
r~... HEWLETT
':aI PACKARD

A Call Model for Distributed
Multimedia Communications

Walter L. Hill, Audrey K. Ishizaki
Media Technology Laboratory
HPL-93-06
January, 1993

API, multimedia
communications,
computer-controlled
communications,
shared workspaces

Most experiments in building multimedia communications systems to
date have adopted application architectures which are intended for
communication-specific applications such as teleconferencing, and
support only particular kinds of communication channels and
mechanisms. This paper describes an application architecture which
gives developers of diverse applications, from word processor and.
spreadsheet programs to large distributed multi-user systems, a
means to enable users to control real-time communications directly in
the context of their work. It also provides uniform application-level
control of distributed multimedia resources. It is designed for
eventual use in a distributed object system and provides a
programming interface based on intuitive operations of a telephone
call which model basic communication tasks such as placing and
forwarding a call. Analogies are drawn between properties of a call
system and. those of a window system. The architecture and. its
implementation allow numerous communication services to be
controlled together and. can control any service with a suitable
switching interface. In addition to supporting switching for
traditional communications media, it is possible, for example, to
control sets of connections between clients and. servers in a distributed
computing environment. A particularly powerful example is provided
by the addition of switching control for connections between X
Windows clients and servers, giving rise to shared multimedia
workspaces which provide a seamless integration between personal
work contexts and communication contexts.

© Copyright Hewlett-Packard Company 1993

Internal Accession Date Only

A Call Model for Distributed Multimedia Communications

Walter L. Hill, Audrey K. Ishizaki
Hewlett-Packard Laboratories

ABSTRACT

Most experiments in building multimedia communications systems to date have adopted application
architectures which are intended for communication-specific applications such as teleconferencing, and
support only particular kinds of communication channels and mechanisms. This paper describes an
application architecture which gives developers of diverse applications, from word processor and spread
sheet programs to large distributed multi-user systems, a means to enable users to control real-time
communications directly in the context of their work. It also provides unifonn application-level control of
distributed multimedia resources. It is designed for eventual use in a distributed object system and
provides a programming interface based on intuitive operations on a telephone call which model basic
communication tasks such as placing and forwarding a call. Analogies are drawn between properties of a
call system and those of a window system. The architecture and its implementation allow numerous
communication services to be controlled together and can control any service with a suitable switching
interface. In addition to supporting switching for traditional communications media, it is possible, for
example, to control sets of connections between clients and servers in a distributed computing
environment. A particularly powerful example is provided by the addition of switching control for
connections between X Windows clients and servers, giving rise to shared rnultitMdia workspaces which
provide a seamless integration between personal work contexts and communication contexts.

KEYWORDS: API, multimedia communications, computer-controlled communications, shared workspaces

1. Introduction

Most experiments in building multimedia communications systems to date have adopted application archi
tectures which are intended for communication-specific applications such as teleconferencing, and support
only particular kinds of communication channels and mechanisms [MM92]. This paper describes an
application architecture which gives developers of diverse applications, from word processor and spreadsheet
programs to large distributed multi-user systems, a means to enable users to control real-time communications
directly in the context of their work. It also provides uniform application-level control of distributed
multimedia resources. The architecture and its implementation allow numerous communications services to
be controlled together and can control any service with a suitable switching interface. In addition to
supporting switching for traditional communications media, it is possible, for example, to control sets of
connections between clients and servers in a distributed computing environment A particularly powerful ex
ample is provided by the addition of switching control for connections between X Windows clients and
servers, giving rise to sharedmultimedia workspaces which provide a seamless integration between personal
work contexts and communication contexts.

Modern software development relies on application programming interfaces, or APIs, which provide the
operations for accessing sets of services. In C, APIs are realized as collections of functions, while in C++ they
are collections of classes. System-level APIs, for example for file and window management, are used in
developing most applications, while custom APIs promote modularity and reuse within particular classes of
applications. As computing evolves, new system-level APIs are needed to support new functionality, as seen
currently, for example, with support for speech and handwriting input The call API described in this paper is
intended as a system-level API supporting heterogeneous real-time communications services. A call system is
in a sense dual to a window system (it controls arcs in a connection graph rather than nodes). However, by
virtue of its ability to control contexts, it can also be used as a partial replacement for a window system when
windows may not be feasible, as in the case of small displays on handheld devices.

As the name suggests, the calls in a call system are motivated by intuitions about telephone calls, and
specifically by the intuitive set of operations such as place, hold, forward, and hang-up, associated with them.
One must be careful, however, as with windows, about taking the analogy too literally. The use of the word
call here is with reference to the set of operations, which in fact was the starting point for the call API. The
choice of the word seems appropriate, as with window, despite its other uses. The idea of basing a
communications API on notions associated with a telephone call seems natural and potentially congenial for

I

programmers,and indeed has also influenced the design of other systems,notablyEXPANSE [MinzeI91] and
Touring Machine [Arang092,Gopal92] at Bellcore. In addition to providing a programming model based on
communicationtasks, calls arealso effective as a mechanism for organizing and distributing communication
information and control. Along with calls, a call system has parties which can belong to calls and whose
media connections are controlled through calls. As with systems like Etherphone [Swinehart87, Vin91] and
Touring Machine, the notion of party is construed broadly so that a wide range of sources and sinks of in
formation can be represented and treated uniformly. For example, the shared workspaces mentioned above
allow parties to be associated with arbitrary X Windows clients. A basic design objective for the call system
is robust support for multiplepartiesand media which can be added and removed dynamicallyfrom a call.

The call system was designed for eventual implementation in a distributed object system and will be de
scribed here in terms of classes of objects. The notions of call and party objects strongly influence the design
of the call system and the ways in which it canbe used. For example, calls canbe longer-lived than conven
tional telephone calls. The same call object might be used repeatedly for a series of related communications
over time and might be stored and accessed, for example, in an on-line appointment book. Of course, con
nectionscontrolledby the call may be broken when the call is not actually in use.

In providing a set of system-levelservices, it is important to distinguishgeneral mechanismswhich the call
system must provide from those which must be provided by an applicationor some other system component
For example, the call system provides indirect support for controlling media devices but does not provide a
user interface for controlling the devices. The call system provides a set of mechanisms which allow an ap
plication to implement policies appropriate to it For example, in some cases it is important to distinguish a
caller party among the parties to a call; other applications distinguish a current speaker or moderator party
which can change over the life of the call; still other applicationsdon't have a distinguishedparty at all. The
call system can provide support for distinguishedparties, but does not require them to be present There are
numerousexamples of policies which the call system attempts to support without imposing them on the gen
eral applicationdeveloper.

The following section of this paper presents the actual call system API and discusses some of the issues
which its design addresses.Section3 discussescertain aspectsof the call system implementation, in particular
its interface to underlying switching mechanisms. Section 4 describes real applications, including shared
workspaces, in various stages of design and development,which use the call system. This section also iden
tifies design ideas and issues which need to be explored in future work. Section 5 discusses the connections
between the call system and related work. Finally,Section6 providesa summaryand draws conclusionsfrom
the work presentedhere.

2. Call System API

This section describessome of the importantoperationson Call, Party, and ResourceManagerobjects which
arebasic to the call API. The API emphasizesoperationswhich model communication tasks such as creating,
initiating, suspending,and resuming Calls. While the API does provide operations for direct manipulationof
media connections for finer control, the API's higher-level operations can control sets of connections
automatically and are sufficient in many applications. Developers can add new state and behavior to Calls,
Parties, and Resource Managers using object-oriented inheritance, for example, to allow different Parties to
have different roles in a Call or provideResourceManagerswhich monitorresource usage.

While it is important that the objects in the call system be intuitive for general application developers, their
primarypurpose is to organize informationand control for communications effectively.A ResourceManager,
for example, is the locus of all informationabout the communication resources, such as logical and physical
devices, of the Parties it supports. It also holds such things as preferencesof Parties for selecting resources to
use in various communications. Resource informationis not held in Parties, and is not available to Calls, for
security reasons among others. Parties contain all information about their communication activities, for
example which calls areactive or on hold. A Call controlsall theconnectionsbetween its Parties.

There is a notion of abstract connection which underlies the Call System. Parties control abstract connec
tions between their resources and a Call, while a Call manages abstract connectionsbetween Parties. A con
crete connection enabling communicationis made only when a complete series of such abstract connections
from one resource to another is made. Differentkindsof control areneeded in connectingParties in Calls. For

2

example, putting a Call on hold is an operation primarily local to a Party while terminating a Call is an
operation on the Call itself. Whenever abstract or concrete connections are made or broken, messages are sent
informing the Call and all Parties, which in tum can inform a controlling application of the state change.
There are a large number of possible policies which an application could use in controlling media connec
tions. In some applications, centralized control is desirable while in others control will be mainly local. For
example, using the mechanisms provided by the Call System, one application could make sure that all Parties
were viewing the same video source, while another could allow each Party to choose from all the available
video sources in the Call.

Parties provide a uniform interface for communicating with diverse sources and sinks of information, in
cluding people. Calls can be placed to Parties which represent offices, hospital operating rooms (with many
audio, video, and instrument dataresources), movies, telephones, CATV channels, multimedia documents, X
Windows applications, etc., just as they are placed to Parties representing human beings. Thus, from the point
of view of object-oriented programming, any object can be made into a Party if it can meaningfully inherit
from the Party class described in this section.

One of the benefits for developers from the call system's object-oriented design is the ability to use objects
which represent setsof Calls, Parties, MediaLines, Resources, etc. These sets arise naturally throughout de
sign of the call system; much of the application code and implementation code for the call system is written in
terms of set operations.

CaD Objects

Creation of a Call object is separate from its being initiated; Calls can exist, with or without Parties, inde
pendent of any connections being made. Each Party in a Call has a set of abstract MediaLines which represent
media sources and destinations which canbe connected by the Call. The MediaLines may differ for different
Parties in a single Call (e.g., some Parties may only have output lines) and for different Calls (e.g., some Calls
may only have audio lines). Each MediaLine has a name, a media type, and is a source or destination or else
bidirectional. A PartyInfo object is defined to be a Party object, together with a set of MediaLines. PartyInfos
and PartyInfoSets are convenient for adding and removing Parties and MediaLines from Calls, and are also
used in creating Calls.

call emptyCallO
call newCall(partylnfoSet partylnfos)
int callAddParty(call c, partylnfo pi)
int calIRemoveParty(call c, party p)
int callAddMedia(call c, partylnfo pi)
int callRemoveMedia(call c, partylnfo pi)

Notice that Calls don't have a distinguished Party which is the "caller". Indeed, a Call need not be created or
initiated by a Party participating in the Call. It is up to an initiating Party to know that it placed the Call.
Using inheritance, one can add a distinguished Party to a Call.

A Call can be queried for its Parties and their associated MediaLines.

partySet callParties(call c)
mediaLineSet caIlMedialnfo(call c, party p)

When a Call is initiated, its Parties are notified and it is their Resource Managers which negotiate their par
ticipation in the Call at that point. The negotiation behavior will depend on the Party. If a Party rejects the
Call when it is initiated, it is removed from the Call. Parties added to the Call after it is initiated must negoti
ate participation immediately. Similarly, removing a Party from a Call after it has been initiated is the same
thing as hanging up. When a Party accepts participation in a Call, all other Parties are notified.

int calIInitiate(call c)

To describe connections in a Call, we refer to Figure 1 which shows a very simple two-party call in which
one Party just has an audio source and the other just an audio destination. Each Party's Resource Manager
controls the connection between a MediaLine and appropriate Resource objects. The Call itself controls
whether the two MediaLines are connected. Only when the Call's connection and each of the Parties'

3

connections are made, is an actual connection made between a microphone and a speaker. It is worth noting
that Party2 could connect its MediaLine to multiple speakers, in which case the single abstract connections
controlled by Party! and the Call correspond to multiple actual connections (or to a single multicast
connection). If there are additional Parties with speakers connected then a lot of switching activity results
from Party!'s single connection. Calls themselves extend this power; when a Party puts a Calion hold, it
affects in a single operation all of its connections to MediaLines in the Call. An even more important
observation is that the set of MediaLines in a Call can be thought of as a kind of "local coordinate system" for
switching where the Parties' connections determine the mapping between the local entities, i.e., the named
MediaLines, and actual Resources. This allows applications to operate on Calls independent of particular
Resources, and even independent of particular Parties, by just referencing the named MediaLines. This is
analogous to the independence which window applications enjoy with respect to the location of the window.

int callConnect(call c, party fromParty, mediaLine fromML,
party toParty, mediaLine toML)

int calIDisconnect(call C, party fromParty, mediaLine fromML,
party toParty, mediaLine toML)

There are two merge operations on Calls. The first, called merge, is applied to a set of Calls. It creates a new
Call whose Parties consist of all the Parties to any Call in theset. The MediaLines of each Party to the merged
Call are the union of the sets of MediaLines of that Party in all constituent Calls with duplicate names being
distinguished by suffixes, A second form of merge, called mergelnto, takes a "primary" Call and merges a
set of "secondary Calls into it without creating a new Call. The identity of the first Call is preserved.

call merge(callSet calls)
call mergeInto(call c, callSet calls)

Forwarding a Call from one Party to another can be accomplished by setting up a second Call between two
Parties, merging it into the first Call, and then removing the forwarding' Party.

When a Call is terminated, all of its connections are broken. Each of its Parties and any controlling applica
tion are notified, The terminate operation must be used explicitly to end a Call. Since a Call is allowed to
have no current Parties, it is not enough for all Parties to hang up, as would be the case with a traditional
telephone call. Of course, a particular application may enforce a termination policy for its empty Calls.

int terminate(call c)

Party Objects

As we have mentioned, the notion of Party object is very general. It is worthwhile to think abstractly about a
Party as any object which could support the operations and behavior described here. The notion of MediaLine
should be thought of similarly so that connections between many kinds of resources can be controlled by the
call system. We again mention client-server systems as an important source of non-traditional examples of
communication channels where the connections between clients and servers are controlled through
MediaLines in a Call.

Each Party has a name which is used to identify it in a Call. The name may not be unique to the Party; ap
plications distinguish Parties by their identity as objects. A Party has a Resource Manager which manages all
of its resources and also manages theParty's media connections in a Call.

party newParty(char *name, resourceManager nn)
char *partyNarne(party p)
resourceManager partyRM(party p)

When a Party receives a request notification from a Call, its Resource Manager may negotiate its participa
tion directly or pass control on to a controlling application. In the latter case, the Party must be told whether
to accept or reject

int acceptCall(party p, call c)
int rejectCall(party p. call c)

4

If the Call is accepted, the Party adds the Call to its set of Calls, and its Resource Manager attempts to con
nect default resources to it automatically, notifying the Party if it fails either because resources are busy or it
doesn't know how to make the connection. To defer connecting resources, a Call can also be accepted on
hold.

int acceptCallOnHold(party p, call c)

A Party can place a Call. This operation creates the Call which includes the calling Party with associated
MediaLines.It then initiates the Call. The Party object placing a Call accepts the Call automatically.

int placeCall(party p, partylnfoSet partylnfos, mediaLineSet mediaLines)

A Party can put a Call on hold. In doing so, it informs its Resource Manager to disconnect all of that Party's
resources which are connected to the Call. While the Call is on hold, those resources can be used for other
purposes. It is intended that putting a Calion hold be analogous to the conventional operation with telephone
calls. That operation frees local resources while maintaining others (phone lines). It is useful for a Party also
to be able to free non-local resources, which can have high connect costs, without terminating the call. This is
accomplished by the suspend operation, which frees both local and non-local resources which the Party uses
in the Call. The Party can resume a Call which has been put on hold or suspended (the latter may take longer
to resume and incur an additional setup cost). If the original resources are not available when the Call is
resumed, the Resource Manager allocates new resources, possibly communicating with a controlling
application, as it would for a new Call. In addition to the hold, suspend, and resume operations which affect
all of a Party's MediaLines, there are selective versions which would allow, for example, "putting audio on
hold" while keeping a Call active.

int holdCall(party p, call c)
int suspendCall(party p, call c)
int resumeCall(party p, call c)

int holdMedia(party p, mediaLineSet mediaLines, call c)
int suspendMedia(party p, mediaLineSet mediaLines, call c)
int resumeMedia(party p, mediaLineSet mediaLines, call c)

Of course, a Party can hang up. This operation removes all connectionsbetween the Party's resources and the
Call. It also removes all references from the Party to the Call and vice versa. All other Parties to a Call are
notified when a Party hangs up.

int hangUp(party p, call c)

A Party can participate in multiple Calls, which are active, on hold, or
suspended,and can be queried for the correspondingsets of Calls.

callSet partyCalls(party p)
callSet partyActiveCalls(party p)
callSet partyHeldCalls(party p)
callSet partySuspendedCalls(party p)

char *partyCalIStatus(party p, call c)

Resources and Resource Manager Objects

Compared with Call and Party objects, Resource Manager objects playa supporting role in the call system.
Typical applications will deal mainly with Call and Party objects, while the work of the Resource Managers
and with it much of the complexity of the call system implementation remains hidden, just as much of the
complexityof a window system is hidden in the window manager.

Resource Managers hold all informationabout Parties' media resources which are represented by Resource
objects. They also support the actual negotiation of connections.Resource objects include MediaPorts which
correspond to ports on physical and logical switches (including, for example, client and server processes
whose connections are managed by the call system), and also composite resources which can have a set of
associated MediaPorts and also a control interface. Composite resources include devices like VCRs and also

5

recorded media, such as film clips on a laserdisc, which have multiple associated MediaPorts for audio, video,
etc., when mounted on a suitable device. Composite resources can provide alternative realizations of the same
Party. For example, a single Party representing the movie "Gone With the Wind" might have many resources
which are laserdisc copies of the movie. In a video-on-demand application, a user's request to see "Gone
With the Wind" would create a Call to the unique "Gone With the Wind" Party. The Party's Resource
Manager is responsible for selecting and connecting an available (mounted and not busy) laserdisc to the
Party's MediaLines in the Call. In our UNIX implementation, one of the MediaLines would be connected to a
resource representing an X client program presenting play, pause, stop, etc., controls to the user for viewing
the movie. At the other end, the user Party's Resource Manager selects resources to connect to that Party's
MediaLines for viewing the movie. To make such connections intelligently, Resource Managers store
information on default preferences for Parties. In the current implementation this is done by a simple ordering
of each Party's Resources.

Just as a Party has a set of MediaLines in a Call, it has a set of Resources in a Resource Manager. The cre
ation of Resource Managers uses the same PartyInfo structures, with Resources instead of MediaLines, as
were used in the creation of Calls.

resourceManager newResourceManager(partylnfoSet partylnfos)
int O11AddPartyResources(resourceManager 011, partylnfo pi)
int nnRemovePartyResources(resourceManager on, partylnfo pi)

Each resource is owned by one or more Parties. Parties control adding and removing resources.

int partyAddResomces(party p, nnResourceSet nnResources)
int partyRemoveResources(party p, nnResourceSet nnResomces)

Connections between a Party's resources and MediaLines in a Call are usually handled automatically by its
Resource Manager using default preferences. However, direct control is provided for connecting and dis
connecting MediaPorts on media resources to MediaLines.

int partyConnectLine(party p, call c, mediaLine ml, MediaPort mp)
int partyDiscormectLine(party p, call c, mediaLine ml, MediaPort mp)

3. Call System Implementation

The call system has evolved from a high-level control layer for a prototype desktop videoconferencing ap
plication written in object-oriented Scheme. In order to improve its modularity and robustness as an object
oriented application framework, the call system was later moved to Smalltalk. It was at that point that its
usefulness for general application development and some of the analogies mentioned with window systems
became evident The current complete implementation of the call system is in C both to support application
development in C and also to facilitate interfacing to existing underlying switching software. It uses the same
object-oriented design, which would be expressed more naturally and succinctly in C++.

One of the lessons learned from the earlier experiments with the call system was that care must be taken in
using object-oriented inheritance to create different classes of calls. Much of the generic structure of calls is
dynamic while its class is fixed in most object systems. If one had classes of calls with a fixed number of
parties or a fixed setof media, for example, then those calls would have to be replaced with instances of other
call classes to allow parties or media to be added or removed. However, it should not be necessary to change
the identity of the call object in order to change parties or media. Nevertheless, inheritance can be used
profitably to create new call classes which add state and behavior to support a particular application's
policies, for example, for providing distinguished parties or party roles in a call, and for logging calls.

There are two layers of switching in the call system. The first consists of controlling theabstract connections
between MediaPorts and MediaLines for Parties and between pairs of MediaLines for Calls. The set of all
such connections is treated as a connection graph. Each time connections are made or broken, part of the
graph is traversed to determine changes in connectivity between the MediaPorts. The second layer of
switching controls "actual" connections between "actual" things which those parts represent It is the changes
in connectivity in the first layer which control the connections and disconnections in the second.

6

Referring back to Figure I, a physical switch will connect Partyl's microphone to Party2's speaker only
when three abstract connections are made: from the MediaPort for the microphone to Partyl's MediaLine in
the Call, from Partyl's MediaLine to Party2's MediaLine, and from Party2's MediaLine to the MediaPort for
the speaker. The microphone and speaker will be disconnected if anyone of the abstract connections is
broken.

The resulting distribution of control between Calls and Parties is an important feature of the call system. The
call system can control many "actual" switches which support connect and disconnect operations for some
meaningful set of ports. With slight extensions, it is possible to control multicast and broadcast mechanisms
as well. In order for the two switching layers to determine equivalent sets of connections, it is necessary that
the MediaPorts represent distinct "actual" ports and that the "actual" connect and disconnect operations affect
only the ports determined by their arguments.

4. Applications Using the Call System

The applications presented here represent work to date in using the call system. The videoconferencing pro
totype is a running application while the others are in various stages of design and implementation. The range
of examples so far is much narrower thanthe possible applications we envision for the call system. Additional
examples of particular interest include enabling personal applications such as spreadsheet programs for real
time communications. For example, a communication-enabled spreadsheet program might allow a user to
place calls automatically to get information for particular cells in a spreadsheet. Another interesting
application would use the notion of shared workspaces described here with handheld devices which have a
small display and no window system.

Desktop Videoconrerencing

The call system has been used in a prototype desktop videoconferencing application developed by the
Interactive Media Group at the University of Massachusetts at Lowell for the Hewlett-Packard Media
Technology Laboratory at Chelmsford, Massachusetts. In this application, the call system is used to control
switching of a number of analog audio and video devices through the Distributed Media Control System
[UML9l] developed earlier at Lowell. Parties in the application represent either end users or abstract media
objects such as video clips on a laser disk.

The call system is controlled by another system component called the session manager, developed at Lowell
for this application, which supports a user interface for placing and modifying calls. The session manager also
provides integration with video windows using video overlay and compression boards from Fluent
Corporation which Lowell has interfaced to Hewlett-Packard workstations. Part of the session manager user
interface is shown in Figure 2. The session manager uses a single live video window to display the current
speaker while other participants can express themselves by selecting from a set of still images which present
gestures or moods.

As a call manager application, the session manager is responsible for its own floor control policies support
ing selection of the current speaker who is viewed by all users. In the implementation, this is realized by
connecting a single source MediaLine to all of the destination MediaLines. Using the call system API to
manage the participation of users in a Call is very simple once Parties have been created for them and pref
erences have been provided for selecting devices for them to use in communicating.

Remote Consulting in Neurophysiology

Multimedia MedNet [Sclabassi9l] is a distributed application under development at the Center for
Neurophysiology at the University of Pittsburgh which allows specialists to consult on multiple neurosurgical
procedures from remote locations. It enables the remote consultant to observe the operation in progress vi
sually and communicate verbally using a cable television connection, and also to monitor neurophysiological
data which are transported in real time over a computer network. Using Multimedia MedNet, it is possible for
one consultant to participate in several surgeries at the same time. Figure 3 shows a prototype user interface
for this system.

7

In this application of the call system, each consultant and each operating room is represented by a Party. A
Call contains a single operating room Party but possibly more thanone consultant Party. Consultants can in
dependently select among video sources in the operating room and discuss the case over an audio channel
which is shared with the operating room. The consultant can change from one operating room to another in a
single action and even view multiple operating rooms simultaneously.

One of the distinguishing features of this application is the use of real-time medical data as a communica
tions medium. It is supported in Multimedia MedNet by connecting remote clients that display the data with
servers which manage the acquisition of data from the operating room. Using the call system, MediaLines can
be created to control the connections between the remote display clients and the data acquisition servers.
These allow a call to control the data connections in just the same way that they control connections for audio
and video, which in this application involve modulating signals onto a cable television network.

Shared Workspaces

Shared multimedia workspaces are an application of the call system which we have pursued to extend and
merge functionality of Hewlett-Packard's Shared X and HP VUE products for UNIX workstations. The re
sulting integration of VUE's support for personal workspaces with the call system's control of real-time
communications services including Shared X gives rise to functionality which is qualitatively new and seems
natural for supporting group work. The example in Figure 3 shows shared workspaces for consulting in brain
surgeries using Multimedia MedNet.

Shared X allows multiple users to see and interact with the same X window from different displays. While
this is patently a communication service, it is not yet integrated with other forms of communication. On the
other hand, HP VUE provides users with multiple personal workspaces, each of which contains its own set of
windows and constitutes a work context. One might use different workspaces, for example, to hold work
related to different projects. At the center of the VUE dashboard shown in Figure 3 are six buttons which al
low the user to select the current workspace. VUE's buttons for selecting a workspace are analogous to but
tons on a telephone which select between phone calls using a hold-and-resume mechanism. With shared
workspaces which are implemented using the call system, those two analogous operations become literally
the same thing. Of course, the static set of buttons is an artificial limitation. Support of multiple simultaneous
multimedia calls is desirable, and is provided by the call system. There are, however, design problems which
need to be solved in order to support them effectively in the user interface.

The key to implementing shared worlcspacesas calls is to interpret Shared X as a multicasting switch which
controls connections between X Windows clients and displays. An important implication of this level of
control is that the connections are transparent to the client application which assumes it is running on a single
display; any X client can be connected. Shared X provides the mechanisms needed to implement support for
interaction with multiple users.

In terms of the call system, the notion of workspace in VUE would suggest taking a shared workspace to be
a Call with Parties which have MediaLines controlling connections between X clients and displays. However,
it turns out to be better not to distinguish those Calls from others, so that shared workspace becomes a
synonym for Call, giving rise, for example, to shared audio workspaces. The important thing is the natural
way in which personal workspace usage is extended for multimedia communications. A more complete
integration awaits suitable support in X Windows for digital audio and video. The interpretation of a call as a
shared workspace suggests further extensions to represent virtual meeting rooms and other computer
supported communication contexts.

5. Related Work

The Etherphone project [Swinehart87, Vin91] at Xerox PARC has done pioneering and influential work
both in using LANs to transport and control real-time communications media and also in exploring highly
innovative user services which take advantage of computer-controlled communications. The software
architecture for the Etherphone system has some similarities and differences with the call system. It has
similar intuitive notions of calls (called conversations) and parties, but information and behavior are centered
in a connection manager and in agent processes which support a party in a conversation. Rather than
communicating directly with the representation of a conversation, an agent communicates with the connection

8

manager. This provides for more centralized control. From the point of view of supporting general
applications, it may be better to view such control as policy rather than mechanism, and provide for Call
objects in the API as we have done. While Etherphone's conversation manager has coarser granularity than
Calls, its agents for parties have finer granularity than Parties in the call system. Parties and their Resource
Managers in the call system could probably be implemented easily using Etherphone agents. For a higher
level API, it may be more effective to expose Party objects with a suitable set of operations, but keep the
behavior of the individual agents hidden from the application developer.

The EXPANSE [Minzer91] project at Bellcore provides a software architecture containing call and party
objects for controlling multimedia communications over high-speed networks. EXPANSE's call objects are
composite structures built up directly from fmer-grained channel and connection objects. In directly modeling
network services and capabilities, EXPANSE's software architecture is intended for controlling network
infrastructures and seems better suited for that thanfor directly supporting general application development.

The Touring Machine [Arango92, Gopal92] project at Bellcore is distinguished for its emphasis on
supporting development of communications applications through an API. Touring Machine has some strong
similarities with the call system, both in its goals and in its software architecture; however, the resulting APIs
are quite different. One of the important commitments for both systems is support for dynamically changing
calls with multiple parties and media which users of the system can control effectively. The Touring Machine
architecture contains a greater variety of objects than the call system since it supports software layers all the
way from switch and network interfaces to the user interface. Touring Machine has Session objects which are
similar to Call objects. However, the Session object provides support for negotiation of requests while the call
system distributes that negotiation out to the Parties involved in the requests, which seems better as the
variety of Parties, requests, and negotiation mechanisms in the system increases. Touring Machine has an
implicit notion of a user which corresponds to a Party object in the call system and which is similarly in
tended to generalize the intuitive notion of user to include other media sources. The abstract switching
mechanisms in Session objects and Call objects are strikingly similar. There are direct counterparts to the call
system's abstract MediaLines and MediaPorts. In the Session object, connections are represented explicitly
using connector values, while the corresponding connection objects in Calls are hidden in the implementation.
The call system's architecture emphasizes greater generality in the notion of communication channel to
provide better integration of communications with computing.

Despite these architectural similarities, the APIs of Touring Machine and thecall system emphasize different
things. The Touring Machine API gives more direct control of a client-server implementation and explicit
support for creating and negotiating connections. To make applications easier to write and to understand, the
call system emphasizes instead the operations which represent communication tasks at the level of Call and
Party objects such as adding and removing Parties from a Call and suspending and resuming Calls. Much of
the connection management is hidden in the call system's Resource Managers.

A rather different area of activity which deserves brief mention here is the current work on messaging APIs
which provide general application support for electronic mail. There are currently several competing mes
saging API standards including X.400 [CCITI'88], VIM [VIM92l, and Microsoft's MAPI. These APIs enable
applications to support sending and receiving mail and to do so intelligently. The call system's objective is to
provide complementary support for real-time communications. It is possible that there are interesting ways to
unify the asynchronous and synchronous services.

6. Summary and Conclusions

The call system's API tries to present to general application developers an intuitive set of components and
operations which model basic communications tasks and to hide where possible the structural and operational
features of any particular communications system. The central components of the call system are Call and
Party objects. Call objects can model diverse communications contexts, from a brief telephone call to a
persistent meeting room or project workspace. Parties and media can be added and removed dynamically
from Calls and sets of Calls can be merged. Party objects are very general, allowing the call system to be used
broadly and to support new notions of communication channels and media derived from distributed
computing. The call system has been implemented and used in a few experiments so far. It needs to be sub
jected to further testing in practice to determine its adequacy.

9

The interpretation of Call objects as "windows in a communication space" is provocative. Just as graphics
hardware and underlying graphics software formed the enabling technology for window systems, networking
and distributed computing make possible a call system, which controls virtual rather than graphical contexts.
As shown by the example of shared workspaces, it is the call system's ability to control the management,
navigation, and integration of virtual contexts which gives it a distinguished role. However, there is a great
deal more to graphical user interfaces than a window system. It is interesting to askwhether in the future there
will be richer sets of software components, possibly including Call objects, which will yield more powerful
application frameworks for computer-controlled communications to support development of applications for
inter-personal computing.

Acknowledgments

We would like to thank Riccardo Gusella, Shiz Kobara, Bob Leichner, and Aaron Oppenheimer of Hewlett
Packard, Prof. John Koegel and John Rutledge of the University of Massachusetts at Lowell, and Bob Simon
of the University of Pittsburgh for technical discussions and collaboration on the design, use, and
implementation of the call system. We would also like to thank Allan Kuchinsky, John Limb, and Robert Wu
of Hewlett-Packard and Dr. Robert Sclabassi of the Center for Clinical Neurophysiology at the University of
Pittsburgh for providing support for the various parts of this work.

Bibliography

[Arang092] M. Arango, P. Bates, et al. Touring Machine: A Software Platform for Distributed Multimedia
Applications. IFIP '92, May 1992.

[CCITI'88] Message Handling System and Service Overview, CCITT X.400. CCITT, 1988.

[Gopal92] G. Gopal, G. Herman, and M.P. Vecchio The Touring Machine Project Toward a Public Network
Platform for Multimedia Applications. Proceedings of the Eighth International Conference on Software
Engineering for Telecommunication Systems and Services, 1992.

[Minzer91] S.E. Minzer. A Signaling Protocol for Complex Multimedia Services. IEEE Journal on Selected
Areas in Communications, Vol. 9, No.9, pp. 1383-1394, December 1991.

[MM92] Proceedings of the 4th IEEE ComSoc International Workshop on Multimedia Communications,
1992.

[Sclabassi91] RJ. Sclabassi., R.L. Leichner, et al. The Multi-media Medical Monitoring, Diagnosis, and
Consultation Project Proceedings of the 24th Annual Hawaii International Conference on System Sciences,
1991.

[Swinehart87] D.C. Swinehart. Telephone Management in the Etherphone System. IEEE GlobeCom '87,
November 1987.

[UML91] Distributed Multimedia Control System User Manual. Interactive Media Group, University of
Massachusetts at Lowell, 1991.

[VIM92] VIM Interface Steering Group. Vendor-Independent Messaging Interface Functional Specification,
Version 1.0, March 1992.

[Vin91] H.M. Vin, P.T. Zellweger, D.C. Swinehart, and P.V. Rangan. Multimedia Conferencing in the
Etherphone Environment. IEEE Computer, October 1991.

10

Microphone
MediaPort

Audio-In
MediaLine

Audio-Out
Medial.ine

Speaker
MediaPorts

ResourceManager 1

Party 1

Figure 1

ResourceManager 2

Party 2

