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[57] ABSTRACT 

A processor-based device incorporating an on-chip trace 
cache and supporting circuitry for providing softWare per 
formance pro?ling information. A trigger control register is 
con?gured to initialize and trigger (start) a ?rst on-chip 
counter upon entry into a selected procedure. A second 
trigger control register is used to stop the ?rst counter When 
the procedure prologue of the selected procedure is entered. 
Counter values re?ecting the lapsed execution time of the 
selected procedure are then stored in the on-chip trace cache. 
Similar techniques can be used to measure other parameters 
such as interrupt handler execution times. In the disclosed 
embodiment of the invention, a second counter is also 
provided. The second counter runs continually, but is reset 
to Zero folloWing a stop trigger event caused by the second 
trigger control register. The stop trigger event also causes the 
value of the second counter to be placed in the on-chip trace 
cache. This second counter value is useful for obtaining the 
frequency of occurrence of a procedure of interest, Whereas 
the ?rst counter provides information about the procedure’s 
execution time. Either post-processing softWare executing 
on a target system, a host system utilizing a debug port, or 
off-chip trace capture hardWare can be used to analyZe the 
pro?le data. Both serial and parallel communication chan 
nels are provided for communicating the trace information 
to external devices. The processor-based device thereby 
provides a ?exible, high-performance solution for furnishing 
softWare performance pro?ling information. 

21 Claims, 8 Drawing Sheets 
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MICROPROCESSOR-BASED DEVICE 
INCORPORATING A CACHE FOR 

CAPTURING SOFTWARE PERFORMANCE 
PROFILING DATA 

RELATED APPLICATION 

This application claims priority to United States applica 
tion Ser. No. 60/043,070, ?led Apr. 8, 1997, Which is hereby 
incorporated by reference as if set forth in its entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The invention relates to softWare performance pro?ling 
support in microprocessors, and more particularly to a 
microprocessor-based device incorporating an on-chip trace 
cache capable of capturing softWare performance pro?le 
data. 

2. Description of the Related Art 
Software performance pro?ling refers to examining the 

execution times, frequencies and calling patterns of different 
softWare procedures Within a softWare program. Perfor 
mance pro?ling can be a very useful tool to a softWare 
engineer attempting to optimiZe the execution times of 
softWare applications. Various techniques for performing 
softWare pro?ling are currently used, including many base 
don statistical analysis. When performing softWare pro?ling, 
execution times and subroutine call linkage are sometimes 
captured by external (off-chip) instrumentation that moni 
tors the system buses of the computer system Which is 
executing the softWare. Alternatively, softWare can be 
“instrumented” or modi?ed to provide pro?ling information 
directly to the computer system on Which the softWare is 
executed. 

The groWth in softWare complexity, coupled With increas 
ing processor clock speeds, has placed neW burdens on 
application softWare developers and complicated the task of 
performance pro?ling. The costs associated With 
developing, debugging and optimiZing neW softWare prod 
ucts is noW a signi?cant factor in processor selection. 
Processor features that adequately facilitate softWare debug, 
including performance pro?ling, result in shorter customer 
development times and increase the processor’s attractive 
ness for use Within industry. The need to provide softWare 
debug support is particularly acute Within the embedded 
products industry, Where specialiZed on-chip circuitry is 
often combined With a processor core. 

Logic analyZers, read-only memory (ROM) emulators 
and in-circuit emulators (ICE) are frequently employed to 
capture softWare performance pro?ling data. In-circuit emu 
lators provide certain advantages over other debug 
environments, offering complete control and visibility over 
memory and register contents, as Well as overlay and trace 
memory in case system memory is insufficient. HoWever, 
use of traditional in-circuit emulators, Which involves inter 
facing a custom emulator back-end With a processor socket 
to alloW communication betWeen emulation equipment and 
the target system, is becoming increasingly dif?cult and 
expensive in today’s age of exotic packages and shrinking 
product life cycles. 

In another approach (the “Background Debug Mode” by 
Motorola, Inc.), limited on-chip debug circuitry is provided 
for basic run control. Through a dedicated serial link requir 
ing additional pins, this approach alloWs a debugger/ 
performance pro?ler to start and stop the target system and 
apply basic code breakpoints by inserting special instruc 
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2 
tions in system memory. Breakpoint registers are used to 
generate off-chip trigger pulses that function to start and stop 
timers. The serial link, hoWever, does not provide on-chip 
softWare performance pro?ling capture capabilities— 
additional dedicated pins and external trace capture hard 
Ware are required to provide pro?le data. 

As mentioned, softWare itself is sometimes instrumented 
so that it can be analyZed to collect performance pro?ling 
data. Instrumented code is often generated by a compiler 
con?gured to insert pro?ling information in order to analyZe 
selected procedures. For example, on procedure call pro 
logues and exit epilogues, the compiler may insert code used 
to activate counters that track execution times. As a speci?ed 
program run call is executed, a jump to an inserted routine 
is performed to mark a counter/timer. The execution time of 
a parent procedure that calls other, ancillary procedures can 
be determined by subtracting the execution time(s) of the 
ancillary procedures from the total execution time of the 
parent procedure. By analyZing all of the procedures of a 
module, the total execution time of the module can be 
calculated. Of course, the execution time of a given proce 
dure may vary depending on the state of variables Within the 
procedure, requiring statistical sampling to be utiliZed. 

Thus, many current solutions for softWare performance 
pro?ling have a variety of hardWare and softWare 
limitations, including: the need to instrument code, 
increased packaging and development costs, circuit 
complexity, and bandWidth matching dif?culties. AloW-cost 
procedure for capturing pro?le data Would be greatly 
desirable, especially because the limitations of the existing 
solutions are likely to be exacerbated in the future as internal 
processor clock frequencies continue to increase. 

SUMMARY OF THE INVENTION 

Brie?y, a processor-based device according to the present 
invention includes an on-chip trace cache and supporting 
circuitry for providing softWare performance pro?ling infor 
mation. The trace cache gathers information concerning the 
execution time spent in selected procedures. Performance 
pro?ling information is thereby gathered Without instru 
menting code, negatively impacting program execution 
speeds, or using expensive off-chip support equipment. 

In a system according to the present invention, a break 
point or trigger control register is con?gured to initialiZe and 
trigger (start) a ?rst on-chip counter upon entry into a 
selected procedure. A second breakpoint or trigger control 
register is used to stop the ?rst counter When the procedure 
prologue of the selected procedure is entered. Counter 
values re?ecting the lapsed execution time of the selected 
procedure are then stored in the on-chip trace cache. Similar 
techniques can be used to measure other parameters such as 
interrupt handler execution times. 

In the disclosed embodiment of the invention, a second 
counter is also provided. The second counter runs 
continually, but is reset to Zero folloWing a stop trigger event 
caused by the second trigger control register. The stop 
trigger event also causes the value of the second counter to 
be placed in the on-chip trace cache. This second counter 
value is useful for obtaining the frequency of occurrence of 
a procedure of interest, Whereas the ?rst counter provides 
information about the procedure’s execution time. 
The pro?le data can be analyZed by post-processing 

softWare resident in the computer system in Which the 
selected procedures are executed, by a host system utiliZing 
a debug port, or via off-chip trace capture hardWare. 
Generally, only one procedure is pro?led at a time. By 
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examining the trace cache, the minimum, average, and 
maximum times spent in a procedure, as Well as other 
statistical data, can be determined. One bene?cial aspect of 
the invention is that the procedure prologue and epilogue are 
not required to be modi?ed. HoWever, a compiler can still be 
utiliZed to add pro?ling information for use With the present 
invention. 

Both serial and parallel communication channels are 
provided for communicating the trace information to exter 
nal devices. In the disclosed embodiment of the invention 
controllability and observability of the pro?le (or trace) 
cache are achieved through a softWare debug port that uses 
an IEEE-1149.1-1990 compliant JTAG (Joint Test Action 
Group) interface or a similar standardiZed interface that is 
integrated into the processor-based device. 

Thus, a processor-based device supplying a ?exible, high 
performance solution for furnishing softWare performance 
pro?ling information is provided. The disclosed on-chip 
trace cache also alleviates various of the bandWidth and 
clock synchronization problems that arise in many existing 
solutions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A better understanding of the present invention can be 
obtained When the folloWing detailed description of the 
preferred embodiment is considered in conjunction With the 
folloWing draWings, in Which: 

FIG. 1 is a block diagram of a softWare debug environ 
ment utiliZing a softWare pro?ling and debug solution in 
accordance With the present invention; 

FIG. 2 is a block diagram providing details of an exem 
plary embedded processor product incorporating an on-chip 
trace cache according to the present invention; 

FIG. 3 is a simpli?ed block diagram depicting the rela 
tionship betWeen an exemplary trace cache and other com 
ponents of an embedded processor product according to the 
present invention; 

FIG. 4 is a ?oWchart illustrating softWare debug com 
mand passing according to one embodiment of the inven 
tion; 

FIG. 5 is a ?oWchart illustrating enhanced command 
passing according to a second embodiment of the invention; 

FIG. 6A illustrates performance pro?le counter sequences 
according to the present invention; 

FIG. 6B illustrates the general format of a trace cache 
entry set for reporting softWare performance pro?ling infor 
mation in accordance With the invention; and 

FIG. 7A—7G illustrate the general format of a variety of 
optional trace cache entries for reporting instruction execu 
tion information. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Turning noW to the draWings, FIG. 1 depicts an exemplary 
softWare debug environment illustrating a contemplated use 
of the present invention. A target system T is shoWn con 
taining an embedded processor device 102 according to the 
present invention coupled to system memory 106. The 
embedded processor device 102 incorporates a processor 
core 104, a trace cache 200 (FIG. 2), and a debug port 100. 
Although not considered critical to the invention, the 
embedded processor device 102 may incorporate additional 
circuitry (not shoWn) for performing application speci?c 
functions, or may take the form of a stand-alone processor 
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4 
or digital signal processor. Preferably, the debug port 100 
uses an IEE-1149.1-1990 compliant JTAG interface or other 
similar standardiZed serial port interface. 
Ahost system H is used to execute debug control softWare 

112 for transferring high-level commands and controlling 
the extraction and analysis of softWare performance pro?l 
ing information generated by the target system T. The host 
system H and target system T of the disclosed embodiment 
of the invention communicate via a serial link 110. Most 
computers are equipped With a serial or parallel interface 
Which can be inexpensively connected to the debug port 100 
by means of a serial connector 108, alloWing a variety of 
computers to function as a host system H. Alternatively, the 
serial connector 108 could be replaced With higher speed 
JTAG-to-netWork conversion equipment. Further, the target 
system T can be con?gured to internally analyZe softWare 
performance pro?le data. 

Referring noW to FIG. 2, details of the embedded pro 
cessor device 102 according to the present invention are 
provided. In addition to a processor core 104, FIG. 2 depicts 
various elements of an enhanced embodiment of the debug 
port 100 capable of utiliZing and controlling. 

Trace cache 200. Many other con?gurations are possible, 
as Will become apparent to those skilled in the art, and the 
various processor device 102 components described beloW 
are shoWn for purposes of illustrating the bene?ts associated 
With providing the on-chip trace cache 200. 

The Trace control circuitry 218 and the trace cache 200 of 
the disclosed embodiment of the invention can also coop 
erate to capture softWare performance pro?ling information. 
In addition, the trace control circuitry 218 supports “tracing” 
to a trace pad interface port 200 or to the trace cache 200 and 
provides user control for selectively activating capture of 
softWare performance pro?ling data. Other features enabled 
by the trace control circuitry 218 include programmability of 
synchroniZation address generation and user speci?ed trace 
records, as discussed in greater detail beloW. 
At a minimum, only the conventional JTAG pins need be 

supported in the softWare debug port 100 in the described 
embodiment of the invention. The JTAG pins essentially 
become a transportation mechanism, using existing pins, to 
enter pro?ling and other commands to be performed by the 
processor core 104. More speci?cally, the test clock signal 
TCK, the test mode select signal TMS, the test data input 
signal TDI and the test data output signal TDO provided to 
and driven by a J TAG Test Access Port (TAP) controller 204 
are conventional JTAG support signals and knoWn to those 
skilled in the art. As discussed in more detail beloW, an 
“enhanced” embodiment of the debug port 100 adds the 
command acknoWledge signal CMDACK, the break 
request/trace capture signal BRTC, the stop transmit signal 
STOPTX, and the trigger signal TRIG to the standard JTAG 
interface. The additional signals alloW for pinpoint accuracy 
of external breakpoint assertion and monitoring, triggering 
of external devices in response to internal breakpoints, and 
elimination of status polling of the JTAG serial interface. 
These “sideband” signals offer extra functionality and 
improve communications speeds for the debug port 100. 
These signals also aid in the operation of an optional parallel 
port 214 provided on special bond-out versions of the 
disclosed embedded processor device 102. 
The JTAG TAP controller 204 accepts standard JTAG 

serial data and control via the conventional JTAG signals. 
When a DEBUG instruction has been Written to the JTAG 
instruction register, a serial debug shifter 212 is connected to 
the JTAG test data input signal TDI and test data output 
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signal TDO, such that commands and data can then be 
loaded into and read from debug registers 210. In the 
disclosed embodiment of the invention, the debug registers 
210 include tWo debug registers for transmitting (TXi 
DATA register) and receiving (RXiDATA register) data, an 
instruction trace con?guration register (ITCR), and a debug 
control status register (DCSR). 
A control interface state machine 206 coordinates the 

loading/reading of data to/from the serial debug shifter 212 
and the debug registers 210. A command decode and pro 
cessing block 208 decodes commands/data and dispatches 
them to processor interface logic 202 and trace debug 
interface logic 216. In addition to performing other 
functions, the trace debug interface logic 216 and trace 
control logic 218 coordinate the communication of softWare 
performance pro?ling and other trace information from the 
trace cache 200 to the TAP controller 204. The processor 
interface logic 202 communicates directly With the proces 
sor core 104, as Well as the trace control logic 218. As 
described more fully beloW, parallel port logic 214 commu 
nicates With a control interface state machine 206 and the 
debug registers 210 to perform parallel data read/Write 
operations in optional bond-out versions of the embedded 
processor device 102. 

Before softWare performance pro?ling information is 
communicated via the debug port 100 (using only conven 
tional JTAG signals), the port 100 is enabled by Writing the 
public JTAG instruction DEBUG into a JTAG instruction 
register contained Within the TAP controller 204. As shoWn 
beloW, the JTAG instruction register of the disclosed 
embodiment is a 38-bit register comprising a 32-bit data 
?eld (debugidata[31:0]), a four-bit command ?eld to point 
to various internal registers and functions provided by the 
debug port 100, a command pending ?ag, and a command 
?nished ?ag. It is possible for some commands to use bits 
from the debuLdata ?eld as a sub-?eld to eXtend the 
number of available commands. 

37 5 1 O 

debugidata command P F 

JTAG Instruction Register 

This JTAG instruction register is selected by toggling the 
test mode select signal TMS. The test mode select signal 
TMS alloWs the JTAG path of clocking to be changed in the 
scan path, enabling multiple paths of varying lengths to be 
used. Preferably, the JTAG instruction register is accessible 
via a short path. This register is con?gured to include a 
“soft” register for holding values to be loaded into or 
received from speci?ed system registers. 

Referring noW to FIG. 3, a simpli?ed block diagram 
depicting the relationship betWeen the exemplary trace 
cache 200 and other components of the embedded processor 
device 102 according to the present invention is shoWn. In 
one contemplated embodiment of the invention, the trace 
cache 200 is a 128 entry ?rst-in, ?rst-out (FIFO) circular 
cache. Increasing the siZe of the trace cache 200 increases 
the amount of softWare performance pro?le and other 
instruction trace information that can be captured, although 
the amount of required silicon area may increase. 
As described in more detail beloW, the trace cache 200 of 

the disclosed embodiment of the invention stores a plurality 
of 20-bit (or more) trace entries, such as softWare perfor 
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6 
mance pro?ling and other trace information. Additional 
information, such as task identi?ers and trace capture stop/ 
start information, can also be placed in the trace cache 200. 
The contents of the trace cache 200 are provided to eXternal 
hardWare, such as the host system H, via either serial or 
parallel trace pins 230. Alternatively, the target system T can 
be con?gured to eXamine the contents of the trace cache 200 
internally. 

FIG. 4 provides a high-level ?oW chart of command 
passing When using a standard JTAG interface. Upon enter 
ing debug mode in step 400, the DEBUG instruction is 
Written to the TAP controller 204 in step 402. Next, in step 
404, the 38-bit serial value is shifted in as a Whole, With the 
command pending ?ag set and desired data (if applicable, 
otherWise Zero) in the data ?eld. Control proceeds to step 
406 Where the pending command is loaded/unloaded and the 
command ?nished ?ag checked. Completion of a command 
typically involves transferring a value betWeen a data reg 
ister and a processor register or memory/IO location. After 
the command has been completed, the processor 104 clears 
the command pending ?ag and sets the command ?nished 
?ag, at the same time storing a value in the data ?eld if 
applicable. The entire 38-bit register is scanned to monitor 
the command ?nished and command pending ?ags. If the 
pending ?ag is reset to Zero and the ?nished ?ag is set to one, 
the previous command has ?nished. The status of the ?ags 
is captured by the control interface state machine 206. A 
slave copy of the ?ags status is saved internally to determine 
if the neXt instruction should be loaded. The slave copy is 
maintained due to the possibility of a change in ?ag status 
betWeen TAP controller 204 states. This alloWs the processor 
104 to determine if the previous instruction has ?nished 
before loading the neXt instruction. 

If the ?nished ?ag is not set as determined in step 408, 
control proceeds to step 410 and the loading/unloading of 
the 38-bit command is repeated. The command ?nished ?ag 
is also checked. Control then returns to step 408. If the 
?nished ?ag is set as determined in step 408, control returns 
to step 406 for processing of the neXt command. DEBUG 
mode is eXited via a typical JTAG process. 

Returning to FIG. 2, the aforementioned optional side 
band signals are utiliZed in the enhanced debug port 100 to 
provide eXtra functionality. The optional sideband signals 
include a break request/trace capture signal BRTC that can 
function as a break request signal or a trace capture enable 
signal depending on the status of a bit set in the debug 
control/status register. If the break request/trace capture 
signal BRTC is set to function as a break request signal, it 
is asserted to cause the processor 104 to enter debug mode 
(the processor 104 can also be stopped by scanning in a halt 
command via the convention JTAG signals). If set to func 
tion as a trace capture enable signal, asserting the break 
request/trace capture signal BRTC enables capturing of trace 
information. Deasserting the signal turns trace capture off. 
The signal takes effect on the neXt instruction boundary after 
it is detected and is synchroniZed With the internal processor 
clock. The break request/trace capture signal BRTC may be 
asserted at any time. 
The trigger signal TRIG is con?gured to pulse Whenever 

an internal processor breakpoint has been asserted. The 
trigger signal TRIG may be used to trigger an eXternal 
capturing device such as a logic analyZer, and is synchro 
niZed With the trace record capture clock signal TRACE 
CLK. When a breakpoint is generated, the event is synchro 
niZed With the trace capture clock signal TRACECLK, after 
Which the trigger signal TRIG is held active for the duration 
of trace capture. 
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The stop transmit signal STOPTX is asserted when the 
processor 104 has entered DEBUG mode and is ready for 
register interrogation/modi?cation, memory or I/O reads and 
writes through the debug port 100. In the disclosed embodi 
ment of the invention, the stop transmit signal STOPTX 5 
re?ects the state of a bit in the debug control status register 
(DCSR). The stop transmit signal STOPTX is synchronous 
with the trace capture clock signal TRACECLK. 

The command acknowledge signal CMDACK is 
described in conjunction with FIG. 5, which shows simpli 
?ed command passing in the enhanced debug port 100 of 
FIG. 2. Again, to place the target system T into DEBUG 
mode, a DEBUG instruction is written to the TAP controller 
204 in step 502. Control proceeds to step 504 and the 
command acknowledge signal CMDACK is monitored by 

10 

the host system H to determine command completion status. 15 
This signal is asserted high by the target system T simulta 
neously with the command ?nished ?ag and remains high 
until the next shift cycle begins. When using the command 
acknowledge signal CMDACK, it is not necessary to shift 0 
out the JTAG instruction register to capture the command 
?nished ?ag status. The command acknowledge signal 
CMDACK transitions high on the next rising edge of the test 
clock signal TCK after the command ?nished ?ag has 
changed from Zero to one. When using the enhanced JTAG 
signals, a new shift sequence (step 506) is not started by the 
host system H until the command acknowledge signal 
CMDACK pin has been asserted high. The command 
acknowledge signal CMDACK is synchronous with the test 
clock signal TCK. The test clock signal TCK need not be 
clocked at all times, but is ideally clocked continuously 
when waiting for a command acknowledge signal 
CMDACK response. 

30 

OPERATING SYSTEM/APPLICATION 
COMMUNICATION VIA THE DEBUG PORT 100 35 

Also included in debug register block 210 is an instruction 
trace con?guration register (ITCR). This 32-bit register 
provides for the enabling/disabling and con?guration of 
software performance pro?le and instruction trace debug 
functions. Numerous such functions are contemplated, 
including various levels of tracing, trace synchroniZation 
force counts, trace initialiZation, instruction tracing modes, 
clock divider ratio information, as well as additional func 
tions shown in the following table. The ITCR is accessed 
through a JTAG instruction register write/read command as 5 
is the case with the other registers of the debug register block 
210, or via a reserved instruction. 

5O 

BIT SYMBOL DESCRIPTION/FUNCTION 

31:30 Reserved Reserved 
29 RXINTEN Enables interrupt when RX bit is set 
28 TXINTEN Enables interrupt when TX bit is set 
27 TX Indicates that the target system T is ready to 55 

transmit data to the host system H and the data is 
available in the TXLDATA register 

26 RX Indicates that data has been received from the host 
and placed in the RXLDATA register 

25 DISL1TR Disables level 1 tracing 
24 DISLOTR Disables level 0 tracing 6O 
23 DISCSB Disables current segment base trace record 
22:16 TSYNC[6:O] Sets the maximum number of Branch Sequence 

trace records that may be output by the trace control 
block 218 before a synchronizing address record is 
forced 

15 TSR3 Sets or clears trace mode on DR3 trap 
14 TSR2 Sets or clears trace mode on DR2 trap 65 
13 TSR1 Sets or clears trace mode on DR1 trap 

8 
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BIT SYMBOL DESCRIPTION/FUNCTION 

12 TSRO Sets or clears trace mode on DRO trap 
11 TRACE3 Enables Trace mode toggling using DR3 
1O TRACE2 Enables Trace mode toggling using DR2 
9 TRACE1 Enables Trace mode toggling using DR1 
8 TRACEO Enables Trace mode toggling using DRO 
7 TRON Trace on/off 
6:4 TCLK[2:O] Encoded divider ratio between internal processor 

clock and TRACECLK 
3 ITM Sets internal or external (bond-out) instruction 

tracing mode 
2 TINIT Trace initialization 
1 TRIGEN Enables pulsing of external trigger signal TRIG 

following receipt of any legacy debug breakpoint; 
independent of the Debug Trap Enable function in 
the DCSR 

O GTEN Global enable for instruction tracing through the 
internal trace buffer or via the external (bond-out) 
interface 

Instruction Trace Con?guration Register (ITCR) 
Another debug register, the debug control/status register 

(DCSR), provides an indication of when the processor 104 
has entered debug mode and allows the processor 104 to be 
forced into DEBUG mode through the enhanced JTAG 
interface. As shown in the following table, the DCSR also 
enables miscellaneous control features, such as: forcing a 
ready signal to the processor 104, controlling memory 
access space for accesses initiated through the debug port, 
disabling cache ?ush on entry to the DEBUG mode, the TX 
and RX bits, the parallel port 214 enable, forced breaks, 
forced global reset, and other functions. The ordering or 
presence of the various bits in either the ITCR or DCSR is 
not considered critical to the operation of the invention. 

BIT SYMBOL DESCRIPTION/FUNCTION 

31:12 Reserved Reserved 
11 TX Indicates that the target system T is ready to 

transmit data to the host system H and the data is 
available in the TXLDATA register 

10 RX Indicates that data has been received from the host 
and placed in the RXLDATA register 

9 DISFLUSH Disables cache ?ush on entry to DEBUG mode 
8 SMMSP Controls memory access space (normal memory 

space/system management mode memory) for 
accesses initiated through the Debug Port 100 

7 STOP Indicates whether the processor 104 is in DEBUG 
mode (equivalent to stop transmit signal STOPTX 
Forces the ready signal RDY to the processor 104 to 
be pulsed for one processor clock; useful when it is 
apparent that the processor 104 is stalled waiting for 
a ready signal from a non-responding device 
Selects the function of the break request/trace 
capture signal BRTC (break request or trace capture 
on/off) 

6 FRCRDY 

5 BRKMODE 

4 DBTEN Enables entry to debug mode or toggle trace mode 
enable on a trap/fault via processor 104 registers 
DRO-DR7 or other legacy debug trap/fault 
mechanisms 

3 PARENB Enables parallel port 214 
2 DSPC Disables stopping of internal processor clocks in the 

Halt and Stop Grant states 
1 FBRK Forces processor 104 into DEBUG mode at the next 

instruction boundary (equivalent to pulsing the 
external BRTC pin) 

0 FRESET Forces global reset 

Debug Control/Status Register (DCSR) 
When in cross debug environment such as that of FIG. 1, 

it is desirable for the parent task running on the target system 
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T to send information to the host platform H controlling it. 
This data may consist, for example, of a character stream 
from a printf() call or register information from a Task’s 
Control Block (TCB). One contemplated method for trans 
ferring the data is for the operating system to place the data 
in a knoWn region, then via a trap instruction cause DEBUG 
mode to be entered. 

Via debug port 100 commands, the host system H can 
then determine the reason that DEBUG mode Was entered, 
and respond by retrieving the data from the reserved region. 
HoWever, While the processor 104 is in DEBUG mode, 
normal processor execution is stopped. As noted above, this 
is undesirable for many real-time systems. 

This situation is addressed according to the present inven 
tion by providing tWo debug registers in the debug port 100 
for transmitting (TXiDATA register) and receiving (RXi 
DATA register) data. These registers can be accessed using 
the soft address and JTAG instruction register commands. 
As noted, after the host system H has Written a debug 
instruction to the JTAG instruction register, the serial debug 
shifter 212 is coupled to the test data input signal TDI line 
and test data output signal TDO line. 
When the processor 104 executes code causing it to 

transmit data, it ?rst tests a TX bit in the ITCR. If the TX bit 
is set to Zero then the processor 104 executes a processor 
instruction (either a memory or I/ O Write) to transfer the data 
to the TXiDATA register. The debug port 100 sets the TX 
bit in the DCSR and ITCR, indicating to the host system H 
that it is ready to transmit data. Also, the STOPTX pin is set 
high. After the host system H completes reading the transmit 
data from the TXiDATA register, the TX bit is set to Zero. 
ATXINTEN bit in the ITCR is then set to generate a signal 
to interrupt the processor 104. The interrupt is generated 
only When the TX bit in the ITCR transitions to Zero. When 
the TXINTEN bit is not set, the processor 104 polls the 
ITCR to determine the status of the TX bit to further transmit 
data. 
When the host system H desires to send data, it ?rst tests 

a RX bit in the ITCR. IF the RX bit is set to Zero, the host 
system H Writes the data to the RXiDATA register and the 
RX bit is set to one in both the DCSR and ITCR. A RXINT 
bit is then set in the ITCR to generate a signal to interrupt 
the processor 104. This interrupt is only generated When the 
RX in the ITCR transitions to one. When the RXINTEN bit 
is not set, the processor 104 polls the ITCR to verify the 
status of the RX bit. If the RX bit is set to one, the processor 
instruction is executed to read data from the RXiDATA 
register. After the data is read by the processor 104 from the 
RXiDATA register the RX bit is set to Zero. The host 
system H continuously reads the ITCR to determine the 
status of the RX bit to further send data. 

This technique enables an operating system or application 
to communicate With the host system H Without stopping 
processor 104 execution. Communication is conveniently 
achieved via the debug port 100 With minimal impact to 
on-chip application resources. In some cases it is necessary 
to disable system interrupts. This requires that the RX and 
TX bits be examined by the processor 100. In this situation, 
the communication link is driven in a polled mode. 

PARALLEL INTERFACE TO DEBUG PORT 100 

Some embedded systems require instruction trace to be 
examined While maintaining I/O and data processing opera 
tions. Without the use of a multi-tasking operating system, 
a bond-out version of the embedded processor device 102 is 
preferable to provide the trace data, as examining the trace 
cache 200 via the debug port 100 requires the processor 104 
to be stopped. 
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In the disclosed embodiment of the invention, a parallel 

port 214 is also provided in an optional bond-out version of 
the embedded processor device 102 to provide parallel 
command and data access to the debug port 100. This 
interface provides a 16-bit data path that is multiplexed With 
the trace pad interface port 220. More speci?cally, the 
parallel port 214 provides a 16-bit Wide bi-directional data 
bus (PDATA[15:0]), a 3-bit address bus (PADR[2:9]), a 
parallel debug port read/Write select signal (PRW), a trace 
valid signal TV and an instruction trace record output clock 
TRACECLOCK (TC). Although not shared With the trace 
pad interface port 220, a parallel bus request/grant signal 
pair PBREQ/PBGNT (not shoWn) are also provided. The 
parallel port 214 is enabled by setting a bit in the DCSR. 
Serial communications via the debug port 100 are not 
disabled When the parallel port 214 is enabled. 

22 21 2O 19 16 0 

TV TC PRW PADR[2:0] PDATA [15:0] 

Bond-Out Pins/Parallel Port 214 Format 

The parallel port 214 is primarily intended for fast 
doWnloads/uploads to and from target system T memory. 
HoWever, the parallel port 214 may be used for all debug 
communications With the target system T Whenever the 
processor 104 is stopped. The serial debug signals (standard 
or enhanced) are used for debug access to the target system 
T When the processor 104 is executing instructions. 

In a similar manner to the J TAG standard, all inputs to the 
parallel port 214 are sampled on the rising edge of the test 
clock signal TCK, and all outputs are changed on the falling 
edge of the test clock signal TCK. In the disclosed 
embodiment, the parallel port 214 shares pins With the trace 
pad interface 220, requiring parallel commands to be initi 
ated only While the processor 104 is stopped and the trace 
pad interface 220 is disconnected from the shared bus. 

The parallel bus request signal PBREQ and parallel bus 
grant signal PBGNT are provided to expedite multiplexing 
of the shared bus signals betWeen the trace cache 200 and the 
parallel port 214. When the host interface to the parallel port 
214 determines that the parallel bus request signal PBREQ 
is asserted, it begins driving the parallel port 214 signals and 
asserts the parallel bus grant signal PBGNT. 

When entering or leaving DEBUG mode With the parallel 
port 214 enabled, the parallel port 214 is used for the 
processor state save and restore cycles. The parallel bus 
request signal PBREQ is asserted immediately before the 
beginning of a save state sequence penultimate to entry of 
DEBUG mode. On the last restore state cycle, the parallel 
bus request signal PBREQ is deasserted after latching the 
Write data. The parallel port 214 host interface responds to 
parallel bus request signal PBREQ deassertion by tri-stating 
its parallel port drivers and deasserting the parallel bus grant 
signal PBGNT. The parallel port 214 then enables the debug 
trace port pin drivers, completes the last restore state cycle, 
asserts the command acknowledge signal CMDACK, and 
returns control of the interface to trace control logic 218. 

When communicating via the parallel port 214, the 
address pins PADR[2:0] are used for selection of the ?eld of 
the JTAG instruction register, Which is mapped to the 16-bit 
data bus PDATA[15 :0] as shoWn in the folloWing table: 
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PADR[2:0] Data Selection 

0 0 0 No selection (null operation) 
0 0 1 4-bit command register; command driven on PDATA[3:0] 
0 1 0 High 16-bits of debugidata 
0 1 1 Low 16-bits of debugidata 
100-111 Reserved 

It is not necessary to update both halves of the debugi 
data [31:0] register if only one of the halves is being used 
(e.g., on 8-bit I/O cycle data writes). the command pending 
?ag is automatically set when performing a write operation 
to the four-bit command register, and is cleared when the 
command ?nished ?ag is asserted. The host system H can 
monitor the command acknowledge signal CMDACK to 
determine when the ?nished ?ag has been asserted. Use of 
the parallel port 214 provides fully visibility of execution 
history, without requiring throttling of the processor core 
104. The trace cache 200, if needed, can be con?gured for 
use as a buffer to the parallel port 214 to alleviate any 
bandwidth matching issues. 

OPERATING SYSTEM AND DEBUGGER 
INTEGRATION 

In the disclosed embodiment of the invention, the opera 
tion of all debug supporting features, including the trace 
cache 200, can be controlled through the debug port 100 or 
via processor instructions. These processor instructions may 
be from a monitor program, target hosted debugger, or 
conventional pod-wear. The debug port 100 performs data 
moves which are initiated by serial data port commands 
rather than processor instructions. 

Operation of the processor core 104 from conventional 
pod-space is very similar to operating in DEBUG mode 
from a monitor program. All debug operations can be 
controlled via processor instructions. It makes no difference 
whether these instructions come from pod-space or regular 
memory. This enables an operating system to be extended to 
include additional debug capabilities. 

Of course, via privileged system calls such a ptrace(), 
operating systems have long supported debuggers. However, 
the incorporation of an on-chip trace cache 200 now enables 
an operating system to offer software performance pro?ling 
and instruction trace capabilities. In a debug environment 
according to the present invention, it is possible to enhance 
an operating system to support limited trace without the 
incorporation of an “external” logic analyzer or in-circuit 
emulator. 

Examples of instructions used to support internal loading 
and retrieving of trace cache 200 contents include a load 
instruction trace cache record command LITCR and a store 
instruction trace cache record command SITCR. The com 
mand LITCR loads an indexed record in the trace cache 200, 
as speci?ed by a trace cache pointer ITREC.PTR, with the 
contents of the EAX register of the processor core 104. The 
trace cache pointer ITREC.PTR is pre-incremented, such 
that the general operation of the command LITCR is as 
follows: 

In the event that the instruction trace record (see description 
of trace record format below ) is smaller that the EAX 
record, only a portion of the EAX register is utilized. 
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Similarly, the store instruction trace cache record com 

mand SITCR is used to retrieve and store (in the EAX 
register) an indexed record from the trace cache 200. The 
contents of the ECX register of the processor core 104 are 
used as an offset that is added to the trace cache pointer 
ITREC.PTR to create an index into the trace cache 200. The 
ECX register is post-incremented while the trace cache 
pointer ITREC.PTR is unaffected, such that: 

Numerous variations to the format of the LITCR and SITCR 
commands will be evident to those skilled art. 

Extending an operating system to support on-chip trace 
has certain advantages within the communications industry. 
It enables the system I/O and communication activity to be 
maintained while a task is being traces. Traditionally, the use 
of an in-circuit emulator has necessitated that the processor 
be stopped before the processor’s state and trace can be 
examined (unlike ptrace()). This disrupts continuous support 
of I/O data processing. 

Additionally, the trace cache 200 is very useful when used 
with equipment in the ?eld. If an unexpected system crash 
occurs, the trace cache 200 can be examined to observe the 
execution history leading up the crash event. When used in 
portable systems or other environments in which power 
consumption is a concern, the trace cache 200 can be 
disabled as necessary via power management circuitry. 

EXEMPLARY TRACE RECORD FORMAT 

In the disclosed embodiment of the invention, an instruc 
tion trace record is 20 bits wide and consists of two ?elds, 
TCODE (Trace Code) and TDATA (Trace Data), as well as 
a valid bit V. The TCODE ?eld is a code that identi?es the 
type of data in the TDATA ?eld. The TDATA ?eld contains 
software performance pro?le and other trace information 
used for debug purposes. 

20 19 15 0 

V TCODE (Trace Code) TDATA (Trace Data) 

Instruction Trace Record Format 

In one contemplated embodiment of the invention, the 
embedded processor device 102 reports performance pro?l 
ing data as well as data corresponding to ten other trace 
codes as set forth in the following table: 

TCODE 
# TCODE Type TDATA 

0000 Missed Trace Not Valid 
0001 Conditional Contains Branch Sequence 

Branch 
0010 Branch Target Contains Branch Target Address 
0011 Previous Contains Previous Segment Base Address 

Segment Base and Attributes 
0100 Current Contains Current Segment Base Address 

Segment Base and Attributes 
0101 Interrupt Contains Vector Number of Exception or 

Interrupt 
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TCODE 
# TCODE Type TDATA 

0110 Trace Contains Address of Most Recently Executed 
Synchronization Instruction 

0111 Multiple Trace Contains 2nd or 3rd Record of Entry With 
Multiple Records 

1000 Trace Stop Contains Instruction Address Where Trace 
Capture Was Stopped 

1001 User Trace Contains User Speci?ed Trace Data 
1010 Performance Contains Performance Pro?ling Data 

Pro?le 

The trace cache 200 is of limited storage capacity; thus a 
certain amount of “compression” in captured trace data is 
desirable. In capturing trace data, the following discussion 
assumes that an image of the program being traced is 
available to the host system H. If an address can be obtained 
from a program image (Object Module), then it is not 
provided in the trace data. Preferably, only instructions 
which disrupt the instruction ?ow are reported; and further, 
only those where the target address is in some way data 
dependent. For example, such “disrupting” events include 
call instructions or unconditional branch instructions in 
which the target address is provided from a data register or 
other memory location such as a stack. 
As indicated in the preceding table, other trace informa 

tion that can be captured includes: the target address of a trap 
or interrupt handler; the target address of a return instruc 
tion; a conditional branch instruction having a target address 
which is data register dependent (otherwise, all that is 
needed is a 1-bit trace indicating if the branch was taken or 
not); and, most frequently, addresses from procedure 
returns. Other information, such as task identi?ers and trace 
capture stop/start information, can also be placed in the trace 
cache 200. The precise contents and nature of the trace 
records are not considered critical to the invention. 

Referring now to FIG. 6A, exemplary performance pro?le 
counter sequences are illustrated. In a system according to 
the present invention, trigger control registers 219 are con 
?gured to start and stop a counter that measures lapsed time 
of execution for speci?ed procedures. Although the precise 
implementation of the trigger control registers 219 is not 
considered critical to the invention, use of conventional 
breakpoint registers (such as any of the debug registers 
DRO—DR7 present in some prior microprocessor cores) to 
perform the triggering functions is preferred. Further, it 
should be noted that in the disclosed embodiment of the 
invention normal instruction execution is not interrupted 
while pro?ling information is gathered. 

Referring more speci?cally to FIG. 6A, a ?rst on-chip 
trigger control register 219a is con?gured to trigger (start) a 
?rst counter upon entry into a speci?ed procedure. A second 
trigger control register 21% is used to stop the counter upon 
entry into the prologue of the speci?ed procedure. When the 
?rst counter is started by the start trigger, it is initialized to 
zero. When the stop trigger is generated as speci?ed by the 
second trigger control register 219b, the count value of the 
?rst counter is placed in the trace cache 200 using a 
TCODE=1010 trace entry (FIG. 6B). Similar techniques can 
be used to measure other parameters such as interrupt 
handler execution times. As described above, the trigger 
control registers 219 can also be used to pulse the trigger 
signal TRIG and to select program addresses where execu 
tion trace is to start and stop. 

In the disclosed embodiment of the invention, a second 
counter is also used. The second counter runs continually, 
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14 
but is reset to zero following a stop trigger event. The stop 
trigger event also causes the value of the second counter to 
be placed in the trace cache 200. This second counter value 
is useful for obtaining the frequency of occurrence of a 
procedure of interest, whereas the ?rst counter provides 
information about the procedure’s execution time. 

Referring to FIG. 6B, the general format of a trace cache 
200 entry set for reporting software performance pro?ling 
information in accordance with the invention is shown. As 
shown, the count value of the ?rst counter is placed in the 
trace cache 200 using a 16-bit value with a TCODE=1010 
trace entry. This TCODE=1010 trace entry may be followed 
by a TCODE=0111 entry pair containing a 32-bit count 
value re?ecting the value of the second counter. 

In one embodiment of the invention, the counter fre 
quency (i.e., resolution) of the ?rst and second counters is 
programmable. Such programmability may allow for better 
accuracy when pro?ling very low frequency or high fre 
quency events. For example, the following table depicts two 
alternate and programmable accumulation frequencies for 
the counters: 

Maximum Maximum 
Counter Frequency Timing Counter Counter 
(@ 33 MHZ Resolution Duration: Duration: 
bus speed) (4x clock scaling) 16-bit 32-bit 

1/2 bus speed 60.6 ns/8 cycles 4 ms 260 seconds 
Vs bus speed 242 ns/32 cycles 15.9 ms 1,040 seconds 

When entering a privileged level ring zero or ring one, it 
is also sometimes desirable to stop all counting (both 
counters). This enables system calls and interrupts to be 
eliminated from the measured pro?ling values. Two further 
support features may also be incorporated, including a 
means of enabling/disabling counting and also simulta 
neously resetting both count values. This aspect of the 
disclosed embodiment invention aids with task context 
switching occurring during a procedure (within a single 
task) being monitored. Via a periodic interrupt handler, it is 
also possible to examine procedures one at a time. 

Post-processing software, in conjunction with optional 
off-chip trace capture hardware, can be utilized to analyze 
the pro?le data. Thus, the trace cache 200 is utilized to 
gather information concerning the execution time spent in a 
selected procedure. Generally, only one procedure is pro?led 
at a time. By examining the trace cache 200, the minimum 
average and maximum time spent in a procedure can be 
determined (within the limitations of the samples gathered). 
Code coverage pro?ling capabilities can also be added to 
show speci?c addresses executed and not executed during 
test runs. The trace cache 200 allows statistical analysis to be 
performed using as many samples as can be stored. 

FIG. 7A illustrates an exemplary format for reporting 
conditional branch events. The outcome of up to 15 branch 
events can be grouped into a single trace entry. The 16-bit 
TDATA ?eld (or “BFIELD”) contains 1-bit branch outcome 
trace entries, and is labeled as a TCODE=0001 entry. The 
TDATA ?eld is initially cleared except for the left-most bit, 
which is set to 1. As each new conditional branch is 
encountered, a new one bit entry is added on the left and any 
other entries are shifted to the right by one bit. 

Using a 128 entry trace cache 200 allows 320 bytes of 
information to be stored. Assuming a branch frequency of 
one branch every six instructions, the disclosed trace cache 
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200 therefore provides an effective trace record of 1,536 
instructions. This estimate does not take into account the 
occurrence of call, jump and return instructions. 

The trace control logic 218 monitors instruction execution 
via processor interface logic 202. When a branch target 
address must be reported, information contained Within a 
current conditional branch TDATA ?eld is marked as com 
plete by the trace control logic 218, even if 15 entries have 
not accumulated. As shoWn in FIG. 7B, the target address (in 
a processor-based device 102 using 32-bit addressing) is 
then recorded in a trace entry pair, With the ?rst entry 
(TCODE=0010) providing the high 16-bits of the target 
address and the second entry (TCODE =0111) providing the 
loW 16-bits of the target address. When a branch target 
address is provided for a conditional jump instruction, no 
1-bit branch outcome trace entry appears for the reported 
branch. 

STARTING AND STOPPING TRACE CAPTURE 

Referring noW to FIG. 7C, it may be desirable to start and 
stop trace gathering during certain sections of program 
execution; for example, When a task context sWitch occurs. 
When trace capture is stopped, no trace entries are entered 
into the trace cache 200, nor do any appear on the bond-out 
pins of the trace port 214. Different methods are contem 
plated for enabling and disabling trace capture. For example, 
an x86 command can be provided, or an existing x86 
command can be utiliZed to toggle a bit in an I/O port 
location. Alternatively, on-chip trigger control registers 219 
can be con?gured to indicate the addresses Where trace 
capture should start/stop. When tracing is halted, a trace 
entry (TCODE=1000, TCODE=0111) recording the last 
trace address is placed in the trace stream. When tracing is 
resumed, a trace synchroniZation entry (TCODE=0110, 
TCODE=0111) containing the address of the currently 
executing instruction is generated. 

It may be important to account for segment changes that 
occur While tracing is stopped. This situation can be partially 
resolved by selecting an option to immediately folloW a 
TCODE=1000 entry With a current segment base address 
entry (TCODE=0100, TCODE=0111), as shoWn in FIG. 7C. 
A con?guration option is also desirable to enable a current 
segment base address entry at the end of a trace prior to 
entering Debug mode. By contrast, it may not be desirable 
to provide segment base information When the base has not 
changed, such as When an interrupt has occurred. 

Referring to FIG. 7D, folloWing the occurrence of an 
asynchronous or synchronous event such as an interrupt or 
trap, a TCODE=0101 trace entry is generated to provide the 
address of the target interrupt handler. HoWever, it is also 
desirable to record the address of the instruction Which Was 
interrupted by generating a trace synchroniZation (TCODE= 
0110) entry immediately prior to the interrupt entry, as Well 
as the previous segment base address (TCODE=0011). The 
trace synchroniZation entry contains the address of the last 
instruction retired before the interrupt handler commences. 

SEGMENT CHANGES 

FIG. 7E illustrates a trace entry used to report a change in 
segment parameters. When processing a trace stream, trace 
address values are combined With a segment base address to 
determine an instruction’s linear address. The base address, 
as Well as the default data operand siZe (32 or 16-bit mode), 
are subject to change. As a result, the TCODE=0011 and 
0111 entries are con?gured to provide the information 
necessary to accurately reconstruct instruction ?oW. The 
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TDATA ?eld corresponding to a TCODE=0111 entry con 
tains the high 16-bits of the previous segment base address, 
While the associated TCODE=0111 entry contains the loW 
15 or 4 bits (depending on Whether the instruction is 
executed in real or protected mode). The TCODE=0111 
entry also includes bits indicating the current segment siZe 
(32-bit or 16-bit), the operating mode (real or protected), and 
a bit indicating Whether paging is being utiliZed. Segment 
information generally relates to the previous segment, not a 
current (target) segment. Current segment information is 
obtained by stopping and examining the state of the proces 
sor core 104. 

USER SPECIFIED TRACE ENTRY 

There are circumstances When an application program or 
operating system may Wish to add additional information 
into a trace stream. For this to occur, an x86 instruction is 
preferably provided Which enables a 16-bit data value to be 
placed in the trace stream at a desired execution position. 
The instruction can be implemented as a move to I/O space, 
With the operand being provided by memory or a register. 
When the processor core 104 executes this instruction, the 
user speci?ed trace entry is captured by the trace control 
logic 218 and placed in the trace cache 200. As shoWn in 
FIG. 7F, a TCODE=1001 entry is used for this purpose in the 
disclosed embodiment of the invention. This entry might 
provide, for example, a previous or current task identi?er 
When a task sWitch occurs in a multi-tasking operating 
system. 

SYNCHRONIZATION OF TRACE DATA 

When executing typical softWare on a processor-based 
device 102, feW trace entries contain address values. Most 
entries are of the TCODE=0001 format, in Which a single bit 
indicates the result of a conditional operation. When exam 
ining a trace stream, hoWever, data can only be studied in 
relation to a knoWn program address. For example, starting 
With the oldest entry in the trace cache 200, all entries until 
an address entry are of little use. Algorithm synchroniZation 
typically begins from a trace entry providing a target 
address. 

If the trace cache 200 contains no entries providing an 
address, then trace analysis cannot occur. This situation is 
rare, but possible. For this reason, a synchroniZation register 
TSYNC is provided in the disclosed embodiment to control 
the injection of synchroniZing address information. If the 
synchroniZation register TSYNC is set to Zero, then trace 
synchroniZation entries are not generated. 

TSYNC (Trace Synchronization) 

Trace Entry SynchroniZation Entry Control Register 

FIG. 7G depicts a trace synchroniZation entry. In 
operation, a counter register is set to the value contained in 
the synchroniZation register TSYNC Whenever a trace entry 
containing a target address is generated. The counter is 
decremented by one for all other trace entries. If the counter 
reaches Zero, a trace entry is inserted (TCODE=0110) con 
taining the address of the most recently retired instruction 
(or, alternatively, the pending instruction). In addition, When 
a synchroniZing entry is recorded in the trace cache 200, it 
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also appears on the trace pins 220 to ensure suf?cient 
availability of synchronizing trace data for full-function ICE 
equipment. 

Trace entry information can also be expanded to include 
data relating to code coverage or execution performance. 
This information is useful, for example, for code testing and 
performance tuning. Even Without these enhancements, it is 
desirable to enable the processor core 104 to access the trace 
cache 200. In the case of a microconrroller device, this 
feature can be accomplished by mapping the the trace cache 
200 Within a portion of I/O or memory space. Amore general 
approach involves including an instruction Which supports 
moving trace cache 200 data into system memory. 

Thus, a processor-based device providing a ?exible, high 
performance solution for furnishing softWare performance 
pro?ling information has been described. The processor 
based device incorporates an trace cache capable of captur 
ing and providing the pro?ling information. Both serial and 
parallel communication channels are provided for commu 
nicating the pro?ling information to external devices. The 
disclosed on-chip trace cache alleviates various of the band 
Width and clock synchroniZation problems that arise in many 
existing solutions, and also alloWs less expensive external 
capture hardWare to be utiliZed When such hardWare is 
employed. 

The foregoing disclosure and description of the invention 
are illustrative and explanatory thereof, and various changes 
in the siZe, shape, materials components, circuit elements 
Wiring connections and contacts, as Well as in the details of 
the illustrated circuitry and construction and method of 
operation may be made Without departing from the spirit of 
the invention. 
What is claimed is: 
1. An electronic processor-based device adapted to 

execute a series of softWare instructions, the processor 
based device being provided With pins to permit connection 
to external conductors, the processor-based device compris 
ing: 

a processor core; and 

a trace memory coupled to the processor core for storing 
softWare performance pro?ling information related to 
softWare instructions executed by the processor core, 
the trace memory comprising a series of storage 
elements, each storage element adapted to store soft 
Ware performance pro?ling information, the trace 
memory being con?gured to maintain the most recent 
information; and 

trace control circuitry to gather the softWare performance 
pro?ling information and to provide the softWare per 
formance pro?ling information to the trace memory, 
the trace control circuitry comprising: 
a ?rst softWare pro?le counter coupled to the trace 
memory; 

a ?rst softWare pro?le trigger counter register coupled 
to the ?rst softWare pro?le counter, the ?rst softWare 
pro?le trigger control register con?gurable to acti 
vate the ?rst softWare pro?le counter upon execution 
of a predetermined softWare instruction(s); and 

a second softWare pro?le trigger control register 
coupled to a ?rst softWare pro?le counter, the second 
softWare pro?le trigger control register con?gurable 
to deactivate the ?rst softWare pro?le counter upon 
execution of an additional predetermined softWare 

instruction(s), 
Wherein deactivation of the ?rst softWare pro?le 

counter causes its count value to be stored in the 
trace memory. 
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2. The processor-based device of claim 1, the trace control 

circuitry further comprising: 
a second softWare pro?le counter coupled to the trace 

memory, 

the second softWare pro?le trigger control register further 
con?gurable to initialiZe the second softWare pro?le 
counter upon execution of the additional predetermined 
softWare instruction(s), Wherein initialiZation of the 
second softWare pro?le counter causes its count value 
immediately prior to initialiZation to be stored in the 
trace memory. 

3. The processor-based device of claim 1, Wherein the 
predetermined softWare instruction(s) indicates entry into a 
speci?ed softWare procedure, and Wherein the additional 
predetermined softWare instruction(s) indicates an exit from 
a speci?ed softWare procedure. 

4. The processor-based device of claim 1, Wherein the 
predetermined softWare instruction(s) indicates entry into a 
speci?ed interrupt handler, and Wherein the additional pre 
determined softWare instruction(s) indicates an exit from the 
speci?ed interrupt handler. 

5. The processor-based device of claim 1, Wherein the 
incrementation frequency of the ?rst counter is program 
mable betWeen at least tWo values. 

6. The processor-based device of claim 1, Wherein the 
trace memory is a ?rst-in, ?rst-out (FIFO) circular buffer. 

7. The processor-based device of claim 1, further com 
prising: 

a communication channel connected betWeen the trace 
memory and selected ones of the pins to provide for 
transmission of softWare performance pro?ling infor 
mation from the trace memory to external devices. 

8. The processor-based device of claim 7, Wherein the 
communication channel comprises a parallel interface 
betWeen the trace cache and selected ones of the pins. 

9. The processor-based device of claim 7, Wherein the 
communication channel comprises a serial interface 
betWeen the trace memory and selected ones of the pins. 

10. The processor-based device of claim 9, Wherein the 
serial interface is essentially compliant With a serial inter 
face standard. 

11. The processor-based device of claim 10, Wherein the 
serial interface is essentially compliant With an the IEEE 
1149.1-1990 JTAG interface standard. 

12. A method for providing softWare performance pro?l 
ing information With a processor-based device having a 
processor core that is executing a series of softWare 
instructions, comprising the steps of: 

providing a trace memory Within the processor-based 
device, the trace memory comprising a series of storage 
elements adapted to store softWare performance pro?l 
ing information, the trace memory being con?gured to 
maintain the most recent information; 

generating softWare performance pro?ling information 
related to softWare instructions executed by the pro 
cessor core, the generating step comprising the steps of: 
providing a softWare pro?le counter; 
activating the softWare pro?le counter upon execution 

of a softWare predetermined instruction(s); 
deactivating the softWare pro?le counter upon execu 

tion of an additional predetermined softWare 
instruction(s), the softWare performance pro?ling 
information comprising the count value of the soft 
Ware pro?le counter folloWing its deactivation; and 

storing the softWare performance pro?ling information in 
the trace memory storage elements. 
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13. The method of claim 12, wherein the predetermined 
software instruction(s) indicates entry into a speci?ed soft 
Ware procedure, and Wherein the additional predetermined 
softWare instruction(s) indicates an exit from a speci?ed 
softWare procedure. 

14. The method of claim 12, Wherein the predetermined 
softWare instruction(s) indicates entry into a speci?ed inter 
rupt handler, and Wherein the additional predetermined 
softWare instruction(s) indicates an exit from the speci?ed 
interrupt handler. 

15. The method of claim 12, Wherein the incrementation 
frequency of the ?rst softWare pro?le counter is program 
mable betWeen at least tWo values. 

16. The method of claim 12, Wherein the generating step 
comprises: 

providing a softWare pro?le counter; and 
retrieving the count value of the softWare pro?le counter 
upon execution of a predetermined softWare instruction 
(s), the softWare performance pro?ling information 
comprising the retrieved count value. 

17. The method of claim 16, further comprising the step 
of initialiZing the softWare pro?le counter and repeating the 
step of retrieving the count value to generate additional 
softWare performance pro?ling information. 

18. The method of claim 12, further comprising the steps 
of: 

providing a communication channel from the trace 
memory to the debug system; 

communicating the softWare performance pro?ling infor 
mation from the trace memory to the debug system via 
the communication channel. 

19. The method of claim 18, Wherein the communication 
channel utiliZed in the communication step is a serial 
interface. 

20. The method of claim 18, Wherein the communication 
channel utiliZed in the communication step is a parallel 
interface. 

21. A softWare development environment for generating 
and analyZing softWare performance pro?ling information, 
comprising: 
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an electronic processor-based device adapted to execute a 

series of softWare instructions the processor-based 
device comprising: 
pins for connecting to external conductors; 
a processor core; 
a trace memory coupled to the processor core for 

storing softWare performance pro?ling information 
related to softWare instructions executed by the pro 
cessor core, the trace memory comprising a series of 
storage elements, the storage elements adapted to 
store softWare performance pro?ling information, 
the trace memory being con?gured to maintain the 
most recent information; and 

trace control circuitry to gather the softWare perfor 
mance pro?ling information and to provide the soft 
Ware performance pro?ling information to the trace 
memory, the trace control circuitry comprising: 
a ?rst softWare pro?le counter coupled to the trace 
memory; 

a ?rst softWare pro?le trigger counter register 
coupled to the ?rst softWare pro?le counter, the 
?rst softWare pro?le trigger control register con 
?gurable to activate the ?rst softWare pro?le 
counter upon execution of a predetermined soft 
Ware instruction(s); and 

a second softWare pro?le trigger control register 
coupled to a ?rst softWare pro?le counter, the 
second softWare pro?le trigger control register 
con?gurable to deactivate the ?rst softWare pro?le 
counter upon execution of an additional predeter 
mined softWare instruction(s), 

Wherein deactivation of the ?rst softWare pro?le counter 
causes its count value to be stored in the trace memory; 
and 
a host system communicatively coupled to the pins of 

the processor-based device for receiving softWare 
performance pro?ling information from the trace 
memory, the host system including softWare for 
analyZing the softWare performance pro?le informa 
tion. 




