
US006154857A

United States Patent [19] [11] Patent Number: 6,154,857
Mann [45] Date of Patent: Nov. 28, 2000

[54] MICROPROCESSOR-BASED DEVICE Embedded System Engineering Show Catalogue, by
INCORPORATING A CACHE FOR
CAPTURING SOFTWARE PERFORMANCE
PROFILING DATA

Inventor: Daniel Peter Mann, Austin, Tex.

Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, Calif.

Appl. No.: 08/992,610

Filed: Dec. 17, 1997

Related US. Application Data
Provisional application No. 60/043,070, Apr. 8, 1997.

Int. Cl.7 H02H 3/05; G01R 31/28

US. Cl. 714/30; 714/38; 714/47

Field of Search 714/30, 34, 35—39,

714/47; 712/227

References Cited

U.S. PATENT DOCUMENTS

12/1972
10/1991
12/1994
7/1996
12/1996
3/1998

3,707,725
5,058,114
5,371,689
5,537,541
5,590,354
5,724,505
5,774,724 6/1998
5,898,873 4/1999

FOREIGN PATENT DOCUMENTS

0316609 A2 5/1989
0316609 A3 5/1989
0636976 A1 2/1995
0762276 A1 3/1997
0849670 A1 6/1998
59-194245 11/1984

OTHER PUBLICATIONS

Delheim 444/1

Kuboki et al. .

Tatsuma .

Wibecan 395/18321

Klapproth et al. 395/800

Argade et al. 395/18321
Heisch 395/704

Lehr 395/704

European Pat. Off. .
European Pat. Off. .

European Pat. Off. .
European Pat. Off. .

European Pat. Off. .

Japan .

Kruse, Data Structures and Program Design, Prentice—Hall,
1987, pp. 71—79.
Pentium Processor’s User Manual, Vol. 3: Architecture and
Programming Manual, by Intel Corporation, pp. 17—1
through 17—9, 1994.

Motorola, pp. 52—54, Apr/May 1997.
MEVB Quick Start Guide, by Motorola, pp. 3—5 and 7—2
(admitted prior to Dec. 17, 1997).
Choosing a Cross—Debugging Methodology, Embedded
Systems Programming, Aug. 1997.
CPU32 Reference Manual, by Motorola, pp. 7—1 through
7—13 (admitted prior to Dec. 17, 1997).

(List continued on next page.)

Primary Examiner—John A. Follansbee
Attorney, Agent, or Firm—Akin, Gump, Strauss, Hauer &
Feld, LLP

[57] ABSTRACT

A processor-based device incorporating an on-chip trace
cache and supporting circuitry for providing softWare per
formance pro?ling information. A trigger control register is
con?gured to initialize and trigger (start) a ?rst on-chip
counter upon entry into a selected procedure. A second
trigger control register is used to stop the ?rst counter When
the procedure prologue of the selected procedure is entered.
Counter values re?ecting the lapsed execution time of the
selected procedure are then stored in the on-chip trace cache.
Similar techniques can be used to measure other parameters
such as interrupt handler execution times. In the disclosed
embodiment of the invention, a second counter is also
provided. The second counter runs continually, but is reset
to Zero folloWing a stop trigger event caused by the second
trigger control register. The stop trigger event also causes the
value of the second counter to be placed in the on-chip trace
cache. This second counter value is useful for obtaining the
frequency of occurrence of a procedure of interest, Whereas
the ?rst counter provides information about the procedure’s
execution time. Either post-processing softWare executing
on a target system, a host system utilizing a debug port, or
off-chip trace capture hardWare can be used to analyZe the
pro?le data. Both serial and parallel communication chan
nels are provided for communicating the trace information
to external devices. The processor-based device thereby
provides a ?exible, high-performance solution for furnishing
softWare performance pro?ling information.

21 Claims, 8 Drawing Sheets

202\ r104
TRIG
bk

1%?9
._

ERIC 4 ‘ PROCESSOR

206 208 ‘ ' CORE
\ \ COMMAND 10010

CONTROL DECODEAND
INTERFACE PROCESSING
STATE

MACHINE 21o\ ~—-—l r216 f21a

TRACE
204\ l TRACE CONTROL ,219

onus
TMS - INTERFACE *"" BREAKPOINTITRIGGER

—% TAP SERTALDEBUG 1001c \2196
—> CONTROLLER SHTFTER _ mo CONTROLREGTSTERZ \219b

212

TRST 214\ 200\ r220
PDATA[15:0], mm]; PRW, w PARALLEL PORT

102 j

TRACE
PAD

INTERFACE

TRACECLK <—' I
TBUSHQ 0]

TRACE
CACHE

6,154,857
Page 2

OTHER PUBLICATIONS

K5 HDT, e—mail describing K5 HDT, Jan. 11, 1997.

Vanishing Wsibility, Part 2, Embedded Systems Program
ming, Aug. 1997, pp. 113 through 115.

Debugging with Real—Time Trace, Embedded Systems Pro
gramming, Aug. 1997, pp. 50 through 58.

Advanced On—chip Debug for Cola'Fire Developers,
Embedded Systems Programming, Apr/May 1997, pp. 52
through 54.
IBM Corporation, “Tailorable Embedded Event Trace”,
Dec. 1991, pp. 259—261, IBM Technical Disclosure Bulletin,
vol. 34, No. 7B, XP000282573.
Geoff Revill, “Advanced On—chip Debug for ColdFire
Developers”, Embedded System Engineering, Apr./May
1997, pp. 52—54.

U.S. Patent Nov. 28,2000 Sheet 1 0f8 6,154,857

@5553 SE28 gamma

v .GE m2,

U.S. Patent Nov. 28,2000 Sheet 4 0f 8 6,154,857

400

I START DEBUG i

402
/

WRITE DEBUG
INSTRUCTION T0
TAP CONTROLLER

404
f

LUADIUNLUAD 38-BIT
SERIAL VALUE WITH
PENDING BIT SET

406
f

LUADIUNLDAD NEW
38-BIT COMMAND, ‘

CHECK FINISHED FLAG

NU
l f 410

REPEAT LUADIUNLUAD
0F 38-BIT COMMAND,
CHECK FINISHED FLAG

FIG. 4

U.S. Patent Nov. 28,2000 Sheet 5 0f8 6,154,857

START DEBUG

502

WHITE DEBUG
INSTRUCTION TU
TAP CONTROLLER

506 r 504

LOADIUNLUAD DEBUG
SCAN CHAIN WITH <-—_-YES CMDACK - I?
PENDING BIT SET

N0

FIG. 5

U.S. Patent Nov. 28,2000 Sheet 6 0f8 6,154,857

start trigger stop trigger start trigger stop trigger start trigger stop trigger
reset

trace entr
First counter]— l—— L> l—-—— f and reset y

Second counter

20 19 15 U
0 TCODE=1U Counter incremented between Start-and Stop-trigger events

4] l l l l l l l I I I l l l l l l l

sleconrli coulnter recorrliing tlime llietween Stop-trigger evelnts, tlrigh 16 bits

0 ITCDIIJE1=7l SIecomIi coulnter recorriing tlime llletween Stop-trigger evelnts, llow 116 bits

U.S. Patent Nov. 28,2000 Sheet 7 0f 8 6,154,857

20 15 0

0 U 0 [l 1 B3 B2 B1 1 U U 0 U 0 0 [I 0 U U U U
I l I I I I I I I I l I I l I l I I

TCODE-1 Only 3-bits of BFIELD used

20 19 15 D
U TCUDE= 2 TADDR.H, high 16-bits of EIP target logical address

I I I I I I I I I I I I I I I I I I

0 TCO|JE= 7 TADDR.L, Iow 16-bits of EIP target logical address
I I I I I I I I I I I I I I I l I I

20 1e 15 I 0

U TCUDE- 8 TADDR.H, high 16-bits of EIP stop instruction logical address
I l I I l I I I I I I I I I - I I I I

0 ITCIJIIJE==7l I TADDFLL, low 16—bilts of EIP stop ilnstrulctionl logical adldressI I | I I I I

0 ITCOIIJEHZI I l BAIDDREH, hilgh 1[?‘-bitls of current seglment| base address I I

0 TCODE-7 BADIIFLL, Ilow 15—4lbits Iof selgmenlt base address' — PG 82 ?lP
I I I I

20 19 15 ' 0

V TCUDE-I 1 BFIELD
I I I I I l I I I I I I I I I I I I

0 lTCL'JIIJE-Bl I TAIIDRIII, higlh 16l-bitslof EIIP interrupted instruction llogical addlressI
[1 TCUDE= 7 TA DDR.L, low v1 B-bits of EIP interrupted instruction logical address

I I I I l l I I I I I l I I I l I I

U TCDDE-B BADDRH, high 16-bits of previous segment base address
I I I I I I I I I I I l I I I I I I

U lTC0DE1=7l IIBADDlRI, low 15—4lbits Iof se‘gmenlt basle addressl — PG 32 EIP l I

l] TCUDE= 5 Vector Number
I I I I I I I I I I I I l I I I I I I

l] lTCDEIIE -71 l I TAqDRJ-ll, high 16Thits|of interrupt handler llogical addressl I

U TCUDE-7 TADDRL, low 16-bits of instruction logical address
I l I I I I I I I I I l I I l I I I

FIG. 7D

U.S. Patent Nov. 28,2000 Sheet 8 of8 6,154,857

20 19 15 0

V [IE-1 1 BFlELD
I I I I I I I I I I I I I I I

[1 IJE- 3 BADDRH, high 16-bits of previous segment base address
I I I I I I I I I l I I l I I I I

U TCUDE- 7 BADDRL, low 15-4 bits of segment base address - pg 31 ?lp
I I I I I I I I I I I I I l ‘

0 DE-Z TADDR.H, high 16-bits of long-jump target logical address
I I I I I I l I I I I I I I I I I

[1 DE = 7 TADDR.L, low 16-bits of long—jump target logical address
I I I l l I I I l I I I I l I l l

20 19 15 [l
0 TCODE - 9 16-bit value supplied by instruction

I I I I I I I l I I I l I l I I I l

20 19 15 U
TCUDE-B ' TADDR.H, high 16—bits of EIP for current instruction logical address
I I l I l l I I I l I I I l I l l I

0 TCDDE-7 TADDR.L, low 16-bits of EIP for current instruction logical address
I l l I I I I l I l I l I I I l I I

6,154,857
1

MICROPROCESSOR-BASED DEVICE
INCORPORATING A CACHE FOR

CAPTURING SOFTWARE PERFORMANCE
PROFILING DATA

RELATED APPLICATION

This application claims priority to United States applica
tion Ser. No. 60/043,070, ?led Apr. 8, 1997, Which is hereby
incorporated by reference as if set forth in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to softWare performance pro?ling
support in microprocessors, and more particularly to a
microprocessor-based device incorporating an on-chip trace
cache capable of capturing softWare performance pro?le
data.

2. Description of the Related Art
Software performance pro?ling refers to examining the

execution times, frequencies and calling patterns of different
softWare procedures Within a softWare program. Perfor
mance pro?ling can be a very useful tool to a softWare
engineer attempting to optimiZe the execution times of
softWare applications. Various techniques for performing
softWare pro?ling are currently used, including many base
don statistical analysis. When performing softWare pro?ling,
execution times and subroutine call linkage are sometimes
captured by external (off-chip) instrumentation that moni
tors the system buses of the computer system Which is
executing the softWare. Alternatively, softWare can be
“instrumented” or modi?ed to provide pro?ling information
directly to the computer system on Which the softWare is
executed.

The groWth in softWare complexity, coupled With increas
ing processor clock speeds, has placed neW burdens on
application softWare developers and complicated the task of
performance pro?ling. The costs associated With
developing, debugging and optimiZing neW softWare prod
ucts is noW a signi?cant factor in processor selection.
Processor features that adequately facilitate softWare debug,
including performance pro?ling, result in shorter customer
development times and increase the processor’s attractive
ness for use Within industry. The need to provide softWare
debug support is particularly acute Within the embedded
products industry, Where specialiZed on-chip circuitry is
often combined With a processor core.

Logic analyZers, read-only memory (ROM) emulators
and in-circuit emulators (ICE) are frequently employed to
capture softWare performance pro?ling data. In-circuit emu
lators provide certain advantages over other debug
environments, offering complete control and visibility over
memory and register contents, as Well as overlay and trace
memory in case system memory is insufficient. HoWever,
use of traditional in-circuit emulators, Which involves inter
facing a custom emulator back-end With a processor socket
to alloW communication betWeen emulation equipment and
the target system, is becoming increasingly dif?cult and
expensive in today’s age of exotic packages and shrinking
product life cycles.

In another approach (the “Background Debug Mode” by
Motorola, Inc.), limited on-chip debug circuitry is provided
for basic run control. Through a dedicated serial link requir
ing additional pins, this approach alloWs a debugger/
performance pro?ler to start and stop the target system and
apply basic code breakpoints by inserting special instruc

10

15

20

25

30

35

40

45

50

55

60

65

2
tions in system memory. Breakpoint registers are used to
generate off-chip trigger pulses that function to start and stop
timers. The serial link, hoWever, does not provide on-chip
softWare performance pro?ling capture capabilities—
additional dedicated pins and external trace capture hard
Ware are required to provide pro?le data.

As mentioned, softWare itself is sometimes instrumented
so that it can be analyZed to collect performance pro?ling
data. Instrumented code is often generated by a compiler
con?gured to insert pro?ling information in order to analyZe
selected procedures. For example, on procedure call pro
logues and exit epilogues, the compiler may insert code used
to activate counters that track execution times. As a speci?ed
program run call is executed, a jump to an inserted routine
is performed to mark a counter/timer. The execution time of
a parent procedure that calls other, ancillary procedures can
be determined by subtracting the execution time(s) of the
ancillary procedures from the total execution time of the
parent procedure. By analyZing all of the procedures of a
module, the total execution time of the module can be
calculated. Of course, the execution time of a given proce
dure may vary depending on the state of variables Within the
procedure, requiring statistical sampling to be utiliZed.

Thus, many current solutions for softWare performance
pro?ling have a variety of hardWare and softWare
limitations, including: the need to instrument code,
increased packaging and development costs, circuit
complexity, and bandWidth matching dif?culties. AloW-cost
procedure for capturing pro?le data Would be greatly
desirable, especially because the limitations of the existing
solutions are likely to be exacerbated in the future as internal
processor clock frequencies continue to increase.

SUMMARY OF THE INVENTION

Brie?y, a processor-based device according to the present
invention includes an on-chip trace cache and supporting
circuitry for providing softWare performance pro?ling infor
mation. The trace cache gathers information concerning the
execution time spent in selected procedures. Performance
pro?ling information is thereby gathered Without instru
menting code, negatively impacting program execution
speeds, or using expensive off-chip support equipment.

In a system according to the present invention, a break
point or trigger control register is con?gured to initialiZe and
trigger (start) a ?rst on-chip counter upon entry into a
selected procedure. A second breakpoint or trigger control
register is used to stop the ?rst counter When the procedure
prologue of the selected procedure is entered. Counter
values re?ecting the lapsed execution time of the selected
procedure are then stored in the on-chip trace cache. Similar
techniques can be used to measure other parameters such as
interrupt handler execution times.

In the disclosed embodiment of the invention, a second
counter is also provided. The second counter runs
continually, but is reset to Zero folloWing a stop trigger event
caused by the second trigger control register. The stop
trigger event also causes the value of the second counter to
be placed in the on-chip trace cache. This second counter
value is useful for obtaining the frequency of occurrence of
a procedure of interest, Whereas the ?rst counter provides
information about the procedure’s execution time.
The pro?le data can be analyZed by post-processing

softWare resident in the computer system in Which the
selected procedures are executed, by a host system utiliZing
a debug port, or via off-chip trace capture hardWare.
Generally, only one procedure is pro?led at a time. By

6,154,857
3

examining the trace cache, the minimum, average, and
maximum times spent in a procedure, as Well as other
statistical data, can be determined. One bene?cial aspect of
the invention is that the procedure prologue and epilogue are
not required to be modi?ed. HoWever, a compiler can still be
utiliZed to add pro?ling information for use With the present
invention.

Both serial and parallel communication channels are
provided for communicating the trace information to exter
nal devices. In the disclosed embodiment of the invention
controllability and observability of the pro?le (or trace)
cache are achieved through a softWare debug port that uses
an IEEE-1149.1-1990 compliant JTAG (Joint Test Action
Group) interface or a similar standardiZed interface that is
integrated into the processor-based device.

Thus, a processor-based device supplying a ?exible, high
performance solution for furnishing softWare performance
pro?ling information is provided. The disclosed on-chip
trace cache also alleviates various of the bandWidth and
clock synchronization problems that arise in many existing
solutions.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained When the folloWing detailed description of the
preferred embodiment is considered in conjunction With the
folloWing draWings, in Which:

FIG. 1 is a block diagram of a softWare debug environ
ment utiliZing a softWare pro?ling and debug solution in
accordance With the present invention;

FIG. 2 is a block diagram providing details of an exem
plary embedded processor product incorporating an on-chip
trace cache according to the present invention;

FIG. 3 is a simpli?ed block diagram depicting the rela
tionship betWeen an exemplary trace cache and other com
ponents of an embedded processor product according to the
present invention;

FIG. 4 is a ?oWchart illustrating softWare debug com
mand passing according to one embodiment of the inven
tion;

FIG. 5 is a ?oWchart illustrating enhanced command
passing according to a second embodiment of the invention;

FIG. 6A illustrates performance pro?le counter sequences
according to the present invention;

FIG. 6B illustrates the general format of a trace cache
entry set for reporting softWare performance pro?ling infor
mation in accordance With the invention; and

FIG. 7A—7G illustrate the general format of a variety of
optional trace cache entries for reporting instruction execu
tion information.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Turning noW to the draWings, FIG. 1 depicts an exemplary
softWare debug environment illustrating a contemplated use
of the present invention. A target system T is shoWn con
taining an embedded processor device 102 according to the
present invention coupled to system memory 106. The
embedded processor device 102 incorporates a processor
core 104, a trace cache 200 (FIG. 2), and a debug port 100.
Although not considered critical to the invention, the
embedded processor device 102 may incorporate additional
circuitry (not shoWn) for performing application speci?c
functions, or may take the form of a stand-alone processor

10

15

25

35

45

55

65

4
or digital signal processor. Preferably, the debug port 100
uses an IEE-1149.1-1990 compliant JTAG interface or other
similar standardiZed serial port interface.
Ahost system H is used to execute debug control softWare

112 for transferring high-level commands and controlling
the extraction and analysis of softWare performance pro?l
ing information generated by the target system T. The host
system H and target system T of the disclosed embodiment
of the invention communicate via a serial link 110. Most
computers are equipped With a serial or parallel interface
Which can be inexpensively connected to the debug port 100
by means of a serial connector 108, alloWing a variety of
computers to function as a host system H. Alternatively, the
serial connector 108 could be replaced With higher speed
JTAG-to-netWork conversion equipment. Further, the target
system T can be con?gured to internally analyZe softWare
performance pro?le data.

Referring noW to FIG. 2, details of the embedded pro
cessor device 102 according to the present invention are
provided. In addition to a processor core 104, FIG. 2 depicts
various elements of an enhanced embodiment of the debug
port 100 capable of utiliZing and controlling.

Trace cache 200. Many other con?gurations are possible,
as Will become apparent to those skilled in the art, and the
various processor device 102 components described beloW
are shoWn for purposes of illustrating the bene?ts associated
With providing the on-chip trace cache 200.

The Trace control circuitry 218 and the trace cache 200 of
the disclosed embodiment of the invention can also coop
erate to capture softWare performance pro?ling information.
In addition, the trace control circuitry 218 supports “tracing”
to a trace pad interface port 200 or to the trace cache 200 and
provides user control for selectively activating capture of
softWare performance pro?ling data. Other features enabled
by the trace control circuitry 218 include programmability of
synchroniZation address generation and user speci?ed trace
records, as discussed in greater detail beloW.
At a minimum, only the conventional JTAG pins need be

supported in the softWare debug port 100 in the described
embodiment of the invention. The JTAG pins essentially
become a transportation mechanism, using existing pins, to
enter pro?ling and other commands to be performed by the
processor core 104. More speci?cally, the test clock signal
TCK, the test mode select signal TMS, the test data input
signal TDI and the test data output signal TDO provided to
and driven by a J TAG Test Access Port (TAP) controller 204
are conventional JTAG support signals and knoWn to those
skilled in the art. As discussed in more detail beloW, an
“enhanced” embodiment of the debug port 100 adds the
command acknoWledge signal CMDACK, the break
request/trace capture signal BRTC, the stop transmit signal
STOPTX, and the trigger signal TRIG to the standard JTAG
interface. The additional signals alloW for pinpoint accuracy
of external breakpoint assertion and monitoring, triggering
of external devices in response to internal breakpoints, and
elimination of status polling of the JTAG serial interface.
These “sideband” signals offer extra functionality and
improve communications speeds for the debug port 100.
These signals also aid in the operation of an optional parallel
port 214 provided on special bond-out versions of the
disclosed embedded processor device 102.
The JTAG TAP controller 204 accepts standard JTAG

serial data and control via the conventional JTAG signals.
When a DEBUG instruction has been Written to the JTAG
instruction register, a serial debug shifter 212 is connected to
the JTAG test data input signal TDI and test data output

6,154,857
5

signal TDO, such that commands and data can then be
loaded into and read from debug registers 210. In the
disclosed embodiment of the invention, the debug registers
210 include tWo debug registers for transmitting (TXi
DATA register) and receiving (RXiDATA register) data, an
instruction trace con?guration register (ITCR), and a debug
control status register (DCSR).
A control interface state machine 206 coordinates the

loading/reading of data to/from the serial debug shifter 212
and the debug registers 210. A command decode and pro
cessing block 208 decodes commands/data and dispatches
them to processor interface logic 202 and trace debug
interface logic 216. In addition to performing other
functions, the trace debug interface logic 216 and trace
control logic 218 coordinate the communication of softWare
performance pro?ling and other trace information from the
trace cache 200 to the TAP controller 204. The processor
interface logic 202 communicates directly With the proces
sor core 104, as Well as the trace control logic 218. As
described more fully beloW, parallel port logic 214 commu
nicates With a control interface state machine 206 and the
debug registers 210 to perform parallel data read/Write
operations in optional bond-out versions of the embedded
processor device 102.

Before softWare performance pro?ling information is
communicated via the debug port 100 (using only conven
tional JTAG signals), the port 100 is enabled by Writing the
public JTAG instruction DEBUG into a JTAG instruction
register contained Within the TAP controller 204. As shoWn
beloW, the JTAG instruction register of the disclosed
embodiment is a 38-bit register comprising a 32-bit data
?eld (debugidata[31:0]), a four-bit command ?eld to point
to various internal registers and functions provided by the
debug port 100, a command pending ?ag, and a command
?nished ?ag. It is possible for some commands to use bits
from the debuLdata ?eld as a sub-?eld to eXtend the
number of available commands.

37 5 1 O

debugidata command P F

JTAG Instruction Register

This JTAG instruction register is selected by toggling the
test mode select signal TMS. The test mode select signal
TMS alloWs the JTAG path of clocking to be changed in the
scan path, enabling multiple paths of varying lengths to be
used. Preferably, the JTAG instruction register is accessible
via a short path. This register is con?gured to include a
“soft” register for holding values to be loaded into or
received from speci?ed system registers.

Referring noW to FIG. 3, a simpli?ed block diagram
depicting the relationship betWeen the exemplary trace
cache 200 and other components of the embedded processor
device 102 according to the present invention is shoWn. In
one contemplated embodiment of the invention, the trace
cache 200 is a 128 entry ?rst-in, ?rst-out (FIFO) circular
cache. Increasing the siZe of the trace cache 200 increases
the amount of softWare performance pro?le and other
instruction trace information that can be captured, although
the amount of required silicon area may increase.
As described in more detail beloW, the trace cache 200 of

the disclosed embodiment of the invention stores a plurality
of 20-bit (or more) trace entries, such as softWare perfor

15

25

35

45

55

65

6
mance pro?ling and other trace information. Additional
information, such as task identi?ers and trace capture stop/
start information, can also be placed in the trace cache 200.
The contents of the trace cache 200 are provided to eXternal
hardWare, such as the host system H, via either serial or
parallel trace pins 230. Alternatively, the target system T can
be con?gured to eXamine the contents of the trace cache 200
internally.

FIG. 4 provides a high-level ?oW chart of command
passing When using a standard JTAG interface. Upon enter
ing debug mode in step 400, the DEBUG instruction is
Written to the TAP controller 204 in step 402. Next, in step
404, the 38-bit serial value is shifted in as a Whole, With the
command pending ?ag set and desired data (if applicable,
otherWise Zero) in the data ?eld. Control proceeds to step
406 Where the pending command is loaded/unloaded and the
command ?nished ?ag checked. Completion of a command
typically involves transferring a value betWeen a data reg
ister and a processor register or memory/IO location. After
the command has been completed, the processor 104 clears
the command pending ?ag and sets the command ?nished
?ag, at the same time storing a value in the data ?eld if
applicable. The entire 38-bit register is scanned to monitor
the command ?nished and command pending ?ags. If the
pending ?ag is reset to Zero and the ?nished ?ag is set to one,
the previous command has ?nished. The status of the ?ags
is captured by the control interface state machine 206. A
slave copy of the ?ags status is saved internally to determine
if the neXt instruction should be loaded. The slave copy is
maintained due to the possibility of a change in ?ag status
betWeen TAP controller 204 states. This alloWs the processor
104 to determine if the previous instruction has ?nished
before loading the neXt instruction.

If the ?nished ?ag is not set as determined in step 408,
control proceeds to step 410 and the loading/unloading of
the 38-bit command is repeated. The command ?nished ?ag
is also checked. Control then returns to step 408. If the
?nished ?ag is set as determined in step 408, control returns
to step 406 for processing of the neXt command. DEBUG
mode is eXited via a typical JTAG process.

Returning to FIG. 2, the aforementioned optional side
band signals are utiliZed in the enhanced debug port 100 to
provide eXtra functionality. The optional sideband signals
include a break request/trace capture signal BRTC that can
function as a break request signal or a trace capture enable
signal depending on the status of a bit set in the debug
control/status register. If the break request/trace capture
signal BRTC is set to function as a break request signal, it
is asserted to cause the processor 104 to enter debug mode
(the processor 104 can also be stopped by scanning in a halt
command via the convention JTAG signals). If set to func
tion as a trace capture enable signal, asserting the break
request/trace capture signal BRTC enables capturing of trace
information. Deasserting the signal turns trace capture off.
The signal takes effect on the neXt instruction boundary after
it is detected and is synchroniZed With the internal processor
clock. The break request/trace capture signal BRTC may be
asserted at any time.
The trigger signal TRIG is con?gured to pulse Whenever

an internal processor breakpoint has been asserted. The
trigger signal TRIG may be used to trigger an eXternal
capturing device such as a logic analyZer, and is synchro
niZed With the trace record capture clock signal TRACE
CLK. When a breakpoint is generated, the event is synchro
niZed With the trace capture clock signal TRACECLK, after
Which the trigger signal TRIG is held active for the duration
of trace capture.

6,154,857
7

The stop transmit signal STOPTX is asserted when the
processor 104 has entered DEBUG mode and is ready for
register interrogation/modi?cation, memory or I/O reads and
writes through the debug port 100. In the disclosed embodi
ment of the invention, the stop transmit signal STOPTX 5
re?ects the state of a bit in the debug control status register
(DCSR). The stop transmit signal STOPTX is synchronous
with the trace capture clock signal TRACECLK.

The command acknowledge signal CMDACK is
described in conjunction with FIG. 5, which shows simpli
?ed command passing in the enhanced debug port 100 of
FIG. 2. Again, to place the target system T into DEBUG
mode, a DEBUG instruction is written to the TAP controller
204 in step 502. Control proceeds to step 504 and the
command acknowledge signal CMDACK is monitored by

10

the host system H to determine command completion status. 15
This signal is asserted high by the target system T simulta
neously with the command ?nished ?ag and remains high
until the next shift cycle begins. When using the command
acknowledge signal CMDACK, it is not necessary to shift 0
out the JTAG instruction register to capture the command
?nished ?ag status. The command acknowledge signal
CMDACK transitions high on the next rising edge of the test
clock signal TCK after the command ?nished ?ag has
changed from Zero to one. When using the enhanced JTAG
signals, a new shift sequence (step 506) is not started by the
host system H until the command acknowledge signal
CMDACK pin has been asserted high. The command
acknowledge signal CMDACK is synchronous with the test
clock signal TCK. The test clock signal TCK need not be
clocked at all times, but is ideally clocked continuously
when waiting for a command acknowledge signal
CMDACK response.

30

OPERATING SYSTEM/APPLICATION
COMMUNICATION VIA THE DEBUG PORT 100 35

Also included in debug register block 210 is an instruction
trace con?guration register (ITCR). This 32-bit register
provides for the enabling/disabling and con?guration of
software performance pro?le and instruction trace debug
functions. Numerous such functions are contemplated,
including various levels of tracing, trace synchroniZation
force counts, trace initialiZation, instruction tracing modes,
clock divider ratio information, as well as additional func
tions shown in the following table. The ITCR is accessed
through a JTAG instruction register write/read command as 5
is the case with the other registers of the debug register block
210, or via a reserved instruction.

5O

BIT SYMBOL DESCRIPTION/FUNCTION

31:30 Reserved Reserved
29 RXINTEN Enables interrupt when RX bit is set
28 TXINTEN Enables interrupt when TX bit is set
27 TX Indicates that the target system T is ready to 55

transmit data to the host system H and the data is
available in the TXLDATA register

26 RX Indicates that data has been received from the host
and placed in the RXLDATA register

25 DISL1TR Disables level 1 tracing
24 DISLOTR Disables level 0 tracing 6O
23 DISCSB Disables current segment base trace record
22:16 TSYNC[6:O] Sets the maximum number of Branch Sequence

trace records that may be output by the trace control
block 218 before a synchronizing address record is
forced

15 TSR3 Sets or clears trace mode on DR3 trap
14 TSR2 Sets or clears trace mode on DR2 trap 65
13 TSR1 Sets or clears trace mode on DR1 trap

8

-continued

BIT SYMBOL DESCRIPTION/FUNCTION

12 TSRO Sets or clears trace mode on DRO trap
11 TRACE3 Enables Trace mode toggling using DR3
1O TRACE2 Enables Trace mode toggling using DR2
9 TRACE1 Enables Trace mode toggling using DR1
8 TRACEO Enables Trace mode toggling using DRO
7 TRON Trace on/off
6:4 TCLK[2:O] Encoded divider ratio between internal processor

clock and TRACECLK
3 ITM Sets internal or external (bond-out) instruction

tracing mode
2 TINIT Trace initialization
1 TRIGEN Enables pulsing of external trigger signal TRIG

following receipt of any legacy debug breakpoint;
independent of the Debug Trap Enable function in
the DCSR

O GTEN Global enable for instruction tracing through the
internal trace buffer or via the external (bond-out)
interface

Instruction Trace Con?guration Register (ITCR)
Another debug register, the debug control/status register

(DCSR), provides an indication of when the processor 104
has entered debug mode and allows the processor 104 to be
forced into DEBUG mode through the enhanced JTAG
interface. As shown in the following table, the DCSR also
enables miscellaneous control features, such as: forcing a
ready signal to the processor 104, controlling memory
access space for accesses initiated through the debug port,
disabling cache ?ush on entry to the DEBUG mode, the TX
and RX bits, the parallel port 214 enable, forced breaks,
forced global reset, and other functions. The ordering or
presence of the various bits in either the ITCR or DCSR is
not considered critical to the operation of the invention.

BIT SYMBOL DESCRIPTION/FUNCTION

31:12 Reserved Reserved
11 TX Indicates that the target system T is ready to

transmit data to the host system H and the data is
available in the TXLDATA register

10 RX Indicates that data has been received from the host
and placed in the RXLDATA register

9 DISFLUSH Disables cache ?ush on entry to DEBUG mode
8 SMMSP Controls memory access space (normal memory

space/system management mode memory) for
accesses initiated through the Debug Port 100

7 STOP Indicates whether the processor 104 is in DEBUG
mode (equivalent to stop transmit signal STOPTX
Forces the ready signal RDY to the processor 104 to
be pulsed for one processor clock; useful when it is
apparent that the processor 104 is stalled waiting for
a ready signal from a non-responding device
Selects the function of the break request/trace
capture signal BRTC (break request or trace capture
on/off)

6 FRCRDY

5 BRKMODE

4 DBTEN Enables entry to debug mode or toggle trace mode
enable on a trap/fault via processor 104 registers
DRO-DR7 or other legacy debug trap/fault
mechanisms

3 PARENB Enables parallel port 214
2 DSPC Disables stopping of internal processor clocks in the

Halt and Stop Grant states
1 FBRK Forces processor 104 into DEBUG mode at the next

instruction boundary (equivalent to pulsing the
external BRTC pin)

0 FRESET Forces global reset

Debug Control/Status Register (DCSR)
When in cross debug environment such as that of FIG. 1,

it is desirable for the parent task running on the target system

6,154,857
9

T to send information to the host platform H controlling it.
This data may consist, for example, of a character stream
from a printf() call or register information from a Task’s
Control Block (TCB). One contemplated method for trans
ferring the data is for the operating system to place the data
in a knoWn region, then via a trap instruction cause DEBUG
mode to be entered.

Via debug port 100 commands, the host system H can
then determine the reason that DEBUG mode Was entered,
and respond by retrieving the data from the reserved region.
HoWever, While the processor 104 is in DEBUG mode,
normal processor execution is stopped. As noted above, this
is undesirable for many real-time systems.

This situation is addressed according to the present inven
tion by providing tWo debug registers in the debug port 100
for transmitting (TXiDATA register) and receiving (RXi
DATA register) data. These registers can be accessed using
the soft address and JTAG instruction register commands.
As noted, after the host system H has Written a debug
instruction to the JTAG instruction register, the serial debug
shifter 212 is coupled to the test data input signal TDI line
and test data output signal TDO line.
When the processor 104 executes code causing it to

transmit data, it ?rst tests a TX bit in the ITCR. If the TX bit
is set to Zero then the processor 104 executes a processor
instruction (either a memory or I/ O Write) to transfer the data
to the TXiDATA register. The debug port 100 sets the TX
bit in the DCSR and ITCR, indicating to the host system H
that it is ready to transmit data. Also, the STOPTX pin is set
high. After the host system H completes reading the transmit
data from the TXiDATA register, the TX bit is set to Zero.
ATXINTEN bit in the ITCR is then set to generate a signal
to interrupt the processor 104. The interrupt is generated
only When the TX bit in the ITCR transitions to Zero. When
the TXINTEN bit is not set, the processor 104 polls the
ITCR to determine the status of the TX bit to further transmit
data.
When the host system H desires to send data, it ?rst tests

a RX bit in the ITCR. IF the RX bit is set to Zero, the host
system H Writes the data to the RXiDATA register and the
RX bit is set to one in both the DCSR and ITCR. A RXINT
bit is then set in the ITCR to generate a signal to interrupt
the processor 104. This interrupt is only generated When the
RX in the ITCR transitions to one. When the RXINTEN bit
is not set, the processor 104 polls the ITCR to verify the
status of the RX bit. If the RX bit is set to one, the processor
instruction is executed to read data from the RXiDATA
register. After the data is read by the processor 104 from the
RXiDATA register the RX bit is set to Zero. The host
system H continuously reads the ITCR to determine the
status of the RX bit to further send data.

This technique enables an operating system or application
to communicate With the host system H Without stopping
processor 104 execution. Communication is conveniently
achieved via the debug port 100 With minimal impact to
on-chip application resources. In some cases it is necessary
to disable system interrupts. This requires that the RX and
TX bits be examined by the processor 100. In this situation,
the communication link is driven in a polled mode.

PARALLEL INTERFACE TO DEBUG PORT 100

Some embedded systems require instruction trace to be
examined While maintaining I/O and data processing opera
tions. Without the use of a multi-tasking operating system,
a bond-out version of the embedded processor device 102 is
preferable to provide the trace data, as examining the trace
cache 200 via the debug port 100 requires the processor 104
to be stopped.

10

15

25

35

45

55

65

10
In the disclosed embodiment of the invention, a parallel

port 214 is also provided in an optional bond-out version of
the embedded processor device 102 to provide parallel
command and data access to the debug port 100. This
interface provides a 16-bit data path that is multiplexed With
the trace pad interface port 220. More speci?cally, the
parallel port 214 provides a 16-bit Wide bi-directional data
bus (PDATA[15:0]), a 3-bit address bus (PADR[2:9]), a
parallel debug port read/Write select signal (PRW), a trace
valid signal TV and an instruction trace record output clock
TRACECLOCK (TC). Although not shared With the trace
pad interface port 220, a parallel bus request/grant signal
pair PBREQ/PBGNT (not shoWn) are also provided. The
parallel port 214 is enabled by setting a bit in the DCSR.
Serial communications via the debug port 100 are not
disabled When the parallel port 214 is enabled.

22 21 2O 19 16 0

TV TC PRW PADR[2:0] PDATA [15:0]

Bond-Out Pins/Parallel Port 214 Format

The parallel port 214 is primarily intended for fast
doWnloads/uploads to and from target system T memory.
HoWever, the parallel port 214 may be used for all debug
communications With the target system T Whenever the
processor 104 is stopped. The serial debug signals (standard
or enhanced) are used for debug access to the target system
T When the processor 104 is executing instructions.

In a similar manner to the J TAG standard, all inputs to the
parallel port 214 are sampled on the rising edge of the test
clock signal TCK, and all outputs are changed on the falling
edge of the test clock signal TCK. In the disclosed
embodiment, the parallel port 214 shares pins With the trace
pad interface 220, requiring parallel commands to be initi
ated only While the processor 104 is stopped and the trace
pad interface 220 is disconnected from the shared bus.

The parallel bus request signal PBREQ and parallel bus
grant signal PBGNT are provided to expedite multiplexing
of the shared bus signals betWeen the trace cache 200 and the
parallel port 214. When the host interface to the parallel port
214 determines that the parallel bus request signal PBREQ
is asserted, it begins driving the parallel port 214 signals and
asserts the parallel bus grant signal PBGNT.

When entering or leaving DEBUG mode With the parallel
port 214 enabled, the parallel port 214 is used for the
processor state save and restore cycles. The parallel bus
request signal PBREQ is asserted immediately before the
beginning of a save state sequence penultimate to entry of
DEBUG mode. On the last restore state cycle, the parallel
bus request signal PBREQ is deasserted after latching the
Write data. The parallel port 214 host interface responds to
parallel bus request signal PBREQ deassertion by tri-stating
its parallel port drivers and deasserting the parallel bus grant
signal PBGNT. The parallel port 214 then enables the debug
trace port pin drivers, completes the last restore state cycle,
asserts the command acknowledge signal CMDACK, and
returns control of the interface to trace control logic 218.

When communicating via the parallel port 214, the
address pins PADR[2:0] are used for selection of the ?eld of
the JTAG instruction register, Which is mapped to the 16-bit
data bus PDATA[15 :0] as shoWn in the folloWing table:

6,154,857
11

PADR[2:0] Data Selection

0 0 0 No selection (null operation)
0 0 1 4-bit command register; command driven on PDATA[3:0]
0 1 0 High 16-bits of debugidata
0 1 1 Low 16-bits of debugidata
100-111 Reserved

It is not necessary to update both halves of the debugi
data [31:0] register if only one of the halves is being used
(e.g., on 8-bit I/O cycle data writes). the command pending
?ag is automatically set when performing a write operation
to the four-bit command register, and is cleared when the
command ?nished ?ag is asserted. The host system H can
monitor the command acknowledge signal CMDACK to
determine when the ?nished ?ag has been asserted. Use of
the parallel port 214 provides fully visibility of execution
history, without requiring throttling of the processor core
104. The trace cache 200, if needed, can be con?gured for
use as a buffer to the parallel port 214 to alleviate any
bandwidth matching issues.

OPERATING SYSTEM AND DEBUGGER
INTEGRATION

In the disclosed embodiment of the invention, the opera
tion of all debug supporting features, including the trace
cache 200, can be controlled through the debug port 100 or
via processor instructions. These processor instructions may
be from a monitor program, target hosted debugger, or
conventional pod-wear. The debug port 100 performs data
moves which are initiated by serial data port commands
rather than processor instructions.

Operation of the processor core 104 from conventional
pod-space is very similar to operating in DEBUG mode
from a monitor program. All debug operations can be
controlled via processor instructions. It makes no difference
whether these instructions come from pod-space or regular
memory. This enables an operating system to be extended to
include additional debug capabilities.

Of course, via privileged system calls such a ptrace(),
operating systems have long supported debuggers. However,
the incorporation of an on-chip trace cache 200 now enables
an operating system to offer software performance pro?ling
and instruction trace capabilities. In a debug environment
according to the present invention, it is possible to enhance
an operating system to support limited trace without the
incorporation of an “external” logic analyzer or in-circuit
emulator.

Examples of instructions used to support internal loading
and retrieving of trace cache 200 contents include a load
instruction trace cache record command LITCR and a store
instruction trace cache record command SITCR. The com
mand LITCR loads an indexed record in the trace cache 200,
as speci?ed by a trace cache pointer ITREC.PTR, with the
contents of the EAX register of the processor core 104. The
trace cache pointer ITREC.PTR is pre-incremented, such
that the general operation of the command LITCR is as
follows:

In the event that the instruction trace record (see description
of trace record format below) is smaller that the EAX
record, only a portion of the EAX register is utilized.

10

15

20

25

30

35

40

45

50

55

60

65

12
Similarly, the store instruction trace cache record com

mand SITCR is used to retrieve and store (in the EAX
register) an indexed record from the trace cache 200. The
contents of the ECX register of the processor core 104 are
used as an offset that is added to the trace cache pointer
ITREC.PTR to create an index into the trace cache 200. The
ECX register is post-incremented while the trace cache
pointer ITREC.PTR is unaffected, such that:

Numerous variations to the format of the LITCR and SITCR
commands will be evident to those skilled art.

Extending an operating system to support on-chip trace
has certain advantages within the communications industry.
It enables the system I/O and communication activity to be
maintained while a task is being traces. Traditionally, the use
of an in-circuit emulator has necessitated that the processor
be stopped before the processor’s state and trace can be
examined (unlike ptrace()). This disrupts continuous support
of I/O data processing.

Additionally, the trace cache 200 is very useful when used
with equipment in the ?eld. If an unexpected system crash
occurs, the trace cache 200 can be examined to observe the
execution history leading up the crash event. When used in
portable systems or other environments in which power
consumption is a concern, the trace cache 200 can be
disabled as necessary via power management circuitry.

EXEMPLARY TRACE RECORD FORMAT

In the disclosed embodiment of the invention, an instruc
tion trace record is 20 bits wide and consists of two ?elds,
TCODE (Trace Code) and TDATA (Trace Data), as well as
a valid bit V. The TCODE ?eld is a code that identi?es the
type of data in the TDATA ?eld. The TDATA ?eld contains
software performance pro?le and other trace information
used for debug purposes.

20 19 15 0

V TCODE (Trace Code) TDATA (Trace Data)

Instruction Trace Record Format

In one contemplated embodiment of the invention, the
embedded processor device 102 reports performance pro?l
ing data as well as data corresponding to ten other trace
codes as set forth in the following table:

TCODE
TCODE Type TDATA

0000 Missed Trace Not Valid
0001 Conditional Contains Branch Sequence

Branch
0010 Branch Target Contains Branch Target Address
0011 Previous Contains Previous Segment Base Address

Segment Base and Attributes
0100 Current Contains Current Segment Base Address

Segment Base and Attributes
0101 Interrupt Contains Vector Number of Exception or

Interrupt

6,154,857

-continued

TCODE
TCODE Type TDATA

0110 Trace Contains Address of Most Recently Executed
Synchronization Instruction

0111 Multiple Trace Contains 2nd or 3rd Record of Entry With
Multiple Records

1000 Trace Stop Contains Instruction Address Where Trace
Capture Was Stopped

1001 User Trace Contains User Speci?ed Trace Data
1010 Performance Contains Performance Pro?ling Data

Pro?le

The trace cache 200 is of limited storage capacity; thus a
certain amount of “compression” in captured trace data is
desirable. In capturing trace data, the following discussion
assumes that an image of the program being traced is
available to the host system H. If an address can be obtained
from a program image (Object Module), then it is not
provided in the trace data. Preferably, only instructions
which disrupt the instruction ?ow are reported; and further,
only those where the target address is in some way data
dependent. For example, such “disrupting” events include
call instructions or unconditional branch instructions in
which the target address is provided from a data register or
other memory location such as a stack.
As indicated in the preceding table, other trace informa

tion that can be captured includes: the target address of a trap
or interrupt handler; the target address of a return instruc
tion; a conditional branch instruction having a target address
which is data register dependent (otherwise, all that is
needed is a 1-bit trace indicating if the branch was taken or
not); and, most frequently, addresses from procedure
returns. Other information, such as task identi?ers and trace
capture stop/start information, can also be placed in the trace
cache 200. The precise contents and nature of the trace
records are not considered critical to the invention.

Referring now to FIG. 6A, exemplary performance pro?le
counter sequences are illustrated. In a system according to
the present invention, trigger control registers 219 are con
?gured to start and stop a counter that measures lapsed time
of execution for speci?ed procedures. Although the precise
implementation of the trigger control registers 219 is not
considered critical to the invention, use of conventional
breakpoint registers (such as any of the debug registers
DRO—DR7 present in some prior microprocessor cores) to
perform the triggering functions is preferred. Further, it
should be noted that in the disclosed embodiment of the
invention normal instruction execution is not interrupted
while pro?ling information is gathered.

Referring more speci?cally to FIG. 6A, a ?rst on-chip
trigger control register 219a is con?gured to trigger (start) a
?rst counter upon entry into a speci?ed procedure. A second
trigger control register 21% is used to stop the counter upon
entry into the prologue of the speci?ed procedure. When the
?rst counter is started by the start trigger, it is initialized to
zero. When the stop trigger is generated as speci?ed by the
second trigger control register 219b, the count value of the
?rst counter is placed in the trace cache 200 using a
TCODE=1010 trace entry (FIG. 6B). Similar techniques can
be used to measure other parameters such as interrupt
handler execution times. As described above, the trigger
control registers 219 can also be used to pulse the trigger
signal TRIG and to select program addresses where execu
tion trace is to start and stop.

In the disclosed embodiment of the invention, a second
counter is also used. The second counter runs continually,

10

15

20

25

30

35

40

45

50

55

60

65

14
but is reset to zero following a stop trigger event. The stop
trigger event also causes the value of the second counter to
be placed in the trace cache 200. This second counter value
is useful for obtaining the frequency of occurrence of a
procedure of interest, whereas the ?rst counter provides
information about the procedure’s execution time.

Referring to FIG. 6B, the general format of a trace cache
200 entry set for reporting software performance pro?ling
information in accordance with the invention is shown. As
shown, the count value of the ?rst counter is placed in the
trace cache 200 using a 16-bit value with a TCODE=1010
trace entry. This TCODE=1010 trace entry may be followed
by a TCODE=0111 entry pair containing a 32-bit count
value re?ecting the value of the second counter.

In one embodiment of the invention, the counter fre
quency (i.e., resolution) of the ?rst and second counters is
programmable. Such programmability may allow for better
accuracy when pro?ling very low frequency or high fre
quency events. For example, the following table depicts two
alternate and programmable accumulation frequencies for
the counters:

Maximum Maximum
Counter Frequency Timing Counter Counter
(@ 33 MHZ Resolution Duration: Duration:
bus speed) (4x clock scaling) 16-bit 32-bit

1/2 bus speed 60.6 ns/8 cycles 4 ms 260 seconds
Vs bus speed 242 ns/32 cycles 15.9 ms 1,040 seconds

When entering a privileged level ring zero or ring one, it
is also sometimes desirable to stop all counting (both
counters). This enables system calls and interrupts to be
eliminated from the measured pro?ling values. Two further
support features may also be incorporated, including a
means of enabling/disabling counting and also simulta
neously resetting both count values. This aspect of the
disclosed embodiment invention aids with task context
switching occurring during a procedure (within a single
task) being monitored. Via a periodic interrupt handler, it is
also possible to examine procedures one at a time.

Post-processing software, in conjunction with optional
off-chip trace capture hardware, can be utilized to analyze
the pro?le data. Thus, the trace cache 200 is utilized to
gather information concerning the execution time spent in a
selected procedure. Generally, only one procedure is pro?led
at a time. By examining the trace cache 200, the minimum
average and maximum time spent in a procedure can be
determined (within the limitations of the samples gathered).
Code coverage pro?ling capabilities can also be added to
show speci?c addresses executed and not executed during
test runs. The trace cache 200 allows statistical analysis to be
performed using as many samples as can be stored.

FIG. 7A illustrates an exemplary format for reporting
conditional branch events. The outcome of up to 15 branch
events can be grouped into a single trace entry. The 16-bit
TDATA ?eld (or “BFIELD”) contains 1-bit branch outcome
trace entries, and is labeled as a TCODE=0001 entry. The
TDATA ?eld is initially cleared except for the left-most bit,
which is set to 1. As each new conditional branch is
encountered, a new one bit entry is added on the left and any
other entries are shifted to the right by one bit.

Using a 128 entry trace cache 200 allows 320 bytes of
information to be stored. Assuming a branch frequency of
one branch every six instructions, the disclosed trace cache

6,154,857
15

200 therefore provides an effective trace record of 1,536
instructions. This estimate does not take into account the
occurrence of call, jump and return instructions.

The trace control logic 218 monitors instruction execution
via processor interface logic 202. When a branch target
address must be reported, information contained Within a
current conditional branch TDATA ?eld is marked as com
plete by the trace control logic 218, even if 15 entries have
not accumulated. As shoWn in FIG. 7B, the target address (in
a processor-based device 102 using 32-bit addressing) is
then recorded in a trace entry pair, With the ?rst entry
(TCODE=0010) providing the high 16-bits of the target
address and the second entry (TCODE =0111) providing the
loW 16-bits of the target address. When a branch target
address is provided for a conditional jump instruction, no
1-bit branch outcome trace entry appears for the reported
branch.

STARTING AND STOPPING TRACE CAPTURE

Referring noW to FIG. 7C, it may be desirable to start and
stop trace gathering during certain sections of program
execution; for example, When a task context sWitch occurs.
When trace capture is stopped, no trace entries are entered
into the trace cache 200, nor do any appear on the bond-out
pins of the trace port 214. Different methods are contem
plated for enabling and disabling trace capture. For example,
an x86 command can be provided, or an existing x86
command can be utiliZed to toggle a bit in an I/O port
location. Alternatively, on-chip trigger control registers 219
can be con?gured to indicate the addresses Where trace
capture should start/stop. When tracing is halted, a trace
entry (TCODE=1000, TCODE=0111) recording the last
trace address is placed in the trace stream. When tracing is
resumed, a trace synchroniZation entry (TCODE=0110,
TCODE=0111) containing the address of the currently
executing instruction is generated.

It may be important to account for segment changes that
occur While tracing is stopped. This situation can be partially
resolved by selecting an option to immediately folloW a
TCODE=1000 entry With a current segment base address
entry (TCODE=0100, TCODE=0111), as shoWn in FIG. 7C.
A con?guration option is also desirable to enable a current
segment base address entry at the end of a trace prior to
entering Debug mode. By contrast, it may not be desirable
to provide segment base information When the base has not
changed, such as When an interrupt has occurred.

Referring to FIG. 7D, folloWing the occurrence of an
asynchronous or synchronous event such as an interrupt or
trap, a TCODE=0101 trace entry is generated to provide the
address of the target interrupt handler. HoWever, it is also
desirable to record the address of the instruction Which Was
interrupted by generating a trace synchroniZation (TCODE=
0110) entry immediately prior to the interrupt entry, as Well
as the previous segment base address (TCODE=0011). The
trace synchroniZation entry contains the address of the last
instruction retired before the interrupt handler commences.

SEGMENT CHANGES

FIG. 7E illustrates a trace entry used to report a change in
segment parameters. When processing a trace stream, trace
address values are combined With a segment base address to
determine an instruction’s linear address. The base address,
as Well as the default data operand siZe (32 or 16-bit mode),
are subject to change. As a result, the TCODE=0011 and
0111 entries are con?gured to provide the information
necessary to accurately reconstruct instruction ?oW. The

10

15

20

25

30

35

40

45

55

60

65

16
TDATA ?eld corresponding to a TCODE=0111 entry con
tains the high 16-bits of the previous segment base address,
While the associated TCODE=0111 entry contains the loW
15 or 4 bits (depending on Whether the instruction is
executed in real or protected mode). The TCODE=0111
entry also includes bits indicating the current segment siZe
(32-bit or 16-bit), the operating mode (real or protected), and
a bit indicating Whether paging is being utiliZed. Segment
information generally relates to the previous segment, not a
current (target) segment. Current segment information is
obtained by stopping and examining the state of the proces
sor core 104.

USER SPECIFIED TRACE ENTRY

There are circumstances When an application program or
operating system may Wish to add additional information
into a trace stream. For this to occur, an x86 instruction is
preferably provided Which enables a 16-bit data value to be
placed in the trace stream at a desired execution position.
The instruction can be implemented as a move to I/O space,
With the operand being provided by memory or a register.
When the processor core 104 executes this instruction, the
user speci?ed trace entry is captured by the trace control
logic 218 and placed in the trace cache 200. As shoWn in
FIG. 7F, a TCODE=1001 entry is used for this purpose in the
disclosed embodiment of the invention. This entry might
provide, for example, a previous or current task identi?er
When a task sWitch occurs in a multi-tasking operating
system.

SYNCHRONIZATION OF TRACE DATA

When executing typical softWare on a processor-based
device 102, feW trace entries contain address values. Most
entries are of the TCODE=0001 format, in Which a single bit
indicates the result of a conditional operation. When exam
ining a trace stream, hoWever, data can only be studied in
relation to a knoWn program address. For example, starting
With the oldest entry in the trace cache 200, all entries until
an address entry are of little use. Algorithm synchroniZation
typically begins from a trace entry providing a target
address.

If the trace cache 200 contains no entries providing an
address, then trace analysis cannot occur. This situation is
rare, but possible. For this reason, a synchroniZation register
TSYNC is provided in the disclosed embodiment to control
the injection of synchroniZing address information. If the
synchroniZation register TSYNC is set to Zero, then trace
synchroniZation entries are not generated.

TSYNC (Trace Synchronization)

Trace Entry SynchroniZation Entry Control Register

FIG. 7G depicts a trace synchroniZation entry. In
operation, a counter register is set to the value contained in
the synchroniZation register TSYNC Whenever a trace entry
containing a target address is generated. The counter is
decremented by one for all other trace entries. If the counter
reaches Zero, a trace entry is inserted (TCODE=0110) con
taining the address of the most recently retired instruction
(or, alternatively, the pending instruction). In addition, When
a synchroniZing entry is recorded in the trace cache 200, it

6,154,857
17

also appears on the trace pins 220 to ensure suf?cient
availability of synchronizing trace data for full-function ICE
equipment.

Trace entry information can also be expanded to include
data relating to code coverage or execution performance.
This information is useful, for example, for code testing and
performance tuning. Even Without these enhancements, it is
desirable to enable the processor core 104 to access the trace
cache 200. In the case of a microconrroller device, this
feature can be accomplished by mapping the the trace cache
200 Within a portion of I/O or memory space. Amore general
approach involves including an instruction Which supports
moving trace cache 200 data into system memory.

Thus, a processor-based device providing a ?exible, high
performance solution for furnishing softWare performance
pro?ling information has been described. The processor
based device incorporates an trace cache capable of captur
ing and providing the pro?ling information. Both serial and
parallel communication channels are provided for commu
nicating the pro?ling information to external devices. The
disclosed on-chip trace cache alleviates various of the band
Width and clock synchroniZation problems that arise in many
existing solutions, and also alloWs less expensive external
capture hardWare to be utiliZed When such hardWare is
employed.

The foregoing disclosure and description of the invention
are illustrative and explanatory thereof, and various changes
in the siZe, shape, materials components, circuit elements
Wiring connections and contacts, as Well as in the details of
the illustrated circuitry and construction and method of
operation may be made Without departing from the spirit of
the invention.
What is claimed is:
1. An electronic processor-based device adapted to

execute a series of softWare instructions, the processor
based device being provided With pins to permit connection
to external conductors, the processor-based device compris
ing:

a processor core; and

a trace memory coupled to the processor core for storing
softWare performance pro?ling information related to
softWare instructions executed by the processor core,
the trace memory comprising a series of storage
elements, each storage element adapted to store soft
Ware performance pro?ling information, the trace
memory being con?gured to maintain the most recent
information; and

trace control circuitry to gather the softWare performance
pro?ling information and to provide the softWare per
formance pro?ling information to the trace memory,
the trace control circuitry comprising:
a ?rst softWare pro?le counter coupled to the trace
memory;

a ?rst softWare pro?le trigger counter register coupled
to the ?rst softWare pro?le counter, the ?rst softWare
pro?le trigger control register con?gurable to acti
vate the ?rst softWare pro?le counter upon execution
of a predetermined softWare instruction(s); and

a second softWare pro?le trigger control register
coupled to a ?rst softWare pro?le counter, the second
softWare pro?le trigger control register con?gurable
to deactivate the ?rst softWare pro?le counter upon
execution of an additional predetermined softWare

instruction(s),
Wherein deactivation of the ?rst softWare pro?le

counter causes its count value to be stored in the
trace memory.

10

15

25

35

45

55

65

18
2. The processor-based device of claim 1, the trace control

circuitry further comprising:
a second softWare pro?le counter coupled to the trace

memory,

the second softWare pro?le trigger control register further
con?gurable to initialiZe the second softWare pro?le
counter upon execution of the additional predetermined
softWare instruction(s), Wherein initialiZation of the
second softWare pro?le counter causes its count value
immediately prior to initialiZation to be stored in the
trace memory.

3. The processor-based device of claim 1, Wherein the
predetermined softWare instruction(s) indicates entry into a
speci?ed softWare procedure, and Wherein the additional
predetermined softWare instruction(s) indicates an exit from
a speci?ed softWare procedure.

4. The processor-based device of claim 1, Wherein the
predetermined softWare instruction(s) indicates entry into a
speci?ed interrupt handler, and Wherein the additional pre
determined softWare instruction(s) indicates an exit from the
speci?ed interrupt handler.

5. The processor-based device of claim 1, Wherein the
incrementation frequency of the ?rst counter is program
mable betWeen at least tWo values.

6. The processor-based device of claim 1, Wherein the
trace memory is a ?rst-in, ?rst-out (FIFO) circular buffer.

7. The processor-based device of claim 1, further com
prising:

a communication channel connected betWeen the trace
memory and selected ones of the pins to provide for
transmission of softWare performance pro?ling infor
mation from the trace memory to external devices.

8. The processor-based device of claim 7, Wherein the
communication channel comprises a parallel interface
betWeen the trace cache and selected ones of the pins.

9. The processor-based device of claim 7, Wherein the
communication channel comprises a serial interface
betWeen the trace memory and selected ones of the pins.

10. The processor-based device of claim 9, Wherein the
serial interface is essentially compliant With a serial inter
face standard.

11. The processor-based device of claim 10, Wherein the
serial interface is essentially compliant With an the IEEE
1149.1-1990 JTAG interface standard.

12. A method for providing softWare performance pro?l
ing information With a processor-based device having a
processor core that is executing a series of softWare
instructions, comprising the steps of:

providing a trace memory Within the processor-based
device, the trace memory comprising a series of storage
elements adapted to store softWare performance pro?l
ing information, the trace memory being con?gured to
maintain the most recent information;

generating softWare performance pro?ling information
related to softWare instructions executed by the pro
cessor core, the generating step comprising the steps of:
providing a softWare pro?le counter;
activating the softWare pro?le counter upon execution

of a softWare predetermined instruction(s);
deactivating the softWare pro?le counter upon execu

tion of an additional predetermined softWare
instruction(s), the softWare performance pro?ling
information comprising the count value of the soft
Ware pro?le counter folloWing its deactivation; and

storing the softWare performance pro?ling information in
the trace memory storage elements.

6,154,857
19

13. The method of claim 12, wherein the predetermined
software instruction(s) indicates entry into a speci?ed soft
Ware procedure, and Wherein the additional predetermined
softWare instruction(s) indicates an exit from a speci?ed
softWare procedure.

14. The method of claim 12, Wherein the predetermined
softWare instruction(s) indicates entry into a speci?ed inter
rupt handler, and Wherein the additional predetermined
softWare instruction(s) indicates an exit from the speci?ed
interrupt handler.

15. The method of claim 12, Wherein the incrementation
frequency of the ?rst softWare pro?le counter is program
mable betWeen at least tWo values.

16. The method of claim 12, Wherein the generating step
comprises:

providing a softWare pro?le counter; and
retrieving the count value of the softWare pro?le counter
upon execution of a predetermined softWare instruction
(s), the softWare performance pro?ling information
comprising the retrieved count value.

17. The method of claim 16, further comprising the step
of initialiZing the softWare pro?le counter and repeating the
step of retrieving the count value to generate additional
softWare performance pro?ling information.

18. The method of claim 12, further comprising the steps
of:

providing a communication channel from the trace
memory to the debug system;

communicating the softWare performance pro?ling infor
mation from the trace memory to the debug system via
the communication channel.

19. The method of claim 18, Wherein the communication
channel utiliZed in the communication step is a serial
interface.

20. The method of claim 18, Wherein the communication
channel utiliZed in the communication step is a parallel
interface.

21. A softWare development environment for generating
and analyZing softWare performance pro?ling information,
comprising:

10

15

25

35

20
an electronic processor-based device adapted to execute a

series of softWare instructions the processor-based
device comprising:
pins for connecting to external conductors;
a processor core;
a trace memory coupled to the processor core for

storing softWare performance pro?ling information
related to softWare instructions executed by the pro
cessor core, the trace memory comprising a series of
storage elements, the storage elements adapted to
store softWare performance pro?ling information,
the trace memory being con?gured to maintain the
most recent information; and

trace control circuitry to gather the softWare perfor
mance pro?ling information and to provide the soft
Ware performance pro?ling information to the trace
memory, the trace control circuitry comprising:
a ?rst softWare pro?le counter coupled to the trace
memory;

a ?rst softWare pro?le trigger counter register
coupled to the ?rst softWare pro?le counter, the
?rst softWare pro?le trigger control register con
?gurable to activate the ?rst softWare pro?le
counter upon execution of a predetermined soft
Ware instruction(s); and

a second softWare pro?le trigger control register
coupled to a ?rst softWare pro?le counter, the
second softWare pro?le trigger control register
con?gurable to deactivate the ?rst softWare pro?le
counter upon execution of an additional predeter
mined softWare instruction(s),

Wherein deactivation of the ?rst softWare pro?le counter
causes its count value to be stored in the trace memory;
and
a host system communicatively coupled to the pins of

the processor-based device for receiving softWare
performance pro?ling information from the trace
memory, the host system including softWare for
analyZing the softWare performance pro?le informa
tion.

