
Abstract

When deploying software version management and 
version control tools, implementers sometimes focus 
on perfecting fine-grained activities, while unwittingly 
carrying forward poor, large-scale practices from their 
previous jobs or previous tools. The result is a well-
executed blunder. This paper promotes some high-level 
best practices that reflect the authors’ experiences with 
software version management.

High-Level Software Version 
Management Best Practices



﻿ High-Level Software Version Management Best Practices

Table of Contents

Introduction_________________________________________________________________ 1

1. The Workspace_____________________________________________________________ 2

2. The Codeline_______________________________________________________________ 2

3. Child codelines_____________________________________________________________ 4

4. Change Propagation_________________________________________________________ 5

5. Builds	____________________________________________________________________ 6

6. Process___________________________________________________________________ 6

7. Conclusion________________________________________________________________ 7

8. References_ _______________________________________________________________ 7

More about how Perforce supports these best practices_ ______________________________ 8



﻿ High-Level Software Version Management Best Practices1

Introduction
“A tool is only as good as you use it,” the saying goes. 
As providers of software version management tools 
and as consultants to software companies, we are often 
asked for sound advice on software version management 
best practices—that is, how to deploy software version 
management software to the maximum advantage. 
Answering these requests has created a bounty of direct 
and indirect version management experience from which 

Workspaces 
Where developers build, test, and debug.

Don't share workspaces.
Don’t work outside of managed workspaces.
Don’t use jello views.
Stay in sync with the codeline.
Check in often.
Use task branching.

Codelines 
Sets of related source files.

Have a mainline.
Give each codeline a policy.
Give each codeline an owner.

Child codelines 
Variants of the mainline.

Organize child codelines on the tofu scale.
Don’t copy when you mean to branch.
Branch on incompatible policy.
Branch late.
Branch, instead of freeze

Change propagation
Moving changes between codelines.

Use the baseline protcol.
Propagate early and often.
Merge down, copy up.
Choose the correct codeline for original changes.
Get the right person to do the merge.

Builds
Turning source files into products.

Source + tools = product.
Version all original source.
Separate built objects from original source.
Use common build environments.
Build often.
Keep build logs and build output.

Process
The rules for all of the above.

Track change sets.
Track the flow of change.
Distinguish change requests from change sets.
Give everything an owner.
Use living documents.
Learn and use integrations to supporting tools.

to draw. The direct experience comes from having been 
developers and codeline managers ourselves; the indirect 
experience comes from customer reports of successes and 
failures with our product (Perforce) and other SCM and 
version control tools.

The table below lists six general topics of software version 
management deployment, and some coarse-grained 
best practices within each of those areas. The following 
chapters explain each item.



﻿ High-Level Software Version Management Best Practices 2

1. The Workspace
The workspace is where developers edit source files, build 
the software components they’re working on, and test 
and debug what they’ve built. Most version control or 
software version management systems have some notion 
of a workspace; sometimes they are called “views”, as in 
ClearCase and Perforce. In Distributed Version Control 
(DVCS) systems like Git, an entire repository acts as a 
workspace. Changes to managed repository files begin as 
changes to files in a workspace, or when DVCS systems 
push, pull, and merge entire repositories.

The best practices for workspaces include:

•	 Don’t share workspaces. A workspace should have 
a single purpose, such as an edit/build/test area 
for a single developer, or a build/test/release area 
for a product release. Sharing workspaces confuses 
people, just as sharing a desk does. Furthermore, 
sharing workspaces compromises the version 
management systems’ ability to track activity 
by user or task. Workspaces and the disk space 
they occupy are cheap; don’t waste time trying to 
conserve them.

•	 Don’t work outside of managed workspaces. 
Your version control system can only track work 
in progress when it takes place within managed 
workspaces. Users working outside of workspaces 
are beached; there’s a river of information flowing 
past and they’re not part of it. For instance, version 
management systems generally use workspaces 
to facilitate some of the communication among 
developers working on related tasks. You can see 
what is happening in other’s workspaces, and they 
can see what’s going on in yours. If you need to 
take an emergency vacation, your properly managed 
workspace may be all you can leave behind. Use 
proper workspaces.

•	 Don’t use jello views. A file in your workspace 
should not change unless you explicitly cause 
the change. A “jello view” is a workspace where 
file changes are caused by external events beyond 
your control. A typical example of a jello view is 
a workspace built upon a tree of symbolic links to 
files in another workspace—when the underlying 
files are updated, your workspace files change. 
Jello views are a source of chaos in software 
development. Debug symbols in executables don’t 
match the source files, mysterious recompilations 
occur in supposedly trivial rebuilds, and debugging 
cycles never converge—these are just some of the 
problems. Keep your workspaces firm and stable 

by setting them up so that users have control over 
when their files change.

•	 Stay in sync with the codeline. As a developer, the 
quality of your work depends on how well it meshes 
with other peoples’ work. As changes are checked 
into the codeline by others, you should update your 
workspace and integrate those changes with your 
own changes. 

As a software version management engineer, it’s 
good to make sure this workspace update operation 
is straightforward and unencumbered with tricky 
or time-consuming procedures. If developers find it 
fairly painless to update their workspaces, they’ll do 
it more frequently and integration problems won’t 
pile up at project deadlines.

•	 Check in often. Integrating your development 
work with other peoples’ work also requires you 
to check in your changes as soon as they are ready. 
Once you’ve finished a development task, check in 
your changed files so that your work is available to 
others. 

Again, as a software version management engineer, 
you should set up procedures that encourage 
frequent check-ins. Don’t implement unduly 
arduous validation procedures, and don’t freeze 
codelines (see Child Codelines, below). Short 
freezes are bearable, but long freezes compromise 
productivity. Much productivity can be wasted 
waiting for the right day (or week, or month) to 
submit changes.

•	 Use task branching. In contrast to the long, public 
life of codelines, task branches generally support 
short-lived, private tasks, such as hot fixes or local 
feature development. Their primary task is to help 
ready a set of changes for propagation into the 
main codebase.  Once the contribution has been 
delivered, they can be deleted or forgotten.  Task 
branching brings the power of versioning to your 
local workspace while keeping your main codebase 
clear from metadata clutter.

2. The Codeline
In this context, the codeline is the set of source files 
required to produce your software. Codelines are 
branched into child codelines to support specific 
variants of the codeline, such as development and release 
codelines.



﻿ High-Level Software Version Management Best Practices3

The best practices with regard to codelines are:

•	 Have a mainline. A “mainline,” or “trunk,” is 
the branch of a codeline that evolves forever. A 
mainline provides an ultimate destination for 
almost all changes—both maintenance fixes and 
new features—and represents the primary, linear 
evolution of a software product. Release codelines 
and development codelines are branched from 
the mainline, and work that occurs in branches is 
propagated back to the mainline.

Figure 1 shows a mainline (called “main”), from which 
several release lines (“ver1”, “ver2” and “ver3”) and 
feature development lines (“projA”, “projB”, and 
“projC”) have been branched. Developers work in the 

main

projA

projB

projC

ver1 ver2 ver3
rel1.0

rel1.1

rel2.0

rel2.1

rel3.0

projA(ver2)

rel2.0
projB

projC(ver3)

rel1.0 rel1.1

rel2.1

rel3.0

ver1

Figure 2: The Promotion  Model

mainline or in a feature development line. The release 
lines are reserved for testing and critical fixes, and are 
insulated from the hubbub of development. Eventually 
all changes submitted to the release lines and the feature 
development lines get merged into the mainline.

An adverse approach is to “promote” codelines; for 
example, to promote a development codeline to a release 
codeline, and branch off a new development codeline. 
For example, Figure 2 shows a development codeline 
promoted to a release codeline (“ver1”) and branched 
into another development codeline (“projA”). Each 
release codeline starts out as a development codeline, 
and development moves from codeline to codeline. 

Figure 1: The Mainline Model



﻿ High-Level Software Version Management Best Practices 4

The promotion scheme suffers from two significant 
drawbacks: (1) it requires the policy of a codeline to 
change, which is never easy to communicate to everyone; 
(2) it requires developers to relocate their work in 
progress to another codeline, which is error-prone and 
time-consuming. 90% of legacy SCM “process” in the 
promotion model is enforcing codeline promotion to 
compensate for the lack of a mainline.

Process is streamlined and simplified when you use 
a mainline model. With a mainline, contributors’ 
workspaces and environments are stable for the duration 
of their tasks at hand, and no additional administrative 
overhead is incurred as software products move forward 
to maturity.

•	 Give each codeline a policy. A codeline policy 
specifies the fair use and permissible check-ins for 
the codeline, and is the essential user’s manual for 
software version management codeline control. 
For example, the policy of a development codeline 
should state that it isn’t for release; likewise, the 
policy of a release codeline should limit changes to 
approved bug fixes1. The policy can also describe 
how to document changes being checked in, what 
review is needed, what testing is required, and the 
expectations of codeline stability after check-ins. A 
policy is a critical component for a documented, 
enforceable software development process, and a 
codeline without a policy, from a software version 
management point of view, is out of control.

•	 Give each codeline an owner. Having defined a 
policy for a codeline, you’ll soon encounter special 
cases where the policy is inapplicable or ambiguous. 
Developers facing these ambiguities will turn to the 
person in charge of the codeline for workarounds. 
When no one is in charge, developers tend to enact 
their own workarounds without documenting them. 
Or they simply procrastinate because they don’t have 
enough information about the codeline to come up 
with a reasonable workaround. You can avoid this 
trap by appointing someone to own the codeline, 
and to shepherd it through its useful life. With this 
broader objective, the codeline owner can smooth 
the ride over rough spots in software development 
by advising developers on policy exceptions and 
documenting them.

1  Some sensible codeline policies: Development codeline: interim code 
changes may be checked in; affected components must be buildable. 
Release codeline: software must build and pass regression tests 
before check-in; check-ins limited to bug fixes; no new features or 
functionality may be checked in; after check-in, branch is frozen 
until entire QA cycle is completed. Mainline: all components must 
compile and link, and pass regression tests; completed, tested new 
features may be checked in.

3. Child codelines
The mainline is typically branched into child codelines 
specialized to support a variety of different tasks. The 
collection and relationships of the mainline and its child 
codelines can be visualized on a flow graph diagram.

Here are best practices for organizing and creating new 
child codelines:

•	 Organize codelines according to the Tofu Scale.  
Much like tofu in the supermarket which comes 
in different measures of firmness, codelines also 
fall somewhere on the firmness scale of increasing 
stability.  Release codelines appear above the 
mainline and seek minimal change. Development 
codelines are arranged below the mainline and seek 
additional change.

The Tofu Scale for codeline firmness:

•	 Don’t copy when you mean to branch. An 
alternative to using your software version 
management tool’s branching mechanism is to 
copy a set of source files from one codeline and 
check them in to another as new files. Don’t think 
that you can avoid the costs of branching by 
simply copying. Copying incurs all the headaches 
of branching—additional entities and increased 
complexity—but without the benefit of your 
software version management system’s codeline 
support. Don’t be fooled: even “read-only” copies 
shipped off to another development group “for 
reference only” often return with changes made. Use 
your software version management system to make 
a new codeline when you spin off parts or all of an 
existing codeline.

•	 Branch on incompatible policy. There is one 
simple rule to determine if a codeline should be 
branched: it should be branched when its users need 
different check-in policies. For example, a product 
release group may need a check-in policy that 
enforces rigorous testing, whereas a development 
team may need a policy that allows frequent 
check-ins of partially tested changes. This policy 

Release 1 Release 2

Mainline

Development 1 Development 2 Development 3

Personal Dev 1

Firmer

Softer



﻿ High-Level Software Version Management Best Practices5

divergence calls for a codeline branch. When one 
development group doesn’t wish to see another 
development group’s changes, that is also a form 
of incompatible policy: each group should have its 
own codeline.

•	 Branch late. To minimize the number of changes 
that need to be propagated from one branch to 
another, put off creating a new codeline as long as 
possible. For example, if the mainline contains all 
the new features ready for a release, do as much 
testing and bug fixing in it as you can before 
creating a release codeline. Every bug fixed in the 
mainline before the release branch is created is one 
less change needing propagation between codelines.

•	 Branch instead of freeze. On the other hand, if 
testing requires freezing a codeline, developers 
who have pending changes will have to sit on their 
changes until the testing is complete. If this is the 
case, branch the codeline early enough so that 
developers can check in and get on with their work.

4. Change Propagation
Branching codelines creates the task of propagating 
file changes between codelines. The propagation of 
changes throughout a flow graph is known as the Flow 
of Change. Here are some things you can do to keep it 
manageable.

•	 Use the baseline protocol.  Stabilizing change flows 
continually to softer codelines. Changes from the 
softer codelines flow up to the baseline at points 
of completion. Changes do not flow up from the 
baseline. 

•	 Propagate early and often. When it’s feasible 
to propagate a change from one codeline to 

Often the mainline will be the baseline. 
One exception is a collaborative bug 
fix branch branched as a development 
(i.e. softer) codeline from a release 
codeline. Here, the release branch is 
the baseline, and change flows at points 
of completion to the release line.  (The 
mainline will eventually receive the 
changes via the flow of change from the 
release codeline.)

Change �ows:

�rmer codelines

baseline

softer codelines

continually

at points of completion

another, do it sooner rather than later. Postponed 
and batched change propagations can result in 
stunningly complex file merges.

•	 Merge down, copy up. Create safer merges by 
merging changes down to the softer codeline, and 
copying up to a firmer codeline. The softer codeline 
can better accommodate the risk of merging because 
(1) instability is more acceptable there and (2) code 
in the softer codeline is further from the release date.  
A typical workflow would be:

1. Merge from the baseline to the softer 
codeline.

2. Test the merged result.
3. Copy from the softer codeline to the 

baseline, now that we are assured a 
successful merge.

Merge down, copy up minimizes the risk of introducing 
destabilizing changes into the firmer/more stable 
baseline.

•	 Choose the correct codeline for original changes. 
You may have dozens of codelines in your codeline 
graph. How do you decide where to make an 
original change? Make original changes intended to 
stabilize a codeline above the mainline, and all other 
changes below the mainline. 

•	 Get the right person to do the merge. The burden 
of change propagation can be lightened by assigning 
the responsibility to the engineer best prepared to 
resolve file conflicts. Changes can be propagated 
by (a) the owner of the target files, (b) the person 
who made the original changes, or (c) someone else. 
Either (a) or (b) will do a better job than (c).



﻿ High-Level Software Version Management Best Practices 6

5. Builds
A build is the business of constructing usable software 
from original source files. Builds are more manageable 
and less prone to problems when a few key practices are 
observed:

•	 Source + tools = product. The only ingredients 
in a build should be source files and the tools to 
which they are input. Memorized procedures and 
yellow stickies have no place in this equation. 
Given the same source files and build tools, the 
resulting product should always be the same. If you 
have manual setup procedures, automate them in 
scripts. If you have manual setup steps, document 
them in build instructions. And document all 
tool specifications, including OS, compilers, 
include files, link libraries, make programs, virtual 
machines, and executable paths. Version all of the 
resulting materials.

•	 Version all original source. When software can’t 
be reliably reproduced from the same ingredients, 
chances are the ingredient list is incomplete. 
Frequently overlooked ingredients are makefiles, 
setup scripts, build scripts, build instructions, and 
tool specifications. All of these are the source you 
build with. Remember: source + tools = product

•	 Separate built objects from original source. 
Organize your builds so that the directories 
containing original source files are not polluted by 
built objects. Original source files are those you 
create “from an original thought process” with a 
text editor, an application generator, or any other 
interactive tool. Built objects are all the files that 
get created during your build process, including 
generated source files. Built objects should not 
go into your source code directories. Instead, 
build them into a directory tree of their own. This 
separation allows you to limit the scope of software 
version management-managed directories to those 
that contain only source. It also groups the files 
that tend to be large and/or expendable into one 
location, and simplifies disk space management for 
builds.

•	 Use common build environments. Developers, test 
engineers, and release engineers should all use or 
have access to identical build environments. Much 
time is wasted when a developer cannot reproduce 
a problem found in testing, or when the released 
product varies from what was tested. Remember: 
source + tools = product.

•	 Build often.  Continuous integration (CI) with 
automated regression testing safeguards your 

development through continuous response to the 
greatest source of defects: new check-ins. You will

1. detect build failures created by check-ins 
(don’t break the build)

2. find product functional problems created 
by check-ins (don’t break the product.)

A beneficial side effect is that continuous integration and 
testing produces link libraries and other built objects 
that can be used by developers.  Every codeline should 
be subject to regular, frequent, and complete builds and 
regression testing, even when product release is in the 
distant future.

•	 Keep build logs and build outputs. For any built 
object you produce, you should be able to look up 
the exact operations (e.g., complete compiler flag 
and link command text) that produced the last 
known good version of it. Archive build outputs 
and logs, including source file versions (e.g., a 
label), tool and OS version info, virtual machine 
configuration, compiler outputs, intermediate files, 
built objects, and test results, for future reference. 
As large software projects evolve, components are 
handed off from one group to another, and the 
receiving group may not be in a position to begin 
builds of new components immediately. When they 
do begin to build new components, they will need 
access to previous build logs in order to diagnose 
the integration problems they encounter.

6. Process
It would take an entire paper, or several papers, to 
explore the full scope of software version management 
process design and implementation, and many such 
papers have already been written. Furthermore, your 
shop has specific objectives and requirements that will 
be reflected in the process you implement, and we do 
not presume to know what those are. In our experience, 
however, some process concepts are key to any version 
management implementation:

•	 Track change sets. Even though each file in a 
codeline has its revision history, each revision in 
its history is only useful in the context of a set of 
related files. The question “What other source files 
were changed along with this particular change to 
foo.c?” can’t be answered unless you track change 
sets, or sets of files related by a logical change. 
Change sets, not individual file changes, are the 
visible manifestation of software development. 

•	 Track the flow of change. One clear benefit of 
tracking change sets is that it becomes very easy 
to propagate logical changes (e.g., bug fixes) from 



﻿ High-Level Software Version Management Best Practices7

one codeline to another. However, it’s not enough 
to simply propagate change sets across codelines; 
you must keep track of which change sets have 
been propagated, which propagations are pending, 
and which codeline branches are likely donors or 
recipients of propagations. Otherwise you’ll never 
be able to answer the question “Is the fix for bug X 
in the release Y codeline?” You should never have to 
resort to “diffing” files to figure out if a change set 
has been propagated between codelines.

•	 Distinguish change requests from change sets. 
“What to do” and “what was done” are different 
data entities. For example, a bug report is a “what to 
do” entity and a bug fix is a “what was done” entity. 
Your software version management process should 
distinguish between the two, because in fact there 
can be a one-to-many relationship between change 
requests and change sets.

•	 Give everything an owner. Every process, policy, 
document, product, component, codeline, branch, 
and task in your software version management 
system should have an owner. Owners give life to 
these entities by representing them; an entity with 
an owner can grow and mature. Ownerless entities 
are like obstacles in an ant trail—the ants simply 
march around them as if they weren’t there.

•	 Use living documents. The policies and procedures 
you implement should be described in living 
documents; that is, your process documentation 
should be as readily available and as subject to 
update as your managed source code. Documents 
that aren’t accessible are useless; documents that 
aren’t updateable are nearly so. Process documents 
should be accessible from all of your development 
environments: at your own workstation, at someone 
else’s workstation, and from your machine at home. 
And process documents should be easily updateable, 
and updates should be immediately available.

•	 Learn and use integrations to supporting tools.  
Software version management often sits within 
a dizzying array of supporting tools in an ALM 
(Application Lifecycle Management) stack. Learn 
all the options for integrating your software version 
management system into tool sets that manage 
requirements, features, projects, tests, releases, and 
more. 

As a software version management engineer, it’s also 
essential to master how your system integrates with 
Agile development tools and processes. CI (Continuous 
Integration), automated testing, work flow, defect 
tracking, and code review tools are all likely integrations 
into a software version management system.

Remember, software version management is often one 
part of a larger ALM and/or Agile environment. Be sure 
you understand all the integrations available for how 
your software version management tool can support this 
larger environment. 

7. Conclusion
Best practices in version management, like best practices 
anywhere, always seem obvious once you’ve used them. 
The practices discussed in this paper have worked well 
for us, but we recognize that no single, short document 
can contain them all. So we have presented the practices 
that offer the greatest return and yet seem to be violated 
more often than not.

We welcome the opportunity to improve this document, 
and solicit both challenges to the above practices as well 
as the additions of new ones.

8. References
Berczuk, Steve. Configuration Management Patterns, 
1997.

Compton, Stephen B, Configuration Management 
for Software, VNR Computer Library, Van Nostrand 
Reinhold, 1993.

Continuus Software Corp., “Work Area Management”, 
Continuus/CM: Change Management for Software 
Development [PDF]

Dart, Susan, Spectrum of Functionality in Configuration 
Management Systems [PDF], Software Engineering 
Institute, 1990.

Jameson, Kevin, Multi Platform Code Management, 
O’Reilly & Associates, 1994

Linenbach, Terris, Programmers’ Canvas: A Pattern for 
Source code Management 1996.

Lyon, David D, Practical CM, Raven Publishing, 1997

McConnell, Steve, Best Practices: Daily Build and Smoke 
Test, IEEE Software, Vol. 13, No. 4, July 1996

Van der Hoek, Andre, Hall, Richard S., Heimbigner, 
Dennis, and Wolf, Alexander L., Software Release 
Management,Proceedings of the 6th European Software 
Engineering Conference, Zurich, Switzerland, 1997.

Wingerd, Laura, The Flow of Change [PDF], Perforce 
Software, Inc., 2005

Wingerd, Laura, Practical Perforce, O’Reilly & Associates, 
2005



North America 
Perforce Software Inc.
2320 Blanding Ave
Alameda, CA 94501
USA
Phone: +1 510.864.7400
info@perforce.com

Europe
Perforce Software UK Ltd. 
West Forest Gate
Wellington Road
Wokingham
Berkshire RG40 2AT
UK
Phone: +44 (0) 845 345 0116
uk@perforce.com

Australia 
Perforce Software Pty. Ltd.
Suite 3, Level 10
221 Miller Street
North Sydney
NSW 2060
AUSTRALIA
Phone: +61 (0)2 8912-4600
au@perforce.com

Copyright © 2012 Perforce Software Inc. All rights reserved.  
All trademarks or registered trademarks used herein are property of their respective owners.

p e r f o r c e . c o m

Updated January 2012, April 2012, James Creasy

Change propagation
Streams graph, visual tools, default 
codeline policies, enforcement of rules of 
Flow of Change

Agile Flow of Change:  
info.perforce.com/Agile-Flow-of-Change-
WP-Offer.html

Builds
Integrations with ALM:  
perforce.com/product/integrations/
thirdparty_software_integrations

Agile tools:  
perforce.com/product/product_features/
always_agile

Process
Software Version Management:  
perforce.com/products/perforce

Workspaces
Stream views, P4Sandbox, DVCS 
connectors
Use local task branching
Perforce Sandbox:  
perforce.com/sites/default/files/pdf/
p4sandbox-product-brief.pdf

Git as a Perforce Client:
perforce.com/blog/120113/git-perforce-
client

Git-p4 feature of Git:  
kb.perforce.com/article/1417/git-p4

Codelines
Streams implement codelines
Perforce Streams:  
perforce.com/product/product_features/
perforce_streams

Child Codelines
Streams graph, default codeline policies, 
tofu scale

Use the Tofu Scale:  
oreilly.com/catalog/practicalperforce/
chapter/ch07.pdf

More about how Perforce supports these best practices




