
llilll|||l|l|ll||ll|||llilll||||lilllllllllllllIllllllllllllllllllllillllll
US005477476A

United States Patent [191
Schanin et al.

5,477,476
Dec. 19, 1995

[11]

[45] Date of Patent:

Patent Number:

POWER-CONSERVATION SYSTEM FOR
COMPUTER PERIPHERALS

[54]

[75] Inventors: David J. Schanin, San Carlos; Richard
R. Billig, Los Gatos, of Calif.

[73] Assignee: Bayvievv Technology Group, Inc., San
Carlos, Calif.

[21]

[22]

[51]
[52]

Appl. No.': 91,643

Filed: Jul. 14, 1993

Int. Cl.6 G06F 1/32; G06F 3/03

U.S. Cl. 364/707; 364/492; 364/DIG. 1;
364/273; 364/273.1; 364/273.1; 364/273.3;

364/273.5; 395/750
Field of Search 364/421, 483,

364/492, 707, DIG. 1, DIG. 2; 395/750,
800; 340/310 A, 310 R

[58]

[56] References Cited

U.S. PATENT DOCUMENTS

4,663,539 5/1987 Sharp et al. .. 307/38
4,747,041 5/1988 Engelet a1. .. 364/200
4,835,706 5/1989 Asahi 364/492

4,907,183 3/1990 Tanaka 364/707

4,980,836 12/1990 Carter et al. 364/483
5,142,684 8/1992 Peny et al. ,. 395/750
5,214,785 5/1993 Fairweather 395/800

5,251,320 10/1993 Kuzawinski et al. .. 395/750
5,278,771 1/1994 Nyenya 364/492

5,283,905 2/1994 Saadeh et al. .. 395/750
5,309,563 5/1994 Farrand et al. 395/325 X

OTHER PUBLICATIONS

SCC User’s Manual, Zilog, Q4/92, pp. 1-1-4, 7-127-134.
Inside Appletalk, Apple Computer, Inc., Addison Wesley
Publishing Company, Inc., Reading, Mass., 1990, pp.\
I-l5-l7; l-3-6; 7-3-11; 10-2-12; 14-4-12, 19, 20, 29,
41-43.

,.

I

Microsoft MS-DOS User's Reference, Operating System
4.01, Microsoft Corporation, 1988, pp. 97-99, 104,
108-110.
PLC Printer Language Technical Reference Manual,
Hewlett-Paelard Part No. 33459-90903, USA, 1990, pp.
l-l-8; 9-1-7; 11-1-8; B-l-l2.
Postscript Language Reference Manual, Second Edition,
Adobe Systems Incorporated, Addison-Wesley Publishing
Company, Inc., Reading Mass., 1992, pp. 69-71, 524, 525,
611-613, 616, 620-624, 698, 699.
Microsoft Windows, Version 3.], User’s Guide for the
Microsoft Windows Operating System, Microsoft Corpora
tion, 19921, pp. 199-215, 224-225.
“PowerSwitch LT” (Brochure) Radiant Enterprises, Inc.,
undated, two pages.
“Common Sense/CNX I”, (Brochure) Radiant Enterprises,
Inc., undated, one page.

Primary Examiner—Edward R. Cosimano
Attorney, Agent, or F irm—Clifton L. Anderson

[57] ABSTRACT

A power conservation system (PCS) includes a data handler,
a controller and a power switch. The data handler is located
between a host network and a network printer, while the
power switch is between an AC power source and the
printer’s power input. The PCS can thus shut down the
printer during periods when no data is being sent to the
printer/The PCS monitors data to and from the printer,
allowing it to track the printer’s state and to capture its
network identi?cation. State tracking permits the PCS to
emulate the printer when it is down and when it is booting.
Additionally, the information stored in a state memory of the
data handler can permit the printer’s last ready state to be
reconstructed after it turns on and boots to a ready state. In
some cases, the data handler can answer network requests
withoutfturning on the printer. Thus, the PCS provides for
effective power conservation while remaining invisible to a
user.

6 Claims, 4 Drawing Sheets

HOST 1g: :
10o ---------------------- "zi

DATA
HANDLER
m

HOST
INTERFACE

1.1a

EMULATOR
m

l l f
BF CF

CONTROLLER ‘54 DATA STATE
1E. BUFFER MEMORY

E in
cm. \ BE

150 j I 134/] . \144

“so 152 TATE

ACKEH
up.

POWER I I
SWITCH PRINTER
E INTERFACE

o“ \ > 12°
142

170 130/ 132\ \m]

US. Patent Dec. 19, 1995 Sheet 1 0f 4 5,477,476

r -|

I HOST 1_1_0 :
10o ' ---------------------- - - I- -- -'

DATA
HANDLER
1%

HOST
INTERFACE
M

EMULATOR
M

¢ ‘
|
CP

ooNTrggLLER STATE
__ MEMORY

l2_2_
CNTL

134 /
\144

STATE
TRACKER

1L5

PowER Y
SWITCH PRINTER

1_o_2_ INTERFACE
ON > 1%

142\ F
170 130/ 132\ \140

................... _-._,

I PRINTER Q2} RDY -

US. Patent

200

Z

Dec. 19, 1995 Sheet 2 of 4

DATA
ACTIVITY

20_2

RESTART
TIMEOUT
TIMER
2E

PRiNTER
2_1_2.

OFF ON

T
TURN ON A

21_4

figure 2

PRINTER
2_2Q

OFF ON

5,477,476

STATE
_2_2_2

Y

RECOVERABLE

N

V
‘ TIMEOUT?

2%
Y N

i
TURN OFF

" 225.3.

US. Patent Dec. 19, 1995 Sheet 3 of 4 5,477,476

100

ADD D
NC -RD
& > sRAM

ROM 'WR b &

3.52 ‘DATA >

i I
I I

I HOST i
388 : 1Q '

‘60L HOST <—-4———>- i
INTERFACE ‘ g ;

1L2 """ "

[T386
PRINTER ; ----- --|

Y INTERFACE 39o . .
12o <——3——>' -
— -PR|NTER

AC PowER : 1o_s
£> RELAY ’ :

?gure 3

5,477,476
1

POWER-CONSERVATION SYSTEM FOR
COMPUTER PERIPHERALS

BACKGROUND OF THE. INVENTION

The present invention relates to computer systems and,
more particularly, to a system for emulating a computer
peripheral, for example, to provide for power conservation.
A major objective of the present invention is to provide for
shutting down a printer and restarting it when needed in a
manner invisible to a computer user.

The proliferation of personal computers has generated a
dramatic increase in electrical power consumption. Several
factors have contributed to this increased demand: 1) the
increase in the number of personal computers; 2) moderate
increases in the power required per personal computer; 3)
increases in the number of computer peripherals; and 4) the
increased power requirements of certain computer periph
erals. The effects of this increased consumption have been
to: 1) increase per employee costs for employers; 2) require
utilities to increase electrical power generation and delivery;
and 3) require major upgrading of electrical distribution
systems within buildings. For these reasons, efforts are being
made to reduce the power requirements of computer sys
tems.

The laser printer has been a major contributor to the
increased demand for electrical power. Most laser printers
consume more than 800 watts while printing; moreover, they
can consume between 90 and 240 watts in standby mode.
These ?gures contrast with those of the previously prevalent
impact printers: 200 watts during printing and 25 watts or
less during standby.
The increase in standby power is particularly costly. The

estimated average duty cycle for printers is 20% during the
working day. Accordingly, laser printers can consume about
200 watts during the 80% of the working day that they are
not printing. Furthermore, while computer systems are typi
cally shut down overnight, laser printers are often left on.
Shared network printers that are located in a common area,
rather than a user’s o?ice, are especially likely to remain on
overnight. Factoring in such “left-on” power consumption,
the standby power utilization easily exceeds power con
sumption during printing.

There have been several attempts to address the problem
of power consumption by computer peripherals when they
are not being used. A “computer-monitoring” power-conser
vation system (CM-PCS) detects activity at the computer by
monitoring for computer input (keyboard or mouse) activity.
The peripheral is shut down after “long” intervals of inac
tivity, and turned on when such activity is detected. A
CM-PCS eifectively reduces after hours consumption by a
peripheral dedicated to a single computer.
A CM-PCS is less effective at limiting power consump

tion during working hours. A computer user may spend
hours typing on a keyboard without printing; during this
typing the CM-PCS leaves a laser printer in standby mode.
Thus, such a CM-PCS does not address effectively the
power consumption problem entailed when the peripherals
sit idle despite use of the host computer.
The problem of working-hours power control is compli

cated by the fact that printers store state information in
volatile memory; this state information is lost when the
printer is shut down. For example, many applications load
software fonts into a printer. In some cases, “temporary”
fonts are loaded and then deleted when the job that required
them is completed. In other cases, “permanent” fonts are

10

15

25

35

55

60

65

2
loaded on the assumption that they may be used for multiple
print jobs. While there are provisions for deleting permanent
fonts while the printer is on, they typically remain in the
printer’s memory until the printer is shut down. If the printer
is shut down, the state must be restored when it is turned
back on. This “reinitialization” procedure can be quite time
consuming and disruptive to the user.

Moreover, applications that attempt to track the printer’s
state, e.g., permanent fonts, can lose track when a CM-PCS
shuts a printer down. This problem could be addressed by
designing software and hardware to be “PCS-aware”. How
ever, the industry-wide cooperation that this would require
is lacking.

“Networked peripherals” typically require further atten
tion to the problem of volatile state memory and permanent
fonts. Networked peripherals interface to a computer net
work, which in turn can be connected to a number of
computers. The peripheral can then be shared by as many
computers as the network can support. Since each computer
can affect the peripheral’s state information, e.g., download
permanent fonts, it would be cumbersome for each computer
to track the state of each networked peripheral. Accordingly,
the ability to respond to inquiries regarding peripheral states
is built into some networked peripherals. This ability has
been omitted from most “dedicated” (non-networked)
peripherals that are designed to be slaved to a single “mas
ter” computer. (If the master computer is on a network, other
networked computers may be able to access the peripheral
through the master computer.)

Networked peripherals, like networked computers, have
network identities that permit them to be distinguished from
other devices on the network. Network identities can take
the form of addresses and/or names. An address is usually a
number assigned to a device. Some networks require a user
or administrator to assign unique addresses to each network
device. A more ergonomic approach is to provide each
device with a programmable descriptive name. This name
can be used instead of a numeric address, or else, the
network protocol can automatically assign addresses to
names. The user’s responsibility in such a case is to change
device names when necessary to avoid duplication.

Apple LaserWriters, and other Apple LocalTalk devices,
have both user-programmable names and network-assign
able addresses. The original Hewlett-Packard LaserJets were
dedicated printers, while the original Apple LaserWriters
were primarily networked peripherals. Over time, more
printers have been designed for use both as networked and
as dedicated peripherals.

In general, it would be impractical for a CM-PCS to
monitor every computer sharing a networked peripheral.
Instead, several identity-sharing power-conservation sys
tems (IS-PCSs) have appeared that can be installed in a
network and programmed with the same network identity as
the printer; the IS-PCS can monitor network tra?ic
addressed to the printer, and control the power to the printer.

IS-PCSs can be burdensome in that the user must program
the IS-PCS so that it has the same address and/or name as the
printer. This in turn involves installing special software in at
least one of the networked computers. Any error in this
programming will result in operational misbehavior. Fur
thermore, reprogramming can be required when there are
changes in the network such as adding or replacing a printer.
This can be onerous in environments where the network
con?guration is not static.

Additionally, networked printers are typically shared by
many users, many of which may use the network’s capabil

5,477,476
3

ity of loading additional fonts into the printer. When the
printer is powered up by the IS~PCS, these fonts must be
reloaded over the network. This operation can occupy sig
ni?cant network and host computer bandwidth as several
megabytes of data are often involved.

Finally, once such a IS-PCS powers a printer on, it
relinquishes the printer address. Often a computer trying to
access the printer will “time-out” in the “boot” interval
between power on and readiness to communicate with the
network. The time-out will cause an error message to be
presented to the user, which may be confusing and annoying.
There are software packages that address this time-out
problem, but each software solution introduces additional
problems of compatibility with present and future software.
What is needed is a power-conservation system that

requires simple hardware connections and no computer
software additions or modi?cations, that once installed is
invisible to the user (avoids error messages), that can adapt
automatically to network changes, and can provide for
reinitializing a printer (e.g., reinstailing software fonts)
without tying up computer and network bandwidth.

SUMMARY OF THE INVENTION

The present invention provides a power-conservation
system (PCS) comprising a power switch, a data handler and
a controller. The power switch provides for control of power
to a peripheral device (e. g., a laser printer) having alternative
oif, boot and ready conditions. Herein, “oil” means power
off‘, “ready” means ready to accept data, and “boot” refers to
a transition condition after power on and before ready.

The data handler includes ready indicator means (e.g., its
interface with the device or a timer) that indicates when the
device is ready to accept data. The data handler also includes
an emulator for generating responses to transmissions from
the host system that, when viewed from the host system,
could have been generated by the device. The emulator
generated responses occur not only while the device is off,
but also during the boot interval. When the device is ready,
the emulator generally defaults to the device for a response
to host inquiries.
The controller monitors the data activity of the data

handler. If the device is off and data activity begins, the
controller commands the power switch to turn on the device.
If the device is ready and no data is received, the controller
begins a time-out routine. If, during the predetermined
time-out interval, there is no data activity, the controller
commands the power switch to turn off the device. Timing
out can be inhibited when the data-handler has insui?cient
information to reconstruct the state of the printer.

The data handler can include a data buffer through which
all data destined for the device ?ows. The data buffer
provides for a delay in the transmission of data received by
the data handler to the device. By accepting the data into its
buffer, the PCS can make it appear to the host that the device
is receiving the data. Where the capacity of the data buffer
is less than the capacity of the device, the emulator can
signal the host to minimize the data transmission rate.
A state tracker can monitor the data from the host system

and extract data that would affect the device’s state. For
example, permanent fonts and subroutines to be used for
more than one print job would be extracted. The state tracker
would process such state data and store the results in the
state memory. When the device is turned off, its volatile state
information is lost, but the information necessary to recon
struct this state information remains stored in the data

15

20

25

35

50

55

65

4
handler’s state memory. During succeeding off and boot
conditions, the emulator can access the state memory to
answer state speci?c inquiries from the host. Once the ready
condition is reestablished, and before data in the data buffer
is transferred to the device, the emulator uses the state data
to restore the device to its state at the time of the most recent
shut down.

Not all device state information is determined by host
transmissions. For example, some network printers establish
their own network addresses that they can transmit to a host
network. This address information is typically preserved
while the printer is off. Preferably, the state tracker identi?es
such device-generated state information for recordation in
the state memory. The emulator can then access this infor
mation to properly answer address-speci?c inquiries from
the host when the device cannot.

The present invention provides several advantages over
the prior art. Installation is simple. Instead of being con
nected to the device, the host is connected to a host interface
of the PCS. Instead of being coupled to an AC wall outlet,
the AC plug of the device is plugged into an AC outlet of the
PCS, which is plugged into the wall outlet. In the preferred
embodiments of the present invention, no setting of switches
on the device and no software setup are required. This
contrasts with prior art PCSs for networks in which separate
hardware or software procedures are required to establish
the appropriate address for the PCS.

In some networks, adding a network device can cause
existing devices to change their network addresses. The
prior art would require user intervention to change the PCS
address. The present invention provides for this change of
network address to occur automatically.

Prior art PCSs would turn the power on to a device and
then allow the device to resume control of the data path.
Even in simple (non-network) con?gurations, this can cause
an error message to be returned to the user. The error
message can result from a “not ready” signal or from a
time-out because data is not accepted as the device is
booting. The user would likely be annoyed and/or confused;
at best, the user would have to try the transmission later. The
present invention provides emulatyion during booting; this
permits the PCS, for example, to send a “ready but busy”
signal to the host. This will delay, if not prevent, an error
indication being returned to the user. Where the PCS
includes a data bu?’er, it appears to the host that data is being
accepted by the device. The emulator can slow data trans
mission through busy signals or slow handshaking where the
data buffer is too small to accommodate an entire transmis
sion.

The data tracking function incorporated by the present
invention permits the PCS to respond to device speci?c
requests (like “What fonts are stored in printer memory”).
Prior art devices cannot answer such inquires. Typically,
they turn on the device to provide for answering such
inquires. If no further actions are required, the power on
cycle nay be wasted. The PCS of the present invention can
answer such questions without powering the device on.
Thus, in this additional respect, the PCS is more ef?cient at
conserving power than are prior art devices.

Furthermore, the present invention provides for storing a
printer state during shutdown and restoring the printer state
after booting. In the prior art, since the host “believes” that
no shut down has occurred, it is misinformed as to the device
state; this can cause the device to act diiferently than
predicted by a host application. The re-initialization function
of the PCS of the present invention solves this problem.

5,477,476
5

These and other features and advantages of the present
invention are apparent from the description below with
reference to the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of a power-conser
vation system in accordance with the present invention.

FIG. 2 is a ?ow diagram of a controller of the power
conservation system of FIG. 1.

FIG. 3 is a component block diagram of the power
conservation system of FIG. 1

FIG. 4 is a block diagram of a non-network realization of
the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In accordance with the present invention a power-conser
vation system (PCS) 100 comprises a power switch 102, a
data handler 104, and a controller 106, as shown in FIG. 1.
PCS 100 is designed to control a network printer 108 on a
host network 110. (For example, the printer can be an Apple
LaserWriter on an Apple LocalTalk host network.) Printer
108 has three alternative conditions: power oif (“off”),
“boot” and “ready”. The “ready” condition has two subcon
ditions: “ready and available” for communication and
“ready but busy” while processing a job.
Power switch 102 couples and decouples printer 108 to

AC power as commanded by controller 106. Power switch
102 is a relay; alternatively other power switching devices
such as silicon-controlled recti?ers (SCRs) can be used.
Controller 106 is coupled to data handler 104 to determine
whether or not data activity is present. Data activity can
include: an indication from a host that it wants to send data,
data transmission from host 110, and data transmission from
PCS 100 to printer 108.

Data handler 104 functionally comprises a host interface
112, an emulator 114, a data bu?er 116, a state tracker 118,
a printer interface 120, and a state memory 122. There are
three data paths through data handler 104. A host-data path
130 extends from host 110, through host interface 112,
through emulator 114, through data buffer 116, through state
tracker 118, through printer interface 120, to printer 108. A
printer-data path 132 extends from printer 108, through
printer interface 120, through state tracker 118, through
emulator 114, through host interface 112, to host 110. A
state-data path 134 extends from state tracker 118 through
state memory 122 to emulator 114.
PCS system 100 includes a ready status path 140 from

printer 108, to printer interface 120. In practice, when printer
108 is booting or ready, its ready information is reliable, but
when printer 108 is off, the ready information may not be
reliable. Power switch 102 provides an “on” status output
along line 142 to printer interface 120. (To correspond more
closely to the hardware perspective, it might be more
appropriate to specify that controller 106 provides the “on”
indication; since FIG. 1 is functional and the division of
tasks somewhat arbitrary, an aesthetic choice is made to
show the “on” indication coming frompower switch 102.)
Printer interface 120 ANDs the “on” status with the “ready”
status to provide a “confirmed ready” signal to emulator 114
along line 144.

Buffer 116 provides a “buffer empty” signal BE along line
150 to controller 106, which uses the “buffer empty” signal
to monitor data activity through data handler 104. The

25

35

50

55

60

65

6
“buifer empty” signal is also provided, along a line 152, to
printer interface 120 so that it knows when to stop requesting
data. State memory 122 provides a “state complete” (CP)
signal to controller 106 via a line 154. This signal indicates
whether or not the information in state memory 122 is
su?icient to reconstruct the state of printer 108 if it is shut
down and restarted.

Controller 106 controls power switch 102 via control line
(CNTL) 160. Power switch 102 accordingly supplies or
withholds power along power line 170 to printer 108.
The function of controller 106 is ?ow-charted in FIG. 2 as

a method 200. Controller 106 monitors data activity through
data handler 104 at 202. Conveniently, this monitoring is
done by detecting the value of buffer empty line 150. Note
that all branches of method 200 end with implied returns to
monitoring step 202.

If there is data activity, controller 106 restarts its timeout
timer at step 210. Controller 106 considers at step 212 the
condition of printer 108. If printer 108 is off, it is turned on
at step 214. If printer 108 is on, its power condition is not
changed. “On” means booting or ready. Controller 106 does
not and need not distinguish between boot and ready. In the
case of data activity, for example, it is desirable to allow the
boot and ready conditions to continue. Step 210 of restarting
the timeout timer can be implemented anytime between the
detection of data activity at step 202 and the next return to
step 202 from step 212 or step 214.

If there is no data activity, controller considers at 220 the
condition of printer 108. If printer 108 is off, controller 106
does not change the power condition of printer 108. If
printer 108 is on, controller 106 considers at 222 the
completeness of state memory 122. If the indication is that
the state of the printer is unrecoverable, controller 106 does
not change the condition of printer 108.

If the state information is sui?cient to reconstruct the state
of printer 108, controller 106 considers, at 224, whether or
not a time-out has occurred. If a time-out has not occurred,
controller 106 does not change the condition of printer 108;
if a time-out has occurred, controller 106 shuts off printer
108 at 226.

In general, it would be undesirable to turn 011“ printer 108
while it is booting. A tum-01f during boot could be prevented
by providing a ready indication to controller 106. In prac
tice, this is not necessary as long as the time-out interval is
longer than the boot interval. Furthermore, in most cases,
there is data activity during booting.
The operation of PCS 100 is further described using an

illustrative sequence of events. PCS 100 is installed between
printer 108 on the one hand, and host 110 and an AC source
on the other. The three are turned on in the following order,
PCS 100, printer 108 and host 110.
As soon as it is “ready”, printer 108 engages in a network

dialogue to ensure that it assumes an address consistent with
all other equipment of host 110. This activity is monitored by
data handler 104 so that when printer 108 announces its
selected address, this announcement is detected by state
tracker 118 and stored in state memory 122.

Shortly after network addresses are established, a com
puter of host 110 requests whether printer 108 has fonts T
and P in its volatile memory. Host interface 112 passes the
request to emulator 114. Emulator I14 determines from
ready path 144 that printer 108 is con?rmed ready. Emulator
114 forwards the request to data buffer 116, which forwards
the request to printer interface 120, which forwards the
request to printer 108. Printer 108 responds in the negative
along printer-data path 132 through printer interface 120,

5,477,476
7

through state tracker 118, through emulator 114, through
host interface 112, to host 110. Due to the activity of data
buffer 116, the “buffer empty” indication is negative, and the
time-out timer is repeatedly reset.
The computer sends fonts T and P, with indications that T

is to be a temporary font and P is to be a permanent font. The
font data is directed along path 130 to printer 108. State
tracker 118 analyzes the throughgoing data, and determines
that P is a permanent font. Accordingly, state tracker 118
stores a copy of permanent font P in state memory 122.

To save memory space, state tracker 118 stores only an
identi?er for temporary font T in state memory 122, leaving
out the description of font T. State tracker- 118 sets the
“complete” indicator to negative. Thus, printer 108 will not
be shut down while a temporary font is installed. (Alterna
tively, state tracker 118 can store temporary font T and delete
it after the next print job.) Fonts T and P are stored in printer
108. The computer sends a document to be printed along
host-data-path 130.
When document printing is completed, printer 108 deletes

temporary font T, state tracker 118 resets the CP indicator to
positive, and buffer 116 sends a “buffer empty” signal along
line 150 to controller 106, which thus allows a timeout to
progress. Before the timeout is completed, a second print job
arrives from the computer along host-data path 130, through
buffer 116 and to printer 108. The second print job contains
no state information, so it is not acted on by state tracker 118.

As the second print job is completed, data buffer 116
empties. A “buffer empty” indication is directed to controller
106, which allows the timeout to progress. State memory
122 continues its “complete” indication to controller 106,
indicating that the printer state is recoverable. The timeout
is completed, so controller sends an “off ” command along
line 160. Switch 102 turns off and printer 108 shuts down
(enters its “oil” condition). The ready indicator along path
140 is unreliable while printer 108 is off. However, an “off”
indication along 142 causes printer interface 120 to send a
con?rmed “not-ready” to emulator 114 along line 144.
The computer requests along host-data path 130 whether

printer 108 is available. Since emulator 114 “knows” that
printer 108 is not ready, it does not pass this data to data
buiTer 116. Instead, emulator 114 issues an “available”
response to host 110. The computer then requests a listing of
permanent fonts installed in printer 108. Emulator 114
inspects state memory 122, and responds that font P is stored
in printer 108.

There is then an extended period of inactivity. It is noted
that emulator 114 has been able to stand in place of printer
108, completing an exchange without activating printer 108.
Accordingly, considerable power savings can accrue from
this emulation.

Eventually, a print job arrives. The document to be printed
is progressively stored in buffer 116. Buffer 116 sets the
“buffer empty” indicator negative; accordingly, controller
106 commands power switch 102 to turn on printer 108.

During the boot period, which can be on the order of a
minute, printer 108 is not ready to respond to host 110.
During the boot period, emulator 114 sends delayed
acknowledgments to host 110. The delays are long enough
so that buffer 116 does not ?ll before printer 108 is ready.
The delays are short enough that host computer timeouts are
not completed so that transmission continues and the user is
undisturbed. If, for example, buffer 114 accepts one byte just
before each potential computer time-out, the interval over
which a computer time-out would occur is maximized.
During the boot period, emulator 114 responds to host
requests about the printer state.

20

25

30

35

50

SS

65

8
Generally, communication protocols specify maximum

and minimum transmission rates. Most equipment strives to
operate at the maximum transmission rate. The present
invention provides for operation at a minimum transmission
rate during booting.

Eventually, printer 108 is ready. Printer 108 then engages
in a network contention dialogue intended for host 110.
Emulator 114 assumes control of this dialog and forces
printer 108 to assume the address it had when it was shut
down. The old address is stored in state memory 122.
Typically, printer 108 stores its last address upon shutdown
and requests this address upon startup. In this case, emulator
114 simply con?rms that printer 108 can keep this address.
If for some reason, the old address is lost from printer
memory, printer 108 makes random address requests. Emu
lator 114 denies all such requests until the previously
assigned address is requested. At that point, emulator 114
grants the request to assume the address.

If while the printer is off or booting, another device
requests the address of printer 108, emulator 114 announces
that the address is already taken. The other device is then
forced to assume another address.

Once booting is complete, the ready signal from printer
108 is ANDed with the ON signal from power switch 102,
yielding a con?rmed ready indication to emulator 114.
Emulator 114 accesses state memory 122, where it ?nds
permanent font P and other con?guration information
regarding the state of printer 108 before shutdown. Emulator
114 sends this information to printer 108 to reconstitute its
state before shutdown, e. g., installing permanent font P.
Then the computer tries to down load several permanent

fonts. This font download ?ts within the memory of printer
108 but not in state memory 122. Accordingly, state tracker
118 lists the identities of the permanent fonts stored in
printer 108s, but discards the descriptions of the individual
characters. If state memory 122 is nearing over?ow, state
tracker 118 can dump the description of permanent font P as
well. State tracker 118 then sets the “complete” indicator
negative. This prevents controller 106 from shutting down
printer 108.

Subsequently, a computer instructs printer 108 to cancel
all permanent fonts. This instruction is executed by printer
108. State tracker 118 responds by canceling the relevant
font identi?cations from state memory 122. At this point, the
state memory is su?icient to reconstruct the state memory of
printer 108. Accordingly, state tracker 118 sets the “com
plete” indication positive. Controller 106 then will check for
timeout in response to data inactivity.
A hardware implementation of PCS 100 comprises a

microcontroller 382, a static random access memory
(SRAM) 384, a communication circuit 386, and AC power
switch 102. New numbers are required generally since there
is no direct correspondence between hardware and the
implemented process. There is a close correspondence for
power switch 102 (except, as noted earlier, the hardware
switch does not provide the “on” indication to printer
interface 120). Not surprisingly, control line 160 and power
line 170 can be identi?ed in FIG. 3. Communications circuit
386 is a Zilog 8530, approved for LocalTalk. Circuit 386
provides two communications channels generically labeled
channel A and channel B that correspond respectively to host
interface 112 and printer interface 120.
SRAM 384 corresponds generally to both data buffer

memory 116 and state memory 122. Microcontroller 382 is
an Intel 8051, which includes four kilobytes of read only
memory (ROM). Thus, rnicrocontroller 382 includes both a

5,477,476
9

processor and a program to be executed by the processor.
The program corresponds generally to controller 106, emu
lator 114 and state tracker 118. Bi-directional communica
tion lines 388 between host interface 112 and host 110
provide the functionality of host data line 130 and printer
data line 132 between these two units. Likewise, bi-direc
tional communications line 390 between printer interface
120 and printer 108 provides the functionality of data lines
130 and 132 as well as of status line 140 between these two
units.

A data bus (DATA), an address bus (ADD), a read line
(-RD) and a write line (-WR) all provide conventional
hardware functions. Data bus DATA provides all function
ality with PCS 100 of data lines 130, 132, and 134 as well
as of most of the status lines. The functions of the address
bus ADD and the -WR and -RD lines are not explicit in the
functional diagram of FIG. 1.
SRAM 384 has a one-megabyte capacity. This is suitable

for a moderate size network. Alarger memory can reduce the
number of situations in which shut down needs to be
inhibited because the printer state is not recoverable. How
ever, much smaller memories are usable. For example, eight
kilobytes provides for a practical buffer and a minimal state
memory.

It should be noted that the preferred controller, an Intel
8051, provides for 16-bit addressing using a multiplexed
address/data bus. This address multiplexing scheme is well
known, so the required additional components, e. g., latches,
are omitted from the ?gures.
Power conservation system (PCS) 400 is a modi?cation of

PCS 100 for non-network environments, for example, a
Microsoft Disk-Operating System (MS-DOS) environment
in which a printer is dedicated to an IBM-compatible
computer via a Centronics parallel port.
PCS 400 comprises a microcontroller 482, an SRAM 484,

an address decoder and signal generator 486, an AC power
switch 402, a host hardware interface buifer B10, a host
hardware interface latch L10, a printer hardware interface
bu?°er B08, and a printer hardware interface latch L08, as
shown in FIG. 4.
When host 410 sends data and a data strobe intended for

printer 408, the data and strobe are intercepted by micro
controller 482 (at its data port and interrupt port “-IRQ”,
respectively). The data strobe line is buffered before being
presented to the interrupt request line or being used to latch
the data. The data is treated generally as described with
respect to PCS 100. When rnicrocontroller 482 sends data to
printer 408, it loads the data byte-by-byte into latch L08.
Printer 408 requires a strobe bit to know when to look for
valid data. Since the data bus DATA and latch L08 are
designed for 8-bit transfers, they cannot accommodate an
additional strobe bit. Accordingly, a spare bit of host latch
L10 is used for the printer data strobe PDS.

Printer 408 sends ?ve types of status signals, intended for
host computer 410, i.e., “fault”, “paper error”, “acknowl
edge”, “select” (i.e., “online”) and “busy” (i.e., “not ready”).
These are intercepted by buffer B08 and microcontroller
482. The actual or emulated status signals are forwarded to
host 410 via latch L10. The status signals occupy only ?ve
of eight bits available on data bus DATA and latch L10. This
leaves room for PDS as discussed above. Address decoder
and signal generator 486 decodes addresses from microcona
troller 482 to select the correct bu?ers and latches for
communications with host 410 and printer 408.
The AC line, control line 460 and power line 470 operate

just as do their counterparts in PCS 100. In view of the

lo

20

25

35

50

55

60

65

10
simpler non-network dedicated relationship between host
410 and printer 408, only eight kilobytes of SRAM are
employed. Fewer downloadable fonts are used in a PC
environment, so additional SRAM may not be cost effective.

While the present invention has been described for use
with printers, it can apply to other peripherals as well.
Furthermore, the “peripheral device” can be an o?ice com
puter; the “host” can be a remote computer communicating
via a modem. A remote access via modem can be used to
trigger a PCS to wake up the o?ice computer so that it can
receive the message. Without the PCS, the o?ice computer
would have had to be left on to be accessible. There are
devices that will turn on an of?ce computer remotely, but
these suffer the same disadvantages as prior-art printer
PCSs. For example, the remote computer will time-out
before booting is complete. The present invention would
accept some of the data to prevent a time-out while the
computer boots.

It is also recognized that the data handler of the present
invention has applications other than power conservation.
For example, the data handler can be used to forward a print
job intended for a printer than is being repaired to another
network printer. This would be accomplished invisibly from
the perspective of the user. These and other modi?cations to
and variations upon the preferred embodiments are provided
for by the present invention, the scope of which is limited
only by the following claims.
What is claimed is:
1. A system for conserving power consumed by a device

designed to receive host data from a host, said system
comprising:

a power switch for turning on and shutting down said
device, said power switch being coupled to said device
for controlling the supply of power thereto, said power
switch turning on said device in response to an on
command, said power switch turning off said device in
response to an oif command;

a data handler for handling data activity, said data activity
including receiving said host data from said host, and
said data activity including transmitting said host data
to said device, said data handler including
ready indicator means for receiving a ready signal from

said device after a most recent on command and for
determining when said device is ready to accept data,
and

an emulator for, after a most recent on command but
before said device is ready to accept data, transmit
ting emulator data to said host that corresponds to
device data that could have been transmitted by said
device if a most recent off command had not been
issued; and

a controller for controlling said power switch, said con
troller being coupled to said data handler for determin
ing whether data activity is present, said controller
including a timer for determining in response to said
determination of data activity when a time-out interval
of data inactivity has elapsed, said controller being
coupled to said power switch for sending said on and
off commands thereto, where
said controller sends said on command when, while

said device is o?”, data activity is detected, and
said controller sends an o?’ command when, while said

device is on, said time-out interval of data inactivity
has elapsed.

2. A system as recited in claim 1 wherein said data handler
includes a data buffer into which said host data is stored

5,477,476
11

upon reception from said host and from which host data is
transmitted to said device.

3. A system as recited in claim 2 said causes the rate at
which said host data is received by said data buifer to be
slower while said device is booting to said ready state than
it is while said device is in its ready state.

4. A system as recited in claim 2 wherein said data handler
further includes:

a state memory for storing state data representing the most
recent ready state of said device, and

a state tracker for, while said device is ready, tracking the
state of said device,
said state tracker extracting state-pertinent data from

said host data,
said state tracker processing said state-pertinent data to

determine its effect on the device state,
said state tracker being coupled to said data buffer for

receiving host data therefrom,
said state tracker being coupled to said state memory

for storing state data therein, and
said state tracker setting an indicator in said state
memory indicating whether or not a present state of
said device can be restored if said device is shut
down and then restarted;

said controller being coupled to said state memory for
accessing said indicator so that said controller can
refrain from sending said oif command when said
present state could not be reconstructed if said device
is shut down and then restarted.

10

20

12
5. A system as recited in claim 2 whereinsaid data handler

further includes:
a state memory for storing state data representing the most

recent ready state of said device, and
a state tracker for, while said device is ready, tracking the

state of said device,
said state tracker extracting state-pertinent data from

said host data,
said state tracker processing said state-pertinent data to

determine its elfect on the device state,
said state tracker being coupled to said data buffer for

receiving host data therefrom,
said state tracker being coupled to said state memory

for storing state data therein,
said emulator being coupled to said state memory for

accessing state data therefrom, said emulator convert
ing said state data into initialization data for restoring
said device to the state represented in said state
memory, said data handler means transmitting said
initialization data to said device before host data in said
buffer is transmitted thereto when said device ?rst
becomes ready after said on command.

6. A system as recited in claim 5 wherein said state tracker
is coupled to said device for receiving device-state data
transmitted therefrom, said tracker using said device-state
data to update said state memory.

* * * * *

