is
in the interval l ∈ [lmin, lmax].

3. Define a box with center in the picked cell, and sides of lengths 2lx+1, 2ly +1

and 2lz + 1. The set of cells within the box constitute B.

4. The set of cells that are updated during this iteration step is given by B1 ∪ C.

4.11 Fill in from coarse grid
If the main flow parameter only_kriging is set to true, coarse grid values from
file should be filled into a finer grid. The coarse grid values must be available
in a file called coarsegrid.txt. The format of this file should be identical to the
header-less output file from sequential simulation (see sections 4.2 and 5), and
the number of values should in 3D be 1/8 of the size of the present simbox (see
Section 4.2). The program will krige unsampled cells in the finer grid.

26 An implementation of conditional Markov mesh simulation with
parameter estimation

5 Program output

Depending on the main flow parameters the program produces various output
information in the form of files. The names of these files all start with the prefix
specified in the command REALIZATIONS. All relevant file directories must be set
up before simulation. Apart from the prefix, the output file names are:

· If estimate == true:
coeff.txt: Estimated model parameters. The file header contains the se-
quential neighborhood parameters.

· If only_kriging == true:
0.txt: Resulting configuration of the fine grid.

· If only_kriging == false and use_wells == false/true and use_seismic ==
false/true:
<realization number>.txt: Resulting grid configuration for the indicated
realization number.

· If use_wells == true:
correlations.txt: Correlations of the training image.

· If do_iterate == true:
<realization number>.txt: Final grid configuration for the indicated real-
ization number.

<realization number>_<iteration number>after.txt: Intermediate grid con-
figurations, written every 10th iteration.

<realization number>_faciesCount_n<iteration number>_N<total number

of iterations>.txt: Facies count for each facies for each cell. Written every
1000th iteration and at the end of the iterations. The listing is according to
the rule: first run over cell index, then run over facies.

accept.txt: Statistics for the accept rate. Updated each 1000th iteration and
at the end of the iterations, each line being on the format [<realization

number> <number of tried iterations> <number of accepted iterations>].

In addition, for future reference all relevant input files are automatically copied to
the chosen output directory. The possible files are: model.txt, coeff.txt, welldata.txt,
seismicattributes.txt, initialgrid.txt, and maskslocalupdate.txt.

An implementation of conditional Markov mesh simulation with parameter estimation
27

6 Results

This section shows a few results that have been obtained by using the program.
The main objective is to illustrate possible usage, not to discuss in detail the va-
lidity of the results. All illustrations were created from the data of the program’s
output files using MatLab.

Unconditional simulation
Figure 6 displays two different 2D training images, one characterized by chan-
nels, the other by more irregular sand objects. These training images have been
used to estimate model parameters as described in these notes, and hence de-
fine two different Markov mesh models. These Markov models have in turn been
used for simulation, be it unilateral unconditional or conditional, or local update.

Figure 6. Two training images.

Figure 7 shows one random sample for each model. Visual comparison to the
training images shows that the implemented method for parametrization and
parameter estimation in these cases is able to reproduce the characteristics of the
training image quite well.

Figure 7. Results from unconditional simulation of estimated Markov mesh model.

28 An implementation of conditional Markov mesh simulation with
parameter estimation

Unilateral conditioned simulation
Figure 8 shows two random samples from conditional simulations using the mod-
ified unilateral Markov mesh model of Equation (7). Conditioning is done with
respect to a well in the middle of each figure. Comparing these two samples with
the samples from the unconditional Markov mesh models, see figure 7, there is no
observable statistical difference between the samples of the prior models and the
modified models. The only difference is that the modified Markov mesh models
locate sand objects correctly around the well position.

Figure 8. Results from conditional simulation using indicator kriging and estimated prior
model. Conditioned on object facies well in cell the center of the figure, the well being
indicated with a circle.

We can investigate the statistical properties in more detail by simulating many
realizations from one model, and then summarize the results. In particular, the
statistics of the modified Markov mesh model can be compared to the statistics re-
sulting from rejection sampling of realizations created by the prior Markov mesh
model. The approximation done when using indicator kriging is to be consid-
ered satisfactory if rejection sampling and modified Markov model give the same
statistical results.

Figure 9 displays the conditional marginal probabilities, for the channel model,
conditioned on object well (top row) and background well (bottom row). In each
case the well is located in the middle of the grid. The results from rejection sam-
pling are shown in the left column. The right column displays the results of con-
ditioned simulation using the modified Markov mesh model with indicator krig-
ing. Comparison to the rejection sampling gives the impression that the overall
results of the modified Markov mesh model are satisfactory.

Figure 10 displays results for conditioning on a channel edge, i.e. a transition
from an x = 0 well to an x = 1 well. Comparison to rejection sampling (left)
shows that the main features are well reproduced by the modified model (right).
In particular the results are good close to the wells.

An implementation of conditional Markov mesh simulation with parameter estimation
29

Figure 9. Conditional marginal statistics, displayed as the cell-wise probability p(xi = 1).
Left column: rejection sampling from prior; right column: indicator kriging with respect to
the well and two cells in the past path. Top row: well has facies x = 1; bottom row: well
has facies x = 0.

Figure 10. Conditioning on two neighboring wells, one with x = 0 in position (101,100),
the other with x = 1 in position (101,101). Cell-wise probability p(xi = 1). Left: rejection
sampling; Right: Modified unilateral Markov mesh model.

Local Update
The iterative model can be used to perform local update of an existing realization.
We illustrate this in Figure 11. The left hand side of the figure shows an example
of an initial grid configuration created by unconditional simulation. This realiza-
tion is to be updated with respect to a new well in grid position (126, 126). The
well position is indicated with a circle at the center of the figure. The value of
the well is supposed to be x = 1, which is not in agreement with the initial grid
configuration. Local update is to be carried out in an area A defined by the rect-
angular box shown in red in the initial grid. All cells outside A are fixed. The
iterative method, using block update, is now applied to this problem. The region
B used to generate a suggestion state for the Metropolis-Hastings algorithm is for
each element of the Monte Carlo chain a randomly drawn rectangle, and the cells

30 An implementation of conditional Markov mesh simulation with
parameter estimation

that satisfy i ∈ B ∩A are updated according to the algorithm.
The middle grid of Figure 11 displays a snapshot of the grid during the itera-

tive process. The channels have now been adjusted such that they are consistent
with the well data. In addition the channels nicely match the fixed part of the grid
outside the marked rectangle.

At the right hand side of Figure 11 we display the cell-wise statistics of the
grid after 3000 iterations. The figure illustrates that along the edges of the update
rectangle A the probabilities follow the conditioning provided by the cells out-
side the rectangle. Also conditioning to the well is good. The other areas of the
local update rectangle provide evidence that the mixing of the iterative process is
satisfactory. This conclusion follows from the fact that the cell-wise statistics tend
to smear out and match the marginal probability p(x = 1), only broken by areas
with a higher channel probability, areas that to a large extent obviously follow
from the edge and well conditioning.

Figure 11. Left: Initial grid configuration before local update; middle: snapshot of the grid
configuration during iterative process; right: cell-wise probability p(xi = 1) after 3000
iterations. The well position is indicated, but not conditioned to, in the initial grid. The
iterative process conditions on the well, which has facies xw = 1. The rectangle marks
the area of local update.

An implementation of conditional Markov mesh simulation with parameter estimation
31

7 Summary

These notes provide documentation for a prototype implementation of a Markov
mesh model. The implementation can estimate a statistical model from a training
image; simulate realizations from a given model, either unconditioned or condi-
tioned to well(s) and/or seismic data; update a given realization locally; or down
scale a realization.

The theoretical formulation of the implemented methods is provided, as well
as a detailed overview of the program’s input parameters and main work flows.
A few results were included for illustrative purposes.

32 An implementation of conditional Markov mesh simulation with
parameter estimation

A Examples of model files

We give here two examples of model files. In the first example the program is
supposed to estimate parameters based on a training image, then make 100 re-
alizations conditioned on well data. In the second example we show the model
file that will take a grid realization as input, then perform local update on this
realization. In reality, a likely situation is that Example 2 is carried out some time
after Example 1, and that one of the realizations created by Example 1 is desired
updated due to new well data.

Example 1
WORKFLOW

1 !estimate_

0 !only_kriging_

1 !use_wells_

0 !use_seismic_

0 !do_iterate_

;

REALIZATIONS

100 !Number of realizations

0 !Header 1 = true 0 = false

C:\Project\ !Output directory and prefix

;

SIMBOXDEFINITION

0 0 0 !x0, y0, z0

1 1 1 !dx, dy, dz

300 300 1 !nx, ny, nz

;

TI

C:\TrainingImages\channelTI.dat

250 250 1 !Size x y z direction

;

DIRECTION

0 !One way simulation

!1 !Back and forth simulation, top to bottom

!2 !Random

!3 !Main path is one way, subpaths vary between NWTOP and SETOP

;

FACIES

2 !number of facies

An implementation of conditional Markov mesh simulation with parameter estimation
33

;

NEIGHBOURHOOD

8 !X

8 !Y

1 !Z

1 !XY Diagnoals

1 !XZ Diagonals

1 !YZ Diagnoals

1 !XYZ Diagonals

;

TWOPOINT

6 6 ! XY plane lx ly

1 1 ! XZ plane lx lz

1 1 ! YZ plane ly lz

;

CONDITIONING

1 !variogram type !0 = spherical (2D), 1 = empiric (2D and 3D)

30 !variogram range Rx (empiric), variogram range (spherical)

30 !variogram range Ry (empiric), variogram subrange (spherical)

10 !variogram range Rz (empiric), variogram angle (spherical)

3 !maximum number of kriging neighbours

!1 !maximum number of kriging neighbours forward, used during iterations

!1 !maximum number of kriging neighbours backward, used during iterations

;

WELLDATA

welldata.txt !Name and location of the welldata file

;

Example 2
WORKFLOW

0 !estimate_

0 !only_kriging_

1 !use_wells_

0 !use_seismic_

1 !do_iterate_

;

REALIZATIONS

1 !Number of realizations

0 !Header 1 = true 0 = false

C:\Project\ !Output directory and prefix

34 An implementation of conditional Markov mesh simulation with
parameter estimation

;

SIMBOXDEFINITION

0 0 0 !x0, y0, z0

1 1 1 !dx, dy, dz

300 300 1 !nx, ny, nz

;

TI

C:\TrainingImages\channelTI.dat

250 250 1 !Size x y z direction

;

DIRECTION

!0 !One way simulation

!1 !Back and forth simulation, top to bottom

!2 !Random

3 !Main path is one way, subpaths vary between NWTOP and SETOP

;

FACIES

2 !number of facies

;

CONDITIONING

1 !variogram type !0 = spherical (2D), 1 = empiric (2D and 3D)

30 !variogram range Rx (empiric), variogram range (spherical)

30 !variogram range Ry (empiric), variogram subrange (spherical)

10 !variogram range Rz (empiric), variogram angle (spherical)

3 !maximum number of kriging neighbours

!1 !maximum number of kriging neighbours forward, used during iterations

!1 !maximum number of kriging neighbours backward, used during iterations

;

WELLDATA

welldata.txt !Name and location of the welldata file

;

LOCALUPDATE

maskslocalupdate.txt !Name and location of the local update masks file

;

ITERATIONS

1000 !the number of iterations if do_iterate_ == true

25 !lxmin

25 !lymin

0 !lzmin

50 !lxmax

An implementation of conditional Markov mesh simulation with parameter estimation
35

50 !lymax

50 !lzmax

!variable box to be used during local update, size (2*lx+1)*(2*ly+1)*(2*lz+1)

!only cells listed in input file set in LOCALUPDATE will actually be updated

;

36 An implementation of conditional Markov mesh simulation with
parameter estimation

An implementation of conditional Markov mesh simulation with parameter estimation
37

	Contents
	Introduction
	Main methods
	Markov mesh models
	Estimation
	Parameter reduction

	Simulation algorithm
	Well conditioning
	Seismic conditioning
	Local update

	Program structure
	Input parameters
	Main flow parameters
	Realizations
	Simbox definition
	Training image
	Direction - Path
	Facies
	Neighborhood
	Two-point interactions
	Higher-point interactions

	Well conditioning
	Correlation structure and shell search
	Well input file

	Seismic conditioning
	Local update
	Fill in from coarse grid

	Program output
	Results
	Summary
	Examples of model files

