
AlazarTech SDK
Programmer’s Guide

Version 5.8.2
May 28, 2010

SDK Programmer’s Guide

License Agreement

Important
By using this software you accept the following terms of this License Agreement. If you
do not agree with these terms, you should not use the software and promptly return it for
a refund.

Ownership
Alazar Technologies, Inc., retains the ownership of this copy of the enclosed software
package. It is licensed to you for use under the following conditions:

Grant of License
You may only concurrently use the enclosed software on the computers that have an
Alazar Technologies, Inc. waveform digitizer card plugged in (for example, if you have
purchased one Alazar Technologies, Inc. card, you have a license for one concurrent
usage). If the number of users of the software exceeds the number of Alazar
Technologies, Inc. cards you have purchased, you must have a reasonable process in
place to assure that the number of persons concurrently using the software does not
exceed the number of Alazar Technologies, Inc. cards purchased.

You may transfer this software to another party if the other party agrees to the terms and
conditions of the agreement and completes and returns a registration card to Alazar
Technologies, Inc. The registration card is available by writing to Alazar Technologies,
Inc. If you transfer the software, you must simultaneously transfer all documentation and
related disks.

Restrictions
You may not copy the documentation or software except as described in the installation
section of this manual. You may not distribute, rent, sub-lease or lease the software or
documentation, including translating, decomposing, or disassembling, or creating
derivative works. You may not reverse-engineer any part of this software, or produce
any derivative work. You may not make telecommunication transmittal of this software.

Termination
This license and your right to use this software automatically terminates if you fail to
comply with any provision of this license agreement.

Rights
Alazar Technologies, Inc. retains all rights not expressly granted. Nothing in this
agreement constitutes a waiver of Alazar Technologies, Inc.’s rights under the Canadian
and U.S. copyright laws or any other Federal or State law.

Limited Warranty
If you discover physical defects in the media, Alazar Technologies, Inc. will replace the
media or documentation at no charge to you, provided you return the item to be replaced

© 2003-2010 Alazar Technologies Inc. ii

SDK Programmer’s Guide

with proof of payment to Alazar Technologies, Inc. during the 90-day period after having
taken delivery of the software.

Alazar Technologies, Inc. excludes any and all implied warranties, including warranties
of merchantability and fitness for a particular purpose and limits your remedy to return
the software and documentation to Alazar Technologies, Inc. for replacement. Although
Alazar Technologies, Inc. has tested the software and reviewed the documentation,
ALAZAR TECHNOLOGIES, INC. MAKES NO WARRANTY OF
REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO
THIS SOFTWARE OR DOCUMENTATION, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS SOFTWARE AND DOCUMENTATION IS LICENSED “as is” AND
YOU, THE LICENSEE, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE. IN NO EVENT WILL ALAZAR TECHNOLOGIES, INC. BE
LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THIS SOFTWARE OR DOCUMENTATION, even if advised of the possibility of
such damages. In particular, Alazar Technologies, Inc. shall have no liability for any data
acquired, stored or processed with this software, including the costs of recovering such
data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESSED OR IMPLIED. No
Alazar Technologies, Inc. dealer, agent or employee is authorized to make any
modifications or additions to this warranty.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Alazar Technologies, Inc. The software described in this
document is furnished under this license agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy the
software on any medium except as specifically allowed in the license agreement. No part
of this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the
written permission of Alazar Technologies, Inc.

Some jurisdictions do not allow the exclusion of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply
to you. This warranty gives you specific legal rights, and you may also have other rights,
which vary from jurisdiction to jurisdiction.

© 2003-2010 Alazar Technologies Inc. iii

SDK Programmer’s Guide

Contents

1 Getting Started .. 1
1.1 Introduction .. 1
1.2 Programming environments ... 1

1.2.1 Visual C++ .. 1
1.2.2 VisualBasic ... 2
1.2.3 C# .. 2
1.2.4 Linux ... 2

1.3 Sample code ... 2
1.4 Contacting us ... 3

2 Programmer’s Guide ... 4
2.1 Addressing a board .. 4

2.1.1 Getting a board identifier .. 4
2.1.2 Getting a board handle .. 4
2.1.3 Closing a board handle .. 6
2.1.4 Using a board handle .. 6

2.2 Resetting a board .. 7
2.3 Configuring a board ... 7

2.3.1 Timebase ... 7
2.3.2 Input control .. 11
2.3.3 Trigger control .. 13
2.3.4 AUX I/O .. 18

2.4 Acquiring data .. 21
2.4.1 Single port ... 21
2.4.2 Dual port AutoDMA ... 29
2.4.3 Buffer size and alignment ... 45
2.4.4 Data format ... 46

2.5 Processing data ... 46
2.5.1 Converting samples values to volts ... 46
2.5.2 Saving binary files .. 56

3 Reference .. 59
3.1 Error Codes .. 59
3.2 Function Groups ... 62

3.2.1 Initialization .. 62
3.2.2 Status and information .. 62
3.2.3 Configuration and control ... 62
3.2.4 Acquisition .. 63
3.2.5 All functions .. 65

3.3 Function Reference .. 69
3.3.1 AlazarAbortAsyncRead .. 69
3.3.2 AlazarAbortAutoDma ... 71
3.3.3 AlazarAbortCapture .. 73
3.3.4 AlazarAsyncRead ... 74
3.3.5 AlazarBeforeAsyncRead ... 76
3.3.6 AlazarAutoCalibrate ... 82

© 2003-2010 Alazar Technologies Inc. iv

SDK Programmer’s Guide

3.3.7 AlazarBoardsFound .. 83
3.3.8 AlazarBoardsInSystemByHandle ... 84
3.3.9 AlazarBoardsInSystemBySystemID ... 85
3.3.10 AlazarBusy .. 86
3.3.11 AlazarClose ... 87
3.3.12 AlazarCloseAUTODma .. 88
3.3.13 AlazarConfigureAuxIO ... 89
3.3.14 AlazarCreateStreamFile .. 91
3.3.15 AlazarErrorToText .. 93
3.3.16 AlazarEvents ... 94
3.3.17 AlazarFlushAutoDMA .. 96
3.3.18 AlazarForceTrigger ... 97
3.3.19 AlazarForceTriggerEnable .. 98
3.3.20 AlazarGetAutoDMAHeaderTimeStamp ... 99
3.3.21 AlazarGetAutoDMAHeaderValue .. 101
3.3.22 AlazarGetAutoDMAPtr .. 104
3.3.23 AlazarGetBoardBySystemHandle .. 106
3.3.24 AlazarGetBoardBySystemID .. 107
3.3.25 AlazarGetBoardKind .. 108
3.3.26 AlazarGetChannelInfo .. 109
3.3.27 AlazarGetCPLDVersion ... 110
3.3.28 AlazarGetDriverVersion ... 111
3.3.29 AlazarGetMaxRecordsCapable ... 112
3.3.30 AlazarGetNextAutoDMABuffer ... 113
3.3.31 AlazarGetNextBuffer .. 116
3.3.32 AlazarGetParameter .. 117
3.3.33 AlazarGetParameterUL ... 119
3.3.34 AlazarGetSDKVersion ... 121
3.3.35 AlazarGetStatus .. 122
3.3.36 AlazarGetSystemHandle ... 123
3.3.37 AlazarGetTriggerAddress ... 124
3.3.38 AlazarGetTriggerTimestamp .. 126
3.3.39 AlazarGetWhoTriggeredBySystemHandle ... 128
3.3.40 AlazarGetWhoTriggeredBySystemID .. 130
3.3.41 AlazarHyperDisp .. 132
3.3.42 AlazarInputControl ... 134
3.3.43 AlazarNumOfSystems .. 136
3.3.44 AlazarOEMDownLoadFPGA ... 137
3.3.45 AlazarOpen ... 138
3.3.46 AlazarParseFPGAName ... 139
3.3.47 AlazarPostAsyncBuffer .. 141
3.3.48 AlazarQueryCapability ... 143
3.3.49 AlazarRead .. 145
3.3.50 AlazarReadEx ... 147
3.3.51 AlazarResetTimeStamp .. 149
3.3.52 AlazarSetBWLimit ... 150

© 2003-2010 Alazar Technologies Inc. v

SDK Programmer’s Guide

3.3.53 AlazarSetCaptureClock ... 151
3.3.54 AlazarSetExternalClockLevel ... 159
3.3.55 AlazarSetExternalTrigger ... 160
3.3.56 AlazarSetLED ... 162
3.3.57 AlazarSetParameter ... 163
3.3.58 AlazarSetParameterUL ... 165
3.3.59 AlazarSetRecordCount ... 167
3.3.60 AlazarSetRecordSize .. 169
3.3.61 AlazarSetTriggerDelay ... 171
3.3.62 AlazarSetTriggerOperation ... 172
3.3.63 AlazarSetTriggerTimeOut .. 175
3.3.64 AlazarSleepDevice .. 176
3.3.65 AlazarStartAutoDMA ... 177
3.3.66 AlazarStartCapture .. 181
3.3.67 AlazarStopAutoDMA ... 182
3.3.68 AlazarTriggered .. 183
3.3.69 AlazarWaitAsyncBufferComplete .. 184
3.3.70 AlazarWaitForBufferReady .. 186
3.3.71 AlazarWaitNextAsyncBufferComplete .. 188

© 2003-2010 Alazar Technologies Inc. vi

SDK Programmer’s Guide

1 Getting Started

1.1 Introduction
AlazarTech supplies Windows and Linux device drivers that allow applications to control
AlazarTech digitizer boards, and transfer sample data from the boards to application
buffers.

The AlazarTech SDK includes the header and library files necessary for programmers to
use functions exported by the device drivers in their applications, as well as
documentation and sample code describing how to use these functions.

This document is a part of the AlazarTech SDK. It describes how to use the functions
exported by the device drivers to control one or more digitizer boards. It is divided into
the following sections:
• A programming guide that describes how to configure, and acquire data from,

digitizer boards.
• A reference guide that describes the functions exported by the device drivers.

Programmers who wish to integrate the AlazarTech SDK into their applications should:
1. Read the user manual supplied their AlazarTech digitizer board. It provides an

overview of the board’s hardware features, as well as detailed specifications.
2. Read the “Programmer’s guide” section of this document. It describes how to

program the hardware to make an acquisition, and to transfer sample data into
application buffers.

3. Browse the SDK sample programs. They include code that demonstrates how to make
most types of acquisitions, and provide a starting point for creating new applications.

Note that this document includes descriptions of board specific features and options that
may not be available on your particular digitizer. Please refer your board’s user manual
for its specifications.

1.2 Programming environments

1.2.1 Visual C++
C/C++ programmers should include the following header files in source files that use
functions exported by the API library.

#include "AlazarError.h"
#include "AlazarApi.h"
#include "AlazarCmd.h"

These applications should also link against the 32- or 64-bit version of ATSApi.lib, as
required.

© 2003-2010 Alazar Technologies Inc. 1

SDK Programmer’s Guide

The SDK setup program installs the header files in “%ATS_SDK_DIR%\Include”, and
the library files in “%ATS_SDK_DIR%\Library”, where %ATS_SDK_DIR% defaults to
“C:\AlazarTech”.

1.2.2 VisualBasic
VisualBasic programmers should include the module ATSApiVB.bas in their projects. It
provides a Visual Basic interface to the many of the constants and functions used by
AlazarTech device drivers.

The SDK setup program installs this module in “%ATS_SDK_DIR%\Include”, where
%ATS_SDK_DIR% is by default “C:\AlazarTech”.

1.2.3 C#
C# programmers should either:
• Add the file AlazarApi.cs to their project; or
• Add a reference to AlazarApiNet.dll to their project.

The AlazarTech SDK includes a wrapper class that declares many of the constants and
unmanaged functions exported by AlazarTech device drivers. This class is provided both
as a C# source file (AlazarApi.cs), and as a compiled assembly (AlazarApiNet.dll).

The SDK setup program copies AlazarApi.cs to the
“Samples_CSharp\AlazarApiNet\AlazarApiNet” directory and AlazarApiNet.dll to the
“Samples_CSharp” directory.

Note that you can use the solution “Samples_CSharp\AlazarApiNet” to build
AlazarApiNet.dll from AlazarApi.cs.

1.2.4 Linux
C/C++ programmers under Linux should include the following header files in source files
that use functions exported by the AlazarTech API library.

#include "AlazarError.h"
#include "AlazarApi.h"
#include "AlazarCmd.h"

These modules should also link against libPlxApi.so.

The RPM package for Linux installs the header files in “%ATS_SDK_DIR%\Include”,
and the library files in “%ATS_SDK_DIR%\Library”, where %ATS_SDK_DIR%
defaults to “/usr/local/AlazarTech”.

1.3 Sample code
The AlazarTech SDK includes sample programs that demonstrate how to program
AlazarTech digitizer boards. The SDK setup program installs the sample programs to
%ATS_SDK_DIR%\Samples, where %ATS_SDK_DIR% defaults to

© 2003-2010 Alazar Technologies Inc. 2

SDK Programmer’s Guide

“C:\AlazarTech\ATS-API\%API_VERSION%” under Microsoft Windows, and
“/usr/local/AlazarTech” under Linux.

See the “ReadMe.htm” file in the “%ATS_SDK_DIR%\Samples” directory for a
description of all of the samples included for your board model.

Note that the sample programs contain parameters that should be modified as required.
These lines of code are preceded by “TODO” comments.

1.4 Contacting us
Please contact us if you have any questions or comments about this document, or the
SDK sample code.

Web http://www.alazartech.com
Email mailto:support@alazartech.com
Phone +1-514-426-4899
Fax +1-514-426-2723
Mail Alazar Technologies Inc.

6600 Trans-Canada Highway, Suite 310
Pointe-Claire, QC
Canada H9R 4S2

Note that you can download the latest drivers and documentation here:
http://www.alazartech.com/support/downloads.htm

© 2003-2010 Alazar Technologies Inc. 3

http://www.alazartech.com/support/downloads.htm
mailto:support@alazartech.com?subject=ATS-SDK
http://www.alazartech.com/

SDK Programmer’s Guide

2 Programmer’s Guide

2.1 Addressing a board

2.1.1 Getting a board identifier
The AlazarTech API organizes digitizer boards into “board systems”. A board system is a
group of one or more digitizer boards that share clock and trigger signals. Two or more
boards form a board system when they are connected together using an AlazarTech
SyncBoard.

The API assigns a “system identifier” to each board system, where the first board system
detected is assigned a system identifier number of 1.

The API assigns a “board identifier” to each board in a board system. This number
uniquely identifies a board within its board system.
• If a digitizer board is not connected to any other boards using a SyncBoard, then the

API assigns it a board identifier number of 1.
• If two or more boards are connected together using a SyncBoard, then the API

assigns each board a board identifier number that depends on how the board is
connected to the SycnBoard. The board connected to the “master” slot on the
SyncBoard is the master board in the board system, and is assigned a board identifier
of 1.

Call the AlazarNumOfSystems API function to determine the number of board systems
detected by the API, and call the AlazarBoardsInSystemBySystemID API function to
determine the number of boards in a board system specified by its system identifier.

The following code fragment lists the system and board identifiers of each board detected
by the device drivers.

 U32 systemCount = AlazarNumOfSystems();
 for (U32 systemId = 1; systemId <= systemCount; systemId++)
 {
 U32 boardCount = AlazarBoardsInSystemBySystemID(systemId);
 for (U32 boardId = 1; boardId <= boardCount; boardId++)
 {
 printf("Found SystemID %u Board ID = %u\n",
 systemId, boardId);
 }
 }

2.1.2 Getting a board handle
The AlazarTech API associates a handle with each digitizer board.

© 2003-2010 Alazar Technologies Inc. 4

SDK Programmer’s Guide

Most API functions require a board handle as a parameter. For example, the
AlazarSetLED API function allows an application to control the LED on the PCI/PCIe
mounting bracket of a board specified by its handle.

Figure 2-1 PCI/PCIe mounting bracket LED

Use the AlazarGetBoardBySystemID API function to get a handle to a board specified by
its system identifier and board identifier numbers.

2.1.2.1 Single board installations
If only one board is installed in a PC, the API assigns it system ID 1 and board ID 1. The
following code fragment gets a handle to such a board, and uses this handle to toggle the
LED on the board’s PCI/PCIe mounting bracket.

 // Select a board
 U32 systemId = 1;
 U32 boardId = 1;

 // Get a handle to the board
 HANDLE boardHandle = AlazarGetBoardBySystemID(systemId, boardId);

 // Toggle the LED on the board’s PCI/PCIe mounting bracket
 AlazarSetLED(boardHandle, LED_ON);
 Sleep(500);
 AlazarSetLED(boardHandle, LED_OFF);

© 2003-2010 Alazar Technologies Inc. 5

SDK Programmer’s Guide

2.1.2.2 Multiple board installations
If more than one board is installed in a PC, the boards are organized into board systems
and assigned unique pairs of system and board identifier numbers. The following code
fragment demonstrates how to obtain a handle to each board in such an installation, and
use the handle to toggle the LED on the board’s PCI/PCIe mounting bracket.

 U32 systemCount = AlazarNumOfSystems();
 for (U32 systemId = 1; systemId <= systemCount; systemId++)
 {
 U32 boardCount = AlazarBoardsInSystemBySystemID(systemId);
 for (U32 boardId = 1; boardId <= boardCount; boardId++)
 {
 printf("SystemID %u Board ID = %u\n", systemId, boardId);

 // Get a handle to the board
 HANDLE handle = AlazarGetBoardBySystemID(systemId, boardId);

 // Toggle the LED on the board’s PCI/PCIe mounting bracket
 AlazarSetLED(handle, LED_ON);
 Sleep(500);
 AlazarSetLED(handle, LED_OFF);
 }
 }

2.1.2.3 System handles
Several API functions require a “system handle”. A system handle is the handle of the
master board in a board system.
• If a board is not connected to other boards using a SyncBoard, then its board handle is

the system handle.
• If a board is connected to other boards using a SyncBoard, then the board that is

connected to the master connector on the SyncBoard is the master board, and its
board handle is the system handle.

2.1.3 Closing a board handle
The AlazarTech API maintains a list of board handles in order to support master-slave
board systems. The API creates board handles when it is loaded into memory, and
destroys these handles when it is unloaded from memory. An application should not need
to close a board handle.

2.1.4 Using a board handle
The API exports a number of functions that return information about a board specified by
its handle.

These functions include:
AlazarGetBoardKind Get a board’s model from its handle.
AlazarGetChannelInfo Get the number of bits per sample, and on-board memory size

in samples per channel.
AlazarGetCPLDVersion Get the CPLD version of a board.

© 2003-2010 Alazar Technologies Inc. 6

SDK Programmer’s Guide

AlazarGetDriverVersion Get the driver version of a board.
AlazarGetParameter Get a board parameter as a signed 32-bit value.
AlazarGetParameterUL Get a board parameter as an unsigned 32-bit value.
AlazarQueryCapability Get a board capability as an unsigned 32-bit value.

The sample program “%ATS_SDK_DIR%\Samples\AlazarSysInfo” demonstrates how
get a board handle, and use it to obtain board properties.

The API also exports functions that use a board handle to configure a board, arm it to
make an acquisition, and transfer sample data from the board to application buffers.
These topics are discussed in the following sections.

2.2 Resetting a board
The AlazarTech API resets all digitizer boards during its initialization procedure.

This initialization procedure automatically runs when the API is loaded into memory.
• If an application statically links against the API library, the API resets all boards

when the application is launched.
• If an application dynamically loads the API library, the API resets all boards when

the application loads the API into memory.

Note that when an application using the API is launched, all digitizer boards are reset. If
one application using the API is running when a second application using the API is
launched, configuration settings written by the first application to a board may be lost. If a
data transfer between the first application and a board was in progress, data corruption
may occur.

2.3 Configuring a board
Before acquiring data from a board system, an application must configure the timebase,
analog inputs, and trigger system of each board in the board system.

2.3.1 Timebase
The timebase of the ADC converters on AlazarTech digitizer boards may be supplied by:
• Its on-board oscillators.
• A user supplied external clock signal.
• An on-board PLL clocked by a user supplied 10 MHz reference signal.

2.3.1.1 Internal clock
To use on-board oscillators as a timebase, call AlazarSetCaptureClock specifying
INTERNAL_CLOCK as the clock source identifier, and select the desired sample rate
with a sample rate identifier appropriate for the board.

The following code fragment shows how to select a 10 MS/s internal sample rate.

© 2003-2010 Alazar Technologies Inc. 7

SDK Programmer’s Guide

 AlazarSetCaptureClock(
handle, // HANDLE –- board handle
INTERNAL_CLOCK, // U32 –- clock source Id
SAMPLE_RATE_10MSPS, // U32 –- sample rate Id or value
CLOCK_EDGE_RISING, // U32 –- clock edge Id
0 // U32 –- decimation

);

See AlazarSetCaptureClock or the board reference manual for a list of sample rate
identifiers appropriate for a board.

2.3.1.2 External clock
AlazarTech boards optionally support using a user-supplied external clock signal input to
the ECLK connector on its PCI/PCIe mounting bracket to clock its ADC converters.

Figure 2-2 External clock connector on PCI/PCIe mounting bracket.

To use an external clock signal as a timebase, call AlazarSetCaptureClock specifying
SAMPLE_RATE_USER_DEF as the sample rate identifier, and select a clock source
identifier appropriate for the board model and the external clock properties.

The following code fragment shows how to configure an ATS460 to acquire at 100 MS/s
with a 100 MHz external clock.

 AlazarSetCaptureClock(
handle, // HANDLE –- board handle
FAST_EXTERNAL_CLOCK, // U32 –- clock source Id

© 2003-2010 Alazar Technologies Inc. 8

SDK Programmer’s Guide

SAMPLE_RATE_USER_DEF, // U32 –- sample rate Id or value
CLOCK_EDGE_RISING, // U32 –- clock edge Id
0 // U32 –- decimation

);

See the board reference manual for the properties of an external clock signal that are
appropriate for a board, and AlazarSetCaptureClock for a list of external clock source
identifiers.

2.3.1.3 External clock level
Some boards allow adjusting the comparator level of the external clock input receiver to
match the receiver to the clock signal supplied to the ECLK connector.

If necessary, call AlazarSetExternalClockLevel to set the relative external clock input
receiver comparator level, in percent.

 AlazarSetExternalClockLevel(
handle, // HANDLE –- board handle
level_pecent, // float –- exernal clock level in percent

);

Note that ATS9350 has an auto-adjusting, AC coupled, external clock input receiver that
should work correctly with most external clock signals. As a result, most ATS9350
applications should not need to adjust the external clock comparator level.

2.3.1.4 10 MHz PLL
Some boards can generate a timebase from an on-board PLL clocked by user supplied
external 10 MHz reference signal input to its ECLK connector.

2.3.1.4.1 ATS660
In 10 MHz PLL external clock mode, the ATS660 can generate a sample clock between
110 and 130 MHz, in 1 MHz, steps from an external 10 MHz reference input. The sample
data can be decimated by a factor of 1 to 100000.

Call AlazarSetCaptureClock specifying EXTERNAL_CLOCK_10MHz_REF as the
clock source identifier, the desired sample rate between 110 and 130 MHz in 1 MHz
steps, and the decimation factor.

The following code fragment shows how to generate a 32.5 MS/s sample rate from a 10
MHz PLL external clock input.

 AlazarSetCaptureClock(
handle, // HANDLE –- board handle
EXTERNAL_CLOCK_10MHz_REF, // U32 –- clock source Id
130000000, // U32 –- sample rate Id or value
CLOCK_EDGE_RISING, // U32 –- clock edge Id
3 // U32 –- decimation

);

© 2003-2010 Alazar Technologies Inc. 9

SDK Programmer’s Guide

2.3.1.4.2 ATS9462
In 10 MHz PLL external clock mode, the ATS9462 can generate a sample clock between
150 and 180 MHz in 1 MHz steps from an external 10 MHz reference input. Sample data
can be decimated by a factor of 1 to 100000.

Call AlazarSetCaptureClock specifying EXTERNAL_CLOCK_10MHz_REF as the
clock source, the desired sample rate between 150 and 180 MHz in 1 MHz steps, and the
decimation factor.

For example, the following code fragment shows how to generate a 15 MS/s sample rate
with a 10 MHz external clock input.

 AlazarSetCaptureClock(
handle, // HANDLE –- board handle
EXTERNAL_CLOCK_10MHz_REF, // U32 –- clock source Id
150000000, // U32 –- sample rate Id or value
CLOCK_EDGE_RISING, // U32 –- clock edge Id
10 // U32 –- decimation

);

2.3.1.4.3 ATS9870
In 10 MHz PLL external clock mode, the ATS9870 generates a 1 GHz sample clock from
an external 10 MHz reference input. The 1 GS/s sample data can be decimated by 1, 2, 4,
or any multiple of 10.

Call AlazarSetCaptureClock specifying EXTERNAL_CLOCK_10MHz_REF as the
clock source and 1 GHz as the sample rate value, and select a decimation of 1, 2, 4, or
any multiple of 10 up to 100000.

For example, the following code fragment shows how to generate a 250 MS/s sample rate
with a 10 MHz external clock input.

 AlazarSetCaptureClock(
handle, // HANDLE –- board handle
EXTERNAL_CLOCK_10MHz_REF, // U32 –- clock source Id
1000000000, // U32 –- sample rate Id or value
CLOCK_EDGE_RISING, // U32 –- clock edge Id
4 // U32 –- decimation

);

2.3.1.4.4 ATS9350
In 10 MHz PLL external clock mode, the ATS9350 generates a 500 MHz sample clock
from an external 10 MHz reference input. The 500 MS/s sample data can be decimated
by 1, 2, 4, or any multiple of 5.

© 2003-2010 Alazar Technologies Inc. 10

SDK Programmer’s Guide

Call AlazarSetCaptureClock specifying EXTERNAL_CLOCK_10MHz_REF as the
clock source and 500 MHz as the sample rate, and select a decimation of 1, 2, 4, or any
multiple of 5 up to 100000.

For example, the following code fragment shows how to generate a 100 MS/s sample rate
with a 10 MHz external clock input.

 AlazarSetCaptureClock(
handle, // HANDLE –- board handle
EXTERNAL_CLOCK_10MHz_REF, // U32 –- clock source Id
500000000, // U32 –- sample rate Id
CLOCK_EDGE_RISING, // U32 –- clock edge Id
5 // U32 –- decimation

);

2.3.2 Input control
AlazarTech digitizers have analog amplifier sections that process the signals input to its
CH A and CH B connectors before they are sampled by the ADC converters. The gain,
coupling, and termination of the amplifier sections should be configured to match the
properties of the input signals.

Figure 2-3 CHA and CHB connectors on PCI/PCIe mounting bracket.

© 2003-2010 Alazar Technologies Inc. 11

SDK Programmer’s Guide

2.3.2.1 Input range, coupling, and impedance
Call AlazarInputControl to specify the desired input range, termination, and coupling of
an input channel.

The following code fragment configures input CH A for a range of ± 800 mV, DC
coupling, and 50Ω termination.

 AlazarInputControl(
 boardHandle, // HANDLE -- board handle
 CHANNEL_A, // U8 -- input channel
 DC_COUPLING, // U32 -- input coupling id
 INPUT_RANGE_PM_800_MV, // U32 -- input range id
 IMPEDANCE_50_OHM // U32 -- input impedance id
);

See AlazarInputControl and the board reference manual for a list of input range,
coupling, and impedance identifiers appropriate for the board.

2.3.2.2 Bandwidth filter
AlazarTech digitizers have low pass filters that attenuate signals above ~20 MHz. By
default, the bandwidth limit filters are disabled. Call AlazarSetBWLimit to enable or
disable the bandwidth limit filter.

The following code fragment enables the CH A bandwidth limit filter.

 AlazarSetBWLimit (
 boardHandle, // HANDLE -- board handle
 CHANNEL_A, // U32 -- channel identifier
 1 // U32 -- 0 = disable, 1 = enable
);

2.3.2.3 Amplifier bypass
Some digitizer models support “amplifier bypass” mode. In this mode, signals are
injected directly into the ADC converter driver of an input channel, bypassing its analog
amplifier sections.

Amplifier bypass mode must be enabled in hardware either through DIP switches on the
board, or as a factory option. Once enabled in hardware, the following code fragment
shows how to configure this option in software.

 AlazarInputControl(
 handle, // HANDLE -- board handle
 CHANNEL_A, // U8 -- input channel
 DC_COUPLING, // U32 –- not used
 INPUT_RANGE_HI_FI, // U32 -- input range id
 IMPEDANCE_50_OHM // U32 –- not used
);

© 2003-2010 Alazar Technologies Inc. 12

SDK Programmer’s Guide

Note that when amplifier bypass mode option is enabled for an input channel, the
channel’s full-scale input range is fixed. The following table lists the nominal full-scale
input range values that may be used to convert sample code values to volts.

Model Full scale input range
ATS460 ± 525 mV
ATS660 ± 550 mV
ATS9350 ± 200 mV
ATS9462 ± 550 mV
ATS9870 ± 256 mV

See your board’s hardware reference manual for more information about using amplifier
bypass.

2.3.3 Trigger control
AlazarTech digitizer boards have a flexible triggering system with two separate trigger
engines that can be used independently, or combined together to generate trigger events.

2.3.3.1 AlazarSetTriggerOperation
Use the AlazarSetTriggerOperation API function to configure each of the two trigger
engines, and to specify how they should be used to generate trigger events.

 RETURN_CODE
 AlazarSetTriggerOperation (

HANDLE handle,
U32 TriggerOperation,
U32 TriggerEngineId1,
U32 SourceId1,
U32 SlopeId1,
U32 Level1,
U32 TriggerEngineId2,
U32 SourceId2,
U32 SlopeId2,
U32 Level2

);

The following paragraphs describe each of the function’s parameters, and provide
examples showing how to use the function.

2.3.3.1.1 Trigger engine
The trigger engine identifier parameter specifies which of the two trigger engines you
wish to configure. The parameter may have one of the following values.

Identifier Value Description
TRIG_ENGINE_J 0 Configure trigger engine J
TRIG_ENGINE_K 1 Configure trigger engine K

© 2003-2010 Alazar Technologies Inc. 13

SDK Programmer’s Guide

2.3.3.1.2 Data source
The data source identifier parameter selects the where the specified trigger engine should
get its data. The parameter may have one of the following values.

Identifier Value Description
TRIG_CHAN_A 0 Use samples from CH A
TRIG_CHAN_B 1 Use samples from CH B
TRIG_EXTERNAL 2 Use a signal from TRIG IN
TRIG_DISABLE 3 Disable this trigger engine.

2.3.3.1.3 Trigger slope
The trigger slope identifier parameter selects if the output of the specified trigger engine
should become active when sample values from the specified trigger source rise above, or
fall below, a specified level. The parameter may have one of the following values.

Identifier Value Description
TRIGGER_SLOPE_POSITIVE 1 The trigger engine output goes from

low to high when sample values from
the trigger source rise above a
specified level.

TRIGGER_SLOPE_NEGATIVE 2 The trigger engine output goes from
low to high when sample values from
the trigger source fall below a
specified level.

2.3.3.1.4 Trigger level
The trigger level parameter sets the level that the trigger source must rise above, or fall
below, for the selected trigger engine to become active. The trigger level is specified as
an unsigned 8-bit code that represents a fraction of the full scale input range of the trigger
source; 0 represents the negative full-scale input, 128 represents a 0 volt input, and 255
represents the positive full-scale input.

For example, if the trigger source is CH A, and the CH A input range is ± 800 mV, then 0
represents a –800 mV trigger level, 128 represents a 0 V trigger level, and 255 represents
+800 mV trigger level.

In general, the trigger level value is given by:

 TriggerLevelCode = 128 + 127 * TriggerLevelVolts / InputRangeVolts.

The following table gives examples of how trigger level codes map to trigger levels in
volts according to the full-scale input range of the trigger source.

Trigger
level code

Trigger level as
fraction of source
input range

Trigger level if
source has ±1 V
input range

Trigger level if
source has ±5 V
input range

© 2003-2010 Alazar Technologies Inc. 14

SDK Programmer’s Guide

0 -100% -1V -5V
64 -50% -500 mV -2.5 V
96 -25% -250 mV -1.25 V
128 0% 0 V 0 V
160 +25 % 250 mV 1.25 V
192 +50% +500 mV +2.5 V
255 +100% +1V +5V

2.3.3.1.5 Trigger operation
Finally, the trigger operation identifier specifies how the outputs of from the two trigger
engines are combined to generate trigger events. This parameter may have one of the
following values where the symbol Tj represents the output of trigger engine J, and Tk

represents the output of trigger engine K.

Identifier Value Meaning
Generate a trigger event when…

TRIG_ENGINE_OP_J 0 Tj goes low to high.
TRIG_ENGINE_OP_K 1 Tk goes low to high.
TRIG_ENGINE_OP_J_OR_K 2 Tj goes low to high, or Tk goes

low to high.
TRIG_ENGINE_OP_J_AND_K 3 (Tj AND Tk) goes low to high.
TRIG_ENGINE_OP_J_XOR_K 4 (Tj XOR Tk) goes low to high.
TRIG_ENGINE_OP_J_AND_NOT_K 5 (Tj AND (NOT Tk)) goes low to

high.
TRIG_ENGINE_OP_NOT_J_AND_K 6 ((NOT Tj)AND Tk) goes low to

high.

2.3.3.2 AlazarSetTriggerOperation examples
The following code fragment configures a board to trigger when the signal connected to
CH A rises above 0V. This example only uses trigger engine J.

 AlazarSetTriggerOperation(
 handle, // HANDLE -- board handle
 TRIG_ENGINE_OP_J, // U32 -- trigger operation
 TRIG_ENGINE_J, // U32 -- trigger engine id
 TRIG_CHAN_A, // U32 -- trigger source id
 TRIGGER_SLOPE_POSITIVE, // U32 -- trigger slope id
 128, // U32 -- trigger level (128 = 0V)
 TRIG_ENGINE_K, // U32 -- trigger engine id
 TRIG_DISABLE, // U32 -- trigger source id for engine K
 TRIGGER_SLOPE_POSITIVE, // U32 -- trigger slope id
 128 // U32 -- trigger level (0 – 255)
);

The following code fragment configures a board to trigger when the signal connected to
CH B rises above 500 mV, or falls below -200 mV, if CH B’s input range is ±1V. This
example uses both trigger engine J and K.

© 2003-2010 Alazar Technologies Inc. 15

SDK Programmer’s Guide

 double inputRange_volts = 1.; // ±1V range

 double TriggerLevelJ_volts = .5; // +500 mV trigger level
 U32 triggerLevelJ = // U32 –- trigger level J (192)
 (U32)(128 + 127 * triggerLevelJ_volts / inputRange_volts);

 double triggerLevelK_volts = -.2; // -200 mV trigger level
 U32 triggerLevelK = // U32 – trigger level K (103)
 (U32)(128 + 127 * triggerLevelK_volts / inputRange_volts);

 AlazarSetTriggerOperation(
 handle, // HANDLE -- board handle
 TRIG_ENGINE_OP_J_OR_K, // U32 -- trigger operation
 TRIG_ENGINE_J, // U32 -- trigger engine id
 TRIG_CHAN_B, // U32 -- trigger source id
 TRIGGER_SLOPE_POSITIVE, // U32 -- trigger slope id
 triggerLevelJ, // U32 -- trigger level from 0 to 255
 TRIG_ENGINE_K, // U32 -- trigger engine id
 TRIG_DISABLE, // U32 -- trigger source id for engine K
 TRIGGER_SLOPE_POSITIVE, // U32 -- trigger slope id
 triggerLevelK, // U32 -- trigger level from 0 to 255
);

2.3.3.3 External trigger
AlazarTech digitizer boards can trigger on a signal connected to its TRIG IN BNC
connector.

Figure 2-4 External trigger connector on PCI/PCIe mounting bracket.

© 2003-2010 Alazar Technologies Inc. 16

SDK Programmer’s Guide

To use an external trigger input:
• Call AlazarSetTriggerOperation with TRIG_EXTERNAL as the trigger source

identifier of at least one of the trigger engines; and
• Call AlazarSetExternalTrigger to select the range and coupling of the external trigger

input.

The following code fragment configures a board to trigger when the signal connected to
the TRIG IN falls below +2 V, assuming the signal’s range is less than ± 5V with DC
coupling.

 // Calculate the trigger level code from the level and range

 double triggerLevel_volts = 2.; // trigger level
 double triggerRange_volts = 5.; // input range
 U32 triggerLevel_code =
 (U32)(128 + 127 * triggerLevel_volts / triggerRange_volts);

 // Configure trigger engine J to generate a trigger event
 // on the falling edge of an external trigger signal.

 AlazarSetTriggerOperation(
 handle, // HANDLE -- board handle
 TRIG_ENGINE_OP_J, // U32 -- trigger operation
 TRIG_ENGINE_J, // U32 -- trigger engine id
 TRIG_EXTERNAL, // U32 -- trigger source id
 TRIGGER_SLOPE_NEGATIVE, // U32 -- trigger slope id
 triggerLevel, // U32 -- trigger level (0 – 255)
 TRIG_ENGINE_K, // U32 -- trigger engine id
 TRIG_DISABLE, // U32 -- trigger source id for engine K
 TRIGGER_SLOPE_POSITIVE, // U32 -- trigger slope id
 128 // U32 -- trigger level (0 – 255)
);

 // Configure the external trigger input to +/-5V range,
 // with DC coupling

 AlazarSetExternalTrigger(
 handle, // HANDLE -- board handle
 DC_COUPLING, // U32 -- coupling id
 ETR_5V // U32 -- external range id
);

2.3.3.4 Trigger timeout
AlazarTech digitizer boards can be configured to automatically trigger when the board is
waiting for a trigger event, but no trigger events arrive after a specified time interval.
This behavior is similar to the “automatic” trigger mode of oscilloscopes, and may be
useful to capture waveforms when trigger conditions are unknown.

Call AlazarSetTriggerTimeOut to specify the amount of time that a board should wait for
a hardware trigger event before automatically generating a software trigger event and, as

© 2003-2010 Alazar Technologies Inc. 17

SDK Programmer’s Guide

a result, acquiring one record. The timeout value is expressed in 10 μs units, where 0
means disable the timeout counter and wait forever for a trigger event.

The trigger timeout value should be set to zero once stable trigger parameters have been
found. Otherwise, a board may generate unexpected trigger events if the trigger timeout
interval expires before a hardware trigger event occurs.

The following code fragment configures a board to automatically trigger and acquire one
record if it does not receive a trigger event after 1 ms.

 double timeout_sec = 1.e-3; // 1 ms
 U32 timeout_ticks = (U32)(timeout_sec / 10.e-6 + 0.5);

 AlazarSetTriggerTimeOut(
 boardHandle, // HANDLE -- board handle
 timeout_ticks // U32 – timeout_sec / 10.e-6 (0 = infinite)
);

The following code fragment configures a board to wait forever for trigger events.

 AlazarSetTriggerTimeOut(
 boardHandle, // HANDLE -- board handle
 0 // U32 -- timeout_sec / 10.e-6 (0 = infinite)
);

2.3.3.5 Trigger delay
An AlazarTech digitizer board can be configured to wait for a specified amount of time
after it receives a trigger event before capturing a record for the trigger.

Call AlazarSetTriggerDelay to specify a time, in sample clock periods, to wait after
receiving a trigger event for a record before capturing samples for that record.

The following code fragment shows how to set a trigger delay of 1 ms, given a sample
rate of 100 MS/s.

 double triggerDelay_sec = 1.e-3; // 1 ms
 double samplesPerSec = 100.e6; // 100 MS/s
 U32 triggerDelay_samples =
 (U32)(triggerDelay_sec * samplesPerSec + 0.5);

 AlazarSetTriggerDelay(
 boardHandle, // HANDLE -- board handle
 triggerDelay_samples // U32 -- trigger delay in samples
);

2.3.4 AUX I/O
AlazarTech digitizer boards with an AUX I/O BNC connector can be configured to
supply a 5V TTL-level output signal, or to receive a TTL-level input signal on this
connector.

© 2003-2010 Alazar Technologies Inc. 18

SDK Programmer’s Guide

Figure 2-5 Auxiliary I/O connector on PCI/PCIe mounting bracket

Use AlazarConfigureAuxIO to configure the function of the AUX I/O connector.

2.3.4.1 Trigger output
The AUX I/O connector can be configured to supply a trigger output signal, where the
edge of the trigger output signal is synchronized with the edge of the sample clock. Note
that this is the default power-on mode for the AUX I/O connector.

The following code fragment configures the AUX I/O connector as a trigger output
signal.

 AlazarConfigureAuxIO(
 handle, // HANDLE -- board handle
 AUX_OUT_TRIGGER, // U32 -- mode
 0 // U32 -- parameter
);

2.3.4.2 Pacer output
The AUX I/O connector can be configured to output the sample clock divided by a
programmable value. This option may be used to generate a clock signal synchronized
with the sample clock of the digitizer board.

The following code fragment generates a 10 MHz signal on an AUX I/O connector,
assuming a sample rate of 180 MS/s.

© 2003-2010 Alazar Technologies Inc. 19

SDK Programmer’s Guide

 AlazarConfigureAuxIO(
 handle, // HANDLE -- board handle
 AUX_OUT_PACER, // U32 -- mode
 18 // U32 –- sample clock divider
);

Note that the sample rate divider value must be greater than 2, and that signal output may
be limited by the bandwidth of the output’s TTL drivers.

2.3.4.3 Digital output
The AUX I/O connector can be configured to output a TTL high or low signal. This
mode allows a programmer to use the AUX I/O connector as a general purpose digital
output.

The following code fragment configures the AUX I/O connector as a digital output.

 AlazarConfigureAuxIO(
 handle, // HANDLE -- board handle
 AUX_OUT_SERIAL_DATA, // U32 -- mode
 0 // U32 –- 0 = low, 1 = high
);

2.3.4.4 Trigger enable output
The AUX I/O connector can be configured as an AutoDMA trigger enable output signal.
When enabled, a board will:
• Wait for softare to call AlazarForceTriggerEnable.
• Output a TTL high signal on the AUX connector.
• Wait for the number of trigger events necessary to capture the number of “records per

buffer” in one AutoDMA buffer specified at the start of the acquisition.
• Output a TLL low signal on the AUX connector.
• Repeat.

The following code fragment configures the AUX I/O connector to acquire “records per
buffer” records after it receives a software trigger enable event.

 AlazarConfigureAuxIO(
 handle, // HANDLE -- board handle
 AUX_OUT_TRIGGER_ENABLE, // U32 -- mode
 0 // U32 -- parameter (not used)
);

See section 2.4.2.8 “AutoDMA Scanning Applications” for more information.

2.3.4.5 Trigger enable input
The AUX I/O connector can be configured as an AutoDMA trigger enable input signal.
When enabled, a board will:

© 2003-2010 Alazar Technologies Inc. 20

SDK Programmer’s Guide

• Wait for a rising or falling edge on the AUX I/O.
• Wait for the number of trigger events necessary to capture the number of “records per

buffer” in one AutoDMA segment specified at the start of the acquisition.
• Repeat.

The following code fragment configures the AUX I/O connector to acquire “records per
buffer” records after it receives the rising edge of a TTL pulse connected on the AUX I/O
connector.

 AlazarConfigureAuxIO(
 handle, // HANDLE -- board handle
 AUX_IN_TRIGGER_ENABLE, // U32 -- mode
 TRIGGER_SLOPE_POSITIVE // U32 -- parameter
);

See section 2.4.2.8 “AutoDMA Scanning Applications” for more information.

2.4 Acquiring data
AlazarTech digitizers may be configured to acquire in one of the following modes:
• “Single port” mode acquires data to on-board memory and then, after the acquisition

is complete, transfers data from on-board memory to application buffers.
• “Dual port AutoDMA” mode acquires to on-board memory while, at the same time,

transferring data from on-board memory to application buffers.

2.4.1 Single port
The single-port acquisition API allows an application to capture records to on-board
memory – one per trigger event – and transfer records from on-board to host memory.
Data acquisition and data transfer are made serially, so trigger events that occur while the
board is transferring data will be missed.

The single port acquisition API may be used if:
• A board has single-port or dual-port on-board memory.
• An application can miss trigger events that occur while it is transferring data from on-

board to host memory.

The singe port acquisition API must be used if:
• A board does not have dual-port or FIFO on-board memory.
• An application acquires data at an average rate that is greater than maximum transfer

rate of the board’s PCI or PCIe host bus interface.

Ultrasonic testing, OCT, radar, imaging and similar applications should not use the
single-port acquisition API; rather, they should use the dual-port acquisition API
described in section 2.4.2 below.

© 2003-2010 Alazar Technologies Inc. 21

SDK Programmer’s Guide

2.4.1.1 Acquiring to on-board memory

2.4.1.1.1 Dual channel mode
By default, AlazarTech digitizer boards share on-board memory equally between both of
a board’s input channels. A single-port acquisition in dual-channel mode captures
samples from both input channels simultaneously to on-board memory and, after the
acquisition is complete, allows samples from either input channel to be transferred from
on-board memory to an application buffer.

To program a board acquire to on-board memory in dual-channel mode:
1. Call AlazarSetRecordSize to set the number of samples per record, where a record

may contain samples before and after its trigger event.
2. Call AlazarSetRecordCount to set the number records per acquisition – the board

captures one record per trigger event.
3. Call AlazarStartCapture to arm the board to wait for trigger events.
4. Call AlazarBusy in a loop to poll until the board has received all trigger events in the

acquisition, and has captured all records to on-board memory.
5. Call AlazarRead, AlazarReadEx, or AlazarHyperDisp to transfer records from on-

board memory to host memory.
6. Repeat from step 3, if necessary.

The following code fragment acquires to on board memory with on-board memory shared
between both input channels.

 // 1. Set record size

 AlazarSetRecordSize (
 boardHandle, // HANDLE -- board handle
 preTriggerSamples, // U32 -- pre-trigger samples
 postTriggerSamples // U32 -- post-trigger samples
);

 // 2. Set record count

 AlazarSetRecordCount(
 boardHandle, // HANDLE -- board handle
 recordsPerCapture // U32 -- records per acquisition
);

 // 3. Arm the board to wait for trigger events

 AlazarStartCapture(boardHandle);

 // 4. Wait for the board to receive all trigger events
 // and capture all records to on-board memory

 while (AlazarBusy (boardHandle))
 {
 // The acquisition is in progress
 }

© 2003-2010 Alazar Technologies Inc. 22

SDK Programmer’s Guide

 // 5. The acquisition is finished. Call AlazarRead or
 // AlazarHyperDisp to transfer records from either channel
 // from on-board memory to an application buffer.

2.4.1.1.2 Single channel mode
ATS9870 and ATS9350 digitizer boards can be configured to dedicate all on-board
memory to one of a board’s input channels. A single-port acquisition in single-channel
mode only captures samples from the specified channel to on-board memory and, after
the acquisition is complete, only allows samples from the specified channel to be
transferred from on-board memory to an application buffer.

To program a board acquire to on-board memory in single-channel mode:
1. Call AlazarSetRecordSize to set the number of samples per record, where a record

may contain samples before and after its trigger event.
2. Call AlazarSetRecordCount to set the number records per acquisition – the board

captures one record per trigger event.
3. Call AlazarSetParameter with the parameter SET_SINGLE_CHANNEL_MODE, and

specify the channel to use all memory.
4. Call AlazarStartCapture to arm the board to wait for trigger events.
5. Call AlazarBusy in a loop to poll until the board has received all trigger events in the

acquisition, and has captured all records to on-board memory.
6. Call AlazarRead, AlazarReadEx, or AlazarHyperDisp to transfer records from on-

board memory to host memory.
7. Repeat from step 3, if necessary.

The following code fragment acquires to on-board memory from CH A in single channel
mode.

 // 1. Set record size

 AlazarSetRecordSize (
 boardHandle, // HANDLE -- board handle
 preTriggerSamples, // U32 -- pre-trigger samples
 postTriggerSamples // U32 -- post-trigger samples
);

 // 2. Set record count

 AlazarSetRecordCount(
 boardHandle, // HANDLE -- board handle
 recordsPerCapture // U32 -- records per acquisition
);

 // 3. Enable single channel mode

 AlazarSetParameter(
 boardHandle, // HANDLE -- board handle
 0, // U8 -- channel Id (not used)
 SET_SINGLE_CHANNEL_MODE, // U32 -- parameter
 CHANNEL_A // long – CHANNEL_A or CHANNEL_B
);

© 2003-2010 Alazar Technologies Inc. 23

SDK Programmer’s Guide

 // 4. Arm the board to wait for trigger events

 AlazarStartCapture(boardHandle);

 // 5. Wait for the board to receive all trigger events
 // and capture all records to on-board memory

 while (AlazarBusy (boardHandle))
 {
 // The acquisition is in progress
 }

 // 6. The acquisition is finished. Call AlazarRead or
 // AlazarHyperDisp to transfer records from on-board memory
 // to your buffer.

Note that a call to AlazarSetParameter must be made before each call to
AlazarStartCapture.

If the of number of samples per record specified in AlazarSetRecordSize is greater than
the maximum number of samples per channel in dual-channel mode, but is less than the
maximum number of samples per record in single-channel mode, and
AlazarSetParameter is not called before calling AlazarStartCapture, then
AlazarStartCapture will fail with error ApiNotSupportedInDualChannelMode (591).

2.4.1.2 Using AlazarRead
Use AlazarRead to transfer samples from records acquired to on-board memory to a
buffer in host memory.

2.4.1.2.1 Transferring full records
The following code fragment transfers a full CH A record from on-board memory to a
buffer in host memory.

 // Allocate a buffer to hold one record.
 // Note that the buffer must be at least 16 samples
 // larger than the number of samples per record.

 U32 allocBytes = bytesPerSample * (samplesPerRecord + 16);
 void* buffer = malloc(allocBytes);

 // Transfer a CHA record into our buffer
 AlazarRead (
 boardHandle, // HANDLE -- board handle
 CHANNEL_A, // U32 -- channel Id
 buffer, // void* -- buffer
 bytesPerSample, // int -- bytes per sample
 (long) record, // long -- record (1 indexed)
 -((long)preTriggerSamples), // long -- trigger offset
 samplesPerRecord // U32 -- samples to transfer
);

© 2003-2010 Alazar Technologies Inc. 24

SDK Programmer’s Guide

See “%ATS_SDK_DIR%\Samples\SinglePort\AR” for a complete sample program that
demonstrates how to use AlazarRead to read full records.

2.4.1.2.2 Transferring partial records
AlazarRead can transfer a segment of a record from on-board memory to a buffer in host
memory. This may be useful if:
• The number of bytes in a full record in on-board memory exceeds the buffer size in

bytes that an application can allocate in host memory.
• An application wishes to reduce the time required for data transfer when it acquires

relatively long records to on-board memory, but is only interested in a relatively small
part of the record.

Use the “TransferOffset” parameter in the call to AlazarRead to specify the offset, in
samples from the trigger position in the record, of the first sample to transfer from on-
board memory to the application buffer. And use the “TransferLength” parameter to
specify the number of samples to transfer from on-board memory to the application
buffer, where this number of samples may be less than the number of samples per record.

The following code fragment divides a record into segments, and transfers the segments
from on-board to host memory.

 // Allocate a buffer to hold one record segment.
 // Note that the buffer must be at least 16 samples
 // larger than the number of samples per buffer.

 U32 allocBytes = bytesPerSample * (samplesPerBuffer + 16);
 void* buffer = malloc(allocBytes);

 // Transfer a record in segments from on-board memory

 U32 samplesToRead = samplesPerRecord;
 long triggerOffset_samples = -(long)preTriggerSamples;

 while (samplesToRead > 0)
 {
 // Transfer a record segment from on-board memory

 U32 samplesThisRead;
 if (samplesToRead > samplesPerBuffer)
 samplesThisRead = samplesPerBuffer;
 else
 samplesThisRead = samplesToRead;

 AlazarRead (
 boardHandle, // HANDLE -- board handle
 CHANNEL_A, // U32 -- channel Id
 buffer, // void* -- buffer
 bytesPerSample, // int -- bytes per sample
 (long) record, // long -- record (1 indexed)
 triggerOffset_samples, // long -- trigger offset
 samplesThisRead // U32 -- samples to transfer
);

© 2003-2010 Alazar Technologies Inc. 25

SDK Programmer’s Guide

 // Process the record segment here
 WriteSamplesToFile(buffer, samplesThisRead);

 // Point to next record segment in on-board memory
 triggerOffset_samples += samplesThisRead;

 // Decrement number of samples left to read
 samplesToRead -= samplesThisRead;
 }

See “%ATS_SDK_DIR%\Samples\SinglePort\AR_Segments” for a complete sample
program that demonstrates how to read records in segments.

2.4.1.3 Using AlazarReadEx
AlazarRead can transfer samples from records acquired to on-board memory that contain
up to 2,147,483,647 samples. If a record contains 2,147,483,648 or more samples, use
AlazarReadEx rather than AlazarRead.

AlazarReadEx uses signed 64-bit transfer offsets, while AlazarRead uses signed 32-bit
transfer offsets. Otherwise, AlazarReadEx and AlazarRead are identical.

2.4.1.4 Using AlazarHyperDisp
HyperDisp technology enables the FPGA on an AlazarTech digitizer board to process
sample data. The FPGA divides a record in on-board memory into intervals, finds the
minimum and maximum sample values during each interval, and transfers an array of
minimum and maximum value pairs to host memory. This allows the acquisition of
relatively long records to on-board memory, but the transfer of relatively short processed
records across the PCI/PCIe bus to host memory.

For example, an ATS860-256M would require over 2 seconds per channel to transfer
256,000,000 samples across the PCI bus. However, with HyperDisp enabled the ATS860
would require a fraction of a second to calculate HyperDisp data, and transfer a few
kilobytes of processed data across the PCI bus. If an application was searching these
records for glitches, it may save a considerable amount of time by searching HyperDisp
data for the glitches and, if a glitch were found, transfer the raw sample data from the
interval from on-board memory to host memory.

Use AlazarHyperDisp to enable a board to process records in on-board memory, and
transfer processed records to host memory.

The following code fragment enables an ATS860-256M to process a record in on-board
memory containing 250,000,000 samples into an array of 100 HyperDisp points, where
each point contains the minimum and maximum sample values over an interval of
2,500,000 samples in the record.

 // Specify number of samples per record

© 2003-2010 Alazar Technologies Inc. 26

SDK Programmer’s Guide

 U32 preTriggerSamples = 125000000;
 U32 postTriggerSamples = 125000000;
 U32 samplesPerRecord = preTriggerSamples + postTriggerSamples;
 U32 recordsPerCapture = 1;

 // Acquire to on-board memory (omitted)

 // Specify the number of HyperDisp points
 U32 pointsPerRecord = 100;

 // Allocate a buffer to store the HyperDisp data

 U32 bytesPerSample = 1; // ATS860 constant
 U32 samplesPerPoint = 2; // HyperDisp constant
 U32 bytesPerBuffer =
 bytesPerSample * samplesPerPoint * pointsPerRecord;
 U8 *buffer = (U8*) malloc(bytesPerBuffer);

 // Enable ATS860 FPGA to process the 250M sample record
 // in on-board memory into an array of 100 HyperDisp points,
 // and transfer the HyperDisp points into our buffer

 U32 error;

 AlazarHyperDisp (
 boardHandle, // HANDLE -- board handle
 NULL, // void* -- reserved
 samplesPerRecord, // U32 -- BufferSize
 (U8*) buffer, // U8* -- ViewBuffer
 bytesPerBuffer, // U32 -- ViewBufferSize
 pointsPerRecord, // U32 -- NumOfPixels
 1, // U32 -- Option (1 = HyperDisp)
 CHANNEL_A, // U32 -- ChannelSelect
 1, // U32 -- record (1 indexed)
 -(long)preTriggerSamples, // long -- TransferOffset
 &error // U32* -- error
);

See “%ATS_SDK_DIR%\Samples\SinglePort\HD” for a complete sample program that
demonstrates how to use AlazarHyperDisp.

2.4.1.5 Record timestamps
AlazarTech digitizer boards include a 40-bit counter clocked by the sample clock source
scaled by a board specific divider. When a board receives a trigger event to capture a
record to on-board memory, it latches and saves the value of this counter. The counter
value gives the time, relative to when the counter was reset, when the trigger event for the
record occurred.

By default, this counter is reset to zero at the start of each acquisition. Use
AlazarResetTimeStamp to control when the record timestamp counter is reset.

© 2003-2010 Alazar Technologies Inc. 27

SDK Programmer’s Guide

Use AlazarGetTriggerAddress to retrieve the timestamp, in timestamp clock ticks, of a
record acquired to on-board memory. This function does not convert the timestamp value
to seconds.

The following code fragment gets the record timestamp of a record acquired to on-board
memory, and converts the timestamp value from clocks ticks to seconds.

 // Read the record timestamp

 U32 triggerAddress;
 U32 timestampHigh;
 U32 timestampLow;

 AlazarGetTriggerAddress (
 boardHandle, // HANDLE -- board handle
 record, // U32 -- record number (1-indexed)
 &triggerAddress, // U32* -- trigger address
 ×tampHigh, // U32* -- timestamp high part
 ×tampLow // U32* -- timestamp low part
);

 // Convert the record timestamp from counts to seconds

 __int64 timeStamp_cnt;
 timeStamp_cnt = ((__int64) timestampHigh) << 8;
 timeStamp_cnt |= timestampLow & 0x0ff;

 double samplesPerTimestampCount = 2; // board specific constant
 double samplesPerSec = 50.e6; // sample rate
 double timeStamp_sec = (double) samplesPerTimestampCount *
 timeStamp_cnt / samplesPerSec;

Call AlazarGetParameter with the GET_SAMPLES_PER_TIMESTAMP_CLOCK
parameter to obtain the board specific “samples per timestamp count” value. The
following table lists these values.

Model Samples per timestamp count
ATS310, ATS330,
ATS460, ATS660,
ATS9462, ATS9870, ATS9350

2

ATS850, ATS860 4

See “%ATS_SDK_DIR%\Samples\SinglePort\AR_Timestamps” for a complete sample
program that demonstrates how to retrieve record timestamps and convert them to
seconds.

2.4.1.6 Master-slave applications
If the single-port API is used to acquire from master-slave board system, only the master
board in the board system should receive calls to the following API functions:

© 2003-2010 Alazar Technologies Inc. 28

SDK Programmer’s Guide

AlazarStartCapture, AlazarAbortCapture, AlazarBusy, AlazarTriggered and
AlazarForceTrigger.

See “%ATS_SDK_DIR%\Samples\SinglePort\AR_MasterSlave” for a sample program
that demonstrates how to acquire from a master-slave system.

2.4.2 Dual port AutoDMA
AutoDMA allows a board to capture sample data to on-board dual-port memory while –
at the same time – transferring sample data from on-board dual-port memory to a buffer
in host memory. Data acquisition and data transfer are done in parallel, so any trigger
events that occur while the board is transferring data will not be missed.

AutoDMA may be used if:
• A board has dual-port or FIFO on-board memory.
• An application acquires at an average rate, in MB/s, that is less than maximum

transfer rate of your board’s PCI or PCIe host bus interface.

AutoDMA must be used if:
• A board has FIFO on-board memory.
• An application cannot miss trigger events that occur while it transfers data to host

memory, or re-arms for another acquisition.
• An application acquires more sample points or records than can be stored in on-board

memory.

Applications such as ultrasonic testing, OCT, radar, and imaging should use AutoDMA.

An AutoDMA acquisition is divided into segments. AutoDMA hardware on a board
transfers sample data, one segment at a time, from on-board memory to a buffer in host
memory. There may be an unlimited number of segments in an AutoDMA acquisition, so
a board can be armed to make an acquisition of infinite duration.

There are four AutoDMA operating modes.

AutoDMA
mode

Triggered Pre-
trigger
samples

Record
headers

Description

Traditional Yes Yes Optional Acquire multiple records – one per
trigger event. Each record may
contain samples before and after its
trigger event. Each buffer contains
one or more records. A record
header may optionally precede each
record.

NPT
(NoPreTrigger)

Yes No No Acquire multiple records – one per
trigger event. Each record may
contain only samples after its

© 2003-2010 Alazar Technologies Inc. 29

SDK Programmer’s Guide

trigger event. Each buffer contains
one or more records.

Continuous
streaming

No No No Acquire a single, gapless record
spanning multiple buffers, where
each buffer contains a segment
from the record. Do not wait for a
trigger event before acquiring the
record.

Triggered
streaming

Yes No No Acquire a single, gapless record
spanning multiple buffers, where
each buffer contains a segment
from the record. Wait for a trigger
event before acquiring the record.

To make an AutoDMA acquisition, an application must:
• Specify the AutoDMA mode, samples per record, records per buffer, and records per

acquisition.
• Arm the board to start the acquisition.
• Wait for an AutoDMA buffer to be filled, process the buffer, and repeat until the

acquisition is complete.

The AlazarTech SDK supplies two groups of functions to make AutoDMA acquisitions:
the Asynchronous AutoDMA and Synchronous AutoDMA APIs. Both allow a board to
transfer a segment of an AutoDMA acquisition into one buffer while – at the same time –
the application processes a previous segment of the acquisition in another buffer.

The following table compares the asynchronous and synchronous AutoDMA APIs.

Attribute Asynchronous AutoDMA Synchronous AutoDMA
DMA
buffer
count

Application defined. Two API allocated buffers.

CPU usage Interrupt driven, so very low.
More CPU cycles are available
to application threads.

Polling loop, so very high. Less CPU
cycles are available to application
threads.

Data
transfer

DMA directly into user-
supplied buffer. No CPU
cycles are used to copy data.

DMA into API allocated buffer, then
copy to user-supplied buffer. CPU cycles
used to copy data are not available to
application threads.

DMA re-
arm time

Next DMA started by
hardware interrupt. Latency is
lowest and data throughput is
highest.

Next DMA started in polling loop.
Latency is higher and data throughput is
lower.

Master
slave
systems

Fully supported. Not recommended.

© 2003-2010 Alazar Technologies Inc. 30

SDK Programmer’s Guide

The synchronous AutoDMA API is deprecated; it is maintained for compatibility with
existing applications. The asynchronous AutoDMA API is recommended for all new
applications.

2.4.2.1 Traditional AutoDMA
Use traditional mode to acquire multiple records – one per trigger event – with sample
points after, and optionally before, the trigger event in each record. A record header may
optionally precede each record in the AutoDMA buffer. The programmer specifies the
number of samples per record, records per buffer, and buffers in the acquisition.

Each buffer is organized as follows if a board has on-board memory.

Enabled channels Buffer organization
CH A R1A, R2A, R3A, … RnA
CH B R1B, R2B, R3B … RnB
Both CH A and CH B R1A, R1B, R2A, R2B, R3A, R3B … RnA, RnB

Each buffer is organized as follows if a board does not have on-board memory, or if
sample interleave is enabled.

Enabled channels Buffer organization
CH A R1A, R2A, R3A, … RnA
CH B R1B, R2B, R3B … RnB
Both CH A and CH B R1[ABAB…], R2[ABAB…], … Rn[ABAB…]

Note that Rxy is a record with a contiguous array of samples from a channel, and Rx[AB]
is a record with interleaved samples from both CH A and CH B.

See “%ATS_SDK_DIR%\Samples\DualPort\TR” for a sample program that
demonstrates how to make an AutoDMA acquisition in Traditional mode.

If record headers are enabled, then a 16-byte record header will precede each record in an
AutoDMA buffer. The record header contains a record timestamp, as well as acquisition
metadata. See section 2.4.2.5 below for a discussion of AutoDMA record headers.

2.4.2.2 NPT AutoDMA
Use NPT mode to acquire multiple records – one per trigger event – with no sample
points before the trigger event in each record, and with no record headers. The
programmer specifies the number of samples per record, records per buffer, and buffers
in the acquisition.

Note that NPT mode is highly optimized, and supports higher trigger repeats rate than
possible in Traditional mode.

© 2003-2010 Alazar Technologies Inc. 31

SDK Programmer’s Guide

Each buffer is organized as follows if a board has on-board memory.

Enabled channels Buffer organization
CH A R1A, R2A, R3A, … RnA
CH B R1B, R2B, R3B … RnB
Both CH A and CH B R1A, R2A, R3A … RnA, R1B, R2B, R3B … RnB

Each buffer is organized as follows if a board does not have on-board memory, or if
sample interleave is enabled.

Enabled channels Buffer organization
CH A R1A, R2A, R3A, … RnA
CH B R1B, R2B, R3B … RnB
Both CH A and CH B R1[ABAB…], R2[ABAB…], … Rn[ABAB…]

Note that Rxy is a record with a contiguous array of samples from a channel, and Rx[AB]
is a record with interleaved samples from both CH A and CH B.

See “%ATS_SDK_DIR%\Samples\DualPort\NPT” for a sample program that
demonstrates how to make an AutoDMA acquisition in NPT mode.

2.4.2.3 Continuous streaming AutoDMA
Use continuous streaming mode to acquire a single, gapless record that spans multiple
buffers without waiting for a trigger event to start the acquisition. The programmer
specifies the number of samples per buffer, and buffers per acquisition.

Each buffer is organized as follows if a board has on-board memory.

Enabled channels Buffer organization
CH A R1A
CH B R1B
Both CH A and CH B R1A, R1B

Each buffer is organized as follows if a board does not have on-board memory, or if
sample interleave is enabled.

Enabled channels Buffer organization
CH A R1A
CH B R1B
Both CH A and CH B R1[ABAB…]

Note that Rxy is a record with a contiguous array of samples from a channel, and Rx[AB]
is a record with interleaved samples from both CH A and CH B.

© 2003-2010 Alazar Technologies Inc. 32

SDK Programmer’s Guide

See “%ATS_SDK_DIR%\Samples\DualPort\CS” for a sample program that
demonstrates how to make an AutoDMA acquisition in continuous streaming mode.

2.4.2.4 Triggered streaming AutoDMA
Use triggered streaming mode to acquire a single, gapless record that spans two or more
buffers after waiting for a trigger event to start the acquisition. The programmer specifies
the number of samples in each buffer, and buffers in the acquisition.

Each buffer is organized as follows if a board has on-board memory.

Enabled channels Buffer organization
CH A R1A
CH B R1B
Both CH A and CH B R1A, R1B

Each buffer is organized as follows if a board does not have on-board memory, or if
sample interleave is enabled.

Enabled channels Buffer organization
CH A R1A
CH B R1B
Both CH A and CH B R1[ABAB…]

Note that Rxy is a record with a contiguous array of samples from a channel, and Rx[AB]
is a record with interleaved samples from both CH A and CH B.

See “%ATS_SDK_DIR%\Samples\DualPort\TS” for a sample program that demonstrates
how to make a triggered streaming AutoDMA acquisition.

2.4.2.5 Record headers and timestamps
In traditional AutoDMA mode, a 16-byte record header may optionally precede each
record in a buffer.

When record headers are enabled, the following table shows the buffer layout if a board
has on-board memory. Record headers are not supported if a board does not have on-
board memory.

Enabled channels Buffer organization
CH A H1A, R1A, H2A, R2A … HnA, RnA
CH B H1B, R1B, H2B, R2B … HnB, RnB
Both CH A and CH B H1A, R1A, H1B, R1B, H2A, R2A, H2B, R2B…

HnA, RnA, HnB, RnB

© 2003-2010 Alazar Technologies Inc. 33

SDK Programmer’s Guide

Note that Rxy is a contiguous array of samples for one channel, and Hxy is a 16-byte
record header.

2.4.2.5.1 Record headers
A record header is a 16-byte structure defined in AlazarApi.h as follows:

struct _HEADER0 {
unsigned int SerialNumber:18; // bits 17..0
unsigned int SystemNumber:4; // bits 21..18
unsigned int WhichChannel:1; // bit 22
unsigned int BoardNumber:4; // bits 26..23
unsigned int SampleResolution:3; // bits 29..27
unsigned int DataFormat:2; // bits 31..30

};

struct _HEADER1 {
unsigned int RecordNumber:24; // bits 23..0
unsigned int BoardType:8; // bits 31..24

};

struct _HEADER2 {
U32 TimeStampLowPart; //bits 31..0

};

struct _HEADER3 {
unsigned int TimeStampHighPart:8; // bits 7..0
unsigned int ClockSource:2; // bits 9..8
unsigned int ClockEdge:1; // bit 10
unsigned int SampleRate:7; // bits 17..11
unsigned int InputRange:5; // bits 22..18
unsigned int InputCoupling:2; // bits 24..23
unsigned int InputImpedence:2; // bits 26..25
unsigned int ExternalTriggered:1; // bit 27
unsigned int ChannelBTriggered:1; // bit 28
unsigned int ChannelATriggered:1; // bit 29
unsigned int TimeOutOccurred:1; // bit 30
unsigned int ThisChannelTriggered:1; // bit 31

};

typedef struct _ALAZAR_HEADER {
struct _HEADER0 hdr0;
struct _HEADER1 hdr1;
struct _HEADER2 hdr2;
struct _HEADER3 hdr3;

} ALAZAR_HEADER, *PALAZAR_HEADER;

A record header contains the following fields:

Field Width
in bits

Description

SerialNumber 18 Serial number of this board as a signed integer.
SystemNumber 4 System identifier number of this board system.
WhichChannel 1 Input channel of this header: 0 = CH A, 1 = CH B.

© 2003-2010 Alazar Technologies Inc. 34

SDK Programmer’s Guide

BoardNumber 4 Board identifier number of this board.
SampleResolution 3 Reserved
DataFormat 2 Reserved
RecordNumber 24 Index of record in acquisition.
BoardType 8 Board type identifier.

See AlazarGetBoardKind for a list of board type
identifiers.

TimeStampLowPart 32 Lower 32 bits of 40-bit record timestamp. See section
2.4.2.5.2 below.

TimeStampHighPart 8 Upper 8 bits of 40-bit record timestamp. See section
2.4.2.5.2 below.

ClockSource 4 Clock source identifier – 1.
See AlazarSetCaptureClock for a list of sample rate
identifiers.

ClockEdge 1 Clock edge identifier.
See AlazarSetCaptureClock for a list of sample rate
identifiers.

SampleRate 7 Sample rate identifier.
See AlazarSetCaptureClock for a list of sample rate
identifiers.

InputRange 5 Input range identifier for this channel.
See AlazarInputControl for a list input range
identifiers.

InputCoupling 2 Input coupling identifier for this channel.
See AlazarInputControl for a list input coupling
identifiers.

InputImpedence 2 Input impedance identifier for this channel.
See AlazarInputControl for a list input impedance
identifiers.

ExternalTriggered 1 This bit is set if TRIG IN on this board caused the
board system to trigger and capture this record.
Otherwise, this bit is cleared.

ChannelBTriggered 1 This bit is set if CH B on this board caused the board
system to trigger and capture this record. Otherwise,
this bit is cleared.

ChannelATriggered 1 This bit is set if CH A on this board caused the board
system to trigger and capture this record. Otherwise,
this bit is cleared.

TimeOutOccurred 1 This bit is set if a trigger timeout expired on a trigger
engine on this board caused the board system to trigger
and capture this record. Otherwise, this bit is cleared.

ThisChannelTriggered 1 This bit is set if the channel specified by the
WhichChannel field on this board caused the board
system to trigger and capture this record. Otherwise,
this bit is cleared.

© 2003-2010 Alazar Technologies Inc. 35

SDK Programmer’s Guide

See “%ATS_SDK_DIR%\Samples\DualPort\TR_Header” for a full sample program that
demonstrates how to make an AutoDMA acquisition in Traditional mode with record
headers.

2.4.2.5.2 Record timestamps
AlazarTech digitizer boards include a high-speed 40-bit counter that is clocked by the
sample clock source scaled by a board specific divider. When a board receives a trigger
event to capture a record to on-board memory, it latches the value of this counter. This
timestamp value gives the time, relative to when the counter was reset, when the trigger
event for this record occurred.

By default, this counter is reset to zero at the start of each acquisition. Use
AlazarResetTimeStamp to control when the record timestamp counter is reset.

The following code fragment demonstrates how to extract the timestamp from a record
header, and covert the value from counts to seconds.

 double samplesPerTimestampCount = 2; // board specific constant
 double samplesPerSec = 100.e6; // sample rate

 void* pRecord; // points to record header in buffer
 ALAZAR_HEADER *pHeader = (ALAZAR_HEADER*) pRecord;

 __int64 timestamp_counts;
 timestamp_counts = (INT64) pHeader->hdr2.TimeStampLowPart;
 timestamp_counts = timestamp_counts |
 (((__int64) (pHeader->hdr3.TimeStampHighPart & 0x0ff)) << 32);

 double timestamp_sec = samplesPerTimestampCount *
 timestamp_counts / samplesPerSec;

Call AlazarGetParameter with the GET_SAMPLES_PER_TIMESTAMP_CLOCK
parameter to determine the board specific “samples per timestamp count” value. The
following table lists these values.

Model Samples per timestamp count
ATS310, ATS330,
ATS460, ATS660,
ATS9462, ATS9870, ATS9350

2

ATS850, ATS860 4

See “%ATS_SDK_DIR%\Samples\DualPort\TR_Header” for a full sample program that
demonstrates how to make an AutoDMA acquisition in Traditional mode with record
headers, and convert the timestamp to seconds.

2.4.2.6 Using asynchronous AutoDMA
The asynchronous AutoDMA functions allow an application to add user-defined number
of buffers to a list of buffers available to be filled by a board, and to wait for the board to

© 2003-2010 Alazar Technologies Inc. 36

SDK Programmer’s Guide

receive sufficient trigger events to fill the buffers with sample data. The board uses
AutoDMA to transfer data directly into a buffer without making any intermediate copies
in memory. As soon as one buffer is filled, the driver automatically starts an AutoDMA
transfer into the next available buffer.

2.4.2.6.1 AlazarPostBuffer
C/C++ and VisualBasic applications should call AlazarPostAsyncBuffer to make buffers
available to be filled by the board, and AlazarWaitAsyncBufferComplete to wait for the
board to receive sufficient trigger events to fill the buffers.

The following code fragment outlines the steps required to make an AutoDMA
acquisition using AlazarPostAsyncBuffer and AlazarWaitAsyncBufferComplete.

 // Configure the board to make an AutoDMA acquisition

 AlazarBeforeAsyncRead(
 handle, // HANDLE -- board handle
 channelMask, // U32 -- enabled channel mask
 -(long)preTriggerSamples, // long -- trigger offset
 samplesPerRecord, // U32 -- samples per record
 recordsPerBuffer, // U32 -- records per buffer
 recordsPerAcquisition, // U32 -- records per acquisition
 flags // U32 -- AutoDMA mode and options
);

 // Add two or more buffers to a list of buffers
 // available to be filled by the board

 for (i = 0; i < BUFFER_COUNT; i++)
 {
 AlazarPostAsyncBuffer(
 handle, // HANDLE -- board handle
 BufferArray[i], // void* -- buffer pointer
 BytesPerBuffer // U32 -- buffer length in bytes
);
 }

 // Arm the board to begin the acquisition

 AlazarStartCapture(handle);

 // Wait for each buffer in the acquisition to be filled

 U32 buffersCompleted = 0;
 while (buffersCompleted < buffersPerAcquisition)
 {
 // Wait for the board to receives sufficient trigger events
 // to fill the buffer at the head of its list of
 // available buffers.

 U32 bufferIndex = buffersCompleted % BUFFER_COUNT;
 U16* pBuffer = BufferArray[bufferIndex];
 AlazarWaitAsyncBufferComplete(handle, pBuffer, timeout_ms);
 buffersCompleted++;

© 2003-2010 Alazar Technologies Inc. 37

SDK Programmer’s Guide

 // The buffer is full, process it.
 // Note that while the application processes this buffer,
 // the board is filling the next available buffer
 // as trigger events arrive.

 ProcessBuffer(pBuffer, bytesPerBuffer);

 // Add the buffer to the end of the list of buffers
 // available to be filled by this board. The board will
 // fill it with another segment of the acquisition after
 // all of the buffers preceding it have been filled.

 AlazarPostAsyncBuffer(handle, pBuffer, bytesPerBuffer);
 }

 // Abort the acquisition and release resources.
 // This function must be called after an acquisition.

 AlazarAbortAsyncRead(boardHandle);

See “%ATS_SDK_DIR%\Samples\DualPort\NPT” for a full sample program that
demonstrates make an AutoDMA acquisition using AlazarPostAsyncBuffer.

2.4.2.6.2 ADMA_ALLOC_BUFERS
C# and LabVIEW applications may find it more convenient to allow the API to allocate
and manage a list of buffers available to be filled by the board. These applications should
call AlazarBeforeAsyncRead with the AMDA_ALLOC_BUFFERS option selected in the
“Flags” parameter.

This option will cause the API to allocate and manage a list of buffers available to be
filled by the board. The application must call AlazarWaitNextAsyncBufferComplete to
wait for a buffer to be filled. When the board receives sufficient trigger events to fill a
buffer, the API will copy the data from the internal buffer to the user-supplied buffer.

The following code fragment outlines how make an AutoDMA acquisition using
ADMA_ALLOC_BUFERS flag and AlazarWaitNextAsyncBufferComplete.

 // Allow the API to allocate and manage AutoDMA buffers

 flags |= ADMA_ALLOC_BUFFERS;

 // Configure a board to make an AutoDMA acquisition

 AlazarBeforeAsyncRead(
 handle, // HANDLE -- board handle
 channelMask, // U32 -- enabled channel mask
 -(long)preTriggerSamples, // long -- trigger offset
 samplesPerRecord, // U32 -- samples per record
 recordsPerBuffer, // U32 -- records per buffer
 recordsPerAcquisition, // U32 -- records per acquisition
 flags // U32 -- AutoDMA mode and options
);

© 2003-2010 Alazar Technologies Inc. 38

SDK Programmer’s Guide

 // Arm the board to begin the acquisition

 AlazarStartCapture(handle);

 // Wait for each buffer in the acquisition to be filled

 RETURN_CODE retCode = ApiSuccess;
 while (retCode == ApiSuccess)
 {
 // Wait for the board to receive sufficient
 // trigger events to fill an internal AutoDMA buffer.
 // The API will copy data from the internal buffer
 // to the user-supplied buffer.

 retCode =
 AlazarWaitNextAsyncBufferComplete(
 handle, // HANDLE -- board handle
 pBuffer, // void* -- buffer to receive data
 bytesToCopy, // U32 -- bytes to copy into buffer
 timeout_ms // U32 -- time to wait for buffer
);

 // The buffer is full, process it
 // Note that while the application processes this buffer,
 // the board is filling the next available internal buffer
 // as trigger events arrive.

 ProcessBuffer(pBuffer, bytesPerBuffer);
 }

 // Abort the acquisition and release resources.
 // This function must be called after an acquisition.

 AlazarAbortAsyncRead(boardHandle);

See “%ATS_SDK_DIR%\Samples\DualPort\CS_WaitNextBuffer” for a full sample
program that demonstrates make an AutoDMA acquisition using
ADMA_ALLOC_BUFFERS.

An application can get or set the number of DMA buffers allocated by the API by calling
AlazarGetParameter or AlazarSetParameter with the parameter
SETGET_ASYNC_BUFFCOUNT.

Note that applications may combine ADMA_ALLOC_BUFFERS with options to
perform operations that would be difficult in high-level programming languages like
LabVIEW. They include:
• Data normalization – This option enables the API to process sample data so that the

data always has the same arrangement in the application buffer, independent of
AutoDMA mode. See ADMA_GET_PROCESSED_DATA for more information.

• Disk streaming – This option allows the API to use high-performance disk I/O
functions to stream buffer data to files. See AlazarCreateStreamFile below for more
information.

© 2003-2010 Alazar Technologies Inc. 39

SDK Programmer’s Guide

2.4.2.6.3 AlazarAsyncRead
Some C/C++ applications under Windows may require waiting for an event to be set to
the signaled state to indicate when an AutoDMA buffer is full. These applications should
use the AlazarAsyncRead API.

The following code fragment outlines how use AlazarAsyncRead to make an
asynchronous AutoDMA acquisition.

 // Configure the board to make an AutoDMA acquisition

 AlazarBeforeAsyncRead(
 handle, // HANDLE -- board handle
 channelMask, // U32 -- enabled channel mask
 -(long)preTriggerSamples, // long -- trigger ofset
 samplesPerBuffer, // U32 -- samples per buffer
 recordsPerBuffer, // U32 -- records per buffer
 recordsPerAcquisition, // U32 -- records per acquisition
 admaFlags // U32 -- AutoDMA flags
);

 // Add two or more buffers to a list of buffers
 // available to be filled by the board

 for (i = 0; i < BUFFER_COUNT; i++)
 {
 AlazarAsyncRead (
 handle, // HANDLE -- board handle
 IoBufferArray[i].buffer, // void* -- buffer
 IoBufferArray[i].bytesPerBuffer, // U32 -- buffer length
 &IoBufferArray[i].overlapped // OVERLAPPED*
);
 }

 // Arm the board to begin the acquisition

 AlazarStartCapture(handle);

 // Wait for each buffer in the acquisition to be filled.

 U32 buffersCompleted = 0;
 while (buffersCompleted < buffersPerAcquisition)
 {
 // Wait for the board to receives sufficient
 // trigger events to fill the buffer at the head of its
 // list of available buffers.
 // The event handle will be set to the signaled state when
 // the buffer is full.

 U32 bufferIndex = buffersCompleted % BUFFER_COUNT;
 IO_BUFFER *pIoBuffer = IoBufferArray[bufferIndex];

 WaitForSingleObject(pIoBuffer->hEvent, INFINTE);
 buffersCompleted++;

 // The buffer is full, process it

© 2003-2010 Alazar Technologies Inc. 40

SDK Programmer’s Guide

 // Note that while the application processes this buffer,
 // the board is filling the next available buffer
 // as trigger events arrive.

 ProcessBuffer(pIoBuffer->buffer, pIoBuffer->bytesPerBuffer);

 // Add the buffer to the end of the list of buffers.
 // The board will fill it with another segment from the
 // acquisition after the buffers preceding it have been filled.

 AlazarAsyncRead (
 handle, // HANDLE -- board handle
 pIoBuffer->buffer, // void* -- buffer
 pIoBuffer->bytesPerBuffer, // U32 -- buffer length
 &pIoBuffer->overlapped // OVERLAPPED*
);
 }

 // Stop the acquisition.
 // This function must be called if unfilled buffers are pending.

 AlazarAbortAsyncRead(handle);

See “%ATS_SDK_DIR%\Samples\DualPort\CS_AsyncRead” for a full sample program
that demonstrates make an AutoDMA acquisition using AlazarAsyncRead.

2.4.2.6.4 AlazarAbortAsyncRead
The asynchronous API driver locks application buffers into memory so that boards may
DMA directly into them. When a buffer is completed, the driver unlocks it from memory.

An application must call AlazarAbortAsyncRead if, at the end of an acquisition, any of
the buffers that it supplies to a board have not been completed. AlazarAbortAsyncRead
completes any pending buffers, and unlocks them from memory.

If an application exits without calling AlazarAbortAsyncRead, the API driver may
generate a DRIVER_LEFT_LOCKED_PAGES_IN_PROCESS (0x000000CB) bug check
error under Windows, or leak the locked memory under Linux.

This may happen, for example, if a programmer runs an application that uses the API
under a debugger, stops at a breakpoint, and then stops the debugging session without
letting the application or API exit normally.

2.4.2.6.5 Buffer count
An application should supply at least two buffers to a board. This allows the board to fill
one buffer while the application consumes the other. As long as the application can
consume buffers faster than the board can fill them, the acquisition can continue
indefinitely.

However, Microsoft Windows and general-purpose Linux distributions are not real time
operating systems. An application thread may be suspended for an indeterminate amount

© 2003-2010 Alazar Technologies Inc. 41

SDK Programmer’s Guide

of time to allow other threads with higher priority to run. As a result, buffer processing
may take longer than expected.

The board is filling AutoDMA buffers with sample data in real time. If an application is
unable to supply buffers as fast a board fills them, the board will run out of buffers into
which it can transfer sample data. The board can continue to acquire data until it fills is
on-board memory, but then it will abort the acquisition and report a buffer overflow error.

It is recommended that an application supply three or more buffers to a board. This allows
some tolerance for operating system latencies. The programmer may need to increase the
number of buffers according to the application.

Note that the number of buffers required by a board is not the same as the number of
buffers required by an application. There may be little benefit in supplying a board with
more than a few tens of buffers, each of a few million samples. If an application requires
much more sample data for data analysis or other purposes, the programmer should
consider managing application buffers separately from AutoDMA buffers.

2.4.2.7 Using synchronous AutoDMA
Synchronous DMA API assumes that the PCI digitizer being controlled has dual-port
acquisition memory.

As shown below, the user program consumes data synchronously with the acquisition
loop. Hence the name Synchronous DMA.

A typical sequence of API calls for Synchronous DMA API is shown below. For
readability purposes, the following is pseudo-code. Please refer to the sample programs
provided for exact syntax and details of what the various parameters passed to these
routines mean:

// Set up two AutoDMA buffers and start the DMA engine
// Data will be captured in the two buffers in a pin-pong
// mode. You will be able to process the first buffer while
// data is being captured into the second buffer and
// vice-versa

AlazarStartAutoDMA(h,
 UserData[0],
 UseHeader,
 mode,
 -(long)bd.PreDepth,
 transferLength,
 RecsPerBuffer,
 bd.RecordCount,
 &error,
 CFlags,
 in1,
 &r3,
 &r4);

© 2003-2010 Alazar Technologies Inc. 42

SDK Programmer’s Guide

// Issue Start Capture Command. No data transfer happens before this

AlazarStartCapture(h);

// Wait until all required records have been captured

while (looping == 1)
{
 // Check if one of the AutoDMA buffers has been
 // fully populated or not

 AlazarGetNextAutoDMABuffer(h,
 UserData[0],
 UserData[1],
 &WhichOne,
 &RecsTransferred ,
 &error,
 in1,
 in1,
 &TriggersOccurred,
 &r4);

 // If WhichOne is equal to 0 or 1, that particular buffer
 // has been populated and hardware is DMAing
 // into the other buffer

 if ((WhichOne == 0)||(WhichOne == 1))
 {
 // Process Your Data here
 // Note that while you process data,
 // new data is still being captured into
 // on-board dual port memory and transferred into
 // the other AutoDMA buffer

 SaveToChannelFiles(UserData[WhichOne]);
 }

 // Check if all records have been captured
 if (RecsTransferred == (long)RecordCount)
 {
 // If all records have been captured, stop the while loop
 looping = 0;
 }
}

Note:
• The synchronous AutoDMA API is deprecated, and is maintained for compatibility

with existing applications.
• The synchronous AutoDMA API gives poor performance with master-slave systems,

and is not recommended for use with such systems.
• Use the CFlags parameter in the call to AlazarStartAutoDMA to select the AutoDMA

mode.

© 2003-2010 Alazar Technologies Inc. 43

SDK Programmer’s Guide

• Record headers are only available in Traditional AutoDMA mode. To enable record
headers, call AlazarStartAutoDMA with the UseHeader parameter set to 1, and with
the mode in the CFlags parameter set to ADMA_TRADITIONAL_MODE.

• AlazarGetNextAutoDMABuffer copies sample data from internally allocated
AutoDMA buffers to an application buffer. An application may call this function with
a pointer to a single application allocated buffer, rather than two application allocated
buffers (Buffer[0] and Buffer[1] above) without affecting AutoDMA operation.

• Calling AlazarWaitNextAsyncBufferComplete in a polling loop is equivalent to
calling AlazarEvents, AlazarWaitForBufferReady, and
AlazarGetNextAutoDMABuffer, but provides more internally allocated buffers,
better throughput, and a simpler programming interface.

2.4.2.8 Scanning applications
Scanning applications divide an acquisition into frames, where each frame is composed
of a number of scan lines, and each scan line is composed of a number of sample points.

These applications typically:
• Wait for a “start of frame” event.
• Wait for a number of “start of line” events, capturing a specified number of sample

points after each “start of line” event.
• Wait for the next “start of frame” event and repeat.

To implement a scanning application using a hardware “start of frame” signal:
• Connect a TTL signal that will serve as the “start of frame” event to the AUX I/O

connector.
• Call AlazarConfigureAuxIO specifying AUX_IN_TRIGGER_ENABLE as the mode,

and the active edge of the trigger enable signal as the parameter.
• Configure the board to make an AutoDMA acquisition in NPT or Traditional mode

where the number of “records per buffer” is equal to the number of scan lines per
frame.

To implement a scanning application using a software “start of frame” command:
• Call AlazarConfigureAuxIO specifying AUX_OUT_TRIGGER_ENABLE as the

mode.
• Configure the board to make an AutoDMA acquisition in NPT or Traditional mode

where the number of “records per buffer” is equal to the number of scan lines per
frame.

• Call AlazarForceTriggerEnable to arm the board to acquire one frame, wait for the
board to receive sufficient trigger events to fill one buffer, process the buffer, and
repeat.

Note that if the number of records per acquisition is set to infinite, then software arms the
digitizer once to make an AutoDMA acquisition with an infinite number of frames. The
hardware will continue acquiring frame data until the acquisition is aborted.

© 2003-2010 Alazar Technologies Inc. 44

SDK Programmer’s Guide

See “%ATS_SDK_DIR%\Samples\DualPort\NPT_Scan” for sample programs that
demonstrate how to make a scanning application using a hardware trigger enable signal.

2.4.2.9 Master-slave applications
If a dual-port acquisition API is used to acquire from master-slave board system:
• Call AlazarBeforeAsyncRead on all slave boards before the master board.
• Call AlazarStartCapture only on the master board.
• Call AlazarAbortAsyncRead on the master board before the slave boards.
• The board system acquires the boards in the board system in parallel. As a result, an

application must consume a buffer from each board in the board system during each
cycle of the acquisition loop.

• Do not use synchronous API functions with master-slave systems – use the
asynchronous API functions instead.

The following sample programs demonstrate how to acquire from a master-slave system:
“%ATS_SDK_DIR%\Samples\DualPort\TR_MS”, “%ATS_SDK_DIR
%\Samples\DualPort\NPT_MS”, “%ATS_SDK_DIR%\Samples\DualPort\CS_MS”, and
“%ATS_SDK_DIR%\Samples\DualPort\TS_MS”.

2.4.3 Buffer size and alignment
AlazarTech digitizer boards must be configured to acquire at least a minimum number of
samples per record, and each record must be a multiple of a specified number of samples.
Records may shift within a buffer if aligment requirements are not met.

The following table lists the requirements for each board model.

Board
type

Minimum record size
(samples)

Buffer
alignment
(samples)

Buffer alignment in NPT mode
(samples)

ATS310 256 16 Not supported
ATS330 256 16 Not supported
ATS460 128 16 32
ATS660 128 16 32
ATS850 256 4 Not supported
ATS860 256 32 64
ATS9350 256 32 32
ATS9462 256 32 32
ATS9870 256 64 64

The number of pre-trigger samples in single-port and dual-port “traditional” AutoDMA
mode must be a multiple of 64 samples. See AlazarSetRecordCount and
AlazarSetRecordSize for more information.

The address of application buffers passed to the following data transfer functions must
meet the buffer aligment requirement in the table above: AlazarRead, AlazarReadEx,

© 2003-2010 Alazar Technologies Inc. 45

SDK Programmer’s Guide

AlazarAsyncRead, AlazarPostAsyncBuffer, and AlazarWaitAsyncBufferComplete. For
example, the address of a buffer passed to AlazarPostAsyncBuffer to receive data from
an ATS9350 must be aligned to a 32-sample, or 64-byte, address.

Note that AlazarWaitNextAsyncBufferComplete has no aligment requirements. As a
result, an application can use this function to transfer data if it is impossible to allocate
correctly aligned buffers.

2.4.4 Data format
By default, AlazarTech digitizers generate unsigned sample data. For example, 8-bit
digitizers such as the ATS9870 generate sample codes between 0 and 255 (0xFF) where:
0 represents a negative full-scale input voltage, 128 (0x80) represents ~0V input voltage,
255 (0xFF) represents a positive full-scale input voltage.

Some AlazarTech digitizer can be configured to generate signed sample data in two’s
complement format. For example, the ATS9870 can be configured to generate sample
codes where: 0 represents ~0V input voltage, 127 (0x7F) represents a positive full-scale
input voltage, and –128 (0x80) represents a negative full-scale input voltage.

Call AlazarSetParameter with parameter SET_DATA_FORMAT before the start of an
acquisition to set the sample data format, and call AlazarGetParameter with
GET_DATA_FORMAT to get the current data format.

The following code fragment demonstrates how to select signed sample data output.

 AlazarSetParameter(
 handle, // HANDLE -- board handle
 0, // U8 -- channel Id (not used)
 SET_DATA_FORMAT, // U32 -- parameter to set
 DATA_FORMAT_SIGNED // long -- value (0 = unsigned, 1 = signed)
);

2.5 Processing data

2.5.1 Converting samples values to volts
The data acquisition API’s transfer an array of sample values into an application buffer.
Each sample value occupies 1 or 2 bytes in the buffer, where a sample code is stored in
the most significant bits of the sample values. Sample values that occupy two bytes are
stored with their least significant bytes at the lower byte addresses (little-endian byte
order) in the buffer.

To convert sample values in the buffer to volts:
• Get a sample value from the buffer.
• Get the sample code from the most-significant bits of the sample value.
• Convert the sample code to volts.

© 2003-2010 Alazar Technologies Inc. 46

SDK Programmer’s Guide

Note that the arrangement of samples values in the buffer into records and channels
depends on the API used to acquire the data.
• Single-port acquisitions return a contiguous array of samples for a specified channel.

(See section 2.4.1 “Single-port acquisitions” above.)
• Dual-port AutoDMA acquisitions return sample data whose arrangement depends on

the AutoDMA mode and options chosen. (See section 2.4.2 “Dual port AutoDMA”
above.)

Also note that AlazarTech digitizer boards generate unsigned sample codes by default.
(See section 2.4.3 “Data format” above.)

2.5.1.1 ATS850/ATS860/ATS9870

2.5.1.1.1 Getting 1-byte sample values from the buffer
The figure below shows the first 128-bytes of data in a buffer from an 8-bit digitizer such
as the ATS850, ATS860 or ATS9870.

Figure 2-6 8-bit sample data

Each 8-bit sample occupies 1-byte in the buffer, so the figure displays 128 samples (128
bytes / 1 byte per sample).

The following code fragment demonstrates how to access each 8-bit sample value in a
buffer.

 U8 *pSamples = (U8*) buffer;
 for (U32 sample = 0; sample < samplesPerBuffer; sample++)
 {
 U8 sampleValue = *pSamples++;
 printf("sample value = %02X\n", sampleValue);
 }

2.5.1.1.2 Getting 8-bit sample codes from 1-byte sample values
Each 8-bit sample value stores an 8-bit sample code. For example, the first byte in buffer
above stores the sample code 0x7F, or 127 decimal.

2.5.1.1.3 Converting unsigned 8-bit sample codes to volts
A sample code of 128 (0x80) represents ~0V input voltage, 255 (0xFF) represents a
positive full-scale input voltage, and 0 represents a negative full-scale input voltage.

© 2003-2010 Alazar Technologies Inc. 47

SDK Programmer’s Guide

The following table illustrates how unsigned 8-bit sample codes map to values in volts
according to the full-scale input range of the input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is
±100 mV

Sample value in
volts if full-
scale input
range is ±1 V

0 0x00 -100% -100 mV -1 V
64 0x40 -50% -50 mV -.5 V
128 0x80 0% 0 V 0V
192 0xC0 +50% 50 mV +.5 V
255 0xFF +100% +100 mV +1 V

The following code fragment shows how to convert a 1-byte sample value containing an
unsigned 8-bit code to in volts.

double SampleToVoltsU8(U8 sampleValue, double inputRange_volts)
{
 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 8;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert sample code to volts
 double sampleVolts = inputRange_volts *
 ((double) (sampleValue - codeZero) / codeRange);

 return sampleVolts;
}

2.5.1.1.4 Converting signed 8-bit sample codes to volts
A signed code of 0 represents ~0V input voltage, 127 (0x7F) represents a positive full-
scale input voltage, and –128 (0x80) represents a negative full-scale input voltage.

The following table illustrates how signed 8-bit sample codes map to values in volts
according to the full-scale input range of the input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is
±100 mV

Sample value in
volts if full-
scale input
range is ±1 V

-127 0x81 -100% -100 mV -1 V
-64 0xC0 -50% -50 mV -.5 V
0 0x00 0% 0 V 0V
64 0x40 +50% 50 mV +.5 V
127 0x7F +100% +100 mV +1 V

© 2003-2010 Alazar Technologies Inc. 48

SDK Programmer’s Guide

The following code fragment shows how to convert a 1-byte sample value containing a
signed 8-bit sample code to in volts.

double SampleToVoltsS8(U8 sampleValue, double inputRange_volts)
{
 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 8;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert signed code to unsigned
 U8 sampleCode = sampleValue + 0x80;

 // Convert sample code to volts
 double sampleVolts = inputRange_volts *
 ((double) (sampleCode - codeZero) / codeRange);

 return sampleVolts;
}

2.5.1.2 ATS310/ATS330/ATS9350

2.5.1.2.1 Getting 2-byte sample values from the buffer
The figure below displays the first 128-bytes of data in a buffer from a 12-bit digitizer
such as the ATS310, ATS330 or ATS9350.

Figure 2-7 12-bit sample data

Each 12-bit sample value occupies a 2-bytes in the buffer, so the figure displays 64
sample values (128 bytes / 2 bytes per sample).

The first 2 bytes in the buffer, shown highlighted, are 0xE0 and 0x7F. Two-byte sample
values are stored in little-endian byte order in the buffer, so the first sample value in the
buffer is 0x7FE0.

The following code fragment demonstrates how to access each 16-bit sample value in a
buffer.

 U16 *pSamples = (U16*)buffer;
 for (U32 sample = 0; sample < samplesPerBuffer; sample++)
 {
 U16 sampleValue = *pSamples++;
 printf("sample value = %04X\n", sampleValue);
 }

© 2003-2010 Alazar Technologies Inc. 49

SDK Programmer’s Guide

2.5.1.2.2 Getting 12-bit sample codes from 16-bit sample values
A12-bit sample code is stored in the most significant bits of each 16-bit sample value, so
right-shift each 16-bit value by 4 (or divide by 16) to obtain the 12-bit sample code. In
the example above, the 16-bit sample value 0x7FE0 right-shifted by four results in the
12-bit sample code 0x7FE, or 2046 decimal.

16-bit sample value in decimal 32736
16-bit sample value in hex 7FE0
16-bit sample value in binary 0111 1111 1110 0000
12-bit sample code from most-significant bits of 16-bit sample
value

0111 1101 1110

12-bit sample code in hex 7FE
12-bit sample code in decimal 2046

2.5.1.2.3 Converting unsigned 12-bit sample codes to volts
An unsigned code of 2048 (0x800) represents ~0V input voltage, 4095 (0xFFF)
represents a positive full-scale input voltage, and 0 represents a negative full-scale input
voltage.

The following table illustrates how unsigned 12-bit sample codes map to values in volts
according to the full-scale input range of the input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is
±100 mV

Sample value in
volts if full-
scale input
range is ±1 V

0 0x000 -100% -100 mV -1 V
1024 0x400 -50% -50 mV -.5 V
2048 0x800 0% 0 V 0V
3072 0xC00 +50% 50 mV +.5 V
4095 0xFFF +100% +100 mV +1 V

The following code fragment demonstrates how to convert a 2-byte word containing an
unsigned 12-bit sample code to in volts.

double SampleToVoltsU12(U16 sampleValue, double inputRange_volts)
{
 // Right-shift 16-bit sample word by 4 to get 12-bit sample code
 int bitShift = 4;
 U16 sampleCode = sampeValue >> bitShift;

 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 12;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert sample code to volts

© 2003-2010 Alazar Technologies Inc. 50

SDK Programmer’s Guide

 double sampleVolts = inputRange_volts *
 ((double) (sampleCode - codeZero) / codeRange);

 return sampleVolts;
}

2.5.1.2.4 Converting signed 12-bit sample codes to volts
A signed code of 0 represents ~0V input voltage, 2047 (0x7FF) represents a positive full-
scale input voltage, and -2048 (0x800) represents a negative full-scale input voltage.

The following table illustrates how signed 12-bit sample codes map to values in volts
according to the full-scale input range of the input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is
±100 mV

Sample value in
volts if full-
scale input
range is ±1 V

-2047 0x801 -100% -100 mV -1 V
-1024 0xC00 -50% -50 mV -.5 V
0 0x000 0% 0 V 0V
1024 0x400 +50% 50 mV +.5 V
2047 0x7FF +100% +100 mV +1 V

The following code fragment shows how to convert a 2-byte sample word containing a
signed 12-bit sample code to in volts.

double SampleToVoltsS12(U16 sampleValue, double inputRange_volts)
{
 // Right-shift 16-bit sample value by 4 to get 12-bit sample code
 int bitShift = 4;
 U16 sampleCode = sampleValue >> bitShift;

 // Convert signed code to unsigned
 sampleCode = (sampleCode + 0x800) & 0x7FF;

 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 12;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert sample code to volts
 double sampleVolts = inputRange_volts *
 ((double) (sampleCode - codeZero) / codeRange);

 return sampleVolts;
}

© 2003-2010 Alazar Technologies Inc. 51

SDK Programmer’s Guide

2.5.1.3 ATS460

2.5.1.3.1 Getting 2-byte sample values from the buffer
The figure below displays the first 128-bytes of data in a buffer from a 14-bit digitizer
such as the ATS460.

Figure 2-8 14-bit sample data

Each sample value occupies a 2-bytes in the buffer, so the figure displays 64 sample
values (128 bytes / 2 bytes per sample).

The first 2 bytes in the buffer, shown highlighted, are 0x4C and 0x7F. Two-byte sample
values are stored in little-endian byte order in the buffer, so the first sample value in the
buffer is 0x7F4C.

The following code fragment demonstrates how to access each 16-bit sample value in a
buffer.

 U16 *pSamples = (U16*) buffer;
 for (U32 sample = 0; sample < samplesPerBuffer; sample++)
 {
 U16 sampleValue = *pSamples++;
 printf("sample value = %04X\n", sampleValue);
 }

2.5.1.3.2 Getting 14-bit sample codes from 16-bit sample values
A 14-bit sample code is stored in the most significant bits of each 16-bit sample value in
the buffer, so right-shift each 16-bit value by 2 (or divide by 4) to obtain the 14-bit
sample code. In the example above, the 16-bit value 0x7F4C right-shifted by two results
in the 14-bit sample code 0x1FD3, or 8147 decimal.

16-bit sample value in decimal 32588
16-bit sample value in hex 7F4C
16-bit sample value in binary 0111 1111 0100 1100
14-bit sample code from most-significant bits of 16-bit sample
value

01 1111 1101 0011

14-bit sample code in hex 1FD3
14-bit sample code in decimal 8147

2.5.1.3.3 Converting unsigned 14-bit sample codes to volts

© 2003-2010 Alazar Technologies Inc. 52

SDK Programmer’s Guide

An unsigned code of 8192 (0x2000) represents ~0V input voltage, 16383 (0x3FFF)
represents a positive full-scale input voltage, and 0 represents a negative full-scale input
voltage.

The following table illustrates how unsigned 14-bit sample codes map to values in volts
according to the full-scale input range of an input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is
±100 mV

Sample value in
volts if full-
scale input
range is ±1 V

0 0x0000 -100% -100 mV -1 V
4096 0x1000 -50% -50 mV -.5 V
8192 0x2000 0% 0 V 0V
12288 0x3000 +50% 50 mV +.5 V
16383 0x3FFF +100% +100 mV +1 V

The following code fragment demonstrates how to convert a 2-byte sample value
containing an unsigned 14-bit sample code to in volts.

double SampleToVoltsU14(U16 sampleValue, double inputRange_volts)
{
 // Right-shift 16-bit sample word by 2 to get 14-bit sample code
 int bitShift = 2;
 U16 sampleCode = sampleValue >> bitShift;

 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 14;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert sample code to volts
 double sampleVolts = inputRange_volts *
 ((double) (sampleCode - codeZero) / codeRange);

 return sampleVolts;
}

2.5.1.3.4 Converting signed 14-bit sample codes to volts
A signed code of 0 represents ~0V input voltage, 8191 (0x1FFF) represents a positive
full-scale input voltage, and –8192 (0x2000) represents a negative full-scale input
voltage.

The following table illustrates how signed 14-bit sample codes map to values in volts
depending on the full-scale input range of the input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is

Sample value in
volts if full-
scale input

© 2003-2010 Alazar Technologies Inc. 53

SDK Programmer’s Guide

±100 mV range is ±1 V
-8191 0x2001 -100% -100 mV -1 V
-4096 0x3000 -50% -50 mV -.5 V
0 0x0000 0% 0 V 0V
4096 0x1000 +50% 50 mV +.5 V
8191 0x1FFF +100% +100 mV +1 V

The following code fragment demonstrates how to convert a 2-byte sample value
containing a signed 14-bit sample code to in volts.

double SampleToVoltsU14(U16 sampleValue, double inputRange_volts)
{
 // Right-shift 16-bit sample word by 2 to get 14-bit sample code
 int bitShift = 2;
 U16 sampleCode = sampeWord >> bitShift;

 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 14;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert the signed code to unsigned
 sampleCode = (sampleCode + 0x2000) & 0x1FFF;

 // Convert sample code to volts
 double sampleVolts = inputRange_volts *
 ((double) (sampleCode - codeZero) / codeRange);

 return sampleVolts;
}

2.5.1.4 ATS660/ATS9462

2.5.1.4.1 Getting 2-byte sample values from the buffer
The figure below displays the first 128-bytes of data in a buffer from a 16-bit digitizer
such as the ATS660 or ATS9462.

Figure 2-9 16-bit sample data

Each 16-bit sample value occupies 2 bytes in the buffer, so the figure displays 64 sample
values (128 bytes / 2 bytes per sample).

© 2003-2010 Alazar Technologies Inc. 54

SDK Programmer’s Guide

The first 2 bytes in the buffer, shown highlighted, are 0x14 and 0x80. Two-byte samples
values are stored in little-endian byte order in the buffer, so the first sample value is
0x8014.

The following code fragment demonstrates how to access each 16-bit sample value in a
buffer.

 U16 *pSamples = (U16*)buffer;
 for (U32 sample = 0; sample < samplesPerBuffer; sample++)
 {
 U16 sampleValue = * pSamples++;
 printf("sample value = %04X\n", sampleValue);
 }

2.5.1.4.2 Getting 16-bit sample codes from 16-bit sample values
A16-bit sample code is stored in each 16-bit sample value in the buffer. In the example
above, the first sample code is 0x8014, or 32788 decimal.

2.5.1.4.3 Converting unsigned 16-bit sample codes to volts
An unsigned code of 32768 (0x8000) represents ~0V input voltage, 65535 (0xFFFF)
represents a positive full-scale input voltage, and 0 represents a negative full-scale input
voltage.

The following table illustrates how unsigned 16-bit sample codes map to values in volts
according to the full-scale input range of an input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is
±100 mV

Sample value in
volts if full-
scale input
range is ±1 V

0 0x0000 -100% -100 mV -1 V
16384 0x4000 -50% -50 mV -.5 V
32768 0x8000 0% 0 V 0V
49152 0xC000 +50% 50 mV +.5 V
65535 0xFFFF +100% +100 mV +1 V

The following code fragment demonstrates how to convert a 2-byte sample value
containing an unsigned 16-bit sample code to in volts.

double SampleToVoltsU16(U16 sampleValue, double inputRange_volts)
{
 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 16;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert sample code to volts
 double sampleVolts = inputRange_volts *
 ((double) (sampleValue - codeZero) / codeRange);

© 2003-2010 Alazar Technologies Inc. 55

SDK Programmer’s Guide

 return sampleVolts;
}

2.5.1.4.4 Converting signed 16-bit sample codes to volts
A signed code of 32767 (0x7FFF) represents a positive full-scale input voltage, 0
represents ~0V input voltage, and –32768 (0x8000) represents a negative full-scale input
voltage.

The following table illustrates how signed 16-bit sample codes map to values in volts
according to the full-scale input range of the input channel.

Sample
code in
decimal

Sample
code in
hex

Sample value as a
percentage of full-
scale input range

Sample value in
volts if full-scale
input range is
±100 mV

Sample value in
volts if full-
scale input
range is ±1 V

-32767 0x8001 -100% -100 mV -1 V
-16384 0xC000 -50% -50 mV -.5 V
0 0x0000 0% 0 V 0V
16384 0x4000 +50% 50 mV +.5 V
32767 0x7FFF +100% +100 mV +1 V

The following code fragment demonstrates how to convert a 2-byte sample word
containing a signed 16-bit sample code to in volts.

double SampleToVoltsS16(U16 sampleValue, double inputRange_volts)
{
 // AlazarTech digitizers are calibrated as follows
 int bitsPerSample = 16;
 double codeZero = (1 << (bitsPerSample - 1)) - 0.5;
 double codeRange = (1 << (bitsPerSample - 1)) - 0.5;

 // Convert signed sample value to unsigned code
 U16 sampleCode = (sampleValue + 0x8000);

 // Convert sample code to volts
 double sampleVolts = inputRange_volts *
 ((double) (sampleCode - codeZero) / codeRange);

 return sampleVolts;
}

2.5.2 Saving binary files
If an application saves sample data to a binary data file for later processing, it may be
possible to improve disk write speeds by considering the following recommendations.

© 2003-2010 Alazar Technologies Inc. 56

SDK Programmer’s Guide

2.5.2.1 C/C++ applications
If the application is written in C/C++ and is running under Windows, use the Windows
CreateFile API with the FILE_FLAG_NO_BUFFERING flag for file I/O, if possible.
Sequential disk write speeds are often substantially higher when this option is selected.

See “%ATS_SDK_DIR%\Samples\DualPort\TS_DisableFileCache” for a sample
program that demonstrates how to use this API to stream data to disk.

2.5.2.2 Visual Basic/LabVIEW applications
If the application is written in VisualBasic, LabVIEW, or another high-level
programming environment, the consider using the AlazarCreateStreamFile API function.
This function creates a binary data file, and enables the API to save each buffer received
during an AutoDMA acquisition to this file.

The API uses high-performance disk I/O functions that would be difficult to implement
in high-level environments like LabVIEW and Visual Basic. As a result, it allows an
application in such an environment to perform high-performance disk streaming with a
single additional function call.

The following code fragment outlines how to write a disk streaming application using
AlazarCreateStreamFile:

 // Allow the API to allocate and manage AutoDMA buffers

 flags |= ADMA_ALLOC_BUFFERS;

 // Configure the board to make an AutoDMA acquisition

 AlazarBeforeAsyncRead(
 handle, // HANDLE -- board handle
 channelMask, // U32 -- enabled channel mask
 -(long)preTriggerSamples, // long -- trigger offset
 samplesPerRecord, // U32 -- samples per record
 recordsPerBuffer, // U32 -- records per buffer
 recordsPerAcquisition, // U32 -- records per acquisition
 flags // U32 -- AutoDMA mode and options
);

 // Create a binary data file, and enable the API save each
 // AutoDMA buffer to this file.

 AlazarCreateStreamFile(handle, "data.bin");

 // Arm the board to begin the acquisition

 AlazarStartCapture(handle);

 // Wait for each buffer in the acquisition to be filled

 RETURN_CODE retCode = ApiSuccess;
 while (retCode == ApiSuccess)

© 2003-2010 Alazar Technologies Inc. 57

SDK Programmer’s Guide

 {
 // Wait for the board to receive sufficient trigger
 // events to fill an internal buffer.
 // The API will save the buffer to a binary data file,
 // but will not copy any data into our buffer.

 retCode =
 AlazarWaitNextAsyncBufferComplete(
 handle, // HANDLE -- board handle
 NULL, // void* -- buffer to receive data
 0, // U32 -- bytes to copy into buffer
 timeout_ms // U32 -- time to wait for buffer
);
 }

 // Abort the acquisition and release resources.
 // This function must be called after an acquisition.

 AlazarAbortAsyncRead(boardHandle);

See “%ATS_SDK_DIR%\Samples\DualPort\CS_CreateStreamFile” for a full sample
program that demonstrates how to stream sample data to disk using
AlazarCreateStreamFile.

© 2003-2010 Alazar Technologies Inc. 58

SDK Programmer’s Guide

3 Reference

3.1 Error Codes
The following table lists the error codes that are returned by the API, their numerical
values, and their descriptions. These error codes are declared in AlazarError.h.

Table 1 Error Codes

Identifier Value Comment
ApiSuccess 512 The operation completed without error.
ApiFailed 513 The operation failed.
ApiAccessDenied 514
ApiDmaChannelUnavailable 515
ApiDmaChannelInvalid 516
ApiDmaChannelTypeError 517
ApiDmaInProgress 518
ApiDmaDone 519
ApiDmaPaused 520
ApiDmaNotPaused 521
ApiDmaCommandInvalid 522
ApiDmaManReady 523
ApiDmaManNotReady 524
ApiDmaInvalidChannelPriority 525
ApiDmaManCorrupted 526
ApiDmaInvalidElementIndex 527
ApiDmaNoMoreElements 528
ApiDmaSglInvalid 529
ApiDmaSglQueueFull 530
ApiNullParam 531
ApiInvalidBusIndex 532
ApiUnsupportedFunction 533
ApiInvalidPciSpace 534
ApiInvalidIopSpace 535
ApiInvalidSize 536
ApiInvalidAddress 537
ApiInvalidAccessType 538
ApiInvalidIndex 539
ApiMuNotReady 540
ApiMuFifoEmpty 541
ApiMuFifoFull 542
ApiInvalidRegister 543
ApiDoorbellClearFailed 544
ApiInvalidUserPin 545
ApiInvalidUserState 546
ApiEepromNotPresent 547

© 2003-2010 Alazar Technologies Inc. 59

SDK Programmer’s Guide

Identifier Value Comment
ApiEepromTypeNotSupported 548
ApiEepromBlank 549
ApiConfigAccessFailed 550
ApiInvalidDeviceInfo 551
ApiNoActiveDriver 552
ApiInsufficientResources 553
ApiObjectAlreadyAllocated 554
ApiAlreadyInitialized 555
ApiNotInitialized 556
ApiBadConfigRegEndianMode 557
ApiInvalidPowerState 558
ApiPowerDown 559
ApiFlybyNotSupported 560
ApiNotSupportThisChannel 561
ApiNoAction 562
ApiHSNotSupported 563
ApiVPDNotSupported 564
ApiVpdNotEnabled 565
ApiNoMoreCap 566
ApiInvalidOffset 567
ApiBadPinDirection 568
ApiPciTimeout 569
ApiDmaChannelClosed 570
ApiDmaChannelError 571
ApiInvalidHandle 572
ApiBufferNotReady 573
ApiInvalidData 574
ApiDoNothing 575
ApiDmaSglBuildFailed 576
ApiPMNotSupported 577
ApiInvalidDriverVersion 578
ApiWaitTimeout 579 The operation did not finish during the

timeout interval.
Try the operation again, or abort the
acquisition.

ApiWaitCanceled 580
ApiBufferTooSmall 581
ApiBufferOverflow 582 The board overflowed its on-board

memory.
Try reducing the sample rate, reducing
the number of enabled channels,
increasing the size of each DMA buffer,
or increasing the number of DMA
buffers.

© 2003-2010 Alazar Technologies Inc. 60

SDK Programmer’s Guide

Identifier Value Comment
ApiInvalidBuffer 583
ApiInvalidRecordsPerBuffer 584
ApiDmaPending 585 An asynchronous I/O operation was

successfully started on the board. It will
be completed when sufficient trigger
events are supplied to the board to fill
the buffer.

ApiLockAndProbePagesFailed 586 The driver or operating system was
unable to prepare the specified buffer
for a DMA transfer.
Try reducing the buffer size, or total
number of buffers.

ApiWaitAbandoned 587
ApiWaitFailed 588
ApiTransferComplete 589 This buffer is the last in the current

acquisition.
ApiPllNotLocked 590 A hardware error has occurred.

Contact AlazarTech.
ApiNotSupportedInDualChannelMode 591 The requested number of samples per

channel is too large to fit in on-board
memory.
Try reducing the number of samples per
channel, or switching to single channel
mode.

© 2003-2010 Alazar Technologies Inc. 61

SDK Programmer’s Guide

3.2 Function Groups
The AlazarTech API is organized into the following functional groups. See AlazarApi.h
for function declarations.

3.2.1 Initialization

Name Purpose
AlazarBoardsFound Get the number of boards detected in all board

systems.
AlazarBoardsInSystemByHandle Get the number of boards in the board system

specified by the handle to its master board.
AlazarBoardsInSystemBySystemID Get the number of boards in the board system

specified by its system identifier.
AlazarClose Close a board handle.
AlazarGetBoardBySystemHandle Get a handle to a board specified by its board

identifier and handle to the master board in its
board system.

AlazarGetBoardBySystemID Get a handle to a board specified by its system
identifier and board identifier.

AlazarGetSystemHandle Get a handle to the master board in a board system
specified by its system identifier.

AlazarNumOfSystems Get the number of board systems in a PC.
AlazarOEMDownLoadFPGA Download an FPGA image file to a board.
AlazarOpen Open a board handle.
AlazarParseFPGAName Extract the attributes from an FPGA file name.

3.2.2 Status and information

Name Purpose
AlazarErrorToText Convert API error number to NULL terminated string.
AlazarGetBoardKind Get a board’s model from its handle.
AlazarGetChannelInfo Get the number of bits per sample, and on-board memory size

in samples per channel.
AlazarGetCPLDVersion Get the CPLD version of a board.
AlazarGetDriverVersion Get the driver version of a board.
AlazarGetParameter Get a board parameter as a signed 32-bit value.
AlazarGetParameterUL Get a board parameter as an unsigned 32-bit value.
AlazarGetSDKVersion Get the API version.
AlazarQueryCapability Get a board capability as an unsigned 32-bit value.

3.2.3 Configuration and control

Name Purpose

© 2003-2010 Alazar Technologies Inc. 62

SDK Programmer’s Guide

AlazarConfigureAuxIO Configure the AUX I/O connector of a board.
AlazarInputControl Configure the range, coupling, and termination of an

input channel.
AlazarResetTimeStamp Control record timestamp counter resets.
AlazarSetBWLimit Enable or disable the 20 MHz low-pass filter of an input

channel of board.
AlazarSetCaptureClock Configure the timebase of a board.
AlazarSetExternalClockLevel Set the external clock comparator level of a board.
AlazarSetExternalTrigger Configure the TRIG IN connector of a board.
AlazarSetLED Control the LED on the PCI/PCIe mounting bracket of a

board.
AlazarSetParameter Set a board property as a signed 32-bit value.
AlazarSetParameterUL Set a board property as an unsigned 32-bit value.
AlazarSetTriggerDelay Specify the amount of time between the arrival of a

trigger event, and the acquisition of the first sample of a
record.

AlazarSetTriggerOperation Configure the trigger system of a board.
AlazarSetTriggerTimeOut Specify the amount of time to wait for a hardware trigger

before automatically generating a software trigger event.
AlazarSleepDevice Turn off the ADC converters.

3.2.4 Acquisition

3.2.4.1 General
Name Purpose
AlazarForceTrigger Generate a software trigger event.
AlazarGetStatus Return a bitmask with acquisition information
AlazarSetRecordSize Specify the number of samples before and after the sample at the

trigger position in a record.
AlazarStartCapture Arm a board to wait for trigger events.
AlazarTriggered Determine if a board has received at least one trigger event since

the start of an acquisition.

3.2.4.2 Single-port
Name Purpose
AlazarAbortCapture Abort a single-ported acquisition to on-board

memory.
AlazarBusy Determine if an acquisition to on-board

memory is in progress.
AlazarGetMaxRecordsCapable Find the maximum number of records that

can be captured to on-board memory given a
number of samples per record

AlazarGetTriggerAddress Get the trigger address and timestamp of a
record acquired to on-board memory.

© 2003-2010 Alazar Technologies Inc. 63

SDK Programmer’s Guide

AlazarGetTriggerTimestamp Retrieve the trigger timestamp of a record
acquired to on-board memory.

AlazarGetWhoTriggeredBySystemHandle Get the event that caused a board system,
specified by the handle to its master board,
to trigger.

AlazarGetWhoTriggeredBySystemID Get the event that caused a board system,
specified by its system identifier, to trigger.

AlazarHyperDisp Enable the on-board FPGA to divide a
record acquired to on-board memory into
intervals, and return the minimum and
maximum sample values over each interval.

AlazarRead Transfer all or part of a record acquired to
on-board memory.

AlazarReadEx Transfer all or part of a record acquired to
on-board memory when the record has
2,147,483,648 or more samples.

AlazarSetRecordCount Specify the number of records to capture to
on-board memory.

3.2.4.3 Dual-port Asynchronous AutoDMA
Name Purpose
AlazarAbortAsyncRead Abort an asynchronous AutoDMA acquisition,

and release any resources allocated during the
acquisition.

AlazarAsyncRead Add a buffer to the end of a list of buffers
available to be filled by a board.

AlazarBeforeAsyncRead Configure a board to make an asynchronous
AutoDMA acquisition.

AlazarCreateStreamFile Create a binary data file to store sample data for
a board.

AlazarForceTriggerEnable Generate a software trigger enable event.
AlazarPostAsyncBuffer Add a buffer to the end of a list of buffers

available to be filled by a board.
AlazarWaitAsyncBufferComplete Wait a specified amount of time for a board to

receive sufficient trigger events to fill the
specified AutoDMA buffer.

AlazarWaitNextAsyncBufferComplete Wait a specified amount of time for a board to
receive sufficient trigger events to fill an
AutoDMA buffer managed by the API.

3.2.4.4 Dual-port Synchronous AutoDMA
Name Purpose
AlazarAbortAutoDma Abort synchronous AutoDMA acquisition
AlazarCloseAUTODma Release any resources allocated during a

© 2003-2010 Alazar Technologies Inc. 64

SDK Programmer’s Guide

synchronous AutoDMA acquisition.
AlazarEvents Enable a board to wait for the end of an

AutoDMA transfer.
AlazarForceTriggerEnable Generate a software trigger enable event.
AlazarFlushAutoDMA Stop a synchronous AutoDMA acquisition.
AlazarGetAutoDMAHeaderTimeStamp Get a record timestamp from an AutoDMA

buffer.
AlazarGetAutoDMAHeaderValue Get an attribute from the record header of an

AutoDMA buffer.
AlazarGetAutoDMAPtr Get a pointer to the header or data portions of a

record in an AutoDMA buffer.
AlazarGetNextAutoDMABuffer Poll for an AutoDMA transfer to complete.
AlazarGetNextBuffer Poll for an AutoDMA transfer to complete.
AlazarStartAutoDMA Configure a board to make a synchronous

AutoDMA acquisition.
AlazarStopAutoDMA Inhibit the software from issuing any new

DMA request to the board.
AlazarWaitForBufferReady Wait for an AutoDMA transfer to complete.

3.2.5 All functions
Name Purpose
AlazarAbortAsyncRead Abort an asynchronous AutoDMA

acquisition, and release any resources
allocated during the acquisition.

AlazarAbortAutoDma Abort synchronous AutoDMA acquisition
AlazarAbortCapture Abort a single-ported acquisition to on-board

memory.
AlazarAsyncRead Add a buffer to the end of a list of buffers

available to be filled by a board.
AlazarBeforeAsyncRead Configure a board to make an asynchronous

AutoDMA acquisition.
AlazarAutoCalibrate Performa a board specific calibration.
AlazarBoardsFound Get the number of boards detected in all

board systems.
AlazarBoardsInSystemByHandle Get the number of boards in the board

system specified by the handle to its master
board.

AlazarBoardsInSystemBySystemID Get the number of boards in the board
system specified by its system identifier.

AlazarBusy Determine if an acquisition to on-board
memory is in progress.

AlazarClose Close a board handle.
AlazarCloseAUTODma Release any resources allocated during a

synchronous AutoDMA acquisition.
AlazarConfigureAuxIO Configure the AUX I/O connector of a

© 2003-2010 Alazar Technologies Inc. 65

SDK Programmer’s Guide

board.
AlazarCreateStreamFile Create a binary data file to store sample data

for a board.
AlazarErrorToText Convert API error number to NULL

terminated string.
AlazarEvents Enable a board to wait for the end of an

AutoDMA transfer.
AlazarFlushAutoDMA Stop a synchronous AutoDMA acquisition.
AlazarForceTrigger Generate a software trigger event.
AlazarForceTriggerEnable Generate a software trigger enable event.
AlazarGetAutoDMAHeaderTimeStamp Get a record timestamp from an AutoDMA

buffer.
AlazarGetAutoDMAHeaderValue Get an attribute from the record header of an

AutoDMA buffer.
AlazarGetAutoDMAPtr Get a pointer to the header or data portions

of a record in an AutoDMA buffer.
AlazarGetBoardBySystemHandle Get a handle to a board specified by its board

identifier and handle to the master board in
its board system.

AlazarGetBoardBySystemID Get a handle to a board specified by its
system identifier and board identifier.

AlazarGetBoardKind Get a board’s model from its handle.
AlazarGetChannelInfo Get the number of bits per sample, and on-

board memory size in samples per channel.
AlazarGetCPLDVersion Get the CPLD version of a board.
AlazarGetDriverVersion Get the driver version of a board.
AlazarGetMaxRecordsCapable Find the maximum number of records that

can be captured to on-board memory given a
number of samples per record.

AlazarGetNextAutoDMABuffer Poll for an AutoDMA transfer to complete.
AlazarGetNextBuffer Poll for an AutoDMA transfer to complete.
AlazarGetParameter Get a board parameter as a signed 32-bit

value.
AlazarGetParameterUL Get a board parameter as an unsigned 32-bit

value.
AlazarGetSDKVersion Get the API version.
AlazarGetStatus Return a bitmask with acquisition

information
AlazarGetSystemHandle Get a handle to the master board in a board

system specified by its system identifier.
AlazarGetTriggerAddress Get the trigger timestamp of a record

acquired to on-board memory.
AlazarGetTriggerTimestamp Retrieve the trigger timestamp of a record

acquired to on-board memory.
AlazarGetWhoTriggeredBySystemHandle Get the event that caused a board system,

© 2003-2010 Alazar Technologies Inc. 66

SDK Programmer’s Guide

specified by the handle to its master board,
to trigger.

AlazarGetWhoTriggeredBySystemID Get the event that caused a board system,
specified by its system identifier, to trigger.

AlazarHyperDisp Enable the on-board FPGA to divide a
record acquired to on-board memory into
intervals, and return the minimum and
maximum sample values over each interval.

AlazarInputControl Configure the range, coupling, and
termination of an input channel of a board.

AlazarNumOfSystems Get the number of board systems in a PC.
AlazarOEMDownLoadFPGA Download an FPGA image file to a board.
AlazarOpen Open a board handle.
AlazarParseFPGAName Extract the attributes from an FPGA file

name.
AlazarPostAsyncBuffer Add a buffer to the end of a list of buffers

available to be filled by a board.
AlazarQueryCapability Get a board capability as an unsigned 32-bit

value.
AlazarRead Transfer all or part of a record acquired to

on-board memory.
AlazarReadEx Transfer all or part of a record acquired to

on-board memory when the record has
2,147,483,648 or more samples.

AlazarResetTimeStamp Control record timestamp counter reset.
AlazarSetBWLimit Enable or disable the 20 MHz low-pass filter

of an input channel of board.
AlazarSetCaptureClock Configure the timebase of a board.
AlazarSetExternalClockLevel Set the external clock comparator level of a

board.
AlazarSetExternalTrigger Configure the TRIG IN connector of a board.
AlazarSetLED Control the LED on the PCI/PCIe mounting

bracket of a board.
AlazarSetParameter Set a board property as a signed 32-bit value.
AlazarSetParameterUL Set a board property as an unsigned 32-bit

value.
AlazarSetRecordCount Specify the number of records to capture to

on-board memory.
AlazarSetRecordSize Specify the number of samples before and

after the sample at the trigger position in a
record.

AlazarSetTriggerDelay Specify the amount of time between the
arrival of a trigger event, and the acquisition
of the first sample of a record.

AlazarSetTriggerOperation Configure the trigger system of a board.
AlazarSetTriggerTimeOut Specify the amount of time to wait for a

© 2003-2010 Alazar Technologies Inc. 67

SDK Programmer’s Guide

hardware trigger before automatically
generating a software trigger event.

AlazarSleepDevice Turn off the ADC converters.
AlazarStartAutoDMA Configure a board to make a synchronous

AutoDMA acquisition.
AlazarStartCapture Arm a board to wait for trigger events.
AlazarStopAutoDMA Inhibit the software from issuing any new

DMA request to the board.
AlazarTriggered Determine if a board has received at least

one trigger event since the start of an
acquisition.

AlazarWaitAsyncBufferComplete Wait a specified amount of time for a board
to receive sufficient trigger events to fill the
specified AutoDMA buffer.

AlazarWaitForBufferReady Sleep until an AutoDMA transfer has
completed.

AlazarWaitNextAsyncBufferComplete Wait a specified amount of time for a board
to receive sufficient trigger events to fill an
AutoDMA buffer managed by the API.

© 2003-2010 Alazar Technologies Inc. 68

SDK Programmer’s Guide

3.3 Function Reference
This section provides an alphabetical list of the functions exported by the AlazarTech
API, and their descriptions.

3.3.1 AlazarAbortAsyncRead
Aborts any in-progress DMA transfers, and cancel any pending transfers.

Syntax
C/C++
RETURN_CODE
AlazarAbortAsyncRead (

HANDLE BoardHandle,
);

VisualBasic
AlazarAbortAsyncRead (

ByVal BoardHandle As Integer
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails because it was unable to abort an in-progress DMA transfer, it returns
ApiDmaInProgress (518).

If AlazarAbortAsyncRead fails under Windows because the Windows CancelIo system
call failed, the function returns ApiFailed (513). Call the Windows GetLastError API for
more information.

If the function fails for some other reason, it returns an error code that indicates the
reason that it failed. See Table 1 for a list of error codes.

Remarks
If you have called AlazarAsyncRead or AlazarPostAsyncBuffer, and there are buffers
pending, you must call AlazarAbortAsyncRead before your application exits.

If you do not, when you program exits Microsoft Windows may stop with a blue screen
error number 0x000000CB (DRIVER_LEFT_LOCKED_PAGES_IN_PROCESS). Linux
may leak the memory used by the DMA buffers.

See Also

© 2003-2010 Alazar Technologies Inc. 69

SDK Programmer’s Guide

AlazarAsyncRead
AlazarPostAsyncBuffer
Using asynchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 70

SDK Programmer’s Guide

3.3.2 AlazarAbortAutoDma
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This routine is used to terminate the AutoDMA capture in cases where the trigger system
stopped generating triggers before the buffer was filled by the AutoDMA engine. The
routine will populate the buffer with the appropriate number of records that have been
successfully captured.

Syntax
C/C++
RETURN_CODE
AlazarAbortAutoDMA(

HANDLE h,
void* Buffer,
AUTODMA_STATUS* error,
U32 r1,
U32 r2,
U32 *r3,
U32 *r4

);

VisualBasic
AlazarAbortAutoDMA(

ByVal h As Integer,
ByRef Buffer1 As Any,
ByRef error As Long,
ByVal r1 As Long,
ByVal r2 As Long,
ByRef r3 As Long,
ByRef r4 As Long

) As Long

Parameters
h

[in] Board identification handle.

Buffer
[out] This Buffer is used to transfer a set of Records from the Device back to the
user application.

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning
ADMA_Completed 0 No errors occurred
ADMA_Success 0 No errors occurred
ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer
ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer

© 2003-2010 Alazar Technologies Inc. 71

SDK Programmer’s Guide

ADMA_BoardHandleInvalid 3 Board handle is not valid
ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough

memory because system resources are
low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough
memory because system resources are
low

ADMA_OverFlow 6 A hardware overflow occurred
ADMA_InvalidChannel 7 The channel selected is invalid
ADMA_DMAInProgress 8 A memory transfer is in progress
ADMA_UseHeaderNotSet 9 UseHeader must be set
ADMA_HeaderNotValid 10 An invalid header was encountered
ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple

of RecsPerBuffer

r1
[in] RESERVED.

r2
[in] RESERVED.

r3
[out] RESERVED.

r4
[out] RESERVED.

Return values
 See Table 1 for a list of error codes.

Remarks

See Also
AlazarStartAutoDMA
AlazarCloseAUTODma
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 72

SDK Programmer’s Guide

3.3.3 AlazarAbortCapture
Abort an acquisition to on-board memory.

Syntax
C/C++
RETURN_CODE
AlazarAbortCapture (

HANDLE BoardHandle,
);

VisualBasic
AlazarAbortCapture (

ByVal BoardHandle As Integer
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
None

See Also
AlazarRead
AlazarHyperDisp
Acquiring to on-board memory

© 2003-2010 Alazar Technologies Inc. 73

SDK Programmer’s Guide

3.3.4 AlazarAsyncRead
Add a buffer to the end of a list of buffers available to be filled by the board. When the
board receives sufficient trigger events to fill the buffer, the event in the OVERLAPPED
will be set to the signaled state.

Syntax
C/C++
RETURN_CODE
AlazarAsyncRead(

HANDLE BoardHandle,
 void *Buffer,
 U32 BytesToRead,
 OVERLAPPED *Overlapped
);

VisualBasic
Not available

Parameters
BoardHandle

[in] Handle to board.

Buffer
[out] Pointer to a buffer to receive sample data from the digitizer board.

BytesToRead
[in] Specifies the number of bytes to read from the board.

BytesToRead
[in] Pointer to an OVERLAPPED structure.

The event in the OVERLAPPED structure is set to the signaled state when the
read operation completes.

Return value
If the function succeeds in adding the buffer to end of the list of buffers available to be
filled by the board, it returns ApiDmaPending (585). When the board fills the buffer, the
event in the OVERLAPPED structure is to the signaled state.

If the function fails because the board overflowed its on-board memory, it returns
ApiBufferOverflow (582). The board may overflow its on-board memory because the
rate at which it is acquiring data is faster than the rate at which it is transferring data from
on-board memory to host memory. If this is the case, try reducing the sample rate,
number of enabled channels, or amount of time spent processing each buffer.

If the function fails because the buffer is too large for the driver or operating system to
prepare for scatter-gather DMA transfer, it returns ApiLockAndProbePagesFailed (586).

© 2003-2010 Alazar Technologies Inc. 74

SDK Programmer’s Guide

Try reducing the size of each buffer, or reducing the number of buffers queued by the
application.

If the function fails for some other reason, it returns an error code that indicates the
reason that it failed. See Table 1 for a list of error codes.

Remarks
AlazarAsyncRead is only available under Windows.

You must call AlazarBeforeAsyncRead before calling AlazarAsyncRead.

You must call AlazarAbortAsyncRead before your application exits if you have called
AlazarAsyncRead, and buffers are pending when you wish to exit your application.

The BytesToRead parameter must be equal to the product of the number of bytes per
record, the number of records per buffer, and the number of enabled channels. If record
headers are enabled, the number of bytes per record must include the size of the record
header (16 bytes).

See Also
AlazarAbortAsyncRead
AlazarBeforeAsyncRead
Using asynchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 75

SDK Programmer’s Guide

3.3.5 AlazarBeforeAsyncRead
Configure a board to make an asynchronous AutoDMA acquisition.

Syntax
C/C++
RETURN_CODE
AlazarBeforeAsyncRead(
 HANDLE BoardHandle,
 U32 ChannelSelect,
 long TransferOffset,
 U32 SamplesPerRecord,
 U32 RecordsPerBuffer,
 U32 RecordsPerAcquisition,
 U32 Flags
);

VisualBasic
AlazarBeforeAsyncRead(

ByVal BoardHandle As Integer,
ByVal ChannelSelect As Long,
ByVal TransferOffset As Long,
ByVal SamplesPerRecord As Long,
ByVal RecordsPerBuffer As Long,
ByVal RecordsPerAcquisition As Long,
ByVal Flags As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

ChannelSelect
[in] Select the channel to control.

This parameter may be one of the following identifiers or values.

Identifier Value Meaning
CHANNEL_A 1 Acquire from CH A only
CHANNEL_B 2 Acquire from CH B only
CHANNEL_A | CHANNEL_B 3 Acquire from both CH A and B.

TransferOffset
[in] Specify the first sample from each on-board record to transfer from on-board
to host memory. This value is a sample relative to the trigger position in an on-
board record.

SamplesPerRecord
[in] Specify the number of samples from each record to transfer from on-board to
host memory. See remarks below.

RecordsPerBuffer

© 2003-2010 Alazar Technologies Inc. 76

SDK Programmer’s Guide

[in] Specify the number of records in each buffer. See remarks below.

RecordsPerAcquisition
[in] Specify the number of records in to acquire during acquisition. Set to
0x7fffffff to acquire indefinitely until the acquisition is aborted. See remarks
below.

Flags
[in] Specify AutoDMA mode and options.

AutoDMA mode must be one of the following values.

Identifier Meaning
ADMA_TRADITIONAL_MODE
(0x00000000)

Acquire multiple records: one per trigger
event. Each record may include pre-and
post-trigger samples, and a record header
that includes its trigger timestamp.

If a board has on-board memory and
sample interleave is not enabled, each
buffer will contain samples organized as
follows: R1A, R1B, R2A, R2B …

If a board does not have on-board
memory, or sample interleave is enabled,
the buffer will contain samples organized
as follows: R1[AB…], R2[AB…] …

ADMA_NPT
(0x00000200)

Acquire multiple records: one per trigger
event. Each record contains only post-
trigger samples.

If a board has on-board memory and
sample interleave is not enabled, each
buffer will contain samples organized as
follows: R1A, R2A, … R1B, R2B …

If a board does not have on-board
memory, or sample interleave is enabled,
the buffer will contain samples organized
as follows: R1[AB…], R2[AB…] …

ADMA_CONTINUOUS_MODE
(0x00000100)

Acquire a single, gapless record
spanning multiple buffers. Do not wait
for trigger event before starting the
acquisition.

If a board has on-board memory and
sample interleave is not enabled, each
buffer will contain samples organized as
follows: R1A, R1B.

© 2003-2010 Alazar Technologies Inc. 77

SDK Programmer’s Guide

If a board does not have on-board
memory, or sample interleave is enabled,
the buffer will contain samples organized
as follows: R1[AB…]

ADMA_TRIGGERED_STREAMING
(0x00000400)

Acquire a single, gapless record
spanning multiple buffers. Wait for a
trigger event before starting the
acquisition.

If a board has on-board memory and
sample interleave is not enabled, each
buffer will contain samples organized as
follows: R1A, R1B.

If a board does not have on-board
memory, or sample interleave is enabled,
the buffer will contain samples organized
as follows: R1[AB…]

AutoDMA options may be a combination of one or more of the following values.

Identifier Meaning
ADMA_EXTERNAL_STARTCAPTURE
(0x00000001)

 If this flag is set, the acquisition will
start when the application calls
AlazarStartCaputre.

If this flag is not set, the acquisition
will start before
AlazarBeforeAsyncRead returns.

ADMA_ENABLE_RECORD_HEADERS
(0x00000008)

If this flag is set, precede each record
in each buffer with a 16-byte header
that includes the record’s trigger
timestamp.

Note that this flag can only be used in
“traditional” AutoDMA mode. Record
headers are not available in NPT,
streaming, or triggered streaming
modes.

ADMA_ALLOC_BUFFERS
(0x00000020)

If this flag is set, the API will allocate
and manage a list of DMA buffers.

This flag may be used by LabVIEW,
and in other high-level development
environments, where it may be more
convenient for the application to let

© 2003-2010 Alazar Technologies Inc. 78

SDK Programmer’s Guide

the API manage a list of DMA buffers,
and to receive a copy of data in an
application buffer.

When this flag is set, the application
must call
AlazarWaitNextAsyncBufferComplete
to wait for a buffer to complete and
receive a copy of the data.

The application can specify the
number of DMA buffers for the API to
allocate by calling AlazarSetParameter
with the parameter
SETGET_ASYNC_BUFFCOUNT
before calling
AlazarBeforeAsyncRead.

ADMA_FIFO_ONLY_STREAMING
(0x00000800)

Enable the board to data from its on-
FPGA FIFO rather than from on-board
memory.

When the flag is set, each buffer
contains data organized as follows:
R0[ABAB…], R1[ABAB…],
R2[ABAB] …. That is, each sample
from CH A is followed by a sample
from CH B.

When this flag is not set, each record
in a buffer contains a contiguous array
of samples for CH A followed by a
contiguous array of samples for CH B,
where the record arrangement depends
on the acquisition mode.

Note that this flag must be set if your
board does not have on-board
memory. For example, an ATS9462-
FIFO requires this flag.

Also note that this flag must not be set
if your board has on-board memory.

ADMA_INTERLEAVE_SAMPLES
(0x00001000)

Enable a board to interleave samples
from both digitizer channels in dual-
channel acquisition mode. This results
in higher data transfer rates on boards

© 2003-2010 Alazar Technologies Inc. 79

SDK Programmer’s Guide

that support this option.

Note that this flag has no effect in
single channel mode, and is currently
only supported by the ATS9870 and
ATS9350.

When the flag is set, each buffer
contains data organized as follows:
R0[ABAB…], R1[ABAB…],
R2[ABAB] …. That is, each sample
from CH A is followed by a sample
from CH B.

When this flag is not set, each record
in a buffer contains a contiguous array
of samples for CH A followed by a
contiguous array of samples for CH B,
where the record arrangement depends
on the acquisition mode.

ADMA_GET_PROCESSED_DATA
(0x00002000)

Enable the API to process each buffer
so that the sample data in a buffer is
always arranged as in NPT mode:
R0A, R1A, R2A, … RB0, R1B, R2B.

If this flag is not set, the data
arrangement in a buffer depends on the
acquisition mode.

LabVIEW and other higher-level
applications may use this flag to
simplify data processing since all data
buffers will have the same
arrangement independent of the
acquisition mode.

Note that the
ADMA_ALLOC_BUFFERS flag
must also be set to use this option.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

© 2003-2010 Alazar Technologies Inc. 80

SDK Programmer’s Guide

Remarks
The SamplesPerRecord parameter must be a multiple of 16.

The RecordsPerBuffer parameter must be set to 1 in continuous streaming, and
triggered streaming AutoDMA modes.

The RecordsPerAcquisition parameter must be either:
• An even multiple of the RecordsPerBuffer parameter, or
• 0x7FFFFFFF to indicate that the acquisition should continue indefinitely until

aborted.

When record headers are not enabled, the total number of bytes per AutoDMA buffer is
given by:

 BytesPerBuffer = BytesPerSample * SamplesPerRecord *
 RecordsPerBuffer;

When record headers are enabled, the total number bytes per AutoDMA buffer is given
by:

 // Each record header occupies 16-bytes
 BytesPerBuffer = (16 + BytesPerSample * SamplesPerRecord) *
 RecordsPerBuffer;

For best performance, AutoDMA parameters should be selected so that the total number
of bytes per buffer is greater than about 1MB. This allows for relatively long DMA
transfers times compared to the time required to prepare a buffer for a DMA transfer, and
to re-arm a DMA engine.

ATS460, ATS660, and ATS860 digitizer boards require that AutoDMA parameters be
selected so that the total number of bytes per buffer is less than 4MB.

See Also
AlazarAsyncRead
AlazarAbortAsyncRead
AlazarPostAsyncBuffer
AlazarWaitAsyncBufferComplete
AlazarWaitNextAsyncBufferComplete
Using asynchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 81

SDK Programmer’s Guide

3.3.6 AlazarAutoCalibrate
Perform a board specific calibration.

Syntax
C/C++
RETURN_CODE
AlazarAutoCalibrate (

HANDLE BoardHandle,
);

VisualBasic
AlazarAutoCalibrate (

ByVal BoardHandle As Integer
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that should indicate the reason that it failed.
See Table 1 for a list of error codes.

Remarks
This function is not implemented.

See Also

© 2003-2010 Alazar Technologies Inc. 82

SDK Programmer’s Guide

3.3.7 AlazarBoardsFound
Determine the number of digitizer boards that were detected in all board systems.

Syntax
C/C++
U32 AlazarBoardsFound ();

VisualBasic
AlazarBoardsFound () As Integer

Parameters
None

Return value
The total number of digitizer boards detected.

Remarks
None

See Also
AlazarNumOfSystems

© 2003-2010 Alazar Technologies Inc. 83

SDK Programmer’s Guide

3.3.8 AlazarBoardsInSystemByHandle
Return the number of digitizer boards in a board system specified by the handle of its
master board.

Syntax
C/C++
U32 AlazarBoardsInSystemByHandle (

HANDLE BoardHandle
);

VisualBasic
AlazarBoardsFound (

ByVal BoardHandle As Integer
) As Integer

Parameters
BoardHandle

[in] Handle to master board.

Return value
The number of boards in the specified board system.

Remarks
If this function is called with the handle to the master board is a master-slave system, it
returns the total number of boards in the system, including the master.

If this function is called with the handle an independent board, it returns 1.

If this function is called with the handle to a slave board in a master-slave system, or with
an invalid handle, it returns 0.

See Also
AlazarBoardsInSystemBySystemID
AlazarGetSystemHandle

© 2003-2010 Alazar Technologies Inc. 84

SDK Programmer’s Guide

3.3.9 AlazarBoardsInSystemBySystemID
Return the number of digitizer boards in a board system specified its system ID.

Syntax
C/C++
U32 AlazarBoardsInSystemBySystemID (

U32 SystemId
);

VisualBasic
AlazarBoardsInSystemBySystemID (

ByVal SystemId As Integer
) As Integer

Parameters
SystemId

[in] Board system identifier.

Return value
The number of boards in the specified system.

Remarks
If this function is called with the identifier of a master-slave system, it returns the total
number of boards in the system, including the master.

If this function is called with identifier of an independent board system, it returns 1.

If this function is called with the identifier of an invalid board system, it returns 0.

See Also
AlazarBoardsInSystemByHandle
AlazarGetSystemHandle

© 2003-2010 Alazar Technologies Inc. 85

SDK Programmer’s Guide

3.3.10 AlazarBusy
Determine if an acquisition to on-board memory is in progress.

Syntax
C/C++
U32 AlazarBusy (

HANDLE BoardHandle
);

VisualBasic
AlazarBusy (

ByVal BoardHandle As Integer
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
If the board is busy acquiring to on-board memory, this function returns 1.

Otherwise, this function returns 0.

Remarks
This function is part of the single-port acquisition API. Once an acquisition to on-board
memory is finished, use the AlazarRead, AlazarReadEx, or AlazarHyperDisp functions to
transfer sample data from on-board to host memory.

See Also
AlazarHyperDisp
AlazarRead
AlazarReadEx
AlazarStartCapture

© 2003-2010 Alazar Technologies Inc. 86

SDK Programmer’s Guide

3.3.11 AlazarClose
THIS FUNCTION IS OBSOLETE. DO NOT USE IN NEW DESIGNS.

Close a board handle.

Syntax
C/C++
void AlazarClose (

HANDLE BoardHandle
);

VisualBasic
AlazarClose (

ByVal BoardHandle As Integer
)

Parameters
BoardHandle

[in] Handle to board.

Return value
If the board is acquiring to on-board memory, this function returns 1. Otherwise, this
function returns 0.

Remarks
The API manages board handles internally. This function should only be used in
applications that are written for single board digitizer systems.

See Also
AlazarOpen

© 2003-2010 Alazar Technologies Inc. 87

SDK Programmer’s Guide

3.3.12 AlazarCloseAUTODma
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This routine will close the AUTODMA capabilities of the device. Only call this upon exit
or error.

Syntax
C/C++
RETURN_CODE
AlazarCloseAUTODma(

HANDLE h,
);

VisualBasic
AlazarCloseAUTODma (

ByVal h As Integer
) As Long

Parameters
h

[in] Board identification handle.

Return values
 See Table 1 for a list of error codes.

Remarks

See Also
AlazarAbortAutoDma
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 88

SDK Programmer’s Guide

3.3.13 AlazarConfigureAuxIO
Configure the AUX I/O connector as an input or output signal.

Syntax
C/C++
RETURN_CODE
AlazarConfigureAuxIO(

HANDLE BoardHandle,
U32 Mode,
U32 Parameter

);

VisualBasic
AlazarConfigureAuxIO(

ByVal BoardHandle As Integer,
ByVal Mode As Long,
ByVal Parameter As Long,

) As Long

Parameters
BoardHandle

[in] Handle to board.

Mode
[in] Specify AUX I/O mode.

This parameter may be one of the following values. See AlazarApi.h for a
complete list of list of parameter identifiers.

Identifier Value Description
AUX_OUT_TRIGGER 0 Output a trigger signal synchronized

with the sample clock.
AUX_IN_TRIGGER_ENABLE 1 Use the edge of a pulse to the AUX

I/O connector as an AutoDMA
trigger enable signal.

AUX_OUT_PACER 2 Output sample clock divided by
user-defined value.

AUX_OUT_SERIAL_DATA 14 Use the AUX I/O connector as a
general purpose digital output.

AUX_OUT_TRIGGER_ENABLE 20 Output a TTL high signal during the
trigger enable period. Softare calls
AlazarForceTriggerEnable to
generate a trigger enable event.

Parameter
[in] Parameter value.

The meaning of the parameter value depends on the AUX I/O mode.

© 2003-2010 Alazar Technologies Inc. 89

SDK Programmer’s Guide

Mode Parameter value
AUX_OUT_TRIGGER The value is ignored
AUX_IN_TRIGGER_ENABLE The value specifies slope of TTL trigger

enable signal:
• TRIGGER_SLOPE_POSITIVE (1)

The trigger enable signal is the rising
edge of a TTL pulse to the AUX I/O
connector.

• TRIGGER_SLOPE_NEGATIVE (2)
The trigger enable signal is the falling
edge of a TTL pulse to the AUX I/O
connector.

AUX_OUT_PACER The value specifies sample clock divider.
Note that the divider must be greater than 2.

AUX_OUT_SERIAL_DATA The value specifies the TTL output level:
• 0 = TTL low-level
• 1 = TTL high level

AUX_OUT_TRIGGER_ENABLE The value is ignored

Return value
If the function succeeds, it returns ApiSuccess (512).

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The AUX I/O connector generates TTL level signals when configured as an output, and
expects TTL level signals when configured as an input.

AUX I/O output signals may be limited by the bandwidth of the AUX output drivers.

See Also

© 2003-2010 Alazar Technologies Inc. 90

SDK Programmer’s Guide

3.3.14 AlazarCreateStreamFile
Create a binary data file for this board, and enable saving AutoDMA data from this board
to disk.

Syntax
C/C++
RETURN_CODE
AlazarCreateStreamFileA(
 HANDLE BoardHandle,
 char *FilePath
);

RETURN_CODE
AlazarCreateStreamFileW(
 HANDLE BoardHandle,
 WCHAR* FilePath
);

VisualBasic
AlazarCreateStreamFileA(

ByVal BoardHandle As Integer,
ByRef FileName As Any

) As Integer

AlazarCreateStreamFileW(
ByVal BoardHandle As Integer,
ByRef FileName As Any

) As Integer

Parameters
BoardHandle

[in] Handle to board.

FilePath
[in] Pointer to a NULL terminated string that specifies the name of the file.

Return values
If this function succeeds, it returns ApiSuccess (512).

If this function fails, it returns ApiFailed (513). Call the Windows GetLastError API for
more information.

Remarks
AlazarCreateStreamFileA accepts 8-bit ACSII or MBCS paths, and
AlazarCreateStreamFileW accepts 16-bit UNICODE paths.

C/C++ applications may use AlazarCreateStreamFile. It is defined in AlazarApi.h as
follows:

© 2003-2010 Alazar Technologies Inc. 91

SDK Programmer’s Guide

 #ifdef UNICODE
 #define AlazarCreateStreamFile AlazarCreateStreamFileW
 #else
 #define AlazarCreateStreamFile AlazarCreateStreamFileA

If possible, select AlazarBeforeAsyncRead parameters that result in DMA buffers whose
length in bytes is evenly divisible into sectors on the volume specified by FilePath. If the
DMA buffer length is evenly divisible into sectors, AlazarCreateStreamFile disables
file caching to obtain the highest possible sequential write performance.

An AutoDMA buffers is saved to disk when an application calls
AlazarWaitNextAsyncBufferComplete. For best performance, set the BytesToCopy
parameter in AlazarWaitNextAsyncBufferComplete to zero so that data is written to disk
without copying data to the user-supplied buffer.

See Also
AlazarWaitNextAsyncBufferComplete
Using asynchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 92

SDK Programmer’s Guide

3.3.15 AlazarErrorToText
Convert a numerical return code to a NULL terminated string.

Syntax
C/C++
const char*
AlazarErrorToText(

RETURN_CODE retCode
);

VisualBasic
Not available

Parameters
retCode

[in] Return code from API function.

Return value
Null terminated string containing the identifier name.

Remarks
It is often easier to work with a descriptive error name rather than an error number. For
example:

 RETURN_CODE retCode = ApiSuccess;
 printf("Return code %u means %s.\n"),
 retCode,
 AlazarErrorToText(retCode));

The output from this code would be the following:

 Return code 512 means ApiSuccess.

See Also

© 2003-2010 Alazar Technologies Inc. 93

SDK Programmer’s Guide

3.3.16 AlazarEvents
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This function allows a user to enable or disable usage of software events in AutoDMA
mode. The driver manages the event processing and a user can only use an event in
conjunction with the API AlazarWaitForBufferReady (...). When the events are enabled
AlazarWaitForBufferReady(...) will wait until an AutoDMA buffer is available to the
users application. For a complete understanding of the Usage of the API AlazarEvents
(...) refer to the pseudo-code example provided in the API AlazarWaitForBufferReady
(...).

Syntax
C/C++
RETURN_CODE
AlazarEvents(

HANDLE h,
U32 enable

);

VisualBasic
AlazarEvents(

ByVal h As Integer,
ByVal enable As Integer

) As Integer

Parameters
h

[in] Handle to the device.

enable
[in] This parameter may have one of the following values.

Identifier Value Description
SW_EVENTS_OFF 0 Disable events usage
SW_EVENTS_ON 1 Enable event usage

Return value
ApiSuccess (512) signifies that the API was able to enable the events

ApiFailed (513) signifies that the current driver does not support this feature

Remarks
This functionality is only present on the ATS460, ATS660 and ATSS860 devices. It must
be called before calling AlazarStartAutoDMA().

If AlazarEvents(h,1) was not used, calling AlazarWaitForBuffer(…) will return 672 and
will not disrupt any ongoing signal captures.

© 2003-2010 Alazar Technologies Inc. 94

SDK Programmer’s Guide

See Also
AlazarWaitForBufferReady
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 95

SDK Programmer’s Guide

3.3.17 AlazarFlushAutoDMA
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

The primary use of the API is to stop a Synchronous NPT acquisition. Scanning type
applications are usually configured such that the data capture is ongoing and stopping is
done by an external event. In this case trigger events have stopped and this API permits
the last buffer to be returned to the application.

Syntax
C/C++
long AlazarFlushAutoDMA (HANDLE h);

VisualBasic
AlazarEvents(ByVal h As Integer) As Long

Parameters
h

[in] Handle to the device.

Return value
The number of valid triggers in the last buffer.

Remarks
Suppose an acquisition is running and all of the sudden, triggers stop coming in. Once the
software has determined that the acquisition is to be aborted, AlazarFlushAutoDMA
should be called. The routine will automatically generate the missing triggers in order to
complete the last buffer.

A last call to AlazarGetNextAutoDMABuffer is needed to read the LAST buffer. You
will get ApiFailed as a return value from AlazarGetNextAutoDMABuffer indicating a
successful last buffer. At this point, depending on your design, you may terminate the
program or start a new acquisition.

NOTE:
Internally, this routine calls AlazarStopAutoDMA so as not to allow the software to re
arm any new DMA requests. Only a call to AlazarStartAutoDMA will reset this action.

See Also
AlazarGetNextAutoDMABuffer
AlazarStartAutoDMA
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 96

SDK Programmer’s Guide

3.3.18 AlazarForceTrigger
Generate a software trigger event.

Syntax
C/C++
RETURN_CODE
AlazarForceTrigger (

HANDLE BoardHandle,
);

VisualBasic
AlazarForceTrigger (

ByVal BoardHandle As Integer
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
None

See Also
AlazarSetExternalTrigger
AlazarSetTriggerDelay
AlazarSetTriggerOperation
AlazarSetTriggerTimeOut

© 2003-2010 Alazar Technologies Inc. 97

SDK Programmer’s Guide

3.3.19 AlazarForceTriggerEnable
Generate a software trigger enable event.

Syntax
C/C++
RETURN_CODE
AlazarForceTriggerEnable (

HANDLE BoardHandle,
);

VisualBasic
AlazarForceTriggerEnable (

ByVal BoardHandle As Integer
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
If the AUX I/O connector has been configured as a trigger enable input, an application
can call this function to generate a software trigger enable event while the board is
waiting for hardware to supply an edge to the the AUX input.

If the AUX I/O connector has been configured as a trigger enable output, an application
should call this function to generate a trigger enabe event.

See Also
AlazarConfigureAuxIO

© 2003-2010 Alazar Technologies Inc. 98

SDK Programmer’s Guide

3.3.20 AlazarGetAutoDMAHeaderTimeStamp
THIS FUNCTION IS OBSOLETE. DO NOT USE IN NEW DESIGNS.

This routine is a helper function, which can be used to retrieve the 40-bit TimeStamp
from the header of a particular record. The resulting number is composed of both the
TimeStampHighPart and TimeStampLowPart thus alleviating the user from calculating
the time stamp using the header values.

Syntax
C/C++
float
AlazarGetAutoDMAHeaderTimeStamp(

HANDLE h,
U32 Channel,
void* DataBuffer,
U32 Record,
AUTODMA_STATUS *error

);

VisualBasic
AlazarGetAutoDMAHeaderTimeStamp(

ByVal h As Integer,
ByVal Channel As Long,
ByRef DataBuffer As Any,
ByVal Record As Long,
ByRef error As Long

) As Double

Parameters
h

[in] Handle to the device.

Channel
[in] This parameter may be one of the following identifiers or values.

Identifier Value
CHANNEL_A 1
CHANNEL_B 2

DataBuffer
[in] The data buffer as returned from AlazarGetNextAutoDMABuffer.

Record
[in] Signifies the record number of interest for the given Data Buffer.

Error
[out] Error return code.

This error code may be one of the following values.

© 2003-2010 Alazar Technologies Inc. 99

SDK Programmer’s Guide

Identifier Value Meaning
ADMA_Completed 0 No errors occurred
ADMA_Success 0 No errors occurred
ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer
ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer
ADMA_BoardHandleInvalid 3 Board handle is not valid
ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough

memory because system resources are
low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough
memory because system resources are
low

ADMA_OverFlow 6 A hardware overflow occurred
ADMA_InvalidChannel 7 The channel selected is invalid
ADMA_DMAInProgress 8 A memory transfer is in progress
ADMA_UseHeaderNotSet 9 UseHeader must be set
ADMA_HeaderNotValid 10 An invalid header was encountered
ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple

of RecsPerBuffer

Return value
Upon success, i.e. error==ADMA_Success, the TimeStamp will be returned in a floating-
point format.

If an error has occurred then 0 will be returned.

Remarks

See Also
AlazarGetAutoDMAHeaderValue
AlazarGetAutoDMAPtr

© 2003-2010 Alazar Technologies Inc. 100

SDK Programmer’s Guide

3.3.21 AlazarGetAutoDMAHeaderValue
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This routine is a helper function that can be used to retrieve all the various elements
available in the header of an AutoDMA record. It will only operate on records that were
captured when the Use Header variable in AlazarStartAutoDMA was set to a 1.

Syntax
C/C++
U32
AlazarGetAutoDMAHeaderValue(

HANDLE h,
U32 Channel,
void* DataBuffer,
U32 Record,
U32 Parameter,
AUTODMA_STATUS *error

);

VisualBasic
AlazarGetAutoDMAHeaderValue(

ByVal h As Integer,
ByVal Channel As Long,
ByRef DataBuffer As Any,
ByVal Record As Long,
ByVal Parameter As Long,
ByRef error As Long

) As Long

Parameters
h

[in] Handle to the device.

Channel
[in] This parameter may be one of the following identifiers or values.

Identifier Value
CHANNEL_A 1
CHANNEL_B 2

DataBuffer
[in] The data buffer as returned from AlazarGetNextAutoDMABuffer.

Record
[in] Signifies the record number of interest for the provided Data Buffer.

Parameter
[in] Signifies which element the routine should extract from the record’s header.

This parameter may be one of the following identifiers or values.

© 2003-2010 Alazar Technologies Inc. 101

SDK Programmer’s Guide

Identifier Value
ADMA_CLOCKSOURCE 1
ADMA_CLOCKEDGE 2
ADMA_SAMPLERATE 3
ADMA_INPUTRANGE 4
ADMA_INPUTCOUPLING 5
ADMA_IMPUTIMPEDENCE 6
ADMA_EXTTRIGGERED 7
ADMA_CHA_TRIGGERED 8
ADMA_CHB_TRIGGERED 9
ADMA_TIMEOUT 10
ADMA_THISCHANTRIGGERED 11
ADMA_SERIALNUMBER 12
ADMA_SYSTEMNUMBER 13
ADMA_BOARDNUMBER 14
ADMA_WHICHCHANNEL 15
ADMA_SAMPLERESOLUTION 16
ADMA_DATAFORMAT 17

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning
ADMA_Completed 0 No errors occurred
ADMA_Success 0 No errors occurred
ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer
ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer
ADMA_BoardHandleInvalid 3 Board handle is not valid
ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough

memory because system resources are
low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough
memory because system resources are
low

ADMA_OverFlow 6 A hardware overflow occurred
ADMA_InvalidChannel 7 The channel selected is invalid
ADMA_DMAInProgress 8 A memory transfer is in progress
ADMA_UseHeaderNotSet 9 UseHeader must be set
ADMA_HeaderNotValid 10 An invalid header was encountered
ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple

of RecsPerBuffer

Return value

© 2003-2010 Alazar Technologies Inc. 102

SDK Programmer’s Guide

IF error==ADMA_Success, then the value of the asked Parameter is returned.

Remarks

See Also
AlazarGetAutoDMAPtr
AlazarGetAutoDMAHeaderTimeStamp

© 2003-2010 Alazar Technologies Inc. 103

SDK Programmer’s Guide

3.3.22 AlazarGetAutoDMAPtr
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This routine is a helper function used to retrieve a pointer to the first data element or first
header element of a particular record. If DataOrHeader is set to 1, then the resulting
pointer must be cast to PALAZAR_HEADER type. The user can then use the pointer to
access any of the header variables.
Ex. PALAZAR_HEADER p = (PALAZAR_HEADER) AlazarGetAutoDMAPtr (…);

Syntax
C/C++
void *
AlazarGetAutoDMAPtr(

HANDLE h,
U32 DataOrHeader,
U32 Channel,
void* DataBuffer,
U32 Record,
AUTODMA_STATUS *error

);

VisualBasic
NOT SUPPORTED

Parameters
h

[in] Handle to the device.

DataOrHeader
[in] Instruct the routine to return a pointer for the data or header portion.

This parameter may be one of the following values.

Value Meaning
0 Return the pointer for the data portion.
1 Return the pointer for the header portion.

Channel
[in] This parameter may be one of the following identifiers or values.

Identifier Value
CHANNEL_A 1
CHANNEL_B 2

DataBuffer
[in] The data buffer as returned from AlazarGetNextAutoDMABuffer.

Record
[in] Signifies the record number of interest for the given Data Buffer.

© 2003-2010 Alazar Technologies Inc. 104

SDK Programmer’s Guide

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning
ADMA_Completed 0 No errors occurred
ADMA_Success 0 No errors occurred
ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer
ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer
ADMA_BoardHandleInvalid 3 Board handle is not valid
ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough

memory because system resources are
low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough
memory because system resources are
low

ADMA_OverFlow 6 A hardware overflow occurred
ADMA_InvalidChannel 7 The channel selected is invalid
ADMA_DMAInProgress 8 A memory transfer is in progress
ADMA_UseHeaderNotSet 9 UseHeader must be set
ADMA_HeaderNotValid 10 An invalid header was encountered
ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple

of RecsPerBuffer

Return value
See Table 1 for a list of error codes.

Remarks

See Also
AlazarGetAutoDMAHeaderTimeStamp
AlazarGetAutoDMAHeaderValue

© 2003-2010 Alazar Technologies Inc. 105

SDK Programmer’s Guide

3.3.23 AlazarGetBoardBySystemHandle
Get a handle to a board in a board system where the board system is specified by a handle
to its master board, and the board by its identifier within the board system.

Syntax
C/C++
HANDLE
AlazarGetBoardBySystemHandle (

HANDLE BoardHandle,
U32 BoardId

);

VisualBasic
AlazarGetBoardBySystemHandle (

ByVal BoardHandle As Integer,
ByVal BoardId As Integer

) As Integer

Parameters
BoardHandle

[in] Handle to master board.

BoardId
[in] Board identifier in board system.

Return value
This function returns a handle to the specified board if it was found.

The function returns NULL if the master board handle is invalid, or a board with the
specified board identifier was not found in the specified board system.

Remarks
The board identifier of a master board in a board system is always 1.

See Also
AlazarGetBoardBySystemID
AlazarGetSystemHandle

© 2003-2010 Alazar Technologies Inc. 106

SDK Programmer’s Guide

3.3.24 AlazarGetBoardBySystemID
Get a handle to a board in a board system where the board system is specified its system
identifier and the board by its board identifier within the board system.

Syntax
C/C++
HANDLE
AlazarGetBoardBySystemID (

U32 SystemId,
U32 BoardId

);

VisualBasic
Public Declare Function AlazarGetBoardBySystemID (

ByVal SystemId As Integer,
ByVal BoardId As Integer

) As Integer

Parameters
SystemId

[in] System identifier number.

BoardId
[in] Board identifier in system.

Return value
This function returns a handle to the specified board if it was found.

It returns NULL if the board system with the specified ID was not found, or a board with
the specified ID was not found within the specified board system.

Remarks

See Also
AlazarGetBoardBySystemHandle
AlazarGetSystemHandle

© 2003-2010 Alazar Technologies Inc. 107

SDK Programmer’s Guide

3.3.25 AlazarGetBoardKind
Get a board model identifier of the board associated with a board handle.

Syntax
C/C++
U32 AlazarGetBoardKind (

HANDLE BoardHandle
);

VisualBasic
Public Declare Function AlazarGetBoardKind (

ByVal BoardHandle As Integer
) As Integer

Parameters
BoardHandle

[in] Handle to board.

Return value
If the function succeeds, it returns a non-zero board model identifier.

If the function fails, it returns 0.

Remarks
The following lists currently supported board model identifiers and their values. See
AlazarApi.h for a complete list of board type identifiers.

Identifier Value
ATS850 1
ATS310 2
ATS330 3
ATS460 7
ATS860 8
ATS660 9
ATS9462 11
ATS9870 13
ATS9350 14

See Also

© 2003-2010 Alazar Technologies Inc. 108

SDK Programmer’s Guide

3.3.26 AlazarGetChannelInfo
Get the on-board memory in samples per channel, and sample size in bits per sample.

Syntax
C/C++
RETURN_CODE
AlazarGetChannelInfo (

HANDLE BoardHandle,
U32 *MemorySizeInSamples,
U8 *BitsPerSample

);

VisualBasic
AlazarGetChannelInfo (

ByVal BoardHandle As Integer,
ByRef MemorySizeInSamples As Long,
ByRef BitsPerSample As Byte

) As Long

Parameters
BoardHandle

[in] Handle to board.

MemorySizeInSamples
[out] The on-board memory size in samples per channel.

bitsPerSample
[out] The number of bits per sample.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The ATS9870 and ATS9350 can dedicate all on-board memory to a single channel. The
on-board memory size reported by these boards is the maximum samples per channel in
single channel mode. In dual-channel mode, the on-board memory is shared equally
between both channels.

See Also

© 2003-2010 Alazar Technologies Inc. 109

SDK Programmer’s Guide

3.3.27 AlazarGetCPLDVersion
Get the CPLD version number of the specified board.

Syntax
C/C++
RETURN_CODE
AlazarGetCPLDVersion(

HANDLE BoardHandle,
U8 *MajorNumber,
U8 *MinorNumber

);

VisualBasic
AlazarGetCPLDVersion (

ByVal BoardHandle As Integer,
ByRef MajorNumber As Byte,
ByRef MinorNumber As Byte

) As Long

Parameters
BoardHandle

[in] Handle to board.

MajorNumber
[out] The CPLD major revision number.

MinorNumber
[out] The CPLD minor revision number.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks

See Also
AlazarGetDriverVersion
AlazarGetSDKVersion

© 2003-2010 Alazar Technologies Inc. 110

SDK Programmer’s Guide

3.3.28 AlazarGetDriverVersion
Get the device driver version of the most recently opened device.

Syntax
C/C++
RETURN_CODE
AlazarGetDriverVersion (

U8 *MajorNumber,
U8 *MinorNumber,
U8 *RevisionNumber

);

VisualBasic
AlazarGetDriverVersion (

ByRef MajorNumber As Byte,
ByRef MinorNumber As Byte,
ByRef RevisionNumber As Byte

) As Long

Parameters
MajorNumbr

[out] The driver major version number.

MinorNumber
[out] The driver minor version number.

RevisionNumber
[out] The driver revision number.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
Driver releases are given a version number with the format X.Y.Z where: X is the major
release number, Y is the minor release number, and Z is the minor revision number.

See Also
AlazarGetCPLDVersion
AlazarGetSDKVersion

© 2003-2010 Alazar Technologies Inc. 111

SDK Programmer’s Guide

3.3.29 AlazarGetMaxRecordsCapable
Calculate the maximum number of records that can be captured to on-board memory
given the requested number of samples per record.

Syntax
C/C++
RETURN_CODE
AlazarGetMaxRecordsCapable (

HANDLE BoardHandle,
U32 SamplesPerRecord,
U32 *MaxRecordsPerCapture

);

VisualBasic
AlazarGetMaxRecordsCapable (

ByVal BoardHandle As Integer,
ByVal SamplesPerRecord As Long,
ByRef MaxRecordsPerCapture As Long

) As Long

Parameters
BoardHandle

[in] The handle a board in a board system.

SamplesPerRecord
[in] The desired number of samples per record.

MaxRecordsPerCapture
[out] The maximum number of records per capture possible with the requested
samples per record.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
This function is part of the single port API. It should not be used with AutoDMA API
functions.

See Also
AlazarHyperDisp
AlazarRead
AlazarReadEx

© 2003-2010 Alazar Technologies Inc. 112

SDK Programmer’s Guide

3.3.30 AlazarGetNextAutoDMABuffer
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

After an application has called AlazarStartAutoDMA the application must call
AlazarGetNextAutoDMABuffer to retrieve the data buffers. Because of the nature of
Auto Dma, two buffers are required. The device driver dll will arbitrate to which buffer
the data will be returned. After a buffer has been filled, variable WhichOne equals the
buffer id, thus if the id is 0 then Buffer1 was used and likewise if the id is 1 then Buffer2
was used. In the case where data is not available WhichOne will equal -1. This routine
will always return ApiSuccess (512) when either data has been transferred or when
WhichOne = -1. A return value of ApiFailed (513) indicates that all the Records Per
Buffer has been transferred.

Syntax
C/C++
RETURN_CODE
AlazarGetNextAutoDMABuffer(

HANDLE h,
void* Buffer1,
void* Buffer2,
long* WhichOne,
long* RecordsTransferred,
AUTODMA_STATUS* error,
U32 r1,
U32 r2,
long *TriggersOccurred,
U32 * r4

);

VisualBasic
AlazarGetNextAutoDMABuffer(

ByVal h As Integer,
ByRef Buffer1 As Any,
ByRef Buffer2 As Any,
ByRef WhichOne As Long,
ByRef RecordsTransferred As Long,
ByRef error As Long,
ByVal r1 As Long,
ByVal r2 As Long,
ByRef TriggersOccurred As Long,
ByRef r4 As Long

) As Long

Parameters
h

[in] Handle to the device.

© 2003-2010 Alazar Technologies Inc. 113

SDK Programmer’s Guide

Buffer1
[out] This Buffer is used to transfer a complete set of Records from the Device
back to the user application. It is one of two buffers that are alternated between.
The second buffer is Buffer2.

Buffer1 should be large enough to contain (RecordsPerBuffer*TransferLength)
many 16-bit values (VB-Integer, C&C++-short).

If the Record header is selected (UseHeader = 1) then Buffer1 should be large
enough to hold
(RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER)) many 16bit
values.

Buffer2
[out] This Buffer is used to transfer a complete set of Records from the Device
back to the user. It is one of two buffers that are alternated between. The other
buffer is Buffer1.

Buffer2 should be large enough to contain (RecordsPerBuffer*TransferLength)
many 16-bit values (VB-Integer, C&C++-short).

If the Record header is selected (UseHeader = 1) then Buffer2 should be large
enough to hold.

WhichOne
[out] This is a return value that indicates to the user which of the two Buffers
(Buffer1 or Buffer2) the data was transferred into.

RecordsTransferred
[in | out] Indicates how many records have been transferred. This value will
always be a multiple of RecordsPerBuffer. It is the application's responsibility to
initialize the variable to 0 prior to the first call.

Error
[out] Error code.

This error code may be one of the following values.

Identifier Value Meaning
ADMA_Completed 0 No errors occurred
ADMA_Success 0 No errors occurred
ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer
ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer
ADMA_BoardHandleInvalid 3 Board handle is not valid
ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough

memory because system resources are
low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough
memory because system resources are
low

ADMA_OverFlow 6 A hardware overflow occurred
ADMA_InvalidChannel 7 The channel selected is invalid

© 2003-2010 Alazar Technologies Inc. 114

SDK Programmer’s Guide

ADMA_DMAInProgress 8 A memory transfer is in progress
ADMA_UseHeaderNotSet 9 UseHeader must be set
ADMA_HeaderNotValid 10 An invalid header was encountered
ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple

of RecsPerBuffer

r1
[in] RESERVED.

r2
[in] RESERVED.

TriggersOccurred
[out] This is the total number of triggers that have been captured since the last
start capture.

r4
[out] RESERVED.

Return value
See Table 1 for a list of error codes.

Remarks
Both Buffer1 and Buffer2 will be used in transferring the data from the device back to the
user application. However, if the RecordsPerBuffer is set in conjunction with
TransferLength such that all the data will fit in only one Buffer, then Only Buffer1 will
be used and the WhichOne variable will equal 0. Only one transaction will take place.
RecordsTransferred will be modified by the routine and is used to accumulate the number
of record that has been transferred. Always set the variable to 0 before calling this routine
and never modify its contents between repeating calls.

The user must ensure that Buffer1 and Buffer2 are valid buffers.

Buffer1 and Buffer2 should be large enough to contain
(RecordsPerBuffer*TransferLength) many 16-bit values (VB-Integer, C&C++-short).
If the Record header is selected (UseHeader = 1) then Buffer1 and Buffer2 should be
large enough to hold (RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER))
many 16bit values (VB-Integer, C&C++-short).

AlazarGetNextBuffer and AlazarGetNextAutoDMABuffer are identical.

See Also
AlazarStartAutoDMA
AlazarAbortAutoDma
AlazarGetNextBuffer
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 115

SDK Programmer’s Guide

3.3.31 AlazarGetNextBuffer
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

AlazarGetNextBuffer and AlazarGetNextAutoDMABuffer are identical. Please refer to
AlazarGetNextAutoDMABuffer.

Syntax
C/C++
RETURN_CODE
AlazarGetNextBuffer (

HANDLE h,
void* Buffer1,
void* Buffer2,
long* WhichOne,
long* RecordsTransferred,
AUTODMA_STATUS* error,
U32 r1,
U32 r2,
long *TriggersOccurred,
U32 * r4

);

VisualBasic
AlazarGetNextBuffer(

ByVal h As Integer,
ByRef Buffer1 As Any,
ByRef Buffer2 As Any,
ByRef WhichOne As Long,
ByRef RecordsTransferred As Long,
ByRef error As Long,
ByVal r1 As Long,
ByVal r2 As Long,
ByRef TriggersOccurred As Long,
ByRef r4 As Long

) As Long

Remarks
AlazarGetNextBuffer and AlazarGetNextAutoDMABuffer are identical.

See Also
See AlazarGetNextAutoDMABuffer.

© 2003-2010 Alazar Technologies Inc. 116

SDK Programmer’s Guide

3.3.32 AlazarGetParameter
Get a device attribute as a signed long value.

Syntax
C/C++
RETURN_CODE
AlazarGetParameter(

HANDLE BoardHandle,
U8 Channel
U32 Parameter,
long *Value

);

VisualBasic
AlazarGetParameter (

ByVal BoardHandle As Integer,
ByVal Channel As Byte,
ByVal Parameter As Long,
ByRef Value As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Channel
[in] The channel of the attribute, if required.

Parameter
[in] The parameter identifier.

Parameter identifiers include the following values. See AlazarApi.h for a
complete list of list of identifiers.

Value Meaning
DATA_WIDTH
0x10000009

Get the number of bits per
sample.

SETGET_ASYNC_BUFFSIZE_BYTES
0x10000039

Get the size in bytes of each
API allocated DMA.

SETGET_ASYNC_BUFFCOUNT
0x10000040

Get the number of API
allocated DMA buffers.

GET_DATA_FORMAT
0x10000042

Return 0 if the data format is
unsigned, or 1 if the data
format is signed.

GET_SAMPLES_PER_TIMESTAMP_CLOCK
0x10000044

Get the number of sample
clocks per timestamp clock

GET_RECORDS_CAPTURED
0x10000045

Get the current number of
number of records captured

© 2003-2010 Alazar Technologies Inc. 117

SDK Programmer’s Guide

since the start of the acquisition
(single-port) or buffer (dual-
port).

GET_ASYNC_BUFFERS_PENDING
0x10000050

Get the number of DMA
buffers that have been queued
by an application to this board.

GET_ASYNC_BUFFERS_PENDING_FULL
0x10000051

Get the number of DMA
buffers for this board that are
full and waiting to be
processed by the application.

GET_ASYNC_BUFFERS_PENDING_EMPTY
0x10000052

Get the number of DMA
buffers for this board that are
empty and waiting to be filled
by the board.

Value
[out] The parameter’s value.

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks

See Also
AlazarGetParameterUL
AlazarSetParameter
AlazarSetParameterUL

© 2003-2010 Alazar Technologies Inc. 118

SDK Programmer’s Guide

3.3.33 AlazarGetParameterUL
Get a device attribute as an unsigned 32-bit value.

Syntax
C/C++
RETURN_CODE
AlazarGetParameterUL (

HANDLE BoardHandle,
U8 Channel
U32 Parameter,
U32 *Value

);

VisualBasic
AlazarGetParameterUL (

ByVal BoardHandle As Integer,
ByVal Channel As Byte,
ByVal Parameter As Long,
ByRef Value As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Channel
[in] The channel of the attribute, if required.

Parameter
[in] The parameter identifier.

Parameter identifiers include the following values. See AlazarApi.h for a
complete list of list of identifiers.

Value Meaning
GET_MAX_PRETRIGGER_SAMPLES
0x10000046

Return the maximum number of pre-
trigger samples supported by this
board.

Value
[out] The parameter’s value.

Return value
The function returns ApiSuccess (512) if it was able to retrieve value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

© 2003-2010 Alazar Technologies Inc. 119

SDK Programmer’s Guide

Remarks
See AlazarApi.h for a complete list of list of parameter identifiers.

See Also
AlazarGetParameter
AlazarSetParameter
AlazarSetParameterUL

© 2003-2010 Alazar Technologies Inc. 120

SDK Programmer’s Guide

3.3.34 AlazarGetSDKVersion
Get the SDK version.

Syntax
C/C++
RETURN_CODE
AlazarGetSDKVersion (

U8 *MajorNumber,
U8 *MinorNumber,
U8 *RevisionNumber

);

VisualBasic
AlazarGetSDKVersion (

ByRef MajorNumber As Byte,
ByRef MinorNumber As Byte,
ByRef RevisionNumber As Byte

) As Long

Parameters
MajorNumber

[out] The SDK major version number.

MinorNumber
[out] The SDK minor version number.

RevisionNumber
[out] The SDK revision number.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
SDK releases are given a version number with the format X.Y.Z where: X is the major
release number, Y is the minor release number, and Z is the minor revision number.

See Also
AlazarGetCPLDVersion
AlazarGetDriverVersion

© 2003-2010 Alazar Technologies Inc. 121

SDK Programmer’s Guide

3.3.35 AlazarGetStatus
Return a bitmask with board status information.

Syntax
C/C++
U32 AlazarGetStatus (

HANDLE BoardHandle
);

VisualBasic
AlazarGetStatus (

ByVal BoardHandle As Integer,
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
If the function fails, the return value is 0xffffffff.

If the function succeeds, the return value is contains board attributes. The attributes can
include one or more of the following values.

Attribute Meaning
1 At least one trigger timeout occurred.
2 At least one CHA sample was out of range during the last acquisition.
4 At least one CHB sample was out of range during the last acquisition
8 The PLL is locked (ATS660 only).

Remarks

See Also

© 2003-2010 Alazar Technologies Inc. 122

SDK Programmer’s Guide

3.3.36 AlazarGetSystemHandle
Return the handle of the master board in the specified board system.

Syntax
C/C++
HANDLE
AlazarGetSystemHandle (

U32 SystemId
);

VisualBasic
AlazarGetSystemHandle (

ByVal SystemId As Integer
) As Integer

Parameters
SystemId

[in] System identification number.

Return value
If this function succeeds, it returns a handle to the master board in the specified board
system.

If the function fails, it returns NULL.

Remarks
If the board system specified contains a single, independent board, this function returns a
handle to that board.

See Also
AlazarBoardsInSystemByHandle
AlazarBoardsInSystemBySystemID

© 2003-2010 Alazar Technologies Inc. 123

SDK Programmer’s Guide

3.3.37 AlazarGetTriggerAddress
Get the timestamp and trigger address of the trigger event in a record acquired to on-
board memory.

Syntax
C/C++
RETURN_CODE
AlazarGetTriggerAddress (

HANDLE BoardHandle,
U32 Record,
U32 *TriggerAddress,
U32 *TimestampHighPart,
U32 *TimestampLowPart

);

VisualBasic
AlazarGetTriggerAddress (

ByVal BoardHandle As Integer,
ByVal Record As Long,
ByRef TriggerAddress As Long,
ByRef TimestampHighPart As Long,
ByRef TimestampLowPart As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Record
[in] Record in acquisition (1-indexed).

TriggerAddress
[in] The trigger address.

TimestampHighPart
[in] The most significant 32-bits of a record timestamp.

TimestampLowPart
[in] The least significant 8-bits of a record timestamp.

Return value
The function returns ApiSuccess (512) if it was successful.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
This function is part of the single-port data acquisition API. It cannot be used to retrieve
the timestamp of records acquired using dual-port AutoDMA APIs.

© 2003-2010 Alazar Technologies Inc. 124

SDK Programmer’s Guide

The following code fragment demonstrates how to convert the trigger timestamp returned
by AlazarGetTriggerAddress from counts to seconds.

 __int64 timeStamp_cnt;
 timeStamp_cnt = ((__int64) timestampHighPart) << 8;
 timeStamp_cnt |= timestampLowPart & 0x0ff;

 double samplesPerTimestampCount = 2; // board specific constant
 double samplesPerSec = 50.e6; // sample rate
 double timeStamp_sec = (double) samplesPerTimestampCount *
 timeStamp_cnt / samplesPerSec;

The following table lists the board specific “sample clocks per timestamp count” values.

Model Samples clocks per timestamp
count

ATS310, ATS330, ATS460, ATS660, ATS9462,
ATS9870, ATS9350

2

ATS850, ATS860 4

Example
See “%ATS_SDK_DIR%\Samples\SinglePort\AR_Timestamp” for a complete sample
program demonstrates how to use AlazarGetTriggerAddress and convert the timestamp
value to seconds.

See Also
AlazarRead
AlazarHyperDisp

© 2003-2010 Alazar Technologies Inc. 125

SDK Programmer’s Guide

3.3.38 AlazarGetTriggerTimestamp
Retrieve the timestamp, in sample clock periods, of a record acquired to on-board
memory.

Syntax
C/C++
RETURN_CODE
AlazarGetTriggerTimestamp (

HANDLE BoardHandle,
U32 Record,
U64 *Timestamp_samples

);

VisualBasic
AlazarGetTriggerTimestmap(

ByVal BoardHandle As Integer,
ByVal Record As Long,
ByRef Timestamp_samples As Currency

) As Long

Parameters
BoardHandle

[in] Handle to board.

Record
[in] Record in acquisition (1-indexed).

Timestamp
[out] Record timestamp, in sample clock periods.

Return value
The function returns ApiSuccess (512) and if it was successful.

The function returns 604 if the record parameter is greater than 1000.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
This function is part of the single-port data acquisition API. It cannot be used to retrieve
the timestamp of records acquired using dual-port AutoDMA APIs.

Divide by the trigger timestamp value in sample clock periods by the sample rate to
obtain the trigger timestamp value in seconds. For example:

 // Get the trigger timestamp of the first record in sample clocks
 U64 timestmap_samples;
 AlazarGetTriggerTimestamp(handle, 1, ×tamp_samples);

© 2003-2010 Alazar Technologies Inc. 126

SDK Programmer’s Guide

 // Convert the timestamp from sample clocks to seconds
 double samplesPerSec = 100.e6;
 double timestamp_seconds = timestmap_samples / samplesPerSec;

See Also
AlazarRead
AlazarHyperDisp

© 2003-2010 Alazar Technologies Inc. 127

SDK Programmer’s Guide

3.3.39 AlazarGetWhoTriggeredBySystemHandle
Return which event caused a board system to trigger and capture a record to on-board
memory.

Syntax
C/C++
U32
AlazarGetWhoTriggeredBySystemHandle (

HANDLE BoardHandle,
U32 BoardId,
U32 RecordNumber

);

VisualBasic
AlazarGetWhoTriggeredBySystemHandle (

ByVal BoardHandle As Integer,
 ByVal BoardId as Integer,

ByVal RecordNumber as Integer
) As Integer

Parameters
BoardHandle

[in] Handle to master board in a board system.

BoardId
[in] Board identifier of a board in the specified board system.

RecordNumber
[in] Record in acquisition (1-indexed).

Return value
The function returns one of the following values.
Value Meaning
0 This board did not cause the system to trigger.
1 CH A on this board caused the system to trigger.
2 CH B on this board caused the system to trigger.
3 EXT TRIG IN on this board caused the system to trigger.
4 Both CH A and CH B on this board caused the system to trigger.
5 Both CH A and EXT TRIG IN on this board caused the system to trigger.
6 Both CH B and EXT TRIG IN on this board caused the system to trigger.
7 A trigger timeout on this board caused the system to trigger.

Remarks
This function is part of the single-port data acquisition API. It cannot be used with the
dual-port AutoDMA APIs.

© 2003-2010 Alazar Technologies Inc. 128

SDK Programmer’s Guide

This API routine will not work with ATS850 version 1.2 hardware. Version 1.3 and
higher version number of ATS850 are fully supported, as are all versions of ATS330 and
ATS310.

See Also
AlazarGetWhoTriggeredBySystemId

© 2003-2010 Alazar Technologies Inc. 129

SDK Programmer’s Guide

3.3.40 AlazarGetWhoTriggeredBySystemID
Return which event caused a board system to trigger and capture a record to on-board
memory.

Syntax
C/C++
U32
AlazarGetWhoTriggeredBySystemID (

U32 SystemId,
U32 BoardId,
U32 RecordNumber

);

VisualBasic
AlazarGetWhoTriggeredBySystemHandle (

ByVal SystemId As Integer,
 ByVal BoardId as Integer,

ByVal RecordNumber as Integer
) As Integer

Parameters
SystemId

[in] System identifier number.

BoardId
[in] Board identifier of a board in the specified board system.

RecordNumber
[in] Record in acquisition (1-indexed).

Return value
The function returns one of the following values.

Value Meaning
0 This board did not cause the system to trigger.
1 CH A on this board caused the system to trigger.
2 CH B on this board caused the system to trigger.
3 EXT TRIG IN on this board caused the system to trigger.
4 Both CH A and CH B on this board caused the system to trigger.
5 Both CH A and EXT TRIG IN on this board caused the system to trigger.
6 Both CH B and EXT TRIG IN on this board caused the system to trigger.
7 A trigger timeout on this board caused the system to trigger.

Remarks
This function is part of the single-port data acquisition API. It cannot be used with the
dual-port AutoDMA APIs.

© 2003-2010 Alazar Technologies Inc. 130

SDK Programmer’s Guide

Note that this API routine will not work with ATS850 version 1.2 hardware. Version 1.3
and higher version number of ATS850 are fully supported, as are all versions of ATS330
and ATS310.

See Also
AlazarGetWhoTriggeredBySystemHandle

© 2003-2010 Alazar Technologies Inc. 131

SDK Programmer’s Guide

3.3.41 AlazarHyperDisp
Enable the on-board FPGA to process records acquired to on-board memory, and transfer
the processed data to host memory.

Syntax
C/C++
RETURN_CODE
AlazarHyperDisp(

HANDLE BoardHandle,
void *Buffer,
U32 BufferSize,
U8 *ViewBuffer,
U32 ViewBufferSize,
U32 NumOfPixels,
U32 Option,
U32 ChannelSelect,
U32 Record,
long TransferOffset,
U32 *Error

);

VisualBasic
Not supported

Parameters
BoardHandle

[in] Handle to a board.

Buffer
[in] Reserved (set to NULL).

BufferSize
[in] Number of samples to process.

ViewBuffer
[out] Pointer to a buffer to receive processed data.

ViewBufferSize
[in] Size, in bytes, of processed data buffer.

NumOfPixels
[in] Number of HyperDisp points.

Option
[in] Processing mode.

Value Meaning
1 Enable HyperDisp processing.

ChannelSelect
[in] Channel to process.

© 2003-2010 Alazar Technologies Inc. 132

SDK Programmer’s Guide

Record
[in] Record to process (1-indexed).

TransferOffset
[in] Offset, in samples, of first sample to process relative to trigger position in
record.

Error
[out] Pointer to value to receive a result code.

Return values
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
AlazarHyperDisp is part of the single-port data acquisition API. It cannot be used with
the dual-port AutoDMA APIs.

HyperDisp processing enables the on-board FPGA to divide a record acquired to on-
board memory into intervals, find the minimum and maximum sample values during each
interval, and transfer an array of minimum and maximum sample values to a buffer in
host memory. This allows the acquisition of relatively long records to on-board memory,
but the transfer of relatively short, processed records to a buffer in host memory.

For example, it would take an ATS860-256M about ~2.5 seconds to transfer a
250,000,000 sample record from on-board memory, across the PCI bus, to a buffer in
host memory. With HyperDisp enabled, it would take the on-board FPGA a fraction of a
second to process the record and transfer a few hundred samples from on-board memory,
across the PCI bus, to a buffer in host memory.

Example
The “%ATS_SDK_DIR%\SinglePort\HD” sample program demonstrates how to use the
AlazarHyperDisp API.

See Also
AlazarGetTriggerAddress
AlazarRead
AlazarReadEx

© 2003-2010 Alazar Technologies Inc. 133

SDK Programmer’s Guide

3.3.42 AlazarInputControl
Select the input coupling, range, and impedance of a digitizer channel.

Syntax
C/C++
RETURN_CODE
AlazarInputControl (

HANDLE BoardHandle,
U8 ChannelId,
U32 CouplingId,
U32 RangeId,
U32 ImpedanceId

);

VisualBasic
AlazarInputControl(

ByVal BoardHandle As Integer,
ByVal ChannelId As Byte,
ByVal CouplingId As Long,
ByVal RangeId As Long,
ByVal ImpedanceId As Long

) As Long

Parameters
BoardHandle

[in] Handle to a board.

ChannelId
[in] Select the channel to control. This parameter may be one of the following
identifiers or values.

Identifier Value
CHANNEL_A 1
CHANNEL_B 2

CouplingId
[in] Specify coupling of selected channel. This parameter may be one of the
following identifiers or values. See the remarks below.

Identifier Value
AC_COUPLING 1
DC_COUPLING 2

RangeId
[in] Specify full-scale input range of selected channel. This parameter may be one
of the following identifiers or values. See the remarks below.

Identifier Value
INPUT_RANGE_PM_20_MV 1

© 2003-2010 Alazar Technologies Inc. 134

SDK Programmer’s Guide

INPUT_RANGE_PM_40_MV 2
INPUT_RANGE_PM_50_MV 3
INPUT_RANGE_PM_80_MV 4
INPUT_RANGE_PM_100_MV 5
INPUT_RANGE_PM_200_MV 6
INPUT_RANGE_PM_400_MV 7
INPUT_RANGE_PM_500_MV 8
INPUT_RANGE_PM_800_MV 9
INPUT_RANGE_PM_1_V 10
INPUT_RANGE_PM_2_V 11
INPUT_RANGE_PM_4_V 12
INPUT_RANGE_PM_5_V 13
INPUT_RANGE_PM_8_V 14
INPUT_RANGE_PM_10_V 15
INPUT_RANGE_PM_20_V 16
INPUT_RANGE_PM_40_V 17
INPUT_RANGE_PM_16_V 18
INPUT_RANGE_HIFI 32

ImpedanceId
[in] Specify termination of selected channel. This parameter may be one of the
following identifiers or values. See the remarks below.

Identifier Value
IMPEDANCE_1M_OHM 1
IMPEDANCE_50_OHM 2

Return values
If the function succeeds, it returns ApiSuccess (512).

If the digitizer board does not support the specified input range, coupling, or the
impedance, the function returns ApiFailed (513).

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The ATS9870 only supports 50Ω input impedance.

The input range table lists all possible input range identifiers. The values supported by a
particular board depend on the board model and selected input coupling. Please refer to
specification sheet for your board to determine the support values.

See Also
AlazarSetBWLimit

© 2003-2010 Alazar Technologies Inc. 135

SDK Programmer’s Guide

3.3.43 AlazarNumOfSystems
Get the total number of board systems detected.

Syntax
C/C++
U32 AlazarNumOfSystems ();

VisualBasic
AlazarNumOfSystems () As Integer

Parameters
None

Return value
The total number of board systems detected.

Remarks
A board system is a group of one or more digitizer boards that share clock and trigger
signals. A board system may be composed of a single independent board, or a group of
two or more digitizer boards connected together with a SyncBoard.

See Also
AlazarBoardsInSystemByHandle
AlazarBoardsInSystemBySystemID

© 2003-2010 Alazar Technologies Inc. 136

SDK Programmer’s Guide

3.3.44 AlazarOEMDownLoadFPGA
Download an FPGA image to a digitizer board.

Syntax
C/C++
RETURN_CODE
AlazarOEMDownLoadFPGA(

HANDLE BoardHandle,
char *FileName,
U32 *Error

);

VisualBasic
AlazarOEMDownLoadFPGA(

ByVal BoardHandle As Integer,
ByRef FileName As Any,
ByRef Error As Long

) As Integer

Parameters
BoardHandle

[in] Handle to a board.

FileName
[in] FPGA image file path.

Error
[out] Download result.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

See Also
AlazarParseFPGAName

© 2003-2010 Alazar Technologies Inc. 137

SDK Programmer’s Guide

3.3.45 AlazarOpen
THIS FUNCTION IS OBSOLETE. DO NOT USE IN NEW DESIGNS.

Open and initialize a board.

Syntax
C/C++
HANDLE
AlazarOpen(

char *BoardName
);

VisualBasic
AlazarOpen(

ByVal BoardName As String
) As Integer

Parameters
BoardName

[in] Name of board created by driver. For example “ATS850-0”.

Return value
A handle to the board.

Remarks
The ATS library manages board handles internally. This function should only be used in
applications that are written for single board digitizer systems.

See Also
AlazarClose

© 2003-2010 Alazar Technologies Inc. 138

SDK Programmer’s Guide

3.3.46 AlazarParseFPGAName
Decode an OEM FPGA image file name.

Syntax
C/C++
RETURN_CODE
AlazarParseFPGAName (

const char *FilePath,
char *FileName,
U32 *BoardType,
U32 *MemorySizeId,
U32 *HardwareMajorVersion,
U32 *HardwareMinorVersion,
U32 *FpgaMajorVersion,
U32 *FpgaMinorVersion,
U32 *Error

);

VisualBasic
AlazarParseFPGAName(

ByRef FilePath As Any,
ByRef FileName As Any,
ByRef BoardType As Long,
ByRef MemorySizeId As Long,
ByRef HardwareMajorVersion As Long,
ByRef HardwareMinorVersion As Long,
ByRef FpgaMajorVersion As Long,
ByRef FpgaMinorRevision As Long,
ByRef Error As Long

) As Long

Parameters
FilePath

[in] Full path to FPGA image file.

FileName
[out] FPGA image file name.

MemorySizeId
[out] The memory size identifier of the memory in samples per channel required
on the digitizer board.

HardwareMajorVersion
[out] Pointer to digitizer board major version number.

HardwareMinorVersion
[out] Pointer to digitizer board minor version number.

FpgaMajorVersion
[out] Pointer to FPGA major version number.

© 2003-2010 Alazar Technologies Inc. 139

SDK Programmer’s Guide

FpgaMinorVersion
[out] Pointer to FPGA minor version number.

Error
[out] Pointer to an error code.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the path to the file path was not found, the function returns ApiFailed (513) and Error
to 626.

Remarks

See Also
AlazarOEMDownLoadFPGA

© 2003-2010 Alazar Technologies Inc. 140

SDK Programmer’s Guide

3.3.47 AlazarPostAsyncBuffer
Add a buffer to the end of a list of buffers available to be filled by the board. Use
AlazarWaitAsyncBufferComplete to determine if the board has received sufficient trigger
events to fill this buffer.

Syntax
C/C++
RETURN_CODE
AlazarPostAsyncBuffer (
 HANDLE BoardHandle,
 void *Buffer,
 U32 BufferLength
);

VisualBasic
AlazarPostAsyncBuffer(

ByVal BoardHandle As Integer,
ByRef Buffer As Any,
ByVal BufferLength As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Buffer
[out] Pointer to a buffer to receive sample data from the digitizer board.

BufferLength
[in] Specifies the length of the buffer in bytes.

Return values
If the function succeeds in adding the buffer to end of the list of buffers available to be
filled by the board, it returns ApiSuccess (512). Use AlazarWaitAsyncBufferComplete to
determine when the board has received sufficient trigger events to file this buffer.

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
You must call AlazarBeforeAsyncRead before calling AlazarPostAsyncBuffer.

You must call AlazarAbortAsyncRead before your application exits if you have called
AlazarPostAsyncBuffer, and buffers are pending when your application exits.

The BufferLength parameter must be equal to the product of the number of bytes per
record, the number of records per buffer, and the number of enabled channels. If record

© 2003-2010 Alazar Technologies Inc. 141

SDK Programmer’s Guide

headers are enabled, the number of bytes per record must include the size of the record
header (16 bytes).

See Also
AlazarAbortAsyncRead
AlazarBeforeAsyncRead
Using asynchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 142

SDK Programmer’s Guide

3.3.48 AlazarQueryCapability
Get a device attribute.

Syntax
C/C++
RETURN_CODE
AlazarQueryCapability (

HANDLE BoardHandle,
U32 Capability,
U32 Reserved,
U32 *Value

);

VisualBasic
AlazarQueryCapability(

ByVal BoardHandle As Integer,
ByVal Capability As Long,
ByVal Reserved As Long,
ByRef Value As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Capability
[in] Capability identifier. See remarks below.

Reserved
[in] Reserved (Set to 0).

Value
[out] Capability value.

Return value
The function returns ApiSuccess (512) if it was able to retrieve value of the specified
capability.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
Capability identifiers include the following items. See AlazarApi.h for a complete list of
list of capability identifiers.

Identifier Value Description
GET_SERIAL_NUMBER 0x10000024 Return the board serial number
GET_LATEST_CAL_DATE 0x10000026 Return the board’s latest

© 2003-2010 Alazar Technologies Inc. 143

SDK Programmer’s Guide

calibration date as a decimal
number with the format
MMDDYY where M is 1-12,
DD is 1-31, and YY is 00-99
from 2000.

GET_LATEST_CAL_DATE_MONT
H

0x1000002D Return the month of the board’s
latest calibration date as a
decimal number with the format
MM where M is 1-12.

GET_LATEST_CAL_DATE_DAY 0x1000002E Return the day of month of the
board’s latest calibration date as
a decimal number with the
format DD where DD is 1-31.

GET_LATEST_CAL_DATE_YEAR 0x1000002F Return the year of the board’s
latest calibration date as a
decimal number with the format
YY where YY is 00-99 from
2000.

MEMORY_SIZE 0x1000002A Return the on-board memory
size in maximum samples per
channel in single channel mode.
See AlazarGetChannelInfo for
more information.

BOARD_TYPE 0x1000002B Return the board type identifier.
See AlazarGetBoardKind for
more information.

ASOPC_TYPE 0x1000002C Return the board’s FPGA
signature.

GET_PCIE_LINK_SPEED 0x10000030 Return the PCIe link speed
negotiated between a PCIe
digitizer board and the host
PCIe bus.

GET_PCIE_LINK_WIDTH 0x10000031 Return the PCIe link width
negociated between a PCIe
digitizer board and the host
PCIe bus.

See Also
AlazarGetBoardKind
AlazarGetChannelInfo
AlazarGetParameter
AlazarGetParameterUL

© 2003-2010 Alazar Technologies Inc. 144

SDK Programmer’s Guide

3.3.49 AlazarRead
Read all or part of a record from an acquisition to on-board memory from on-board
memory to a buffer in host memory. The record must be less than 2,147,483,648 samples
long.

Syntax
C/C++
U32
AlazarRead (

HANDLE BoardHandle,
U32 ChannelId,
void *Buffer,
int ElementSize,
long Record,
long TransferOffset,
U32 TransferLength

);

VisualBasic
AlazarRead(

ByVal BoardHandle As Integer,
ByVal ChannelId As Long,
ByRef Buffer As Any,
ByVal ElementSize As Integer,
ByVal Record As Long,
ByVal TransferOffset As Long,
ByVal TransferLength As Long

) As Long

Parameters
BoardHandle

[in] Handle to a board.

ChannelId
[out] Channel identifier of record.

Buffer
[out] Buffer to receive sample data.

ElementSize
[in] Number of bytes per sample.

Record
[in] Record in on-board memory to transfer to buffer (1-indexed).

TransferOffset
[in] The offset, in samples from the trigger position in the record, of the first
sample in the record in on-board memory to transfer into the buffer.

TransferLength
[in] The number of samples to transfer from the record in on-board memory into
the buffer.

© 2003-2010 Alazar Technologies Inc. 145

SDK Programmer’s Guide

Return values
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
AlazarRead is part of the single-port data acquisition API. It cannot be used with the
dual-port AutoDMA APIs.

AlazarRead can transfer segments of a record acquired to on-board memory. This may
be useful if a full record is too large to transfer as a single block, or if only part of a
record is of interest.

Use either AlazarRead or AlazarReadEx to transfer records with less than 2,147,483,648
samples. Use AlazarReadEx to transfer records with 2,147,483,648 or more samples.

Examples
The “%ATS_SDK_DIR%\Samples\SinglePort\AR” sample program demonstrates how
to use AlazarRead.

The “%ATS_SDK_DIR%\Samples\SinglePort\AR_Segments” sample program
demonstrates how to use AlazarRead to split records in to segments for transfer from on-
board to host memory.

See Also
AlazarHyperDisp
AlazarGetTriggerAddress
AlazarReadEx
Using AlazarRead

© 2003-2010 Alazar Technologies Inc. 146

SDK Programmer’s Guide

3.3.50 AlazarReadEx
Read all or part of a record from an acquisition to on-board memory from on-board
memory to a buffer in host memory. The record may be 2,147,483,648 or more samples
long.

Syntax
C/C++
U32
AlazarReadEx (

HANDLE BoardHandle,
U32 ChannelId,
void *Buffer,
int ElementSize,
long Record,
INT64 TransferOffset,
U32 TransferLength

);

VisualBasic
AlazarReadEx(

ByVal BoardHandle As Integer,
ByVal ChannelId As Long,
ByRef Buffer As Any,
ByVal ElementSize As Integer,
ByVal Record As Long,
ByVal TransferOffset As Currency,
ByVal TransferLength As Long

) As Long

Parameters
BoardHandle

[in] Handle to a board.

ChannelId
[out] Channel identifier of record.

Buffer
[out] Buffer to receive sample data.

ElementSize
[in] Number of bytes per sample.

Record
[in] Record in on-board memory to transfer to buffer (1-indexed).

TransferOffset
[in] The offset, in samples from the trigger position in the record, of the first
sample in the record in on-board memory to transfer into the buffer.

TransferLength
[in] The number of samples to transfer from the record in on-board memory into
the buffer.

© 2003-2010 Alazar Technologies Inc. 147

SDK Programmer’s Guide

Return values
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
AlazarReadEx is part of the single-port data acquisition API. It cannot be used with the
dual-port AutoDMA APIs.

AlazarReadEx can transfer segments of a record acquired to on-board memory. This
may be useful if a full record is too large to transfer as a single block, or if only part of a
record is of interest.

Use AlazarRead or AlazarReadEx to transfer records with less than 2,147,483,648
samples. Use AlazarReadEx to transfer records with 2,147,483,648 or more samples.

Examples

See Also
AlazarRead
AlazarHyperDisp
AlazarGetTriggerAddress
Using AlazarRead

© 2003-2010 Alazar Technologies Inc. 148

SDK Programmer’s Guide

3.3.51 AlazarResetTimeStamp
Control record timestamp counter resets.

Syntax
C/C++
RETURN_CODE
AlazarResetTimeStamp(

HANDLE BoardHandle,
U32 Option

);

VisualBasic
AlazarResetTimeStamp(

ByVal BoardHandle As Integer,
ByVal Option As Long

) As Integer

Parameters
BoardHandle

[in] Handle to board.

Option
[in] Record timestamp counter reset options. The option can be one of the
following values. See AlazarApi.h for a complete list.

Identifier Description
TIMESTAMP_RESET_FIRSTTIME_ONL
Y
(0)

Reset the timestamp counter to
zero on the next call to
AlazarStartCapture, but not
thereafter.

TIMESTAMP_RESET_ALWAYS
(1)

Reset the timestamp counter to
zero on each call to
AlazarStartCapture. This is the
default operation.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
This function is not supported by the ATS310, ATS330, and ATS850.

See Also

© 2003-2010 Alazar Technologies Inc. 149

SDK Programmer’s Guide

3.3.52 AlazarSetBWLimit
Control bandwidth of an input channel.

Syntax
C/C++
RETURN_CODE
AlazarSetBWLimit(

HANDLE BoardHandle,
U32 ChannelId,
U32 Flag

);

VisualBasic
AlazarSetBWLimit(

ByVal BoardHandle As Integer,
ByVal ChannelId As Long,
ByVal Flag As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

ChannelId
[in] Channel identifier.

Flag
[in] Enable bandwidth limit flag. The flag can be one of the following values.

Value Description
0 Disable bandwidth limit.
1 Enable bandwidth limit.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The bandwidth limiter is disabled by default. When enabled, the bandwidth limiter
reduces input bandwidth to approximately 20 MHz.

See Also
AlazarInputControl

© 2003-2010 Alazar Technologies Inc. 150

SDK Programmer’s Guide

3.3.53 AlazarSetCaptureClock
Configure sample clock source, edge, and decimation.

Syntax
C/C++
RETURN_CODE
AlazarSetCaptureClock(

HANDLE BoardHandle,
U32 SourceId,
U32 SampleRateId,
U32 EdgeId,
U32 Decimation

);

VisualBasic
AlazarSetCaptureClock(

ByVal BoardHandle As Integer,
ByVal SourceId As Long,
ByVal SampleRateId As Long,
ByVal EdgeId As Long,
ByVal Decimation As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

SourceId
[in] ATS310/ATS330/ATS850 clock source identifiers:

Identifier Value Description
INTERNAL_CLOCK 1 Use internal sample clock.
EXTERNAL_CLOCK 2 Use external clock signal.

ATS460 clock source identifiers:

Identifier Value Description
INTERNAL_CLOCK 1 Use internal sample clock.
FAST_EXTERNAL_CLOCK 2 Use 80-125 MHz external clock.
MEDIUM_EXTERNAL_CLOCK 3 Use 10-80 MHz external clock.
SLOW_EXTERNAL_CLOCK 4 Use 0-10 MHz external clock.

ATS660 clock source identifiers:

Identifier Value Description
INTERNAL_CLOCK 1 Use internal sample clock.
SLOW_EXTERNAL_CLOCK 4 Use 0-10 MHz external clock.
EXTERNAL_CLOCK_AC 5 Use 1 K-125 MHz external clock.

© 2003-2010 Alazar Technologies Inc. 151

SDK Programmer’s Guide

EXTERNAL_CLOCK_DC 6 Use 1 K-125 MHz external clock.
EXTERNAL_CLOCK_10MHz_REF 7 Generate 100-130MHz sample

clock in 1 MHz steps from
10MHz external clock input.

ATS860 clock source identifiers:

Identifier Value Description
INTERNAL_CLOCK 1 Use internal sample clock.
FAST_EXTERNAL_CLOCK 2 20-250 MHz external clock.
SLOW_EXTERNAL_CLOCK 4 0-250 MHz external clock.

ATS9462 clock source identifiers:

Identifier Value Description
INTERNAL_CLOCK 1 Use internal sample clock.
SLOW_EXTERNAL_CLOCK 4 Use 0-10 MHz external clock.
EXTERNAL_CLOCK_AC 5 Use 1 M-180 MHz external clock.
EXTERNAL_CLOCK_DC 6 Use 1 M-180 MHz external clock.
EXTERNAL_CLOCK_10MHz_REF 7 Generate 150-180 MHz sample

clock in 1 MHz steps from
10MHz external clock input.

ATS9870 clock source identifiers:

Identifier Value Description
INTERNAL_CLOCK 1 Use internal sample clock.
SLOW_EXTERNAL_CLOCK 4 Use 0-60 MHz external clock.
EXTERNAL_CLOCK_AC 5 Use 200 M-1 GHz external clock.
EXTERNAL_CLOCK_10MHz_REF 7 Generate 1 GHz internal reference

from 10MHz external clock. Use
decimation parameter to generate
sample clock from internal
reference.

ATS9350 clock source identifiers:

Identifier Value Description
INTERNAL_CLOCK 1 Use internal sample clock.
SLOW_EXTERNAL_CLOCK 4 Use 0-20 MHz external clock.
EXTERNAL_CLOCK_AC 5 Use 1 M-500 MHz external clock.
EXTERNAL_CLOCK_10MHz_REF 7 Generate 500 MHz reference

clock from 10MHz external
clock. Use decimation to generate
the sample clock from reference.

© 2003-2010 Alazar Technologies Inc. 152

SDK Programmer’s Guide

SampleRateId
[in] ATS310 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_20MSPS 0x0000001E 20 MS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.

ATS330/ATS850 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_25MSPS 0x00000021 25 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.

ATS460 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_1KSPS 0x00000001 1 KS/s internal clock
SAMPLE_RATE_2KSPS 0x00000002 2 KS/s internal clock
SAMPLE_RATE_5KSPS 0x00000004 5KS/s internal clock
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock

© 2003-2010 Alazar Technologies Inc. 153

SDK Programmer’s Guide

SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_20MSPS 0x0000001E 20 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_100MSPS 0x00000024 100 MS/s internal clock
SAMPLE_RATE_125MSPS 0x00000025 125 MS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.

ATS660 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_1KSPS 0x00000001 1 KS/s internal clock
SAMPLE_RATE_2KSPS 0x00000002 2 KS/s internal clock
SAMPLE_RATE_5KSPS 0x00000004 5KS/s internal clock
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_20MSPS 0x0000001E 20 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_100MSPS 0x00000024 100 MS/s internal clock
SAMPLE_RATE_125MSPS 0x00000025 125 MS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.
(Sample rate value in Hz) 100000000-

130000000
100-130 MHz sample clock in
steps of 1MHz from 10 MHz
PLL clock

ATS860 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_1KSPS 0x00000001 1 KS/s internal clock
SAMPLE_RATE_2KSPS 0x00000002 2 KS/s internal clock
SAMPLE_RATE_5KSPS 0x00000004 5KS/s internal clock
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock

© 2003-2010 Alazar Technologies Inc. 154

SDK Programmer’s Guide

SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_25MSPS 0x00000021 25 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_100MSPS 0x00000024 100 MS/s internal clock
SAMPLE_RATE_125MSPS 0x00000025 125 MS/s internal clock
SAMPLE_RATE_250MSPS 0x0000002B 250 MS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.

ATS9462 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_1KSPS 0x00000001 1 KS/s internal clock
SAMPLE_RATE_2KSPS 0x00000002 2 KS/s internal clock
SAMPLE_RATE_5KSPS 0x00000004 5KS/s internal clock
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_20MSPS 0x0000001E 20 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_100MSPS 0x00000024 100 MS/s internal clock
SAMPLE_RATE_125MSPS 0x00000025 125 MS/s internal clock
SAMPLE_RATE_160MSPS 0x00000026 160 MS/s internal clock
SAMPLE_RATE_180MSPS 0x00000027 180 MS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.
(Sample rate value in Hz) 150000000-

180000000
150-180 MHz in steps of 1 MHz
sample clock from 10 MHz PLL
external clock

ATS9870 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_1KSPS 0x00000001 1 KS/s internal clock
SAMPLE_RATE_2KSPS 0x00000002 2 KS/s internal clock
SAMPLE_RATE_5KSPS 0x00000004 5KS/s internal clock
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock

© 2003-2010 Alazar Technologies Inc. 155

SDK Programmer’s Guide

SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_20MSPS 0x0000001E 20 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_100MSPS 0x00000024 100 MS/s internal clock
SAMPLE_RATE_250MSPS 0x0000002B 250 MS/s internal clock
SAMPLE_RATE_500MSPS 0x00000030 500 MS/s internal clock
SAMPLE_RATE_1GSPS 0x00000035 1 GS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.
(1GHz reference clock value) 1000000000 1GHz reference clock from 10

MHz PLL external clock. Use
decimation to generate sample
clock from reference clock.

ATS9350 sample rate identifiers:

Identifier Value Description
SAMPLE_RATE_1KSPS 0x00000001 1 KS/s internal clock
SAMPLE_RATE_2KSPS 0x00000002 2 KS/s internal clock
SAMPLE_RATE_5KSPS 0x00000004 5KS/s internal clock
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_20MSPS 0x0000001E 20 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_100MSPS 0x00000024 100 MS/s internal clock
SAMPLE_RATE_125MSPS 0x00000025 125 MS/s internal clock
SAMPLE_RATE_250MSPS 0x0000002B 250 MS/s internal clock
SAMPLE_RATE_500MSPS 0x00000030 500 MS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock.
(500 MHz reference clock) 500000000 500 MHz reference clock from

10 MHz PLL external clock. Use

© 2003-2010 Alazar Technologies Inc. 156

SDK Programmer’s Guide

decimation to generate sample
clock from reference clock.

Identifier Value Description
SAMPLE_RATE_1KSPS 0x00000001 1 KS/s internal clock
SAMPLE_RATE_2KSPS 0x00000002 2 KS/s internal clock
SAMPLE_RATE_5KSPS 0x00000004 5KS/s internal clock
SAMPLE_RATE_10KSPS 0x00000008 10 KS/s internal clock
SAMPLE_RATE_20KSPS 0x0000000A 20 KS/s internal clock
SAMPLE_RATE_50KSPS 0x0000000C 50 KS/s internal clock
SAMPLE_RATE_100KSPS 0x0000000E 100 KS/s internal clock
SAMPLE_RATE_200KSPS 0x00000010 200 KS/s internal clock
SAMPLE_RATE_500KSPS 0x00000012 500 KS/s internal clock
SAMPLE_RATE_1MSPS 0x00000014 1 MS/s internal clock
SAMPLE_RATE_2MSPS 0x00000018 2 MS/s internal clock
SAMPLE_RATE_5MSPS 0x0000001A 5 MS/s internal clock
SAMPLE_RATE_10MSPS 0x0000001C 10 MS/s internal clock
SAMPLE_RATE_20MSPS 0x0000001E 20 MS/s internal clock
SAMPLE_RATE_25MSPS 0x00000021 25 MS/s internal clock
SAMPLE_RATE_50MSPS 0x00000022 50 MS/s internal clock
SAMPLE_RATE_100MSPS 0x00000024 100 MS/s internal clock
SAMPLE_RATE_125MSPS 0x00000025 125 MS/s internal clock
SAMPLE_RATE_160MSPS 0x00000026 160 MS/s internal clock
SAMPLE_RATE_180MSPS 0x00000027 180 MS/s internal clock
SAMPLE_RATE_200MSPS 0x00000028 200 MS/s internal clock
SAMPLE_RATE_250MSPS 0x0000002B 250 MS/s internal clock
SAMPLE_RATE_500MSPS 0x00000030 500 MS/s internal clock
SAMPLE_RATE_1GSPS 0x00000035 1 GS/s internal clock
SAMPLE_RATE_USER_DEF 0x00000040 External clock that is not the

10MHz PLL. See the remarks
below for 10 MHz PLL external
clock mode.

EdgeId
[in] Select the external clock edge on which to latch samples data. The clock edge
identifier may be one of the following values.

Identifier Value Description
CLOCK_EDGE_RISING 0 Sample on rising edge of external clock.
CLOCK_EDGE_FALLING 1 Sample on falling edge of external clock.

Decimation
[in] Clock decimation value. See the remarks below.

Return value

© 2003-2010 Alazar Technologies Inc. 157

SDK Programmer’s Guide

If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The clock decimation value may be any integer between 0 and 100000 with the following
exceptions. Note that a decimation value of 0 means disable decimation.

• If an ATS460/ATS660/ATS860 uses a SLOW_EXTERNAL_CLOCK clock source,
the maximum decimation value is 1.

• If an ATS9870 uses an EXTERNAL_CLOCK_10MHz_REF clock source, the
decimation value must be 1, 2, 4 or any multiple of 10. Note that the sample rate
identifier value must be 1000000000, and the sample rate will be 1 GHz divided by
the decimation value.

• If an ATS350 uses an EXTERNAL_CLOCK_10MHz_REF clock source, the
decimation value must be 1, 2, 4 or any multiple of 5. Note that the sample rate
identifier value must be 500000000, and the sample rate will be 500 MHz divided by
the decimation value.

See Also

© 2003-2010 Alazar Technologies Inc. 158

SDK Programmer’s Guide

3.3.54 AlazarSetExternalClockLevel
Set the external clock comparator level.

Syntax
C/C++
RETURN_CODE
AlazarSetExternalClockLevel(

HANDLE BoardHandle,
float Level_percent

);

VisualBasic
AlazarSetExternalClockLevel(

ByVal BoardHandle As Integer,
ByVal Level_percent As Single

) As Long

Parameters
BoardHandle

[in] Handle to board.

Level_percent
[in] The external clock comparator level, in percent.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Note that the function fails with error code ApiUnsupportedFunction (533) if the digitizer
does not support setting the external clock comparator level. The following table lists the
boards that support this feature.

Model Supported
ATS310, ATS330, ATS460, ATS850,
ATS860

No

ATS660, ATS9350, ATS9462, ATS9870 Yes

Remarks
The ATS9350 has an auto-adjusting, AC coupled, external clock input receiver that
should work correctly with most external clock signals. As a result, most applications
should not need to adjust the external clock comparator level.

See Also
AlazarSetCaptureClock

© 2003-2010 Alazar Technologies Inc. 159

SDK Programmer’s Guide

3.3.55 AlazarSetExternalTrigger
Set the external trigger range and coupling.

Syntax
C/C++
RETURN_CODE
AlazarSetExternalTrigger (

HANDLE BoardHandle,
U32 CouplingId,
U32 RangeId

);

VisualBasic
AlazarSetExternalTrigger(

ByVal BoardHandle As Integer,
ByVal CouplingId As Long,
ByVal RangeId As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

CouplingId
[in] Specifies the external trigger coupling. This parameter may have one of the
following values.

Identifier Value Description
AC_COUPLING 1 AC coupled trigger input
DC_COUPLING 2 DC coupled trigger input

RangeId
[in] Specifies the external trigger range. This parameter may have one of the
following values.

Identifier Value Description
ETR_5V 0 ±5V external trigger range.
ETR_1V 1 ±1V external trigger range.

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks

See Also

© 2003-2010 Alazar Technologies Inc. 160

SDK Programmer’s Guide

AlazarSetTriggerDelay
AlazarSetTriggerOperation
AlazarSetTriggerTimeOut

© 2003-2010 Alazar Technologies Inc. 161

SDK Programmer’s Guide

3.3.56 AlazarSetLED
Control LED on a board’s PCI/PCIe mounting bracket.

Syntax
C/C++
RETURN_CODE
AlazarSetLED (

HANDLE BoardHandle,
U32 LedOn

);

VisualBasic
AlazarSetLED (

ByVal BoardHandle As Integer,
ByVal LedOn as Integer

) As Integer

Parameters
BoardHandle

[in] Handle to board.

LedOn
[in] Specify LED state. This parameter may have one of the following values.

Identifier Value Description
LED_OFF 0 Turn off LED
LED_ON 1 Turn on LED

Return value
If the function succeeds, it returns ApiSuccess (512).

If the function fails, it returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
See the “%ATS_SDK_DIR%\Samples\AlazarSysInfo” for a sample program that
controls the LED.

See Also

© 2003-2010 Alazar Technologies Inc. 162

SDK Programmer’s Guide

3.3.57 AlazarSetParameter
Set a device parameter as a signed long value.

Syntax
C/C++
RETURN_CODE
AlazarSetParameter(

HANDLE BoardHandle,
U8 ChannelId
U32 ParameterId,
long Value

);

VisualBasic
AlazarSetParameter (

ByVal BoardHandle As Integer,
ByVal ChannelId As Byte,
ByVal ParameterId As Long,
ByVal Value As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

ChannelId
[in] The channel to control.

This channel identifier may be one of the following values.

Identifier Value Description
CHANNEL_A 1 Apply parameter to CH A
CHANNEL_B 2 Apply parameter to CH B
0 0 The parameter does not apply to a channel

ParameterId
[in] Parameter to modify.

The parameter identifier may be one of the following values. See AlazarApi.h for
a complete list of list of parameter identifiers.

Identifier Value Description
SETGET_ASYNC_BUFFCOUNT 0x10000040 Select number of API

allocated DMA buffers.
SET_DATA_FORMAT 0x10000041 Select sample data format: 0

= unsigned , 1 = signed.

Value
[in] Parameter value.

© 2003-2010 Alazar Technologies Inc. 163

SDK Programmer’s Guide

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks

See Also
AlazarGetParameter
AlazarGetParameterUL
AlazarSetParameterUL

© 2003-2010 Alazar Technologies Inc. 164

SDK Programmer’s Guide

3.3.58 AlazarSetParameterUL
Set a device parameter as an unsigned 32-bit value.

Syntax
C/C++
RETURN_CODE
AlazarSetParameterUL (

HANDLE BoardHandle,
U8 ChannelId
U32 ParameterId,
U32 Value

);

VisualBasic
AlazarSetParameterUL (

ByVal BoardHandle As Integer,
ByVal ChannelId As Byte,
ByVal ParameterId As Long,
ByVal Value As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

ChannelId
[in] The channel to control.

This channel identifier may be one of the following values.

Identifier Value Description
CHANNEL_A 1 Apply parameter to CH A
CHANNEL_B 2 Apply parameter to CH B
0 0 The parameter does not apply to a channel

ParameterId
[in] Parameter to modify.

Value
[in] Parameter value.

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

© 2003-2010 Alazar Technologies Inc. 165

SDK Programmer’s Guide

Remarks
See AlazarApi.h for a list of parameter identifiers.

See Also
AlazarGetParameter
AlazarGetParameterUL
AlazarSetParameter

© 2003-2010 Alazar Technologies Inc. 166

SDK Programmer’s Guide

3.3.59 AlazarSetRecordCount
Select the number of records to capture to on-board memory.

Syntax
C/C++
RETURN_CODE
AlazarSetRecordCount (

HANDLE BoardHandle,
U32 RecordsPerCapture

);

VisualBasic
AlazarSetRecordCount(

ByVal BoardHandle As Integer,
ByVal RecordsPerCapture As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

RecordsPerCapture
[in] The number of records to acquire to on-board memory during the acquisition.

Return value
The function returns ApiSuccess (512) if it was successful.

The function returns 607 if the number of records is greater than greater than the
maximum number supported by the firmware revision.

Otherwise, the function returns an error code indicating the reason that it failed. See
Table 1 for a list of error codes.

Remarks
This function is part of the single-port API. It cannot be used with the dual-port
AutoDMA functions.

The maximum number of records per capture is a function of the board type, the
maximum number of samples per channel (SPCmax), and the current number of samples
per record (SPR):

Board type Maximum records per capture
ATS850, ATS310, ATS330 SPCmax / (SPR + 16) or 10000, whichever is smaller.
ATS460, ATS660,
ATS9462

SPCmax / (SPR + 16) or 256000 records, whichever is
smaller.

ATS860, ATS9350 SPCmax / (SPR + 32) or 256000 records, whichever is

© 2003-2010 Alazar Technologies Inc. 167

SDK Programmer’s Guide

smaller.
ATS9870 SPCmax / (SPR + 64) or 256000 records, whichever is

smaller.

See Also
AlazarRead
AlazarHyperDisp
AlazarGetTriggerAddress

© 2003-2010 Alazar Technologies Inc. 168

SDK Programmer’s Guide

3.3.60 AlazarSetRecordSize
Set the number of pre- and post-trigger samples per record.

Syntax
C/C++
RETURN_CODE
AlazarSetRecordSize(

HANDLE BoardHandle,
U32 PreTriggerSamples,
U32 PostTriggerSamples

);

VisualBasic
AlazarSetRecordSize(

ByVal BoardHandle As Integer,
ByVal PreTriggerSamples As Long,
ByVal PostTriggerSamples As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

PreTriggerSamples
[in] The number of samples before the trigger position in each record.

PostTriggerSamples
[in] The number of samples at or after the trigger position in each record.

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The number of pre-trigger samples must be a multiple of 64, and must not exceed the
number of samples per record minus 64.

The number of samples per record is the sum of the pre- and post-trigger samples. The
number of samples per record has the following requirements.

Board type Minimum
(samples)

Alignment
(samples)

ATS310/ATS330 256 16
ATS850 256 4

© 2003-2010 Alazar Technologies Inc. 169

SDK Programmer’s Guide

The number of samples per transfer is the number of samples per record multiplied by the
number of records per transfer in dual-port mode using AutoDMA.

Board type Minimum
(samples)

Alignment
(samples)

Alignment in NPT mode
(samples)

ATS460/ATS660 128 16 32
ATS860 256 32 64
ATS9462 256 32 32
ATS9350 256 32 32
ATS9870 256 64 64

See Also
AlazarBeforeAsyncRead
AlazarRead
AlazarStartAutoDMA

© 2003-2010 Alazar Technologies Inc. 170

SDK Programmer’s Guide

3.3.61 AlazarSetTriggerDelay
Set the time, in sample clocks, to wait after receiving a trigger event before capturing a
record for the trigger.

Syntax
C/C++
RETURN_CODE
AlazarSetTriggerDelay (

HANDLE BoardHandle,
U32 Value

);

VisualBasic
AlazarSetTriggerDelay (

ByVal BoardHandle As Integer,
ByVal Value As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Value
[in] Trigger delay in sample clocks.

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
To convert the trigger delay from seconds to sample clocks, multiple the sample rate in
samples per second by the trigger delay in seconds. For example, if the sample rate is 50
MS/s and the desired trigger delay is 1 ms, then the trigger delay in sample clocks is 50e6
samples per second x 1e-3 seconds = 50000 samples.

The trigger delay value may be 0 to 9,999,999 samples.

The trigger delay value must be a multiple of 4 for the ATS850 and ATS860.

See Also
AlazarSetExternalTrigger
AlazarSetTriggerOperation
AlazarSetTriggerTimeOut

© 2003-2010 Alazar Technologies Inc. 171

SDK Programmer’s Guide

3.3.62 AlazarSetTriggerOperation
Configure the trigger system.

Syntax
C/C++
RETURN_CODE
AlazarSetTriggerOperation (

HANDLE BoardHandle,
U32 TriggerOperation,
U32 TriggerEngineId1,
U32 SourceId1,
U32 SlopeId1,
U32 Level1,
U32 TriggerEngineId2,
U32 SourceId2,
U32 SlopeId2,
U32 Level2

);

VisualBasic
AlazarSetTriggerOperation (

ByVal BoardHandle As Integer,
ByVal TriggerOperation As Long,
ByVal TriggerEngineId1 As Long,
ByVal SourceId1 As Long,
ByVal SlopeId1 As Long,
ByVal Level1 As Long,
ByVal TriggerEngineId2 As Long,
ByVal SourceId2 As Long,
ByVal SlopeId2 As Long,
ByVal Level2 As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

TriggerOperation
[in] Specify how the two independent trigger engines generate a trigger event.

This parameter can be one of the following values.

Identifier Value Meaning
Generate a trigger event when…

TRIG_ENGINE_OP_J 0 Tj goes low to high.
TRIG_ENGINE_OP_K 1 Tk goes low to high.
TRIG_ENGINE_OP_J_OR_K 2 Tj goes low to high, or Tk goes

low to high.
TRIG_ENGINE_OP_J_AND_K 3 (Tj AND Tk) goes low to high.
TRIG_ENGINE_OP_J_XOR_K 4 (Tj XOR Tk) goes low to high.
TRIG_ENGINE_OP_J_AND_NOT_K 5 (Tj AND (NOT Tk)) goes low to

© 2003-2010 Alazar Technologies Inc. 172

SDK Programmer’s Guide

high.
TRIG_ENGINE_OP_NOT_J_AND_K 6 ((NOT Tj)AND Tk) goes low to

high.

Note that the symbol Tj represents the output of trigger engine J, and Tk represents
the output of trigger engine K.

TriggerEngineId1
TriggerEngineId2

[in] Select the trigger engine to configure

This parameter can be one of the following values.

Identifier Value Description
TRIG_ENGINE_J 0 Configure trigger engine J
TRIG_ENGINE_K 1 Configure trigger engine K

SourceId1
SourceId2

 [in] Select the signal source for the specified trigger engine.

This parameter can be one of the following values.

Identifier Value Description
TRIG_CHAN_A 0 Use signals from CH A
TRIG_CHAN_B 1 Use signals from CH B
TRIG_EXTERNAL 2 Use signals from the TRIG IN input
TRIG_DISABLE 3 Disable this trigger engine.

SlopeId1
SlopeId2

 [in] Select the sign of the rate of change of the trigger signal with time when it
crosses the trigger voltage level that is required to generate a trigger event.

This parameter can be one of the following values.

Identifier Value Description
TRIGGER_SLOPE_POSITIVE 1 The trigger engine output goes from

low to high when sample values from
the trigger source rise above a
specified level.

TRIGGER_SLOPE_NEGATIVE 2 The trigger engine output goes from
low to high when sample values from
the trigger source fall below a
specified level.

Level1
Level2

 [in] Select the voltage level that the trigger source signal for the specified trigger
engine must pass through to generate a trigger event. See the remarks below.

© 2003-2010 Alazar Technologies Inc. 173

SDK Programmer’s Guide

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The trigger level is specified in terms as an unsigned 8-bit code that represents a fraction
of the full scale input voltage of the trigger source: 0 represents the negative limit, 128
represents the 0 level, and 255 represents the positive limit.

For example, if the trigger source is CH A, and the CH A input range is ± 800 mV, then 0
represents a –800 mV trigger level, 128 represents a 0 V trigger level, and 255 represents
+800 mV trigger level.

In general, the trigger level code is given by:

 TriggerLevelCode = 128 + 127 * TriggerLevelVolts / InputRangeVolts.

Note that AlazarSetExternalTrigger is used to select the trigger input range if the trigger
source is an external trigger signal connected to the TRIG IN BNC connector.

See Also
Trigger control
AlazarSetTriggerDelay
AlazarSetExternalTrigger
AlazarSetTriggerTimeOut

© 2003-2010 Alazar Technologies Inc. 174

SDK Programmer’s Guide

3.3.63 AlazarSetTriggerTimeOut
Set the time to wait for a trigger event before automatically generating a trigger event.

Syntax
C/C++
RETURN_CODE
AlazarSetTriggerTimeOut(

HANDLE BoardHandle,
U32 TimeoutTicks

);

VisualBasic
AlazarSetTriggerTimeOut(

ByVal BoardHandle As Integer,
ByVal TimeoutTicks As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

TimeoutTicks
[in] Trigger timeout in 10 μs units, or 0 to wait forever for a trigger event.

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
To convert the trigger timeout from seconds to trigger timeout ticks, multiply the timeout
value in seconds by 1e5.

For example, a trigger timeout of 1 ms is equal to 1e-3 * 1e5 = 100 ticks.

See Also
Trigger control
AlazarSetExternalTrigger
AlazarSetTriggerDelay
AlazarSetTriggerOperation

© 2003-2010 Alazar Technologies Inc. 175

SDK Programmer’s Guide

3.3.64 AlazarSleepDevice
Control power to ADC devices.

Syntax
C/C++
RETURN_CODE
AlazarSleepDevice(

HANDLE BoardHandle,
U32 SleepState

);

VisualBasic
AlazarSleepDevice (

ByVal BoardHandle As Integer,
ByVal SleepState As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

SleepState
[in] Specify power state of ADC converters.

This parameter can be one of the following values.

Identifier Value Description
POWER_OFF 0 Turn off power to ADC devices.
POWER_ON 1 Turn on power to ADC devices

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
The API automatically powers up all devices when it loads.

See Also

© 2003-2010 Alazar Technologies Inc. 176

SDK Programmer’s Guide

3.3.65 AlazarStartAutoDMA
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This routine is used to enable the AUTODMA functionalities of the device. It must be
called prior to calling AlazarGetNextBuffer(...).

Syntax
C/C++
RETURN_CODE
AlazarStartAutoDMA(

HANDLE h,
void* Buffer1,
U32 UseHeader,
U32 ChannelSelect,
long TransferOffset,
U32 TransferLength,
U32 RecordsPerBuffer,
U32 RecordCount,
AUTODMA_STATUS* error,
U32 cFlags,
U32 r2,
U32 *r3,
U32 *r4

);

VisualBasic
AlazarStartAutoDMA(

ByVal h As Integer,
ByRef Buffer1 As Any,
ByVal UseHeader As Long,
ByVal ChannelSelect As Long,
ByVal TransferOffset As Integer,
ByVal TransferLength As Long,
ByVal RecordsPerBuffer As Long,
ByVal RecordCount As Long,
ByRef error As Long,
ByVal cFlags As Long,
ByVal r2 As Long,
ByRef r3 As Long,
ByRef r4 As Long

) As Long

Parameters
h

[in] Handle to the device.

Buffer1
[out] Data buffer for the first set of transferred records. Buffer1 should be large
enough to contain (RecordsPerBuffer*TransferLength) many 16-bit values (VB-
Integer, C&C++-short).

© 2003-2010 Alazar Technologies Inc. 177

SDK Programmer’s Guide

If the Record header is selected (UseHeader = 1) then Buffer1 should be large
enough to hold
(RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER)) many 16bit
values.

UseHeader
[in] If equal to 1 then the AUTODMA record header will precede each record in
the Buffer

ChannelSelect
[in] This parameter may be one of the following identifiers or values.

Identifier Value Meaning
CHANNEL_A 1 Single channel mode
CHANNEL_B 2 Single channel mode
CHANNEL_A | CHANNEL_B 3 Dual channel mode

TransferOffset
[in] Transfer offset relative to the Trigger point for each record.

TransferLength
[in] The amount to transfer for each record.

RecordsPerBuffer
[in] The number of records that will be transferred into Buffer1. (Please note the
size information in Buffer1 description).

RecordCount
[in] The number of records to be captured during this acquisition. Infinite Record
Count can be used to create an endless capture for any AutoDMA mode. To use
Inifinite records, set the RecordCount parameter of AlazarStartAutoDMA(…) to
0x7FFFFFFF. It is the user's responsibility to set the criteria for stopping an
acquisition. Note that AlazarStartAutoDMA routine will overwrite any previous
settings for this parameter with the value passed in the RecordCount parameter
(Please note the size information in Buffer1 description).

Error
[out] Error return code.

This error code may be one of the following values.

Identifier Value Meaning
ADMA_Completed 0 No errors occurred
ADMA_Success 0 No errors occurred
ADMA_Buffer1Invalid 1 Buffer1 is not a suitable buffer
ADMA_Buffer2Invalid 2 Buffer2 is not a suitable buffer
ADMA_BoardHandleInvalid 3 Board handle is not valid
ADMA_InternalBuffer1Invalid 4 The routine cannot allocate enough

memory because system resources are
low

ADMA_InternalBuffer2Invalid 5 The routine cannot allocate enough

© 2003-2010 Alazar Technologies Inc. 178

SDK Programmer’s Guide

memory because system resources are
low

ADMA_OverFlow 6 A hardware overflow occurred
ADMA_InvalidChannel 7 The channel selected is invalid
ADMA_DMAInProgress 8 A memory transfer is in progress
ADMA_UseHeaderNotSet 9 UseHeader must be set
ADMA_HeaderNotValid 10 An invalid header was encountered
ADMA_InvalidRecsPerBuffer 11 RecordCount must be a perfect multiple

of RecsPerBuffer

cFlags
[in] Control Flags,{0 = The routine will automatically start the acquisition, 1 =
The user application must call AlazarStartCapture to start the acquisition}. The
constants available are as follows:

Identifier Meaning
ADMA_EXTERNAL_STARTCAPTURE
0x00000001

The User must call
AlazarStartCapture to start the
acquisition

ADMA_TRADITIONAL_MODE
0x00000000

Traditional Auto Dma mode captures

ADMA_CONTINUOUS_MODE
0x00000100

Continuous Streaming mode without
trigger

ADMA_NPT
0x00000200

No-Pre-Trigger Auto Dma mode

r2
[in] RESERVED.

r3
[out] RESERVED.

r4
[out] RESERVED.

Return value
See Table 1 for a list of error codes.

Remarks
The user must ensure that Buffer1 is a valid buffer of the appropriate size.

Buffer1 should be large enough to contain (RecordsPerBuffer*TransferLength) many 16-
bit values (VB-Integer, C&C++-short).
If the Record header is selected (UseHeader = 1) then Buffer1 should be large enough to
hold (RecordsPerBuffer*(TransferLength+sizeof(ALAZAR_HEADER)) many 16bit
values.

See Also

© 2003-2010 Alazar Technologies Inc. 179

SDK Programmer’s Guide

AlazarAbortAutoDma
AlazarGetNextAutoDMABuffer
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 180

SDK Programmer’s Guide

3.3.66 AlazarStartCapture
Arm a board to start an acquisition.

Syntax
C/C++
RETURN_CODE
AlazarStartCapture(

HANDLE BoardHandle,
);

VisualBasic
AlazarStartCapture (

ByVal BoardHandle As Integer,
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
The function returns ApiSuccess (512) if it was able to retrieve the value of the specified
parameter.

Otherwise, the function returns an error code that indicates the reason that it failed. See
Table 1 for a list of error codes.

Remarks
Only call AlazarStartCapture on the master board in a master slave board system.

See Also
AlazarBeforeAsyncRead
AlazarStartAutoDMA

© 2003-2010 Alazar Technologies Inc. 181

SDK Programmer’s Guide

3.3.67 AlazarStopAutoDMA
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This API is used to inhibit the software from issuing any new DMA request to the device.
It is meant as a helper function for the AlazarFlushAutoDMA API function.

Syntax
C/C++
Void AlazarStopAutoDMA(HANDLE h);

VisualBasic
AlazarStopAutoDMA(ByVal h As Integer)

Parameters
h

[in] Handle to board.

Return value
None

Remarks
This function is useful in situations where the application software has multiple threads.
The software can call this routine to stop the device from issuing DMA requests in
preparation for calling API AlazarFlushAutoDMA.

See Also
AlazarFlushAutoDMA
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 182

SDK Programmer’s Guide

3.3.68 AlazarTriggered
Determine if a board has triggered during the current acquisition.

Syntax
C/C++
U32 AlazarTriggered (

HANDLE BoardHandle
);

VisualBasic
AlazarTriggered (

ByVal BoardHandle As Integer
) As Long

Parameters
BoardHandle

[in] Handle to board.

Return value
If the board has received at least one trigger event since the last call to
AlazarStartCapture, this function returns 1.

Otherwise, this function returns 0.

Remarks

See Also
AlazarStartCapture

© 2003-2010 Alazar Technologies Inc. 183

SDK Programmer’s Guide

3.3.69 AlazarWaitAsyncBufferComplete
This function returns when a board has received sufficient triggers to fill the specified
buffer, or the timeout interval elapses.

Syntax
C/C++
RETURN_CODE
AlazarWaitAsyncBufferComplete(
 HANDLE BoardHandle,
 void *Buffer,
 U32 Timeout_ms
);

VisualBasic
AlazarWaitAsyncBufferComplete(

ByVal h As Integer,
ByRef Buffer As Any,
ByVal Timeout_ms As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Buffer
[out] Pointer to a buffer to receive sample data from the digitizer board.

Timeout_ms
[in] Specify the time to wait, in milliseconds, for the buffer to be filled.

Return values
If the board receives sufficient trigger events to fill this buffer before the timeout interval
elapses, the function returns ApiSuccess (512).

If the timeout interval elapses before the board receives sufficient trigger events to fill the
buffer, the function returns ApiWaitTimeout (579).

If the board overflows its on-board memory, the function returns ApiBufferOverflow
(582). The board may overflow its on-board memory because the rate at which it is
acquiring data is faster than the rate at which the data is being transferred from on-board
memory to host memory across the host bus interface (PCI or PCIe). If this is the case,
try reducing the sample rate, number of enabled channels, or amount of time spent
processing each buffer.

If this buffer was not found in the listof buffers available to be filled by the board, the
function returns ApiBufferNotReady (573).

© 2003-2010 Alazar Technologies Inc. 184

SDK Programmer’s Guide

If this buffer is not the buffer at the head of the list of buffers to be filled by the board,
this returns ApiDmaInProgress (518).

If the function fails for some other reason, it returns an error code that indicates the
reason that it failed. See Table 1 for a list of error codes.

Remarks
You must call AlazarBeforeAsyncRead and AlazarPostAsyncBuffer before calling
AlazarWaitAsyncBufferComplete.

You must call AlazarAbortAsyncRead before your application exits if you have called
AlazarPostAsyncBuffer, and buffers are pending when you wish to exit your application.

Each call to AlazarPostAsyncBuffer adds a buffer to end of a list of buffers to be filled by
the board. AlazarWaitAsyncBufferComplete expects to wait on the buffer at the head
of the list of buffers available to be filled by the board. As a result, you must wait for
buffers in the same order that they were posted.

When AlazarWaitAsyncBufferComplete returns ApiSuccess (512), the buffer is
removed from the list of buffers to be filled by the board.

The arrangement of sample data in each buffer depends on the AutoDMA mode specified
in the call to AlazarBeforeAsyncRead.

See Also
AlazarAbortAsyncRead
AlazarBeforeAsyncRead
AlazarPostAsyncBuffer
Using asynchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 185

SDK Programmer’s Guide

3.3.70 AlazarWaitForBufferReady
THIS FUNCTION IS DEPRECATED. DO NOT USE IN NEW DESIGNS.

This function will stall the current thread of execution for tms number milliseconds or
until a buffer has been successfully transferred to a user space AutoDMA buffer. The
function must be called after API AlazarEvents(h,1) and before API
AlazarGetNextAutoDMABuffer(…). It will wait on the driver to signal the Driver's
Internal registered event for up to tms number of milliseconds. When the DMA
completes, the signaling event will wake up the Api.

Syntax
C/C++
RETURN_CODE
AlazarWaitForBufferReady(

HANDLE h,
U32 tms

);

VisualBasic
AlazarWaitForBufferReady(

ByVal h As Integer,
ByVal tms As Long,

) As Long

Parameters
h

[in] Handle to the device.

tms
[in] time in milliseconds

Return values
670 - signifies that a NULL was used for the handle

671 - signifies that the current device driver does not support events.

672 – Events were not activated using API AlazarEvents.

ApiSuccessFul or 512 signifies that the internal wait event was successfully registered
and signaled by the ISR.

ApiFailed or 513 signifies that the internal wait event did not register.

ApiWaitTimeOut or 579 signifies that the internal wait event was not signaled by the
ISR.

Remarks

© 2003-2010 Alazar Technologies Inc. 186

SDK Programmer’s Guide

This functionality is only present on the ATS460, ATS660 and ATSS860 devices.
If AlazarEvents(h,1) was not used, calling AlazarWaitForBuffer(...) will return ApiFailed
and will not disrupt any ongoing signal captures.

Below is a pseudo-code fragment that shows the operations of API AlazarEvents(…) and
API AlazarWaitForBufferReady(…).

Pseudo-code:

AlazarSetRecordSize(...);
AlazarSetCaptureClock(...);
AlazarInputControl(...);
AlazarInputControl(...);
AlazarSetTriggerOperation(...)
//
AlazarEvents(h,1);
//
AlazarStartAutoDMA(...);
while (looping == 1)
{

AlazarWaitForBufferReady(h, 10);
status = AlazarGetNextAutoDMABuffer();
if (status == 513)
{

looping = 0;
}
//Valid data exists in either UserData[0] or UserData[1]
if ((WhichOne == 0)||(WhichOne == 1))
{

//Process Your Data here
...

}
if (error == ADMA_OverFlow)
{

looping = 0;
returnValue = -4;

}

}
AlazarCloseAUTODma(...);
//
AlazarEvents(h,0);
//

See Also
AlazarEvents
Using synchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 187

SDK Programmer’s Guide

3.3.71 AlazarWaitNextAsyncBufferComplete
This function returns when the board has received sufficient trigger events to fill the
buffer, or the timeout interval has elapsed. To use this function, AlazarBeforeAsyncRead
must be called with the ADMA_ALLOC_BUFFERS flag.

Syntax
C/C++
RETURN_CODE
AlazarWaitNextAsyncBufferComplete(
 HANDLE BoardHandle,
 void *Buffer,
 U32 BytesToCopy,
 U32 Timeout_ms
);

VisualBasic
AlazarWaitNextAsyncBufferComplete(

ByVal BoardHandle As Integer,
ByRef Buffer As Any,
ByVal BytesToCopy As Long,
ByVal Timeout_ms As Long

) As Long

Parameters
BoardHandle

[in] Handle to board.

Buffer
[out] Pointer to a buffer to receive sample data from the digitizer board.

BytesToCopy
[in] The number of bytes to copy into the buffer.

Timeout_ms
[in] Specify the time to wait, in milliseconds, for the buffer to be filled.

Return values
If the board receives sufficient trigger events to fill the next available buffer before the
timeout interval elapses, and the buffer is not the last buffer in the acquisition, the
function returns ApiSuccess (512).

If the board receives sufficient trigger events to fill the next available buffer before the
timeout interval elapses, and the buffer is the last buffer in the acquisition, the function
returns ApiTransferComplete (589).

If the timeout interval elapses before the board receives sufficient trigger events to fill the
next available buffer, the function returns ApiWaitTimeout (579).

© 2003-2010 Alazar Technologies Inc. 188

SDK Programmer’s Guide

If the board overflows its on-board memory, the function returns ApiBufferOverflow
(582). The board may overflow its on-board memory because the rate at which it is
acquiring data is faster than the rate at which the data is being transferred from on-board
memory to host memory across the host bus interface (PCI or PCIe). If this is the case,
try reducing the sample rate, number of enabled channels, or amount of time spent
processing each buffer.

If the function fails for some other reason, it returns an error code that indicates the
reason that it failed. See Table 1 for a list of error codes.

Remarks
You must call AlazarBeforeAsyncRead with the ADMA_GET_PROCESSED_DATA
flag before calling AlazarWaitNextAsyncBufferComplete.

To discard buffers, set the BytesToCopy parameter to zero. This will cause
AlazarWaitNextAsyncBufferComplete to wait for a buffer to complete, but not copy
any data into the application buffer.

To enable disk streaming using high-performance disk I/O functions, call
AlazarCreateStreamFile before calling AlazarWaitNextAsyncBufferComplete. For best
performance, set the BytesToCopy parameter to zero so that data is streamed to disk
without making any intermediate copies in memory.

If AlazarBeforeAsyncRead is called with the ADMA_GET_PROCESSED_DATA flag,
AlazarWaitNextAsyncBuferComplete will process buffers so that the data always
appears in NPT format: R1A, R2A, … RnA, R1B, R2B, … RnB. This may simply you
application, but it comes at the expense of added processing time for each buffer.

If AlazarBeforeAsyncRead is not called with the called with the
ADMA_GET_PROCESSED_DATA flag set, then arrangement of sample data in a
buffer depends on the AutoDMA mode.

See Also
AlazarAbortAsyncRead
AlazarBeforeAsyncRead
AlazarPostAsyncBuffer
Using asynchronous AutoDMA

© 2003-2010 Alazar Technologies Inc. 189

	1 Getting Started
	1.1 Introduction
	1.2 Programming environments
	1.2.1 Visual C++
	1.2.2 VisualBasic
	1.2.3 C#
	1.2.4 Linux

	1.3 Sample code
	1.4 Contacting us

	2 Programmer’s Guide
	2.1 Addressing a board
	2.1.1 Getting a board identifier
	2.1.2 Getting a board handle
	2.1.2.1 Single board installations
	2.1.2.2 Multiple board installations
	2.1.2.3 System handles

	2.1.3 Closing a board handle
	2.1.4 Using a board handle

	2.2 Resetting a board
	2.3 Configuring a board
	2.3.1 Timebase
	2.3.1.1 Internal clock
	2.3.1.2 External clock
	2.3.1.3 External clock level
	2.3.1.4 10 MHz PLL
	2.3.1.4.1 ATS660
	2.3.1.4.2 ATS9462
	2.3.1.4.3 ATS9870
	2.3.1.4.4 ATS9350

	2.3.2 Input control
	2.3.2.1 Input range, coupling, and impedance
	2.3.2.2 Bandwidth filter
	2.3.2.3 Amplifier bypass

	2.3.3 Trigger control
	2.3.3.1 AlazarSetTriggerOperation
	2.3.3.1.1 Trigger engine
	2.3.3.1.2 Data source
	2.3.3.1.3 Trigger slope
	2.3.3.1.4 Trigger level
	2.3.3.1.5 Trigger operation

	2.3.3.2 AlazarSetTriggerOperation examples
	2.3.3.3 External trigger
	2.3.3.4 Trigger timeout
	2.3.3.5 Trigger delay

	2.3.4 AUX I/O
	2.3.4.1 Trigger output
	2.3.4.2 Pacer output
	2.3.4.3 Digital output
	2.3.4.4 Trigger enable output
	2.3.4.5 Trigger enable input

	2.4 Acquiring data
	2.4.1 Single port
	2.4.1.1 Acquiring to on-board memory
	2.4.1.1.1 Dual channel mode
	2.4.1.1.2 Single channel mode

	2.4.1.2 Using AlazarRead
	2.4.1.2.1 Transferring full records
	2.4.1.2.2 Transferring partial records

	2.4.1.3 Using AlazarReadEx
	2.4.1.4 Using AlazarHyperDisp
	2.4.1.5 Record timestamps
	2.4.1.6 Master-slave applications

	2.4.2 Dual port AutoDMA
	2.4.2.1 Traditional AutoDMA
	2.4.2.2 NPT AutoDMA
	2.4.2.3 Continuous streaming AutoDMA
	2.4.2.4 Triggered streaming AutoDMA
	2.4.2.5 Record headers and timestamps
	2.4.2.5.1 Record headers
	2.4.2.5.2 Record timestamps

	2.4.2.6 Using asynchronous AutoDMA
	2.4.2.6.1 AlazarPostBuffer
	2.4.2.6.2 ADMA_ALLOC_BUFERS
	2.4.2.6.3 AlazarAsyncRead
	2.4.2.6.4 AlazarAbortAsyncRead
	2.4.2.6.5 Buffer count

	2.4.2.7 Using synchronous AutoDMA
	2.4.2.8 Scanning applications
	2.4.2.9 Master-slave applications

	2.4.3 Buffer size and alignment
	2.4.4 Data format

	2.5 Processing data
	2.5.1 Converting samples values to volts
	2.5.1.1 ATS850/ATS860/ATS9870
	2.5.1.1.1 Getting 1-byte sample values from the buffer
	2.5.1.1.2 Getting 8-bit sample codes from 1-byte sample values
	2.5.1.1.3 Converting unsigned 8-bit sample codes to volts
	2.5.1.1.4 Converting signed 8-bit sample codes to volts

	2.5.1.2 ATS310/ATS330/ATS9350
	2.5.1.2.1 Getting 2-byte sample values from the buffer
	2.5.1.2.2 Getting 12-bit sample codes from 16-bit sample values
	2.5.1.2.3 Converting unsigned 12-bit sample codes to volts
	2.5.1.2.4 Converting signed 12-bit sample codes to volts

	2.5.1.3 ATS460
	2.5.1.3.1 Getting 2-byte sample values from the buffer
	2.5.1.3.2 Getting 14-bit sample codes from 16-bit sample values
	2.5.1.3.3 Converting unsigned 14-bit sample codes to volts
	2.5.1.3.4 Converting signed 14-bit sample codes to volts

	2.5.1.4 ATS660/ATS9462
	2.5.1.4.1 Getting 2-byte sample values from the buffer
	2.5.1.4.2 Getting 16-bit sample codes from 16-bit sample values
	2.5.1.4.3 Converting unsigned 16-bit sample codes to volts
	2.5.1.4.4 Converting signed 16-bit sample codes to volts

	2.5.2 Saving binary files
	2.5.2.1 C/C++ applications
	2.5.2.2 Visual Basic/LabVIEW applications

	3 Reference
	3.1 Error Codes
	3.2 Function Groups
	3.2.1 Initialization
	3.2.2 Status and information
	3.2.3 Configuration and control
	3.2.4 Acquisition
	3.2.4.1 General
	3.2.4.2 Single-port
	3.2.4.3 Dual-port Asynchronous AutoDMA
	3.2.4.4 Dual-port Synchronous AutoDMA

	3.2.5 All functions

	3.3 Function Reference
	3.3.1 AlazarAbortAsyncRead
	3.3.2 AlazarAbortAutoDma
	3.3.3 AlazarAbortCapture
	3.3.4 AlazarAsyncRead
	3.3.5 AlazarBeforeAsyncRead
	3.3.6 AlazarAutoCalibrate
	3.3.7 AlazarBoardsFound
	3.3.8 AlazarBoardsInSystemByHandle
	3.3.9 AlazarBoardsInSystemBySystemID
	3.3.10 AlazarBusy
	3.3.11 AlazarClose
	3.3.12 AlazarCloseAUTODma
	3.3.13 AlazarConfigureAuxIO
	3.3.14 AlazarCreateStreamFile
	3.3.15 AlazarErrorToText
	3.3.16 AlazarEvents
	3.3.17 AlazarFlushAutoDMA
	3.3.18 AlazarForceTrigger
	3.3.19 AlazarForceTriggerEnable
	3.3.20 AlazarGetAutoDMAHeaderTimeStamp
	3.3.21 AlazarGetAutoDMAHeaderValue
	3.3.22 AlazarGetAutoDMAPtr
	3.3.23 AlazarGetBoardBySystemHandle
	3.3.24 AlazarGetBoardBySystemID
	3.3.25 AlazarGetBoardKind
	3.3.26 AlazarGetChannelInfo
	3.3.27 AlazarGetCPLDVersion
	3.3.28 AlazarGetDriverVersion
	3.3.29 AlazarGetMaxRecordsCapable
	3.3.30 AlazarGetNextAutoDMABuffer
	3.3.31 AlazarGetNextBuffer
	3.3.32 AlazarGetParameter
	3.3.33 AlazarGetParameterUL
	3.3.34 AlazarGetSDKVersion
	3.3.35 AlazarGetStatus
	3.3.36 AlazarGetSystemHandle
	3.3.37 AlazarGetTriggerAddress
	3.3.38 AlazarGetTriggerTimestamp
	3.3.39 AlazarGetWhoTriggeredBySystemHandle
	3.3.40 AlazarGetWhoTriggeredBySystemID
	3.3.41 AlazarHyperDisp
	3.3.42 AlazarInputControl
	3.3.43 AlazarNumOfSystems
	3.3.44 AlazarOEMDownLoadFPGA
	3.3.45 AlazarOpen
	3.3.46 AlazarParseFPGAName
	3.3.47 AlazarPostAsyncBuffer
	3.3.48 AlazarQueryCapability
	3.3.49 AlazarRead
	3.3.50 AlazarReadEx
	3.3.51 AlazarResetTimeStamp
	3.3.52 AlazarSetBWLimit
	3.3.53 AlazarSetCaptureClock
	3.3.54 AlazarSetExternalClockLevel
	3.3.55 AlazarSetExternalTrigger
	3.3.56 AlazarSetLED
	3.3.57 AlazarSetParameter
	3.3.58 AlazarSetParameterUL
	3.3.59 AlazarSetRecordCount
	3.3.60 AlazarSetRecordSize
	3.3.61 AlazarSetTriggerDelay
	3.3.62 AlazarSetTriggerOperation
	3.3.63 AlazarSetTriggerTimeOut
	3.3.64 AlazarSleepDevice
	3.3.65 AlazarStartAutoDMA
	3.3.66 AlazarStartCapture
	3.3.67 AlazarStopAutoDMA
	3.3.68 AlazarTriggered
	3.3.69 AlazarWaitAsyncBufferComplete
	3.3.70 AlazarWaitForBufferReady
	3.3.71 AlazarWaitNextAsyncBufferComplete

