
COFFE v1.1 User’s Manual

1. Overview

COFFE is an automated transistor-level design tool for FPGAs. Automated transistor-level design of FPGA 
architectures is crucial when evaluating many different architectures with tools such as VPR. Different 
architectures have different transistor-level requirements. For instance, transistor and wire loading 
greatly depend on the FPGA’s architecture. Thus transistor-level design should be performed for each 
architecture that is evaluated to ensure a thorough exploration of the design space. COFFE enables this 
thorough design space exploration by providing area and delay estimates of properly sized FPGA circuitry 
for a user specified architecture. These estimates can then be fed into VPR to evaluate the architecture 
through place and route experiments. 

The input to COFFE is the architecture and process technology description file detailed in Section 3. 
COFFE’s outputs are area and delay estimates that can be used to create VPR architecture files. For more 
details about how COFFE works, see [1]. The remainder of this manual is a tutorial that will walk you 
through an example COFFE run.

2. Setup

COFFE is a Python program built on top of HSPICE. Consequently, you will need Python and a license for 
HSPICE to use COFFE. COFFE was developed for Python 2.7.3 and HSPICE Version F-2011.09-SP1 32-BIT. 
However, starting with COFFE v1.1, any version of HSPICE should work just fine.   

COFFE uses the ‘argparse’ Python package. This package is included in Python 2.7. If your version of 
Python is <2.7, you may need to install the ‘argparse’ package.

If you have any problems running COFFE with different versions of Python or HSPICE please let us know 
as we try to make COFFE more stable over different versions.

You can download COFFE here: http://www.eecg.toronto.edu/~vaughn/software.html 

Once you’ve unzipped the file, you should be ready to use COFFE. 

3. Creating the input file

In the ‘input_files’ directory, you will find a file called ‘example.txt’. This is an example COFFE input file. 
It’s got lots of comments explaining how things work; feel free to take those out in your own input files. 
COFFE expects its input file to describe two different kinds of parameters: architecture parameters and 
process technology parameters. 

http://www.eecg.toronto.edu/~vaughn/software.html


3.1 Architecture parameters

Figure 1 shows COFFE’s supported FPGA architecture and Table 1 describes each architecture parameter. 
Most architecture parameters are the classic VPR architecture parameters (N, K, etc.) but some 
parameters (the ones below the double line in Table 1) are new and help COFFE describe a more flexible 
BLE. See [1] for additional details. 

Figure : COFFE's supported architecture

Table : COFFE  architecture parameters 

Parameter Legal values Description
N Positive int Number of BLEs in a logic cluster.
K 4, 5, 6 LUT size. COFFE currently only supports three LUT sizes: K = 4, 5 or 6.
W Positive int Routing channel width (# routing tracks per channel).
L Positive int Routing wire length.
I Positive int Number of logic cluster inputs.
Fs Positive int Switch block flexibility.
Fcin 0 < Fcin <= 1.0 Logic cluster input connection flexibility.



Fcout 0 < Fcout <= 1.0 Logic cluster output connection flexibility.
Or Positive int Number of BLE outputs to general routing.
Ofb Positive int Number of BLE outputs to local routing (local feedback)
Fclocal 0 < Fclocal < 1.0 Local routing multiplexer population.
Rsel a, b, …, z This parameter defines whether or not the FF can accept its input from 

both the LUT output and a BLE input1 (MUX B in Figure 1). 

Setting Rsel=z tells COFFE that the FF only accepts its input from the 
LUT output. 

Setting Rsel to anything else tells COFFE that the FF accepts its input 
from both the LUT output and a BLE input. For example, Rsel=c tells 
COFFE that the FF can accept its input from both the LUT output and 
BLE input ‘c’. 

Rfb a, b, …, z
ab, ac, bcd,
abcdef, etc.

This parameter defines which LUT inputs support register feedback 
(MUX A in Figure 1). 

Setting Rfb=z tells COFFE that no LUT inputs support register feedback. 

Setting Rfb to anything else tells COFFE to put a 2:1 mux on those LUT 
inputs because they support register feedback. For example, Rfb=a 
means that LUT input ‘a’ supports register feedback. 

COFFE allows more than one LUT input to support register feedback at 
the same time. Rfb=ab means that both LUT inputs ‘a’ and ‘b’ support 
register feedback (each one would have a 2:1 mux). Similarly, Rfb=abcd 
means that LUT inputs ‘a’, ‘b’, ‘c’ and ‘d’ all support register feedback. 

3.2 Process technology parameters 

Table 2 describes COFFE’s process technology parameters. Before you can fill in any of these parameters, 
you need to choose which process technology you are going to design for. Once this choice has been 
made, obtaining values for the first 6 parameters of Table 2 is relatively straight forward. However, the 
‘vsram’ and ‘vsram_n’ parameters might be a little bit trickier to choose. Often, ‘vsram’ is boosted above 
‘vdd’ to improve pass-transistor performance but it’s difficult to tell how much of this boosting is safe. 
You might be able to get an idea of what ‘vsram’ voltage to use from [2].  

Table : Process technology parameters

Parameter Description
vdd Supply voltage in volts.

1Note that by convention, COFFE labels LUT inputs (and corresponding BLE inputs) with letters. LUT input ‘a’ is the 
LUT input that controls the first level of pass-transistors along the LUT signal path (i.e. the pass-transistors closest 
to the SRAM cells).



vsram Vdd for SRAM cells in volts.
vsram_n Vss for SRAM cells in volts.
gate_length Gate length for this process (nm).
min_tran_width Diffusion width of a minimum sized contactable  transistor (nm).
min_width_tran_area Area of a minimum width transistor (nm2).
sram_cell_area Area of an SRAM cell in units of minimum-width transistor areas (i.e. units of 

min_width_tran_area). 
model_path Path to the file that contains the SPICE models to use. See SPICE models note 

below.
model_library Library in the ‘model_path’ that contains the SPICE models to use. See SPICE 

models note below.
metal The ‘metal’ parameter allows you to add resistance and capacitance data for a 

metal layer. A ‘metal’ statement has the following format:

metal=R,C

where R and C are replaced by the resistance per nm (Ω/nm) and capacitance 
per nm (fF/nm) of wires implemented in this layer.

Each ‘metal’ statement adds a new metal layer. COFFE will use the first ‘metal’ 
statement it sees as the lowest metal layer, which is the layer where most 
wires are implemented. By default, COFFE requires two metal layers because 
it places the general routing wires in a separate layer. This allows us to do 
something like this:

metal=0.054825,0.000175 
metal=0.007862,0.000215

In this example, the second ‘metal’ statement defines a metal layer with 2x 
minimum width and spacing. Implementing the general routing wires in this 
layer allows them to benefit from the reduced resistance. 

Recall that COFFE is built on top of HSPICE. Therefore, you need to provide COFFE with SPICE models for 
your chosen process technology. To make running a COFFE example easier, we included PTM 22nm HP 
[3] spice models in the COFFE distribution (you’ll find them here: ‘spice_models/ptm22hp.l’). If you use 
these models in your work, please remember to acknowledge PTM (http://ptm.asu.edu/ ). 

The ‘model_path’ parameter of Table 2 tells COFFE which file to go look in for SPICE models. The 
‘model_library’ tells COFFE which library to load from this file. 

COFFE assumes that the model name of an NMOS transistor is ‘nmos’ and the model name of a PMOS 
transistor is ‘pmos’ and it builds its netlists as such (see ‘spice_models/ptm22hp.l’). 

Finally, you need to provide COFFE with metal resistance and capacitance for your process technology. 
This is done with the ‘metal’ parameter as described in Table 2.

http://ptm.asu.edu/


4. Running COFFE

To run COFFE on our ‘example.txt’ input file, type the following from COFFE’s root directory:

> python coffe.py input_files/example.txt

As it’s running, COFFE will print a variety of things to the terminal. Section 5 will explain what some of 
this data means. On an Intel Xeon E5-1620 3.6GHz processor core, it takes COFFE approximately 4 hours 
and 45 minutes to complete its transistor sizing work. Therefore, it might be a good idea to take a look at 
Section 5 right now instead of waiting for COFFE to finish. That way, you can compare what you read in 
Section 5 to what’s happening in the terminal in real time. 

COFFE has a few options that allow you to control some parts of its operation. These options are listed in 
Table 3. To get a list of the options in the terminal, type:

> python coffe.py -h

Table : COFFE options

Option Description
-h Help
-n Use this option to turn off transistor sizing.

 If COFFE finds the ‘-n’ option on the command line, it simply generates SPICE netlists, 
calculates area and delay its current transistor sizes and prints the results to the terminal. 

-o Use this option to specify the optimization type (local or global). Default = global.

‘-o global’ tells COFFE to perform a global optimization. This means that COFFE will choose 
transistor sizes that optimize total tile area and representative critical path delay.

‘-o local’ tells COFFE to perform a local optimization. This means that COFFE will choose 
transistor sizes that optimize each subcircuits area and delay.

-m Use this option to specify the number of top-ranked transistor sizing combinations that 
COFFE should re-balance rise and fall times on. Default = 1.

For example, ‘-m 5’ would tell COFFE to re-balance the rise and fall times on the 5 top 
ranked transistor sizing combinations before choosing a transistor sizing solution for a 
subcircuit.

-a Use this option to specify ‘b’ in the cost function: cost=area^b * delay^c. Default = 1.
-d Use this option to specify ‘c’ in the cost function: cost=area^b * delay^c. Default = 1.
-i Use this option to change the maximum number of FPGA transistor sizing iterations that 

COFFE will perform before forcing termination. Default = 6.

COFFE will terminate either when the cost stops decreasing or when a maximum number 
of FPGA transistor sizing iterations have been performed. You can change the maximum 
number of these FPGA sizing iterations with the ‘-i’ parameter.



For example, ‘-i 1’ will make COFFE terminate after a single FPGA sizing iteration.

5. Interpreting the output

As it’s running, COFFE will print a variety of things to the terminal. If you are only interested in the final 
results, skip Section 5.1 and go straight to Section 5.2. Section 5.1 will explain what some of the 
intermediate data means.

5.1 Interpreting the intermediate data

One of the first interesting things that COFFE is going to print to the terminal is ‘implementation details’.

 When COFFE creates FPGA circuitry from the input architecture parameters, it figures out a few things 
about this circuitry. For example, it determines the size (number of inputs) of routing multiplexer, it 
determines how many multiplexers there are per tile and it determines how many SRAM cells the 
multiplexer requires. Here is an example for connection blocks.  

COFFE prints implementation details like this for each one of its main subcircuits.

When COFFE starts sizing a new subcircuit, it will print a banner such as this one to tell you which 
subcircuit it is currently working on (in this case, a switch block multiplexer).

COFFE will print the transistor size ranges it is exploring for a particular subcircuit like this: 



This is a list of transistors in the ‘sb_mux’ subcircuit along with the transistor sizing ranges that COFFE is 
going to explore for each one. For example, ‘inv_sb_mux_2’ is the inverter that drives the ‘sb_mux’ 
output. Recall from [1] that although there are two transistors in an inverter, COFFE sizes the NMOS and 
PMOS of inverters as a unit based on a pre-computed P/N ratio. This is why there is only one sizing range 
for ‘inv_sv_mux_2’. 

Once COFFE is done calculating the area, delay and cost of each transistor sizing combination in these 
sizing ranges, it will print the 10 best results that it found:

The ‘area’ and ‘delay’ values that COFFE prints here depend on which type of optimization you chose 
(global or local, see Table 3). If you chose global optimization, COFFE prints tile area and representative 
critical path delay. If you chose local optimization, COFFE prints the area and delay of the current 
subcircuit that it is sizing. ‘tfall’ and ‘trise’ are always the rise and fall delay for the current subcircuit and 
they give you an indication of how well the pre-computed P/N ratio is working for this transistor sizing 
combination.

The next thing that COFFE will do is re-balance the rise and fall delays of the top M transistor sizing 
combinations where M is an option that can be set by the user (see Table 3).

In this case, M=1. So, COFFE only re-balances the rise and fall delays of the #1 best transistor sizing 
combination. Notice how ‘tfall’ and ‘trise’ are fairly equal. Compare that to Combo #106 in the ‘Top 10 
Best Cost Results’ above. Notice also how the cost of Combo #106 changed after re-balancing.  



Sometimes, when M >1, re-balancing changes the order of the top ranked transistor sizing solutions. 
Hence, Making M > 1 may give you a better transistor sizing solution but it will increase COFFE’s runtime.

Once it has found the best cost transistor sizing combination, COFFE is going to print it out to the 
terminal. This is shown in the first part of the screenshot below. 

COFFE’s next task is to check if these transistor sizing results are valid. The transistor sizes are valid if 
they are not on the boundaries of the transistor sizing ranges we initially set out to explore. As you can 
see from the screenshot, COFFE finds that ‘inv_sb_mux_1’ and ‘inv_sb_mux_2’ are on one of the bounds 
of their transistor sizing ranges (Wait! ‘inv_sb_mux_2’ has two sizes: 12.0 for the NMOS and 26.8 for the 
PMOS? Which one is COFFE using? COFFE always uses the smallest of the two transistor sizes for an 
inverter. The other one (the larger one) is obtained via the P/N ratio and thus as nothing to do with the 
transistor size range.).

COFFE found that some transistors were on the boundaries of their transistor sizing range. Therefore, 
this is not a valid transistor sizing solution. COFFE is going to adjust the transistor sizing ranges around 
the current solution and try again. COFFE informs you of this with something that looks like this.

The first transistor sizing ranges are the same ones that we saw in an earlier screenshot. COFFE is not 
exploring these ranges again; it’s just showing you what transistor sizing ranges it’s explored so far. The 
rightmost transistor sizing ranges are the ones that COFFE is going to explore next. Notice how the 
transistors that have had their sizing range changed are ‘inv_sub_mux_1’ and ‘inv_sb_mux_2’, i.e. the 
transistors whose size was on the boundaries of the first transistor sizing ranges. 

COFFE will keep adjusting the transistor sizing ranges like this until it finds transistor sizes that are 
contained entirely within the transistor sizing ranges (nothing on the boundaries).



Once COFFE is done with sizing ‘sb_mux’ it will move on to the next subcircuit and perform this same 
transistor sizing algorithm. Sizing all of the FPGA’s subcircuits once is called an FPGA sizing iteration. 
After each FPGA sizing iteration, COFFE prints out its transistor sizing results. Below is a screenshot of 
what COFFE printed after 3 FPGA sizing iterations.

Each column shows the sizing results for one FPGA sizing iteration. 

COFFE then prints the total cost of for each FPGA sizing iteration. Each row shows the results for one 
FPGA sizing iteration. 

 

COFFE terminates when the cost stops decreasing (or when a maximum number of FPGA sizing iterations 
have been performed (see Table 3)). In this case, the cost stopped decreasing after the 2nd iteration. So, 
COFFE choses the transistor sizing results of the 2nd iteration as its final solution.



5.2 Interpreting the final results

Once COFFE is done sizing the transistors of your FPGA, it will print out the area and delay of each 
subcircuit in your FPGA.

COFFE will also print out the area of important blocks in your FPGA. For example, the ‘Switch block’ area 
shown below is the total area of all the switch block multiplexers in a tile, including their SRAM cells.

To make it easier for you to create VPR architecture files from its transistor sizing results, COFFE prints 
out VPR specific area and delay numbers. The names in the screenshot below match those found in VPR 
architecture files as much as possible. The units are also given such that you can simply copy and paste 
the results to the right location in a VPR architecture file (i.e. delay in seconds and area in units of 
minimum-width transistor areas).



Finally, COFFE prints out the area, delay and cost of its transistor sizing solution. With ‘example.txt’, you 
should get the results below. 
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