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Introduction

The purpose of this document is to serve as the printed material for the seminar �An Intro�
ductory Course on Constraint Logic Programming�� The intended audience of this seminar
are industrial programmers with a degree in Computer Science but little previous experience
with constraint programming� The seminar itself has been �eld tested� prior to the writing
of this document� with a group of the application programmers of Esprit project P�����
�VOCAL�� aimed at developing an application in scheduling of �eld maintenance tasks in the
context of an electric utility company�

The contents of this paper follow essentially the �ow of the seminar slides� However�
there are some di�erences� These di�erences stem from our perception from the experience
of teaching the seminar� that the technical aspects are the ones which need more attention
and clearer explanations in the written version� Thus� this document includes more examples
than those in the slides� more exercises �and the solutions to them�� as well as four additional
programming projects� with which we hope the reader will obtain a clearer view of the process
of development and tuning of programs using CLP�

On the other hand� several parts of the seminar have been taken out� those related with
the account of �elds and applications in which C�L�P is useful� and the enumerations of C�L�P
tools available� We feel that the slides are clear enough� and that for more information on
available tools� the interested reader will �nd more up�to�date information by browsing the
Web or asking the vendors directly� More details in this direction will actually boil down to
summarizing a user manual� which is not the aim of this document�

�
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Chapter �

What is Constraint �Logic�
Programming�

In this chapter we will give an introduction to Constraint �Logic� Programming� We will
brie�y review the types of applications for which C�L�P is well suited� and we will give
examples of the solution for a problem using di�erent C�L�P languages� We will also compare
the C�L�P programming paradigm approach to other related approaches�

��� Introduction

The C�L�P programming paradigm has some resemblance to traditional Operations Research
�OR� approach� in that the general path to a solution is�

�� Analyzing the problem to solve� in order to understand clearly which are its parts�

�� determining which conditions�relationships hold among those parts� these relationships
and conditions are key to the solving� for they will be used to model the problem�

�� stating such conditions�relationships as equations� to achieve this step not only the
right variables and relationships must be chosen� as we will see� C�L�P usually o�ers a
series of di�erent constraint systems� some of which are better suited than others for a
given task�

�� setting up these equations and solving them to produce a solution� this is usually trans�
parent to the user� because the language itself has built�in solvers�

There are� however� notable di�erences with OR� mainly in the possibility of selecting
di�erent domains of constraints� and in the dynamic� generation of those constraints� This
seamless combination of programming and equation solving accounts for some of the unique
components of Constraint Programming �

� the use of sound mathematical methods� well�known and proved algorithms are provided
as intrinsic� builtin components of C�L�P languages and tools�

� the provision of means to perform programmed search� especially in CLP �were search
is implicit in language itself��

�



� CHAPTER �� WHAT IS CONSTRAINT �LOGIC� PROGRAMMING�

� the possibility of developing modular� hybrid models� when necessary� many C�L�P
systems o�er di�erent constraint systems� which can be combined to model the various
parts of the problem using the tool more adequate for them�

� the �exibility provided by the programming language used� which allows the program�
mer to create the equations to be solved dynamically� possibly depending on the input
data�

��� Typical Applications and Approaches

As with any other computational approach� all problems are amenable to be tackled with
C�L�P� notwithstanding� there are some types of problems which can be solved with compar�
atively little e�ort using C�L�P based tools� Those applications share some general charac�
teristics�

� No general� e�cient algorithms exist �NP�completeness�� speci�c techniques � heuris�
tics must be used� These are usually problems with a heavy combinatorial part� and
enumerating solutions is often impractical altogether� A fast program using usual pro�
gramming paradigms is often too hard and complicated to produce� and normally it is
so tied to the particular problem that adapting it to a related problem is not easy�

� The problem speci�cation has a dynamic component� it should be easy to change pro�
grams rapidly to adapt� This has points in common with the previous item� C�L�P tools
have builtin algorithms which have been tuned to show good behavior in a variety of
scenarios� so updating the program to new conditions amounts to changing the setting
up of the equations�

� Decision support required� either automatically in the program or in cooperation with
the user� Many decisions can be encoded in mathematical formulae� which appear as
rules and which are handled by the internal solvers� so �although� of course� not always�
there is no need to program explicit decision trees�

Among the applications with these characteristics� the following may be cited� planning�
scheduling� resource allocation� logistics� circuit design and veri�cation� �nite state machines�
�nancial decision making� transportation� spatial databases� etc�

�

Let us review some approaches to solving problems with the aforementioned characteris�
tics�

Operations Research systems� and also genetic algorithms� simulated annealing� etc�� have
a medium development e�ort� since most of the core technique �e�g�� the solving algo�
rithms themselves� are already coded an optimized� so the problem has only to be
modeled and fed into the system� They have the drawback of being not �exible �equa�
tions cannot be updated dynamically�� and heuristic search of solutions is not always
easy to include in the problem� or the modi�cation according to the desires of the user�



���� TYPICAL APPLICATIONS AND APPROACHES 


Conventional programs can potentially give the most e�cient solution� but this e�ciency
comes at a high cost� reaching a solution needs a uphill development phase� in which
all solving�not only the particular problem conditions�has to be explicitly described�
usually the solving�search part of the problem is tailored for the particular application
�which accounts for the high performance of the program�� which in turn makes the
program not amenable to be adapted to other scenarios� even related ones� Success in
this approach also requires a deep knowledge of constraint solving algorithms� which in
CLP systems is built in�

Rule�based systems receive a good rate in heuristic possibilities� but on the other hand
they lack constraint solving capabilities� and an algorithmic style is di�cult to embed�

Constraint�based approaches especially when combined with Logic Programming� try to
combine the best of all the previous points� Not only constraint solving is included as
a part of the systems� but algorithmic components are provided for being used when
needed �e�g�� in the cases in which parts of a problem can be worked out more advan�
tageously using an explicit algorithm�� Also� this algorithmic part interacts with the
constraint solving part by creating dynamically the equations to be solved� and commu�
nicating the solutions by means of the variables of the language� Also� rules as means
of expressing heuristics are available when using logic programming�based constraint
tools�

�

Since usual programming techniques are commonly well understood� we will review the
tradeo�s between using Operation Research and Constraint Programming approaches�

The OR Edge OR is a good approach when the problems to be solved have some speci�c
characteristics�

� A good degree of staticity in the problem to be solved� the only di�erences among runs
of the program are some coe�cients which can be easily changed or tuned� and that in
no way a�ect the modeling of the problem �which is the most di�cult part to change��

� Can be expressed using classical� well�known OR models� This makes good� e�cient
algorithms available� and guidelines and examples for modeling the problem clear and
well understood�

� The size of the problem �usually measured in the number of variables needed� is very
large� If well suited OR methods are available� then probably they will be highly
optimized� and then large problems could be solved within a reasonable amount of
time�

The CP Edge CP has short development time� �exibility� and good e�ciency as main
advantages�

� Fast prototyping is easy with CP� preliminary models of the problem� often working
correctly as reduced versions of the �nal program are fast to build� The program
evolves through successive re�nements� in which experiments to �nd the best approach
can be performed�
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� Flexibility� adaptability� and maintainability are also strong points in favor of constraint
programming� Due to the dynamic equation set up� the code tends to be adaptable�
easy to change� and to maintain� conditions are not encoded directly in the equations�
but rather in the way they are created�

� The performance of CP systems is good� in fact� internal solving algorithms are usually
very optimized �in most cases they are inherited from O�R��� and can deal with sizeable
problems exhibiting a reasonably good performance� The fact that prototyping is fast
also adds to the global performance of the approach� and since successive re�nements
are used to reach to a solution� there is no need to perform a complete rewriting of the
code to obtain a �robust� production program�

��� Constraints� Representation and Solving

The idea underlying in Constraint Programming is that constraints can be used to represent
a problem� to solve it� and to represent a solution�which� in fact� is no more than a sim�
pli�cation of the initial constraints� arrived at by following deduction rules hardwired in the
solver��

We will give an example of how a problem can be represented by using constraints� let us
think of a puzzle such as those commonly found in magazines�

The murderer is older than Joe

The man in yellow does not have green eyes

���

This puzzle can be viewed as constraints expressed in a language which has some primitive
constraints �such as �is older than��� which relate elements pertaining to the domain of the
constraint system �such as the actors and their characteristics� �the man in yellow�� �Joe��
�green eyes��� Some of the actors are de�nitely identi�ed ��Joe��� and some others are
represented by an identi�er� or a characteristic which does not allow its identi�cation them
�yet�� �the murderer��

A solution is an assignment of domain values to those actors not completely identi�ed
which agrees with all the initial constraints�

Murderer� L�opez� green eyes� Magnum gun

Sometimes a single solution cannot be reached� This can be due to the way in which
the solver works �incomplete solver�� or due to a lack of initial constraints which de�ne
completely the problem �underconstrained problem�probably not correctly modeled� or just
because there are many di�erent solutions for that particular problem� In that case the initial
constraint system cannot be completely reduced� and the �nal answer is a constraint itself�
such as�

The murderer is older than the man in yellow

�Although some CLP systems allow the user to de�ne their own constraint domains and solvers�
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Note that it is often possible to perform an enumeration �search� through all the individuals
in our initial problem to check which ones meet this �nal constraint� This path could have
been followed right from the beginning �try all the combinations of possible actors and domain
values� and check which ones meet all the constraints�� but a �partial� solving of the constraints
can sometimes solve the problem� and� in any case� the number of equations and domain values
to try is greatly reduced�

��	 Constraints as 
Extended� Equations

Constraints can be actually viewed as equations� in both cases� variables are related by
properties� and solving a set of equations amounts to �nding which assignment of values
to variables meets all the equations� Mathematical equations can be solved if appropriate
methods are known� and the same happens with constraints� But constraint tools usually
provide domains which are not commonly treated by classical mathematics� or� at least�
constraint systems for which solving methods are not a central point of the usual mathematical
background�

Using the appropriate domain for each problem is essential� constraint domains have
speci�c characteristics and solving methods which make them more appropriate than others
for some problems� Fortunately� deciding which constraint system has to be used is often not
di�cult� in most cases the problem itself strongly suggests which constraint system to use�
In general� the process of solving a problem is a combination of propagation �a general term
to refer to equation solving� and search� when an incomplete solution is found�

But looking at constraints as a kind of extended equations does not allow the perception
of the whole scenario� equations �even in their extended constraint�like version� su�er from
the same drawbacks as OR� lack of modularity �the whole problem is a big set of interrelated
equations�� lack of dynamic creation of equations� sometimes lack of power to solve completely
the equation system proposed� or the solution� as returned by the solver �assignments of values
to variables� not coming out in the appropriate format �which� for example� might have to be
shared with other tools��

Solutions to these problems can be worked out by coupling constraints and programming�

��� Why Constraints and Programming

There are some practical problems when using constraints �viewed as extended equations�
alone to solve some real�life problems� As the set of equations is commonly static� it must
be de�ned once for every problem� Usually there are decisions to be made while solving the
problem� and those decisions can be dynamic in that they are not known beforehand� they
have to be somehow anticipated for every set of initial data� Even if those decisions can
be encoded as formulae �using special variables� the resulting mathematical model is often
unnatural and di�cult to solve� C�L�P addresses this problem with a series of programming
facilities as� for example� search�

Sometimes there is a hierarchy of preferences which de�nes mandatory constraints� or
imposes a penalty for constraint violation� Sometimes these penalties are not easy to de�
termine �because� for example� the user has only some limited knowledge about the relative
importance�� Sometimes the penalties might change dynamically and be di�erent for ev�
ery problem instance� A programming�based approach tackles this by� for example� placing
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some rules before others� or incorporating some heuristics to the program which sets up the
constraints�

It is not uncommon that large problems can be split into smaller� easier to work out tasks�
such that solving and combining their results is cheaper than solving the whole problem at
once� While solving equations is normally a process which takes into account all the available
data at the same time� divide�and�conquer is a widely used programming technique which
can as well be used to set up constraints � and to help solve them faster�

Constraint�enriched languages inherit very interesting capabilities� they o�er for free data
abstraction� with which modules aimed at solving well�de�ned problems �which� in this sce�
nario� involves setting up constraints among variables� can be written� Also� dedicated algo�
rithms can be coded when an e�cient way to solving the task at hand is known� Dynamic
setting up of constraints has already been mentioned� what a C�L�P program does can be
viewed as de�ning a skeleton of the equations needed to solve a class of problems� the par�
ticular instance being generated from the input data� And� last� a program�based approach
allows runtime external communication �with the user� with other programs� with databases��
and reacting adequately to the conditions of the environment� The actual constraint solver
in the program is a black box �with� possibly� some switches which can be adjusted by the
user� as in a OR tool�

��� Constraint�Programming Language Interfaces

There are two basic ways of using constraints from inside a programming language� One
is providing a library with data structures and classes which implements objects such as
variables� equations� etc�� and methods to combine formulae using mathematical �or other�
operations to give more formulae� combining formulae using mathematical relations to give
equations� putting together equations in sets� testing their solvability �and trying to solve
them�� etc� This is exempli�ed in Figure ����

Constraints
LibraryHost Language

(values/constraints)
Answers

Constraints

Figure ���� External programming library

As good as it can be� it will not integrate seamlessly with the semantics of the host
language� for the constrained variables are not language variables� and the same happens with
the equations� relationships� the do not belong to the language� For that� an alternative path
to coupling constraints and programming is making the language semantics richer by adding
high�level mathematical properties to the basic building blocks of the language� variables can
now be related to other variables� and can hold non�de�nite values� Constraint solving is
performed automatically as program execution progresses� since the constraint solver is part
of the runtime system� This is depicted in Figure ����

It is not surprising that functional and logic languages �specially the latter ones� because
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Programming
Language

Constraint
Solver

Constraint Programming Language

Figure ���� Language with extended semantics

they already provide logical variables and implicit search� are the ones more amenable to this
approach� their mathematical foundation and independence from the machine o�er leeway to
for adapting their semantics self�congruently�

Regardless of the approach taken towards the construction of a constraint language� there
are some essential services that such a language must provide�

� A solver� which solves equations or communicates their non�solvability �the way this is
done depends on the actual interface with the host language��

� Means to express constraints� formulas� etc� from the language�

� An interface to the solver� which allows constraints to be passed to it� and� upon suc�
cessful constraint solving� asking for the values assigned to the constraint variables�

��� An Example� SEND � MORE � MONEY

SEND � MORE � MONEY is a classical �crypto�arithmetic� puzzle� the variables S�E�N�D�M�O�R� Y
represent digits between � and �� and the task is �nding values for then such that the following
arithmetic operation is correct�

S E N D

� M O R E

M O N E Y

Moreover� all variables must take unique values� and all the numbers must be well�formed
�which implies that M � � and S � �� Conventional programming needs to express an
explicit search in general �though in this particular case nested loops can be used�� Logic
languages� such as Prolog� will use directly a built�in search� the programming is easy� but it
might not be highly e�cient �of course� re�ned programs can achieve good performance� but
advanced skills and an e�ort in time is needed to write them��

This is� in fact� a typical problem for �nite domains� all variables take values from a �nite
set of numbers� the constraints to satisfy can be easily expressed� and there is some amount
of search to perform� Finite domain variables always have as values a set of integers� taken
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from a �nite number of possible initial values� For example� it is natural to use program
variables in our problem to represent the di�erent digits� In that case� every variable �say�
the one corresponding to the digit D� can take values in the set f�� �� �� �� 
� �� 	� � �g� The
�nal solution must be an assignment of singleton sets to every variable in the problem� and
we take the unique value in this set as the de�nite value for that variable� If� at any point in
the execution of the program� the domain of a variable happens to become the empty set� a
failure is caused� and the program backtracks to the nearest �in time� choice point created��

����� Prolog� Generate and Test

The Prolog solution below �one among several possibilities� is typical of the Generate and Test
paradigm� variables from a list are assigned values from another list� after this assignment is
done� the list of variables is checked for compliance with the constraints of the problem� If
any of the constraints fail� the system backtracks to �nd another assignment for the variables�

smm ��

X � �S�E�N�D�M�O�R�Y��

Digits � �	�
�����������������

assign�digits�X� Digits��

M � 	�

S � 	�


			�S � 
		�E � 
	�N � D �


			�M � 
		�O � 
	�R � E ���


				�M � 
			�O � 
		�N � 
	�E � Y�

write�X��

select�X� �X�R�� R��

select�X� �Y�Xs�� �Y�Ys���� select�X� Xs� Ys��

assign�digits���� �List��

assign�digits��D�Ds�� List���

select�D� List� NewList��

assign�digits�Ds� NewList��

Unsurprisingly� the program is not very e�cient� there are ���
�

possibilities for the as�
signment of values to digits� Better programs are not di�cult to write� but the one above
is possibly the non totally na� ve one which most directly expresses the problem� and whose
algorithm is more natural to write and understand by the average programmer� Improve�
ments include not taking into account the value 	 for M and S explicitly �which can arguably
be viewed as a divide�and�conquer approach�� or other techniques which may include using
explicitly an internal carry �see Section 	��� or automatic delays �Section 
����

����� ILOG Solver �C�� Version�

The ILOG �� Solver version is a proper constraint program� based on the Finite Domains
paradigm� The program has to be linked against the appropriate ILOG libraries� in order

�As we will see later� these choice points are created every time there is an alternative in the program� and
these alternatives appear almost inevitably even if the program do not explicitly create them�
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for the FD routines to be available� The basic structure of the program �which is actually
shared� with minor changes� by the rest of the implementations of this example� is as follows�

�� The library is initialized�

�� The FD variables are declared� and initial bounds to them assigned �note the special
bounds for the variables M and S��

�� An array packing all FD variables is created�

�� The rest of the constraints are generated �all variables must be di�erent� and the equality
de�ning the arithmetic operation must hold��


� A call to the solver is made� to search for values and assign them to the variables� and

�� The �nal solution is printed

�include �ilsolver�ctint�h�

CtInt dummy � CtInit���

CtIntVar S�
� ��� E�	� ��� N�	� ��� D�	� ���

M�
� ��� O�	� ��� R�	� ��� Y�	� ���

CtIntVar� AllVars���

��S� �E� �N� �D� �M� �O� �R� �Y��

int main�int� char��� �

CtAllNeq��� AllVars��

CtEq� 
			�S � 
		�E � 
	�N � D

� 
			�M � 
		�O � 
	�R � E�


				�M � 
			�O � 
		�N � 
	�E � Y��

CtSolve�CtGenerate��� AllVars���

PrintSol�CtInt� AllVars��

CtEnd���

return 	�

�

Since the FD variables are special objects not belonging to the C�� language itself� but
de�ned as part of a class� they cannot be treated in the program in the same way as primary
C�� objects� for example� printing them or accessing their values has to be done with special
methods provided by the class�

����� ILOG Solver �Le Lisp Version�

The Lisp version is actually very similar to the C�� one� this is not surprising� since the
underlying engine is basically the same� The same comments as for the C�� version apply
here� Only some additional remarks are needed�
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� There is no need to initialize the library� Since the constraints library is part of the Lisp
runtime system� the initialization takes place automatically�

� The constraints for M and S appear explicitly� instead of being given when the variables
are declared�

� Since the Lisp variables have in fact a complex internal structures �tags� pointers etc���
they can be hooked by the implementation so that a more direct access from the language
is possible� For example� printing and accessing their values can be made using standard
Lisp functions�

�defun smm ��

�ct�let�vars

��S E N D M O R Y�

�ct�fix�range�var 	 �� l�var�

�ct�neq M 	�

�ct�neq S 	�

�ct�all�neq S E N D M O R Y�

�ct�eq

�ct�add

�ct�add �ct�add �ct�add

�ct�mul 
			 S� �ct�mul 
		 E�� �ct�mul 
	 N�� D�

�ct�add �ct�add �ct�add

�ct�mul 
			 M� �ct�mul 
		 O�� �ct�mul 
	 R�� E��

�ct�add �ct�add �ct�add �ct�add

�ct�mul 
				 M� �ct�mul 
			 O�� �ct�mul 
		 N��

�ct�mul 
	 E�� Y��

�ct�solve �ct�generate l�var �� ����

�print S E N D M O R Y���

Unfortunately� the Lisp syntax is arguably not the best to write equations clearly�

����	 Eclipse Version

ECLiPSe is a programming system initially developed at ECRC� and now maintained at
IC�Park� which combines Logic Programming with constraint solving capabilities� Having
explained the previous examples� the program should be pretty obvious� Only some remarks
concerning the program below�

� All variables are �rst objects of the language� they can be manipulated and accessed
using the same primitives as for non�FD variables� The results of this manipulation� of
course might not be the same� since we are treating objects with di�erent semantics�
but the program syntax is homogeneous�

� Declaring the list of variables X is actually not needed� but it is convenient since it is
used elsewhere in the program�
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� The versions for other CLP languages �for example� Prolog IV and CHIP� may di�er
in the syntax� but the structure and programming is basically the same� and even the
syntax changes are recognizable without any e�ort�

smm ��

X � �S�E�N�D�M�O�R�Y��

X �� 	 �� ��

M �� 	�

S �� 	�


			�S � 
		�E � 
	�N � D �


			�M � 
		�O � 
	�R � E ��


				�M � 
			�O � 
		�N � 
	�E � Y�

alldistinct�X��

labeling�X��

write�X��

This program has the combined advantage of being at the same time a direct encoding of
the problem and a highly e�cient solution�

��� Use Prolog as Host Language

The last example shows that Prolog syntax �and semantics� and �nite domains go quite
well together� Actually� it is more than that� due to the incremental nature of constraint
programming �prototyping and building an application incrementally is easy and natural��
the availability of interactive interpreters for CLP languages �inherited from Prolog� is a plus�
as experimentation and debugging are parts inherent to the development of a program�

Also� the built�in backtracking of logic programming allows the easy customization of
search procedures for the cases in which standard CLP procedures are not good enough� this
may happen when there are hints as to what is the best direction to search in� Small examples
might not show that� due to small search times� but large examples often make the di�erence
apparent�

Some interesting characteristics from Prolog are also inherited� which are not found in
other languages�

� A built�in database� which can be used �with caution� to implement global variables�
but whose main strength is in saving intermediate results which do not need to be
recomputed �lemmas� and� in the extreme� to generate and change program code dy�
namically�

� Meta�programming facilities� which allow the program to be managed as if it were data�
examine its code while running� calling goals and collecting the solutions produced on
backtracking� and other goods which are only available to logic programming�

� Easy de�nition of meta�languages and easy developing of interpreters for those lan�
guages� This allows the user to create a high�level language suited for her�his needs�
with which developing the �nal application will be easier� and to code an interpreter for
such a language�
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Of course� there are some disadvantages in using Prolog as host language� mainly con�
cerned with the di�erence of the logic programming paradigm with respect to other paradigms�

� It might be not as well accepted as other languages� Prolog is sometimes not part of
standard curriculum in Computer Science� and therefore some training is usually needed�
and some programmers might be reluctant to undertake learning a new paradigm�

� There are notable di�erences with respect to conventional languages in the way data
structures are handled� but these di�erences� in the end� favor the programmer� for they
turn out to be easier to work with and to de�ne� and more secure in what respect errors
caused by illegal memory accesses� etc� Control is also quite di�erent� the embedded
search� once understood� is a very powerful way of programming�

Last� but not least� there are di�erent products which implement the CLP paradigm�
Depending on the problem some of them might be more adequate than others� But very
probably the �nal application in an industrial environment will have to interact with other
programs� so the possibility of having an interface �other than a raw text �le� is a point to
take into account� Fortunately this is the case for all commercially available Prolog and CLP
systems�

��� How Does a CLP System Work

The reader might wonder how a CLP system actually works and solves equations� Equation
solving in general might be radically di�erent from the well�known methods for solving linear
arithmetic equations� CLP programs set up equations just by expressing them� these equa�
tions� in an internally coded form� are communicated to an internal solver in which values
for the variables are worked out� We will not be concerned with way these equations are
encoded� but� for the sake of having more knowledge �which will help us in a future to write
better CLP programs�� we will become solvers of �nite domain equations for a while�

��
�� Modeling the Problem

Suppose we have the precedence net �for example� for a project� and the task lengths� in
Figure ����

Usual O�R� methods to �nd out critical tasks� the slacks in the tasks� the earliest �nish
time� etc� include the PERT and CPM algorithms� We will show how a simple� general
�nite domains algorithm performs the same task as those methods� and can even tackle more
di�cult problems within the same setting�

Supposing that a hard limit for the length of the project is �� time units� and that we
choose each FD variable to represent the time in which the corresponding task can start� a
model of the problem can be the following�

a� b� c� d� e� f� g � f�� � � � � ��g

a � b� c� d

�We will use nodes to represent tasks� the problem is the same where nodes or edges are used to that end�
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Figure ���� Precendence net

b � � � e

c � � � e

c � � � f

d � � � f

e � � � g

f � � � g

The value of each variable �which is a set� initialized to f�� � � � � ��g� represents the mo�
ments in time the corresponding task can start� This equation cannot be solved using linear
arithmetic methods� because the values of the variables are not real numbers� but rather
sets of integers� Of course� it might reformulated in this particular� linear� case to use real
numbers� but in general �nite domains can always �nd a solution� because enumeration is
possible� as we will see later�

��
�� Be a Solver

We will set up a tableau �Table ���� in which current domains for the variables will be stored
at each moment� At the beginning� all variables will have the initial domain� and we will
iterate using the following strategy�

� Choose one equation� analyze the values of the variables related by that equation�

� Sometimes the maximum � minimum values of the variables can be updated to make
the equation hold� This causes the domain of the variable to be narrowed�

� Finish when no equation gives raise to a variable updating�

For example� in step �� we have selected equation b � � � e� Since previously b � f�����g
and e � f�����g� it is not di�cult to deduce that b can be� at most� �� and that e can be� at
least� �� So this step updates the domain of b and e to be� respectively� f����g and f�����g�
The rest of the steps perform similar operations� selecting other equations and re�ning values
of variables until a �xpoint� in which no further changes can be made� is reached�



�� CHAPTER �� WHAT IS CONSTRAINT �LOGIC� PROGRAMMING�

Variables and Domains

Step a b c d e f g

 ����� ����� ����� ����� ����� ����� �����
� ���� �����
� ��� �����
� �����
� ���	 �����
	 ���� �����
� ����
� ���	

 ���

� ����
� ����
�� ����

Final domains ���� ���
 ���� ���� ���� ���� �����

Table ���� Being a solver

Although the general idea behind �nite domain solver is as shown above� actual algorithms
are much more complicated� and take into account issues like inequality constraints� global
constraints� heuristics� enumeration� etc� More complex constraint solvers make a series of
decisions �such as which equation is to be to chosen next� and� even if those do not a�ect
correctness� performance depends heavily on them�

What are in this cases the di�erences with respect to classical methods� such as CPM�
A central point is that this is just a particular application of �nite domains� and not an
algorithm dedicated to project scheduling� In fact� it gives more information than CPM� and
can� using the same ideas� be used for more advanced tasks� For example� exact slacks of tasks
in the critical path can be found just by setting g � � �which is just a way of writing g � f�g�
another equation similar to those we already have� and repeating the process� In fact� restart
the solving from scratch is not necessary� as an example of the dynamic� incremental nature
of CLP� we only need to add to our initial set of constraints the aforementioned equation�
update the domain of g and then continue the process where it stopped before� more updates
are now possible� The result will give us slacks for the variables and the start time for every
task so that the project is �nished in the shortest time possible�

Problem ��� Solve the problem with the added constraint that the �nal task must end at
time �� �

Modeling other relationships without resorting to very di�erent algorithms is also possible�
for example�

� Two tasks do not depend on each other� but they cannot start at the same time� b �� c�

� A resource r� of which there is a limited amount� is needed by two tasks b and d� and
allocating more resource to one of these tasks speeds up its completion�

b � rb � e
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d � rd � f

rb � rd � �

��
�� Don�t Be a Solver�

But the programmer using CLP tools does not need to build tableaus� keep track of commu�
nicating with the solver when a new constraint is added� or jump back to a point where a
selection was previously done� CLP languages take care of all of these tasks by themselves�
transparently to the programmer� Built�in solvers are provided for several constraint domains�
FD being just one of them� Others� which we will talk about later� include linear equations�
non�linear equations with intervals� boolean equations� etc�

In the next chapter we will have a look at a basic language� based on concepts taken from
Logic Programming� and we will introduce the concepts of logical variables and backtracking�
We will add constraint solving capabilities upon this simple language� and we will see how
non�trivial problems are easy to express� We have chosen to use a logic programming basic
language because� although some initial acquaintance with its peculiarities is needed� once
this is mastered� the resulting language and syntax merges much better than other approaches
with the idea of programming using constraints�

�
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Chapter �

A Basic Language

In this chapter we will de�ne a basic language based on �rst order logic� but which will not
have the full capabilities of Prolog� it will be pure� in the sense that no side e�ects of meta�
programming facilities are available� and it will not have data structures� But we will add to
it some symbols �like prede�ned numbers and operators for common arithmetical operations�
which are needed to write constraints�

��� A Basic Constraint Language

We will de�ne the skeleton of a constraint language� without many interesting capabilities�
but which will be enough to understand the principles of constraint programming without
the burden of having to cope with unneeded details�

The basic components of our language are the following�

Variables which hold values throughout the execution� Di�erently from other languages�
variables do not need to be typed or declared anywhere� and so they are distinguished
from other elements by their syntax� Variables will always be written starting with an
uppercase character� X� Y � Speed�

Constants which are immutable values� Usual languages can use only numbers as constants�
or� at most� a set of prede�ned strings which make up an enumerated or cardinal type�
in fact� this is just another way of assigning names to numbers� Constants are either
numbers� including �oating point numbers� or names starting with a lowercase character�
	� ��
�	� bogus�

Underscores are allowed either in the names of variables or non�numerical constants to
improve readability� Second Task� a dog�

Atoms which will play a syntactic r!ole similar to procedure de�nitions and procedure calls�
Atoms have the form p�X�� � � � �Xn�� where p is the name of a procedure or� more strictly�
a predicate� X� to Xn are the arguments of the atom� and the number of arguments n
is termed the arity of p� This is commonly written p�n� Examples of atoms are

hates�dog� cat�

predates�big fish� small fish�

��
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Constraints which allow writing equations relating variables and constants in the program
are written� For now we will use only the constraint � of arity �� which will denote
syntactic equality� We will give examples of their use�

Although constraint languages include builtin atoms which can be used in programs to
perform several tasks �e�g�� opening and writing to �les�� this small language will not have
them� all the atoms which appear in bodies must be de�ned by the user somewhere in the
program�although they will not always appear explicitly de�ned in the examples� Conversely�
some constraint languages allow the user to de�ne and augment the constraints available�
besides those already available in the system� but we will not allow that either at this point�

����� Clauses

A clause represents a way of achieving a goal� Clauses have the form

p� b�� � � � � bn� �����

where p is an atom� as de�ned in the previous section� and b�� � � � � bn are either atoms or
constraints� In this expression� p is commonly called the head of the clause� and b�� � � � � bn is
called the body� The symbol � �which� for typographical convenience� is often written as ���
is called the neck� for it connects the body and the head�

Example ��� The following are syntactically correct clauses� as usually written in a com�
puter�

animal�X��� dog � X�

likes�C� F��� C � cat� F � fish�

bigger�M
� M���� M
 � men� M� � mice� �

In this example� animal�
� dog�
� likes��� and bigger�� are atoms� X� C� F� M
� M� are
variables� and cat� fish� men� and mice are non�numerical constants� Note that variables
and constants can be written on both sides of the equality symbol�it does not matter in
which side they appear�

The program has no meaning in itself as it is written� in the same sense that writing x

� � � y in a conventional language has no meaning other than a mathematical operation
whose purpose in the program we do not know� The only a priori possible interpretation
comes from the semantics of �rst order logic� a expression such as that in ����� is to be read
as for p to be true� b�� � � � � bn have to be true� Then� under an interpretation directed by the
names in the code� the example ��� can be interpreted as expressing the following�

X is an animal if X equals 	dog
 � or
	dog
 is an animal

	cat
 likes 	�sh


M� is bigger than M� if M� equals 	men
 and M� equals 	mice
� or
	men
 are bigger than 	mice
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These clauses contained only calls to constraints� Clauses can also refer to other clauses
written by the programmer �atoms�� The variables in the clauses are used to pass arguments
to the atoms in the body �and constants can be passed as well� of course��

Example ��� The following clauses have atoms de�ned by the user in the body�

eats�X� Y��� bigger�X� Y��

pet�X��� animal�X�� sound�X�Y�� Y�bark� �

Their reading depends on the interpretation of the user atoms� but a likely meaning of
them is�

The big eat the small� or
If some X is bigger than some Y� then X eats Y

For X to be a pet� it must be an animal and the sound it produces must be a bark � or
If X is and animal and X barks� then X is a pet� or
An animal which barks is a pet

Of course� the �nal answer to the real meaning of this piece of code is what the programmer
actually had in mind when writing animal�a� sound��� and bigger���

����� Implicit Equality

Equality is a very common constraint in all domains� and so it is customary to write it in a
shorter form� the clause

p�X��� X � something�

can also be written� with exactly the same meaning as

p�something��

i�e�� every time a variable of a clause appears anywhere within a clause� the atom �or variable�
this variable is equated to can replace every appearance of that variable�

Example ��� The clauses in Example ��� can also be written as follows�

bigger�men� mice��

pet�X��� animal�X�� sound�X� bark��

and their meaning and behavior is exactly the same as in the original example� �

����� Facts

The previous section introduced a new type of clause� which is actually a shorthand expression
for clauses we already know how to write� the expression

p�

where p is an atom� is called a fact� The �rst clause in Example ��� is a fact� which appears
because an equality constraint has been implicitly moved to the head of the clause�
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Example ��� The �rst and second clauses in Example ��� can also be written as facts�

animal�dog��

likes�cat� fish�� �

����	 Predicates

A predicate is simply a collection of clauses which have the same head name and arity� Recall
that the constraints and atoms in the body of a clause represent conditions to be ful�lled
in order to achieve a goal�the head�� so they logically represent a conjunction of goals�
Di�erent clauses� in turn� represent a disjunction� alternative possibilities to accomplish a
target� From a more logical point of view� di�erent clauses of a predicate o�er alternative
possibilities for the predicate to be true�

Example ��	 The following predicate expands our idea of what a pet can look like�

pet�X��� animal�X�� sound�X� bark��

pet�X��� animal�X�� sound�X� bubbles�� �

What is the meaning of this example� In addition to the �rst� already known clause�
which casted animals which bark into the category of pets� we are not including animals
whose sound is bubbles �probably �shes� into the very same category� So� in a more colloquial
form� the example above can be read as

Animals which bark and animals which make bubbles are pets

Note that when we describe the predicate in a goal�oriented form� the description must
take a disjunctive form� closer to the logical meaning of the predicate� but less natural from
the point of view of the human language�

For something to be a pet� it must either be an animal and bark� or else be an animal and
make bubbles�

Note also that the same variable X appears in both clauses� the names of the variables in
a clause are local to that clause� very much like local variables in procedural languages have
an scope limited to the procedure�function they are de�ned in�

���� Programs and Queries

We are now ready to write programs in our constraint language� A program is simply a
collection of predicates� much in the same way that a program in other languages is a collection
of procedures or functions�

Example ��� The following code implements a program which has knowledge about what is
a pet� and� using a database of facts de�ning some animals and characteristics� infers which
animals are to its knowledge�� pets�
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pet�X��� animal�X�� sound�X� bark��

pet�X��� animal�X�� sound�X� bubbles��

animal�spot��

animal�barry��

animal�hobbes��

sound�spot� bark��

sound�barry� bubbles��

sound�hobbes� roar��

�

Since most CLP systems provide an interactive shell for the interpreter � compiler� the user
can usually issue commands to load the program� call predicates in it� change the program�
and load it again� Calling a predicate from the interpreter yields the same results as calling
it from inside a program�

A query issued by the user is just a conjunction of atoms� and has exactly the same form
and meaning as the body of a clause� The answer to a query is a set of bindings for the
variables which make the query true with respect to the program� Since some predicates may
have several clauses which hold for a given query� multiple solutions are possible�

Example ��� We will give an example of a possible session with a CLP system� The prompt
of the system will be shown as ��� We will use the program in Example ����

Load the �le where the program is stored

�� consult�pet��

Make queries�

�� sound�spot� X��

X � bark

�� sound�A� roar��

A � hobbes

�� animal�barry��

yes

�� animal�X��

X � spot �

X � barry �

X � hobbes

�

Problem ��� What will be the answers� to the query

�� sound�A� S�� �
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��� Searching

The query

�� pet�X��

returns the following answers�

X � spot

X � barry

How is this achieved� The CLP system performs a search using all the possibilities
o�ered by having several clauses for the predicates� This is best depicted by a search tree
which represents all possible paths in the program� Without entering into details� every time
a predicate with more than a clause is called� a choice point is made at that execution point�
this choice points keeps information about the state of the execution at that moment� so
that� if more solutions are needed� the engine can backtrack up to that point� and resume the
search with the next untried clause of that predicate�

pet(X)

animal(spok) animal(barry) animal(hobbes)

animal(X), sound(X, bark) animal(X), sound(X, bubbles)

sound(barry, bubbles)animal(barry) animal(hobbes)animal(spok)sound(spok, bark)

Figure ���� A tree

The search process� automatically triggered by a failure in the resolution� allows logic
programming based languages to return all possible solutions to a query� after having reached
a solution� if the user requests for more answers� the toplevel just causes a failure and the
backtracking process is �re�started�� The order of backtracking is as follows�

� Clauses within a predicate are tried from top to bottom� backtracking on a predicate will
cause the next untried clause to be executed� The order in which clauses are executed
is de�ned by the search rule�

� Atoms within a clause body are executed from left to right� and so backtracking is
attempted right to left� This is called the selection rule�

�There are also special all�solutions predicates which encapsulate a search in a single objective and return
all possible solutions for a given query�
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Other strategies to select which clause and which atom to try are possible� and those
di�erent search and selection rules give raise to di�erent operational semantics for logic lan�
guages�

Example ��
 The following query has been executed using the program in Example ����

�� pet�X�� animal�Y��

X � spot� Y � spot �

X � spot� Y � barry �

X � spot� Y � hobbes �

X � barry� Y � spot �

X � barry� Y � barry �

X � barry� Y � hobbes

Solutions for the clauses of animal�
 are generated �rst� in the order in which the clauses
are written� After that� a new solution for pet�
 is generated� following the rules for atoms
and clauses stated above� �

��� Logical Variables

Variables in CLP languages are termed logical variables� The adjective logical stems from
a unique character not present in other languages� these variables do not necessarily hold
values�and yet they are completely legal� and run�time access exception errors are not gener�
ated by accessing them��� and they can be assigned �or� better� bound� to other uninitialized
variables� The value of an uninitialized variable is not NULL or other esoteric� special value�
that variable� simply� has no value at all yet�

Logical variable assignment is monotonic� which means that a logical variable cannot
mutate its value within a search path�

Example ��� The variable X can take the value a�

�� X � a�

X � a

But it cannot take the value a and then change it to b

�� X � a� X � b�

no

�

Problem ��� Then� how is it possible that the following queries work perfectly�

�In fact� the kind of fatal errors which are raised in some languages because of the dereferencing of unini�
tialized pointers� or because or arithmetical operations with numbers holding senseless values� cannot appear
in CLP systems �and� if they do� it is the system�s� not the programmer�s� fault� and� at most� a runtime
error is returned� which usually can be caught and recovered from� This results in an easier construction and
management of complex data structures� as we will see�
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�� X � a�

X � a

�� X � b�

X � b

Hint� the toplevel interpreter backtracks between goals� in order to recover the initial
state� �

The constraint ��� we have introduced before not only assigns values to variables �or�
better� binds variables to values�� but it can also bind free variables� constraining them to
have the same value�

Example ��� Variables can be bound one to each other� constraining them to take the same
value� and this constraint is taken into account during the rest of the execution�

�� X � Y� X � a�

X � a� Y � a�

�� X � Y� pet�X��

X � spot� Y � spot �

X � barry� Y � barry

�

Problem ��� Explain the following behavior� why the query has no solutions�

�� X � Y� pet�X�� sound�Y� roar��

no �

Problem ��� Given the following program� which is intended to model kinship in a family�

father�of�juan� pedro��

father�of�juan� maria��

father�of�pedro� miguel��

mother�of�maria� david��

grandfather�of�L�M���

father�of�L�N��

father�of�N�M��

grandfather�of�X�Y���

father�of�X�Z��

mother�of�Z�Y��

answer the queries�

�� father�of�juan� pedro��

�� father�of�juan� david��

�� father�of�juan� X��
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�� grandfather�of�X� miguel��

�� grandfather�of�X� Y��

�� X � Y� grandfather �of�X� Y��

�� grandfather�of�X� Y�� X � Y�

�

Problem ��	 Augment the code in Problem ��� to contain rules for the relationship
grandmother of�X� Y�� following the spirit of the program� �

��	 The Execution Mechanism

Execution of CLP languages can be seen as a tree traversal� where the nodes of the tree are
conjunctions of atoms to be proved �similar to bodies of clauses� which are also conjunctions
of atoms�� The root of the tree is the initial query posed by the user� and there might be
one or several branches starting at every node� each branch corresponding to the clauses
with matching heads for the �rst �leftmost� goal in the conjunction� The tree is explored
by selecting the leftmost goal in a conjunction� and the leftmost untried branch �clause� for
that goal� The tree can be explored partially or totally� in the latter case� all solutions to the
initial query are returned�

Figure ��� shows how the execution tree is traversed for the following program and the
query �� grandparent�charles�X��

grandparent�C�G���

parent�C�P��

parent�P�G��

parent�C�P��� father�C�P��

parent�C�P��� mother�C�P��

father�charles�philip��

father�ana�george��

mother�charles�ana��

Execution starts at the toplevel query grandparent�charles� X�� which is equated to
the �rst clause of the program� Variables in the body of the clause are substituted by the
constants in the query� and the body �with some constants in place of the textual variables�
is left to be solved as a conjunction of goals� The execution continues by selecting the �rst
goal in the body �parent�C� P�� now rewritten at runtime to parent�charles� P��� and
the process continues� There are two matching clauses for parent�charles� P�� and the two
are tried in textual order� that is the reason why two di�erent subtrees are rooted at this
node� The execution proceeds until a node with no atoms to solve is obtained �this is possible
because a resolution against a fact� which has no body� removes an atom from the node��

The �nal result of the query� X � george� is obtained in the leaf labeled �precisely� X �

george� This binding for X can be seen as propagated upwards in the tree and communicated
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to the variable present in the toplevel query� but� in fact� the variable this binding is made
to� is the same one which was present in the toplevel query� as atoms were reduced in the
execution process� variables in the same position in atoms and clause heads were uni�ed� i�e��
equated�

father(philip,X) mother(philip,X)

father(charles,P),parent(P,X)

parent(charles,P),parent(P,X)

grandparent(charles,X)

mother(charles.P),parent(P,X)

parent(ana,X)

failure

parent(philip,X)

failure X = george

father(ana,X) mother(ana,X)

failure

Figure ���� Traversing an execution tree

�

Knowing the operational behavior of the language is necessary for larger programs �espe�
cially because it is instrumental for achieving better performance�� but for the time being� it
is not essential� understanding the declarative semantics �i�e�� the grandfather of someone is
the father of his�her mother or the father or his father� is far more important at this stage�

��� Database Programming

The code in Example ��� is a case of the so called database programming � it acts as a database�
where facts store the basic relationships among data �in much the same way as in relational
databases�� and the rules express new relationships among data� based on the ones we already
have� in other words� they provide views to the database� but everything is seen� together� as
a program which can answer to queries�

This language� although limited �for example� no data structures are used�� can model
quite sophisticated relationships� and answer queries which are not trivial�

Example ���� A logical circuit� Figure ��� depicts an electronic circuit implementing logic
gates� Some parts of it resistors and transistors� are labeled� We will use facts to construct a
small database stating which components connect the di�erent points highlighted in the circuit�

resistor�power�n
��

resistor�power�n���

transistor�n��ground�n
��

transistor�n��n�n���
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transistor�n��ground�n��

Note that current direction is meaningless in resistors� but for simplicity we have chosen
to use the �rst argument of the facts de�ning resistors to denote the end connected to the
power�

Some knowledge of electronic gates tells us that an inverter can be built of a transistor
appropriately connected to a resistor� The needed connections are re�ected in this rule�

inverter�Input�Output���

transistor�Input�ground�Output��

resistor�power�Output��

Similar rules can be written for nand and and gates�

nand�gate�Input
�Input��Output���

transistor�Input
�X�Output��

transistor�Input��ground�X��

resistor�power�Output��

and�gate�Input
�Input��Output���

nand�gate�Input
�Input��X��

inverter�X� Output��

The following query and answer demonstrate the knowledge of the problem about our
circuit�

�� and�gate�In
�In��Out��

In
�n�� In��n�� Out�n
�

Similarly� queries could be made to �nd out the connection points of inverters and and
gates� �

Problem ��� In Example ����� how could the code be modi�ed so that it does not matter
whether the resistors are de�ned as having power in the �rst or in the second argument� In
other words� change and�or augment the rules for the circuit components so that whoever
de�nes resistor�� does not have to know about the di�erences between the �rst and the
second argument� �

��� Datalog and the Relational Database Model

The language we have seen so far� having �logical� variables� constants� user�de�ned pred�
icates �which can be assimilated to program procedures�� and the equality constraint ���

is a constraint language� This language is� however� severely impeded by the lack of data
structures and arithmetical operations� and we will introduce them later� In fact� its power is
equivalent to that of propositional logic �i�e�� logic without variables�� because every program
in our �rst language can be rewritten to a semantically equivalent propositional program� and
any propositional program is� directly� correct in our language�
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Power

n1

n2

n3

n5n4

r1

r2t1

t2

t3

Figure ���� An electronic circuit

Notwithstanding� augmenting this language with numbers and arithmetical operations�
and �for the sake of practicality� other facilities �such as negation�� produces a far superior
language� termed Datalog� which is often used in advanced databases� Without adding any�
thing to our language� we will show how it can be directly used to model common operations
in relational databases�

Basic structural components of relational databases are tables� which are collections of
tuples �rows� having the same number of components in each tuple� Each component of
every row has a type� such a string� number� date� etc�� usually from a set of prede�ned types
available in the database� we will not deal with such types at the moment� The arguments in
the same position of all the rows in each table belong to the same column� and every column
has an attribute� which usually names that column� Figure ��� shows two tables which can be
part of a database which collects information about persons and cities where they have lived�

Name Age Sex

Brown �� M

Jones �� F

Smith �� M

Person

Name Town Years

Brown London �


Brown York 


Jones Paris ��

Smith Brussels �


Smith Santander 


Lived�in

Figure ���� Two tables in the relational database model

The order of rows in immaterial� since they are not accessed and retrieved by number� but
according to the matching of the arguments� Similarly� the order of columns is not important
either� since they are labeled with attributes� but it will be important for our translation to
a logic language� It is important to note that duplicate rows are not allowed� or� rather� that
they are meaningless� since duplicated solutions are not taken into account at all�
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A translation to our logic language takes every part of the database and casts it into the
component of the constraint language following the paths below�

Relat� Database � Logic Program

Relation Name � Predicate symbol
Relation � Predicate consisting of ground facts �facts without variables�
Tuple � Ground fact
Attribute � Argument of predicate

It is important to note that� since in our language� arguments of an atom cannot receive
a name �but other logic languages allow it�� the correspondence attribute name � argument
position must be respected in the whole translation� The fragment of database in Figure ���
can be translated to the set of facts below�

person�brown��	�male��

person�jones��
�female��

person�smith����male��

lived�in�brown�london�
���

lived�in�brown�york����

lived�in�jones�paris��
��

lived�in�smith�brussels�
���

lived�in�smith�santander����

Using this translation scheme� which uses a set of facts to model a static database� the
usual operations on relational databases can be easily de�ned� an implemented using clauses�
As mentioned before� the result is that not only the database� but also the di�erent queries�
views� etc� can be programmed using the same language�

� Union� two clauses de�ne that a table r
S
s is constructed by taking elements which

belong either to table s or to table r� Extending it to more than two tables is straight�
forward�

r union s�X��� � ��Xn� �r�X��� � ��Xn��

r union s�X��� � ��Xn� �s�X��� � ��Xn��

� Set Di�erence� tuples belonging to one table� but not to the other� The implementation
of Set Di�erence needs negation� which we have not discussed yet� we will come back
to it later� For now� it will su�ce to know that a general and proper implementation
of negation in logic languages is very di�cult� and usually only a restricted version of
the full logical negation is available� Fortunately� for the purpose at hand �relational
databases�� implementing a sound logical negation is possible� since the tables are always
�nite and there are no data structures which can construct in�nite objects�

r diff s�X��� � ��Xn� �r�X��� � ��Xn��

not s�X��� � ��Xn��

r diff s�X��� � ��Xn� �s�X��� � ��Xn��

not r�X��� � ��Xn��
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We will later discuss negation more in depth�

� Cartesian Product�

r X s�X��� � ��Xm�Xm���� � ��Xm�n� �
r�X��� � ��Xm�� s�Xm���� � ��Xm�n��

� Projection�

r
��X��X�� �r�X��X��X���

� Selection� the selection criteria is just another predicate which can fail or have success
for a tuple of data� In general it could be any user predicate� but in this case we will
use the arithmetical predicate �� which we assume is already de�ned by the system�

r selected�X��X��X�� �r�X��X��X���

��X��X���

Some operations can be expressed as derivatives from the above ones� but they can also
be expressed more directly in CLP�

� Intersection� tuples which are in r and s at the same time�

r meet s�X��� � ��Xn� �r�X��� � ��Xn��

s�X��� � ��Xn��

� Join� tuples which have an element in common in two tables�

r joinX� s�X��� � ��Xn� �
r�X��X��X��� � ��Xn��

s�X �

��X��X
�

��� � ��X
�

n��

The appearance of duplicate answers� even if there are no duplicates in the original table
�e�g�� projecting the table lived�in on its �rst argument� is not a theoretical problem� since
they are simply ignored� but it can be a practical problem� Database implementations auto�
matically discard repeated tuples� Similarly� CLP languages have built�in primitives which
allow the gathering of all answers to a query and remmoving duplicates�

�

The so�called deductive databases are relational databases which use heavily concepts
from �rst�order logic to implement �actually� to program� explicitly deduction and coherence
rules� They use commonly a language similar to the one we have just developed� plus some
extended facilities� This language is usually a subset of a logic�based full��edged language�
It is language of this kind� even augmented with constraint solving capabilities� which we are
aiming at now�

�



Chapter �

Adding Computation Domains

In this chapter we will add di�erent constraint domains to our language� and we will see
how they greatly expand its usefulness� Several examples� which could not have been realised
before� will be developed here�

��� Domains

A constraint domain introduces new symbols and their associated semantics in the language�
This gives the language an ability to express computations which go well beyond what was
available until this moment�

Example ��� In a language like C or Pascal� integer numbers and real numbers are provided
by default� Think of an application which needs to deal with complex numbers� Two paths are
possible�

� Writing some libraries which create� access the real and imaginary parts of� and make
arithmetical operations with such numbers� or

� Augment the language with a new� primitive data type complex� a new symbol for
p��

usually written as � or ��� and an expanded meaning for the usual arithmetical operators�

�

While both approaches are equally valid� if the embedding is correctly made� and �ts nicely
with the rest of the language� the second is probably more elegant and leads to languages
easier to understand� We will see that using constraints together with logic programming is
actually a natural step towards a more powerful language�

There is a variety of constraint domains to choose� and CLP languages choose which
one to implement �several at once� in some cases�� The reason for having them is that
di�erent problems call for di�erent constraint domains �due to its nature�� and �nding the
right constraint domain is usually not di�cult� But� in any case� the �rst step is deciding a
modelization of the problem�

Choosing a constraint domain has another impact� the capabilities of the solvers for
that domain� Not all constraint domains are equally solvable� some have algorithms which
generate a solution �e�g�� linear equations�� some need enumeration and trial and error �e�g��

��
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�nite domains�� and some need an iterative �xpoint�based algorithm which approximates a
solution �e�g�� non�linear equations��

Having di�erent constraint systems available is� actually� an advantage� in that it allows
the programmer to model the problem freely� and then try to adapt �if needed� that model to
the constraint system which more closely resembles the modelization� We will present some
constraint domains which will allow us to perceive the di�erences among them� and� at the
same time� to understand how all of them blend easily with the underlying LP machinery�

��� Linear 
Dis�Equations

Linear �dis�equations were� in practice� pioneered by the CLP��� system� which o�ered a
Prolog�like interface� where arithmetical symbols were enriched to express constraints� Other
implementations �namely� Prolog IV� CHIP� SICStus � � � � have chosen to implement this
constraint system as well� as it has a well�known solving procedure� and is useful in a range
of applications� We will use Prolog IV in the examples� as it is a quite reasonably known logic
programming system� and it has several constraint systems available�

A note on syntax� CLP systems tend to have some variations in the syntax
of similar operations� This may be slightly confusing at �rst� but it is not a real
problem� di�erent syntaxes are easily understood� once the underlying language
design principles are known�

We will augment the language with the following components�

� Numbers� both integers and �oating point numbers �which aproximate real numbers��
written as usual� Addiotinally� expressions like ��	e
 represent the number ��	� ����

� Arithmetic operators ��� �� "� �� � written in the usual in�x form� They allow us to
construct arithmetic terms� using numbers and variables� � � �� X � � 	 ��� Y �� Those
arithmetic terms stand for the corresponding arithmetic expressions�

� The constraint ���� which now stands for arithmetical equality � two expressions are now
said to be equal if they can be arithmetically reduced to the same expression�

� More arithmetical constraints� which act as the corresponding arithmetical relational
operators�

Prolog IV name Arithmetical meaning

gelin�X� Y� X 
 Y

gtlin�X� Y� X � Y

lelin�X� Y� X � Y

ltlin�X� Y� X � Y

Note that all of them have the su�x lin� which stands for linear� the reason for that
will become clear later�
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Prolog IV �and other CLP languages� can solve equations directly typed in the top�level
prompt� These examples are taken from a Prolog IV session�

��  � Y � ��

Y � 


�� X � ��Y � X��� X�Y � Y � �X � ��

Y � ��
	� X � ����

�The prompt of the Prolog IV interpreter is ��� but we will be using �� throughout this
paper�� By default� answers are returned as fractions because Prolog IV uses in�nite precision
arithmetic when possible� The equations above had a unique solution� but equations may
have no solutions�

�� X � ��Y � X��� X�Y � Y � �X � �� lelin�X� Y��

false�

And sometimes there exists an in�nite number of solutions�

�� X � Y � ��

X ! real� Y ! real

which means that X and Y are just real numbers� The � syntax needs further explanation�
but we will delay it until later� it will su�ce by now to understand it as meaning �belongs
to the class of��in this case� �X belongs to the class of the real numbers��

Prolog IV does not output complex relationships� although it is of course aware of them�
In the previous example� Y�real� X�real is actually a weak answer� for the constraint
X � Y � � is known by the system� A clearer example is the one below�

Example ��� The following query represents the constraint X � Y� Y � X� from which
X � Y can be deduced�

�� gelin�X� Y�� gelin�Y� X��

Y ! real� X ! real

No output of constraints is given� but the solver is internally aware of the constraint
X � Y �

�� gelin�X� Y�� gelin�Y� X�� X � �

Y � � X � 

�

There is a problem in generating output for complex answer constraints� the constraint
system� after simpli�cation� has to be projected onto the query variables �because these are
the ones the user knows about�� and this is not easy �or even feasible� in some constraint
domains�
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��� Linear Problems with Prolog IV

Let us give a couple of examples of using linear constraints� We will �rst de�ne a predicate
which can generate �and test� natural numbers�

nat�	��

nat�N���

gtlin�N� 	��

nat�N�
��

This can be read as �zero is a natural number� and any number greater than zero is a
natural number� provided that is predecessor is also a natural number�� Note that we are
using the actual number zero to represent zero� This is an example of a recursive de�nition�
in which a problem �in this case� knowing when something is a natural number� is solved by
reducing the initial problem to a similar� but in some sense smaller or simpler task� After
loading the above code� Prolog IV returns a series of integer numbers�

�� nat�X��

X � 	 �

X � 
 �

X � � �

���

And it can also test whether a given number is or not natural�

�� nat�����

false

�� nat�����

false

This is one of the most important properties of CLP languages� as logical properties are
written without paying attention� to the internal operations of the language� the code can be
used in various modes� it can either generate or test� or perform a mixture of both�

�� gelin��� X�� nat�X��

X � 	�

X � 
�

X � ��

X � ��

�� gelin��� X�� nat�X����

X � ���

X � ��

X � ���

�This can be assumed at this moment� Later we will see that a better knowledge of how the system actually
works is needed for writing certain programs�
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X � ���

X � �
�

X � 	�

X � 
�

X � ��

X � ��

The de�nition above can also be written as

nat�	��

nat�N � 
���

gelin�N� 	��

nat�N��

and it works exactly in the same way�

Problem ��� How� and why� will the following code

nt�	��

nt�N���

nt�N�
��

behave if queried

�� nt�����

�����

�� nt�����

�����

�

In a similar way to the natural numbers� even numbers can be de�ned as

even�	��

even�N�����

gtlin�N��� 	��

even�N��

which is to be read as �zero is an even number� and any even number plus two is also an even
number��

Problem ��� Write code� similar to the one for even�
� which can generate odd numbers
and test for oddity� Call the predicate odd�
� �

Problem ��� Write an alternative de�nition for odd�
 which uses the de�nition of even�
�
but which is not based on it� It should not contain any recursive call� �

Problem ��� Write a predicate multiple�A� B� which tests if a number A is an integer
multiple of another number B� �
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Problem ��	 It should be trivial to give de�nitions for odd�
 and even�
 using multiple���

�

Problem ��� Find whether a number N is congruent modulo K to some other number M

M � N mod K�� This means that the remainder of the integer division of M by K is the
same as the remainder of the integer division of N by K� �� � 	 mod 
� �� � � mod ��
�� � � mod ��� � � � � Call the predicate congruent�M� N� K�� �

�

A more involved example is generating the value of e based on a �slowly� convergent series�
e

�
� �

�
� �

�
� �

�
� �

�
�   � The predicate which implements this is called is E�N� E�� where

N is the number of terms to add� and E is the value of e� We will make this toplevel call an
interface to a predicate which will actually perform the calculation�

is�E�N� E���� is�E�N� 
� 
� E��

is�E�	� Mult� Sign� 	��

is�E�N� Mult� Sign� Sign�Mult � RestE���

gtlin�N� 	��

is�E�N�
� Mult�
� �Sign� RestE��

The bulk of the work is performed by is E�� which has in its �rst argument the number
of elements in the series remaining to be added� in the second argument the denominator for
each element of the series� in the third argument the sign ��� or ��� to be used� and in the
last argument the result of adding the rest of the series� Operationally� the predicate works
by �nding out the �rst element of the series �which is Sign�Mult�� and stating �in the head
of the clause� that the whole series is to be calculated by adding this �rst element with the
rest of the series� then� a recursive call works out the value of this rest of the series� All
mathematical operations are solved when possible �i�e�� when a su�cient number of variables
have been reduced to de�nite values��

Finding an approximation of e is as easy as writing�

�� is�E�
	� E��

E � 
������	�

The problem� in that case� is that we do not have any idea of the accuracy of this approx�
imation� A better control can be obtained by forcing two successive approximations of e to
di�er by a small amount�� So� an easy possibility is writing�

�� lelin�abs�E
 � E��� 	�
�� is�E�N� E
�� is�E�N�
� E��� "�

N � ���

E� � �������	���
���
������������		�

E
 � ���
	��	�
	�
����
������������		�

�Mathematically speaking� this is not a good idea� the error of the approximation in a series is� in general� an
expression which is to be calculated separately� and usually working out this expression is not as straightforward
as testing the value of an element of that series�
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Thirtynine elements may seem a lot for an accuracy of only ���� but if one thinks carefully�
the ��th element is �

��
� and since the series itself returns e

�
� the di�erence among the ��th and

the ��th element is just ���� concerning the accuracy of the approximation� it is not really
meaningful� and should be looked mainly as an exercise of using CLP in innovative ways� not
possible in other languages�

Some primitives not yet explained are used in this example� abs�
 returns the absolute
value of a number� The " sign forces Prolog IV �and any other Prolog or CLP language� to
stop after �nding the �rst answer to a query� We will return to them �especially to "� later�

Problem ��� There is some redundancy in this example� Two of the arguments perform
similar roles� the �rst one counts the number of elements in the series still to be worked out�
and it thus goes from N to 	� the second one has the denominator of the fractions� and it goes
from 
 to N� The only reason for doing that is automatically calculating whether to add or
substract each element in the series by reversing the sign of the third argument� CLP can help
to have a simpler program� we can start at �

N
and progress towards �

�
� leaving undetermined

the sign of every element of the series� but reversing its sign� until the �rst element is reached�
Write this program� �

��	 Fibonacci Numbers

The Fibonacci series is a classical problem in mathematics and computer science� It is usually
de�ned as�

F� � �

F� � �

Fn�� � Fn�� � Fn

I�e�� the numbers of Fibonacci are �� �� �� �� �� 
� � ��� � � It is easy to straightforwardly
translate it to a logical de�nition� mimicking each equation with a clause� The �rst argu�
ment of the predicate is the index of the Fibonacci number� and the second argument is the
Fibonacci number itself� Note that there is an explicit check of the index in the last clause�

fib�	� 	��

fib�
� 
��

fib�N� F
�F����

gelin�N� ���

fib�N�
� F
��

fib�N��� F���

There are two recursive calls in this case� This will be important later� As usual� queries
can be issued to �nd out which number corresponds to a given index�

�� fib�
	� F��

F � ���

But� as in previous examples� other calls are possible� as� for example� �nding out the
index of a Fibonacci number�
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�� fib�N� ���

N � �

Other interesting queries are possible� as� for example� �nding which are the �xpoints of
the Fibonacci series �i�e�� which numbers are equal to their indexes��

�� fib�N� N��

N � 	�

N � 
�

N � �

But the above program� having two recursive calls� needs too much memory because of
repeated calls� F��� needs F�� and F�	� but F�� itself needs F�	 again� so not only many calls
are needed� they are repeated� too� The program can use up the memory allocated for the
process in medium sized computations�

�� fib�
		� F��

error� too�many�scols

Increasing the memory allocated by the process only pushes the problem a little bit for�
ward� it is much better to reformulate the program �which� in this case is quite easy� to make
another faster �and cheaper in terms of memory� implementation�

Problem ��
 Write a simply recursive program which de�nes the Fibonacci series� Hint�

use two arguments to store the current Fibonacci number� and the previous one� Find the
����th Fibonacci number the last four digits are ������ �

��� Non�Linear Solver� Intervals

The linear equations solver we have been seeing has the attractive of being complete �i�e�� it
always �nds a correct solution if it exists� and says that no solution exists only when this is
the case�� But� on the other hand� it can solve only linear equations� Prolog IV implements
a second numerical constraint system which is based on intervals� variables take values in
intervals �and combinations thereof� of real numbers� which in fact associates a �potentially�
in�nite number of points to each variable� Intervals have a special syntax in Prolog IV� and
the usual mathematical combinations of open � closed interval are available� Table ��� shows
the four di�erent types of intervals and their syntax�

Interval From To Prolog IV

#X�Y $ X �included� Y �included� cc�X� Y�

�X�Y $ X �excluded� Y �included� oc�X� Y�

#X�Y � X �included� Y �excluded� co�X� Y�

�X�Y � X �excluded� Y �excluded� oo�X� Y�

Table ���� Intervals and their representation in Prolog IV

Using intervals brings advantages in some cases� Non�linear equations can be approxi�
mately solved� and intervals can also be used to simulate easily �nite domains �by forcing
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the interval to contain only integer values�� On the other hand� it is not sure that a solution
will be found for non�linear problems� For this reasons� it is convenient to know when the
linear solver has to be used� and when the non�linear solver is the correct choice� Thus� it is
necessary to be able to tell Prolog IV which solver we want to use in every particular case�
This is done by using di�erent keywords to express operations in the linear and non�linear
solver� the two versions are shown in Table ���� The su�x lin is removed from the relational
constraints� and dots are added in before and after the arithmetical operators� The equality
constraint ��� remains the same� But the �compatible with� operator� �� particular to Prolog

IV� is to be used to bind variables to intervals�

�� X � A ��� B� A ! cc�
� ��� B ! cc��� ���

B ! cc������ A ! cc�
���� X ! cc��
	��

�� X � A ��� B� A ! cc�
� ��� B ! cc��� ���

B ! cc������ A ! cc�
���� X ! cc����	��

In their basic version� operations on intervals just add� subtract� etc� the maxima and
minima of the ranges of the variables� which are updated to make the operations true�
always in the direction of narrowing the intervals� In more complex problems� the intervals
are successively narrowed using an iterative procedure until a �xpoint is reached�

�� X � A ��� B� A ! cc�
���� ge�X�	�� B ! cc������

B � �� A � �� X � 	�

Linear version Non�linear �intervals� version

� ���

� ���

� ���

� ���

gtlin� � � gt� � �

gelin� � � ge� � �

ltlin� � � lt� � �

lelin� � � le� � �

Table ���� Correspondence between keywords for the linear and non�linear solvers

A note on Prolog IV and � The use of � in Prolog IV is a shorthand for writing more
complex relations� an expression like A � cc�
� �� is a shortened form of cc�A� 
� ��

where cc�� is a relation which states that A can take values in the interval #�� �$� Similarly�
the expression gt�A� 	�� which stands for A � �� can also be written A � gt�	�� and other
constructions as for example ��� are abbreviated forms for relations� writing X � A ��� B

is akin to writing times�X� A� B��
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��� Some Useful Primitives

Besides those already mentioned� it is usual that additional primitives are provided in CLP
systems� We will mention some primitives which are available in Prolog IV� the reader is
advised to refer to the manual of the CLP system being used�

����� The Bounds of a Variable

Sometimes accessing the bounds of a variable is useful� Could this be made using the interval
constructors to access the bounds of the variables�

�� A ! co�
� ��� A ! co�L� U��

U ! gt�
��

L ! lt����

A ! co�
����

This does not work as expected� the lower and upper bounds are not returned as simple
numbers� but rather as �in�nite� sets of numbers� Additionally� the intervals might not be as
desired if we do not access the variable using the same combination of open�closed interval
it has at that moment�

�� A ! co�
� ��� A ! oc�L� U��

U ! ge�
��

L ! lt����

A ! co�
����

What happens here is that we are not accessing the bounds of the variable A� but rather
constraining the variables L and U� When L is constrained to be a lower bound of the interval
#�� ��� then L can take any value from � �excluded� downwards �i�e�� the range ���� ����

There are specialized primitives which access the greatest lower bound of an interval
variable �glb�A� L��� the lowest upper bound �lub�A� U�� and both at the same time�
bounds�A� L� U��

�� A ! co�
� ��� glb�A� L��

L � 
� A ! co�
����

�� A ! co�
� ��� lub�A� U��

U � �� A ! co�
����

�� A ! co�
� ��� bounds�A� L� U��

U � �� L � 
� A ! co�
����

This can be used� in certain cases� to force a maximization�minimization of the solution
of a problem�

�� X � A ��� B� A ! cc�
���� B ! cc������ glb�X�X��

B � �� A � 
� X � ���
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����� Enumerating Variables

Very commonly the problem constraints do not su�ce to give de�nite values to the variables�
In this case obtaining solutions must be made resorting to an enumeration of the remaining
values in the domain of each �or some� variables� With �nite domain variables this enumer�
ation poses no problem other than performance� since the number of possible values in the
domain is �nite� With interval variables the situation is more awkward� because the set of
points in the interval of the variable is� in principle� in�nite� To help in this case� the primitive
enum�
 instantiates its argument� which must be an interval variable� to the integer values in
its domain�

Example ��� This piece of code decomposes a number ����� in this case� into two factors�

�� Num � 
		
� Num � A ��� B� A ! cc�
�Num�� B ! �
�A��

enum�B�� enum�A��

B � 
� A � 
		
� Num � 
		
�

B � �� A � 
�� Num � 
		
�

B � 

� A � �
� Num � 
		
�

B � 
�� A � ��� Num � 
		
�

The key point for the solution is the enumeration� it generates integer numbers in the
domain of the variables� which are automatically tested against the constraints� If those
numbers are not generated� the system does not have any way of factoring Num�

�� Num � 
		
� Num � A ��� B� A ! cc�
�Num�� B ! cc�
�A��

Num � 
		
� B ! cc�
�
		
�� A ! cc�
�
		
��

�

Problem ��� Use the code in Example ��� to factor bigger numbers� Try interchanging the
order of the enumeration� Is there any di�erence� Why� �

Prolog IV provides a number of enumeration and splitting primitives� which are useful in
a variety of contexts�

��� A Project Management Problem

In this section we will address the same problem we did in Section ������ but we will leave
the task of solving the resulting equations to a CLP system� Recall the precedence net in
Figure ���� and suppose that we want the whole job to be �nished in �� units of time or less�
In that example we used �nite domain variables� and in this programming example we will
use interval variables to simulate FD variables�

Recall that the constraints for the precedence net were

a� b� c� d� e� f� g � f�� � � � � ��g

a � b� c� d
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b � � � e

c � � � e

c � � � f

d � � � f

e � � � g

f � � � g

These can be translated into Prolog IV using the following clause�

pn
�A� B� C� D� E� F� G���

ge�A� 	��

le�G� 
	��

ge�B� A�� ge�C� A�� ge�D� A��

ge�E� B ��� 
�� ge�E� C ��� ���

ge�F� C ��� ��� ge�F� D ��� ���

ge�G� E ��� �� ge�G� F ��� 
��

where variables in the head of the clause correspond to nodes in the graph� and the maxi�
mum and minimum starting times for the corresponding job are precisely the bounds of the
variables� Time constraints are directly encoded as Prolog IV constraints� After loading this
simple program in the system� making a query yields the following result�

�� pn
�A�B�C�D�E�F�G��

G ! cc���
	�� F ! cc������ E ! cc������ D ! cc�	����

C ! cc�	��� B ! cc�	���� A ! cc�	���

The allowed range for each variable represents the slack in the start time for the corre�
sponding task� We can minimize the total time of the project by setting the time of the end
task to its lower bound�

�� pn
�A�B�C�D�E�F�G�� glb�G� G��

G � �� E � �� C � 	� A � 	�

F ! cc������ D ! cc�	���� B ! cc�	�
��

As expected� some variables do not have slack� those are the ones corresponding to critical
tasks� whose delay would imply a delay of the whole project�

A variant of the project is presented in Figure ���� In that �gure� there is a task �F� whose
duration we can change� Speeding it up will cost more resources� slowing it down will make
it cheaper� We want to know what is the minimum resource consumption so that the project
is not delayed� We can model this by using the following clause�

pn��A� B� C� D� E� F� G� X���

ge�A� 	�� le�G� 
	��

ge�B� A�� ge�C� A�� ge�D� A��

ge�E� B ��� 
�� ge�E� C ��� ���

ge�F� C ��� ��� ge�F� D ��� ���

ge�G� E ��� �� ge�G� F ��� X��
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X

Figure ���� Project �� F can be speeded up�

X� the length of task F� is added to the variables in the head� since we want to access it�
A possible query which minimizes project time and maximizes F�s duration is�

�� pn��A� B� C� D� E� F� G� X�� glb�G�G�� lub�X�X��

X � �� G � �� F � �� E � �� D � 	�

C � 	� A � 	� B ! cc�	�
��

Problem ��� What happens if the primitives glb�� and lub�� are called in reverse order
in the example above� Why� �

D

E F

0

2B C

0 G

A

1

Y

4

X

Figure ���� Two tasks with length not �xed

The last variant of this problem is depicted in Figure ���� Two tasks� B and D have a length
which is not �xed� but there are some additional constraints which relate their lengths� any
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of them can be �nished in � units of time at best� but shared resources disallow �nishing both
tasks in the minimum time possible� the addition of the duration of both tasks is always �
units of time�

The constraints which describe the net� again in Prolog IV syntax� are expressed in the
following clause�

pn��A� B� C� D� E� F� G� X� Y���

ge�A� 	�� le�G� 
	��

ge�X� ��� ge�Y� ��� X ��� Y � ��

ge�B� A�� ge�C� A�� ge�D� A��

ge�E� B ��� X�� ge�E� C ��� ���

ge�F� C ��� ��� ge�F� D ��� Y��

ge�G� E ��� �� ge�G� F ��� 
��

The query to ask for a solution� and the answer returned� is as follows�

�� pn��A�B�C�D�E�F�G�X�Y�� glb�G�G��

Y � � X � �� G � �� E � �� C � 	�

B � 	� A � 	� F ! cc����� D ! cc�	�
��

which means that� since X has the minimum possible value� task B is the one to be accelerated�
Also� all tasks but F and D are critical now�

A note on minimization �and maximization�� The approach we have followed to max�
imize � minimize a constraint problem is a very na� ve one� taking the maximum value of a
variable and sticking to it� This does not always work because� since the non�linear solver �as
�nite domain solvers� is not complete� and there are often values in the range of a variable
which are not actually compatible with the problem constraints�

�� X ! cc���� ��� X ��� X � 
�

X ! cc���� ���

The solver did not work out a solution for this quadratic equation �e�g�� X � 
 and X �

�
�� and the initial interval for the variable remains unchanged� If one adds the additional
constraint that the solution must be smaller than ��

�� X ! cc���� ��� X ��� X � 
� X ! lt�
��

X ! cc�����	����

the answer approximates better the solution� But since there is no algorithm for solving
non�linear equations� these are left as constraints� The only way to reach a solution to those
problems is enumerating� or waiting for variables in the problem to become ground �or� at
least� more constrained� so that the solver can decide if the values are compatible with the
constraints� For specialized cases �such as maximization or minimization� the solvers include
builtin strategies �e�g�� branch and bound� which converge to a solution faster than blind
enumeration� These strategies are accessible by calling ad�hoc predicates�

�� X ! cc���� ��� X ��� X � 
� min�X� 	� X�� realsplit��X���

X � �
�
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��� Other Constraints and Operations

What we have sketched here is just a brief look at the possibilities available in CLP pro�
gramming systems� most of them o�er a whole gamut of primitive predicates and operations�
which implement useful goodies and specialized complex constraints found to be interesting
in practical cases� In particular� as an example� Prolog IV has also�

� Complementary intervals� which implement the exclusion of an interval�

� Boolean operations and constraints on them�

� Extended real operations� such as trigonometric operations� logarithms and other tran�
scendental operations�

� Constraints on lists �about which we will see an example later��

� Constraints on integers� which force interval variables to take only integer values �or
to exclude them�� thus allowing the interval solver to be used with problems modeled
using �nite domains�

��� Herbrand Terms

Herbrand terms are a representation of �nite trees� Technically� they are non�interpreted
function symbols of �rst�order logic� but their main use� and the approach we will follow in
presenting them� is as constructors of data structures� They are interesting because they
are present in all the CLP languages� which means that data structuring and abstraction is
handled uniformly in all CLP languages� Moreover� Herbrand terms themselves can be viewed
as a constraint system itself� where the only constraint allowed is the syntactic equality �very
similar to the one in the �rst language we presented�actually� the data in that language was
a simpli�cation of Herbrand terms��

A formal de�nition of a Herbrand term is�

� A variable is a Herbrand term

� A constant is a Herbrand term

� A function symbol f with arity n applied to n terms is a Herbrand term� f�t�� t�� � � � tn�

For example� following the syntax for variables and constants presented in Section ����
the following are examples of Herbrand terms �which we will call henceforth only �terms���

X

mum

�

identity�Name� Number�

task�Start� End� window�front�� needs�carpenter�

f�a� X� g�Y� t��
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Terms represent trees in a �attened� text�only form� Figure ��� shows a tree�like depiction
for the last term in the previous list� The function symbols in the written form correspond
to nodes of the tree� their arity correspond to the number of subtrees rooted at that node�
From a data structures point of view� the atoms correspond to closed nodes� where the tree
cannot grow� and the variables represent open nodes� which can be further instantiated �i�e��
bound to another term� to produce a larger tree�

f

X g

Y t

a

Figure ���� A tree corresponding to a term

���� Herbrand Terms� Syntactic Equality

Terms can only be equated between them� The only constraint allowed is ���� representing
syntactic equality� Two terms are equated by binding variables to subterms so that the initial
terms become equal� The formal algorithm which does that is�

� An equation f�t�� � � � � tn� � f�u�� � � � � un� is solved by solving t� � u�� � � � � tn � un�

� An equation v � t� where v is a variable and t is a term which does not contain v is
solved with the binding v�t �in other words� v � t is already solved� since this represents
a variable which is equated to a term not containing that variable��

� Equations like t � t can be deleted�

� If none of the above can be applied� the initial terms cannot be uni�ed�

The algorithm is written in terms of equality equations to emphasize the fact that Her�
brand terms are just another kind of constraint system� Below are some examples of equating
terms� those examples have been directly taken from the toplevel of a CLP interpreter�

�� X � f�a� b��

X � f�a� b�

Equating X with f�a�b� is made by just binding X �a previously free variable� to f�a�b��

�� X � f�T� a�� T � b�

T � b� X � f�b�a�
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In this case T is bound to b� in turn T appears in the term f�T� a�� which is equated to
X� After performing all possible substitutions of variables� X becomes bound to f�b� a�

�� f�X� g�X� Y�� Y� � f�a� T� b��

X � a� Y � b� T � g�a� b�

In this example we try to equate two terms� Both have the same toplevel functor �f����
so that the subterms in corresponding argument positions are compared one by one� and all
the resulting equations solved� First� X � a because of the �rst argument� Then� T � g�X�

Y�� but� since X � a previously� in fact the equation generated is T � g�a� Y�� In the last
argument� Y � b� As Y appeared in a previous equation� this one is rewritten to T � g�a�

b�� The �nal result is a system of equations in solved form� there are only variables at the left
hand side of the equations� and none of them appear at the right hand side of the equations�
This can be viewed as a binding of variables to terms� Note� choosing left hand side or right
hand side is not important� the equations can be rotated�

���� Structured Data and Data Abstraction

How can terms be used to construct data structures� A �rst step is observing that terms can
be as a whole bound to variables� and thus they can be passed to predicates as arguments�
For example� a fact in a database of teacher� subjects� hours and classes� could be written as
follows�

course�comp logic� mond� 
�� �
� #Manuel#� #Hermenegildo#� building �� 
�	���

A call to this predicate is�

�� course�comp logic� Day� Start� End� C� D� E� F��

in which we are only really interested in the day� start� and end hours of the course� Some
arguments can be easily put together to make up more structured data� for example� name
and surname� date� location� � � The clause can then be rearranged as follows�

course�comp�logic� Time� Lecturer� Location���

Time � time�mond� 
�� �
��

Lecturer � lecturer�#Manuel#� #Hermenegildo#��

Location � location�new� 
�	���

The constraints have been taken out of the head �remember Section ������ for the sake of
clarity� A query to �nd out the date� start� and end of the lecture� would be�

�� course�comp logic� Time� � ��

�using the anonymous variable � � to denote variables whose value we are not interested in�
and thus they are not displayed at all� and the answer�
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Time � time�mond� 
�� �
�

�

The previous examples use terms to implement records� This is one of the main �but not
the only� ways of using terms to build data structures� We will develop a larger example of
using terms to structure and hide data� We will start with a facts database about people and
friendship relations among them�

friends�peter� mark��

friends�anna� marcia��

friends�anna� luca��

Some queries to this program be�

�� friends�anna� X��

X � marcia �

X � luca

�� friends�X� anna��

no

The last answer is correct� although we intuitively think that if Anna and� say� Marcia are
friends� then Anna is a friend of Marcia and Marcia is a friend of Anna� the program has no
way of knowing this unless explicitly told�argument position matters� So we have to write
another predicate which implements the symmetry of the friendship�

are�friends�A� B��� friends�A� B��

are�friends�A� B��� friends�B� A��

Note that there are no constants in this predicate� only variable passing� Everything
works as expected now�

�� are�friends�anna� X��

X � marcia �

X � luca

�� are�friends�X� anna��

X � marcia �

X � luca

Some of the people in the friends database are married�

married�couple�peter� anna���

married�couple�mark� kathleen���

married�couple�alvin� marcia���

Note that we are putting together the couple in a data structure� married�
 actually
de�nes couples of persons�
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�� married�A��

A � couple�peter�anna� �

A � couple�mark�kathleen� �

A � couple�alvin�marcia�

Then� as before� we might want to know who is married to who�

�� married�couple�peter� S���

S � anna

�� married�couple�marcia� S���

no

And we have a similar problem� couple�� also keeps an order on the marriage� A possible
solution is using a predicate which constructs � deconstructs couples�

spouse�couple�A� B�� A��

spouse�couple�A� B�� B��

which says that �A is one of the spouses in the couple formed by A and B� and B is also one
of the spouses in the same couple��� Then we can ask for marriages given only one of the
spouses� and regardless of the order in which it appears in the de�nition of the couples�

�� spouse�C� peter�� married�C��

C � couple�peter�anna�

�� married�C�� spouse�C� marcia��

C � couple�alvin�marcia�

�� spouse�C� luca�� married�C��

no

Last� we will de�ne conditions for going out to have dinner� two couples will have dinner
together if spouses in the two couples are friends�

go�out�for�dinner�Ma� Mb���

married�Ma��

married�Mb��

spouse�Ma� A��

spouse�Mb� B��

are�friends�A� B��

�� go�out�for�dinner�A� B��

A�couple�peter�anna�� B�couple�mark�kathleen� �

A�couple�peter�anna�� B�couple�alvin�marcia� �

A�couple�mark�kathleen�� B�couple�peter�anna� �

A�couple�alvin�marcia�� B�couple�peter�anna�

Problem ���� Do repeated solutions appear� Why� �
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���� Structuring Old Problems

Some examples already seen can be rewritten using data structures to increase modularity
and to o�er more information to the user� We will show an alternative implementation of the
program which �nds out inputs and outputs of electronic logic gates� The main di�erence
is that we will augment the program to keep track of the structure of the gate also� This
structure will be returned to the user so that the basic components of every gate� and not
only its connections� are known�

Recalling Figure ���� we will add the names of the transistors and resistors to the database�

resistor�r
� power�n
��

resistor�r�� power�n���

transistor�t�� n�� n� n���

transistor�t
� n�� ground� n
��

transistor�t�� n�� ground� n��

We can now know what are the connections of every component� The rest of the program
clauses relate the structure of gates with their inputs and outputs�

inverter�inv�T� R�� Input� Output���

transistor�T� Input� ground� Output��

resistor�R� power� Output��

nand�gate�nand�T
� T�� R�� Input
� Input�� Output���

transistor�T
� Input� X� Output��

transistor�T�� Input�� ground� X��

resistor�R� power� Output��

and�gate�and�N� I�� Input
� Input�� Output���

nand�gate�N� Input
� Input�� X��

inverter�I� X��

Queries can now return also the components of the gates�

�� and�gate�G� In
� In�� Out��

G�and�nand�t�� t�� r��� inv�t
� r
��� In
�n�� In��n�� Out�n


���� Constructing Recursive Data Structures

Terms can be used to construct data structures more complex than those we have been using
so far� A �simply� recursive data structure is a data structure which has a �eld which has
a structure similar to the initial data structure� The simplest recursive data structure is the
so�called Peano numbers� Peano numbers allow the modellization of natural numbers in a
simple� homogeneous way� without actually de�ning di�erent symbols for the digits� Peano
numbers are constructed using these two rules�

� z is a Peano number �meaning zero� ��
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� s�N� is a Peano number if N is a Peano number �meaning the successor of N � i�e�� N���

The following Peano numbers symbolize what is usually written �� �� �� �� �� � � � z� s�z��
s�s�z��� s�s�s�z���� s�s�s�s�z����� � � Peano numbers can very easily be de�ned using
terms� as every Peano number is� directly� a �rst�order term� This code characterizes Peano
numbers�

natural�z��

natural�s�N���� natural�N��

It is interesting to note that this de�nition is� actually� very similar to the second one given
in Section ���� Testing for �zero� and �greater than zero� is automatically made through
matching �z does not match s�z�� and the same happens the other way around�� Subtracting
one to continue the recursion is also made implicitly� since when the argument of the predicate
matches s�N�� N is� by the de�nition of Peano numbers� the predecessor of s�N�� As usual�
this allows us to make queries to test and also to generate numbers�

�� natural�z��

yes

�� natural�potato��

no

�� natural�s�s�s�z�����

yes

�� natural�X��

X � z �

X � s�z� �

X � s�s�z���

���

�� natural�s�s�X����

X � z �

X � s�z� �

X � s�s�z���

���

All usual integer arithmetic operations can be de�ned using Peano numbers� For example�
below we de�ne the addition of Peano numbers� plus�A� B� C� is true if A plus B equals C�
and the three arguments are Peano numbers�

plus�z� X� X��� natural�X��

plus�s�N�� X� s�Y���� plus�N� X� Y��
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Note the call to natural�
 in the �rst clause� to ensure that in fact� the second and third
arguments are Peano numbers� plus�� implements the following two equations�

� � x � x

�� � y� � z � � � �y � z�

Adding one � subtracting one to a Peano number amounts to putting a functor s�
 around
it� or to equate it with s�X�� where X is the variable which will be bound to the number minus
one� Since this is a logical de�nition� it can be used with di�erent call modes� it can add�
subtract� and decompose a number�

�� plus�s�s�z��� s�z�� R��

R � s�s�s�z���

�� plus�s�s�s�z���� T� s�s�s�s�s�z������

T � s�z�

�� plus�s�s�s�s�z����� T� s�s�s�z�����

no

�� plus�X� Y� s�s�z����

X � z� Y � s�s�z�� �

X � s�z�� Y � s�z� �

X � s�s�z��� Y � z

Problem ���� Recall the even�
 program of Section ���� Write a version which uses Peano
arithmetic� �

Problem ���� De�ne the following predicates� All of them should use Peano arithmetic�

� times�X� Y� Z�� which is true if X 	 Y � Z�

� exp�N� X� Y�� which is true if Y � XN �

� factorial�N� F�� which is true if F � N �� i�e�� F � � 	 � 	 � 	    	 N � Note that
factorial is commonly de�ned so that �� � �� respect this�

� minimum�A� B� M�� which is true if M is the minimum of A and B�

� ltn�X� Y�� which is true if X � Y �

�

�

Commonly� predicates can be de�ned in several ways� all of them logically equivalent� but
which may di�er greatly in their performance� For example� let us have a look at a couple
of de�nitions of X mod Y � de�ned as follows� rem�X� Y� Z� is true if there is an integer Q
�for quotient� such that X � Y 	 Q � Z and Z � Y � i�e�� Z is the remainder of the integer
division of X by Y � A straightforward translation is as follows�
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rem�X� Y� Z��� ltn�Z� Y�� times�Y� Q� W�� plus�W� Z� X��

which actually works�but quite ine�ciently� A typical call with X and Y instantiated to Peano
numbers �rst generates Zs less than Y� and then pairs of numbers Q� W such that Y � Q � W�
and after that� it is checked that W � Z � X� A much better �but less direct� implementation
is the one below�

rem�X�Y�Z���

plus�X
�Y�X��

rem�X
�Y�Z��

rem�X�Y�X��� ltn�X� Y��

The idea is subtracting Y from X until X is less than Y�� then X will be the remainder sought
for� Note that plus�� is used to perform a subtraction� and that both clauses are mutually
exclusive� if X � Y� then it is not possible that X
 � Y � X �remember that we are dealing
with natural numbers�� This implementation is much more e�cient than the �rst one� as it
does not perform a generate�and�test procedure� it goes straight down to the solution� Also�
it does not su�er from the problem of looping in the case of choosing the wrong branch to
search� as it was the case of the �rst implementation for certain calls�

���	 Recursive Programming� Lists

Lists are one of the most useful data structures� They are present as primitive constructs in
many languages �e�g�� virtually all functional and logic languages� and available as libraries
in many others� Lists can be de�ned by the user as any other structure in CLP languages�
but they appear so often that there is a special syntax for them�

Formally� a list of elements is either the empty list �usually called nil and written ���� or
an element consed ��put as head of�� with another list� Thus a list is always either an empty
list or a head followed by a tail� This is modeled using a functor of arity �� called cons� The
name of the functor is usually %��� For example the list composed by the elements a� b and c

is formally written ��a� ��b� ��c� ������ The �rst argument of each of the cons functor
is the head of the list� the second is the tail of the list� A list term is logically de�ned �and
recognized� by the predicate is list��� de�ned as follows�

is�list�����

is�list���Head� Tail���� is�list�Tail��

This syntax for lists re�ects the logical idea� but it is not very readable nor descriptive for
an intuitive use of lists� Furthermore� the dot is overloaded by its use as clause terminator�
and should be written quoted� It is customary to use a combination of square brackets and
the in�x operator %j� to write lists� To make life easier� there is a special syntax for writing
lists without having to separate explicitly the head�s� and tail�s�� Table ��� shows examples
of the three syntaxes�

List matching behaves as in any other structure� Some remarks will help to understand
the element syntax�

�We are obviously abusing the notation for variables� each variable is di	erent in di	erent iterations�
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Formal object Cons pair syntax �Element� syntax

��a�# $� #aj# $$ �a�

��a���b�# $�� #aj#bj# $$$ �a�b�

��a���b���c�# $��� #aj#bj#cj# $$$$ �a�b�c�

��a�X� #ajX$ �ajX�
��a���b�X�� #aj#bjX$$ �a�bjX�

Table ���� Syntaxes for lists

� �a�b� and �ajX� unify with X � �b� �X is the tail of a list�another list itself��

� �a� and �ajX� unify with X � �� �the tail of the singleton list is always the empty list��

� �a� and �a�bjX� do not unify �since the �rst list has one element� and the second one
has� at least� two��

� �� and �X� do not unify�

With this notation� the de�nition of lists can be expressed with the following predicate�

is�list�����

is�list��Head�Tail���� is�list�Tail��

�

A common operation is checking for membership in a list� The member�� predicate is true
if the �rst argument is an element of the list which appears as second argument�

member�Element� �Element�List���

member�Element� �AnElement�RestList���� member�Element� RestList��

And� as in other cases� it can be used to check membership� to return on backtracking all
elements which are members of a list� or to force a list to have an element as member�

�� member�b� �a� b� c���

yes

�� member�plof� �a� b� c���

no

�� member�X� �a� b� c���

X � a � �

X � b � �

X � c �

�� member�a� �a� X� c���

true �

X � a
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Problem ���� What does the query member�gogo� L� return� Why� �

Another useful predicate is append��� append�A� B� C� is true if C is the list constructed
by concatenating the lists A and B� The de�nition is�

append���� X� X��

append��X�Xs�� Ys� �X�Zs���� append�Xs� Ys� Zs��

and it can be used in multiple ways�

�� append��
� �� ��� �g� h� t�� L��

L � �
� �� �� g� h� t��

�� append�T� �g� h� t�� �	� m� g� X� Y���

Y � t� X � h� T � �	� m��

�� append�X� Y� �f� p� r���

Y � �f� p� r�� X � ���

Y � �p� r�� X � �f��

Y � �r�� X � �f� p��

Y � ��� X � �f� p� r��

A note on Prolog IV lists Prolog IV lists� apart from the usual behavior we have just
sketched� can be constrained using special primitives� size��� which relates a list with the
number of its elements� o��� which relates two lists with their concatenation� and index���
which relates a list and a number with the element which is placed in the list at the position
given by that number� o�� is� in some sense� similar to append��� but the crucial di�erence
is that� similarly to other constraints� it does not enumerate� but instead leaves a constraint
among lists� o�� can also be written using the � notation� The examples below �specially
the last one� will make this clearer�

�� Z � �
� �� �� o �� �� ���

Z � �
� �� �� � �� ���

�� �
� �� �� � �� �� � X o �� �� ���

X � �
� �� ���

o�� does not enumerate� though�

�� �
� �� �� � �� �� � X o Y�

Y ! list� X ! list�

But o�� does constrain �and size�� does� too��

�� �
�Xs� � Xs o � ���  ! size�Xs��

Xs � �
� 
� 
� 
��

Problem ���	 Use append�� to make the last query� Could you explain how the answer is
reached in the constraints case� Try to reason without thinking of solvers� act as a solver�
and perform a step by step reasoning� �
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�

We will look at another example of a useful predicate and two feasible implementations
of it� Sometimes the order in a list is important �although the list could not be called ordered
in the sense of the word sorted � its order may derive from other considerations� such as the
order of words in a �le�� and a utility predicate in many cases is reverse��� which relates a
list with the result of traversing it from the last element to the �rst�

A �rst possibility is reasoning that� if we have an empty list� the empty list is its own
reversed list� and� if we have a nonempty list and take apart head and tail� reverse the tail
�which is a simpler problem�� and append the head at the end �for which we can use the
append�� predicate�� then the original list will be reversed� Putting it in code�

reverse��������

reverse��X�Xs��Ys ���

reverse�Xs�Zs��

append�Zs��X��Ys��

This is a correct de�nition� but it is very ine�cient� for every element in the list� the
predicate has to reverse the corresponding tail� and then put that element at the end� which
needs traversing the reversed list completely again� This makes this predicate to be quadratic
with respect to the length of the �rst argument� A better strategy is using a common technique
called accumulation parameter � an extra parameter is internally used� in which the �nal result
is constructed� The original list is traversed and each element is pushed onto the argument
which will be returned as �nal solution�

reverse�Xs� Ys��� reverse�Xs� ��� Ys��

reverse���� Ys� Ys��

reverse��X�Xs�� Acc� Ys��� reverse�Xs� �X�Acc�� Ys��

Do not be ba&ed by the presence of reverse�� and reverse��� di�erent arities de�ne
di�erent predicates� reverse�� could have been called with a completely di�erent name� but
it is just not necessary� The second argument of reverse�� is called with an empty list� and�
at every recursion step� the �rst element in the list to be reversed is pushed as �rst element
of that second argument� The result is that� when recursion �nishes� the second argument
contains the initial list� but reversed� It is then uni�ed with the third argument� which holds
the result and which is the same variable as the result variable in the toplevel call�

Problem ���� What is the e�ciency� in time� of this second implementation� with respect
to the length of the �rst list� �

Lists are� without any doubt� the most useful data structure in CLP� and thus it is worth
knowing how to use them� even if some of this knowledge might not always be necessary�

Problem ���� Write de�nitions for the following predicates previously de�ned predicates
may be freely used��

� len�L� N�� N is the length using Peano arithmetic� of the list L
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� suffix�S� L�� S is a su�x of the list L

� prefix�P� L�� P is a pre�x of the list L

� sublist�S� L�� S is a sublist of the list L

� last�E� L�� E is the last element of the list L

� palindrome�L�� the list L is a palindrome

� evenodd�L� E� O�� for any list L� E is the list of the elements in even position i�e��
the �nd� �th� etc��� and O is the list of the elements in odd position i�e�� the �st� �rd�
etc��

� select�E� L
� L��� L� is the list L
 without one any one� of its elements� E� e�g��
�� select�X� �a�c�n�� L��

L � �c �n�� X � a �

L � �a� n�� X � c �

L � �a� c�� X � n

Try to give as many solutions as you can� and pay attention to the di�erences in per�
formance�

�

�

In many cases keeping items ordered in a list can be advantageous� because search time
can be reduced� insertion time� on the other hand� is slower� because the right place to insert
an element must be found� while in an unordered list� a new list with an additional element
can be constructed in constant time just by consing the new head �the element� with the
tail �the previous list�� We will assume that there is a generic predicate precedes�� such
that precedes�A� B� is true if A precede B in the desired order� For numeric elements� this
amounts to an arithmetical comparison� but in arbitrary pieces of information it can require a
more complicated implementation� The code for inserting a piece of information in an ordered
list without repetitions is�

insert�ordlist�Element� ��� �Element���

insert�ordlist�Element� �This�Rest�� �This� Element�Rest����

precedes�This� Element��

insert�ordlist�Element� �Element�Rest�� �Element�Rest���

insert�ordlist�Element� �This�Rest�� �This�NewList����

precedes�Element� This��

insert�ordlist�Element� Rest� NewList��

Problem ���
 Write a variant in which repetitions are allowed� �

The code for searching an element in an ordered list can stop the search before going past
the last item� when we �nd an item which should be placed after the element we are looking
for� we know that the sought for term is actually not present in the list�



�� CHAPTER � ADDING COMPUTATION DOMAINS

search�ordlist�Element� �Element�Rest���

search�ordlist�Element� �This�Rest����

precedes�This� Element��

search�ordlist�Element� Rest��

���� Trees

We will now turn to a more sophisticated data structure� trees� We will actually only deal
with binary trees� because other trees are easily derived� Binary trees are either an empty
node� or a node which contains a piece of information� and from which two subtrees are
hanging� At the moment we will not suppose any order in the elements of the tree� We will
also use trees to exemplify the construction of data structures in CLP languages�

In general� complex data structures are built using functors�much like records are used
in C� C��� or Pascal� A signi�cant di�erence is that there is no need to declare a type�
since the structure of the data and the access to their elements is automatically performed
by matching and uni�cation� We will use the functor tree�� as the basic structure for a
nonempty node� and the constant void to denote empty nodes� The �rst argument of tree��
will be the element in the node� and the second and third ones will be the left and right
subtrees� respectively� Thus� an expression like

tree�hen� tree�cow� void� void�� void�

represents the tree depicted in Figure ����

hen

cow

Figure ���� A tree

As we did with lists� we can write a predicate which is true if its argument is a tree� as
we have agreed to represent it� we do not pay any attention the the elements actually stored
in the tree�

is�tree�void��

is�tree�tree�Info� Left� Right���

is�tree�Left��

is�tree�Right��

Checking whether an element is stored or not in a tree is slightly more involved than in
the case of the lists� since that element might be present in any of the two subtrees� di�erent
clauses are used for elements present in the root of the tree� in the left child� or in the right
child�
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tree�member�Element� tree�Element� L� R���

tree�member�Element� tree�E� L� R���� tree�member�Element� L��

tree�member�Element� tree�E� L� R���� tree�member�Element� R��

Note that there is no clause for the case of a void tree� if the tree is void� then the call to
the predicate must fail� because there is no information in it� Not having a case for a void

tree makes the call fail in this case�

Updating a tree is also an interesting task� we want to de�ne a predicate update tree�OldElem�

NewElem� OldTree� NewTree�� whose meaning is quite obvious� The implementation resem�
bles the code for tree member���

update�tree�Old� New� tree�Old� R� L�� tree�New� R� L���

update�tree�Old� New� tree�Other� R� L�� tree�Other� NR� L����

update�tree�Old� New� R� NR��

update�tree�Old� New� tree�Other� R� L�� tree�Other� R� NL����

update�tree�Old� New� L� NL��

Trees can be traversed� and the contents of their nodes stored in lists� We give below a
predicate which relates a tree with a list which stores the items in this tree in the order in
which they are found when the tree is traversed in preorder �root �rst� then left child� then
right child��

pre�order�void� ����

pre�order�tree�X� Left� Right�� �X�Order����

pre�order�Left� OrdLft��

pre�order�Right� OrdRght��

append�OrdLft� OrdRght� Order��

Problem ���� De�ne� similarly to the example before�

in�order�Tree� Order�

post�order�Tree� Order�

�

Problem ��� Make versions of the predicates in Problem ���� using Prolog IV�s o�� con�
straint� �

�

One of the good things about binary trees is that if they are kept ordered� searching is
relatively cheap� In a well�balanced binary tree� where an order relation is de�ned among the
items it contains �suppose a precedes�� predicate� as in the lists case�� searching for an item
can be made in O�log n�� where n is the number of nodes in the tree� This search procedure
can be implemented as follows�
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search�ordtree�Element� tree�Element� L� R���

search�ordtree�Element� tree�This� L� R����

precedes�Element� This��

search�ordtree�Element� L��

search�ordtree�Element� tree�This� L� R����

precedes�This� Element��

search�ordtree�Element� R��

We are assuming that items which precede a given element are stored in the left subtree�
Conversely� the construction of the tree must respect this order� so� as it happened with lists�
a new ordered tree cannot be built just by putting together two sons and a new piece of
information� we want the resulting tree to be ordered� and without repetitions� The code for
insert ordtree�El� Tree� NewTree� is�

insert�ordtree�Element� void� tree�Element� void� void���

insert�ordtree�Element� tree�Element� L� R�� tree�Element� L� R���

insert�ordtree�Element� tree�This� L� R�� tree�This� NL� R����

precedes�Element� This��

insert�ordtree�Element� L� NL��

insert�ordtree�Element� tree�This� L� R�� tree�This� N� NR����

precedes�This� Element��

insert�ordtree�Element� R� NR��

���� Data Structures in General

In general� all data structures �queues� stacks� n�ary trees� etc�� can be implemented using
the ideas presented� Moreover� as all data is dynamic �in fact� there is no such concept as
�static variable��� and the user does not need to worry about memory management� dangling
pointers� and the like� more sophisticated data structures can be used� Once familiar with
the language� the programmer is able to focus on using the best data for the application at
hand� Garbage collection is also automatic� so no memory leaks are possible �and� if they
happen� they are the language implementor�s fault� and not the programmer�s��

More re�ned data structures are possible� using the advantage of having free variables
inside the data� this leaves the interesting possibility of incrementally adding more items to
the structure� and can be seen as �open pointers�� Probably using them is not often necessary
in CLP� where the focus is more in constraint solving than in building intricate data structure
and coding re�ned algorithms�the solver already contains such algorithms� Notwithstanding�
we will give two examples of using open data structures for problems already seen�

Example ��� We have shown how to insert pieces of information in a sorted binary tree�
This takes three arguments� the �rst for the element to insert� the second for the old tree� and
the third for the tree after insertion� Empty trees appeared as the constant void� We can
use only two arguments by having free variables in the leaves� instead of void� when a leaf is
reached� the variable is just further instantiated�

insert�ordtree�Element� tree�Element� L� R���� "�

insert�ordtree�Element� tree�This� L� R����
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precedes�Element� This��

insert�ordtree�Element� L��

insert�ordtree�Element� tree�This� L� R����

precedes�This� Element��

insert�ordtree�Element� R��

There is a trick and something not yet known� The ��� sign is a control primitive� which
in this case means that 	after trying this clause� do not try the others below� commit to the
decision you have made� even if you fail in the program afterwards
� and is called a cut� The
trick is that� as the tree is traversed down� going left or right� using the second and third
clauses� there must be a point in which the �rst clause matches� either we have found the
element we want to insert and there is no need to insert it� then� or we have reached a leaf�
which is a free variable� and then it is instantiated and matches the �rst clause� This variable
is bound to a tree�� structure� with fresh� unbound variables for the right and left sons� Here
is an example of using it�

�� insert�ordtree�k� X�� insert�ordtree�l� X��

insert�ordtree�a� X�� insert�ordtree�f� X��

insert�ordtree�z� X��

X � tree�k�tree�a���tree�f�������tree�l���tree�z�������

�

Example ��	 One of the best uses of open data structures is called di�erence lists� A dif�
ference list is a list which is expressed as the di�erence between two lists� We will use the con�
struction Prefix�Suffix to denote a di�erence list� with this in mind� �a�b�c�d�e�f���d�e�f�
is representing the list �a�b�c�� The interesting case is when the Suffix is a free variable�
and this free variable can be instantiated to make the list grow at the tail without the need of
appending� In fact� this can be seen in most cases as an constant�time append which does not
need to traverse the whole list� If we have the construction �a�b�c�X��X� and we instantiate
X to be �d�e�� then the Prefix will be instantiated to �a�b�c�d�e� in constant time�

We will use di�erence lists to rewrite the pre order�� program without the need of append

at the end�

pre�order�Tree� List��� pre�order�open�Tree� List�����

pre�order�open�void� List�List��

pre�order�open�tree�X� Left� Right�� �X�PrefLeft��FinalRest���

pre�order�open�Left� PrefLeft�Pref��

pre�order�open�Right� Pref�FinalRest��

Some hints to understand this code�

� L�L is the di�erence between two identical lists� thus it represents the empty list� which
is �� in the closed lists case�

� The su�x of the list in the �rst recursive call to pre order open�� is handed down to
the second recursive call� in order for it to be instantiated�
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� We want the toplevel call to return a closed list but we may choose not to do so�
actually�� For this� we specify that the result of calling pre order open�� should have
�� as su�x�

In real applications� and when this technique is fully understood� the pre�x and su�x of
the lists are usually passed as separate arguments� �

���� Putting Everything Together

We will now develop a couple of small examples in which we will mix constraint handling and
the use of data structures� This is a combination available in all CLP systems� and increases
the constraints part of the language with the possibility of structuring data� at the same time�
it allows the setting up of constraints among components of data structures�

������ Systems of Linear Equations

Our �rst example will use lists to construct a very simple interface to the constraint solver� In
fact� this will not add anything to the capabilities of the solver� linear systems can be solved
just by writing them in the prompt� like in

�� � � X � Y � �� X � � � Y � ��

Y � ���� X � �����

But in a program we will probably want to manipulate the coe�cients and the solutions
as a whole� Data structures will allow us to de�ne systems of equations in a simple way� and
manage them as a data structure which can be handled� transformed� and accessed at will�

We will �rst code a procedure for making dot product of vectors� mathematically de�ned
as

 � �n ��n �� �

�x�� x�� � � � � xn�  �y�� y�� � � � � yn� � x�  y� �   � xn  yn
The �rst problem is how to represent vectors� A customary and easy representation uses

lists� where each element is one of the coordinates of the vector� Therefore we can write our
code as follows�

prod���� ��� 	��

prod��X�Xs�� �Y�Ys�� X � Y � Rest���

prod�Xs� Ys� Rest��

We are adopting the convention �very convenient� for our case� that multiplying two
vectors of zero dimensions yields zero as result� The product of two vectors is then worked
out by multiplying elements pairwise and adding this to the result of multiplying the elements
in the rest of the vector� The code behaves as expected�

�� prod���� ��� �� ��� K��

K � ��
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�� prod���� ��� ��� X��� ����

X� � 

Note that it multiplies� but it also �nds values of coordinates which satisfy a multiplication�
This can be directly used to solve equation systems�

�� prod����
�� �X�Y�� ���

prod��
���� �X�Y�� ���

Y � ���� X � ������

but it is not yet what is needed� processing each equation is done with a separate call� and
free coe�cients are not grouped together� Another predicate� which takes a matrix of factors�
a vector of variables� and a vector of free coe�cients will do the job�

system��Vars� ��� ����

system�Vars� �Co�Coefs�� �Ind�Indeps����

prod�Vars� Co� Ind��

system�Vars� Coefs� Indeps��

Matrices are expressed as lists of vectors� and vectors as lists of numbers� Calls to the
predicate can be now made� and all the needed data is packed in separate data structures�

�� system��X�Y�� ����
���
����� �������

Y � ���� X � ������

������ Analog RLC circuits

We will develop a simple program which receives a data structure �which we will write down
directly� but which could be constructed from reading a description �le� and information
about the voltage� current� and frequency� The program will try to �nd out values for the
variables so that all these parameters match together� We will suppose the circuit is in steady
state� so that transients have not to be considered� We will also consider that elements are
connected either in series or in parallel� so that Ohm laws will su�ce�no Kircho� analysis
is needed� If you do not know what all this means� do not be intimidated� it is pretty easy�

The entry point will be the predicate circuit�C� V� I� W�� which states that across the
network C �this is where the data structure goes�� the voltage is V� the current is I and the
frequency is W� Voltage and current are complex numbers� this is needed because we will be
dealing with inductors and capacitors� which react di�erently with di�erent frequencies� and
the frequency will be kept in the imaginary part�

We will model complex numbers using the c�� structure� the number X � Y � will be
represented as c�X� Y�� and we will implement the addition and multiplication �which� since
we are using constraints� implicitly perform subtraction and division� as

c�add�c�Re
�Im
�� c�Re��Im��� R���

R � c�Re
�Re��Im
�Im���

c�mult�c�Re
�Im
��c�Re��Im���c�Re��Im�����

Re� � Re
 � Re� � Im
 � Im��

Im� � Re
 � Im� � Re� � Im
�
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We will now have a look at composing the parts of the circuit� On one hand we have
individual components which behave according to certain laws relating voltage� current� and
frequency� these components can be connected among them to build larger units� and these
units can again be connected to make bigger circuits� We will use functors for each sim�
ple components� which will give their characteristics� as well as for grouping these elements
together�

The Ohm laws state that two circuits in series have the same current running through
them� they have the same frequency� but the voltage in the endpoints is the sum of the
voltages at the endpoints of both circuits�

circuit�series�N
� N��� V� I� W���

c�add�V
� V�� V��

circuit�N
� V
� I� W��

circuit�N�� V�� I� W��

The situation for circuits in parallel is the complementary� the voltage at the endpoints
is the same in both� and the same as in their connection in parallel� but the total current of
the circuit is divided between them� The frequency is the same in both sub circuits�

circuit�parallel�N
� N��� V� I� W���

c�add�I
� I�� I��

circuit�N
� V� I
� W��

circuit�N�� V� I�� W��

We now have to �nd out how simpler components react to the conditions they are subject
to� We will consider resistors� capacitors� and inductors�

� A resistor obeys the Ohm law V � I 	 �R� �i�� where V is the voltage� I is the current�
R is its resistance� and the frequency is not important� We will model a resistor with
the structure resistor�R��

circuit�resistor�R�� V� I� W���

c�mult�I� c�R� 	�� V��

� Inductors follow the law V � I	���WLi�� where W is the frequency and L the inductor�s
inductance� Similarly to resistors� they are modeled as

circuit�inductor�L�� V� I� W���

c�mult�I� c�	� W � L�� V��

� And �nally� capacitors meet the equation V � I 	��� �

WC
i�� where C is the capacitance�

The corresponding clause is

circuit�capacitor�C�� V� I� W���

c�mult�I� c�	� �
 � �W � C��� V��

Figure ��
 shows a circuit� where ��� denotes unknown values� A query which models the
circuit in a data structure and automatically �nds out the unknown values is as follows�
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I = 0.065

L = 0.073

C = ?R = ?

V = 4.5

ω = 2400

Figure ��
� Modeling a circuit

�� circuit�parallel�inductor�	�	���� series�capacitor�C�� resistor�R����

c���� 	�� c�	���� 	�� �		��

R � ������	���	�	��� C � ��	�	��������					�

This solution is possible� of course� because the execution converts the traversal of the
data structure into a set of equations which are linear and which can be solved directly� If
the equation system were not linear� a more sophisticated solving method �for example� a
nonlinear solver� probably with the help of some search method to isolate a solution� would
be needed� The equations generated depend on the description of the circuit� which is input
data�

���� Summarizing

There is an obvious relation between C�L�P languages and Operations Research� results and
algorithms from O�R� are vital� and are found at the heart of C�L�P languages� because the
solving methods for constraint systems are most times taken from O�R� But there is also
a good deal of implementation techniques �which we have not even mentioned� and which
we will not study� which come from Computer Science� and do not make sense in a setting
of static equations� incremental addition of constraints� propagation of values� and di�erent
solving heuristics based on the problem under consideration�

The use of a programming language o�ers many advantages� explicit algorithms can be
programmed if needed� equations can be set up �and changed� dynamically� the solvability
of the constraints forces backtracking �and� thus� the removal of some constraints and the
addition of some others� by failing when a non�consistent state is reached� and there is always
the possibility of performing search among the possible values in the domain of the variables�
This is the only way to reach a de�nite solution when the problem is underconstrained� or the
constraint solver is too weak to solve them directly� or� simply� there is no known algorithm
to work out a solution to the generated constraints�

The use of the data structures of the language favors a more modular� portable way
to attack problems� and assimilating language variables to constraint variables results in a
clean semantics and in clear programs� Also� the rule�based programming in CLP allow
the expression of algorithms in a declarative way which is often more compact� easier to
understand� debug �because of� for example� the implicit memory management�� maintain�
and update�

�
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The next chapter will deal with Prolog� Prolog is a constraint language over the domain of
Herbrand terms� and since most CLP languages are based on extending Prolog� they inherit
lots of builtin predicates and control expressions from Prolog� we will review them� And�
�nally� Prolog itself is a nice language for writing many applications�

�



Chapter �

The Prolog Language

	�� Prolog

Prolog is a logic language based on a subset of �rst order logic� Some constructions of �rst
order logic have been removed to allow performance to be competitive� and some extra�
logical features �mainly related to �ow control� input�output� and meta�programming� have
been added� High performance Prolog compilers are available� and integration with other
languages is not di�cult�

One of the main di�erences with Logic Programming is the restriction of formulae to a
special subclass� called Horn clauses� for which fast resolution procedures are known� Also�
the way programs are executed has been �xed by a rule establishing a left�to�right� depth��rst
search� This has the drawback of being incomplete �there might be correct problem models
which do not lead to solutions� but there are always alternative models which do result in the
�nding of a solution�� but in turn allows e�cient implementations�

Most CLP systems are built extending Prolog� and their internal machinery is full of
implementation techniques developed for Prolog� Thus it is not strange that there is a good
deal of programming techniques� builtins� and miscellaneous facilities which are shared among
Prolog and other CLP languages� Prolog IV itself can be put in a �ISO Prolog mode�� in which
only Prolog programs are accepted and executed�no constraints are available�

This chapter will give some hints about Prolog programming and its general philosophy�
plus a general discussion on several well�known Prolog builtin predicates� The reader is
referred to a Prolog manual for the system of choice for a more detailed listing of the facilities
available�

	�� Control Annotation

Control annotation allows the programmer to have some command on the execution �ow of
the program� There are three ways in which a given execution path can be forced by the
programmer�

� Ordering of goals in a clause�

� Ordering of clauses in a predicate�

� Pruning operators�

��
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We will describe the use of pruning operators later� as they are really additions external
to a logical language� while the ordering of goals and clauses stem from decisions regarding
mainly performance matters� and which happen to be also useful for controlling the execution
�ow�

	���� Goal Ordering

Execution of goals is always� performed left�to�right� This allows the programmer to know
the behavior of the program and the order in which variables will be instantiated� It also
impacts the performance of the program�precisely by instantiating some variables to some
values after or before some points� Consider the following piece of code�

p�a��� �something really big��

p�b��

q�b��

which is called using these two di�erent queries�

�� p�X�� q�X�� $$ �
�

�� q�X�� p�X�� $$ ���

��� will execute the big chunk of code in the �rst clause of p�
 to fail afterwards� and
succeed with the second clause of q�
� ��� will instantiate X to b� and will not even try to
execute the �rst clause of p�
�so the e�ect is more profound than just reorganizing the
order of the clauses of p�
� Moreover� the optimal ordering of goals depends ultimately on
the query mode� i�e�� the values the variables have at runtime�

	���� Clause Ordering

The order of clauses in a predicate determine the order in which alternative branches for a
computation are taken� Therefore� in the case of several solutions� it determines the order in
which these solutions are returned� Compare the code

p�a��

p�b��

p�c��

with the code

p�b��

p�a��

p�c��

�Not always� most Prolog and some CLP systems have means to declare predicates to be concurrent� calls
to them are delayed until some conditions are met� and they are resumed when these conditions hold�
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In the former case� a query �� p�X�� will return the solutions X � a� X � b� X � c� and
in the latter� the solutions will be returned as X � b� X � a� X � c� Therefore� putting the
clauses more likely to lead to a solution in the �rst place is sensible� because this would
shorten the computation needed to reach this solution� In fact� a wrong order of clauses can
lead to non termination� the following code

n�s�X���� n�X��

n�z��

loops ad in�nitum when the query �� p�X�� is issued� Switching the clauses

n�z��

n�s�X���� n�X��

returns an in�nite number of solutions �of course� there is an in�nite number of solutions��
When all solutions are required� the whole search tree is explored� so if it is in�nite� the
search will never end� yielding either an in�nite number of solutions� or falling into the so�
called �in�nite failure�� a branch which does not lead to a solution� but with a pattern which
repeats itself�

Pruning operators� to be discussed later� will help us in achieving more control on these
cases�

	�� Arithmetic

Arithmetic in Prolog is� at most� pale in comparison with what is available in CLP systems�
and resembles more what is available in common languages� It was designed not for constraint
programming �which was not coupled with Prolog then�� but rather for ease of implementa�
tion� The interface between arithmetics and the rest of the Prolog machinery is the evaluation
of arithmetic terms� Certain terms �those constructed with designed functors� such as ����
���� etc�� variables� and numeric constants�� can be evaluated as arithmetic expression by
some builtins� thus providing arithmetical operations� Table ��� shows some usually available
functor names which are used to perform arithmetical operations� and Table ��� has some
common builtins related to arithmetic� Note that functors are de�ned as operators� so that
they can also be used in�x � pre�x�

Examples of correct arithmetical terms are 
 � �� ��� �� � mod �� � 
�� � � �X �

�� �if X is instantiated to a number at runtime� otherwise an error is raised�� Syntactically
incorrect arithmetical terms are� for example a � � �since a is not an arithmetical term�� or
X � �
 � �� � f�o� H����

The evaluation of arithmetical terms is performed via the predicate is��� Z is T evalu�
ates the arithmetical term T and the result is uni�ed with the variable Z� If the uni�cation
fails� the predicate fails� and backtracking is forced� The following are examples of queries
�which may be part of bodies of clauses��

�� X is � � ��

X � � �

yes
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Functor Meaning

��� Addition

��
 Positive pre�x �usually unneeded�

��� Subtraction

��
 Negative pre�x

� � � Division

�� � � Integer division

mod�� Module

log�
 Logarithm

Table ���� Some arithmetic�related terms

Functor R�ole

is�� Evaluation

��� Arithmetic equality

�n� Arithmetic inequality

�� �� ��� �� Order relationship

Table ���� Some arithmetic�related builtins

�� X is � � �� Y is X � X mod �X � 
��

X � �� Y � 
 �

yes

�� X is � � �� Y is X � �X mod �X � 
���

X � �� Y � � �

yes

�� X is � � �� �� ��� Y is �X � �� �� �� X � Y�

X � �	� Y � 
� �

yes

�� X is � � �� �� ��� Y is �X � �� �� �� X �� Y�

no

�� X is � � �� �� g��

�ERROR� illegal arithmetic expression�

�� X is ��� X �  ��� �X �� �� ���

X � �� �

yes

When an error is found� the system usually aborts execution� instead of failing�
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	�	 Type Predicates

The introduction of extra�logical predicates �such as� for example� the arithmetical ones just
presented� and others we will see later�� causes the need of testing the type of terms at
runtime� we may want to check whether an argument is a number or not� to react accordingly
at runtime� This is a feature not taken into account in formal logic� since the type of an object
has� actually� no sense at all� all data in formal logic are Herbrand terms� and have no speci�c
meaning per se� But� for practical reasons� it is often advantageous knowing when a variable
has been bound to a number� or to a constant� or to a complex structure� or when it is still
free� There are a number of unary predicates which deal with the types of terms

Name Meaning

integer�X� X is an integer

float�X� X is a �oating point number

number�X� X is a number

atom�X� X is a constant other than a number

atomic�X� X is a constant

Table ���� Predicates checking types of terms

These predicates behave approximately as if they where de�ned via an in�nite set of facts�
The di�erence is that they do not enumerate� as facts would have done� when handed down
a free variable� they fail �as they should� because a free variable is not a constant��

�� integer����

yes

�� float����

no

�� float���	��

yes

�� atom����

no

�� atom�logo��

yes

�� atomic�logo��

yes

�� atom�X��

no

�� atomic�X��



	� CHAPTER �� THE PROLOG LANGUAGE

no

These predicates can fail� but they cannot produce an error� In fact they are intended
to be used before calling certain builtins so that no errors are raised� Also� they do not

constrain� since they succeed only when the argument is instantiated to the type expressed
by the predicate� they will fail when called with a free variable� or when a variable instantiated
to a term not in such type� They can be used� for example� to restore some of the lost �exibility
to arithmetical predicates�

plus�X� Y� Z���

number�X�� number�Y�� Z is X � Y�

plus�X� Y� Z���

number�X�� number�Z�� Y is Z � X�

plus�X� Y� Z���

number�Y�� number�Z�� X is Z � Y�

This predicate will succeed whenever called with two arguments instantiated to a number
and the third being a free variable� It can fail if the three arguments are numbers� but the
�rst and the second do not add up the third� and �nally� it will not generate errors� and will
not split a number in other two�

�� plus�� �� K��

K � � �

yes

�� plus�X� �� ���

X � � �

yes

�� plus��� �� ���

no

�� plus��� must� must��

no

�� plus�X� Y� 
	��

no

	�� Structure Inspection

Part of Prolog builtins are related to structure �functors� inspection� variables bound to
structures can be accessed to �nd out the functor name� its arity� a given argument� etc� The
two basic predicates for doing that are functor�� and arg���

functor�F� N� A� succeeds when F is a complex structure whose arity is N and whose
arity is A� It can be used to build new functors with fresh variables� or to obtain the name
and arity of already built functors�
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�� X � corn�loki� K� straight�� functor�X� N� A��

A � �� N � corn� X � corn�loki�K�straight�

yes

�� functor�X� steam� 
	��

X � steam���������������������

arg�F� N� Arg� succeeds when Arg is the N�th argument of functor F� Arguments start
numbering at ��

�� arg�
� corn�loki� K� straight�� A��

A � loki �

yes

�� arg��� corn�loki� K� straight�� A��

K � A �

yes

�� arg�	� corn�loki� K� straight�� A��

no

�� functor�X� steam� 
	�� arg��� X� engine��

X � steam���������������engine����� �

yes

Example ��� The above builtins can be used to test whether SubTerm can be uni�ed with a
subterm contained in Term�

subterm�Term� Term��

subterm�Sub�Term���

functor�Term�F�N��

subterm�N�Sub�Term��

subterm�N�Sub�Term���

arg�N�Term�Arg�� $ N � 	

subterm�Sub�Arg��

subterm�N�Sub�Term���

N�
�

N
 is N�
�

subterm�N
�Sub�Term��

Term is traversed� element by element� If an argument of Term uni�es with SubTerm� then
SubTerm is already contained in Term possibly after unifying one of its variables�� Otherwise�
the argument at hand is recursively traversed�

�� subterm�f�g�� h�

� �oc� f�g��� loc���

yes
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�� subterm�f�T�� h�

� �oc� f�g��� loc���

T � g � �

no

�� subterm�f�T�� h�

� �oc� f�g��� I���

I � f�T� � �

T � g � �

no

�

Problem ��� The above example instantiates variables� either in the containing or in the
contained term� in order to satisfy the requirement of being contained� Where exactly in the
code is this performed� We will see later a way to work around this� if it is not desired� �

�

Another example of the application of structure�inspecting primitives is to use them to
implement arrays� Arrays themselves are not available as a Prolog datatype� with associated
operations� but they are easily simulated with structures� Any element of a structure can
be accessed using its position� The name of the functor does not matter� actually� As an
example� we will implement the predicate add arrays�� which will add the arrays passed in
the �rst and second argument� and will leave the result in the third argument� The functor
name we have chosen for the arrays is array���

add�arrays�A
�A��A����

functor�A
�array�N�� $$ Equal length

functor�A��array�N��

functor�A��array�N��

add�elements�N�A
�A��A���

add�elements�	��A
��A���A���

add�elements�I�A
�A��A����

arg�I�A
�X
�� $$ I � 	

arg�I�A��X���

arg�I�A��X���

X� is X
 � X��

I
 is I � 
�

add�elements�I
�A
�A��A���

The code �rst checks that the three arguments have the same functor name and arity�
then the arrays are traversed from the end to the beginning �to use only one index� stopping
at ��� and the corresponding elements in the arrays are added�

Note� some Prolog �and CLP� systems have a maximum �xed arity� Other implementa�
tion schemes �lists� for example� as done in the CLP arrays multiplication in Section ���	���
should be used for simulating larger arrays�



���� INPUT�OUTPUT 		

Problem ��� Write an add matrices�� predicate which can add matrices of arbitrary di�
mensions� Matrices will be represented using the functor mat��� and are implemented by
allowing the arguments of mat�� to be themselves matrices� and not only numbers� For ex�
ample� the structure

mat�mat�
� �� ��� mat�� �� ��� mat��� �� ���

would represent the matrix

�
�

� � �
� 
 �
	  �

�
A

I�e�� its behavior should be as follows�

�� add�matrices�mat�mat�
� ��� mat�� ���� mat�mat��� ���� mat�
	� ��� X��

X � mat�mat��� 	�� mat�
� ���

It should fail if the matrices to add do not have the same dimensions or the proper functor
name� For simplicity� a number itself can be considered a matrix� so the query and answer

�� add�matrices��� � X��

X � 



are both legal� �

�

There is also a utility predicate which converts �in a quite bizarre way� lists into structures
and vice versa� The �conversion� is done as follows� the name of the structure is the �rst
atom in the list� and the rest of elements of the list are the arguments of the structure� It is
called univ� and its predicate name is ���� which is also de�ned as an in�x operator�

�� date���february�
��� ��� L�

L � �date���february�
����

�� X ��� ���a�b��

X � a � b�

This builtin should be avoided unless really necessary� it is expensive in time and memory�
and most time using it is a last resort for badly designed data structures and�or programs�

	�� Input�Output

The easiest way of doing input�output in Prolog is using the so�called DEC��� predicates�
They are based on the idea of having a current input and output� which can be redirected to
write to and read from �les� The basic DEC��� I�O predicates are shown in Table ����

There are more sophisticated I�O predicates based on opening and closing streams ex�
plicitly� handles to the �les are returned� which can be passed to the I�O predicates� The
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Predicate Explanation

write�X� Write the term X on the current output stream�
nl Start a new line on the current output stream�
read�X� Read a term ��nished by a full stop� from the current input stream

and unify it with X�
put�N� Write the ASCII character code N� N can be a string of length one�
get�N� Read the next character code and unify its ASCII code with N�

see�File� File becomes the current input stream�
seeing�File� The current input stream is File�
seen Close the current input stream�
tell�File� File becomes the current output stream�
telling�File� The current output stream is File�
told Close the current output stream�

Table ���� DEC��� I�O predicates

interface is similar to what is provided by most operating systems� and available in many
programming languages�

All I�O predicates perform side�e�ects� they change the state of the world �changing the
contents of the screen or a disk �le� in this case� broadcasting messages over the net� if writing
� reading is made on a socket stream� in such a way that persists even after backtracking�
Side�e�ects predicates are not easily formalized from a logical point of view� because the state
of the whole world has to be taken into account�

	�� Pruning Operators� Cut

The cut is one of the Prolog operators related to the program control �ow� It can be placed
anywhere a goal can� and it is written as the predicate "�	� Technically� the cut commits
the execution to all the choices made since the parent goal was uni�ed with the head of the
clause in which the cut appears� This means that all clauses below the one with the cut are
discarded� as if they did not exist for this particular call �so they are not considered if the
execution of the current clause fails� in which case the call to the predicate fails�� and all the
alternatives left by the execution of the goals at the left of the cut in that clause are also
discarded� The goals at the right of the cut are executed normally �i�e�� they can backtrack��

Figure ��� shows the e�ect of the cut in the code below� with the query �� s�A�� p�B�

C���

s�a�� p�X�Y��� l�X��

s�b�� p�X�Y��� r�X��"������

r�a�� p�X�Y��� m�X���������

r�b��

�note the cut in the second clause of p���� The parts of the tree outlined with a dashed loop
are not explored� After traversing the subtree generated by the �rst clause of p�� �regardless
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A/a 
s(A),p(B,C)

A/b

p(B,C) p(B,C)

!,..... !,....

B/a B/b B/a

r(B),!,.... r(B),!,....m(B) l(B) m(B)l(B)

B/b

!,...          !,....

Figure ���� E�ects of cut

it has solutions or not� but supposing backtracking is made into the second clause of that
predicate�� a solution for the call to r�
 is found� Then the cut is executed� which has two
e�ects�

� The third clause for p�� is not taken into account�

� The second clause of r�
 is not taken into account �for this call��

If the predicates after the cut fail� the whole call to p�� will fail� because the last clause
will not be taken into account� nor the second clause of r�
�

�

Cuts are meta�logical predicates� which have a non�local e�ect on the computation� in the
previous example� the call to r�
 did not respect the usual backtracking semantics� because
only one solution is returned� but other calls outside the scope of a cut in the same program
would have had a normal behavior� thus� the cut a�ects the behavior of predicates whose
implementation does not imply that�

Cuts� according to the way they a�ect the program execution� can be divided in several
types� regarding their logical safeness� i�e�� how much they change �if at all� the logical reading
of the program�

White cuts are those which do not discard solutions� They improve performance because
they avoid backtracking �which should fail� anyway�� and they� in some Prolog implementa�
tions� avoid creating choicepoints at all� Their use in CLP is not always as clear� though� An
example of white cut is�

max�X�Y�X��� X � Y�"�

max�X�Y�Y��� X �� Y�

The two tests are mutually exclusive� since �because of the way arithmetic works in
Prolog� both X and Y must be instantiated to numbers� if the �rst clause succeeds �which will
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happen if the cut is reached�� then the second will not� conversely� if the second clause is to
succeed� then the �rst one could not have succeeded� and the cut in it would not have been
reached�

In a CLP language� however� since instantiation of variables is not necessary �the predicate
can just constrain and backtrack upon failure�� the cut would break the declarative semantics�

Green cuts are those which discard correct solutions which are not needed� Sometimes
a predicate yields several solutions� but one is enough for the purposes of the program�or
one is preferred over the others� Green cuts discard solutions not wanted� but all solutions
returned are correct�

For example� if we had a database of addresses of people and their workplaces� and we
wanted to know the address of a person� we might prefer his�her home address� and if not
found� we should resort to the business address� This predicate implements this query�

address�X� Add��� home�address�X� Add�� "�

address�X� Add��� business�address�X� Add��

Another useful example is checking if an element is member of a list� without neither
enumerating �on backtracking� all the elements of a list nor instantiating on backtracking
possible variables in the list� The membercheck�� predicate does precisely this� when the
element sought for is found� the alternative clause which searches in the rest of the list is not
taken into account�

membercheck�X� �X�Xs���� "�

membercheck�X� �Y�Xs���� membercheck�X� Xs��

Again� it might be interesting in some situations� mainly because of the savings in memory
and time it helps to achieve� But it should be used with caution� ensuring that it does not
remove solutions which are needed�

Red cuts� �nally� both discard correct solutions not needed� and can introduce wrong
solutions� depending on the call mode� This causes predicates to be wrong according to
almost any sensible meaning�

For example� if we wanted to know how many days there are in a year� taking into account
leap years� we might use the following predicate�

days�in�year�X� ������ number�X�� leap�year�X�� "�

days�in�year�X� �����

The idea behind is� �if X is a number and a leap year� then we succeed� and do not need
to go to the second clause� Otherwise� it is not a leap year�� But the query �� leap year�z�

D� succeeds �with D � ����� because the predicate does not take into account that� in any
case� a year must be a number� It is arguable that this predicate would behave correctly if
it is always called with X instantiated to a number� but the check number�X� would not be
needed� and correctness of the predicate will then be completely dependent on the way it is
called�which is not a good way of writing predicates�

Another example is the following implementation of the max�� predicate which works out
the maximum of two numbers�
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max�X� Y� X��� X � Y� "�

max�X� Y� Y��

The idea is� if X � Y� then there is no need to check whether X �� Y or not� hence the
cut� And� if the �rst clause failed� then clearly the case is that X �� Y� But there are two
serious counterexamples to this� the �rst is the query �� max��� X� X��� which succeeds
binding nothing �instead of failing or giving an error� which would in any case be a better
behavior� at least indicating that there has been a call with a wrong instantiation mode��

A possible argument against of this counterexample is that it is violates the supposedly
allowed �call modes� �i�e�� trying to �nd the maximum of two numbers� one of which is not
instantiated�� but good programs �logic programs or not� should exhibit a sensible behavior
no matter what input is received� In any case� the second counterexample does not violate
any sensible assumption� the call �� max��� �� ��� succeeds instead of failing� because the
�rst head uni�cation fails and the second succeeds�

What happens here is a case of the so�called �output uni�cation�� there are uni�cations
made before the cut� which means that data is changed prior to the tests which determine if
the ��rst� in this case� clause is the right one or not� Changing the program to

max�X� Y� Z��� X � Y� "� X � Z�

max�X� Y� Y��

will make the predicate behave correctly in both counterexamples �giving an error in the �rst�
failing in the second��

	�� Meta�Logical Predicates

Prolog includes some meta�logical predicates �predicates which cannot be modeled in �rst�
order logic� because they make programming simpler� and they allow the users to have more
control on the program executions� controlling clause execution and restoring �exibility to
programs using certain builtins� We are listing some of them in Table ��
�

Name Meaning

var�X� X is currently a free variable

nonvar�X� X is not a free variable

ground�X� X is a term not containing variables

Table ��
� Some meta�logical Prolog predicates

They never cause error� or instantiate variables� but the state of variables can be inspected
safely� They do not have a �rst�order reading� since the ordering of the goals matters for them�

�� var�X�� X � ��

yes

�� X � �� var�X��

no
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�

Although programs usually sort numbers� or strings� or similar entities� Prolog has a notion
of a so�called standard order among all terms� This means that� apart from the arithmetical
order among numbers� any two terms �being them atoms� structures� variables� numbers� etc���
can be compared for equality� disequality� and precedence� Of course this order is somewhat
arbitrary� but it is usually adequate for most applications�in fact� since we are imposing an
ordering among heterogeneous entities� either this ordering is highly application�dependent�
or it is used just for the sake of keeping those items sorted somehow� Standard order checking
primitives are shown in Table ���� It is interesting to note that the identity comparison �� �

� compares variables without binding them� In fact� it does not report two variables being
equal unless they are the same�

�� X �� Y�

no

�� X � Y� X �� Y�

Y � X �

yes

Example ��� The following chunk of code can maintain an ordered list of terms� possibly
including variables� numbers� atoms� etc� insert�List� Term� NewList� adds Term to List

ordered and without repetitions� to obtain NewList� also ordered without repetitions�

insert���� It� �It���

insert��H�T�� It� �H�T���� H �� It�

insert��H�T�� It� �It� H�T���� H %� It�

insert��H�T�� It� �H�NewT�� ��

H %� It�

insert�T� It� NewT��

Note the use of �� � � to check for identity� so that variables can be added without further
instantiating them� �

Example ��� In Sections ���� and ���� we assumed a precedes�� implementation�dependent
predicate� For a general sorted tree implementation� the standard order predicate %� � � can
be used� �

Name Meaning

�� � � Identity of terms

n�� � � Nonidentity of terms

%� � �� %�� � �� %� � �� %�� � � Precedence comparison

Table ���� Predicates which implement standard order

The order among terms is the following�
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�� Variables� oldest �rst� The order is not related to the names of variables�

�� Floats� in numeric order�

�� Integers� in numeric order�

�� Atoms� in alphabetical order�


� Structures� ordered �rst by arity� then by the name of the principal functor� then by
the arguments left�to�right�

Example ��� In Example ��� we saw how to check a term for uni�ability of one of its
subterms with another given term� We might not want to instantiate any term� This is
achieved by changing the two clauses of subterm�� to�

subterm�Sub�Term��� Sub �� Term�

subterm�Sub�Term���

nonvar�Term��

functor�Term�F�N��

subterm�N�Sub�Term��

�

	�� Meta�calls 
Higher Order�

Meta�calls allow performing �on the �y� calls to terms which� if they correspond literally
to the name of a program predicate� will be executed as program code� The basic meta�
call predicate is call�
� which accepts a term and calls it as if it appeared in the program
text� Thus� call�p�X�� is equivalent to the appearance of p�X� in the program text� The
argument X of call�X� �and this is really where the power of meta�calls is� does not need
to be explicitly present in the source code� but only correctly instantiated at run�time�

Example ��	 The following code implements a na� ve apply�� which takes as argument an
atom which should be a predicate name� and a list of terms which are intended to be the argu�
ments of the predicate� and makes the corresponding call i�e�� apply�foo� �
� X� best���
makes the call foo�
� X� best��

apply�Atom� ListArgs���

Term ��� �Atom�ListArgs��

call�Term��

Incidentally� this is one of the few cases where the use of ��� � � is justi�ed�� This code
allows constructing calls to predicates which are not known at compile time� �

The more important use of meta�calls is to implement general predicates which perform
tasks using the result of calls as data� The best known of them are the all�solutions predicates
and the negation�

�

�All solutions� predicates gather in a list all the solutions to a query� The more relevant
are findall��� bagof��� and setof���
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findall�Term� Goal� List� leaves in List an instance of Term for each success of Goal�
We will use the following program as example�

p�a� a��

p�b� a��

p�
� 
��

p��� b��

p��� 
��

The following queries collect all solutions for calls to p��� Note that duplicates appear in
the solutions list�

�� findall�A� p�A� B�� L��

L � �a�b�
����� �

yes

�� findall�B� p�A� B�� L��

L � �a�a�
�b�
� �

yes

�� findall�A� p�A� 
�� L��

L � �
��� �

yes

�� findall�example�A� B�� p�A� B�� L��

L � �example�a�a��example�b�a��example�
�
��example���b��example���
�� �

yes

findall�� will return the empty list if no solutions are found for the goal� It ignores
all variables in the query which do not appear in the term whose instances are collected
�i�e�� solutions are gathered for all bindings of these variables�� The predicate bagof�� allows
�selective� backtracking on the free variables of the goal�

�� bagof�A� p�A� B�� L��

B � 
� L � �
��� � �

B � a� L � �a�b� � �

B � b� L � ��� � �

no

�� bagof�A� B&p�A� B�� L��

L � �a�b�
����� �

In the second case we are explicitly signaling that we do not want to take into account
backtracking for di�erent bindings of B� Also� bagof�� will fail �instead of reporting an empty
list� if the called predicate fails�

Last� the meta�predicate setof�� behaves as bagof��� but in addition the returned list
is sorted and has no repetitions�

Note that no bindings are returned for the variables appearing in the �rst argument of all
three predicates�



����� NEGATION AS FAILURE 


	��� Negation as Failure

Negation in Prolog is implemented based on the use of cut� Actually� negation in Prolog
is the so�called negation as failure� which means that to negate p one tries to prove p �just
executing it�� and if p is proved� then its negation� not�p�� fails� Conversely� if p fails during
execution� then not�p� will succeed� The implementation of not�
 is as follows�

not�Goal� �� call�Goal�� "� fail�

not�Goal��

�fail�	 is a builtin predicate which always fails� It can be trivially de�ned as fail�� a �

b��
not�
 is usually available as the �pre�x� predicate n� � 
 in most Prolog systems� I�e��

not�p� would be written n� p �
Since not�p� will try to execute p� if the execution of p does not terminate� the execution

of not�p� will not terminate� either� Also� since not�p� succeeds if and only if p failed�
not�p� will not instantiate any variable which could appear in p� This is not a logically
sound behavior� since� from a formal point of view� not�p� should succeed and instantiate
variables for each term for which p is false� The problem is that this will very likely lead to
an in�nite number of solutions�

But using negation with ground goals �or� at least with calls to goals which do not further
instantiate free variables which are passed to them� is safe� and the programmer should ensure
this to hold� Otherwise� unwanted results may show up�

unmarried�student�X���

not�married�X��� student�X��

student�joe��

married�john��

This program seems to suggest that joe is an unmarried student� and that joe is not an
unmarried student� and indeed�

�� unmarried�student�joe��

yes

�� unmarried�student�john��

no

But� for logical consistence� asking for unmarried students should return joe as answer�
and this is not what happens�

�� unmarried�student�X��

no

The reason for this is that the call to not�married�X�� is not returning the students
which are not married� it is just failing because there is at least a married student�
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Problem ��� Change the unmarried student�
 predicate so that it works correctly in the
three queries shown above� �

�

The use of cut and a fail in a clause forces the failure of the whole predicate� and is a
technique termed cut�fail� It is useful to make a predicate fail when a condition �which
may be a call to an arbitrary predicate� succeeds� An example of cut�fail combinations is
implementing in Prolog the predicate ground�
� which succeeds if no variables are found in a
term� and fails otherwise� The technique is recursively traversing the whole term� and forcing
a failure as soon as a variable is found�

ground�Term��� var�Term�� "� fail�

ground�Term���

nonvar�Term��

functor�Term�F�N��

ground�N�Term��

ground�	�T��

ground�N�T���

arg�N�T�Arg��

ground�Arg��

N
 is N�
�

ground�N
�T��

	��� Dynamic Program Modi�cation

Prolog programs can modify themselves while running� clauses can be added and removed
at runtime� Normally this is not allowed� and clauses which will be changed must be marked
speci�cally� in order for the system to compile them in a special way� This very powerful
feature must be used very carefully� as reasoning about a program which changes while it
is running is not easy at all� Sometimes this is quite useful� but most of the times this is
a mistake� the code becomes hard to maintain� and� since �a part of� the compiler has to
be invoked� it is quite slow� Furthermore� the standard semantics for program modi�cation
states that no modi�cation to a predicate becomes active until the calls to that predicate
have �nitely failed�

Program modi�cations can be justi�ed� however� when used as a global switch� for exam�
ple� asserting a fact which drives some options in a program� and which is consulted scarcely
at some points in the program� There is also a logical justi�cation �which might be used
sometimes� to self�modi�cation of code� when the clauses asserted are logical consequences
from the program �this is called memoization�� or when the clauses retracted are redundant�

The two main predicates �but there are more� for assertion and retraction are called
assert�
 and retract�
� Their use is exempli�ed in the code below�

�� dynamic related���

relate�terms�X� Y���
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assert�related�X� Y���

unrelate�terms�X� Y���

retract�related�X� Y���

The �rst clause is called with two terms as arguments� and it simply adds the fact
related�X� Y�� where X and Y are the terms� The second clause just retrieves the fact�

�� related�X� Y��

no

�� relate�terms�a� b��

yes

�� related�X� Y��

X � a� Y � b �

yes

�� unrelate�terms�a� b��

yes

�� related�X� Y��

no

�� relate�terms�a� b��

yes

�� relate�terms�c� f��

yes

�� related�X� Y��

X � a� Y � b � �

X � c� Y � f � �

no

Rules can also be asserted and retracted� in this case� for syntactical reasons� they must
be surrounded with parentheses� e�g�� assert��a�� b� c��� Asserted code is usually slower
than normal� compiled code�

	��� Foreign Language Interface

Interfaces to other languages are available for virtually all commercial Prolog systems� They
di�er on the implementation� but the idea is shared among them� linking an object �le to the
executable of the Prolog engine� and then using an internal convention to call from Prolog and
to pass and retrieve data� Calling Prolog from other languages is also possible� the Prolog
engine is stored as a library which is linked against the program which will use it� As an
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example� we will make a low level� complete developing of an example of accessing to a UNIX
standard library�

The library we will use is the so�called curses library� which allows cursor control in a
variety of terminals� independently of the actual terminal used� There is a lot of functionality
in that library� including making text�based subwindows� etc� But� in order to keep the
example short� we will make interfaces only to two functions� initsrc��� which initializes
the library� and move��� which positions the cursor at the coordinates given� We will access
those C functions using the Prolog predicates init term�	 and tmove���

The �rst step is writing some C glue code�

�include �curses�h�

static WINDOW � prolog�window�

void init�term��

� prolog�window � initscr��� �

void tmove�h� v�

long h� v�

� move��int�h� �int�v��

These C functions will be accessed from Prolog� init term�� just calls initsrc�� and
saves the returned WINDOW � structure in a variable� This variable is not used anywhere else�
but it could be needed if other library functions are accessed� This code is compiled to an
object �le �for example� term control�o�� and that is all what is needed to do in the C side
of the project�

On the Prolog side we have to declare some things� which object �le we want to link� which
additional libraries are needed by that object �le� if any �as in our case�� which functions
need to be called when the corresponding predicates are accessed� and how the data is to be
converted �because Prolog data is usually stored di�erently from data in other languages��
Fortunately� almost all the low�level details are taken care of by Prolog� The necessary
declarations are�

foreign�file�#term�control�o#� �init�term�tmove���

foreign�init�term� init�term��

foreign�tmove� tmove��integer� �integer���

The �rst fact says that the object �le term control�o has the C functions init term

and tmove� foreign�� keeps information about which C function should be called for every
Prolog predicate� and which arguments the C functions expect to receive� All that is needed
now is to call a builtin predicate which makes the linkage at runtime� and installs Prolog
entries for these C predicates� This is done by calling

�� load�foreign�files��#term�control�o#�� �#�lcurses#� #�ltermcap#���

either at the prompt or somewhere in the program� Note that it also provides names of
libraries which are needed by the C code we have just written�

�
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Pragmatics

In this chapter we will brie�y discuss some programming tips and advanced features which
are treated more in depth in specialized literature on constraint logic programming� Our aim
is mainly to draw attention on their existence� because sometimes using them can make the
di�erence among a complicated� sluggish system� and a clean� neat one�

��� Programming Tips

Control primitives should be used carefully� at least for a �rst implementation� they can lead
to incorrect programs in CLP more easily than in Prolog� This is so because some implicit
assumptions on the classi�cation of cuts for Prolog� which was based on the behavior of some
builtins� cannot be extended to CLP� The Prolog�safe code for max�� in Section ��	� translated
below to Prolog IV� is not safe any more�

max�X�Y�X��� gtlin�X� Y��"�

max�X�Y�Y��� lelin�X� Y��

The fact is that the comparison performed by gtlin�� can now succeed on two free
variables� so on backtracking lelin�� might be called as well�and this is disallowed by the
cut� The following call exhibits a wrong behavior�

�� max��� X� Y�� X � ��

false�

since the correct answer would have been X � �� Y � �� The programmer has to ensure that
the proper instantiation mode is used when calling such predicates �which in fact breaks their
declarative transparency�� or be aware that answers can be lost� depending on the constraint
system supported by the language�

�

One of the initial tasks in CLP is making up a correct model of the problem� When
coming to a neat model� people naturally try to be frugal in the use of relationships� and
not to set up too many equations� This is a sensible advice in general� but for some cases
putting redundant constraints is advantageous� the reason is that it shortens communication
paths inside the solver� so that faster reductions are possible� As an example� if we have

�
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the constraints X � Y� Y � 	� X � Y � Z� then the constraint Z � 	 is implied by all of
them� but trying to assign a negative number to Z and failing takes some propagation steps
which would not be needed if the �redundant� constraint Z � 	 were directly added to the
system� this is called overconstraining� Its impact in the execution time depends heavily on
the actual language and its implementation� but in general it can be tried if the problem to be
solved is very complex� or if the constraint solver is weak� Excessive overconstraining can be
negative� though� too much equations� many of which are redundant� add up to the amount
of information to be processed�

��� Controlling the Control

Very often the programmer knows quite a bit about when parts of a program can be executed�
due to the state of instantiation of data� Some CLP �and Prolog� systems include concurrency�
related primitives which allow delaying the execution of user predicates until certain conditions
�usually related to the instantiation state of the variables� hold� block and wait declarations
are particular cases of a more general

�� delay Goal until Condition�

declaration� The allowed Conditions di�er between systems� With such a declaration� a
predicate like plus�� in Section ��� could be put anywhere� provided that a condition stating
that at least two of its three arguments must be numbers� This allows a simulation of
constraint solving� In the same way� constraint languages can be augmented with concurrency
for predicates involving operations which are not part of the constraint system� and which
need a given call mode�

In any case� having the possibility of some kind of concurrency is interesting� because
concurrent predicates can act as daemons waiting for a condition on the variables to be
triggered� their use can range from I�O communication to error raising�

�

Enumeration also impacts the performance of constraint programs� The order in which
variables are enumerated� and which values in the variable are selected �rst� impact greatly
the amount of work �and� therefore� the time and memory spent� used to �gure out a solution�
Constraint languages usually allow the user to specify heuristics for these two possibilities�

On one hand� it is important to cut search paths as fast as possible �this is a general
rule in writing search procedures� and is termed the �rst�fail principle�� This is a�ected
by the selection of the variable to enumerate� as setting value�s� for a variable simpli�es the
constraint system and removes values from the other variable�s domains� Selecting the most
constrained variables �rst for enumeration is a simple� sensible heuristic� these variables are
more likely to a�ect the domains of other variables� Also� when selecting values for a variable�
there are two general possibilities� enumerating values �for example� minimum to maximum�
or the other way around�� or setting a constraint �associated to a choicepoint� which splits
the domain of the variable in two halves�

The selection of the heuristics depends greatly on the problem and the relationships among
the variables�
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��� Complex Constraints

Some languages include specialized primitives which set up complex systems of equations for
solving problems which appear often �for example� scheduling tasks subject to a maximum
instantaneous availability of resources�� These primitives may also perform enumeration�
often taking into account how the constraints have been set up� and trying to work out a
solution as e�ciently as possible�

Other complex constraints allow expressing simpler constraints as a special case� They
allow also setting up in a simple� compact expression� constraints which would otherwise be
verbose to construct� For example� the complex constraint ��L� �c�� ���� cn�� U�� called
cardinality operator� states that the number of true constraints in c�� ���� cn is� at least
L� and� a most U� The numbers L and U act as parameters which change the e�ect of the
constraint�

� If L and U are equal to n� then all constraints must be true� this boils down to the
conjunction of c�� � � � cn�

� If L and U are equal to one� then only one of the constraints can �and must� be true�

� if L and U are both zero� then none of the constraints can be true� this is tantamount
to requiring the conjunction of the negated constraints to be true�

A specially interesting constraint is the so�called disjunctive constraint� c� � c� expresses
that at least one of these constraints �c� or c�� is true� this is a particular case of the cardinality
operator� when L is equal to one and U is equal to �� It can also be written using a predicate
with several clauses� However� disjunctive constraints may sometimes have advantages� The
following predicate expresses that a number does not belong to the interval ��
� 
��

n
�X��� X � 
�

n
�X��� X � �
�

If this predicate is called with its argument not de�nitely inside or outside that interval�
and due to the constraint semantics� the execution does not actually select among the di�erent
clauses immediately� but a choicepoint is set instead� a constraint added� and the execution
is continued� Backtracking may happen later if the alternative chosen was not the right one�
A disjunctive constraint such as

n
�X��� X � 
 � X � �
�

will add the disjunctive constraint� and execution will continue as long as any of the disjuncted
constraints hold� In this case� a possibly expensive backtracking would have been avoided�

�
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Conclusions and Further Reading

C�L�P� as programming paradigm� is relatively novel� but it has its roots in a combination
of programming concepts with the AI techniques of constraint solving and others from Op�
erations Research� This provides mathematical tools of proven soundness� the possibility of
programming �which o�ers modularity� encapsulation of data� and use of algorithms when
available�advantageous�� and built�in search if required� A variety of tools for C�L�P ex�
ist� Some have been described in part in the text� and the reader is referred to the seminar
slides for an account of others� Also� many industrial applications developed using constraints
technology�

Being a new technology� there is learning curve involved with C�L�P� the techniques
and approach to using constraint programming is di�erent from� for example� procedural or
object�oriented programming� However� in C�L�P the analysis�design�implementation process
is supported in a much more �exible way� and the �nal products can evolve as the evolution
of a series of prototypes� each one being more complete and robust than those preceding it�

CLP o�ers clear advantages in many �elds� the use of symbolic knowledge representation�
possibility of writing rules and performing automatic search� together with the expressiveness
of constraints and their automatic solving� allows the programmer to focus on the core of
the programming task� leaving many tedious details to the implementation of the language�
Quite importantly� the use of data structures in CLP languages relieves the programmer
from dealing with pointers� indexes� etc�� while at the same time allowing a clear view of the
construction of data�

�

Further information can be obtained in the following articles� books� and WWW reposi�
tories�

� Overview of the �eld in the ��th Anniversary Special Issue of the �Journal of Logic
Programming�� May�July ����� North�Holland #JM��$�

� Issues of the �Constraints Journal�� published by Kluwer Academic�

� Review of the �eld and future directions in ACM Computing Surveys #HSB���$�

� Articles in IEEE Computer� Byte �February ���
�� ���

� Documentation of ILOG Solver � COSYTEC � PrologIA � ��� systems�

��
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� COSYTEC �H� Simonis� ICLP��
 �MIT Press� � PAP �Royal Society of Arts� Tutorials�

� Series on �The Practical Application of Constraint Technology� �The Practical Appli�
cation Company� #PAC$�

� Pascal Van Hentenryck�s book #Van�$�

� Newsgroups comp�lang�prolog and comp�constraints�

� Several WWW sites related to constraints�

� The page on constraints at the Oregon University

�http���www�cirl�uoregon�edu�constraints���
where papers and pointers to many other pages are stored�

� The Prolog Resource Guide at Carnegie Mellon
�http���www�cs�cmu�edu�Web�Groups�AI�html�faqs�lang�prolog�prg�top�html�

Look also in the bibliography section of this document�

�
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Small Projects

In this section we will develop four small projects�

� The blocks world� a program of relations in a world made up of blocks� using the simple
constraint language presented in Section ����

� DONALD � GERALD � ROBERT has the same idea as SEND � MORE � MONEY�
which we have already seen� but it takes longer to solve� we will see how di�erent
constraint setups and enumeration heuristics a�ect the performance of the program�

� A very simple program to solve numerically di�erential equations�

� A program to schedule a project� given a generic description of the tasks� their prece�
dence� and their length�

�
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��� The Blocks World

a

b

c

d

e

f

g

h

i

j

Figure 	��� A scenario in the blocks world

Problem� For this project we will only need a language having the � � � constraint� mean�
ing syntactic equality� Consider a world with blocks having the setup shown in Figure 	���
We will identify blocks with the names appearing in the picture� The following predicates
will model the world�

on floor�B�� B is leaning on the �oor�

on�B
� B��� block B
 is put directly on block B��

at left�B
� B��� blocks B
 and B� are put on the �oor� and block B
 is directly at the left
of B��

The task to do is�

�� Write a database of facts which models the world in the picture�

�� Based exclusively on these facts� write the following predicates�

base�B
� B��� B� is the base of the pile containing B
�

base at right�B
� B��� B
 and B� are on the �oor� and b� is at the right �but perhaps
not directly� of B
�

object at right�B
� B��� B
 is in a pile which is at the right �but perhaps not di�
rectly� of B
�

The above predicates must work for any world de�ned using the facts on floor�
�
on��� and at left���

�� There are several types of blocks� which can be piled or not on each other� depending
on their physical shape� The following types of objects can appear� cubes� spheres�
pyramids and toruses� We want to know if a con�guration is physically stable using
certain rules� A torus can be piled on any object� and� in fact� it is the only object
which can be piled on a pyramid� in that case� the top of the pyramid will stick out
from the torus� and the only object which can be piled on that torus is another torus�
Any object can then be piled on that second torus� In particular� a torus is the only
object on which a sphere can be piled ��oor included��

Write a predicate which relates every object with its type� as shown below�
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Object Type

a pyramid

b torus

c cube

d sphere

e cube

f torus

g torus

h sphere

i torus

j pyramid

Using the type of each object and the predicates related to the position of objects in
the world� write the following predicate�

unstable�O�� the object O is placed unstably on its base in the con�guration known
by the program�

Solution� The predicates which model the basic relationships of the world are easy to work
out�

on�floor�a��

on�floor�d��

on�floor�f��

on�floor�j��

on�c� d��

on�b� c��

on�e� f��

on�i� j��

on�h� i��

on�g� h��

at�left�a� d��

at�left�d� f��

at�left�f� j��

The predicate base�� traverses down the pile until the block directly on the �oor is found�

base�X� X���

on�floor�X��

base�X� Y���

on�X� Z��

base�Z� Y��

base at right�� follows the same idea as base��� but it traverses the �oor in search of
contiguous blocks� We use the at left�� predicate �which ensures that both blocks are on
the �oor� and the recursion stops when both blocks are directly one at the left of the other�
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base�at�right�X� Y���

at�left�X� Y��

base�at�right�X� Y���

at�left�X� Z��

base�at�right�Z� Y��

Identifying X and Y such that the pile of X is to the right of that of Y is done by �nding
which object is at the bottom of each pile� and then ensuring that the �rst base �Xb� is at the
right of the second one �Yb��

object�at�right�X� Y���

base�X� Xb��

base�Y� Yb��

base�at�right�Xb� Yb��

Relating the object with its type boils down to applying the techniques discussed in
Section ���� Using a set of predicates of the form pyramid�a��� torus�b��� and so on� could
have been possible� but in that case querying for the type of a block would not have been
easy�

type�of�a� pyramid��

type�of�b� torus��

type�of�c� cube��

type�of�d� sphere��

type�of�e� cube��

type�of�f� torus��

type�of�g� torus��

type�of�h� sphere��

type�of�i� torus��

type�of�j� pyramid��

The predicate for instability is the less straightforward one� due to the number of possible
cases� We will divide the unstable objects in three cases� which summarize the possible
non�stable con�gurations�

�� A sphere standing directly on the �oor�

�� A sphere standing on a cube�

�� An object which is not a torus� and which is standing on a con�guration which is convex�
we de�ne a con�guration as being convex if there is no �at surface at its top on which
a non�torus can stand still �i�e�� pyramids� spheres� and pyramids which have only one
torus on top of them��

no�torus�O��� type�of�O� pyramid��

no�torus�O��� type�of�O� cube��

no�torus�O��� type�of�O� sphere��

convex�O��� type�of�O� pyramid��
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convex�O��� type�of�O� sphere��

convex�O���

type�of�O� torus��

on�O� O
��

type�of�O
� pyramid��

unstable�O���

type�of�O� sphere��

on�floor�O��

unstable�O���

type�of�O� sphere��

on�O� O
��

type�of�O
� cube��

unstable�O���

no�torus�O��

on�O� O
��

convex�O
��
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��� A Discussion on DONALD � GERALD � ROBERT

This puzzle� similar to SEND � MORE � MONEY� consists of trying to �nd out integer values
between � and � so that the arithmetical operation

D O N A L D

� G E R A L D

R O B E R T

makes sense� We will follow an approach similar to that of SEND � MORE � MONEY� but we
will use Prolog IV� which will allow us showing how enumeration predicates can be built upon
simpler ones� This will also show us how to use interval arithmetic in order to simulate �nite
domains� using the appropriate primitive constraints� We will as well explore how choosing
the order of variables and the right primitive to enumerate will a�ect the total time of the
search�

Our �rst program is as follows�

dgr�X���

X � �D�O�N�A�L�G�E�R�B�T��

allintin�X� 	� ���

gt�D� 	��

gt�G� 	��

all�diff�X��


					���D ��� 
				���O ��� 
			���N ��� 
		���A ��� 
	���L ��� D ���


					���G ��� 
				���E ��� 
			���R ��� 
		���A ��� 
	���L ��� D �


					���R ��� 
				���O ��� 
			���B ��� 
		���E ��� 
	���R ��� T�

enumlist�X��

Recall the SEND � MORE � MONEY program in Section ��	� and pay attention to the simi�
larities� Since we want to simulate FD with interval arithmetic� we are using the non�linear�
intervals version of the arithmetic operations� Some predicates called in the code before have
to be de�ned by the user �they are not directly available in Prolog IV� but their de�nition is
not di�cult��

allintin�� expresses that all variables in the list of the �rst argument have integer values
which are between a minimum and a maximum �the second and third arguments��

allintin���� �Min� �Max��

allintin��X�Xs�� Min� Max���

int�X��

ge�X� Min��

ge�Max� X��

allintin�Xs� Min� Max��

all diff�
 imposes the constraint that all elements in the list must be di�erent� This is
programmed using the dif�� builtin which forces two terms to be di�erent�
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all�diff�����

all�diff��X�Xs����

diffs�X�Xs��

all�diff�Xs��

diffs��X� ����

diffs�X� �Y�Ys����

dif�X�Y��

diffs�X� Ys��

enumlist�
 performs a enumeration of the elements in the list by enumerating the variables
in the order of the list�

enumlist�����

enumlist��X�Xs����

enum�X��

enumlist�Xs��

This program takes ����� seconds to solve the problem�� Of course� this is quite high�
but� on the other hand� the program is really simple� We may try to improve the performance
of the program by making a smarter selection of order of enumeration of the variables� a
feasible heuristic� as mentioned in Section 
��� is enumerating �rst the most constrained
variables� Simply counting how many times a variable appears in the main equation of the
problem allows us to sort the list of variables in this order� �D� R� O� A� L� E� N� G� B�

T�� where variables which appear more often go �rst� Setting X � �D� R� O� A� L� E� N�

G� B� T� at the beginning of the program cuts the execution time down to �
�� seconds�
Reversing this order ��T� B� G� N� E� L� A� O� R� D�� increases the execution time to
���
 seconds� which suggests that the most�constrained ordering of variables is not necessarily
the winner� since the less�constrained order is not as bad as the quasi�random one we chose
�rst� Trying new orderings� and seeing which ones make sense� would need an auxiliary tool
to help understand how constraint solving behaves� these tools� usually graphical displays of
the constraint solving� exist� but it is not a task of this introductory paper dealing with them�
We will try two new variable orderings� in the hope that some light is shed on the direction
of the optimal search path�

First we will try the order �D� T� L� R� A� E� N� B� O� G�� i�e�� enumerating the vari�
ables as they appear in a right�to�left column�by�column traversal of the operation �as it is
done when making the addition by hand�� The result is all but encouraging� this time �nding
the solution takes ��� seconds� The reverse ordering� ��G� O� B� N� E� A� R� L� T� D���
is surprisingly good� the puzzle is solved in �	�
 seconds� A feasible explanation is that�
since the leftmost digits are the ones which have more height in the whole operation� a wrong
selection will be detected before� This may be true� but it is only partially exempli�ed in
the ordering selected� due to the removing of duplicates in the list� the order of �less sig�
ni�cant digits before� reversed is not �most signi�cant digits before�� but �less signi�cant
digits after�� The �most signi�cant digits before� is actually �D� G� R� O� E� N� B� A�

�All the times reported in this section will refer to the �nding of the �rst solution� not to traversal of the
whole search tree� Also� all programs were run in a SUN Sparc 
� with SunOS ��
� and Prolog IV v
���
�
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L� T�� and using this enumeration order the execution time is lowered to a better mark of
��� seconds�

Usually other enumeration primitives are available� In Prolog IV the builtin intsplit��
�����

performs a dynamic� intelligent �and� if desired� user�programmed� selection of the variable
to be enumerated next� Using it does not help to achieve better results with the last ordering�
which seems to be quite good� but it does help with other orderings� the results with the
third ordering proposed ��T� B� G� N� E� L� A� O� R� D�� results in an execution time of
��� seconds� although the time to explore the whole execution tree is quite high�

�

It is possible to write an alternative set of constraints for the problem� instead of coding
directly the desired equation� the manual carry�based algorithm can be coded as a set of
equations� Carry is generated for each column� and added from the previous column�

dgr�X���

X � �D� T� L� R� A� E� N� B� O� G��

Carry � �C
� C�� C�� C� C���

allintin�X� 	� ���

gt�M� 	��

gt�S� 	��

allintin�Carry� 	� 
��

all�diff�X��

add�carry�	� D� D� T� C
��

add�carry�C
� L� L� R� C���

add�carry�C�� A� A� E� C���

add�carry�C�� N� R� B� C��

add�carry�C� O� E� O� C���

add�carry�C�� D� G� R� 	��

enumlist�X��

enumlist�Carry��

add�carry�Ci� S
� S�� R� Co��� Ci ��� S
 ��� S� � 
	 ��� Co ��� R �

The results with this coding are extremely good � much better than with the previous
coding� In fact� the code above� with the rest of the program unchanged� runs in just �	
seconds�
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��� Ordinary Di�erential Equations

Problem� Solve an ordinary di�erential equation�

y� � f�x� y�

using a numerical �e�g�� trapezoidal� method� Is should be understood that there is a math�
ematical relationship between x and y� e�g�� x � g�y�� and this relationship is what we want
to �nd out numerically�

Solution� Numerical methods return functions as an explicit set of pairs �x� y� instead of
as an analytic expression� We need to supply the boundaries x� and xn�� of the interval in
which the function is to be calculated� and the number of points n to be taken into account in
that interval� Thus� n is the number of integration steps� x� and xn�� the integration limits�
and h � xn���x�

n
the integration step�the distance between two consecutive sampling points�

Then the equation

yi�� � yi � h
f�xi� yi� � f�xi��� yi���

�

can be used to numerically approximate the function y � g�x� �this is the expression of the
trapezoidal method of integration��

Note that the expression for yi�� involves yi�� itself� The e�ect of the above formula�
applied to all the points in the integration segment� is to originate a set of equations� for
them to be solved we need at least one yi to be de�ned� The top level call gives us access
both to y� and yn��� but setting any yi will actually su�ce�

Modelling the recurrence equation�

yn
�H� Xi� Yi� Xi
� Yi
���

Yi
 � Yi � H��Fi�Fi
����

Xi
 � Xi � H�

f�Xi� Yi� Fi��

f�Xi
� Yi
� Fi
��

The recurrent loop relates points of yi � g�xi� using the previous predicate�

loop��H� Xn� Yn� Xn� Yn� �Xn�� �Yn���

loop� H� Xi� Yi� Xn� Yn� �Xi�Xs�� �Yi�Ys����

lelin�Xi� Xn��

yn
�H� Xi� Yi� Xi
� Yi
��

loop�H� Xi
� Yi
� Xn� Yn� Xs� Ys��

In this predicate the �rst clause implements the stop condition of the loop� and the
recursive clause extends the recurrence equation to the selected interval�

� Stop condition� when the current pair �xi� yi� equals the boundary condition �xn� yn��
If the constraint solver is not accurate enough in the mathematical operations� this stop
condition could fail� adding xn�x�

n
with itself n times may not come out with the result

xn � x�� due to approximation problems� This can be worked around by stopping the
recurrence when the current x coordinate has gone beyond the upper boundary�
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� The recursive clause relates �xi� yi� with �xi��� yi��� using the recurrence equation�

The top level call computes the integration step� the list of x coordinates and the cor�
responding y values� and writes the result� We could return the results as two lists of x
coordinates and y values� but we will do a little of formatting�

sv�X	� Y	� Xn� Yn� N���

H � �Xn � X	��N�

loop�H� X	� Y	� Xn� Yn� Xs� Ys��

write�res�Xs� Ys��

write�res���� ����

write�res��X�Xs�� �Y�Ys����

write�y�X� � Y�� nl�

write�res�Xs� Ys��

To solve� for example� y� � ��xy� we just need to de�ne the relationship among x� y and
f�x� y��

f�X� Y� ���X�Y��

�the program above will work for other di�erential equations just changing this clause�� An
example call� where the integration bounds are �� and �� twenty sampling points where used�
and g���� � �

����
is the following�

�� sv���� 
��			� �� Yn� �	��

y�����
��			

y�����
	��
��		

y��
�����
�
���		

y���
�
	��������
�		

y�������
������������		

y�������
���������
			

y�����������	�
�
	����		

y����
	������	���������		

y����������	
�	�
���
�	����		

y����
	�������������
���	���	�		

y�	���
	�
�
��	�
�����	���	�				

y���
	�������������
���	���	�		

y���������	
�	�
���
�	����		

y���
	������	���������		

y����������	�
�
	����		

y������
���������
			

y������
������������		

y��
�
	��������
�		

y�
�����
�
���		

y����
	��
��		

y����
��			

Yn � 
��			�
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��	 A Scheduling Program

We want to develop a program to schedule a project� decomposed in a set of tasks� Each task
has successor tasks and a length� A high level view of the whole program has this layout�

� Construct the data structure de�ning the project� this could be made reading from a
external �le� but for the sake of simplicity� we will store it as a fact in the program�
The rest of the program works exactly in the same way if this structure is built from a
external source�

� Some checks are made regarding the integrity of the data�i�e�� we want the data de�
scribing the project to make sense�

� After that� the project data is used to generate the constraints which model the rela�
tionships among the tasks�

� Finally� the total time in the project is minimized� and the results are written to standard
output�

sched�P���

project�P� Td��

check�data�Td��

build�constraints�Td� FinalTask� Dict��

minimize�FinalTask� Dict��

close�structure�Dict��

write�results�Dict��

The de�nition of the project is �for this example� just a fact with relates a project name
�the non�imaginative a� with a list of tasks� which de�ne the initial and final tasks� and for
each task� its name �an atom�� its length� and the tasks which depend on it �atoms� again��
This list will be used to built the constraint network and a dictionary where information
about the tasks will be stored� The �nal task has� associated to it� an absolute limit for the
project span�

project�a� �initial�a�� task�a�	��b�c�d��� task�b�
��e���

task�c����e�f��� task�d����f��� task�e���g���

task�f�
��g��� final�g�
	�� task�g�	�������

Checking the correctness of the data is one of the less elegant parts of the program� Each
element in the list is checked to make sure that it de�nes the initial task� the �nal task� or
an intermediate task� For each of them� we will also check that atoms appear where are
expected� and that numbers appear where task lengths are expected�

check�data�����

check�data��T�Ts����

check�datum�T��

check�data�Ts��

check�datum�Task���
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Task � task�Name� Dur� Foll��

check�atoms��Name�� Task��

check�number�Dur� Task��

check�atoms�Foll� Task�� "�

check�datum�Initial���

Initial � initial�Name��

check�atoms��Name�� Initial�� "�

check�datum�Final���

Final � final�Name� Limit��

check�atoms��Name�� Final��

check�number�Limit� Final�� "�

check�datum�What���

write�atoms��#Found # �What� # �unknown��#���

check�atoms���� �Where��

check�atoms��A�As�� Where���

check�atom�A� Where��

check�atoms�As� Where��

check�atom�A� �Where��� atom�A�� "�

check�atom�A� Where���

write�atoms��#Found #� A� # in #� Where� #� expecting atom�#���

check�number�N� �Where��� number�N�� "�

check�number�N� Where���

write�atoms��#Found #� N� # in #� Where� #� expecting number�#���

write�atoms������ nl�

write�atoms��A�As����

write�A��

write�atoms�As��

The process of building the constraints actually makes two things� it sets up the con�
straints themselves� but it also constructs a dictionary which relates the task �the Key of
each dictionary entry� with the task�s' Start and Length �the Value associated to the Key��
This is implemented using an open list �a list whose tail ends in a free variable�� so that only
one argument has to be used for the dictionary� In the case of a larger project� it might be
advantageous replacing it by a binary sorted tree� The predicate lookup� is the only entry
point for the dictionary� it retrieves and� in case of non�existence� adds new items�

lookup�Task� Start� Len� Dict���

insert�Task� data�Start� Len�� Dict��

insert�Key� Value� �pair�Key� ThisValue���Rest���� "� Value � ThisValue�

insert�Key� Value� ��OtherPair�Rest���� insert�Key� Value� Rest��



���� A SCHEDULING PROGRAM ��	

As a utility predicate� and to make clearer the �nal printing of the list of tasks� close structure�


closes the dictionary� i�e�� it will make the �nal variable of the list a ���

close�structure������ "�

close�structure����R���� close�structure�R��

The core of the program is the constraint generation� For each item in the project def�
inition we add the corresponding constraint� Tasks are related one to each other through
constraints which are actually put on the variables associated to the tasks names in the dic�
tionary� The name of the �nal task is returned� so that the minimization predicate can use
it to reduce the length of the project as much as possible� The actions taken for creating the
constraints are�

� The initial task is searched for in the dictionary� and simultaneously the associated
Start time is set to zero�

� The �nal task is looked up in the dictionary� and its end time is bounded using the limit
which was associated to the project�

� For every other task �among which the �rst and last task can also appear�� the successor
tasks are scheduled to be started after the current task is �nished� Their names are
looked up in the dictionary� and their start time are forced to be greater than the current
tasks� �nish time�

build�constraints���� �FinalTask� Dict��

build�constraints��Task�Tasks�� FinalTask� Dict���

add�constraint�Task� FinalTask� Dict��

build�constraints�Tasks� FinalTask� Dict��

add�constraint�task�Name� Len� Succ�� �Final� Dict���

lookup�Name� Start� Len� Dict��

End � Start ��� Len�

previous�Succ� End� Dict��

add�constraint�initial�Name�� �Final� Dict���

lookup�Name� 	� �Len� Dict��

add�constraint�final�Name� Limit�� Name� Dict���

le�End� Limit��

End � Start ��� Len�

lookup�Name� Start� Len� Dict��

previous���� �End� Dict��

previous��NextTask�Tasks�� EndThisTask� Dict���

lookup�NextTask� StartNextTask� �Len� Dict��

ge�StartNextTask� EndThisTask��

previous�Tasks� EndThisTask� Dict��

Minimizing is made na� vely� which is enough for this application� the start of the last
task �which has length zero� is forced to be at its minimum� In other cases special builtin
predicates will have to be used�
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minimize�FinalTask� Dict���

lookup�FinalTask� Start� �Len� Dict��

glb�Start� Start��

Finally� writing the results takes advantage of the structure of the dictionary� and dumps
it in a more readable form�

write�results�����

write�results��pair�TaskName� TaskData��Ps����

TaskData � data�TaskStart� TaskLen��

bounds�TaskStart� Lbound� Ubound��

write�bounds�TaskName� TaskLen� Lbound� Ubound��

write�results�Ps��

write�bounds�Task� Le� L� L���

write�atoms��#Task #� Task� # with length #� Le�

# starts at #� L� #�#���

write�bounds�Task� Le� L� U���

lt�L� U��

write�atoms��#Task #� Task� # with length #� Le�

# can start from #� L� # to #� U� #�#���

And a query� with the results� is�

�� sched�a��

Task a with length 	 starts at 	�

Task b with length 
 can start from 	 to 
�

Task c with length � starts at 	�

Task d with length � can start from 	 to ��

Task e with length  starts at ��

Task f with length 
 can start from � to ��

Task g with length 	 starts at ��

�
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Appendix A

Solutions to Proposed Problems

Problem ��� �page ����
The tableau continues the one in Table ��� like this�

Variables and Domains

Step a b c d e f g


� �


� � ���



 ���� ����


� ���� �


� �

Final domains � ���� � ���� � ���
 �

Tasks a and c must start at the beginning of the project� Task e has to start at time ��
and cannot be delayed� Tasks b� d� and f have a slack in their start time�

Problem ��� �page ����

�� sound�A� S��

A � spot� S � bark � �

A � barry� S � bubbles � �

A � hobbes� S � roar � �

no

Problem ��� �page �
�� Both queries are independent� The �rst one binds X to a� then the
toplevel backtracks and clears the bindings made so far� thus reverting to the state previous
to the query� That is why the second query� binding X to a di�erent value� succeeded� at this
point the state of the interpreter is the same as if the �rst query had never been issued�

Problem ��� �page ���� The answer to �� pet�X�� sound�Y� roar�� is X � spot� Y �

hobbes and X � barry� Y � hobbes� No solution has the same value for an animal which
is pet and for an animal with roars �in other words� no pet roars�� When both are forced to
be the same �using the constraint X � Y�� the query fails�

Problem ��	 �page ����

���
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�� father�of�juan� pedro��

yes

�� father�of�juan� david��

no

�� father�of�juan� X��

X � pedro � �

X � maria � �

no

�� grandfather�of�X� miguel��

X � juan � �

no

�� grandfather�of�X� Y��

X � juan� Y � miguel � �

X � juan� Y � david � �

no

�� X � Y� grandfather�of�X� Y��

no

�� grandfather�of�X� Y�� X � Y�

no

Problem �� �page �	��

grandmother�of�L�M���

mother�of�L�N��

father�of�N�M��

grandmother�of�X�Y���

mother�of�X�Z��

mother�of�Z�Y��

Problem ��� �page ���� Symmetry of relationships can� of course� be achieved by dupli�
cating the predicates �facts� in this case� which express this relationship� i�e�� adding the
following two facts�

resistor�n
� power��

resistor�n�� power��

But this is not a good solution� changes to the database will have to be duplicated� Writing a
bridge predicate is much better� In this case� and in order not to change the program dealing
with the circuits� we will rewrite the de�nition of resistor�� �and the part of the database
which stores the information about resistors� to become



���

resistor�A� B��� rst�A� B��

resistor�A� B��� rst�B� A��

rst�power� n
��

rst�power� n���

Problem ��� �page �	�� Both queries loop forever� and neither solution nor failure is
reached� The cause is the absence of a test for non�negativity of the argument� Thus� the call
�� nt����� has� in successive invocations� the arguments ��� 
�� 	�� �
�� ���� etc��
and the recursion never stops� The call �� nt����� starts directly in the negative case�

Problem ��� �page �	��

odd�
��

odd�N�����

gtlin�N��� 
��

odd�N��

Problem ��� �page �	��

odd�N��� even�N�
��

Problem ��	 �page �	��

multiple�	� B��

multiple�A� B���

gtlin�A� 	��

multiple�A � B� B��

Problem �� �page ���

even�X��� multiple�X� ���

odd�X��� multiple�X � 
� ���

Problem ��� �page ���

congruent�M� N� K���

int�M��

int�N��

int�K��

remainder�M� K� R��

remainder�N� K� R��

remainder�X� Y� X��� ltlin�X� Y��

remainder�X� Y� Z���

gelin�X� Y��

remainder�X �Y� Y� Z��
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Problem ��� �page ����

better�E�N� E���� better�E�N� Sign� E��

better�E�
� 
� 
��

better�E�N� Sign� Sign�N � RestE���

gtlin�N� 
��

better�E�N�
� �Sign� RestE��

Problem ��� �page ����

fib�N� F��� fib�N� 	� 
� F��

fib�	� 	� 
� 	��

fib�
� �Prev� F� F��

fib�N� Prev� Curr� Final���

gtlin�N� 
��

fib�N � 
� Curr� Prev � Curr� Final��

The proposed query and its answer are�

�� fib�
			� F��

F � �������������������������		����	�����	�
���
��		��
���	��������


���	�
��		�����		�����
�����������	�	���������	�����������������



�
�����	�	����
�����������������
�		��	��
�����
�����������

Problem ���� �page �
�� The duration of the project is not actually minimized� The queries
in the example minimize the resource consumption after minimizing the project length�thus
giving priority to �nishing the project as soon as possible� Reversing the calls will make
resource consumption as small as possible� and then try to make the task length as short as
it can�

Problem ���� �page 
��� Yes� there are repeated solutions�or not� From the point of view
of the user� if A has dinner with B� then it is clear the B is having dinner with A� But it can be
argued they are not repeated� they bind di�erent variables� We say they are repeated only
because of our perception dictates that going for dinner is symmetrical� and does not need
to be repeated� Which is actually the way around we thought of being friends� Everything
depends on whether we are consulting or retrieving data�

�Why� is easier� Duplicated or too much solutions are always produced by alternative
clauses giving several paths for the solution� or too few constraints leaving too much freedom
to the variables� In this case it is spouse�� which causes the �excess� of answers�

Problem ���� �page 
���

even�z��

even�s�s�E����� even�E��

Problem ���� �page 
���



��


times�z� �� z��

times�s�X�� Y� Z���

plus�Y� Z
� Z��

times�X� Y� Z
��

exp�z� �� s�z���

exp�s�N�� Y� Z���

exp�N� Y� Z
��

times�Y� Z
� Z��

factorial�z� s�z���

factorial�s�N�� F���

factorial�N� F
��

times�s�N�� F
� F��

minimum�z� s���� z��

minimum�s���� z� z��

minimum�z� z� z��

minimum�s�A�� s�B�� s�M����

minimum�A� B� M��

ltn�z� s�����

ltn�s�A�� s�B���� ltn�A� B��

Problem ���	 �page 
	�� The query behaves as follows�

�� member�gogo� L��

L � �gogo��� � �

L � ���gogo��� � �

L � �����gogo��� � �

L � �������gogo��� � �

L � ���������gogo��� �

�

�

�

The answers returned are� in fact� the most general possible� gogo is member of the list L

either being in the �rst� second� etc� position in that list� which continues inde�nitely� The
�rst answer is returned by the �rst clause �the fact� of member��� on backtracking� alternative
solutions are returned by prepending free variables to the list�

Problem ��� �page 
	�� A possible solution is the following query�

�� append�Xs� ���� �
�Xs��� Xs � �X
� X�� X�� X��

The size�
 constraint of Prolog IV is simulated by explicitly writing a list of four variables�
This query solves the problem� but falls into an in�nite failure �i�e�� an endless loop trying to
�nd more solutions�� due to backtracking generating lists of 
s� Putting at the beginning the
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generation of the list Xs solves this problem �remember that a property of constraints� unlike
algorithmic solving� is the independence or the order in which they are generated��

�� Xs � �X
� X�� X�� x�� append�Xs� ���� �
�Xs���

The query is automatically solved as follows� suppose we are dealing with a list Xs of length
�� let us denote its elements �free variables� at the beginning� as Xs � �X
� X�� X�� X��
Then �
�Xs� is �
� X
� X�� X�� X�� and Xs o � � is �X
� X�� X�� X� �� Equating
these two lists generates the following�


 � X


X
 � X�

X� � X�

X� � X

X �

from which every element of the list is 
�

Problem ���� �page 
�� The second implementation runs in time linear with the length
of the list to be reversed� This is so because that list is traversed downwards only once� and
when the end of the list is found� the answer �in the second argument� is uni�ed with the
output argument �the third one��

Problem ���� �page 
��

len���� z��

len��X�Xs�� s�L���� len�Xs� L��

suffix�S� L��� append��� S� L��

prefix�P� L��� append�P� �� L��

Alternative solution�

suffix�X� X��

suffix�S� �X�Xs���� suffix�S� Xs��

prefix���� Xs��

prefix��X�P�� �X�Xs���� prefix�P� Xs��

sublist�S� L���

prefix�P� L��

suffix�S� P��

palindrome�L��� reverse�L� L��

evenodd���� ��� ����

evenodd��E
�� ��� �E
���

evenodd��E
� E��Rest�� �E��Evens�� �E
�Odds����

evenodd�Rest� Evens� Odds��



��	

Alternative solution�

evenodd���� ��� ����

evenodd��E�Rest�� Evens� �E�Odds����

evenodd�Rest� Odds� Evens��

select�E� L
� L����

append�Head� �E�Rest�� L
��

append�Head� Rest� L���

Alternative solution�

select�X� �X�Xs�� Xs��

select�X� �Y�Xs�� �Y�Ys���� select�X� Xs� Ys��

Problem ���� �page 
��� Simply duplicate the element when it is found in the list �third
clause��

insert�ordlist�Element� ��� �Element���

insert�ordlist�Element� �This�Rest�� �This� Element�Rest����

precedes�This� Element��

insert�ordlist�Element� �Element�Rest�� �Element� Element�Rest���

insert�ordlist�Element� �This�Rest�� �This�NewList����

precedes�Element� This��

insert�ordlist�Element� Rest� NewList��

Problem ���
 �page ����
Note that the item of the current non�empty node is consed to the list coming from the

right subtree before appending the left and right lists� in order to make it appear in between
them�

in�order�void� ����

in�order�tree�X� Left� Right�� InOrder���

in�order�Left� OrdLft��

in�order�Right� OrdRght��

append�OrdLft� �X�OrdRght�� InOrder��

The need of placing an element at the end of a list makes necessary the use of two
appends� The item of information in the current non�empty node is appended to the list from
the traversal of the rightmost tree to minimize the work�

post�order�void� ����

post�order�tree�X� Left� Right�� Order���

post�order�Left� OrdLft��

post�order�Right� OrdRght��

append�OrdRght� �X�� OrderMid��

append�OrdLft� OrderMid� Order��
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Problem 	�� �page 	��� The uni�cation �both in the containing and in the contained term�
is made in the very �rst clause� which reads

subterm�Term� Term��

Problem 	�� �page 		�� The same predicate add matrices�� is used for matrices and
numbers� there is a clause for each case�

add�matrices�M
� M�� M����

number�M
��

number�M���

M� is M
 � M��

add�matrices�M
� M�� M����

functor�M
� mat� N��

N � 	�

functor�M�� mat� N��

functor�M�� mat� N��

add�matrices�N� M
� M�� M���

add�matrices�	� �� �� ���

add�matrices�N� M
� M�� M����

N � 	�

arg�N� M
� A
��

arg�N� M�� A���

arg�N� M�� A���

add�matrices�A
� A�� A���

N
 is N � 
�

add�matrices�N
� M
� M�� M���

Problem 	�� �page ��� Ensure that the goal in not�
 is ground�

unmarried�student�X���

student�X�� not�married�X���

student�joe��

married�john��

�


