# UART/RS232/RS485/USB/Ethernet Over Broadband Powerline Communication Transceiver Module

Homeplug based Serial Adaptor

McLaren

# **User Manual**

**April 2011** 

#### 1. Introduction

This document documents McLaren's broadband powerline communication module -McLaren (*5Mbps throughput on the powerline*). Based on the feedbacks of McLaren's narrow band powerline communication modem, broadband modems are consisted of a PLC-UART motherboard, UART-RS232 daughter board, UART-RS485 daughter board, UART-USB daughter board, UART-Zigbee daughter board and UART-Ethernet daughter board.

On the PLC-UART motherboard, there is a 20-pin 2mm spacing receptacle, users can choose different daughter boards based on the interface needs. This 20-pin receptacle is also pin-compatible with Xbee module from http://www.electronics123.com/s.nl/sc.18/category.240506/.f

The PLC-UART motherboard also support DIP by optional pins that can be used to directly plug to user's board without doing screwing. The interface board signals such as RS232/RS485/USB signals are also routed back to motherboard through the 20-pin receptacle, and again to users' board through these DIP pins.

Powerline communication transceiver modules are designed to send and receive serial data over the powerline network. PLC-UART is designed to transparently move serial data over the powerline network and achieves the goal of replacing cables by the ubiquitous powerline network.

2

## 2 Features



HSPLCUART (McLaren Hi-Speed PLCUART)

- AC and DC powerline Communications
- Fully transparent mode, plug and play coming out of the box without the need to do any programming.
- Homeplug 1.0
- 5Mbps throughput on the power line
- Built-in error correction codes.
- AT commands used for advanced configuration.
- 3.3V TTL UART, Optional RS232, RS485. USB, Ethernet, Zigbee interfaces
- RoHS

# 3 Specifications

| Product name           | High Speed PLC-UART Transceiver Module      |  |
|------------------------|---------------------------------------------|--|
|                        | (Homgplug serial adapter)                   |  |
| Interface              | 3.3V TTL UART                               |  |
|                        | Optional interface cards:                   |  |
|                        | RS232 (model/ordering no: UART-RS232)       |  |
|                        | RS485 (model/ordering no: UART-RS485)       |  |
|                        | USB (model/ordering no: UART-USB)           |  |
|                        | Ethernet (model/ordering no: UART-Ethernet) |  |
|                        | Zigbee                                      |  |
| Communication Line     | 230VAC/50Hz                                 |  |
|                        | 110VAC/60Hz                                 |  |
| Voltage                | 0-400V DC                                   |  |
| Supply Voltages        | 5V, 2A DC                                   |  |
| Modulation             | OFDM (Homeplug 1.0 Compatible)              |  |
| Error Correction       | FEC (Forward Error Correction)              |  |
| Data rate on Powerline | 5Mbps (throughput)                          |  |
| Maximum packet data    | 200bytes                                    |  |
| length                 |                                             |  |
| Transmission distance  | 300 feets (no repeater)                     |  |
| Support nodes number   | 65535                                       |  |
| LED                    | Power Line Activity LED                     |  |
| _                      | system LED                                  |  |
|                        | serial port LED                             |  |
|                        |                                             |  |

# 4 Applications

- AMR
- Industry manufacture and control
- Safeguard, fire alarm, smoke alarm
- Collect and transmit instrument data
- Safeguard and monitor
- Home automation
- Solar/Wind electricity generation system
- Low latency servo control

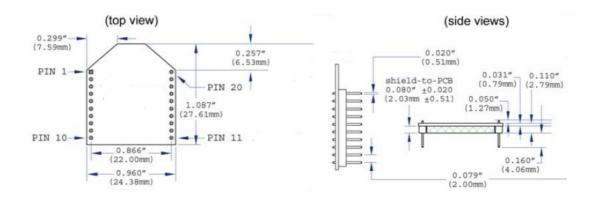
# **5 Connectors Description**



The AC or DC powerline line can be connected to the L/N connector denoted on the above picture.

The 5V/2A DC power supply is connected to the white/black connector, or the DC barrel connector on the new board.

# 6 LED


| LED1 | Powerline Collision                                   |
|------|-------------------------------------------------------|
| LED2 | Powerline Activity                                    |
| LED3 | Powerline Link                                        |
| LD1  | Ethernet Link                                         |
| LD2  | Ethernet Full/Duplex LED                              |
| LD3  | Ethernet Link                                         |
| LD4  | UART receiving activity                               |
| LD5  | UART sending activity                                 |
| LD6  | When used with one of our Zigbee module, ON means not |
|      | zigbee network not formed or joined, OFF means formed |
|      | zigbee network or joined network                      |
| LD7  | When used with one of our Zigbee module, ON means not |
|      | binding, OFF means binding                            |

#### 7 Definition of DIP Pins

```
1) Module=X_BEE:
  J7_1(X1) \rightarrow NONE
  J7_2(X2) -> NONE
  J7_3(X3) -> NONE
  J7_4(X4) -> NONE
  J6_1(GD) -> GND
  J6_2(TX) -> UART_TX TTL
  J6_3(RX) -> UART_RX TTL
2> Module=UART_RS232:
  J7_1(X1) -> GND
  J7_2(X2) -> UART_TX RS232
  J7_3(X3) -> UART_RX RS232
  J7_4(X4) -> NONE
  J6_1(GD) -> GND
  J6_2(TX) -> UART_TX TTL
  J6_3(RX) -> UART_RX TTL
3) Module=UART_RS485:
  J7_1(X1) -> GND
  J7_2(X2) -> UART_485_A
  J7_3(X3) -> UART_485_B
  J7_4(X4) -> NONE
  J6_1(GD) -> GND
  J6_2(TX) -> UART_TX TTL
  J6_3(RX) -> UART_RX TTL
4) Module=UART_USB:
  J7_1(X1) -> USB_GND
  J7_2(X2) -> USBDP(+)
  J7_3(X3) -> USBDM(-)
  J7_4(X4) -> VBUS
  J6_1(GD) -> GND
  J6_2(TX) -> UART_TX TTL
  J6_3(RX) -> UART_RX TTL
```

# 8 Interface Card Socket Definition and Layout

The pin layout of interface cards is compatible with Xbee modules. The socket on the PLCUART motherboard can be used to receive any interface card with the pin-out shown below:



Pin assignment of the interface card socket:

| Pin # | Name  | Direction                      | Description            |  |
|-------|-------|--------------------------------|------------------------|--|
| 1     | VCC   | -                              | 3.3V Power supply      |  |
| 2     | DOUT  | Output                         | UART Data Out          |  |
| 3     | DIN   | Input UART Data In             |                        |  |
| 4     | EX4   | Depending on Route daughtercar |                        |  |
|       |       | model of daughter              | final interface signal |  |
|       |       | card                           | back to mother board,  |  |
|       |       |                                | and to the DIP pins to |  |
|       |       |                                | user's board           |  |
| 5     | RESET | Input                          | Module Reset           |  |
| 6     | EX3   | Depending on                   | on Route daughtercard  |  |
|       |       | model of daughter              | final interface signal |  |
|       |       | card                           | back to mother board,  |  |
|       |       |                                | and to the DIP pins to |  |
|       |       |                                | user's board           |  |
| 7     | EX2   | Depending on                   | Route daughtercard     |  |
|       |       | model of daughter              | final interface signal |  |
|       |       | card                           | back to mother board,  |  |
|       |       |                                | and to the DIP pins to |  |
|       |       |                                | user's board           |  |
| 8     | EX1   | Depending on                   | Route daughtercard     |  |
|       |       | model of daughter              | final interface signal |  |

UART/RS232/RS485 Over Wide Band Powerline Communication Transceiver Module

|    |           | card   | back to mother board,  |  |
|----|-----------|--------|------------------------|--|
|    |           |        | and to the DIP pins to |  |
|    |           |        | user's board           |  |
| 9  | SLEEP     | Input  | Pin Sleep Control Line |  |
| 10 | GND       | -      | Ground                 |  |
| 11 | Unused    | -      | -                      |  |
| 12 | Unused    | -      | -                      |  |
| 13 | Unused    | -      | -                      |  |
| 14 | Unused    | -      | -                      |  |
| 15 | Associate | Output | Associated Indicator   |  |
| 16 | Unused    | -      | -                      |  |
| 17 | Unused    | -      | -                      |  |
| 18 | Unused    | -      | -                      |  |
| 19 | Unused    | -      | -                      |  |
| 20 | Unused    | -      | -                      |  |

#### 9.1 Command Mode

#### 9.1.1 Enter command mode

The module can be put into command mode by sending "+++" through serial port. The module will respond with an "ok". In order to prevent the situation where the user data" +++"mistakenly triggers the command mode, there must be no serial port data input one second before and after the receiving of "+++". At the same time, the gap between the three"+" should not be more than one second, otherwise, it will be considered as a data rather than a command.

#### 9.1.2 Exit command mode

There are two approaches to exit command mode. One way is to input command "ATEX". The other is to timeout and automatically exit. In either case, the modules will response "exited". The timeout value can be set by command "ATTO"

## 9.2 Arguments and Responses

## 9.2.1 Arguments and Responses

For all the commands with arguments: if the parameters are correct, the module will respond with an "ok". Otherwise, the modules will response with an "invalid para". If there are no arguments associated with the commands, it will be treated as polling modem and the module will respond with the existing arguments residing in the module.

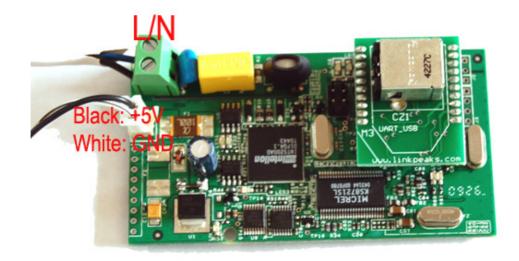
## 9.2.2 Commands without Arguments

There are four commands without arguments.

- + + +: enter command mode; will directly return "ok".
- ATEX: exit the command mode, return "exited".
- ATRS: software reset, will reset the module immediately, no return.

## 9.3 Modified arguments

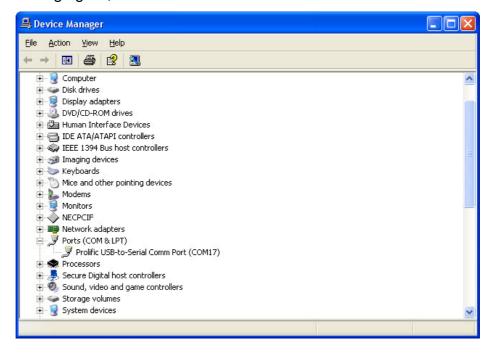
Except for serial arguments, the modified arguments will be immediately saved into eeprom and take effect. The serial arguments won't take effect immediately after being modified to avoid user from modifying PC serial arguments before inputting command. Serial arguments will take effect through automatically resetting module when exiting the command mode.


# 9.4 Command List

| Command | Description         | Arguments                                                     | Detail Description                            | Default |  |  |
|---------|---------------------|---------------------------------------------------------------|-----------------------------------------------|---------|--|--|
|         | Control Class       |                                                               |                                               |         |  |  |
| +++     |                     | none                                                          | Enter command mode                            |         |  |  |
| ATEX    | Exit                | none                                                          | Exit command mode                             |         |  |  |
| ATTO    | Time out            | 1-30                                                          | Timeout value, unit: second                   | 5       |  |  |
| ATRS    | Reset               | none                                                          | Software reset                                |         |  |  |
|         | Communication class |                                                               |                                               |         |  |  |
| ATBD    | Baud Rate           | 1200, 2400,<br>4800, 9600,<br>19200, 38400,<br>115200, 384000 | Baud Rate                                     | 9600    |  |  |
| ATDB    | Data Bit            | 5,6,7,8                                                       | Data bit                                      | 8       |  |  |
| ATPA    | Parity              | N, O, E                                                       | Parity bit, $N = no$ , $O = odd$ , $E = even$ | N       |  |  |
| ATST    | Stop Bit            | 1,2                                                           | Stop bit                                      | 1       |  |  |

11 ....

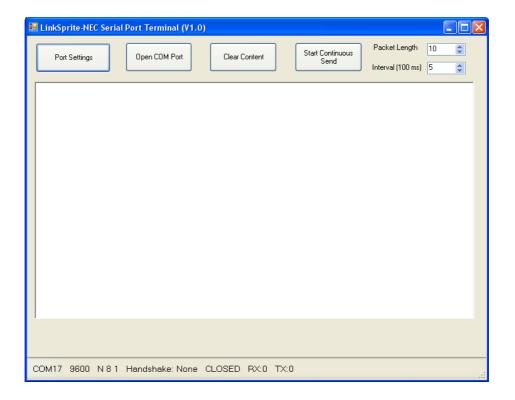
| Powerline Communication Class |                                           |         |                                                                                                          |   |
|-------------------------------|-------------------------------------------|---------|----------------------------------------------------------------------------------------------------------|---|
| ATRL                          | Communication<br>Role                     | 1,2,3   | 1= Receiver Only 2= Transmitter Only 3=Transceiver                                                       | 3 |
| ATDN                          | Communication<br>Domain.                  | 1-99999 | Only the nodes in same domain will receive the packets. ATDN will not be saved into EEPROM unless ATWT 1 | 1 |
| ATWT                          | If domain is<br>saved to eeprom<br>or not | 0,1     | Controls if domain is saved to EEPROM.                                                                   | 0 |


#### 10 Quick Start

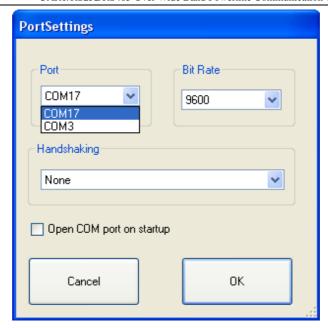


You need to install the NEC - serial port terminal software that is included in the CD that accompanies the PLC-UART by clicking setup.exe.

If you are using a USB to RS232 converter, you can use Device Manager tab to find out the COM port.

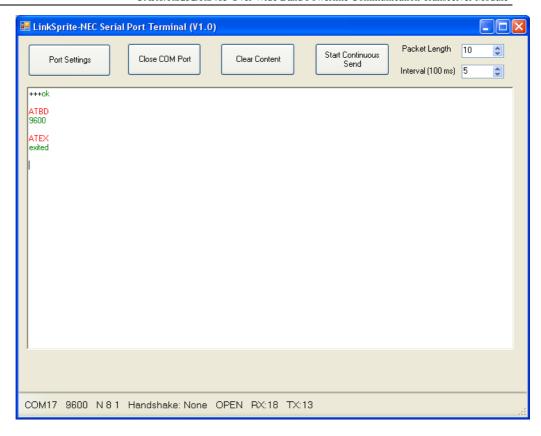

In the following figure, it's COM17.




Open the NEC serial port terminal by clicking program and then do the following:



-NEC serial port terminal will show up as:




Click the "Port Settings" button to configure the serial port:



From device manager, we know that the COM port we are using is COM17. The default baud rate for PLC-UART is 9600. Click "OK", and Click "Open COM Port" to open the COM port.

As shown in the following screen, by typing three '+' fast, we can enter into AT command mode to configure the module.



Next we can click "Start Continuous Send" to toggle continuous send and receive.

Electronics123.com, Inc. 102 East Park Ave Columbiana, OH 44408 www.electronics123.com

Sales: general@electronics123.com Support: support@electronics123.com

330.482.9944/888.549.3749