

I -4

C
rn

—
C

—
r

m
r

r
rr

c

;
—

C

-4
0

r
t

—

fl
— z

C
z

m
c

z

1 June 1982
P55—10013—00

CHANGE PAGE PACKET #4 FOR THE ALPHA BASIC USER'S MANUAL

1.0 INTRODUCTION

This 4th change page packet for the AIphaBASIC User's Manual
(DWPI—QO100—OU, Revision 803 contains update instructions, a new title page,
and the manual pages that we have revised, It updates the manual to
Revision 804. This packet should be Implemented only in versions that have
been updated to Revision level 803, that is, only if your manual includes
the contents of change page packet #3.

1.1 UPDATE INSTRUCTIONS

To make the update process easier, your copy of the AIphaBASIC User's
Manual should be loose In a 3—ring binder.

First, remove the title page from this change page packet and exchange It
for the title page in your copy of the manual. If your copy has been
updated with change page packet #3, the title page you replace will show a

803 revision level. The new title Dage reflects revision level 804.

Now, remove the remaining change pages from this packet and substitute them
for the original pages listed below,

As you exchange these pages for the originals, note that we have marked all
revised portions of the text with change bars (vertical black lines in the
left margin). Also notice that the number of the manual appears at the
bottom of each change page.

Original Pages Revised Pages

Title page/u Title page/Il
vii through ix vii through ix
2—9/2—10 2—9/2—10
5—1/5—2 5—1/5—2
11—5/11/6 11—5/11—6
12—1 through 12—4 12—1 through 12—4
13—11/13—12 13—11/13—12
16—1/16—2 16—1/16—2
17—3/17—4 17—3/17—4
18—1 through 18—4 18—1 through 18—7
19—9/19—10 19—9/19—10
19—13/19—14 19—13/19—14
A—13 through A—16 A—13 through A—16
8—3 through 8—6 8—3 through 8—6
C—1/C—2 C—1/C—2

S.OFTV'ARE MANUAL

AIphaBASIC
USER'S MANUAL

D\A/N141]D1 LJDD1
REV. 504

alpha micro

F9RST EDTON

AOO 197?
BOO October 1980
801 October 30, 1980
BO2 April 30, 1980
BO3 October 31, 1981
804 June 1, 1982

©1982 ALPHA MCROSYSTEMS

THE INFORMATION CONTAINED IN THIS MANUAL IS BELIEVED TO BE ACCURATE AND
RELIABLE. HOWEVER, NO RESPONSIBILITY FOR THE AOCURACY, COMPLETENESS CR USE
OF THIS INFORMATION IS ASSUMED BY ALPHA M1CRO,

This book ref Lects AMOS Versions 4óA and AMOS/L Versions
LO and Later

THE FOLLOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS, IRVINE, Ca.. 92714

Aipha Micro AMOS AIphaBASIC AIphaPASCAL
AIphaLISP AIphaVUE AIphaSERV AiphaACCOUNTING

ALPHA MICROSYSTEMS
1 TSB1 Sky Park North

Irvine, CA. 92714

ALPHA BASIC USERS MANUAL

Table of Contents

Page iii

CHAPTER 1

2.1 INTERACTIVE MODE
2.1.1 Loading, Creating, and Saving BASIC

Programs
2.1.2 Direct Statements
2.1.3 Compitino and Running a Program

2.1.3.1 Compiler Options
2.1.4 DebuggIng Features

2.2 COMPILER MODE
2.2.1 Creating a Program

2.2.1.1 Program Form
2.2.2 Comniling a Program

2.2.2.1 Compiler Options
2.2.3 Running a Program

GENERAL INFORMATION

3.1
3.2
1.1
3.4
3.5
.6

3.7
3.%
3.9
3.10
3.11

MULTIPLE STATEMENT LINES
CONTINUATION LINES
LINE NUMBERS
COMMENTS (REM AND htfht) •
INTERACTIVE MODE DIRECT STATEMENTS
PROGRAM LABELS
MEMORY ALLOCATION
EXPAND AND NOEXPAND MODES
LOWER CASE CHARACTERS
LIBRARY SEARCHING
INCLUDE FILES

6.1 FLOATING POINT FORMAT
6.2 StRING FORMAT

(Changed 30 ApriL 1981)

4—1

4—2

4—2
4—1

CHAPTER 1 INTRODUCTION TO ALPHABASIC

CHAPTER 2 INTERACTIVE AND COMPILER MODES

2—2

2—2

2—3
2—4
2—5

2—6

2—6

2—7

2—9

2—9

3—1

4—1

1—2

3—2
'—3
1—3
3—4

1—4
3—4

3—5
3—5U

CHAPTER 4 ALPHABASIC VARIABLES

4.1 VARIABLE NAMES ...
4.2 NUMERIC VARIABLES
4.3 STRING VARIABLES
6.4 ARRAY VARIABLES

CHAPTER S ALPHABASIC EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONS
5.2 OPERATOR PRECEDENCE
5.3 MODE INDEPENDENCE

CHAPTER 6 DATA FORMATS

5—1

5—2
5—2

6—1

6—2

6.3 BINARY FORMAT .
6.4 INTEGER FORMAT
6.5 UNFORMATTED

CHAPTER 7

CHAPTER 8

CHAPTER 9

SUBSTRING MODIFIERS

7.1 SUBSTRING MODIFIER FORMATS AND FEATURES

MEMORY MAPPING SYSTEM

8.1 ALLOCATING VARIABLE STORAGE
8.2 MAP STATEMENT FORMAT

8.2.1 MAP Level
8.2.2 VariabLe Name
8.2.3 Type Code

8.2.3.1 Unformatted Data
8.2.3.2 String Data
8.2.3.3 Floating Point Data
8.2.3.4 Binary Data

8.2.4 Size
8.2.5 Value
8.2.6 Origin

8.3 EXAMPLES
8.4 USING THE MAP STATEMENTS
8.5 LOCATING VARIABLES DURING DEBUGGING

INTERACTIVE COMMAND SUMMARY

7—1

10.1
10.2
10.3
10.4
10.5
10.6
10.
10.8

END
FILEBASE
FOR, NEXT AND STEP
GOSUB (OR CALL) AND RETURN

10—1

10—1
10—2
10—2
10—3
10—3
10—4
10—5

ALPHA BASIC USER'S MANUAL Page iv

6—2
6—3
6—3

8—1

8—2
8—3
8—4
8—4
8—5
8—5

8—5
8—5
8—6
8—6
8—6
8—8
8—11
8—11

8.5.1 Examples 8—13

9.1 BREAK
9.2 BYE
9.3 COMPILE
9.4 CONT
9.5 CONTROL—C
9.6 DELETE
9.7 LIST
9.8 LOAD
9.9 NEW

9.10 RUN

Q— 2

9—2
3

9—3
9—4
9—4

CHAPTER 1)

9—5

9.11 SAVF
9.12 SINGLE—STEP (LINEFEED)

PROGRAM STATEMENTS

9—6
9—.

9—7
9—7
9—8

ALLOCATE
CHAIN
CLOSE
DIM

10.9 GOTO jO_B

ALPHA BASIC USER'S MANUAL Page V

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10 • 26
10.27
10.28

INPUT
INPUT LINE
K ILL
LOOKUP
LET
ON — GOSIS (CALL)
ON — GOtO
OPEN
PRINT
PRINT USING
RANDOMIZE
READ, RESTORE, AND
SCALE
SIGNIFICANCE
STOP
STRSIZ
WRITE
XCALL

.

*

•

•

10—9
10—10
10—12
10—13
10—14
10—14
10—14
10—15
10—15
10—16
10—17
10—18
10—18
10—19
10—20
10—20
10—20
10—21
10—21

CHAPTER 11 BASIC FUNCTIONS

IF, THEN AND ELSE,..
*

U

U

I
I

I

• • • S

0*S**•
0*••*•
. . . •..
es•.

* . . 0 *

• 0 ¶1 • S S •

DATA,

11.1 NUMERIC FUNCTIONS 11—1
11.1.1 ABS(X) 11—2
11.1.2 ASC(A) 11—2
11.1.3 EXP(X) 11—2
11.1.4 FACT(X) ... 11—2
11.1.5 FIX(X) 11—2
11.1.6 INT(X) 11—2
11.1.7 LOG(X) 11_a
11.1.8 LOGlO 11—3
11.1.9 RND(X) 11—3
11.1.10 SGN(X) 11—3
11.1.11 SQR(X) 11—3.
11.1.12 VAL(A) 11—3

11.2 TRIGONOMETRIC FUNCTIONS 11—3
11.3 CONTROL FUNCTIONS 11—4

11.3.1 EOF(x) 11—4
11.3.2 ERF(X) ., 11—4

11.4

11.3.3 ERR(X),,
11.3.4 OTHER CONTROL FUNCTIONS
STRING FUNCTIONS

11—5

11—S
11—5

11.4.1 ASC(X) 11—S
11.4.2 CHR$(x) OR CHR(X) 11—S
11.4.3 INSTR(X,A$,BS) 11—6
11.4.4 LCS(A$) 11—6
11.4.5 LEFT(A$,x) or LEFT$(A$,X) 11—6
11.4.6 LEN(A$) . 11—6
11.4.7 MID(A$,X,Y) or. MLDScAS,x,V) 11—6
11.4.8 RIGHT(A$,X) or RL'GHTS(A$,X) 11—7
11.4.9 SPACE(X) or SPACE$(X) 11—7
11.4.10 STR(X) or STR$(X) ..,.... 11—7
11.4.11 UCS(A$) 11—7

(Changed 31 October 1981)

ALPHA BASIC USER'S MANUAL Page vi

CHAPTER 12 SYSTEM FUNCTIONS

12.1 BYTE(X) AND WORD(X) 12—1
12.2 DATE .. 12—2
12.3 10(X) 12—2
12.4 MEM(X) 12—2
12.5 TIME *e*.. 123

CHAPTER 13 FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS)

13.1 THE USING MODIFIER 13—1
13.2 FORMATTING CHARACTERS 13—2

13.2.1 The '¼ Symbol (String Fletds) 13—3
13.2.2 The ! Symbol

(One—character String Field) 13—4
13.2.3 The # Symbol (Numeric Fields) 13—4
13.2.4 The Period Symbol (Decimal Point) ... 13—5
13.2.5 The U Symbol

(Floating Doltar Sign) 13—S
13.2.6 The Comma Symbol (Floating Commas) .. 13—7
13.2.7 The ** Symbol (Asterisit Fill) . 13—7
13.2.8 The 1 Symbol (Leading Zeros) 13—7
13.2.9 The Minus Symbol

(Trailing Minus Sign) 13—8
13.2.10 The Symbol

(Exponential Format): 13—8
13.3 FORMATTING EXAMPLES AND HINTS 13—8
13.4 EXPANDED TAB FUNCTIONS

•
13—11

CHAPTER 14 SCALED ARITHMETIC

14.1 SCALE 14—2

CHAPTER 15 ALPHABASIC FILE I/O SYSTEM

15.1 SEQUENTIAL ASCII FILES 15—2
15.2 RANDOM FILES .. 15—3

15.2.1 Logical Records 15—3
15.2.2 Blocking Factor and Retord Size 15—3

15.3 FILE I/O STATEMENTS 15—4
15.3.1 OPEN ., 15—6

15.3.2 CLOSE ., 15—8
15.3.3 KILL . 15—8

15.3.4

LOOKUP . 15—9
15.3.5 ALLOCATE ,. 15—10
15.3.6 FILEBASE 15—10
15.3.7 INPUT 15—10
15.3.8 INPUT LINE 15—12
15.3.9 PRINT 15—11
15.3.10 READ 15—13
15.3.11 WRITE 15—13

15.4 SAMPLE PROGRAM 15—14

(Changed 31 October 1981)

ALPHA BASIC USER'S MANUAL Page vii

CHAPTER 16 CHAINING TO BASIC AND SYSTEM PROGRAMS

16.1 CHAINING TO ANOTHER ALPHABASIC PROGRAM 16—1
16.2 CHAINING TO SYSTEM FUNCTIONS 16—2

CHAPTER 17 ERROR TRAPPING

17.1 ON ERROR GOTO STATEMENT 17—1
17.2 ERR(X) FUNCTION 17-2

17.2.1 Error Codes Returned by ERR 17—2
17.3 RESUME STATEMENT 17—3
17.4 CONTROL—C TRAPPING 17—3
17.5 SAMPLE PROGRAMS 17—4

CHAPTER 18 CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES

18.1 AUTOMATIC SUBROUTINE LOADING 18—2
18.2 SPECIFIC INFORMATION FOR AMOS SYSTEMS 18—3

18.2.1 REGISTER PARAMETERS 18—3
18.2.2 ARGUMENT LIST FORMAT 18—3
18.2.3 FREE MEMORY USAGE 18—4

18.3 SPECIFIC INFORMATION FOR AMOS/L SYSTEMS 18—5
18.3.1 REGISTER PARAMETERS 18—5
18.3.2 ARGUMENT LIST FORMAT 18—5
18.3.3 CONVERTING ARGUMENTS TO BINARY FORMAT 18—6
18.3.4 FREE MEMORY USAff 18—6
18.3.5 LOCATING OPEN EtLES 18—7
18.3.6 PROGRAM HEADERS 18—7

CHAPTER 19 USING ISAM FROM WITHIN BASIC

19.1 FILE STRUCTURE 19—1
19.2 SYMBOLIC AND RELATIVE KEYS 19—2
19.3 THE ISAM STATEMENT 19—3

19.3.1 The ISAM Statement Codes 19—3
19.4 OPENING AN INDEXED FILE 19—5
19.5 READ AND WRITE STATEMENTS 19—6
19.6 CLOSING AN INDEXED FILE 19—6
19.7 INDEXED'EXCLUSIVE MODE 19—6
19.8 ERROR PROCESSING 19—7

19.8.1 Soft Errors 19—8
19.9 USING INDEXED SEQUENTIAL FILES 19—8

19.9.1 Creating an Indexed File 19—9
19.9.2 Adding Data to an Indexed File 19—9
19.9.3 Reading Data Records in

Symbolic Key Order 19—10
19.9.4 Reading Data Records

Randomly by Symbolic Key 19—11
19.9.5 Updating Data Records 19—11
19.9.6 Deleting a Data Record 19—12

19.10 SAMPLE ISAM PROGRAM 19—13

DWM—O0100—O1 REV 804

ALPHA BASIC USER'S MANUAL Page viii

APPENDIX A SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS

4.1 AMOS MONITOR COMMANDS 4—2
A.1.1 BASIC 4—2
4.1.2 COMPIL A—2
4.1.3 ControL—C 4—3
4.1.4 RUN 4—3

4.2 ALPHABASIC COMMANDS A3
A .2.1 BREAK 4—3
A2.Z BYE 4—4
A.2.3 COMPILE 4—4
A .2.4 CONT 4—4
4.2.5 CONTROL—C 4—4
A .2.6 DELETE 4—4
A .2.7 LIST 4—4
A .2.8 LOAD A—S
4.2.9 NEW 4—5
A .2.10 RUN 4—5
A .2.11 SAVE A—5
4.2.12 SINGLE—STEP (LINEFEED) A—5

4.3 ALPHABASIC STATEMENTS 4—5
4.3.1 ALLOCATE A—A
A .3.2 CHAIN 4—6
4.3.3 CLOSE 4—6
4.3.4 DATA 4—6
4.3.5 DIM A—A
4.3.6 END A—?
4.3.7 FILEBASE 4—7
4.3.8 FOR, TO, STEP and NEXT A_i
4.3.9 GOSUB or CALL and RETURN A—?
4.3.10 GOTO 4—8,

4.3.11 IF, ThEN and ELSE 4—8
4.3.12 INPUT A—a
A.3.13 INPUT LINE 4—8
A.3.14 KILL 4—9
A.3.15 LET 4—9
4.3.16 LOOKUP 4—9
A.3.17 ON ERROR GOTO and RESUME 4—9
4.3.18 ON—GOSUB or CALL ..' A—1O
4.3.19 ON—GOTO 4—10
A .3.20 OPEN A—b
4.3.21 PRINT 4—10
4.3.22 PRINT USING A—il
4.3.23 RANDOMIZE 4—11

4.3.24 READ and RESTORE A—Il
4.3.25 SCALE A—12
4.3.26 SIGNIFICANCE 4—12
4.3.27 STOP 4—12
4.3.28 STRSIZ 4—12
4.3.29 WRITE 4—12
4.3.30 XCALL 4—13

A.4 ALPHABASIC FUNCTION STATEMENTS
,, 4—13

4.4.1 NUMERIC FUNCTIONS 4—13

DWM-OO100—01 REV B04

ALPHA BASIC USER'S MANUAL Page lx

A.4.1.1 ABS(X) A—14
A.4.l.2 CHR(X) A—14
A.4.1.3 EXP(X) A—14
A.4.1.4 FACT(X) A—14
A.4.I.5 FIX(X) A—14
A.4.l.6 INT(X) A—14
A .4.1.7 LOG(X) A—14
A .4.1.8 LOGlO A—14
A.4.1.9 RND(X) A—14
A.4.1.lO SGN(X) A—14
A.4.l.ll SQR(X) A—IS
A.4.1.12 STR(X) or STR$(X) A—iS

A.4.2 TRIGONOMETRIC FUNCTIONS A—IS
A.4.3 CONTROL FUNCTIONS A—iS

A .4.3.1 DATE A—iS
A.4.3.2 TIME A—iS
A.4.3.3 BYTE and WORD A—16
A .4.3.4 EOF(X) A—I6
A.4.3.5 ERF(X) A—16
A.4.3.6 ERR(X) A—16
A.4.3.7 MEM(X) A—16
A.4.3.8 SPACE(X) or SPACES(X) A—16

A.4.4 STRING FUNCTIONS A—li
A.4.4.l ASC(A$) A—li
A.4.4.2 INSTR(X,AS,B$) A—li
A.4.4.3 LCS(AS) A—li
A.4.4.4 LEFT(A$1,X) or LEFTS,.AS,X) A—li
A.4.4.5 LEN(AS) A—li
A.4.4.6 MID(AS,X,Y) or MIDS(AS,X,Y) .. A—li
A.4.4.7 RIGHT(A$,X) or RIGHT$(A$,X) .. A—li
A.4.4.8 UCS(A$) A—IS
A .4.4.9 VAL(A$) A—l8

APPENDIX B MESSAGES OUTPUT BY ALPHABASIC

APPENDIX C RESERVED WORDS

APPENDIX D THE ASCII CHARACTER SET

APPENDIX E SAMPLE PROGRAM — NUMERIC CONVERSION FOR BASES 2 — 16.

INDEX

DWM—OO100—Ol REV 804

ALPHA BASIC USER'S MANUAL Page xi

PREF*CE

AtphaBASIC is a particularly powerful version of BASIC that has been
expanded in several important areas. The following chapters describe the
AIphaBASIC features and operations.

We assume that you are already familiar with the BASIC programming language,
and that you are interested in getting to know AlphaBAStC. Therefore, this
book emphasizes features of AIptuaSASIC that differ from those of
conventional BASICS, without going into much detail on standard BASIC
statements and commands.

This book is not a BASIC tutorial, but is a technical manual intended for
the experienced BASIC programmer. We encourage you to contact your Local
Alpha Micro dealer for help in answering sptctfitc Questions you may have
about AIphaBASIC.

BIBLIOGRAPHY

If you are not familiar with BASIC, you may be interested In taking a look
at one or more of the books listed below. We have found these books to be
helpful to the beginning BASIC programmer.

Albrecht, R. L., et at.
BASIC, 2nd Edition
John Wiley & SonS, 1978

Brown, J. R.
Instant BASIC
Di lithium Press, 1977

Casset, D.
BASIC Made Easy: A Guide to Programming Microcomputers

and Minicomputers
Reston Publlshing*Co.., 1980

Dwyer, T. and Critchfield, N.
A Bit of BASIC
Addison—Wesley, 1980

ALPHA BASIC USER'S MANUAL Page xii

Dwyer, T. and Critchfield, N.
BASIC and the Personal Computer
Addison—Wesley, 1978

Hirsch, S. C.
BASIC Programming: Self Taught
Reston Publishing Co., 1980

Kemeny, J. 6. and Kurtz, 1. E.
BASIC Programming, 3rd Edition
John Wiley & Sons,'1980

CONVENTIONS USED IN THIS MANUAL:

To make our examples concise and easy to undçrstand, we've adopted a number
of graphics conventions throughout our manuatt:

0 Optional elements of a BASIC statement or command. When
these symbols appear in a sample, statement or command,
they designate elements that you may omit.

Underlined characters indicite those characters that
AMOS prints on your terminal display. For example,
throughout this document you see an underlined dot,
which indicates the prompt, symbol that the operating
system prints, on your terminal when you are at AMOS
command level.

Carriage return symbol. The iD symbol marks the place
in your keyboard entry to type a RETURN (i.e., hit the
key labeled RETURN). For example; "..BASIC !j "
tells you "After an AMOS prompt, type BASIC and a
RETURN."

A Indicates a Control—character, If you type a Control—C
In the compiler mode of ALphaBASIC, for instance, you
see a C on your terminal display. (Refer to the AMOS

User's Guide, (DWM—OO1flD—35), lot more information on
Control—characters.)

(Changed 30 October 1980)

CHAPTER 1

INTRODUCTION TO ALPHABASIC

The acronym BASIC stands for Beginners' AU—purpose Symbolic Instruction
Code. BASIC Is a higher—level. programming language created to be a
versatile tool for Learning computer programming, and atso to provide a

relatively simple Language for a wide variety of applications. But today,
BASIC Is more than a learning tool or a beginner's toot for higher—Level
programming. It can be said that most programming on small, interactive
systems is done in BASIC. This is in part because of the inherent
similarity of BASIC to the English language.

Over the years since Its inception, BASIC has been added to and modified as
new concepts of programming have emerged. Some implementations of BASIC are
more extensive than others; the use of these extended versions at lows the
programmer a wider range of applications, greater ease in programming, or
greater efficiency and speed.

AIphaBASIC is just such an extension of the BASIC language, with several
features not found in other Implementations. These features not only
enhance the performance of traditional uses of the language but also make
business applications easier to program. For instance, programmers familiar
with COBOL's powerful hierarchial data structures wilt appreciate AIphaBASIC
features which make data manipulation and assembly language subroutine
linking similarly convenient. Floating point hardware in the processor is

fully supported, greatly Increasing the speed of mathematical computations.

AIphaBASIC runs in one of two modes: interactive or compiler mode.
Interactive mode operates much like a traditional interactive interpreter;
that Is, you create, alter and test your program which resides totally in
memory. This mode is convenient for the creation and debugging of new
programs or the dynamic alteration of existing programs. Compiler mode is
more useful for programs which are to be put into production use, or for
testing programs which are too large to fit in memory in the interactive
mode. In compiler mode, you compile the program at monitor level and store
the compiled object code on the disk. During the actual running of the
compiled program, only the object code and a minimal run—time execution
package need to be in memory, thereby conserving space. The compiler and
the run—time package are both written as re—entrant programs. This means
that in a timesharing environment, any or all users who are running or

INTRODUCTION TO ALPHABASIC Page 1—2

debugging programs may optionally share one copy in system memory of the
compiler and the run—time package. Once created by the compiler, the object
programs (also known as compiled programs) are also totally re—entrant and
sharable, thereby further reducing memory requirements if several users
desire to run the same application program.

ALphaBASIC supports floating point, string, binary and unformatted data
formats. All data formats may be simple variables or array structures. In

addition, the unique memory mapping system allows you to specify the
ordering of variables in prearranged groupings for more efficieflt

processing. This system is similar to the data formatting capabilities of
the COBOL language and lends itself well to business applications where the

manipulation of formatted data structures is of prime concern.

Variable names are not limited to the single character and single digit
format of many BASICs, but may be any number of alphanumeric characters in

length, as tong as the first character ts alphabetic. This is another
feature which makes AIphaBASIC welt suited for business applications. Since

the source code is compiled and need not be in memory when the program is

eventually run, the length of the variable dame is not a significant
concern. Label names may also be used to identify points in the program for
GOTO and GOSUB branches. Label names are alphanumeric and help to clarify
the program structure (for example, EXIT'ERROR: or EVALUATE'ANSWER:).

CHAPTER 2

INTERACTIVE AND COMPILER NODES

The major purpose of this chapter is to explore the differences between the
two modes in which you can use BASIC. We wilt atso discuss how to create,

compile, and run your programs.

The AIphaBASIC system consists of three programs; RUN.PRG (the monitor level
BASIC run—tim! packaqe), COMPIL.PRG (the monitor level disk—based BASIC

compiler), and BASIC.PRG (which combinéé an interactive compiler and

run—time package to simulate a BASIC friterpreter). You use RUN and COMPIL

from AMOS command level to run and compile AIphaBASIC programs outside of

BASIC. You use the BASIC.PRG program when you want to use AIphaBASIC as an
Interactive interpreter.

Your choice of interactive or compiler mode depends on several factors: your
personal preference, the amount of memory you have in your partition, the

stage of development your program is in, and the physical form of your
program.

Interactive mode simulates a BASIC interpreter by allowing you to deal

directly with BASIC. This is the mode that most BASIC users are probably
familiar with. Interactive mode permits direct editing of the source

program in memory and immediate feedback as each program line is edited. In

this mode you are "in" BASIC, and can use AIphaBASIC's unique program
debugging features. To execute a program in this mode, you must first toad

in or create In memory your uncompiled source program. After you have

finished compiling and executing the program, you are stilt in BASIC, and

are not returned to monitor Level until you use the BASIC command BYE.

Compiler mode allows you to compile programs from the monitor level without
ever entering BASIC. You first create the source program (a .BAS file)

using one of the system text editors. Then, from the AMOS monitor level you
compile the program. The compiler automatically saves this compiled version
of your source program (called the "object program") on the disk as a .RUN
file; the file is available for execution then or later using the AIphaBASIC
run—time package, RUN.PRG. After you execute the object program from the

monitor level, the run—time package returns you to monitor level.

INTERACTIVE AND COMPILER MODES Page 2—2

Whether you use interactive or compiler mode, the resuLting object program
is re—entrant, and may be loaded into system memory for use by multiple
users.

2.1 INTERACTIVE MODE

Perhaps the major advantage of interactive mode Is that it at tows you to
"talk to" BASIC while you are creating or editing your program. You are
free to enter entire programs which will be executed when you use the RUN
command, or you can enter single statements outside of a program for direct
execution. You can interrupt a program and, stnce you are stilt in BASIC,
can display and change variable values and then restre program operation.
You wilt probably be most interested in using interactive mode if the
interactive nature of the compiler is of particular use to you (for example,
if you are new to AIphaBASIC and want to try out various statements and
small programs, or if a program is in an early development stage and you
want to make use of interactive mode's debugging features).

One disadvantage in using Interactive mode has to do with memory
requirements. Your source program, your objett program, and BASIC.PRG alt
reside in memory at the same time. In addition, BASIC toads into memory the
BASIC run—time package, RUN.PRG. The BASIC.PRG file itself Is fairly large,
since it contains a compiler as well as the code that alLows it to simulate
an interactive Interpreter. This all means that using BASIC in interactive
mode uses up more memory than compiling and executing a program outside of

BASIC.

Because BASIC.PRG is re—entrant, you may place It in system memory to save
room In user partitions. (If you do so, you may atso want to place RUN.PR43

in system memory.) However, since BASIC is a fairly large program, you
probably will only want to put it in system memory if most of the users on

your system do a great deal of BASIC program development.

To use interactive mode, at monitor level type BASIC followed by a RETURN:

.BASIC '!

When BASIC is ready to communicate with you, you see the prompt:

READY

You are now inside BASIC.

2.1.1 Loading, Creating, and Saving BASIC Programs

To toad a source program into memory, use the LOAD command. For example:

LOAD NEWPRGC23,43 @i.D

4

INTERACTIVE AND COMPILER MODES Page 2—3

BASIC wilt toad in the specified .BA$ file. (This program file could, have
been created' using one of the system text editors, or might have been saved
from a previous interactive mode session,) Or,, instead of loading in an
existing program, you can start creating a new source program by simply
typing in the program. Editing the program takes place in the conventionaL
manner, by typing each tine with its tine number first. BASIC keeps tines
in sequence automatically, so you may enter them In' any numeric order. To

edit a program tine, you must re—type the entire tine. As you enter program
tines, BASIC scans that line looking for syntax errots. If you enter a tine
Incorrectly, BASIC wit.l tell you so. For exanple:

READY

10 HELP WHAT AM I DOING?
syntax error

If you want to save a source program, use the SAVE command. For example:

SAVE NEWPRG tED

The command above saves the source program NEWPRG.BAS as a disk file in the
account you are logged into. You can save the compiled version of that
program by specifying the .RUN extension:

SAVE NEWPRG.RUN @D

If you have not previously compiled the source program., or if you have
changed the program since the last, time you compiled it, BASIC automatically
compiles it for you when you ave a .RUN file to ensure that you are saving
the most current version.

If you try to save a .RUN file when there is no source program in memory,
BASIC reports:

No source program in text buffer

Since there is no way to convert an object file back to a source program
file, you wilt want to save both the .BAS and .RUN versions of your program.
(For information on the SAVE and LOAD commands, see Sections 9.8 and 9.11.)

2.1.2 Direct Statements

Program statements that do not begin with a line number are considered
direct statements, and BASIC executes them immediately. For example:

READY

PRINT A+4
9

4

INTERACTIVE AND COMPILER MODES Page 2—4

Although it looks as if It is being interpreted, a direct statement is
actually compiled, then it is applied against: the current set oi defined
variables. You can define variables and change variable values using direct
statements.

Certain statements are meaningless as direct statements, and so are not
allowed (for example, RESUME, 6OSUB, etc.).

BASIC allows multi—statement lines as direct statements. (Multi—statement
tines are lines which contain more than one statement; the statements are
separated by colons.) As you enter direct statements, BASIC checks them to
see that they are in proper form and that they are Legal for use as direct
statements. You see an error message if you enter a statement incorrectly,
or if it is not a Legal direct statement.

2.1.3 Compiling and Running a Program

Although interactive mode simulates an interactive interpreter, in operation
BASIC.PRG is a full compiler. As you enter a direct statement, BASIC
compiles it and gives you immediate feedback. Whenever you change the
source program in memory, BASIC sets a switch that indicates that the
program must be re—compiled before it is executable again.

The source program that you have loaded in from the disk or created while in
BASIC resides in memory. Before you can execute that program, it must be
compiled. Running in interactive mode always involves the compilation and
running of a source program which Is in memory, and never includes running a
saved disk object program directly. Also, in interactive mode, you may
compile only the program currently in memory. NOTE: To erase anything in
memory in preparation for loading In a new program or creating a new
program, use the NEW command, If you do not erase the program in memory,
BASIC will merge the new program into whatever is in memory. If any line
numbers from the new program duplicate line numbers of an old program in
memory, the new lines will replace the old lines in memory.

To execute the program, use the RUN command. NOTE: If you try to use any
of the execution commmands (e.g., RUN or CONT), and if the program has been
changed since the Last time It was compiled, BASIC automatically re—compiles
it for you before executing the program. Therefore, if you need to compile
the source program and then run it, you may simply use the RUN command, and
BASIC will compile and execute the program for you. For example:

INTERACTIVE AND COMPILER MODES Page 2"S

READY

10 REM Thia is a small program..
20 FOR I = 1 TO 5 L
30 PRINT "Little tasks make large return,"
40 NEXT I

RUN @D
COMPILE
Comille time was 0,13 seconds
•Li It ft fKsmaeargTYët.GFn
LfttLeasks make large return,
flTfTe f siiVetiFge ret U
tTtft& f2i1ci mikrarge'rét Urn,
Little tasks make_large_return,
untithUftas U4Q s:tcO.hds.

READY

To just compile the program, but not run it, use the COMPILE command, For
example:

COMPILE J
Compile time w•as 0,13 seconds

Once the program is compiled, the object. code resides in memory along with
the source program, You can write it out to disk as a ,RUN tile by using

the SAVE command nd specifying the ,RUN exte.n54:on..,

2,1,3,1 Compiler Options You may specify the 10: compiler option to the

interactive compiler, The /0 option tells BASIC to strip out any references
to line numbers in your compiled object code, It does not change your

sou.rce program, By removing line number references from your object

program, you ensure that your compiled program will be smaller Sand will run

faster, However, if an error occurs while executing the program, the
resulting error message will not show the number of the line where the error
occurred,

INTERACTIVE AND COMPILER MODES Page 2—6

2.1.4 Debugging Features

A unique feature which is very useful for debugging progrMs is the
single—step command. Every time yqu type a tlner*eed atone ona tine, BASIC
lists and executes the next program statement. At that point you can
inspect variables or alter their values before you continue program
execution (via the CONT command or typing another tine—teed). Note that any
change in the source program results in BASIC re—coipiling the program
before the next single—step command is actually carried out. See Chapter 9,
"Interactive Command Simimary," for more information on singLe—stepping
programs, and on setting and clearing breikpo4nts.,

2.2 COMPILER MODE

Compiler mode consists of using the disk—based compiler, COMPIL, and the
run—time package, RUN, at monitor level to compile and execute programs
without entering BASIC.

Although you do not have the interactive features of AIphaBASIC available to
you in compiler mode, you do have the advantages of being able to compile
source programs that are too large to fit into memory, and of reducing the
amount of memory you need to compile and execute programs. Remember that
interactive mode keeps the BASIC interactive compiler, the run—time package,
and your source program all in memory at the same time. When you compile a

program in interactive mode, the object code also: res,ides in memory.

On the other hand, in compiler mode, only COMPIL. and RUN n!ed reside in
memory. Your source program is read In a line at a time from the disk and

the statements, except comments, are compiled into object code. When you
execute a program from the monitor, only the run—time package and your
object file need be in memory.

2.2.1 Creating a Program

There are two ways to create a source program for use in compiler mode: you
can either use AIphaBASIC in Interactive mode to type in the program, save
that program on disk, and then exit BASIC; or, you can use one of the system
text editors, EDIT or VUE. The usual way to create a program that Is going
to be compiled with COMPIL is to use VUE to create the .BAS file. VISE is a

screen—oriented text editor that allows you to see your program on the
terminal screen as you type it in. You can move the cursor around on the

screen and change or delete text at the current cursor position.

INTERACTIVE AND COMPILER MODES Paqe 2—7

2.2.1.1 Program Form — The form your program may take differs somewhat
between complier mode and interactive mode. It you create and save your

source program in intEractive mode, that program muSt, 0$ course, contain
line numbers. (Otherwise, BASIC would interpret each statement as a direct
statement when you tried to type the program in.4

COMPIL,
however, does not require that a proqram contain tine numbers. That

means that if you create your proqram using VUE, you do not need to incLude
line numbers in that program, in addition, you may indent your program
tines in any fashion you desire. By omitting tine numbers, including tine
labels, and using indentation judiciously, you can give yotkr source program

a much more structured took than is usually possible with BASIC programs.
(A "label" is a speciat name defined by you titat identifies a location
within a program.)

COMPIL also allows the use of continuation lines within a source proqram.
Specify a continuation tine by making an ampersand (&) the last character on
that tine. For example:

IF Answer = RIGIIT'NIJMBER THEN &
PRINT "Very Good V' &

ELSE &
PRINT "Try aqatn."

If you use LOAD in interactive mode to toad a program that uses continuation
lines, BASIC concatenates conttguous continuation lines into one line. (The

maximum tine length, including any continuation tines, tabs, or blanks, is

500 characters.) Then, if you save that oqt'am back out to the disk, any
continuation lines are gone.

Below is a small example of a vatldprogram that uses continuation lines,

indentation, and labels, and has no tine numbers:

Program to print name in reverse.

INIT: STRSIZ 20

START: INPUT LINE "Enter your name: ",NAME$
IF LEN(NAMES) = 0 THEN &

GOTO START

LOOP: COUNTER = LEN(NAME$)
FOR I = 1 TO COUNTER

PRINT NAMESrCOuNTER; 1)
COUNTER = COUNTER — 1

NEXT
INPUT "Do you want instant repLay? (Y or N)",QUERYS
IF (QUERY$ = "Y") OR (QUERYS = "y") THEN &

GOTO LOOP Si
ELSE t

PRINT "All done."
END

(Chanqed 30 April 1981)

INTERACTIVE AND COMPILE.R MODES Page 28

NOTE: Since COMPIL does not require that your program contain Line numbers,
it does no checking for dupLicate line nunhers or lines out o.f -numeric

seouence, If your p:rogram contains these ki.nds. of errors., it will, compile
using COMPIL. However, if you use interactive mode. and load the program in,
BASIC (which requires line numbers) will be unable to handle the program
correctly, and errors will result, (For examp.le in the case of duplicate
line numbers, BASIC will merely take the last line in the file bearinq the
dup-licate number,)

2,22 Compiling a Program

To compile a program in compiler mode, at AMOS command level enter COMPIL
followed by the specification of the file you want to compile, You may
supply a full file specification, including account and device
soecifications, (The default extension is ,BAS, The default account and
device are the ones you are i.ogged into,) After you enter the file
specification, type a RETURN, For example:

,COMPIL REVRSEfl

Now you see a numher of statistics on your terminal as COMPIL compiles your
pro-gram. A typical -display might look somethi.ng like this:

,COMPIL ACMSL.S ED
phase 1 Initial work memory is 231.0 bytes
'PEace 2 AdwtEiect file a'bd pocss errors

eVb) r3SCMAPFItCT'"
Syntax error 980 SLSMTD = SLSMTD;SSLAMT
Memory usage:

TT2T work space_47l2 bytes
ta,eT7'B"5r tree_t"2'2"bytes
V7i'FTäE5Ti"Ty'iiTh OVEr [

TretVo'rVET'Etes
Variable indexing area 274 bytes
C-ompiler work stack - 140 bytes

eVE:TTe"memorV'-iW1'. bytes

Note that COMPIL tells you if any error exist.s wi.thin the source prooram
when it processes your file (lines 4 and 5 of the display above), The
"Excess avai lable m.emory" message is useful for letting you know how close
you are to running out of memory, if you do run. out of memory during a

compilation, you see the message: (Out of memory compilation aborted),
and. COMPIL returns your terminal to AMOS commandS -.level,

When COMPIL has finished processing your tile, it returns you to monitor
level and writes the obiect program to the disk as a file bearing the name
-of your source orogram and a ,RUN e.xtension, Howe.ver, if COMPIL detects
errors in the source rogr am, no ,RUN version is output,

(Changed 'ii) April 11)

INTERACTIVE AND COMPILER MODES Page 2—9

2.2.2.1 Qompller Options — Three compiler:options are available for use
with COMPIL: /0, It, and IN. To choose an option, Include the symbol "I" at
the end of the file specification that you supply to COMPIL, followed by the
appropriate option request code. For example.:

.COMPIL NEWFIX.BAS/0 @!

The compiler mode /0 option is the same as the /0 option, for the Interactive
mode (see Section 2.1.3.1, above). The /0 option code tells COMPIL to strip
out any line number references In your compiled object code file. This
makes your object code file smatter and, makes the program run faster, but
any error messages do not include the nunber of the line at which the error
occurred.

The compiler mode IT option is primarily for debugging purposes. It tells
COMPIL to display each line of your source program as it scans that tine.
If a problem occurs during compilation, you can use the IT option to
determine the line In which the problem occurs. You can also use IT to
gauge the speed with which certain statements compile.

When you use the IN option, an error message Is displayed any time COMPIL
encounters an unmapped variable. This option aids programmers who wish to
verify that all variables have been mapped. (See chapter 8, "MEMORY MAPPING
SYSTEM," for information on mapping variables.)

2.2.3 Running a Program

To run a program In compiler mode, at AMOS command level enter RUN, the name
of the .RUN program you want to execute, and a RETURN. For example:

.RUN LOOP

You may supply a full file specification, including device name and account
number. The monitor looks for the run—time package, RUN.PRG, In memory; If
It is not found In system or user memory, AMOS loads RUN into memory from
the disk. RUN initializes memory, looks for your program in memory, and, if
it Is not there, loads the specified .RUN file from the disk. Now RUN
executes your program. tflon completion, or If you type a Control—C to
interrupt the program, RUN returns you to AMOS command level.

DWM—OO100—01 REV 804

INTERACTIVE AND COMPILER MODES Page 2—10

Note that the RUN command serves two different functions, depending on
whether you are in compiler or interactive mode. In compiler mode, RUN Is a
monitor command used to execute a compiled BAS:IC program that has previousty
been saved on the disk or loaded into memory. The command:

RUN PAYROLt!jD

wilt run PAYROL.RUN and then exit back to AMOS command level without ever
entering BASIC. In interactive mode, the RUN command is a BASIC command
that compiles and executes the current source program that you are editing
and testing; when it finishes, you are stilt In BASIC.

NOTE: Do not use the monitor command RUN on files with .BAS extensions. On
the AMOS/I. system, if you try to run a RUN file that was produced on the
AM—100/T system, or any non—.RUN file, you wilt get the error message:

?RUN file is in an incompatible format

DWM—OO100—o1 REV 804

CHAPTER 3

GENERAL INFORMATION

This chapter gives general information about theform that your AIphaBASiC
program may take. For example, we discuss muLtipLe statement tines,
EXPAND and NOEXPAt4D modes, program Labels, and Itne numbers.

3.1 MULTIPLE STATEMENT LINES

The system supports muLtiple statement lines by using colons to separate the
statements. For example:

10 FOR Izi TO 10 : PRINT "THIS IS A LOOP" : NEXT I

The normaL rules apply; for instance, a DATA statement cannot contain other
statements on the same tine and no other statements may foLlow a "comment"
(designated by the REM or ! keywords). Direct statements may aLso be
muLtipLe statement lines.

You should always use spaces around the cotons stnce;. BASIC will otherwise
try to treat two commands (e.g., PRZNflPR4Ni) as a label and a single
command. (The one situation where you do not have to use spaces around the
coLon that separates two statements is when :OU are In NOEXPA4D mode. See

Section 3.8 for information on EXPAND and NOEXPAND modes.)

3.2 CONTINUATION LINES

COMPIL allows the use of continuation lines within the source program. That
is, statements may be continued on the next line by using the ampersand (&)

symbol
as the last character on the tine. (However, you must not assign a

Line number to a continued line.) Since any statement tine may be indented
as you please in the compiler mode, considered use of continuation tines and
indentation, plus optionalLy eliminating line numbers (as discussed in the
next section) enables you to give your source program a much more structured
look than allowed by more conventional BASICs or AIphaBASIC In the
interactive mode. For example:

(Changed 31 October 1981)

k

GENERAL INFORMATION Page 3-2

IF (TIME/60/6O/CLKFRQ)*10000 > 120000 &
AND (TIME/60/60/CL.KFRQ)*10000 < 130000 &

THEN &
PRINT "IT IS LUNCHTIME' &

ELSE &
PRINT "GO BACK TO WORK"

PRINT (TIME/60/60/CLKFRQ)*10000

The maximum size of any tine, incLuding bLanks, tabs and any continuation
tines, is 500 characters.

3.3 LINE NUMBERS

Program tine numbers range from 1 to 65534. Programs used in interactive
mode must contain line numbers. Programs to be compiled In compiler mode do
not need to have line numbers. Therefore, if you create your program using
VUE and are going to use CO**PIL, you may omit the tine numbers from the

program. Unnumbered tines may enhance the structured took of your source
program as shown in SectIon 3.2. NOTE: If you Include tine numbers, that
does mean that if an error occurs, BASIC will be able to tell you which tine
the error occurred in.

3.4 COMMENTS (REM AND "i")

AtphaBA$IC supports the ability to insert comments into the source program
using two methods. The keyword "REM" may appear atone on a tine followed by
the comment, or may be Inserted on the same lint, as a statement, to comment
on the purpose of the statement. You may follow the REM (or "remarks")
keyword with anything you want. For example:

70 REM ANYTHING YOU WISH TO SAY
100 PRINT A ; REM VARIABLE A MEANS "ALLOWANCE"

Note that tine 100 above Is a LegaL multi—statement tine; however, no
statement may foLlow a REM statement on a tine. When the program is
compiled, everything in the tine fottowing the REM statement is Ignored.

The comment symbot "V is an abbreviation of the REM statement, and is used
the same way. Like the REM statement, anything following the I symbol on
the line Is ignored. For instance:

40 PRINT "TRY ANOTHER TIME" U! THEY MISS BETWEEN
50 GOTO AGAIN lONE AND THREE TIMES.

NOTE: If the REM or ! keyword is the last statement on the program line,

you do not need to precede It with a colon (the statement separator symbol).

GENERAL INFORMATION
Page 33

3S INTERACTIVE MODE DIRECT STATEMENTS

ALphaBASIC immediately executes any i.ine you ent!.;r if that line does not

start weth a line number Such Lines may be ot two types BASIC System

commands and dirert statemnts A BASIC system command performs a system

4urction tor example, the LIST command te s AIphaBASIC to display the

program c.urrently in memory) BAS:IC system commands may never he part ot a

program line. Direct statements, on the other hand, are normal program

s.tatements that may also appear within a program line (For example, the

PRINT statement tells AiphaBASIC to display a specified numeric or string

value and may appear either as a direct statement.Oras part of aprogram)

Some statements are not allowed as direct statements (for example; the GOSUB

statement)

36 PROGRAM LABELS

A1phaBASIC allows the use of program labels to ideptify locatio.ns in a

program A program label is composed of one or thore alphanumeric characters

which are not separated by a space or other delimiter, The first character

must he ari. upp...er case alphabetic character A—Z or a lower case alphthetic

character a"z Apostrophes may he used within labels in place of spaces for

clarity, since apostrophes are not recognized as delimiters, A label, when

used, must be the first item on a line and must be terminated by a colon

C:), Itisimp.ortant to remember that you may not p.ace a space between the

label and its colon; to do so will caude aASIC to think that you have:

entered a multistatement line rather than a •led jine, A label may be
by a program statement on the same IldC, Or it may be the only item

on the line, The use of labels is similar to the use of lineS -numbers with

GOTO and GOSUB statements, and makes the program easier to document. Here
are some examples of labels (using apostrophes):

10 STARFPROGRAM: INPUT "Enter two numbers to get sum:
20 PRINT A; "+"; B; A+B

30 IF A+B C> 0 GOTO SUMNOTZERO
40 PRINT "Sum is zero"
SO GOtO STARP PROGRAM
60 SUMNOT1ERO:
70 PRINT "Sum is not zero"
SO GOTO STARP PROGRAM
90 END

where StarUProgram: and SumNotZero: are labels, Note that a reference to

a laber, as seen in lines 30, 50 and 80, i neither the first item on a line

nor is it. terminated by a colon, The reference must be identical to the
actual label in its case (upper and/or lower) and in the placement of
apostrophes.

GENERAL INFORMATION Page 3—4

3.7 MEMORY ALLOCATION

The compiler system allocates memory dynamically as you edit your program,
and also during its compilation and execution. Checks are:rnade to tell you
if you have run out of memory. If you do, you get an error message. If you
run out of memory white COf'IPIL is compiling your program, compilation is
aborted and you are returned to AMOS command level.

3.8 EXPAND AND NOEXPAND MODES

AIphaBASIC normally scans the source text of the program in EXPAND mode,

which dictates that reserved words (verbs, functions, commands, etc.) be
terminated by a space or a character that is illegal in variable names.

This aLlows labels and variables to begin with reserved words. In other

words, the variable name PRINIMASTER is not interpreted as PRINT MASTER in

expanded mode, in the EXPAND mode, the statement FOR A=1 TO 10 cannot be
written as FORA=1TO1O. These are the two commands which you may appLy to

switch back and forth between the normal EXPAND mode and the IIOEXPAND mode:

EXPAND sets syntax scanner to expanded mode

NOEXPAND sets syntax scanner to non—expanded mode

The default mode is EXPAND mode. Note that the object code which is
generated as a resuLt of a compilation Is not affected In size, execution
speed or anything else by the mode in which It is compiled.

NOEXPAND Is usually used only when running programs written on other

systems.

3.9 LOWER CASE CHARACTERS

AIphaBASIC supports lower case letters (a—z) and upper case letters (A—!) in
both the input source program and in the run—time execution of programs.

The line editor built Into the interactive system accepts and stores source
input text in tower case or upper case characters. Lower case letters,

when used within variable names and labels, are unique and separate from the
corresponding upper case letters. In other words, the variable "a" is

separate from the variable "A" and the variable "Tom" is separate from the

variables "TOM" and "tom". Lower case Letters may be used as the first
character of a variable name or program Label just as upper case letters may
be.

Reserved words are treated somewhat differently from the above system. When

a reserved word is expected, the syntax parser temporarily translates all

lower case letters to upper case and then checks for a reserved word match.

If the word is not a reserved word, the translation is not retained and the

lower case letters are used for variable name matches. The foLlowing

statements are all considered to be identical:

I

GENERAL INFORMATION Page 3—5

FORA=1TOIOOSTEPZ
For A = I To 100 Step 2ForAl tolOOstep?
for A = 1 to 100 step 2

The entire string processing system supports Lower case characters. That

is, tower case Letters used within string titerals (Inside quotes) are
retained and printed as lower case. Lower case Letters which are entered
into string variables by means of the INPUT statement are also retained as

tower case letters.

Note that aLL tower case characters are considered greater than any upper
case character due to their position in the ASCII collating sequence. TO

assist in processing and comparing input which contains lower case letters,
the UCS(X) function has been impLemented. This function returns a string
which is identical to the argument string (X), with alt characters
translated to upper case. The inverse function LCS(X) returns a string with
all characters translated to tower case.

3.10 LIBRARY SEARCHING

Whenever a program (catted via RUN or CHAIN) or a subroutine (catted via
XCALL) is requested, BASIC follows a specific pattern In Looking for the
requested .RUN or .SBR module. If you specify an account, then BASIC uses
the current default device and the specified account. If you do not
specify an account, the search sequence is as follows (where CP,pn]
designates the Project—programmer number that specifies your account):

System memory
User memory
Default disk:(User P,pn]
DefauLt disk:tUser P,0]
DSKO:17,6]

If you specify a device, BASIC does not search in memory but proceeds
directly to that device.

Note that earlier versions of BASIC (pre—4.2) used a different search
algorithm that was the reverse of the one outlined above.

3.11 INCLUDE FILES

The INCLUDE command allows COMPII_ to fetch source code from another file
during compilation, so that you don't have to repeatedly type in frequently
used code. At the point in the program where you want the transferred code
to begin, enter:

++INCLUDE filespec

(Changed 31 October 1961)

GENERAL INFORMATION Page 3—6

The ++INCLIJDE must be the first command on the Line (no line ncm,ber), and
the fitespec can be any valid AMOS fiLe spectfication that optionally
includes a device name and/or PPN. The default extension is .BSX (BASIC
Include file). If you do not specify a device and/or PPN, the search
pattern is the same as that for .RUN modules (i.e., user PPN; user CP,O);
DSKO:(7,63). As COMPIL accesses each file defined in a ++INCLUDE command,
you see:

Copying from filename

The filename is the filespec you specified In the ++INCLUDE command.

Multiple ++INCLUDE commands in the same file are allowed, but a file that is
copied in may not itseLf contain a ++INCLLJDE command. If you load into
interactive BASIC a file containing one or more ++XNCLUDE commands, BASIC
ignores them.

(Changed 31 October 1981)

CHAPTER 4

ALPHABASZC VARIABLES

4.1 VARIABLE NAMES

An AIphaBASIC variable name may contain any nunber of al.phanuneric

characters, and is not limited to a single letter or to a letter and a

digit, as in most BASIC Imptementations. The first character of the name

must be alphabetic (from A to Z and a to z), andthe variable name may begin
with any reserved word unless NOEXPAND mode is set (see Section 3.8, "EXPAND

and NOEXPAND Modes"). (For a list of AtphaBASIC reserved words, see

Appendix C, "Reserved Words.") Apostrophes may also be used in variabte

names to improve clarity. You may use both upper and tower case characters

In your variable names. Note that although AIphaBASIC folds reserved words

to upper case, it does not translate variable names (e.g., the variable name
REC'SIZE is considered unique and separate from the variable name Rec'Size).
(See Section 3.9 for a discussion of how AIphaBASIC handles upper and tower
case characters.)

Normal (unmapped) variables are considered floating point variables unless

their names are terminated by a dollar èigfl, in which case they are

considered string variabLes. Variables defined via a MAP statement (called

mapped variables) are defined by an explicit type code and therefore do not
follow the standard convention of using a dottar sigti for string variables;

they may take on any kind of data format, regardtess of the name terminator.

(Mapped variables are a special form of AiphaBASIC variable that enable you
to perform sophisticated data I/O. For information on mapped variables, see
Chapter 8, "Memory Mapping System.")

Integer variables are specified by appending a percent sign to the variable
name. (NOTE: IPre integer variable was added for compatibility reasons.
However, AIphaBASIC does not perform integer arithmetic. Following a

varable name with a Z symbol is equivaLent t6 using the Integer function on
that variable. For example, COUNTERX is the same as INT(COUNTER).)

4,

ALPHABASIC VARIABLES Page 4—2

Subscripting of array variables follows the standard conventions of other
BASICs by enclosing the stscrIpts within parentheses.

The following are examples of legal variables:

A

AS

NUMBER
STRINGS
MASTER' INVENTORY 'RECORD
HEADERI
MOM' ALWAYS • LIKED' YOU 'BEST
11234567
NEW' ARRAY (3,3)

4.2 NUMERIC VARIABLES

The normal mode of processing numeric variables (as opposed to string
variables) Is in 11—digit accuracy, which might be termed
"single—and—one—half' precision compared to normally accepted standards.
This Is due to the hardware floating point instructions which are
implemented in the Alpha Micro computer. Integer 'md binary variables are
also considered numeric variables, but are always converted to floating
point format prior to performing mathematical operations on them. All
printing of numeric variables is done under normal BASIC format, with the
significance being variable, under user control from 1 to, 11 digits. The
SIGNIFICANCE statement is used to set up this value. (See Section 10.24,
"SIGNIFICANCE.")

4.3 STRiNG VARIABLES

AIphaBASIC supports string variables in both single and array form. The
memory that is allocated for each string variable is the number of bytes
representing the maximum size that the string Is allowed to expand to. Each
string is variable in size within this maximum limit and a null byte Is
stored at the end of each string to indicate its, current actual size If the
string is shorter than the maximum. At the start of each compilation, the
default size to be used for strings is 10 characters maximum. The STRSIZ
statement may be used within the program to alter the value to be used for
alt new string variables which follow.

String variables may be concatenated by use of the plus sign between two
strings. String variables, may be assigned values by, enclosing string
literals In quotes. String functions such as LEFTS, RIGHTS, MIDS,, etc. are
implemented to assist in manipulating portions of' strings or substrings. in
addition, a powerful substring modifying system may be used to operate on
portions of strings within expressions. Chapter 7, •'Substring Modifiers,"
is devoted to this unique option of AIphaBASIC.

ALPHABASIC VARIABLES
Page 4-3

unformatted, mapped variables are also considered string variables when they

are used in expressions or printed. (See chapter 8, "Memory Mapping

System," for information on mapped, unformatted variables.) (NOTE: Of

course, an unformatted variable may contain non—string data. If this the

case, then using the PRINT statement to display either that variable or an

expression containing it will result in a very odd disptay, since the data

is not in a printable form.)

4.4 ARRAY VARIABLES

You

may designate arrays by numeric or string variables. BASIC dynamically

alLocates unmapped array variables during execution when it encounters a DIM

statement in the program. During execution, if no DIM statement has been

encountered when the first reference to the array is made, a default array

size of 10 elements for each subscript level is used. This means that alt

DIM statements must be executed In the program prior to any actual

references to the array.

Arrays may be any number of levels deep but practicality dictates some

reasonable limit of 20 or so. Each level is referenced by a subscript value

starting with element I and extending to element 1. Once an array has been

dimensioned by a DIM statement, it may not be redimensioned by a subsequent

DIM statement in the same program. At no time may the number of subscripts

vary in any of the references to any element in the array. The number of

subscripts in each element reference must also match the number of

subscripts in the corresponding DIM statement which defined the array size.

(See Section 10.4, "DIM,' for more Information on the DIM statement.)

(changed 30 April 1981)

N—

CHAPTER 5

ALPHABASIC EXPRESSIONS

5.1 ARITHMETIC EXPRESSIONS

An expression can contain variables, constant values, operator symbols,

functions, or any combination of the above. For example:

(1 +(FIX(TOTAL' RECS*REC ' SIZE)i51 2))

Parentheses are used to designate hierarchy. within expression terms; the

normal mathematical hierarchy prevails: In, tte, absence:' of parentheses.

AIphaBASIC recognizes the following mathematicaL operators:

+ unary plus or addition = equal
— unary minus or subtraction C less than

• * multiplication > greater than

/ division C> unequal
a raise to power),, unequal

** raise to power # unequal

string literal <= lesi than or equal

NOT logical NOT =c less than or equal

AND Logical AND >= greater than: or equal

OR logical OR ! greater that, or equal

XOR logical XOR USING expression formatting

EGV logical equivalence
NIH minimum value
MAX maximum value

Note that AIphaBASIC automatically evaluates expressions for you. For

example, consider the statement:

PRINT (32*100/2 MAX 25+30/54)

BASIC evaluates the first section of the expressIon, 32*100/2 (which equals
1600), then evaluates the last section, 25+30/54 (which equals 25.5556).

Finally, BASIC applies the MAX operator to the parts of the expression

DWM—OO100—O1 REV B04

ALPHARASIC EXPRESSIONS Page 5—2

5.2 OPERATOR PRECEDENCE

The precedence of operators determines the sequence in which mathematical
operations are performed when evaluating an expression that does not have
overriding parentheses to dictate hierarchies. AIphaRASIC uses the
following operator precedence:

exponentiat ion
unary plus and minus
multiplication and division
addition and subtraction
relational, operations (comparisons)
logical NOT
logical AND, OR, XOR, EQV, MIN, MAX
USING

NOTE: The USING operator allows you to format numeric or string data using
a format string. For information on USING, see Chapter 13, "Formatting
Output (PRINT USING and Extended Tabs)."

5.3 MODE INDEPENDENCE

Expressions may contain any mixture of variable types and constants in any
arrangement. AIphaBASIC performs automatic string: and numeric conversions
as necessary, to ensure that the result is in the proper format. For
example, it two strings are multiplied together they: are first automatically
converted to numeric format before the muttip-jication takes place. If the
result is then to become a string, It Is reconverted back to string format
before the assignment is performed. In other words, the statement AS = 3$ *
"345" is perfectly legal and will work correctly. This is a powerful
feature which can save much programming effort when used correctly.

There is a seemingly ambiguous situation which arises from this mode
independence. The plus symbol (+) is used both as an addition operator for
numeric operations and as a concatenation operator for string operations.
The value of 34+5 ts equal to 39 but the value of "34'+"5" Is equal to the
string "345". The operation of the plus symbol Is unambiguous in its
operation but may take a tittle thought to figure out Its exact usage In a
given situation. A few examples might help.

If the first operand is numeric and the second is string, we convert the
second to numeric form and perform addition.

34 + "5" equals 39

If the first operand is string and the second operand is numeric, we convert
the second to string and perform concatenation.

"34" + 5 equals "345"

DWM—OO100—01 REV 304

ALPHABASIC EXPRESSIONS
page 5—3

If the first operand is string and the second operand is numeric, we convert

the second to string and perform concatenation.

"34" + 5 equals "345"

NOTE: The above two examples apply only when we are not "expecting" a

particular type of variable or term. This generally occurs only in a PRINT

expression such as PRINT "34" + 5. At other times, we are expecting.a

specific type of variable; the conversion of the first variable is then

performed prior to Inspecting the operator (plus sign). The operation of

the plus sign is implicitly specified by the result of the first variable.

Take the following example:

5 * "36" + 4

The multiplication operator (*) forces us to expect a nwBerlc term to

follow. The "34" string Is therefore immediately converted to numeric 34

and multiplied by the 5. The plus sign then performs numeric addition

instead of concatenation. The result is in numeric format and is converted

to string format if its destination is a string.

The following are a few examples as they would be seen if you were to use

them in an actual program;

10 A = 34 + 5
20 8 = 34 + "5"
30 C = "34" + 5
40 D = "34" + "5"
50 AS = 34 + 5
60 85 a 34 + "5"
70 Cs = "34" + 5
80 DS = "34" + "5"
90 PRINT A,B,C,D
100 PRINT AS,8$,CS,DS

READY
RUN
39 39 39 39

345 345 345 345

You can see that conversion is affected by the type of variable being used.

You might like to try a few examples of your own on your system to see what

the results are. Remember, any potentially ambiguous expression may always
be forced to one or the other type by use of the STR and VAL functions.

For more examples of mode independence, see the sample programs in Chapter

7, "Substring Modifiers."

(Changed 31 october 1981)

CHAPTER 6

DATA FORMATS

This chapter discusses the various forms which your data may take. Note that

if you do not use MAP statements to define your data, your variables may

only take on floating point numeric values or string values. If you use MAP

statements, however, you have a great deal more versatility in the format of

your data, and can define binary and unformatted data as well. MAP

statements also give you a way to define powerful hierarchial data

structures that allow sophisticated data manipulation. (For information on
using MAP statements, see Chapter 8, "Memory Mappinq System." That chapter

also discusses how BASIC assigns memory locations to data.)

6.1 FLOATING POINT FORMAT

All numeric variables are assigned floating point format unless specified
otherwise in the program. The standard precisi:on itt use by the Alpha Micro

system can be called "sin9te—and—one—hatf," since it ties midway between
what are known as single precision and doubLe precision formats. The reason

for this is that the hardware floating point instructions aLl work in this

format. Floating point numbers occupy six bytes of storage and are in the
format dictated by the hardware Instructions. Of the 48 bits in use for

each 6—byte variable, the high order bit Is the sign of the mantissa. The

next 8 bits represent the signed exponent in excess—tZS notation, qiving a

range of approximately 2.9*10—39 thru 1.7*IO'3& The remaining 39 bits

contain the mantissa, which is normalized wi:th an implied high—order bit of

one. This gives an effective 4Obit mantissa which results in an accuracy
of 11 significant digits.

DATA FORMATS Page 6—2

6.2 STRING FORMAT

The string format is used for the storage of alphanumeric text data. String
variables require one byte of storage for each character and may be fixed in
position using the memory mapping system. If a string is shorter than the

maximum length, a null byte is stored following the last character to
terminate the string.

NOTE: When AIphaBASIC compares a string of spaces and a null (empty)
string, it sees them as equal. This is by design and demonstrates how
AIphaBASIC compares strings. If two strings are of equal length, AIphaBASIC
compares the strings on a character—to—character basis. If they are of
different lengths, AIphaBASIC pads the shorter of the two with spaces until
the strings are of equal length, and the comparison proceeds. For example,
the string "PAST DUE" is equal to the string "PAST DUE ".

As you can see, using this algorithm causes a null string to be treated as a
string of spaces during comparison. The proper way to check for a null
string is to use the LENS function, rather than to see if it Is equal to ".
(If LENS(strinq—variable) returns a zero, the string is null.)

6.3 BINARY FORMAT

Binary variables are specified via MAP statements, and are similar to

integer variables in other implementations of BASIC. A binary variable may
be from 1 to 5 bytes in length and may be signed when all 5 bytes are
specified. When less than 5 bytes are specified in a MAP statement as the
length, the binary value may be loaded as a negative number, but it is

always returned as a positive number of full magnitude. The upper bit
(preloacied as the sign) takes on its specific value in the equivalent
positive binary variable. For instance, a 1—byte binary may be Loaded with
positive numbers from 0 through 255 (decimal), or negative numbers from —1
through —128, but the negative numbers are returned as the positive values

U of 255 through 128 respectively. Only S—byte binary variables return the
oriqinal sign and value when loaded with a negative nunber.

Binary variables may be used in expressions but they are slower than
floatina point variables because they are always converted first to floatinq
point format before any mathematical operations are performed on them.
Binary variables are useful in integer and logical (Boolean) operations or
for storing values in small amounts of memory (floating point numbers always
take 6 bytes of memory regardless of their values). All loqical operations
performed within expressions (AND, OR, XOR, NOT etc.) cause the values to be
converted first to signed 5—byte binary format before the Logical operation
is performed. The value —1 represents a 40—bit mask of all ones. Any
relational comparison between two expressions or variables returns a —1 if
true, or a 0 if false.

(Changed 30 April 1981)

DATA FORMATS
Page 6—3

6.4 iNTEGER FORMAT

Integer variables and constants are specified by appending a percent sign

(V to the variable name, which is the standard convention in use by other

BASICs. ALphaBASIC generates floating point variables and performs

automatic integer truncation for alt Integer variables specified in this

manner. Integer constants are generated as their equivaLent fLoating point

vaLues and are incLuded onLy for compatibility with existing program

structures. Since integer variables are effectiveLy floating point

variables with an additional tNT conversion performed, they are actuaty

sLower than reguLar fLoating point variables. This is the opposite of most

other BASICs, which usualLy store integer variabLes as 2—byte signed values

and perform special integer arithmetic on them. True integer variables may

be defined by using the MAP statement and the "B" binary type code. See

SectIon 8.3, "Type Code,' for a description of the "8" type code.

6.5 UNFORMATTED

An unformatted numeric variable, specified via a MAP statement, defines a

fixed size area of storage used to contain absolute unformatted data which

may be in any of the above formats. This format is normally used in the

mapping system to define contiguous storage which is sthdivlded into

multiple variables of different formats. No conversion ever takes place

when moving data to and from this format. unformatted variables are treated

as string variables when used in expressions.

CHAPTER 7

SUBSTRNG MODIFIERS

AIphaBASIC supports a unique method of manipuLating substrinqs. A substring

is a portion of an existing string, and may be as smaLL as a single

character or as large as the entire string. Substring modifiers allow the

substring to be defined in terms of character positions within the string,

relative to either the left or right end of the string. The Length of the

sitstring is defined either in terms of its beginniflq and ending positions

or in terms of its beginning position and its Length. Substrings are

defined by referencing the desired string foLLowed by the substring

modifier. The sitstring modifier is two nuneMc arguments enclsed within

square brackets.

7.1 SUBSTRING MODIFIER FORMATS AND FEATURES

The substring modifier takes on two distinct formats;

[beginning—posit lon,ending—positloni
(beginning—posit ion;sttstring—Length]

The first format defines the substring in terms ol its beginning and ending

positions within the string and uses a comma to separate the two arguments.
The second format defines the substring in terms of its beginning position

within the string and its Length, using a semicoLon to separate the

arguments. The second format basicaLly performs the same function as the

MIDS function.

The beginning and ending positions are defined as character positions within

the string relative to either the left or right end. A positive value

represents the character position reLative to the Left end of the string,

with character position I representing the first (leftmost) position. A

negative vaLue represents the character position relative to the right end

of the string, with character position —1 representing the last (rightmost)
position. For example, assume the foLlowing string has the Letters ABCDEF

in t. The positions are defined in terms of positions 1 through 6
(left—relative) or positions —1 through —6 (right—reLative).

SUBSTRING MODIFIERS Page 7—2

A B C D E F (6 characters within main string)
1 2 3 4 5 6 (left—reLative position values)

—6 —5 —4 —3 —Z —1 (right—relative position values)

Allowing negative values for right—relative positions provides the ability

to pick out digits within a ntaneric string without having to calculate the
total size of the string first and then working from the left. (Remember

that the mode independence of AIphaBASIC allows you to apply string

operations to ntmeric data.)

The substring—length argujient used by the second format may also take on

negative values for a more flexible format. Normally the length is a
positive value which represents the nunber of, characters counting the

beginning position and incrementing the index to the right. A negative
length causes the index to move to the left and returns a substring whose

last character is the one marked by the beginning—position argunent.
Perhaps a few examples may clarify the use of substring modifiers. Assune

the main string is AS and it contains the above example of ABCDEF. The

following substrings are returned:

A$t2,43 equals BCD
A5C2;43 equals BCDE
A$C3,3] equals C

A5C3;3] equals CDE
A$C—3,—2) equals DE

A$E3,—Z] equals Cli
ASC3;—2] equals BC
A$C—3;—2] equals CD

Asr413 equals D

A$C4;—1] equals D

For example, A5C3,—2] tells AIphaBASIC to return the subst ring that begins
at character position 3 (from the Left) and ends with character position 2
(from the right); that is, to return all characters between C and E,

inclusive. AS(3;—21, however, tells AIphaBASIC to return the substring that
begins with character position 3 (from the Left) and extends 2 character
positions (toward the left); that is, to return all characters starting with
C and working backward two positions to B, inclusive.

Any position values or length values which would cause the si.tstring to

overflow out of either end of the main string are truncated at the string
end.

A$13,10] equals CDEF
ASC—14,34] equals ABCDEF

The main string to which the substring modifier is applied is actually any

expression and does not need to be a defined single string variable. For

example:

0$ (A$+BS+C$)(2;103
0$ = ("ABLE"+A$+'0034") (4,10]

4.

SUBSTRING MODIFIERS P.age: 73

The mode independent:e feature a.:I 1ows substri no: mdjf.iers to he app.Lied to
numeric expresstohs (See Chapter 5 Al:Ph.:SASLC e.x:presst.ons," fo.r

inftatforv on rnode tndependence) A si.tf;ng.. is returned..,: •but if the
destination i5 a nurhnic. variabLe, another •conversiOn fs: made. on the
substring to return a numeric va1ue

10 INPUT "Enter number: ",NUMBER : INPUT "Enter another.: ";NUMBER2
20 SUM = NUMBER+NUMBER2
30 PRINT NUMBER;" + ";NUMB.ER2.;" ;SUM

Strip off rightmost digit and test it for divisibility,
40 IF SUMN1 ;11 = 0 THEN PRINT by 5 and 2"
50 IF SUMC1;11 = 5 THEN PRINT "Divisible by 5"

Be sure you understand the concept of mode independence before you begin to
use substring modifiers or you may get answers you dont expect, For

example, lines 30 and 40 in the small program below return different
answers, even though the subscripting is performed exactly the same in both
cases. This is because the mode independence feature examines the data type
of the destination variable before allowing any operations to he performeth
When it scans line 30, BASIC knows that a string result is expected (because
STRINGS is a string variable), and so reads the "+" symbol as a string
concatenation operator, In line 40, BASIC knows that a numeric result is
expected (because NUMERIC is a numeric variable), and so reads the "4'"
symbol as an addition operator,

10 VALUF1 5="1 23"
20 VALUE2S="456"
30 STRINGS = (VALUE1S ÷ VALUE2S)C1;3]
40 NUMERIC (VALUE1S + VALUE2S) [1 ;3]
50 PRINT "NUMERIC 5NUMERIC,"STRINGS ";STRINGS

The program above prints:

NUMERIC = 579 STRING = 123

You may apply substring modifiers to subscripted variables or expressions
containing subscripted variables. Be careful not to confuse substring
modifiers with subscripted variables, For example:

45(2,3) designates a location in array AS
ASC2,32 designates a substring of string AS
45(2,3)14,5] designates a substring of the string

in location 45(2,3)

These are valid uses of the substring modifiers:

O.S = 45(3,4)12,5]
OS = (AS(1)÷BS(3.))C5,3]

Substring modifiers return a string value, These may be used as part of
string expressions, For example:

OS = AS ÷ B512;5] ÷ (A5C2,2:i. +

SUBSTRING MODIFIERS Page 7—4

You may apply sttstring modifiers to the Left side of an assigrwnent In order
to aLter a sthstring within a string variabLe., Only that portion of tlip

string defined by the si.string modifier is changed.. The other characters
in the string are not altered. This may not be appLied to numeric variabLes
(for exampLe, AE3;23 = "23" is not valid).

If AS contains ABCDEF:

A5t2,43 = "QRS"

causes AS to contain the string AQRSEF.

CHAPTER 8

MEMORY MAPPING SYSTEM

One of the unique features of AlphaBASIC is that it allows you to specify

the pattern in which variables are allocated in memory. The advantage to

such a "memory mapping" system is that it gives you a way to define entire

groups of related information (e.g., a logical record. that contains fields

of information about a customer). Each element of such a group does not

have to be of the same size or data type. You, can reference a single

element of the group or the group as a whole. Youwltt probably find memory

mapping to be of most use when you are performing sophisticated disk I/O or

when you are setting up a group of variables for transferring data between

your program and an assembly language subroutine. (See Chapter 18, "Catting
External Assembly Language Subroutines," for more information on assembly
language subroutines.) Memory mapping is a powerful tool, somewhat akin to

COBOL data description techniques or Pascal record definitions, that gives
you a flexible and efficient way to transfer data in andout of programs.

This chapter discusses how the compiler usually allocates variables in

memory, and how you can use the memory mapping features (via the MAP

statement) to override the usual storage allocation. We also discuss one of

the AlphaBA$IC debugging features—— locating variables in memory while in

interactive mode.

8.1 ALLOCATING VARIABLE STORAGE

During compilation, BASIC allocates memory storage for all defined variables

in an area that is contiguous and predictable'. The compiled program
references all variables through an Indexing scheme. Each variable in the

working storage area has a representative item in the index area which

contains alt the Information needed to define and Locate that variable. The

working storage area therefore contains onty the pure variables themselves

without any associated or intervening descriptive information. The index

area is a separate entity, physically located before the working storage

area in memory.

,it

MEMORY MAPPING SYSTEM Page 8—2

The allocation of the variable storage area for any program is predictable,
and BASIC normally does It as It encounters each variable during
compilation. Since this scheme is not easily followed by human beings, a
different method must be derived which can override normal allocation
processes if you wish to have the variables allocated in a predetermined
manner. Also, the disk I/O system requires that variables used be in a

specific relationship to each other when used in some of the more
sophisticated programs. The MAP statement has been included in AIphaBASIC
for the purpose of allocating variables in a specific manner. MAP
statements are non—executable at run—time, but merely direct the compiler in
the definition and allocation of the referenced variables.

Each MAP statement contains a unique variable name to which the statement
applies. When the compiler encounters this statement, it allocates the next
contiguous space in working storage as required and assigns it to that
variable. The type of the variable is also specified in this statement and
may be used to override the standard naming conventions of BASIC. All

variables not defined in a MAP statement are then automatically assigned
storage in sequence, for total compatibility with existing standards.

The mapping system has another distinct advantage for complex programs in
its allocation of arrays. With the MAP statement, you have the ability to
override the standard array at location scheme and to force the allocation to
proceed in a more flexible manner. Conventiortat BASIC array elements must
all be of the same data type. AIphaBASIC allows several variables of

different data types to be combined in a single contiguous array which can
provide efficiency in the manipulation of associated data structures.

8.2 MAP STATEMENT FORMAT

The MAP statement has the following form:

MAPn variabte—narneC(dimensions)) 'C{C{type), size), value), origin)

where MAPn gives the Level of the MAP statement. The rest of the elements

are optional, depending on the kind of variable you are defining. For

example, if you are defining an array variable, you will include the

optional "dimensions" in the MAP statement. "Type" identifies the data type
of the variable; if omitted, the default is Unformatted. "Size" identifies
the number of bytes the contents of the variable will use. If you omit

"Size" the default is zero bytes for unformatted and string data, two bytes
for binary data, and six bytes for floating point variables since such

variables are always six bytes long.) "Value" is an optional initial value
of the variable; the default is zero for numeric data and null for strings.
"Origin" is an optional reference to a previously defin,d variable's
location in memory which permits overlaying of variables in memory.

MEMORY MAPPING SYSTEM Page 8—3

If you "skip" an element in the MAP statement (tot example, you want to
specify the "value" but don't want to specify the "size"), youmust retain
the comma indicating the missing element. Fort example:

MAP 1 NEW'VARXABLE,F,,23

the MAP statement above defines the variable NEW'VARiABLE, assigns it the

data type F (for floating point), does not assign it a size, and does

assign it the initial value of 23. (WIthout tETéxtY$ comma, BASIC would

think that you were trying to assign a size of 23 bytes to NEW'VARIABLE an
lt.tegat operation for floating point variables.)

8.2.1 MAP Level

MAPn represents the level of the mapped variable. It must be within the

range of MAP1 through MAPI6. MAP statements ate hterarchlat in nature. For

example, a variable mapped with a MAP1 statement may consist of several

sub—variables mapped via a MAP2 statement. Each of those variables may in

turn consist of several variables mapped via a MAP3 statement. And so on,

up to MAPI6. MAPI6 represents the lowest—level (or innermost) variable;

MAP1 represents the highest level variable. You do not need to map levels

in strict ntmieric sequence— fGr example, a MAPS statement may follow a MAP3

statement without an Intervening MAP4 statement.

YOu may reference variables at any level of the hierarchy. A graphic

example may help to clarify this idea:

MAP1 Patient'Info

MAP2 Name Address Insurance/\ AN
MAP3 Last First Street Num City

The diagram above shows three levels of variables that have been mapped with

MAP1, MAP2, and MAP3 statements. You may reference the level 1 variable

Patient'Info as a whole, or may reference one of the variables on levels 2

and 3 that represent sub—groups of the variable Patlent'Info, such as Name,

Address, or Street. When referencing any variable In the group, you

automatically get the Information In any of the variables below that

variable in the hierarchy. For example, when you reference Name you get the

information in the variables Last and First. As BASIC allocates the

variables Name and Address, it automaticaity includes them (and their

sub—variables) within the variable patient'Info.

The MAP statements for the variable group above might look like this:

4,

MEMORY MAPPING SYSTEM Page 8—4

MAP1 PATIENT'INFO
MAPZ NAME
MAP3 LAST, 5, 15
MAP3 FIRST, 5, 13

MAP? ADDRESS ! Patient address
MAP3 STREET, 5, 30
MAP3 NUN, 5, 10
MAP3 CITY, 5, 30

MAP? INSURANCE, B, 1 Set flag if has Insurance

(NOTE: We will discuss each of the elements of a MAP statement in the
sections below.)

To eliminate potential allocation problems, BASIC forces all MAP1 level
variables to begin on an even memory address. This ensures that certain
binary and floating point variables wilt begin on word boundaries for
assembly language subroutine processing. The AM—100 instruction set
performs most efficiently when word data Is aligned on word boundaries.

8.2.2 Variable Name

The variable name is the name that your program uses to reference the mapped
variable; it must follow the rutes for AIphaBASLC variable names. However,
since you may explicitly specify the type, you do not need to follow the
normal conventions for identification such as requiring that a string

variable name be followed by a dollar—sign.

If the variable name is followed by a set of subscripts within parentheses,
the variable is assigned as an array with the dimensions specified by the
subscripts, just as if a DIM statement had been used. For example, the
statement MAP1 A,F assigns a single floating point variable catted "A," but

the statement MAPI A(5,10),F assigns a floating point array with 50 elements
in it (5 X 10), just as if the statement DIM A(5,10) had been executed.
Note that since these mapped arrays are assigned memory at compile time and

not at run—time, the subscripts must be decimal nuobers instead of
variables.

8.2.3 Type Code

The type code is a single character code which specifies the type of
variable to be mapped into memory. The following variable types are
implemented in AIphaBASIC:

X — unformatted absolute data variable
£ — string variable
F — floating point variable
B — binary unsigned nisnerlc variable

MEMORY MAPPING SYSTEM Page 8—5

If no explicit type code is entered, BASIC assumes unformatted data (type

X).

8.2.3.1 unformatted Data — Unformatted data Is absolute in memory. You

usually only define an unformatted variable so that you can reference a

group of other variables as one unit. The contents of unformatted data

variables should only be moved to other unformatted data variables. For alt

practical purposes, unformatted data variables are treated like string

variables except that they are terminated only by the explicit size of the
variable.

8.2.3.2 String Data — String variables are terminated either hy the

explicit size of the variable or by a null byte (0) If the string is shorter
than the allocated size. Moving a long string to a short one truncates alt
characters which do not fit into the new string variable. Moving a short

string to a long one causes the remainder of the tong variable to be fitted

with null (0) bytes so that the actual data size of the string is preserved

for concatenation and printing purpqses.

8.2.3.3 Floating Point Data — Each floating point number always takes up
six bytes. The record number variable ma random mode OPEN statement must

be floating point. The result variable of atLOOXUP statement must also be
floating point.

8.2.3.4 Binary Data — Binary variables may range in size from 1 to 5

bytes, giving from 8 to 39 bits of binary unsigned numeric data or 40 bits
of binary signed data. This is handy for the storage of small integer data
in a single byte, such as flags, or for the storage of memory references as
word values with a range of up to 65535 in two bytes. Since BASIC converts
all binary variables to floating point fOrmat before performing any

arithmetic caLculations, binary arithmetic is actually slower than normal
floating point arithmetic and is used mainly for compacting data into files
and arrays where the floating point size of six bytes is inefficient. When

conversions from floating point to binary are done, any data that does not
fit within the defined size of the target variable is merely lost with no
error message given. Where required, range chicks are your responsibility
as the programmer, before you make a floating point number move to a binary
variable area. The best way to understand this Is to play with a few
examples in interactive mode.

Please take note that the use of binary numeric variables is not allowed in

some instances. FOR—NEXT loops may not use a binary variable as the control
variable, although they may be used in the expressions designating the
initial and terminating values of the control variable, as well as. In the

STEP expression.

MEMORY MAPPING SYSTEM Page 8—6

8.2.4 Size

The size parameter in the MAP statement is optional but, if it is used, it
must be a decimal nunber specifying the nunber of bytes In the variable. If

it Is omitted, it defaults toO for unformatted and string types, 6 for
floating point types, and 2 for binary types.' The size parameter of
floating point variables must be 6 or omitted.

8.2.5 value

An initial value may be given to any mapped variable except an array
variable by including any valid expression in the value parameter. This
value may be a nuneric constant, a string constant or a complete expression
including variables. Remember, however, that the expression is resolved
when the MAP statement Is executed at run—time, and the current value of any
variable within the value expression is the one used to calculate the

assignment result. MAP statements may be executed more than once if you
desire to reload the initial values.

Note that if you omit the size parameter (such as for floating point

variables), but you use the value parameter, there must be an extra comma to
indicate the missing size parameter:

MAP1 PI,F,,3.141 59265359
MAPI HOLIDAY,S,9,'CHRISTMAS"

The first example pretoads the value 3.14159265359 into the floating point

variable called P1. The second example preloads the letters CHRISTMAS into

the string variable catled HOLIDAY.

8.2.6 Origin

In some instances, it may be desirable to redefine records or array areas of
different formats so that they occupy the same memory area. For instance, a
file may contain several different record formats with the first byte of the
record containing a type code for that record format. The origin parameter
allows you to redefine the record area in the different formats to be

expected. When the record is read into the area, the type code in the first
byte can be used to execute the proper routine for the record type. Each

different routine can access the record in a different format by the
different variable names in that format. Alt record formats actually occupy
the same area in memory. This feature directly paraLlels the REDEFINES verb
in the COBOL language data division. Using the origin parameter can save
large amounts of memory. For instance, suppose you have three very large

variables of 256 bytes each that define logical records, and that you never
use these variables at the same time. By defining the variables so that
they occupy the same area of memory, your program only uses 256 bytes for
the variables instead of 768 bytes.

MEMORY MAPPING SYSTEM. Page 8—7

Normally, a MAP statement causes allocation of memory to begin at the point

where the test variabte with the same Level fltwflber left off. The origin

parameter at tows this to be modified so that allotatitn begins back at the

base of some prevtousty defined variable, and tW*refore overlays the same

memory area. If the new variable ts smaller than the: previtus one (or the

exact same size), it is totally contatned within the previous one, If it is
larger than the previous one, it spitls over Into newly alLocated memory or
possibLy into another variable area of the same Level depending on whether

there were more variables following it. (Play wtth this one awhile to get

the hang of it).

The origin parameter must be the last parameter on the tine. It takes this

form: an a symbol followed by the name of the previousLy mapped variable

whose area you wish to overlay. (This variable must be on the same level as
the variable you are presently allocating.) If size and value parameters

are not included in this statement, you may omit them with no dtanmy commas.
For example:

10 MAP1 CUSTOMER'ID
20 MAP2 NAME, 5, 13
30 MAP2 ID'NUM, F
40 MAP2 SEX, B, 1
50 MAPI PRODUCT'INVENTORY, SCUSTOMER'ID
60 MAP2 BRAND, 5, 13
70 MAP2 PARTNO, F
80 MAPZ RESALE, B, 1

The MAP statements above allocate the variable CIJSTOMER'ID which takes up a

total of 20 bytes. Then it allocates the variable PRODUCT'INVENTORY (also
taking up 20 bytes), and specifies via the aCUSTOMEVID origin parameter

that PRODUCT'INVENTORY wilt occupy the same space in memory as CUSTOMER'ID.

The following statements define three areas which all occupy the same

48—byte memory area, but which may be referenced: In three different ways:

100 MAP1 ARRAY
110 MAP2 INDEX(8),F
200 MARl ADDRESS,aARRAY
210 MAP2 STREET,S,24
220 MAP2 CITY,S,14
230 MAP2 STATE,S,4
300 MARl D0UBLE'ARRAY,aARRAY
310 MAPZ IJNIT(6)
320 MAP3 CODE,B,2
330 MAP3 RESIJLT,F

MEMORY MAPPING SYSTEM Page 8—8

Statements 100—110 define an array with 8 floating pint etemnts: a total
of 48 bytes in memory. Statements 200—230 difini an area, with three, str4ng
variables in it, for a total of 42 bytes. Normally, this area would follow
the 48—byte ARRAY area in memory, but the origin parameter in statement 200
causes it to overlay the first 42 bytes of the ARRAY area instead.
Statements 300—330 define another array area of a different format with 6
elements, each element being composed of one 2—byte binary variable (CODE)
and one floating point variable (RESULT), the origin parameter in statement
300 also causes this area to overlay the ARRAY area exactly.

Caution: The above scheme allows variables to be referenced in a different
format than when they were entered into memory. If you toad the 8 elements
INDEX(1) through INDEX(S) with floating point values, and then reference the
variable STREET as a string, you get the first four floating point
variables, INDEX(1) through INDEX(4), which look very strange in string
format!

Below is a practical example of the use of the origin parameter. The
program below translates the binary data stored in the system DATE location
Into floating point form.

10 ! The system stores the date In binary form; the small program
15 ! below translates the binary date into fLoatinq point form, It

20 ! also allows you to set the system date from within BASIC.
25 MAP1 BINDATE,B,4
30 MARl FILLDATE,aBINDATE
35 MAP2 MOP4TH,B,l
40 MAPZ DAY,B,1
45 MAP2 YEAR,S,1
50 BINDATE = DATE
55 PRINT "Month:";MONTH,"Day:"; DAY,"Year :';Y'EAR
60 INPUT "Enter Month, Day, Year: ",MONTH,DAY,YEAR
65 DATERINDATE
70 PRINT "Month :";MONTH,"Day:";DAY,"Year:";YEAR

For example, if the system date is set to January 10, 1982, a sanpte run of
the program above might look like:

Month: I Day: 10 Year: 82
Enter Month, Day, Year: 4,21,52 tiJ
Month: 4 Day: 21 Year: 52

8.3 EXAMPLES

The following two statements produce identical arrays:

100 MARl A1(10),F
110 DIM A1(10)

Both statements produce arrays containing ten floating point variables,
referenced as A1(1) thru A1(10). Statement 100, however, defines its

MEMORY MAPPING SYSTEM Page 8—9

placement in memory In relation to other mappedvarlttes. Similarly, the

two statemeVtts at 300 and 310 produce the same t*-dimeaslnaL array as the
statement at" '320:

300 MAPI aX(S)
310 MAP2 B1(20),F
320 DIM 81(5,20)

Inspect the following statements:

400 MAPI CX(10)
410 MAP2 C1,F
420 MAP2 D1,F
430 DIM C1(10)
440 DIM D1(10)

The statements at 430 and 440 produce two arrays, each with ten variables.

The statements at 400, 410 and 420 produce one atrSy with twenty variables
in it. The variables: are still referenced as C1(14 thru (1(10) and MCI)
thru D1(10), but thur placement In memory is quite different. The Cl

variables are interlaced with the Dl var1ables giving C1(1), DICi), C1(2),

Dl(2), C1(3), D1(3) C'1(10), D1(10). There are also ten unformatted
variables CX(1) thru CX(10), which each contain the respective pairs of

Ci—DI variables in tandem. Referencing one of these CX variables references
a 12—byte, unformatted Item composed of the CI—DI pair of the same

subscript. This type of formatting would be usefuL in sophisticated

techniques only.

The following defines a more compLex area:

100 MAP1 ARRAVI
110 MAP2 UNITX(5)
120 MAfl SIZA,B,.2
130 NAP3 5118,8,2
140 MAP3 NTOT,F
150 MA93 FLAG(10),8,1
160 MAP3 CNAPtE,S,20

170 MAP2 TOTAL,F
180 MAP1 THING,F
190 MAPI WORK1,X,40

The area that is allocated by the above statements requires a total of 252
bytes of contiguous memory storage. Three Levels are represented in various
formats. Statement 100 defInes a Level 1 unformatted area called ARRAVI,

which is subdivided into two leveL 2 items. Statement 110 defines the first

of these, which Is an area called UNITX. The optional dimension indicates
that five of these identical areas exist, which must be referenced in the

program by the subscripted variable names UNITX(1) through UNITX(5). Each

one of these areas is then further subdivided into five level 3 items

(statements 120—160). Since the level 2 Is subscripted because it occurs 5
times, so must each of the level 3 Items be subscripted. There are 5

variables named SIZA(1) thru SIZA(S) occurring once In each of the

respective variables uNITX(1) thru UNITX(5). The same holds true for the

MEMORY MAPPING SYSTEM Page 8—10

variables $118, NTOT, and CNAME. Statement 150, however, creates a special
case since It contains a dimension also. Normally, this would create an area
of 10 sequential bytes referenced as FLAG(1) thru FL.AG(1O). In' our, example,
however, this 10—byte area occurs once in each of the higher level areas of
UNITX(1) thru UNITX(5). This, then, implicitly defines a double—subscripted
variable ranging from FLA6(1,1) thru FLAG(5,10). Statement 170 causes the
allocation to return to level 2 where one floating point variable is
allocated.

The total storage requirement for the level I variable ARRAY1 comes out to
206 bytes as follows: 40 bytes for each of the five areas UNITX(1) thru
UNITX(5), plus 6 bytes for the one variable TOTAL. Notice that since TOTAL
starts a new level 2, it does not occur S times, as do the level 3 items
which comprise UNITX(1) thru UNITX(5).

Fotlowinq the above group in memory come two more variables defined in
statements 180 and 190. THING is a normal floating point variable which
occupies 6 bytes, and WORKI Is an unformatted area whose size is 40 bytes.
Note that since WORld was not subdivided into one or more level 2 items, a

size clause was required to explicitly define its storage requirements.

Note also that the variable UNITX(1) refers to the 40—byte item comprised of
the variables (in order): SIZA(1); 5118(1); NTOT(1); FLAG(1,1) thru
FLAG(1,1O); and CNAME(1). Moving the variable UNITX(1) to another area,
such as WORK1, transfers the entire 40—bytes with no conversions of any
data.

You may often use MAP statements to define groups of Information that will
be transferred in and out of disk files. For example, take a look at the
MAP statements below that define a logical record. Our program probably
uses a file that contains a large ntmiber of logical records in this format,
each record containing Information about a single pheck. In effect, NAP
statements give us a way to form a template in memory into which we can read
information from the file and transfer information from the program to the
file. This allows us to quickly and efficiently read in an entire group of
information whose elements may be of different types and sizes, and to
access information in that group flexibly and simpLy. For exampleS:

MEMORY MAPPING SYSTEM Page 8—11

REM Program to Process Checks.
20
30 MAFI CHECX'INPO ! De4ine Logiest' record..

40 MAP? CHE'CK'tlUMBER, F
SO MAP2 THE'DATE, 5, 6
60 MAP? AMOUNT, F
70 MAP? TAX"DEDUCTABLE, B, 1
80 MAP? PAYEE, 5, 20
90 MAP2 CATEGORY, 5, 20
100 MAP? BANK'ACCOUNTS(3)
110 MAP3 SAVINGS, 5, 20
120 MAP3 CHECKING, 5, 20
130 MAP3 TERM, 5, 20

I Define file that contains Info about checking account balance.

140 MAP2 ACCOUNT'BALANCE, 5, 22, "DSK1:BALANC.DAIC200,1)"

Once these MAP statements have been executed, we can access the group of

variables as a whole by specifying CHECIOINFO, or we can access specific
sub—fields in the record (for example, BANK'ACCOUNT or CHECKING).

8.4 USING THE MAP STATEMENTS

MAP statements may be used as direct statements in interactive mode as a

Learning toot to see how the variables are alLocated. They are not designed

to be practical In the interactive mode, however, and are best used by

putting them into a program file and compiling the program. In the

interactive mode, If an error occurs in the syntax of the statement, the

variable will already have been added to the tree in memory. The main

advantage to testing MAP statements in interactivemode. Is, that BASIC checks
the MAP statement syntax as you enter the statement, thus giving you
immediate feedbpck If any errors occur.

MAP statements must come at the beginning of the program, before any

references to the variables being mapped. If a reference is made to the
variable before it is mapped (such as LET A = 5.8), the variable is assigned
by the normal variabLe aj.tocation routines and the MAP statement then gives

an error, since the variable l,s already defined. Asa convenience, all MAPI

statements force at location to the next even byte boundary so that binary
word data can be assigned property.

8.5 LOCATING VARIABLES DURING DEBUGGING

Since the mapping scheme is fairly complex to understand fully, a command

has been implemented which assists you in locating, the mapped variables and
In understanding the allocation techniques used by the AIphaBASIC memory
mapping system. It is valid only as a BASIC system command and has no

MEMORY MAPPING SYSTEM Page 8—12

meaning if used within a program text. The command has the general format

of an atsign () followed by a variable name. The system searches for the
requested variable and prints out all parameters about the variable for you
on the terminal. (This may actually be two definitions, since the variable
"A', may actually be two different variables; one would be a single floating
point number and the other would be a subscripted array.) The information
returned thout the variable is: the type of variable (string, binary, etc.);
the dimensions of the array if the variable is Indeed an array; the size of

the variable in bytes; and the offset to the variabtle from the base of the
memory area which is used to allocate all variables. If you enter a

reserved word (such as SPRINT) the system tetis you that the name is a
reserved word.

The general format of the definition line which is returned by the system

is:

memory—type variable—type (dimensions), size n, location

(For actual examples of the definition line, see Section 8.6.1, "Examples,'
below.) Memory—type means the method of memory allocation used when

defining the variable. The memory—type may be MAPn (where n is a number
from 1 to 16), FIXED or DYNAMIC variables. FIXED variables are not defined

by a MAP statement and are allocated automatically when the compiter finds

references to them in the program. (This is the normal method used by other
BASIC versions to allocate variables.) DYNAMIC variable arrays are

allocated by a DIM statement or by a default reference to a subscripted
variable. Variables defined In a MAP statement are MAPI through MAP16

variables.

Variable—type is the type of the variable and may be UNFORMATTED, SIRING,
FLOATING POINT, or BINARY.

If the variable is an array, the dimensions are listed after the variable

type code in the format ARRAY (n,n,n), where n,n,n are the values of the
subscripts in use by the array. If the array is dynamic and has not been

allocated yet, the subscript values are replaced by the Letter "X" to

indicate that they are not known at this point. Remember that any variable

defined in a MAP statement which is in a lower level relative to another
variable inherits alt subscripts from that higher Level variable.

The size of the variables are given in decimal bytes. In the case of

arrays, the size represents the size of each single element within the
array.

The location of the variable is a little tricky to explain, since it is

actually an offset to the base of a storage area that is set aside for the
allocation of user variables. As each new variable or array is allocated,

it is assigned a location which Is relative to the base of this storage
area. The location information given here is an example to help you

understand the relative placement of the variables in the mapping system,
and does not represent the actual memory locations which they occupy. There
are two distinct areas In use for variables, and thus the offsets of the

variables are to one of these two areas. All FIXED and MAP1 through MAP16

z

MEMORY MAPPING SYSTEM Page 8—13

variables are allocated In the fixed storage area, while all DYNAMIC arrays

are allocated in the dynamic array storage area. As dynamic arrays are
dimensioned, their positions may shift relative to ovw another and relative

to the dynamic storage area base. Variables içi, the, f4xed$orace area never
change position relative to each other or to the storage area base.

Array location tnformation tiat is given is ont)' pertinent to the base of
the array itself, whith Is the Location of the first element within the
array. The actual range of locations used by the array may or may not be
contiguous in memory depending on whether overtapped dimensioning techniques
are being used in the MAP statements. Simple (non—array) variables are

defined as a Location range which tells exactly where the entrire variable
ties within the storage area.

Keep in mind that this "a" command is to assist you in following the

allocation of variables, particularly in. more complex mapping schemes. A

few minutes at the terminal with direct MAP statements followed by "a"

commands will help you see how the mapping scheme woris.

8.5.1 Examples

Given the sample MAP statements below:

10 MAP1 CUSTOMER'ID
20 MAP2 NAME

30 MAP3 FIRST,. 5, 15
40 MAP3 LAST, 5, 15
50 MAP2 ADDRESS
60 MAP3 STREEt, 5, 15
70 NAP3 CItY, 5, 10

80 MAP3 STATE, 5, 2
90 MAP2 PHONE
100 MAP3 HOME, B, 3
110 MAP3 BUSINESS, B, 3
120 MAP2 TRANSACTIONS(12)
130 MAP3 BALANCE, F
140 MAP3 CREDIT, F
150 MAP3 YTD, F

Here are the results of usinq the a command in Interactive mode to determine
the Locations of several of the variables above:

MEMORY MAPPING SYSTEM Page 8—14

READY

aCUST0MER'ID@!,
MAP1 Unformatted, size 279, located. attO—t7t

TRANSACTI0NS t!
MAPZ Unformatted Array (12), size 18, base Located at 63

CITY
MAP3 String, size 10, located at 45—54

6IHOME

MAP3 Binary, size 3, located at 57—59

aCREDITtE!D
MAP3 Floating point Array (12), size 6. base located at 69

We can aLso use the a command to locate unmapped variabLes. For exampLe:

READY

DIM A(2,3,4)t!iD

Dynamic Floating point Array (2,3,4), size 6, base Located at 1032

A=15 @D

Fixed Floating point, size 6, located at 72—77
Dynamic Floating point Array (2,3,4), sIze 6, base Located at 1032

Note that we aLlocated two different variabtLes: a 'fixed fLoating point

variabLe, A, and a dynamic fLoating point Array variable, A(2,3,4).

4'

CHAPTER 9

INTERACTIVE COMMAND SUMMARY

Whenever AIphaBASIC interactive mode Is not either compiling or executing a

program, It is in interactive command mode; that means It is waiting for a
command from your terminal to initiate some action. The action taken
depends on the type of input you enter, which falls into one of the
following main categories:

1. Statements. Program statements are either contained within a

BASIC program or are used for immediate compilation and execution
at the interactive command LeveL For immediate compilation and
execution of a statement, enter the statement without a line
ntanber Statements entered folLowing tine numbers (any Integer
between I and 65534, inclusIve) are used to build a source program
In memory on a single line basis. BASIC automatically, adds the
single tines to the source program in the numeric order of their
tine numbers. Entering a line number atone and then. a RETURN
deletes the tine associated with that line number from the source
program.

2. Interactive system commands. Commands result in controlled
actions by BASIC which can affect the source program in memory,
files on the disk, and the system Itself. Commands are never
entered into the program as statements, if you attempt to do so,
AIphaBASIC responds with an error message.

Statements are covered in detail in Chapter 10 of this manual. The
remainder of this chapter details the available interactive commands, tne
corresponding actions performed, and shows examples as you would actually
see them. Most of the Interactive commands are entered after the prompt
READY. We distinguish the commands you may enter by the symbol, which
means "type a RETURN.'

INTERACTIVE COMMAND SUMMARY Page 9—2

9.1 BREAK

This is a debugging feature not usually found in other versions of BASIC.

It takes the form:

BREAK {C—}Cline#1{,C—)llne#2,.. .C—}Cline#N}}

BREAK allows you to set breakpoints from the interactive mode on one or more
lines in the program in memory, prior to running the program. During

execution, when BASIC encounters a tine that has a breakpoint set on It,

BASIC suspends program execution and prints the message 'Break at line

nnnn". The system then returns to interactive command mode to allow you to

inspect or change variable values. This suspension of execution occurs
before the line that has the breakpoint set on it Is executed. There Is no

limit to the nuMber of breakpoints that may be set in one program. There is
no additional overhead paid in execution speed when breakpoints are set.
Breakpoints are cleared from within the interactive mode by typing a minus
sign in front of the line number, or by recompiling the program (which
always clears all breakpoints). If you type BREAK and do not follow it with
a line ntjtrber, BASIC lists all current breakpoints on your terminal.

BREAK @! or BREAK @D
No breakpoints set 30

The following are various forms of the BREAK command.:

BREAK Lists all currently set breakpoints, If any
BREAK 120 Sets a breakpoint at Ljne 120
BREAK —120 Clears the breakpoint at line 120
BREAK 120,130,40,500 Sets breakpoints at tines 120,130,40, and 500
BREAK —50,60 Clears the breakpoint at 50 and sets one at 60

Once a breakpoint has been reached, you may optionally continue the
execution of the program by either a CONT command or a single—step command.
(For information on the single—step debugging feature, see Section 9.fl,
"Single—Step (Linefeed).') You may start the program over again by using
the RUN command; it will once more break at the first breakpoint set. In

any case, the breakpoints remain set after they. have been reached until they
are explicitly cleared by a BREAK —nn command, are generatly cleared by
compiling the program, or you leave BASIC.

9.2 BYE

BYE says goocbye to the BASIC interactive mode and returns your terminal t
the AMOS command level. You then see the AMOS promp-t (.). Remember that
any program left In memory is lost forever, so you may want to save it first
using the SAVE command. This is the format of BYE:

INTERACTIVE COMMAND St1'IMARY Page 9—3

BYE

9.3 COMPILE

When using COMPILE in the interactive mode, do not specify a source program.
BASIC compiles the current source program in memory. The object code is

built up in another area of memory. The compiled program is not executed;
instead, control is returned to the interactive command mode and you see the
READY prompt. Compilation sets all, variables to zero and deletes alt

variables that may have been generated as a result of direct statements.

READY
COMPILE (D
Compile time was 7.07 seconds

READY

if no program is in memory, you get an error message and a prompt.

READY
COMPILE:
No source program In text buffer

READY

9.4 CONY

CONY, for "continue," causes a suspended program to continue executton from
the point at which it was suspended. You may suspend a program by using a

BREAK command previous to program execution or by using a STOP statement
within the program. You may not continue a program after It has finished.
The following is an example of CONY after a STOP statement suspended a
program:

Program stop in line 700

READY

(The program continues by next executing the
first line nunbered higher than tine 700.)

CONY also continues a program which you have partially executed using the
single—step feature.

INTERACTIVE COMMAND SLMMARY Pegs 9—4

9,5 CONTROLC

READY

Operator interrupt in line 10 of NUM,RUN

In the interactive mode, You may restart a program from the beginning
following a Controi"C by using the RUN command or singlestep (linefeed)

command.

9,6 DELETE

The DELETE c:ommand is used to delete groups of source lines from the program
text. It takes the form:

DELETE iine#1{,iine#2)

If the command is followed by a single line. rwmber, only that line is
deleted, If the command is followed by two line numbers separated by a

comma, alL lines of text which fall between and including the two Line
numbers are deleted from the program, (NOTE•:. Although you usually separate
the two line numbers with a comma, you can also use a dash, space, or other
non"numeric character,) Here is an example listing before and after a

DELETE:

Pressing the Control and C keys simultaneously interrupts a
and returns you to interactive command mode, Depending on

being performed, the Control"C symbol ('C) may be displayed
screen, The line number of the source program which was

displayed via the message "Operator interrupt in line nn,"
be restarted from the beginning by the RUN command,

[Type a Control"C]
Operator interrupt in line 700

running program
the operation

on the terminal
interrupted is
The program may

or [Type a Contro.VC] 'C [displays]
Ope.rator. i.nterrupt in iiflC 700

NOTE: In the compiler mode, while running
causes almost the same message to appear,
displayst he Control—C ('C) and gives the f
It then returns you to AMOS command level,

a program, typing a

The difference is that
ilename of the. program
For example:

Control—C
it aLways
as welL,

INTERACTIVE COMMAND SUMMARY .. Page 95

LIST (EEl)
10 FOR I = 1 TO 10
20 PRINT TARt 1,3)"ONE"
30 PR]tNT TA!tI.,5)1TWO"
4oPRINT•.TABTf3'P.SlC

—
READY
UmTE 20,40 (El!.

READY

tfff!E!D
10 FOR I = 1 TO 10
31j PRINt TAEiIT,5)"TEN"
60 NEXT I

READY

Remember, You can say: "DELETE. 20 40" or "DELETE 2O'4O", too,

9,7 LIST

The LIST command takes the form:

LIST Ciine#1{,ii.ne.#2.})

The source program (i.f one. i:s loaded•• irto memo.ry) lines are Li sted in
numeric sequence on Your terminal, It no line, numbers follow.., the LIST
command, BASIC Lists the entire program. You may abort the Listing by
en.tering Controi—'-C, which returns you- to interactive command mode.. If one
Line number follows the LIST command, only the single line foitowing that
line number is listed, If the command is•. followed by two line numbers
separated by a comma, space or other. . ilon"numeric c.har.acter, only the
indicated lines and the lines between them are listed, Some examples:

READY READY READY
CTSTRT LIST 10 ()JI LIST 10,30 (Ttj
10 X=1 10 X1 10 X1
?O'"POWERS_OF TWO " 20 ° "DOWrRS OF WO
30 FOR A=O TO 10 READY 30 FOR A=O TO 10

-,

READY

READY

(NOTE: Remember that the "?" symbol is an abbreviation for -the PRINT
keyword,)

INTERACTIVE COMMAND SIJIMARY Page 9—6

9.8 LOAD

The LOAD command copies the specified BASIC progflm Itito memoflt from the

disk so that you can edit or execute it. YbtitiiIiStfletValid AMOS file

specification after the LOAD command. it)ótdO not supply a tile

extension, BASIC uses the default extension of BAS"Ityou do not supply

an account and device specification, BASIC assumes the account and device
you are Logged into. For example:

READY
LOAD PAYROL (D

READY

The command above tells BASIC to search for and toad into memory the disk

file PAYROL.BAS that exists in the account and device you are logged into.

If BASIC can't find the file you want to load, it displays an error message.
For example, if you try to Load in the non—existing file LSTSQR.BASC100,1],
you see:

?Cannot OPEN LSTSQR.BASC100,1] — tile not found

The LOAD command does not clear the text buffer before it loads the

requested file, and therefore may be used to concatenate or merge severaL
programs or subroutines together to be saved as a singLe program. The

separate routines must not duplicate line numbers in the other routines that
they are to be merged with or else the new linemjubers wilt overLay the old
ones just as if the file had been edited in from your terminal. IMPORTANT

NOTE: You should always use the NEW command prior to any LOAD command if

you desire to ensure that the text buffer is clears

Two examples of LOAD:

READY READY
LOAID PWRSZ t!D LOAD DSKZ:PWRSZ.BASCSO,1] 1

READY READY

9.9 NEW

This command clears out all current source code, object code, user symbols
and variables. It initializes the compiler to accept new source program

statements or direct statements:

READY
NEW t!!B

READY

INTERACTIVE COMMAND SUMMARY Page 9—?

If you do not use the NEW command before loading in a new program, any tines
in the new program with the same tine numbers as other program lines already
in memory wilt overlay and replace the oLd tines; you will thus merge the
old and new programs.

I 9.10 RUN

This is the usual command to use to initiate the execution of the program
which is in memory. BASIC first checks to see if the program has been
compiled since the last editing change to the source code. If it has not,
BASIC automaticalty compiles the source program to ensure that the object
code is up to date. RUN resets all variables to zero (and strings to null)
and it then executes the comDi led object code. Execution may be interrupted
at any time by typing a Control—C on your terminal.

READY
RUN
(The program currently in memory
begins at the Lowest line number.)

• 9.11 SAVE

The SAVE command saves the entire source program on the disk in the
specified account and device. You must enter the name of the program (1—6
characters) fotlowinq the SAVE command. The program is saved in ASCII
format. The default extension is .B*S, and the default account and device
are the device and account you are logged into. The program may be
displayed or edited with the normal text editors outside of AIphaBASIC. If

a previous version of the program (same name) already exists on the disk in
the account you are writing the file to, that program is first deleted
before the new program is saved. BASIC does not automatically create a
backup file. The program name may be a full system file specification.

SAVE PAYROL @iD SAVE DSK2:PAYROL..BASC5O,1J lAID

READY READY

The SAVE command may also be used to save the compiled object program on
disk for later running without recompilation. To save the object program,
enter the program name followed by the exolielt extension .RUN. If you have
changed the program since the last time it was compiled, BASIC now
automatically compiles the program for you. Then the object program is
saved on the disk:

SAVE PAYR0L.RUN
(Saves the object program on the disk as PAYROL.RUN.)

READY

(Changed 30 April 1981)

INTERACTIVE COMMAND SUMMARY Page 9—8

In the interests of security, BASIC wilt not let you save a proqram that is

in an account that is not within the same project as the: account you are

logged into. For example, if you are Logged lntoDS1C2:E1OO,2] and wantto

save a program in DSK2:t340,1), you see:

READY
SAVE NEWPRG[340,1] @D

?Cannot OPEN NEWPRG.BA5C340,1] — Protection violation

9.12 SINGLE—STEP (LINEFEED)

The single—step function is a feature not found in many versions of BASIC,

and is very useful in debugging programs and in teaching the principles of

BASIC programminq to newcomers. To use the single—step command, type a

linefeed. (That is, press the terminal key labeled IF, LINEfEED, or $.)

The single—step function causes the current line in the program to be listed

on your terminal and then executed. Any output generated by the execution

of a PRINT statement then follows on the next line. After the line has been

executed, the execution pointer is advanced to the next line and control

returns to you in the interactive command mode. Successive single-step

commands may be used to follow the proqram through its paces. Single—step

is legal at the beginning of the program, after program STOP statements,

breakpoint interrupts, and other functions that suspend program execution.

After partially single—stepping through a program, you may execute the

remainder of it normally by using the CONT command. Also, you may start

over at the beginning and execute it normaUy by using the RUN command, if

you try to single—step past the end of the program, you see:

End of Program

and the next linefeed executes the first program statement again.

If you single—step a statement that asks for input from the terminal, enter

the input followed by a RETURN; then you may proceed to the next statement

by typing another linefeed.

Remember that the single—step function is performed by hitting the line—feed

key and not by actually entering the words "single—step.

The following is a demonstration of the single-step process for a small
program as you would see it on your CRT. The symbol $ represents the

linefeed key which you press to see the next statement and the results of

it. (You do not actually see an echo of the linefeed key on the CR1.) Note

that line 30 is a multi—statement line. When single—stepping, all

statements on a tine are executed. BASIC returns control to the interactive
mode at the beginning of each line.

(Changed O April 1Q81)

-F-

INTERACTIVE COMMAND SUMMARY

LIST
10 PRINT "This is a demonstration of sing1estep"
20 FOR 1=1 T03
1UNT*I PRINT 10*1*1 PRINT 10*1*1
40 NEXT I

READY

t -
COMPILING
•Compfte time was 020 seconds

20

"21Yo

t
40 NEXT I
t
30

30

3000
t
40 NEXT I

** End of Program ***

Page 99

10 PRINT "This is a demonstration of singtestep"

t
20 FOR I = I TO 3
t
30 PRINT 10*1 PRINT 10*11 PRINT 10*1*1r--

in:
10

t
40 NEXT I
t
30 FRINT 10*1 PRINT 10*1*1 PRINT 10*1*1

70
PRINT 10*1 PRINT 10*1*1 PRINT 10*1*1

CHAPTER 10

PROGRAM STATEMENTS

The source program contains statements which are executed in sequence, one
at a time, as BASIC encounters them. Each of these statements normally
starts with a verb fouowed by optional variables or statement modifiers.
Many of these statements can also be used in the interactive mode as direct
statements. This chapter lists all the program statements and gives some
examples for clarity.

10.1 ALLOCATE

The format is:

ALLOCATE fi lespec,ntamber—of—blocks

This statement allocates a random access file on the disk. It is discussed
in detail in Chapter 15, "AIphaBASIC FiLe 1/0 System.'

10.2 CHAIN

The format is:

CHAIN fitespec

where the fitespec may take the forms:

CDevn : }BASIC—prog ram-nameC • RUN}C Cp,pn] }

{Devn:)AMOS—monitor—command. PRGCCp,pnfl
CDevn:}command—fi Le.CMDCEp,pn3)
CDevn:)command—fi te.DOCCp,pnfl

The CHAIN statement causes control to be passed to the specified BASIC
program, command tile, or monitor command program. The program name may be
a full file specification, including device and ascount specificattons. The

PROGRAM STATEMENTS Page 10—2

CHAIN statement causes the current program to be cleared from memory. The
specified file is then located and executed from the beginning. A chained
BASIC program must be a fully compiled program with the extension .RUN in
order to be referenced by the CHAIN command. It may be in user memory
(having previously been loaded via the monitor LOAD command) or It may be in
system memory. (The System Operator may place a file in system memory by
modifying the system initialization command file.) If it is not already in

memory, it is loaded from the specified disk account into user memory and
then executed. If it cannot be located, you are returned to AMOS command
level with the error message:

?Cannot find program NAME.RUN

Some examples of the CHAIN statement:

70 CHAIN "PAYROL" 70 CHAIN "DSK1:PAYROL.CMDCIOO,7]"

There is no provision to start the chained file at any point other than the
beginning. You may pass common variables between chained BASIC programs
either by writing them out to a file and then having the chained program
read them back in, or by using the COMMON assembly language sttroutine.
(See COMMON — BASIC Subroutine to Provide Common Variable Storage,
(DWM—O0100—1?) Tn the "BASIC Programmer's Information" section of the AM—laO
docunentation package.)

For more information on CHAIN, see Chapter 16, "ChaIning to BASIC and System
Programs."

10.3 CLOSE

The format is:

CLOSE #fi le—channel

This statement closes an I/O file to further processing. It is discussed in
detail in Chapter 15, "AlphaBASIC File I/O System."

10.4 DIM

The format is:

DIM variabtel(exprl(,expr2,...exprN}){,...C,variableN(exprl{,expr2,...exprN))}

The dimension statement defines an array which Is allocated dynamically at

execution time. Once allocated, an array cannot be redimensioned durinq the
execution of the program. There is no limit to the ntaber of subscripts
that may be used to define the individual levels within the array. The
statement DIM A(20) defines an array with 20 elements, referenced as Mi)

t

PROGRAM STATEMENTS Page 10—3

through A(20). Multiple arrays may be dimensioned by a single DIM statement
by separating them with commas.

Subscripts are evaluated at execution time and not at compile time, thereby
allowing variables as well as ntmieric constants to be used as subscripts.
The statement DIM A(B,C) allocates an array whose size depends on the actual
values of B and C at the time the DIM statement is executed.

If a reference to an array is made during program execution without a
previous DIM statement to define the array, BASIc assigns a default array
size of 10 elements for each subscript level referred to.

String arrays may be allocated, such as DIM AS(S). The size of the array
depends on the current default string size In effect as specified by the
last STRSIZ command, since each element In the array must be this ntnber of
bytes. For instance, If the current STRSIZ is 10, the statement DIM AS(S)
would allocate 5 elements * 10 bytes per element, or 50 bytes of memory for
the array. Below are some examples of vaLid DIM statements:

DIM A(10)
DIM C(8,8), C$(10,4)
DIM TEST(A,B*4)
DIM A(B(4))

10.5 END

The format Is:

END

This statement causes the program to terminate execution. The END statement
does not terminate compilation of the program nor is It required at the end
of the program. If other program statements follow the end of the program
(e.g., subroutines), terminating the program with END prevents your program
from incorrectly entering those statements and trying to execute them.

10.6 FILEBASE

The format is:

FILEBASE n

This statement sets the nanber used to refer to the first record of a random
file. It is discussed in detail in Chapter 15, "AIghaBASIC File I/O
System."

PROGRAM STATEMENTS Page 10—4

10.7 FOR, NEXT AND STEP

The format is:

FOR control—variable = expressioni TO expression2 <STEP C—)expresslon3)
(Statements)

NEXT <control—variable)

These statements initialize and control program Loops. A loop is a

structure in which the same statement or statements can be performed several
times. Whether or not a Loop Is executed depends upon the value of a

special "control—variabLe." AIphaBASIC FOR—NEXT loops follow the same

format and restrictions as do other forms of BASIC. The control—variable

used may be subscripted, and must be a floating point variable. The

delimiters indicating the number of incrementations or decrementations to be
performed on that variable may be any valid expression. FOR initializes the

variable to the first expression. NEXT increments or decrements the value

of the variable each subsequent loop. The variable name may be omitted in
the NEXT statement, in which case the variable of the previous FOR statement
is the one that is Incremented. The control—variable is incremented or

decremented in units indicated by the STEP statement. If no STEP modifier

is used, the step value is assumed to be a positive 1. unlike some other

BASICs, an AIphaBASIC FOR—NEXT loop wilt always be performed at least once,
even if you specify something like FOR I = 0 to 0. FOR and NEXT statements
are illeqal as direct statements except when they are incorportated into the

same multi—statement line. For example:

FOR I = 1 TO 10 : PRINT I : NEXT I

Here are examples of some of the different forms FOR—NEXT loops may take:

10 FOR COUNTER = 1 TO 10
20 IF COUNTER/2 = INT(COUNTER/2) THEN PRINT COUNTER "is even." &

ELSE PRINT COUNTER;"ls odd."
30 NEXT COUNTER

10 INPUT "Enter date of first Sunday in the month: ",DAY
20 PRINT "The Sundays this month are on these dates:" : PRINT DAY
30 FOR A=DAY+7 TO 31 STEP 7 : PRINT A : NEXT A

10 FOR I = 10 TO 1 STEP —1
20 PRINT I
30 NEXT

Loops within loops are legal and are called nested loops. Loops may be

nested to many levels. Each time the outermost loop is incremented (or

decremented) once, the loop nested within it is executed from beginning to
end. During the execution of the second loop, the third loop (if any) is

fully executed each time the second variable is incremented. And so on, for
each nested Loop in the series. For example:

10 ! This program prints out a two—dimensional array,
20 and demonstrates nested loops.

PROGRAM STATEMENTS Page 10—5

30 DIM MATRIX(5,5)
40 ! Thi nested toops:
50 FOPI1TO5
60 FORJ=1T05
70 MATRIX(I,J)= I—J
80 PRINT MATRIX(I,J);
90 NEXT J
100 PRINT
110 NEXT I

The program above prints:

0 —1 —2 —3 —4
1 0—1—2—3
2 1 0—1—2
3 2 1 0—143210

It is not good programming practice to branch out of a Loop before Its
completion (via GOTOs, ON GOTOs, etc.) unless you give careful consideration
to the BASIC system stack area. The stack area used by the Loop is not
recLaimed if you branch out of the Loop, and dotng so can cause a
overflow error during program execution. A cleaner way of exiting a loop Is
simpLy to set the control—variable to the tersinal value specified in the
FOR statement. For example:

10 REM Example of exiting out of a FOR—NEXT Loop.
20
30 START'LOOP:
40 FOR 1=1 TO 100
50 INPUT "Enter nuiiber of pennies:",,PENNIES
60 IF PENNIES<0 GOTO NEGATIVE'VAI2UE ! Don't jump out of the loop!
70 PRINT "You have";PENNIES/lOO;"doltars." : GOTO END'LOOP
80 if # <0, print error message and set I to terminaL value.
90 NEGATIVE'VALUE:
100 PRINT "You can't have negative pennies!" : 1100
110 I End of toop, where we increment or decrement I.
120 END'LOOP:
130 NEXT I I If I = 100, we're aLl done.
140 PRINT "We're alL done."

10.8 GOSUB (OR CALL) AND RETURN

The formats are:

GOSUB Label or Line number
CALL Label or Line nunber

RETURN

PROGRAM STATEMENTS Page 10—6

Calls a subroutine which starts at the line number or Label referenced by
the 60508 or CALL statements. The subroutine exits via the RETURN
statement, which returns control to the statement foLlowing the 60509 or
CALL statement. Executing a RETURN statement without first executing a

GOSUB statement results in an error message. Both 60509 and RETURN are
illegal as direct statements. Note that the CALL verb is merely another way
of specifying GOSUB for those programmers used to this verb from other
Languages.

It is often the case that you want to perform the same operation at various
points within your program. A subroutine is a set of program statements
that you may execute more than once simpLy by including an invocation for
that subroutine (catted a "call") within your program at the point where you
would like to execute the routine. For example:

10 ! This program contains a subroutine that validates numeric entries
20 to make sure that they are greater than 0 and are Less than 100.
30 PRINT "We are going to perform several mathematical operations."
40 PRINT "Your entries must be greater than 0 and less than 100."
50 PRINT : INPUT "Enter two numbers to be added: ",A,B
60 60508 VALIDATE ! Check to make sure numbers are valid.
70 PRINT A;"+";B;"";A+B
80 PRINT : INPUT "Enter two numbers to be subtracted: ",A,B
90 605119 VALIDATE ! Check to make sure numbers: are valid.
100 PRINT A;"—";B;"&';A—B
110 PRINT : INPUT "Enter two numbers to be divided: ",,A,B
120 GOSUB VALIDATE Check to make sure numbers are valid.
130 PRINT A;"I";B;"&';A/B
140 PRINT : PRINT "That's all..."
150 END
200 Subroutine to vaLidate the data
210 VALIDATE:
220 IFA<=OORB<=OTHEN&

PRINT "Error — negative or zero number!" : END
230 IFA)10Q0RB>=1O0THENg

PRINT "Error — Number too big!" : END
240 RETURN

Remember that & (ampersand) is the symbol for a continuation line.

Note that we included an END statement at tine 150 to separate the main
program from our subroutine; otherwise, BASIC executes the VALIDATE
subroutine after it reaches line 140, and we get a "RETURN without GOSUB"
error.

Also note that the use of GOSUBs helps to modularize your programs, and thus
makes them easier to design and maintain. Even before you completely "flesh
out" your programs, you can insert dummy routines that will later contain
complete code. For example:

10 This program will be a complete dental package.
20 PRINT "welcome to the Acme Dental Package."
30 ! Perform initialization of data files

PROGRAM STATEMENTS Page 10—7

40 GOSUB LNIT
50 Ask user to pick function from main menu.
60 GOSUB MENU
70 I Do End—of—day Processing
80 GOSUB DAY'END
90 1 Finish up, close files, and exit.
100 GOSUB FINISH'UP
110 END
115 I The subroutines start here.
200 INIT:
210 PRINT "This section wilt initialize files."
220 RETURN
300 MENU:
310 PRINT "This section wiLt display the main menu and"
320 PRINT "ask user for selections."
330 RETURN
400 DAY'END:
410 PRINT "This section will perform day—end processing."
420 RETURN
500 FINISH'UP:
510 PRINT "This section will close files and clean up final data."
520 RETURN

You can nest subroutines, For example:

10 1 Demonstrating nested subroutines
20 PRINT "Main Program:"
30 GOSUB OUIERI(OST I OUTERMOST cal. Is., NEXTMOST and INNERMOST
40 PRINT " Return from Outermost"
50 END

60
100 I Here are the subroutines:
110 OUTERMOST:
120 PRINT " Outermost subroutine"
130 GOSUB NE4(TMOST
140 PRINT " Return from Nextimost"
150 RETURN
160
200 NEXTMOST:
210 PRINT " Nextmost subroutine"
220 GOSUB INNERMOST
230 PRINT " Return from Innermost"
240 RETURN
250
300 INNERMOST:
310 PRINT " Innermost subroutine"
320 RETURN

The program above prints:

PROGRAM STATEMENTS Page 10—8

Main Program:
Outermost subroutine

Nextmost subroutine
Innermost subroutine
Return from Innermost

Return from Nextmost
Return from Outermost

NOTE: You should always exit a subroutine via the RETURN statement for that

subroutine rather than using a GOTO statement. The reason for this Is that
subroutine processing places certain information on BASIC's stack area; if

you do not execute a RETURN statement, the stack area used by that

subroutine is not reclaimed. Doing multiple branches out of a subroutine
thus results In a "stack overftow" error message.

10.9 GOTO

The format is:

GOTO label or line ntsnber

or:

GO TO label or line nimiber

The SOW statement transfers execution of the program to a new program line.
This program tine must be identified either by a tine ntsnber or a
label somewhere In the program. You may use GOTOs to transfer control to a
program line that is either before or after the program line containing the
GOTO statement itself. For example:

10 Program to demonstrate use of 60105.
20 PRINT "This program computes your account balance. Enter a"
30 PRINT "Control—C to stop; enter deposits as negative amount."
40 INPUT "Enter old account balance: ",BALANCE
50 CALCULATE'BALANCE:
60 PRINT : INPUT "Enter debit amount: ",DEBIT
70 BALANCE = 8ALANCE — DEBIT
80 PRINT "Debit was;";DEBIT;"— Current balance is:";BALANCE
0 GOTO CALCULATE'BALANCE

You can see that tines 50 through 90 constitute an endless loop in which
control is eternally transferred from line 90 back to line 50 until the user
types a Control—C.

If you use GOTOs on a multi—statement line, remember to place it last on the
Line; any statements after the GOTO will never get executed. For example:

10 PRINT GROSS : NET = GROSS — DEDUCTION : GOTO GET'TAX : PRINT DEDUCTION

the last statement, PRINT DEDUCTIONS, can never be executed.

PROGRAM STATEMENTS Page 10—9

10.10 IF, THEN AND EtSE

The format is:

IF expression (THEN) (statementfltabel/LineflcELsE(statemeflt}{Labet,Ljne#})

The conditional processing features in ALphaBASIC give a wide variety of
formats which duplicate just about aU the functions performed by other
versions of BASIC. Some of the format combinations that are acceptable are:

IF expression THEN line#
IF expression THEN GOTO Linet// label
IF expression GOTO Line#/labet
IF expression THEN Line# ELSE GOTO llne#/label
IF expression THEN GOTO line#/Label ELSE GOTO Line#/Label
IF expression THEN statement
IF expression statement
IF expression statement ELSE statement
IF expression THEN statement ELSE statement

Notice from the examples above that you may sometimes omit the GOTO keyword
when transferring control to another program tocation. You may not omit
the GOTO keyword when; 1) you are referring to a Label; or 2) when you are
referring to either a program Label or a Line number In an ELSE clause.

You may also omit the THEN keyword, except when you are transferring control
to another program location and are omitting the GOTO keyword.

The above formats may be nested to any depth, and, rather than go into
detail, we suggest that you experiment with them to determine the actual
restrictions that exist. Some examples:

IF A=5 THEN GOFO PROGRAM'EXIT

IF

MS GOTO PROGRAM'EXIT
IF A>14 THEN 110 ELSE GOTO 220
IF B$="END" PRINT 'END OF TEST"
IF TOTAL > 14.5 GOTO START
IF P=5 AND 0=6 IF R7 PRINT 567 ELSE PRINT 56 ELSE PRINT "NONE"

• IF MI PRINT I ELSE IF 8=2 THEN 335 ELSE GOTO 345
IF A AND B THEN PRINT "A and B are nonzero."

Note that the expression evaluated by the IF statement Is usually an
expression that contains relative operators (e.g., IF A = B; IF A > 0;
etc.). However, the expression may be any Legal expression. For example:

A=0
8=1
IF B THEN PRINT "B is not zero."
IF (8 AND A) PRINT "nonzero numbers" ELSE PRINT "at least one zero number."

When the IF statement evaluates the expression, It returns either a zero
(for fatse) or a —1 number (for true), and conditionally performs the
specified operations in response to that evaLuation.

(Changed 31 October 1981)

PROGRAM STATEMENTS Page 10—10

NOTE: A multi—statement line may take the place of a single statement in an

IF—THEN statement. For example:

IF A = 3 THEN PRINT 4 : PRINT 5 ELSE PRINT "Answer is 0"

If A equals three, the statement above prints:

4

5

Otherwise, it prints:

Answer is 0

10.11 INPUT

The format is:

INPUT C"prompt—string',}variabtelC,variableZ...,varlableN>

Allows data to be entered from your terminal and loaded into specific
variables at run—time. The INPUT statement contains one or more variables
separated by commas. If you omit the optional prompt string, BASIC dispLays
a question mark on the terminal display to signal a: request for data entry.
If you provide the prompt string, BASIC displays it Instead of the question
mark to prompt the user of your program for data. (NOTE: If you wish to
suppress a prompt altogether, use a null prompt string; for example; INPUT
"',AS,BS.) Your prompt string must be In the form of a string literal; that
Is, it must be enclosed with quotation marks. For example:

INPUT "Enter your account number: ",ACCOUNT'NUM
Enter your account number:

You may specify both numeric and string variables in the INPUT statement. A

numeric variable requires that the data entered be in one of the acceptable
floating point formats. String variables require that the data be an ASCII
string of characters. Some examples of valid INPUT statements are:

INPUT A
INPUT "Enter account N, name, and age: ",NEW'ACCOUNT,NAMES,AGE
INPUT ",A,B,C
INPUT "Enter positive number:",NUMBER
INPUT 0(8)

If you specify multiple variables in the INPUT statement, you are expected
to enter multiple items of data. It the data being entered is numeric, you
may separate data items with commas or spaces. If the data being entered is
string, you must separate data items with commas. If you mix ftoating point
and string input, you must use commas to separate the data being input. For
example, if A, B, and C are numeric variabLes and 1$ and ES are string
variables, consider the following legal examples:

(Changed 31 October 1981)

PROGRAM STATEMENTS
Page 10—11

INPUT A,B,C ! Separate floating point data with commas2 1,2,3

INPUT A,8,C ! Or, separate floating point data with spaces2123
INPUT A,B,D$,C Separate string data from numeric data with commas
2 1 2,DAY,3

INPUT D$,E$! Separate string data from other string data with commas
2 DAY,MONTH

(NOTE: For information on the statement to use if you want to enter stringsthat contain commas, quotes, and other special characters, see Section
10.12, "INPUT LINE.")

If a user of your program does not enter as many Items of data as areexpected by the variables in the INPUT statement, BASIC displays a double
question mark to ask for more. For example:

INPUT A,B,C
? 1,2
?? 3

The direct statement above asks for three items of numeric data. Because we
only entered two values, BASIC responded with a "?V' symbol to ask for thethird value.

Be careful to correctly enter the type of datathat the variabLes in the
INPUT statement expect. If an error occurs (for example, if you enter astring for a numeric variable), BASIC sets that variable to zero. For
example:

INPUT Al
? ME
FRINT Al

0

Therefore, your programs should make sure that the correct data. has been
entered. (Remember that the mode independence Qf AIphaBASIC permits theentry of numeric data for string variables; AIphaBASIC automatically
converts such data to string format.)

If a value has not been assigned to a variable, BASIC assumes that the
variable contains a zero (if a numeric variable) or a null (if a stringvariable). If you type a RETURN or a Control—C in response to an INPUT
statement request for data, BASIC leaves the variable being tnputted set to
a zero or null (if a value has not yet been assigned) or to the value
previously assigned to the variable.

(Changed 31 October 1981)

PROGRAM STATEMENTS

For example:

A=3
INPUT A
7

PRINT A

3

•Page 10—12

If you type a RETURN or ControlC in response
INPUT statement contains several variables,
remaining in the INPUT statement, leaving
example might help to clarify:

data request, and the
skips over any variables
values unchanged. An

10 INPUT "Enter day, month, year: ",DAY,MONTH,YEAR
20 PRINT"
30 PRINT : GOTO 10

RUN

O0

Day: 21

Enter day, month, year: 31,12,1980
•Mo7fW:12 Year: 1980

Enter day,
Operator interrupt in line 10

You may also use the INPUT statement to read data from sequential files. It
takes the form:

INPUT #fiie—channel,variahie1.c,variable2,variableNy
NOTE: INPUT skips over nulls in data, and just waits for the next
character, (This is importan•t to know if you plan to input from devices,)
For more information on this use of the statement, see Chapter 15,
"AlphaBA5IC File I/O System,"

1012 INPUT LINE

The format is

INPUT LINE C"promptstrinq",)variable1

(Changed 31 October 1981)

to a
BASIC
their

Enter day, month, year: 21,4

Enter day, month, year: 8
0')

Day:8 Month: 4 Year: 0

month, year: C

PROGRAM STATEMENTS Page 10—13

Although you may specify a numeric variable, the real purpose of INPUT LINEis to allow you to enter string data from your terminal that includes
commas, quotation marks, blanks, and other special characters. You wilt
usually want to use INPUT (see the section above) for inputting numeric data
or multiple items of string data.

INPUT LINE toads into the specified string variable an entire tine up to but
not including the carriage return and Linefeed that end the line. Do not
specify more than one string variable in the INPUT LINE statement.

BASIC never prints a question mark prompt for INPUT LINE as it does for
INPUT, but you may include your own prompt string, which BASIC will display
as a request for data. Such a prompt string must be a string literal
enclosed in quotation marks.

Unlike INPUT, if you type a RETURN in response to a data request, INPUT LINE
sets the variable to zero (If numeric variable) or null (if string
variable). (Remember, in like case, INPUT Leaves the value of the variable
unchanged.)

When you use INPUT LINE, remember that the default size of unmapped string
variables is ten bytes; if you want to use strings larger than that, use the
SIRSIZ statement to reset the default string size. (See Section 10.26 for
information on STRSIZ.)

Some examples of the statement are:

INPUT LINE AS
INPUT LINE "ENTER YOUR FULL NAME, PLEASE: ",NAME

You may also use the INPUT LINE statement to read data from a sequentialfile. It takes the form;

INPUT LINE #fi le—channet,variabtel

For more information on using INPUT LINE and files, see Chapter 15,
"AIphaBASIC File I/O System."

10.13 KILL

The format is:

KILL filespec

KILL deletes a file from a disk. It Is discussed in detail In Chapter 15,
"AIphaBASIC File I/O System."

(Changed 31 October 1981)

PROGRAM STATEMENTS flge 10—14

10.14 LOOKUP

The format is:

LOOKUP fitespec, result—variable

The result variable must be a floating point ntnber.

This statement searches for a file and returns its size. It is discussed In
detail in Chapter 15, "AIphaBASIC File I/O System."

10.15 LET

The format is:

LET variable = expression

Assigns a calculated value to a specific variable during execution of the
program. You do not have to specify the LET keyword in an assignment
statement *

LET AS 12.4
LET SUM(4,5) = A1+SQR(B1)
LET C$ = "JANUARY"
AS = 12.4
SUM(4,S) = A1+SQR(B1)
Cs "JANUARY"

10.16 ON — GOSUB (CALL)

The formats are:

ON expression 605118 label/line#1C,labet/i.ine#2,...labet/line#N}
ON expression CALL tabel/line#1{,label/line#2,.,..labet/ljne#N}

The expression can be any valid expression which is evaluated and truncated
to a positive integer result. The result of the expression evaluation is
then tested. The subroutine at label/line4l is executed if the result Is 1,
the subroutine at label/line#2 is executed if it is 2, etc. If the result
is zero, negative or greater than N, the program falls through to the next
statement.

As with the GOSUB statement, the verb CALL may be used In place of the verb
GOSUB, giving an ON CALL statement. Here is an animation program using ON —
GOSUB:

(Changed 31 October 1981)

PROGRAM STATEMENTS Page 10—15

10 I * INT(3*RND(O)+1) !Random number from I to 3.
20 ON I GOSUS UP, DOWN, STRAIGHT !Go to I of 3 subroutines.
30 GOTO 10
40 UP: PRINT "I"; TAB(—1,3); : RETURN IDraw symbol, go up I row.
50 DOWN: PRINT TAB(—1,4);'\'; : RETURN IGo down 1 row, draw symbol.
60 STRAIGHT: PRINT "'; : RETURN !Draw symbol.

10.17 ON — GOTO

The format is:

ON expression GOTO tabel/tine#I(,label/Ijne#2,,..label/tjne#N}

The ON GOTO statement at lows muLti—path 6010 branching to one of several
points within the program based on the resuLt of, evatuating an expression.

The expression can be any vatid expression which is evatuated and truncated
to a positive integer result. The result is then tested to branch to
label/line#I If 1, labeL/line/la it a, tabel/tlne#3 it 3, etc. If the result
is zero, negative or greater than N, the program faLLs through to the next
statement. The following is a portion of a menu—seLection program:

10 PRINT TAB(22)"Setect One oi the FottGwing Operations:" : PRINT
20 PRINT TAB(25)"l. Insert/Edit NAME Information.?'
30 PRINT TAB(25)'a. Insert/Edit PHONE NUMBER Information."
40 PRINT TAB(25)"3. Quit without insertion or editing."
SO PRINT : INPUT "Your choice (1, 2 or 3)? ",A
60 ON A GOTO NAME, PHONE, QUIT
100 NAME: INPUT "Select a name: ",N

(THE PROGRAM CONTINUES WITH ALL THREE ALTERNATIVES)

10.18 OPEN

The format is:

OPEN #fiLe—channet,filespec,modec,recsize,recnum}

Opens an I/O file for processing, it is discussed in detail in Chapter 15,
'AlphaaA$jC File I/O System."

(Changed 31 October 1981)

PROGRAM STATEMENTS

10.19 PRINT

The format is:

PRINT expression-tist

Page 10—16

The PRINT statement tells BASIC to evaluate and display the expressions that
you specify. For example:

returns:

PRINT 3+4;"HELLO"+" YOU"

7 HELLO YOU

BASIC prints a carriage return/tine—feed after the expression list.
Remember that an expression may consist of a string or numeric variable,
numeric constant, string literal, function with arguments, operator symbols,
or a combination of these elements. For example, the following is one
string expression: "STRING DATA" + NAMES + MIDS(AS,1,2).

BASIC displays numeric data with a trailing blank. It also prints one
leading blank If the number is positive, or no leading blank if the number
is negative. BASIC displays string data with no leading or trailing blanks.

You may place more than one expression after the PRINT keyword if you
separate them with commas or semicolons, If you separate the expressions by
semicolons, BASIC does not print extra spaces when it prints the evaluations
of those expressions. For example:

returns:

PRINT 12+12;—32;8/2

24 —32 4

There are no blanks between the numbers above except for the normal leading
and trailing blanks displayed with numeric data.

If you separate the expressions by commas, BASIC prints the data in "print
zones." BASIC divides the area in which data is to be displayed into five
zones of 14 spaces each. If an expression In a PRINT statement is followed
by a comma, BASIC prints that expression in the next available print zone.
For example, the statements:

20 PRINT 34,1024,—32,—100.2,20
30 PRINT •'C"

display:

34 1024 —32 —100.2 20
AA BB C DDD A
p C

(Changed 31 October 1981)

0

PROGRAM STATEMENTS Page 10—17

When you Look, at th€dtsptay above, remember that BASIC prints numericdata with a Leading: and trailing bLank if the number is positive, but just
a trailing bLank if the number is negative.

Note that the strings in Line 30 were dispLayed on two different tines;
that is because when BASIC stilt has an expression to print after it has
printed something in the fifth zone, it starts over again with the first
zone on the next Line.

If you end the PRINT statement expression List with a semicoLon or comma,
BASIC does not output a carriage return/Line—feed when it finishes
displaying that expression. List. This will, make the output resuLting from
the next PRINT or INPUT statement to appear on the current display tine.
The next output wiLl appear In the next print zone if the current PRINT
statement ends with a comma; or, the next output wilt appear immediately
following the Last character of the current PRINT statement if the PRINT
statement ends with a semicolon.

Here are a few exampLes of the PRINT statement (for iLlustrative purposes,
we are assuming that AS is "HERE" and A equals 7):

PRINT Yietds a blank tine
PRINT A !Yietds 7
PRINT AS !Yietds HERE
PRINT 1+2 !Yietds 3
PRINT "ANY TEXT" !Yietds ANY TEXT
PRINT "NOTE THE COMMA",AS lYleLds NOTE THE COMMA HERE
? "YOU ARE NUMRER";A !Yietds YOU ARE NUMBER 7
? "YOU ARE #";Af'IN CUSS." !YieLds YOU ARE # 7 IN CUSS.

PRINT "THERE ARE"; ISemicoton suppresses carriage—
PRINT A;"DAYS LEFt." Ireturn/tinefeed and yields

!THERE ARE 7 DAYS LEFT.

(Remember that the "Vi! symbol is an abbreviation for the PRINT keyword.)

You may aLso use the PRINT statement for writing data to sequentiaL files.
It takes the form:

PRINT #fi Le—channet,expression—list

For details on this, refer to Chapter 15, "*tPhSBAS:IC File I/O System."

10.20 PRINT USING

The formats are:

variabLe=expression USING format—stri:ng
PRINT USING 'format—string, expression—List
PRINT expression USING format—string.

(Changed 31 October 1981)

I.;.

PROGRAM STATEMENTS Page 10—18

PRINT USING is supported for formatttng output end is described extenstvely
in Chapter 13, "Formatting Output (PRINT USING and Extended Tabs)."

10.21 RANDOMIZE

The format is:

RANDOMIZE

Resets the random number generator seed to begin a new random number
sequence starting with the next RND(X) function call. (See Section 11.1.9
for information on the random number generator.)

10.22 READ, RESTORE, AND DATA

The formats are:

READ variablelC,variable2,...variableN}
RESTORE
DATA datalC,dataz,. . .dataPO

These calls allow data to be an integral part of the source program with a
method for getting this data Into specific variablesin an orderly fashion.
DATA statements are followed by one or more literaL values separated by
commas. String literats need not be enclosed in quotes unless the literal
data contains a comma. All data statements are placed into a dedicated area
in memory no matter where they appear in the source program. READ

statements are followed by one or more variables separated by commas. Each
time a READ statement is executed, the next item of data is retrieved from
the DATA statement pool and Loaded Into the variable named in the READ
statement, If there is no more data left in the data pool, the program can
only continue to read data if a RESTORE statement is executed, which
reinitializes the reading of the data pool from the beginnirtg again.
Otherwise, an error message results and the program is aborted. Here are
some forms that READ and DATA may take.

DATA 1,2,3,4,5
DATA 2.3,0.555,ONE STRING,'4,4"
READ A,8,C
READ AS
READ C(2,3),B$(4)

The following is a program example using READ, RESTORE, and DATA:

10 ISample program to illustrate READ, DATA and RESTORE
20 PRINT TAB(10)"This program gtves you an estimate of your automobile's"
30 PRINT TAB(1O)"vatue (due to depreciation) over a period of five years."
40 PRINT : INPUT LINE "How much did you pay for your cart S",WORTH
50 PRINT "Based on national averages, your car wilt depreciate this way:"

(Changed 31 October 1981)

PROGRAM STATEMENTS Page 1C"19

60
? 0

80
90
100
110
200
300
3.10
320

A program run of the above exampte might red:

",1,5

This program_gives you• an estimate of your .automohi 1e 5T (due to deprerTiTo6 over a peri&i of fe years
How much did you pay for your car? .$:34,79
BaseB on netonal averages, your car will depreciate this way

After the first year, your car will be worth about $.6,64879After the secdd éar, ouH car i IL be worth about 55,186,05i$T' th i rd W'aT, yo 07 ErE7rTraboutfl,0%
if7' thif67TCci73ura, II be w&7+ h about t3,31856

year, your car OTL1. be"ISITFi'Thbout $2,787 59

Would you like to see another depreciation:.se.hedule? N
Goodbye .: :.

Statement 300 restored the data in the data pool, built from line 200, incase the user of th.is program had elected to continue,

statement is also used for reading data from random access files,

READ #filechannel,vari.able1c,variable2 ,variableN}

It is discussed in detail in Chapter 15, "AIphaBASIC File I/O System,"

10,23 SC.ALE

The format is

SCALE value

SCALE. is a scaled arithmetic modifier, it is discussed in detail in Chapter14, "Scaled Arithmetic,"

(Changed 31 October 198.1)

PRINT FOR I = 1 TO 5
PRINT "After the "; READ YEARS PRINT YEARS;" year, your car ";PRINT "will be worth about"; READ PERCENT
WORTH =. WORTH * PERCENT
PRINT WORTH USING "$$###flft,,#y"
NEXT I PRINT
DATA first,,77,second,,7a.,thi rd•. 79,fo.ur.t.h,,8i,fif.th..,,84
RESTORE

INPUT LINE "Would you like to see another depreciation sched•ule?
IF L$Ci,ij="Y"i..OR L$t1,13="y" THEN GOTO: 40• ELSE PRINT "Goodbye.,"

The READ
The format

PROGRAM STATEMENTS Page 10—20

10.24 SIGNIFICANCE

The format is:

SIGNIFICANCE value

The significance statement allows you to dynamically change the default
value of the numeric significance of the system for unformatted printing.
The significance value can be any value from 1 through 11 and represents the
maximum number of digits to be printed in unformatted numbers. Rounding of f

to the specific number of digits is not performed until just before the
printing of the result. The statement SIGNIFICANCE 8, for instance, sets

the number of printable digits to 8. The value is interpreted at run—time

and therefore may be any valid numeric expression, including variables. The

current significance of the system is ignored when PRINT USING is in effect.

Note that the SIGNIFICANCE statement only affects the final prioted result
of all, numeric calculations. The calculations themselves and the storage of
intermediate results are always performed in full 11—digit precision to

minimize the propagation of errors.

The significance of the system is set at 6 digits when the system is first
started. This is equivalent to standard single—precision formats used in

most of the popular versions of BASIC. The significance is not reset by the

RUN command and therefore may be set in interactive mode in a direct

statement just prior to the actual running of a test program. Of course,

any SIGNIFICANCE statements encountered during the execution of the program
reset the value.

10.25 STOP

The format is:

STOP

Causes the program to suspend execution and print the message "Program stop
at line nnnn." If you are in interactive mode, you may then continue to the
next statement in sequence by executing a CONT command or a single—step
command.

10.26 STRSIZ

The format is:

STRSIZ value

The string size statement sets the default value for all unmapped strings
which are encountered for the first time during the compilation phase.
Initially, the default value of all strings In the absence of a STRSIZ

(Changed 31 october 1981)

C,

PROGRAM STATEMENTS Page 10—21

statement is 10 bytes. The statement STRSXZ 25, for instance, causes all.
newly allocated strings which follow to have a maximum size of 25 bytesinstead of 10 bytes. This Includes the allocation of string arrays. Thesize value is evaluated at compilation time and therefore must be a singlepositive Integer.

10.27 WRITE

The format is:

WRITE #fite—channel,expressjon—List

Writes a record to a random access file. It is discussed in detail in
Chapter 15, "AlphasA$IC File I/O System."

10.28 XCALL

The format is:

XCALL rout I nec,argunientlça rgumentz,. . .a rgumentNfl

Executes an external assembly Language subroutine. Assembly Languagesubroutines are discussed In detail In Chapter 18, "Calling External
Assembly Language Subroutines."

For Information on the assembly language subroutines avaiLable for use with

BASIC
programs, see the "BASIC Programmer's Information" section of the AMOS

Software Update Documentation Packet.

(Changed 31 October 1981)

CHAPTER 11

BASIC FUNCTIONS

The following is a List of the currently implemented AIphaBASIC functions.
Functions compute and return a value and are elements of an expression. The
function either operates on or is controlled by the argument, which is

enclosed In parentheses. There are four main categories of functions.
Numeric and trigonometric functions return numeric values. Control
functions are used to Indicate the status of file input and output
operations and system operations. String functions operate on numeric
vaLues or strings of one or more characters in Length, and return string
values.

Functions are different from program statements in that they return a value.
In order to see or use that value, you must Include the function in a

program statement that evaluates the expression that the function call is a
part of. For example:

10 SQR(16)

will not display a value. You must either assign the value returned by the

function to a variable or display the value via a PRINT statement if you
want to use or see the value returned. For example:

20 ROOT = SGR(16)
30 RESULT = ROOT * (SQR(NUMBER) + 24)

or:

40 PRiNT "Answers are: "; SORtIe) + 100, SQR(24)

11.1 NUMERIC FUNCTIONS

Numeric functions accept a string or numeric argument, and return a numeric
value. Note that the mode independence feature of the expression processor
performs automatic conversions if a numeric argument Is used where a string
argument is expected, and vice versa.

BASIC FUNCTIONS Page 11—2

11.1.1 ABS(X)

Returns the absolute value of the argument X. For exampLe, ABS(—32.4)
returns 32.4, and ABS("17.2') returns 17.2.

11.1.2 ASC(A)

Returns the ASCII decimaL vaLue of the first character of argument A. The
argument may be either a string LiteraL or string variabLe. For exampLe:

ASC('A")
ASC (AS)

11.1.3 EXP(X)

Returns the constant e (2.7182818285) raised to the power X.

11.1.4 FACT(X)

Returns the factorial of X.

11.1.5 FIX(X)

Returns the integer part of X (fractionaL part truncated).

11.1.6 INT(X)

Returns the largest integer Less than or equaL to the argqmient X. The onLy
time you wiLL see a difference between usinq tNT and FIX is if you are
working with negative numbers. For example, the Largest integer less than
or equaL to 23.4 is 23. However, the Largest integer tess than or equaL to
—23.4 is —24. (FIX would have returned —23.)

11.1.7 LOG(X)

Returns the naturaL (base e) Logarithm of the argument X.

BASIC FUNCTIONS Page 11—3

11.1.8 LOGlO

Returns the decimal (base 10) Logarithm of thecargument X.

11.1.9 RND(X)

Returns a random number generated by a pseudo—random number generator. The
number returned is based on a previous value known as the "seed," and ls
between 0 and I The argument X controls the number to be returned, If X
is negative, it is used as the seed to start anew sequence of numbers. If
X is zero or positive, the next number in the sequence is returned,
depending on the current value of the seed (this is the normal mode). The
RANDOMIZE statement may be used to create a seed which is truly random and
not based on a fixed beginning value set by the system.

NOTE: If you want to generate a random number greater than or equal to
number A and Less than nunber B, you can use the expression:
(B—A)*RND(0)+A. Note that the tNT function is used when generating random
integer numbers. For example, to generate a random integer greater than or
equal to 5 and Less than 31, use the expression: INT(26*RND(O)*5) where
26=B—A.

11.1.10 $GN(X)

Returns a value of —1, 0 or 1 dependIng on the sign of the argument X.
Gives —1 if X is negative, 0 if X Is 0 andt 1 it X Is positive.

11.1.11 SQR(X)

Returns the square root of the argument X.

11.1.12 VALCA)

Returns the numeric value of the string variable or string literal A

converted to floating point under normal BASIC format rules. For example,
VAL("123") returns 123.

11.2 TRIGONOf'ttTRIC FUNCTIONS

The following trig functions are implemented In full 11—digit accuracy:

SIN(X) Sine of X
C0S(X) Cosine of X

BASIC FUNCTIONS Page 11—4

TAN(X) Tangent of X
ATN(X) Arctangent of X
ASN(X) Arcsine of X
ACS(X) Arccosine of X
DATN(x,Y) Do*tle arctangent of X,Y

11.3 CONTROL FUNCTIONS

Control functions indicate the status of file input and., output operations,
and provide information on system operations.

11.3.1 EOF(X)

The EOF function returns a value giving the status of a file whose
file—channel nunber Is X. The file is ass,aied to be open for sequential
input processing. The values returned by tIie,EO,Ffunction are:

—1 If the file is not open or the file—channel ntsmber X is zero.
(NOTE: A file—channeL nunber of zero indicates that the
terminal is being used as the file.)

0 if the file is not yet at end—of—file during input calls

1 If the file has reached the end—of—file condition

Due to the method used by the AMOS operating system for processing files,
the end—of—file status is not achieved until after an INPUT statement has
been executed which reaches the end—of—file condition. Any INPUT statements
which reach end—of—file return nuneric zero or null string values forever
more. This means that the normal sequence for processing sequential input
files would be to INPUT the data Into the variables and then test the EOF(X)
status before actually using the data io those variables, since if an
end—of—file has been reached that data will be no good.

End—of—file should only be tested for sequential input files. Files open
for output or for random processing always return a zero value.

11.3.2 ERF(X)

The ERE function returns an Indication of a file soft error condition. Soft
errors during file access operations do not give you any indication unless
you query the file with the ERF function. If thereturned value of X is not
zero, an error or abnormal condition exists as a result of the preceding
file operation. The only soft errors currently returned concern ISAM file
operations. For more information, see Chapter 19, "Using ISAM From Within
BASIC."

BASIC FUNCTIONS Page 11—5

11.3.3 ERR(X)

Returns a status code which refers to program status durin9 error trapping.
There are 33 separate codes. A complete list of these codes is found in
Section 17.2.1, "Error Codes Returned by ERR." If X is C), ERR returns the
specific code of the error detected; If X Is 1, ERR returns the number of
the tnt program tine encountered before the error occurred. If X is 2, ERR
returns the file number of the last fite accessed.

11.3.4 OTHER CONTROL FUNCTIONS

See Chapter 12, "System Functions," for information on the fotlowing
functions:

MEM(X) — Returns the number of free bytes in system memory.
BYTE(X) — Enables you to bring in B data bits from a memory location.
WORD(X) — Enables you to bring in 16 data bits from a memory location.
DATE — Sets or reads the system date.
10(X) — Enables the I/O ports to be read from or written to.
TIME — Sets or reads the system time.

11.4 STRING FUNCTIONS

The following string functions accept numeric or string arguments, and
return strings. Note that the mode independence feature of the expression
processor performs automatic conversions if a numeric argument is used where
a string argument Is expected, and vice versa.

11.4.1 ASC(X)

Returns the ASCII decimal value of the first character In string AS. If the
string AS reads, for example, "Zirconium's atomic number is:", the result
of the statement PRINT ASC(A$) is 90, the ASCII value (in base 10) of upper
case 1. For the statement PRINT ASC("AS'), where the argument is between
quotation marks and is the literal string to be operated upon, at execution
time BASIC returns the ASCII value of A, or 65.

11.4.2 CHRS(X) OR CHR(X)

Returns a single character having the ASCII decimal value of X. Only one
character is generated for each CHR function call. For instance, if you
type PRINT CHR$(90) as a direct statement, the upper case letter 7 is

returned to you.

DWM—OO100—Q1 REV 804

BASIC FUNCTIONS
Page 11—6

11.4.3 INSTR(X,A$,B$)

Performs a search for the substring 8$ within the string AS, beginning atthe Xth character position, it returns a value of zero if 8$ is not in AS,or the character position If 8$ is found within AS. Character position is
measured from the start of the string, with the first character positionrepresented as one. Some direct statements wiLt Illustrate:

A$"ELEPHANT
B$="ANT'

PRINT INSTR (1 ,A$,B$) ? INSTR (2,A$,"CQD") ?INSTR (8,"MEADOWURK",••LARK•')6 4 0(Substring 8$ starts (The specified string (The specified string "LARK"the sixth character begins at the fourth is not found in the stringfrom the left) character position) "ARK", which is the string
starting at the 8th position)

NOTE: Remember the "?" symbol,Is an abbreviation for "PRINT."

11.4.4 LCS(A$)

Returns a string which is similar to the argument string (AS), but with all
characters transLated to Lower case. If AS is "A is for Atpha', the
function LCS(A$) yieLds the string "a is for aLpha".

11.4.5 LEFT(AS,x) or LEFTS(A$,X)

LEFTS(AS,x) Returns the leftmost X characters of the string expression AS.
If AS reads "Now is the time", the function LEFTS(AS,fl produces the
substring "Now Is '5 which incLudes the traiLing bLank after "is".

11.4.6 LEN(AS)

Returns the Length in characters of the string expression AS. if AS is
"'Wherefore art thou, Romeo?'", the function LENCAS) returns the number 28because there are 28 characters in that string, incLuding spaces and
punctuation,

11.4.? MID(AS,X,Y) or MIDS(AS,x,Y)

Returns the substring composed of the characters of the string expression AS
starting at the Xth character and extending for V characters. A nuLL string
is returned if x is greater than the length of AS. If AS reads "The quick
brown fox jumped over the steeping dog", then the function MID(A$,1?,15)

DWM—00100—O1 REV 804

BASIC FUNCTIONS Page 11—7

MID(AS,l1,15) returns the substring "fox jumped over, which begins at the
seventeenth letter of the string and Is fifteen characters long.

11.4.8 RIGHT(AS,X) or RIGHTS(AS,X)

Returns the rightmost X characters of the string expression AS. If AS is "I
THINK, THEREFORE I AM", the function RIGHT(AS,4) produces the substring
"I AM". As another example, RIGHT(1234,2) returns 34. (Remember that you
can use numeric arguments for many string functions.)

11.4.9 SPACE(X) or SPACE$(X)

Returns a string of X spaces In Length. The statement

70 PRINT "COLUMN A"; : PRINT SPACE(10); PRINT "COLUMN B"

outputs the following:

COLUMN A COLUMN B

where the 10 spaces between the first and second strings are the result of
the SPACE(1O) function. SPACE is especially handy for padding strings to a
fixed length. For example:

5 STRSIZ 25
10 IName must be 25 spaces
20 INPUT "Name?",NAMES
30 IF LEN(NAMES)<25 THEN NAMES = NAMES + SPACE(25—LEN(NAMES))

11.6.10 $TR(X) or STRS(X)

Returns a string which Is the character representation of the numeric
expression X. No leading space is returned for positive numbers.

11.4.11 UCS(AS)

Returns a string which is similar to the argument string (AS), except that
alt characters are translated to upper case. If AS is "N is for Micro," the
function UCS(AS) yields the string "N IS FOR MICRO."

(changed 30 ApriL 1981)

CHAPTER 12

5ysTE$,uscTIONS

AtPha6tC supportt a uniqUe grouP of operators catted 5ystem functions,
which provide the thitity to get to the I/O portSt Physflat memory
(sometimes referred to in 0ther BASICS as PEEK and' 8fldvarb0 system
paramets* The syntax of a systtffi functiOft paratte that of a standard
function, with the reserved word repre5ent9 the desired funCti0 tott0wby 0tiOnat argumentS .nctO5 with parenthe5fl e major differen is
that the reserved word of a system function may appear on the left 5ide of
an asSigant statement? where jt is used s an or writt COfl on t
the system functi0 $ystem tunCt° used within expre651° n the eight
side of an asSi9e 5tatemt perform an, input or read operation and
deliver bafl a result to be used in the expressIon evatuationa

12.1 aYTE(X) AND WORD(X)

The flE and WORD systeffi functions alloW you tO iflSP!tt and 3tter any memOtX
tocatiofl5 withifl the 64K memorY addre55in9 range of the machine. These
operations have oftefl been calted PEEK and pOKE statements in other
implementations of BASIC. The ant functi0 deal with S bits of data in
the range of o—255 and the WORD tuncti0 deal with 16 bits of data in the
range of o—o55' inctU5iv Any unused are jgnOt' with no error
mes5Q $ote that these commands are not protette it Is pos5 to
cause severe damage to the øperat9 system in memory if you use the
commands imPr0Pe'1

DW$_00100 REV a04

lwriteS the tow byte of expr into decimat memory tot X
twrites the Ow word of exPt into decimat memory
treads decimaL mory tot X and places the byte into A
treads deciffibt moty) and places the word into A

BYTE (V
gORD ('C)
A
A

n
z
S

SYSTEM FUNCTIONS
Page 12—2

12.2 DATE

The DATE system function is identical, to the TIME function except that it

sets
and returns the two—word system date. On the AMO$/L system, you cannot

set the DATE function. The system wilt ignore a DATE = <expr> command.

DATE <expr> Isets system date to expr
A = DATE !returns system date into A

The following program translates the binary data stored in the system DATE
location into floating point form.

10 The system stores the date in binary form; the small program
15 below translates the binary date into floating point form. It
20 ! also allows you to set the system date from within BASIC.
25 MAP1 BINDATE,B,4
30 MAP1 FILLDATE,aBINDATE
35 MAP? MONTH,B,1
40 MAP? DAY,B,1
45 MAP? YEAR,.B,1
50 BINDATE = DATE
55 PRINT "Month:";M0NTH,"Day:";DAy,"year:";yE
60 INPUT "Enter Month, Day, Year: ",MONTH,DAY,YEAR
65 DATE=BINDATE
70 PRINT "Month:";M0NTH,"Day:";DAy,"year:";yA

12.3 10(X)

The 10 system function allows the 256 I/O ports to be selectively read from
or written to. In both cases only one byte is considered/and an output
expression greater than 255 merely ignores the unused bits. The range of
ports available is 0 to 255.

10(X) = <expr> !writes the low byte of expr to decimal port X
A = 10(X) !reads decimal port X and places the result into A

Note:

On the AMOS/I.. system, if (x) Is 0—255, it accesses the 256 external tO
ports as it does on the AM—100/T (the addresses on the AMOS/L system are
FFFFOO—FFFFFF). If the number is 256—511, it accesses the internal
(on—board) 10 ports (addresses FFFEOO-'FFFEFF..)

12.4 MEM(X)

Returns a positive integer value which specifies the decimal ni.nber of bytes
currently in use for various memory areas used by the compiler system. The
most common use of this is to return the number of free bytes left in the
user memory partition. This MEN(0) call duplicates the action performed by
the FRE(X) function in other versions of BASIC. Other values of the
argument X return memory allocations which pertain to various areas in use

DWM—00100—J1 REV 804

SYSTEM FUNCTIONS Page 12—3

by the compiler, and may or may not be of: use to you. The byte counts
returned for the various values of X are:

0 — Free memory space remaining in current user partition
1 — Total size of current user partition
2 — Size of source code text area
3 — Size of user label tree
4 — Size of user symbol tree (variable names and user function names)
5 — Size of compi led object code area.
6 — Size of data pool resulting fromaLt compiled DATA statements
7 — Size of array index area (dynamic ttnks to variable arrays)
8 — Size of variable storage area (excluding arrays:)
9 — Size of dummy data termination field (always zero)
10 — Size of file I/O linkage and buffer area
11 — Size of variable array storage area (dynamtcatly allocated

at run—time)

Some of these values will be meaningless when running the run—time object
module in compiler mode, such as 2, 3 and 4.

NOTE: The statement PRINT MEM is equivalent to the statement PRINT MEM(0).

12.5 TIME

The TIME system function requires no argument and is used to retrieve the

time of day as stored in the system monitor communications area. The time
Is stored as a two—word integer representing the number of clock ticks since
midnight. On the AMOS/L system, TIME returns the number of seconds since

midnight, so that in the example below, CLOCK would equal 1.

You are responsible for conversions to printable format in those cases where
it is required. One clock tick represents one interrupt from the CPU line
clock, which is usually 60 hz for domestic systems and 50 hz for overseas
systems. Dividing the time by the clock rate gives the number of seconds
since midnight. Converting this to current time is then accomplished by
successive divisions by 60 to get minutes, and again by 60 to get hours.

On the AMOS/L system, you cannot set the time. The TlMEexpression command
will be ignored.

TIME = expression !sets time—of—day in system to expression
A = TIME treturns time—of—day in clock ticks into A

DWM—0O100—O1 REV 004

SYSTEM FUNCTIONS
Page 12—4

The small program below converts the value returned by 1-DIE into actual
hours, minutes, and seconds.

100 T = TIME Get time
120 CLOCK = 60 I Clock frequency in Hz
130 HOURS = INT(T/(CLOCIC3))

I Compute hours
140 PUNS = INT(T/(CLOCK"2)) — (HOURS *60) I Compute minutes
150 I Compute seconds
160 SECS = INT(T/CLOCK) — ((HOURS * (602)) + (MINS * 60))
170 H'MOD: ! Adjust HOURS to 24—hour cLock range.
180 IF HOURS > 23 THEN HOURS = HOURS — 24 : GOTO H'MOD
190 PRINT (HOURS USING "#Z"); ":";(MINS USING "#Z'); &

":"; (SECS USING "#2");

There are a couple of things you should note about the program above:

1. The value CLOCK will vary depending on whether your system operates
on 60 Hz or 50 Hz.

2. Since TIME returns the number of clock ticks since 12:00, if your
system has been on for a couple of days this number can easily
cause HOURS to exceed 23; line 160 converts the value of HOURS to a
number within the range of a 24—hour clock.

3. Note the use of the PRINT USING statement in tine 170 to print
single—digit time values with a leading zero. (The next chapter
contains more informatton on PRINT USING.)

DWM—O0100—Q1 REV 804

CHAPTER 13

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS)

Most BASIC business applications programs spend a great deal of effort in
generating reports and printouts in which data must be neatly and clearly
presented. In other words, correctly formatting output is usuaLly a major
concern of the BASIC programmer.

AIphaBASIC provides several important features that heLp you to format data.
This chapter discusses how to employ the USING modifier to format ni.meric
and string data via fGrmat strings. We also discuss the extended tab
functions that allow you to control the output of data on the terminal
screen.

13.1 THE USING MODIFIER

The USING modifier allows you to format numeric or string data using a

format string (sometimes called an "editing- mask") specified by you.
Although you can use the USING modifier to store the formatted data in a

string variable, you may also use it in combination with the PRINT statement
to send the formatted data to a terminal, display or to a file. (For
information on PRINT, see Section 10.19, "PRINT" and Section 15.3.9,
"PRINT.")

By "formatting" data, we mean, the process oft adjusting the appearance of
data (e.g., by inserting commas or spaces) so that It fits the pattern of a

specific format string. tt might help to think of the format string as a
template or pattern with which you are going to control the format of your
data. The USING modifier allows you to apply the format strinq to your
data.

using format strings and the USING modifier, you can do such things as: line
coLumns of numbers up by their decimal points; Insert dollar signs and
commas into numeric data to represent dollar amounts; line up numeric and
string data within specified fields; generate and, print Leading zeros for
numeric data; print asterisks instead of leading spaces; print numeric data
in exponential form, etc.

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13—2

The sections below talk about the special formatting characters within the
format string that allow you to perform such adjustments.

The statements in which you use the USING modifier take these forms, whereexpression is usually a numeric or string constant, or a numeric or string
variable:

variable = expression USING format—string

PRINT expression USING format—string

PRINT USING format—string, expression—list

For example, if you want to format the number 2345.678 with the format
string "$S####.##", you could say:

NUMBER = 2345.678 USING "S$####.##'
PRINT 2345.678 USING "S$####.##"
PRINT USING "$$####.##,2345.67$

(NOTE: You may use the first and second formats only for numeric data; you
may use the third format for string and numeric data. Also, remember that
USING has the lowest precedence of all, operators. Therefore, all other
operations in expressions surrounding the USING operator are performed
before formatting is done. For example, PRINT 23+4 USING "###'+.#"
produces 27.0.) The format string may be a string expression (for example,
MIDS(AS,4,5), a string constant (for example, "###.##"), or a string
variable (for example, MASKS).

If you use the third PRINT USING variant above, you may supply a list of
expressions to be formatted, separating the expressions with commas as with
the regular PRINT statement (e.g., PRINT USING "#####.##",A,B,C,D,E). If

you supply more expressions than the format string is meant to handle, BASIC
re—uses the format string until each of the elements In the expression list
has been formatted. If you supply fewer expressions than the format strinq
is meant to handte, BASIC ignores the unused portion of the format string.

NOTE: You may also send formatted data to a file by specifying a
file—channel number after the PRINT keyword (e.g., PRINT #1, USING
format—string, expression—list). For information on sending data to files,
see Section 15.3.9, •PRINT.'

13.2 FORMATTING CHARACTERS

The sections below discuss the special characters that make up the format
string; these special characters control the output of your data.
Characters other than these special formatting characters which appear in a

format string are output literally as part of your data.

(Changed 30 April 1981)

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13—3

13.2.1 The \ Symbol (String Fields)

Although you will most oftenbe tnterested In formatting nuneric data, you
may also specify fields for string data via the backslash nbot (\). Two
backslashes define a string field whose size equals the nirber of characters
enclosed in the backslashes plus the backslashes themselves.

Although the usual practice is to enclose blanks in the string field (e.g.,
\"), AIphaBASIC permits the use of. any characters. Since these

characters are never printed, but simply define the size o5 the field by
which a string is to be formatted, non—blank characters serve only as a
comment. However, when using several string fields within a single format
string, It can be useful to visualLy separate them from the spaces between
the fields by using non—blanks within the backslashes. For example:

—fieLd3—\"

String fields allow you to define the placement and size of string data.
For example, if AS"Now is the time", then;

PRINT USING "As he once said, '\———————

produces:

As he once said, 'Now Is the time.'

If the string to be formatted is larger than the string field, BASIC ignores
the extra characters. If the string to be formatted is smaLler than the
string field, BASIC adds trailing blanks to the string to make it the same
size as the field, and thus left justifies it in the. field.

You may combine string fields ant n*rerlc fields within a singLe format

string. (See the section below for information on nireric fields.) For

example:

5 STRSIZ 25
10 MAP1 MASK,S,42/'\—1Ochar— ####.## \-rr15 char——-\"
15 CS"(in millions)"
20 PRINT USING MASK,"YEAR 1979" ,234 .556, C$,"YEAR 1980",5678. 456, Cs

produces:

YEAR 1979 234.56 (in millions)
YEAR 1980 5678.46 (in millions)

NOTE: Remember that the default string size is. 10 characters, so you will

want to explicitly define any strings over it characters, via MAP statements
or include a STRSIZ statement In your program to adjust the default string

Si ze.

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13r4

13.2.2 The ! Symbol (One—character String Field)

The exclamation mark identifies a one—character,, string heAd. BASIC
replaces the exclamation mark with a corresponding string. (If the string.
constant or string variable contains more than one character, BASIC ignores
any characters past the first.) For example:

10 STRSIZ 40
20 MASK$&'The temperature is: ###! =
30 PRINT USING MASK$,50,' F',.10,"c",68,"F",20,"C',86," F',30,"C",104," F',40,"C"

prints:

The temperature is: 50F = bc
The temperature is: 6SF 20C
The temperature is: 86F = 30C
The temperature Is: 704F = 601

If no string is available to be substituted for the I symbol, BASIC simply
prints the I symbol instead. For example, If we took our sample program
above and removed the first "F" from the PRINT USING expression list, the
first tine of our display would look like this:

The temperature is: 50! 1OC

13.2.3 The I Symbol (Numeric Fields)

The U symbol in a format string always indicates that you want to format
numeric data. Each U symbol In a format string represents one numeric
digit. The simplest numeric format string would consist of just U symbols.
For example:

PRINT C USING "####"

The statement above tells BASIC to format the numeric variable C into a
field of four digits, with no fractional part. If the format string causes
BASIC to remove the fractional part of a number, BASIC rounds the number to
the next integer, rather than truncating it. For example:

PRINT 2367.88 USING "####"€
2368

If the numeric field is too small to contain the specified number (for
example, if we had specified the number 650456.56 with the format: string
"####"), BASIC prints the number in standard BASIC format preceded by a %
symbol, indicating overflow. For example:

PRINT 150450 USING "####"€D
Z150450

FORMAmNt OUTPUT (PRINT USING AND EXIINDEb I'ABS) Pag• 1.3—S

If the. numeric field is larger than the s::p.;ectf:ied: num:be.r, BASIC right
justifies the number in the field, inserting leading blanks into the digit
positions not needed. For example:

PRINT USING ######,23 @
23

(Four blanks precede the number 23,) Note that other formatting characters
discussed below (e,g, the St and: ** symbols): also.: define.: d.igi:t positions as

well as perform special formatti:ng:. functions.,

NOTE: You cannot format string data with a numeric field format string If
you try to do so, BASIC just prints the farmat:str:tngj indicating: that it
was unable to format the data. For example:

PRINT USING "#####,"Hi there

13,2,4 The Period Symbol (Decimal Point)

You may include one period wt:t:hin a numeric: fieLd to pecify where a decimal
pointis to appear in the formatted number, For example:

PRINT USING ###,#r,a345,5o2,iioa,:o57,2oo,3,95

produces:

2345 '50
11OCL66aoo

If the number specified contains more digits to the right of the decim.al
point than the format string, BASIC rounds the number so that it contains
the right number of digits in the fractional part. If the format string
contains more digits to the right of the decimal point than the specified
number, BASIC fills in the unused digit positions with zeros (a.s in the case
of the number 200, above), If the format string spec.ifies any digits in
front of the decimal point, BASIC prints at least one digit in front of the

decimal point for •each number, even if: that. digit is a zero,

13,2,5 The $5 Symbol (Floating Doiiar Sign)

The $$ symbol at the front of a numeric field format string tells BASIC to
insert a dollar sign at the front of the formatted number, The double
dollar sign symbol defines two digi.t positions, one of which is taken up by
the dollar sign itself,

For example:

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page l3r6

PRINT USING

produces:

.

517500,66

534. 20

Notice the difference between using the double dollar sign to produce a
floating dol.lar sign, and simply using the sing.l:e non".formatting character
"5" in the format string:

PRINT USLNG $####ff.##,175OO,66,1oo,.45.,p

produces:

$ 17500,66

$ 34520

Because you will use the $$ symbol to format data that represent.s money
amounts, you may want to use the floating comma symbol in combination with
the $$ symbol. (See the parag.raph below for information on this formatting
character,)

Remember that you can include nonformatting ch:aracters In a format strine,
In the. case above, a single dollar sign is not a formatting character, and
so BAS.IC simply prints it as part of the formatted data, As another
example:

PRiNT USING "###%",23,45,56,78,99,34

proouces

23%

•100%

In the example above, the "%" symbol is not a special formatting
character, As another example:

PRINT USING "The telephone number is: (###) ###. ####",714,555,1212

produces:

The telephone number is: (714) 12 12

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13—?

13,2,6 The Comma Symbol (Floating Commas)

By including a comma in your format string, you tell BASIC to insert a comma
every three digits to the left of the decimal point, For example:

produces:

PF. INT 6507501 89 USING "########,.,##.!..

6,507,501 ,89

BASIC treats any comma to the right of the decimal point as a

non"formatting, printable character, Each comma defines one digit positionS

13,7,7 The ** Symbol (Asterisk Fill)

By inciudino a

you tell BASIC to
in front of a

printino checks,
example:

double asterisk symbol at the front of your format string,
replace any leading blanks that would normally be output
number with asterisks, This is especially usefuL when
The double asterisk defines two digit positions, For

produces:

PRINT 231 ,69 USING "**######,##"

NOTE: You will orobably use asterisk"fill formatting when printing dollar
amounts; remember that you may include a dollar sign symbol in the format
string, For example:

prints

PRINT 231,A9 USING "**%#4###,##"

***$731 ,69

13,7,8 The 1 Symbol (Leading ieros)

To generate leading zeros, include the 1 symbol within your format string,
The format string must begin with one # symbol followed by a series of ls,
The total size of the formatted string is the number of Zs plus the one C
symbol, For example:

produces:

PRINT 123 USING "#21211"

000123

(Changed 33 April 1981)

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13—8

i3,2,9 The Minus Symbol (Trai ling Minus Sign)

Credit: ¶345,6?
¶567 B9—

13,2,10 The Symbol (Exponential Format)

you may specify exponential format by following the numeric
format string with four circumflexes (''''), These symbo
spaces taken up by the "E nn" exponent characters. BASIC left
siqnifi•cant di.gits, adjusting the exponent as necessary, (A
numeric formats, BASIC allows any decimal point arrangement,)

pr-i nt 5:

10 PRINT USING ,#fl##'"'",100,2345,66,5000 0004

,09999E+03

,39999E03

field in a

Is define the
justifies the

with other
For example:

13.3 FORMATTING EXAMPLES AND HINTS

All ot our examples above
Remember that you may also
USING modifier without the

used the PRINT statement to print
format a value without displaying
PRINT statement. For example:

formatted data,
it by using the

AS B USING CS

Thest. atement above formats the number in B using the format string in CS,
and leaves a string result in AS, (NOTE: This format of the USING modifier

You may
ending
is posi
pr i n ts

produces

cause the sign of a number to be printed folLowing the number bya numeric field in a format string with a minus sign, If the numbertive, BASIC prints a blank after the number; if it is negative, BASIC.a minus sign after the number, For example:

10 MARl MASK,S,26,\7\
20 C$"Credit:" : D$="Debit:"
30 PRINT USING MASK,CS,34S,67,D$,567 89 CS 100 89 0$ 3456 33

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13—9

is only for formatting nuneric data. Also note that even though we are
formatting nuneric data, the result is always a string1)This type of format
allows you to create headings and image lines that you use more than once,
and to inspect and naniputate formatted data before printing It.

You may not use the USING modifier recursiveLy. That is, you may not use a
format string that is itself the result of a USING modifier. (For example,
if you have specified CS a B USING "###.##,,, you may not say: Pit = D USING
CS.)

When using the PRINT USING format, remember that PRINT USING differs from
the reguLar PRINT statement in that theuse of semicolons to separate the
elements of the print list has no. effect on the spacing of those formatted
elements.

Below is a sample program that uses the USiNG modifjerto format output into
a small report, it also demonstrates the use of sthroutines, MAP
statements, and flle—handting.

FORMAflING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13—10

5 ! Tiny report generator
10 STRSIZ 100
20 MAP1 HEADING,,S,,49, " \———1O——— ———10—-—\
30 MAP1 MASK,S,54, " \———10———\ ss#n####,.## #zzzzzzzzr'
40 ! Main Program
50 GOSUB INSTRUCTIONS ! Display Instructions.
60 OPEN #1,"REPORT,,DAT",ouTpul I Open file to hold report.
70 GOSUB GET'HEADER

! Get and write header for report.
80 I = 1

1 InitiaLize Line counter.
90 GOSUB WRITE'REPORT I Get and write data to report.
100 CLOSE #1 I Close out file.
110 END

ZOO INSTRUCTIONS; ! Display instructions
210 PRINT " Welcome to the Mini Report Generator" : PRINT
220 PRINT "We will, first ask you to enter threetitles (max 10 char—"
230 PRINT "acters each) • These will form the heading of your report.'
240 PRINT "Then we'll ask for each tine of the report." : PRINT
250 PRINT " Field #1 is a string (maximum of 10 characters."
260 PRINT " Enter zero to end report.)"
270 PRINT " Field #2 Is a nts,iber (maximum of 7 characters) to"
280 PRINT " be expressed as a dollar amount. Don't enter commas.)"
290 PRINT " Field #3 is a number (maximiji, of 10 characters)"
300 PRINT that can represent any non—dollar data." : PRINT
310 RETURN

400 GET'HEADER: I Input and write header to file.
410 INPUT "Enter Title #1: ",TITLEI$
420 INPUT "Enter Title #2: ",TITLE2$
630 INPUT "Enter Title #3: ",TITLE3$
440 I Write header to tile.
450 PRINT #1, USING HEADING,TITLEI$,TITLE2$,TITLE3$: PRINT #1
460 RETURN

500 WRITE'REPORT; ! Input and write data to tile.
510 PRINT : PRINT "Line #";I;"——" I Keep track of number of lines.
520 INPUT " Enter FieLd #1: ",FIELDl$
530 IF FIELD1$="O" THEN RETURN
540 INPUT " Enter Field #2: ",FIELD2
550 INPUT " Enter Field #3: ",FIELD3
560 PRINT #1, USING MASK,FIELDIS,FIELD2,FIELD3
570 1=1+1
580 GOTO WRITE'REPORT

We can use the program to generate very different types of reports. For
example;

FORMATTING OUTPUT (PRINT USING AND EXTENDED• TABS) Page 13"l•i

ITEM COST/UNIT ART NO,

.Ax Ic, Ha If 5349,67 0000002376Cn4r 3ox ¶45 67 0fl00002985
K 'ng r TI OOn000SoTE
Sha 7 0010 0564

EMPLOYEE SALARY PAYROLL#

P. Smith 5239,%34,3s 0000000654Si
Knowles 518,345,67 0000000235

' 5l0t,CTI ? 3000000267

13,4 EXPA.NDED TAB FUNCTIONS

The TA: fm ct ••,n in AIphaBASIC has been expanded beyond t•he normal
inc. lude terminal screen handling, such as cursor control .and otherfun.ct ions, To• be used only in a FRINT statement, the TAB functionin the traditional m.anner when supplied with only a single numericsJrn as 1AB'TI In TI a case the unct1on tausec the ra'positioned over to the "yxj column on the current line, For
TAB(S) would cause 5 spaces to be printed, and the following cwould heqin i ncolumn six, When supplied with two a.rgument:s
TAB(R,C), however, the TAB. function perfo•rs special CRT functions,
It 'no aI r ot P ')oelt'Se, tne H,' guu s ae tened as rnw,coLumn)coordinates fo.r posit ionino the cursor on the terminal screen, The
spec. i lied characters are then printed heqinn.ino in that oosit ion, As inot.her fun.ctions, the R and C arguments may be expressions, Terminals areassumed to beoin with row I (top, of screen) and column, 1 (left end of eachrow), If you use TAB for cursor pcsi tioning, remember to follow the TABfunction with a semicolon (e,g,, PRINT TAB(23,5);TI" otherwise, BASIC wi 1.1output a carriage return/ linefeed after. it positions th.e cursor, thus
destroying your careful p.osit ioni ng,

If the value of: R is '1 , the function is interpreted as a .special
command: and the appropri ate commandcode must be: specifiedargument, The cc-des are transmitted to the termin.al dri ver (TOyOSKo.Cl,6:D , which dcies the actual interpretation and performs thefunct ion for your terminal, The following list gives th-e standardcodes in use i'or all the terminal drivers supported by Alpha Micro

Code Func tion

0 Clear screen and set n.orma I intensity
Cu.rsor home (move to 1,1 upper left corner)

2 Cursor return (move to column I without I ine67eed)
3 Cursor up one row
4 .ursor down one row

usage to
special

operates
argument

age to be
inst an cc,
bar act ers

such as

terminal
as the C
file in

spec i a I
decimal

OWM'O0100—.l] I REV 1.04

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13—12

5 Cursor left one cotumn
6 Cursor right one column
7 Lock keyboard
8 Unlock keyboard
9 Erase to end of line

10 Erase to end of screen
11 Enter background dlsptay mode (reduced intensity)
12 Enter foreground dispLay mode (normal intensity)
13 Enable protected fields
14 Disable protected fields
15 Delete tine
16 Insert line
17 Delete character
18 Insert character
19 Read cursor address
20 Read chracter at current cursor address
21 Start blinking field
22 End blinking field
23 Start line drawing mode
24 End line drawing mode
25 Set horizontal position
26 Set vertical position
27 Set terminal, attributes

28
Cursor On

29 Cursor Off

The actual routines that perform the screen controls are in the specific
terminal drivers and not in AIphaBASIC itself. Not alt terminal drivers
have all of the functions above simply because not all terminals are able to
perform all of these functions. If your terminal has additional features,
Alpha Micro recommends starting at 64 (decimal) when you assign function
codes in your terminal driver.

DWM—0O100.-Q1 REV 804

CHAPTER 14

SCALED ARITHMETIC

AIphaBASIC uses a floating point format which gives an accuracy of 11
significant digits. Ilifortunately, this accuracy is absolute only when
dealing with numbers that are total integers. (i.e., there are no numbers to
the right of the decimal point). This fact stems from the conversions that
are required from decimal input to the binary floating point format used in
the hardware. For most business users, the actuat range of numbers contains
two digits to the right of the decimal point and nine digits to the left of
the decimal point. When the fractional part of the number is converted
between decimal and binary formats, a small but significant error is
sometimes introduced which may propagate into inaccuracies when dealing with
absolute dollars—and—cents values.

As an example of the kinds of Inaccuracies that can occur, take a look at
the following program:

10 SIGNIFICANCE 11
20 PRINT 26.4—INT(26.4)

• Instead of the expected answer of .4, we see the answer:

.39999999999

This is not an error in BASIC, but simply represents the side effects of
convertiiira decimal fraction to binary representation and back again. Some
decimal fractions cannot be exactly expressed as a binary fraction in a
finite number of digits, and so round—off error occurs.

The error was only visible because our program set the number of significant
digits to 11. (The usual number of significant digits is six.) Such errors
can accumulate and present themselves when you do a large number of
multiplications and divisions using decimal fractions.

AlphaBASIC incorporates a scaling feature which helps to aLleviate this
problem by storing all floating point numbers with a scale offset. This
offset designates where the 11 absolute accuracy digits are located in
relation to the decimal point. BASIC does this by multiplying every input
number by the scaling factor and then dividing It out again before printing.

(Changed 31 October 1981)

SCALED ARITHMETIC
Page 14—2

(This is a simplified explanation, and many other checks and conversions aredone internally to scaled numbers,)

The scaling factor represents the number of decimal ptaces that the 11—digit"window" is effectively shifted to the right In any ftoating point number.For example, the most common application is in a business environment wherethe scaling factor of 2 would be used to give absolute 11 place accuracy tonumbers which extend 2 places to the right of the decimal point. This meansthat the value of 50.12 is multiplied by the scaling factor of 2 digits(100) and stored as the floating point value of 5012. Since this value is
an integer, it has absolute accuracy. Just before printing, BASIC divides
this number by the scaling factor to reduce it to its intended value of50.12.

Other conversions have been included into the system to take care of alt thelittle subtle effects of storing scaled numbers. For exampte, when
converting scaled numbers to integer or binary format, BASIC must unscale
the number first before converting It. When BASIC multiplies two scaled
numbers together, the result is a number which must be unscaled once, while
division of two scaled numbers creates exactly the opposite problem.
Dealing with scaled numbers for exponential, Logarithmic and trigonometric
functions creates even more exotic problems. All these conversions are done
automatically by AIphaBASIC, so you are relieved of the programming task of
keeping track of them.

14.1 SCALE

Scaled arithmetic is normally entered at the start of a program and
continues in effect throughout the program. The statement for setting the
program into stated mode is:

SCALE n

The scaling factor "n" must be a decimal digit In the range of —30 to +30.
It may not be a variable, since scaling is done at compile time for constant
values as well as at run—time for input and output conversions. Negative
scaling moves the 11—digit window to the left. NOTE: You won't often use a
negative scaling factor, since that takes care of the case where your

numbers
are too large, rather than too small.

A few words of caution are in order here. Once BASIC detects the SCALE
statement during compilation, BASIC scales all constant values that follow
by the scaling factor so that they are stored properly. In addition, a
run—time command is generated in the executable program which causes the
actual seating to be performed on INPUT and PRINT values when the program is
running. If two or more different SCALE statements are executed in the same
program, some very strange results may come out unless you are totally
familiar with what is happening with compile—time and run—time conversions.
We suggest that you play with this one a bit before delving into it full
steam.

(Changed 31 October 1981)

S

SCALED ARITHMETIC
Page 14—3

If you are using a positive scaling factor to adjust real numbers, note thatusing SCALE does nothing to prevent inaccuracies If the scale factor you useis not Large enough to cause AIphaBASIC to handle your data as Integers.For example, if you want to handle numbers that have three digits to theright of the decimal point, a scaling factor of 2 wiLl Leave one digit tothe right of the decimal point, and scaling error can stilt occur. So, ifyou wilt be using numbers with a fractional part of two digits, use ascaling factor of 2; If the fractional part will be three digits, use, ascaling factor of 3; and so on.

One other word of caution. Floating point numbers that are stored in filesby the sequential. output PRINT statement are unscaled and output in ASCIIwith no problems. Floating point numbers that are written to random accessfiles by using the WRITE statement are not unscaled first; any program thatreads this file as input must either be operating in the same scaling modeIn which the data was written, or else must apply the scale factorexplicitly to all values from the file. Binary and string values, ofcourse, are never modified, regardless of the scaling factor currently Inuse.

(Changed 31 October 1981)

CHAPTER 15

ALPHABASIC FILE I/O SYSTEM

This chapter contains information on creating and using disk files from
within your BASIC programs. Since these processes differ somewhat depending
on whether you want to use sequential or random data files, we discuss
sequential and random files generally before getting into the specific
commands you can use to manipulate these files. Note the sample program at
the end of the chapter; it demonstrates defining a logical record, computing
the logical record blocking factor for a random file, allocating a random
file, opening and closing a random file, searching for a tile, and writing
and reading data to and from a random file.

AIphaBASIC supports both sequential and random access disk files. You may
write data either in ASCII or in packed binary formats. Files that
AIphaBASIC programs create are compatible with alt other system utility
formats, and BASIC tiles may be Interchanged with files from other
languages. That is, BASIC data files can be read and manipulated by
programs written in other languages. Conversely, files created by other
languages and system utilities may be read and manipuLated by programs
written in AIphaBASIC.

Files are created and referenced by the general statements OPEN, CLOSE,
INPUT, INPUT LINE, PRINT, READ, and WRITE. All file references are done by
a file—channel number, which may be any integer value from 0 to 65535. You
might think of the file—channel number as designating an information
channel. Once a file has been associated with it, the file channel serves
as a pipeline through which data can be transferred between your program and
the file. Once you close that file, the file channel is no longer
associated with it, and you may open another file on that file channel. You
may never have two files open at the same time with the same file channel.
The file channel always follows the verb in any file I/O statement and may
be any numeric expression which is preceded by a pound sign (N). File
channel zero is defined as your terminal, and is legal in file statements to
allow you to write generalized programs which may selectively output to

either
a file or to the terminal at rurrtime. However, you may not use #0

as a file channel for a random file.

(Changed 30 April 1981)

ALPUABASIC FILE I/O SYSTEM Page 15—2

There is no absolute limit to the number of files that may be open at any
given time in a program, but since each file requires a certain amount of
memory, there is a practical limit to this number based on memory availabte
in your partition.

BASIC automatically closes alt open files when the program exits or when a
CHAIN statement is executed, if the files have not already been explicitty
closed via a CLOSE statement. BASIC cannot open two files with the same
file—channel number at the same time, but after BASIC closes a file, another
file may be opened using the same tile—channel number. Alt file statements
are valid as direct statements, but BASIC closes any open files before it
executes another RUN command. This prevents statements in an executing
program from reading or writing to files which were opened by a direct
statement. Under the current version of AIphaBASIC, each open file requires
about 580 bytes of tree memory for buffers and control blocks.

15.1 SEQUENTIAL ASCII FILES

Sequential disk files are the easiest to understand and implement in

AIphaBASIC. BASIC writes data to a sequential file in ASCII format, and
stores numeric data as ASCII string values. A sequential data file usually
has the extension .DAT unless you explicitly order otherwise in the OPEN
statement that opens that file. NOTE: Sequential tiles may not contain
non—ASCII data (e.g., binary or floating point data). Therefore, you may
only use PRINT, INPUT and INPUT LINE for transferring data to and from
sequential files. (Remember that PRINT converts floating point and binary
data to printable (ASCII) form.) The READ and WRITE statements do not

convert data to ASCII form, and so are used for transferring data to and
from random files.

The sequential data files are normal ASCII files in all respects, and you
may manipulate them by using the system text editors, the printer spooler,
or any of the other system utilities.

To
open a sequential file, use the OPEN statement, specifying either INPUT,

OUTPUT, or APPEND mode.

Use the PRINT statement (followed by a non—zero file-channel number) to
write data to sequential files. The PRINT statement automatically appends a
carriage return/line-feed to your data in the same manner that it does when
sending data to a terminal display. (See Section 10.19 for information on
using commas and semicolons to format PRINT statement output.)

Use the INPUT or INPUT LINE statements (followed by a non—zero file—channel
number) to read data from a sequential file. Remember that the INPUT
statement reads one piece of data for each variable specified, while the
INPUT LINE statement (if you specify a string variable) reads into the
specified string variable the entire line of ASCII data up to (but not
including) the carriage return/line-feed at the end of the line. INPUT and
INPUT LINE work exactly the same for files as they do for terminal input
except that you omit a prompt string and must include a file-channel number.

(Changed 30 April 1981)

ALPHABASIC FILE I/O SYSTEM Page 15—3

Sections Th.3.7 and 15.3.8 talk about INPUT and INPUT LINE. (Also, see
Sections 10.11 an& 10.12 for more information on INPUT and INPUT LINE.)

152 RANDOM FILES

Random access, or direct access, files are more complex than sequential
files, but offer a much more flexible method for storing and retrieving data
in different formats. Random files are written in "unformatted" or packed
data mode. Random file disk blocks are contiguously allocated on the disk.

The major advantage of random tiles over sequential, files is the flexibility
with which you may access data in a random file. You may only open a
sequential file for input or output, but you may open a random file for

input and output simultaneously. Accessing data In a sequential file
requires that you step througit the file record by record. In the case of a

random file, however, you may access any record without referring to any
other record In that file. In addition, random files can contain data in

any format supported by AIphaBASIC (unlike sequential files, which may only
contain ASCII data).

15.2.1 Logical Records

All program accesses to random files are made via the "logical record"

approach. A logical record is defined as a fixed number of bytes whose
format is explicitly under control of the program performing the access.

Physical blocks on the disk are each 512 bytes long, and each random file
must be preatlocated as some given number of these 512—byte blocks. Logical

records may be any length from 1 byte to 512 bytes. (Logical records can

never overlap physical disk blocks.) The AIphaBASIC I/O system

automatically computes the number of logical records that fit into one disk

block, and performs the blocking and unbiocking functions for you. For

example, if your logical record size Is defined as 100 bytes, then each

block on the disk contains 5 logical records with the last 12 bytes of each
block being unused. Therefore, the most efficient use of random files comes
when the logical record size is a power of 2; that is, It divides evenly

into 512 bytes (32, 64, 128, etc.).

15.2.2 Stocking Factor and Record Size

Random access files are prealtocated once, using the ALLOCATE statement,
which gives the number of physical 512—byte blocks to allocate. It is up to
you to calculate the maximum number of logical records required in the file,
and then to calculate how many disk blocks are required to completely
contain the number of logical records you desire. For instance, assume the
logical record size is 100 and you need a maximum of 252 logical records in

your file. Each disk block Is 512 bytes, and therefore contains 5 logical
records. You need 252 logical records, so dividIng 252 by 5 gives 50 full
disk blocks plus 2 logical records remaining. Since the file must be

ALPHABASIC FILE I/O SYSTEM Page 15—4

allocated in whole disk blocks, you need 51 bLocks, which givs you a
maximijn of 253 logical records. These logical, recprdi are reftnnced in
your program as records 0 through 252, since the first record 'of any random
file is record 0, unless you have used FILEBA$E. (See Section 10.6,
"FILEBASE.") (NOTE: When your record size does not divide evenly into 512
bytes, it is a good idea to consider expanding it so that it does. This is
for two reasons: 1) you will be using the same nuuber of physical disk
blocks whether or not you expand the record size, so you're not saving
anything by not doing so; and 2) this leaves you room, for future expansion
of the data In the record.)

When you are opening a random file, you must specjfy the logical record size
in the OPEN statement (also specifying RANDOM mode); It is possible to get
things fouled up if you do not have the record size correct. No logical
record size is maintained within the file structure itself. This fact does
make it nice in one respect; a file which is accessed by many programs can
have its record size expanded without recompiling all the accessing
programs. Here is how: Assume (as an example) that you have a file which
is considered the parameter descriptor file for alt other files in the
entire system. This tile qives the record size as 100 bytes for the vendor
name and address file. All programs which reference the vendor file first
read this parameter tile to get the size of the vendor file logical record.
The programs then set the size into a variable and use this variable in the
OPEN statement for the record size. Each READ or WRITE statement then
manipulates the 100 bytes of data by reading or writing to or from variables
whose size totals 100 bytes. Let's say you now want to, expand the file to
120 bytes and that most of the programs do not have to make, use of the extra,
20 bytes until some time In the future. You write a, pogram which copies
the 100—byte fiLe into a new 120—byte file and then you update the main
parameter file to indicate that the new record size for the vendor tile is
120 bytes instead of 100. Each program now opens the file using the new
120—byte record size (since it is read in from the parameter tile at
run—time), but only READs or WRITEs the first 100 bytes of each record due
to the variables used by the READ and WRITE calls.

15.3 FILE I/O STATEMENTS

Later sections in this chapter show you the general format of each of the
file i/O statements and give detailed examples of their uses.

Although you will want to read each of those sec:tions carefully, we'd like
to give a summary here of how to create and use sequential and random tiles.
Remember that the steps below are only suggestions, and you may want to omit
or add steps.

USING SEQUENTIAL FILES FOR OUTPUT:

1. Use the LOOKUP command to see if the file already exists.

When you output to a sequential file, you are creating a brand new
file. if a file of the same name and extension already exists in

4

ALPHABASIC FILE I/O SYSTEM Page 15—5

the account you are writing to, BASIC automatically deletes the old
file for you before it opens the new output file. Therefore, if
you don't wiitt BASIC to delete an existing file, be sure to use the
LOOKUP command before you open a file' for output to make sure that
such a file does not already exist.

2. If the file already exists, you can go ahead and open It (If you
want BASIC to delete the existing file for you) or you can choose
another file name and use the LOOKUP command again to see if that
file already exists.

3. Use the OPEN statement to open the file for OUTPUT.

4. Begin using PRINT statements (specifying the file—channel ni.smber

associated with the file by the OPEN statement) to write data to
the file.

5. when finished, use the CLOSE statement to close the file.

USING SEQUENTIAL FILES FOR INPUT:

1. Use the LOOKUP command to see if the file already exists. (If it

doesn't exist, double—check your file names.)

2. Use the OPEN statement to open the file for INPUT.

3. Begin using INPUT LINE or INPUT statements to read data from the
file (specifying the file—channel number associated with the file

by the OPEN statement).

4. Check the EOF function after each Input to make sure you haventt
read beyond the end of the file.

5. when finished, use the CLOSE statement to close the file.

USING SEQUENTIAL FILES IN APPEND MODE:

1. Use the LOOKUP command to see if the file exists.

2. Use the OPEN statement to open the file for APPEND.

3. Use the PRINT statement (specifying the file-channel number
associated with the file by the OPEN statement) to write data to
the end of the file.

4. when finished, use the CLOSE statement to close the file.

(Changed 30 April 1981)

ALPHABASIC FILE i/O SYSTEM Page 15—6

USING RANDOM FILES FOR INPUT/OUTPUT:

1. Use the LOOKUP command to see if the file a'tready exists. If it
does, you can skip down to step #3.

2. If the file doesn't exist, you must create it. First, decide what
size the Logical records will be (in decimal bytes). Then compute
the blocking factor as discussed in Section 15.2.2, "Blocking
Factor and Record Size.' Use the ALLOCATE command to create the
file with the number of disk blocks needed.

3. Use the OPEN statement to open the, file for RANDOM processing.
Specify the size of the logical records in the file, and the
record—number variable that wilt hold the number of the loqical
record you are currently accessing.

4. Use READ and WRITE statements (specifying the file—channel number
associated with the file by the OPEN statement) to read and write
data in the file. Remember to change the record—number variable to
the correct record number before performing each read or write
operation so that you access the logical record you want. Make
sure that the record-number variable contains a valid record number
before performing the file I/O.

5. when you are finished reading and writing the file, use the CLOSE
statement to close the file.

USING RANDOM FILES IN RANDOM' FORCED MODE,:

When a random file is open in this mode, a READ operation forces a disk
access, even if the requested block is already in memory. Likewise, if a
WRITE is performed, the block Is reread, modified and forced out to disk,
even if the buffer is not yet full. This mode is intended to make it easier
for people to use FLOCK and similar locking routines.

The command format for using RANDOM' FORCED mode is:

OPEN #file—channel,fllespec,RANoOr'q'FORcE1,,record—size,recqrd#—variable

(For an explanation of OPEN, refer to the next section.)

15.3.1 OPEN

You must open a file before you can transfer data to or from the file. The
OPEN statement assigns a unique file—channel number to a file and also
specifies the name that is either to be given to an output file, or to be
used in Locating an input file. The general format is:

OPEN #file—channel, fitespec, mode, record-size, record#—variable

• The parts of this OPEN command are defined as follows:

(Changed 30 April 1981)

ALPHABA$IC FILE X/O SYSTEM Page 15—7

file—channel Any numeric expression which evaluates to an integer from
0—65535 (0 is defined as the user terminal and treated as
such). If the file Is random, you cannot use #0 as the file
channeL.

filespec Any string expression which evaluates to a legal file
description. May be a string variable or string Literal.(If it is a string literal, remember to enclose it In
quotation marks.)

mode Specifies the mode for opening the file:

INPUT — Opens an existing sequential file
for input operations.

OUTPUT — Creates a sequential fiLe for output
operations.

RANDOM — Opens an existing random file for
random read/write.

INDEXED — Opens an ISAM data fiLe and primary
index fiLe.

INDEXED'EXCLUSXVE — Opens an ISAM data file and primary
index file for exclusive access.

APPEND — Opens a sequential file, so that you
write data to the end of it.

RANDOM•FORCED — Opens an existing random file. At
time of next disk access, reads
specified block from disk whether or
not it is already in memory, or
writes specified bLock to disk
whether or not buffer is full.

The remaining two options must be used for RANDOM, RANDOM'FORCED INDEXED and
INDEXED'EXCLUSIVE modes only:

Record—size An expression which dynamically specifies at run—time the
logical record size for read/write operations on the file.

Record/I—
variable A non—subscripted numeric variable which must contain the

record number of the desired random access for READ or WRITE
statements when they are executed. It must be a
fLoating—point variable.

Any attempts your program makes to read or write to a file which has not
been opened result in the error message 10 to unopened file in line nnn,
and the program is aborted. The filespec string may be as brief as the name
of the file, in which case it Is assumed to have an extension of .DAT and to

(Changed 31 October 1981)

ALPHABA$IC FILE I/O SYSTEM Page 15—8

reside in your disk account. The filespec string may be a compLete filespecification, If you desire, giving the explicit Location of the tile,which may be in another disk account or even on another disk drive. Some
examples are:

OPEN #1, "DATFIL", INPUT
OPEN #15, "PAYROL.TMP", OUTPUT
OPEN #A, CS, OUTPUT
OPEN #3, "DSK1:OFILE.ASCC200,203", OUTPUT
OPEN #1, "VENDOR.DAr', RANDOM, 100, RECNUM
OPEN #1+X, MID$(A$,2,3), OUTPUT
OPEN #25,'MASTER",INDEXED,so,RELKEy

The OPEN statement Is one of the only statements which reference the file by
its actual ASCII filespec in the standard operating system format. Most
references in the program are made to the file—channel number which is
assigned in the OPEN statement #file—channet.

15.3.2 CLOSE

The CLOSE statement ends the transfer of data to or from a file. Once afile has been closed, no further references are allowed to that file until
another OPEN statement for that file is executed. Any files that are stilt
open when the program exits are closed automatically. The format of the
CLOSE statement is:

CLOSE #fi le—channet

where #fite—channel specifies the file—channel number associated with thefile you want to close. For example, if you have previously opened a file
VENDOR. DAT:

OPEN #3, "VENDOR. DATC200,1]",INPUT

to close that file, use the statement:

CLOSE #3

15.3.3 KILL

The KILL statement erases one file from the disk. It does not need a
file—channel number and no OPEN or CLOSE need be performed to KILL a file.
The format for the KILL statement is:

KILL filespec

For example:

KILL "NEWDAT.DAV'

(Changed 31 October 1981)

ALPHABASIC FILE I/O SYSTEM Page 15—9

As in the OPEN statement, the filespec Is any string expression which
evaluates to a legal file description. KILL assumes an extension of .DAT.
If you try to erase a fiLe that does not exist, you see the error message:

File not found

You may not erase a file that exists in an account outside of the project
you are logged into. For example, if you are logged into account tIlO,2]
and the program you are running tries to kill a file in account 1200,1), you
see a protection violation error message.

15.3.4 LOOKUP

The LOOKUP statement looks for a file on the disk and returns a flag which
tells you If the file was found, and if so, how many disk blocks it
contains. The format for the statement is:

LOOKUP filespec, result—variable

As in the OPEN statement, the filespec is any string expression which
evaluates to a Legal file description. The result—variable is any legal
floating point variable which receives the result of the search. The LOOKUP
result—variable may return:

0 FiLe was not found

Positive #n File was found; it is a sequential file, and contains
n disk blocks.

Negative #n File was found; it is a random file, and contains n
disk blocks.

Remember that the number returned by LOOKUP is the number of physical disk
blocks used by the file. You must multiply this number of 512—byte blocks
by the file's blocking factor to find out how many logical records your file
contains. For example, after we execute:

LOOKUP "CNURT. bAr',BLOCKS

the variable BLOCKS contains the number of disk blocks in the file
CNURT.DAT, or a 0 If the file does not exist. We must multiply BLOCKS by
the blocking factor of the file to see how many logical records can fit In
the file.

(Changed 31 October 1981)

ALPHABASIC FILE I/O SYSTEN Page 15—10

15.3.5 ALLOCATE

The ALLOCATE statement prealtocates a random file on the disk, which you may
then open for random processing. An attempt to allocate a file which
already exists results in an error message. A random file need only be
allocated once and may then be opened for random read/write operations as
many times as desired. The statement format is:

ALLOCATE filespec, number—of—blocks

As in the OPEN statement, the filespec Is any string expression which
evaluates to a legal file description. The number—of—blocks is a floating
point expression which represents the number of physical 512—byte disk
blocks to be allocated to the file. For example:

ALLOCATE FILEs, BLOCKS
ALLOCATE "NEW.DAT",20

15.3.6 FILEBASE

During normal operation, BASIC refers to the first record in a random file
as record number zero (i.e., you set the record number variable to zero to
access the first record in the file). In some applications you may want
BASIC to refer to this first record by some nanber other than zero: for
instance, to allow you to use zero to flag some special condition, such as a
deleted record. The FILEBASE command allows you to set the number used to
refer to the first record. For example:

FILE8ASE 1

tells BASIC that the first record in the file is record number one, not
record number zero. You may use any numeric argument with FILEBASE.

Note that FILEBASE does not associate its value with a file, but only takes
effect when you execute the program it is in. If one program uses a
FILEBASE command when referencing a file, alt other programs which reference
that file should also use a FILEBASE command with the same value.

15.3.7 INPUT

Once a sequential file has been opened for input, you may use a special form
of the INPUT statement to read data from the file. The INPUT statement uses
a file—channel number corresponding to the file—channel assigned in the OPEN
statement. The variables in the list may be either numeric or string
variables, but must follow the format of the data in the file being read.
(Weird results occur if you attempt to read string data into a numeric
variable, or vice—versa.) The general format of the INPUT statement Is:

INPUT #file—channel,variablel{,variable2,...variableN}

(Changed 31 October 1981)

ALPHABASIC FILE I/O SYSTEM Page 15—11

During the reading of the input data Into the variable List, alt leading
spaces are bypassed unLess they are enclosed within quotes, just as in the
normal form of the INPUT statement. Also, aLt carriage—returns and
line—feeds are bypassed, alLowing the tile created by the PRINT statements
to contain formatted Line data if desired. Commas, spaces and end—of—tine

• characters alt terminate numeric data and then are bypassed.

As with the non—file version of the INPUT statement described In Section
10.11, the data being Input must be In the proper format. In the case of
the file version of the INPUT statement, that means you must be aware of the
rules for properly separating data when you first write the data out to the
file using the PRINT statement. Here are the ruLes to folLow when writing
data to a fiLe:

1. Separate alt floating point data with spaces or commas.

2. Separate alt string data with commas.

3. Separate all ftoating point data and string data with commas.

Keep In mind the characteristics of the PRINT statement when writing data to
a file, so that you do not conflict with the rules above. Section 10.19
discusses the PRINT statement. Using PRINT to send data to a file formats
that data in exactly the same way that it wouLd if you were to use PRINT to
send data to the terminaL screen. Remember that PRINT does not separate the
data with commas for you. For example, the following statement:

PR INT #100 "HELLO" ,"AGE" ,"DATE"

sends the foLlowing Line to the fiLe:

HELLO AGE DATE

If you try to use INPUT to read that data In the fite into three different
string variabLes, the first variable wilt contain "HELLO AGE

DATE" and the other two string variables wilt contain null data.

To read the data above as three separate pieces of string data, you must
remember to separate the data by explicitly placing commas into the file.
For example:

PRINT #100 "HELLO"; ","; "AGE"; ",'; "DATE"

sends the following tine to the file:

HELLO,AGE,DATE

which wilt be input correctLy by the fottowing statement:

INPUT #100 A$,BS,C$

(Changed 31 October 1981)

ALPHABASIC FILE I/O SYSTEM Page 15—12

Note that the statement:

PRINT #100 "HELLO", '5", 24, '5", "DATE"

will improperly format the data in the file because the unquoted commas
above wilt cause PRINT to separate the data with spaces as welt as commas:

HELLO , 24 , DATE

(For more information on INPUT, see Section 10.11. ALso, see the section on
INPUT LINE, below.)

15.3.8 INPUT LINE

After a sequential tile has been opened for input, the data can be read from
the file by a special form of the INPUT LINE statement which uses a
file—channel number corresponding to the file channel assigned in the OPEN
statement. The variables in the List may be either numeric or string
variables, but must follow the format of the data in the tile being read.
Unpredictable results occur If you attempt to read string data into a
numeric variable, or vice—versa. The general format of the INPUT LINE
statement is:

INPUT LINE Nfl le—channet,variablel

The INPUT LINE statement operation is identical to that of the INPUT
statement with the exception that input Into a string variabLe accepts the
entire tine up to but not including the carriage—return and line—feed that
ends the tine. This allows commas, quotes, bLanks and other special
characters to be input. Also, INPUT LINE accepts bLank lines as Input. The
INPUT LINE statement may be used in sequential file processing as well as
the standard terminal INPUT statement. You wttt usually use INPUT LINE
specifying one string variable to read in one tine of the fiLe at a time.
See Section 10.12 for more information on INPUT LINE.

15.3.9 PRINT

Once you have opened a sequential file for output, you wilt write data to it
with a special form of the PRINT statement using a file—channel number which
corresponds to the fiLe channel assigned in the OPEN statement. Alt the
techniques available to you when you use the normal form of the PRINT
statement (which outputs to the terminal) are also available for sending
data to a file, Including PRINT USING for formatted data. PRINT writes data
to the file in the same format as It would appear if you used PRINT to send
the data to a terminaL display (I.e., if you left off the file—channel
number). Following are the format and some examples of the PRINT statement.

PRINT #flte—channet, expression—list

(Changed 31 October 1981)

0

ALPHASASIC FILE I/O SYSTEM Page 15—13

PRINT #1; A; B; C
PRiNT #4, USING AS, A, SQR(A)
PRINT #Q1, USING "###.##", A'l(lO);
PRINT #1, "THIS IS A SINGLE LINE"
PRINT #2, "WRITE TO","PRINT ZONES",

SectIon

15.3.7 expLains the required format for data when you are using the
INPUT statement to read the data from the file. For more information on
PRINT, see Section 10.19

15.3.10 READ

The READ statement reads a selected logtcat record from a random file which
has been opened for random access processing. The logical record which is

transferred by the system I/O is the one whose record number is currently in
the record—number variable mentioned in the OPEN statement. The format of
the READ statement is:

READ #flte—channel,variabtelC,variabte—2...,variableN}

The variables In the List may be any format, but they obviously should match
that of the designated record format. The data Is read into the variables
as unformatted bytes, without regard to variable type. The data is
transferred into each variable until the variable has, been completely
filled. Then the next variable in the list is filled, and so on. If the
record is longer than the variable List specifies, alt excess data in the

record will not be transferred. An attempt to transfer more data than is in
the Logical record size results In an errormessage. The most efficient use
of the random files comes when the variable or variables used are mapped by
the MAP statement to the exact picture of the record format In use. (See
Chapter 8, "Memory Napping System,' for information on MAP statements.)
Also see the sample program at the end of this chapter for a demonstration
of creating and reading a random file.)

15.3.11 WRITE

The WRITE statement is used to write a seLected logical record into a random
file which has been opened for random access processing. The logical record
which Is transferred by the system I/O Is the one whose record number is
currently In the record—number variable mentioned in the. OPEN statement.
The format of the WRITE statement is:

WRITE #fi le—channel,expression—tist

The variables in the list may be any format, but they obviously should match
that of the designated record format. The data Is written Into the Logical
record from the user variables as unformatted bytes, without regard to
variable type. The data is transferred from each variable until the
variable has been completeLy emptied. Then the next variable in the list is

(Changed 31 October 1981)

ALPHABASIC FILE I/O SYSTEM
Page 15—14

used, and so on. If the record is longer than the variable list specifies,
all excess data in the record wilt not be modified:. An attempt to transfer
more data than is In the logical record size results in an error message.
The most efficient use of random files comes when the variable or variables
used are mapped by the MAP statement to the exact picture of the record
format in use.

15.4 SAMPLE PROGRAM

The program below gives a very simple demonstration of limited data
manipulation• Notice that you could easily write modules that would expand
its functions to Include deleting customer records, changing data In
existing customer records, adding more customer records to a partially
filled file, and so on.

Some of the file—handling commands demonstrated by the program are: LOOKUP,
ALLOCATE, OPEN, CLOSE, READ, and WRITE. Notice that we also use the
extended TAB functions to clear the screen and position the cursor, and use
the MAP statement to define alt logical records and variables used In the
program.

S ! SAMPLE PROGRAM TO CREATE AND ACCESS A RANDOM FILE
10
15 ! This program simulates a very simple information management system.
20 ! Notice that we use MAP statements to map all variables used in the
25 program; although this is not strictly necessary (except for the
30 definition of the Control record and Logical record templates), it
35 ! Is handy to have all variables defined at the front of the program.
40
45 ! Define Control record that contains info about file
50 MAP1 HEADER'RECORD
55 MAP2 TOTAL'RECS,F ! Total ntrber of records In file
60 MAP2 IN'USE,F

! Numberof records in use
65 MAP2 FILLER,$,52

I Filler bytes needed to pad record
70 to 64 bytes
75 Define logical record (64 decImal bytes)
80 MAP1 CUSTOMER' INFO
85 MAP2 NAME, 5,20

! Name and address
90 MAP2 STREET,S,10
95 MAP2 CITY,S,11
100 MAP? STATE,S,2
105 MAP? ID'NUM,F I Customer ID ntnber
110 MAP2 CAR'INFO
115 MAP3 MODEL,S,1Q Information about car
120 MAP3 YEAR.S,4
125 MAP3 INSURANCE,B,1 I Does owner have Insurance?
130
135 I Miscellaneous variables used by the program
140 MAP1 BLOCKS,F # of disk blocks used by file
145 MAPI BYTES,F # of bytes used by alt records
150 MARl REC'SIZE,F,ts,64

! # of byter in record (64, decimal)

(Changed 31 October 1981)

page

jstS. jf it does, go to
wlfl

BEGIN MAIN pROGRAM4

jt.e 0the
writt to it.e.

fit

t use LOOK °' ra7 or

• we can
bertit evefl

rout'bt t

res (64*

can1 OW how

fitCa firss
flybytest

¼cs12*64%(NQextra b
the

Then, s
records pet

attotate ne
aad

EADIFILE

exactLY
of

(blocks

RESU 0 6010
Rsition cur sot

t manY dis

START:
RESULT

scree
DAL' RECS

A8(10,1'
fit;

recordt4j12
tber Of

BLOCKS
cIx(BL0S) + 1

Entet

To1ALIt5.fRjlZ)Tt4 BLOCK$

REC'$
s 0). header IS

IF BLO
bytES

soINT(Br BL01,
RECISIZEP(gEc.14uM

ALL0CPt

RecOtd
records

oPEN
US header to

how
"8 are in usC

that teLls us
man?

ADfl' REt0
to next record

co

thofl'
#2, H
t Get read? to

REC1

cursor
REC'Ni' teen

and posit0hi

Cust°'' $afl"REtU tot
ite j to tnt

flffltttifl0

enttt S

t clea

PRINT 1A8(1PO)are
throU&"

t Get into and
PRIt Wh you
GQ

READ tsv0RMJ0' FROTM EXIST
6FttehOW'1 reco are

exit.
t cont'° record

the
wants

• r jnput '3; Øpei' if wantS to read tram fitfl

exitamer user
terS

file 5 empty;
have info for; ask i5j

sure user en

n use. As

user wantS

Che to see It
:'1.1?

or none)'

it

user whatCr
Just a RETURN

a RETURN to

info on (I

entetS
vat4 cust

:dtso;ntit

E, REC'N

t DisP" de

RAND' RECtShlcusTMtt
HEADER EConit. ('(or N)?

OPEN #31
Q : READ #3?5 to rCS

(GUERY ,) 6010 RflDmflIl
pRINT

UCS('
,ositrtsot

TABC1/n6010
READ'T

'4

oUER'

Readi® ti e.
cte

pRtNT I

showus:5tt
PRINT "FilB is emptY

ustom5 we have :0: whom we have jntO'

IF (114'

t of th'INert is

cE(5; .'CUS1 NAME sAME
R'IN0

FOR REt sUM

ID'NUM SPA
READ
PR IN

HEXI

(ChaC9 31 october 1981)

ALPHABtt FILE tb 5ysTEM

curtt record n,,nberI cont'5
esult vari3tLOGIW? commMd
(mit to nutt)scratt' var1afl
for user inputt $ta variabtt

155 $API RECINIJM??
160 MAPI RESULTIP
165 MAP1
110 MAP1 wlAL,
115
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250

zoO
265
270
215
aBO
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
310
315
380
385
390
395
400
'pa5
415
420

ALPHABASIC FILE I/O SYSTEM Page 15—16

425
430 Find out what Info we should display
435 GET'NUM:
440 QUERY= "" : PRINT Set initial choice to null
445 PRINT "Enter the ID number of the customer whose info you want to"
450 PRINT "see. (Enter just a carriage return to end program; enter 'ALL'"
455 INPUT "to see info for all customers.): ", QUERY
460 IF (QUERY=") 60T0 READ'EXIT I User wants to quit
465 QUERY = USC(QUERY) IF (QUERY = "ALL") THEN 6010 DISPLAY'ALL
470 1 Check to see that customer number is valid. Convert string to
475 ! numeric so that we do numeric, not string, comparison.
480 NQUERY = VAL(QUERY)
485 IF (NQUERY < I OR NQUERY > IN'USE) THEN &

PRINT PRINT "Invalid number." : 6010 GET'NUM
490 1 Read desired record (set REC'NUM to customer number).
495 REC'NUM = NQUERY READ #3, CUSTOMER'INFO
500 6051.18 DISPLAY' INFO display record
505 GOTO GET'NUM See if user wants to see another

510 I User wants to display all customer records
515 DISPLAY'ALL:
520 FOR REC'NUM = I TO IN'USE
525 READ #3, CUSTOMER'INFO I en next record
530 GOSUB DISPLAY INFO ! Display information in record
535 NEXT REC'NUM
540 GOTO GET'NUM

I See if user wants to look again

545 1 Time to leave program
550 READ'EXIT:
555 PRINT : PRINT "Closing display file..."
560 CLOSE #3
565 END

800 I Subroutine to display information in record
805
810 DISPLAY'INFO:
815 PRINT PRINT "CUSTOMER #:"; ID'NUM; "—— "; NAME
820 PRINT SPACE(S); "Street address:"; SPACE(7); STREET
825 PRINT SPACE(S); "City: '5 CITY; SPACE(S); "State: "; STATE
830 PRINT SPACE(S); "Car modeL: "; MODEL; " Car year: "; YEAR
835 PRINT SPACE(S);
840 IF (INSURANCE = 0) PRINT "No insurance." ELSE PRINT "Car is insured."
845 RETURN

900 I Subroutine to get information from user and write it to the file
905
910 GET'INFO: PRINT
915 I Make sure we're not trying to add data to a full file
920 IF (IN'USE = IOTAL'RECS) THEN PRINT "File is full..." : 6010 EXIT
925 I Clear NAME to null so we can test to see If user wants to quit
930 NAME t
935 1 Start entering data. Pad it to proper Length with spaces
940 I so that complete logical record comes out to exactly 64 bytes.

(Changed 31 October 1981)

ALPHABASIC FILE I/O SYSTEM Page 15—17

945 INPUT "Customer name: ", NAME : IF NAME = " GOTO EXIT
950 NAME = NAME + SPACE(20 — LEN(NAME))
955 INPUT "Street address: ", STREET
960 STREET = STREET + SPACE(15 — LEN(STREET))
965 INPUT "City: ", CITY
970 CITY = CITY + $PACE(12 — LEN(CITY))
975 INPUT "State: , STATE
980 STATE s STATE + SPACE(2 — LEN(STATE))
985 INPUT "Car model: ", MODEL
990 MODEL = MODEL + SPACE(10 — LEN(MODEL))
995 INPUT "Car year: ", YEAR
1000 YEAR a YEAR + SPACE(4 — LEN(YEAR))
1005 INPUT "Car insurance? Cf or N): ", QUERY
1010 QUERY=UCS(QUERY) : IF (QUERY '1") INSURANCE t I ELSE INSURANCE = 0
1015 ID'NUM = REC'NUM Customer nunber is just record #
1020 I Write whole record; Increment records—in—use counter and bunp
1025
1030
1035
1040

REC'NUM so we are ready to write to next record
WRITE #2, CUSTOMER'INFO : IN'USE = IN'USE + I : REC'NUM = REC'NUtI + 1
PRINT "Customer ID Number Is:"; ID'NUM
GOTO GET'INFO

EXIT:
We want to stop entering date

PRINT "Now closing output tile."
REC'NUM = 0 : WRITE #2, HEADER'RECORD
PRINT "Total nunber ot records in file:";
PRINT TOTAL'RECS,"Records in use:"; IN'USE

1080 CLOSE #2
1085 RETURN

1045
1050
1055
1060
1065
1070
1075

(Changed 31 october 1981)

CHAPTER 16

CHAINING TO BASIC AND SYSTEM PROGRAMS

The CHAIN statement terminates execution of the current program and
initiates the execution of a new program. or system function. The new
program to be executed must be named in the CHAIN statement itself; that
name may be a full file specification. The file named in the statement may
be another AIphaBASIC program (compiled only), or it may be a system command
or command file. This allows your program to execute a command fiLe and
invoke system commands as: welt as execute other AIphaBASIC commands.

1.1 CHAINING TO ANOTHER AtePHA$A5:IC PROGRAM:

CHAIN assumes a default extension of .RUN, whioh:4esignates a new AIphaBASIC
program to be executed. If the extension of the evaluated file
specification is indeed .RUN (either explicitly or by default), the
specified BASIC program is loaded into memory and executed. (If you do not
specify a device and account, BASIC follows the search pattern outlined In
Section 3.10, "Library Searching, in looking for .RUN files. If you do
specify a device and account, BASIC looks in the spet'ifled area.) All
variables in the new program are first cleared to zero prior to execution.
Also, all variables in the current program are set to zero (or null, F?
strings). The BASIC program that you specify must be a compiled (.RUN)
file. Some examples of legal. CHAIN statelwents:are:

CHAIN "PAYROL"
CHAIN "PAYROL.RUN"
CHAIN "DSKl :PAYROLEIO1,13)"

Due to the fact that programs are compiled and not Interpreted, there is no
way to execute a program at any entry potnt other than its physical
beginning. There is also no Internal method for passing parameters between
programs, but you can accompl.ish this function for yourself by using the
BASIC assembly language subroutine COMMON to store data in a common memory
area. COMMON allows you to store information either in system memory (where
programs run by all users on the system can aocessthe information) r: an
Individual user's memory partition (where only programs run by that user can

DWM—D0100—01 REV $04

CHAINING TO BASIC AND SYSTEM PROGRAMS Page 16—2

access the information). For details or* using COMMON, see COMMON — BASIC
Subroutine to Provide Common Variable Storage in the "e*sxc Programmer's
Information" section of the AMOS Software Update Documentation Packet. Inaddition to sharing information, you can use the common area to pass
parameters to the chained program. For example, the current program can
pass a parameter to the new program which It uses in an ON-GOTO statement to
begin execution at some point in the new program based on the value passed
in the parameter.

Another way to make sure that chained programs can share information is the
use of disk files. The current BASIC program can open a data file, write
the variables it wants to share into that file) and; then close the file.
When the new file is chained In, it can open the tile and read the necessary
information.

16.2 CHAINING TO SYSTEM FUNCTIONS

It is sometimes desirable to transfer execution to a system function or a
command file from a BASIC program. If the extensikon; of the tile in the
CHAIN statement is not .RUN, the file is a system command program or system
command file (a .PRG (on: the AMOS/L system, .UT)t.DG. or •CMD file) • In
this case, the AIphaBASIC run—time package creates a dummy command file at
the top of the current user partition and transfers control to the monitor
command processor. The monitor then interprets this dummy command file as a
direct command and executes it. Note that thedummy tbnøand tiWcreated by
the run—time package Is merely the one—line name specified in the CHAIN
statement. It is not the command:4ile itself, whIth is the target tunctiont
desired. Some valid examples are:

• CHAIN "SYSTAT.Ufll,4]"
CHAIN "TESTI .CMD"
CHAIN "DSKO:BCKtJP. CMDra,a]"
CHAIN "TRANS.DOCIIO,O3"

Note that if the device and account are not specified, the action taken is
the same as if you had entered the command directly from your keyboard..
That is, if you omit device and account speci:flcat:ltons,. the monitot command
processor searches for command files or programs in the following order:

1. System memory

2. User memory

3. The account and device you are logged intot.

(NOTE: To load a file into your user memory pat'titton,:use the monitor level
LOAD command. To toad the file Into system memory (when:. tt may be accessed
by all users on the system), the System Operator must add the appropriate
SYSTEM command line to the system initialization command file.)

DWM—OO100—Q1 REV 804

CHAINING TO BASIC AND SYSTEM PROGRAMS Page 16—3

Note also that when you chain to a monitor command, after the command has
finished executing, It returns you to the monitor Level, rather than BASIC.
This means that if you wish to automatically return to some AIphaBASIC
program, you have to execute a command file whose final command is a RUN
command which specifies that original BASIC program.

CHAPTER 17

ERROR TRAPPING

AlphaBASIC allows your program to trap errors that would normally cause the
system to print an error message and abort the program run. When you are in
interactive mode, an error returAs you to AIPhaBASXC; if you are In compiler
mode, an error returns you to the monitor. Use of the ON ERROR GOT0 and

RESUME statements causes immediate action to be taken to recover from errors
detected within the program.

17.1 ON ERROR GOTO STATEMENT

Error trapping is enabled and disabled by using the ON ERROR GOTO statement
in one of two forms. The first form specifies a Line nurber (or label)
within the program. When the program encounters thts ON ERROR statement, it
stores the line nunber and sets a flag enabling error trapping. If an error
occurs any time after this, BASIC transfers àontrot. to theroutine specified
by the line nunber or label. Examples of this form of the statement are:

ON ERROR GOTO 500
ON ERROR GOTO TRAP'ROUTXNE

The error routine must then take appropriate action based on the type of
error.

The second form of the statement disables further user error trapping by
specifying a line nuaber of zero or leaving the line nunber off completely.

ON ERROR GOTO 0
ON ERROR GOTO

After executinq the above form, if an error occurs, the program prints the
standard error message and aborts the program run.

A special case exists when the above statement is encountered within an
error recovery routine (prior to executing the RESL*%E statement). In this
instance, the user error trapping is disabled and the existing error is

forced to be processed by BASIC's error handling as if no error trapping

ERROR TRAPPING Page 17—2

were ever enabled. It is recommended that alt error trapping routines
execute the ON ERROR 6010 0 statement for all errors which have no special
recovery processing.

NOTE: If an error occurs within the error trapping routine Itself, that
error is processed and the error message (?Error in error trapping)
occurs. There is no method to detect errors within the error recovery
routine.

17.2 ERR(X) FUNCTION

The ERR function returns the following data based on conditions at the time
of the error:

ERR(0) nuneric code specifying the type of error detected
ERR(1) = last line nunber encountered prior to the error
ERR(2) last file nunber accessed (only relevant for f,te errors)

17.2.1 Error Codes Returned by ERR

Code Meaning

I Control—C interrupt
2 System error
3 Out of memory
4 Out of data
5 NEXT without FOR
6 RETURN without GOSUB
7 RESUME without ERROR
8 Subscript out of range
9 Floating point overflow

10 Divide by zero
11 Illegal function value
12 XCALL subroutine not found
13 File already open
14 tO to unopened file
15 Record size overflow
16 File specification error
17 File not found
18 Device not ready
19 Device full
20 Device error
21 Device in use
22 Illegal user code
23 Protection violation
24 Write protected
25 File type mismatch
26 Device does not exist
27 Bitmap kaput

a

ERROR TRAPPING Page 17—3

28 Disk not mounted
29 FiLe already exists
30 Redlmensioned array
31 IlLegal record number
32 Invalid filename
33 Stack overflow

34

InvaLid syntax code
35 Unsupported Function
36 InvaLid subroutine version

For example, if PRINT ERR(0) returns a 10, you know that the program tried
to divide a number by zero.

17.3 RESUME STATEMENT

The RESUME statement is used to resume execution of the program after the
error recovery procedure has been performed, It also re—enables Control—C
detection, which is turned off while BASIC processes the error trapping
routine. The statement takes on two forms similar to the forms of the ON
ERROR 6010 statement. The first form specifies a line number (or label)
within the program where the execution Is to be resumed:

RESUME 410
RESUME TRY'AGAIN

The second form specifies a line number of zero, or no line number at aLL,
and causes the execution to be resumed at tte statement which caused the
error to occur:

RESUME 0
RESUME

Both forms cause the error condition to be cleared and error trapping to be
enabled again.

NOTE; You must never use the 6010 statement to exit from. an error trapping
routine. You must use RESUME. This is because RESUME clears the Error
stack, but GOTO does not, which causes problems for Later error handLing.

17.4 CONTROL—C TRAPPING

When you type a Control—C on your keyboard during the execution of an
AIphaBASIC program, the program is suspended at the next statement. Action
taken then depends upon the status of the error trapping flag. If no error
trapping is enabled, the program Is aborted and the appropriate message is
printed on the terminal. If error trapping is enabled, the error trapping
routine is entered with the code in ERR(0) being set to 1. ThIs feature
allows you to prevent users from inadvertently exiting programs during
critical times such as file updates.

DWM—OQ100—o1 REV B04

ERROR TRAPPING
Page 17"4

Controic action is suspended during error recovery processing to preventaccidentally aborting the program during an error routine, The Control"C is
detected immediately upon execution of the RESUME statement; the program
continues with the Line following the one that was interrupted, if the
RESUME statement did not spec ify a line number,

17,5 SAMPLE PROGRAMS

The simple program below contains an e•rror trapping routine tha•t handles
"d-ivide by zero" errors, Note that a successful error trapping routine must
ei.ther resolve the error or exit the orogram, For example, if the Program
below had merely printed an error message and then RESUMEd back to the line
where the error occurred, the "divide by zero" error would still exist,
BASIC would again t.ransfer control to the error trapping routine, and we
would be in an eternal loop, Instead, the program resolves the error by
changing the values of the problem variables to 1, and then resumi:ng program
execution; this time around, a divide"by"zero error cannot occur, and
everything is all right.

10 ON ERROR GOTO DIVIDE tBYZERO
20 INPUT "Enter two numbers: ", A, B
30 PRINT "A/B "; A/B
40 END
5Q: DIVIDEBy'7ERO
60 If error is not "divide by zero" exit the program,
70 IF (ERR(0) 0 10) THEN END
so PRINT " Division by zero undefined!" setting A and B to 1"
90 A = 1 : B 1 Reset A and B so that division works.
100 RESUME Go back to line where problem occurred,

Two sample runs of the program look like this:

Enter two numbers: 2,3
A/B =_,666667

Enter two numbers: 3,0
A/B = Division h zero_undefined.H" setting A and B to I

Ala I .. - -

DWM"OOIOO'431 REV B04

ERROR TRAPPING Page 17—5

The following: program shows a small, uncompticatederror trap routine that
handles a Control—C. Notice that we enabLe the error trapping routine
CATCH'CTRLC: just before the user enters input. Directly afterward, we
disable our routine and re—enabLe the regular BASIC error trapping vie the
ON ERROR 6010 0 statement. This IS to catchany errorsother than a
Control—C that might occur in the rest of the program.

10 ! ERROR TRAPPING SAMPLE PROGRAM
20
30 ! Define error code for Control—c, and' various string variabLes.
40
50 MAP1 CONTROL'C,F,,l
60 MAP1 SCRATCH,S,16,"
70 MAP1 ANSWER,S,16."
80 MARl QUERY,S,1
90
100 ! Begin Main Program
110
120 START: PRINT
130 PRINT "This program converts posttive decimal numbers to binary.'
140
150 I Ask user for decimal nujnber.
160
170 GET'NUMBER:
180 ! Turn on our error trap to catch Control—C on input.
190 ON ERROR 6010 CATCH'CTRLC
200 INPUT "Enter a number between 1 and 65535: ",NUMBER
210 1 If user typed a ControL—C, we've already caught It, so turn off our
no ! error trapping and turn regular BASIC error trapping back on in
230 ! case other error occurs.
240 ON ERROR 6010 0
250 IF NUMBER < 0 6010 GET'NUMBER
260 CURRENTNUMBER
270
2.0 ! Now calculate answer.
290
300 CALCULATE:
310 IF (CURRENT/2 = FIX(CURRENT/2)) THEN &

SCRATCH=SCRATCH+"O" ELSE SCRATCH=SCRATCH+"l"
320 IF FIX((CURRENT/2) = 0) 6010 DISPLAY ! Done.
330 CURRENT=FIX(CURRENT/2) I Get rid of remainder.
340 6010 CALCULATE
350
360 Display routine. Reverses string so that answer is in proper order.
370
380 DISPLAY:
390 FOR I = 1 TO LEN(SCRATCH)
400 ANSwER=ANSWER÷SCRATCHr—I;1]
410 NEXT I
420 PRINT " The decimal number';NUMBER;'is";AN$WER;'in binary.'
430 SCRATCH= •

ANSWER = " " Initialize answer to null.
440 GOTO GET'NUMBER
450

ERROR TRAPPING Page 176

460 Error trapping routine, Just Looks for ControL"C, Gives user chance
470 to quit or resume.
480
490 CATCHCTRLC:
500 IF (ERRCO) C> CONTROLC) THEN RESUME
510 INPUT "Do you wish to quit? (V or N): ",QUERY
520 QUERY = UCS(QUERY) : IF (QUERY "N") THEN RESUME GOAHEAD
530 PRINT PRINT "So Long. " : PRINT
540 END
550 G0AHEAD: I User wants to resume after 'C
560 PRINT PRINT "Resuming. " : PRINT
5:70 GOTO GETNUMBER

A sampLe run of the program above Looks Like this:

[RUN CNVRT jr

This program converts positive decimaL numbers to binary,
24

The decimaL number 24 is 11000 in binary,
Enter a number between 1 and 65535: 'C [you typed a ControHCj
Do you wish to quit? (V or N?: Y

So Long,,.

CHAPTER 18

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES

AIphaBASIC supports the use of external assembly language subroutine
programs callable from your BASIC programs. There are several good reasons
why you might want to use an assembly language program to carry out a
function rather than using another BASIC program.

Assembly Language programs are generally much smaller and faster than
equivalent BASIC programs; when speed and size are Important factors, you
may want to code your programs into assembly language. Yet another reason
for using assembly language programs is simply that some tasks are too
awkward (or even impossible) to do from within a higher—Level Language.

Assembly language programs are uniquely suitable for applications that
require that you work more closely with the hardware or operating system
than is convenient or possible in BASIC.

This chapter explains how to write your own assembly language subroutines
for BASIC, and on calling such routines from within a BASIC program.

Although you may want to write your own assembly language subroutines, note
that we do provide a set of existing assembly language subroutines In the

BASIC
Library Account, DSKO:C7,63. (For information on these subroutines,

see the AIphaBASIC XCALL Subroutine User's Mgnual, DSS—10008—OO.

In addition, a set of business—oriented assembly language subroutines is
available from your dealer.

To call an assembly Language subroutine from an AIphaBASIC program, use the
XCALL statement. The syntax for this statement Is as follows:

XCALL routine{argument1{,argument2,...argent}}

The routine to be called is an assembly language program which has been
assembled using the machine language assembler. The resuLting .PRG program
file (or .LIT program on AMOS/L systems) must then, be renamed to give It the
assumed extension .SBR, indicating that it is a subroutine and not a
runnable program.

DWM—OO100—O1 REV B04

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18—2

When the XCALL statement is executed by the AIphaBASIC run—time system, the
named subroutine is located in memory and then called as a subroutine (see
Section 18.1, below, for more information on automatic subroutine loading.)

AIphaBASIC first saves alt, registers, then sets certain parameters Into
those registers for use by the external subroutine. The addresses of the
arguments are calculated and entered into an argument list in memory along
with their sizes and type codes. The base address of this list is then

passed
to the user routine in register R3 (on AMOS systems) or A3 (on AMOS/I

systems).

The arguments may be one of two basic forms:

1. A variable name, in which case the argument entry in the List
references the selected variable within the user impure area. This
variable is available to the called subroutine for both Inspection
and modification.

2. An expression (numeric or string), In which case the expression is
evaluated and the result is placed on the arithmetic stack
(referenced by RN (on AMOS systems) or AS (ott AMOS/I systems)).

This result, instead of a single variabLe, is then referenced in
the argument list entry, It is only tavaitabte for inspection,
since the stack Is cleared when the subroutTheexfts.

The
user routine is free to use and modify all general work registers (six

on the AMOS systems, R0-R5; 15 on the AMOS/i. systems, AO—A6 and DO—b?), and
may use the stack for work space as required. When the subroutine has
completed its execution, a return must be made to the run—time system by
executing the RTN subroutine return instruction.

18.1 AUTOMATIC SUBROUTINE LOADING

When a BASIC program calls a subroutine via an XCALL. statement, BASIC
attempts to locate the subroutine in user or system memory. If it is unable
to do so, it attempts to load the subroutine from the disk, following the
search pattern outlined in Section 3.10, "Library Searching.'

If a BASIC program fetches a subroutine from disk, BASIC loads it Into
memory only for the duration of its executton. Once the subroutine has
completed its execution, it is removed from memory if it was loaded via this
automatic procedure,

Therefore, if a subroutine is to be called a large number of times, it ts
wise to load it into memory (using the monttor LOAS command) to avoid the
overhead of fetching the subroutine from dtsk.

NOTE: Subroutines loaded into memory via the monitor LOAD command remain in
memory until you reset the system or until you use the monitor command DEL
to delete them.)

DWM—O0100—Q1 REV 804

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 183

I, 18.2 SPECIFIC INFORMATION FOR AMOS SYSTEMS

18.2.1 Register Parameters

The folLowing registers are set up by the run—time system to be used as
required by the external subroutine. They may bemodified, if des,red,
since they have been saved before the subroutine was called:

RO Indexes the user impure variable area. RO is used throughout the
run—time system to reference alt user variables. Details on the
format of this area are not available at this time. RO may be
used as a work register.

R3 Points to the base of the argument list. R3 may be used to scan
the argument list for retrieval of the argument parameters.

R4 Points to the base of the free memory area that may be Used by the
external subroutine as work space. This is actually the address
of the first word following the argumeht list In memory, and, if
desired, may be used to store a terminator word to stop the
scanning of the argument list.

R5 This Is the arithmetic stack index used by the run—time system.
The stack is built at the top of the user partition and grows
downward as items are added to it. When the external subroutThe
is called, R5 points to the current stack base. Since the
arithmetic stack may contain vatid data1, the external subroutine
must not use the word Indexed by R5 at any words above It.

18.2.2 Argument List Format

The list of arguments specified in the XCALL statement may range from no
arguments at alt to a number Limited only by the space on the command tlne.
To pass these arguments to the external subroutine, an argument list is
built in memory which describes each variable named In the: List and tells
where It can be located in the user impure area. The variables themselves
are not actually passed to the subroutine, but rather their absolute
locations In memory are.

In this way, the subroutine may Inspect them and modify them directly in
their respective locations. This does not apply to expressions which are
built on the stack as described previously.

DWM—OO100_oi REV 604

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18-4

R3 points to the first word of the argumentS which >i a btnar1y count of
how many arguments were contained in the XCALL statement. FoL'tdwing this
count word comes one 3—word descriptor block for each argument specified.
If there are no arguments in the XCALL statement, the argyment list consists
only of the single count word containing the value of zero.

The format of each 3 word block describing one argument is as follows:

Word 1 Variable type code. Bits 0—3 contain the type code for the
specific variable: Ounformated, 2=string, 4floatlng point,
6inary, 7 through 17 are currently 'unassigned. Bit 4 is set to
indicate the variable is subscripté4 or cleared to Indicate the
variable is not subscripted. Other bits In the type co4e word are
meaningless.

Word 2 Absolute address of variable in a user impure area. this address
is the first byte of the variable no maiter what its type or size
might be.

Word 3 Size of the variable in bytes.

Note that the above descriptions also apply, to the, expression arguments,
except that the results are Located above the address specified by RS
instead of below It.

The argument list is built in free memory 4lrectty above the. currently
allocated user impure, area. R4 points to the word immediately, following the
last word in the argument list. You may span the argument list and
determine its end either 'by decrementing the count wprd at the base of the
list or by scanning until the scan index reaches the address in R4.

18.2.3 Free Memory Usage

When the subroutine is called, indexes R4 and, R5 mark the beginning and end
of the free memory that is currently available for use as workspace. This
area is not preserved by the run—time pysmt and the ,,soujtThe must not
count on its security between XCALL statements..

Note that the word at 6JR4 may be used as the first word,, but the word at 6JR5
is the base of the arithmetic stack and must not be destroyed. The last
word of actually free, memory Is at, —2(R5).

The run—time system has its own internal memory managnent system and does
not wonform to the AMOS operating system memory management method.
Therefore, the external subroutine must not use the GETMEM monitor calls to
generate a block of work space in memory. Also, if any file calls are to be
done they must be done with internal buffers, since the INIT call sets up a
buffer by using the GETMEM monitor call.

DWM—OO100—01 REV B04

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18—5

18.3 SPECIFIC INFORMATION FOR AMOS/L SYSTEMS

18.3.1 Register Parameters

The following registers are set up by the run—time system to be used as
required by the external subroutine. They may be modified, If desired,
since they have been saved before the subroutine was catted:

*0 Indexes the user impure variable area. *0 is used throughout the
run—time system to reference alt user variables. Details on the
format of this area are not available at this time. *0 may be
used as a work register.

*3 Points to the base of the argument list. 43 may be used to scan

the argument List for retrieval of the argument parameters.

44 Points to the base of the free memory area that may be used by the
external subroutine as work space. This Is actually the address
of the first word foLlowing the argument list in memory, and, if

desired, may be used to store a terminator word to stop the
scanning of the argument list.

*5 This is the arithmetic stack Index used by the run—time system.
The stack is built at the top of the user partition and grows
downward as items are added to it. When the external subroutine
Is called, AS points to the current stacl base. Since the
arithmetic stack may contain valid data, the external subroutine
must not use the word indexed by AS or any words above it.

18.3.2 Argument List Format

The List of arguments specified in the XCALL statement may range from no
arguments at all to a number limited only by the space on the command Line.
To pass these arguments to the external subroutine, an argument list is
built in memory which describes each variable named in the list and tells
where it can be Located In the user impure area.

The variables themselves are not actually passed to the subroutine, but
rather their absolute locations in memory are. In this way, the subroutine
may inspect them and modify them directly in their respective locations.
This does not apply to expressions which are built on the stack as described
previously.

A3 points to the first word of the argument list, whieh is a binary count of
how many arguments were contained in the XCALL statement. FolLowing this
count word comes one 3—word descriptor block for each argument specified.
If there are no arguments in the XCALL statement, the argument list consists
only of the single count word containing the vaLue of zero.

DWN—00100—O1 REV 804

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18—6

The format of each 10—byte block describing one argument is as fottows:

Entry 1 One word containing a variable type code. Bits 0—3 contain the
type code for the specific variable: Ounformated, 2string,
4flloating point, óblnary, 7 through 17 are currently unassigned.
Bit 4 is set to indicate the variable is subscripted or cleared to
indicate the variable is not subscripted. Other bits in the type
code word are meaningless.

Entry 2 One longword containing an absolute address of variable in a user
impure area. This address is the first byte of the variable no
matter what its type or size might be.

Entry 3 One tongword containing the size of the variable in bytes.

Note that the above descriptions also apply to the expression arguments,
except that the results are located above the address specified by A5
Instead of below it.

The argument list is built in free memory directly above the currently
allocated user impure area. A4 points to the word immediately following the
last word In the argument list. You may scan the argument list and
determine Its end either by decrementing the count word at the base of the
list or by scanning until the scan index reaches the address in A4.

18.3.3 Converting Arguments to Binary Format

A standard subroutine, $GTARB, is provided in the system subroutine library
SYSLI$.LIB to assist in converting floating point and string arguments to
binary format for processing within an AIphaF3ASIC subroutine.

For further Information, see Appendix C in the AMOS/L Monitor Calls
Manual, DSS—10003—OO.

18.3.4 Free Memory Usage

When the subroutine is called, indexes A4 and AS mark the beginning and end
of the free memory that is currently available for use as workspace. This
area is not preserved by the run—time system, and the subroutine must not
count on its security between XCALL statements.

Note that the word at 61A4 may be used as the first word, but the word at &1A5
is the base of the arithmetic stack and must not be destroyed. The last
word of actually free memory is at —2(A5).

The run—time system has its own internal memory management system and does
not conform to the AMOS/L operating system memory management method.

DWM—0O100—O1 REV 804

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18—7

Therefore, the external subroutine must not use the GETMEM monitor calls to
generate a block of work space in memory. Also, if any file calls are to be
done they must be done with internal buffers, since the INIT call sets up a

buffer by using the GETMEM monitor call.

18.3.5 Locating Open Files

A standard library routine, SELSET, is provided in the system subroutine
library, SYSLIB.LIB, to locate the DDB associated with a file that has been
opened by an AIphaBASIC program.

For further information, see Appendix C of the AMOS/L Monitor Calls
Manual, DSS—10003—OO.

18.3.6 Program Headers

All AIphaBASIC subroutines must contain a program header at the start of
the subroutine. Program headers are defined by using the PHDR macro,
discussed in Appendix A of the AMOS/L Monitor Calls Manual, DSS—10003—flO.

DWM—00100—oj REV 804

CHAPTER 19

USING ISAM FROM WITHIN BASIC

This chapter discusses the ISAM information management system and its use

from within BASIC. it is important when reading 'the following sections that

you be familiar with opening and using random data files. If you are not,

refer first to Chapter 15, "A1phaBASIC File I/O System."

The ISAM program is a toot for organizing and retrieving date. The name

stands for "Indexed Sequential Access Method," and refers to the manner in

which the data is organized.

AIphaBASIC has the ability to process indexed sequential files by linking to

the ISAM assembly language package (which 'must reside either In system

memory or in individual user memory). ISAM supports multiple Index files

via some elementary ISAM statements that allow the direct control of index

file and data file items. This chapter assumes that you are familiar with

the Alpha Micro ISAM system. For more detailed Information on ISAM flies

and the ISAM assembly language package, please refer to the ISAM System

User's Guide (DWM—QO100—06).

19.1 FILE STRUCTURE

An indexed sequential file consists of one data file and one or more index
tiles which link to the data file. The data file is structured in the same

way as a normal random access file except that ISAM links all records which
are not currently active to each other In a chain called the "free data

record list." All data records reside In the data file and the data records
may be any size up to the maximum of 512 bytes. As In the normal random

file, data records are not split across physical 512—byte block boundaries

in the file. Index tiles are arranged in a complex balanced tree structure
and contain one symbolic key for each active data record plus a link to that

data record In the data file. This link is the relative record number and

is used in the same manner as its counterpart in a normal random access
file. The Index file also contains an array of internal links which

comprise the sequential access tree structure.

Two references used In this manual may be confusing It they are not

understood. When we talk about an "indexed file," we are speaking of the

(Changed 31 October 1981)

page 19—2

St

uSING jSh$ VRO$ bilisiN BASIC

entire tile structure in generate inclk the oatS tile and one or more
indeX tiles. ab0 an "indeX tlt&' when call1 pt3
the of the structure which coflt onlY the 5bOllt keys end the
tree links. 1SAS stores symbOt keys in an index tile in ASCiI
gequen' indeX tiles may be primarY or secofld0'

re that jSM4XCLU' modeS
you do not
eke sure that

and
INDEXtindex

heret0te in

h INDEXEDsolEt
the disk contatm

the disk; t

write_protected
more than

iS not

be able t'0
3ythin

the index
plan to
that disk

priOt tothe 15MBLD program
tion 0t a

eated bY
method tot the crt

e

les must becr
is

since
thiter,

creattdt
language

ny howe
create

AU index

YOUprogram

rameten and then

accen bY an

get up
the files

prohibitive

new
indeXtt,unto

this command
actual creation ot

fileS bY us

to pert0" the
execute 5,810

ptO9'Calt the I

have andata
there

dfl tile.

sting stt

lIed the
jndeX

always b

ucturt_havan exten mary
1 which

with ex1
Index

seconda?tjte
thiS

For compatit,
and all

index

aYdata site.
one O the

extension
•t least one

nat. Indexbe
oatS ftto the prima

order to
9 ::tth;data

t0tt:onont:lot in
to the

ro9ram "
intend

n an

the
curr1flgta* reteoperat the

true even
files it?

Dw*001®O6GUide

typt5 05 kYt; us
is the

ed by one
same type

°ting poitbtetatt eY
for the

$ are acC
tamfl

indexed tile
is alre3

nd°" tit.
relative

ktYnormal t
specitit3,\areZr stateflTtssed.

Ic record in a
to be act

spec"to

0j.number vari3r
of the

is used onlY
the numb

0 file
It

conta1sith inwhen used w
data tile.

19.2 AND RELAt1 KEfl

ymDot.iCd tiles. s

indeX
and i used onlY

aCctSS the
ISAMjtied in
the

is new to
USlabte lengtt5

andeys are 5P0
retrncept at

te symnbl key
keyS are ASCIi strin95'Ty)_

SY$b0ano:reu5tjt.e
o'rtEt one,

index

tile (9imarY
acct1'9 the

oats

WdoiittserentuSto? i a numbs" of

keys are

when
the 35sociat

be

relative key "

relat1t?h?i' 5ystein to

AS state!I%t
statement

key is

versus

e relattet
p end

0f them
e usedsymbol
nt

waY5
th the pEJ stateme

on instanesboe

used w1

pertotmed.
and merely atransparent toY°,
cal1$by

(changed 31 oct0bt' 1981)

USING ISAM FROM WITHIN BASIC Page 19—3

19.3 THE ISAM STATEMENT

You access Indexed files by a special statement in ALphaBASIC catted the

ISAM statement. This statement has the general form:

ISAM Nfl Ie—channet,code,symbotlc—key

All ISAM statements follow the above format using a different numeric value
In "code" to specify the specific function to be performed by the ISAM

package. All ISAM statements directly translate Into a specific type of

call to the assembly Language ISAM program. A symbolic key must always be

specified even for those functions which do not require the use, of one.

(This simplifies syntax checking and execution, co4ing.) You may use a dummy

string variable if you desire. Briefly, the following codes are used by the
ISAM statement:

1 — Find a record in the data file by symbolic key (i.e., return

the relative record number in the variable specified by the
OPEN statement that opens the data 'file/primary index file).

2 — Find the next data record (by the order in which the symbolic
keys appear In the Index file). Return the relative record

number in the variable specified by the OPEN statement.

3 — Add a symbolic key to an index file.

4 — Delete a symbolic key from an Index file.

5 — Locate the next free data record in the data file (returning
the relative record number in the variable specified in the

OPEN statement).

6 — Delete a record from a data file, and return that record to
the free list.

• 7 — Perform code 2 (explained above) and return the symbolic key.

An error results If an ISAM statement is executed with the value of "code"
not equal to one of the above numbers. The "code" may be any Legal numeric
expression which is resolved at run—time.

19.3.1 The ISAM Statement Codes

Below is a fuller explanation of the ISAM codes. Some require a relative
key as input; others return a relative key to be used when accessing the
data record. This relative key is returned in the variabte specified by the
OPEN statement for the index file being accessed by the ISAM statement.
This then sets up the system for an Immediate access to the corresponding
data record via a READ or WRITE statement.

(Changed 31 October 1981)

USING ISAM FROM WITHIN BASIC Page 19—4

Code 1 — ISAM searches in the specified index file tot the key which
matches the symbolic key in the ISAM statement. If a match is found,
ISAM returns the associated relative key so that your program can

access the data 'file. If the key is not found, ISAM returns ab error
code 33 (see Section 19.8, "Error Processing").

Code 2 — ISAM accesses the specified index file and locates the next
symbolic key. ISAM then returns the corresponding relative key In.
preparation for a READ or WRITE to the data fite. If this Is the
first access to the fiLe following the OPEN statement, ISAN Locates
the first symbolic key. If this statement fottows a previous code I

statement, ISN't locates the next symbottc key fol. lowing the code 1
key. If there are no more keys in the Index file, ISAt4 returns an

end—of—index—file error (38), and your program should not access the
data file further until ISAM returns a valid relative key.

Code 3 — ISAM adds the specified symbolic key to the index file
along with the relative key. The relative key must be in the
corresponding variable specified in the OPEN statement. ISN't normally

sets up this relative key by a prior code 5 ISAM statement which

delivers the next free data record to be used. This relative key then
becomes the result of any Index search which Locates this specific
associated symbolic key.

Code 4 — ISAM locates the specified symbolic key tn the Index file,
iTetes it, then returns the corresponding data record relative key so
that the data record may be deleted and returned to the free List by
using a code 6 ISAM statement. If ISAM cannot locate the symbolic key
in the index file, it gives you a "record not found" error.

Code 5 — ISN't extracts the next available data record from the free

list and returns the relative key in preparation for a code 3 index
key addition statement. If no more data records are free in the data
file, ThAN returns a "data tile full" error. All free records in the
data file are kept in a linked list called the "free list.' This list
Is built initially by ISMBLD and contains all the records In the data
file. As code 6 ThAN statements are executed, ISAN again returns the
records to the free list for reuse. ISAN does not modify the index
file and ignores the symbolic key In the statement. This call must be
made only to the primary index file ntnber.

Code 6 — the data record specified by the relative key is returned
to the free list for reuse by a code 5 call. The index file is not
modified and the symbolic key in the statement is Ignored. This call
must be made only to the primary index file nunber.

Code

7 — Same as code 2 above, except that ISAM also returns the
symbolic key. The symbolic key variable in your code 7 ISN't statement
must be the same size as or larger than the key defined in the ISAM
Index file.

(Changed 31 October 1981)

.4

USING ISAM FROM WITHIN BASIC
Page 19—5

19.4 OPENING AN INDEXED FILE

As with other types of files, an indexed file must be opened with a specitic

file—channel nueber prior to any references to the file by other statements.

The OPEN statement foLlows the same format as that used by the normal random

files except that you specify INDEXED or INDEXED'EXCLUSIVE mode.

OPEN #fi le—channel,fi lespec,INDEXED,record—Si ze,relativCkei

OPEN #fi le—channel,fi

#file—channel Any numeric expression that evaluates to an

integer from 0—65535 (0 is defined as the user

terminal).

fitespec Any string expression that evaluates to a

legal AMOS file specification (optionally

including account and device specifications).

Specifies the data file/primary index file or

the secondary Index file. (The primary Index

file always has the same name as the data
file, but has the .IDX extension; the data
tile has the .IDA extension.)

INDEXED Specifies indexed sequential mode.

INDEXED'EXCLUSIVE Specifies indexed exclusive mode. (See
Section 19.7 for mote Information.)

record—size Expression that specifies the logical record

size for the data file.

relative—key—
variable Floating point variable that contains the

record number of the logical record you want

to access.

The fitespec must refer to the name given to the index file during the

ISMBLD creation. If this is a call to open a secondary index file, you must

have already previously opened the corresponding primary index file on

another file number so that the data file may be accessed.

As an example, assume that an indexed file structure consists of the primary

index and data files named MASTER.IDX and MASTER.IDA respectively. The

structure also has secondary index tiles named ADRESS.IDX and PAYROL.IDX

which access the MASTER.IDA file in different sequences. If you desire to

process the file structure via the sequence used by the ADRESS.IDX index

file, the following two statements are required:

OPEN #1, "MASTER, INDEXED, RECSIZ, RELKEY
OPEN #2, "ADRESS', INDEXED, RECSIZ, RELKEY

The first statement opens both the data file and the primary index file.

NOTE: Remember that there are now three files opened: 1) the data file,

USING ISAM FROM WITHIN BASIC Page 19—6

MASTER.IDA; 2) the primary index file, MASTER.IDX; and 3) the secondary
index file, ADRESS.IDX.

Note that the record size expression (RECSIZ) and the relative key variabLe
(RELKEY) are identical in both statements. This is important since they
both refer to the same data file (MASTER.IDA-). ISAI'i statements may then be

made referring to either index file (#1 or #2) but alt READ and WRITE
statements must be made to the data fIle (#1) which is associated with the

primary index tile. In other words, READ and WRITE statements must not be

made to file #2.

19.5 READ AND WRITE STATEMENTS

The 15*14 calls do not access the data records themselves but merely deliver

back the relative key of the associated data record to be used. Normal READ

and WRITE statements are then used to atualty retrieve or write into the
data record itself. These READ and WRITE statements follow the same format

used when accessing a normal random access data tile in AIphaBASIC. The

relative key associated with the primary tile (as specified in the OPEN

statement) must contain a valid relative key for the operation or an error
results. READ and WRITE statements as mentioned before must only be made

using the primary index file—channel number. For example:

10 OPEN #3,'PAYROL",INDEXED,67,NUM' REC
20 ISAM #3,1,NAME ! Get record
30 READ #3,LABEL Read record

19.6 CLOSING AN INDEXED FILE

In order to ensure that all data records have been rewritten to the data
file and that all links in the index file have been properly updated and

rewritten to the disk, it is Imperative that all index files (primary and
secondary) be closed using the normal CLOSE statement, reterencing the

correct file—channel n.rber. Failure to do so may result in destroying the
link structure. NOTE: It makes no difference in which order you close the

ISAM files; however, remember that you cannot access a secondary index file
if you have already closed the primary index.

19.7 INDEXED'EXCLUSIVE MODE

When your program is the only program that needs to access an ISAM indexed

file, you can specify INDEXED'EXCLUSIVE as the mode in which you open the
file. For example:

OPEN #5,"PAYROL",INDEXED' EXCLUSIVE,100,REC'NUM

4€'

USING ISAM FROM WITHIN BASIC Page 19—7

The statement above opens the data file PAYROL.ZDA and the primary index

file PAYROL.IDX in exclusive mode. The main advantage of INDEXED'EXCLUSIVE

mode is a large increase In the speed with which your programs can access

the Indexed fit.. It also prevents other users. from accessing your Indexed

file until you close the file. Otherwise, It works in the same way as

INDEXED mode.

In INDEXED'EXCLUSIVE mode, flAil knows that no other program is going to

access the indexed file while your program is working with. it. Therefore,

ISAM can take full advantage of prior knowledge about the file for every
access and can speed up your access time considerably.

When your program opens an indexed file in the more common INDEXED mode, you

must use file—locking procedures to protect your indexed file if other

programs are going to access it while you are working with the file. (For

information on the file—locking subroutines XLOCKand FLOCK, see the "BASIC

Programmer's Information" section of the AM—lOG documentation packet.)

When your program opens an indexed file In INDEXED'EXCLUSXVE mode, ISAM wilt

not allow another user to access the specified lnde,ced file; if they try to

do so, they see a "file not found" error message. This means that you qnly

have to worry about file—locking at the moment in which you are opening the

indexed file. You may prevent another program from accessing your Indexed

file at the moment that you are opening it by securing the file via the

file—locking routines XLOCK or FLOCK, or just by making sure that no other

user is running a program that accesses the file.

Remember: The advantage of an indexed file opened in INDEXED'EXCLUSIVE mode
is that no other user can access the file while you are using it. If you

need to have several programs access the file, use the INDEXED mode; in that
case, remember to use file—locking procedures to prevent users from trying
to access the file at the same time.

One feature of the INDEXED'EXCLUSIVE mode is that it temporarily renames the
.IDX file to an .IDY extension to prevent ISAM from letting other programs

access the tile. If something should go wrong (such as a system crash),
ISAM may not he able to rename the file to itsoriginal .IDX extension, and

you will have to do so yourself.

For more information on INDEXED'EXCLUSIVE mode, see Important Notice for
ISAM Users, in the "User's Information" section of the AM—100 docisnentation

packet.

19.8 ERROR PROCESSING

Every ISAM statement may potentially return some kind of an error. These

errors fall into two categories: hard or soft errors. Hard errors are those
errors returned to ISAM by the monitor; such errors indicate invalid disk

operations (e.g., file not found). Soft errors occur within the ISAM
processor and indicate an error or condition peculiar only to ISAM files.

*4

USING ISAM FROM WITHIN BASIC Page 19—8

Hard errors cause AIphaBASIC to print an error message and abort. to the
monitor or (if error trapping is enabled) pass control to your own error
trapping routine. (See Chapter 17', "Error trappr1ng" espec:lal:ty Section
17.1, "ON ERROR 6010 Statement," for Information on writing your own error
trapping routines.)

19.8.1 Soft Errors

Soft errors never result in an error message or error trap, and BASIC does

not stop program execution when a soft error occurs. It is therefore up to
your program to test for such errors. You must test for a soft error after

every ISAM statement. Otherwise you have no way of knowing whether or not
the statement was successfully executed, use the ERF file error function.

ERE is used in much the same way as the EOF function. You must specify the
file nunber used in the ISAM statement whose success you want to test. If

the ERF function returns a zero, the preceding ISAM statement was

successfully executed; if ERf returns a nonzero nunber, some error was

detected, aM your program must take corrective action before accessing the
file again. For example:

ISAM #2, 2, PART'NO
IF ERF(2) <> 0 THEN 6010 ISAM'ERROR

The routine ISAM'ERROR might print an error message and then exit. (See

Section 11.3.2, "ERF(X)" for more information on ERF.)

The soft error codes returned by ERF are:

32 — Illegal ISAM statement code
33 — Record not found in index file search
34 — Duplicate key found in index file during attempted

key addition
35 — Link structure Is smashed and must be re—created
36 — Index file is full
37 — Data file is full (i.e., free list is empty)
38 — End of file during sequential key read

19.9 USING INDEXED SEQUENTIAL FILES

The sections below give step—by—step instructions for using indexed files.
For a complete demonstration of using ISAM from within BASIC, refer to the

sample BASIC program in Section 19.10 at the end of this chapter.

Remember then you must load the ISAM program into memory before using a
BASIC program that uses ISAM statements. Use the monitor LOAD command:

.LOAD SYS: ISAM.PRG

USING ISAM FROM WITHIN BASIC Page 19-9

(NOTE: The "SYS:" device speciftcation is an ersatz device specification

that specifies the System Library account, DSKO:C1,4]. The command above is

the

same as: LOAD DSKG:ISAM.PRGCI,4].) On the AMOS/L system, the .PRG is

replaced by .SYS.

19.9.1 Creating an Indexed Fite

Use the ISMBLD program to create a data/index file combination. If you want
a secondary index file, use ISMBLD again to create that file. While using
ISMBLD, you may either toad the empty data/index file with information from
an ordinary sequential tile, or you may leave the file empty and let your
BASIC program enter the data. For information on using ISMBLD, see the

ISAM System User's Guide.

19.9.2 Adding Data to an Indexed File

From within your BASIC program:

1. Open the data/index file with an OPEN statement. For example:

OPEN #1, "PHONES", INDEXED, RECSIZE, RELKEY

Remember to open any secondary index files that you might want to
use via separate OPEN statements on dtfferent ftle—channel numbers;

OPEN #3, "IDNUM", INDEXED, RECSIZE, RELKEY

2. Use a code 1 ISAM statement to see if the index entry you want to

add already exists. For example:

ISAM #1, 1, NAME

Check to see if an error was returned:

IF ERF(1) = 0 THEN PRINT "Duplicate name" : GOTO GET'NAME

(If no error occurred, the index entry already exists, and you
can't add it.)

If you are using secondary index files, also check to see that the
secondary index entries don't already exist.

3. Now, use a code 5 ISAM statement to get the next free data record.
For example:

ISAM #1,5,DUMMY

Check to make sure that an error (e.g., 37 — "data file Is full

(tree list is empty)") did not occur. For example:

DWM—OO100—O1 REV 804

USING ISAM FROM WITHIN BASIC Page 19—10

IF ERF(1) <> 0 THEN 6010 ISAM'ERROR

4. If no error occurred, the record number of the next free record is
in the relative key variable defined by the OPEN statement. Now
you can write your data to the data file:

WRITE #1, INFO

5. Now you must add the symbolic keys for that data record to the
index files, using a code 3 ISAM statement. (Those symbolic keys
wilt then Link to that data record.) Be sure to check for an ISAM
error after each addition.

6. After adding all your information, close the ISAM flies.

19.9.3 Reading Data Records in Symbolic Key Order

ISAM stores symbolic keys in the index file in ASCII collating sequence. To
retrieve records in the order in which their keys appear in an index file:

1. Open the indexed sequential file with an OPEN statement. If you
also want to open one or more secondary index files that
cross—index to the primary index file, use one OPEN statement for
each secondary index file.

2. Use a code 2 ISAM statement to find the next symbolic key.

3. Check to make sure that the ISAM statement didn't return an error.
For example;

IF ERF(1) = 38 THEN PRINT "End of the file" : GOTO PROMPT
XE ERF(1) 0 0 THEN GOTO ISAM'ERROR

4. The proper relative key is in the relative key variable specified
by the OPEN statement; now use a READ statement to read in the data
record associated with that key. (Remember that the READ statement
is done to the primary data/index file, even though you may have
specified a symbolic key contained in a secondary index file.)

5. Repeat these procedures to step through the data records in the
order of the symbolic keys in the index files. Close all flies
when you are done.

DWM—OO100—O1 REV B04

USING ISAN FROM WITHIN BASIC Page 14—11

19.9.4 Reading Data Records Randomly by SymboLic Key

1. Open the data/index file with an OPEN statement. You must also

open any secondary index file you want to use.

2. Use a code I ISAM statement to locate the data record you want to

find. The statement must contain the symbolic key associated with

the data record you want, and must contain the, file—channel nunber

associated with the index file that contains the symbolic key.

3. Check for a "record not found" error; tlits indicates that the

symbolic key was not found in the specified index file.

4. If the record was found, the proper relative key is now in the
relative key variable defined In the OPEN statement. Use a READ

statement to read in the data. (The READ statement includes the

file—channel nijnber associated with the data file/primary index

file even if the symbolic key used belonged to a secondary index
tile.)

5. Repeat steps 2 through, 4 for each record you want.

6. Close all files.

19.9.5 Updating Data Records

You may sometimes want to change the data in a recprd in the data file. You

may do so by first finding the record you want and then rewriting it:

1. Open the data/index file with an OPEN statement.

2. Locate the record you want via one of the methods above (i.e., by

using a code I or code 2 ISAM statement).

3. Check to make sure that the record was found. (Use the ERF

function.)

4. Now the correct relative key is in the relative key variable

defined by the OPEN statement, so use the WRITE statement to

rewrite the data record. (Remember to specify the file—channel

ntsnber associated with the data/primary index file.)

5. Repeat steps 2 through 4 for all records you want to rewrite.

6. Close the files.

The steps above do not change the index files, so do not change the symbolic
key in the record you rewrite.

USING ISAM FROM WITHIN BASIC Paqe 19—12

If you need to change the symbolic key(s) in the data record, you must first
delete the key in the correct index file (code 4), and then add the new key
to the index file (code 3). You do not need to delete and re—create the

data record during this operation unless you are entertag completely new
data.

19.9.6 Deleting a Data Record

Deleting a data record from an indexed sequential file entails not only

deleting the record itself from the data file but al.so deleting alt symbolic
keys associated with that data record from alt index tiles.

1. Open the data/primary Index file and alt secondary index files
needed.

2. Locate the data record via one of the symboLic keys (a code 1 ISAM

statement).

3. Check to see that the statement was executed successfully (i.e.,
that ERF returned a zero). For exampLe:

IF ERF(2) = 33 THEN PRINT "Record not found' GOTO PROMPT
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

4. Read the data record with a READ statement. (The file number must

be the number associated with the data/primary index file.) Extract
each symbolic key from that record.

5. Now you must delete all symbolic keys that are associated with the
deleted record in each index file. Use code 4 ISAM statements to

do so, specifying the symbolic keys you extracted from the data
record in the step above.

6. After you delete each symbolic key, check for errors.

7. Now go ahead and delete the data record by using a code 6 ISAM

statement.

8. Check to see that no error occurred.

9. Close all files.

NOTE: A good check on the file structure would be to store the relative key
in another variable and then compare the relative keys returned by each 15*11
code 4 statement to ensure that the symbolic keys all did indeed link to the
correct data record. You should also check after each 15*11 statement to see
if any error occurred.

ft

USING ISAM FROM WITHIN BASIC Page 19—13

19.10 SAMPLE ISAM PROGRAM

The sample program below will make clearer the use of the commands discussed
above. For more information on using ISAM from within a BASIC program,

consult the ISAM System Users Guide, (DWM—O0100—06).

We first create or enter our program using the text editor VUE. We'll call

it SAMPLE.BAS. After the program has been entered, we compile it:

.COMPIL SAMPLE !JJ

After we compile the program, and before we run it, we first use the program
ISMBLD to build the ISAM files LABELS.IDA (the data file), LABELS.IDX (the

primary Index file), and HASH.IDX (the secondary index file). Note that we

build an empty file (i.e., we type a RETURN after the "Load from file:"

prompt). We use the BASIC program below to place data into the file.

.I$MBLD LABELS @JD

Size of key: 25@Ij
Position of key: I El

Size of data record: 67 €0
Number of records to allocate: 5Q
Entries per index block: I0W
Empty index blocks to allocate: 2Of
Primary Directory: V @D
Data file device:E

Load from file: @D
.ISMBLD HASH tED

Size of key: 1O@0
Position of key: 5$ @D
Size of data record: 671!!j
Number of records to allocate: 50@E
Entries per index block: 1OD
Empty index blocks to allocate: Z0€D
Primary Directory? NID

Secondary index to file: LABELS 1j
End of primary file
No records loaded

On the AMOS/L system, you are not asked how many entries per index block.
ISAM does this for you, and informs you of the number. Now, before we run

our BASIC program, we must load ISAM Into memory:

.LOAD DSKO:ISAM.PRGC1,4] (Use .LIT on AMOS/L) I!j!.J

On the AMOS/L system, you would use ISAM.SYS. Then we run our BASIC program:

RUN SAMPLE tED

DWM—O0100—01 REV B04

USING ISAM FROM WITHIN BASIC Page 19—15

500 WRITE #1, LABEL
510 ! Add key to primary index file.

520 ISAM #1, 3, NAME
530 IF ERF(1) C> 0 THEN 6010 ISAM'ERROR
540 I Add key to secondary index file.
550 ISAM #2, 3, HASH
560 IF ERF(2) C> 0 THEN 6010 ISAM'ERROR
570 GOTO PROMPT
580
590 DELETE 'RECORD:
600 INPUT "ENTER NAME: "; NAME

610 NAME = NAME + SPACE(25—LEN(NAME))
620 Verify that the key exists.
630 ISAM #1, 1, NAME
640 IF ERF(1) = 33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT

650 IF ERF(1) C> 0 THEN GOTO ISAM'ERROR
660 READ #1, LABEL
670 ! Delete the key from the primary index.
680 ISAM #1, 4, NAME
690 IF ERF(1) C> 0 THEN 6010 ISAM'ERROR
700 ! Delete the key from the secondary index.
710 ISAM #2, 4, HASH
720 IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

730 Delete the data record in data file.
740 ISAM #1, 6, NAME
750 IF ERF(1) C> 0 THEN GOTO ISAM'ERROR
760 GOTO PROMPT
770
780 INGUIRE'RECORD:
790 INPUT "BY NAME (1) OR HASH (2): "; FUNCTION
800 IF FUNCTION = 2 THEN GOTO BY'HASH
810 INPUT "NAME: 5 NAME
820 NAME = NAME + SPACE(25—LEN(NAME))
830 Locate the record.
840 ISAM #1, 1, NAME
850 IF ERF(1) = 33 THEN PRINT "RECORD NOT FOUND" GOTO PROMPT

860 IF ERF(1) C> 0 THEN GOTO ISAM'ERROR
870 Read the record.
880 READ'RECORD:
890 READ #1, LABEL
900 PRINT NAME, HASH
910 PRINT ADDRESS, STATE, ZIP
920 GOTO PROMPT
930 Locate record by hash code.
940 BY'HASH:
950 INPUT "HASH: 5 HASH
960 HASH = HASH + SPACE(10—LEN(HASH))
970 ISAM #2, 1, HASH
980 IF ERF(2) = 33 THEN PRINT "RECORD NOT FOUND" : GOTO PROMPT

990 IF ERF(2) C> 0 THEN GOTO ISAM'ERROR
1000 GOTO READ'RECORD
1010

USING ISAM FROM WITHIN BASIC Paqe 19—16

1020 PRINT'LABELS:
1030 I Read nuLl, key to get to front of file.

1040 NAME = SPACE(25)
1050 ISAM #1, 1, NAME
1060 Loop thru file doing sequential reads until we hit the end.

1070 LOOP:
1080 ISAM #1, 2, NAME
1090 IF ERF(1) = 38 THEN 6010 PROMPT I We hit end—of—file.

1100 IF EREC1) C> 0 THEN 6010 ISAM'ERROR
1110 READ #1, LABEL
1120 PRINT

1130 PRINT NAME, HASH
1140 PRINT ADDRESS, STATE, ZIP
1150 6010 LOOP
1160
1170 END'IT:
1180 I Be sure and close files before we exit.
1190 CLOSE #1

1200 CLOSE #2
1210 END

1220
1230 ISAM'ERROR: I ERF(X) returned an ISAM error

1240 PRINT "?FATAL ISAM ERROR" I other than RECORD NOT FOUND.

1250 END

APPENDIX A

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS

The following four sections summarize the syntax of the AMOS monitor

commands that invoke and control BASIC, and the AIphaBASIC commands,

statements and functions.

Commands are instructions to BASIC that affect the way it handles a program.

For example, the SAVE command teLls BASIC to save a copy of a program on the

disk. Commands are not part of the program Itself, and may only be used in

interactive mode.

Statements are instructions to BASIC from within the program; you might

think of them as program "verbs" which tell BASIC how to operate on the

program data. For example, the PRINT statement tells BASIC to display the

specified data. Although most often part of a program, you can also use

some statements directly in interactive mode, outside of a program.

Functions are elements of an expression which compute and return a value.

For example, ABS(X) computes and returns the absolute value of X. You may

also use functions (In combination with program statements) directly in

interactive mode, outside of a program.

The syntax of the commands, statements and functions is illustrated in this

appendix using certain conventions. The curly brackets 'C and } are used to

enclose options available for certain commands and statements. These may be

nested several deep. Certain commands and statements permit a series of

optional elements. The elements are numbered I through N, and the variable

number of elements in this available series is pictured using three dots

C...). For example:

INPUT c.oprompt_string",>varlablelc,variablez...variableN)

indicates that your INPUT statement may request an input of a minimum of one

numeric or string variable. You may also cause it to request two numeric or

string variables, but if you do, the two variables must be separated by

commas. And so forth to variableN, where N Is some arbitrary number. You

may also optionally supply a string literal prompt string.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A—2

For the AMOS monitor commands, the underlined dot represents the AMOS prompt
you see at the AMOS command level. The tfJ indicates that you should type
a RETURN at the point where you see the symbol, following the text.

When we use the term "filespec," we are talking about an AMOS file
specification which contains the name of the file and optionally includes a
device, account, and extension specification. For instance:

CDevn:}fi lename(.ext)-CCProj ect,programer—nunber)}

A.1 AMOS MONITOR COMMANDS

These commands are used only from the AMOS command level. They are
illustrated much as you would see them on your terminal.

A.1.1 BASIC

.BASIC @Th

READY

Places you in the interactive mode of AlphaBASIC and gives you the prompt
word READY. From here you may enter certatn statements or
statement/function combinations without line nunbers. BASIC responds to
valid entries with immediate results. Invalid entries cause an error
message to be returned. You may also enter any valid statements, functions,
constant values, variables, arithmetic operators, strings, data or
expressions (meaning any combination of the above) as long as they are
preceded by a line ntsnber from I to 65534. These lines combine to form a
BASIC program. Line entries invalid due to syntactical errors or iLlegal
formats are reported immediately via error messages. Other illegal entries
which cannot be detected immediately are reported during program compilation
or program run.

You exit from BASIC back to the AMOS command level via the BYE command.

A.1.2 COMPIL

.COMPIt. filespec 1jj

The file specification may simply be the filename of a BASIC program In your
account, or It may be a complete file specification including device name,
filename and extension and account nunber. The default extension is .BAS.
If the file you specify is not found, the system error message

?Cannot OPEN Filespec — file not found

4.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS
Page A—3

is returned to you. When the file is found, the system begins to process

the file. At the end of the compilation process, a new file has been

created in your account called by the filename and with the extension .RUN.

This is the compiled program.

A.1.3 Control—C

(Type a CONTROL and a C simultaneously)

Operator interrupt in line nnnn of FIt.E.RUN

A Control—C interrupts the execution of the program currently running.

Returns you to AMOS command level.

A.1.4 RUN

..RUN filespec t

(The program commences.)

At this command, the monitor loads the AlphaBA$IC run—time package, RUN,

into memory and executes it. RUN in turn toads the fully compiled program

which is specified, having the extension .RUN, intornemory and executes it.

Your program begins to run from the beginning, interruptions to the program

may occur if there is an error in programming, if there is a STOP statement

in the program, If you type a Control—C during execution, or if the program

finishes.

A.2 ALPHABASIC COMMANDS

The commands are used in the Interactive mode of BASIC to control BASIC

itself.

A.2.1 BREAK

BREAK ((_)tine#1C,(—}line#2,...C')tine#N}}

Lists all breakpoints set if no tine nunber is specified. Sets a breakpoint

at the specified line nunber if the specified nunber is positive, or clears

a breakpoint at the specified tine nunber if it is negative.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A—4

A.2.2 BYE

BYE

Returns you to AMOS command tevet.

A.2..3 COMPILE

COMPILE

Compiles the program currently in memory.

A.2.4 tONI

tONI

Program execution resumes from the last point of cessation.

A.2.5 CONTROL—C

[Press CONTROL KEY and C KEY simuLtaneously)

(Terminal rings and you see the message "Operator interrupt in tine nnnn".)

Interrupts a running program and returns you to interactive mode.

A.2.6 DELETE

DELETE I ine#1 C,t ine#I)

Deletes the program line(s) between and including those specified.

A.?.? LIST

LIST 'Cline#1C,tine#2}}

Lists the entire program in memory, or the tine(s) between and including

those specified.

C

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A—S

A.2.8 LOAD

LOAD filespec

The default file extension is .BAS. Loads the specified program into memory

from the disk.

A.Z.9 NEW

NEW

Clears memory of alt source code, object code, user symbols and variables.

A.2.1O RUN

RUN

Checks a flag to determine if the program has been compiled. If not, the

program is compiled. RUN then initiates the execution of the program in

memory, starting at the Lowest line nunber.

A.2.11 SAVE

SAVE fi lespec{.RUN)

Saves the program In memory on the disk with the specified name and default

extension of LAS. If the extension .RUN is specified, the object code is

saved on the disk with the program name and extension .RUN.

A.2.12 SINGLE—STEP (LINEFEED)

(Press linefeed key)

Executes the current program line and returns you to interactive mode.

A.3 ALPHABASIC STATEMENTS

Statements are used within the source program. Some of them may be used as

direct statements. Note that those statements that accept a file

specification accept It as a string literal (for example: 'DSKO:INIT.BAS')

enclosed in quotation marks, as a string variable (for example: FSPECS), or

a string expression (for example: MIDS(A$,1,6) which evaluates to a valid

file specification.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A'o

A.3.1 ALLOCATE

ALLOCATE fi lespec, nwnber—of—blocks

Allocates a random file on the disk with the specified nunber of disk
blocks. Then you can use the OPEN statement to open the file for random
processing.

A.3,2 CHAIN

CHAIN I ilespec

Causes the current program to be deleted from memory and the program with
the specified filename, and the optional device name and extension, to be
loaded into memory and executed.

A.3.3 CLOSE

CLOSE #fI le—channel

Closes the specified file. No further reading to or writing from that file
Is allowed until, another OPEN statement for that file is processed. All
files are automatically closed at program completion.

A.3.4 DATA

DATA datal'C,data2,. . .dataN}

Stores nuneric constants or string literals in a dedicated memory area at
program execution. The DATA statement enables data to be an integral part
of the program. Numeric items may not contain commas within them.
Individual, data strings or constants are separatEd by commas in the DATA
statements. The data between each pair of commas is drawn consecutively from
the dedicated memory area and assigned to the respective READ statement
variable until either data is exhausted or no further READ statements occur.
If data is exhausted, using RESTORE reinitializes the data placed in the
data pool by the DATA statement. Notice the READ and RESTORE commands
below.

A.3.5 DIM

DIM variablel (exprl{,exprz,...exprPz)){,varjableN(exprl.çexpr2,...exprNy)y

Defines one or more arrays which are allocated at the time of program
execution. String and/or ntaneric variables are allowed, and any nusber of

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS
Page A—7

subscripts may be used to define the separate levels of each array.

Subscripts may be any legal ntaneric expression containing variables or

constants.

A.3.6 END

END

Causes the program to terminate execution. It is not required unless other
program tines (e.g., subroutines) follow the program end.

A.3.7 FILEBASE

FILEBASE n

Tells BASIC that the first record in the filet, is record ntrber n, not record

nunber zero. You may use any nuneric arg*znent with FILEBASE.

FILEBASE does not associate Its value with a specific file, but only takes

effect when the program it is in is executed.

A.3.8 FOR, TO, STEP and NEXT

FOR variable = expression TO expression (STEP C—)vatue)

(program statements,if any, to be affected by the Loop)

NEXT (variable)

Initializes a loop during program execution, Variables may be subscripted.

STEP defaults to positive 1 if not specified. If STEP is negative, the

values must be specified from Larger to smatter (i.e.,

FOR M1O TO 1 STEP —1; FOR X=—1 TO —10 STEP —2). The statement NEXT (with

the optional variable specifying the particular Loop) continues the Loop

until the second value (following TO) Is reached by incrementation or

decrementat ion.

A.3.9 6051)8 or CALL and RETURN

GOSUB label or tine# CALL label or llne#

specified subroutine specified subroutine

RETURN RETURN

GOSUB and CALL perform i4entical. functions, If a label is specified, the

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A—S

subroutine must be prefaced by the Label nat and a coton: otherwise, thefirst line of the subroutine must stan with the specFtied lineH.
Subroutines may be nested. RETURN terminates the subroutine and returns
control to the statement following the GOSUB or CALL statement.

A.3.1O GOTO

6010 labeL or line#

Unconditional transfer statement transfers control to the label or line
ntsnber indicated, It may also be written GO TO.

A.3.11 IF, THEN and ELSE

IF expression THEN CstatementHline#}(label) (ELSE (statementHline#)-Clabel}>
IF expression (statementHltne#>Clabel) (SE (stitement)"Cline#Hlabeifl

The conditional processing statement with many different optional formats.
Other AIphaBASIC statements are legat within: the statement. ALso,
IF—THEN—ELSE statements may be nested to any depth.

A.3.12 INPUT

INPUT ('prompt—string,)variabtel(,variablez,...yarlableN}

Allows data to be entered from your terminal and asstgned to the specified
niaeric or string variable(s) during program run. Input is prompted with a
question mark unless you supply a text prompt. Commas are the terminators
between data items you input. A carriage return from the terminal without
entering data aborts input and leaves alt the following variabLes unchanged.

INPUT #11 le—channet,variabtel{,variable2,...yarjableN)

enters data from the file associated with the specified file channel. For
use with sequential files.

A.3.13 INPUT LINE

INPUT LINE ("prompt—st ri ng"4vari ab Id

Main purpose is to read entire tine of input Into string variables. Acts
the same as INPUT for nijueric variables. For string variables, allows an
entire Line of data, except carriage return and linefeed, to be entered
verbatim from your terminal during program execution and assigned to the
specified string variable. No quotation marks forLiterat strinqs are

SUMMARY OF COMMANDS,, STATEMENTS AND FUNCTIONS Page A—9

required. There is no prompt symbol by default, but you can define the

prompt text in the statement.

INPUT LINE #11 le—channel,varlablel

enters data from the file associated with the specified file number. For

use with sequential files.

4.3.14 KILL

KILL filespec

Erases the specified file from the disk. A file can be killed without being

opened or closed. Only files in your account or project can be killed.

4.3.15 LET

LET variable = expression

Assigns a value to a variable. Use of the actual word LET is optional
(i.e., LET A1 may be written 4=1).

4.3.16 LOOKUP

LOOKUP filespec, variable

Looks for the specified file. If found, the specified variable assumes the
number of disk blocks the file contains. If not found, the specified
variable assumes 0. If the file is sequential, variable contains positive
number; if file is random, variable contains negative number.

4.3.17 ON ERROR GOTO and RESUME

ON ERROR 6010 label/line# ON ERROR GOTO {0}

(Disables further error trapping)

RESUME tabel/line# RESUME

(Branch to area of program resumption) (Branch to line causing error)

As a result of a program error, control is transferred to the specified
label or line number for processing. In the error trapping routine, the
statement RESUME causes the program to resume at the statement causing the

error, or at the label or line number specified. In the case of a

Control—C, the program resumes at the statement immediately following the

one that was interrupted by the Control—C.

(Changed 30 April 1981)

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Paqe A—1O

A.3.18 ON-GOSUB or CALL

ON expression GOSUB labet/Llne#1(,labet/ line#2,. * . tabel/ tine#N}
ON expression CALL labetILlne#1{,label/tir,ft#2,...laböLfline#N}

Enables multi—path branching to subroutines based on the positive integer
value of the expression (I.e., on expressionl, branch to Label/line#1,
etc.).

A.3.19 ON—GOTO

ON expression 6010 labet/line#1(,Labet/line#Z,...labet/Line#N}

Enables multi—path transfers of program control based on the positive
inteqer value of the expression (i.e., on expressiorwl, branch to

labet/line#1, etc.).

A.3.20 OPEN

OPEN #fi le—channel,fi lespec,mode'C,record—size,record#—variabte)

Assiqns a specific Integer file—channel number to the specified file and
atso specifies whether the file Is being opened for Input, output or random
(both input and output) operations, or ISAM operations. (Mode may be:
INPUT, OUTPUT, APPEND, RANDOM'FORCED, RANDOM, INDEXED, or

U INDEXED'EXCLUSIVE.) If the mode selected is RANDOM, record—size is an
expression that specifies the logical record size, and record#—variabte is a
variable that maintains the current logical record number.

A.3.21 PRINT

PRINT (expression—llst}

or:

? (expression—List>

Outputs a blank line, or the expression(s) specified. A semicolon or comma
at the end of the list of expressions inhibits carriage return/linefeed
after a PRINT output. The expressions to be printed may consist of numeric
or string expressions, string or numeric variables, numeric constants,
string lAterals, functions, or combinations of the above. String literals
must be placed within quotation marks. The word PRINT may be replaced with
the question mark symbol.

(Changed 30 AprIl 1981)

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS
Page A—Il

A.3.22 PRINT USING

variable = expression USING format—string

PRINT USING format—string, expressiorrtist

PRINT expression USING format—string

For formatted output where the characters are specifically positioned. The

string contains one or more special formatting characters to control the

printed output, such as character placement, field size, Leading asterisks,

floating dollar signs, nt.aneric sign, commas, exponential format and nuer1c

string size. The List is made of the expression(s) you want printed.

A.3.23 RANDOMIZE

RANDOMIZE

Resets the random nunber generator seed to begin a new random number

sequence starting with the next RND(X) function call.

A.3.24 READ and RESTORE

READ variablelc,variablea,...variableN)

Assigns next group(s) of data in dedicated memory to variable(s).

RESTORE

Readies data in the dedicated memory area for rereading from the beginning

of the data pool.

READ and RESTORE, along with the DATA statement, enable data to be an

integral part of the program. The data in the data pool is drawn

consecutively from the dedicated memory area by READ and assigned to the

respective READ statement variable until either data is exhausted or no

further READ statements occur. If data is exhausted, using RESTORE

reinitializes the data pool. See the DATA statement above.

READ has another operation within the file I/O system which has no relation

to the DATA or RESTORE statements.

READ #fi le_channel,variabtelC,variablez,...VtriabteN>

This operation of the READ statement reads into the specified variable(s)

data from the random file associated with the specified file channel. It

reads from the logical record whose record nunber is currently in the

record#—variable defined by the OPEN statement for that file.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A—i?

A.3.25 SCALE -

SCALE value

Sets the nunber of decimal places by which alt floating point nunbers are
offset when they are calculated, to minimize error propagation.

A.3.26 SIGNIFICANCE

SIGNIFICANCE value

where the value is between I and 11. Sets the maximum number of printable
digits in unformatted numbers. Numbers are calculated in full. 11—digit
accuracy, then rounded off to the value of significance just prior to
printing. Not in effect when PRINT USING statements are being used.

A.3.27 STOP

STOP

Suspends program execution and returns you to Interactive mode or AMOS
monitor level, depending on where you were at program commencement. You see
a message identifying the tine of the program stop. In the compiler mode,
from the AMOS monitor Level, the message adds, "Enter CR to continue:'.
From the Interactive mode of BASIC, the program may be continued by the CONT
or single—step (tinefeed) commands.

A.3.28 STRSIZ

SIRSIZ value

Assigns the maximum size in bytes of all following strings. STRSIZ must be
assigned a positive integer.

A.3.29 WRITE

WRITE #11 le—channet,variableiC,varlable2,. ..variabieN)

Writes the data currently assigned to the specified variable(s) into the
random file associated with the specified file channel. It writes into the
logical record whose record nunber is currentLy in the record#—varlable
defined by the OPEN statement for the file.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTZONS Page A13

A.3.30 XCALL

XCALL routine,Cargumentl'C,argument2n . .argumentN))

Catts an assembLy Language program as a BASiC subroutine. The argument may

be a variable or an expression.

A.4 ALPHABASIC FUNCTION STATEMENTS

The folLowing Is a list of the AlphaBASIC functions. Functions almost

always require an argument. Depending on the function, the argument may be

a variable, a string or a fixed value. The argument Is used either to

control the function or as data upon which the function operates.

We have organized the AIphaBASIC functions into two categories: those that

accept numeric arguments and those that accept string arguments. However,

be aware that because of the mode independence of ALphaBASIC, such

distinctions are often hazy. For example, although the square root

function, SQR, is a numeric function, you can give it a string argument as

tong as the mode independence feature can convert that string to numeric

data. For example:

PRINT SQR(16)
4

PRINT SQR("ló")
4

In the same way, you can use the string function LEFTS to excerpt characters
from numeric data as if that data were a string:

PRINT LEFTS("123",2)
• 33.

PRINT LEFTS(456,2)
• ±2.

A.4.1 NUMERIC FUNCTIONS

These functions require arguments which can be evaluated as numbers. X may

be any expression, but if it contains string variables or literats, they
must represent numeric values. For exampLe: ABSC'll"+Z) returns 13.

DWM—OO100—01 REV 804

SUMMARY OF COMMANbS, STATEMENTS AND FUNCTIONS Page A—14

A.4.I.1 A8S(X) — Returns the absolute value of the argument X.

A.4.1.,2 CHR(X) — Returns a single character having the ASCII decimaL value
of X. Only one character is generated for each CHR function call.

4.4.1.3 EXP(X) — Returns the constant e (2.718Z8) raised to the power X.

A.4.1.4 FACT(X) — Returns the factorial of X.

A.4.l.5 FIX(X) — Returns the integer part of X (fractional part truncated).

A.4.I.6 INT(X) — Returns the largest integer Less than or equal to the
argument X.

A.4.1,7 LOG(X) — Returns the natural (base e) logarithm of the argument X.

A.4.l.8 LOG1O — Returns the decimal (base 10) Logarithm of the argument X.

4.4.1.9 RND(X) — Returns a random number generated by a pseudo—random
number generator based on the seed. The argument X controls the number to
be returned. If X Is negative, It Is used as the seed to start a new
sequence of numbers, If X is zero or positive, the next number In the
sequence Is returned, depending on the current value of the seed (this is
the normal mode).

4.4.1.10 SGN(X) — Returns a value of —1, 0 or I depending on the sign of
the argument X. Gives—I if X is negative, 0 If X is 0 and I if X is
positive.

DWM—0OlO0—Q1 REV 804

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTiONS Page A—IS

A.4.1.11 SQR<X) — Returns the square root of the argument X.

A.4.1.12 STR'(X) or STR$(X) — Returns a string which Is the character

representation of the numeric expression X. Nb leading space is returned

for positive numbers.

A.4.2 TRIGONOMETRIC FUNCTIONS

The following trig functions are implemented in full 11—digit accuracy:

SIN(X) Sine of X

COS(X) cosine of X
TAN(X) Tangent of X
ATN(X) Arctangent of X
ASN(X) Arcslne of X

ACS(X) Arccorslne of X

DATN(X,Y) Double arctanqent of X,Y

A.4.3 CONTROL FUNCTIONS

The following control functions test certain file conditions and control and
return information about certain system operations.

A.4.3.1 DATE — The DATE system function sets and returns the two—word

system date. You cannot set the DATE on the AMOSYL system.

DATE = expression !sets system date to expr

A DATE Ireturns system date into A

A.4.3.2 TINE — The TIME system function requires no argument and is used to
set and retrieve the time of day as ttored in the system monitor

communications area. The time is stored as a two—word integer representing

the number of clock ticks since midnight. One clock tick represents one

interrupt from the CPU line clock (usually 60 or 50 Hz). Dividing the time

by the clock rate gives the number of seconds since midnight. Converting

this

to current time is then accomplished by successive divisions by 60 to
get minutes, andagain by 60 to get hours. On the AMOS/L system, TIME

returns the seconds since midnight. The TIME cannot be set on the L — the
TlMEexpression command will be Ignored.

TIME = exprpression !sets time—of—day in system to expr
A = TIME !returns time—of—day in clock ticks into A

DWN—0O100—O1 REV 804

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS: Page A—16

A.4.3.3 BYTE and WORD — These system functions. at low, you: tp;Anspec't andalter any memory locations within the 64K memory addressing range of the
machine. The BYTE functions deal with 8 bits of data in the range of 0—255,
and the WORD functions deal with 16 bits, of. data: in the range Of 0-65535,
inclusive. Any unused bits are ignored, with no error message.

BYTE(X) = expr !writes the low byte of expr into decimal memory bc X
WORD(X) = expr !writes the tow word of expr into decimal memory bc X

A = BYTE(X) Ireads decimal memory bc X and pLaces the byte into A
A z WORDCX) Ireads decimal memory bc X and places the word into A

A.4.3.4 EOF(X) — The EOF (end—of—tile) function returns a value giving the
status of a sequential tile open for input,whose file number is X. The
values returned by the EOF function are:

—1 if the file Is not open or the. tiLe number X ls zero
0 if the file is not yet at end—of—tile during inpMts
1 if the file has reached the end—of—file condition

EOF should only be tested for sequential input files.

A.4.3.5 ERF(X) — Returns a file error—condition code, If the returned
value of X is not zero, an error or abnormal cQndition exists as a result of
the preceding file operation. (See Chapter 19:, for alist of the error codes
returned by ERF..)

A.4.3..6 ERR(X) — Returns a status code for X which refers to program status
during error trapping. (See Chapter 17 for a list of the error codes
returned by ERR.)

A.4.3.7 10(x) — The to system function allows the 256 I/O ports to be
selectively read from or written to. In both cases only one byte is
considered, and an output expression greater than 255 merely ignores the
unused bits. The range of ports available is 0 to 255.

10(X) = <expr> writes the tow byte of expr to decimal port X
A = 10(X) !reads decimal port X and, places the result into A

Note:

On the AMOS/L system, if (x) is 0—255, it accesses, the 256 external 10
ports as it does on the AM—lOOfl (the addresses on the AMOS/L system are
FFFFOO—FFFFFF). If the number is 256—511, it accesses the internal
(on—board) 10 ports (addresses FFFEOO—FFFEFF.)

A.4.3..8 MEM(X) — Returns a positive integer which specifies the number of
bytes currently in use for various memory areas used by the compiler system.

A.4.3.,9 SPACE(X) or SPACES(X) — Returns a string of X spaces in length.

DWM—OO100—O1 REV 804

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS
Page A—i?

A.4.4 STRING FUNCTIONS

The arguments of these functions are literaL strings or string variabLes.

For exampLe, If AS is "Now is the time", the LEN function (which computes

the number of characters in a string) returns 15 in both of these cases:

PRINT LEN('Now is the time")

PRINT LEN(AS)

A.4.4.i ASC(A$) — Returns the ASCII decimaL value of the first character in

string AS. The function ASC("C") returns the ASCII decimal value of the

character C, 67.

A.4.4.2 INSTR(X,A$,BS) — Performs a search for the substring 0$ within the

string AS, beginning at the Xth character position. it returns a vaLue of

zero if 85 is not in AS, or the character position if 0$ is found within AS.

Character position is measured from the start of the string, with the first

character position represented as one.

A.4.4.3 LCS(AS) — Returns a string which is identicaL to the argument

string (AS), with alt characters transLated to tower case.

A.4.4.4 LEFT(A$,X) or LEFT$(AS,X) — LEFTS(AS,X) Returns the Leftmost X

characters of the string expression AS.

A.4.4.5 LEN(A$) — Returns the number of characters in the string expression

AS

A.4.4.6 MID(AS,X,Y) or MIDS(A$,X,Y) — Returns the si.tstring composed of the

characters of the string expression AS starting at the Xth character and

extending for V characters. A nuLL string is returned if X > LEN(A$).

A.4.4.7 RIGHT(A$,X) or RIGHT$(A$,X) — Returns the rightmost X characters of

the string expression AS.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A—18

A.4.4.8 UCS(A$) — Returns a string which is IdenticaL to the argumentstring (AS), with aLl, characters transLated to upper case.

A.4.4.9 VAL(AS) — Returns the ntrerjc value of the string exDression AS
converted under normal, BASIC format ruLes.

I

APPENDIX B

MESSAGES OUTPUT BY ALPHABASIC

Below is a complete list of alt messages output by the AIphaBASIC system

(i.e., BASIC, RUN, and COMPIL), along with a brief exptanation of each.

Bitmap kaput
Your program attempted a file operation (OPEN, ALLOCATE, etc.) on

a device with a bad bitmap.

Break at line n
The program reached the breakpoint that was set at line n.

Can't continue
You have attempted to continue a program which is not stopped at a

breakpoint, or which has reached a point where it can go no

further (e.g., it has reached an END statement).

Cannot find xxxxxxx
The program xxxxxxx was not found.

COMPILE
BASIC is telling you that it is compiling your program.

Compile time was x.x seconds.
BASIC is telling you how tong (in elapsed time, not computing

time) it took to compile your program.

Copying

from xxxxxx.xxx
The program you are compiling contains a ++INCLUDE command. This

message is displayed as the file specified in the ++ INCLUDE

command is copied into your program.

DELETE what?
You have specified a DELETE command without specifying what

tine(s) are to be deleted.

Device does not exist
The device you specified in a file operation (OPEN< LOOKUP, etc.)

does not exist.

(Changed 30 April 1981)

MESSAGES OUTPUT BY ALPHABA$IC Page 8—2

?Device driver must be loaded into user or system memory
If you are accessing a non—DSK device, the appropriate device
driver must be loaded Into user or system memory.

Device error

An error has occurred on the referenced device.

Device full
The specified device has run out of room during a WRITE, CLOSE, or
ALLOCATE operation. Remember that an ALLOCATE requires contiguotps
disk space, so that a Device full error may occur when there are
still a ntsnber of non—contiguous blocks available.

Device in use
The specified device is currently assigned to another user.

Device not ready
The specified disk is not ready fur use.

Disk not mounted
The specified disk has not been mounted. Mount it via the MOUNT
monitor command or via the XMOUNT subroutine.

Divide by zero
Your program attempted to perform a division by zero.

Duplicate label

Your program has defined the same Label name more than once.

*** End of Program ***
You have reached the end of the program during single—stepping.

Enter <CR> to continue:
You have reached a STOP statement in your program. You may
continue from the STOP statement via a carriage—return, or may
abort the run via a Control—C.

?Error in Error Trapping
An error occurred while you were in the error trapping routine.

File already exists

Your program tried to create a tile which already exists.

File already open
You have attempted to open a file that is already open on the same
file ncanber.

File not found
BASIC was unable to locate the specified file.

Filespec error
The file specification you gave In a file operation (OPEN, LOOKUP,
etc.) is in error. All file specifications must conform to the
system standard (i.e., Devn:Filename.Extensiontp,pnfl.

ME$SAGES OUTPUT BY ALPHABASIC Page B'3

rite type mismatch
Your program tried to perform a sequential operation on a random
file or vice—versa.

Floating point overflow
A floating point overflow occurred during a calculation.

Illegal expression
The specified expression is not valid.

Illegal function value
The specified value is not valid for the particular function.

Lllegal 6010 or GOSUB
The format of the GOTO or t30$UB statement is invaltd.

Illegal line number
The specified line number is invalid (egg., not between 1 and

65534).

Illegal NEXT variable
The variable in the NEXT statement:ts Invatid (e.g., not floating
point) -

Illegal or undefined variable in overlay
The variable specified in a MAP statement overlay (via) has not

been previously defined, or is not a mapped variable.

It legal PRINT USING format

The edit format used in a PRINT USING statement is invalid.

Illegal record number
The relative recGrd number spectf led tn a rardom file processing
statement (i.e., READ or WRITE) is either less than the current

FILEBASE or outside of the file.

Illegal SCALE argument
The argument given in a SCALE statement Is invalid (the argument
must range between —30 and +30).

Illegal size for variable type
The specified vartable size is not valid for the particular
variable type. floating point vartabtes must be size 6, and
binary variables must have sizes I through 5.

It legal STRSIZ argument
The argument given in a STRSIZ statement is invalid.

Illegal subroutine name
The name specified as a subroutine Is not valid.

illegal subscript
The subscript expression is not valid.

DWM—O0100—O1 REV 804

MESSAGES OUTPUT BY ALPHABASIC Page' 0—4

Illegal TAB format
Your program has incorrectly specified a TAB function.

Illegal type code

The variable type code a MAP statement is not valid.

Illegal user code
The specified PPN was not found on the specified device, or Is not
in a valid format.

?Insufflclent memory to Initialize RUN
Memory is too full to handle complete execution of RUN.

?Insufficient memory to load program xxxxxxx
The RUN program did not find enough free memory to be able to load
the specified program.

Internal stack error (xxxxxx, yyyyyy). Please submit an SPR.
Please submit an SPR, stating that you received this error message
and specifying the xxxxxx, yyyyyy nisuibers given in the message.

Invalid filename

The specified filename was not a legal filename.

Invalid

subroutine version
The subroutine specified In the XCALL statement is not the correct
type for the processor (L or Ti you are running on.

!Inval.ld syntax code]
An internal error has occurred in BASIC. Please notify Alpha
Micro of this error. Provide an example of what caused it.

10 to unopened file

The program tried to write to qr from a tile that was not open.

Line number must be from 1—65534
The line number entered is riot in the legal range of line numbers.

Line x not found
The specified line was not found for a DELETE, LIST, etc.

?Nested ++INCLUDE files are not permitted
Your program contains a ++INCLUDE command that specifies a file
which also contains a ++ INCLUDE command.

NEXT without FOR
A NEXT statement was encountered without a matching FOR statement.

No breakpoints set
There are currently no breakpoints set in your program.

No source program in text buffer
You tried to compile when there was no program in memory.

Operator interrupt
You typed a Control—C to Interrupt program execution.

DWM—OO100—01 REV 804

MESSAGES OUTPUT BY ALPHABASIC Page B—

Out of data
A READ statement was encountered after the data tn aLl DATA
statements had been used.

Out of memory
BASIC has run out of memory in which to execute your program.

Out of memory — Compilation aborted
COMPIL is tetling you that it does not have enough free memory to

finish compiling ybUr3program.

Program name:
You tried to SAVE or LOAD a program without providing a filename.

Enter the filename at this point.

Protection violation
Your program tried to write into anGther account where you do not

have write priviteges.

Record size overflow
Your program tried to read a fitt rcord into a variable larger

than the file record size.

Redimensioned array
You tried to redimension an array.

RESUME without error
A RESUME statement was encounteredr but no error has occurred.

RETURN without 6051)8
A return statement was encountered, but not corresponding GOSUB

has been executed.

Runtime was x.x seconds
BASIC is telling you how long it took to run your program.

tRuntime package (RUN.PRG) not found
BASIC or COMPIL was unable to tocate the run—time package, or did

not have sufficient memory in which to load it.

?RUN

file is in an incompatible format. The program fite you tried to RUN

is not a .RUN file, or is from a different processor type.

Source tine overf tow
A line in the source program, including continuation lines,

exceeds 500 characters.

Stack overflow
BASIC'S internal stack has overflowed. This is often caused by

nesting GOSI)8s too deep, or branching out of FOR—NEXT loops.

Subroutine not found
The specified subroutine could not be found.

DWM—O0100—01 REV 804

MESSAGES OUTPUT BY ALPHABASIC Page B-4

Subscript out of range

The specified subscript is outside he range specfied,in the DIM
or MAP statement for the subscripted variable.

Syntax error
The syntax of the specified tine is Invalid.

System commands are Illegal within the source: prgram
BASIC system commands (LOAD, DELETE, LIST, etc.) are not valid
within a BASIC source program.

System error
This is used as a catch—alt, error message indicating that BASIC
cannot identify the exact problem during the execution of the
specified line. For example, If BASIC encounters a "Buffer not
INITed" error message, it dispLays, "System error," because it
doesn't know how to handle this condition.

Temporarily alt arrays must be less than 32K
The array size you specified Is larger than 32K bytes.

?Unabte to find ++INCLUDE file xxxxxx.xxx
One of your ++INCLUDE commands specifies a filexxxxx'x'.xxx'whi:ch
BASIC cannot locate.

Undefined line number or label
The tine number or label speciftedin a GOiO or 6051$ statement is
not defined within the program.

Unmapped variable
You COMPILed a program, using the /11 option, and COMPIL
encountered an unmapped variable.

Unsupported function
Your program called a function which RUNSML does not support.
AIphaBASIC allows an alternate version of RUN cattd RUNSML. The
program is identical to RUN.PRG,. except that it does:,not support
trigonometric functions nor the, EXP, LOG, LOGlO, FACT, and
operations. Using RUNSML saves memory for users who do not need
these functions. Since RUNSML can be used in place of RUN.PR4,
some Alpha Micro dealers may rename RUNSML to RtJN.PRG. But if you
get this error message, you know you have the RUNSML version,
regardless of its name.

Write protected
Your program tried to write on a write—protected device

Wrong number of subscripts
The number of subscripts specified is not the same as the number
defined in the DIM or MAP statement for the subscripted variable.

DWM—OQ100-O1 REV 804

APPENDIX C

RESERVED WORDS

Below is a list of the reserved words used by the BASIC compiler. Some of
these reserved words designate routines that have not been implemented at
this time. However, you must not use of these reserved words as
variable names or labels. NOTE: This restriction applies to string
variables as well as numeric variables. (For instance, ENDS and END are
both illegal variable names.)

ABS absolute value
ACS arccoslne
ALLOCATE allocate file
AND logical AND
APPEND write to end of sequential files
ASC ASCII value
ASN arcsine
ATN arctangent
BREAK set breakpoint
BYE exit to monitor
BYTE memory byte
CALL call, subroutine
CHAIN chain next program
CHR character value
CHR$ character value
CLOSE close file
COMPILE compile program
CONT continue execution
COS cosine
DATA data statement
DATE system date
DATN double arctangent
DEF define function
DELETE delete lines
DIM dimension
ELSE else
END end of program
EOF end of file
EQV logical equivalence
ERF file error
ERR error status
ERROR error
UP exponentlation

DWM—OO100—O1 REV 004

RESERVED WORDS
Page C—2

EXPAND expand mode on
FACT factorial
FILEBASE file base offset
FIX fix
FOR loop initiation
GO program jump
GOSUB call subroutine
6010 program jump
IF conditional test++INCLUDE

fetch source code from another file
INDEXED ISAM file
INDEXED'EXCLUSIVE ISAM file
INPUT Input data
INPUT LINE input data tine
INSTR search string
tNT Integer
10 input/output
ISAM ISAM control
KILL kilt file
LCS tower case string
LEFT left string
LEFTS Left string
LEN length string
LET variable assignment
LINE line
LIST list text
LOAD load program
LOG natural logarithm
LOGIO base 10 logarithm
LOOKUP tookup file
MAP map variable
MAX maximum value
MEM memory size
MID mid string
MIDS mid string
MIN minimum value
NEW new program
NEXT loop termination
NOEXPAND expand mode off
NOT logical complement
ON on (6010, 605(18, ERROR)
OPEN open file
OR logical OR
OUTPUT output
PRINT print or terminal/file
RANDOM random file
RANDOM' FORCED random file
RANDOMIZE randomize RND function
READ read data
REM remark tine
RESTORE restore data
RESUME resume after error
RETURN subroutine exit
RIGHT right string
RIGHTS right string

DWM—O01QO.)1 REV 804

RESERVED WORDS Page C—3

RETURN subroutine exit
RIGHT right string
RIGHTS right string
RND random nteber
RUN run program
SAVE save program
SCALE set scaLe factor
SGN sign
SIGNIFICANCE set significance
SIN sine
SPACE spaces
SPACES spaces
SOR square root
STEP step
STOP stop program
STR numeric to string conversion
STR$ numeric to string conversion
STRSIZ set string size
SUB sub (GOStE)
TAB tab
TAN tangent
THEN optionaL statement verb
TIME system time
TO to
UCS upper case string
USING using
VAL string to ntsneric conversion
WORD memory word
WRITE write file
XCALL. externaL subroutine calL
XOR LogicaL XOR

(Changed 31 October 1981)

APPENDIX b

THE ASCII CHARACTER SET

The next few pages contain charts that list the complete ASCII character
set. We provide the octat, decimat and hexadecimal representations of the

ASCII values.

Note that the first 32 characters are non—printing Control—characters.

THE ASCII CHARACTER SET Page 0-2

THE CONTROL CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING

NULL 000 0 00 NulL (tiLt character)
SOH 001 1 01 Start of Heading
STX 002 2 02 Start of Text
ETX 003 3 03 End of Text
ECT 004 4 04 End of Transmission
ENQ 005 5 05 Enquiry
ACI(006 6 06 Acknowledge
SEt. 007 7 07 BelL code
85 010 8 08 Back Space
HT 011 9 09 Horizontal Tab
LE 012 10 OA Line Feed
VT 013 11 08 VerticaL Tab
FE 014 12 OC Form Feed
CR 015 13 00 Carriage Return
so 016 14 OE Shift Out
SI 017 15 OF Shift In
DLE 020 16 10 Data Link Escape
DC1 021 17 11 Device Control I
DC2 022 18 12 Device ControL 2
DC3 023 19 13 Device Control 3
DC4 026 20 14 Device ControL 4
NM 025 21 15 Negative Acknowledge
STh 026 22 16 synchronous Idle
ETB 027 23 17 End ol Transmission Stocks
CAN 030 24 18 CanceL
EM 031 25 19 End of Medltr
55 032 26 1A SpeciaL Sequence
ESC 033 27 lB Escape
ES 034 28 1C Fite Separator
65 035 29 ID Group Separator
RS 036 30 IE Record Separator
US 037 31 iF Unit Separator

THE ASCII CHARACTER SET Page D3

PRINTING CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING

SP 040 32 20 Space
041 33 21 Exclamation Mark
042 34 22 Quotation Mark

A 043 35 23 Number Sign
$ 044 36 24 Dollar Sign

045 37 25 Percent Sign
& 046 38 26 Ampersand

047 39 27 Apostrophe
050 40 28 Opening Parenthesis
051 41 29 Closing Parenthesis

* 052 42 2A Asterisk
+ 053 43 28 Plus

054 44 2C Comma
055 45 2D Hyphen or Minus
056 46 2E Period

/ 057 47 2F Slash
0 060 48 30 Zero
1 061 49 31 One
2 062 50 32 Two
3 063 51 33 Three
4 044 52 34 Four
5 065 53 35 Five
6 066 54 36 Six
7 067 55 37 Seven
8 C70 56 38 Eight
9 071 57 39 Nine

072 53 3A Colon
073 59 38 semicolon
074 60 3C Less Than

= 075 61 3D Equal Sign
> 076 62 3E Greater Than
7 077 63 3F Question Mark
2 100 64 40 Commercial At

(Changed 31 october 1981)

THE ASCII CHARACTER SET flaa fZ

CHARACTER OCTAL DECIMAL HEX MEANING

F —w

A

B
C

D

E

F

6

H

I

J

K

L

N

N

0

P

a
R

$

T

U

V

w

X

V

2:

C

-r

a
b
C

d
e
f
9
h

•1

)
k

I.

In

n

0

101

102
103
104

105
106
107
110
111

112

113
114
115

116
117

120

121
122
123
124
125
126
127
130
131

132
133
134

135

136
137
140
141

142
143
144
145
146
147
150

151

152
153

154
155
156
157

65-

66
67
68

69
70
71

72
73
74

75
76
77

78
79

80
81
82
83
84
85
86
87
88
89
90
91

92

93

94
95

96
97
98
99

100
101

102
103
104

105
106
107
108
109
110
111

41

42
Upper Case Letter
Upper Case Letter

43 Upper Case Letter
44 Upper Case Letter
45 Upper Case Letter
46 Upper Case Letter
47 Upper Case Letter
48 Upper Case Letter
49 Upper Case Letter
4A Upper Case Letter
48 Upper Case Letter
4C Upper Case Letter
4D Upper Case Letter
4E Upper Case Letter
4F Upper Case Letter
50 Upper Case Letter
51 Upper Case Letter
52 Upper Case Letter
53 Upper Case Letter
54 Upper Case Letter
55 Upper Case Letter
56 Upper Case Letter
57 Upper Case Letter
58 Upper Case Letter
59 Upper Case Letter
5A Upper Case Letter
58 Opening Bracket
SC Sack Slash
SD Closing Bracket
SE Circunflex
5F Ifridertine
60 Grave Accent
61 Lower Case Letter
62 Lower Case Letter
63 Lower Case Letter
64 Lower Case Letter
65 Lower Case Letter
66 Lower Case Letter
67 Lower Case Letter
68 Lower Case Letter
69 Lower Case Letter
6A Lower Case Letter
68 Lower Case Letter
6C Lower Case Letter
6D Lower Case Letter
6E Lower Case Letter
6F Lower Case Letter

(Changed 31 October 1981)

THE ASCII CHARACTER SET Page D5

CHARACTER OCTAL DECIMAL HEX MEANING

p 160 112 70 Lower Case Letter
p 161 113 71 Lower Case Letter
r 162 114 72 Lower Case Letter
s 163 115 73 Lower Case Letter
t 164 116 74 Lower Case Letter
U 165 117 75 Lower Case Letter
v 166 118 76 Lower Case Letter
w 167 119 77 Lower Case Letter
x 170 120 78 Lower Case Letter
y 171 121 79 Lower Case Letter
z 172 122 7A Lower Case Letter
f 173

174
123
124

7B

YC

Opening Brace
Vertical Line

} 175 125 7D Closing Brace
176 126 7E Tilde

DEL 177 127 7F Delete

(Changed 31 October 1981)

Mt

APPENDIX E

SAMPLE PROGRAM — NUMERIC CONVERSION FOR BASES 2 — 16.

This appendix contains a sample AIphaBASIC program that converts a number
between one number base and another. You may convert numbers from the
binary through hexadecimal (2—16) number bases to another number base in the
same range. For example, you can translate an octal number to its
hexadecimal form, or vice versa. Below is a sample run of the program:

"CONVRT——CONVERT BETWEEN MJMBER BASES
Enter positive numbers, any base from 2 to 16
(Enter a zero to FROM BASE? to end the program)

FROM BASE? 10
TO BASE? 2 t!

BASE 10 NUMBER? 364 EE
BASE 2 NUMBER = 101101100

FROM BASE? 0 I!

The program:

10 "CONVRT" —— PROGRAM TO CONVERT BETWEEN MJMBER BASES

100 MAP1 IN'VARIABLES !INPIJT BASE VARIABLES
105 MAP2 IN'NUMBER,S,SO !input number string
110 MAPZ IN'BASE,F base of input number,

I 2 through 16 valid
200 MAP1 OUT'VARIABLES !OUTPUT BASE VARIABLES
205 MAP2 OUT'NUMBER,S,50 Ioutput number string
210 MAP2 OUT'BASE,F !base of output number,

1 2 through 16 valid
300 MARl VALID'DIGIT,S,16,'0123456789A$CDEF" IVALID DIGITS

!base x contains x leftmost
I digits

(Changed i) April 1981)

SAMPLE PROGRAM — NUMERIC CONVERSION FOR BASES 2 — 16. Page E—2

900 MAPI MISC'VARIABLES !MISCELLANEOUS VARIABLES
905 MAP2 BASE1O'NUMBER,F !input string converted to

base 10
910 MAPZ ERROR'FLAG,F !flag set If invalid digit

found
915 MAP2 LEADING'BLANK,F !fl.ag reset when first non—

blank character found
920 MAP2 LOOP'l,F IFOR—NEXI index #1
925 MAP2 LOOP'Z,F !FOR—NEXT index #2
930 MAP2 WORK'l,F Iscratch variabte used in

conversion to output
base

IUART OF, PROGRAM
1000 DISPLAY 'BANNER:
1005 PRINT CHR$(34);"CONVRT";CHR$(34);"——CONVERT BETWEEN NUMBER BASES"
1010 PRINT TAB(10);"Enter positive numbers, any base from 2 to 16"
1015 PRINT TAB(10);"(Enter a zero to FROM BAS€? to end the program.)'

2000 ENTER'IN'BASE: IENTER INPUT BASE
2005 PRINT Iblank line between header

or previous conversion
2010 IN'BASE0 Iset to zero in case of

carriage return
2015 INPUT "FROM BASE? ",IN'BASE !enter input base
2020 IF IN'BASE=O GOTO END'OF'PROGRAM lit zero/carriage return, end
2025 IF IN'BASE>Z AND IN'BASECló GOTO ENTER'OUT'BASE
2030 PRINT CI4R$(7);"INVALID BASE!" !bases 2 to 16 only
2035 &)TO ENTER'IN'BASE Ire—enter base

2200 ENTER'OUT'BASE: IENTER OUTPUT BASE
2205 OUT'BASEO !set to zero in case of

carriage return
2210 INPUT " TO BASE? ",OUT'BASE !enter output base
2215 IF OUT'BASE=O GOTO ENTER'IN'BASE lit zero/carriage return,

I re—enter input base
2220 IF OUT'BASE>2 AND OUT'BASE<16 GOTO ENTER'IN'NUMBER
2225 PRINT CHRS(7);"INVALID BASEV' Ibases 2 to 16 onLy
2230 GOTO ENTER'OUT'BASE Ire—enter output base

2400 ENTER'IN'NUMBER: IENTER INPUT NUMBER
2405 tN'NUMBER" Iset to nuLl string in case

of carriage return
2410 PRINT "BASE";IN'BASE;"NUMBER? "; !prompt for input number
2415 INPUT LINE "",IN'NUMBER lenter input number

2420 VALIDATE'NUMBER: !CHECK/CONVERT INPUT NUMBER
2425 LEADING'eLANKl : ERROR'FLAGSO Ilnitialize flags

2430 BASE1O'NUMBERO tinitialize base 10 number
2435 FOR LOOPSII TO LEN(IN'NUMBER) Icheck one character at a time
2440 IF IN'NUMBERELOOP'l;l]O" " GOTO NON'BLANI(Iskip If non—blank

2445 IF LEADING'BLANKO LOOP'lLEN(IN'NUMBER) lit not leading
2450 GOTO END'LOOP'l I blank, end

I conversion of

-j

SAMPLE PROGRM — NUMERIC CONVEg$jp,1 FOR BASES 2 — 16. Page E—3

inp flunber;
otherwise skip i

2455 t40N'eLANK. !PROCES$ NON—BLAPAJ(CHARACTERS

2440 LEAozsLANK ireset Leading bLank fLag,

'tOn—bLank found

2465 !asse invati4 character
untft yaLta one found

2470 FOR L0OP'2*1 TO IN'a !CHECK FOR VALID DIGIT using
vat 14 character List

247 IN'NUMBERCLOOP,ll 6010 END'Loop.2
lnva[14 character

try next

2480 BA$E1osNuMaERA$Ej I Convert and shift

2485 ERROR'rLAa...0 Ireset_....yat.ja found

2490 LOOPI2SINIBA$E no need to check

2495 EUD'ioopt2.

I mar, digits

250 NEXT LOOp'a vaLid or end

2505 IF ERROR'FLAGOO LOOP'1aI.EN(xNJN lit bad character

2510 END'Loop.l.

I found, check
I ro further

2515 NEXT LOOp'i lnext character in
I input string

2520 ERRoR'rLAG 6010
I oren4

2525 PRINT CHRS(?).nINVALID BASE'JINPBASE;I%$,fl Ibad character
253Q 6010 ENTERIINIBASE hound, d1sptay

Imessag, and
I start over

2600 CALCULATEIOUTINUMBER: ICONVERT TO OUTPUT BASf

2605 OUT'NUMgEp.... Istart with nuR String
2610 CQPgI 'CALCULATION.
2615 WORK' 11N1(sASEIOcNU$BER of nunber/base Is

I base io vaLue of next
! digit going from right

to Left
2620

OUT$NUMBER=VALIDIDXGITC1+BASEIOINuMBER_WORKI1*OUTJBASE;
l)+QUT'NUMBER

to adjust for
in vat id digits string

2625 BASE1OINUMBER..WORK, Inew ntJnr Is Integer part
of nunber/base

2630 BASE1OJN#?aERofl 6010 CONTINuE 'CALQLAT Idone when new

28Q PRINTfOUTINUMBER: IPRINT OUTPUT NUMBER
fltaber0

2835 PRINT "BA$E";,j1 'BASE; "NUJIIBER s ';O 'NUNBEp

29Q GETNEXT:
2%5 6010 ENTER'IN.aA$€ Estart over from the top

9003 ENDJOFIPRO6RAM: fEND Op PROGRAM
9010 END Igo through the format1tj5

ALPHA BASIC:sER,$ MANUAL — INDEX

Index

3—2

Page Index—I

I

2—7, 3—1

3—3

10—16 to 10—IT

A—iD

8—7, 8—11

ABS(X)

Absolute value . .
Account specification
ACS(X)

• ALLOCATE
AIphaBASIC
Alphabetic character
Alphanumeric character
AM—lOll instruction set
AMOS command level .

AMOS monitor level .

Ampersand symbol (&)
Apostrophe
Apostrophe symbol (')

• APPEND mode
Application program .

Argument
Argument list
Arithmetic stack . .
Array allocation . .
Array default size
Array variable .

Numeric variable
String variable

ASC(X)
ASCII

11—2, A—14
11—2
2—9
11—4, A—iS
15—3, 15—10, A—6, B—i to B—2
1—i
1—2

1—2

8—4
2—1

2—i
2—7, 3—1
4—1

3—3
15—5, 15—7, A—iD
1—2

11—1, 11—5 to 11—6
18—3
18—2
8—2
4—3
4—1, 4—3
4—3
4—3
11—2, 11—5, A—IT
11—2, 11—5

(Changed 31 October 1981)

(Changed 31 October 1981)

3—5

15—I
11—4, A—IS
1—1

11—4, A—IS
8—7, 8—11, 18—4, 8—3

2—1 to 2—2, A—2, 8—1, C—I
1—1

2—1

2—1

1—1

2—1 to 2—2, 2—4

8—5

9—2, A—3
2—6, 9—2
9—8

2—1, 9—2, A—4
12—1, A—16

10—5, 10—14, A—?
10—17
10—I, 15—2, 16—1, A—6
A—I 4

11—S
12—3, A—lS
15—1, 15—8, 19—6, A—6, 8—2
1—1 to 1—2
2—4, 3—3
7—1

10—16 to 10—17
16—2
10—2, 16-1
10—2
2—1, 2—6, 2—8, 3—4, A—2, 8—1, 8—5, C—I
2—8

2—1

2—S to 2—6, 9—3, A—4
1—2
2—1, 8—1

1—1, 2—1 to 2—2, 2—6
2—5, 2—9
2—5

2—9
2—9
2—4, 2—8
5—2
2—4, 2—6, 9—2 to 9—3, A—4
2—7, 3—1
11—4
2—9, 9—4, 9—8, 17—3, A—3 to A—4
17—3

ALPHA BASIC USER'S MANUAL — INDEX !ag! Index—?

ASCII collating sequence . *
ASCII format
ASN(X)
Assembly Language
ATN(X)
Atsign(s)

B ASIC

BASIC acronym
BASIC compiler
BASIC interpreter
BASlClanguage
BASIC.PRG
Binary data
BREAK
Breakpoint
Breakpoint Interrupt
BYE
BYTE(x)

C ALL

• Carriage return/linefeed . .
CHAIN
CHR(X)
CHR(X) or CHR$(x)
Clock tick

• CLOSE
CoBOLlanguage
Colon symboL C:)
Comma separator

I Comma symbol (,)
Commandfjte
COMMON
Common variable
C OMPIL

COMPIL display
COMPIL.PRG
COMPILE
Compiled program
Compiler
Compllermoe
Compiler option

/0

IT
I M

Compiling a program
Constant
C ONT

Continuation line
Control function
Control—c
Control—c trapping

ALPHA BkSj:tG)t1JSER'S MANUAL — INDEX

Control—variable . . .
COS(X)
CPU line ctock
Creating a program . .

Editing a program
Editing mask
ELSE
END

End—of—file
EOF(X)
ERF(X)
ERR(X)
ERROR

Error propagation
Error trapping
Even address
Exclamation mark symbol U)
Exclamation symbol C!)
Execution mode
EXP(X)
EXPAND
Expanded mode
Expanded TAB function -
Expression

Function with argument
Numeric constant .
Numeric variable .

10—4
11—4, A—iS
12—3
2—6

2—3

13—I
10—9, A—8
10—3, A—?, B—i
11—4, A—16
11—4, A—16
11—4, A—16
11—5, 17—2, A—16
11—5
10—20, 14—1
17—i
8—4
3—2
3—1
8—1

11—2, A—14
3—4
3—4
13—11
5—2, 7—3, 10—15, 11—1
10—16
10—16
10—16

Page Zndex—3

* S S S

• * S S

• . • .
• 0 S 0

* S S S

• • S

* 0

• S

* S S S

S 0 5 *

• S S *

* S S

• * S S

0 0 5

0 5 5 5

S 0 5 0

S 0 5 5

• S S S

• • * 5

0 5 5 •
S S S S

S S

• S

0 5 5

5 5 5

S S S

• S S S

DATA
Data file
Data format

Array structure .
Binary variable •

Floating point variable
Simple variable . . •

String variable .
Unformatted variable

Data record
Data structure
Data type
DATE
DATN(X,Y)
Debugging
Debugging features
DELETE
Device specification
DIM
Dimension array
Direct statement . . • *

Disk storage
Dummy command file . *

Duplicate tine number * *

3—1, 10—18, A-6, 8—S
19—1

1—2, 4—1, 6—1
1—2
1—2, 8—5
1—2, 8—5
1—2

1—2, 8—5
1—2, 8—5
19—1

6—1
7—3
12—2, A—IS
11—4, A—iS
2—6, 8—11, A—S
2—6
9—4, A—4, 8—1, 8—4, 8—6
2—9
4—3, 8—4, 10—2, A—6, 8—6
4—3, 10—2
2—3, 10—1
1—1

16—2
2—7, 9—6

S

S S S

• S

S S S

S S S

• S a

S S S

S

— . —

• S S

— S

• S S

• S S

• S S

S

(Changed 31 October 1981)

ALPHA BASIC USER'S MANUAL — INDEX PSgt lndex—4

Operator symbol .

String

literal .

String variable . a

Expression list a -

Expression processor
Expression term a a

Extended TAB . a •

Extension .BAS a a a

Extension .BAS a a a

Extension .DAT a a a

Extension .PRG a a a

Extension .RUN a a a

Extension SBR a a a

10—16
10—16
10—16
10—16
11—5
5—1

13—1

2—1, 2—3
2—3
15—7
18—1

2—1, 2—3, 2—9, 9—?, 16—1
18—1

FACT(x)
FILE I/O statement a a a *

ALLOCATECLOSE
INPUT
INPUTLD4E
KILL

•
OPEN
PRINT •aaaaa.aaa
READ

WRITE
File number
File specification . a a

File structure
FILEBASE
FIX(X) aaaaaaaa.a
Floating point array a a

Floating point data . a a

Floating point format a a

Floating point hardware a a

Floating point instruction
floating point number a a a

Floating point variable a a

FOR
Format string
Formatted output
FRE(X)
Function

Control
Numeric
String
Trigonometric

11—2, A—14
15—1, 15—4
15—10
15—8
15—10
15—12
15—8
15—9
15—6
15—Il
15—11
15—12
11—4
2—9
19—1

10—3, A—?, 8—3
11—2, A—14
8—4
8—5
14—1
1—1

4—2
6—1

4—1, 6—3, 8—4
10—4, A—?, 8—4 to B—S
A—Il
13—1
12—2
11—1

Il—i

11—I

11—1

11—1

GETMEM monitor call
GOSUB
GOTO

18—4
1—2, 10—5, A—?, 8—3, 8—5 to 8—6
1—2, 10—8, A—8, 8—3, 8—6

(Changed 31 October 1981)

a a a

• a a

• a a

* a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

• a a

a a a

a a a

a a a

a a a

a a a

ALPHA BASit'tSER'S MANUAL — INDEX Page Index—S

Hardware floating point
Higher—level Language

6—1

1—1

1/Oport
I/O processing .

10(x)
IF

INCLUDE
Index file
INDEXED
Indexed Sequential File

• INDEXED'EXCLUSIVE
INIT monitor call . .

I INPUT

Label .

Label name *

LCS(AS) . .
LCS(X) .

Leading blank
LEFTS .
Left—relative
LEN(A$)
LET
Line editing
Line label
Line number
Linefeed
Linefeed key
LIST . .
LOAD .

(Changed 31 october 1981)

12—1 to 12—2
1—1

1 2—2

10—9, A—8
3—5 to 3—6, 8—2, 8—4, 8—6
19—1
15—7, 19—2, 19—5, A—10
19—1
15—7, 19—2, 19—5, A—10
18—4
3—5, 10—10, 11—4, 15—1, 15—5,
15—10 to 15—12, A—8
11—4
10—12, 15—10, A—8
15—7, A—10
11—6, A—li
6—3

11—2, A—14

6—3

6—3
4—1,
9—2
2—1

2—1

1—1,
3—3
2—9, 9—4, 9—7, A—3
11—4, 19—1

19—3
19—2, 19—13

15—8, A—9

3—3

1—2
11—6
3—5, A—li
10—16
4—2, 11—6, A—li
7—1

11—6, A—li
10—14, A—9
2—3
2—7
2—3, 2—5, 2—7, 3—2 to 3—3
9—8, A—S
2—6
9—5, A—4, 8—4, 8—6
2—2, 2—7, 9—6, A—S. 8—5 to 8—6

.

Input call

INPUTLINE
INSTR(X,AS,B$)
tNT conversion
INT(X)
Integer constant
Integer truncation .

Integer variable
Interactive command mode
Interactive compiler .

Interactive interpreter
Interactive mode
Interactive mode direct stat
Interrupting programs
ISAM
ISAM statement
ISMBLD

KILL . * . *

* *

* S

S

* * *

S

• S S

S •

• • S

S S S

S

S S S

ement
S S S

• S

S

• S S

6—2 to 6—3

2—1 to 2—2, 10—1

• S

S

S

(+)
* S

S

S

S S

• .
• S

• S

• S

.
p051
• S

• S

• S

S

• S

S

• S

• S

•

tion
• S

S

• S

S

• S S S

• S S

• •

• S S S

• * S *

• * S S

• S S *

• S S S

S

• S S S

• S

ALPHA BASIC USER'S MANUAL — INDEX

Loading a program . .
LOG(X)
LOGIO
Logical (Bootean) operator
Logical record . .
LOOKUP
Loop
Lower case character

2—3

11—2, A—14
11—3, A—14
6—2
15—3
8—5, 15—9, A—9, 8—1 to 8—2
10—4
3—4, 4—1

MAP
MAP statement

Origin
Size
Type code
Value
VariabLe name . .

MAP statement format
MAP statement syntax
Mapped variable .
Mathematical operator
Mathematical variable
Maximum tine length
MEM(X)
Memory allocation .
Memory mapping .

Memory partition
Memoryuse
MIDS function
Mode independence
Monitor level
MOUNT
Multiple statement tine

6—2, 8—11, 8—3 to 8—4, 8—6
6—1, 8—2
8—6
8—6
8—4
8—6
8—4
8—2
8—11
4—1

5—1
4—2
2—7, 3—2
12—2, A—16
3—4
1—i to 1—2
3—4
2—2
4—2, 7—1, 11—6, A—I?
5—2, 7—2 to 7—3, 11—1, 11—5
i—i, 2—i to 2—2, 2—8
8—2

2—4, 3—1

Name terminator
NEW
NEXT
NOEXPAND
Normal (ummapped) variable
NulL byte (0)
Null string
Numeric argument
Numeric conversion .

Numeric function

• Numeric significance . .
Numeric variable

Binary
Floating point
Integer
String
Unformatted

4—1

2—4, 9—6, A—S
10—4, A—?, 8—3 to 8—5
3—4
4—1

8—S

6—2, 10—10, 11—4, 11—7, A—iT
11—1
5—2, E—1
11—1
10—20
4—2
4—2, 6—2, 8—4
4—1, 6—1, 8—4
4—2, 6—3
6—2, 8—4
4—3, 6—3, 8—4

Object code
Object file

. . . i—i, 2—5, 9—3
2—3

(Changed 31 October 1981)

Page. Index—6

. .
. . .
• . .
. . .
• • .
• . •

• .
. S

• S

S S

S S

S

• S S

S S S

S

S S S

S S S

S S S

5 5 5

S S S

S S

• 5 5

* . S

S S S

* S S

Parentheses .

PEEK
Percent sign CX)
Physical block
PhysicaL memory .

POKE
Pound sign (#)
Precision
PRINT

PRINT USING . . .

Print zone * .
Program compilation
Program debugging
Program execution
Program form
Program indentation
Program interruption
Program Label
Program line
Program run .

Program statement
Prompt

• RANDOM mode
Random access disk file
Random access file .

RANDOM file type
RANDOM' FORCED mode . a

Random number
Random number generator
Random number sequence
RANDOMIZE
Range check
Re—entrant code . .
READ

READY
Record—number—variable

• a a

a a a a

a a a a

• a a a

• a a

• a a

a a a •
• a a a

• a a a

• a a a

• a a a

* a a

a a a a

a a a a

• a a a

a a a a

a a a a

• a a a

a a • a

a a a

(Changed 31 october 1981)

— INDEXALPHA BASIQ?uSER's MANUAL

Object program
ON — CALL
ON—GOSUB
ON—GOTO
ONERRORGOTO

• OPEN

Operator
Operator precedence
OUTPUT mode

Packed binary format .

Parameter descriptor file

Page Index—i

1—2, 2—1, 2—4
10—14, A—b
10,14, A—b
10—IS, A—10
17—1, A—9
8—5, 15—1, 15—4, 15—6, 15—12 to 15—13,
19—2, 19—5, A—iD, 8—1 to 9—2
5—3
5—2
15—i, A—1O

15—1
15—4
5—1

12—1
6—3
15—3
12—1
12—1
15—1

a a

a a a

a a

a a a

• •
a a a

a a

a a a

* a a

I

4—2
5—2, 10—16, 13—1, 13—11, 14—3, 15—1,
15—11 to 15—12, A—10
10—17, 10—20, 12—4, 13—1, 15—12,
A—ID, 8—3
10—16
2—4
2—1, 9—2, 9—8
2—4, 10—2, 10—5, 10—20
2—7
2—7, 3—1
2—2
3—3
2—3

1—2, 10—2
10—1

2—2

15—7, A—iC
15—1

15—3, 19—1
15—4
15—6 to 15—7, A—b

10—18
10—18, 11—3
10—18
10—18, A—lI
8—5
1—1
10—18 to 10—19, 15—1, 15—4, 15—7,
15—13, 19—2, 19—6, A—lI, 8—3, 8—5
2—2
15—7

a a a

• a a

• a a

a a a

a a a

a a a

seed
a a a

a a a

a a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a *
a a

U

Record—size
Relative key .

REM

Reserved word .

Resident monitor
RESTORE
RESUME
RETURN
RIGHTS
RIGHTStAS,x) . .
RIGHT(AS,x)
Right—retatjve (—) pos
RND(X)
RTN instruction
RUN

RUN$ML
Run—time package

RUN.pR
Running programs

SAVE

Saving a program . *

Saving a source file
Saving an object file *

Scale
Scale offset
Scat1ng factor .

Seed
Semicolon separator .

• Semicolon symbol C;)
Sequential disk file
Sequentia' input process
SGNCX)

• SIGNIFICANCE . .
SINCX)
Single—step
Soft error
Source code
Source program . . .
SPACES(x)
SPACE(x)
SQR(x)

Square brackets .

Statement modifier .

Statement verb .

STEP
STOP
STR
STRS(X)
STR(X)
String argument . .
String array

(Changed 31 October 1981)

15—6
19—2
3—2

3—4, 8—12, c—i
1—2
10—18, A—li
17—1, 17—3 to 17—4, A—9, B—S
10—5, A—?, B—S
4—2

11—7, A—i?
11—7, A—i?
7—1

10—18, 11—3, A—14
18—2
2—1 to 2—2, 2—4, 2—6, 10—20, 15—2,
A—3, A—5, B—i, 8—4
B—6
1—1, 2—1, 2—6
2—i to 2—2, 2—9, A—3, B—S
2—9

2—3, 9—2, 9—7, A—5, B—S

2—3
2—3

2—3

14—1 to 14—2, A—12, 8—3
14—1
14—2
11—3
7—i

10—16 to 10—i?
15—1 to 15—2
11—4
11—3, A—14
4—2, 10—20, A—12
11—4, A—IS
2—6, 9—8, A—S
11—4
1—2
2—i to 2—4, 9—3, 10—1
Ii—?, A—16
11—7, A—16
11—3, A—iS
7—I
10—i
10—1
10—4, A—?
9—8, 10—20, A—I 2, 8—2
5—3

11—7, A—iS
11—7, A—l5
11—i
10—3

ALPHA BASIC USER'S MANUAL — INDEX Page Index—B
'4,

* .
. a S

• * *

* .
• * *

* *

* * S

• * S

*

• * a

* Sit ion
* *

S *

• S a

• S S

• *

* a

*

• • a

S * •
• * *

• * *

• * *

• * *

* S

• a S

• * .
• S S

S *

S S

a

* *

• *

S

a

*

* * S

* . *

• *

*

* * *

S

• .
* * *

S a S

• S

• S S

S

• * .
• • S

* a *

• *

• • S

• *

*

* S *

• * S

* S S

• .
*

• S

• S •
• * S

•

• a S

*

S a

• *

*

.
• *

• *

• S

• S

• *

*

•

a

• *

*

S

S

a

S

* S

.
*

* *

*

*

S *

S a

S

ALPHA BASIC USER'S MANUAL — INDEX Page Index—9

String conversion
String data . .
String format . .
String function
String literal
String null . *

String size .

Default size *

STRSIZ
String variable
Array mode . .
Single mode

STRSIZ
Subfield
Subroutine . .
Subroutine linking
Subscript
Subscripting
Substring
Substring modifier
Substring overflow
Substring truncation
Symbolic key
Syntax
Syntax error . .
Syntax parser
System command
System function

5—2

8—5

4—2

11—5
3—5, 4—2
6—2
4—2
4—2
4—2
4—i to 4—2
4—2
4—2
10—3,
4—2
10—3
1—1

•7—3, 10—2
4—1
7—1, 11—6
4—2, 7—1, 7—3
7—2
7—2, 8—5
19—1 to 19—2
12—1
2—3
3—4
3—3
12—1, 16—2

TAB
TAN(X) . *

Terminal
THEN
TIME
Timesharing
TO
Trailing blank
Tree structure
Trigonometric function
Type code

UCS$(A$)
UCS(A)
UCS(X)
Unformatted data .

Unformatted variable
Upper case character
User impure area
USING
USING MODIFIER

VAL(A)
Variable

(Changed 31 October 1981)

5—3, 11—3, A—lB
3—4, 5—2, 6—1

10—20, A—12, 8—3

6—3

A—iS

A—8
to 12—3, A—IS

to 1—2

18—2

11—?
A—iS
3—5
6—3, 8—5

4—2

3—5, 4—1

18—3
13—1
13—i

ALPHA BASIC USER'S MANUAL — INDEX Pije ihdex—iO

VariabLe Length 1—2
VariabLe name 1—2, 4—1
VariabLe tree . 8—11
VUE 2—6

Word boundary 8—4
WORD(X) ia—i, A—16

• WRITE 14—3, 15—i, 15—4, 15—7, 15—13,
19—2, 19—6, A—12, 8—2 to 9—3

XCALL 18—1,A—13
XMOUNT B—a
Zone 10—16

(Changed 31 October 1981)

:.TET5 flLE REFERENCE AIphaBASIC User5 S Manual, DWMOO1OOOi, REV B03

TECHNCAL PUBUCATON5 READERS COMMENTS

We apprecIate your help in evaluahng ou rdocumentarion efforts, Please feel tree to attach additional comments,
you require a written response, check here Li

NOTE: This form is for comments on documentation only. To submtt reports on software problems, use Software
Performance Reports iSPRs), avahable from Aiphe Micro,

Please comment on the usefulness, organization, and ciahty of this manual

Old you find errors in this manual? If so, please specify the error and me number of the page on which it occurred.

What k nds of ma nual s would you I ke to see n the future?

Please indicate the type of teader that you represent (check al that apply

El Alpha Micro Dealer or OEM

0 Non-programmer, using Alpha Micro computer tot:
El Business applications
0 Education applications

Eden tific applications
El Other (please specify):

- P rts q rammer:

Li Assentbiy language
Li Higher-level language

Experienced programmer
Li Little programming experience
i_i Student:
Li Other (please specify):

NAME:

TITLE:

_____ _____ _____

PHONE NUMBER:

_____ _________ _____

ADDRESS:

,,,,

______......,....,

CITY: _,__'TATE: — ,_______ , ZIP OR COUNTRY:

STAPLE
STAPLE

FOLD FOLD

PLACE
STAMP
HEREL_

Lu

__ ___

:aphe mcro
17881 Sky Park North
RO. Box 18347
trytne, Catttornta 92714

ATTN TECHMCAL PUBLiCATiONS

FOLD
FOLD

