GMAP2015 for Windows 7-8

USER MANUAL AND EXERCISES

Trond Helge Torsvik Center for Earth Evolutions and Dynamics (CEED) University of Oslo (Norway)

Download gmap.zip from:

http://www.earthdynamics.org/software/

 ▶ Parent Directory

 ▶ GMAP.zip
 18-Oct-2014 13:45 51M

 ■ GMAP2012/
 20-Sep-2012 15:30

Software Installation:

(1) Unzip **gmap.zip** to C-drive and GMAP must be in c:\gmap with two sub-directories as seen below:

Name	Date modified	Туре	Size
퉬 Bennet Setup if needed	22.09.2014 13:04	File folder	
퉬 Data	22.09.2014 12:57	File folder	
💷 apw.exe	11.05.1997 20:23	Application	219 KB
AxInterop.ComCtl2.dll	29.04.2010 19:10	Application extens	36 KB
AxInterop.ComctlLib.dll	29.04.2010 19:10	Application extens	104 KB
AxInterop.GraphsLib.dll	29.04.2010 19:10	Application extens	72 KB
AxInterop.MetaDrawLib.dll	29.04.2010 19:10	Application extens	72 KB
AxInterop.MSDataGridLib.dll	29.04.2010 19:10	Application extens	44 KB
AxInterop.MSGrid.dll	29.04.2010 19:10	Application extens	32 KB
AxInterop.MSHierarchicalFlexGridLib.dll	29.04.2010 19:10	Application extens	64 KB
AxInterop.Threed.dll	29.04.2010 19:10	Application extens	60 KB
Date_PoleToDate.dat	22.09.2014 13:00	DAT File	1 KB
Date_RefPath.dat	22.09.2014 13:00	DAT File	2 KB
DatePole.exe	02.08.2014 14:11	Application	221 KB
dotnetCharting.WinForms.dll	04.11.2014 10:14	Application extens	3 844 KB
dotnetCharting.WinForms.xml	23.02.2012 11:55	XML Document	1 194 KB
📄 drift.txt	05.07.2014 09:42	Text Document	3 KB
dumm.out	26.04.2015 18:00	OUT File	8 KB
🕙 gcd.xls	28.07.2014 06:33	Microsoft Excel 97	1 KB
gm.end	22.09.2014 13:02	END File	1 KB
gmap.out	26.04.2015 18:00	OUT File	2 KB
GMAP2001.vshost.exe.manifest	21.07.2007 02:33	MANIFEST File	1 KB
GMAP2010 Net.vshost.exe.manifest	10.06.2009 23:14	MANIFEST File	1 KB
GMAP2015.exe	05.05.2015 11:51	Application	17 396 KB

(2) If Gmap (or IAPD) as not ever been installed on your computer go to the Bennet Seup if needed and run **setup.exe**

Name	Туре
Bennet.CAB	Cabinet File
💷 setup.exe	Application
SETUP.LST	MASM Listing

(3) Click on GMAP2015.exe to start the program (or create a shortcut and put on desktop)

1. INTRODUCTION

GMAP is a state of the art computer program which performs all processing and plotting tasks usually associated with the storage and presentation of palaeomagnetic pole positions, and generation of palaeogeographic reconstructions. GMAP is menu-driven and easy to use; the user is never far removed from the basic data from which palaeogeographic reconstructions are derived, and therefore has a sense of total control over the program's performance.

GMAP can generate reconstructions based on individual palaeomagnetic poles, averaged palaeomagnetic poles, and digitally derived smooth (APW) curves. Palaeogeographic reconstructions can be saved to disk files, and later viewed in chronological order as `animations'.

GMAP is supplied with a full range of continental outlines. It is also possible to import new continents via simple ASCII files or ARC GIS shape files.

The GMAP software system package was originally developed by Trond Torsvik at the University of Bergen in 1982 and later with contributions from Lauri Pesonen, Mark Smethurst (Torsvik & Smethurst 1989) and Pavel Doubrovine. Some GMAP routines are currently being ported to GPlates (<u>www.gplates.org</u>) and this GMAP version is similar to earlier versions but can run under Windows 7 and 8.

1.1 MAIN PROGRAMS AND FILE-TYPES

Main program	
GMAP2014_Win7.exe	Palaeogeographic reconstruction program
Main Data file types	
*.C97	Continent outlines
*.VGP	Files containing virtual geomagnetic poles (VGP)
*.A97	Animation files

1.2 ABBREVIATIONS

VGP	VIRTUAL GEOMAGNETIC POLE
APW	APPARENT POLAR WANDER
APWP	APW PATH
CONTINENT	A FILE CONTAINING LATITUDES AND LONGITUDES; THESE CAN
	W.G. BE COASTLINES OR TERRAIN BOUNDARIES
α ₉₅	95 PERCENT CONFIDENCE CIRCLE ON MEAN REMANENCE
A95	95 PERCENT CONFIDENCE CIRCLE ON MEAN POLES
k	FISHER (1953) PRECISION PARAMETER
dp,dm	SEMI-AXES OF THE OVAL OF 95 PERCENT CONFIDENCE ABOUT THE
	VGP
DEC	MEAN REMANENCE DECLINATION
INC	MEAN REMANENCE INCLINATION
GLAT	LATITUDE OF SAMPLING SITE

GLON	LONGITUDE OF SAMPLING SITE
PLAT	VGP LATITUDE
PLON	VGP LONGITUDE

2. DESCRIPTION OF GMAP

Select GMAP from the Program Manager Window option and double click the GMAP for Windows icon. After start-up the main menu is displayed (Fig. 1). An option in the top menu or the left-hand and right-hand panels (Fig. 2) may be selected through the use of the mouse and executed by clicking the mouse.

FIGURE 1 Main menu GMAP

2.1 MAIN MENU OPTION (SUBOPTIONS)

Organize

Or	ganize Projection	Continent	VGP	Animation	Euler Poles	GPlates Utilities
	Copy to Clipboard Save as WMF file					
	Plot Setting					
	Exit					

OPTION	EFFECT
Copy to Clipboard	Copy graphics to Clipboard and you can later 'Paste' the graphics into a
	drawing package in vector format.
Save as WMF file	Save graphics as a vector WFM file and you can later open file in a drawing
	package.
Plot Setting	ADJUST VGP SCREEN SETTINGS
Exit	END GMAP

Projection

Organize	Projection Continent	VGP	Animation	Euler Poles	GPlates Utilities
Screen	Mollweide				
Central Me	Sanson-F	I			
Longitude	Galls				
Latitude	Orthogonal				
Grid	Schmidt	I			
Redr	Wulf				
1 100	Spinning Globe				

In GMAP you can select between 6 different projections. There is also a *Spinning Globe* (Orthogonal) option. The latter is rotated by holding down the left-hand mouse button. Only implemented for plotting CONTINENTS and VGPs (not Animation files) and can only plot one continental and VGP file at the time.

Continent

Organize	Projection	Continent VG	P Animation	Euler Poles	GPlates Utilities
Screen		Open			
Central Me	ridian	Merge			
Longitude	0	Library			
Latitude	0	Import Shap	efile		
Grid	30	Save As			
Redra	aw	Draw			
1009	<mark>∕∕ </mark>	Rotate			

OPTION	EFFECT
Open	LOAD A CONTINENT FILE
Merge	MERGE CONTINENT FILES IN MEMORY
Library	DISPLAY CONTINENTAL LIBRARY FILES (see below)
Import Shapefile	IMPORT AND DRAW AN ARCG-GIS SHAPE FILE
Save As	SAVE A CONTINENT FILE
Draw	SCREEN DISPLAY OF CONTINENT
Rotate	ROTATE CONTINENT ACCORDING TO A PRE-DEFINED EULER-POLE

Continental files are located in *c:\gmap\data\continents* and they are typically named as *101_North American craton_1100.C97*. The leading number generally follows GPlates/Plates format followed by a named description. The final numbers indicate from when (in million years) the shape of the continent or terrane is valid. All continents can be selected interactively in the 'CONTINENT Library' option (see below). The library continents are those used in Torsvik et al. (2012).

VGP

Organize	Projection	Continent	VGP	Animation	GPlates Utilities	
Screen			0	pen		
Central Me	ridian		Ν	1erge		
Longitude	0		Li	ibrary		
Latitude	0		S	ave As		
Grid	30		D	raw		
Redr	aw		R	otate		
▲ 100	% ▶		V	GP Reconstruc	t	
🖾 Blank			Т	able and Anal	ysis	

OPTION	EFFECT
Open	LOAD A VGP DATA FILE
Merge	MERGE VGP FILES
Library	SELECT VGP FILES FROM A PRECOMPILED LIBRARY (see below)
Save As	SAVE A VGP DATA FILE
Draw	SCREEN DISPLAY OF VGP DATA
Rotate	ROTATE VGP ACCORDING TO A REDEFINED EULER-POLE
VGP Reconstruct	MAKE A RECONSTRUCTION BASED ON A VGP
Table and Analysis	SHOW/EDIT/MANIPULATE VGP IN TABLE FORM

VGP files are located in *c:\gmap\data\VGPs* and the interactive "VGP Library" option seen below in located in *c:\gmap\data\VGPs\Library Paths ESR2012*. This library contain the files built in Torsvik et al. (2012) and you can select between files with raw pole data (-Raw) or running mean APW paths (_RM, 20 Myr window). The table to the right contains the same files as in the left-hand table but clastic sediments are corrected for potential inclination shallowing using a flattening factor (f) of 0.6. All corrected files are identified by _F6.

🖳 frmVGPLibrary			
ELSEVIER	Contents lit Earl journal homepag	EARTH- CEINCE	
Phanerozoic Trond H. Torsvi Pavel V. Doubro Joseph G. Meer	: polar wander, palaeo g k ^{a.b.c.d.*} , Rob Van der Voo ^{a.e} ovine ^{a.b} , Douwe J.J. van Hinsl t ^J , Phil J.A. McCausland ^k , L. I	geography and dynamics ^c , Ulla Preeden ^f , Conall Mac Niocaill ^g , Bernhard S bergen ^{a.b} , Mathew Domeier ^{e.b} , Carmen Gaina ^{a,} Robin M. Cocks ¹	iteinberger ^{h.a.b} , ^b , Eric Tohver ⁱ ,
Running Mean (20 Myr) Baltica_StableEurope Global_SAfrica_Raw. Global_SAfrica_Raw. Gondwana_Raw.vgp Gondwana_Raw.vgp Laurentia_Raw.vgp Laurentia_Raw.vgp	window) APW Paths a_Raw.vgp a_RMvgp vgp gp	Running Mean with clastics corrected for flattening (f=0.6) Baltica_StableEurope_F6_RM.vgp Global_SAfrica_F6_RM.vgp Global_SAfrica_Raw_F6.vgp Gondwana_F6_RM.vgp Gondwana_F6_RM.vgp Laurentia_F6_RM.vgp Laurentia_F6_RM.vgp	Cancel

Animation

OPTION	EFFECT
Open	LOAD AN ANIMATION FILE
Merge	MERGE ANIMATION FILES
Draw	SCREEN DISPLAY OF ANIMATION FILE
Save As	SAVE AN ANIMATION FILE TO DISK
Table and Analysis	SHOW/EDIT ANIMATION FILE IN TABLE FORM

GMAP also includes an animation library that is controlled with the "Animation Library" controller that is located at the right-hand side of the startup form (see below). Pre-made reconstructions (animations) are those of Torsvik et al (2012) and they are in a palaeomagnetic frame without any true polar wander (TPW) corrections. Animations have been prepared in 5 Myr intervals back to 540 Ma. Type a reconstruction age and click 'Apply' or use arrows to go back and forth in time. To avoid doing the entire world you can activate 'Filter Animations' and select the areas you want to be reconstructed.

Euler

Organize	Projection	Continent	VGP	Animation	Eu	ler Poles	GPlates Utilities
Screen						Set Eule	r Pole
Central Me	ridian					Rotate a	point
Longitude	0					Calculate	e Euler Poles
Latitude	0					Add Eule	er Poles
Grid	30				_		
Redra	aw						
100	<mark>∕∕ </mark>						
✓ Blank							
Diam							

OPTION	EFFECT
Set Euler Pole	DEFINE A EULER POLE AND ROTATION ANGLE
Rotate a point	PERFORM AN EULER ROTATION
Calculate Euler Poles	CALCULATE AN EULER POLE
Add Euler Poles	CALCULATE AN EULER POLE BASED ON TWO SEPARATE EULER POLES

GPlates Utilities

Organize	Projection	Continent	VGP	Animation	Euler Poles	GP	lates Utilities			
Screen							Read GPlates	Rotation File		Ī
Central Me	ridian						Calculate Pla	te Velocities		
Longitude	0						Find or Calcu	late Euler Rotatio	ons	
Latitude	0						Calculate GP	lates Rotation File	e from VGPs	
Grid	30			Г		_				
Redr	aw									

OPTION	EFFECT
Read GPlates Rotation File	Read a standard GPlates formatted rotation file
	(original format)
Calculate Plate Velocities	Calculate plate velocities from GPlates Rotation File
Find or Calculate Euler Rotations	Find raw data in GPlates file or calculate abslute
	rotation parameters
Calculate GPlates Rotation File from VGPs	From VGP file create the Euler data needed in
	GPlates

3.0 LEFT-HAND PANEL

PANEL OPTION	EFFECT
Central	SET LATITUDE AND LONGITUDE FOR PROJECTION CENTER, AND GRID SPACING
Meridian	
Redraw	CLOCK AFTER CHANGING CENRAL MERIDIAN OR GRD SPACING
Blank	CHANGE BETWEEN BLANK ON AND BLANK OFF. BLANK ON IS DEFAULT, AND TO
	PRESERVE A PICTURE DURING SUCCESSIVE LOADING OF
	CONTINENTS ('OPEN CONTINENT)' THIS OPTION MUST
	BE SET TO OFF. CLICK WITH MOUSE FOR THE
	APPROPRIATE STATE
Scale	SELECT SCALE (MAGNIFICATION) CENTRED AROUND ZOOM-CENTRE
	CLICK WITH MOUSE AT THE APPROPRIATE SCALE VALUE (50-2000%)

4.0 Continent/VGP/Animation

4.1 OPEN (CONTINENT, VGP or ANIMATION files)

A list of CONTINENT (file extension .C97), VGP (file extension .VGP) or ANIMATION (file extension .A97) are displayed. Select the appropriate directory, drive and file name followed by <OK>. A range of CONTINENT/VGP/ANIMATION files can be found in c:\gmap\data\continents, c:\gmap\data\VGPs and c:\gmap\data\ANIMATIONS. The CONTINENTS are also found in the ANIMATION directory but all files in this directory are 'Read Only' to avoid overwriting original system files. CONTINENTS starting with a 3-digit number mainly follows GPlates (Plates) conventions

4.2 MERGE (CONTINENT, VGP or ANIMATION)

This option is identical to that described above, but the selected file will be merged with an existing CONTINENT/VGP/ANIMATION file in memory. These combined data can later be saved to a disk-file using option `SAVE AS' (CONTINENT/VGP or ANIMATION). Note, however, that the maximum permitted number of co-ordinates in a single continent outline is 30000 and 2000 data-points in a VGP file.

4.3 SAVE AS (CONTINENT, VGP or ANIMATION)

The purpose of this routine is to save modified CONTINENT, VGP or ANIMATION data to disk files. Merged CONTINENT files, EDITED CONTINENTS or rotated CONTINENT data can be saved under a new file name. The latter is useful for constructing ancient terranes or storing palaeogeographic maps. In option `DRAW CONTINENT' one can also add points/lines to the existing CONTINENT file which can later be saved under this option.

4.4 ROTATE (CONTINENT or VGP)

Define euler-data before selecting this option, either manually using the `KEYBOARD INPUT' option in the Euler-menu or from a file using the `OPEN' option. When rotating VGP's one can also rotate the sampling site latitude and longitude, to permit the generation of proper error ovals on data in their rotated positions.

Note that the CONTINENT outline/VGP's in memory are changed during rotation. To later perform a rotation on the original data-set the original continent file must first be re-loaded. Compound rotations can be performed using `KEYBOARD INPUT' and `ROTATE CONTINENT/VGP' repeatedly.

Example of compound rotation:

Problem: You wish to rotate the North American craton to its Devonian palaeoposition according to palaeomagnetic data from BALTICA.

- (1) Select option `OPEN CONTINENT'
- (2) Open North America craton (file = \data\continents\101_North American craton_1100.C97)
 (If you now use option `DRAW CONTINENT', a map like Fig. 3A will appear on the screen)
- (3) Use option `KEYBOARD INPUT' in the 'Euler Rotations' menu to register the rotation pole and angle which corrects for the Mesozoic/Cenozoic opening of the North Atlantic (e.g. use a classic Bullard et al. (1965) fit: c. 87 (latitude), 27 (longitude) and 37 (Euler-angle).
- (4) Select option `ROTATE CONTINENT'. The continent outline will then be adjusted for the opening of the North Atlantic (If you then use option `DRAW CONTINENT', a map like Fig. 3B appears on the screen).
- (5) Select option `OPEN VGP'.
- (6) Open the fitted APW path for BALTICA/Europe (e.g. file data\VGPs\Baltica_Europe_2012.vgp supplied with the GMAP package).
- (7) Select option `TABLE VGP' in the VGP menu.
- (8) Select reference pole (e.g. pole 41 corresponding to an age of 400 Ma) by clicking the appropriate line at the line-number column.
- (9) Select sub-option `RECONSTRUCT'.

C VGP Reconstruction	
Continent:101_North Americ	can
South Pole	VGP Latitude 0.34
C North Pole	VGP Longitude 320.33
	<u>Ok</u> <u>C</u> ancel

Select south-pole and click the <OK> option.

Result

Continent data, already corrected for the opening of the North Atlantic is rotated by an amount which brings the selected reference VGP to the Southpole. Note that the Euler Rotation Pole required to do this will become the current Euler Pole setting which is displayed below the main menu, and can be used by option `ROTATE CONTINENT' to position other continents in a Devonian reconstructed position. North American craton will be displayed on the screen in a Devonian (400 Ma) configuration in 'European' co-ordinates.

FIGURE 3 Example of compound rotation. (A) North-American craton displayed in present position. (B) Rotated into a Bullard et al. fit (lat=87, long=27, angle=37) with Europe, taking account of the opening of the North Atlantic.(C) The 'corrected' NAM positioned according to pole 41 in VGP file \data\VGPs\Baltica_Europe_2012.

4.5 VGP RECONSTRUCT

This option performs a reconstruction based on a VGP inputted from the keyboard. Enter VGP latitude and longitude and state whether it is a SOUTH (s) or NORTH (n) pole.

Example of how to produce a display for a map of the Permian palaeo-position for Baltica:

- 1. Load BALTICA (file = \data\continents\302_Baltica_1100.C97) using `OPEN CONTINENT'
- 2. Select option `VGP RECONSTRUCT' and enter -45 (VGP latitude) and 340 (VGP Longitude)
- 3. Select South-pole and click on <OK>.

4. BALTICA will be displayed in 'DRAW CONTINENT' in its PERMIAN position (see below).

4.6 DRAW CONTINENT (or VGP & ANIMATION)

In this option a CONTINENT, VGP or ANIMATION file is displayed on the screen using the pre-defined projection. The plot is centered on a `zoom-center', which by default is 0,0 (LAT,LONG). Blanking is ON by default.

5.0 Euler Rotations

5.1 SET EULER POLE

This option enables the input of an Euler rotation pole from the keyboard which can subsequently be used by options `ROTATE CONTINENT (or VGP)' or `EULER ROTATION'.

5.2 ROTATE A POINT

This utility routine performs Euler-rotations on VGP's entered interactively from the keyboard. The currently registered Euler Pole is used.

5.3 CALCULATE EULER POLES

This option enables calculation of an Euler rotation pole based on manual input of two geographic point (co-ordinates) or poles. Enter Latitude (LAT) and Longitude (LONG) for pole A and B, and the resultant rotation pole (Latitude & Longitude) and amount of rotation (Angle) will be displayed.

OLE A	Latitude 33	Longitude 55	
OLE B	Latitude 12	Longitude	
ULER POLE	Latitude -52.59063	Longitude 86.859207	Angle 43.7079.
Note that this or	ocedure do pot		

5.4 ADD EULER POLES

This option add/concatenates two Euler poles into a single resultant Euler pole. Enter latitude, longitude and angle for the two Euler poles and click on <Calculate>.

dd Euler Poles			
POLE A	Latitude 34	Longitude 55	Angle 18
POLE B	22	12	13
COMBINED	33.19612	35.07643	29.21585
Right-hand rules must be less than degrees	angles 180	Calculate	e <u>E</u> xit

6. TABLE VGP

This is one of the most frequently used options in GMAP. Upon selecting this option the following table is displayed:

🚽 Tal	ole VGP for c:\gm	ap\data\vgps\Library Paths ESR2012\Baltica_StableEurope_RM.vgp					-					
Orga	anize Edit C	alculate Reconstruct Plot APW Paths Tools Advanced (CEED)	Crust2Core (TH	(T) Facies (T)	(T) Timescale	55						
Clic	k leftmost colur	nn to select a VGP. Multiselect by Crtl or SHIFT. Select entire Tabl	e to copy to C	lipBoard by c	licking upperr	nost left cell						
	No	Q Comment	Dec	Inc	a95	GLat	GLon	PLat	PLon	Dp	Dm	Age
۲.	1	4C3 West Eifel Volcanics, Germany, extrusives, intrusives, 0-1	14.7	67.8	3.6	50.2	6.7	-80.6	267.5	1	6	0.5
	2	4C3 East Eifel Volcanics, Germany, extrusives, 0-1Ma(QP-R)	5.2	66.6	4.4	50.4	7.3	-86.4	296.1	1	7.3	0.5
	3	3 56 Volcanics NW Germany	1.5	61.3	12.9	48	9	-84.3	357.7	1	0	8
	4	5NEW Prado section, Teruel, Spain; Abels et al., 2009	359.4	48.1	1.8	40.2	1.6	-78.9	328.3	-1	304	9.5
	5	5NEW Cascante, Spain; Abdul Aziz et al., 2004	10.7	50.2	3.5	40.1	1.1	-77.4	314.2	-1	304	10
	6	5NEW Velay Oriental Volcanics, Massid Central, France, extru	1.4	57.6	6.9	45	4.2	-84.1	351.2	1	8.6	11.5
	7	5NEW Orera, Spain; Abdul Aziz et al., 2000	3.1	41.4	1.5	41.2	1.4	-72.4	352	-1	0	12
	8	4 3282 Volcanics Germany	14.1	62	4.4	50.8	8	-77.8	310.8	1	0	24
	9	3 1506 Hocheifel Tertiary Volcanics, Germany, extrusives, an	1.1	60.2	3.4	50.3	7	-80.8	2	1	0	34
	10	5M NEW Lower Paleogene mudstone, Sheppy, SE England, Ali	1.1	43.2	6.8	51.3	1	-63.7	358.6	0.6	8.4	52
	11	5 Lundy island dikes, Wales, 45-54 Mussett et al. 1976	3.6	62.7	1.5	51.2	355.3	-83	335	1	2.3	59
	12	5 Vaternish Dyke Swarm Wilson et al. 1974	183.4	-65.6	3.5	57.6	353.4	-76	340	1	5.7	59
	13	5 Arran dykes Dagley et al. 1978	359	65.2	1.2	55.6	354.8	-81.7	359.8	1	1.9	59.4

Column#	
1- Nr.	Pole number
2Q Comment	Combined character string of Van der Voo classification/grading (1-7) and and
	pole information. This string is important and controls weighting in the fitting of
	smooth APW paths. For example a pole with `Q' factor = 7 are entered as `7'
3- DEC	Remanence Declination
4- INC	Remanence Inclination
5- a95	95 % confidence circle on mean remanence direction
6- GLAT	Latitude of sampling site
7- GLON	Longitude of sampling site
8- PLAT	Latitude of VGP
9- PLON	Longitude of VGP
10- dp	Half-angle of the confidence on the VGP in the direction of the palaeo-meridian.
	This column is also used to store other parameters
11- dm	Half-angle of the confidence on the VGP perpendicular to the palaeo-meridian
	This column is also used to store other parameters
12- AGE	VGP age. All poles must be assigned an age if a smooth path is to be fitted to
	them. During hard-copying of VGP data the age will be printed next to the pole.

Note that VGP files imported from the Global Palaeomagnetic Database ('Organize', 'Import') substitute column #2 with DEMAGCODE and other information. Column #12 (AGE) is a mean of Low and high magnetic age stated in the database.

6.1 MAIN MENU AND SUBOPTIONS

OPTION/SUBOPTION	EFFECT
Organize	
Open	Open a VGP file
Save	Save VGP File
Save As	Save VGP with a new name
New	Create a new VGP file.
Import	Import VGPs from:
	 Precambrian paleomagnetic database
	IAGA global paleomagnetic database
Exit	Return to main menu
Organize Edit Calculate Reconstruct Plot APW Paths T	
Open	
Save lumn to select a VGP. Multiselect by Citl or S	
New Comment Dec Inc a	
Import	
Export IAGA global paleomagnetic database	
Exit	
Edit	
Copy Selection to Clipboard	Copy rows to clipboard and e.g. paste into e.g. Excel.
	Select entire Table to copy to Clipboard by clicking
	uppermost left cell
Delete row(s)	Delete one or several entries in the Table. Select pole
	by clicking on numerical row code at the first
	column. Multi-select by Crtl or SHIFT
Add a row	Add a pole to the Table
Sort Ages Increasing	Sort ages
Sort Ages Decreasing	Sort ages
Invert row(s)	Invert VGP polarity of one or several poles.
Invert all rows	Invert VGP polarity of all poles
Insert PlateId for all VGP's (Dm column)	Fills the Dm column with continental plate id's as in
Insert Flattening factor (f) for all VGPs (Dp	GPLates
column)	Fills the Dp column with flattening factor (f). Typical
	used for clastic sediment poles and you can later
Edit Calculate Reconstruct Plot APW Paths Tools	recalculate the pole based on the given f-factor.
Copy Selection to Clipboard	
Delete row(s)	
Add a row	
Sort Ages Increasing	
Invert ALL rows	
Insert PlateId for all VGPs (Dm column)	
Insert Flattening factor (f) for all VGPs (Dp column)	
Calculate	
Pole Statistics	Calculate mean of the listed VGP's (A95)
Calculate poles	Determine the palaeomagnetic nole-nosition for all
	data in the Table. Declination inclination and
	sampling position present in data-set

Pole Reference	Calculate amount of rotation and flattening.
	Enter Reference Pole and A95
Calculate Dec / Inc	Calculate declination and inclination
	Based on VGP latitude & longitude and sampling
	nosition
Palaalatituda Reference	Enter latitude & longitude (antional) for which
	Enter latitude & longitude (optional) for which
	palaeolatitudes are to be determined. Note that
	latitude & longitude will replace original sampling
	co/ordinates in the VGP Table. This enables the
	operator to calculate 'local' declination and
	inclinations at the selected reference locality.
Single VGP Calculation	Calculate a pole based on declination, inclination and
	sampling location
Non-dipole field correction	Type G1 and G2 (octupole) contribution and a new
	inclination and pole will be calculated for the entire
	table
Inclination Error Correction (fix f-value al	Type f (flattening factor) and inclination and pole will
rows)	be recalculated
Inclination Error Correction (f-value from	Inclination and note recalculated from f-value in dn
dn column)	column
	column
Calculate Deconstruct Diet ADW Daths Tools Advan	
Pole Statistics	
Calculate Poles	
Pole Reference	
Calculate Dec / Inc	
Paleolatitude Reference	
Single VGP calculation	
Non-dipole field corrections	
Inclination Error correction (fix f-value all rows)	
Inclination Error correction (t-value from dp column)	
Reconstruct	Perform a reconstruction based on a VGP in the table
	Note - Load a continent prior to this operation
VGP Reconstruction	 Select reconstruction pole by clicking on
Continent:c:\gmap\data\contine	numerical row code at the first column
VCP Letitude	Select North or South pole
C South Pole -74	Resulting reconstruction will be displayed in
North Pole VGP Longitude	mode 'DRAW CONTINENT'
3	
Ok Cancel	
Plot	
Dec-Inc Stereoplot (Wulf)	Display declination and inclinations in a Wulf plot
Palaeolatitude	Calculate and display latitudes based on inclination
Histograms (Means)	Display data in histograms (use any column in Table)
Apparent Polar Wander	Calculate APW (from running mean or spline path)
	and display in X-Y plot
Plot APW Paths Tools Advance	
Dec-Inc Stereoplot (Wulf)	
Palaeolatitude	
Apparent Polar Wander	

APW Paths	
Build Running Mean Path	Fit a smooth APW path to the data in the Table using running means
Build a Spline Path	Fit a smooth APW path to the data in the Table using splines
Voo Grading (Q)	
Timescale (not updated)	
APW Paths Tools Advanced (CEED) Crust2Core (THT) F Build Running Mean Path & Build Spline Path	
Date a Paleomagnetic Pole with the APW Path	
Rotate APW Path (poles) to a new reference frame	
Calculate Point Velocity and Rotation from APW Path	
Compare and fit APW Paths	
Interpolate APW Path	
Fit Small Circle Segments to APW Path	
Fit Great Circle Segments to APW Path	
Voo Q-factor grading of Poles	
Tools	
Calculate Euler poles for VGPs	Calculate Euler poles for entire Table. Select North
Check poles	Cross-checking type pole and calculated from dec, inc and location
Interpolate VGPs	Interpolating by typing interval
Non-dipole Field vs. Latitude	Draw a graph based on G1 and G2
Inclination Error vs. Latitude	Draw a graph based on f (flattening factor)
Velocity	Engage calculation of velocties from VGPs (very old
Tools	routine)
Check Poles	
Interpolate VGP's	
Non-dipole Field vs Latitude (graph)	
Velocity	

Note: All alterations to data in the Table will only affect the dataset in memory, and not on the disk. To save alterations made in 'TABLE VGP' to disk, use option 'SAVE AS (VGP)' in the main menu.

6.2 IMPORT

6.2.1. Precambrian paleomagnetic database

Organize																		
Copy to V	SP Format	Ì																
Exit.										-								
LOMAGAGE	0 HIM	GAGE 400	Q-Factor (1-7)	>= 1	Authors	Tor	Craton	Bal	Country	-1 1 3	Filter Res	et						
	10			(co. t														
ID	RES#	т	Rock unit	C	Comp	Craton	Slot	Silon	LMA	HMA	Isoage	Met	Age references	Age	в	N	Р	R%
2	100157	1	Alnö carbo	SE	HT	Baltica-Rest	62.5	17.5	490	590	584 ű 7	8, C	Meert et al.	540	6	40	N	0
222	8764	. 1	Fen complex.	NO		Baltica-Rest	59.3	9.1	568	598	583 ű 15	c	Meert et al.	584	6	78	R	100
223	100156	i.	Alnö carbo	SE	HT	Baltica-Rest	62.5	17.5	577	591	584 ű 7	c	Moort ot al.	584	5	27	N	0
224	497271	1	Alnö carbo	SE	LT	Baltica-Rest	62.5	17.5	577	591	584 ű 7	c	Meert et al.	584	15	73	N	0
322	3635	4	Egersund d	NO.		Baltica-Rest	58.4	6.2	613	619	616 ű 3	9	Bingen et al	616	4	35	N	0
323	100017	1	Egersund d	NO		Baltca-Rest	58.8	5.9	613	619	616 ű 3	9	Bingen et al	616	9	68	N	0
364	7740	5	Nyborg form.	NO	HT	Baltice-Rest	70.1	28.7	646	660	653 ű 7	e/f	Torsvik et al.	653	6	55*	N	0
367	497253	5	Nyborg form	NO	LT	Beltice-Rest	70.1	28.7	603	703	1.000	a, elf	APWP, Tors	653	1	9*	N	0
368	497255	5	Nyborg form	NO	IT	Baltica-Rest	70.1	28.7	603	703		a, e.7	APWP, Tors	653	1	5*	N	0
630	8299	1	Hunnedalen.	NO		Baltica-Rest	58.9	7	821	875	848 Åt 27.	c, h	Welderhoug	848	8	69	N	0
662	9280	- i	Egersund u	NO		Baltica-Rest	58.3	6.9	870	930	931 ű 3	a, g	APWP, Sch.	900	5	24	N	0
2540	49693	1	Dividalen ba	NO	A	Baltica-Rest	68.2	19.5	1845	1905	1875 ű 3	a	Rehnstrågu	1875	1	7	N	0

6.2.2. IAGA global paleomagnetic database

🖶 Gh	obalPMDbas	e distance for	- And the second	-														1	91 - X
Org	anize																		
	Copy to VG	Pormat																	
	Exit		GAGE 200	Demog Code	(0-5)>= 3		Remanence	Mode	Continen	t Ahica	Coun	try South Africa	Authors						
				Stereoplots	and vector plots a	and more (. 💌	Selectfrom	n.,	• Africa		• Sout	h Africa 💌	Published since	1940	Filter				
	ID	REFNO	Rockname	Place	CONTINENT	Dec	Inc	ED95	SLAT	SLONG	PLAT	PLONG	Dp	Dm	MeanMAGAGE	LOMAGAGE	HIMAGAGE	Demagcode	Authors
•	539	1416	Bakkeveld	Cape Provin	Africa	359	-58	5	-33.5	19	85	206	5.5	7.3	2.5	0	5	4	Bachtada
1	2398	1085	Kimberite pi	South Africa	Africa	330.3	-67.5	12.4	-28.8	24.6	58.2	237.2	15.3	15.3	84	81	87	3	McFedde
	2525	2293	Cretaceous	South Africa	Africa	345.7	-69.1		-29	26	64.1	226.1	5.2	5.2	90.5	81	100	4	Hargrave
	2471	1225	Monastery a.	South Africa	Africa	350	-68.7	8.4	-28.9	28.3	65.7	223.3	12	14.2	88	84	92	3	Hargrave
	3042	2293	Creteceous	South Africa	Africa	310.1	-55.9		-28.5	24	47.6	269.9	9.7	9.7	129	113	145	4	Hargrave
	3180	1225	Swertrugge	South Africa	Africa	293	-46.4	26.9	-25.5	26.2	30.8	277.8	22.2	34.5	145	141	149	3	Hargrave
	3189	3430	Bumbeni Co.	Natal, South	Africa	112	45	1 100 100	-27.8	32.3	30.2	285.9	8.1	8.1	146	145	147	4	Hargrave
	3279	2293	Mzongewe	South Africa	Africa	33.4	-75	8.6	-30.3	29	50.6	186.1	14.6	14.6	152	148	156	4	Hargrow
	3591	3114	Lebombo B	Northeast S.	Africe	337.6	-51.4	7	-24	31.7	68.7	274.5	6.5	9.5	178	173	183	3	Henthore
	3606	3090	Stormberg L	South Africa	Africa	338,7	-53.7	3.2	-29.3	28.6	71.6	273.5	3.7	3,7	180	175	185	4	Kosterov
	3643	3430	Karoo Igneo.	South Africa	Africe	156	53	1000	-30	25	62.9	278.3	3.3	3.3	184	178	190	4	Horgrow

6.2 POLE REFERENCE

🖏 Pole Reference 🗖 🗖 🗙
Pole Latitude (- for South)
Pole Longitude
A95
<u>D</u> k <u>C</u> ancel

This option is useful when dealing with displaced and rotated terranes. A reference pole in the term of latitude, longitude and A95 is required

Based on this reference pole, the declination differences between the reference and tabulated data are calculated. This provides estimates of the potential rotation angle (about a vertical axis) of each pole in the table relative to the reference pole. Differences in inclination are also calculated, which provide

estimates of palaeolatitudinal differences (or remanence flattening).

When using the `PRINT TABLE' option (above) after performing this calculation, a detailed listing of estimated rotation and flattening angles together with the associated errors will be printed. On the screen the data will be displayed from column 12 and onwards.

6.3 RECONSTRUCT

Organize Reconstruct	APW Path Calculate E	dit Plot	Tools										
4RM: 90 - 110Ma	N B VGP Reconstruction		_ 0		1								
CLPOL	C Continent:302_Baltica_11	100				GLAT	GLON	PLAT	PLON	Dp (F)	Dm	AGE	
1 4RM:-1	0 -				5.51	45.83	4.90	-82.51	312.16	5.00	101.00	0.00	
2 4RM: 0	South Pole	VGP La	titude	_	5.17	45.05	4.27	-81.77	327.21	7.00	101.00	10.00	
3 4RM: 1	D-	-/8.61			7.60	44.30	3.47	-78.61	331.57	4.00	101.00	20.00	
4 4RM: 2	D - C North Pole	VGP Lo	naitude		21.06	50.55	7.50	-80.30	332.60	2.00	101.00	30.00	
5 4RM W	A	352.04	-		3.40	50.30	7.00	-80.78	2.00	1.00	101.00	40.00	
6 4RM: 4	D+			-11	4.66	55.33	355.22	-78.00	346.20	8.00	101.00	50.00	
7 4RM: 5	D+	Ok	Cance		3.04	56.12	354.64	-77.17	346.13	13.00	101.00	60.00	
8 4RM: 6	D+				3.11	55.40	355.84	-75.66	345.52	7.00	101.00	70.00	
9 4RM: 7	ם - שמואת א נשף טו	107.00	01.10	_	3.87	46.78	27.74	-72.32	333.17	4.00	101.00	80.00	
10 4RM: 8	0 - 100Ma N= 4 (Dp i	196.18	-56.47		6.22	48.76	29.23	-73.39	338.13	4.00	101.00	90.00	
11 4RM: 9	0 - 110Ma N= 2 (Dp i	197.59	-69.26		14.27	58.59	59.50	-78.61	352.04	2.00	101.00	100.00	

This is the most heavily used routine in performing reconstruction's based on palaeomagnetic data. This function is also available in the main menu under the name `VGP RECONSTRUCT'.

In GMAP, the euler-pole and rotation angle which is required to rotate the selected VGP to the present geographic NORTH (n) or SOUTH (s) POLE is determined and becomes the current setting for the euler rotation listed under the main menu.

The user must note that any pole-position can result in two possible palaeo-positions for a continent, one opposite to the other, depending on the poles polarity. Therefore, attention should be paid at all times to the polarity of the VGP's in the table, so that proper account can be taken of it. Note that the function below, `APW PATH', requires that all the VGP's in the table have the same polarity.

In order to use this option, first load a VGP file and the contenent you wish to reconstruct. Click in the table on the line (pole) you wish to use for reconstruction.

6.4 APW PATH

To aid the definition of APW trends within tectonic units and to compare such trends between tectonic units GMAPW includes a method of fitting smooth path to a series of VGP's, of various ages,

which has a location and time progression. Path fitting constitutes interpolation; reducing data sets to a simpler, and to some extent interpreted, form.

A number of numerical methods for fitting smooth paths to palaeomagnetic poles have been offered in the literature (Gould, 1969; Parker and Denham, 1979; Thompson and Clark, 1981, 1982; Clark and Thompson, 1984; Jupp and Kent, 1987). In GMAP we have used the method of Jupp and Kent (1987) because it is statistically rigorous, is independent of the co-ordinate system, and is most sympathetic to the concept of APW. The method aims to fit `spherical smoothed splines' to a given data-set, consisting of pole positions and error parameter.

It is possible to generate a number of paths with different levels of smoothing. This is done by adjusting a smoothing parameter used by the computer program. In GMAP the data can be individually weighted according to their alfa95, so that the route taken by the smooth path through the data set will depend on both the distribution of the data on the globe and the standard error for each of the palaeopole positions. The lower the reported angular error for a pole position, the closer the curve will pass by it. We have also implemented a weighting procedure based on the Van der Voo's (1988) reliability index `Q' (grades 1 to 7; least to most reliable).

It is clear that the angular error associated with a particular palaeomagnetic pole position is far from an adequate description of the quality or reliability of that pole. For example, uncertainty in the age of the result has a direct bearing on the angular uncertainty which should be associated with it, since apparent polar wander might be continuing within the time period of uncertainty. Instead of weighting pole positions solely on the basis of criterion (2) in Van der Voo's reliability scheme (alfa95), it is informative to weight the data in proportion to their 'Quality factors'. This causes the smooth path to pass close to the data which score `7', full-marks, and be only gently guided by those data with lower reliabilities.

GENERATION OF APW PATHS

(1) Load a VGP file via the main-menu option `OPEN VGP' (e.g. file \data\VGPs\NorthAmerica2008_ROG.vgp).

- (2) Select option `TABLE VGP'
- (3) Select sub-option `SPLINE FITTING'

Veighting C None C According to Q-Factor C According to alfa95	Smoothing: 200 Path Resolution 5 5 5 5 5 5 5 5 5
Output APW File-name: spline22	Cancel OK

- (4) Select (a) No weighting
 - (b) Weighting according to `Q' factor
 - (c) Weighting according to alfa95

If option `b' is selected, the `Q' factor for every VGP in the table must be encoded in the first character of the VGP `code' (see section 3.8). If a `Q' factor is not present included, `Q' will be set to zero reliability.

If option `c' is selected, the alfa95 must be included in the table of data.

(5) Input SMOOTHING PARAMETER (value 10 to 10000)

A high value results in extreme smoothing. Values in the order of 100 to 200 generally result in moderate smoothing (Fig. 11).

(6) Input VGP FILE-NAME for the output fitted path.

The fitted path, when generated, will be displayed on the graphic screen in option `DRAW VGP' (3.9) in the main menu.

Note:

The original VGP file is 'shut down' and replaced with the new APW file (spline file).

FIGURE 10 `SPLINE FITTING' option. Left: File \data\VGPs\NorthAmerica2008_ROG.vgp plotted with dp/dm ovals. Right: Spline fitting with smoothing parameter=200 and weighted by alfa95.

FIGURE 10 `MOVING AVERAGE' option on file \data\VGPs\NorthAmerica2008_ROG.vgp and plotted with A95 ovals.

7. TABLE ANIMATION

Lunc	Add Euler poles Vgp Rotate				
	Continent	E.Lat.	E.Long.	E.Angle	Age/Comment
1	c:\gmap\Data\Animations\101_North Ai	60.45	69.53	72.48	2
2	c:\gmap\Data\Animations\102_Greenla	51.36	78.37	64.67	2
3	c:\gmap\Data\Animations\103_North SI	33.13	84.23	58.23	2
4	c:\gmap\Data\Animations\104_Caborca	53.02	80.37	72.3	2
5	c:\gmap\Data\Animations\108_Acadia_	60.45	69.53	72.48	2
6	c:\gmap\Data\Animations\108_Acadia_	60.45	69.53	72.48	2
7	c:\gmap\Data\Animations\108_Acadia_	60.45	69.53	72.48	2
8	c:\gmap\Data\Animations\109_Florida(60.45	69.53	72.48	2
9	c:\gmap\Data\Animations\109_Florida_	60.45	69.53	72.48	2
10	c:\gmap\Data\Animations\109_Florida(60.45	69.53	72.48	2
11	c:\gmap\Data\Animations\109_Florida_	60.45	69.53	72.48	2
12	c:\gmap\Data\Animations\109_Florida(60.45	69.53	72.48	1
13	c:\gmap\Data\Animations\111_Mendek	57.64	73.4	78.75	1
14	c:\gmap\Data\Animations\113_Northwii	57.64	73.4	78.75	1
15	c:\gmap\Data\Animations\114_Lomono	54.26	74.03	64.39	
16	c:\gmap\Data\Animations\120_Sverdru	60.45	69.53	72.48	
17	c:\gmap\Data\Animations\121_Southwi	52.13	78.89	65.1	
18	c:\gmap\Data\Animations\122_South c	51.9	80.45	63.8	
19	c:\gmap\Data\Animations\123_Central	59.81	69.84	73.12	
20	c:\gmap\Data\Animations\124_North El	60.45	69.53	72.48	
21	c:\gmap\Data\Animations\130_Artic Ca	52.13	78.89	65.1	1
22	c:\gmap\Data\Animations\140_Lomono	54.2	73.99	64.3	1
23	c:\gmap\Data\Animations\141_Lomono	53.85	73.69	63.76	1
24	c:\gmap\Data\Animations\142_Lomono	31.07	85.5	42.55	
25	c:\gmap\Data\Animations\153_Roberts	60.27	69.55	71.76	
26	c:\gmap\Data\Animations\154_Laurenti	60.27	69.55	71.76	
27	c:\gmap\Data\Animations\155_Farewel	63.47	84.57	69.64	
28	c:\gmap\Data\Animations\160_Ruby Te	33.13	84.23	58.23	
29	c:\gmap\Data\Animations\161_Eastern	60.27	69.55	71.76	
30	c:\gmap\Data\Animations\201_Northerr	68.74	91.97	44.2	
31	c:\gman\Data\Animations\202 Parana	70.9	85.24	43.03	

Double-click a line to insert a continent with file-manager

This option is used to edit (use option 'OPEN ANIMATION') or create animation files. The main menu consists of the following options:

OPTION (SUBOPTION)	EFFECT
File	
New	Create a new file
Export	
To EXCEL	
To GMT (all reconstructed)	
To GPlates rotation format	
Copy Euler Poles to VGP	Copy Euler poles to memory and display with "DRAW VGP"
Exit	
File Edit Add Euler poles Vgp Rotat	
New	
Conv Suler Baler to VGBr	
Exit	
Edit	
Edit a row	Edit a single line. Select line by clicking on
	numerical row code at the first column
Add a row	Add a row to the Table
Delete a row	Delete one or several lines. Select line(s) by
	clicking on numerical row code at the first
	column or drag the mouse to include several
	lines
Sort Ages	

Subsitute All Continents with same continent	
Edit Add Euler poles Vgp Rotate Edit a row Add a row Delete a row Change Euler Pole Polarity Sort Ages Substitute All Continents with same Continent	
Add Euler Poles	
Add Euler Rotation of Selected Row to All Rows (negative angle)	Example: All supplied animations are palaeomagnetic reconstructions in a South Africa frame (plate 701). If you want to display the data relative a fix North america, then click the row '101North America' And engage this option. If you have a new pole from North America at this time engage 'VGP rotate' to make animation file absolute based on your new
Add Euler Rotation to all Rows	Add the same Euler to all rows
Add Fuler Rotation to Selected Rows	
Move Continents East or Westward	As above but rotating about 90 or -90 so only change longitude if animation file is based on palaeomagnetic data (calibrating longitude)
Add Euler poles Vgp Rotate	
Add Euler Rotation of Selected Row (S Air Rows (Regative angle) Add Euler Rotation to all Rows Add Euler Rotation to selected Row(s) Move Continents East or Westward	
VGP Rotate	Supplied animation file are 'absolute' but if first rotated to a continent held fix (see 'Add Euler Poles'above) then you can use a VGP from that continent to all rows in the animation file and thus make your own 'absolute' reconstruction.

The input-format in ANIMATION files is as follows:

- 1 CON Name of continent (`.CON') file
- 2 LAT Latitude of Euler Pole
- 3 LONG Longitude of Euler Pole
- 4 ANGLE Rotation angle about Euler Pole (+)=clockwise;(-)=counterclockwise
- 5 COMMENT Comment (any text)

8. VELOCITY

The main purpose of this option is to calculate latitudinal drift-rates and rotational velocities for continents or terranes. This option *(old and not updated yet)* is found in 'VGP Table' and 'Tools' and options are as follows:

OPTION/SUBOPTIONS	EFFECT
Exit	Return to 'VGP Table' menu
Exit VGP Open VGP file Merge VGP file Analysis 1: Velocity and Angular Rates Analysis 2: APW rates HPGL (write to file)	Return to 'VGP Table' menu Open a VGP file from disk Open a VGP file from disk; displayed together with existing VGP data in subsequent graphic actions Calculate and displays palaeolatitude, drift-rates and angular rotation Calculate and displays APW Copy graphics to HPGL plotter or file
Analysis 2:APW Rates	
HPGL (write to file)	
Settings for File: Perinte Reference Latitude (- for South) Reference Latitude (- for South) Start Time (in Ma) Start Time (in Ma) Start Time (in Ma) End Time (in Ma) Start Time (in Ma) End Time (in Ma) Start Time (in Ma) File (in Ma) Constant Constant (in Ma) Constant (in Ma)	Set system parameters that control the program performance (automatically stored during 'Exit')
Timescale Use Gradstein et al. (2004) Build your own Time Scale Polarity Bias Use Gradstein et al (2004) Build your own	Gradstein et al. (2004) Modify timescale (auto-saved to a system file)
Polarity Bias Polarity Bias Open Polarity File About Polarity Table Analysis 1 - Age Sliding Analysis 2 - Chron Sliding HPGL (write to file)	

3.20.1 DRIFT/ANGULAR RATES

Based on a sequence of ordered (sorted with increasing magnetic ages) VGP poles (either original data or APW spline data) this option provides an analysis and display of palaeo-latitudes for a given reference locality (see 3.20.2) through geological time (top diagram in Fig. 16).

Analysis of APW paths:

If the VGP file contains an APW or 'spline' path (cf. 3.11.3) parameter `APW path or spline' (see 'SETTINGS'; cf. 3.20.2) and parameter 'Plot declination' should be set to on. This will produce a display as illustrated in Fig. 16 (VGP file B20092; used for Baltica by Torsvik et. al. 1992) where declinations (according to a reference locality: 60oN and 10oE in our example) are plotted along the latitudinal drift-curve (i.e. a natural cubic spline curve). Based on the setting of the `Time Window' parameter (cf. 3.20.2) this option calculates latitudinal drift-rates (in cm/y) and rotational velocities (in o/Ma). Drift-rates are automatically seperated into Northward (UPPER part of diagram) or Southward (LOWER part of diagram) movements (middle diagram in Fig. 16), whereas rotational velocities are separated as clockwise (UPPER part of diagram) or counter-clockwise (LOWER part of diagram) rotations.

Analysis of original data:

If the VGP file contains original data, the parameters 'Original data' and 'Plot latitude error' (cf. 'SETTINGS'; 3.20.2) should be set to on. This produces a display as illustrated in Fig. 17 (VGP file Bal92; used for Baltica by Torsvik et. al. 1992) where palaeo-latitudes (according to the reference locality) are plotted with error bars (based on alfa95).

FIG 16 Example of option `VELOCITY' (VGP file:B20092) using an APW spline path.

FIG 17 Example of option `VELOCITY' (VGP file:BAL92) using original data.

3.20.2 SETTINGS

This option permits the adjustment of parameters which control the `Velocity' option performance. The following parameters can be changed/updated:

PARAMETER

FUNCTION

Reference latitude (in degrees) Palaeolatitudes, drift-rates and angular velocities Reference longitude (in degrees) are always calculated with respect to the selected reference locality

Start Time (in Ma)	Whenever a VGP file is loaded the program tests for
End Time (in Ma)	minimum (start)and maximum (end) age range, and the horizontal time-axis (see Fig. 16) is set up accordingly. The operator can, however, change the START and END times after having loaded a VGP file. Useful combining coveral VCP files with different Start and
End	times (i.e. plot at same scale)
Time window (in Ma)	Drift-rates and rotational velocities are averaged within the setting of this parameter
Invert Latitudes (Yes or No)	Dependent on the choice of VGP polarity the operator may have to invert latitude estimates. E,g. file B20092 is a
VGP 'Yes'	south-pole file and 'Invert Latitudes' has to be set to in order to display the latitudinal movements of
Baltica	correctly.
Plot Declination or Latitude error	Set 'Plot declination' to ON when analysing APW paths:
original to INC-95).	Use 'Latitude Error' to include latitude error bars for VGP data (calculate error bars from INC+95
APW path/spline or Original data	Set 'APW path/spline' to ON when analysing APW paths
Expanded Latitude plot (Yes/ No)	Display of latitudinal plot (top diagram) two times normal size when set to YES
Amplitude Latitude Plot (in Deg)	Set maximum amplitude (90o <value>0o)</value>
Amplitude drift-velocity (in cm/yr)	Set maximum amplitude (Value>0 cm/yr)
Amplitude rotation plot (in o/Ma)	Set amplitude (Value>0 Deg/Ma)
Amplitude CUM APW (in Deg) Set	amplitude (value >0o)
(used in option 'APW rates)	
Amplitude APW rate (in cm/year)	Set amplitude (value>0 cm/yr)
(used in option 'APW rates')	