
Charlie, Canal Routing Program Requirements Specification

Computer Science Tripos Part IB

Group Project

Charlie

the Canal Routing Program

Group Charlie

Nathan Dimmock
Martin Harper
Karen Inglis
Phebe Mann
Andy Oakley

David Stimpson

February 2000

1

Charlie, Canal Routing Program Requirements Specification

Amendment to Requirements Specification

Amendment
Rev. No.

Date Amendment Remarks

1 2/2/2000 Expression amended

Amendment to 3.3.2 Section on Edges

Two vertices are adjacent if:

((|(v.x – u.x)| ≤ 1) ∧ (|(v.y – u.y)| ≤ 1) ∧ ((v.y ≠ u.y) ∧ (v.y ≠ u.y)))

The expression is amended to :

Two vertices are adjacent if:

((|(v.x – u.x)| ≤ 1) ∧ (|(v.y – u.y)| ≤ 1) ∧ ((v.x ≠ u.x)
�

 (v.y ≠ u.y)))

2

Charlie, Canal Routing Program Requirements Specification

CHARLIE

Canal Routing Program

REQUIREMENTS SPECIFICATION

CONTENTS

1. Introduction

1.1 Background

1.2 Investigation

2. Facilities

2.1 Terrain Generator

2.2 Route Finding Algorithm

2.3 Graphical Display

3. Planning of Major Components

3.1 File Formats

3.2 Terrain Generator Algorithm Specification

3.3 Route Finding Algorithm

3.3.1 Simplifications

3.3.2 Algorithm

3.3.3 Coster Algorithm

3.4 Graphical User Interface

3.4.1 Specification

3.4.2 GUI Screenshot

4. Acceptance Criteria

4.1 Testing

4.2 Testing of Limitation

5. Management Strategy

5.1 Objectives

5.2 Group Organisation

5.3 Resources and Tools

5.4 Communication

5.5 Project Planning

3

Charlie, Canal Routing Program Requirements Specification

1. Introduction

1.1 Background
The cost of building a canal is highly dependent on the terrain it travels through and as such the
most direct route from A to B is not always the cheapest to build, or the quickest for boats to
traverse. Finding the most economical route involves time−consuming and repetitive calculations,
ideal for automation by a computer system.

1.2 Investigation
At our first meeting we decided that we would interpret "most economical" as referring to building
costs and ignore all other factors such as whether a canal route would be commercially viable or
would be underused if built, because of the route it took. We also determined that finding the
optimum route between two points would involve a graph−based algorithm. We therefore looked in
textbooks (in particular, Introduction to Algorithms by Cormen, Leiserson and Rivest) for graph
algorithms that could be adapted to suit our problem. The problem we are trying to solve is a
single−pair, shortest−path problem. However, no algorithms for this problem are known that run
asymptotically faster than the best single−source, shortest−path algorithms in the worst case, so we
were able to reduce our problem to finding the most suitable single−source, shortest−path
algorithm.

We thought that it would be highly improbable for someone to gain money by building a canal, and
therefore decided to disallow negative costs for the construction of the canal. This meant that the
algorithm we chose did not have to be able to cope with negative weighted edges.

Dijkstra’s algorithm seemed the most suitable choice, since it allows the search for shortest paths to
be terminated once the shortest path between the two desired points has been found. Dijkstra is also
as efficient as any other algorithm, being O (V2) where V is the number of vertices in the graph.

2. Facilities

2.1 Terrain Generator
1. Generation of a random terrain based on some restrictions given by the user.
2. Ability to save the terrain generated.

2.2 Route Finding Algorithm

1. The user will supply a terrain map and the cost of building the different parts of the
canal.

2. The program will then attempt to find the most economical route from point O to point
C, as specified by the user.

3. The user will then be able to export this route to a text file or obtain a printout.

2.3 User Interface to Route Finder
1. A graphical display of the terrain.

2. A facility to allow the user to enter the start and end points.

4

Charlie, Canal Routing Program Requirements Specification

3. A facility to allow the user to enter the costs of different canal structures (e.g. tunnels,
locks, etc.)

4. A graphical display on the terrain of the route found.

5. Calculation and display of the cost of building the canal along the proposed route.

6. Ability to display the height of a square of terrain and the grid coordinates of a square.

7. Ability to save routes to a file and load previously found routes.

3. Planning of Major Components

3.1 File Formats

The Terrain

Each row of the matrix will be represented by one line in the local file encoding format. Data values
in a row will be separated by commas. After the last value there will be a new line character (’ \n’)
but no comma. The whole file will be terminated by an EOF marker.

The file should be in the local file format (UNIX/Windows) for the OS the Charlie will be running
under. This should make little difference when our program generates terrain, but could be crucial
when editing terrains by hand or transferring terrain generated under one OS to another.
The first row will set the number of columns, if there is a different number on any subsequent line,
Charlie will inform the user that the file format is invalid and not load the terrain

The data values will be integers representing height above sea level, so negative numbers indicate
distance below sea level. A number followed by an X char indicates that a square contains some
impassable terrain for the canal, such as a village, SSSI, etc. It is not possible to tunnel under
impassable squares.
An example
27, 10, 34, 35, 17, 12, 8\ n
28, 12X, 36, 32, 15, 18, −5X\ n
EOF

The Route

Charlie will have a binary (non−readable) output using the serialisable interface to allow
the route to be loaded and saved. It will also have an output in a readable format, which
can be used for exporting and printing the route. The readable format is described below.

• The file will a text file in the local encoding.
• The first line of the file contains the name of the terrain map. The filename should be

relative so that it can cross platforms. The default file extension will be .ter for terrains and
.rte for routes.

• Each subsequent line contains co−ordinates of one vertex that canal passes through, and the
height of the canal relative to the terrain, with the information separated by spaces.

• Vertices are stored in order they are visited. An example printout is shown below

Example

(0,0)(50,50) Start as Embankment Height 27m 45DEG−N

5

Charlie, Canal Routing Program Requirements Specification

(1,1)(0,0) Lock up (10m) Height 9m −
(1,1)(0,0) Change to Standard Height 9m 45DEG−N
(1,1)(50,50) Change Direction Height 9m 90DEG−N
(2,1)(0,50) Change to Cutting Height –23m 90DEG−N
(2,1)(50,50) Change Direction Height –23m 45DEG−N
(3,2)(0,0) Change to Tunnel Height –35m 45DEG−N
(3,2)(50,50) Change Direction Height –35m 0DEG−N
(3,3)(50,0) Lock down (10m) Height 35m −
(3,3)(50,0) Lock down (10m) Height 25m −
(3,3)(50,0) Change to Embankment Height 25m 0DEG−N
(3,3)(50,50) End Height 25m −

3.2 Terrain Generation Algorithm Specification

3.2.1 Introduction
This algorithm specification lays out the bare minimum that will be provided in terms of terrain
generation. It is likely that this algorithm will be enhanced, or even completely re−developed, but
that it is guaranteed that an algorithm at least as good1 will be used.

The following parameters, as a minimum, will be supplied by the user to the algorithm:

Max height (m)
Min height (m)
Dimension (tile x tile)
Random generator seed
Corner Seeds2 (m)

3.2.2 Notes on the algorithm

The algorithm uses midpoint displacement in two dimensions3, and thus requires a square working
grid, of side n, where:

n = 2k + 1 | k ∈ N

Let the tiles be labelled ti,j where 0 ≤ i, j ≤ 2k , it is unimportant from which corner of the grid these
tiles are labelled.

The algorithm is recursive4, and works on sub grids of the main terrain grid. Each sub grid has
dimensions as described above..

3.2.3 Diamond−Square Algorithm

Initially: res = 2k + 1
t0,0 = corner seed 1
t0,2k = corner seed 2

t2k,0 = corner seed 3
1 How good a terrain algorithm is, will be determined by eye
2 Defined later
3 An algorithm that generates a fractal, with terrain−like properties
4 Unsurprising3

6

Charlie, Canal Routing Program Requirements Specification

t2k,2k = corner seed 4

The following algorithm recurses k times before termination.

Consider a tessellation of grid squares, dimension of res x res, with an overlap of 1 tile on each side
over surrounding tiles. For each square perform the following:

W.l.o.g. let us take the square containing t0,0, for other squares use the same relative tiles within the
sub grid. Set the value of tk,k where k = (res – 1)/2, to the following:

tk,k = ave + rand

where:

ave = (t0,0 + t0,2k + t2k,0 + t2k,2k) / 4
rand = 2*res – 1

Once this operation has been performed on each square, a further operation is performed on four of
the tiles within each square:

Again, w.l.o.g. let us take the square containing t0,0, for other square use the same relative tiles
within the sub grid. Set the value of t0,k, t2k,k, tk,2k, tk,0 where k is defined as above, as follows:

tj,j = ave + rand

where:

ave is defined as the sum of each tile that is obtained by incrementing or decrementing that tile’s x
or y co−ordinate only, by k, then by dividing by the number of such tiles. There will typically be
four such tiles, but there may be less if the square is near the edge of the grid.
rand = 2*res – 1

Once this, further, operation has been performed on each square, this iteration is complete. The
next iteration, if run, will use a new value of res, res’ = ((res –1)/2) + 1.

The resulting grid, a random height map based only on the input conditions5, is now scaled using
the max and min height inputs linearly, before returning

3.3 Route Finding Algorithm Specification

3.3.1 Simplifications
The algorithm requires the following simplifications to be made:

1. Restrict the directions that the canal can take to just 8 points of the compass – N, S,
E, W, NE, SE, SW, and NW. This has to be done to make the number of vertices in
the graph finite.

2. Locks can only be built at the edges of squares – i.e. canal is at a constant height
within any one square. Allowing locks anywhere other than at the edges of squares
would not improve the cost of the route found, since each tile is flat.

5 Excepting the max and min height

7

Charlie, Canal Routing Program Requirements Specification

3. The canal must pass through the centre of each square that it enters. This is a
necessary condition in order to ensure that the cost of going from one square to the
next is independent of the previous path taken to that point.

4. No changes of direction are allowed between the centre of one square and the centre
of the next.

5. Terrain heights are to the nearest metre.

6. Every lock changes the height of the canal by exactly 10 metres. This is to ensure
that there are a finite number of vertices in the graph used by the algorithm.

7. The lowest point on the terrain map is used as a base−line from which other heights
can be calculated.

8. The grid size and the maximum height difference between tiles of the terrain are not
restricted.

3.3.2 Algorithm
This specification lays out the base algorithm for the routing. Although it may be enhanced, or
completely redeveloped at a later stage, an algorithm that produces output at least as good6, is
guaranteed to be used.

Consider a graph G. G is intended to represent a basic structure for developing the route of the canal
through the terrain.

Vertices
Firstly let us consider a base height, b that is defined to be 30m below the terrain height of
the lowest tile of terrain. The following vertices are added for each tile on the terrain map:

Consider a single tile. A vertex is added at a height h iff: (where t is defined to be the
height of the current tile)

(h – b) mod 10 = 0

h ≥ b

h ≤ (t + 30)

These vertices represent all points through which the canal could potentially be built.

The classification of these vertices is as follows: (dependant on the vertex height h and the
tile’s height t such that d is defined as (h − t))

d < −30 Tunnel

−30 ≤ d < −10 Cutting

−10 ≤ d ≤ 10 Surface

10 < d ≤ 30 Embankment

Two further special vertices are added and labelled O and C. O and C are attached to all
possible start and end points of the canal, respectively.

Edges
Let the sets of vertices T, C, S and E refer to all vertices that are, respectively, classified as
Tunnel, Cutting, Surface and Embankment vertices. If v is a vertex let v.h represent its
height. Let v.x and v.y represent the x co−ordinate and y co−ordinate of vertex v,

6 I.e. produces a route of the same cost, or cheaper.

8

Charlie, Canal Routing Program Requirements Specification

respectively. Let v.th represent the terrain height of the tile with the same x and y co−
ordinates as v.

Consider two vertices v and u. v and u will be considered to be connected by an edge iff the
following holds although, importantly, edges are not added to the graph at this stage.

Two vertices are adjacent if:

(|(v.x – u.x)| ≤ 1) ∧ (|(v.y – u.y)| ≤ 1) ∧ ((v.x ≠ u.x)
�

 (v.y ≠ u.y)))

Two vertices can be connected by an edge if they are adjacent and:

(v, u ∈ C ∪ S∪ E) ∨ ((v, u ∈ T) ∧ (v.h = u.h)) ∨ ((v∈ T) ∧ (u ∈ C∪ S∪ E) ∧ ((u.th
– v.h) ≤ 30)) ∨ ((u∈ T) ∧ (v ∈ C∪ S ∪ E) ∧ ((v.th – u.h) ≤ 30))

i.e if

• neither vertex is a tunnel, or

• both vertices are tunnels, and the vertices are at the same height, or

• one vertex is a tunnel and the other is not, and the terrain height of the non−tunnel
vertex tile is not more than 30 above the tunnel height.

The edge is weighted according to the cost of a straight line path connecting the two points
on the terrain map, taking into account canal height, locks and tunnelling costs where
applicable.

Some supplementary edges are considered, from O to any vertex v such that (v ∉ T ∧ v.x =
O.x ∧ v.y = O.y), and from C to any vertex v such that (v ∉ T ∧ v.x = C.x ∧ v.y = C.y). The
edges should hold a weight of 0.

Route Finding
The cost of the path that directly 7connects O and C (regardless of the terrain) is determined,
let that cost be m.

A modified Dijkstra’s algorithm 8is then run over the graph G, taking O as the start point.
The modifications are as follows:

Since the graph initially has no stored edges, it will generate and store each edge
considered as the algorithm progresses.

Each vertex in the graph for which the least paths have been found, stores some
pointer to the previous vertex in its least path.

Any vertex, for which the cost of the most economic path has been determined, that
has a cost of strictly greater than m, is deleted from the graph.

The most economical path will then be generated by working backwards along the linked
list beginning at C.

3.3.3 Coster Algorithm Specification

7 As direct as possible, while still moving only from one tile centre to the centre of an adjacent tile. It need not be the
most direct route, one that is sufficiently direct will suffice.
8 Introduction to Algorithms – Cormen, Leiserson, Rivest – S25.2 − P527

9

Charlie, Canal Routing Program Requirements Specification

In order to determine the cost of an arbitrary path throughout the terrain the process is split into
individual steps. Clearly this algorithm will only suffice for paths that more from the centre of one
tile to the centre of another9, so will need to be updated should a new route generation algorithm be
used.

Consider the total, running, cost to be totcost which will initially be set to 0. If the path traverses
between n tile centres, then let the tiles be labelled to .. tn in the order that they are visited by the
path, and the vertices v0 .. vn. Let k, the value determining which edge the algorithm is currently
considering, i.e. the one connecting tk and tk+1, be initially set to 0. Let the following be defined for
both tiles and vertices:

x Absolute x co−ordinate of the tile/(vertex’s tile)
y Absolute y co−ordinate of the tile/(vertex’s tile)
ah Absolute height
rh Relative height (in case of vertex only – undefined for tile)

These properties are specified by the following, in the case of a tile, tj.<property> .

Let the following iterate (n−1) times and for each iteration k should be set to one greater than the
last iteration:

To determine the length of the canal route, in each tile, along this edge, consider that dist
determines half the distance between the two centres. There will therefore, clearly be a canal
dist long in each tile. dist is defined as follows:

dist = √((vk+1.x − vk.x)2 + (vk+1.y – vk.y)2)/2

The height ranges for the different canal types, and their respective costs (per m) are detailed as
below:

vj.rh < −30 Tunnel s
−30 ≤ vj.rh < −10 Cutting r
−10 ≤ vj.rh ≤ 10 Standard p
10 < vj.rh ≤ 30 Embankment q

Let vj.c specify either of { p, q, r, s} , dependant the range in which vj.rh lies.

Let locks specify the number of locks required at the tile boundary (at the midpoint of the edge).
locks should be defined to the following value10:

locks = (vk.ah – vk+1.ah)/10

Let totcost = totcost + dist* (vk.c + vk+1.c) + locks

The next iteration begins11.
Once this iteration is complete, the value of totcost is returned.

9 However, the tile concerned may actually be a fraction of the size of a full terrain tile
10 (vk.ah – vk+1.ah) mod 10 = 0 will be true for all vj
11 If appropriate

10

Charlie, Canal Routing Program Requirements Specification

3.4 Graphical User Interface

3.4.1 Specification

Specification for Graphical Display of the Route & Terrain
1. The terrain will be represented as a 2−dimensional grid of squares, with one square

representing one kilometre square of terrain.

2. Different colours will be used to indicate different heights of terrain. The colours used will
be similar to those used on Physical Ordnance Survey maps, i.e. a smooth variation of
shades of green, brown and white.

3. The canal route calculated by the system will be displayed on the terrain grid.

4. The different types of canal construction will be distinguished by using different symbols
to represent each type of construction. A key to the symbols will be provided.

5. It will be possible to zoom in on parts of the display.

6. It will be possible to scroll the display.

Information about the Route & Terrain

1. The user will be able to obtain the following information about a square of terrain:

· The square’s grid number. The square will be given a grid reference with the
most SW square (i.e. the bottom left corner) as (0,0).

· The terrain height of the square.

2. The user will be able to find out the type of construction (e.g. embankment or cutting etc.)
of any piece of canal.

3. The system will calculate and display the total cost of building the canal along the proposed
route. The cost will be displayed in the same currency that the initial costs were specified in
by the user.

Specification for Details provided by the user

1. The user must specify the start and end points of the canal by clicking on the two relevant
squares of the grid. The user will be able to edit their choice of start and end points. The
route can be recalculated based on the new start and end points, but if the previous route was
not saved then it will be overwritten. The user will be warned if they are about to overwrite
an unsaved route.

2. The user must specify the construction costs of the canal. These costs must not be negative.
The costs may be in any currency. As with the start and end points, the user will be able to
edit the costs. The costs that the user is required to specify are as follows:

· Surface Canal (per metre)

· Cutting (per metre)

· Embankment (per metre)

· Tunnel (per metre)

· Lock (per lock)

3. The graphical display will incorporate a way for the user to indicate that they have finished
altering the costs, and start and end points and wish the route to be calculated.

4. Invalid input will be reported to the user.

11

Charlie, Canal Routing Program Requirements Specification

Input & Output

1. It will be possible to load and save terrains along with the routes found. The cost
information for the canal construction will also be saved with the route.

2. In order to allow the route to be accurately detailed there will be an additional grid reference
system within each square. The sub−grid will range from (0,0) in the bottom left corner of
the square, to (100,100) in the top right corner. Each square tile will contain its own grid of
this sort. For example, (0,5) (100, 100) would be the top right hand corner of the terrain
square with grid reference (0,5).

3. The route will be saved in a human readable format, which can then be printed.

Access

1. The Graphical Display will use the cross platform Look and Feel (Metal).

2. The Graphical Display will be easily useable in 800x600 and larger screens. It will be
useable on 640x480 screens, but only when maximised.

3. The Graphical Display will rely on Java™ 1.2 and Swing™, and will work on any platform
supporting these standards.

4. Popup help will be used where applicable, to complement the documentation.

Possible Optional Extras

1. Converting the display from 2−D to 3−D.

2. A grid over the terrain map to indicate the edge of each of the squares of terrain, along with
a facility to allow the user to remove the grid.

3. Facilities to allow the user to find out the following information:

· The exact height of the canal above a square of terrain.

· The total length of the canal.

· The total number of locks used along the route of the canal.

4. Acceptance Criteria

4.1 Testing
The system will provide all of the facilities listed in the Facilities section of the
Specification. We will ensure that all of the facilities work correctly and the system
conforms to the specification by carrying out the following rigorous tests:

1. Each of the major objects (classes) of the system will be tested in isolation, by supplying test
data to it and observing the output directly, rather than via another module.

2. A terrain generator will be written that will allow us to produce a large number of pseudo−
random terrains which the algorithm can be tested on. The terrain generator will allow us to
limit certain parameters of the generated terrain to help us ensure a wide variety of test
cases. Each terrain will be saved and so can be easily reused.

3. We will generate particular terrains by hand to allow us to test special cases.

4. For each test map, we will compare the route found by the algorithm with one generated
manually, in order to ensure that the algorithm is working correctly.

12

Charlie, Canal Routing Program Requirements Specification

5. We will ensure that the Graphical User Interface works correctly by testing it exhaustively
on a wide range of people who are not members of the project.

4.2 Testing of Limitation

We will attempt to find the limitations of our program by:

1. Testing on a wide variety of machines and Operating Systems although our aim is for the
system to run at an acceptable speed when supplied with sensible and realistic data on a
typical desktop PC (e.g. a PII 450Mhz, 128Mb RAM, Windows 95 & Linux).

2. Test the system with maps of a maximum size of approximately the area of North America,
with mountains a maximum height of Mt Everest, and a maximum gradient of 500m/km.

5. Management Strategy

5.1 Objectives
From a management point of view, the project takes on quite a different perspective. Given
the time allocation and the size of the task, it becomes clear that working together efficiently
as a team will become paramount. Working to meet the deadlines is also an important part of
the project and will require coordination and communication between all members. Time
sheets are kept for the purpose of budgetary control.

5.2 Group Organisation

The team structure was discussed and decided upon at the Inaugural Meeting. The
Organisation Chart below shows the assignment of positions to each team member.

13

Charlie, Canal Routing Program Requirements Specification

Note :Project Manager takes also the role as Code Librarian and Secretary takes also the role as Documentation
Writer.

5.3 Resources and tools
Two systems are currently being used for the project. CVS 1.10.7 is used on a server in Jesus
College to maintain the consistency of the shared workspace whilst allowing each team member to
keep an entire copy on their personal machine. This repository is copied an hourly basis to Thor
which also provides the server for the group website. Images of the CVS repository are also being
committed to CD−ROM on daily basis for backup purposes.

It has been agreed that the Java 1.2 specification will be used for all programming related material.
All internal documents and the website are stored in HTML 4.0 format so as they may be viewed on
a variety of platforms.

The user manual is will be provided in HTML 4.0 and hardcopy.

All source code is to be commented in the Javadoc style. This enforces consistency throughout the
code and allows HTML module descriptions to be generated with relative ease.

5.4 Communication
At the first meeting, it was agreed that regular ’conference’ e−mails would be sent to keep everyone
informed of developments and resolve any disputes arising. In cases of important decisions or
emergencies, contact by telephone has also been arranged.

In preference to sending attachments by e−mail, it was decided that the website should be used to
publish all documents (including source code) currently being worked on. With CVS in place, this
allows any team member to modify these documents adding comments where they feel appropriate.

Regular group meetings are arranged twice a week in additional to the scheduled review meetings
with our group supervisor. These provide a medium for resolving problems, making crucial
decisions and updating progress.

5.5 Project planning
The plan below outlines the provisional tasks for each team member until the final review meeting.
The rightmost column corresponds to the fortnightly review meetings.

14

