
FlexModel User’s Manual

August 28, 2001

To search the entire manual
set, press this toolbar button.
For help, refer to intro.pdf.

Copyright © 2001 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

SmartModel, ModelAccess, ModelTools, SourceModel Library, LM-1200, and
Synopsys Eaglei are registered trademarks; MemPro, MemSpec, MemScope,
FlexModel, LM-family, LM-1400, Logic Model, ModelSource, and SourceModel are
trademarks of Synopsys, Inc.

All company and product names are trademarks or registered trademarks of their
respective owners.

FlexModel User’s Manual

2 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Contents
Contents

Preface . 9
About This Manual . 9

Related Documents . 9
Manual Overview . 10
Typographical and Symbol Conventions . 10

Getting Help . 11
The Synopsys Website . 12
Synopsys Common Licensing (SCL) Document Set . 12

Comments? . 12

Chapter 1
FlexModel Overview . 13

What Are FlexModels? . 13
FlexModel Structure and Interface . 14
Installing FlexModels . 14
FlexModel Installation Tree . 15
FlexModel Licensing . 15
FlexModel Limitations . 16

Chapter 2
Using FlexModels . 17

Introduction . 17
SystemC/SWIFT Support . 17
Running flexm_setup . 18
Setting Up the Model . 19

The flex_get_inst_handle Command . 19
Using Multiple FlexModel Instances . 19
Controlling the FlexModel Command Flow . 20

Resetting the Simulation . 21
Transferring Control to a C Testbench . 21
Using Multiple Command Streams in a C Testbench . 21
Using Uncoupled Mode in a C Testbench . 22
Burst Transfers . 24
Non-pipelined Bus Operations . 24
Pipelined Bus Operations . 25
Synchronizing the Command Flow . 27
August 28, 2001 Synopsys, Inc. 3

Contents FlexModel User’s Manual
FlexModel Timing . 28
Selecting Function-only or Timing Model . 28
Selecting Cycle-based Mode . 29
Controlling Timing Checks and Delays . 30

FlexModel Interrupts . 31
Interrupt Service Routines . 31
Detecting and Servicing Interrupts . 31
Developing HDL Interrupt Routines . 33
Developing C Interrupt Routines . 35
Developing VERA Interrupt Routines . 37

Chapter 3
FlexModel Command Modes . 39

Introduction . 39
Using HDL Command Mode . 39

VHDL Control . 41
Verilog Control . 41
HDL Control Between Model and Testbench . 41

Using C Command Mode . 43
Creating an External C File . 44
Compiling an External C File . 45
Switching Control to an External C Program . 47

Using VERA Command Mode . 47
FlexModel VERA Classes . 48
VERA Files in the LMC_HOME Tree . 49
The ModelFx Class Constructor . 49
Examples with Top-level Testbenches . 50
Accessing the Current Error Status . 51
FlexModel Logging from the VERA Class . 52

Chapter 4
FlexModel Command Reference . 53

Introduction . 53
Model-Specific and Global Commands . 53
About the Commands . 54

Bus and Zero-Cycle Commands . 54
The inst_handle Parameter . 54
The req and rslt Command Suffixes . 55
Command Result Identifiers . 55
The wait_mode Parameter . 56
The status Parameter . 56
4 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Contents
Command Syntax Differences in VERA Command Mode 58
Global FlexModel Commands . 59

Global FlexModel Command Descriptions . 61
flex_clear_queue . 61
flex_define_intr_function . 63
flex_define_intr_signal . 64
flex_get_cmd_status . 66
flex_get_coupling_mode . 68
flex_get_inst_handle . 69
flex_get_value . 71
flex_print_msg . 73
flex_run_program . 75
flex_set_coupling_mode . 77
flex_set_value . 78
flex_start_program . 81
flex_switch_intr_control . 82
flex_synchronize . 83
flex_wait . 85
flex_wait_on_node . 86

Chapter 5
FlexModel C Testbench Interface . 89

Introduction . 89
What Are FLEX_VEC Vectors? . 89
Creating FLEX_VEC Vectors . 90
FLEX_VEC Lexical Rules . 91
FLEX_VEC Error Handling . 92
FLEX_VEC Command Descriptions . 93
C Testbench Example . 103

Appendix A
Reporting Problems . 109

Introduction . 109
Model Versions and History . 109
Running FlexModel Diagnostics . 110
Creating FlexModel Log Files . 110

Command Logging . 111
Stimulus Logging . 112
Message Logging . 113

Sending the Log Files to Customer Support . 113
August 28, 2001 Synopsys, Inc. 5

Contents FlexModel User’s Manual
Index . 115
6 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Figures

August 28, 2001 Synopsys, Inc. 7

Figures

Figure 1: FlexModel Structure and Interface . 14
Figure 2: FlexModel Structure in LMC_HOME Tree . 15
Figure 3: Pipelined Bus Operations . 25
Figure 4: Interrupt Detection and Servicing . 32
Figure 5: Read_req/read_rslt Pair for Testbench . 42
Figure 6: Multiple Commands within a Single Clock Cycle 42
Figure 7: Accessing a C Testbench from HDL . 43
Figure 8: VERA Model Class Hierarchy . 48

Tables FlexModel User’s Manual

8 Synopsys, Inc. August 28, 2001

Tables

Table 1: VERA Files in the LMC_HOME Directory . 49
Table 2: FlexModel Command Types . 53
Table 3: Status Parameter Error Codes . 56
Table 4: Global FlexModel Command Summary . 59
Table 5: Returned Values and Corresponding Net States of value for flex_get_value . .
71
Table 6: flex_set_value path Syntax Examples . 78
Table 7: Allowed Values of value for flex_set_value . 78
Table 8: Syntax Examples for the path Parameter . 86
Table 9: VHDL 9-State to 4-State Conversion . 91
Table 10: Stimulus Logging Format . 112

FlexModel User’s Manual Preface
�

Preface

About This Manual
This manual explains how use FlexModels in your test environment. FlexModels are a
type of SmartModel and they share many characteristics in common with them, but
there are significant differences. For example, FlexModels have advanced features like
the ability to issue model commands from an HDL, C, or VERA testbench. Those
capabilities and other enhancements to traditional SmartModel usage are explained in
this manual.

This manual works in tandem with the individual FlexModel datasheets. General
information that pertains to all FlexModels is presented here, whereas information that
is specific to individual FlexModels is documented in the model datasheets.

Related Documents
For general information about SmartModel Library documentation, or to navigate to a
different online document, refer to the Guide to SmartModel Documentation. For the
latest information on supported platforms and simulators, refer to SmartModel Library
Supported Simulators and Platforms.

For detailed information about specific models in the SmartModel Library, use the
Browser tool ($LMC_HOME/bin/sl_browser) to access the online model datasheets.
August 28, 2001 Synopsys, Inc. 9

Preface FlexModel User’s Manual
�

Manual Overview
This manual contains the following chapters:

Typographical and Symbol Conventions
● Default UNIX prompt

Represented by a percent sign (%).

● User input (text entered by the user)

Shown in bold monospaced type, as in the following command line example:

% cd $LMC_HOME/bin

● System-generated text (prompts, messages, files, reports)

Shown in monospaced type, as in the following system message:

VALIDATION PASSED: No Mismatches during simulation

Preface Describes the contents of this manual and provides
references to other sources of information about
FlexModels. Also describes conventions and
terminology used in this manual.

Chapter 1:
FlexModel Overview

General information about FlexModel architecture,
features, and benefits.

Chapter 2:
Using FlexModels

How to set up one or more FlexModels in a testbench
and use model commands to coordinate the command
flows. Also how to use FlexModel timing and
interrupts.

Chapter 3:
FlexModel Command
Modes

How to use the HDL, VERA, and C command modes
to control FlexModels.

Chapter 4:
FlexModel Command
Reference

Common features of FlexModel commands and a
command reference for global FlexModel commands.

Chapter 5:
FlexModel C Testbench
Interface

How to use the FlexModel C functions and operators to
define and manipulate FLEX_VEC vectors for use
with FlexModel commands.

Chapter A:
Reporting Problems

How to enable FlexModel logging and report problems
to Customer Support.
10 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Preface
�

● Variables for which you supply a specific value

Shown in italic type, as in the following command line example:

% setenv LMC_HOME prod_dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

● Command syntax

Choice among alternatives is shown with a vertical bar (|) as in the following:

termination_style, 0 | 1

In this example, you must choose one of the two possibilities: 0 or 1.

Optional parameters are enclosed in square brackets ([]) as in the following:

pin1 [pin2 ... pinN]

In this example, you must enter at least one pin name (pin1), but others are optional
([pin2 ... pinN]).

Getting Help
If you have a question while using Synopsys products, use the following resources:

1. Start with the available product documentation installed on your network or located
at the root level of your Synopsys CD-ROM. Every documentation set contains
overview information in the intro.pdf file.

Additional Synopsys documentation is available at this URL:

http://www.synopsys.com/products/lm/doc

Datasheets for models are available using the Model Directory:

http://www.synopsys.com/products/lm/modelDir.html

2. Visit the online Support Center at this URL:

http://www.synopsys.com/support/lm/support.html

This site gives you access to the following resources:

❍ SOLV-IT!, the Synopsys automated problem resolution system

❍ product-specific FAQs (frequently asked questions)

❍ the ability to open a support help call

❍ the ability to submit a delivery request for some product lines
August 28, 2001 Synopsys, Inc. 11

http://www.synopsys.com/products/lm/doc
http://www.synopsys.com/products/lm/modelDir.html
http://www.synopsys.com/support/lm/support.html

Preface FlexModel User’s Manual
�

3. If you still have questions, you can call the Support Center:

North American customers:
Call the Synopsys Eaglei and Logic Modeling Products Support Center hotline at
1-800-445-1888 (or 1-503-748-6920) from 6:30 AM to 5 PM Pacific Time, Monday
through Friday.

International customers:
Call your local sales office.

The Synopsys Website
General information about Synopsys and its products is available on the Web:

http://www.synopsys.com

Synopsys Common Licensing (SCL) Document Set
Synopsys common licensing (SCL) software is delivered on a CD that is separate from
the tools that use this software to authorize their use. The SCL documentation set
includes the following publications, which are located in (root)/docs/scl on the SCL CD
and also available on the Synopsys FTP server (ftp://ftp.synopsys.com):

● Licensing QuickStart—(142K PDF file)
This booklet provides instructions for obtaining an electronic copy of your license
key file and for installing and configuring SCL on UNIX and Windows NT.

● Licensing Installation and Administration Guide—(2.08M PDF file)
This guide provides information about installation and configuration, key concepts,
examples of license key files, migration to SCL, maintenance, and troubleshooting.

You can find general SCL information on the Web at:

http://www.synopsys.com/keys

Comments?
To report errors or make suggestions, please send e-mail to:

doc@synopsys.com

To report an error that occurs on a specific page, select the entire page (including
headers and footers), and copy to the buffer. Then paste the buffer to the body of your
e-mail message. This will provide us with information to identify the source of the
problem.
12 Synopsys, Inc. August 28, 2001

ftp://ftp.synopsys.com/pub/SCL/LQS.pdf
ftp://ftp.synopsys.com/pub/SCL/LIAG.pdf
http://www.synopsys.com/keys
http://www.synopsys.com
mailto:doc@synopsys.com

FlexModel User’s Manual Chapter 1: FlexModel Overview
�

1
FlexModel Overview

What Are FlexModels?
FlexModels are binary simulation models that represent the bus functionality of
microprocessors, cores, digital signal processors, and bus interfaces. FlexModels are
essentially advanced SmartModels, and therefore use the SWIFT interface. FlexModels
have the following features:

● Built with a cycle-accurate core and a controllable timing shell so that you can run
the model in function-only mode for higher performance or with timing mode on
when you need to check delays. You can switch between timing modes dynamically
during simulation using simple commands in your testbench.

● Feature multiple different control mechanisms. You can coordinate model behavior
with simulation events, synchronize different command processes, and control
several FlexModels simultaneously using a single command stream.

● Allow you to use different command sources. You can send commands to
FlexModels using processes in a Verilog or VHDL testbench, a C program, or a
VERA testbench. You can switch between the HDL or VERA testbench and a
compiled C program as the source for commands.

Note�
Multiple command sources are available on simulators that have custom
FlexModel integrations. Customers using Direct C Control through the
standard SWIFT integration must stick with C. For more information, refer
to the Simulator Configuration for Synopsys Models.
August 28, 2001 Synopsys, Inc. 13

Chapter 1: FlexModel Overview FlexModel User’s Manual
�

FlexModel Structure and Interface
FlexModels use the SWIFT interface for event-based communication with the simulator.
FlexModels also use a central Command Core that queues model commands for one or
more FlexModels in your design. The Command Core provides high-performance
model control without burdening the SWIFT interface. Figure 1 illustrates the
FlexModel interface.

Figure 1: FlexModel Structure and Interface

Installing FlexModels
For FlexModel installation information, refer to the SmartModel Library Installation
Guide. This guide contains instructions for installing the models and associated
software. For information about supported platforms and simulators, refer to the
SmartModel Library Supported Simulators and Platforms.

FlexModelFlexModel 1
FlexModel
Command

Core
C Commands

VERA

HDL Simulator

FlexModelFlexModel 2

FlexModel 1

FlexModel 2

SWIFT Entente

Model Pins

SWIFT Interface

FlexModel 1

FlexModel 2

HDL2C
Pipe

HDL Testbench DUT
14 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 1: FlexModel Overview
�

FlexModel Installation Tree
Figure 2 illustrates the organization of FlexModel files installed in an LMC_HOME
tree.

Figure 2: FlexModel Structure in LMC_HOME Tree

FlexModel Licensing
FlexModels use FLEXlm floating licenses to authorize their use, just like other
SmartModels. If licensing is not set up, refer to the SmartModel Library Installation
Guide for information about setting up and using the FLEXlm licensing software.

LMC_HOME

models

model_fxversion

doc

smartmodel
manuals

examples

platform

src

flexum.pdf

model_fxversion.so

verilogvhdl

model_pkg.inc
model_user_pkg.inc

model_pkg.vhd
model_user_pkg.vhd

model_fxversion.mmt
model_fxversion.pdf

model_fxversion.td
model_fxversion.tf
model_fxversion.tt
model_fxversion.xrf

model.v
model_tst.v
model_fx_sim.v

model.vhd
model_tst.vhd
model_fx_comp.vhd
model_fx_sim.vhd

relnotes.pdf

model_c_tst.v
model_c_tst.vhd
model_c_commands.c

C

platform

model_pkg.h

model_pkg.o

vhdl verilog C

slum.pdf install.pdf

intro.pdf

model_pkg.vr
model_pkg.vrh

vera

model_fx

model_fxversion.mdl
August 28, 2001 Synopsys, Inc. 15

Chapter 1: FlexModel Overview FlexModel User’s Manual
�

FlexModel Limitations
FlexModels do have some limitations compared to traditional SmartModels:

● FlexModels do not support fault simulation.

● Component-based user-defined timing (UDT) is supported in FlexModels, but
instance-based UDT is not.

● SmartModel model logging is not supported for models that have an _fx extension.
FlexModels of this type have a different model logging mechanism that is described
in “Creating FlexModel Log Files” on page 110.

● SmartModel windows are not supported in FlexModels. Instead, use the robust
FlexModel command set to access and change internal register information.

● Flexmodels do not support save and restore operations.
16 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

2
Using FlexModels

Introduction
This chapter explains how to set up one or more FlexModels and coordinate the flow of
FlexModel commands from multiple sources. It also explains how to set up and use
FlexModel timing and interrupt service routines. This information is organized in the
following sections:

● “SystemC/SWIFT Support” on page 17

● “Running flexm_setup” on page 18

● “Setting Up the Model” on page 19

● “Using Multiple FlexModel Instances” on page 19

● “Controlling the FlexModel Command Flow” on page 20

● “FlexModel Timing” on page 28

● “FlexModel Interrupts” on page 31

SystemC/SWIFT Support
Synopsis provides a SystemC/SWIFT interface that supports Flex Models. SystemC is a
C++ class library used for creating cycle-accurate models of software algorithms,
hardware architecture, and interfaces for System-on-Chip (SoC) and system-level
designs. As part of its class library, SystemC provides a cycle simulation environment, is
designed to work with event-driven logic simulators, and provides extensive support for
modeling device timing accurately. For more details see the SmartModel Products
Application Notes Manual.
August 28, 2001 Synopsys, Inc. 17

Chapter 2: Using FlexModels FlexModel User’s Manual
�

Running flexm_setup
First, run the flexm_setup script to copy the FlexModel’s interface files to your working
directory. You need to run flexm_setup for each FlexModel you want to use in your
design and you must rerun this script after updating your $LMC_HOME with new or
revised FlexModels. This ensures that you pick up the latest package files for the most
recent versions of the models.

Syntax
 flexm_setup [-help] [-dir path] model

Argument
model Pathname to the FlexModel you want to set up.

Switches
-help Prints help information.

-d[ir] path Copies the contents of the FlexModel’s versioned src/verilog
and src/vhd directories into path/src/verilog and path/src/vhdl.
The directory specified by path must already exist.

Examples
When run without the -dir switch, flexm_setup just prints the name of the versioned
directory of the selected model’s source files

Lists name of versioned directory containing source files
% flexm_setup mpc860_fx

When run with the -dir switch pointing to your working directory, flexm_setup copies
over all the versioned package files you need to that working directory.

Creates copy in ‘flexmodel’ directory of model source files
% mkdir workdir
% flexm_setup -dir workdir mpc860_fx
18 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

Setting Up the Model
Next, instantiate one or more FlexModels in your design using required SWIFT
parameters, as explained in the Simulator Configuration Guide for Synopsys Models.
You must allow at least one clock cycle to elapse in your testbench before you issue any
FlexModel commands. This allows the FlexModels to initialize. After initialization,
FlexModels can accept commands from the testbench. The first FlexModel command
for each model instance must always be the flex_get_inst_handle command, which
returns a unique model instance identifier called the inst_handle.

The flex_get_inst_handle Command
The flex_get_inst_handle command makes an association between the FlexModelId you
used to instantiate the model in your testbench and that specific instance of the model.
This is so that you can use more than one FlexModel or multiple instances of the same
FlexModel in a design without getting the command streams confused. After you get an
inst_handle, you use that integer in all subsequent FlexModel commands. It is typically
the first required argument.

Note�
You do not use the inst_handle parameter in VERA Command Mode. See
“Command Syntax Differences in VERA Command Mode” on page 58.

Using Multiple FlexModel Instances
You can have multiple instances of the same FlexModel in the same simulation. If so,
you must use separate command streams to avoid conflicts.

Caution�
You cannot have multiple command streams (VERA, Verilog, VHDL, or C)
sending commands into any one model instance at the same time.

To use more than one instance of a FlexModel in the same simulation, follow these steps
for Verilog testbenches.

1. When using multiple instances of a FlexModel within one or more top level Verilog
testbenches (VCS, Verilog-XL,...) you may see the message:

Error: undefined symbol “flex_<cmd name>” (<testbench> line <number>)

To work around this error, add the line

`undef FLEXMODEL_CMDS_INC
August 28, 2001 Synopsys, Inc. 19

Chapter 2: Using FlexModels FlexModel User’s Manual
�

before the line that reads

`include model_pkg.inc

2. Qualify all FlexModel commands with their corresponding instance names. For
example:

// The two instances are called i1 and i2.
mpc740 i1(...); The first instance
mpc740 i2(...); The second instance

// The command stream for i1.
initial begin
// command flow for i1 goes here
i1.mpc740_idle(...);
// and so forth for i1

end

// The command stream for i2.
initial begin
// command flow for i2 goes here
i2.mpc740_idle(...);
// and so forth for i2

end

3. On the simulator invocation line add the multi-instance specification to your
invocation.

+define+flex_multi_inst

Controlling the FlexModel Command Flow
You can control the flow of FlexModel commands in several ways, as explained in the
following sections:

● “Resetting the Simulation” on page 21

● “Transferring Control to a C Testbench” on page 21

● “Using Multiple Command Streams in a C Testbench” on page 21

● “Using Uncoupled Mode in a C Testbench” on page 22

● “Burst Transfers” on page 24

● “Non-pipelined Bus Operations” on page 24

● “Pipelined Bus Operations” on page 25

● “Synchronizing the Command Flow” on page 27
20 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

Resetting the Simulation
The ability to reset a simulation to an initial state without re-invoking the simulator can
save considerable time. Reset is also important for “what if” simulation runs.
FlexModels support reset, returning to the state when the simulator was initially
invoked.

Attention�
Reset is not currently supported on NT. Also, when using FlexModels on
Verilog-XL with model logging enabled, some FlexModels may not reset
after the third attempt. The workaround is to turn off model logging.

Transferring Control to a C Testbench
You can transfer control from an HDL or VERA testbench to a C testbench using the
flex_run_program command. The model receives all commands from the C testbench
before any subsequent model commands in that VHDL process or Verilog block. When
you have multiple command streams operating at the same time, there are a few things
to keep in mind:

● Non-model commands such as Verilog $display statements following the
flex_run_program command are processed immediately.

● You cannot issue model request commands (_req) in one command source and
model result commands (_rslt) in another. For example, if you want to make a read
request for a FlexModel and then fetch the results, keep both FlexModel commands
in either your C or HDL testbench.

● It is best to organize your commands to minimize switching in and out of the same
command source. For example, if you want to use a C program for two separate
command sequences to be performed at two different points in the simulation, create
two separate C command files.

● You cannot have multiple VERA, VHDL, or Verilog processes providing
commands to the same model instance.

● You cannot use the flex_run_program command to switch between different HDL
or VERA command sources. For more information on the flex_run_program
command, see “flex_run_program” on page 75.

Using Multiple Command Streams in a C Testbench
A C testbench can provide commands to more than one model or model instance. This
allows two or more models to pass information between each other in proper sequence
in a C testbench.
August 28, 2001 Synopsys, Inc. 21

Chapter 2: Using FlexModels FlexModel User’s Manual
�

To use multiple command streams in one C testbench, initialize all model instances with
the flex_get_inst_handle command before issuing the flex_start_program command, as
shown in the following example:

flex_get_inst_handle(InstName1, &id1, &status);
flex_get_inst_handle(InstName2, &id2, &status);
flex_start_program(&status);

Note�
If more than one model instance sends commands from a single C testbench,
the mode is automatically set to uncoupled, regardless of the settings used
(see methods 1-3 in “Using Uncoupled Mode in a C Testbench” on page 22).

Using Uncoupled Mode in a C Testbench
Uncoupled mode only affects the C command stream. This applies to C Command
Mode on simulators with custom integrations and Direct C Control on simulators with
standard integrations. For information on FlexModel simulator integration, refer to the
Simulator Configuration Guide for Synopsys Models.

Uncoupled mode is required to enable the use of multiple command streams in complex
models with more than one bus (for example). It is also useful when you want to drive
more than one instance of the same model or multiple models from a single C testbench.

Coupled mode synchronizes the model with the testbench process that contains model
commands, so that the model is prevented from advancing to the next simulation time
step when the next command is not available. In uncoupled mode, the model does
advance to the next time step, even when the next command is not yet available. In this
state, the model continues to poll for new commands, thereby preventing gridlock
conditions for multi-model or multi-stream simulations.

FlexModels start up in coupled mode by default. There are three methods of changing
the default mode:

1. Using a SWIFT model parameter (for simulators with standard integrations), or
using the flex_run_program command (for simulators with custom integrations) as
shown in the following examples:

Standard Integrations

Using SWIFT parameter in the model instantiation for _fz models:

defparam u1.FlexModelSrc_command_stream = "path_to_C_file -u |-c"

where command_stream is the name of the command stream, as defined in the
model datasheet. For models with multiple command streams, use two defparams,
with each one pointing to a unique command stream in the model.
22 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

Using SWIFT parameter in the model instantiation for _fx models:

defparam u1.FlexCFile = "path_to_C_file -u |-c"

Custom Integrations

Using flex_run_program command from a Verilog or VHDL testbench:

flex_run_program("path_to_C_file -u |-c", status);

If you specify the -c option (default behavior), the C testbench starts model
commands in coupled mode. If you specify the -u option, the C testbench starts
model commands in uncoupled mode. Other options are ignored.

Note�
The -u switch is useful only if you want to be in uncoupled mode for a single
command stream. This is not currently needed for FlexModels, but will
enable potential future enhancements.

2. You can also use global FlexModel commands in your C testbench to set and get the
coupling mode, using the following syntax:

flex_set_coupling_mode(int instance, int coupling_mode, int *status);

flex_get_coupling_mode(int instance, int &coupling_mode, int *status);

where coupling_mode is one of these two constants:

❍ FLEX_UNCOUPLED_MODE (sets mode to uncoupled)

❍ FLEX_FULLY_COUPLED_MODE (sets mode to coupled)

Here are some usage examples:

flex_set_coupling_mode (mpc8260_inst1, FLEX_UNCOUPLED_MODE, &status);

flex_get_coupling_mode (mpc8260_inst1, &coupling_mode, &status);

3. You can also use the flex_change_setup global variable in your C testbench to
enable or disable uncoupled mode. This can be handy for interactive use with a C
debugger:

int flex_change_setup;

Set the flex_change_setup variable to FLEX_UNCOUPLED_MODE or
FLEX_FULLY_COUPLED_MODE depending on the desired mode of operation.
You can use this global variable to interactively modify the simulation setup from
within the debugger session. After the initialization sequence is complete, the model
checks the value of the flex_change_setup variable before executing each command
August 28, 2001 Synopsys, Inc. 23

Chapter 2: Using FlexModels FlexModel User’s Manual
�

and changes the mode of operation accordingly. Here is an example that uses the
flex_change_setup global variable to change to uncoupled mode in between bus
cycles for the mpc860_fx model:

mpc860_read(id1, address, tr_attr, FLEX_WAIT_F, &status);
flex_change_setup = FLEX_UNCOUPLED_MODE; /*(set from the debugger)*/
mpc860_write(id1, address, tr_attr, data, FLEX_WAIT_F, &status);

Note�
The flex_change_setup command may be used to interactively change other
simulation settings in the future, if the need arises.

Burst Transfers
Burst transfers are multiple data transfers caused by a single bus command. Like the
devices they model, some FlexModels support burst transfers—check the FlexModel
datasheets for supported burst transfer commands and how to use them.

Non-pipelined Bus Operations
Use non-pipelined bus operations when you want to branch the control program based
on the result returned by the model. This means issuing a model result command right
after a paired model request command, as shown in the following example:

procedure my_read(instance: in integer;
 address: in BIT_VECTOR (0 to 31);
 readType: in natural;
 result: out BIT_VECTOR (0 to 31)
) is
 variable stat: integer;
 begin
 -- Start Read --
 model_read_req(instance, address, readType, FLEX_WAIT_T, status);
 -- If OK --
 if (status > 0) then
 -- Get Read result (tag not needed) --
 model_read_rslt(instance, address, 0, result, status);
 end if;
end;
24 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

The following example shows another command sequence that branches according to
the result of the returned data:

model_read_req(inst, x"00000060", x"0", FLEX_WAIT_T, status);
model_read_rslt (inst, x"00000060", 0, data, status);
if (status = 1 and data(31 downto 0) = x"33334444")
then model_write(inst, mem_write, x"A00000FF", x"1DE4543C",

FLEX_WAIT_F, status);
else assert FALSE report "WRONG DATA READ" severity NOTE;
end if;

There is a minimum delay of one clock cycle between the completion of a request
command and the completion of a corresponding result command. You must precede a
result command with a request command.

Pipelined Bus Operations
Bus cycle pipelining occurs when multiple bus operations overlap. Because FlexModels
typically divide bus operations between request and result phases or commands, you can
pipeline multiple request commands before the result command from the first request is
complete. By preloading the model command queue with pipelined bus operations, you
can avoid dead cycles and more closely model the behavior of devices that support
pipelining. You can then retrieve the results from those reads in any order. This process
is illustrated in Figure 3.

Figure 3: Pipelined Bus Operations

There are two ways to get pipelined bus operations with FlexModels:

● “Pipelining With wait_mode Behavior” on page 26

● “Pipelining With Delayed Results Checking” on page 26

Time

A1 Data 1

A2 Data 2

A3 Data 3

Request Phase

Data Phase

Request command provided to model

Result is available
August 28, 2001 Synopsys, Inc. 25

Chapter 2: Using FlexModels FlexModel User’s Manual
�

Pipelining With wait_mode Behavior
FlexModel request and result commands work together to retrieve data from the model.
Request commands have a req suffix and result commands have a rslt suffix. Request
commands cause the model to post the data and result commands retrieve the results.
Testbench operations “wait” or proceed based on how you set the wait_mode parameter
in the request command. For example:

● If the wait_mode in a request command is false (FLEX_WAIT_F), the model
immediately proceeds to the next command.

● If the wait_mode in a request command is true (FLEX_WAIT_T), the model waits
until the command completes before proceeding to the next command.

You can use this wait behavior to pipeline multiple request commands as shown in the
following VHDL example.

variable data1, data2, data3 : bit_vector (31 downto 0);
-- COMMAND 1:
model_read_req(inst, X"00000004", X"0", FLEX_WAIT_F, status);

-- COMMAND 2:
model_read_req(inst, X”00000002”, X"0", FLEX_WAIT_F, status);

-- COMMAND 3:
model_read_req(inst, X”00000000”, X"0", FLEX_WAIT_T, status);
model_read_rslt (inst, X"00000004", 0, data1, status);
model_read_rslt (inst, X"00000004", 0, data2, status);
model_read_rslt (inst, X"00000000", 0, data3, status);

Commands 1, 2, and 3 are loaded into the model queue immediately because the first
two commands have wait_mode parameters set to false FLEX_WAIT_F . Commands
following 3 are not loaded right away because Command 3 has a wait_mode parameter
set to true (FLEX_WAIT_T). No further commands are loaded until Command 3
completes. When Command 3 completes, the results commands retrieve the results from
the three pipelined read requests.

Pipelining With Delayed Results Checking
Supposed you want to pipeline multiple read commands, and check results in a different
order. You can simply invert the order of the result commands as shown in the following
example.
26 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

-- Model Commands are
-- model_read_req(inst, address, wait, status);
-- model_read_rslt(inst, address, result, status);
-- Assume no pipeline reordering

-- read 1
model_read_req(mod1, x"DEADBEEF", FLEX_WAIT_F, tag1);
-- read 2
model_read_req(mod1, x"DEADBEF0", FLEX_WAIT_F, tag2);
-- read 3
model_read_req(mod1, x"DEADBEF1", FLEX_WAIT_F, tag3);
-- result 3
model_read_rslt(mod1, x"DEADBEF1", tag3, data1, stat);
-- result 2
model_read_rslt(mod1, x"DEADBEF0", tag2, data0, stat);
-- result 1
model_read_rslt(mod1, x"DEADBEEF", tag1, data, stat);

In this example, the three read requests complete in order, but the read results
commands are in reverse order. The model waits until the result 3 command completes
(which depends on completion of read 3) before proceeding to the result 2 and result 1
commands, thus producing the pipeline effect.

Synchronizing the Command Flow
To coordinate the behavior of multiple FlexModels in your testbench, use the
flex_synchronize command. Do not use multiple HDL command streams to control a
single FlexModel instance. This produces unpredictable model behavior.

The flex_synchronize command suspends operations in the model instance identified by
the inst_handle parameter until the number of instances specified in the num_instance
parameter execute flex_synchronize commands with matching sync_label strings. For
example, if a FlexModel issues the following command, it suspends all operations until
two other model instances execute flex_synchronize commands with a matching
sync_label of “sync1”.

flex_synchronize(inst, 3, "sync1" timeout, status);

All three models simultaneously execute their next commands one clock cycle after the
third model executes this command.

A FlexModel holding for a synchronization cannot recognize any other commands.
During this time the model stores exception information in the Command Core
exception queue. It is up to the interrupt service routine that you develop to process this
exception information after the synchronization occurs. For information on developing
interrupt service routines, refer to “FlexModel Interrupts” on page 31.
August 28, 2001 Synopsys, Inc. 27

Chapter 2: Using FlexModels FlexModel User’s Manual
�

If a reset occurs, FlexModels execute the reset behavior and either proceed to the next
command or resume waiting for the synchronization point if it still hasn’t occurred.

If the number of flex_synchronize commands with the same sync_label does not match
the num_instance parameter, the Command Core reports an error.

Synchronization Timeouts
If not enough flex_synchronize calls are made, several models may get stuck waiting for
the last call. To prevent this problem, the flex_synchronize command includes a timeout
value. When a model receives a flex_synchronize call, it waits for timeout clock cycles
before declaring that the synchronization operation is complete. When this happens all
other models waiting on the same sync_label are allowed to proceed. Subsequent calls
using the same sync_label return with an error and are ignored. In addition, the same
label sync_label cannot be used twice. For more information about the flex_synchronize
command, refer to “flex_synchronize” on page 83.

FlexModel Timing
FlexModels come with standard, component-based timing files just like regular
SmartModels. There is a timing file for each model that can accommodate multiple
timing versions. By selecting different timing versions for different instances of the
same model, you can have these instances behave differently in the design. In addition
to these standard timing files, you can create custom, component-based timing files
using the SmartModel user-defined timing (UDT) process. UDT is possible because a
model's timing file is loaded at simulation startup. For more information on UDT, refer
to the SmartModel Library User’s Manual.

When you run a FlexModel in timing mode, in general, you are enabling propagation
delays, access delays, and timing checks. Bear in mind that FlexModels run up to 40
percent faster in function-only mode, so you may want to set timing mode on only for
later simulation runs after functional verification is complete.

Selecting Function-only or Timing Model
By default, FlexModels behave as function-only models. To enable timing mode for a
FlexModel, set the FlexTimingMode SWIFT parameter to FLEX_TIMING_MODE_ON
(prepend a backtick for Verilog). If you are using Direct C Control, set this parameter to
0 for timing mode off or 1 for timing mode on.
28 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

With timing mode on, you can choose the desired timing version for the model by
setting the TimingVersion SWIFT parameter. You can also set the timing range (MIN,
TYP, or MAX) using the DelayRange SWIFT parameter. For more information about
setting FlexModel SWIFT parameters, refer to the Simulator Configuration Guide for
Synopsys Models. The following examples enable timing mode on model instance
“my_inst_1”.

Verilog Example
Example using SWIFT template generated by host simulator with timing:

// Timing-mode instantiation
model
defparam
u1.FlexModelId = “my_inst_1”;
u1.FlexTimingMode = `FLEX_TIMING_MODE_ON;
u1.TimingVersion = “timingversion”;
u1.DelayRange = “range”;
u1 (model_ports);

VHDL Example
Example using SWIFT template generated by host simulator with timing:

U1: model
generic map (FlexModelID=> “my_inst_1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)
port map (model ports);

Selecting Cycle-based Mode
To enable cycle-based mode for a FlexModel, set the FlexTimingMode SWIFT
parameter to FLEX_TIMING_MODE_CYCLE (prepend a backtick for Verilog). If you
are using Direct C Control, set this parameter to 2.

The following examples enable cycle-based simulation on model instance “my_inst_1”.

Verilog Example
Example using SWIFT template generated by host simulator:

// Cycle-based instantiation
model
defparam
u1.FlexModelId = “my_inst_1”;
u1.FlexTimingMode = `FLEX_TIMING_MODE_CYCLE;
u1 (model_ports);
August 28, 2001 Synopsys, Inc. 29

Chapter 2: Using FlexModels FlexModel User’s Manual
�

VHDL Example
Example using SWIFT template generated by host simulator:

U1: model
generic map (FlexModelID=> “my_inst_1”,
FlexTimingMode => FLEX_TIMING_MODE_CYCLE)
port map (model ports);

Controlling Timing Checks and Delays
If you instantiate your FlexModel with timing mode on, you can configure timing
checks at runtime using the model-specific model_set_timing_control commands. The
general syntax for the model_set_timing_control commands is:

model_set_timing_control(id, timing_parameter, state, status);

The complete syntax for these commands and the supported timing_parameter values
are listed in the individual FlexModel datasheets. The state parameter takes one of two
predefined constants:

● FLEX_ENABLE—Enables timing for the specified parameter.

● FLEX_DISABLE—Disables timing for the specified parameter.

The following examples show how to use model_set_timing_control commands to
configure timing checks for the tms320c6201_fx FlexModel. The first command
initializes timing with all timing and access delays turned on. Then, specific commands
turn off all setup checks, and one specific hold check.

Verilog Example
// Timing previously enabled with FlexTimingMode parameter for inst
// Turn off all setup timing checks
tms320c6201_set_timing_control(inst, ‘TMS320C6201_SETUP,

‘FLEX_DISABLE, status);

// Turn off the hold check from CLKOUT(1h) to INT7(ha)
tms320c6201_set_timing_control(inst,

‘TMS320C6201_TH_CLKOUT1_LH_INT7_HA, ‘FLEX_DISABLE, status);

VHDL Example
-- Timing previously enabled with FlexTimingMode parameter for inst
-- Turn off all setup timing checks
tms320c6201_set_timing_control(inst,TMS320C6201_SETUP,FLEX_DISABLE,

status);

-- Turn off the hold check from CLKOUT(1h) to INT7(ha)
tms320c6201_set_timing_control(inst,TMS320C6201_TH_CLKOUT1_LH_INT7_HA,

FLEX_DISABLE, status);
30 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

FlexModel Interrupts
Most FlexModels support interrupts of various types based on the physical devices they
model. For information on the specific interrupt types supported by individual
FlexModels, refer to the model datasheets. This chapter explains how interrupts are
detected and serviced by FlexModels and how to write interrupt routines in VHDL,
Verilog, VERA, and C.

Interrupt Service Routines
If you want a FlexModel to respond to interrupts, you must write an interrupt service
routine that specifies how the model handles interrupts of different priorities. Check the
example testbenches that come with all FlexModels. Many of them have basic interrupt
service routines that you can copy and modify as needed based on how you want to
control FlexModel interrupts in your own testbench:

● VHDL — $LMC_HOME/models/model/modelversion/examples/vhdl/model_tst.vhd

● Verilog — $LMC_HOME/models/model/modelversion/examples/verilog/model_tst.v

● C— $LMC_HOME/models/model/modelversion/examples/C/model_c_commands.c

You can also use the example interrupt service routines documented in this chapter as
starting points:

● “Developing HDL Interrupt Routines” on page 33

● “Developing C Interrupt Routines” on page 35

● “Developing VERA Interrupt Routines” on page 37

Detecting and Servicing Interrupts
Interrupts can only be detected while the HDL or C command source is allowing
simulation time to advance. FlexModel interrupts are level sensitive—the models check
for and detect interrupts only on rising clock edges. When a FlexModel detects a
supported interrupt signal asserted, it queues the servicing request. To make a
FlexModel detect an asynchronous interrupt, latch the value so that the model can “see”
the interrupt on the next rising clock edge.
August 28, 2001 Synopsys, Inc. 31

Chapter 2: Using FlexModels FlexModel User’s Manual
�

While responding to an interrupt, a FlexModel can detect another interrupt and call the
interrupt service routine again as long as simulation time has advanced at least one clock
cycle. If the new interrupt has a higher priority than the one currently being serviced, the
model bumps the lower-priority interrupt and completes the processing for the higher-
priority interrupt before returning to and finishing up the processing for the lower-
priority interrupt. You can nest interrupt processing this way with as many different
interrupt priorities as you want. Resets always have the highest priority and cannot be
masked.

FlexModels complete any previously started bus cycle before servicing interrupts as
specified in your interrupt service routine. For example. consider a command stream
with nine bus commands. Interrupt detection and servicing might proceed as shown in
Figure 4.

Figure 4: Interrupt Detection and Servicing

Once an interrupt is detected and reported, FlexModels wait until the interrupt is
deasserted and reasserted before recognizing the same interrupt again.

INT Serviced

INT detected

INT detected

INT detected

INT Serviced

INT Serviced

CMD1

CMD2

CMD3

CMD1

CMD2

CMD3

CMD1

CMD2

CMD3

CMD4

CMD5

CMD6

CMD1

CMD2

CMD3

CMD7

CMD8

CMD9
32 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

Using Multiple Models
You can have more than one FlexModel or multiple instances of the same FlexModel in
one HDL testbench. If so, create separate interrupt service routines for each model
instance. However, you cannot have more than one FlexModel or multiple instances of
the same FlexModel in the same C program. With C, you need to create separate model
instantiations (Direct C Control) or separate programs that you launch with the
flex_run_program command (HDL Command Mode). Each process should have its own
interrupt service routine.

Interrupt Detection with C Testbenches

To allow simulation time to advance while your C testbench is running and thus enable
interrupt servicing, set the wait_mode parameter of the last model bus cycle command to
true (FLEX_WAIT_T). As an alternative, you can use the flex_wait command to achieve
the same effect. Otherwise the C program will simply run to completion before any
interrupts can be serviced by the model.

Note that interrupt service routines in C testbenches can use result (model_rslt)
commands and model commands with the wait_mode parameter set to true
(FLEX_WAIT_T). These are not allowed in HDL Command Mode.

When a FLEX_WAIT_T command is executing in a C interrupt service routine, other
interrupts of higher priorities can be serviced.

Developing HDL Interrupt Routines
To develop a VHDL or Verilog interrupt service routine, follow these steps:

1. Define a signal or reg in your testbench called MyInt or something similar.

2. Use the flex_define_intr_signal command to register this signal with the FlexModel.
You only need one testbench signal regardless of the number of interrupt types the
model supports. FlexModels toggle this signal when any supported interrupt pin is
asserted.

3. Write process (MyInt) or always (MyInt) blocks for VHDL or Verilog, respectively.
You need one block for each interrupt priority you want to support.

The first command in each process/always block must be a model_get_intr_priority
command. This command returns a positive integer—higher numbers indicate higher
interrupt priorities. Each process/always block should check the returned interrupt
priority. Only one will match and execute its service routine.
August 28, 2001 Synopsys, Inc. 33

Chapter 2: Using FlexModels FlexModel User’s Manual
�

All model commands in an interrupt service routine must be contained within paired
model_begin_intr and model_end_intr commands that both specify the same model
instance handle and interrupt priority. In addition, all interrupt commands contained
between the model_begin_intr and model_end_intr commands must have their
wait_mode parameters set to false (FLEX_WAIT_F). You cannot set wait_mode to true
(FLEX_WAIT_T) or use results (model_rslt) commands in HDL interrupt routines.

Example HDL Interrupt Routine
The following VHDL example interrupt service routine for the tms320c6201_fx model
can handle two interrupts (INT1 and INT2), where INT2 has a higher priority than
INT1. For Verilog, replace the process statements with always blocks.

architecture
signal model_int_signal : std_logic;

begin

process
flex_define_intr_signal(inst,“TOP/tms320c6201_int_signal”,status);
....

end
process (tms320c6201_int_signal) --PROCESS 1
tms320c6201_get_intr_priority(inst, priority, status);
if (priority = 1)
tms320c6201_begin_intr(inst, priority, status);
--interrupt service routine for priority 1
tms320c6201_end_intr(inst, priority, status);

end
end

process (tms320c6201_int_signal) --PROCESS 2
tms320c6201_get_intr_priority(inst, priority, status);
if (priority = 2)
tms320c6201_begin_intr(inst, priority, status);
--interrupt service routine for priority 2
tms320c6201_end_intr(inst, priority, status);

end
end

Attention�
With Scirocco 2000.02, you can only define interrupt signals at the top level
in your HDL testbench without specifying any hierarchy. For example, to
make the above code sample work with Scirocco 2000.02, change
“TOP/tms320c6201_int_signal” to “tms320c6201_int_signal”. With
Scirocco 2000.06 and above, use a full path delimited by colons
(“:TOP:tms320c6201_int_signal”).
34 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

Scenario 1—INT1 occurs before INT2
To understand how this interrupt service routine works, consider the case where the
FlexModel receives the INTI interrupt before the INT2 interrupt. The execution
sequence proceeds as follows:

1. Model samples the INT1 signal asserted and toggles the model_int_signal in the
HDL testbench.

2. This starts both process 1 and process 2.

3. The model_get_intr_priority command executes and returns the priority as “1” so
process 2 exits and process 1 starts executing its commands. Simulation time
continues to advance as model commands in the interrupt routine are executed.

4. Now the model samples the INT2 signal asserted and again toggles the
model_int_signal signal in the HDL testbench.

5. This starts process 1 and process 2 again.

6. The model_get_intr_priority command executes and returns the priority as “2” so
process 1 exits and process 2 starts executing its commands.

7. At this point the model stops executing commands for INT1 and begins processing
commands for INT2, because it has a higher priority.

8. When the model finishes executing all commands for INT2, it goes back and
finishes executing commands for INT1.

Scenario 2—INT2 occurs before INT1
In the other case, where the model samples INT2 and begins processing commands from
process 2 before a lower-priority INT1 interrupt occurs. the model finishes processing
all commands for INT2 before servicing the lower-priority INT1.

Developing C Interrupt Routines
To develop C interrupt service routines for use with Direct C Control or C Command
Mode, follow these steps:

1. Define a function in the C testbench or program for the interrupt handler.

2. Register this function with the model using the flex_switch_intr_control command.
This function is called by the model whenever it samples a supported interrupt
signal asserted.

Note that you only need one interrupt function in your C testbench to handle all
interrupts of any type for that model instance. Attempts to register more than one
interrupt function for the same model instance result in an error.
August 28, 2001 Synopsys, Inc. 35

Chapter 2: Using FlexModels FlexModel User’s Manual
�

3. The first command in the interrupt function must be a model_get_intr_priority
command. This command returns a positive integer—higher numbers indicate
higher interrupt priorities. You can decode this priority using case statements and
then begin the processing appropriate for that interrupt priority level.

4. Enclose all model commands for a particular model instance and interrupt priority
in between paired model_begin_intr and model_end_intr commands with the same
model instance handle and interrupt priority.

Example C Interrupt Routine
For an extensive example of a C interrupt routine, refer to “C Testbench Example” on
page 103. The following example is smaller in scope, but illustrates the basic structure
required.

#include “flexmodel_pkg.h”
#include “model_pkg.h” /* Interrupt Function Prototype */
void my_intr_handler();
int id; /* NOTE: id is global so it is visible in the interrupt routine
*/
main() {
int status;
char *Inst1;
/* Begin Initialization Sequence */
flex_get_inst_handle(Inst1, &id, &status);
flex_start_program(&status)
/* Register interrupt function with command core, only after this

command has been executed will the function be called (when an
interrupt occurs) */

flex_define_intr_function(id, my_intr_handler, &status);
. /* Continue model/generic commands */
/* Verify C testbench is still running while HDL interrupts occur */
void my_intr_handler() {
int valid, id, priority;

/* Get the Model Id and Priority for the interrupt that occured */
model_get_intr_id_priority(id, &valid, &priority, &status);
switch(priority) {
case 1 :
model_begin_intr(id,priority,&status);
/* Issue commands HERE for priority 1 */
model_end_intr(id,priority,&status);

case 2 : /* Issue commands HERE for priority 2 */
break;

default :
break;

} /* end switch (priority) */
.

}
36 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 2: Using FlexModels
�

Developing VERA Interrupt Routines
To use interrupts in VERA Command Mode, follow the same procedures described in
“Developing HDL Interrupt Routines” on page 33. However, do not include the interrupt
signal in the VERA testbench. Instead, define the interrupt signal in the top-level VHDL
or Verilog testbench, just as if you were in HDL Command Mode.

Note that in VERA, as in HDL, you cannot use model commands with the wait_mode
parameter set to true (FLEX_WAIT_T) or result (model_rslt) commands within
interrupt routines.

Defining the Interrupt Signal
When you define the interrupt signal in the VERA testbench, you must pass in the full
path to the signal in the top-level VHDL testbench or reg in the top-level Verilog
testbench. The following example shows how to define an interrupt signal in a top-level
Verilog testbench:

#include <vera_defines.vrh>
#include “flexmodel_pkg.vrh”
#include “model_pkg.vrh”

program my_test
{
// Create an instance of the model class.
 ModelFx model = new(“modelInstName”, “u1.CLK”);
// Define the Intr Signal
 // NOTE : here INTR_SIGNAL is the name of a reg in the top
 // level verilog testbench and we pass the full path
 // to the interrupt signal.
 model.define_intr_signal(“model_test_top.INTR_SIGNAL”, status);
}

Monitoring the Interrupt Signal
The following example illustrates one way to monitor the interrupt signal in a top-level
VHDL testbench. For other methods of determining when the interrupt signal has been
toggled in the Verilog or VHDL testbench, and for more information on VERA syntax,
refer to the Vera Verification System User’s Manual.

#include <vera_defines.vrh>
#include “flexmodel_pkg.vrh”
#include “model_pkg.vrh”
// Create A VERA Port data type.
port my_port { intrSignal; }
program my_test
{
 // Create an instance of the model class.
August 28, 2001 Synopsys, Inc. 37

Chapter 2: Using FlexModels FlexModel User’s Manual
�

 ModelFx model = new(“modelInstName”, “u1/CLK”);
// Create a Variable of type my_port

 // Give it a null bind
 my_port intrPort = new;

// Make a connection to the interrupt signal in the
 // top level VHDL testbench
 signal_connect(intrPort.$intrSignal, “model_test_top/INTR_SIGNAL”,
“dir=input itype=PSAMPLE”);

// Define the Intr Signal
 model.define_intr_signal(“model_test_top/INTR_SIGNAL”, status);

fork
 {

// Interrupt Routine For Interrupt Priority 1
 integer priority, valid_f, status;
 while (1)
 {
 @ (intrPort.$intrSignal);
 model.get_intr_priority(valid_f, priority, status);
 if (priority == 1)
 {
 printf (“**** DETECTED EXCEPTION PRIORITY 1 \n”);

 model.begin_intr(1, status);
 // Send Commands For Priority 1 here.

 model.end_intr(1,status);
 }
 }
 }
 {

// Interrupt Routine For Interrupt Priority 2
 integer priority, valid_f, status;

while (1)
 {
 @ (intrPort.$intrSignal);
 model.get_intr_priority(valid_f, priority, status);
 if (priority == 2)
 {
 printf (“**** DETECTED EXCEPTION PRIORITY 2 \n”);

 model.begin_intr(2, status);
 // Send Commands For Priority 1 here.

 model.end_intr(2,status);
 }
 }
 }
 join // End fork
} // End program my_test
38 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 3: FlexModel Command Modes
�

3
FlexModel Command Modes

Introduction
If you are using a simulator with a custom FlexModel integration, you can issue
FlexModel commands from HDL, VERA, or C. Otherwise, with the standard SWIFT
integration, you use Direct C Control. For information about configuring FlexModels in
your simulator with both standard and custom integrations, refer to the Simulator
Configuration Guide for Synopsys Models. This chapter explains how to use
FlexModels with the different command modes:

● “Using HDL Command Mode” on page 39

● “Using C Command Mode” on page 43

● “Using VERA Command Mode” on page 47

Using HDL Command Mode
In HDL Command Mode, FlexModels execute VHDL or Verilog commands contained
in the top-level system testbench file. HDL Command Mode gives you control over the
model that is tightly integrated with events in the simulation. In this mode, you can
generate command results, create test sequences that loop or branch on command
results, and synchronize the command flow of several models in a testbench.

When you use HDL Command Mode, the Command Core queues model commands and
executes them in the order received. Multiple commands can be active simultaneously
(waiting for results) if the model supports pipelining.

To use HDL Command Mode, instantiate a FlexModel in your testbench and then create
a command process for the model that includes the FlexModel commands that you want
the model to execute. Here is a VHDL example of a command process for a FlexModel
executing in HDL Command Mode:
August 28, 2001 Synopsys, Inc. 39

Chapter 3: FlexModel Command Modes FlexModel User’s Manual
�

CMD_STREAM: process
begin

wait for CLK_PERIOD;
assert (false) report "loading commands" severity NOTE;
model_configure(inst,cls_code,X"112233",status); -- Class Code
model_configure(inst,dev_id,X"4500",status);
model_idle(inst, 5, FLEX_WAIT_F,status);
model_read_req(inst, X"00000004", X"0", FLEX_WAIT_F, status);
flex_print_msg (inst, "This is a read_req test", status);
assert (false) report "end of commands" severity NOTE;
wait;

end process CMD_STREAM;

Do not use multiple HDL command streams to control a single FlexModel instance; this
produces unpredictable model behavior.

In HDL Command Mode, FlexModel commands are executed as procedure calls
(VHDL) or task calls (Verilog) at the testbench level. The testbench continues issuing
commands to the models until it encounters one of the following:

● A result command or a command containing a wait_mode parameter set to
true. This causes the testbench to wait for the model to complete the command
before issuing the next command.

● A flex_run_program command. This transfers control to a C testbench.
Subsequent model commands in the HDL testbench are processed only after all
model command in the C testbench have completed.

● A flex_synchronize command. This causes the testbench to suspend command
delivery to one or more models until the specified number of models execute
corresponding flex_synchronize commands. (See “Using HDL Command Mode”
on page 39.)

Note�
In Verilog, when you use the model_read_rslt command or any
FLEX_WAIT_T command simultaneously from two instances of the same
model, you get corrupted results. This is because Verilog tasks have a static
scope within a module.
40 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 3: FlexModel Command Modes
�

VHDL Control
Model commands are VHDL procedures delivered in model-specific packages. These
Synopsys-provided FlexModel packages include the procedures and constants needed to
call the model from the testbench.

You must specify an instance-specific model identifier by setting a VHDL generic.
Model instances that do not have unique identifiers cause the Command Core to issue an
error. If there is only one model instance, the default ID value is zero.

In HDL Command Mode, you need to define a unique interrupt signal for each interrupt
used by each model instance. A particular model instance may also require multiple
interrupt service routines. See “Developing HDL Interrupt Routines” on page 33 for an
example model interrupt service routine.

Verilog Control
The Verilog control mechanism closely mirrors that of the VHDL implementation. You
must include Synopsys-provided, model-specific Verilog source files to make the
FlexModel tasks available to the testbench.

For information on getting FlexModels set up with their HDL package files, refer to the
Simulator Configuration Guide for Synopsys Models.

HDL Control Between Model and Testbench
If you are using a simulator with a custom FlexModel integration, individual
FlexModels come with a set of HDL procedures or tasks that can be invoked from the
HDL testbench. These procedures communicate with the Command Core using the
same HDL-to-C mechanism that the models use. The HDL testbench and the model do
not attempt to access the Command Core at the same time, preventing conflicts.
FlexModels interact with the Command Core on falling clock edges, while the HDL
testbench procedures or tasks use the rising edges.
August 28, 2001 Synopsys, Inc. 41

Chapter 3: FlexModel Command Modes FlexModel User’s Manual
�

Figure 5 illustrates a simple read_req/read_rslt pair from the HDL testbench without
pipelining. The testbench and model activity are synchronized to the rising edges of the
clock, but the interaction between the FlexModel and the Command Core only occurs
on the falling edge. The user sees a single clock cycle delay before the first command
starts, and a one-cycle delay before the results of the operation are available to the
testbench.

Figure 5: Read_req/read_rslt Pair for Testbench

Figure 6 shows how multiple model state commands can occur in a single clock cycle.

Figure 6: Multiple Commands within a Single Clock Cycle

The mechanism illustrated in Figure 6 guarantees that the model is in a stable state when
the register values are posted.

Read

Model
gets read_req

Model
posts read_rslt

Testbench
posts read_req

read_req(. . .)
read_rslt(. . .)

Testbench
gets read_rslt

reg_req(. . .)

reg_rslt(. . .)

reg_req(. . .)
reg_rslt(. . .)

Testbench
posts both

Testbench
gets both
reg_rsltreg_req

Model posts
posts reg_rslts
42 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 3: FlexModel Command Modes
�

Using C Command Mode
The following description of C Command Mode applies just to simulators with custom
FlexModel integrations. Customers with standard SWIFT integrations can also issue
commands from a C program, but use a different method called Direct C Control. For
more information, refer to the Simulator Configuration Guide for Synopsys Models.

In C Command Mode, FlexModels execute commands contained in an external C
program. C Command Mode is efficient because you don’t have to recompile your
simulator when you make changes to the model control program. Note that the C
programming language does not provide for concurrency or recognize the notion of
simulation time. For information on other limitations to be aware of when using C
Command Mode, refer to “Pipelined Bus Operations” on page 25.

Figure 7 shows how to enable C Command Mode using the flex_run_program command
to call an external C program from the HDL testbench.

Figure 7: Accessing a C Testbench from HDL

In Figure 7, control returns from the C program back to the HDL testbench after the
“init” sequence completes, immediately following execution of the flex_start_program
command. All model commands in the C program are executed by the model before any
subsequent model commands in that VHDL process or Verilog block.

Note�
You cannot have multiple VHDL processes or Verilog blocks providing
commands to the same model instance.

--Instantiation of model
modelname u1 (FlexModelID => “id1”

process
begin --runs the C program
flex_run_program(“a.out”,stat);
--(other HDL commands here)
--runs next C program
flex_run_program(“b.out”,stat);
--(more HDL commands here)

end

main()
int status, Id;
char *ModelID = “id1”
flex_get_inst_handle(\

ModelId, &Id, &stat);
/* Id is integer handle */
flex_start_program(&stat);

/* End of init sequence */
model_cmd_1()
model_cmd_2()
.

exit 0

HDL Testbench C Program (a.source)a.out

C
O
M
P
I
L
E

the same ID
August 28, 2001 Synopsys, Inc. 43

Chapter 3: FlexModel Command Modes FlexModel User’s Manual
�

Keep in mind that integers in HDL are integers in C. In C Command Mode,
std_logic_vectors and bit_vectors used as input values to functions are represented using
the FLEX_VEC_CONST type, while return values are represented using the
FLEX_VEC type. Also, C functions with return values require you to pass in the
address. For information about creating and using FLEX_VEC vectors for use with
FlexModel commands, refer to “FlexModel C Testbench Interface” on page 89.

To use C Command Mode, refer to the following procedures:

1. “Creating an External C File” on page 44

2. “Compiling an External C File” on page 45

3. “Switching Control to an External C Program” on page 47

Creating an External C File
Create the external C file according to the following procedure:

1. Include the two Synopsys-provided header files:

❍ flexmodel_pkg.h This file contains the function prototypes for the generic
FlexModel functions.

Location: $LMC_HOME/sim/C/src

❍ model_pkg.h This file contains model-specific function prototypes and
constants that make the commands easier to use.

Location: $LMC_HOME/models/model_fx/model_fxversion/src/C

2. Initialize the C program using the flex_get_inst_handle and flex_start_program
commands, as shown in the following example:

main()
int status, Id;
char *ModelID = “id1” /* Must be same as in VHDL testbench */
flex_get_inst_handle(ModelId, &Id, &status);

/* Id is the returned integer handle */
flex_start_program(&status); /* End of initialization sequence */

This next example adds a definition for an interrupt function.

/* This is in the C testbench */
void my_intr_function()
main() {
int status, Id;
char *ModelId = “id1”;

flex_get_inst_handle(ModelID, &Id, &status);
/* Exiting initialization phase */
44 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 3: FlexModel Command Modes
�

flex_start_program(&status);
/* Registering my_intr_function next */
flex_define_intr_function(Id, my_intr_function, &status);

Common Errors to Avoid
Here’s an example of what not to do. You cannot issue a flex_start_program command
until you obtain a model instance handle using the flex_get_inst_handle command.

main() {
int status, Id;
char *ModelId = “id1”;

flex_start_program(&status);
/*** Error: flex_start_program before getting instance handles ***/

Another common error is to issue model commands before the initialization sequence is
complete, as shown in the following example.

main() {
int status, Id;
char *ModelId = “id1”;

flex_get_inst_handle(ModelId, &Id, &status);
model_write(Id, Addr, Data, &status);
/*** Error: issuing model command before end of initialization ***/

Compiling an External C File
The compile line you use differs based on your platform. Note that these examples
include creation of a working directory (workdir) and running flexm_setup:

a. On HP-UX, you need to link in the -LBSD library as shown in the following
example:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% /bin/c89 -o executable_name
your_C_file.c
workdir/src/C/hp700/model_pkg.o
$LMC_HOME/lib/hp700.lib/flexmodel_pkg.o
-I$LMC_HOME/sim/C/src
-Iworkdir/src/C
-lBSD
August 28, 2001 Synopsys, Inc. 45

Chapter 3: FlexModel Command Modes FlexModel User’s Manual
�

b. On Solaris, you need to link in the -lsocket library as shown in the following
example:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% cc -o executable_name
your_C_file.c
workdir/src/C/solaris/model_pkg.o
$LMC_HOME/lib/sun4Solaris.lib/flexmodel_pkg.o
-I$LMC_HOME/sim/C/src
-Iworkdir/src/C
-lsocket

c. AIX:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% /bin/cc -o executable_name
your_C_file.c
workdir/src/C/ibmrs/model_pkg.o
${LMC_HOME}/lib/ibmrs.lib/flexmodel_pkg.o
-Iworkdir/src/C
-I${LMC_HOME}/sim/C/src
-ldl

d. Linux:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% egcs -o executable_name
your_C_file.c
workdir/src/C/x86_linux/model_pkg.o
${LMC_HOME}/lib/x86_linux.lib/flexmodel_pkg.o
-Iworkdir/src/C
-I${LMC_HOME}/sim/C/src

e. On NT, you need to link in a Windows socket library as shown in the following
example.

> md workdir
> flexm_setup -dir workdir model_fx
> cl -O2 -MD -DMSC -DWIN32 -Feexecutable_name
your_C_file.c
workdir\src\C\pcnt\model_pkg.obj
%LMC_HOME%\lib\pcnt.lib\flexmodel_pkg.obj
-I%LMC_HOME%\sim\C\src
-Iworkdir\src\C
wsock32.lib
46 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 3: FlexModel Command Modes
�

Note�
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

Switching Control to an External C Program
You switch model control to an external C program using the flex_run_program
command in your HDL testbench. The following example shows a FlexModel
command process that executes an external C program.

CMD_STREAM : process
begin
wait for CLK_PERIOD;
assert(false) report “Running C Program” severity NOTE;
flex_run_program(“a.out”, status);
assert(false) report “Finished Running C Program” severity NOTE;
wait;

end process CMD_STREAM;

Using VERA Command Mode
FlexModels come with an object-oriented VERA command interface that lets you
control them from a VERA testbench. When you use FlexModel from VERA, you get
all the benefits of the powerful VERA verification language. In VERA Command
Mode, you can use any FlexModel command or feature available in HDL Command
Mode. The FlexModel-to-VERA command interface is a direct connection to the C part
of the hybrid HDL/C FlexModel architecture. Because the connection is not through the
simulator PLI/FLI, it runs faster.

VERA Command Mode syntax differs slightly from that of HDL Command Mode. For
more information, see “Command Syntax Differences in VERA Command Mode” on
page 58.

The following sections document how to use VERA with FlexModels. For general
information about using VERA, refer to the Vera Verification System User’s Manual.
August 28, 2001 Synopsys, Inc. 47

Chapter 3: FlexModel Command Modes FlexModel User’s Manual
�

FlexModel VERA Classes
VERA is an object-oriented language. The FlexModel VERA command interface uses
the inheritance feature to construct a model class hierarchy. At the top of the hierarchy is
a general model class. Other model classes inherit from this general class. Figure 8
shows the model hierarchy.

Figure 8: VERA Model Class Hierarchy

The LstModel, SwiftModel, and Flex classes are abstract or virtual classes. These
classes cannot be instantiated directly in VERA testbenches. Only an instance of a
ModelFx class can be created in a VERA testbench.

The commands used to control FlexModels are public methods of the ModelFx class.
You can send FlexModel commands from VERA to the model only through an instance
of the ModelFx class. Global FlexModel commands (see “Global FlexModel Command
Descriptions” on page 61) must also be sent through an instance of the ModelFx class.
The ModelFx class automatically inherits any new features that are added to the
LstModel and SwiftModel classes.

LstModel

SwiftModel

Flex

ModelFx
48 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 3: FlexModel Command Modes
�

lst

sw

fle

m

lst

sw

fle

m
VERA Files in the LMC_HOME Tree
Table 1 describes the VERA files installed in your LMC_HOME tree.

The ModelFx Class Constructor
The constructor for a ModelFx class expects two string arguments, the FlexModel
instance name and the clock signal.

The first argument, the FlexModel instance name, is the string instance name given to
the FlexModel in the top-level Verilog or VHDL testbench. The constructor uses this
argument to get an instance handle for the FlexModel. If the instance name passed is
invalid, the model issues an error and sets a flag in the class indicating the severity of the
error. (For information on accessing the error status, see “Accessing the Current Error
Status” on page 51.)

The second argument is the full path to the clock signal to be used in FlexModel
commands. This clock signal is used within commands that have associated wait
behavior. VERA creates a dynamic bind to this clock signal within the constructor using
VERA’s signal_connect feature.

Because you are using VERA’s signal_connect function, you must use the -x switch
with Verilog-XL at runtime, or use -P $VERA_HOME/lib/vera_pli_dyn.tab for VCS at
runtime. For more information about the signal_connect function, refer to the Vera
Verification System User’s Manual.

Table 1: VERA Files in the LMC_HOME Directory

File Name Location Description

model.vrh $LMC_HOME/sim/vera/src External class declaration for LstModel class.

iftmodel.vrh $LMC_HOME/sim/vera/src External class declaration for SwiftModel class.

xmodel_pkg.vrh $LMC_HOME/sim/vera/src External class declaration for the Flex class.

odel_pkg.vrh $LMC_HOME/models/model_fx/mo
del_fxversion/src/vera

External class declaration for the model-specific
ModelFx class.

model.vr $LMC_HOME/sim/vera/src Source file for the LstModel class.

iftmodel.vr $LMC_HOME/sim/vera/src Source file for the SwiftModel class.

xmodel_pkg.vr $LMC_HOME/sim/vera/src Source file for the Flex class.

odel_pkg.vr $LMC_HOME/models/model_fx/mo
del_fxversion/src/vera

VERA source file for the model-specific ModelFx
class.
August 28, 2001 Synopsys, Inc. 49

Chapter 3: FlexModel Command Modes FlexModel User’s Manual
�

Note�
If VERA cannot find the clock signal in the design, it issues a runtime error.

If you call the constructor at the same time you create the ModelFx object, the
constructor returns at the next positive edge of the clock signal passed in. This delay is
necessary because the testbench cannot obtain the FlexModel’s instance handle until at
least one clock period has elapsed. If you create the model object and call the new
function after some time has elapsed, the constructor returns immediately.

Examples with Top-level Testbenches
The following two VERA testbench examples show a VERA testbench paired with a
Verilog testbench and a VERA testbench paired with a VHDL testbench. Note that in
the Verilog example, the model’s constructor advances to the next positive edge of
top.U1.CLK (the clock signal passed in to the constructor) before returning. In the
VHDL example, however, the model’s constructor returns immediately, because the
testbench has already waited for one clock.

Example: VERA Testbench Paired with Verilog Testbench

Verilog Testbench
module top;
 .
 .
 .
myfxmodel U1 (.CLK(CLK), .RST(RST));
defparam
 U1.FlexModelId = “my_model”;

VERA Testbench
program model_test {

ModelFx inst1 = new(“my_model”, “top.U1.CLK”);
50 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 3: FlexModel Command Modes
�

Example: VERA Testbench Paired with Top-level VHDL
Testbench

VHDL Testbench
entity top if end top;
architecture test of top is
 .
 .
 .
U1 : myfxmodel
 generic map (FlexModelId => “my_model”)
 port map (
 CLK => CLK,

RST => RST
);

VERA Testbench
program model_test {

ModelFx inst1;
repeat (1) @ posedge CLOCK;

 inst1 = new(“my_model”, “top/U1/CLK”);

Accessing the Current Error Status
When an error occurs within the model object, it prints an error message to standard
error. The model object saves the error message and the severity of the error. There are
three possible severity levels:

● FLEX_VERA_NOERROR—no errors

● FLEX_VERA_WARNING—warnings

● FLEX_VERA_FATAL—fatal errors

You can use one of two methods to access the current error status:

● showStatus()—Returns the present error severity level.

● showErrors()—Prints any errors to standard out.
August 28, 2001 Synopsys, Inc. 51

Chapter 3: FlexModel Command Modes FlexModel User’s Manual
�

Example: Accessing Current Error Status
The following example shows to get the current error status from a VERA testbench.

program model_test
{

ModelFx inst1;
repeat (1) @ posedge CLOCK;

 inst1 = new(“my_model”, “top/U1/CLK”);

 if (inst1.showStatus() == FLEX_VERA_FATAL) {
 inst1.showErrors();

 // Take suitable action
 }
 else {

 // No fatal errors, proceed.
 }
} // program model_test

FlexModel Logging from the VERA Class
When FlexModel logging is turned on, the VERA class creates a file and logs the
versions of the objects. This file is used by Customer Support for debugging purposes.
This file is named model_instance_name.versions. For example, if the instance name for
the tms320c6201 is inst1, then the file created is named tms320c6201_inst1.versions.
For more information on FlexModel logging, see “Reporting Problems” on page 109.
52 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

4
FlexModel Command Reference

Introduction
This chapter explains the different types of FlexModel commands and their common
elements and provides a complete command reference for the global FlexModel
commands. This information is presented in the following major sections:

● “Model-Specific and Global Commands” on page 53

● “About the Commands” on page 54

● “Global FlexModel Command Descriptions” on page 61

Model-Specific and Global Commands
You use FlexModels by issuing commands to model instances in your testbench. There
are two basic kinds of FlexModel commands, as shown in Table 2.

Table 2: FlexModel Command Types

Command
Type Used To How to Identify Where Documented

Model-specific Exercise processor or bus
protocol functions.

Command prefix equals
the model name. For
example:
mpc860_write

Individual model
datasheets.

Global Control program flow or
handle general housekeeping
functions.

Command prefix is flex.
For example:
flex_get_inst_handle

In this manual. Refer to
“Global FlexModel
Command Descriptions”
on page 61 later in this
chapter.
August 28, 2001 Synopsys, Inc. 53

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

Model-specific and global commands can generally be used in all FlexModel command
modes, including HDL Command Mode, VERA Command Mode, C Command Mode,
and Direct C Control. In addition, FlexModels support a set of C functions and operators
for use with model commands when working in C Command Mode or with Direct C
Control. These C functions also have the “flex” prefix. For details on the supported C
functions and operators, refer to “FlexModel Command Reference” on page 53.

Note�
In VERA Command Mode, you use the modelObject prefix instead of the
model prefix. For more information, refer to “Command Syntax Differences
in VERA Command Mode” on page 58.

About the Commands
FlexModel commands are built with a common underlying architecture to aid
readability. For example, we already saw that model-specific commands are easy to
identify because they all have the model name as their prefix. And of course, the
command names are intended to describe the functions performed. Understanding the
meaning of other command components can help improve your productivity working
with FlexModels, so let’s take a look at the key features of FlexModel commands.

Bus and Zero-Cycle Commands
Not all FlexModel commands generate bus cycles. For example, commands that check
or modify model characteristics are called zero-cycle commands. You can execute
multiple zero-cycle commands without advancing simulator time. Commands that
generate bus cycles (like model_write) generally take at least one clock cycle to execute.

The inst_handle Parameter
Each FlexModel instance in your design needs a unique identifier called an inst_handle,
which you obtain using the flex_get_inst_handle command. After you get an
inst_handle, you use that value in the inst_handle parameter of all subsequent
FlexModel commands. For more information, refer to “Setting Up the Model” on
page 19. Note that you do not use the inst_handle parameter in VERA Command Mode.
See “Command Syntax Differences in VERA Command Mode” on page 58.
54 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

The req and rslt Command Suffixes
The req and rslt command suffixes are used with request and result commands,
respectively. You combine result commands with corresponding request commands to
retrieve data from FlexModels. Request commands direct the model to post the data and
result commands retrieve the results. For more information on how to use request and
result commands, refer to “Pipelining With wait_mode Behavior” on page 26.

Command Result Identifiers
You use command result identifiers with result commands to access data posted by
request commands. There are two types of result identifiers: command tags and addr
parameters. In many cases you use the integer returned in the status parameter of the
request command as the cmd_tag argument of the paired result command. With other
result commands you use the addr parameter returned by a paired request command to
specify the starting address for the data to retrieve. The idea in both cases is to uniquely
identify the data you want to retrieve by using values returned by a preceding model
request command.

When you use an addr parameter with a result command and more than one request
command for the same address has posted, the result command returns data for the first
request command received by the model before returning data for the second result
command received, and so on. For example:

read_req(00000000); // request data from address "00000000", and the
data is "a"

.... // some other stuff or just time delay, during which time the
data at "00000000" changed to "b"
read_req(00000000); // request data from address "00000000", and the

data is "b"
read_rslt(00000000,return_data); // get the data requested back to the

testbench
print(return_data); // the data printed is "a"
read_rslt(00000000,return_data); // get the data requested back to the

testbench
print(return_data); // the data printed is "b"

To avoid this behavior, use command tag result identifiers whenever possible. Refer to
the command reference sections of the individual model datasheets for more
information about the supported model request and result commands and the result
identifiers available with each one.
August 28, 2001 Synopsys, Inc. 55

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

The wait_mode Parameter
Many FlexModel commands allow you to specify a wait_mode parameter. If you set this
parameter to true (FLEX_WAIT_T), the model pauses until the command completes. If
you set the wait_mode parameter to false (FLEX_WAIT_F), the model proceeds directly
to the next command in the queue without waiting for the first command to complete.

The status Parameter
All FlexModel commands return a status parameter. Depending on the command type,
this parameter can convey two different types of information.

● Type 1: Commands that do not return results to the control process. For this type,
the models return a status of 1 if the command completes successfully.

● Type 2: Commands that return results to the control process. For this type, the
models return a positive integer in the status parameter if the command completes
successfully. This integer increments by one with each new command of this type so
that you can use the status value as a tag to uniquely identify the results you want
with results commands, as explained in “Command Result Identifiers” on page 55.

For commands of either type that do not complete successfully, FlexModels return a
status of 0 or a negative integer. Negative integers indicate specific error types that you
can look up in Table 3.

Table 3: Status Parameter Error Codes

Error Code Description

Fatal Errors: Status value range -100 through -199

-100 An instance of one model was passed to a command for another model
type.

-101 A command associated with an uninitialized model type was received.

-102 The model instance name was not mapped to an instance handle (with
flex_get_inst_handle).

-103 The system ran out of memory.

-104 An attempt was made to define an instance for a second time.

-105 An attempt was made to access an undefined model instance.

-106 A C program exited with fatal errors.

Internal Errors: Status value range -200 through -299
Contact Customer Support. See “Getting Help” on page 11
56 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

Note that FlexModel C functions return a status of 1 when they complete successfully
and do not return at all on fatal errors.

User Errors: Status value range -300 through -399

-300 Contact Customer Support. See “Getting Help” on page 11.

-301 Contact Customer Support. See “Getting Help” on page 11.

-302 Cannot open file to read.

-303 The flex_clear_queue command was called with an invalid queue-
initialize number.

-304 An interrupt command with a priority less than zero was received.
Interrupt priorities start at zero.

-305 An attempt was made to access an uninitialized data queue.

-306 An attempt was made to access an uninitialized command queue.

-307 An attempt was made to access an uninitialized active command
queue.

-308 An attempt was made to access an uninitialized exception queue.

-309 A flex_synchronize command was received with a NULL sync_tag
string.

-310 Two flex_synchronize commands were received—they had the same
sync_tags but different sync_totals. See “flex_synchronize” on
page 83 for the correct syntax.

-311 A second attempt was made to assign a sync_tag to a model instance
that already had one.

-312 A sync_tag associated with too many flex_synchronize commands
was received.

-313 The executable file specified by the flex_run_program command
could not be found.

Table 3: Status Parameter Error Codes (Continued)

Error Code Description
August 28, 2001 Synopsys, Inc. 57

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

Command Syntax Differences in VERA Command
Mode

In VERA Command Mode, the model functions are called through a model object;
therefore, the model name is not a part of the command name in VERA. So a command
that would look like this in HDL Command Mode:

model_read_req();

would look like this in VERA Command Mode:

modelObject.read_req();

The modelObject is an instance of the ModelFx class that you create in your VERA
testbench.

The FlexModel class encapsulates the inst_handle value; therefore, the inst_handle
argument is not required in FlexModel commands from VERA. So a command that
would look like this in HDL Command Mode:

model_read_req(inst_handle, address, data, wait_mode, status);

would look like this in VERA Command Mode:

modelObject.read_req(address, data, wait_mode, status);
58 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

Global FlexModel Commands
Global FlexModel commands are available to all FlexModels. They either perform
supervisory functions (switching command sources, handling interrupts, printing
messages) or operate globally on all models (synchronizing models, clearing queues,
and enabling tagging). The prefix “flex” is common to all of these commands.

Table 4 lists the global FlexModel commands. Some commands are available only in
specific command modes, as shown in the “Command Mode” column. The commands
are described in detail in “Global FlexModel Command Descriptions” on page 61.

Table 4: Global FlexModel Command Summary

Command Name
Command

Mode Description

flex_clear_queue All Clears the queues for the model.

flex_define_intr_function C Defines a C interrupt function for the model.

flex_define_intr_signal HDL, VERA Defines the testbench interrupt signal for the model.

flex_get_cmd_status All Checks the status of a model command.

flex_get_coupling_mode C Checks the coupling mode for the model.

flex_get_inst_handle All Gets an inst_handle for the model.

flex_get_value C Gets the single-bit value of a specified net in the
design.

flex_print_msg All Prints a message.

flex_run_program HDL, VERA Switches control to a compiled C program.

flex_set_coupling_mode C Sets the coupling mode for the model

flex_set_value C Sets the single-bit value of a specified net in the
design.

flex_start_program C Signals the Command Core that the testbench is done
getting model instance handles and is beginning to
send model commands.

flex_switch_intr_control C Switches model interrupt control to HDL.

flex_synchronize All Synchronizes the model with other models in the
testbench.

flex_wait C Causes the model to wait for a specified number of
clock cycles
August 28, 2001 Synopsys, Inc. 59

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

flex_wait_on_node C Suspends command execution in C program until the
specified design net is assigned the expected value.

Table 4: Global FlexModel Command Summary (Continued)

Command Name
Command

Mode Description
60 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

Global FlexModel Command Descriptions
The following pages describe the global FlexModel commands. Model-specific
commands are described in the individual FlexModel datasheets.

flex_clear_queue
Clear the command queue. Used in all command modes.

Syntax
flex_clear_queue (inst_handle, queue_select, status);

Parameters
inst_handle An integer instance handle returned by the

flex_get_inst_handle command.

queue_select Specify one of the following constants:

FLEX_ALL_QUEUES — Clear all queues

FLEX_CMD_QUEUE — Clear only the command queue

FLEX_RSLT_QUEUE — Clear only the result queue

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information. For more information on command status, see
“The status Parameter” on page 56.

Description

The flex_clear_queue command clears the queue(s) for the specified model instance. It
executes immediately and overrides any commands that are in wait mode except in C
Command Mode, where there is no concurrency.

Prototypes

C
void flex_clear_queue (

const int inst_handle,
const int queue_select,
int *status);
August 28, 2001 Synopsys, Inc. 61

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

VHDL
procedure flex_clear_queue (

inst_handle : in integer;
queue_select : in integer;
status : out integer);

Verilog
task flex_clear_queue;

input [31:0] inst_handle;
input [31:0] queue_select;
output [31:0] status;

VERA
task clear_queue (

integer queue_select,
var integer status);

Examples
The following examples clear just the command queue for the model instance specified
by the “inst” inst_handle.

// Verilog Example
flex_clear_queue(inst, ‘FLEX_CMD_QUEUE, status);

-- VHDL Example
flex_clear_queue(inst, FLEX_CMD_QUEUE, status);

/* C Example */
flex_clear_queue(inst, FLEX_CMD_QUEUE, &status);

// VERA Example
model_object.clear_queue(FLEX_CMD_QUEUE, status);
62 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_define_intr_function
Defines a C interrupt function. Used only in C Command Mode.

Syntax
flex_define_intr_function (inst_handle, my_function, status);

Parameters
inst_handle The model instance for which interrupts are to be controlled

from the C testbench.

my_function A pointer to the C interrupt function. This function must return
void, and does not take any arguments.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully.

Description
The flex_define_intr_function command specifies to the Command Core which function
to call if an interrupt occurs. This command only works in C Command Mode. For HDL
Command Mode, use the equivalent flex_define_intr_signal command documented on
page 64.

Prototype

C
void flex_define_intr_function(

const int inst_handle,
FLEX_FUNC my_function,
int *status);

Example
/* C Example: Function prototype */
void my_intr_handler();
main() {
int status;
flex_define_intr_function(id, my_intr_handler, &status);

}
/* Defined interrupt function */
void my_intr_handler() {
. . . . /* Handler routine commands go HERE */

}

August 28, 2001 Synopsys, Inc. 63

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

flex_define_intr_signal
Defines an interrupt signal in an HDL or VERA testbench. Not used in C Command
Mode (instead, see “flex_switch_intr_control” on page 82).

Syntax
flex_define_intr_signal (inst_handle, “sig_name”, status);

Parameters
inst_handle An integer instance handle returned by the

flex_get_inst_handle command.

“sig_name” A name for the interrupt signal you want to define. This is a
signal that you define in your testbench.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description
The flex_define_intr_signal command defines a signal in an HDL or VERA testbench.
In VHDL the “sig_name” is a signal. In Verilog, it is a register. In both cases, the
“sig_name” must specify the full path to the signal. FlexModels toggle this signal when
they detect interrupts, thus starting the interrupt service routines tied to that signal.

Prototypes

VHDL
procedure flex_define_intr_signal (

inst_handle : in integer;
sig_name : in string;
status : out integer);

Verilog
task flex_define_intr_signal;

input [31:0] inst_handle;
input [8*`FLEX_CHARMAXCNT:1] sig_name;
output [31:0] status;
64 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

VERA
task define_intr_signal (

string sig_name,
var integer status);

Examples
-- VHDL Example
architecture.....

signal int_signal:std_logic;
....
begin

process
flex_define_intr_signal(inst,”top/int_signal”, status);

// Verilog Example
module example

reg int_signal;
....

initial
begin

flex_define_intr_signal(inst, “top.int_signal”, status);

// VERA Example
model_object.define_intr_signal(“top.int_signal”, status);
August 28, 2001 Synopsys, Inc. 65

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

flex_get_cmd_status
Checks the status of a command in the model’s queue. Used in all command modes.

Syntax
flex_get_cmd_status (inst_handle, cmd_tag, valid_f, status);

Parameters
inst_handle An integer instance handle returned by the

flex_get_inst_handle command.

cmd_tag An integer that identifies the command in the command
queue. This is usually the returned status of the command.

valid_f A boolean returned value (1 = valid, 0 = invalid) that indicates
whether the specified cmd_tag represents a valid command in
the queue.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description
Given a model inst_handle and cmd_tag, the flex_get_cmd_status command returns the
valid_f true if the specified command is active or pending.

Prototypes

C
void flex_get_cmd_status (

const int inst_handle,
const int cmd_tag,
int *valid_f,
int *status);

VHDL
procedure flex_get_cmd_status (

inst_handle : in integer;
cmd_tag : in integer;
valid_f : out boolean;
status : out integer);
66 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

Verilog
task flex_get_cmd_status;

input [31:0] inst_handle;
input [31:0] cmd_tag;
output valid_f;
output [31:0] status;

VERA
task get_cmd_status (

integer cmd_tag,
var integer valid_f,
var integer status);

Examples
The following examples return valid_f true because the preceding specified commands
are valid.

-- VHDL Example
arm7tdmi_read_req(inst, addr1, 0, FLEX_WAIT_F, tag1);
flex_get_cmd_status(inst, tag1, valid_f, status);

// Verilog Example
arm7tdmi_read_req(inst, addr1, 0, ‘FLEX_WAIT_F, tag1);
flex_get_cmd_status(inst, tag1, valid_f, status);

/* C Example */
arm7tdmi_read_req(inst, addr1, 0, FLEX_WAIT_F, &tag1);
flex_get_cmd_status(inst, tag1, &valid_f, &status);

// VERA Example
model_object.read_req(addr1, 0, ‘FLEX_WAIT_F, tag1);
model_object.get_cmd_status(tag1, valid_f, status);

This last command returns valid_f false, because tag2 did not get assigned to any
command yet, and thus is not valid.

flex_get_cmd_status(inst, tag2, valid_f, status);
August 28, 2001 Synopsys, Inc. 67

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

flex_get_coupling_mode
Checks the coupling mode for a model while in C Command Mode.

Syntax
flex_get_coupling_mode (inst_handle, coupling_mode, status);

Parameters
inst_handle An integer instance handle returned by the

flex_get_inst_handle command.

coupling_mode The command returns a coupling_mode value:

FLEX_UNCOUPLED_MODE

FLEX_FULLY_COUPLE_MODE

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description
Given a model inst_handle, the flex_get_coupling_mode command returns the
coupling_mode for the model. FlexModels start up in coupled mode by default.

Prototype

C
void flex_get_coupling_mode (

const int inst_handle,
const int coupling_mode,
int *status);

Example
The following example returns the coupling_mode for the mpc8260_inst1 model
instance.

/* C Example */
flex_get_coupling_mode (mpc8260_inst1, &coupling_mode, &status);
68 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_get_inst_handle
Returns a unique instance handle for the model. Not used in VERA Command Mode.

Syntax
flex_get_inst_handle (InstName | instance | ModelInstName, inst_handle, status);

Parameters
InstName (C), instance (VHDL), ModelInstName (Verilog)

The unique instance name specified as the SWIFT
FlexModelID parameter when the model is instantiated.

inst_handle An integer value used as a unique model instance identifier.
This value must be used in all subsequent FlexModel
commands for this model instance.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description
The flex_get_inst_handle command returns a unique instance handle for use in all
subsequent FlexModel commands. This must be the first command issued for each
FlexModel instance in your design. This command can be used in HDL Command
Mode or C Command Mode, but not in VERA Command Mode (see “Command Syntax
Differences in VERA Command Mode” on page 58).

In VERA Command Mode, you do not need to use this command because the instance
handle is automatically issued when an instance of the model’s class is created.

Prototypes

C
void flex_get_inst_handle(

const char* InstName,
int *inst_handle,
int *status);
August 28, 2001 Synopsys, Inc. 69

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

VHDL
procedure flex_get_inst_handle (

instance : in string;
inst_handle : inout integer;
status : out integer);

Verilog
task flex_get_inst_handle;

input [`FLEX_CHARMAXCNT*8:1] ModelInstName;
output [31:0] inst_handle;
output [31:0] status;

Examples
The following examples return a unique instance handle to the variable “tms_1_handle”:

-- VHDL Example
flex_get_inst_handle(“tms_1”, tms_1_handle, status);
tms320c6201_idle(tms_1_handle, 2, FLEX_WAIT_T, status);

// Verilog Example
flex_get_inst_handle(ModelInstName, tms_1_handle, status);
tms320c6201_idle(tms_1_handle, 2, ‘FLEX_WAIT_T, status);

/* C Example */
HDL Testbench
--Instantiation of instance “tms_1”
model u1(FlexModelId => “tms_1”)
process
begin
flex_run_program(“a.out”, status);

end
C Testbench
main() {
int id, status;
char *Inst = “tms_1”;
flex_get_inst_handle(Inst, &id, &status);
flex_start_program(&status);

}

Same
Name
70 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_get_value
Gets the single-bit value of a specified net in the design while in C Command Mode.

Syntax
flex_get_value (path, value, status);

Parameters
path The hierarchical path of the specified net. The path parameter

syntax depends upon the simulator you are using. Examples of
the syntax are given in Table 6, where nets a and b are
declared in the testbench, which has a top level block called
top. The command can access any net in the design, provided
that the full hierarchical path is specified. Buses can be
accessed one bit at a time. To set a value of a bus,
flex_get_value needs to be called explicitly for each bit of the
bus.

value The command returns the value of a net specified by path.
Table 5 lists returned integer values and the corresponding net
states.

Table 5: Returned Values and Corresponding Net States of value for
flex_get_value

Returned
Interger

Value

Corresponding
Net

State

0 FLEX_LOGIC_VALUE_0

1 FLEX_LOGIC_VALUE_1

2 FLEX_LOGIC_VALUE_Z

3 FLEX_LOGIC_VALUE_X

4 FLEX_LOGIC_VALUE_U

5 FLEX_LOGIC_VALUE_W

6 FLEX_LOGIC_VALUE_L

7 FLEX_LOGIC_VALUE_H

8 FLEX_LOGIC_VALUE_DC
August 28, 2001 Synopsys, Inc. 71

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

status A status of less than or equal to 0 means that the command did
not complete successfully. A status of 1 indicates that the
socket connection between the C testbench and the command
core was successfully established. It does not, however,
indicate the successful completion of the command. It is
possible for the command to fail if the wrong path has been
specified, and the status will still be 1. Look for error
messages in the simulation transcript when you first use this
command, to make sure that you provided the correct
hierarchical path to the signal you want to get on.

Description
This command gets the value of a specified net in the design. The net does not need to
be connected to a FlexModel. The command can only get the value of a single-bit net.
This command provides access to the value of any net in the design from the C program.

The flex_get_value command only works with simulators that support both HDL and C
command control. To enable this command, you need to establish a connection between
the simulator and the command core. This is done by invoking the flex_get_inst_handle
command from the HDL testbench. For information on FlexModel supported
simulators, refer to SmartModel Library Supported Simulators and Platforms.

Prototype

C
void flex_get_value(

const char *path,
int *value,
int *status);

Examples
flex_get_value("top.a", &value, &status);
72 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_print_msg
Prints a message to the screen. Used in all command modes.

Syntax
flex_print_msg (inst_handle, “text”, status);

Parameters
inst_handle An integer instance handle returned by the

flex_get_inst_handle command.

“text” A literal string that specifies the message to be output; must be
enclosed in quotation marks.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description
The flex_print_msg command prints the specified “text” to the screen.

Prototypes

C
void flex_print_msg (

const int inst_handle,
const char *text,
int *status);

VHDL
procedure flex_print_msg (

inst_handle : in integer;
text : in string;
status : out integer);

Verilog
task flex_print_msg;

input [31:0] inst_handle;
input [8*`FLEX_CHARMAXCNT:1] text;
output [31:0] status;
August 28, 2001 Synopsys, Inc. 73

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

VERA
task print_msg (

string text,
var integer status);

Examples
The following examples produce output formatted as shown below, where time is the
current simulation time:

time ns: INSTANCE inst_name NOTE: This is a test

-- VHDL Example
flex_print_msg(inst, “This is a test”, status);

// Verilog Example
flex_print_msg(inst, “This is a test”, status);

/* C Example */
flex_print_msg(inst, “This is a test”, &status);

// VERA Example
model_object.print_msg(“This is a test”, status);
74 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_run_program
Transfers control to a C program. Used in HDL and VERA command modes.

Syntax
flex_run_program (“filename”, status);

Parameters
“filename” The “filename” of a compiled C program; must be enclosed in

quotation marks.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description
The flex_run_program command switches control to the “filename” compiled C
program. The model receives all commands from the C program before any subsequent
HDL commands in that VHDL process or Verilog always block.

Note�
You cannot have multiple VHDL processes or Verilog always blocks
providing commands to the same model instance.

Prototypes

VHDL
procedure flex_run_program (

filename : in string;
status : out integer);

Verilog
task flex_run_program;

input [8*(`FLEX_CHARMAXCNT-2):1] filename;
output [31:0] status;

VERA
task run_program (

input filename,
var integer status);
August 28, 2001 Synopsys, Inc. 75

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

Examples
The following examples all switch control to a compiled C program named
myprogramfile.

-- VHDL Example
flex_run_program(“/proj/asic23/myprogramfile”, status);

// Verilog Example
flex_run_program(“/proj/asic23/myprogramfile”, status);

// VERA Example
model_object.run_program(“/proj/asic23/myprogramfile”, status);
76 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_set_coupling_mode
Sets the coupling mode for a model while in C Command Mode.

Syntax
flex_set_coupling_mode (inst_handle, coupling_mode, status);

Parameters
inst_handle An integer instance handle returned by the

flex_get_inst_handle command.

coupling_mode Specify the coupling_mode using one of the following two
constants:

FLEX_UNCOUPLED_MODE—sets mode to uncoupled

FLEX_FULLY_COUPLE_MODE—sets mode to coupled

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Description
Given a model inst_handle, the flex_set_coupling_mode command sets the
coupling_mode for the model. FlexModels start up in coupled mode by default.

Prototype

C
void flex_set_coupling_mode (

const int inst_handle,
const int coupling_mode,
int *status);

Example
The following example sets the coupling_mode to uncoupled for the mpc8260_inst1
model instance.

/* C Example */
flex_set_coupling_mode (mpc8260_inst1, FLEX_UNCOUPLED_MODE, &status);
August 28, 2001 Synopsys, Inc. 77

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

flex_set_value
Sets the single-bit value of a specified net in the design while in C Command Mode.

Syntax
flex_set_value (path, value, status);

Parameters
path The hierarchical path of the specified net. The path syntax

depends upon the simulator you are using. Examples of the
syntax are given in Table 6, where nets a and b are declared in
the testbench, which has a top level block called top. The
command can access any net in the design, provided that the
full hierarchical path is specified. Buses can be accessed one
bit at a time. To set a value of a bus, flex_set_value needs to be
called explicitly for each bit of the bus.

value Net value. Allowed values are specified in Table 7.

Table 6: flex_set_value path Syntax Examples

Simulator Single Bit Form Bus, or Part of Bus, Form

Verilog Simulators

VCS top.a top.b[0]
top.b[5]

MTIVLOG top.a top.b[0]
top.b[5]

VXL top.a Not supported

VHDL Simulators

MTI /top/a Not supported

SCIROCCO :top:a :top:b(0)
:top:b(5)

VSS, CYCLONE Not supported Not supported

Table 7: Allowed Values of value for flex_set_value

FLEX_LOGIC_VALUE_0

FLEX_LOGIC_VALUE_1
78 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

status A status of less than or equal to 0 means that the command did
not complete successfully. A status of 1 indicates that the
socket connection between the C testbench and the command
core was successfully established. It does not, however,
indicate the successful completion of the command. It is
possible for the command to fail if the wrong path has been
specified, and the status will still be 1. Look for error
messages in the simulation transcript when you first use this
command, to make sure that you have provided the correct
hierarchical path to the signal you want to set on.

Description
The flex_set_value command sets the value of a specified net in the design. The net
does not need to be connected to FlexModel. The value can only be set for a single-bit
net. This command provides a mechanism to set any design net from the C program.

The flex_set_value command only works with simulators that support both HDL and C
command control. To enable this command, you need to establish a connection between
the simulator and the command core. This is done by invoking the flex_get_inst_handle
command from the HDL testbench. For information on FlexModel supported
simulators, refer to SmartModel Library Supported Simulators and Platforms.

Prototypes

C
void flex_set_value(

const char *path,
const int value,
int *status);

FLEX_LOGIC_VALUE_Z

FLEX_LOGIC_VALUE_X

FLEX_LOGIC_VALUE_U

FLEX_LOGIC_VALUE_W

FLEX_LOGIC_VALUE_L

FLEX_LOGIC_VALUE_H

FLEX_LOGIC_VALUE_DC

Table 7: Allowed Values of value for flex_set_value
August 28, 2001 Synopsys, Inc. 79

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

Examples
flex_set_value("top.a", FLEX_LOGIC_VALUE_1, &status);

flex_set_value("top.a", FLEX_LOGIC_VALUE_0, &status);
80 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_start_program
Start a C program for a FlexModel. Used only in C Command Mode.

Syntax
flex_start_program (status)

Parameter
status A status of 1 means the command completed successfully. A

status less than or equal to 0 means the command did not
complete successfully.

Description
The flex_start_program command signals to the Command Core that the C testbench
has obtained all the model instance handles needed and is ready to send model
commands. You must run the flex_get_inst_handle command to retrieve the model
instance handle before issuing the flex_run_program command. Also, you cannot send
other commands to the model until after you run flex_start_program. In summary, use
the commands in this order:

1. flex_get_inst_handle

2. flex_start_program

3. Other FlexModel commands

Prototype

C
void flex_start_program(

int *status);

Example
/* C Example */
main() {
int status;
int id;
flex_start_program(&status)
/* Now you can issue model commands */
August 28, 2001 Synopsys, Inc. 81

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

flex_switch_intr_control
Switches interrupt control to an HDL testbench. Used only in C Command Mode.

Syntax
flex_switch_intr_control (inst_handle, status);

Parameters
inst_handle An integer instance handle for the model instance under C

control.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully.

Description
The flex_switch_intr_control command switches interrupt control for the specified
model instance from C Command Mode to HDL Command Mode.

Prototype

C
void flex_switch_intr_control(

const int inst_handle,
int *status);

Example
/* C Example */
void my_intr_function()
main() {
int status;
int id
char *inst = “1”
flex_get_inst_handle(Inst, &id, &status);
flex_start_program(&status);
flex_define_intr_function(id, my_intr_function, &status);
. . . .

/* Now switch interrupt control to HDL*/
flex_switch_intr_control(id, &status);
82 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_synchronize
Synchronize the operation of two or more FlexModels. Used in all command modes.

Syntax
flex_synchronize (inst_handle, sync_total, sync_tag, sync_timeout, status);

Parameters
inst_handle An integer instance handle returned by the

flex_get_inst_handle command.

sync_total A positive integer that specifies the number of model instances
to synchronize with.

sync_tag A text string that uniquely identifies the synchronization (for
example, sync1).

sync_timeout If the sync_timeout number of clock cycles elapses before the
model receives the sync_total number of matching
synchronize commands, the command times out.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully. Negative integers provide error code
information (see Table 3 on page 56).

Definition
The flex_synchronize command suspends command execution for the model instance
named in the inst_handle parameter until sync_total number of synchronize commands
with matching sync_tag parameters have been executed by other models in the
testbench.

Prototypes

C
void flex_synchronize (

const int inst_handle,
const int sync_total,
const char *sync_tag,
const int sync_timeout,
int *status);
August 28, 2001 Synopsys, Inc. 83

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

VHDL
procedure flex_synchronize (

inst_handle : in integer;
sync_total : in integer;
sync_tag : in string;
sync_timeout : in integer;
status : out integer);

Verilog
task flex_synchronize;

input [31:0] inst_handle;
input [31:0] sync_total;
input [8*`FLEX_CHARMAXCNT:1] sync_tag;
input [31:1] sync_timeout;
output [31:0] status;

VERA
task synchronize (

integer sync_total,
string sync_tag,
integer sync_timeout,
var integer status);

Examples
In the following example, the flex_synchronize in command (4) causes command
execution to halt for instance 1. Command execution resumes when a matching
sync_label “sync1” has been identified. In this case command (5) carries the identical
sync_label “sync1”. Command (6) starts after commands (1) (2) and (3) have been
completed. (FLEX_WAIT_F is a predefined constant. For more information, refer to
“The wait_mode Parameter” on page 56.)

-- VHDL Example
(1) arm7tdmi_read_req(inst1, config_read,X”00000004”,1, X”0”, X”00000000”, 0,

FLEX_FALSE, FLEX_WAIT_F, status);
(2) arm7tdmi_read_req(inst2, config_read,X”00000004”,1, X”0”, X”00000000”, 0,

FLEX_FALSE, FLEX_WAIT_F, status);
(3) arm7tdmi_read_req(inst2, config_read,X”00000004”,1, X”0”, X”00000000”, 0,

FLEX_FALSE, FLEX_WAIT_F, status);
-- Synchronize instance 1 with 2 instances with the sync label “sync1”
-- identical to wait_on (“sync1”);

(4) flex_synchronize (inst1, 2, “sync1”, 0, status);
-- Synchronize instance 2 with 2 instances with the sync label “sync1”
-- identical to trigger (“sync1”);

(5) flex_synchronize (inst2,2,”sync1”, 0, status);
84 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

flex_wait
Temporarily halts command execution in a C testbench.

Syntax
flex_wait (clock_cycles, status);

Parameters
clock_cycles The number of clock periods to halt the C testbench.

status A status of 1 means the command completed successfully. A
status less than or equal to 0 means the command did not
complete successfully.

Description
The flex_wait command halts execution in the C testbench for the specified number of
clock_cycles. This means that the next command in the queue will only be seen by the
model after the specified number of clock cycles have elapsed.

Prototype

C
void flex_wait (

const int clock_cycles,
int *status);

Example
/* C Example */
main() {
int nstatus
flex_wait(2, &nstatus); /* Wait for 2 clock cycles */
model_write(id, addr, data, &status); /* Seen 3 clock cycles later */

The following diagram shows the timing cycles for this example:

flex_wait begins write posted write begins

1 clk 2 clk
August 28, 2001 Synopsys, Inc. 85

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

flex_wait_on_node
Suspends command execution in C program until the specified design net is assigned the
expected value. Used only in C Command Mode.

Syntax
flex_wait_on_node (path, expected_value, mask, status);

Parameters
path The hierarchical path of the specified net; if the net is a bus or

part of a bus, it needs to be explicitly specified with a range,
for example b[31:0]. If the range is not specified, b defaults
to b[0]. The path parameter depends upon the simulator you
are using. Examples of the syntax are given in Table 8, where
nets a and b are declared in the testbench, which has a top
level block called top. The command can access any net in
the design, provided that the full hierarchical path is specified.

Table 8: Syntax Examples for the path Parameter

Simulator Single Bit Form Bus, or Part of Bus, Form

Verilog Simulators

VCS top.a top.b[31:0]
top.b[15:8]
top.b[0]
top.b[5]
top.b - uses single bit

b[0] only

MTIVLOG top.a top.b[31:0]
top.b[15:8]
top.b[0]
top.b[5]
top.b - uses single bit

b[0] only

VXL top.a Not supported

VHDL Simulators

MTI /top/a Not supported
86 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 4: FlexModel Command Reference
�

expected_value The expected_value on a net specified by path. The
expected_value should match the width of the signal specified
by path.

mask Any register value specifying the mask for expected_value. A
zero in the mask indicates a "don't care". The vector size of the
mask should match the expected value.

status A status of less than or equal to 0 means that the command did
not complete successfully. A status of 1 indicates that the
socket connection between the C testbench and the command
core was successfully established. It does not, however,
indicate the successful completion of the command. It is
possible for the command to fail if the wrong path has been
specified, and the status will still be 1. Look for error
messages in the simulation transcript when you first use this
command, to make sure that you provided the correct
hierarchical path to the signal you want to wait on. A status of
2 means that expected_value or mask did not fit the width of
the signal specified by path. A warning is issued, and the
expected_value, or the mask, is modified to match the signal
width.

Description
The flex_wait_on_node command blocks the command stream in the C program until
the specified value is assigned to the specified design net. You can use this command for
any single-bit net (or, for supported simulators, bus) in the design, and you can mask
expected_value using mask. Net value is sampled once every clock cycle. This
command allows the C program to wait for any net in the design to be set to
expected_value before proceeding with the execution of the remaining commands.

SCIROCCO :top:a top.b[31 downto 0],
:top:b(0 to 31)

top.b[18 downto 8],
:top:b(8 to 15)

:top:b(0)
:top:b(5)
top.b - uses single bit

b[0] only

VSS, CYCLONE Not supported Not supported

Table 8: Syntax Examples for the path Parameter

Simulator Single Bit Form Bus, or Part of Bus, Form
August 28, 2001 Synopsys, Inc. 87

Chapter 4: FlexModel Command Reference FlexModel User’s Manual
�

The flex_wait_on_node command only works with simulators that support both HDL
and C command control. To enable this command, you need to establish a connection
between the simulator and the command core. This is done by invoking the
flex_get_inst_handle command from the HDL testbench. For information on FlexModel
supported simulators, refer to SmartModel Library Supported Simulators and Platforms.

Prototype

C
void flex_wait_on_node(

const char *path,
FLEX_VEC expected_value,
FLEX_VEC mask,
int *status);

Examples

Verilog
 flex_wait_on_node("top.a", "b1", "b1", &status);
 flex_wait_on_node("top.b[3]", "b1", "b1", &status);
 flex_wait_on_node("top.b[3:0]", "b1010", "b1111", &status);
 flex_wait_on_node("top.b[31:0]", "h0000a0a0", "h0000ffff", &status);

VHDL(Scirocco)
flex_wait_on_node(":top:a", "b1", "b1", &status);
flex_wait_on_node(":top:b(3)", "b1", "b1", &status);
flex_wait_on_node(":top:b(3 downto 0)", "b1010", "b1111", &status);
flex_wait_on_node(":top:b(31 downto 0)", "h0000a0a0", "h0000ffff",
&status);
88 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

5
FlexModel C Testbench Interface

Introduction
This chapter explains how to define and manipulate FLEX_VEC vectors using the
FlexModel C functions and operators (provided in ANSI-compliant include files). This
information is organized in the following sections:

● “Creating FLEX_VEC Vectors” on page 90

● “FLEX_VEC Lexical Rules” on page 91

● “FLEX_VEC Error Handling” on page 92

● “FLEX_VEC Command Descriptions” on page 93

● “C Testbench Example” on page 103

What Are FLEX_VEC Vectors?
Before you can use the C versions of the model-specific commands documented in the
individual FlexModel datasheets, you must define the required variables or vectors
using the FLEX_DEFINE command described in this chapter. For example, model_read
commands typically require you to specify an address variable (addr or something like
that). You can use the FLEX_DEFINE function to create the data structure in C for that
addr variable and then issue the model-specific FlexModel command to exercise the
model. Data structures created with FLEX_DEFINE are called FLEX_VEC vectors.

This definition process is necessary because C does not provide variables that are handy
for manipulating vectors such as the 32-bit data or address buses needed to work with
processor models, for example. Also, although C does provide many operators for
manipulating integers and strings, those operators do not work with the FLEX_VEC
vectors you create for use with FlexModel commands. So, FlexModels come with
comparable FlexModel C operators that work with the FLEX_VEC vectors you create.
August 28, 2001 Synopsys, Inc. 89

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

Creating FLEX_VEC Vectors
You create FLEX_VEC vectors using either the FLEX_DEFINE command or the
FLEX_VEC_SIZEOF command. Use the FLEX_DEFINE command for vectors that
only need to be used in the local scope of the function. If you need to create FLEX_VEC
vectors dynamically with a global scope use the FLEX_VEC_SIZEOF command.

FLEX_DEFINE
The FLEX_DEFINE command creates a FLEX_VEC vector named vecName that is
vecSize bits wide, with an initial value of initVal. You must specify a vector string literal
or the FLEX_NULL_VEC macro in the initVal argument. Use FLEX_DEFINE at the
top of the current scope before any functions are called.

Syntax
FLEX_DEFINE (vecName, vecSize, initVal);

Example
The following example creates a FLEX_VEC called addr with space for 64 bits.

FLEX_DEFINE (addr, 64, "haaaabbbbccccdddd");

FLEX_VEC_SIZEOF
To dynamically create FLEX_VEC vectors, use the FLEX_VEC_SIZEOF macro. You
can calculate the bitcnt on the fly based on other operations in your C testbench. The
example that follows contains the function declaration and assignment in one line of
code, which creates a FLEX_VEC with a local scope. If you want the FLEX_VEC to
have a global scope, put your function declaration outside of the subroutine where you
make the variable assignment.

Syntax
FLEX_VEC_SIZEOF (int bitcnt);

Example
FLEX_VEC dynVec64 = (FLEX_VEC)malloc(FLEX_VEC_SIZEOF(64));
90 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

FLEX_VEC Lexical Rules
The following lexical and semantic rules apply to FLEX_VEC vectors:

● Vector values must be either string literals or objects of type FLEX_VEC created
with FLEX_DEFINE.

● Values are truncated on the left side to fit the size of the receiving variable. For
example, if you assign “haf” to a 4-bit wide vector the result is “hf”.

● VHDL 9-state values are mapped to 4-state values as shown in Table 9. Therefore,
FLEX_VEC vectors do not represent signal strength levels.

● For integer variables., use the FLEX_INT 32-bit unsigned data type.

● All functions other than the comparison functions have a return type of void.

Vector Strings
Vector strings can be in hexadecimal or binary format:

 "h[0-9a-fA-FxXzZ]+" /* hexadecimal */

 "b[01hHlLuUwWxXzZ-]+" /* binary */

where []+ means one or more occurrences of the characters within the brackets. Illegal
characters are silently converted to Xs. Here are some examples:

"h01234" /* Hexadecimal literal */
"b011011" /* Binary literal */
"01234" /* Illegal vector literal. Missing prefix 'h' */
"b0JM11011" /* Illegal char in binary vector -> "b0xx11011" */
"b01LHUXW-Z" /* 9-state to 4-state -> "b0101xxxxz" */

Table 9: VHDL 9-State to 4-State Conversion

9-state 4-state

(0, L) 0

(1, H) 1

 (U, X, W, -) X

 (Z) Z
August 28, 2001 Synopsys, Inc. 91

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

Assigning Literals to FLEX_VEC Constants
You can assign string literals to FLEX_VEC constants, as shown in the following
examples.

const FLEX_VEC addrIncr;
/* Assign a vector value */
addrIncr = "h4";
/* Assign a different vector value */
addrIncr = "hffffeeee";

If you assign a literal to a FLEX_VEC vector instead of a FLEX_VEC constant you lose
the memory allocation for the vector. To assign a literal to a FLEX_VEC vector created
by the FLEX_DEFINE command, use the flex_assign operators documented on
page 93.

Note that arguments of type const FLEX_VEC do not have any allocated storage, since
FLEX_DEFINE has not been used. Therefore, they can only be used as input values, not
for result values.

FLEX_VEC Error Handling
The FLEX_VEC commands documented in FLEX_VEC Command Descriptions do not
return error status. Instead, they increment internal error, warning, and note message
counters. To retrieve the current counts, use the flex_errors(), flex_warnings(), and
flex_notes() commands.

Using incorrect command syntax or violating any of the FLEX_VEC Lexical Rules will
result in an error. Most error types generate informative error messages on your screen.

You can check the error counts as often as you want, but checking error status only at
critical points in your testbench will result in a more readable coding style. You may
want to run the following commands at the end of your C testbench to ensure that the
program executed as expected.

● flex_errors ()

● flex_warnings ()

● flex_notes ()

The following example shows how to use the flex_fprintf command to print the values
of the three internal counters:

flex_fprintf(stderr, "Status: %d error(s), %d warning(s), %d note(s)\n",
flex_errors(), flex_warnings(), flex_notes());
92 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

FLEX_VEC Command Descriptions
Following are descriptions of the FLEX_VEC commands.

flex_assign
The flex_assign command assigns the vec2 value to vec1. For example:

void flex_assign(FLEX_VEC vec1, const FLEX_VEC vec2) /* vec1 = vec2 */

flex_assign_int
The flex_assign_int command assigns the i integer value to vec1. For example:

void flex_assign_int(FLEX_VEC vec1, FLEX_INT i) /* vec1 = i; */

flex_assign_int_array
The flex_assign_int_array command assigns an integer array to vec1 using count
number of integers from intArray[]. The 0th element of intArray[] is treated as the left-
most number and the (count-1)th element is treated as the right-most number.

Syntax
void flex_assign_int_array(FLEX_VEC vec1, unsigned int count, FLEX_INT
intArray[])

For example:

FLEX_INT intArray[] = {0xffffeeee, 0xddddcccc, 0xbbbbaaaa, 0x99998888};
FLEX_DEFINE(bigBus, 128, FLEX_NULL_VEC);
FLEX_DEFINE(halfAsBigBus, 64, FLEX_NULL_VEC);
/* Assign the whole value from the intArray to bigBus */
flex_assign_int_array(bigBus, 4, intArray);
/* bigBus == "hffffeeeeddddccccbbbbaaaa99998888" */
/* Try to assign the whole value from the intArray to halfAsBigBus */
flex_assign_int_array(halfAsBigBus, 4, intArray);
/* halfAsBigBus == "hbbbbaaaa99998888", truncated from left */
/* Assign the first two elements from the intArray to halfAsBigBus */
flex_assign_int_array(halfAsBigBus, 2, intArray);
/* halfAsBigBus == "hhffffeeeeddddcccc", takes the first two elements*/

flex_assign_int_list
The flex_assign_int_list command assigns an integer list to vec1 using count number of
FLEX_INT values from lhInt to rhInt. For example:

void flex_assign_int_list(FLEX_VEC vec1, unsigned int count, FLEX_INT
lhInt, FLEX_INT rhInt);
August 28, 2001 Synopsys, Inc. 93

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

flex_incr
The flex_incr command increments the incrVec vector and puts the result in result. For
example:

/* vec += incrVec */
void flex_incr(FLEX_VEC result, const FLEX_VEC incrVec)

flex_decr
The flex_decr command decrements the decrVec vector and puts the result in result. For
example:

/* vec -= decrVec */
void flex_decr(FLEX_VEC result, const FLEX_VEC decrVec)

flex_add
The flex_add command adds vec1 and vec2 and puts the result in result. For example:

/* result = vec1 + vec2 */
void flex_add (FLEX_VEC result, const FLEX_VEC vec1, const FLEX_VEC
vec2)

flex_sub
The flex_sub command subtracts vec2 from vec1 and puts the result in result. For
example:

/* result = vec1 - vec2 */
void flex_sub (FLEX_VEC result, const FLEX_VEC vec1, const FLEX_VEC
vec2)

flex_eq
The flex_eq command returns true if vec1 is equal to vec2. For example:

int flex_eq (const FLEX_VEC vec1, const FLEX_VEC vec2) /* vec1 == vec2
*/

flex_ne
The flex_ne command returns true if vec1 is not equal to vec2. For example:

int flex_ne (const FLEX_VEC vec1, const FLEX_VEC vec2) /* vec1 != vec2
*/

flex_lt
The flex_lt command returns true if vec1 is less than vec2. For example:
94 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

int flex_lt (const FLEX_VEC vec1, const FLEX_VEC vec2) /* vec1 < vec2 */

flex_lte
The flex_lte command returns true if vec1 is less than or equal to vec2. For example:

int flex_lte(const FLEX_VEC vec1, const FLEX_VEC vec2) /* vec1 <= vec2
*/

flex_gt
The flex_gt command returns true if vec1 is greater than vec2. For example:

int flex_gt (const FLEX_VEC vec1, const FLEX_VEC vec2) /* vec1 > vec2 */

flex_gte
The flex_gte command returns true if vec1 is greater than or equal to vec2. For example:

int flex_gte(const FLEX_VEC vec1, const FLEX_VEC vec2) /* vec1 >= vec2
*/

flex_slice_le
The flex_slice_le command copies a bit slice from the fromVec vector to the result
vector. The “le” stands for little-endian—this operator copies from the 0th bit in the
fromVec vector, starting with the right-most bit. Note that truncation, if any, still occurs
on the left side. If you specify a lhIdx less than the rhIdx, the bits are reversed in the
result vector.

Syntax
void flex_slice_le(FLEX_VEC result, const FLEX_VEC fromVec, unsigned int
lhIdx, unsigned int rhIdx)

For example:

FLEX_DEFINE(data8, 8, "h0");
/* Little-endian */
void flex_slice_le(data8, "b0110100100010111", 11, 4);
/* no bit reversal, data8 == "b10010001" */
void flex_slice_le(data8, "b0110100100010111", 4, 11);
/* bit reversal, data8 == "b10001001" */
August 28, 2001 Synopsys, Inc. 95

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

flex_slice_be
The flex_slice_be command copies a bit slice from the fromVec vector to the result
vector. The “be” stands for big-endian—this operator copies from the 0th bit in the
fromVec vector, starting with the left-most bit. Truncation, if any, occurs on the left side.
If you specify lhIdx greater than rhIdx, the bits are reversed in the result vector. Here’s
the syntax:

void flex_slice_be(FLEX_VEC result, const FLEX_VEC fromVec, unsigned int
lhIdx, unsigned int rhIdx)

For example:

FLEX_DEFINE(data8, 8, "h0");
/* Big-endian */
void flex_slice_be(data8, "b0110100100010111", 4, 11);
/* no bit reversal, data8 == "b10010001" */
void flex_slice_be(data8, "b0110100100010111", 11, 4);
/* bit reversal data8 == "b10001001" */

flex_slice_le_offset
The flex_slice_le_offset command does a little-endian copy of a bit slice from fromVec
to result starting with the specified offset of resultOffsetIdx bits in the result vector.
Truncation, if any, occurs on the left side. If you specify a lhIdx less than the rhIdx, the
bits are reversed in the result vector. Here’s the syntax:

void flex_slice_le_offset(FLEX_VEC result,unsigned int resultOffsetIdx,
const FLEX_VEC fromVec, unsigned int lhIdx, unsigned int rhIdx)

For example:

FLEX_DEFINE(rslt16, 16, "b1110111111110111");
* Little-endian */
flex_slice_le_offset(rslt16, 4, "b0110100100010111", 11, 4);
/* no bit reversal, rslt16 == "b1110100100010111", middle 8-bits get
changed the others unchanged */
flex_assign(rslt16, "b1110111111110111"); /* Reinitialize */
flex_slice_le_offset(rslt16, "b0110100100010111", 4, 11);
/* bit reversal, rslt16 == "b1110100010010111" , middle 8-bits get
changed the others unchanged */
96 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

flex_slice_be_offset
The flex_slice_be_offset operator does a big-endian copy of a bit slice from fromVec to
result starting with the specified offset of resultOffsetIdx bit in the result vector.
Truncation, if any, occurs on the left side. If you specify lhIdx greater than rhIdx, the bits
are reversed in the result vector. Here’s the syntax:

void flex_slice_be_offset(FLEX_VEC result,unsigned int resultOffsetIdx,
const FLEX_VEC fromVec, unsigned int lhIdx, unsigned int rhIdx)

For example:

FLEX_DEFINE(rslt16, 16, "b1110111111110111");
/* Big-endian */
flex_assign(rslt16, "b1110111111110111"); /* Reinitialize */
flex_slice_be_offset(rslt16, "b0110100100010111", 4, 11);
/* no bit reversal, rslt16 == "b1110100100010111" */
flex_assign(rslt16, "b1110111111110111"); /* Reinitialize */
flex_slice_be_offset(rslt16, "b0110100100010111", 11, 4);
/* bit reversal, rslt16 == "b1110100010010111" */

flex_rshift
The flex_rshift command shifts the vec vector shiftCnt bits to the right and puts the
result in result. Truncation, if any, is determined by the length of the result vector.
Empty bit positions are set to zeros. Here is the syntax:

/* result = vec >> shiftCnt */
void flex_rshift(FLEX_VEC result, const FLEX_VEC vec, unsigned int
shiftCnt)

For example:

FLEX_DEFINE(rslt8, 8, "h0");
flex_lshift(rslt8, "hf", 4);
/* equivalent C: rslt8 = 0xf << 4 rslt8 == "hf0" */

flex_lshift
The flex_lshift command shifts the vec vector shiftCnt bits to the left and puts the result
in result. Truncation, if any, is determined by the length of the result vector. Empty bit
positions are set to zeros. Here is the syntax:

/* result = vec << shiftCnt */
void flex_lshift(FLEX_VEC result, const FLEX_VEC vec, unsigned int
shiftCnt)

For example:

FLEX_DEFINE(rslt8, 8, "h0");
August 28, 2001 Synopsys, Inc. 97

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

flex_lshift(rslt8, "hf", 4);
/* equivalent C: rslt8 = 0xf << 4 rslt8 == "hf0" */

flex_rrot
The flex_rrot command rotates the vec vector shiftCnt bits to the right and puts the result
in result. The rotation point is determined by the size of the result vector. Here is the
syntax:.

/* result = right rotate vec by shiftCnt */
void flex_rrot (FLEX_VEC result, const FLEX_VEC vec, unsigned int
shiftCnt)

For example:

FLEX_DEFINE(rslt8, 8, "h0");
flex_rrot(rslt8, rslt8, 5);
/* left rotate a rslt8 by 5-bits rslt8 == "b00010110" rslt8 == "h07" */

flex_lrot
The flex_lrot command rotates the vec vector shiftCnt bits to the left and puts the result
in result. The rotation point is determined by the size of the result vector. Here is the
syntax:.

/* result = left rotate vec by shiftCnt */
void flex_lrot (FLEX_VEC result, const FLEX_VEC vec, unsigned int
shiftCnt)

For example:

FLEX_DEFINE(rslt8, 8, "h0");
flex_lrot(rslt8, "b101100", 4);
/* left rotate a 6-bit vector into rslt8 rslt8 == "b11000010" */

flex_not
The flex_not command does a bitwise not operation on vec and puts the result in result.
Here is the syntax:

/* result = ~vec */
void flex_not(FLEX_VEC result, const FLEX_VEC vec)

flex_or
The flex_or command does a bitwise or operation on vec1 and vec2 and puts the result in
result. Here is the syntax:

/* result = vec1 | vec2 */
void flex_or(FLEX_VEC result,const FLEX_VEC vec1, const FLEX_VEC vec2)
98 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

flex_and
The flex_and command does a bitwise and operation on vec1 and vec2 and puts the
result in result. Here is the syntax:

/* result = vec1 & vec2 */
void flex_and (FLEX_VEC result, const FLEX_VEC vec1, const FLEX_VEC
vec2)

flex_nor
The flex_nor command does a bitwise nor operation on vec1 and vec2 and puts the result
in result. Here is the syntax:

/* result = ~(vec1 | vec2) */
void flex_nor (FLEX_VEC result, const FLEX_VEC vec1, const FLEX_VEC
vec2)

flex_nand
The flex_nand command does a bitwise nand operation on vec1 and vec2 and puts the
result in result. Here is the syntax:

/* result = ~(vec1 & vec2) */
void flex_nand(FLEX_VEC result, const FLEX_VEC vec1, const FLEX_VEC
vec2)

flex_xor
The flex_xor command does a bitwise xor operation on vec1 and vec2 and puts the result
in result. Here is the syntax:

/* result = vec1 ^ vec2 */
void flex_xor (FLEX_VEC result, const FLEX_VEC vec1, const FLEX_VEC
vec2)

flex_xnor
The flex_xnor command does a bitwise xnor operation on vec1 and vec2 and puts the
result in result. Here is the syntax:

/* result = ~(vec1 ^ vec2) */
void flex_xnor(FLEX_VEC result, const FLEX_VEC vec1, const FLEX_VEC
vec2)
August 28, 2001 Synopsys, Inc. 99

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

flex_to_int
The flex_to_int command extracts the right-most 32-bits from vec and puts them in the
FLEX_INT pointed to by i. Here is the syntax:

void flex_to_int(const FLEX_VEC vec, FLEX_INT* i)

For example:

FLEX_INT myInt = 0;
int i;
FLEX_DEFINE(data128, 128, "h0");

flex_assign_int_list(data128, 4, 0x8889999, 0xaaabbbb, 0xcccddd,
0xeeeffff);

/* data128 == "h088899990aaabbbb00cccddd0eeeffff" */
/* Read the rightmost int from data128. Extracts 0x0eeefff */
/* into myInt with a warning about the fact that data128 */
/* wider than a single FLEX_INT */
flex_to_int(data128, &myInt);
/* myInt == 0x0eeefff */

flex_to_int_array
The flex_to_int_array command extracts count number of 32-bit integers from vec and
puts them in the ia[] array. If count is 0 the entire contents of vec are extracted. The int*
pointed to by count is set to the number of integers extracted. The right-most 32 bits in
vec are put in the last array element and the left-most bits are placed in the 0th array
element. Make sure that the receiving array is large enough to hold all the integers in
vec. If count is higher than the number of integers in vec, its value is changed to the
actual number of integers extracted. Here is the syntax:

void flex_to_int_array(const FLEX_VEC vec, unsigned int* count, FLEX_INT
ia[])

For example:

FLEX_INT myInt = 0;
unsigned int count;
int i;
FLEX_INT ia[4] = { 0, 0, 0, 0 };
FLEX_INT i1, i2, i3, i4;
FLEX_DEFINE(data128, 128, "h0");

flex_assign_int_list(data128, 4, 0x8889999, 0xaaabbbb, 0xcccddd,
0xeeeffff);

/** Using flex_to_int_array **/
count = 0;
flex_to_int_array(data128, &count, ia);
/* ia[0] == 0x08889999 */
100 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

/* ia[2] == 0x0aaabbbb */
/* ia[3] == 0x00cccddd */
/* ia[4] == 0x0eeeffff */
/* count == 4 */

/* Reset ia */
ia[0] = ia[1] = ia[2] = ia[3] = 0;
count = 8;
flex_to_int_array(data128, &count, ia);
/* Issues a warning about only reading 4 FLEX_INTs */
/* ia[0] == 0x08889999 */
/* ia[2] == 0x0aaabbbb */
/* ia[3] == 0x00cccddd */
/* ia[4] == 0x0eeeffff */
/* count == 4 */

/* Reset ia */
ia[0] = ia[1] = ia[2] = ia[3] = 0;
count = 2;
flex_to_int_array(data128, &count, ia);
/* Issues a warning about only reading the 2 rightmost FLEX_INTs */
/* while the actual vector is 4 FLEX_INTs wide */
/* ia[0] == 0x00cccddd */
/* ia[1] == 0x0eeeffff */
/* ia[2] == 0 */
/* ia[3] == 0 */
/* count == 2 */

flex_to_int_list
The flex_to_int_list command extracts count number of 32-bit integers from vec and
puts them into a list with the right-most bits going to lhInt and the left-most bits to rhInt.

void flex_to_int_list (const FLEX_VEC vec, unsigned int* count,
FLEX_INT* lhInt, ... , FLEX_INT* rhInt);

For example:

FLEX_INT myInt = 0;
unsigned int count;
int i;
FLEX_INT ia[4] = { 0, 0, 0, 0 };
FLEX_INT i1, i2, i3, i4;
FLEX_DEFINE(data128, 128, "h0");

flex_assign_int_list(data128, 4, 0x8889999, 0xaaabbbb, 0xcccddd,
0xeeeffff);

/** Using flex_to_int_list **/
count = 0;
flex_to_int_list(data128, &count, &i1, &i2, &i3, &i4);
August 28, 2001 Synopsys, Inc. 101

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

/* i0 == 0x08889999 */
/* i2 == 0x0aaabbbb */
/* i3 == 0x00cccddd */
/* i4 == 0x0eeeffff */
/* count == 4 */

/* Reset FLEX_INTs */
i0 = i1 = i2 = i3 = 0;
count = 8;
flex_to_int_list(data128, &count, &i1, &i2, &i3, &i4);
/* Issues a warning about only reading 4 FLEX_INTs */
/* i0 == 0x08889999 */
/* i2 == 0x0aaabbbb */
/* i3 == 0x00cccddd */
/* i4 == 0x0eeeffff */
/* count == 4 */

/* Reset FLEX_INTs */
i0 = i1 = i2 = i3 = 0;
count = 2;
flex_to_int_list(data128, &count, &i1, &i2, &i3, &i4);
/* Issues a warning about only reading the 2 rightmost FLEX_INTs */
/* while the actual vector is 4 FLEX_INTs wide */
/* i0 == 0x00cccddd */
/* i1 == 0x0eeeffff */
/* i2 == 0 */
/* i3 == 0 */
/** count == 2 **/

flex_iprintf
The flex_iprintf command works just like the ANSI C printf utility. You can use
flex_iprintf to print a string to the simulator transcript. For example:

void flex_iprintf(int instHandle, const char* formatStr, ...);

The instHandle must be a valid model instance handle obtained with the
flex_get_inst_handle command. The maximum string length is 255 characters.

flex_fprintf
The flex_fprintf command works just like the ANSI C fprintf utility. You can use
flex_fprintf to print a string to a file. For example:

void flex_fprintf(FILE* fp, const char* formatStr, ...);

In this example, fp must point to a FILE* open for output. The maximum string length is
255 characters.
102 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

flex_sprintf
The flex_sprintf command works just like the ANSI C sprintf utility. You can use
flex_sprintf to print a string to a buffer. For example:

void flex_sprintf(char* buf, const char* formatStr, ...);

In this example, buf must be a character array large enough to hold the resulting string.
The maximum string length is 255 characters.

The %H and %B Conversions
These print functions work just like the ANSI C printf utility. In addition, they support
%H and a %B formatting conversions that you can use to print a FLEX_VEC vectors or
const FLEX_VEC literals. These conversions support the same formatting features as
the C “%s” conversion. The %H and %B conversions print vectors without the “h” or a
“b” prefixes. For example, you could print the contents of different variables to standard
error as follows:

flex_fprintf(stderr, "Extracted data128(h%H) into \n i1(%#x), i2(%#x),
i3(%#x), i4(%#x)\n", data128, i1, i2, i3, i4);

This produces output that looks like the following:

"Extracted data128(h0x088899990aaabbbb00cccddd0eeeffff) into
i1(0x8889999), i2(0xaaabbbb), i3(0xcccddd), i4(0xeeeffff)"

C Testbench Example
The following C testbench example illustrates how to use the FLEX_VEC vectors
described in this chapter to set up and process interrupts, and to perform a variety of
general FlexModel functions.

#include “model_pkg.h”
#include “flexmodel_pkg.h”
#define MODEL_ADDRBUS_WIDTH 32
#define MODEL_DATABUS_WIDTH 32

/* Interrupt Function */
void my_intr_function();

/* Global Id define, so that it is visible in the intr function */
int nId;

void
main()
{
 int nStatus, i;
 int tag1, tag2;
August 28, 2001 Synopsys, Inc. 103

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

 char *sInstName = “1”;

 /* Define four FLEX_VEC type arrays and initialize them with
 * a NULL vector, these vectors have actual storage and will
 * be used to get the returned results from result commands */
 FLEX_DEFINE (ret_data, MODEL_DATABUS_WIDTH, FLEX_NULL_VEC);
 FLEX_DEFINE (act_data, MODEL_DATABUS_WIDTH, FLEX_NULL_VEC);
 FLEX_DEFINE (ADDRESS, MODEL_ADDRBUS_WIDTH, FLEX_NULL_VEC);
 FLEX_DEFINE (DATA, MODEL_DATABUS_WIDTH, FLEX_NULL_VEC);

 /* Defining some FLEX_VECs. One very important point to note
 * here is that since a FLEX_DEFINE has not been used,
 * there is no actual storage for these vectors and they can
 * ONLY be used as input values and not for result values. */
 const FLEX_VEC BADADDR=”h000ff00”
 const FLEX_VEC ADDR_INCR=”h4”; /*Increment address=4 bytes */
 const FLEX_VEC DATA_INCR=”b1”; /*Increment data=1 */

 /* Get the instance handle */
 flex_get_inst_handle(sInstName, &nId, &nStatus);

 /* Issue a start program, indicating end of initialization */
 flex_start_program(&nStatus);

 /***
 End of Initialization, Now commands can be sent
 ***/
 /* Define interrupt function with the command core, For more
 * information on this refer to the section on Interrupts */
 flex_define_intr_function(nId, my_intr_function, &nStatus);

 /* Using flex_fprintf to print a debug message */
 flex_fprintf(stderr,”Beginning my C Command Stream\n”);

 /**
 Test 1 : Do a read, and verify the results.
 Desc : Demonstrates passing of addresses/data to commands
 **/
 /* Issue a model_read and pass address directly to command */
 model_read_req(nId, “b00001111111111111111111111110000”,
FLEX_WAIT_T, &nStatus);
 /* Read the results, ret_data is the array we defined earlier
 using FLEX_DEFINE. (Note : This time pass in a hex address) */
 model_read_rslt(nId, “h0ffffff0”, 0, ret_data, &nStatus);
 /* Use flex_eq to compare the results */
 if (! flex_eq (“b10101010101010101010101010101010”, ret_data))

 flex_fprintf(stderr, “Test 1 Failure : Mismatch Found\n”);

 /**
104 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

 Test 2 : Do a read, and verify the results.
 Desc : Demonstrates storing addresses as vectors and then
 passing these vectors into commands.
 **/
 /* Issue a model_read, using flex_assign to store the address
 * in ADDRESS, and then pass this ADDRESS to the read command */
 flex_assign(ADDRESS, “b00001111111111111111111111110000”);
 model_read_req(nId, ADDRESS, FLEX_WAIT_T, &nStatus);
 /* Read the results, ret_data is the array we defined earlier
 using FLEX_DEFINE, use the same ADDRESS array defined earlier */
 model_read_rslt(nId, ADDRESS, 0, ret_data, &nStatus);
 /* Use flex_assign to store the result in the array we defined
 * earlier using FLEX_DEFINE (Note : Passing a binary address)*/
 flex_assign(act_data, “b10101010101010101010101010101010”);
 /* Use flex_eq to compare the results */
 if (! flex_eq (act_data, ret_data))

 flex_fprintf(stderr, “Test 2 Failure : Mismatch Found\n”);

 /**
 Test 3 : Perform multiple Writes, looping through the address
 Desc : Demonstrates using the vector operations provided to

loop, compare e.t.c The while loop below behaves as follows
(i) It loops as long as data is less than a certain data
(ii) It breaks out of loop if address exceeded value
(iii)If address is equal to a value it skips that address
(iv) Otherwise it does a write, increments the address and data.

 **/
 /* Setup the start address, data, bad address and increments */
 flex_assign(ADDRESS, “h0000ff00”);
 flex_assign(DATA, “h00000000”);

 while (flex_lte(DATA, “h0000fffff”)) {
 /* Check if we have exceeded the address space */
 if (flex_gte (ADDRESS, “h0000ffff”))

 break;
 /* Check if address is same as the address we wish to avoid */
 if (flex_eq(ADDRESS, BADADDR)) {

flex_incr(ADDRESS, ADDR_INCR);
continue;

}
/* Else do a write */

 model_write(nId, ADDRESS, DATA, FLEX_WAIT_T, &nStatus);
/* Increment the address and data */
flex_incr(ADDRESS, ADDR_INCR);
flex_incr(DATA, DATA_INCR);

 }

 /**
 Test 4 : Wait for 5 Clks to expire and then synchronize
August 28, 2001 Synopsys, Inc. 105

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

with the HDL testbench.
 Desc : Demonstrates using flex_wait and synchronize
 **/

 /* Stop sending commands for 5 clks */
 flex_wait(5, &nStatus);

 /* Synchronize this instance with another instance which is
 * being controlled from HDL, both instances are synchronizing
 * on the tag “SYN_2” and we are going to wait for 12 clks for
 * the synchronize to complete */
 flex_synchronize(nId, 2, “SYN_2”, 12, &nStatus);

 /**
 Test 5 : Stop the C Testbench as we are expecting interrupts

to occur, so we need to keep the C Testbench running
and then switch out of C interrupt mode.

 Desc : Demonstrates using flex_wait and
flex_switch_intr_control.
 **/

 /* Call flex_wait and tell it to pause for 50 clock cycles,
 * We expect all interrupts to be over by this time */
 flex_wait(50, &nStatus);

 /* Indicate that now interrupts for instance with id = nId needs
 * to be controlled from HDL.
 * NOTE : This automatically happens once the testbench exits. */
 flex_switch_intr_control(nId, &nStatus);

 /**
 Test 6 : Use the slice operations to get parts of a vector.
 Desc : Demonstrates use of the slice operations.
 1) The following loop reads some data from memory
 (read_req and read_rslt)
 2) Uses the last 8 bits of this data as the

increment address.
 **/
 flex_assign(ADDRESS, “hffff0000”);
 for (i = 0; i < 16; i++) {

/* A temporary FLEX_VEC with storage */
FLEX_DEFINE(SMALL_ADDRESS, 8, FLEX_NULL_VEC);

model_read_req(nId, ADDRESS, FLEX_WAIT_F, &nStatus);
model_read_rslt(nId, ADDRESS, 0, ret_data, &nStatus);

/* Get bits 24 to 31 (last 8) from ret_data and
* save them in SMALL_ADDRESS */
flex_slice_le(SMALL_ADDRESS, ret_data, 24, 31);
106 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Chapter 5: FlexModel C Testbench Interface
�

flex_incr(ADDRESS, SMALL_ADDRESS);
 }

 /* DONE Exit the C Testbench */
 exit(0);
}

/**
 INTERRUPT HANDLER
***/
void
my_intr_function()
{
 int nValid, nPriority, nStatus;
 /* Id used here is the global variable which was
 * assigned when we obtained the instance handle */
 model_get_intr_priority(nId, &nValid, &nPriority, &nStatus);

 /* Use flex_fprintf to print the priority */
 flex_fprintf(stderr, “Priority = %D\n”, nPriority);

 switch (nPriority) {
case 1:
model_begin_intr(nId,nPriority,&nStatus)
/* Place commands HERE for priority 1. Commands must be placed

between begin and end intr commands.*/
model_end_intr(nId,nPriority,&nStatus);

case 2:
model_begin_intr(nId,nPriority,&nStatus)
/* Place commands HERE for priority 2. Commands must be placed

between begin and end intr commands.*/
model_end_intr(nId,nPriority,&nStatus);

default
printf(“Unknown priority\n”);

}
}

August 28, 2001 Synopsys, Inc. 107

Chapter 5: FlexModel C Testbench Interface FlexModel User’s Manual
�

108 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Appendix A: Reporting Problems
�

A
Reporting Problems

Introduction
This chapter explains how to run diagnostics, create FlexModel log files, and send
debug information to Customer Support, in the following major sections:

● “Model Versions and History” on page 109

● “Running FlexModel Diagnostics” on page 110

● “Creating FlexModel Log Files” on page 110

● “Sending the Log Files to Customer Support” on page 113

For FlexModels that end with an “_fz” extension, refer to the SmartModel Library
User’s Manual for the applicable model logging procedures. The logging mechanism
described in this chapter applies only to models that end with an “_fx” extension.

Model Versions and History
If you believe a FlexModel is not working correctly, first verify the version number of
the model you are working with by using the Browser tool
($LMC_HOME/bin/sl_browser) to access the model datasheet. The History and
Version Addendum located at the back of all FlexModel datasheets lists the model’s
MDL version number. You can then compare reported fixes for subsequent versions of
that model by reading the model history section in the latest datasheet. The latest
FlexModel datasheets are available via the Model Directory on the Web:

http://www.synopsys.com/products/lm/modelDir.html

For more information on model history, refer to the SmartModel Library User’s Manual.

You can contact Customer Support to request the latest version of any model. For
details on how to get in touch with us, refer to “Getting Help” on page 11.
August 28, 2001 Synopsys, Inc. 109

http://www.synopsys.com/products/lm/modelDir.html

Appendix A: Reporting Problems FlexModel User’s Manual
�

Running FlexModel Diagnostics
It is possible that the model behavior you are seeing is caused by a faulty installation or
from using an older version of a FlexModel. If you do call Customer Support, and
assuming there is no immediate solution to your problem, you will most likely be asked
to run the swiftcheck diagnostic tool to verify the model version that you are using and
check your environment. For information on how to run swiftcheck, refer to Checking
SmartModel Installation Integrity in the SmartModel Library User’s Manual. This tool
produces a swiftcheck.out file. Send this file to Customer Support along with the other
model logging files, as described in “Sending the Log Files to Customer Support” on
page 113.

Creating FlexModel Log Files
To create the FlexModel log files needed by Customer Support to debug model
problems, follow these steps:

Attention�
For FlexModels that end with an “_fz” extension, refer to the SmartModel
Library User’s Manual for the applicable model logging procedures. The
logging mechanism described in this procedure applies only to models that
end with an “_fx” extension.

1. For each FlexModel in your testbench, use the model-specific model_set_msg_level
commands to set the message levels all the way up.

2. In the directory where you run your simulation, use the UNIX touch command or
create an empty file that conforms to the following syntax. The entire string must
be in uppercase.

Typical FlexModel instantiations looks like the following examples. Note the value
of the FlexModelId generic or defparam—that is what you use in the INSTNAME
portion of the model logging file name.

MODEL_INSTANCE.LOG_MODE

where:

MODEL is the model name without the _fx.

INSTANCE is the instance name specified in the FlexModelId SWIFT parameter.
110 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Appendix A: Reporting Problems
�

VHDL:

 U1 : MPC860

 generic map (FlexModelId => “Model_id_1”,

 FlexTimingMode => FLEX_TIMING_MODE_OFF,

 TimingVersion => “MPC860-25”,

 DelayRange => “MAX”

VERILOG

 defparam u1.FlexModelId = “Model_id_1”;

For this example, the logging file name would be:

MPC860_MODEL_ID_1.LOG_MODE

1. Rerun your simulation so that the models can record their activity in the following
log files:

❍ pin events — “pin.model_instance.log

❍ trace messages — “msg.model_instance.log

❍ model commands — cmd.model_instance.log

For example, assuming model logging is enabled for an mpc860_fx model instance
with a FlexModelId of “Model_Id_1”, the model generates the following files:

❍ cmd.mpc860_Model_Id_1.log

❍ pin.mpc860_Model_Id_1.log

❍ msg.mpc860_Model_Id_1.log

Command Logging
Model commands are logged as shown in the following example

t:150
mpc860_idle(inst, 1, ‘FLEX_WAIT_F, status)

This indicates that at simulation time 150, the “inst” of the mpc860_fx model executed
an idle command for one clock cycle.

Note that command logs always show the wait_mode parameter as false
(FLEX_WAIT_F), even if the command was issued with the wait_mode set to true
(FLEX_WAIT_T).

Commands from a testbench that communicate directly with the Command Core are not
logged. For example, the mpc860_read_rslt command does not get logged, since it is
only accessing results information.
August 28, 2001 Synopsys, Inc. 111

Appendix A: Reporting Problems FlexModel User’s Manual
�

Stimulus Logging
Model stimulus is logged in a file named:

model_logger.v

The logger contains a process/always block which is sensitive to all the input pins,
output pins, and bidirectional pins. This process/always block is only invoked when
logging is enabled. The stimulus logging format is described in Table 10.

Stimulus Log Example
Here is an example of a stimulus log file:

-timeformat:ns:1
t:0
p0
i1
p1
i0
p6
oz
rz
p10
bz
rz
t:60
p6
oz
rz

Table 10: Stimulus Logging Format

Entries in File Description

-timeformat:units:precision This entry is printed once at the top of the file. It lists
the time units and precision. These values are needed
to recreate reported model behavior.

t:time_value Time in units that pins were logged.

ppin_number
iinput_value

Entry for input pin.

ppin_number
ooutput_value
rresolved_value

Entry for output pin.

ppin_number
bbidir_value
rresolved_value

Entry for bidirectional pin.
112 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Appendix A: Reporting Problems
�

p57
b11111111111111111111111111111111
r11111111111111111111111111111111

Notice that for input pins, only the value of the pin is recorded (i). For output pins, both
the value that the model is driving onto the pin (o) and the resolved value (r) are
recorded. For bidirectional pins, both the value the model is driving (b) and the resolved
value (r) are recorded. Thus, contentions for output and bidirectional pins can be caught.

Message Logging
Here is an example of a message log file:

420 NS INSTANCE 1. Idle State
450 NS INSTANCE 1. arm7tdmi_write (00000F0C);
450 NS INSTANCE 1. T1 State
480 NS INSTANCE 1. T2 State
480 NS INSTANCE 1. Writing Data: Address = 00000F0C
480 NS Size = 4, Data = 98765432
510 NS INSTANCE 1. Idle State
540 NS INSTANCE 1. arm7tdmi_read_req (00000F00);
540 NS INSTANCE 1. T1 State
570 NS INSTANCE 1. T2 State
600 NS INSTANCE 1. Latching Data: Address = 00000F00
600 NS Size = 4, Data = 3C3C3C3C

Sending the Log Files to Customer Support

After you rerun your simulation to generate the model log files, tar those files up along
with the swiftcheck.out file you created as described in “Running FlexModel
Diagnostics” on page 110. Then zip the tarball up using gzip and send the zipped log
files to Customer Support as an e-mail attachment. Include your call number if you have
one and a description of the problem in the body of your message.
August 28, 2001 Synopsys, Inc. 113

mailto:sw_support@synopsys.com

Appendix A: Reporting Problems FlexModel User’s Manual
�

114 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Index
Index

A
About This Manual 9
AIX

compiling C files 46

B
bit_vectors 44
Branching 20
Burst transfers 25

C
C Command Mode

compiling C file 45
concurrency 43
creating C file 44
errors example 45
example 103
initialization example 44
interrupt example 35
interrupts explanation 33
interrupts, using 33
simulation time 43
switching to C 47
using 43

C Command Stream
coupled mode 22
mutiple command streams 21
uncoupled mode 22

C interrupt function 63
C program

compiling 45
running 75
switching to 47, 75

Command Core 14, 39, 41
Command Interface 17, 39, 53

command modes 17, 39
logging commands 111
organization 21

Command Mode

HDL defined 39
using HDL 20, 39

Command Sequencing 24
Command Suffixes

req 55
rslt 55

Command Syntax
FLEX commands 59
model commands 61
result identifiers 55
status parameter 56
wait flag 56

Command Types
request 26
result 25, 26, 55

Commands
flex_clear_queue 61
flex_define_intr_function 82
flex_define_intr_signal 64
flex_get_cmd_status 66
flex_get_coupling_mode 68
flex_get_inst_handle 69
flex_print_msg 73
flex_run_program 75
flex_set_coupling_mode 77
flex_start_program 81
flex_switch_intr_control 82
flex_synchronize 83
flex_wait 85
result identifiers 55

Comments?
reporting doc suggestions 12

Compiling
external C program 45

Compiling C files
AIX 46
HP-UX 45
Intel NT 47
Linux 46
NT 46
Solaris 46
August 28, 2001 Synopsys, Inc. 115

Index FlexModel User’s Manual
Constants
FLEX_ALL_QUEUES 61
FLEX_CMD_QUEUE 61
FLEX_COUPLED_MODE 23
FLEX_DEFINE 91
FLEX_DISABLE 30
FLEX_ENABLE 30
FLEX_INT 91
FLEX_RSLT_QUEUE 61
FLEX_TIMING_MODE_CYCLE 29
FLEX_TIMING_MODE_ON 28
FLEX_UNCOUPLED_MODE 23
FLEX_VEC 44, 91
FLEX_VEC_CONST 44
FLEX_WAIT_F 56
FLEX_WAIT_T 56
MAX 29
MIN 29
TYP 29

Controlling command flow 20
Conventions

command syntax 11
system-generated text 10
UNIX prompt 10
user input 10
variables 11

D
DelayRange 29
Direct C Control

compiling C files 45
restrictions 13

Documentation
online 15

E
Errors

synchronize command 28
timeout 28

Examples
branching on result 25
C Command Mode errors 45
C Command Mode example 103
C Command Mode interrupt 35

C initialization 44
logging files 111
message logging 113
non-pipelined transfers 24
stimulus logging 112
switching to C program 47
Verilog cycle-based mode 29
Verilog timing 29
Verilog timing setup 30
VHDL command mode 39
VHDL cycle-based mode 30
VHDL interrupt 33
VHDL timing 29
VHDL timing setup 30
wait_mode 26

F
FLEX Commands

command descriptions 61
command summary 59

flex_add 94
FLEX_ALL_QUEUES 61
flex_and 99
flex_assign 93
flex_assign_int 93
flex_assign_int_array 93
flex_assign_int_list 93
flex_change_setup 23
flex_clear_queue 61
FLEX_CMD_QUEUE 61
FLEX_COUPLED_MODE 23
flex_decr 94
FLEX_DEFINE 91
flex_define 90
flex_define_intr_function 35, 82
flex_define_intr_signal 33, 63, 64
FLEX_DISABLE 30
FLEX_ENABLE 30
flex_eq 94
flex_errors 92
flex_fprintf 102
flex_get_cmd_status 66
flex_get_coupling_mode 68
116 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Index
flex_get_inst_handle 69
flex_gt 95
flex_gte 95
flex_incr 94
FLEX_INT 91
flex_iprintf 102
flex_lrot 98
flex_lshift 97
flex_lt 95
flex_lte 95
flex_nand 99
flex_ne 94
flex_nor 99
flex_not 98
flex_notes 92
flex_or 98
flex_print_msg 73
flex_rrot 98
flex_rshift 97
FLEX_RSLT_QUEUE 61
flex_run_program 21, 25, 40, 75
flex_set_coupling_mode 77
flex_slice_be 96
flex_slice_be_offset 97
flex_slice_le 95
flex_slice_le_offset 96
flex_sprintf 103
flex_start_program 43, 44, 81
flex_sub 94
flex_switch_intr_control 82
flex_synchronize 27, 40, 83
FLEX_TIMING_MODE_CYCLE 29
FLEX_TIMING_MODE_ON 28
flex_to_int 100
flex_to_int_array 100
flex_to_int_list 101
FLEX_UNCOUPLED_MODE 23
FLEX_VEC 44, 90, 91
FLEX_VEC_CONST 44
flex_vec_sizeof 90
flex_wait 33, 85
FLEX_WAIT_F 34, 56, 111

FLEX_WAIT_T 33, 56, 111
flex_warnings 92
flex_xnor 99
flex_xor 99
FLEXlm license 15
flexm_setup 18
FlexModel

block diagram 14
Command Core 14, 39
command interface 17, 39, 53
controlling command flow 20
features 13
initialization 19
licensing 15
limitations 15
structure 15

flexmodel_pkg.h 44
FlexModels

Command Core 41
Functions 63
Functions C-mode

flex_add 94
flex_and 99
flex_assign 93
flex_assign_int 93
flex_assign_int_array 93
flex_assign_int_list 93
flex_decr 94
flex_define 90
flex_eq 94
flex_errors 92
flex_fprintf 102
flex_gt 95
flex_gte 95
flex_incr 94
flex_iprintf 102
flex_lrot 98
flex_lshift 97
flex_lt 95
flex_lte 95
flex_nand 99
flex_ne 94
flex_nor 99
flex_not 98
flex_notes 92
August 28, 2001 Synopsys, Inc. 117

Index FlexModel User’s Manual
flex_or 98
flex_rrot 98
flex_rshift 97
flex_slice_be 96
flex_slice_be_offset 97
flex_slice_le 95
flex_slice_le_offset 96
flex_sprintf 103
flex_sub 94
flex_to_int 100
flex_to_int_array 100
flex_to_int_list 101
FLEX_VEC 90
flex_warnings 92
flex_xnor 99
flex_xor 99

H
HDL Command Mode 20, 39
HDL Control

Command Core timing 41
HDL-C mechanism 41
multiple state commands 42
timing diagram 42

Header files 44
Help

how to get 11
HP-UX

compiling C files 45

I
Initialization 19
inst_handle 27, 55, 69
Install Process 14
Integers

in C and HDL 44
Interrupt Commands

and FLEX_WAIT_F 34
and FLEX_WAIT_T 33
model_begin_intr 34
model_end_intr 34
model_get_intr_priority 33, 36

Interrupt Service Routine 31

definition 31
invocation 31
priority-specific 31
process/always block 33

Interrupts
C Command Mode description 33
C Command Mode setup 33
clock edges 31
detection 31
handler synchronization 27
nesting of 33
reset 31
VHDL control 41
VHDL example 33

Interrupts and Exceptions 31

L
Licensing 15
Linux

compiling C files 46
LMC_HOME tree 15
Logging 109

bidirectional pins 113
cmd.model_instname.log 111
command format 111
commands 111
commands not logged 111
enabling for instance 110
log file examples 111
message logfile 113
messages 113
model_logger.v file 112
msg.model_instname.log 111
pin.model_instname.log 111
stimulus 112
stimulus example 112
strategy 110

M
MAX 29
MIN 29
Model Logging 110
model_begin_interrupt 36
118 Synopsys, Inc. August 28, 2001

FlexModel User’s Manual Index
model_end_interrupt 36
model_pkg.h 44
model_set_timing_control 30
Multiple command sources 27
Multiple Command Streams

in C testbench 21

N
Non-pipelined transfers

example 24
NT

compiling C files 46
num_instance parameter 27

P
Parameters

DelayRange 29
inst_handle 55
num_instance 27
sig_name 64
status 56
sync_label 27
sync_tag 83
sync_timeout 83
sync_total 83
TimingVersion 29
valid_f 66
wait flag 56
wait_mode 40

Pipelined bus operations 25
Pipelining

delayed result checking 27, 39
phase diagram 25
request phase 25
results phase 25

Preface 9
Propagation delays 28

R
Related documents 9
Request commands 26
Reset 21, 28

Result command 25
Results

commands 26, 55
delayed checking 27, 39
from commands 26
model state 26

Results phase 25

S
SLC

Synopsys Common Licensing 12
SmartModel

Browser tool 9
Solaris

compiling C files 46
Status Parameter

C Command Mode 57
definition 56
types of information 56

std_logic_vectors 44
Suspending command execution 83
SWIFT Interface 14
Switching

to a C program 47
Switching command sources 25
Symbol Conventions 10
sync_label parameter 27
Synchronizing command flow 27, 39
Synopsys Common Licensing 12
SystemC/SWIFT support 17

T
Tag

checking 66, 68, 77
Timing

access delays 30
Access delays 28

checks
checks for timing 28

controlling behavior 28
controlling messages 30
custom timing 28
function-only 28
August 28, 2001 Synopsys, Inc. 119

Index FlexModel User’s Manual
introduction 28
propagation delays 28
relationships 28
UDT 28
user-defined 28
Verilog example 30
VHDL example 30

TimingVersion 29
Troubleshooting 109

message log 113
message logging 113
sending a log file 110
stimulus logging 112
trace messages 113

TYP 29
Typographical conventions 10

U
User-defined timing (UDT) 28

V
Variables

flex_change_setup 23
vector representation 89
Vector Representation in C 89

9-state to 4-state 91
void 91

VERA Command Mode
class constructor 49
files in LMC_HOME 49
testbench examples 50
using 47
VERA classes 48

VERA interrupt routines 37
Verilog

cycle-based setup 29
task calls 40
timing example 30
timing setup 29

Verilog control 41
VHDL

cycle-based setup 30
procedure calls 40

testbench example 39
timing example 30
timing setup 29

VHDL control 41
Visual C++ 47

W
wait Flag 56
Wait in C Command Mode 85

timing diagram 85
wait_mode example 26
wait_mode parameter 40
Websites

Synopsys 12
120 Synopsys, Inc. August 28, 2001

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website
	Synopsys Common Licensing (SCL) Document Set

	Comments?

	1 FlexModel Overview
	What Are FlexModels?
	FlexModel Structure and Interface
	Figure 1: FlexModel Structure and Interface

	Installing FlexModels
	FlexModel Installation Tree
	Figure 2: FlexModel Structure in LMC_HOME Tree

	FlexModel Licensing
	FlexModel Limitations

	2 Using FlexModels
	Introduction
	SystemC/SWIFT Support
	Running flexm_setup
	Syntax
	Argument
	Switches
	Examples

	Setting Up the Model
	The flex_get_inst_handle Command

	Using Multiple FlexModel Instances
	Controlling the FlexModel Command Flow
	Resetting the Simulation
	Transferring Control to a C Testbench
	Using Multiple Command Streams in a C Testbench
	Using Uncoupled Mode in a C Testbench
	Burst Transfers
	Non-pipelined Bus Operations
	Pipelined Bus Operations
	Figure 3: Pipelined Bus Operations
	Pipelining With wait_mode Behavior
	Pipelining With Delayed Results Checking

	Synchronizing the Command Flow
	Synchronization Timeouts

	FlexModel Timing
	Selecting Function-only or Timing Model
	Selecting Cycle-based Mode
	Controlling Timing Checks and Delays

	FlexModel Interrupts
	Interrupt Service Routines
	Detecting and Servicing Interrupts
	Figure 4: Interrupt Detection and Servicing
	Using Multiple Models
	Interrupt Detection with C Testbenches

	Developing HDL Interrupt Routines
	Example HDL Interrupt Routine

	Developing C Interrupt Routines
	Example C Interrupt Routine

	Developing VERA Interrupt Routines
	Defining the Interrupt Signal
	Monitoring the Interrupt Signal

	3 FlexModel Command Modes
	Introduction
	Using HDL Command Mode
	VHDL Control
	Verilog Control
	HDL Control Between Model and Testbench
	Figure 5: Read_req/read_rslt Pair for Testbench
	Figure 6: Multiple Commands within a Single Clock Cycle

	Using C Command Mode
	Figure 7: Accessing a C Testbench from HDL
	Creating an External C File
	Common Errors to Avoid

	Compiling an External C File
	Switching Control to an External C Program

	Using VERA Command Mode
	FlexModel VERA Classes
	Figure 8: VERA Model Class Hierarchy

	VERA Files in the LMC_HOME Tree
	Table 1: VERA Files in the LMC_HOME Directory

	The ModelFx Class Constructor
	Examples with Top-level Testbenches
	Example: VERA Testbench Paired with Verilog Testbench
	VERA Testbench
	Example: VERA Testbench Paired with Top-level VHDL Testbench

	Accessing the Current Error Status
	Example: Accessing Current Error Status

	FlexModel Logging from the VERA Class

	4 FlexModel Command Reference
	Introduction
	Model-Specific and Global Commands
	Table 2: FlexModel Command Types

	About the Commands
	Bus and Zero-Cycle Commands
	The inst_handle Parameter
	The req and rslt Command Suffixes
	Command Result Identifiers
	The wait_mode Parameter
	The status Parameter
	Table 3: Status Parameter Error Codes

	Command Syntax Differences in VERA Command Mode
	Global FlexModel Commands
	Table 4: Global FlexModel Command Summary

	Global FlexModel Command Descriptions
	flex_clear_queue
	Syntax
	Parameters
	Description
	The flex_clear_queue command clears the queue(s) for the specified model instance. It executes im...
	Prototypes
	Examples

	flex_define_intr_function
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_define_intr_signal
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_get_cmd_status
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_get_coupling_mode
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_get_inst_handle
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_get_value
	Syntax
	Parameters
	Table 5: Returned Values and Corresponding Net States of value for flex_get_value
	Description
	Prototype
	Examples

	flex_print_msg
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_run_program
	Syntax
	Parameters
	Description
	Prototypes
	Examples

	flex_set_coupling_mode
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_set_value
	Syntax
	Parameters
	Table 6: flex_set_value path Syntax Examples
	Table 7: Allowed Values of value for flex_set_value
	Description
	Prototypes
	Examples

	flex_start_program
	Syntax
	Parameter
	Description
	Prototype
	Example

	flex_switch_intr_control
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_synchronize
	Syntax
	Parameters
	Definition
	Prototypes
	Examples

	flex_wait
	Syntax
	Parameters
	Description
	Prototype
	Example

	flex_wait_on_node
	Syntax
	Parameters
	Table 8: Syntax Examples for the path Parameter
	Description
	Prototype
	Examples

	5 FlexModel C Testbench Interface
	Introduction
	What Are FLEX_VEC Vectors?
	Creating FLEX_VEC Vectors
	FLEX_VEC Lexical Rules
	Table 9: VHDL 9-State to 4-State Conversion
	Vector Strings

	FLEX_VEC Error Handling
	FLEX_VEC Command Descriptions
	flex_assign
	flex_assign_int
	flex_assign_int_array
	flex_assign_int_list
	flex_incr
	flex_decr
	flex_add
	flex_sub
	flex_eq
	flex_ne
	flex_lt
	flex_lte
	flex_gt
	flex_gte
	flex_slice_le
	flex_slice_be
	flex_slice_le_offset
	flex_slice_be_offset
	flex_rshift
	flex_lshift
	flex_rrot
	flex_lrot
	flex_not
	flex_or
	flex_and
	flex_nor
	flex_nand
	flex_xor
	flex_xnor
	flex_to_int
	flex_to_int_array
	flex_to_int_list
	flex_iprintf
	flex_fprintf
	flex_sprintf

	C Testbench Example

	A Reporting Problems
	Introduction
	Model Versions and History
	Running FlexModel Diagnostics
	Creating FlexModel Log Files
	Command Logging
	Stimulus Logging
	Table 10: Stimulus Logging Format
	Stimulus Log Example

	Message Logging

	Sending the Log Files to Customer Support

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

