SYNOPSYS'

FlexModel User’'s Manual

uuuuuuuuuuuuu

FlexModel User’'s Manual

Copyright © 2001 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

SmartModel, Model Access, Model Tools, SourceModel Library, LM-1200, and
Synopsys Eaglei are registered trademarks; MemPro, MemSpec, MemScope,
FlexModel, LM-family, LM-1400, Logic Model, Model Source, and SourceModel are
trademarks of Synopsys, Inc.

All company and product names are trademarks or registered trademarks of their
respective owners.

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Contents

Contents

Preface ... 9
About ThisManual e e e 9
Related DOCUMENES . ..ottt e 9
Manual OVerVIeW e 10
Typographical and Symbol Conventions o, 10
GeEtiNgHE D oo 11
The SynopsysWebSIte e e e 12
Synopsys Common Licensing (SCL) DocumentSet 12
COMMIENES? . 12
Chapter 1
FlexModel OVerview o e 13
What AreFlexModelS? e 13
FlexModel Structureand Interface i 14
Installing FlexModels 14
FlexMode Installation Tree ... 15
FlexModel Licensing e et 15
FlexModel LIimitationsoouiui e 16
Chapter 2
Using FIeXModels 17
INErOdUCHION . . . o e e 17
SystemC/SWIFT SUPPOIt ..o e e e e e e 17
Running flexm_setup ... 18
SettingUptheModel 19
Theflex_get inst handleCommand 19
Using Multiple FlexModel Instances ..., 19
Controlling the FlexModel Command Flow 20
Resettingthe Simulation i 21
Transferring Control toaC Testbench L. 21
Using Multiple Command StreamsinaC Testbench 21
Using Uncoupled ModeinaC Testbench 22
BUrSt Transfers e 24
Non-pipelined BusOperationsoutiiiiiiiiiiinennnn 24
Pipelined BUsSOperationsuuititii e 25
SynchronizingtheCommand Flow 27

August 28, 2001 Synopsys, Inc. 3

Contents FlexModel User’'s Manual

FlexModel Timing e e e et e e e 28
Selecting Function-only or TimingModel 28
Selecting Cycle-basedMode ... 29
Controlling Timing Checksand Delays 30

FlexModel Interruptso 31
Interrupt Service ROULINES oo 31
Detecting and Servicing Interruptst 31
Developing HDL Interrupt Routinesc. i, 33
Developing CInterrupt RoUtines 35
Developing VERA Interrupt Routines, 37

Chapter 3
FlexModel Command Modes ... e 39

INtrOodUCHION 39

UsingHDL CommandMode i 39
VHDL Control 41
Verilog Controlo 41
HDL Control Between Model and Testbench 41

UsngCCommand Modeo it 43
CreatinganExternal CFile 44
CompilinganExternal CFile 45
Switching Control to an External CProgram 47

Using VERA Command Mode i 47
FlexModel VERA ClaSsseSo vt e e 48
VERA FilesintheLMC_ HOMETreec.iuiiiiiiininnnnan.. 49
The ModelFx Class CONStructorov i 49
Examples with Top-level Testbenches 50
Accessing the Current Error Status 51
FlexModel LoggingfromtheVERA Class, 52

Chapter 4
FlexModel Command Reference ... 53

INErOdUCHION . . . oo e e e 53

Model-Specificand Global Commands 53

AbouttheCommandst e 54
Busand Zero-CycleCommandscoiiiiiiiinnnnnnn.n. 54
Theinst_handle Parameter 54
Theregand rslt Command Suffixes 55
Command Result Identifiers i 55
Thewait_mode Parameter i i 56
Thestalus Parameter e 56

4 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Contents

Command Syntax Differencesin VERA CommandMode 58
Global FlexModel Commands 59
Global FlexModel Command Descriptions, 61
flex_clear quelue 61
flex_define_intr_function 63
flex_define intr_signal 64
flex_get cmd Statust e 66
flex_get_coupling_mode 68
flex_get inst_ handle i e 69
flex_get value 71
flEX PNt MST ..t 73
flEeX _TUN Program .. 75
flex_set_coupling_ mode 77
flex_set value 78
flex_start_program 81
flex_switch intr control 82
flex_synchronize 83
fleX WAt 85
flex_ wait on node e 86
Chapter 5
FlexModel C Testbench Interface 89
INtrOdUCTION . .. 89
What Are FLEX VEC VECtOrs?o e e 89
Creating FLEX VECVECIOrS ottt 90
FLEX VECLexical Rules i 91
FLEX VECErrorHandling0 it 92
FLEX _VEC Command DesCriptionscuirirenininaanannn. 93
CTestbench Example e 103
Appendix A
Reporting Problems 109
INErOdUCLION . . . oo e e 109
Model Versionsand History 109
Running FlexModel DiagnostiCsvv i 110
Creating FlexModel LogFiles i i 110
Command LOgging . ..o vv it 111
SHMUIUSLOQOING ..ot 112
MeSSage LoggiNg . ..o e 113
Sending the Log Filesto Customer Support ... 113

August 28, 2001 Synopsys, Inc. 5

Contents FlexModel User’'s Manual

6 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figures

FlexModel Structureand Interface 14
FlexModel StructureinLMC_HOME Tree 15
Pipelined BusOperationsttt 25
Interrupt Detectionand Servicingt 32
Read reg/read_rdlt Pair for Testbench 42
Multiple Commands withina Single Clock Cycle 42
Accessing aC TestbenchfromHDL 43
VERA Model ClassHierarchy 48

August 28, 2001 Synopsys, Inc. 7

Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
71
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:

FlexModel User’'s Manual

Tables

VERA Filesinthe LMC HOME Directory 49
FlexModel Command Typest 53
Status Parameter Error Codes 56
Global FlexModel Command Summary ..., 59
Returned Values and Corresponding Net States of value for flex_get value ..

flex_set valuepath Syntax Examples 78
Allowed Values of valuefor flex_set value 78
Syntax Examplesfor the path Parameter 86
VHDL 9-Stateto 4-State Conversionovvenenenenan.n. 91
StimulusLogging Format i 112

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Preface

Preface

About This Manual

This manual explains how use FlexModels in your test environment. FlexModels are a
type of SmartModel and they share many characteristics in common with them, but
there are significant differences. For example, FlexModels have advanced features like
the ability to issue model commands from an HDL, C, or VERA testbench. Those
capabilities and other enhancements to traditional SmartModel usage are explained in
this manual.

This manual works in tandem with the individual FlexModel datasheets. General
information that pertainsto all FlexModels is presented here, whereas information that
is specific to individual FlexModels is documented in the model datasheets.

Related Documents

For general information about SmartModel Library documentation, or to navigate to a
different online document, refer to the Guide to SmartModel Documentation. For the
latest information on supported platforms and simulators, refer to SmartModel Library
Supported Smulators and Platforms.

For detailed information about specific models in the SmartModel Library, use the
Browser tool ($LMC_HOME/bin/d_browser) to access the online model datasheets.

August 28, 2001 Synopsys, Inc. 9

Preface

Manual Overview

FlexModel User’'s Manual

This manual contains the following chapters:

Preface

Chapter 1:
FlexModel Overview

Chapter 2
Using FlexM odels

Chapter 3:
FlexModel Command
M odes

Chapter 4:
FlexM odel Command
Reference

Chapter 5:
FlexM odel C Testbench
I nterface

Chapter A:
Reporting Problems

Describes the contents of this manual and provides
references to other sources of information about
FlexModels. Also describes conventions and
terminology used in this manual.

Genera information about FlexModel architecture,
features, and benefits.

How to set up one or more FlexModelsin atestbench
and use model commands to coordinate the command
flows. Also how to use FlexModel timing and
interrupts.

How to usethe HDL, VERA, and C command modes
to control FlexModels.

Common features of FlexModel commands and a
command reference for global FlexModel commands.

How to use the FlexModel C functions and operatorsto
define and manipulate FLEX _VEC vectors for use
with FlexModel commands.

How to enable FlexModel logging and report problems
to Customer Support.

Typographical and Symbol Conventions

« Default UNIX prompt

Represented by a percent sign (%).

o User input (text entered by the user)

Showninbol d nonospaced type, asin the following command line example:
% cd $LMC HOW bi n
. System-generated text (prompts, messages, files, reports)

Shown in nonospaced t ype, asin the following system message:
VALI DATI ON PASSED: No M snat ches during simul ati on

10

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Preface

. Variablesfor which you supply a specific value
Shown initalic type, asin the following command line example:
% setenv LMC HOME prod dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

« Command syntax
Choice among alter nativesis shown with avertical bar (|) asin the following:
termnation_style, 0| 1
In this example, you must choose one of the two possibilities: O or 1.
Optional parameters are enclosed in square brackets ([]) asin the following:

pinl [pin2 ... pinN
In this example, you must enter at least one pin name (pinl), but others are optional
([pin2 ... pinN]).

Getting Help

If you have a question while using Synopsys products, use the following resources:

1. Start with the available product documentation installed on your network or located
at theroot level of your Synopsys CD-ROM. Every documentation set contains
overview information in the intro.pdf file.

Additional Synopsys documentation is available at this URL :
http://www.synopsys.com/products/Im/doc
Datasheets for models are available using the Model Directory:
http://www.synopsys.com/products/lm/model Dir.html
2. Visit the online Support Center at this URL:
http://www.synopsys.com/support/lm/support.html
This site gives you access to the following resources:
o SOLV-IT!, the Synopsys automated problem resolution system
o product-specific FAQs (frequently asked questions)
o the ability to open a support help call
o the ability to submit a delivery request for some product lines

August 28, 2001 Synopsys, Inc. 11

http://www.synopsys.com/products/lm/doc
http://www.synopsys.com/products/lm/modelDir.html
http://www.synopsys.com/support/lm/support.html

Preface FlexModel User’'s Manual

3. If you still have questions, you can call the Support Center:

North American customers:

Call the Synopsys Eaglei and Logic Modeling Products Support Center hotline at
1-800-445-1888 (or 1-503-748-6920) from 6:30 AM to 5 PM Pacific Time, Monday
through Friday.

I nternational customers:
Call your local sales office.
The Synopsys Website
Genera information about Synopsys and its products is available on the Web:
http://www.synopsys.com

Synopsys Common Licensing (SCL) Document Set

Synopsys common licensing (SCL) software is delivered on a CD that is separate from
the tools that use this software to authorize their use. The SCL documentation set
includes the following publications, which are located in (root)/docs/scl on the SCL CD
and also available on the Synopsys FTP server (ftp://ftp.synopsys.com):

« Licensing QuickStart—(142K PDF file)
This booklet provides instructions for obtaining an electronic copy of your license
key file and for installing and configuring SCL on UNIX and Windows NT.

« Licensing Installation and Administration Guide—(2.08M PDF file)
This guide provides information about installation and configuration, key concepts,
examples of license key files, migration to SCL, maintenance, and troubleshooting.

You can find general SCL information on the Web at:
http://www.synopsys.com/keys

Comments?

To report errors or make suggestions, please send e-mail to:
doc@synopsys.com

To report an error that occurs on a specific page, select the entire page (including
headers and footers), and copy to the buffer. Then paste the buffer to the body of your
e-mail message. Thiswill provide us with information to identify the source of the
problem.

12 Synopsys, Inc. August 28, 2001

ftp://ftp.synopsys.com/pub/SCL/LQS.pdf
ftp://ftp.synopsys.com/pub/SCL/LIAG.pdf
http://www.synopsys.com/keys
http://www.synopsys.com
mailto:doc@synopsys.com

FlexModel User's Manual Chapter 1: FlexModel Overview

1

FlexModel Overview

What Are FlexModels?

FlexModels are binary simulation models that represent the bus functionality of
microprocessors, cores, digital signal processors, and bus interfaces. FlexModels are
essentially advanced SmartModels, and therefore use the SWIFT interface. FlexModels
have the following features:

« Built with a cycle-accurate core and a controllable timing shell so that you can run
the model in function-only mode for higher performance or with timing mode on
when you need to check delays. You can switch between timing modes dynamically
during simulation using simple commands in your testbench.

« Feature multiple different control mechanisms. You can coordinate model behavior
with simulation events, synchronize different command processes, and control
several FlexModels simultaneously using a single command stream.

« Allow you to use different command sources. You can send commands to
FlexModels using processes in a Verilog or VHDL testbench, a C program, or a
VERA testbench. You can switch between the HDL or VERA testbench and a
compiled C program as the source for commands.

TI°5= Note
Multiple command sources are available on simulators that have custom

FlexModel integrations. Customers using Direct C Control through the
standard SWIFT integration must stick with C. For more information, refer
to the Smulator Configuration for Synopsys Models.

August 28, 2001 Synopsys, Inc. 13

Chapter 1: FlexModel Overview FlexModel User's Manual

FlexModel Structure and Interface

FlexModels use the SWIFT interface for event-based communication with the ssmulator.
FlexModels also use a central Command Core that qgueues model commands for one or
more FlexModels in your design. The Command Core provides high-performance
model control without burdening the SWIFT interface. Figure 1 illustrates the
FlexModel interface.

HDL Simulator

HDL Testbench w—» DUT ,\'

Model Pins

SWIFT Interface
HDL2C

Pipe

VERA

FlexModel
Command <™ FlexModel 1

Core
C Commands <—/(
k» FlexModel 2 =—

Figure 1: FlexModel Structure and Interface

Installing FlexModels

For FlexModel installation information, refer to the SmartModel Library Installation
Guide. This guide contains instructions for installing the models and associated
software. For information about supported platforms and simulators, refer to the
SmartModel Library Supported Smulators and Platforms.

14 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 1: FlexModel Overview

FlexModel Installation Tree

Figure 2 illustrates the organization of FlexModel filesinstalled inan LMC_HOME
tree.

LMC_HOME
— doc s \models
smartmodel model_fx
manuals | \
intro.pdf — model_fxversion platform

flexum.pdf relnotes.pdf | _
slum.pdf install.pdf model_fxversion.mdl

examples src model_fxversion.so

_—/ //\

vhdl verilo C hdl
model_fxversion.pdf g v venlog vera

model_fxversion.mmt ‘
model_fxversion.td model J)kg inc platform
model_fxversion.tf model.v model_user_pkg.inc

model_fxversion.tt model_tst.v model_pkg.vr
model_fxversion.xrf model_fx_sim.v | model pkg.vhd model_pkg.h model_pkg.vrh
model_user_pkg.vhd
model.vhd model_pkg.o
model_tst.vhd model_c_tst.v
model_fx_comp.vhd model_c_tst.vhd
model fx_sim.vhd model_c_commands.c

Figure 2: FlexModel Structure in LMC_HOME Tree

FlexModel Licensing

FlexModels use FLEXIm floating licenses to authorize their use, just like other
SmartModels. If licensing is not set up, refer to the SmartModel Library Installation
Guide for information about setting up and using the FLEXIm licensing software.

August 28, 2001 Synopsys, Inc. 15

Chapter 1: FlexModel Overview FlexModel User's Manual

FlexModel Limitations
FlexModels do have some limitations compared to traditional SmartModels:

16

FlexModels do not support fault simulation.

Component-based user-defined timing (UDT) is supported in FlexModels, but
instance-based UDT is not.

SmartModel model logging is not supported for models that have an _fx extension.
FlexModels of thistype have adifferent model 1ogging mechanism that is described
in “Creating FlexModel Log Files” on page 110.

SmartModel windows are not supported in FlexModels. Instead, use the robust
FlexModel command set to access and change internal register information.

Flexmodels do not support save and restore operations.

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

2

Using FlexModels

Introduction

This chapter explains how to set up one or more FlexM odels and coordinate the flow of
FlexModel commands from multiple sources. It also explains how to set up and use
FlexModel timing and interrupt service routines. Thisinformation is organized in the
following sections:

o “SystemC/SWIFT Support” on page 17

o “Running flexm_setup” on page 18

« “Setting Up the Model” on page 19

. “Using Multiple FlexModel Instances’ on page 19

« “Controlling the FlexModel Command Flow” on page 20
« “FlexMode Timing” on page 28

« “FlexModéd Interrupts’ on page 31

SystemC/SWIFT Support

Synopsis provides a SystemC/SWIFT interface that supports Flex Models. SystemC isa
C++ class library used for creating cycle-accurate models of software algorithms,
hardware architecture, and interfaces for System-on-Chip (SoC) and system-level
designs. Aspart of itsclasslibrary, SystemC provides a cycle simulation environment, is
designed to work with event-driven logic simulators, and provides extensive support for
modeling device timing accurately. For more details see the SmartModel Products
Application Notes Manual.

August 28, 2001 Synopsys, Inc. 17

Chapter 2: Using FlexModels FlexModel User's Manual

Running flexm_setup

First, run the flexm_setup script to copy the FlexModel’s interface files to your working
directory. You need to run flexm_setup for each FlexModel you want to use in your
design and you must rerun this script after updating your SLMC_HOME with new or
revised FlexModels. This ensures that you pick up the latest package files for the most
recent versions of the models.

Syntax
flexm_setup [-help] [-dir path] model
Argument
model Pathname to the FlexModel you want to set up.
Switches
-help Prints help information.
-d[ir] path Copies the contents of the FlexModel’s versioned src/verilog
and src/vhd directoriesinto path/src/verilog and path/src/vhdl.
The directory specified by path must already exist.
Examples

When run without the -dir switch, flexm_setup just prints the name of the versioned
directory of the selected model’s source files

Lists nane of versioned directory containing source files
% fl exmsetup npc860_f x

When run with the -dir switch pointing to your working directory, flexm_setup copies
over all the versioned package files you need to that working directory.

Oreates copy in ‘flexnodel’ directory of nodel source files
% nkdi r wor kdi r
%flexmsetup -dir workdir npc860_fx

18 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

Setting Up the Model

Next, instantiate one or more FlexModels in your design using required SWIFT
parameters, as explained in the Smulator Configuration Guide for Synopsys Models.
You must allow at least one clock cycle to elapsein your testbench before you issue any
FlexModel commands. This allows the FlexModels to initialize. After initialization,
FlexModels can accept commands from the testbench. The first FlexModel command
for each model instance must always be the flex_get_inst_handle command, which
returns a unique model instance identifier called the inst_handle.

The flex_get_inst_handle Command

Theflex_get_inst_handle command makes an association between the FlexModelld you
used to instantiate the model in your testbench and that specific instance of the model.
Thisis so that you can use more than one FlexModel or multiple instances of the same
FlexModel in adesign without getting the command streams confused. After you get an
inst_handle, you use that integer in al subsequent FlexModel commands. It istypically
thefirst required argument.

TI°5= Note
You do not use the inst_handle parameter in VERA Command Mode. See
“Command Syntax Differencesin VERA Command Mode” on page 58.

Using Multiple FlexModel Instances

You can have multiple instances of the same FlexModel in the same simulation. If so,
you must use separate command streams to avoid conflicts.

Caution
You cannot have multiple command streams (VERA, Verilog, VHDL, or C)
sending commands into any one model instance at the same time.

To use more than one instance of a FlexModel in the same simulation, follow these steps
for Verilog testbenches.

1. When using multiple instances of a FlexModel within one or more top level Verilog
testbenches (VCS, Verilog-XL,...) you may see the message:

Error: undefined synbol “flex_<cmd nane>" (<testbench> |ine <nunber>)
To work around this error, add the line
*undef FLEXMCDEL_OMVDS | NC

August 28, 2001 Synopsys, Inc. 19

Chapter 2: Using FlexModels FlexModel User's Manual

before the line that reads
“incl ude rmodel _pkg.inc

2. Qualify al FlexModel commands with their corresponding instance names. For
example:

/] The two instances are called il and i 2.
npc740 i1(...); The first instance
npc740 i 2(...); The second instance

/! The command streamfor il.
initial begin
/1 command flow for i1l goes here
i 1.npc740_idle(...);
// and so forth for il
end

/! The command streamfor i2.
initial begin
/1 command flow for i2 goes here
i2.npc740_idle(...);
/! and so forth for i2
end

3. On the simulator invocation line add the multi-instance specification to your
invocation.

+define+fl ex_mul ti _i nst

Controlling the FlexModel Command Flow

You can control the flow of FlexModel commandsin severa ways, as explained in the
following sections:

« “Resetting the Simulation” on page 21

. “Transferring Control to a C Testbench” on page 21

« “Using Multiple Command Streams in a C Testbench” on page 21
« “Using Uncoupled Mode in a C Testbench” on page 22

. “Burst Transfers’ on page 24

« “Non-pipelined Bus Operations’ on page 24

« “Pipelined Bus Operations’ on page 25

« “Synchronizing the Command Flow” on page 27

20 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

Resetting the Simulation

The ability to reset asimulation to an initial state without re-invoking the simulator can
save considerable time. Reset is aso important for “what if” simulation runs.
FlexModels support reset, returning to the state when the simulator was initially
invoked.

@ Attention

Reset is not currently supported on NT. Also, when using FlexModels on
Verilog-XL with model logging enabled, some FlexM odels may not reset
after the third attempt. The workaround isto turn off model logging.

Transferring Control to a C Testbench

You can transfer control from an HDL or VERA testbench to a C testbench using the
flex_run_program command. The model receives all commands from the C testbench
before any subsequent model commands in that VHDL process or Verilog block. When
you have multiple command streams operating at the same time, there are afew things
to keep in mind:

Non-model commands such as Verilog $display statements following the
flex_run_program command are processed immediately.

You cannot issue model request commands (_req) in one command source and
model result commands (_rdlt) in another. For example, if you want to make a read
request for a FlexModel and then fetch the results, keep both FlexModel commands
in either your C or HDL testbench.

It is best to organize your commands to minimize switching in and out of the same
command source. For example, if you want to use a C program for two separate
command sequences to be performed at two different pointsin the simulation, create
two separate C command files.

You cannot have multiple VERA, VHDL, or Verilog processes providing
commands to the same model instance.

You cannot use the flex_run_program command to switch between different HDL
or VERA command sources. For more information on the flex_run_program
command, see “flex_run_program” on page 75.

Using Multiple Command Streams in a C Testbench

A C testbench can provide commands to more than one model or model instance. This
allows two or more models to pass information between each other in proper sequence
in a C testbench.

August 28, 2001 Synopsys, Inc. 21

Chapter 2: Using FlexModels FlexModel User's Manual

To use multiple command streams in one C testbench, initialize all model instanceswith
the flex_get_inst_handle command before issuing the flex_start_program command, as
shown in the following example:

flex_get _inst_handl e(l nst Narel, & dl, &status);
flex_get inst_handl e(l nst Nane2, & d2, &status);
flex_start_progran(&status);

I°5> Note
If more than one model instance sends commands from asingle C testbench,
the mode is automatically set to uncoupled, regardless of the settings used
(see methods 1-3 in “Using Uncoupled Mode in a C Testbench” on page 22).

Using Uncoupled Mode in a C Testbench

Uncoupled mode only affects the C command stream. This appliesto C Command
Mode on simulators with custom integrations and Direct C Control on simulators with
standard integrations. For information on FlexModel simulator integration, refer to the
Smulator Configuration Guide for Synopsys Models.

Uncoupled modeis required to enable the use of multiple command streamsin complex
models with more than one bus (for example). It is also useful when you want to drive
more than one instance of the same model or multiple models from a single C testbench.

Coupled mode synchronizes the model with the testbench process that contains model
commands, so that the model is prevented from advancing to the next simulation time
step when the next command is not available. In uncoupled mode, the model does
advance to the next time step, even when the next command is not yet available. In this
state, the model continues to poll for new commands, thereby preventing gridlock
conditions for multi-model or multi-stream simulations.

FlexModels start up in coupled mode by default. There are three methods of changing
the default mode:

1. Using a SWIFT model parameter (for simulators with standard integrations), or
using the flex_run_program command (for simulators with custom integrations) as
shown in the following examples:

Standard Integrations
Using SWIFT parameter in the model instantiation for _fz models:
def par am ul. Fl exMobdel Src_command_stream = "path_to C file -u |-c"

where command_stream is the name of the command stream, as defined in the
model datasheet. For models with multiple command streams, use two defparams,
with each one pointing to a unique command stream in the model.

22 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

Using SWIFT parameter in the model instantiation for _fx models:
defparamul. FlexCFile = "path to Cfile -u |-c"
Custom Integrations

Using flex_run_program command from a Verilog or VHDL testbench:
flex_run_progranm("path_to Cfile -u |-c", status);
If you specify the -c option (default behavior), the C testbench starts model

commands in coupled mode. If you specify the -u option, the C testbench starts
model commands in uncoupled mode. Other options are ignored.

T3> Note
The-u switch isuseful only if you want to bein uncoupled modefor asingle
command stream. Thisis not currently needed for FlexModels, but will
enable potential future enhancements.

2. You can also use global FlexModel commandsin your C testbench to set and get the
coupling mode, using the following syntax:

flex_set _coupling_mode(int instance, int coupling_node, int *status);
fl ex_get _coupling_node(int instance, int &coupling_node, int *status);
where coupling_mode is one of these two constants:

o FLEX_UNCOUPLED_MODE (sets mode to uncoupled)
o FLEX_FULLY_COUPLED_MODE (sets mode to coupled)

Here are some usage examples:

flex_set coupling nmode (npc8260 instl, FLEX UNOCOUPLED MCDE, &status);
flex_get coupling node (npc8260 instl, &coupling node, &status);
3. You can also use the flex_change_setup global variable in your C testbench to

enable or disable uncoupled mode. This can be handy for interactive use witha C
debugger:

int flex_change_setup;

Set the flex_change _setup variable to FLEX _UNCOUPLED_MODE or

FLEX _FULLY_COUPLED_ MODE depending on the desired mode of operation.
You can use this global variable to interactively modify the simulation setup from
within the debugger session. After the initialization sequence is complete, the model
checksthe value of the flex_change setup variable before executing each command

August 28, 2001 Synopsys, Inc. 23

Chapter 2: Using FlexModels FlexModel User's Manual

and changes the mode of operation accordingly. Here is an example that uses the

flex_change_setup global variable to change to uncoupled mode in between bus
cycles for the mpc860_fx model:

npc860_read(idl, address, tr_attr, FLEX WA T_F, &status);
fl ex_change_setup = FLEX_ UNCOQUPLED MXDE; /*(set fromthe debugger)*/
npc860_wite(idl, address, tr_attr, data, FLEX WA T_F, &status);

T3> Note

The flex_change_setup command may be used to interactively change other
simulation settings in the future, if the need arises.

Burst Transfers

Burst transfers are multiple data transfers caused by a single bus command. Like the
devicesthey model, some FlexModels support burst transfers—check the FlexM odel
datasheets for supported burst transfer commands and how to use them.

Non-pipelined Bus Operations

Use non-pipelined bus operations when you want to branch the control program based
on the result returned by the model. This means issuing a model result command right
after apaired model request command, as shown in the following example:

procedure ny_read(instance: in integer;

address: in BIT VECTCR (0 to 31);
readType: in natural;
result: out BIT VECTCR (0 to 31)
) is

vari abl e stat: integer;

begi n

-- Start Read --

nodel _read_req(i nstance, address, readType, FLEX WA T_T, status);

-- If K --

if (status > 0) then

-- CGet Read result (tag not needed) --

nodel _read_rslt(instance, address, 0, result, status);
end if;
end;

24 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

The following example shows another command sequence that branches according to
the result of the returned data:

nodel _read_req(inst, x"00000060", x"0", FLEX WAIT_T, status);

nodel _read rslt (inst, x"00000060", O, data, status);

if (status = 1 and data(31 downto 0) = x"33334444")

then nmodel _wite(inst, memwite, x"AO0000FF', x"1DE4543C',
FLEX WAIT F, status);

el se assert FALSE report "WRONG DATA READ' severity NOTE

end if;

Thereisaminimum delay of one clock cycle between the completion of arequest
command and the compl etion of a corresponding result command. You must precede a
result command with a request command.

Pipelined Bus Operations

Bus cycle pipelining occurs when multiple bus operations overlap. Because FlexModels
typically divide bus operations between request and result phases or commands, you can
pipeline multiple request commands before the result command from the first request is
complete. By preloading the model command queue with pipelined bus operations, you
can avoid dead cycles and more closely model the behavior of devices that support
pipelining. You can then retrieve the results from those reads in any order. This process
Isillustrated in Figure 3.

Al Data 1

y
A2 Data 2
A
A3 Data 3

ime $ >
Request Phase <> Request command provided to model

Data Phase ‘ Result is available

Figure 3: Pipelined Bus Operations

There are two ways to get pipelined bus operations with FlexModels:
« “Pipelining With wait_mode Behavior” on page 26
. “Pipelining With Delayed Results Checking” on page 26

August 28, 2001 Synopsys, Inc. 25

Chapter 2: Using FlexModels FlexModel User's Manual

Pipelining With wait_mode Behavior

FlexModel request and result commands work together to retrieve data from the model.
Request commands have areq suffix and result commands have arslt suffix. Request
commands cause the model to post the data and result commands retrieve the results.
Testbench operations “wait” or proceed based on how you set the wait_mode parameter
in the request command. For example:

. If thewait modein arequest command isfalse (FLEX WAIT_F), the model
immediately proceeds to the next command.

. If thewait_mode in arequest command istrue (FLEX_WAIT_T), the model waits
until the command compl etes before proceeding to the next command.

You can use this wait behavior to pipeline multiple request commands as shown in the
following VHDL example.

variable datal, data2, data3 : bit_vector (31 downto 0);

- COWAND 1:

nodel _read_req(inst, X'00000004", X'0", FLEX WA T_F, status);
- COWAND 2:

nodel _read_req(i nst, X 00000002”, X'0", FLEX WA T_F, status);
- COWAND 3:

nodel _read_req(i nst, X 00000000”, X'0", FLEX WAIT T, status);
nodel _read rslt (inst, X'00000004", 0, datal, status);
nodel _read rslt (inst, X'00000004", 0, data2, status);
nodel _read rslt (inst, X'00000000", O, data3, status);

Commands 1, 2, and 3 are loaded into the model queue immediately because the first
two commands have wait_mode parameters set to false FLEX_WAIT_F . Commands
following 3 are not loaded right away because Command 3 has await_mode parameter
set to true (FLEX_WAIT_T). No further commands are loaded until Command 3
completes. When Command 3 compl etes, the results commands retrieve the results from
the three pipelined read requests.

Pipelining With Delayed Results Checking

Supposed you want to pipeline multiple read commands, and check resultsin adifferent
order. You can simply invert the order of the result commands as shown in the following
example.

26 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

-- Model Commands are

-- nodel _read_req(inst, address, wait, status);
-- nodel _read rslt(inst, address, result, status);
-- Assune no pipeline reordering

-- read 1

nodel _read_req(nodl, x"DEADBEEF', FLEX WAIT_F, tagl);
-- read 2

nodel _read_req(nodl, x"DEADBEFO", FLEX WAIT_F, tag2);
-- read 3

nodel _read_req(nodl, x"DEADBEF1", FLEX WAIT_F, tag3);
-- result 3

nodel read rslt(nodl, x"DEADBEF1", tag3, datal, stat);
-- result 2

nodel _read rslt(nodl, x"DEADBEFQ", tag2, dataO, stat);
-- result 1

nodel _read rslt(nodl, x"DEADBEEF', tagl, data, stat);

In this example, the three read requests complete in order, but the read results
commands are in reverse order. The model waits until the result 3 command completes
(which depends on completion of read 3) before proceeding to the result 2 and result 1
commands, thus producing the pipeline effect.

Synchronizing the Command Flow

To coordinate the behavior of multiple FlexModels in your testbench, use the
flex_synchronize command. Do not use multiple HDL command streams to control a
single FlexModel instance. This produces unpredictable model behavior.

The flex_synchronize command suspends operations in the model instance identified by
the inst_handle parameter until the number of instances specified in the num_instance
parameter execute flex_synchronize commands with matching sync_label strings. For
example, if a FlexModel issues the following command, it suspends all operations until
two other model instances execute flex_synchronize commands with a matching
sync_label of “syncl”.

fl ex_synchroni ze(inst, 3, "syncl" tineout, status);

All three models simultaneously execute their next commands one clock cycle after the
third model executes this command.

A FlexModel holding for a synchronization cannot recognize any other commands.
During this time the model stores exception information in the Command Core
exception queue. It is up to the interrupt service routine that you devel op to process this
exception information after the synchronization occurs. For information on developing
interrupt service routines, refer to “FlexModel Interrupts’ on page 31.

August 28, 2001 Synopsys, Inc. 27

Chapter 2: Using FlexModels FlexModel User's Manual

If areset occurs, FlexModels execute the reset behavior and either proceed to the next
command or resume waiting for the synchronization point if it still hasn’'t occurred.

If the number of flex_synchronize commands with the same sync_label does not match
the num_instance parameter, the Command Core reports an error.

Synchronization Timeouts

If not enough flex_synchronize calls are made, severa models may get stuck waiting for
the last call. To prevent this problem, the flex_synchronize command includes a timeout
value. When amodel receives aflex_synchronize call, it waits for timeout clock cycles
before declaring that the synchronization operation is complete. When this happens al
other models waiting on the same sync_|abel are allowed to proceed. Subsequent calls
using the same sync_label return with an error and are ignored. In addition, the same
label sync_label cannot be used twice. For more information about the flex_synchronize
command, refer to “flex_synchronize” on page 83.

FlexModel Timing

FlexModels come with standard, component-based timing files just like regular
SmartModels. Thereisatiming file for each model that can accommodate multiple
timing versions. By selecting different timing versions for different instances of the
same model, you can have these instances behave differently in the design. In addition
to these standard timing files, you can create custom, component-based timing files
using the SmartModel user-defined timing (UDT) process. UDT is possible because a
model's timing file isloaded at simulation startup. For more information on UDT, refer
to the SmartModel Library User’s Manual.

When you run a FlexModel in timing mode, in general, you are enabling propagation
delays, access delays, and timing checks. Bear in mind that FlexModels run up to 40
percent faster in function-only mode, so you may want to set timing mode on only for
later simulation runs after functional verification is complete.

Selecting Function-only or Timing Model

By default, FlexM odels behave as function-only models. To enable timing mode for a
FlexModel, set the FlexTimingMode SWIFT parameter to FLEX_TIMING_MODE_ON
(prepend a backtick for Verilog). If you are using Direct C Control, set this parameter to
O for timing mode off or 1 for timing mode on.

28 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

With timing mode on, you can choose the desired timing version for the model by
setting the TimingVersion SWIFT parameter. You can also set the timing range (MIN,
TYP, or MAX) using the DelayRange SWIFT parameter. For more information about
setting FlexModel SWIFT parameters, refer to the Smulator Configuration Guide for
Synopsys Models. The following examples enable timing mode on model instance
“my_inst_1".

Verilog Example
Example using SWIFT template generated by host simulator with timing:

[/ Timng-node instantiation
nodel
def par am
ul. FlexModel Id = “ny_inst_1";
ul. F exTi m ngMode = ~FLEX TIM NG_MZDE QN
ul. Ti mi ngVersion = “ti mngversion”;
ul. Del ayRange = “range”;
ul (nodel _ports);

VHDL Example
Example using SWIFT template generated by host simulator with timing:

UL: nodel
generic map (Fl exMdel ID=> “ny_inst_1",
Fl exTi m nghbde => FLEX_TI M NG_MXDE_QN,
Ti m ngVer si on => “tim ngversion”,
Del ayRange => “range”)

port map (nodel ports);

Selecting Cycle-based Mode

To enable cycle-based mode for a FlexModel, set the FlexTimingMode SWIFT
parameter to FLEX_TIMING_MODE_CY CLE (prepend a backtick for Verilog). If you
are using Direct C Control, set this parameter to 2.

The following examples enable cycle-based simulation on model instance “my_inst_1".

Verilog Example
Example using SWIFT template generated by host simulator:

/1 Cycle-based instantiation

nodel

def par am
ul. FlexModel Id = “ny_inst_1";
ul. Fl exTi m ngMode = ~FLEX TIM NG MCDE_CYCLE;
ul (nodel ports);

August 28, 2001 Synopsys, Inc. 29

Chapter 2: Using FlexModels FlexModel User's Manual

VHDL Example
Example using SWIFT template generated by host simulator:

UL: nodel
generic map (Fl exMdel ID=> “ny_inst_1",
Fl exTi m nghbde => FLEX_TI M NG_MXDE_CYCLE)

port map (nodel ports);

Controlling Timing Checks and Delays

If you instantiate your FlexModel with timing mode on, you can configure timing
checks at runtime using the model-specific model _set_timing_control commands. The
general syntax for the model_set_timing_control commandsis:

nodel _set _timng_control (id, timng_paraneter, state, status);

The compl ete syntax for these commands and the supported timing_parameter values
arelisted in the individual FlexModel datasheets. The state parameter takes one of two
predefined constants:

« FLEX_ENABLE—Enablestiming for the specified parameter.
« FLEX_DISABLE—Disablestiming for the specified parameter.

The following examples show how to use model_set_timing_control commands to
configure timing checks for the tms320c6201_fx FlexModel. The first command
initializes timing with all timing and access delays turned on. Then, specific commands
turn off all setup checks, and one specific hold check.

Verilog Example

/1 Timng previously enabl ed with F exTi m ngMbde pararneter for inst
[/ Turn off all setup tining checks
t m8320c6201_set _timng_control (inst, ‘TMS32006201 SETUP,

‘FLEX Dl SABLE, status);

[/ Turn off the hold check from CLKQUT(1h) to I NT7(ha)
t ms320c6201_set timng_control (inst,
* TMB320C6201_TH CLKQUT1_LH I NT7_HA, ‘ FLEX DI SABLE, status);

VHDL Example

-- Tining previously enabled with Fl exTi m ngvbde parameter for inst

-- Turn off all setup timng checks

t me320c6201 _set timng_control (inst, TM532006201_SETUP, FLEX DI SABLE,
status);

-- Turn off the hold check from CLKQUT(1h) to I NT7(ha)

t m6320c6201_set timng_control (inst, TM532006201 TH CLKQUT1 LH I NT7_HA
FLEX D SABLE, status);

30 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

FlexModel Interrupts

Most FlexModels support interrupts of various types based on the physical devices they
model. For information on the specific interrupt types supported by individual
FlexModels, refer to the model datasheets. This chapter explains how interrupts are
detected and serviced by FlexModels and how to write interrupt routinesin VHDL,
Verilog, VERA, and C.

Interrupt Service Routines

If you want a FlexModel to respond to interrupts, you must write an interrupt service
routine that specifies how the model handles interrupts of different priorities. Check the
example testbenches that come with all FlexModels. Many of them have basic interrupt
service routines that you can copy and modify as needed based on how you want to
control FlexModel interrupts in your own testbench:

o VHDL — $LMC_HOME/modelsymodel/model ver sion/examples/vhdl/model_tst.vhd

« Verilog— $LMC_HOM E/modelsy/model/model version/examples/verilog/model _tst.v

o« C— $LMC_HOME/modelsyfmodel/model version/examples/C/model_c¢_commands.c
You can aso use the example interrupt service routines documented in this chapter as
starting points:

. “Developing HDL Interrupt Routines’ on page 33
. “Developing C Interrupt Routines’ on page 35
. “Developing VERA Interrupt Routines’ on page 37

Detecting and Servicing Interrupts

Interrupts can only be detected while the HDL or C command sourceis allowing
simulation time to advance. FlexModel interrupts are level sensitive—the models check
for and detect interrupts only on rising clock edges. When a FlexModel detects a
supported interrupt signal asserted, it queues the servicing request. To make a
FlexModel detect an asynchronous interrupt, latch the value so that the model can “ see”
the interrupt on the next rising clock edge.

August 28, 2001 Synopsys, Inc. 31

Chapter 2: Using FlexModels

FlexModel User’'s Manual

While responding to an interrupt, a FlexModel can detect another interrupt and call the
interrupt service routine again aslong as simulation time has advanced at |east one clock
cycle. If the new interrupt has a higher priority than the one currently being serviced, the
model bumps the lower-priority interrupt and completes the processing for the higher-
priority interrupt before returning to and finishing up the processing for the lower-
priority interrupt. You can nest interrupt processing this way with as many different
interrupt priorities as you want. Resets always have the highest priority and cannot be

masked.

FlexModels complete any previously started bus cycle before servicing interrupts as
specified in your interrupt service routine. For example. consider a command stream
with nine bus commands. Interrupt detection and servicing might proceed as shown in

Figure 4.

CMD1

CMD2

CMD3 <— |NT detected

INT Serviced

CMD4

CMD5

CMD6 < INT detected

INT Serviced

CMD7

CMDS8

CMD9 <+— INT detected
| INT Serviced |

Figure 4. Interrupt Detection and Servicing

Once an interrupt is detected and reported, FlexModels wait until the interrupt is
deasserted and reasserted before recognizing the same interrupt again.

32

Synopsys, Inc.

August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

Using Multiple Models

You can have more than one FlexModel or multiple instances of the same FlexModel in
one HDL testbench. If so, create separate interrupt service routines for each model
instance. However, you cannot have more than one FlexModel or multiple instances of
the same FlexModel in the same C program. With C, you need to create separate model
instantiations (Direct C Control) or separate programs that you launch with the
flex_run_program command (HDL Command Mode). Each process should have itsown
interrupt service routine.

Interrupt Detection with C Testbenches

To allow simulation time to advance while your C testbench is running and thus enable
interrupt servicing, set the wait_mode parameter of the last model bus cycle command to
true (FLEX_WAIT_T). Asan alternative, you can usethe flex_wait command to achieve
the same effect. Otherwise the C program will simply run to completion before any
interrupts can be serviced by the model.

Note that interrupt service routines in C testbenches can use result (model_rdlt)
commands and model commands with the wait_mode parameter set to true
(FLEX_WAIT_T). These are not allowed in HDL Command Mode.

When a FLEX_WAIT_T command is executing in a C interrupt service routine, other
interrupts of higher priorities can be serviced.

Developing HDL Interrupt Routines
To develop aVHDL or Verilog interrupt service routine, follow these steps:
1. Defineasignal or reg in your testbench called Mylnt or something similar.

2. Usetheflex_define_intr_signal command to register this signal with the FlexMode!.
You only need one testbench signal regardless of the number of interrupt types the
model supports. FlexModels toggle this signal when any supported interrupt pinis
asserted.

3. Write process (Mylnt) or aways (Mylnt) blocks for VHDL or Verilog, respectively.
You need one block for each interrupt priority you want to support.

The first command in each process/aways block must be amodel _get_intr_priority
command. This command returns a positive integer—higher numbers indicate higher
interrupt priorities. Each process/always block should check the returned interrupt
priority. Only one will match and execute its service routine.

August 28, 2001 Synopsys, Inc. 33

Chapter 2: Using FlexModels FlexModel User's Manual

R(d
@ Attention

34

All model commandsin an interrupt service routine must be contained within paired
model _begin_intr and model_end intr commands that both specify the same model
instance handle and interrupt priority. In addition, all interrupt commands contained
between the model _begin_intr and model _end_intr commands must have their
wait_mode parameters set to false (FLEX_WAIT_F). You cannot set wait_mode to true
(FLEX_WAIT_T) or useresults (model_rslt) commands in HDL interrupt routines.

Example HDL Interrupt Routine

The following VHDL example interrupt service routine for the tms320c6201_fx model
can handle two interrupts (INT1 and INT2), where INT2 has a higher priority than
INTL1. For Verilog, replace the process statements with always blocks.

architecture
signal nodel _int_signal : std_logic;
begi n

process
flex_define_intr_signal (inst,“TOP/ tne320c6201_i nt_signal ", stat us);

end
process (tnms320c6201_int_signal) --PROCESS 1
t me320c6201_get _intr_priority(inst, priority, status);
if (priority = 1)
t m8320c6201_begi n_intr(inst, priority, status);
--interrupt service routine for priority 1
t ms320c6201 _end_intr(inst, priority, status);
end
end

process (tns320c6201_i nt_signal) --PROCESS 2
t me320c6201 _get _intr_priority(inst, priority, status);
if (priority = 2)
t ms320c6201 begi n_intr(inst, priority, status);
--interrupt service routine for priority 2
t m8320c6201_end_intr(inst, priority, status);
end
end

With Scirocco 2000.02, you can only define interrupt signals at the top level
in your HDL testbench without specifying any hierarchy. For example, to
make the above code sample work with Scirocco 2000.02, change
“TOP/tms320c6201_int_signal” to “tms320c6201_int_signal”. With
Scirocco 2000.06 and above, use afull path delimited by colons
(“:TOP:tms320c6201_int_signal™).

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

Scenario 1—INT1 occurs before INT2

To understand how this interrupt service routine works, consider the case where the
FlexModel receivesthe INTI interrupt before the INTZ2 interrupt. The execution
sequence proceeds as follows:

1.

Model samplesthe INT1 signal asserted and toggles the model _int_signal in the
HDL testbench.

2. This starts both process 1 and process 2.

. Themodel_get_intr_priority command executes and returns the priority as“1” so

process 2 exits and process 1 starts executing its commands. Simulation time
continues to advance as model commands in the interrupt routine are executed.

. Now the model samplesthe INT2 signal asserted and again toggles the

model_int_signal signal inthe HDL testbench.

5. This starts process 1 and process 2 again.

6. The model_get_intr_priority command executes and returns the priority as“2” so

process 1 exits and process 2 starts executing its commands.

. At this point the model stops executing commands for INT1 and begins processing

commands for INT2, because it has a higher priority.

8. When the model finishes executing all commands for INTZ, it goes back and

finishes executing commands for INT 1.

Scenario 2—INT2 occurs before INT1

In the other case, where the model samples INT2 and begins processing commands from
process 2 before alower-priority INT1 interrupt occurs. the model finishes processing
all commandsfor INT2 before servicing the lower-priority INT1.

Developing C Interrupt Routines

To develop C interrupt service routines for use with Direct C Control or C Command
Mode, follow these steps:

1. Define afunction in the C testbench or program for the interrupt handler.

2. Register this function with the model using the flex_switch_intr_control command.

Thisfunction is called by the model whenever it samples a supported interrupt
signal asserted.

Note that you only need one interrupt function in your C testbench to handle all
interrupts of any type for that model instance. Attempts to register more than one
interrupt function for the same model instance result in an error.

August 28, 2001 Synopsys, Inc. 35

Chapter 2: Using FlexModels FlexModel User's Manual

36

3. Thefirst command in the interrupt function must be amodel_get_intr_priority
command. This command returns a positive integer—higher numbers indicate
higher interrupt priorities. You can decode this priority using case statements and
then begin the processing appropriate for that interrupt priority level.

4. Enclose all model commands for a particular model instance and interrupt priority
in between paired model_begin_intr and model_end_intr commands with the same
model instance handle and interrupt priority.

Example C Interrupt Routine

For an extensive example of a C interrupt routine, refer to “C Testbench Example” on
page 103. The following example is smaller in scope, but illustrates the basic structure
required.

#i ncl ude “fl exnodel _pkg. h”

#i ncl ude “nodel _pkg. h” /* Interrupt Function Prototype */

void ny_intr_handler();

int id; /* NOTE idis global soit is visible inthe interrupt routine
*/

mai n() {

i nt status;

char *Inst1;

/* Begin Initialization Sequence */

flex_get _inst_handl e(lnstl, & d, &status);

fl ex_start_progran(&st at us)

/* Register interrupt function with conmand core, only after this
command has been executed will the function be called (when an
interrupt occurs) */

flex_define_intr_function(id, ny_intr_handl er, &status);

- . . /* Continue nodel / generi c commands */

/* Verify Ctestbench is still running while HOL interrupts occur */

void ny_intr_handl er() {
int valid, id, priority;

/* Get the Mbdel 1d and Priority for the interrupt that occured */
nodel _get intr_id priority(id, &alid, &riority, &status);

switch(priority) {
case 1 :
nodel _begin_intr(id, priority, &tatus);
/* 1ssue commands HERE for priority 1 */
nodel _end intr(id,priority, &tatus);
case 2 : /* Issue commands HERE for priority 2 */
br eak;
def aul t
br eak;
} /* end switch (priority) */

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 2: Using FlexModels

Developing VERA Interrupt Routines

To useinterrupts in VERA Command Mode, follow the same procedures described in
“Developing HDL Interrupt Routines” on page 33. However, do not include the interrupt
signal in the VERA testbench. Instead, define the interrupt signal in the top-level VHDL
or Verilog testbench, just asif you werein HDL Command Mode.

Note that in VERA, asin HDL, you cannot use model commands with the wait_mode
parameter set to true (FLEX_WAIT_T) or result (model_rslt) commands within
interrupt routines.

Defining the Interrupt Signal

When you define the interrupt signal in the VERA testbench, you must passin the full
path to the signal in the top-level VHDL testbench or reg in the top-level Verilog
testbench. The following example shows how to define an interrupt signal in atop-level
Verilog testbench:

#i ncl ude <vera_defines. vrh>
#i ncl ude “fl exnodel _pkg. vrh”
#i ncl ude “nodel _pkg. vrh”

program ny_t est
{
/1 Oreate an instance of the nodel class.
Model Fx nmodel = new(“ nodel | nst Narme”, “ul. CLK');
/] Define the Intr Signal
// NOTE : here INTR.SIGNAL is the nane of a reg in the top
/1 evel verilog testbench and we pass the full path
/1 to the interrupt signal.
nodel . define_intr_signal (“nodel _test top. | NTR SIGNAL", status);

}

Monitoring the Interrupt Signal

The following example illustrates one way to monitor the interrupt signal in atop-level
VHDL testbench. For other methods of determining when the interrupt signal has been
toggled in the Verilog or VHDL testbench, and for more information on VERA syntax,
refer to the Vera Verification System User’s Manual.

#i ncl ude <vera_defines. vrh>

#i ncl ude “fl exnodel _pkg. vrh”

#i ncl ude “nodel _pkg. vrh”

// Create A VERA Port data type.
port ny port { intrSignal; }
program ny_t est

{

/! Oeate an instance of the nodel class.

August 28, 2001 Synopsys, Inc. 37

Chapter 2: Using FlexModels FlexModel User's Manual

Model Fx nmodel = new(“ nodel | nst Narme”, “ul/ CLK');
/] Ceate a Variable of type ny_port
/1 Gve it a null bind
ny_port intrPort = new,
/1 Make a connection to the interrupt signal in the
/1l top level VHDL testbench
signal _connect(intrPort.$intrS gnal, “nodel test_top/INTR_SI GNAL",
“di r=i nput itype=PSAVPLE");
/1 Define the Intr Signal
nodel . define_intr_signal (“nodel _test top/I NTR SI GNAL", status);
fork

{
/1 Interrupt Routine For Interrupt Priority 1

integer priority, valid_f, status;

while (1)

{
@(intrPort.$intrSignal);
nodel . get _intr_priority(valid_f, priority, status);
if (priority ==1)

{
printf (“**** DETECTED EXCEPTION PRCRITY 1 \n");
nodel . begin_intr(1, status);
/1 Send Commands For Priority 1 here.
nodel . end_intr (1, status);

}
}
}
{
[/ Interrupt Routine For Interrupt Priority 2
integer priority, valid_f, status;
while (1)
{
@(intrPort.$intrSignal);
nmodel . get _intr_priority(valid f, priority, status);
if (priority ==2)
{
printf (“**** DETECTED EXCEPTION PR CRITY 2 \n");
nodel . begin_intr(2, status);
/1 Send Commands For Priority 1 here.
nodel . end_intr(2, status);
}
}
}

join // End fork
} // End program ny_test

38 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 3: FlexModel Command Modes

3

FlexModel Command Modes

Introduction

If you are using a simulator with a custom FlexModel integration, you can issue
FlexModel commands from HDL, VERA, or C. Otherwise, with the standard SWIFT
Integration, you use Direct C Control. For information about configuring FlexModelsin
your simulator with both standard and custom integrations, refer to the Smulator
Configuration Guide for Synopsys Models. This chapter explains how to use
FlexModels with the different command modes:

« “Using HDL Command Mode” on page 39
« “Using C Command Mode” on page 43
« “Using VERA Command Mode” on page 47

Using HDL Command Mode

In HDL Command Mode, FlexModels execute VHDL or Verilog commands contained
in the top-level system testbench file. HDL Command Mode gives you control over the
model that is tightly integrated with events in the simulation. In this mode, you can
generate command results, create test sequences that loop or branch on command
results, and synchronize the command flow of several modelsin atestbench.

When you use HDL Command M ode, the Command Core queues model commands and
executes them in the order received. Multiple commands can be active simultaneously
(waiting for results) if the model supports pipelining.

To use HDL Command Mode, instantiate a FlexModel in your testbench and then create
acommand process for the model that includes the FlexModel commands that you want
the model to execute. Hereisa VHDL example of acommand process for a FlexModel
executing in HDL Command Mode:

August 28, 2001 Synopsys, Inc. 39

Chapter 3: FlexModel Command Modes FlexModel User's Manual

OVMD_STREAM pr ocess
begi n
wait for CLK PER CD,
assert (false) report "l oadi ng conmands" severity NOTE
nodel _configure(inst, cls_code, X'112233", status); -- dass Code
nodel confi gure(inst, dev_id, X'4500", status);
nodel idle(inst, 5, FLEX WA T _F, status);
nodel _read_req(i nst, X'00000004", X'0", FLEX WA T_F, status);
flex_print_nsg (inst, "This is aread req test", status);
assert (false) report "end of commands" severity NOTE
wait;
end process CMD_STREAM
Do not use multiple HDL command streams to control asingle FlexModel instance; this
produces unpredictable model behavior.

In HDL Command Mode, FlexModel commands are executed as procedure calls
(VHDL) or task calls (Verilog) at the testbench level. The testbench continues issuing
commands to the models until it encounters one of the following:

« A result command or a command containing a wait_mode parameter set to
true. This causes the testbench to wait for the model to complete the command
before issuing the next command.

« A flex_run_program command. Thistransfers control to a C testbench.
Subsequent model commands in the HDL testbench are processed only after all
model command in the C testbench have compl eted.

« A flex_synchronize command. This causes the testbench to suspend command
delivery to one or more models until the specified number of models execute
corresponding flex_synchronize commands. (See “Using HDL Command Mode’
on page 39.)

I Note
In Verilog, when you use the model_read rslt command or any
FLEX_WAIT_T command simultaneously from two instances of the same
model, you get corrupted results. Thisis because Verilog tasks have a static
scope within amodule.

40 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 3: FlexModel Command Modes

VHDL Control

Model commands are VHDL procedures delivered in model-specific packages. These
Synopsys-provided FlexModel packages include the procedures and constants needed to
call the model from the testbench.

You must specify an instance-specific model identifier by setting aVHDL generic.
Model instancesthat do not have unique identifiers cause the Command Coreto issue an
error. If thereis only one model instance, the default ID valueis zero.

In HDL Command Mode, you need to define aunique interrupt signal for each interrupt
used by each model instance. A particular model instance may also require multiple
interrupt service routines. See “ Developing HDL Interrupt Routines” on page 33 for an
example model interrupt service routine.

Verilog Control

The Verilog control mechanism closely mirrors that of the VHDL implementation. You
must include Synopsys-provided, model-specific Verilog source files to make the
FlexModel tasks available to the testbench.

For information on getting FlexModels set up with their HDL package files, refer to the
Smulator Configuration Guide for Synopsys Models.

HDL Control Between Model and Testbench

If you are using a simulator with a custom FlexModel integration, individual
FlexModels come with a set of HDL procedures or tasks that can be invoked from the
HDL testbench. These procedures communicate with the Command Core using the
same HDL -to-C mechanism that the models use. The HDL testbench and the model do
not attempt to access the Command Core at the same time, preventing conflicts.
FlexModels interact with the Command Core on falling clock edges, while the HDL
testbench procedures or tasks use the rising edges.

August 28, 2001 Synopsys, Inc. 41

Chapter 3: FlexModel Command Modes

FlexModel User's Manual

Figure 5illustrates a simple read_reg/read rdlt pair from the HDL testbench without

pipelining. The testbench and model activity are synchronized to the rising edges of the
clock, but the interaction between the FlexModel and the Command Core only occurs

on the falling edge. The user sees a single clock cycle delay before the first command
starts, and a one-cycle delay before the results of the operation are available to the

testbench.
Model Model
gets read_req posts read_rslt
A < Read > *
Testbench read_req(. . .) Testbench

posts read_req

read_rslt(. . .)

gets read_rslt

Figure 5: Read_req/read_rslt Pair for Testbench

Figure 6 shows how multiple model state commands can occur in asingle clock cycle.

Model posts
posts reg_rslts

Y

!

Testbench
posts both
reg_req

Y

Testbench
gets both
reg_rslt

reg_req(. .

reg_req(. .
reg_rslt(. .

reg_rslt(. .

Figure 6: Multiple Commands within a Single Clock Cycle

The mechanism illustrated in Figure 6 guarantees that the model isin a stable state when

the register values are posted.

42

Synopsys, Inc.

August 28, 2001

FlexModel User's Manual Chapter 3: FlexModel Command Modes

Using C Command Mode

The following description of C Command Mode applies just to simulators with custom
FlexModel integrations. Customers with standard SWIFT integrations can also issue
commands from a C program, but use a different method called Direct C Control. For
more information, refer to the Smulator Configuration Guide for Synopsys Models.

In C Command Mode, FlexModels execute commands contained in an external C
program. C Command Mode is efficient because you don’t have to recompile your
simulator when you make changes to the model control program. Note that the C
programming language does not provide for concurrency or recognize the notion of
simulation time. For information on other limitations to be aware of when using C
Command Mode, refer to “Pipelined Bus Operations’ on page 25.

Figure 7 shows how to enable C Command Mode using theflex_run_program command
to call an externa C program from the HDL testbench.

the same ID
HDL Testbench mt C Pmce)

mai n()

int status, |d;

char *Model ID =

fl ex_get _inst_handle

Model Id, & d, &stat);

/* 1d is integer handl e */

flex_start _program&stat);
—/* End of init sequence */

--Instantiation of nodel

model nane ul (Fl exModel | D => @ | —]

|
process
begin --runs the C program
flex_run_progran{“a.out”, stat');

--(other HOL commands here
--runs next C program

——

flex_run_progran(“b.out”,stat); nmodel _cmd_1()

--(more HOL commands her e) nodel _cnmd_2()

ed 11 AN
exit O

Figure 7: Accessing a C Testbench from HDL

In Figure 7, control returns from the C program back to the HDL testbench after the
“init” sequence completes, immediately following execution of the flex_start_program
command. All model commandsin the C program are executed by the model before any
subsequent model commands in that VHDL process or Verilog block.

I35 Note
You cannot have multiple VHDL processes or Verilog blocks providing
commands to the same model instance.

August 28, 2001 Synopsys, Inc. 43

Chapter 3: FlexModel Command Modes FlexModel User's Manual

Keep in mind that integersin HDL are integersin C. In C Command Mode,

std logic vectorsand bit_vectors used asinput valuesto functions are represented using
the FLEX_VEC_CONST type, while return values are represented using the
FLEX_VEC type. Also, C functions with return values require you to passin the
address. For information about creating and using FLEX_VEC vectors for use with
FlexModel commands, refer to “FlexModel C Testbench Interface” on page 89.

To use C Command Mode, refer to the following procedures:
1. “Creating an External C File” on page 44
2. “Compiling an Externa C File” on page 45
3. “Switching Control to an External C Program” on page 47

Creating an External C File
Create the external C file according to the following procedure:
1. Include the two Synopsys-provided header files:

o flexmodel _pkg.h Thisfile contains the function prototypes for the generic
FlexModel functions.

Location: 3LMC_HOME/sim/C/src

o model_pkg.h Thisfile contains model-specific function prototypes and
constants that make the commands easier to use.

Location: 3LMC_HOME/modelsYmodel_fx/model_fxversion/src/C

2. Initialize the C program using the flex_get_inst_handle and flex_start_program
commands, as shown in the following example:

mai n()
int status, Id,;
char *Model ID = “idl” /* Must be sane as in VHDL testbench */
flex_get _inst_handl e(Mdelld, &d, &status);
/* 1d is the returned integer handl e */
flex_start_progran(&status); /* End of initialization sequence */

This next example adds a definition for an interrupt function.

/* This is in the C testbench */
void ny_intr_function()
mai n() {

int status, |d;

char *Model Id = “idl”;

flex_get inst_handl e(Mdel ID, & d, &status);
/* Exiting initialization phase */

44 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 3: FlexModel Command Modes

fl ex_start_progran(&status);
/* Registering ny_intr_function next */
flex_define_intr_function(ld, ny_intr_function, &status);

Common Errors to Avoid

Here's an example of what not to do. You cannot issue aflex_start_program command
until you obtain a model instance handle using the flex_get_inst_handle command.

mai n() {
int status, |d;
char *Mbdel I d = “idl”;

flex_start_progran(&status);
[*** Error: flex_start_programbefore getting instance handl es ***/

Another common error isto issue model commands before the initialization sequenceis
complete, as shown in the following example.

mai n() {
int status, |d;
char *Mddel ld = “id1l”;

flex_get inst_handl e(Mdel Id, & d, &status);
nodel _wite(ld, Addr, Data, &status);
[*** Error: issuing nmodel command before end of initialization ***/

Compiling an External C File

The compile line you use differs based on your platform. Note that these examples
include creation of aworking directory (workdir) and running flexm_setup:

a. On HP-UX, you need to link in the -LBSD library as shown in the following
example:

% nkdi r wor kdi r

%flexmsetup -dir workdir model fx

%/ bi n/c89 -0 executabl e_nane

your Cfile.c

wor kdi r/ src/ d hp700/ nodel _pkg. o

$LMC_ HOMWE | i b/ hp700. |i b/ f1 exnodel _pkg. o
-1 $LMC HOWE/ simi T src

-lworkdir/src/C

-1 BSD

August 28, 2001 Synopsys, Inc. 45

Chapter 3: FlexModel Command Modes FlexModel User's Manual

46

b. On Solaris, you need to link in the -Isocket library as shown in the following

example:

% nkdi r wor kdi r

%flexmsetup -dir workdir nodel fx

% cc -0 executabl e_nane

your_Cfile.c

wor kdi r/ src/ d sol ari s/ model _pkg. o

$LMC HOME | i b/ sun4Sol ari s. |i b/ fl exnodel _pkg. o
-1 $LMC HOWE/ simi d src

-lworkdir/src/C

- | socket

. AlX:

% nkdi r wor kdi r

%flexmsetup -dir workdir nodel fx

%/ bin/cc -0 executabl e_nane

your Cfile.c

wor kdi r/ src/ d i bnr s/ model _pkg. o

${LMC HOME}/ i b/ibnrs. lib/flexnmodel _pkg. o
-lworkdir/src/C

-1 ${LMC_ HOME}/ sim T src

-1 dl

. Linux;

% nkdi r wor kdi r

%flexmsetup -dir workdir nodel fx

% egcs -0 execut abl e_nare

your Cfile.c

wor kdi r/ src/ d x86_1 i nux/ nodel _pkg. o
${LMC_HOME}/ i b/ x86_1 i nux. |i b/ fl exnodel _pkg. o
-lworkdir/src/C

-1 ${LMC_ HOVE}/ sim T src

. On NT, you need to link in a Windows socket library as shown in the following

example.

> nd wor kdi r

> flexmsetup -dir workdir model _fx

>cl - -MD -DVEC -DWVN32 - Feexecut abl e_narne
your_C file.c

wor kdi r\ src\ Q pcnt\ nodel _pkg. obj

%MC HOME% | i b\ pent. |i b\ fl exnmodel _pkg. obj
-1%MC HOVESA si M Qi src

-lworkdir\src\C

wsock32. i b

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 3: FlexModel Command Modes

T3> Note
The entire compilation expression must appear on the sameline. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

Switching Control to an External C Program

You switch model control to an external C program using the flex_run_program
command in your HDL testbench. The following example shows a FlexM odel
command process that executes an external C program.

OVD_STREAM : process

begi n
wait for CLK PER CD,
assert(false) report “Running C Prograni severity NOTE
flex_run_progran(“a.out”, status);
assert(fal se) report “Finished Running C Prograni severity NOTE;
vait;

end process CMD_STREAM

Using VERA Command Mode

FlexModels come with an object-oriented VERA command interface that lets you
control them from aVERA testbench. When you use FlexModel from VERA, you get
all the benefits of the powerful VERA verification language. In VERA Command
Mode, you can use any FlexModel command or feature available in HDL Command
Mode. The FlexModel-to-VERA command interface is a direct connection to the C part
of the hybrid HDL/C FlexModel architecture. Because the connection is not through the
simulator PLI/FLI, it runs faster.

VERA Command Mode syntax differs slightly from that of HDL Command Mode. For
more information, see “Command Syntax Differencesin VERA Command Mode’ on
page 58.

The following sections document how to use VERA with FlexModels. For general
information about using VERA, refer to the Vera Verification System User’s Manual.

August 28, 2001 Synopsys, Inc. 47

Chapter 3: FlexModel Command Modes FlexModel User's Manual

FlexModel VERA Classes

VERA is an object-oriented language. The FlexModel VERA command interface uses
the inheritance feature to construct amodel class hierarchy. At the top of the hierarchy is
ageneral model class. Other model classes inherit from this general class. Figure 8
shows the model hierarchy.

LstModel

¢

SwiftModel
Flex

¢

ModelFx

Figure 8: VERA Model Class Hierarchy

The LstModel, SwiftModel, and Flex classes are abstract or virtua classes. These
classes cannot be instantiated directly in VERA testbenches. Only an instance of a
ModelFx class can be created in a VERA testbench.

The commands used to control FlexModels are public methods of the ModelFx class.
You can send FlexModel commands from VERA to the model only through an instance
of the ModelFx class. Global FlexModel commands (see“ Globa FlexModel Command
Descriptions” on page 61) must aso be sent through an instance of the ModelFx class.
The Model Fx class automatically inherits any new features that are added to the
LstModel and SwiftModel classes.

48 Synopsys, Inc. August 28, 2001

FlexModel User's Manual

Chapter 3: FlexModel Command Modes

VERA Files in the LMC_HOME Tree
Table 1 describesthe VERA filesinstalled in your LMC_HOME tree.

Table 1: VERA Files in the LMC_HOME Directory

File Name

L ocation

Description

[stmodel.vrh

$LMC_HOME/sim/veralsrc

External class declaration for LstModel class.

swiftmodel .vrh

$LMC_HOME/sim/veralsrc

External class declaration for SwiftModel class.

flexmode_pkg.vrh

$LMC_HOME/sim/veralsrc

External class declaration for the Flex class.

model_pkg.vrh $LMC_HOME/models/model_fx/mo | External class declaration for the model-specific
del_fxversion/src/vera ModelFx class.

Istmodel.vr $LMC_HOME/sim/veralsrc Source file for the LstModel class.

swiftmodel.vr $LMC_HOME/sim/veralsrc Source file for the SwiftModel class.

flexmodd_pkg.vr

$LMC_HOME/sim/veralsrc

Source file for the Flex class.

model_pkg.vr

$LMC_HOME/models/model_fx/mo
del_fxversion/src/vera

VERA sourcefile for the model-specific Model Fx
class.

The ModelFx Class Constructor

The constructor for a Model Fx class expects two string arguments, the FlexM odel
instance name and the clock signal.

The first argument, the FlexModel instance name, is the string instance name given to
the FlexModel in the top-level Verilog or VHDL testbench. The constructor uses this
argument to get an instance handle for the FlexModel. If the instance name passed is
invalid, the model issues an error and sets aflag in the class indicating the severity of the
error. (For information on accessing the error status, see “Accessing the Current Error
Status’ on page 51.)

The second argument is the full path to the clock signal to be used in FlexModel
commands. This clock signal is used within commands that have associated wait

behavior. VERA creates a dynamic bind to this clock signal within the constructor using
VERA's signal_connect feature.

Because you are using VERA's signal_connect function, you must use the -x switch
with Verilog-XL at runtime, or use -P $VERA HOMFE/lib/vera pli_dyn.tab for VCS at
runtime. For more information about the signal_connect function, refer to the Vera
\erification System User’s Manual.

August 28, 2001 Synopsys, Inc. 49

Chapter 3: FlexModel Command Modes FlexModel User's Manual

T3> Note
If VERA cannot find the clock signal in the design, it issues aruntime error.

If you call the constructor at the same time you create the Model Fx object, the
constructor returns at the next positive edge of the clock signal passed in. Thisdelay is
necessary because the testbench cannot obtain the FlexModel’s instance handle until at
least one clock period has elapsed. If you create the model object and call the new
function after some time has elapsed, the constructor returnsimmediately.

Examples with Top-level Testbenches

The following two VERA testbench examples show a VERA testbench paired with a
Verilog testbench and a VERA testbench paired with aVHDL testbench. Note that in
the Verilog example, the model’s constructor advances to the next positive edge of
top.U1.CLK (the clock signal passed in to the constructor) before returning. In the
VHDL example, however, the model’s constructor returns immediately, because the
testbench has already waited for one clock.

Example: VERA Testbench Paired with Verilog Testbench

Verilog Testbench
nodul e top;

nyf xnodel UL (. OLK(CLK), . RST(RST)):
def par am
UL. Fl exModel Id = “ny_nodel ”;

VERA Testbench

program rmodel _test {
Model Fx instl = new(“ny_nodel”, “top.UL CK");

50 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 3: FlexModel Command Modes

Example: VERA Testbench Paired with Top-level VHDL
Testbench

VHDL Testbench

entity top if end top;
architecture test of topis

UL : nyf xnodel
generic map (H exMdel |d => “ny_nodel ")
port map (
AK => QK
RST => RST
);

VERA Testbench

program nodel _test {
Model Fx inst1;
repeat (1) @posedge CLOCK;
instl = new(“ny_nodel”, “top/Ul/ CK");

Accessing the Current Error Status

When an error occurs within the model object, it prints an error message to standard
error. The model object saves the error message and the severity of the error. There are
three possible severity levels:

« FLEX_VERA_NOERROR—nO errors
« FLEX_VERA_WARNING—warnings
o« FLEX VERA_FATAL—fatal errors
You can use one of two methods to access the current error status:
« showStatus()—Returns the present error severity level.
« showErrors()—Prints any errors to standard oui.

August 28, 2001 Synopsys, Inc. 51

Chapter 3: FlexModel Command Modes FlexModel User's Manual

Example: Accessing Current Error Status
The following example shows to get the current error status from a VERA testbench.

progr am nodel _t est
{
Model Fx i nst1;
repeat (1) @posedge CLOCK;
instl = new(“ny_nodel”, “top/Ul/CK");

if (instl showStatus() == FLEX VERA FATAL) {
i nst1. showerrors();
[/ Take suitable action

}
el se {

/! No fatal errors, proceed.
}

} /1 program nodel _test

FlexModel Logging from the VERA Class

When FlexModel logging is turned on, the VERA class creates afile and logs the
versions of the objects. Thisfileisused by Customer Support for debugging purposes.
Thisfileisnamed model_instance _name.versions. For example, if the instance namefor
the tms320c6201 isinstl, then the file created is named tms320c6201_inst1.versions.
For more information on FlexModel logging, see “Reporting Problems’ on page 109.

52 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

A

FlexModel Command Reference

Introduction

This chapter explains the different types of FlexModel commands and their common
elements and provides a complete command reference for the global FlexModel
commands. Thisinformation is presented in the following major sections:

« “Model-Specific and Global Commands’ on page 53
« “About the Commands’ on page 54
o “Globa FlexModel Command Descriptions’ on page 61

Model-Specific and Global Commands

You use FlexModels by issuing commands to model instancesin your testbench. There
are two basic kinds of FlexModel commands, as shown in Table 2.

Table 2. FlexModel Command Types

Command
Type Used To How to I dentify Where Documented
Model-specific | Exercise processor or bus | Command prefix equals | Individual model
protocol functions. the model name. For datasheets.
example:
mpc860_write
Global Control program flow or Command prefix isflex. | Inthismanual. Refer to
handle general housekeeping | For example: “Global FlexModel
functions. flex_get_inst_handle Command Descriptions’
- = on page 61 later in this
chapter.

August 28, 2001

Synopsys, Inc.

53

Chapter 4: FlexModel Command Reference FlexModel User's Manual

M odel-specific and global commands can generally be used in al FlexModel command
modes, including HDL Command Mode, VERA Command Mode, C Command Mode,
and Direct C Control. In addition, FlexModels support aset of C functions and operators
for use with model commands when working in C Command Mode or with Direct C
Control. These C functions also have the “flex” prefix. For details on the supported C
functions and operators, refer to “FlexModel Command Reference” on page 53.

TI°5= Note
In VERA Command Mode, you use the model Object prefix instead of the

model prefix. For more information, refer to “Command Syntax Differences
in VERA Command Mode” on page 58.

About the Commands

FlexModel commands are built with a common underlying architecture to aid
readability. For example, we already saw that model-specific commands are easy to
identify because they all have the model name as their prefix. And of course, the
command names are intended to describe the functions performed. Understanding the
meaning of other command components can help improve your productivity working
with FlexModels, so let’s take alook at the key features of FlexModel commands.

Bus and Zero-Cycle Commands

Not all FlexModel commands generate bus cycles. For example, commands that check
or modify model characteristics are called zero-cycle commands. You can execute
multiple zero-cycle commands without advancing simulator time. Commands that
generate bus cycles (like model _write) generally take at least one clock cycleto execute.

The inst_handle Parameter

Each FlexModel instance in your design needs a unique identifier called aninst_handle,
which you obtain using the flex_get_inst_handle command. After you get an
inst_handle, you use that value in the inst_handle parameter of all subsequent
FlexModel commands. For more information, refer to “ Setting Up the Model” on

page 19. Note that you do not usetheinst_handle parameter in VERA Command Mode.
See “Command Syntax Differencesin VERA Command Mode” on page 58.

54 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

The req and rslt Command Suffixes

The req and rslt command suffixes are used with request and result commands,
respectively. You combine result commands with corresponding request commands to
retrieve datafrom FlexModels. Request commands direct the model to post the data and
result commands retrieve the results. For more information on how to use request and
result commands, refer to “Pipelining With wait_mode Behavior” on page 26.

Command Result Identifiers

You use command result identifiers with result commands to access data posted by
request commands. There are two types of result identifiers. command tags and addr
parameters. In many cases you use the integer returned in the status parameter of the
request command as the cmd_tag argument of the paired result command. With other
result commands you use the addr parameter returned by a paired request command to
specify the starting address for the data to retrieve. The ideain both casesisto uniquely
identify the data you want to retrieve by using values returned by a preceding model
request command.

When you use an addr parameter with aresult command and more than one request
command for the same address has posted, the result command returns data for the first
request command received by the model before returning data for the second result
command received, and so on. For example:

read _req(00000000); // request data from address "00000000", and the
data is "a"

/] some other stuff or just time delay, during which time the

data at "00000000" changed to "b"

read _req(00000000); // request data from address "00000000", and the
data is "b"

read rslt (00000000, return_data); // get the data requested back to the
t est bench

print(return_data); // the data printed is "a"
read_rslt (00000000, return_data); // get the data requested back to the
t est bench

print(return_data); // the data printed is "b"

To avoid this behavior, use command tag result identifiers whenever possible. Refer to
the command reference sections of the individual model datasheets for more
information about the supported model request and result commands and the result
identifiers available with each one.

August 28, 2001 Synopsys, Inc. 55

Chapter 4: FlexModel Command Reference FlexModel User's Manual

The wait_mode Parameter

Many FlexModel commands allow you to specify await_mode parameter. If you set this
parameter to true (FLEX_WAIT_T), the model pauses until the command completes. If
you set thewait_mode parameter to false (FLEX_WAIT_F), themodel proceeds directly
to the next command in the queue without waiting for the first command to complete.

The status Parameter

All FlexModel commands return a status parameter. Depending on the command type,
this parameter can convey two different types of information.

« Type 1l: Commands that do not return results to the control process. For this type,
the models return a status of 1 if the command compl etes successfully.

« Type 2: Commands that return results to the control process. For thistype, the
models return a positive integer in the status parameter if the command completes
successfully. Thisinteger increments by one with each new command of thistype so
that you can use the status value as a tag to uniquely identify the results you want
with results commands, as explained in “Command Result Identifiers’ on page 55.

For commands of either type that do not complete successfully, FlexModels return a
status of O or a negative integer. Negative integers indicate specific error types that you
can look up in Table 3.

Table 3: Status Parameter Error Codes

Error Code Description

Fatal Errors. Statusvalue range -100 through -199

-100 %Ag(ienstance of one model was passed to acommand for another model
ype.

-101 A command associated with an uninitialized model type was received.

-102 The model instance name was not mapped to an instance handle (with
flex_get_inst_handle).

-103 The system ran out of memory.

-104 An attempt was made to define an instance for a second time.

-105 An attempt was made to access an undefined model instance.

-106 A C program exited with fatal errors.

Internal Errors. Statusvalue range -200 through -299
Contact Customer Support. See “ Getting Help” on page 11

56 Synopsys, Inc. August 28, 2001

FlexModel User's Manual

Table 3: Status Parameter Error Codes (Continued)

Error Code Description

User Errors: Statusvalue range -300 through -399

-300 Contact Customer Support. See “Getting Help” on page 11.

-301 Contact Customer Support. See “Getting Help” on page 11.

-302 Cannot open file to read.

-303 The flex_clear_queue command was called with an invalid queue-
initialize number.

-304 An interrupt command with a priority less than zero was received.
Interrupt priorities start at zero.

-305 An attempt was made to access an uninitialized data queue.

-306 An attempt was made to access an uninitialized command queue.

-307 An attempt was made to access an uninitialized active command
queue.

-308 An attempt was made to access an uninitialized exception queue.

-309 A flex_synchronize command was received with aNULL sync tag
string.

-310 Two flex_synchronize commands were received—they had the same
sync_tags but different sync_totals. See “flex_synchronize” on
page 83 for the correct syntax.

-311 A second attempt was made to assign async_tag to a model instance
that already had one.

-312 A sync_tag associated with too many flex_synchronize commands
was received.

-313 The executable file specified by the flex_run_program command
could not be found.

Chapter 4: FlexModel Command Reference

Note that FlexModel C functions return a status of 1 when they complete successfully
and do not return at all on fatal errors.

August 28, 2001

Synopsys, Inc.

57

Chapter 4: FlexModel Command Reference FlexModel User's Manual

Command Syntax Differences in VERA Command
Mode

In VERA Command Mode, the model functions are called through a model object;
therefore, the model nameis not a part of the command name in VERA. So a command
that would look like thisin HDL Command Mode:

model _read req();
would look like thisin VERA Command M ode:
nodel (bj ect.read _req();

The model Object is an instance of the Model Fx class that you create in your VERA
testbench.

The FlexModel class encapsulates the inst_handle value; therefore, theinst_handle
argument is not required in FlexModel commands from VERA. So a command that
would look like thisin HDL Command Mode:

nodel _read_req(inst_handl e, address, data, wait_node, status);
would look like thisin VERA Command Mode:

nodel (oj ect . read_req(address, data, wait_node, status);

58 Synopsys, Inc. August 28, 2001

FlexModel User's Manual

Chapter 4: FlexModel Command Reference

Global FlexModel Commands

Global FlexModel commands are available to all FlexModels. They either perform
supervisory functions (switching command sources, handling interrupts, printing
messages) or operate globally on all models (synchronizing models, clearing queues,
and enabling tagging). The prefix “flex” iscommon to al of these commands.

Table 4 lists the global FlexModel commands. Some commands are available only in
specific command modes, as shown in the “Command Mode” column. The commands
are described in detail in “Global FlexModel Command Descriptions’ on page 61.

Table 4. Global FlexModel Command Summary

Command
Command Name Mode Description
flex_clear_queue All Clears the queues for the model.
flex_define_intr_function C Defines a C interrupt function for the model.
flex_define_intr_signal HDL, VERA | Defines the testbench interrupt signal for the model.
flex_get_cmd_status All Checks the status of a model command.
flex_get_coupling_mode C Checks the coupling mode for the model.
flex_get_inst_handle All Gets an inst_handle for the model.
flex_get_value C Gets the single-bit value of a specified net in the
design.
flex_print_msg All Prints a message.
flex_run_program HDL, VERA | Switches control to a compiled C program.
flex_set_coupling_mode C Sets the coupling mode for the model
flex_set_value C Setsthe single-bit value of a specified net in the
design.
flex_start_program C Signals the Command Core that the testbench is done
getting model instance handles and is beginning to
send model commands.
flex_switch_intr_control C Switches model interrupt control to HDL.
flex_synchronize All Synchronizes the model with other modelsin the
testbench.
flex_wait C Causes the model to wait for a specified number of

clock cycles

August 28, 2001

Synopsys, Inc.

59

Chapter 4: FlexModel Command Reference

FlexModel User's Manual

Table 4. Global FlexModel Command Summary (Continued)

Command
Command Name Mode Description
flex_wait_on_node C Suspends command execution in C program until the

specified design net is assigned the expected value.

60

Synopsys, Inc.

August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

Global FlexModel Command Descriptions

The following pages describe the global FlexModel commands. M odel-specific
commands are described in the individual FlexModel datasheets.

flex_clear_queue
Clear the command queue. Used in all command modes.

Syntax
flex_clear _queue (inst_handle, queue_select, status);
Parameters
inst_handle An integer instance handle returned by the
flex_get_inst_handle command.
gqueue_select Specify one of the following constants:

FLEX_ALL_QUEUES — Clear al queues
FLEX_CMD_QUEUE — Clear only the command queue
FLEX_RSLT_QUEUE — Clear only the result queue

status A status of 1 means the command completed successfully. A
status |l ess than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information. For more information on command status, see
“The status Parameter” on page 56.

Description

The flex_clear_queue command clears the queue(s) for the specified model instance. It
executes immediately and overrides any commands that are in wait mode except in C
Command Mode, where there is no concurrency.

Prototypes
C
voi d flex_cl ear_queue (
const int i nst_handl e,
const int queue_sel ect,
i nt *stat us);

August 28, 2001 Synopsys, Inc. 61

Chapter 4: FlexModel Command Reference

VHDL
procedure flex_cl ear_queue (
i nst_handl e : in integer;
gueue_sel ect : in integer;
status : out integer);
Verilog
task flex_cl ear_queue;
i nput [31:0] inst_handl e;
i nput [31: 0] queue_sel ect;

out put [31: 0] status;

VERA
task cl ear_queue (
i nt eger queue_sel ect,
var integer status);
Examples

FlexModel User's Manual

The following examples clear just the command queue for the model instance specified

by the “inst” inst_handle.
/1 Verilog Exanpl e
flex_clear_queue(inst, ‘FLEX CMD QUEUE, status);

-- VHOL Exanpl e
flex_cl ear_queue(inst, FLEX CMD QUEUE, status);

/* C Exanpl e */
flex_clear_queue(inst, FLEX CMD QUEUE, &status);

/1 VERA Exanpl e
nodel _obj ect . cl ear _queue(FLEX OMD QUEUE, status);

62 Synopsys, Inc.

August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_define_intr_function
Defines a C interrupt function. Used only in C Command Mode.

Syntax
flex_define_intr_function (inst_handle, my_function, status);
Parameters
inst_handle The model instance for which interrupts are to be controlled
from the C testbench.
my_function A pointer to the C interrupt function. This function must return
void, and does not take any arguments.
status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully.
Description

Theflex_define _intr_function command specifies to the Command Core which function
to call if aninterrupt occurs. Thiscommand only worksin C Command Mode. For HDL
Command Mode, use the equivalent flex_define_intr_signal command documented on

page 64.

Prototype
C
void flex_define_intr_function(
const int i nst _handl e,
FLEX FUNC ny_function,
i nt *status);
Example

/* C Exanpl e: Function prototype */
void ny_intr_handl er();

mai n() {

int status;

flex _define intr function(id, ny_intr_handl er, &status);
}

/* Defined interrupt function */
void ny_intr_handler() {

: . /* Handl er routine conmands go HERE */
}

August 28, 2001 Synopsys, Inc. 63

Chapter 4: FlexModel Command Reference FlexModel User's Manual

flex_define_intr_signal

Defines an interrupt signal in an HDL or VERA testbench. Not used in C Command
Mode (instead, see “flex_switch_intr_control” on page 82).

Syntax
flex_define_intr_signal (inst_handle, “ sig_name”, status);
Parameters
inst_handle An integer instance handle returned by the
flex_get_inst_handle command.
“sig_name” A name for the interrupt signal you want to define. Thisisa
signal that you define in your testbench.
status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).
Description

The flex_define_intr_signal command definesasignal in an HDL or VERA testbench.
InVHDL the“sig_name” isasignal. In Verilog, it isaregister. In both cases, the
“sig_name” must specify the full path to the signal. FlexModels toggle this signal when
they detect interrupts, thus starting the interrupt service routines tied to that signal.

Prototypes
VHDL
procedure flex_define_intr_signal (
i nst_handl e . ininteger;
si g_nane : in string;
status : out integer);
Verilog
task flex _define intr_signal;
i nput [31: 0] inst_handl e;
i nput [8* " FLEX CHARVAXCNT: 1] si g_nhane;
out put [31: 0] status;

64 Synopsys, Inc. August 28, 2001

August 28, 2001

FlexModel User's Manual

VERA
task define_intr_signal (
string si g_nane,
var integer status);
Examples
-- VHOL Exanpl e

architecture.....

signal int_signal:std_|ogic;
begi n

pr ocess

flex_define_intr_signal (inst,”top/int_signal”, status);

/1 Verilog Exanpl e
nodul e exanpl e
reg int_signal;

initial
begi n

flex _define_intr_signal (inst, “top.int_signal”, status);

/1 VERA Exanpl e

nodel _obj ect.define_intr_signal (“top.int_signal”, status);

Synopsys, Inc.

Chapter 4: FlexModel Command Reference

65

Chapter 4: FlexModel Command Reference FlexModel User's Manual

flex_get _cmd_status
Checks the status of a command in the model’s queue. Used in all command modes.

Syntax

flex_get_cmd_status (inst_handle, cmd _tag, valid f, status);

Parameters
inst_handle

cmd_tag

valid_f

status

Description

An integer instance handle returned by the
flex_get_inst_handle command.

An integer that identifies the command in the command
gueue. Thisis usually the returned status of the command.

A boolean returned value (1 = valid, 0 = invalid) that indicates
whether the specified cmd_tag represents avalid command in
the queue.

A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Given amodel inst_handle and cmd _tag, the flex_get cmd_status command returns the
valid_f trueif the specified command is active or pending.

void flex get cmd_status (

Prototypes
C
const int
const int

i nt
i nt

VHDL

i nst_handl e,
cmd_t ag,
*valid_f,
*status);

procedure flex _get _cmd_status (

i nst_handl e
cmd_t ag
valid_f

stat us

66

s in i nt eger;
cin i nt eger;
:oout bool ean;
. out i nteger);

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

Verilog
task flex_get cnd_st at us;
i nput [31: 0] inst_handl e;
i nput [31:0] cmd_tag;
out put valid f;

out put [31: 0] status;

VERA
task get _cnd_status (
i nt eger cnd_t ag,
var integer valid f,
var integer status);
Examples

The following examples return valid_f true because the preceding specified commands
arevalid.

-- VHOL Exanpl e

arnvtdm _read_req(inst, addrl, 0, FLEX WA T F, tagl);
flex _get _cnd _status(inst, tagl, valid f, status);

/1 Verilog Exanpl e

arnvtdm read req(inst, addrl, 0, ‘FLEX WAIT_F, tagl);
flex_get _cnd_status(inst, tagl, valid f, status);

/* C Exanpl e */

arnvtdm _read_req(inst, addrl, 0, FLEX WAIT_F, & agl);
flex _get _cnd_status(inst, tagl, &alid f, &status);

/1 VERA Exanpl e
nodel _object.read req(addrl, 0, ‘FLEX WAIT_F, tagl);
nodel _object.get_cnd_status(tagl, valid f, status);

Thislast command returns valid_f false, because tag2 did not get assigned to any
command yet, and thusis not valid.

flex _get _cnd _status(inst, tag2, valid f, status);

August 28, 2001 Synopsys, Inc. 67

Chapter 4: FlexModel Command Reference FlexModel User's Manual

flex_get_coupling_mode
Checks the coupling mode for a model while in C Command Mode.

Syntax
flex_get_coupling_mode (inst_handle, coupling_mode, status);
Parameters
inst_handle An integer instance handle returned by the
flex_get_inst_handle command.
coupling_mode The command returns a coupling_mode value:

FLEX_UNCOUPLED_MODE
FLEX_FULLY_COUPLE_MODE

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description

Given amodel inst_handle, the flex_get_coupling_mode command returns the
coupling_mode for the model. FlexModels start up in coupled mode by default.

Prototype
C
voi d flex_get coupling _node (
const int i nst_handl e,
const int coupl i ng_rode,
i nt *status);
Example

The following example returns the coupling_mode for the mpc8260 _inst1 model
Instance.

/* C Exanpl e */
fl ex_get _coupling_nmode (npc8260_instl, &coupling_node, &status);

68 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_get_inst_handle
Returns a unique instance handle for the model. Not used in VERA Command Mode.

Syntax
flex_get_inst_handle (InstName | instance | ModelInstName, inst_handle, status);

Parameters

InstName (C), instance (VHDL), ModelInstName (\Verilog)
The unigue instance name specified as the SWIFT
FlexModelID parameter when the model is instantiated.

inst_handle An integer value used as a unique model instance identifier.
This value must be used in all subsequent FlexM odel
commands for this model instance.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description

Theflex_get_inst_handle command returns a unique instance handle for usein all
subsequent FlexModel commands. This must be the first command issued for each
FlexModel instance in your design. This command can be used in HDL Command
Mode or C Command Mode, but not in VERA Command Mode (see “ Command Syntax
Differencesin VERA Command Mode” on page 58).

In VERA Command Mode, you do not need to use this command because the instance
handle is automatically issued when an instance of the model’s classis created.

Prototypes
C
void flex_get _inst_handl e(
const char* | nst Narre,
i nt *i nst _handl e,
i nt *status);

August 28, 2001 Synopsys, Inc. 69

Chapter 4: FlexModel Command Reference FlexModel User's Manual

VHDL
procedure flex_get_inst_handle (
i nst ance o in string;
i nst_handl e : inout integer;
status ;. out i nteger);
Verilog
task flex _get inst_handl e;
i nput [* FLEX_CHARVAXCNT*8: 1] Model | nst Narre;
out put [31: 0] inst_handl e;
out put [31: 0] status;
Examples

The following examples return a unique instance handle to the variable “tms_1_handle’:

-- VHOL Exanpl e
flex _get _inst_handle(“tns_1", tns_1 handl e, status);
tms320c6201 idle(tnms_1 handle, 2, FLEX WA T T, status);

/1 Verilog Exanpl e
flex_get _inst_handl e(Model | nst Nane, tns_1 handl e, status);
tms320c6201 idle(tns_1 handle, 2, ‘FLEX WAIT T, status);

/* C Exanpl e */
HDL Test bench
--Instantiation of instance “tns_1"
nodel ul(Fl exModel Id => “tns_1")
process
begi n
fl ex_run_progran(“a.out”, status); Same
end Name
C Test bench
mai n() {
int id, status;
char *Inst = “tns_1";
flex_get _inst_handl e(lnst, & d, &status);
fl ex_start_progran(&status);

}

70 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_get value
Gets the single-bit value of a specified net in the design whilein C Command Mode.

Syntax
flex_get_value (path, value, status);

Parameters

path The hierarchical path of the specified net. The path parameter
syntax depends upon the simulator you are using. Examples of
the syntax are given in Table 6, where netsa and b are
declared in the testbench, which has atop level block called
t op. The command can access any net in the design, provided
that the full hierarchical path is specified. Buses can be
accessed one bit at atime. To set avalue of abus,
flex_get_value needsto be called explicitly for each bit of the
bus.

value The command returns the value of a net specified by path.
Table 5 lists returned integer values and the corresponding net
states.

Table 5: Returned Values and Corresponding Net States of value for
flex_get_value

Returned Corresponding
Interger Net
Value State

FLEX_LOGIC_VALUE 0
FLEX_LOGIC_VALUE 1
FLEX_LOGIC_VALUE_Z
FLEX_LOGIC_VALUE_X
FLEX_LOGIC_VALUE_U
FLEX_LOGIC_VALUE W
FLEX_LOGIC_VALUE L
FLEX_LOGIC_VALUE_H
FLEX_LOGIC_VALUE DC

0| N[Ol b~ WOW[IDN| P, | O

August 28, 2001 Synopsys, Inc. 71

Chapter 4: FlexModel Command Reference FlexModel User's Manual

status A status of lessthan or equal to 0 means that the command did
not complete successfully. A status of 1 indicates that the
socket connection between the C testbench and the command
core was successfully established. It does not, however,
indicate the successful completion of the command. It is
possible for the command to fail if the wrong path has been
specified, and the status will still be 1. Look for error
messages in the simulation transcript when you first use this
command, to make sure that you provided the correct
hierarchical path to the signal you want to get on.

Description

This command gets the value of a specified net in the design. The net does not need to
be connected to aFlexModel. The command can only get the value of a single-bit net.
This command provides access to the value of any net in the design from the C program.

The flex_get_value command only works with simulators that support both HDL and C
command control. To enable this command, you need to establish a connection between
the simulator and the command core. Thisisdone by invoking theflex_get inst_handle
command from the HDL testbench. For information on FlexModel supported
simulators, refer to SmartModel Library Supported Smulators and Platforms.

Prototype
C
void flex get val ue(
const char *pat h,
i nt *val ue,
i nt *stat us);
Examples

flex_get _value("top.a", &value, &status);

72 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_print_msg
Prints a message to the screen. Used in all command modes.

Syntax
flex_print_msg (inst_handle, “ text” , status);
Parameters
inst_handle An integer instance handle returned by the
flex_get_inst_handle command.
“ text” A literal string that specifiesthe message to be output; must be
enclosed in quotation marks.
status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).
Description

The flex_print_msg command prints the specified “ text” to the screen.

Prototypes
C
void flex_print_nsg (
const int i nst_handl e,
const char *t ext,
i nt *stat us);
VHDL
procedure flex_print_nsg (
i nst_handl e . in integer;
t ext :in string;
status : out integer);
Verilog
task flex_print_nsg;
i nput [31: 0] inst_handl e;
i nput [8*" FLEX_CHARVAXCNT: 1] text;

out put [31: 0] status;

August 28, 2001 Synopsys, Inc. 73

Chapter 4: FlexModel Command Reference FlexModel User's Manual

VERA
task print_nsg (
string t ext,
var integer status);
Examples

The following examples produce output formatted as shown below, where timeis the
current simulation time:

time ns: INSTANCE inst_name NOTE This is a test

-- VHOL Exanpl e
flex_print_nsg(inst, “This is a test”, status);

/1 Verilog Exanpl e
flex_print_nsg(inst, “This is a test”, status);

/* C Exanpl e */
flex_print_nsg(inst, “This is a test”, &status);

/1 VERA Exanpl e
nodel _object.print_nsg(“This is a test”, status);

74 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_run_program
Transfers control to a C program. Used in HDL and VERA command modes.

Syntax
flex_run_program (“filename” , status);
Parameters
“filename” The“filename” of acompiled C program; must be enclosedin
guotation marks.
status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).
Description

The flex_run_program command switches control to the “ filename” compiled C
program. The model receives all commands from the C program before any subsequent
HDL commandsin that VHDL process or Verilog always block.

T3> Note
You cannot have multiple VHDL processes or Verilog always blocks
providing commands to the same model instance.

Prototypes

VHDL

procedure flex_run_program (
fil enane :in string;
stat us . out integer);

Verilog

task flex_run_program
i nput [8* (" FLEX CHARVAXONT-2): 1] fil enare;
out put [31: 0] status;

VERA

task run_program (
i nput fil enamne,
var integer status);

August 28, 2001 Synopsys, Inc. 75

Chapter 4: FlexModel Command Reference FlexModel User's Manual

Examples

The following examples all switch control to a compiled C program named
myprogramfile.

-- VHOL Exanpl e
flex_run_program(“/proj/asic23/ nyprogranfile”, status);

/1 Verilog Exanpl e
flex_run_program(“/proj/asic23/ nyprogranfile”, status);

/1 VERA Exanpl e
nodel _obj ect. run_progran(“/ proj/asic23/ nyprogranfile”, status);

76 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_set coupling_mode
Sets the coupling mode for a model whilein C Command Mode.

Syntax
flex_set_coupling_mode (inst_handle, coupling_mode, status);
Parameters
inst_handle An integer instance handle returned by the
flex_get_inst_handle command.
coupling_mode Specify the coupling_mode using one of the following two

constants:
FLEX_UNCOUPLED_MODE—sets mode to uncoupled
FLEX_FULLY_COUPLE_MODE—sets mode to coupled

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description

Given amodel inst_handle, the flex_set coupling_mode command sets the
coupling_mode for the model. FlexModels start up in coupled mode by default.

Prototype
C
voi d flex_set_coupling_node (
const int i nst_handl e,
const int coupl i ng_rode,
i nt *stat us);
Example

The following example sets the coupling_mode to uncoupled for the mpc8260 instl
model instance.

/* C Exanpl e */
flex_set _coupling_nmode (npc8260 instl, FLEX UNCOUPLED MIDE, &status);

August 28, 2001 Synopsys, Inc. 77

Chapter 4: FlexModel Command Reference FlexModel User's Manual

flex_set value
Sets the single-bit value of a specified net in the design whilein C Command Mode.

Syntax
flex_set_value (path, value, status);
Parameters
path The hierarchical path of the specified net. The path syntax

depends upon the ssmulator you are using. Examples of the
syntax are given in Table 6, where netsa and b are declared in
the testbench, which has atop level block calledt op. The
command can access any net in the design, provided that the
full hierarchical path is specified. Buses can be accessed one
bit at atime. To set avalue of abus, flex_set value needsto be
called explicitly for each bit of the bus.

Table 6: flex_set_value path Syntax Examples

Simulator Single Bit Form Bus, or Part of Bus, Form

Verilog Simulators

VCS top. a t op. b[O]

t op. b[5]
MTIVLOG top. a t op. b[O]

t op. b[5]
VXL top. a Not supported

VHDL Simulators

MTI /topla Not supported
SCIROCCO ;top:a :top: b(0)

:top: b(5)
VSS, CYCLONE Not supported Not supported
value Net value. Allowed values are specified in Table 7.

Table 7: Allowed Values of value for flex_set_value

FLEX_LOGIC_VALUE_O
FLEX_LOGIC VALUE_1

78 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

Table 7: Allowed Values of value for flex_set_value

FLEX_LOGIC_VALUE Z
FLEX_LOGIC_VALUE_X
FLEX_LOGIC_VALUE_U
FLEX_LOGIC_VALUE W
FLEX_LOGIC_VALUE L
FLEX_LOGIC_VALUE_H
FLEX_LOGIC_VALUE_DC

status A status of lessthan or equal to O means that the command did
not complete successfully. A status of 1 indicates that the
socket connection between the C testbench and the command
core was successfully established. It does not, however,
indicate the successful completion of the command. It is
possible for the command to fail if the wrong path has been
specified, and the status will still be 1. Look for error
messages in the simulation transcript when you first use this
command, to make sure that you have provided the correct
hierarchical path to the signal you want to set on.

Description

The flex_set_value command sets the value of a specified net in the design. The net
does not need to be connected to FlexModel. The value can only be set for asingle-bit
net. This command provides a mechanism to set any design net from the C program.

The flex_set_value command only works with simulators that support both HDL and C
command control. To enable this command, you need to establish a connection between
the simulator and the command core. Thisisdone by invoking theflex_get_inst_handle
command from the HDL testbench. For information on FlexModel supported
simulators, refer to SmartModel Library Supported Smulators and Platforms.

Prototypes
C
voi d flex_set_val ug(
const char *pat h,
const int val ue,
i nt *st at us);

August 28, 2001 Synopsys, Inc. 79

Chapter 4: FlexModel Command Reference FlexModel User's Manual

Examples

flex_set value("top.a", FLEX LOd C VALUE 1, &status);
flex_set value("top.a", FLEX LOd C VALUE 0, &status);

80 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_start_program
Start a C program for aFlexModel. Used only in C Command Mode.

Syntax
flex_start_program (status)
Parameter
status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully.
Description

The flex_start_program command signals to the Command Core that the C testbench
has obtained all the model instance handles needed and is ready to send model
commands. You must run the flex_get_inst_handle command to retrieve the model
instance handle before issuing the flex_run_program command. Also, you cannot send
other commands to the model until after you run flex_start_program. In summary, use
the commands in this order:

1. flex_get_inst_handle
2. flex_start_program
3. Other FlexModel commands

Prototype

C

void flex_start_progran(
i nt *status);

Example

/* C Exanpl e */
mai n() {
i nt status;
int id;
fl ex_start_progran(&st at us)
/* Now you can issue nodel commands */

August 28, 2001 Synopsys, Inc. 81

Chapter 4: FlexModel Command Reference FlexModel User's Manual

flex_switch_intr_control
Switches interrupt control to an HDL testbench. Used only in C Command Mode.

Syntax
flex_switch_intr_control (inst_handle, status);
Parameters
inst_handle An integer instance handle for the model instance under C
control.
status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully.
Description

The flex_switch_intr_control command switches interrupt control for the specified
model instance from C Command Mode to HDL Command Mode.

Prototype
C
void flex switch_intr_control (
const int i nst_handl e,
i nt *status);
Example

/* C Exanpl e */

void ny_intr_function()

mai n() {
int status;
int id
char *inst = “1”
flex_get_inst_handl e(lnst, & d, &status);
flex_start_progran(&status);
flex_define_intr_function(id, ny_intr_function, &status);

/* Now switch interrupt control to HDL*/
flex_switch_intr_control (id, &status);

82 Synopsys, Inc. August 28, 2001

FlexModel User's Manual

Chapter 4: FlexModel Command Reference

flex_synchronize
Synchronize the operation of two or more FlexModels. Used in all command modes.

Syntax

flex_synchronize (inst_handle, sync total, sync _tag, sync_timeout, status);

Parameters
inst_handle

sync_total

sync_tag

sync_timeout

status

Definition

An integer instance handle returned by the
flex_get_inst_handle command.

A positive integer that specifiesthe number of model instances
to synchronize with.

A text string that uniquely identifies the synchronization (for
example, syncl).

If the sync_timeout number of clock cycles elapses before the
model receives the sync_total number of matching
synchronize commands, the command times out.

A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
compl ete successfully. Negative integers provide error code
information (see Table 3 on page 56).

The flex_synchronize command suspends command execution for the model instance
named in the inst_handle parameter until sync_total number of synchronize commands
with matching sync_tag parameters have been executed by other modelsin the

i nst_handl e,
sync_total,
*sync_t ag,

testbench.

Prototypes

C

voi d fl ex_synchroni ze (

const int
const int
const char
const int

i nt

August 28, 2001

sync_ti meout,
*status);

Synopsys, Inc. 83

Chapter 4: FlexModel Command Reference FlexModel User's Manual

VHDL

procedure flex_synchronize (
i nst_handl e cin i nt eger;
sync_total cin i nt eger;
sync_tag s in string;
sync_ti meout cin i nt eger ;
stat us . out i nteger);

Verilog

task flex_synchroni ze;
i nput [31: 0] inst_handl e;
i nput [31:0] sync_total;
i nput [8% FLEX_CHARVAXCNT: 1] sync_t ag;
i nput [31:1] sync_timeout;
out put [31: 0] status;

VERA
task synchroni ze (
i nt eger sync_total,
string sync_tag,
i nt eger sync_ti meout,
var integer status);
Examples

In the following example, the flex_synchronize in command (4) causes command
execution to halt for instance 1. Command execution resumes when a matching
sync_label “syncl” has been identified. In this case command (5) carries the identical
sync_label “syncl”. Command (6) starts after commands (1) (2) and (3) have been
completed. (FLEX_WAIT_F isa predefined constant. For more information, refer to
“The wait_mode Parameter” on page 56.)

-- VHOL Exanpl e
(1) arnvtdm _read req(instl, config_read, X’00000004",1, X'0”", X'00000000", O,
FLEX FALSE, FLEX WAIT_F, status);
(2) arnvtdm _read req(inst2, config_read, X’00000004",1, X'0”, X'00000000", O,
FLEX FALSE, FLEX WA T_F, status);
(3) arnvtdni _read_req(inst2, config_read, X’00000004”,1, X 0", X'00000000", O,
FLEX FALSE, FLEX WAIT_F, status);
-- Synchronize instance 1 with 2 instances with the sync | abel “syncl”
-- identical to wait_on (“syncl”);
(4) flex_synchronize (instl, 2, “syncl”, 0, status);
-- Synchronize instance 2 with 2 instances with the sync | abel “syncl”
-- identical to trigger (“syncl”);
(5) flex_synchronize (inst2,2,”syncl”, 0, status);

84 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

flex_wait
Temporarily halts command execution in a C testbench.

Syntax
flex_wait (clock _cycles, status);
Parameters
clock cycles The number of clock periods to halt the C testbench.
status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully.
Description

The flex_wait command halts execution in the C testbench for the specified number of
clock_cycles. This means that the next command in the queue will only be seen by the
model after the specified number of clock cycles have elapsed.

Prototype
C
void flex wait (
const int cl ock_cycl es,
i nt *status);
Example
/* C Exanpl e */
mai n() {
i nt nstatus

flex_ wait(2, &nistatus); /* Wait for 2 clock cycles */
nodel _wite(id, addr, data, &status); /* Seen 3 clock cycles later */

The following diagram shows the timing cycles for this example:

Flclk —F—2ck —]

flex_wait begins write posted write begins

August 28, 2001 Synopsys, Inc. 85

Chapter 4: FlexModel Command Reference FlexModel User's Manual

flex_wait_on_node

Suspends command execution in C program until the specified design net is assigned the
expected value. Used only in C Command Mode.

Syntax

flex_wait_on_node (path, expected value, mask, status);

Parameters
path

The hierarchical path of the specified net; if the net isabus or
part of abus, it needsto be explicitly specified with arange,
for example b[31: 0] . If therangeis not specified, b defaults
to b[O] . The path parameter depends upon the simulator you
are using. Examples of the syntax are given in Table 8, where
nets a and b are declared in the testbench, which has atop
level block called t op. The command can access any net in
the design, provided that thefull hierarchical pathis specified.

Table 8: Syntax Examples for the path Parameter

Simulator Single Bit Form Bus, or Part of Bus, Form
Verilog Simulators
VCS top. a top.b[31:0
t op. b[15: 8]
t op. b[O]
top. b[9]
t op. b - usessingle bit
b[O] only
MTIVLOG top. a t op. b[31: O]
t op. b[15: 8]
t op. b[O]
t op. b[5]
t op. b - usessingle bit
b[O] only
VXL top. a Not supported
VHDL Simulators
MTI /top/a Not supported

86

Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 4: FlexModel Command Reference

Table 8: Syntax Examples for the path Parameter

Simulator Single Bit Form Bus, or Part of Bus, Form

SCIROCCO ‘top:a top. b[31 downto 0],
‘top:b(0 to 31)
top. b[18 downto 8],
‘top:b(8 to 15)
:top: b(0)
:top: b(5)
t op. b - usessingle bit
b[O] only

VSS, CYCLONE Not supported Not supported

expected value The expected value on a net specified by path. The
expected_value should match the width of the signal specified
by path.

mask Any register value specifying the mask for expected_value. A
zero inthemask indicatesa"don't care". The vector size of the
mask should match the expected value.

status A status of lessthan or equal to O means that the command did
not complete successfully. A status of 1 indicates that the
socket connection between the C testbench and the command
core was successfully established. It does not, however,
indicate the successful completion of the command. It is
possible for the command to fail if the wrong path has been
specified, and the status will still be 1. Look for error
messages in the simulation transcript when you first use this
command, to make sure that you provided the correct
hierarchical path to the signal you want to wait on. A status of
2 means that expected_value or mask did not fit the width of
the signal specified by path. A warning isissued, and the
expected_value, or the mask, is modified to match the signal
width.

Description

The flex_wait_on_node command blocks the command stream in the C program until
the specified value is assigned to the specified design net. You can use this command for
any single-bit net (or, for supported simulators, bus) in the design, and you can mask
expected value using mask. Net value is sampled once every clock cycle. This
command allows the C program to wait for any net in the design to be set to

expected _value before proceeding with the execution of the remaining commands.

August 28, 2001 Synopsys, Inc. 87

Chapter 4: FlexModel Command Reference FlexModel User's Manual

The flex_wait_on_node command only works with simulators that support both HDL
and C command control. To enable this command, you need to establish a connection
between the simulator and the command core. Thisis done by invoking the
flex_get_inst_handle command from the HDL testbench. For information on FlexModel
supported simulators, refer to SmartModel Library Supported Smulators and Platforms.

Prototype
C
voi d flex_ wait_on_node(
const char *pat h,
FLEX VEC expect ed_val ue,
FLEX_VEC mask,
i nt *status);
Examples
Verilog

flex wait_on_node("top.a", "bl", "bl", &status);

flex_ wait_on_node("top.b[3]", "bl", "bl", &status);

flex wait_on_node("top.b[3:0]", "bl010", "bl1lll", &status);
flex_wait_on_node("top.b[31:0]", "h0000ala0", "hOOOOffff", &status);

VHDL (Scirocco)

flex_wait_on_node(":top:a", "bl", "bl", &status);

flex wait_on _node(":top:b(3)", "bl", "bl", &status);

flex_ wait_on _node(":top:b(3 downto 0)", "bl1010", "bl1111", &status);
flex _wait_on_node(":top:b(31 downto 0)", "h0000aOa0", "hOOOOffff",
&st at us) ;

88 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

5

FlexModel C Testbench Interface

Introduction

This chapter explains how to define and manipulate FLEX_VEC vectors using the
FlexModel C functions and operators (provided in ANSI-compliant include files). This
information is organized in the following sections:

« “Creating FLEX_VEC Vectors’ on page 90

o “FLEX VEC Lexical Rules’ on page 91

o “FLEX_VEC Error Handling” on page 92

o “FLEX_VEC Command Descriptions’ on page 93
o “C Testbench Example’ on page 103

What Are FLEX VEC Vectors?

Before you can use the C versions of the model-specific commands documented in the
individual FlexModel datasheets, you must define the required variables or vectors
using the FLEX_DEFINE command described in this chapter. For example, model _read
commands typically require you to specify an address variable (addr or something like
that). You can use the FLEX_DEFINE function to create the data structure in C for that
addr variable and then issue the model-specific FlexModel command to exercise the
model. Data structures created with FLEX DEFINE are called FLEX VEC vectors.

This definition processis necessary because C does not provide variables that are handy
for manipulating vectors such as the 32-bit data or address buses needed to work with
processor models, for example. Also, although C does provide many operators for
manipulating integers and strings, those operators do not work with the FLEX _VEC
vectors you create for use with FlexModel commands. So, FlexModels come with
comparable FlexModel C operators that work with the FLEX_VEC vectors you creste.

August 28, 2001 Synopsys, Inc. 89

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

Creating FLEX_ VEC Vectors

You create FLEX _VEC vectors using either the FLEX_DEFINE command or the
FLEX_VEC_SIZEOF command. Use the FLEX_DEFINE command for vectors that
only need to be used in thelocal scope of the function. If you need to create FLEX_VEC
vectors dynamically with a global scope usethe FLEX VEC SIZEOF command.

FLEX_DEFINE

The FLEX_DEFINE command creates a FLEX VEC vector named vecName that is
vecSze bitswide, with aninitial value of initVal. You must specify avector string literal
or the FLEX_NULL_VEC macro in theinitVal argument. Use FLEX _DEFINE at the
top of the current scope before any functions are called.

Syntax
FLEX DEFI NE (vecNare, vecSi ze, initVal);

Example
The following example creates a FLEX _VEC called addr with space for 64 hits.
FLEX DEFI NE (addr, 64, "haaaabbbbccccdddd");

FLEX_VEC_SIZEOF

To dynamically create FLEX VEC vectors, usethe FLEX_VEC_SIZEOF macro. You
can calculate the bitcnt on the fly based on other operationsin your C testbench. The
example that follows contains the function declaration and assignment in one line of
code, which createsa FLEX_VEC with alocal scope. If you want the FLEX_VEC to
have a global scope, put your function declaration outside of the subroutine where you
make the variabl e assignment.

Syntax
FLEX VEC SI ZECF (int bitcnt);

Example
FLEX VEC dynVec64 = (FLEX_VEC) mal | oc(FLEX_VEC Sl ZECF(64)) ;

90 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

FLEX VEC Lexical Rules

The following lexical and semantic rules apply to FLEX_ VEC vectors:

« Vector values must be either string literals or objects of type FLEX VEC created
with FLEX_DEFINE.

« Vauesare truncated on the left side to fit the size of the receiving variable. For
example, if you assign “haf” to a 4-bit wide vector the result is“hf”.

« VHDL 9-state values are mapped to 4-state values as shown in Table 9. Therefore,
FLEX_VEC vectors do not represent signal strength levels.

Table 9: VHDL 9-State to 4-State Conversion

O-state 4-state
(o,L) 0
(1, H) 1
(U, X, W, -) X
(2) £

« For integer variables., use the FLEX_INT 32-bit unsigned data type.

« All functions other than the comparison functions have a return type of void.

Vector Strings

Vector strings can be in hexadecimal or binary format:
"h[0-9a-f A- FxXzZ] +" /* hexadeci mal */
"b[01hH LuUW%XzZ-]1+" /* binary */

where []+ means one or more occurrences of the characters within the brackets. Illegal
characters are silently converted to Xs. Here are some examples:

"h01234" /* Hexadecimal literal */
"b011011" [* Binary literal */
"01234" /* Illegal vector literal. Mssing prefix 'h" */

"bOJML1011" /* Illegal char in binary vector -> "bOxx11011" */
"POILHUXW Z" /* 9-state to 4-state -> "b0101xxxxz" */

August 28, 2001 Synopsys, Inc. 91

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

Assigning Literals to FLEX_VEC Constants

You can assign string literalsto FLEX_VEC constants, as shown in the following
examples.

const FLEX VEC addr I ncr;
/* Assign a vector val ue */
addrlncr = "h4",
/* Assign a different vector value */
addrincr = "hffffeeee";

If you assign aliteral to aFLEX VEC vector instead of aFLEX_VEC constant you lose
the memory allocation for the vector. To assign aliteral to aFLEX_VEC vector created
by the FLEX DEFINE command, use the flex_assign operators documented on

page 93.

Note that arguments of type const FLEX_VEC do not have any allocated storage, since
FLEX_DEFINE has not been used. Therefore, they can only be used as input values, not
for result values.

FLEX VEC Error Handling

The FLEX_VEC commands documented in FLEX _VEC Command Descriptions do not
return error status. Instead, they increment internal error, warning, and note message
counters. To retrieve the current counts, use the flex_errors(), flex_warnings(), and
flex_notes() commands.

Using incorrect command syntax or violating any of the FLEX_VEC Lexical Ruleswill
result in an error. Most error types generate informative error messages on your screen.

You can check the error counts as often as you want, but checking error status only at
critical pointsin your testbench will result in a more readable coding style. You may
want to run the following commands at the end of your C testbench to ensure that the
program executed as expected.

. flex_errors()
« flex_warnings ()
. flex_notes()

The following example shows how to use the flex_fprintf command to print the values
of the three internal counters:

flex_ fprintf(stderr, "Status: %l error(s), % warning(s), % note(s)\n",
flex_errors(), flex warnings(), flex notes());

92 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

FLEX VEC Command Descriptions

Following are descriptions of the FLEX_VEC commands.

flex_assign
The flex_assign command assigns the vec2 value to vecl. For example:
voi d flex_assi gn(FLEX VEC vecl, const FLEX VEC vec2) /* vecl = vec2 */

flex_assign_int
The flex_assign_int command assignsthe i integer value to vecl. For example:
void flex_assign_int(FLEX VEC vecl, FLEXINT i) /* vecl =i; */

flex_assign_int_array

Theflex_assign int_array command assigns an integer array to vecl using count
number of integers from intArray[]. The Oth element of intArray[] istreated as the left-
most number and the (count-1)th element is treated as the right-most number.

Syntax

void flex assign_int_array(FLEX VEC vecl, unsigned int count, FLEX INT
intArray[])

For example:

FLEX INT intArray[] = {Oxffffeeee, Oxddddcccc, Oxbbbbaaaa, 0x99998888};
FLEX_DEFI NE(bi gBus, 128, FLEX NULL_VEQ);

FLEX_DEFI NE(hal f AsBi gBus, 64, FLEX NULL_VEQ);

/* Assign the whole value fromthe intArray to bigBus */
flex_assign_int_array(bigBus, 4, intArray);

/* bi gBus == "hffffeeeeddddccccbbbbaaaa99998888" */

/* Try to assign the whol e value fromthe intArray to hal f AsBi gBus */
flex_assign_int_array(hal fAsBigBus, 4, intArray);

/* hal f AsBi gBus == "hbbbbaaaa99998888", truncated fromleft */

/* Assign the first two elenments fromthe intArray to hal f AsBi gBus */
flex_assign_int_array(hal f AsBigBus, 2, intArray);

/* hal f AsBi gBus == "hhffffeeeeddddcccc”, takes the first two el ements*/

flex_assign_int_list

Theflex_assign_int_list command assigns an integer list to vecl using count number of
FLEX_INT values from lhint to rhint. For example:

void flex assign_int |ist(FLEX VEC vecl, unsigned int count, FLEX |NT
[hint, FLEX_INT rhint);

August 28, 2001 Synopsys, Inc. 93

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

flex_incr

The flex_incr command increments the incr\ec vector and puts the result in result. For
example:

/* vec += incrVec */
void flex_incr(FLEX VEC result, const FLEX VEC i ncrVec)
flex_decr

The flex_decr command decrements the decrVec vector and puts the result in result. For
example:

/* vec -= decrVec */
voi d flex_decr (FLEX VEC result, const FLEX VEC decr Vec)

flex_add

The flex_add command adds vecl and vec2 and puts the result in result. For example:
/* result = vecl + vec2 */
void flex add (FLEX VEC result, const FLEX VEC vecl, const FLEX VEC
vec?2)

flex_sub

The flex_sub command subtracts vec2 from vecl and puts the result in result. For
example:

/* result = vecl - vec2 */
void flex_sub (FLEX VEC result, const FLEX VEC vecl, const FLEX VEC
vec?2)

flex_eq

The flex_eq command returns true if vecl is equal to vec2. For example:

int flex_eq (const FLEX VEC vecl, const FLEX VEC vec2) /* vecl == vec2
*/

flex_ne
The flex_ne command returns true if vecl is not equal to vec2. For example:

int flex_ne (const FLEX VEC vecl, const FLEX VEC vec2) /* vecl != vec2
*/

flex_It
The flex_It command returnstrueif vecl isless than vec2. For example:

94 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

int flex_ It (const FLEX VEC vecl, const FLEX VEC vec2) /* vecl < vec2 */

flex_Ite

The flex_lte command returns true if vecl isless than or equal to vec2. For example:
int flex_ Ite(const FLEX VEC vecl, const FLEX VEC vec2) /* vecl <= vec2
*/

flex_gt

The flex_gt command returns true if vecl is greater than vec2. For example:
int flex_gt (const FLEX VEC vecl, const FLEX VEC vec2) /* vecl > vec2 */

flex_gte
The flex_gte command returnstrueif vecl is greater than or equal to vec2. For example:

int flex_gte(const FLEX VEC vecl, const FLEX VEC vec2) /* vecl >= vec2
*/

flex_slice le

The flex_slice_le command copies a bit slice from the fromVec vector to the result
vector. The “le” stands for little-endian—this operator copies from the Oth bit in the
from\ec vector, starting with the right-most bit. Note that truncation, if any, still occurs
on the left side. If you specify alhldx less than the rhidx, the bits are reversed in the
result vector.

Syntax
void flex_slice | e(FLEX VEC resul t, const FLEX VEC fronVec, unsigned int
I hi dx, unsigned int rhldx)
For example:
FLEX DEFI NE(dat a8, 8, "h0");
/* Little-endian */
void flex_slice | e(data8, "b0110100100010111", 11, 4);

/* no bit reversal, data8 == "b10010001" */
void flex_slice | e(data8, "b0110100100010111", 4, 11);
/* bit reversal, data8 == "b10001001" */

August 28, 2001 Synopsys, Inc. 95

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

flex_slice be

The flex_slice_be command copies a bit slice from the fromVec vector to the result
vector. The “be” stands for big-endian—this operator copies from the Oth bit in the
from\ec vector, starting with the left-most bit. Truncation, if any, occurs on the left side.
If you specify Ihldx greater than rhidx, the bits are reversed in the result vector. Here's
the syntax:

void flex_slice be(FLEX VEC resul t, const FLEX VEC fronVec, unsigned int
I hl dx, unsigned int rhldx)

For example:

FLEX DEFI NE(dat a8, 8, "hQ");
/* Big-endian */
void flex_slice be(data8, "b0110100100010111", 4, 11);

/* no bit reversal, data8 == "b10010001" */
void flex_slice be(data8, "b0110100100010111", 11, 4);
/* bit reversal data8 == "b10001001" */

flex_slice le offset

Theflex_dlice le offset command does a little-endian copy of a bit slice from fromvec
to result starting with the specified offset of resultOffsetldx bitsin the result vector.
Truncation, if any, occurs on the left side. If you specify alhldx less than the rhidx, the
bits are reversed in the result vector. Here's the syntax:

void flex_slice | e offset (FLEX VEC resul t, unsigned int resultfsetldx,
const FLEX VEC fronVec, unsigned int |hldx, unsigned int rhldx)

For example:

FLEX DEFI NE(rslt16, 16, "b1110111111110111");

* Little-endian */

flex_slice le offset(rslt16, 4, "b0110100100010111", 11, 4);

/* no bit reversal, rsltl6 == "b1110100100010111", mddle 8-bits get
changed the ot hers unchanged */

flex_assign(rsltl1l6, "b1110111111110111"); /* Reinitialize */
flex_slice |le offset(rsltl6, "b0110100100010111", 4, 11);

/* bit reversal, rsltl6 == "b1110100010010111" , mddl e 8-bits get
changed the ot hers unchanged */

96 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

flex_slice _be offset

Theflex_slice_be offset operator does a big-endian copy of abit dlice from from\ec to
result starting with the specified offset of resultOffsetldx bit in the result vector.
Truncation, if any, occurs on the left side. If you specify Ihldx greater than rhidx, the bits
are reversed in the result vector. Here's the syntax:

void flex_slice be offset(FLEX VEC result,unsigned int resultCfsetldx,
const FLEX VEC fronVec, unsigned int |hldx, unsigned int rhldx)

For example:

FLEX DEFI NE(rslt16, 16, "b1110111111110111");

/* Big-endian */

flex_assign(rsltl1l6, "b1110111111110111"); /* Reinitialize */
flex_slice_be offset(rsltl16, "b0110100100010111", 4, 11);

/* no bit reversal, rsltl1l6 == "b1110100100010111" */
flex_assign(rslt16, "b1110111111110111"); /* Reinitialize */
flex_slice be of fset(rslt16, "b0110100100010111", 11, 4);

/* bit reversal, rslt16 == "b1110100010010111" */

flex_rshift

The flex_rshift command shifts the vec vector shiftCnt bits to the right and puts the
result in result. Truncation, if any, is determined by the length of the result vector.
Empty bit positions are set to zeros. Here is the syntax:

/* result = vec >> shiftOnt */
void flex rshift(FLEX VEC result, const FLEX VEC vec, unsigned int
shiftnt)

For example:

FLEX DEFINE(rslt8, 8, "h0");
flex_Ishift(rslt8, "hf", 4);
/* equivalent C rslt8 = Oxf << 4 rslt8 == "hf0" */

flex_Ishift

The flex_Ishift command shifts the vec vector shiftCnt bits to the left and puts the result
in result. Truncation, if any, is determined by the length of the result vector. Empty bit
positions are set to zeros. Here is the syntax:

/* result = vec << shiftOnt */
void flex Ishift(FLEX VEC result, const FLEX VEC vec, unsigned int
shiftnt)

For example:
FLEX_DEFI NE(rsIt8, 8, "h0");

August 28, 2001 Synopsys, Inc. 97

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

flex_Ishift(rslt8, "hf", 4);
/* equivalent C rslt8 = Oxf << 4 rslt8 == "hf0" */

flex_rrot

Theflex_rrot command rotates the vec vector shiftCnt bits to the right and puts the result
in result. The rotation point is determined by the size of the result vector. Here is the
syntax:.

/* result =right rotate vec by shiftnt */
void flex rrot (FLEX VEC result, const FLEX VEC vec, unsigned int
shiftnt)

For example:

FLEX DEFINE(rslt8, 8, "h0");
flex_rrot(rslt8, rslt8, 5);
/* left rotate a rslt8 by 5-bits rslt8 == "b00010110" rslt8 == "h07" */

flex_lrot

The flex_lrot command rotates the vec vector shiftCnt bitsto the left and puts the result
in result. The rotation point is determined by the size of the result vector. Here is the
syntax:.

/* result = left rotate vec by shifttnt */
void flex Irot (FLEX VEC result, const FLEX VEC vec, unsigned int
shiftnt)

For example:

FLEX DEFINE(rslt8, 8, "h0");
flex Irot(rslt8, "b101100", 4);
/* left rotate a 6-bit vector into rslt8 rslt8 == "b11000010" */

flex_not

The flex_not command does a bitwise not operation on vec and puts the result in result.
Hereisthe syntax:

/* result = ~vec */
void flex_not (FLEX VEC result, const FLEX VEC vec)
flex_or

Theflex_or command does a bitwise or operation on vecl and vec2 and putstheresult in
result. Here is the syntax:

/* result = vecl | vec2 */
void flex_or(FLEX VEC resul t, const FLEX VEC vecl, const FLEX VEC vec?2)

98 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

flex_and

The flex_and command does a bitwise and operation on vecl and vec2 and puts the
result in result. Here is the syntax:

/* result = vecl & vec2 */
void flex_and (FLEX VEC result, const FLEX VEC vecl, const FLEX VEC
vec?2)

flex_nor

Theflex_nor command does a bitwise nor operation on vecl and vec2 and puts the result
in result. Here is the syntax:

/* result = ~(vecl | vec2) */
void flex_nor (FLEX VEC result, const FLEX VEC vecl, const FLEX VEC
vec2)

flex_nand

The flex_nand command does a bitwise nand operation on vecl and vec2 and puts the
result in result. Here is the syntax:

/* result = ~(vecl & vec2) */
voi d flex_nand(FLEX VEC result, const FLEX VEC vecl, const FLEX VEC
vec2)

flex_xor

Theflex_xor command does a bitwise xor operation on vecl and vec2 and puts the result
in result. Here is the syntax:

/* result = vecl ™ vec2 */
void flex xor (FLEX VEC result, const FLEX VEC vecl, const FLEX VEC
vec?2)

flex_xnor

The flex_xnor command does a bitwise xnor operation on vecl and vec2 and puts the
result in result. Here is the syntax:

/* result = ~(vecl » vec2) */
voi d flex xnor (FLEX VEC result, const FLEX VEC vecl, const FLEX VEC
vec2)

August 28, 2001 Synopsys, Inc. 99

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

flex_to_int

The flex_to_int command extracts the right-most 32-bits from vec and puts them in the
FLEX_INT pointed to by i. Here is the syntax:

void flex to int(const FLEX VEC vec, FLEX INT* i)
For example:

FLEX INT nylnt = O;
int i;
FLEX DEFI NE(dat a128, 128, "h0");

flex_assign_int_|ist(datal28, 4, 0x8889999, Oxaaabbbb, Oxcccddd,
Oxeeeffff);

/* datal28 == "h088899990aaabbbb00cccdddOeeef fff" */

/* Read the rightrmost int fromdatal28. Extracts OxOeeefff */

/* into nylnt with a warning about the fact that datal28 */

/* wider than a single FLEX INT */

flex_to_int(datal28, &nylnt);

/* nylnt == OxOeeefff */

flex_to_int_array

Theflex_to_int_array command extracts count number of 32-bit integers from vec and
putsthemintheia[] array. If count is0 the entire contents of vec are extracted. Theint*
pointed to by count is set to the number of integers extracted. The right-most 32 bitsin
vec are put in the last array element and the left-most bits are placed in the Oth array
element. Make sure that the receiving array is large enough to hold al the integersin
vec. If count is higher than the number of integersin vec, its value is changed to the
actual number of integers extracted. Here is the syntax:

void flex_to int_array(const FLEX VEC vec, unsigned int* count, FLEX INT
ia[])
For example:

FLEX_INT nylnt = O;

unsi gned int count;

int i;

FLEX INT ia[4] ={ 0, 0, 0, 0 };
FLEX INT i1, i2, i3, i4;

FLEX DEFI NE(dat @128, 128, "h0");

flex_assign_int_|ist(datal28, 4, 0x8889999, Oxaaabbbb, Oxcccddd,
Oxeeeffff);

[** Using flex_to_int_array **/

count = O;

flex_to_int_array(datal28, &count, ia);

/* ia[0] == 0x08889999 */

100 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

/* ia[2] == 0xOaaabbbb */
/* ia[3] == 0x00cccddd */
[* ia[4] == OxOeeeffff */
/* count == 4 */

/* Reset ia */

ia[0] =ia[l] =ia[2] =ia[3] = 0;

count = 8;

flex_to_int_array(datal28, &count, ia);

/* lssues a warning about only reading 4 FLEX I NTs */
/* ia[0] == 0x08889999 */

/* ia[2] == 0xOaaabbbb */

/* ia[3] == 0x00cccddd */

/* ia[4] == OxOeeeffff */

/* count == 4 */

/* Reset ia */

ia[0] =ia[l] =ia[2] =ia[3] =0

count = 2;

flex_to_int_array(datal28, &count, ia);

/* lssues a warning about only reading the 2 rightnost FLEX I NTs */
/* while the actual vector is 4 FLEX INTs w de */
/* ia[0] == 0x00cccddd */

/[* ia[1l] == OxOeeeffff */

/* ia[2] == 0 */

/* ia[3] ==0 */

/[* count == 2 */

flex_to_int_list

Theflex_to_int_list command extracts count number of 32-bit integers from vec and
puts them into alist with the right-most bits going to Ihint and the left-most bitsto rhint.

void flex_ to_int_list (const FLEX VEC vec, unsigned int* count,
FLEX_INT* |l hint, ... , FLEXINT* rhint);

For example:

FLEX_INT nylnt = O;

unsi gned int count;

int i;

FLEX INT ia[4] ={ 0, 0, 0, 0 };
FLEX INT i1, i2, i3, i4;

FLEX DEFI NE(dat @128, 128, "h0");

flex_assign_int_|ist(datal28, 4, 0x8889999, Oxaaabbbb, Oxcccddd,
Oxeeeffff);

[** Using flex_to_int_list **/

count = O;

flex_to_int_list(datal28, &count, & 1, & 2, & 3, & 4);

August 28, 2001 Synopsys, Inc. 101

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

/* i0 == 0x08889999 */
/* 12 == Ox0aaabbbb */
/* i3 == 0x00cccddd */
/* i4 == OxOeeeffff */
/* count == 4 */

/* Reset FLEX | NTs */

i0=il=i2=i3=0;

count = §;

flex_to_int_list(datal28, &count, & 1, & 2, & 3, & 4);
/* lssues a warning about only reading 4 FLEX | NTs */
/* i0 == 0x08889999 */

[* 12 == Ox0Oaaabbbb */

/* 13 == 0x00cccddd */

/* i4 == OxOeeeffff */

/* count == 4 */

/* Reset FLEX INTs */

i0=il=i2=i3=0;

count = 2;

flex_to_int_list(datal28, &count, & 1, & 2, & 3, & 4);
/* lssues a warning about only reading the 2 rightnost FLEX | NTs */
/* while the actual vector is 4 FLEX INTs w de */

/* 10 == 0x00cccddd */

/* i1 == OxOeeeffff */

[* 12 =0 */

/[* 13 =20 */

[** count == 2 **/

flex_iprintf

The flex_iprintf command works just like the ANSI C printf utility. You can use
flex_iprintf to print a string to the ssmulator transcript. For example:

void flex_iprintf(int instHandl e, const char* formatStr, ...);

The instHandle must be a valid model instance handle obtained with the
flex_get_inst_handle command. The maximum string length is 255 characters.

flex_fprintf

The flex_fprintf command works just like the ANSI C fprintf utility. You can use
flex_fprintf to print astring to afile. For example:

void flex fprintf(FILE* fp, const char* formatStr, ...);

In this example, fp must point to a FILE* open for output. The maximum string lengthis
255 characters.

102 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

flex_sprintf

The flex_sprintf command works just like the ANSI C sprintf utility. You can use
flex_sprintf to print a string to a buffer. For example:

void flex_sprintf(char* buf, const char* formatStr, ...);

In this example, buf must be a character array large enough to hold the resulting string.
The maximum string length is 255 characters.

The %H and %B Conversions

These print functions work just like the ANSI C printf utility. In addition, they support
%H and a %B formatting conversions that you can useto print aFLEX_ VEC vectorsor
const FLEX_VEC literals. These conversions support the same formatting features as
the C “%s” conversion. The %H and %B conversions print vectors without the “h” or a
“b” prefixes. For example, you could print the contents of different variables to standard
error asfollows:

flex_ fprintf(stderr, "Extracted datal28(h%d) into \n i 1(%#x), i2(%x),
i 3(%tx), i4(%x)\n", datal28, il, i2, i3, i4);
This produces output that 1ooks like the following:

"Extract ed dat al28(h0x088899990aaabbbb00cccdddOeeeffff) into
i 1(0x8889999), i 2(0xaaabbbb), i3(0xcccddd), i4(Oxeeeffff)"

C Testbench Example

The following C testbench example illustrates how to use the FLEX_VEC vectors
described in this chapter to set up and process interrupts, and to perform a variety of
general FlexModel functions.

#i ncl ude “nodel _pkg. h”

#i ncl ude “fl exnodel _pkg. h”
#def i ne MODEL_ADDRBUS W DTH 32
#def i ne MODEL_DATABUS W DTH 32

/* Interrupt Function */
void ny_intr_function();

/* Aobal Id define, so that it is visible in the intr function */

int nld;

voi d

mai n()

{ . .
I nt nStatus, i;
i nt tagl, tagz;

August 28, 2001 Synopsys, Inc. 103

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

char *slnst Name = “17;

/* Define four FLEX VEC type arrays and initialize themwith
* a NULL vector, these vectors have actual storage and will
* be used to get the returned results fromresult comrands */
FLEX_DEFI NE (ret_data, MODEL_DATABUS WDTH, FLEX NULL_VEQ);
FLEX_DEFI NE (act_data, MIDEL_DATABUS WDTH, FLEX NULL_VEQ);
FLEX_DEFI NE (ADDRESS, MIDEL_ADDRBUS WDTH, FLEX NULL_VEQ);
FLEX_DEFI NE (DATA, MODEL_DATABUS WDTH, FLEX NULL_VEQ);

/* Defining some FLEX VEGs. (ne very inportant point to note
* here is that since a FLEX DEFI NE has not been used,

* there is no actual storage for these vectors and they can
* ONLY be used as input values and not for result values. */

const FLEX VEC BADADDR=" h00Of f 00"
const FLEX VEC ADDR | NCR="h4"; /*Increnent address=4 bytes */
const FLEX VEC DATA | NCR="b1"; /*Increnment data=1 */

[* Get the instance handle */
flex_get i nst_handl e(slnstName, &nld, &iStatus);

/* lIssue a start program indicating end of initialization */
flex_start_progran(&St atus);

/***

End of Initialization, Now comrands can be sent
***l
/* Define interrupt function with the command core, For nore
* infornation on this refer to the section on Interrupts */
flex_define_intr_function(nld, ny_intr_function, &Status);

/* Using flex_fprintf to print a debug nessage */
flex_ fprintf(stderr,”Beginning ny C Conmand Streamin”);

/**

Test 1 : Do aread, and verify the results.
Desc : Denonstrates passing of addresses/data to conmmands
**/
/* lIssue a nodel _read and pass address directly to comrand */
nodel _read_req(nld, “b000011111111111121111121111110000",
FLEX WA T T, & Status);
/* Read the results, ret_data is the array we defined earlier
using FLEX DEFINE. (Note : This time pass in a hex address) */
nodel read rslt(nld, “hOffffff0”, O, ret_data, &nStatus);
/[* Use flex eq to conpare the results */
if (! flex_eq (“b10101010101010101010101010101010", ret_data))
flex_fprintf(stderr, “Test 1 Failure : Msmatch Found\n”);

/**

104 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

Test 2 : Do aread, and verify the results.
Desc : Denonstrates storing addresses as vectors and then
passi ng these vectors into conmands.

**/
/* lIssue a nodel _read, using flex_assign to store the address
* in ADDRESS, and then pass this ADDRESS to the read command */
fl ex_assi gn(ADDRESS, “b000011111111111111212121212111110000");
nodel _read_req(nld, ADDRESS, FLEX WAIT T, &nStatus);
/* Read the results, ret _data is the array we defined earlier

usi ng FLEX DEFI NE, use the sane ADDRESS array defined earlier */
nodel read rslt(nld, ADDRESS, 0, ret _data, &Status);
/* Use flex_assign to store the result in the array we defined
* earlier using FLEX DEFINE (Note : Passing a binary address)*/
flex_assign(act_data, “b10101010101010101010101010101010");
/* Use flex_eq to conpare the results */
if (! flex eq (act_data, ret_data))

flex fprintf(stderr, “Test 2 Failure : Msmatch Found\n”);

/**

Test 3 : Performmultiple Wites, |ooping through the address
Desc : Denonstrates using the vector operations provided to
| oop, conpare e.t.c The while | oop bel ow behaves as fol |l ows
(i) It loops as long as data is less than a certain data
(ii) It breaks out of |oop if address exceeded val ue
(iti)lf address is equal to a value it skips that address
(iv) Gherwise it does a wite, increnents the address and data.
**/
/[* Setup the start address, data, bad address and i ncrenents */
fl ex_assi gn(ADDRESS, *“h0000ff007);
f1 ex_assi gn(DATA, “h00000000") ;

while (flex_|te(DATA, “h0000fffff”)) {
[* Check if we have exceeded the address space */
if (flex gte (ADDRESS, “hOOQOffff”))
br eak;
/* Check if address is sane as the address we wi sh to avoid */
if (flex_eq(ADDRESS, BADADDR)) {
fl ex_i ncr (ADDRESS, ADDR | NCR);
conti nue;
}
/* Else do a wite */
nodel _write(nld, ADDRESS, DATA FLEX WAIT_T, &nStatus);
/* Increment the address and data */
fl ex_i ncr (ADDRESS, ADDR | NCR);
fl ex_i ncr(DATA, DATA I NCR);
}

/**

Test 4 : Wit for 5 Aks to expire and then synchronize

August 28, 2001 Synopsys, Inc. 105

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

with the HOL testbench.
Desc : Denonstrates using flex wait and synchroni ze

**l

/* Stop sending commands for 5 clks */
flex_wait(5, &nStatus);

/* Synchroni ze this instance with another instance which is

* being controlled fromHDL, both instances are synchroni zi ng
* on the tag “SYN 2" and we are going to wait for 12 clks for
* the synchroni ze to conpl ete */

fl ex_synchroni ze(nld, 2, “SYN 2", 12, &iStatus);

/**

Test 5 : Stop the C Testbench as we are expecting interrupts

to occur, so we need to keep the C Testbench runni ng

and then switch out of Cinterrupt node.

Desc : Denonstrates using flex_wait and
flex_switch_intr_control .

**/

/* Call flex wait and tell it to pause for 50 clock cycl es,
* W5 expect all interrupts to be over by this tine */
flex_wait(50, &iStatus);

/* Indicate that nowinterrupts for instance with id = nld needs
* to be controlled fromHDL.

* NOTE : This automatically happens once the testbench exits. */
flex_ switch_intr_control (nld, &Status);

/**

Test 6 : Use the slice operations to get parts of a vector.
Desc : Denonstrates use of the slice operations.
1) The followi ng | oop reads sone data from nenory
(read_req and read rslt)
2) Uses the last 8 bits of this data as the
i ncrenent address.
**/
fl ex_assi gn(ADDRESS, “hffff00007);
for (i =0; I <16; i1++) {
/* A tenporary FLEX VEC with storage */
FLEX_DEFI NE(SMALL_ADDRESS, 8, FLEX _NULL_VEQ);

nodel _read req(nld, ADDRESS, FLEX WAIT_F, &nStatus);
nmodel _read rslt(nld, ADDRESS, 0, ret_data, &Status);

/* Get bits 24 to 31 (last 8) fromret_data and

* save themin SMALL_ADDRESS */
flex_slice_| e(SMALL_ADDRESS, ret_data, 24, 31);

106 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Chapter 5: FlexModel C Testbench Interface

fl ex_incr (ADDRESS, SNVALL ADDRESS);
}

/* DONE Exit the C Testbench */
exit(0);
}

/**

| NTERRUPT HANDLER

***/
voi d
ny_intr_function()
{

int nvalid, nPriority, nStatus;

/* 1d used here is the global variable which was

* assi gned when we obtained the instance handl e */

nodel _get _intr_priority(nld, &Valid, &Priority, &nStatus);

/* Use flex_fprintf to print the priority */
flex fprintf(stderr, “Priority = %9\ n", nPriority);

switch (nPriority) {
case 1
nodel _begin_intr(nld,nPriority, &St at us)
/* Place commands HERE for priority 1. Commands nust be placed
bet ween begin and end intr commands. */
nodel _end_intr(nld,nPriority, &Status);
case 2:
nodel _begin_intr(nld,nPriority, &St at us)
/* Place commands HERE for priority 2. Commands nust be placed
bet ween begin and end intr commands. */
nodel _end_intr(nld,nPriority, &St at us);
def aul t
printf(“Unknown priority\n”);

August 28, 2001 Synopsys, Inc. 107

Chapter 5: FlexModel C Testbench Interface FlexModel User's Manual

108 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Appendix A: Reporting Problems

A

Reporting Problems

Introduction

This chapter explains how to run diagnostics, create FlexModel 1og files, and send
debug information to Customer Support, in the following major sections:

« “Model Versions and History” on page 109

« “Running FlexModel Diagnostics’ on page 110

« “Creating FlexModel Log Files’ on page 110

« “Sending the Log Files to Customer Support” on page 113

For FlexModels that end with an “_fz" extension, refer to the SmartModel Library
User’s Manual for the applicable model logging procedures. The logging mechanism
described in this chapter applies only to models that end withan “_fx” extension.

Model Versions and History

If you believe a FlexModel is not working correctly, first verify the version number of
the model you are working with by using the Browser tool

(LM C_HOME/bin/d_browser) to access the model datasheet. The History and
Version Addendum located at the back of all FlexModel datasheets lists the model’s
MDL version number. You can then compare reported fixes for subsequent versions of
that model by reading the model history section in the latest datasheet. The latest
FlexModel datasheets are available viathe Model Directory on the Web:

http://www.synopsys.com/products/lm/model Dir.html
For moreinformation on model history, refer to the SmartModel Library User’s Manual.

You can contact Customer Support to request the latest version of any model. For
details on how to get in touch with us, refer to “Getting Help” on page 11.

August 28, 2001 Synopsys, Inc. 109

http://www.synopsys.com/products/lm/modelDir.html

Appendix A: Reporting Problems FlexModel User's Manual

Running FlexModel Diagnostics

It is possible that the model behavior you are seeing is caused by a faulty installation or
from using an older version of a FlexModel. If you do call Customer Support, and
assuming there is no immediate solution to your problem, you will most likely be asked
to run the swiftcheck diagnostic tool to verify the model version that you are using and
check your environment. For information on how to run swiftcheck, refer to Checking
SmartModel Installation Integrity in the SmartModel Library User’s Manual. Thistool
produces a swiftcheck.out file. Send thisfile to Customer Support along with the other

model logging files, as described in “ Sending the Log Files to Customer Support” on
page 113.

Creating FlexModel Log Files

To create the FlexModel 1og files needed by Customer Support to debug model
problems, follow these steps:

& Attention
For FlexModels that end with an“_fz" extension, refer to the SmartModel
Library User’s Manual for the applicable model logging procedures. The

logging mechanism described in this procedure applies only to models that
endwithan“_fx” extension.

1. For each FlexModel in your testbench, use the model-specific model_set msg_level
commands to set the message levels al the way up.

2. In the directory where you run your simulation, use the UNIX touch command or
create an empty file that conforms to the following syntax. The entire string must
be in uppercase.

MODEL_INSTANCE.LOG_MODE
where;

MODEL isthe model name without the _fx.
INSTANCE isthe instance name specified in the FlexModelld SWIFT parameter.

Typical FlexModel instantiations |ooks like the following examples. Note the value
of the FlexModelld generic or defparam—that is what you use in the INSTNAME
portion of the model logging file name.

110 Synopsys, Inc. August 28, 2001

FlexModel User's Manual Appendix A: Reporting Problems

VHDL:
Ul: MPC860
generic map (FlexModelld =>“Model_id_1",
FlexTimingMode =>FLEX_TIMING_MODE_OFF,
TimingVersion =>“MPC860-25",
DelayRange =>“MAX"
VERILOG

defparam ul.FlexModelld =“Modd_id 1";
For this example, the logging file name would be:

MPC860 MODEL_ID_1.L.OG_MODE

1. Rerun your simulation so that the models can record their activity in the following
log files:

o pin events— “pin.model_instance.log
o trace messages — “msg.model_instance.log
o model commands — cmd.model_instance.log

For example, assuming model logging is enabled for an mpc860_fx model instance
with aFlexModelld of “Model_Id_1", the model generates the following files:

o cmd.mpc860_Model 1d 1.log
o pin.mpc860_Model Id_1.log
o msg.mpc860_Model Id_1.log

Command Logging

Model commands are logged as shown in the following example

t:150
npc860_idle(inst, 1, ‘FLEX WA T_F, status)

Thisindicates that at ssmulation time 150, the “inst” of the mpc860_fx model executed
an idle command for one clock cycle.

Note that command |ogs always show the wait_mode parameter as false
(FLEX_WAIT_F), even if the command was issued with the wait_mode set to true
(FLEX_WAIT_T).

Commands from atestbench that communicate directly with the Command Core are not
logged. For example, the mpc860_read rsit command does not get logged, sinceitis
only accessing results information.

August 28, 2001 Synopsys, Inc. 111

Appendix A: Reporting Problems FlexModel User's Manual

Stimulus Logging
Model stimulusislogged in afile named:
model_logger.v

The logger contains a process/always block which is sensitive to all the input pins,
output pins, and bidirectional pins. This process/aways block isonly invoked when
logging is enabled. The stimulus logging format is described in Table 10.

Table 10: Stimulus Logging Format

Entriesin File Description

-timeformat:units:precision |Thisentry isprinted once at the top of thefile. It lists
the time units and precision. These values are needed
to recreate reported model behavior.

t:time_val ue Time in units that pins were logged.

ppi n_nunber Entry for input pin.
i i nput _val ue

ppi n_number Entry for output pin.
oout put _val ue
rresol ved_val ue

ppi n_nunber Entry for bidirectional pin.
bbi di r _val ue

rresol ved_val ue

Stimulus Log Example
Hereisan example of astimuluslog file:

-timeformat:ns: 1
t:0
p0
il
pl
i0
p6
oz
rz
pl10
bz
rz
t:60
p6
oz
rz

112 Synopsys, Inc. August 28, 2001

FlexModel User's Manual

pS7

Appendix A: Reporting Problems

b1111112111112111221112121211112111111
r11111111111111111111111111111111

Notice that for input pins, only the value of the pin is recorded (i). For output pins, both
the value that the model is driving onto the pin (0) and the resolved value (r) are

recorded. For bidirectional pins, both the value the model is driving (b) and the resolved
value (r) are recorded. Thus, contentions for output and bidirectional pins can be caught.

Message Logging

Hereis an example of amessage log file:

420
450
450
480
480
480
510
540
540
570
600
600

&

Fr660666 6066

| NSTANCE
| NSTANCE
| NSTANCE
I NSTANCE
I NSTANCE

| NSTANCE
| NSTANCE
| NSTANCE
I NSTANCE
I NSTANCE

1.

el S

PREPREPERE

Idle State

arnvtdm_wite (00000F0Q;

T1 State

T2 State

Witing Data: Address = 00000FOC
Size = 4, Data = 98765432

Idle State

arnvtdm _read_req (00000F00);

T1 State

T2 State

Lat ching Data: Address = 00000F00
Size = 4, Data = 3C3C3C3C

Sending the Log Files to Customer Support

After you rerun your simulation to generate the model log files, tar those files up along
with the swiftcheck.out file you created as described in “Running FlexM odel
Diagnostics’ on page 110. Then zip the tarball up using gzip and send the zipped log
filesto Customer Support as an e-mail attachment. Include your call number if you have
one and a description of the problem in the body of your message.

August 28, 2001

Synopsys, Inc. 113

mailto:sw_support@synopsys.com

Appendix A: Reporting Problems FlexModel User's Manual

114 Synopsys, Inc. August 28, 2001

FlexModel User's Manual

A

About This Manual 9
AlX
compiling C files 46

B
bit_vectors44
Branching 20
Burst transfers 25

C

C Command Mode
compiling C file 45
concurrency 43
creating C file44
errors example 45
example 103
initialization example 44
interrupt example 35
interrupts explanation 33
interrupts, using 33
simulation time 43
switching to C 47
using 43

C Command Stream
coupled mode 22
mutiple command streams 21
uncoupled mode 22

C interrupt function 63

C program
compiling 45
running /5
switchingto 47, 75

Command Core 14, 39, 41

Command Interface 17, 39, 53
command modes 17, 39
logging commands 111
organization 21

Command Mode

August 28, 2001

Index

Index

HDL defined 39

using HDL 20, 39
Command Sequencing 24
Command Suffixes

req 55

rdt 55
Command Syntax

FLEX commands 59

model commands 61

result identifiers 55

status parameter 56

wait flag 56
Command Types

request 26

result 25, 26, 55
Commands

flex_clear_queue 61

flex_define_intr_function 82

flex_define_intr_signal 64

flex_get_cmd_status 66

flex_get_coupling_mode 68

flex_get_inst_handle 69

flex_print_msg 73

flex_run_program 75

flex_set_coupling_mode 77

flex_start_program 81

flex_switch_intr_control 82

flex_synchronize 83

flex_wait 85

result identifiers 55
Comments?

reporting doc suggestions 12
Compiling

external C program 45
Compiling Cfiles

AlX 46

HP-UX 45

Intel NT 47

Linux 46

NT 46

Solaris 46

Synopsys, Inc. 115

Index

Constants
FLEX ALL QUEUESG6G1
FLEX CMD_QUEUE 61
FLEX COUPLED MODE 23
FLEX DEFINE 91
FLEX DISABLE 30
FLEX ENABLE 30
FLEX INT 91
FLEX RSLT QUEUE 61

FLEX_TIMING_MODE_CYCLE 29

FLEX TIMING _MODE_ON 28
FLEX_UNCOUPLED_MODE 23
FLEX_VEC 44, 91
FLEX_VEC_CONST 44
FLEX_WAIT_F 56
FLEX_WAIT_T 56
MAX 29
MIN 29
TYP29
Controlling command flow 20
Conventions
command syntax 11
system-generated text 10
UNIX prompt 10
user input 10
variables 11

DelayRange 29

Direct C Control
compiling C files 45
restrictions 13

Documentation

online 15
E
Errors
synchronize command 28
timeout 28
Examples

branching on result 25

C Command Mode errors 45

C Command Mode example 103
C Command Mode interrupt 35

116

Synopsys, Inc.

FlexModel User’'s Manual

Cinitiaization 44

logging files 111

message logging 113
non-pipelined transfers 24
stimuluslogging 112
switching to C program 47
Verilog cycle-based mode 29
Verilog timing 29

Verilog timing setup 30
VHDL command mode 39
VHDL cycle-based mode 30
VHDL interrupt 33

VHDL timing 29

VHDL timing setup 30
wait_mode 26

F

FLEX Commands
command descriptions 61
command summary 59
flex_add 94
FLEX_ALL_QUEUESG61
flex_and 99
flex_assign 93
flex_assign_int 93
flex_assign int_array 93
flex_assign_int_list 93
flex_change setup 23
flex_clear_queue 61
FLEX_CMD_QUEUE 61
FLEX COUPLED MODE 23
flex_decr 94
FLEX DEFINE 91
flex_define 90
flex_define_intr_function 35, 82
flex_define_intr_signal 33, 63, 64
FLEX DISABLE 30
FLEX_ENABLE 30
flex_eq 94
flex_errors 92
flex_fprintf 102
flex_get_cmd_status 66
flex_get_coupling_mode 68

August 28, 2001

FlexModel User's Manual

flex_get_inst_handle 69
flex_gt 95

flex_gte 95

flex_incr 94

FLEX_INT 91

flex_iprintf 102

flex_Irot 98

flex_Ishift 97

flex_It 95

flex_Ite 95

flex_nand 99

flex_ne 94

flex_nor 99

flex_not 98

flex_notes 92

flex_or 98

flex_print_msg 73

flex_rrot 98

flex_rshift 97
FLEX_RSLT QUEUE 61
flex_run_program 21, 25, 40, 75
flex_set_coupling_mode 77
flex_dlice be 96

flex_dice be offset 97
flex_dice le 95

flex_dlice le_offset 96
flex_sprintf 103
flex_start_program 43, 44, 81
flex_sub 94
flex_switch_intr_control 82
flex_synchronize 27, 40, 83
FLEX_TIMING_MODE_CYCLE 29
FLEX_TIMING_MODE_ON 28
flex_to_int 100
flex_to_int_array 100
flex_to_int_list 101
FLEX_UNCOUPLED_MODE 23
FLEX_VEC 44, 90, 91
FLEX_VEC_CONST 44
flex_vec_sizeof 90

flex_wait 33, 85
FLEX_WAIT_F 34, 56, 111

August 28, 2001

Index

FLEX_WAIT T 33,56, 111
flex_warnings 92
flex_xnor 99
flex_xor 99
FLEXIm license 15
flexm_setup 18
FlexModel
block diagram 14
Command Core 14, 39
command interface 17, 39, 53
controlling command flow 20
features 13
initialization 19
licensing 15
limitations 15
structure 15
flexmodel_pkg.h 44
FlexModels
Command Core 41
Functions 63
Functions C-mode
flex_add 94
flex_and 99
flex_assign 93
flex_assign_int 93
flex_assign int_array 93
flex_assign_int_list 93
flex_decr 94
flex_define 90
flex_eq 94
flex_errors 92
flex_fprintf 102
flex_gt 95
flex_gte 95
flex_incr 94
flex_iprintf 102
flex_Irot 98
flex_lshift 97
flex_1t 95
flex_Ite 95
flex_nand 99
flex_ne 94
flex_nor 99
flex_not 98
flex_notes 92

Synopsys, Inc. 117

Index

flex_or 98

flex_rrot 98
flex_rshift 97
flex_dlice be 96
flex_dice be offset 97
flex_dlice e 95
flex_dice le offset 96
flex_sprintf 103
flex_sub 94
flex_to_int 100
flex_to_int_array 100
flex_to int_list 101
FLEX_VEC 90
flex_warnings 92
flex_xnor 99

flex_xor 99

H

HDL Command Mode 20, 39
HDL Control
Command Core timing 41
HDL-C mechanism 41
multiple state commands 42
timing diagram 42
Header files 44
Help
how to get 11
HP-UX
compiling C files 45

Initialization 19
inst_handle 27, 55, 69
Install Process 14
Integers
inCand HDL 44
Interrupt Commands
and FLEX_WAIT_F 34
and FLEX_WAIT_T 33
model_begin_intr 34
model_end intr 34
model_get_intr_priority 33, 36
Interrupt Service Routine 31

118

Synopsys, Inc.

FlexModel User’'s Manual

definition 31

invocation 31

priority-specific 31

process/always block 33
Interrupts

C Command Mode description 33

C Command Mode setup 33

clock edges 31

detection 31

handler synchronization 27

nesting of 33

reset 31

VHDL control 41

VHDL example 33
Interrupts and Exceptions 31

L
Licensing 15
Linux
compiling C files 46
LMC_HOME tree 15
Logging 109
bidirectional pins 113
cmd.model_instname.log 111
command format 111
commands 111
commands not logged 111
enabling for instance 110
log file examples 111
message logfile 113
messages 113
model_logger.v file 112
msg.model_instname.log 111
pin.model_instname.log 111
stimulus 112
stimulus example 112
strategy 110

M
MAX 29
MIN 29
Model Logging 110
model_begin_interrupt 36

August 28, 2001

FlexModel User's Manual

model _end_interrupt 36

model_pkg.h 44

model_set_timing_control 30

Multiple command sources 27

Multiple Command Streams
in C testbench 21

N

Non-pipelined transfers
example 24
NT
compiling C files 46
num_instance parameter 27/

P

Parameters
DelayRange 29
inst_handle 55
num_instance 27
sig_name 64
status 56
sync_label 27
sync_tag 83
sync_timeout 83
sync_total 83
TimingVersion 29
valid_f 66
wait flag 56
wait_mode 40

Pipelined bus operations 25

Pipelining

delayed result checking 27, 39

phase diagram 25
request phase 25
results phase 25
Preface 9
Propagation delays 28

R

Related documents 9
Request commands 26
Reset 21, 28

August 28, 2001

Index

Result command 25

Results
commands 26, 55
delayed checking 27, 39
from commands 26
model state 26

Results phase 25

S

SLC

Synopsys Common Licensing 12
SmartM odel

Browser tool 9
Solaris

compiling C files 46
Status Parameter

C Command Mode 57

definition 56

types of information 56
std_logic_vectors 44
Suspending command execution 83
SWIFT Interface 14
Switching

toaC program 47
Switching command sources 25
Symbol Conventions 10
sync_label parameter 27
Synchronizing command flow 27, 39
Synopsys Common Licensing 12
SystemC/SWIFT support 17

T

Tag
checking 66, 68, 77
Timing
access delays 30
Access delays 28
checks
checks for timing 28
controlling behavior 28
controlling messages 30
custom timing 28
function-only 28

Synopsys, Inc. 119

Index

introduction 28
propagation delays 28
relationships 28
UDT 28
user-defined 28
Verilog example 30
VHDL example 30
TimingVersion 29
Troubleshooting 109
message log 113
message logging 113
sending alog file 110
stimuluslogging 112
trace messages 113
TYP29
Typographical conventions 10

U
User-defined timing (UDT) 28

\Y

Variables
flex_change setup 23
vector representation 89
Vector Representation in C 89
O-state to 4-state 91
void 91
VERA Command Mode
class constructor 49
filesin LMC_HOME 49
testbench examples 50
using 47
VERA classes 48
VERA interrupt routines 37
Verilog
cycle-based setup 29
task calls 40
timing example 30
timing setup 29
Verilog control 41
VHDL
cycle-based setup 30
procedure calls 40

120

FlexModel User’'s Manual

testbench example 39

timing example 30

timing setup 29
VHDL control 41
Visua C++ 47

W

wait Flag 56

Wait in C Command Mode 85
timing diagram 85

wait_mode example 26

wait_mode parameter 40

Websites

Synopsys 12

Synopsys, Inc. August 28, 2001

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website
	Synopsys Common Licensing (SCL) Document Set

	Comments?

	1 FlexModel Overview
	What Are FlexModels?
	FlexModel Structure and Interface
	Figure 1: FlexModel Structure and Interface

	Installing FlexModels
	FlexModel Installation Tree
	Figure 2: FlexModel Structure in LMC_HOME Tree

	FlexModel Licensing
	FlexModel Limitations

	2 Using FlexModels
	Introduction
	SystemC/SWIFT Support
	Running flexm_setup
	Syntax
	Argument
	Switches
	Examples

	Setting Up the Model
	The flex_get_inst_handle Command

	Using Multiple FlexModel Instances
	Controlling the FlexModel Command Flow
	Resetting the Simulation
	Transferring Control to a C Testbench
	Using Multiple Command Streams in a C Testbench
	Using Uncoupled Mode in a C Testbench
	Burst Transfers
	Non-pipelined Bus Operations
	Pipelined Bus Operations
	Figure 3: Pipelined Bus Operations
	Pipelining With wait_mode Behavior
	Pipelining With Delayed Results Checking

	Synchronizing the Command Flow
	Synchronization Timeouts

	FlexModel Timing
	Selecting Function-only or Timing Model
	Selecting Cycle-based Mode
	Controlling Timing Checks and Delays

	FlexModel Interrupts
	Interrupt Service Routines
	Detecting and Servicing Interrupts
	Figure 4: Interrupt Detection and Servicing
	Using Multiple Models
	Interrupt Detection with C Testbenches

	Developing HDL Interrupt Routines
	Example HDL Interrupt Routine

	Developing C Interrupt Routines
	Example C Interrupt Routine

	Developing VERA Interrupt Routines
	Defining the Interrupt Signal
	Monitoring the Interrupt Signal

	3 FlexModel Command Modes
	Introduction
	Using HDL Command Mode
	VHDL Control
	Verilog Control
	HDL Control Between Model and Testbench
	Figure 5: Read_req/read_rslt Pair for Testbench
	Figure 6: Multiple Commands within a Single Clock Cycle

	Using C Command Mode
	Figure 7: Accessing a C Testbench from HDL
	Creating an External C File
	Common Errors to Avoid

	Compiling an External C File
	Switching Control to an External C Program

	Using VERA Command Mode
	FlexModel VERA Classes
	Figure 8: VERA Model Class Hierarchy

	VERA Files in the LMC_HOME Tree
	Table 1: VERA Files in the LMC_HOME Directory

	The ModelFx Class Constructor
	Examples with Top-level Testbenches
	Example: VERA Testbench Paired with Verilog Testbench
	VERA Testbench
	Example: VERA Testbench Paired with Top-level VHDL Testbench

	Accessing the Current Error Status
	Example: Accessing Current Error Status

	FlexModel Logging from the VERA Class

	4 FlexModel Command Reference
	Introduction
	Model-Specific and Global Commands
	Table 2: FlexModel Command Types

	About the Commands
	Bus and Zero-Cycle Commands
	The inst_handle Parameter
	The req and rslt Command Suffixes
	Command Result Identifiers
	The wait_mode Parameter
	The status Parameter
	Table 3: Status Parameter Error Codes

	Command Syntax Differences in VERA Command Mode
	Global FlexModel Commands
	Table 4: Global FlexModel Command Summary

	Global FlexModel Command Descriptions
	flex_clear_queue
	Syntax
	Parameters
	Description
	The flex_clear_queue command clears the queue(s) for the specified model instance. It executes im...
	Prototypes
	Examples

	flex_define_intr_function
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_define_intr_signal
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_get_cmd_status
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_get_coupling_mode
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_get_inst_handle
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_get_value
	Syntax
	Parameters
	Table 5: Returned Values and Corresponding Net States of value for flex_get_value
	Description
	Prototype
	Examples

	flex_print_msg
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_run_program
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_set_coupling_mode
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_set_value
	Syntax
	Parameters
	Table 6: flex_set_value path Syntax Examples
	Table 7: Allowed Values of value for flex_set_value
	Description
	Prototypes
	Examples

	flex_start_program
	Syntax
	Parameter
	Description
	Prototype
	Example

	flex_switch_intr_control
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_synchronize
	Syntax
	Parameters
	Definition
	Prototypes
	Examples

	flex_wait
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_wait_on_node
	Syntax
	Parameters
	Table 8: Syntax Examples for the path Parameter
	Description
	Prototype
	Examples

	5 FlexModel C Testbench Interface
	Introduction
	What Are FLEX_VEC Vectors?
	Creating FLEX_VEC Vectors
	FLEX_VEC Lexical Rules
	Table 9: VHDL 9-State to 4-State Conversion
	Vector Strings

	FLEX_VEC Error Handling
	FLEX_VEC Command Descriptions
	flex_assign
	flex_assign_int
	flex_assign_int_array
	flex_assign_int_list
	flex_incr
	flex_decr
	flex_add
	flex_sub
	flex_eq
	flex_ne
	flex_lt
	flex_lte
	flex_gt
	flex_gte
	flex_slice_le
	flex_slice_be
	flex_slice_le_offset
	flex_slice_be_offset
	flex_rshift
	flex_lshift
	flex_rrot
	flex_lrot
	flex_not
	flex_or
	flex_and
	flex_nor
	flex_nand
	flex_xor
	flex_xnor
	flex_to_int
	flex_to_int_array
	flex_to_int_list
	flex_iprintf
	flex_fprintf
	flex_sprintf

	C Testbench Example

	A Reporting Problems
	Introduction
	Model Versions and History
	Running FlexModel Diagnostics
	Creating FlexModel Log Files
	Command Logging
	Stimulus Logging
	Table 10: Stimulus Logging Format
	Stimulus Log Example

	Message Logging

	Sending the Log Files to Customer Support

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

