

1 June 1982
BES-10013-00

CHANGE PAGE PACKET #4 FOR THE ALPHA BASIC USER'S MANUAL

1.0 INTROPUCTION

This Gth change nage packet far the AlphaBASIC User's Manual
(DYM-00100-01), Revision BOR contains update instructions, a new title page,
and the manual pages that we have revised. It updates the manual o
Revision BO4, This packet should be implemented only in versions that have
been updated to Revision lLevel BO3, that is, only if wyour manual includes
the contents of change page packet #3.

t.1 UPDATE INSTRUCTIONS

To make the wupdate process easier, vyour copy of the AlphaBASIC User's

First, remove the title page from this change page packet and exchange i1t
for the title page in your copy of the manual. TIf vour copy has been
updated with change page packet #3, the titlie page you replace will show a
B03 revision level. The new title page reflects revision tevel BO4.

Now, remove the remaining change pages from this packet and substituts them
for the original pages Listed below.

As you exchange these pages for the originals, note that we have marked all
revised portions of the text with change bars (vertical black Lines in the
Left margin). Alsc notice that the number of the manual appears at the
bottom of each change page,

Griginal Pages Revised Fages

Titte page/ 11 Title page/id
vit through ix wii through ix
29210 a2/ 210
S-1/52 RN I T
1TH-3/11/6 11-5/11-6

12=1 through 12-4
13-41713~-12
16-1/16-2
1FmR 4T b

18-=% through 18-4
T9-5719~141]

19-1B 1914

A-13 Through A-16
B-% through 8-6
L=t /Cm3

12=-1 through 12~6
1E5-11/715-12
1o=1/16-2
17=3/17~4

18«1 through 18-7
Y9-8/ 19=-1(]
19-13/19~14

A=13 through A-16
B-% through B~6&
{:”*&i !‘?{:“"2

SOFTWARE MANUAL

DVA/AM-001 O0-03 71
REV. BO<4

FIRST EDITION

REVISIONS INCORPORATED

REVISION DATE
ADD 1977
B0 e October 1980
a1 October 30, 1980
BOZ April 30, 1980
803 October 31, 1981
04 June 1, 1982

©1982 ALPHA MICROSYSTEMS

THE INFORMATION CONTAINED N THIS MANUAL 1S BELIEVED TO BE AGCCUBATE AND
RELISBLE. HOWEVER, NQ RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR LUSE
OF Tris INFORMATION 15 ASSUMED BY ALPHA MICRO.

This book reflects AMOS versions 4.6A and AMOS/L versions
1.0 and lLater,
THE FOLLOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS, IRVINE, Ca, 82714

Alpha Micro AMODS AlphaBASIC AlphaPASCAL
Alphal 18P AlphaVUE AiphaBERY Alpha ACTOUNTING

11315

ALPHAMIGROBYSTEMS =
17881 Sky Park North
irvine, A, G2714

ALPHA BASIC USER'S MANUAL Page 111

Table of Contents

(HAPTER 1 INTRODUCTION TO ALFPHABASIC
CHARTER 2 INTERACTIVE AND COMBILER MODES
2.1 INTERACTIVE MODE oo unvavmmmmnunnsnonasaooassnan

£.1.1 Leadina, Creating, and Saving BASIC
Brograms weoeeanesencassnesuannsannnnsas

i
i
[N

i

2.7.2 Direct STalemenls cunmerccecnarcresmscan
2.1.% Compiling and Running 2 Program .c.eecee. 27

2.1.3.1 Compiler Options cseessessssns
JAad Debugging FEalUreS. covessensnsnsses=nans
OMPILER MODE L ... oveocnanconsnnnsnasnannanonn
2.1 freating a Program .e.eevsnranansnsnnas
2.2.1.1 Pragram FOPm o ivevaesonsecnnos
2.2.¢ Lomniling a Program paseme s

3

3

]
4
o
e g
SR S R R I LY
H B

i

i i 3 i
Y U E T O O AT R e

e
i

2.7.2.1 Lompiler Optionsg weweensessss . 2™
2.2.% Running @ Program cewesccensconnnsnasans 27

CHAPTER 7 GENERAL INFORMATION

A1 MULTIPLE STATEMENT LINES wa.vnacecscscsonsnaan 321
2.7 CONTINUATION LINES wuuvacnsursnnonsnavanasaans o1
TR OLINE MUMBERS Lt senveruvvaoncososnssnnnvanannne 9=F
A4 COMMENTS (REM AMD "I L. cevcnnuannnonsanes 57
L5 INTERACTIVE MODE DIRECT STATEMENTS . .uvernran. 573
LA PROGRAM LARELS L. ireeocnnnonss R
FLTOMEMORY ALLOCATION L .ivenasosanrsnnanusnnsessne 3=h
LR EXPAND AND NOEXPAND MODES .. vevnoccncncnnnn o e
3.9 LOWER CASE CHARALTERS o ivcwevromnuananannancanns KT

3.10 LIBRARY BEARCHING ooiusevancvna e
ELAT OINCLUDE FEILES s varnanansnanns B

CHAPTER 4 ALPHABASTS VARIABLES

VARTABLE NAMES . i ucanononnnansansnoennnna &
MUMERTO VARTABLES L ussr i rcenmoncnsnanannnsnnan &7
STRING VARIAPIES ..o evesnsns i msm b e man e e e A Ew s G
ARRAY VARTABRLFES ... escunsannnanaa WEsamasw o A

e fre
s

A

N
5
ot
R N

JN
il

CHAPTER & ALPHARASTD DXPRESSIONS

ARTTHMETIC EXFRESSIONS .o wecnmsanonnaonnsen 37
ORERATOR PRECEDENCE ... vn..
<5 MODE INDEPEMDENCE .ecuicvesracsanconnasnssons 37

P W
MG e
a
.
a
s
®
s
»
s
2
»
s
a
W
8
i
s
WA
J
F I R

CHARTER A DATA FORMATS

6.7 FLOATING POINT FORMAT L ...oeuvsonsusoancsanana &1
5.2 STRING FORMAT .. .cre.oncacna feamEwsacanesnnoos foed

fhhanoed 30 Apeil 19810

ALPHA BASTIC USER'™S MANUAL

CHAPTER 7

CHAPTER 8

CHAPTER &

CHAPTER

A%

& BINARY FORMAT ... e rncvccnannnns seserasnsan
G4 INTEGER FORMATcearcnonanvonnanonnsnsaasns
H.5 UNFORMAYTTED uuonuvwnncconnnsncoananrasonsansan

SUBSTRING MODIFIERS
f.1 SUBSTRING MODIFIER FORMATS AND FEATURES
MEMORY MAPPING SYSTEM

T ALLOCATING VARIABLE STORAGE .uvswnmosensssascs
-2 MAP ST&?EMEN? FORMAT L. iaonmsnrunumenncnsnnce
B.2.1 MAP Level ...icvvcencasena amma e sk
8§? 2 Variable Name ..o.cvesansncvncnancanaan
B.2.5 Type (0de wnvonmescsasstcnscnansnatnaas
A7 Unformatted Deld sreasnmssrsaoe
5.7 String DBatd ..uecocscnsnnenncn
7.3 Floating Point Data ..veances -

A Binary Dats ..cesasancss amaws e

&,
B

______ VAlUE L uvvunawannnunsnasnnassasasnsesss
B.7.6 071010 wwaaone secameemnaan AT A n e A n e s e
B.%R FXAMPLES . avearnoacrnsnrsnmescnnsansnansasnsan
R, & USTHNG THE MAP SYATEMERNTS ..o snanccoe nascerneme e
B.% LOCATING VARTABLES DURING ?EQHGGTNG cusassnmaa

8.5.7 ExampleS seuuwesonssnasrannannananansnna

INTERACTIVE COMMAND SUMMARY

BREAK L auswvevosnenasssonasanaansanoucesnssnss

Ee R & 2t
= a2
[aN QY

s
U & -+ B B RN o I AP O

v

BYE L i weacnsncossnnannnsse eaxsaswomnnaEEes e

o) {:OMstE @ s B oM @B P H RN RN RE B REEF WAV E N HE R ER R ®BREH AR

. CONT . sicresnnenannnnanancnasnns cewran s an .
CONTROL -

s COR f mnremccsamEnAAREeansasusm e s AR S E U

. DELETE sanccusnrsssnssnnsocncassnanmnsssnn weus

I T

3 A) D D D D D

LQAi} W ®m e wm A R E@MERS|EFRERTHRAER RS & WS F R DR RE S s PR o8 RNd R F
. NEW Ceovnncunnsonssancesnsnnnnssoa e e s e
ST RUN e e S semhensemtasEmussazvamEsAnvaw o
1T SAVE e e e nane e e mm e am s e me s A n s s
212 SINGLE~STER (LINEFEED)} . .cvesssssconmsmanansss .

PROGRAM STATEMENTS

ALLOCATE o iiuausovasanananosannaransanncnnns

CHAIN i cvoocnrvmnvrnaanunrnvacrnsnannss caese

CLOSE

‘:.—‘A

a

HEP

5
.

R AW B E =T AR TS AR RPN A R SR A E R R E L

-
2
0 B
T e)
=
4
4
“
a
#
»
s
P
P
%
a
#
4
»
@
P
8
s
#
#
@
!
"
*
)
P
&
3
@
H
W
B
®
2
¥
2
3
s
e
»
®

EMD L vcvanaan B T feow

0

a

NS

. Tl w8 2 % % & % % 0 omoe %R ES AT Lo AR e w G momom B AR R B oA E

. FK? AMD STEP L .cvanrnacemnsonansaanns P

CEUB COR CALLY ANMD RETURN L...caea- wamwn s -
T
1

e R Bt

8

-t

bl

T . T T ey

-
.
Fal
oyl
=
<

Fage

G\‘:g‘*(}
A TN

71

i

i 1

Go 20 09 08 00 00 G
R R

H

)
i

o T

Tt
101
e
107
107
Hi-7
14
115
-8

iy

ALPHA BASIC USER'S MANUAL Page v

10.10 IF, THEN AND ELSE wovncovancnsannasacasasones 109

T0eTT INPUT wivusvnuwovnansunanannnannconcaunncenenna 10=10
T0.12 INPUT LINE .uovvuvennsnucansnonnnossnnananses 10217
10013 KILL wownnnnnennsnvnasnacansnanunanasnancsosa 10713
Tald LOOKUP o.viavunouncovnannsnoannnnnsnnsannnnne F0=14
T8 LET L iiivrcvonnsnncconnnsnannasanannnonnanss 10=Th
10,96 ON = GOSUB (CALL) snvuvvioconnsnanansseannene 1014
10.17 ON = GOTO wuvcnsuvannnosnonnannasnesnasunnons 10=15
10,18 OPEN senovcnsecnacnrocnnnnsnnnnoasnansnasnnnna 10-15

.19 PRINT ovnvucowosronansosancasanncanccnsnnnnoans 10=16
10,20 PRINT USING wuvcevaonancnonsnnonnasansnnanana 10-17
10.21 RANDOMIZE L .ovrnnenussnacnunacasssnnannnnesee 1018
10.22 READ, RESTORE, AND DATA .eecevansmsccccsvonnes 10718
T0.2% STALE L ivuensnvonsnsnraveansanasansorasnsnnua 10=15
T0.24 SIGNIFICANCE suicuvonncnnonoonnnsnnnannannensa H0=20
10025 STOP cinnncsnccvevancanannonnsannanasasnsansss 1020
10.26 STRSIZ seosmavancannnns frenevaennenennonsnnne 1020
T0.27 WRITE L nivscvsconnsnannunuoonunsnnmcannsnnana 1021

10,28 XCALL wvvvuvnsnsnuncasnnnnanocnonannsnsanases 10=21

CHAPTER 11 BASIC FUNCTIONS

1107 NUMERIC FUNCTIONS suvcuonvnauonunsnnasunannae 111
T1.7.7 ABSCYD) ievnnnvrnscnsnsvesnanasnonnoas 1122
T1.7.2 ASCUA) sevnosvevanmennasnocancensanne 11wF
T1.1.5 EXPEX) wanevoomosannnnocs aramarsensen TIwZ
T1.7.6 FACTOY) crmraccnnrncmcnsocnsransnness 178
?%%g B OFINIX) cevvernavnoanonuncansunonmuunane 112

w et INTLY) o vinnnmonrncnennnsnonnannnnnnes 1150
e a7 LOGCHY snvovsnonwsanannamnnnnassnnena 1128
?1 To8 LOGID v cunanavnonamennannscncrnanes 11-%

T1.10F RNDCH) wuwuwenvmneonsuscomanvnnnnnansns 11-3
1127270 SENOND v s eenensnneonenressnnoneees 19=3
TTo1.11 SARIXD wevovsvwnnnonssannannanmsssnsss 11=3
TT.1.12 VALUAY ... ieueuesoncancsasnanaannnasas 113

T1.2 TRIGONOMETRIC FUNCTIONS wevvanansssosnoransas 11-3

11.3 CONTRCL FUNCTIONS Loruvesonvanuasnnancnncnnsss 1174

P32 EOFCED) cuvvesvwansuannscantnannssssonnas 11k
%? Fu? ERFUX) wavnvoncnasmnaanncssnosnsnnsnuanas 116
Te3.3 ERB(YY sowvvocnusnannccnnnsenncoansan 11=5
?1w3Ré OTHER CONTROL FUNCTIONS wevnccvcacnna 118

Thalh STRING FUNCTIONS 4horcrvcvnnasancassanennsnasns 1Tm5
TTedel ASCUHD sinvwevoosnnnannsronunancannaone 1975
Tab4.d CHRECK) OR CHROX) wivnwmancusnsnnonans 11=8
TTed.® INETROX, AF,BE) sonvcovonnmsnnnannncan 116
110404 LESCAE) evccccanonsonnennsnsmnnnoncy Tho
1.4, LEFTCAS, X or LEFTECAT,N) Lewwvensans 116
11, LENCAS) oo cuccannunavumnnsnaannnoans |16
1. MID(AS, X, ¥} or MIDFCAB, X, Y} cevvvancs Ti=6

RIGHTCAS, XY or RIGHTS(AS, XY covwrwnnn 11=7

SPACE(XY or SPALER(X) ceuwvewssencnsaa 11-7

STROXY or STRE(X) .ovvevroncancene wew 14T

UCS(AS) i invonnsnnansonnnonsasnss wen TI=TF

"

"

R
e -1
EIE

)

)

— i TG] AR

ol L I S
E
—~ L3

R
RS . Y
s =

S

(Changed 31 October 1981

ALPHA BASIC USER®'S MANUAL ' Page vi

CHARPTER 12 SYSTEM FUNCTIONS

12,1 BYTE(X) AND WORD(X) ovewanovovansnancsancanse 1omT
12.2 DATE Louvusvvousnvnanonnossonsnnamnnnvavrasaa 1070
12.3 T0(X} ccnsconssenoncncnonsnnnnnonsesansannans 1872
Teah MEMUX) Luvconunvononnmennannasanssnnensnsannn 1678
1225 TIME nocvonsnnconsasnonnenssansnnoasssasanses 1673

CHARPTER 13 FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS

12,1 THE USING MODIFIER . ucavsvncnnuauananasncnnncnn 1507
T3.2 FORMATTING CHARACTERS L.iiacsssovsansonnnsens 1558
12.2.1 The % Symbol (8tring Fialds) .vwnweas 133
1%.2.2 The ! Symbol
(One-~character String Fleld) ...cenes 13-4
2.2.3 The # Symbol (Numeric Fields) 13~4
.24 The Period Symbol (Degimal Point) ... 13-5
2.5 The $% Symbol
(Floating bollar Sign) wevesvacrweans 1355
1z & The Comma 3Symbol {(Floating Commas) .. 13-7
1%.2.7 The % Symbol (Asterisk Fill)c... 13=7
132,.2.8 The ¥ Symbol (Leading Zeros) ..c.eewe. 15-F
13.2.9 The Minus Symbol
(Tratling Minus $1gR) wesaanssvnacans 128
15.2.10 The 7777 Svmbol
(Exponential FOFMAL) snscnavnnenmares 15=8
13,3 FORMATTING EXAMPLES BNT HINTS crcavsvunarosnn 158
13,4 EXPANDED TAE FUNCTIONS sovienasnsnnasssnsnesssa 15=711

CHAPTER 14 SCALED ARITHMETIC
T4ol SCALE oo vvvenucnnnnnannnnnnns ehnmrsansanasn Th-2
CHAPTER 13 ALPHABASIC FILE I/0 SYSTEM

15.7 SEQUENTIAL ASCII FILES .vvevwesoannonoscncsaa 1278

15.2 RANDOM FILES ... uvevcnunvonnwnonsassencananan |95

15.2.1 logical Records cawcecoscsnsovannunsne 1523

15.2.2 Blocking Facter and Revord Size 15-3

15.3 FILE I/0 STATEMENTS .ouvvsnvasacacennncanasan 1074

15,301 OPEN wevsnnncvsoncansonnansnssnanasans 1576

[] 15.3.2 CLOSE .ucavwenvososvonvsnossasuscaanncnen (3-8
13,32 KILL sesnunanannanos
15.%3.4 LOOKUP ... coicoarnacnnnononanancossan 1579
15.3.5 ALLOCATE wouvnncswnavoansnosnssvunaanas 1510
15.3.6 FILEBASE ..ccosannacassaansnsnsennsns 1010
15.3.7 INPUT .iuivsvcovsnsoncncnacnsnnsnnasa 110
T5.3.8 INPUT LINE s.ovuenavoncnonnonasnannses 10-%2
15.3.9 PRINT ..uconsncnnn esssanananana s 7511
153,70 READ cvcevcasansnscnancsnsnonsnaunnnse 19713
T5.3.11T WRITE s cowvncsancannvanananonanennas 315

T5.4 GAMPLE PROGRAM .. cnevcovnnnrnnannnrennanansan (5714

(Changed 31 October 1981

ALPHA BASIC USER'S MANUAL

CHAPTER 16 CHATNING TG BASIC AND SYSTEM PROGRAMS

16,7 CHAINING TO ANOTHER ALPHABASIC PROGRAM
16,8 CHAINING TG SYSTEM FUNCTIONS tuuvwvavncnannnn

CHAPTER 17 ERROR TRAPPING
17,1 ON ERROR GOTO STATEMENT evwnnae W w s aan e
17,2 ERROXY FUNCTION L..vessvmuns e s mueeRa e s e e .
17.2.1 Error {odes Returned by ERR . ..vewr..
7.5 RESUME STATEMENT e s mann e
17,4 CONTROL=C TRAPPING L ..uuveoscncneoonnans www o an
T7.5 SAMPLE PROGRAMS L iuveuwncvnnrsonsancnan aesn e
CHARTER 18 CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES
TR AUTOMATIC SUBROUTINE LOADING ..vsvvsvncnasnsnas
18,2 SPECIFIC TNFORMATION FOR AMOS SYSTEMS L .ven.o..
T8.2.7 REGISTER PARAMETERS .ovvosnee wm sk naa
T8.2.2 ARGUMENT LIST FORMAT .ivevwiovnanconas
18.2.5 FREE MEMORY UBAGE .v.ovenmrnnsncss wusn

18.3 SPECIFIC INFORMATION FOR AMOS/L SYSTEMS
TR.3.T REGISTER PARAMETERS Luuwwocosnncvnocvnn

18.3.2 ARGUMENT LIST FORMAT cuvievovwecvcnonse
18.3.3 CONVERTING ARGUMENTS TO RBINARY FORMAT
18.3.4 FREE MEMORY USAGE ...ovuuwowouoansonoens
TE.E.5 LOCATING OPEN FILES ..o vonass swsmem s s
T8.5.6 PROGRAM HEADERS snvevervnonnscsonnnnss
CHAPTER 19 URING ISAM FROM WITHIN BASIC
1.7 FILE STRUCTURE . ..vuww. museeramaRAEs R a e aE s
19,2 SYMBOLIC AND RELATIVE KEYS v vvmrscnnansnse
19,3 THE TISAM STATEMENT ... ieeceennonmosn wemas e
19.5.1 The ISAM Statement £0des ..uwwunes e nm
19,4 OPENING AM INDEXED FILE . .c.uesaccnnsncranses
19,5 READ AND WRITE STATEMENTS wuvsmmaomrnsomossss
19,6 TLOSTING AN INDEXED FILE uucuroncocnnonannanns
19,7 INDEXED*EXCLUSIVE MODE .ovvumcvnnoaones wessaa
19.8 ERROR PROCESSING hesEmosmmmmmRae e e e oo
T9.8.7 30Tt EFrors weccoscvennsansonnmnannns
19.9 USING INDEXED SEQUENTIAL FILES L uueuwuwvwocncnes
12.9.1 Creating an Indexed File ..ocevacne wun

19.9.2 Adding Data to an Indexed File
T19.9.3 Reading Data Records in

Symbolic Key Crder L..evsaen NE e n e

19.9.4 Reading bata Records
Randomly by Svmbolic Key .uvweevoosan
12.9.5 lpdating Pata Records veeevevennanaaa
19.9.6 Deleting 3 Data Record .uecomensnaoes
19.10 SAMPLE ISAM PROGRAM ...vceeaw D,

PWb -0 00-0T REY B4

Page

19—
192
193
TG=-3
19-5
To-4
1e-6
TGt
197
T3
198
199
153G

vid

ALPHA BASIC USER'S MANUAL

APPENDIN A SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS

A% AMOS MONITOR COMMANDS B s am s emarARAS RGeS 6 ke
BuMol BASIU s iionvonocsocnnnnososss . .
Aatud COMBIL e menmnnnnonranannnnnss

1.3 Control=0 L .ceuccccuannnannronnanennesae

E)

|
[
T s

&
e R R L I

B RUN e uennonarnmoonscsnonsannnnnnsnsn

BASIC COMMANDS ... veraonrovnensnconnnnn
BREAK sevnocucnmnunomsnnasnannanasnanen
BYE canasunvevsconanonnnanssnaneansanna
COMPILE i ecencennosasonsoannnnsnnsas
CONT

[cpceacsurernnsssnncnnsncsonnonsacnn
CONTROL-L o ennnncrnmmnnensnnascnanssos
DELETE L ouocnnmnssnssnvssnnnan

LIST suvsasncncscvonnonsnosnansannnsssns

A, 2

¥
]

a

o

E]

£l

3
2

3
3

LOAD L nunavssnnscanannanaanananannsans

El
B

TR fg} 3]

fud el 170

%

MEW i rncnnnannnrosansnanansnnsman

El

RUN suvnennnnunsnnmonunsncnansnsoanasns

SAVE wuvuoncensonnmnensnansnnasnsnacs s

SINGLE-STER {&IMEFEED} B
PHABASLL STATEMENTS wuuvvcarmsvsnvannsnunsssoo
3.1 BLLOCATE L .isniisvonnasnconnnannconnnan

B.3.2 CHAIN wvansscnscncnnasanansanannaunonss
2.3
Fad

£

S

s

A3

Pud I B P2 G P DD g B D B s
#

CLOSE o ariensvrvonarcnannsnacnansansns
DATA

TA wnumnaessascoanspsosannronanerasnna
T S .

Do END auicnamonannnnsnnmancnenonnnssoanns

Z
WBu? FILEBASE wuvicanomwonancanaansosnmuansse
3.8 FOR, TO, STEP and NEXT cevvvvorvccoonncs

He Zm o e e De
L]

£l

%
&
2
o
L8]

GOSUB or CALL andd RETURNccvenrosna

0 GeTo
ERRR §i~ ®REF R WD T ORNOB B SRR ED NGRS R DSBS E R R R oW Eom R

Ao
AT IR, THEN and ELSE L.iussescrnvnnnasnnane
BLBTE INPUT i iiincmncnnoonranssnssnnasssans

%

ST INPUT LINE o uunsmamnmonasasnnenanonesns

]
1

&

-
e T

LOOKUP s enecenuuvnvannunanonnsssaseason
ON ERROR GOTO and BESUME ..o cnvausnn
ON~GUSUE or CALL cueanmevnsonansoncsnns f
OM=GOTD Luusnsrnavosmsonnenssnsacannnnan B
OPEM o revsncnanamonsnorannarnnnonsnnss B
8 PRIMY vnvnnnumacnnonnocnussnsnonnnanss B
22 PRINT USENG .ivcvccosacnccsnsnnmesnsann
5 ORANDOMIZE ..o eonanrmnanomnssnasasans
READ and RESTORE ... veccnnnonsnananasn
25 %L&Lﬁ e e RN R B R e R B R AR A A A s ama s s s
& GNIFICANCE L iovnmuvnsmannnnunmennnnn

g?ﬁ? I I T T

BTHSIZ o vunmcmsnmonancnonsnnnnenannsss
WRITE cuvnrmcamsmunsansnnnsmmmnarsssunss

KOALL, sownsvwmunnusocaoncenanonmnmnnnsse Mell
ASTC FUNCTION STATEMENTE ..oecosnnnnnnes AnTZ

MUMERTS FUNCTIONS L. incacsnnonnnomanss A-TH

s a &

e

8

E

o m%ﬁzﬁiﬁiﬁiﬁ%MiﬂtﬁzﬂiﬁgéuéwémFﬂ‘wiﬂiﬁ"ﬁlw*
it
o

]

PR

El
El
%

E:l
53]
e

B
£

#

"af

@

¥

#

2

bb%%%%%%:ﬁﬁ“;&%%}a
#

2 e R AR

e E
e B ek Pl oihE 6 [Pl

-

3

2

=

DM -OGT00-01 REY BO4

ALPHA BASTC USER'S MANIIAL Fage iy

Bud ot ABSO0) vivnivvnenncocansnanoas A=lh
A2 CHROXD fvvnusunvannornnsnnnnns A=ld
Babinted EXPOD vemennnanconns cenancans A=l4
AbuTid FACTON) waneennnmeeanmans cwenes A=14
BaboTaB FINCXD tinunencoavovennnnnnnan =14
Bobolab INTEXD iitivuaosconcwncnononca A=Th
BaboB.7 LOGOX) evenvnmnconnnse B
AedoTo® LOGTD wrrenvveonennnnocns weaes A=T4
AoboTe® RNDUXD wuwinwcecnnonnononsnnans A=T4
Ao, 110 SENUKD evnievannnnnannnanoas A=l4
AuliToth SORUK) wewroresnerannnonsnnnes =15
Aubo1,12 STRCXY 0 STRE(X) wuumrowenson A=15
A.b,2 TRIGONOMETRIC FUNCTIONS ©ovvvevrnonnnes 415
Aobnd CONTROL FUNCTIONS oovivsevacencnsanneas A=15
Bab.3.1 DATE wuuounsnmunn T
Aab 3.2 TIME o envnsnvnonmncncnn cenean A=TS
B.4,3.8 BYTE and WORD wuuvnevsunsnnnne A=16
BubdoBob BEOF(X) tuvenmsvescnsannonneens A-16
B.4.5.5 ERFEED wuuwnvomonnnns cveasanea. A-16
BobaBi6 ERR(XD wonunsasawosnncnconnses At
BobiBo7 MEMIX) wnnvovneavnsnnancscoonnn A16
A.h 5.8 SPACEOD or SPACES(X) .enuev.. B-16
Acbnt STRING FUNCTIONS 1vvvvernnnnsnnnssncnss A=17
Bobhobt ASCOAS) uvevwonownsnonncannon. A=1T
Bobdof.2 INSTRONLAB,BE) mrvvnnreveneoes A=17
Aobiabha3 LCSTAB) uennueenanonencnnones A=17
Aobohob LEFTCAS,.X) or LEFTS,A8,0) A-17
AobhoheB LENCAE) tuuvueevnenvennonesnne A=17
Aobob.t MIDCAS,X,Y) or MIDS(AS,X,Y) .. A-17
Acbob.?7 RIGHT(AS,)) or RIGHT$(AS,X) .. A~17
RebofeuB UCSCAS) wnevenenronnnnonnesns A=18
Puboh,9 VALCAS) Livuiinennesnonannens. A-18
APPENDIX B MESSAGES OUTPUT BY ALPHABASIC
APPENDIX € RESERVED WORDS
APPENDIX D THE ASCII CHARACTER SET
APPENDIX E SAMPLE PROGRAM - NUMERIC CONVERSION FOR BASES 2 - 16,

INBEX

PWM-OOMG0-01 REY BO4

ALPHA BASIC USERS MAMUAL Page xi

PREFACE

AlphaBASIC 1s a particularly powerful wversion of BASIC that has been
expanded in several dmportant areas. The folldwing chapters describe the
AlohaBASI(features and operations. '

We assume that vou are already familiar with the BASIC orogramming lLanguage,
and that you are interested in getting to know AlphaBASIC. Therefore, this
book emphasizes festures of AlphaBASIC that oiffer £ rom thoge af
conventional BASICs, without going into wmuch detail on standard BASIC
statements and commeruis.

This book is not a BASIC tutorial, but is & technical manual intended for
the experienced BASIC programmer. We encourage you to contact your local
Klpha Micre desler for help inm answering speécific ouestions vyou may Thave
about AlphaBASIC. k

BIBLIOGGRAPHY

If you are not familiar with BASIC, vou may be interested in taking & Look
at one or more of the books Listed below. We have found these books to be
helpful to the beginning BASIC programmer.

Albrecht, R. L., et al.
BASIC, 2nd Edition
John Wiley & Sons, 1978

Brown, J. R.
Instant BASIC
pitlithium Press, 1977

Cassel, D.
BAEIC Made Easy: A Guide to Programming Microcomputers
and Minicomputers
Reston Publishing Co., 1980

Bwyer, T, and Critchfield, M,
& Bit of BASIC
Addizaon~Wesley, 1980

ALPHA BASIC USER'S MANUAL Fage xii

Puyer, T. and Critchfield, M,

Hirsch,

Kemeny,

BASIC and the Personal Computer

dddison-Wesley, 1978

L

BASIC Programming: Self Taught

Reston Publishing (0., 1980

Jo G. and Kurtz, T. E.
BAZIC Programming, 3rd Edition

John Wiley & Sons, 1980

CONVENTIONS USED IN THIS MANUAL:

To make our examples concise and easy to understand, we've adopted a number
of grachics conventions throughout our manuals:

Optional elements of & BASIC statement or command. When
these symbols appear in a sample statement or command,
they designate elements that vou may omit.

Underiined characters indicate +those characters that
AMOS prints on your terminal displav. For example,
throughout this document you see an underlined dot, .,
which indicates the prompt symbol that the operating
system prints on your terminal when you are at AMOS
command level.

tarrizge return symbol, The (RET) symbol marks the place
in your keyboard entry to type a RETURN (i.e., kit the
key labeled RETURN). For example: ULBASTC (FEny
tells you “After an AMOS prompt, type BASIC end a
RETURN, '

Indicatres a {ontrobl-gharacter. If vou fyme a Control-g
in the compilter mode of AlphaBASIC, for instance, vou
see a "0 on your terminal display. (Refer to the AMOS

Uger's Guide, (DWM-00100-3%), for more information on

Control=characters.)

{{hanged 30 October 198

CHAPTER 1

INTRODUCTION TO ALPHABASIC

The acronym BASIC stands for Beginners' All-purpose Symbelic Instruction
Lode, BASIC s & higher—level programming language coreated to be 3
versatile tool for learning computer programming, and also to provide &
relatively simple language Tor a wide variety of applications. But today,
BASIC is more than a learning tool or a beginner's tool for higher-level
Crogramming. It can be said that most programming on small, interactive
systems is done in BASIC. This 1is 1in part because of the inherent
similarity of BASIC to the English language.

Gver the wvears zince itz inception, BASIC has been added to and modified as
new concepts of programming have emerged. Some implementations of BASIC are
more extensive than others: the use of these extended versions asliows the
programmer a wider range of applications, greater ease in programming, or
greater efficiency and speed.

AlphaBASIC 18 just such an extension of the BASIC language, with several
features noet found in other implementations. Thege features noet only
enhance the performance of traditional wses of the language but also make
business applications easier to program. For instance, programmers fTamiliar
with COBOL's powerful hierarchial data structures will asppreciate AlLphaBASIC
features which wmake data manipulation and assembily language subroutine
Linking similarly sonvenient. Floating point hardware in the processor s
fully supported, greatly increasing the speed of mathematical computations.

ALlphaBASTC runs in ome of two modes: interactive or compiler mode.
interactive mode operates much like a traditional interactive interpreter;
that 45, you create, alter and test your program which resides totally in
memory. This mode is convenient for the creation and debugging of new
programs or the dynamic alteration of existing programs. Compiler mode is
mera useful for programs which are to be put inte production use, or for
testing oprograms which are too large to it in memory in the intsractive
mode. In compiler mode, vou compile the program at monitor level and store
the compiled obiect gode on the disk. Dduring the actual running of the
compiled program, only the obiect code and a minimal run-time execution
package need to be in memory, thereby conserving space. The compiler and
the run-iime package are both written as re-entrant programs. this wmeans
that in & timesharing enviromment, any or all users who are running or

INTRODUCTION TO ALPHABASIC Page 1-2

debugging programs may opticnally share one copy in system wmemory of the
compiler and the run~time package. Once created by the compiler, the object
programs (alse known as compiled programs) are also totally re-entrant and
sharable, thereby further reducing memory reguirements 1% several users
desire to run the same application program.

AlphaBASIC supports flosting point, string, binary and unformatted data
formats. ALL data formats may be simple variables or array structures. in
addition, the unigue memory mapping system allows you 1o specify the
ordering of wvariables in prearranged groupings for more gfficient
Drocessing. This system is similar te the data formatting capabilities of
the COROL language and lends itself well to business applications where the
manipulation of formatted date structures is of prime concern,

Variabhle names are not Llimited to the single character and single digit
format of many BASICs, but may be any number of alphanumeric characters in
length, as long as the first character ts alphabetic., This is another
feature which makes AlphaBASIC well suited for business applications. Since
the source code is compiled and need not be in memery when the program is
eventually run, the Length of the wvariable rame 1is not a significant
concern. Label names may also be used to identify peints in the program for
GOTO and GOSUB branches. Label rames are alphanumeric and help to clarify
the program structure (for example, EXITPERROR: or EVALUATE®ANSWER:D.

CHARTER 2

INTERACTIVE AND COMPILER MODES

The major purpose of this chapter is to explore the differences between the
two modes in which vou can use BASIC. uWe will also discuss how to create,
compile, and run your programs.

The ALphaBASIC system consists of three programs: RUN.PRG (the monitor level
BASIL run-time package), COMPIL.PRG (the monitor level disk-based BASTC
compiler), and BASIC.PRG (which combines an interactive compiler and
run-time package to simulate a BASIC interpreter). You use RUN and COMPIL
from AMOS command level to run and compile AlphaBASIC programs outside of
BASIC. ¥You use the BASIC.PRE program when yvou want to use AlphaBASIC as an
interactive interpreter.

Your choice of dnteractive or compiler mode depends on several factors: your
personal preference, the amount of memory you have in your partition, the
stage of development your program s in, and the physical form of your
DO am .,

Interactive acde zimulates a BASIC interpreter by allowing vou to deal
directly with BASIC. This is the mode that most BASIC users are probably
familiar with, Interactive mode permits direct editing of the source
program in memory and immediate feedback as each program Uine is edited, 1In
this wmode vou are “in' BASIC, and can use AlphaBASIC's unigue program
debugging features. To execute a program in this mode, you must first load
in or create in memory your uncompiled source pregram. After vou have
finished compiling and executing the program, you are still in BASIC, and
are not returned to monitor Level until you use the BASIC commend BYE.

tompiter mode allows you to compile programs from the monitor level without
ever entering BASIL. You first create the source program f(a .BAS filel
using one of the system text editors. Then, from the AMOS monitor level you
compile the program. The compiler automatically saves this compiled version
of vyour source program (called the "object program”) on the disk as a .RUN
file: the file is avaitable for execution then or later using the AlphaBASIC
run~time package, RUN.PRG. After you execute the object program from the
monitor tevel, the run-time package returns vou to monitor lLevel,

INTERACTIVE AND COMPILER MODES Page £-¢

Whether vou use interactive or compiler mode, the resulting obiect program
is re-entrant, and may be loaded into system memory for use by multiple
users,

2.1 INTERACTIVE MODBE

Perhaps the najor advantage of dnteractive mode i3 that it aliows you o
Ttalk to” BASIC while you are creating or editing vyour program. Yo sre
free to enter entire programs which will be executed when you use the RUN
command, or you can enter single statements outside of a program Yor direct
execution. ¥You can interrupt a progrem and, sinee vou are stiil in BASIC,
can display and change variable values and then resume prograsm operation.
You will probably be wost interested 1in using interactive mode it the
interactive nature of the compiler i3 of particular use to vou {(for example,
it you are new to AlphaBASIC and went to Try out wvarious statements and
small programs, or 3f & program s in an early development stage and you
want fo make use of interactive mode's debugging featuresd,

One disadvantage in using dnteractive mode has to do wWwith WMEMOEY
reguirement s, Your source program, your object program, and BASIC.PRG all
reside in memory at the seme time., In addition, BASIC leads {nto memory the
BASIC run~time package. BUNLPRG, The BASIC.PRG file ttself s fairly ltarge,
since 1t containg 2 cowmpiler as well as the code that allows 11 te simulate
an interactive interpreter. This all means that using BASIC in interactive
mode uses up more memory than compiling and executing 2 program outside of
BASIC,

Because BASIC.PRG 1s re-entrant, you may place it in system memory Lo save
room in wser partitions. (If you do so, you may alse want to gplace RUN.PRG
in sysTem memory.s However, singe BASIC ds a fTalrly large program, you
probably will onby want to put it in system memory i most of the users on
your system do a grest deal of BASIC program develeopment.

Yo use interactive mode, at monitor level type BASIC followed by a RETURN:

LBASIC (RET)

Whenrn BARIC s ready to communicate with you, you ses the prompi:

¥You are now inside BASIC.

2.%.% Loading, Creating, and Saving BASIC Proorams
To {oad 8 source program into memory, use the LOAD command. For example:

LOAD NEWPRGEZ3,41 (BET)

INTERACTIVE AND COMPILER MODRES Page -3

BASTIC will load in the specified ,BAS fite. (This program file could have
peen created using one of the system text editors, or might have heen saved
from a previous interactive mode session.t Or, instead of Loading in an
extsting program, you can start creating 2 new source program by simply
typing in the program,. Editing the program takes place in the conventional
manner, by tvping each Line with 1ts Line number first. BASIL hkeeps Llines
in seguence automatically, so vou may enter them 4n any numeric order. To
edit a program line, you must re-tvpe the entire Line. As vou enter program
Lines, BASIC szcans that line looking for syntex errors. If you enter & line
incorrectly, BASIC will tell vou so. For examples

READY

10 HELP WHAT AM T DOING? FiT)
syntax error

it you want to save a source program, use the SAVE command. For example:

SAVE NEWFRG

The command above saves the source program MEWPRG.BAS as a disk Tile in the
account you are logged into. ¥ou can save the compiled version of that
orogram by specifying the RUN extension:

SAVE MEWPRG, RUN (RET)

it you have not previously compiled the source program, or if vyou have
changed the program since the Last time you compiled it, BASIC autematically
compiles 1t for you when vou save a JRUN file to ensure thalt you are saving
the most current version.

I¥ you tey to save & JRUN Tite when there is no sgurce program in memory,
BASIC reportss

Mo source program 1n text buffer

Since there 1% me way to convert an object file back to 2 source program
tile, you will want to save both the .BAS and .RUN versions of vour program.
(For informstion on the SAVE and LOAD commands, see Sections 2.8 and 9.11.0

2.1,.2 pirect Statements

Program statements that do not begin with a Lline number are considered
cirgct statements, and BASIC executes them immediatelv. For example:

j
PRINT A+é
G

INTERACTIVE AND COMPILER MODES Page 2-4

Aithough it looks as if it i3 being interpreted, a direct statement ig
actually compiled, thern 14 is applied against: the current set of defined
variables,. You can define variables and change variable values using direct
statements,

lertain statements are meaningless as direct statements, and so are not
atlowed (for example, RESUME, GOSUB, eto.}.

BASIL ailows multi-statement Lines as direct statements. {(Multi-statement
Lines are Llines which contain more than one statement; the statements are
separated by colens.) As you enter direct statements, BASIC checks them 1o
see that they are in proper form and that they are legal for use as direct
statements., You s¢e an error message 1f vou enter g statement incorrectly,
ar tf it iz not a legal dirsct statement.

2.1.3 Compiling and Running a Program

Aithough snteractive mode simulates an interactive interpreter, in operation
BASIC.PRG is & full compiler. As vou enter a direct statement, BARIC
compiles 14 and gives you inmmediate feedback, Whenever vou change the
source program in memory, BASI{ sets a switeh that indicates that the
program must he re-compiled before it is executable again.

The source program that vou have loaded in from the disk or created while in
BASIC resides in memory. BefTore you can execute that orogram, 1§ must bhe
compiled, Running in interactive mode always involves the compilation and
running of 2 source program which is in memory, and never includes running a
saved disk object program directliy. Also, in interactive mode, vou may
compile only the program currently in memory. NOTE: To erase anvthing in
memary in preparation for loading in a new program or coreating a new
program, use the NEW command., If vou do not erase the program in memory,
BASBIC will merge the new program into whatever is 4n memory. I any Ling
numibers from the new program duplicate line numbers of an old program in
memory, the new Lines will replace the old Lines in memory.

To execute the program, wuse the RUN command. WNOTE: It vou try (o use any
of the execution commmands {e.g., RUN or CONT), and if the program has been
changed since the lsst time 1t was compiled, BASIC automatically re-compiles
1t for you before executing the program. Therefore, if vou need to compile
the source program and then run it, vou may simply use the RUN command, and
BAELC will compile and execute the program for you. For example:

INTERACTIVE AND COMPILER MODES Page 25

READY

10 REM This s a small program (RED)

20 goR I = 1 TO 5 [FET)

EYOPRINT “Little tasks make large return.” (EET)
400 NEXT 1 (EET)

Compiie time was 0.13 seconds
Little tasks make lLarge return,
Littile tasks make large return.
Little Tasks make large return.
Little tasks make large return.
iittle tasks make large return,
Buntime was D.40 zeconds

READY

To just compile the program, but not run tt, use the COMPILE command, Far
example:

ComMPILE (FET)
Compile time was (.13 seconds

Once the program i compiied, the obiect code resides in memory along w%th
the source program. You can write it out to disk as a RUN file by using
the 38YWE command and specifyving the .RUN extension.

2.1.%.17 Compiler QOptions =~ You may specify the FQ compiler option to the
interactive compiler. The /0 option tells BASIC Yo strip out any references
to Line numbers in vour compiled obiect code, 1t does not change your

SOUPNGCE DEOgQran. By removing Line number references from your object
program, you ensure that vour compiled program will be smalier and will run
faster. However, if an error occurs while executing the program, the

resuylting error message will not show the number of the Line where the error
ocourred,

INTERACTIVE AND COMPILER MODRES Page -6

2.7.4 DBebugging Features

A unigue feature which ds very useful for debugging programs 1is the
single-step command, Every time you type & Line-feed alone on-a Line, BASIC
Lists and executes the next program statement. At that point you can
inspect wvaritables or alter their wvalues before vou continue oprogram
execution {(via the {ONT command or typing another line-feed). HNote that amy
change in the source program results in BASIC re-compiling the program
before the next single~step command is actually carried out. See Chapter 9,
“interactive Lommand Summary,” for more information on single-stepping
programs, and on setting and clearing breakpoinis.

2.2 COMBILER MODE

Compiter mode conzists of wsing the disk-based compiler, [OMPIL, and the
run~time nackage, RUN, 3t moniter level to compile and execute programs
without entering BASIC.

Althouah you do not have the interactive features of ALphaBASIC svailable o
vou in compiler wmode, yvou do have the advantages of being able to compile
source programs that are too large te it into memory, and of reducing the
amourtt of memory vou need to compile and execute programs. Remember that
interactive mode keeps the BASIC interactive compiler, The run—~time package,
angd vour source program all in memory at the same time. When vou compite 3
program in interactive mode, the object code also resides in memory.

Grn the other haend, 1in compiier mode, only COMPIL and RUNM need reside in
memary. Your source program is read in oa Line at a time from the disk and
the statements, except comments, are compiled into obiect code. When you
sxecute g program from the momiter, only the run-time package and vour
object file need be in memory.

2.2.1 {reating & Program

There are tuwe ways to greate a scurce program for use in compiler mode: vou
cart gither wuss AlphaBASIC in dinteractive mode to type in the program, save
that program on disk, and then exit BASIC: or, you can use one of the system
text editors, BEBIT or YWUE. The usual way te create a program that is godng
to be compiled with COMPIL s to use VUE to create the .BAS file. VUE s a2
screen~oriented text editor that allows vyou to see vour program on the
terminal scoreen as vouw type it din. Youw can move the cursor around on the
screen and change or delete text at the current cursor position.

INTERACTIVE AND COMPILER MODES Page -7

F.7.Y.Y Program Form o~ The form vour program may take differs somewhat
hetween compiler mode and interactive mode. ¥ yvou - oreate and save your
sourcs program in o interactive mode, that program must, of course, contain
Line numbers, {(Otherwise, BASIC would interprel sach statement as a direct
statement when vou tried o type the program in.r

COMPLL . however, does not reguire that a program contain line numbers, That

means that 11 vou greste your program using YUE, you do not need to ingiude

Line numbers in that program. In addition, you may indent your program
Lines in any fashion you desire. By omitting Line numbers, including line
Ltabels, and using indentation judiciousiy, you can give your source program
a much more structured look than is usually possible with BASIL programs.
(A "label™ 45 5 special name defined by vou that fidentifies a location
within a program.)

COMPIL also abliows the use of gontinuation Limes within @ source proaranm,
Specity a continuation Line by making an ampersand (&) the last character on
that Line, For exampile:

1F Answer = RIGHTINUMBELR THEN &
PRINT "Yery Goodi™ &
ELSE B
PRINY "Try again.”

If wou use LOAD 4n dnteractive mode to load a program that wses continuation
Lines, BARIC concatenates contiguous continuation Lings into one Line. (The
maximum Line tenath, including any continuation tines, tabs, or blanks, is
500 characters,) Then, if vou save that pPoaram back out to the disk, any
continuation Lines are gone,

Below 12 a small example of a valid program that uses continuaticn Lines,
trvdentation, arnd labels, and has no Line numbsers:

PoProgram to print name In reverse.

pond
=
S
|
1

SYRS1Z 20

START: INPUT LINE “Enter your name: " ,MAMES
TF LEN(NAMES) = 0 THEN %
GOTO START

LOGR: COUNTER = LENCNAMES)
FOR T = 1 TO (OUNTER
PRINT NAMESTCOUNTER:1
COUNTER = COUNTER - 1
MEAT
ENBUT Ybo vou want instant replay? (Y or NIV QUERYS
PE {(QUERYS = ¥Y) QR (QUERYS = "y") THEN &
GOTO LOOP R
ELSE &
FRINY "ALL done.”

{Changed 30 April 19813

INTERACTIVE AND COMPILER MODES Pane 2-8

NCOTE: Since COMPIL does not reguire that yvour program contain Uine numbers,
it does ne checking for duplicate Line nunbers or Llines out of numeric
S EISNCE . If your program contains these kinds of errors, it will compile
using COMPIL. However, 11 you use interactive mode and load the program in,
BASIC (which requires Line numbers) will be unable to thandle the program
correctly, and errors witl result. {(For example, in the case of duplicate
Uine numbers, BASIC wilt merely taike the last line in the file bearing the
duplicate number.)

2.2.2 Compiling a Program

To compile a progrem in compiler mode, at AMOS command level enter COMPIL
followed by the specification of the file vou want to compile. You may

supply & full file specification, ineluding account and device
specifications. (The default extension 13 .BAS. The default ascount and
device are the ones you are Logged into.? after you enter the file

spectfication, tvpe a2 RETURN, For example:
LCOMPLL REVRSE (RET)

Now you see a number of statistics on vour terminal as COMPIL compiles your
orogram. A typical display miaht look something Like thisg

LCOMPIL ACMSLS BED

Fhase 1 ~ Initial work memory is 2310 bytes

Phase 2 - Adjust obiect f1le ang proogss errors

Tilegal MARF levei = 5B MAP FILL 5,796

Syntax error ~ 980 SLEMTR = SLSMTDBSLAMY

Mamory usage:

o Total work space - 4712 hytes
Label symbol tree -~ 34 byvtes
Yartable symbol tree — 1186 bytes
Pata statement pool - U bytes
Yariable indexing ares — 774 bytes
Compiler work stack - 40 bytes
Excest avatiable memary - 11918 bytes

Note that COMPIL felis vou 3f any errar exists within the source proaram
when it processes your file {(Lines & and 5 of the display abovs}. The
"Excess availasble memory” message i3 useful for letting yvou know how close
you are to running out of memory. If you do run out of memory during a
compilation, vou see the message: (Qut of memory ~ compilation aborted),
and COMBPIL returns vour terminal to AMOS command level.

Whern COMPIL has fTinished gprocessing vour file, 1t returns you to monitor
ltevel and writes the chiect program to the disk as a file bearing the name
of vour source program and & JRUN extension. However, it (OMPIL detectis
grrors in the source program, no LRUN version is output.

{Changed 20 April 1981

INTERACTIVE AND COMPILER MODES Page Z2=9

2.2.2.17 Compiler Options ~ Three compiler options are avaeilable for use
with COMPIL: /0, /T, and /M. To choose an option, include the symbol "/ at
the end of the file specification that you supply to COMPIL, folicwed by the
appropriste option reguest code. For gxamnies

SCOMPIL NEWFIX.BAS/0 (BE)

The compiler mode /0 option s the same as the /0 agption for the interactive
mode (see Section 2.1.3.1, above). The /0 option code tells COMPIL to strip
aut any Line number references in your compiled object code file. This
makes your object code file smaller and makes the program run faster, but
any error messages do not dinclude the number of the Line at which the error
ccourred,

The compiler mode /7T option is primarily for debugg ing purposes., It telils
COMPIL to display each line of vour source program as 1t scans that line.
if & problem occurs during compilaticn, vyou can use the /T option to
determine the line in which the problem occurs. You can also use /T 1o
gatge the speed with which certain statements compile,

When you use the /M option, an error message is displaved any time COMFIL
encounters an unmapped variable. This option aids programmers who wish to
verify that all variables have been mapped. (See chapter £, "MEMORY MAPPING
SYITEM,” Jor dinformation on mapping variables.)

2.2.% Running a Program

Te run a2 program in compiler mode, at AMOS command level enter RUN, the name
of the LRUN program you want to execute, and a RETURN. For example:

- RUNM OGP {RET)

You may supply a full file specification, including device name and account
number . The monitor looks for the run-time package, RUN.PRG, in memory: if
tois not found in system or user memory, AMOS Loads RUN into memory from
the disk, RUN initfalizes memory, looks for your program in memory, and, it
it iz net there, loads the specified .RUN file from the disk. HNow RUN
executes your program. Upon completion, or if vou type a Control-0 to
interrupt the program, RUN returns you to AMOS command Level .

DWM-00T100-01 REV BO4

INTERACTIVE AND COMPILER MODES Fage 2-10

Note that the RUN command serves two different functions, depending on
whether you are in compiler or interactive mode, In compiler mode, RUN is a
monitor command used to execute a compiled BASIC program that has previousily
been saved on the disk or loaded into memory. The command:

SRUN PAYROL (EED)

will run PAYROL.RUN and then exit back +o AMOS command level without ever
entering BASIC. In interactive mode, the RUN command is a BASIC command
that compiles and executes the current source program that vou are sditing
and testing; when it finishes, vou are still in BASIC,

MOTE: Do not use the monitor command RUN on files with LBAS extensions. On
the AMOS/L system, if you try to run a .RUN file that was produced on the
AM-TO00/T system, or any non-.RUN file, vou will get the error message:

TRUN file 43 4n an incompatible format

PEM~DEHO0-01 REV 804

CHARPTER 3

GENERAL INFORMATION

This chapter gives general information about the form that your AlphaBASLC
program may take. For example, we discuss multiple statement Lines,
EXPAND and NOEXPAND modes, program labels, and Line numbers.

3.7 MULTIPLE STATEMENT LINES

The system supports multiple statement Lines by using colons to separate fthe
statemenits. For example:

10 FOR I=1 TO 10 @ PRINT "THIS IS A LOOPY ¢ NEXT I

The normal rules apoly; for instance, a DATA statement cannot contaln other
statements on the same Line and no other statements may follow & “comment”

idesignated by Tthe REM or | keyuwordsl. Direct statements may also be
multiple statement lines.

You should always use spaces around the colons since BASIC will otherwise
try to treat two commands (e.g., PRINTZPRINT) as a lLabel and a single
command. (The one situation where you do not have to use spaces around the
colon that separates two statements is when you are in NOEXPAND mode. See
section %.8 for information on EXPAND and NOEXPAND modes.’

5.2 CONTINUATION LINES

COMPTL allows the use of continuation Lines within the source program. Theat
is, statements may be continued on the next Line by using the ampersand (&)
symbol as the Last character on the Line. (However, you must not assign a
Line number to a continued line.) Since any statement Line may be indented
as you please in the compiler mode, considered use of continuation Lines and
indentation, oplus optionatly eliminating Line numbers {as discussed in the
next section) enables you to give your source program a much more structured
igok than allowed by more conventional BASICs or AlphaBASIC in the
interactive mode. For example:

{Changed 31 October 1987

GENERAL INFORMATION Page 35-7

1F (TIME/SO/60/CLKFRGI*T0O000 » 120000 &

AND (TIME/SD/60/CLKFRE)=T0000 < 130000 &
THEN &

PRINT "IT IS LUNCHTIME" &
FLSE &
PRINT "GO BACK TO WORK”
FRINT C(TIME/AC/A0/ CLKFRGY = 10000

The meximum size of any Line, including blanks, tabs and any continuation
Lines, 43 8500 characters.

3.3 LINE NUMBERS

Frogram Line numbers range from 1 to #5534, Programs used in interasctive
modes must contain Line numbers, Programs to be compiled in compiler mode do
not need to have Line numbers. Therefore, 1f vou c¢reate vour program using
VWUE and are going to use COMPIL, you may omit the LUine numbers from fthe
DrOGram. Unnumbered Llines may enhance the structured look of vour source
program as shown in Section 3.2. NOTE: If you include Line numbers, that
does mean that 11 an error occurs, BASIC will be able to tell you which line
the error occurred in.

5.4 COMMEMTS (REM AND 1Y)

AlphaBASIC supperts the ability to dnsert comments inte the source program
waing Twoe methods. The keyword "REM” may appear alone on a Line followed by
the comment, or mav be inserted on the same Line as a statement, toc comment
on the purpose of the statement. You may follow the REM (or “remarks™)
kevword with anything you want. For example:

70 OREM ANYTHING YOU WISH TO SAY
100 PRINT & @ REM VARIABLE A MEANS "ALLOWANCE"

Note that Uine 100 above 45 & legal wmulti-stetement Line; however, no
statement may follow a REM statement on a Line. When the program is
comptied, everyvihing in the Line following the REM statement is ignored.

The comment symbol 717 {8 an abbreviation of the REM statement, and is used
the same wWay. {ike the REM statement, anything folleowing the ! symbol on
the line is dgnored. For instance:

40 PRINT "TRY ANOTHER TIME" VEF THEY MISS BETWEEN
50 GOTO AGAINM LONE AND THREE TIMES.

NGTE: It the REM or | kevword s the last statement on the program Line,
vaou do not need to precede 1t with a colon (the statement separator symboll.

GENERAL INFORMATION Page 3-3

%.5 INTERACTIVE MODE DIRECT STATEMENTS

AlphaBASIC immediately executes any Line you enter if that line does not
start with a Line number. Such Uines may be of twhg Types: BASIC smystem
commands and direct statements. A BASIC syStem command performs a system
function (for example, the LIST command tells AlphaBASIC to display the
program currently in memoryl. BASIC system commands may never be part of a
orogram Line. Direct statements, on the pther hand, are normal program
sratements that may also appear within a program line. (For example, the
PRINT statement tells AlphaBASIC *o display 2 specified numeric or string
value and may appear either as a direct statement or as nart of a programl.
some statements are not allowed as direct statements (for sxample, the GOSUB

statement) ,

.6 PROGRAM LABELS

AlphaBASIC allows the use of program labels to identify locations in a
program. A program Label is composed of one or more alphanumeric characters
which are not separated by a space or other delimiter, The first character
must be an upper case alphabetic character A~Z or a lower case alphabetic
character a-z. Apostrophes may be used within labels in place of spaces for
clLarity, since apostrophes are not recognized as delimiters. A Llabel, when
usad, must be the first item on a Line and must he ‘terminated by a colon
=%, 1t is important to remember that vou may not place & space hetwesn the
Label and its colon; to do so will cause BASIC to think that you havs
entered a multi-statement Line rather than a labeled Line. A label may be
foliowed by a program statement on the same Line, or it may be the only 1tem
sr the line. The use of Labels is similar to the use of line numbers with
GOTO and GOSUB statements, and makes the program easier to document. Here
are some examples of labels {using spostrophes):

10 START'PROGRAM: INPUT "Enter two numbers to get sum: ", A,B

20 PRINT A: "+": By "= A+B

th PF AR <> [GOTO SUMTNOTTZERG
40 FRINT "Sum is zerg”

54 GOTS START'PROGRAM

60 SUMTNOT'ZERD:

74 PRINT "Sum is not zero®

20 GOTO START'PROGRAM

@i END

where Start'Program: and Sum'Not'Zero: are labels. Note that a reference 1o
a tabel, as seen in Lines 30, 50 and 80, s neither the first item on a Line
nor 4s it terminated by a colon. The reference must be identical to the
actual label in its rase (upper and/or lower) and in the placement of
apostrophes.

GENERAL INFORMATION Page 34

.0 MEMORY ALLOCATION

The compiler system allocates memory dynamically as vou edit your program,
and also during ts compilation and execution. Checks are made to tell vyou
it you have run out of memory. If vou do, vou get an error message. If you
run out of memory while COMPIL is compiling vour program, compilation is
aborted and you are returned to AMOS command level.

3.8 EXPAND AND NOEXPAND MODES

AlphaBASTC normally scans the source text of the program in EXPAND mode,
which dictates that reserved words (verbs, functions, commands, eto.) be
terminated by 8 space or a character that g illegal in wvariable names.
This allows iabels and variables to begin with reserved words. In other
words, the variable name PRINTMASTER i3 not interpreted as PRINT MASTER in
sxpanded mode, In the EXPAND mode, the statement FOR A=1 T0 10 cannot be
written as FORA=1TOM0. These are the Ttwo commands which you may apply fo
sWitch hack and forth betwsen the normal EXPAND mode and the NOEXPAND mode:

EXPAND zats syntax scanner to expanded mode
NOEXPAND sets syntax scanner to non—expanded mode
The default mode 5 EXPAND mode. Mote that the obiect code which is

generated s#s a result of a compilation is not affected in size, execubtion
speed or anything else by the mode in which it g compiled.

1

NOEXPANL ds usually wused only when running programs written on other
¥EEamS .

3.9 LOWER CASE CHARALTERS

AlphaBASIC supports Lower case letters (a-z)} and upper case letters (A-1) in
hoth the input source program and in the run~time execution of programs,
The Line editor built dnto the interasctive system accepts and stores source
input fext in lower case or upper case characters. Lower case letlers,
when used within variable names and labels, are unigue and separate from the
corresponding upper case letlers, in other words, the variable 78" s
separate from the variable "A" and the variable “Tom" 1is separate from the
varjables VTOM" and “tom”. Lower case letters may be used as the first
character of a variable name or program Label just as upper case Lelters may
be.

Reserved words are treated somewhat differently from the above system. When
a reserved word it expected, the syntax parser temporarily transiates al i
lower case letters to upper case and then checks for & reserved word match.
Tf the word is not a reserved word, the translation is not retained and the
Lower case letters sre uzed for variable name matches. The following
statements ars all considered to be identicati:

GEMNERAL INFORMATION Page 3-5

FOR A = 1 YO 100 STEP 2
For A = 1 To 100 Step 2
For A = 1 te 100 step 2
for A = 1 to 100 step 2

The entirge string processing system supports lower case characters. That
is, Lower case lLetters used within string Literals {inside guotes) are
retgined and printed as lower case, Lower case letters which are entered
into string variables by means of the INPUT statement are aiso retained as
tower case letfers.

Note that all lower case characters are considered greater than any upper
case character due to their position in the ASCIT collating sequence. To
sssist in processing and comparing input which contains lower case letters,
the UCS(X) function has been implemented. This function returns a string
which 48 ddentical to the argument string (X)), with all characters
translated to upper case. The inverse function LEE(X) returns a string with
all characters translated to lower case.

3.1 LIBRARY SEARCHING

Whenever a program (called via RUN or CHAIN) or a subroutine (valied wvia
XCALL)Y s reguested, BASIC follows a specific pattern in locking for the
reguested JRUN or .S5BR module, If you specify an account, then BASIC uses
the current default device and the specified account. I you do not
specify an account, the search seguence is as foliows ({where [P,pnl
designates the Project-programmer number that specifies your accounid:

Svstem memory

User memory

pefault disk:luser P,pnl
petault disk:[User P00
DRKOL7 .61

If wvou specify a device, BASI{ does not search in memory but proceeds
directly to that device.

Mote that eariier versions of BASIC (pre-4.2) used s different ssarch
algoriths that was the reverse of the one outlined above.

.11 INCLUBE FILES

The INCLURE command allows COMPIL to fetch source code from angther Tile
during compilation, 3o that yvou don't have to repeatedly type in frequently

used code. AL the point in the program where you want the transferred code
to hegin, enter:

+RINCLUDE filespes

{Changed 31 Qctcher (981

GENERAL INFORMATION Fage 3-8

The ++INCLUDE must be the first command on the line (no Lline number , and
the filespec can bhe any wvalid AMOS file specification that opticnally
includes 2 device name and/or PPN. The default extension is .BSI (BASIC
Include filed, If you do not specify a device and/or PPN, the search
pattern is the same as that for .RUN modules {(i.e,, user PPN; user ©[P,0]:
DEKO:LT .61, Az COMPIL accesses each file defined in a ++INCLUDE command,
YOu see:

Copying from filename

The filename is the filespec you specified in the ++INCLUDE command.

Multiple ++INCLUDE commands in the same filte are allowed, but a file that is
copied in may not itself contain a ++INCLURE command, If vou ‘iload dinto
interactive BASIC a file containing one or more ++INCLUDE commands , BASIC
ighores them.

(Changed %1 October 1981

CHAFTER 4

ALPHABASIC VARIABLES

5.1 WARIABLE NAMES

An AlphaBASIC variable name may contain any number of atphanumeric
characters, and s not Limited to a2 single letter or to a letter and a
digit, as in most BASIC implementations. The first character of the name
must be alphabetic (from A to 7 and a to z), and the variable name may heagin
with any reserved word unless NOEXPAND mode is set (zee Section 3.8, "EXPAND
ard NOEXPAND Modes™). (for & List of A&lphaBASIC reserved words, see
Appendix C, "Reserved Words.") Apostrophes may also be used in variable
mames to improve clarity, You may use both upper and lower case characters
in your variable names. MNote that although AlphaBASIC folds reserved Words
to upper case, it does not translate variable names {(e.g., the variable name
REC'SIZE is considered unique and separate from the variable name Rec'Size).
(Sap Section 3.9 for a discussion of how AlphaBASIC handles upper and lower
case characters.)

Normal (unmapped) variables are considered floating point variables unless
their names are terminated by & dotlar sigh, in which case they are
considered string veriables. variables defined via a MAP statement (called
mapped variables) are defined by an explicit type code and therefare do not
fallow the standard convention of using a dollar sign for string variables;
they may take on any kind of data format, regardless of the name terminator.
(Mapped wvariables are a special form of AlphaBASIC variable that enable you
to pertform sophisticated data 1/8. For information on mapped variables, see
Chapter B, "Memory Mapping System.”}

Integer variables are specified by appending a percent sign to the wvariable
Name . (NOTE: The integer variable was added for compatibilify reasons.
However, AlphaBASIC does not perform integer arithmetic. Following @
variable name with a % symbol is eguivalent td using the integer function an
that variable, For example, COUNTERY iz the game as INT(COUNTER).D

ALPHARASIC VARIABLES Page 4-2

Subscripting of array variables follows the standard conventions of ather
BASICs by enciosing the subscripts within parentheses,

The following are sxamples of legal variables:

A
A%

NUMBER

STRINGS

MASTER' [NVENTORY 'RECORD
HEADERT

MOM! ALWAYS L IKED YOU'BEST
71234567

MEWARRAY(3,3)

4.2 NUMERICL VARIABLES

The normal mode of processing numeric wariables (as opposed to string
variables? ta i Ti=digat BCTUNBOY , which might be termed
“"gsingleand-one-half”® precision compared to normably accepted standards.
This is due to the thardware floating point dnstrustions which are
implemented in the Alpha Micro computer. Integer and binary wvariables are
alse considered numeric varisbles, but are always converted to floating
point format prior to performing mathemstical opsrations on them. ALL
printing of numeric variables is done under normal BASIC format, with the
significance being variable under user conteal from b to 11 digits. The
SIGNIFICANCE statement 13 used to set up this value, (See Section 10.24,
TLIGNIFICANCE.'

4.3 STRING YARIABLES

AlphaBASIC supports string variables in both single and array form. The
memary that is allocated for each string variable is the number of byrtes
representing the maximum size that the string 1s allowed to expand to, Each
string iz variable in size within this maximum Limit and a null byte i3
stared at the end of each steing to indicate its current actual size 1f ths
string is shorter than the maximum. At the start of each compilation, the
default size to be uysad for strings is 10 characters waximum. The JTRSIZ
statement may be wsed within the program to alter the value to be used for
all new string variashles which follow.

String wvariables may be concaltenated by use of the plug sign hetwesn two
strings. String variahles may be assigned wvalues by enclosing string
Literals in quotes. String functions such as LEFTE, BIGHTS, MIDE, etc. are
implemented to assist in manipulating portions of strings or substrings. In
additTion, a powerful substring modifying system may be used To operate on
partions of strings within expressions. Chapter 7, "Substring Modifiers,”
i devoted to this uniaue option of AlphaBASIC.

BLPHABASIC VARIABLES Page 4-5

Unformatted, mapped variables are also considered string varisbles when they
are used in expressions or printed. (See Chapter &, "Memory Mapping
System,” for information on mapped, unformatted vartables.y (NOTE: Of
course, an unformatted variable may contain non—string data. 1T this the
cass, then using the PRINT statement to display either that variable or an
exprassion containing it will result in a very odd display, since the data
i not in a printable form.)

o4 AREAY VARIABLES

You may designate arrays by numeric or string variables. BASIC dynamically
allocates unmapped array variables during execution when it encounters a DIW
statement in the program. During execution, i1 no DIM statement has been
encount ered when the €first reference to the array is made, 2 defaull array
cize of 10 elements for each subscript level is used. This means that all
DIM statements must be executed in the program prier to any actual
references to the array.

Arrays may be any number aof levels deep mut practicality dictates some
reasonabie Limit of 20 or so. FEach tevel is referenced by a subacript value
starting with element 1 and extending to element N. Once an array has Dbesn
dimensioned by a DIM statement, it may not be redimensioned by & subseguent
5IM statement in the same program. At ne time may the number of subscripts
vary in any of the references to any element in the array. The number of
subscripts in each element reference must also match the number of
subscripts in the corresponding DIM statement which defined the array size.
fsee Section 10.4, "DIM,” for more information on the DIM statemant .}

{Changed 30 Aprit 19812

CHABRTER 5

ALPHABASIC EXPRESSIONS

5.7 ARITHMETIC EXPRESSIONS

Am expression can gontain wvariables, constant values, operator symbols,
functions, or any combination of the above. For example:

(THOFIXCTOTAL'RECS*RECTSIZEY /5120

Parentheses are used to designate hierasrchy within expression terms; the
normal mathematical hierarchy prevails in. the absence. of parentheses.
alphaBASIC recognizes the follewing mathematical operators:

+ unary plus or addition = egual
- unary minus or subtraction <. Less than
* multiplication ' > greater than
£ division < uneqgual
- raise Lo power e unequal
e raise to power # unegual
i atring Literal = Less tharn or egual
NOT Logical NOT = Lless than or equal
AND Llogical AND P greater than or equal
OR lagical OR =3 greater thal or equal
R logizal XOR USTING expression formatting
A Logical eguivalence
MIN minimum value
MAX max imun value
Note that AlphaBASIC automatically evaluates expressions for you. For

grample, consider the statement:
PRINT (3210072 MAX 25+30/54)
BASIC evaluates the first section of the expression, 32%100/2 (which squals

16001y, then evaluates the last section, 25+30/5%& (which equals Z5.5336).
Finally, BASIC applies the MAX operator ta the parts of the expression

DWM~O0T00-01 REYV B4

ALPHABASIC EXPRESSTONS Page 52

.4 OPERATOR PRECEDENCE

The precedence of operators determines the sequence in which mathemsticatl
cperations are performed when evaluating an expression that does not have
overriding parentheses to dictate hisrarchies. AlphaBASTC uses the
foliowing operator precedences

exponantiation

unary nlus and minus

multiplication and division
addition and subtraction

relational operations (comparisans)
logical NOT

logical AND, OR, XOR, EQV, MIN, MAX
LS ING

NOTE: The USING operator allows you to format numeric ar string data using
a format string. For information on USING, see Chapter 13, "Formatting
Output (PRINT USING and Extended Tabs) .,

3.5 MODE INDEPENDENCE

Erpressions may contain any mixture of variable tvpes and constants in any
arrangemeant . AtphaBASIC performs automatic string and numeric conwversions
A% necessary, to ensure that the result s in the proper format. For
example, if two strings are multiplied together they are first automatically
converted to numeric format before the multiplication takes place, If the
result is then to become a string, it is reconverted back to string format
before the assignment is performed. In other words, the statement A% = B$ =
MERAET ds perfectly legal asnd will work correctiy. This is a powerful
feature which can save much programming effort when used correctiv,

There is s seemingly ambiguous situation which arises from this mode
independence . The plus symbol () is used both as an addition operator for
numeric operations and as a concatenation operator for string operations.
The wvalue of 34+% 75 eqgual %o 39 hut the value of “38"+"5" 45 equal to the
string "345", The operation of the plus symbol 45 unambiguous in its
operation but may take a Little thought to figure ocut its exact usage in a
given situation. A few examples might help.

It the first operand is numeric and the second is string, we convert the
sgcond Lo numeric form and perform addition,

54 ¢ U5Y souals 19

It the first operand is string and the second operand is numeric, we conwvert
the second to string and perform concatenation.

TELT o+ 5 equals TB4EY

DWM~-0100~01 BEV RBDE

ALPHABASIC EXPRESSIONS Page 5-3

1% the first operand is string and the second aoperand s numeric, we convert
the second to string and perform concatenation.

UELY + B eauals TELRY

NOTE The ashove two examples apoly only when we are not "expecting' &
particular tvpe of variable or term. This generally cocurs only in & ?REN?
expression such as PRINT 34" + 5. At other times, we are expecting. a

specific type of varitable; the conversion of the first variable 18 then
performed prior to inspecting the operator (plus sign) . The operation of
the plus sign is implicitly specified by the result of the first wvariable.
Take the following example:

ig ¥ ”3&'@;? ”§, é‘é‘

fhe multiplication operator () forces us to expect 4 numeric term o
fallow. The 34" string is therefore immediately converted 1o numeric 34
and muttiplied by the 5. The plus sign then performs numeric addition
imstead of concatepation. The result is in numeric format and 13 convertad
vg string format if its destination is a string.

The following are a few examples as they would be seen it you were to use
them in an actual program:

WA= 34+ 5

2{} a P 3‘{; #‘ V§5!§
0= "BEY o+ 5
f#g % e f%?i:i?ﬁ A S?%ii‘
50 &% = R4 + 5

40 B% = R4 + VHY
LS = R o+ 5

B0 DG = VRL® 4+ URY
90 PRINT A,B,L,D
100 PRINT AS$,B$,C5,D8

READY

RUNT
39 39 39 29
345 245 343 245

You can see that conversion is affected by the type of variable being used,
¥You might Like to try a few examples of your own on your system to see what
the results are., Remember, any potentially ambiguous expression may always
be forced to one or the other type by use of the STR and VAL functions,

For more examples of mode independence, see the sample programs in (hapter
Fe USubstring Modifiers.”

{Changed 31 October 1§B1)

CHAPTER &

DATA FORMATS

This chapter discusses the various forms which your data may take, Note that
if you do not use MAP statements to define your data, your variabhles may
only take on floating point numeric values or string values, If you use MAP
statements, however, you have a great deal more versatility in the format of
your data, and can define binary and unformatted data as well. MAP
statements alse give you 2 way to define powerful hierarchial data
structures fhat allow sophisticated data manipulatien. (For information on
using MAP statements, see Chapter 8%, "Memory Mapping System.”™ That chapter
alsa discusses how BASIC assigns memory locations to data.)

.1 FLOATING POLNT FORMAT

ALl mumeric variables are assigned floating point format uniess specified
otherwise in the program. The standard precision in use by the Alphs Micro
system can he cablled "single-andwone-half,” since 1t Lies midway between
what are known as single precision and double precision formats. The reason
far this iz that the hardware flosting point instructions all werk dn this
format . Floating ooint numbers occupy six bytes of storage and are in the
format dictated by the hardware instructions, 0Of the 48 bits in use for
sach A-byte variable, the high order bit is the sign of the mantissa. The
next 8 bits represent the signed exponsnt in excess=128 notation, giving 8
range of approximately 2.9%107=39 thru 1.7%10738. The remaining 39 bits
contain the mantissa, which is normalized with an implied high~order bit of
ORIE . This agives an effective 40=hit mantissa which results in an accuracy
ot 11 significant digits.

DATA FORMATS Page &—2

$.2 STRING FORMAT

The string format s used for the storage of alphanumeric text data. String
variabies require one byte of storage for each character and may be ftixed in
position using the memory mapping system. If a string is shorter than the

maximum tength, a null byte s stored folleowing the last character to
terminate the string.

NOTE: When AlphaBASIC compares a string of spaces and & null {empiys
string, 1t sees them as egual., This s by design and demonstrates how
AlphaBASIC compares strings. I two strings are of equal length, AlphaBASIC
compares the sirings on a character-to-character basis. if they are of
different lengths, AlphaBASIC pads the shorter of the ftwo with spaces until
the strings are of sgual lenath, and the comparison proceeds. For example,
the string "PAST DUEY s egual to the string "RPAST DUE -

A3 you can see, using this algorithm causes a null string to be treated as 3

string of spaces during comparison, The proper way to check for a null
zering 38 to use the LEMS function, rather than to see if it 1s equal to "7,

(17 LENZ(string~-variable) returns a zero, the string is null.}

4.3 BINARY FORMATY

via MAP statements, and are similar to
intager wvariables in other dmplementations of BASIC. A binary vartable may
be from 1 to 5 bytes in length and may be signed when all % byies are
spectfiad, When Less than 5 bytes are specified in a MAR statement as the
tength, the binary value may be loaded as & negative number, but 1t s
alwavs returned a5 & positive number of full magnitude. Yhe upper bit
{preloaded as the sign) takess on its specific value in the eguivalent
positive binary variable, For dnstance, a I~byte binary may be loaded with
positive numbers from O through 255 (decimal), or negative numbers from -1
through ~128, but the negative numbers are returned as the positive values
of Z2% through 128 respectively. Only 9-byte binary wvariables return the
original sign and valus when loaded with a negative number,

Binary wvariables may be used 1in sxpressions bhut they are slower than
floating point variables because they are always converted first to floating
point format pefore any mathematical operaticons are performed on them.
Birnary wvaritables are useful in integer and logical (Boolean) operations or
for storing values in spall amounts of memory (fleoating peoint numbers always
take & bytes of memory regardless of theipr values), ALt logical opsraetions
pzrformed within expressions {AND, OR, XOR. NOT etc.) cause the values to be
converted Tirst to signed S-hvie hinary format before the logical operation
ia performed. The wvailue =1 rapresents a 40~bit mask of all ones, Aivy
relational comparison between two expressions or variables returns 5 -1 4f

true, or a 0 falge,

{Changed 30 april 19815

BATA FORMATS . Page H-3

6.4 INTEGER FORMAT

Integer variables and constants are specified by eppending a percent sign
(%3 to the variable name, which is the standard convention in use by other
BASICs. AlphaBASIC generates floating point variables and performs
automatic integer truncation for all integer yariables specified in this
REnner. Integer constants are generated as their equivalent floating point
valuss and are included only for compatibitity with gexisting program
gtructures. gimce integer variables are effectively floating point
variables with an additional INT conversion performed, they are actually
slower than regular floating point variables. This is the opposite af most
other BASICs, which usually store integer variables as 2~byte signed values
and perform speciast integer arithmetic on them. True integer variables may
he defined by using the MAP statement and the "B binary type code. Sew
section 8.3, "Tvpe Code,” for a description of the “B” type code.

f.5 UNFORMATTED

sn unformatted numeric wvarisble, specified via a MAP statement, defines 2
fixed size area of storage used to contain absolute unformatted data which
may be in any of the above formats. This format is normally used in the
mapping system to define contiguous storage which s subdivided into
multiple variables of different formats. No conversion ever takes place
when moving data to and from this format. unformatted variables are treated
as string variables when used in expressions.

CHAPTER 7

SUBSTRING MODIFIERS

AlphaBASTL supports a unigue method of manipulating substrings. A subatring
is 2 portion of am existing string, and may be as small as a2 single
character or as lLarge as the entire string. Substring modifiers allow the
substring to be defined in terms of character positions within the string,
relative to either the Left or right end of the string. The length of the
substring is defined either in terms of its beginning and ending positions
ar in terms of its beginning pesition and its length. Substrings are
defined by referencing the desired string fallowed by the substring
modittier. The substring meodifier is two numeric arguments enclogsed within
sguare hrackels.

7.1 SUBSTRING MODRIFIER FORMATS AND FEATURES
The substring modifier takes on two distinct formats:

[beginning=-positien,ending-position]
Cheginning~positiongsubstring-ilengthl

The first format defines the substring in terms of its beginming and ending
sosivions within the string and uses a comma to separate the two arguments.
The second format defimes the subsiring in terms of its beginning position
within the string and its length, using a semicolon to separate the
arguments. The second format basically performs the same function as the
MID% function,

The beginning and ending positions are defined as character positions within
the string relative to either the Lleft ar right end. A positive value
represents the character position relative to the teft end of the string,
with character position 1 representing the first (Leftmost) pesition. A
negative value represents the character position relative to the right end
of the string, with character position -1 representing the Last (rightmost)
position, For exampole, assume the following string has the letlers ABCDEF
in it. The positions are defined 1in terms of positions T through &
tlefi-relative) or positions -1 through =& (right-relativer’.

SUBSTRING MODIFIERS Page 7~2

E F {6 characters within main string)
5 4 (left-relative position values)
-2 =1 {right~relative position values)

G
W D
B
]

Aliowing negative values for right-relative positions provides the ability
te pick out digits within a numeric string without having to caloulate the
ratal size of the string First and then working from the left. {Remember
that the mode independence of AlphaBASIC allows vyou to apply string
cperations To numeric date.’

The substring-length argument used by the segond format may also take on
negative wvalues for a more flexible format, Mormally the length is =a
positive value which represents the number of characters gounting the
beginning position and incrementing the index to the right. A negative
Pength causes the index to move to the left and returns & substring whose
tast character iz the one marked by the beginning-position argument.
Perhaps & few examples may clarify the use of substring modifiers. Azgume
the main string s A% and 1t containg the above example of ABCDEF. The
following substrings are returned:

ARLZ 47 equals BCD
AERLZ 40 equals BODE
ARCE 2T ggual s L
ASCR-3T gaual s CRE
AE[~% ,~2] gauals hE
AR ,~2] auals GCDE
ARCR;~273 equals Be
A{mE 2 equals £n
AETL&T eqguals &

AR 4= eaual g o

For example, ARIZ,.-21 tells AlphaBASIC to return the substring that begins
at character position 3 (from the lefr) and ends with character position &
(from the right); that is, to return all characters between (and £,
inclusive. AS[3:-27, however, tells AlphaBASIC to return the substring that
beains with character position 3 {from the Left) and extends 2 character
positions (toward the left): that is, to return all characters starting with
L and working backward two positions to B, inclusive.

Any position values or length values which would cause the substring to
cverflow out of either end of the main string are truncated at the string
and.,

AR 103 equals {DEF
AST-14,.54] egual s ABCDEF

The main string to which the substring medifier is applied 1s actually any
gxpression and does not need to be a defined single string variable. For
example:

H

a%
A%

(AB+BS+LSI 2100
(TABLEUHAS+QQ34" 2 T4 100

i

SUBSTHRING MODIFIERS Page 73

The mode independence feature allows substring modifiers to be applied to
numeric pxpressions, (See Chapter 9%, "AlphaBASIC expresstons,’ for
informat ton on mode - independence.) A string s returned, gt 1F the
destimation 48 a numeric variable, another conversion 1% made on the
aubstring to return a numeric value. '

10 INPUT "Enter number: ,NUMBER : INPUT “Enter another: “, NUMBERZ
20 SUM = NUMBER+NUMBERZ

0 PRINT NUMBER:” + ":NUMBERZ;" ='":3UM

i strip off rightmost digit and test it for divisibility.

40 IF SUMD-1:11 = 0 THEN PRINT "pivisible by 5 and 27

50 1F SUMD=1:;171 = 5 THEN PRINT "pivisible by 5

Be sure vou understand the concept of mode independence before you hegin fo
use substring modifiers or you may get answers you don't expect. For
example, Lines 30 and 40 in the small program below return different
answers, even though the subscripting is performed exactly the same in both
cases. This is because the mode independence feature examines the data type
af the destination variable before allowing any operations to be performed.
When it scans Line 30, BASIC knows that a string result is expected {hecause
STRINGS s a string wvariable), and so reads the "+ symbol as a string
cancatenation gperator, In Line 40, BASIC krnows that a numeric result s
expected {hecause NUMERIC 45 a numeric variable), and so reads the "+7
svimbol as an addition operator,

1O WALUETS="123Y

20 YALUEBZS="454"

B OSTRINGS = (VALUETS + VALUEZ®L1:30

A0 NUMERIC = (VALUETE + VALUEZSX[E1 30

S0 PRINT UMUMERIC =" NUMERIC "STRINGE = ";8TRINGS

The program above prints:

NUMERIC = 579 STRINGE = 123

You may apply substring modifiers to subscripted variables or expressions
containing subscripted wvariables. Be careful not to confuse substring
madifiers with subscripted variables. For example:

A2 .5 designates a location in array AR
ARTZ 5] designates a asubstring of string A%
AB(2 3304 ,5] designates a substring of the string

i Location A%(Z,3)
These are valid uses of the substring modifiers:

a%
a%

i

ABLE 4202,5]
(ABCIBR(EY) I~5 5]

i

Substring modifiers return a string value., These may be wused as part of
string expressions. For example:

G% = A% + BSLZ:50 + (ASLZ2,21 + CH20-5;-31

SUBSTRING MODIFIERS

You may apply substring modifiers to the
to alter a substring within a string
string defined by the substring modifier
in the string are not altered. This may

Paga -4

left side of an assigrnment in order
variable. Only that portion of the
iz changed. The other characters
not he applied to numeric variables

(for example, ALE;21 = 23" is not valid).

It A% contains ABCDEF:
ABL2 .41 = "GRE"

causes A% to contain the string AQRSEF.

CHAPTER &

MEMORY MAPPING SYSTEM

orne of the unique features of AlphaBASIC s that 1t allows you %o specify
the pattern in which variables are allocated in memory. The advantage Lo
such @ “memory mapping’ system is that it gives you a way to define entire
groups of related information (e.g., @ logical record that contains fields
of information about & customer). Each element of such a group dogs not
have te he of the same size or data types You can reference & single
slement of the group or the group as a whole. You.will probably find memary
mapting to be of most use when you are performing sophisticated disk 170 or
when you are setting up a group of variables for rransferring data betwaen
your program and an assembly lLanguage subroutine. (See Chapter 15, "Caliing
External Assembly Language Subroutines,” for more information on assembly
Language subroutines.) Memory mapping is a powerful tool, somewhat akin to
roBOL data description techniques or Pascal record definitions, that gives
you & flexible and efficient way to transfer dats in and. out of programs.

This chapter discusses how the compiler wsually allocates variabies in
memory, and how vyou can use the memory mapping features {via the MAP
statement) to override the usual storage allecation. We also discuss one of
the AlphaBASIC debugging features-— lLocating variables in memory while in
interactive mode,

8.1 ALLOCATING VARIABLE STORAGE

puring compilation, BASIC allocates memory storage for all defined variables
in an area that is contiguous and predictable. The compiled program
references all variables through an indexing scheme. Each variable in the
working storage area has a representative item in the index area which
contains all the information needed to define and locate that variable. The
working storage ares therefore contains only the pure variables themseives
without any associated or intervening descriptive information, The irclex

area is @ separate entity, physically lecated before the working storage
area in memory.

MEMORY MAPPING BYSTEM Page 8-2

The alicecation of the variable storage area for any program is predictable,
and BASIC normally doess it as i1 encounters each variable during
compilation, fince this scheme 18 not sasiiy followed by human bheings. a
different methed must be derived which can override rnormal allocation
processes 1f wvou wish to have the variasbles allocated in 3 predetermined
manner . Also, the disk 170 system requires that wvariables wused be in 2
spegific relationshin to each other when used in some of the more
sophisticated programs. The MAP statement has heen included 1in AlphaBaASic
for the purpose of allocating wvariasbles dn a specific manner. Map
statements are non—executable al run-time, but merely direct the compiler in
the definition and allocation of the referenced variables.

Each MAP siatement containg a unique variable name to which ihe statement
applies, When the compiler encounters this statement, it allocates the next
contiguous space in working storage as reguired and assigns it to that
variable, The type of the variable is also specified in this statement and
may bDe wused to gverride the standard naming conventions of BASIL, ALl
vartables not defined in g MAP statement are then automatically assigned
starage n sequence, for total compatibility with existing standards.

The mapping system has another distinct advantage for complex programs in
its abtlocation of arravs. With the MAP statement, you have the ability 1o
override the standard array allocation scheme and to force the allocation to
croceed in g more flexible manner. fonventiomal BASIC array elements must
il be of the same data f[ype. AiphaBRSIC allows several wvariabies of
differant deta types to be combined in & single contiguous array which can
provide efficiency in the manipulation of associated data structures.

B.Z2 MAP STATEMENT FORMAT
The MAP statement has the following form:
MAPn variable~named (dimensions) } ({{{typel}, sizel, valuel, origink

whers MAPn gives the level of the MAP statement. The rest of the elements
are ootional, depending on the kind of varisble you are defining. For
examobe, 3% vou ere defining an array variasble, you will include the
optional “dimensions” in the MAP statement, "Type” identifies the data type
of the variable; if omitted, the default is Unformatted. "Size" identifies
the number of bytes the contents of fThe variable will use, 1T wou omit
"Size” the default is zerg bhytes for unformatited and string data, twoe bytes
far binary data, and 3ix bhytes for figating point wvariables since such
variables are alweys six bytes long.) “Walue™ ds an optional inftial value
of the variable: the default is zero for numeric data and null for strings.
"Origin® s an opticnal reference to & previously defined variable®s
Laocation in memory which permits overlaying of variables in memory.

MEMORY MAPPING SYSTEM Page 8-3

I you "skip" an element in the MAP statement {(for example, vou wani to
specify the “value” but don't want to specify the “sizeé'), vou must relain
the comma indicating the missing element. For exampl @

MAP 1 NEW'VARIABLE,F,,238
the MAP statement above defines the variable NEW'VARIABLE, assigns i1 the
data type F {(for floating point), does not assign it a size, and does
assign it the initial value of 23. (dithout vhe extra oomma, BASIL would
think that you were trying to assign a size of 23 hbytes to MEW VARTIABLE~- 21
illegal operation for floating point varisbles.)

B.2.1 MAP Level

MAPR represents the Llevel of the mapped variable, It must be within the
range of MAPT through MAP16. MAP statements sre hierarchial in nature., For
example, a variable mapped with a MAPT statement may consist of several
sub-variables mapped via a MAPZ statement. Each of thoss variables may in
turn consist of several variables mapped via a MAPE statement. And so ony,
up To MAPTS, MAPTA represents the lowest—ievel {or innermost) variable;
MAE] represents the highest level variable. You do not need to map tavels
in strict mumeric sequence-- for example, a MAPS statement may follow a MAP3
statement without an intervening MAPL statemeni.

¥You may reference variables at any level of the wierarchy. A& graphic
example may help to clarify this idea:

Mae Patient ' Info

MaRR Nanie Acdress Insurance

/f \ /
MAPR Last First Street Aum City

The diagram above shows three levels of variables that have been mapped with
MAPT, WMAPZ, and MAPZ statements. You may reference the tevel 1 variable
Fatient infc as a whole, or may reference one of the variables on levels é
and 3 that represent sub-groups of the variable Patient'Info, such as Name,
Address, or Street, When referencing any variablte 1in the group, vou
aytomatically get the information in any of the variables heliow that
variahle in the hierarchy. For example, when yvou reference Name you get the
informaticn 1in the wvariables Last and First. As BASIC alipcates The
variables Name and Address, it automatically dincludes them {and their
sub=variables) within the variable Patient'Info,

The MAP statements for the varisble group above might look tike this:

MEMORY MAPPING SYSTEM Page B-4

MAP1 PATIENTTINFO

Mapz NAME
MAPR LAST, &, 15
MAP3 FIRST, §, 13

Map? ADDRESS ! Patient address
MAPR STREEY, 5, 30
MAP3 NUM, S, 10
MAPT CITY, 8, 30

MARZ TNGLURANCE, B, 1 I Set flag 1T has insurance

(NOTE: We witl discuss each of the elements of a MAP statement in the
sentions helow.)

To eliminate potential allocation problems, BASIC forces all MAPT tlevel
variables to begin on an even memory address. This ensures that certain
binary and fleating point variables will begin on word boundaries for
assembly lLanguage subroutine processing. The AM=-100 dnstruction set
performs most efficiently when word data is aligned on word boundaries.

2.2.2 variable Name

The variable name is the name that vour program uses to reference the mapped
variable; 11 must foellow the rules for AlphaBASIC variable names. Howaver,
since you may explicitly specify the type, vou do not need to follow the
normal conventions for identification swuch as reguiring that a string
variabie name bhe followed by a8 dellar-sign.

If the variable name is followed by a set of subscripts within parentheses,
the variable i3 assigned a3 an array with the dimensions specified by the
subscripts, Just as AT a DIM statement had been used. For example, the
statement MAPT ALF assigns a single floating point wvariable called A" byt
the statement MAPT A(5,10),F assigns a floating point array with 50 elements
in it (8 X 1y, dust as if the statement BIM A(S 1) had been exesuted.
Mote that since these mapped arrays are assigrned memory at compile time and
net at run-time, the subscoripts must be decimal numbers dnstesd of
vartables,

B.2.% Type Code

The type code is a single character code which specifies the type of
variable to be mapped intce memory, The following variable types are
implemented in AlohaBASIC:

= unformatted absolute data variable
string variable

= floating point variable

= binary unsigned numeric variable

}

MEMORY MAPPING SYSTEM Page &0

[no explicit type code is entered, BASI(assumes unformatted data (type
Y.

8.72.%5.1 uUnformatted Data - Unformatted data is absolute in memory. You
usually only define an unformatted variable so that you can reference a
group of other varishles as one unit. The contents of unformatted data
variables should only be moved to other unformatted dats variables. For all
practical purposes, unformatted data wvariables are treated Like string
yariables except that they are terminated only by the explicit size of the
variabie.

8,2.%,2 String Data -~ String variables are terminated either by the
explicit size of the variable or by a null byte (0¥ if the string is shorter
than the allocataed size. Moving a long string to a short one truncates all
characters which do mot it into the new string variable. Moving a short
string to a long one causes the remainder of the long variable to be filied
with nuli (0) bytes so that the actual data size of the string is nregerved
for coancatenation and printing purnposes.

8.2.3%.3% Fipating Point Data - Each floating point number alweys takes up
six bytes. The record number variable in a random mode OPEN statement must
be floating point. The result variable of a LOOKUP statement must alsoc he

floating point,

§.2.3.4 Binary Bata ~ Binary variables may range in size from 1 to 5
hytes, giving from & to 39 bits of binary unsigned numeric data or 40 bits
of binary signed data. This is handy for the storage of small integer dJdata
in & single byte, such as flags, or for the storage of memory references as
word values with a range of up to £%53% in two bytes. Since BASILD converts
all binary varishies fo fleoating point formet before performing eny
arithmetic calculations, binary arithmetic is actually slowsr than normal
floating point arithmetic and i3 used mainly for compacting data into files
ard arravs where the floating point size of six bytes is inefficient. When
conversions from floating poeint to binary are done, any data that does not
it within the defined size of the target variable is merely lost W

error message given. Where reguired, range checks are your respons
as the programmer, hefore yvou make a floating point number move to & ina
variable area, The bhest way o understand this is to play with a few
axampies in interactive mode,

Please take note that the use of binary numeric variables is not allowed in
some instances, FOR-NEXT inops may not use a bhinary varisble as the control
variable, although they may be used in the expressions designating the
imttiatl and terminating values of the control variable, as well as in the
STER expression,

MEMORY MARPING SYSTEW Page 8-6

The size parameter in the MAP stetement is optional but, #f it is used, it
must be a decimal number specifying the number of bytes in the variable. If
it is omitted, it defaults to 0 for unformatted and string twpes, & Tor
floating point types, and 2 for binary types. The size parameter of
floating point variables must be & or omitted.

R,7.5 value

An initial value may be given 1o any mapped variable except an array
variabie by dncluding any wvalid sxpression in the value parameter. This
value may be a numeric constant, a string constant or & complete expression
including wvariables, Remember, however, that the expression is resolved
when the MAP statement is executed at ruretime, and the current wvalue of any
variable within the value expression is the ong used to calculate the
assignment result., MAP statements may be executed more than once 1 you

desire to reload the initial values.

Mote that $F vou omit the gize parameter (such as for floating point
variapies)d . but vou use the value parameter, there must be an extra comma (o
indicate the missing size parameter:

MAPT PILF,,3.14159265359
MART HOLIDAY,S,9," " CHRISTMAS"

The first example preloads the value 3,14159265359 into the floating opoint
variable called PI. The second example preloads the letters CHRISTMAS into
the string variable called HOLIDAY.,

8.2.6 Origin

In some instances, 1t may he desirable to redefine records or array areas of
different fermats so that they occupy the same memory area. For instance, a
file may contain several different record formats with the first byte of the
record containing a type code for that record format. The origin parameter
atiows vou fto redefine the record ares in the different formets to be
expected, when the record is read into the area, the type code in the first
byte can be used to execute the proper routine for the record type. Each
different routine can access the record in a different format by the
different wvariable names in that format. AlLL record formats actually cccupy
the same area in memory. This feature directily parallels the REDEFINES verbh
irn the (OBOL language data division., Using the origin parameter can save
Largs amounts of memory,. For instance, suppose you have three very large
varisbles of 256 bytes each that define logical records, and that you never
use these variables at the same time, 8y defining the wvariables so that
rhey occupy the same area of memory, vour program only uses 2584 bytes for
the varisbles dnstead of 768 bytes.

MEMORY BAPPING SYSTEM Page B~7

Normally, a MAP statement causes allocation of memory to begin at the point
where the tast variable with the same level number Left off. The origin
carameter allows this to be modified so that allocation begins back at the
hase of <come previously defiped variable, and therefore overtays the same
memory area. If the riew variable is smaller rlvan the previous one (or the
exact same size), 1T is totally comtained within the previous one. It it s
targer than the previous one, it spills over into newly atlocated memary or
possibly into another variable area of the same level deperding on whether
there were more variables following it. (Play with this one awhile to get
the hang of it),

The origin parameter must be the last parameter on the Line., It rakes this
form: an @ symbol foliowed by the name of the previously mapped variable
whose area you wish to overlay. (This variable must be on the same level as
the variable you are presentiy allocating.) If size and wvalue parsmeters
are not included in this statement, you may omit them with no dummy commas.
For example:

10 MART CUSTOMER'ID

20 MAPZ NAME, S, 13

A0 MARZ IDPNUM, F

40 MAP? SEX, B, 1

50 MAPT PRODUCT'INVENTORY, RCUSTOMER®ID
60 MAP? BRAND, &, 13

70 MAPZ PARTNO, F

B0 MAR? RESALE, B, 1

The MAP staetements above allocate the variable CUSTOMER'ID which takes up 2
total of 20 bytes. Then it allocates the variable PRODUCTINVENTORY {also
taking up 20 hytes), and specifies via the B&CUSTOMER'ID origin parameter
that PRODUCTTINVENTORY will occupy the same space in memory as CUSTOMER'ID.

The following statements define three areas which all occupy the same
48=hyte memory area, but which may be referenced in three different ways:

100 MAPT ARRAY

110 MAP? INDEX(8),F

200 MAP1 ADDRESS ,BARRAY

210 MAP? STREET,S,24

270 MAPZ CITY,5,14

230 MAP? STATE,S,4

%00 MAPT DOUBLE'ARRAY,BARRAY
%10 MARZ UNIT(A)

5210) MAP3 CODE,B,?

330 MAPT RESULT,F

MEMORY MAPPING IYSTEM Page B-8

statements 100-110 define an array with 8 floating point elements: a total
of 48 bytes in pemory. Statements 200-230 define an area with three string
variables in it, for a total of 42 bytes. MNormally, this area would follow
the 4#-Dyfe ARRAY area in memory, but the origin parameter in statement 200
causes 1t to overiay the first 42 bytes of the ARRAY area instead,
Statements 300-330 define another array area of a different format with &
glements, each element being composed of one 2-byte binary variable (CODE)
and one floating point variable (RESULT). The origin parameter in statement
300 aise causes this area to overlay the ARRAY ares exactly.

Caution: The shove scheme allows variables to be referenced in & different
format than when they were entered inte memory. If vou load the & elements
TNDEXCTY through INDEX(8) with floating peint values, and then reference the
variable STREET as & string, you get the first four floating peint
variables, INDEX{T) through INDEX{4), which look very strange in string
format!

Below 1is a opractical example of the use of the arigin parameter. The
program below transiates the binary data stored in the system DATE Location
into floating point form,

10 P The system stores the date in binary formz the smaill program
15 | below transiates the binary date into floating voint form. It
20 1 also allows you to set the system date from within BASIC,

25 MAPT BINDATE,B.4

A0 MAPYT FILLDATE BBINDATE

35 MAPZ MONTH,B,1

40 MAPZ DAY,.R,T

4% MAP? YEAR.B,?

50 BINDATE = DATE

55 PRINT "Month:"'pMONTH, "Day: DAY, Year:" ;YEAR

A0 INPUT "Emter Month, Day, Year: ", MONTH. DAY ,.YEAR

&% BATE=RINDATE

TOOPRINT "Month:" ;MONTH, "Dayv: ;DAY ,"Year ' YEAR

For example, 17 the system date i set to January 10, 1982, a sample run of
the program above might look Like:

Months 1 Day: 10 Year: 83
Enter Montn, Day, Year: 4,27.57 (Aer)
Month: & Bayr 21 Year: 52

.8 EXAMPLES
The following two statements produce identical arrayvs:

T MART ATOWO) LF

P10 pIM ATOTOD

Both statements produce arrays containing ten floating point wvariables,
referenced as AY{1Y thru ATOI0X. Statement 1}, however, defines its

MEMORY MAPPING SYSTEM Page B-9

olacement in memary in relation to other mapped varisbles. sdmitlarly, the
twe statements at 300 and %10 produce the same t@ﬂwdim@ﬁﬁi@mai arvay a2z the
statement at 3203 ' ' '

00 MART BX(S)
310 MARZ B1(R0),F
320 pIM B1CS,200

Inspect the following statements:

400 MAPT CXOTOD
410 MAPE C1,F
420 MAPZ D1,F
430 DIM €1CTID
G40 DIM DT1CIR)

The statements at 430 and 440 produce two arrays, egach with ten variables.
The statements at 400, 410 and &20 produce one array with twenty variasbles
in it. The variables are still referenced as (101} thru 0110 and DICTD
thru 210100, but their placement in memory is quite different, The €1
variables are interlaced with the D1 variables, giving €101, 10T, 1403,
D12y, €131, DI .w.. CICID), DICA0). There are alsoe ten unformatted
variables CX(1) thru £XC10), which esch contain the respective pairs of
C1-p1 variables in tandem, Referencing one of these (X variables references
a 12~byte, unformatted dtem composed of the 1-b1 pair of the same
subscript, This type of formatting would be useful in sophisticated
techniaues only.

The following defines a more complex area:

100 MAPT ARRAYY
110 MAPZ UNITX(S:

120 MAPS STZALB,?
120 MAPT STZEB,B,?
140) MAP3 NTOT ,F

150 MAPE FLAGCTO) LB,
160 MART CNAME,S,20

170 MAPZ TOTAL,F
180 MAPT THING,F
1R MAPT WORKT,X,40

The area that is allocated by the above statements requires a total of 254
bytes of contiguous memory storage, Three levels are represented in WA IOUS
formats. Statement 100 defines a level 1 unformatted area called ARRAYT,
which is subdivided into two level P items. Statement 110 defines the first
of these, which is an area called UNITX. The optional dimension indicates
that five of these ddentical areas exist, which must be referenced in the
program by the subscripted variable names UNITH(1} through UNITH(S). Each
one of these areas is then further subdivided inte five level 3 items
{statements 120-160). Since the level 7 is subscripted because it ocgurs 5
Times, so must sach of the level 3 dtems be subscripted. There are &
vartables named SIZACTY thru SIZAC%) occurring once in each of the
respective variables UNITX(U) thru UNITX(S). The same holds true for the

MEMORY MAPPING SYSTEM Page H-10

variables SIZB, NTOT,. and CNAME. Statement 150, howsver, creates a special
case since it contains a dimension alse. Normally this would creste an area
of 10 sequential bytes referenced as ELAGITY thru FLAGCIOY. In our example,
however, this i0~byte area occurs once in each of the higher level areas of
UNITXCN) theu UNITX(R), This, then, implicitly defines a double~subscripted
vartable ranging from FLAG(T,T) thru FLAG(S5,10). Statement 170 causes the
allocation to return toe level 2 where one floating point varisble s
allocated.

The total storage requirement for the level 1 variable ARRAY1T comes out to
206 bytes as follows: 40 byvtes far esach of the five aress UNITX{(IY thru
UNTTE(SY . plus & bytes for the one vardable TOTAL. Notice that since TOTAL
starts a new level 2, it dees not occur % times, as do the level 3 items
which comprise UMITX(T) thru UNITX{S5).

Foilowing the above group 1n memory come Two more variables defined in
statements 180 and 190. THING is & normal fleating point wvariable which
occupies & bytes, and WORKT is an wunformatted area whose size is 40 bytes,
Note that since WORKY was not subdivided inte one or more level 2 items, a
size clause was reguired to explicitly define its storage reguiremsnts.

Mote also that the variable UNITX(1) refers 19 the 40~byte item comprised of
the variables (in orderdy; SIZA(T); SIZBCIY; NTOT(1Y; FLAG(T,1) thru
FIAGOT, 1) 2 and (MAMECTY, Moving the variable UNITX{1) to ancther area,
such as WORKY, transfers the entire &0-bytes with no corwersions of any
data.

You may often use MAP statements to define groups of information that will
be transterred in and out of disk files. For example, take a Look at the
MAP statements below that define a logical record. Our program probably
uses & file that contains 2 Large number of lLogical records 1o this format,
sach record containing information about a single gheck. in effect, MaAP
statements give us a way to form a template in memory inte which we can read
information from the file and transfer information from the program to The
fite. This attows us to guickly and efficiently read in an entire group of
information whose elements may be of different types and sizes, and to
access information in that group flexibly and simply. For sxample:

MEMORY MAPPING SYSTEM Page B-11

L OREM Program toe Process Cheoks,

20 _ .
1 mMapd CHECK INFO P opefine Leogical record.
40 MAPZ CHECK 'NUMBER, F

=0 MARZ THE'DATE, &, &

&0 MAP? BMOUNT , F

Fat MARZ TAXTDEDUCTABLE, B, 1

&0 MARS PAYEE, 5, 20

i Mape CATEGORY, §, 20

100 maRg BANKTACCOUNTS (3D

140 MARE SAVINGS, &, 20

120 MAPS CHECKING, &, 20

130 MAP3 TERM, 5, 20

'opefine file that contains info about checking account balance.
140 MARZ ACCOUNT'BALANCE, S, 22, "PSKT1:BALANC.DATLZ00,137

Once these MAP statements have been executed, we can access the group of
variabhies as a whale by specifying CHECK'INFG, or we can access specific
sub=fields in the record (for example, BANK'ACCOUNT or CHECKING).

8.4 USING THE MAP STATEMENTS

MAP statements may be used as direct statements in interactive mode 4as 3
learning tool to see how the variables are allocated. They are not designed
to be practical in the interactive wmode, however, and are best used by
putting them into a program file and compiling the program. in the
interactive mede, f an error occurs in the syntax of the stalesent, the
vartable will already have been added to the tree in memory. The main
advantase to Testing MAP statements in interactive mode is that BASIC checks
the MAP statement synftax &5 vyou enter the statement, thus giving you
immediate feedback 1§ any errgrs occur.

MAP statements must come at the begimning of the program, hbhefore any
refersnces te the variables being mapped. It a reference is made to the
variable before it is mapped {such as LET A = 5,8}, the variable is assigned
by the normal variable allocetion routines and the MAP statement then gives
an error, since the variable is already defined, As a convenience, all AR
statements foree allocation to the next even byte boundary so that binary
word data can be assigned properly,

&.5 LOCATING VARIABLES DURING DEBUGEING

Since the mapping scheme is fairly complex to understand fully, & command
nas been implemented which assists you in locating the mapped variables and
in understanding the allocation fechnicues used by the AlphaBASIC mamory
mapping system. It ds walid only as a HASIC system command and has no

MEMORY MAPPING SYSTEM Fage B-12

meaning 1¥ used within a program text. The command has the general format
af an atsign (8} followed by a varitable name. The system searches for the
reguested variable and prints out all parameters about the varisble for you
on the terminal. (This may sctually be two definitions, since the variable
MAY may actually be two different variables; one would be a8 single fleoating
point number and the other would be a subsoripted array.? The information
returned about the variable is: the type of veriable (string, binary, sto.i;
the dimensions of the array if the varisble s indeed an array; the size of
the variable in bytes; and the offset to the variable from the base of the
memary srea which 1s used to allocate all wvarisbles. It you snter a
reseryed word (such as @PRINTY the system tells you that the name 15 &
reserved word,

The general format of the definition Line which is returned by the csystem

memary-type variabhlie-type {dimensionsy, size n, location

{tor actual exampies of the definition Line, see Section B.4.1, “Examples,”
pelow,) Memory-type means the method of memory allocation used when
defining the wvariable, The memory-tvpe may be MAPn (where n is & number
from % to 142, FIXED or DYNAMIC variables. FIXED varishles are not defined
by a MAP staf@w&wr and are allocated automatically when the compiler findsg
references to them in the program. (This is the normal method used by other
BASIC wversions toe allocate wvariables.? DYNAMIC wvariable arrays are
allocated by 2 DIM statement or by a default reference to a subscripted
variable. VYariahlesz defined im a2 MAP statement are MAPT through MAPIS
varishies,

Variable~type is the type of the variable and may be UNFORMATTED, STRING,
FLOATING POINT,. or SINARY,

variabie is an array, the dimensions are lListed after the variable

%yp@ code in the format ARRAY (n.n,n), where n,n,n are the values of the

‘p.g in use by the array. IT the array s dynamic and has not heen

vet, the subscript walues are replaced by the letter "X" to

ih&t they are not known at this point. Remember thal any varishle

Jsf%m@& in a MAP statement which is in a lower level relative to another
variable inherits all subscripts from that higher level variable.

The size of the variables are given in decimal bytes. Tn the case of
srrays, the size represents the size of each single slement within the
array.

The Logation of the variable is a Little tricky to explain, since T is
actually an offset to the base of a storage area that is set aside for the
allocation of user variables., As each new variable or array is allocated,

i

it e assigrned & location which is relative o the base of this storape
ares. The Llosation information given hers i3 an example to help vou
understand the relative placement of the variables in the mapping system,
and does not represent the actual memory locations which they occupy. There
are two distinct areas in use for variables, and thus the offsets of the
variables are to one of these two areas. ALL FIXED and MAPT through MAPTS

MEMORY MAPPING ZYSTEM Fage B-13

variables are allocated in the fixed storage area, while all DYNAMIL arrays
are ablocated inm the dynamic array storage area. As dynamic arrays are
dimensicned, their positions may shift relative to one another and reiative
to the dynamic storage area base. Variables in the fixed storage area never
change position relative to each other or to the storage area hase.

Array location information that is given is only pertinent to the base of
the array itself, which is the location of the first element within the
BPTAY. The actual range of locations used by the array may oF may not be
contiguous in memory depending on whether overlapped dimensioning technigues
are heing used in the MAP statements. Simple {(nof-array) variables are
defined as a location range which tells exactly where the entire variable
Lies within the storage area.

Keep in mind that this "8" command is to assist you in following the
allocation of variables, particularly in more complex mapping schemes. A

few minutes at the terminal with direct MAP statements followed by 8"
commands will help vou see how the mapping scheme works.

£.5.1 Examples

Given the sample MAP statements below:

10 MAPA CUSTOMER'ID

20 MAP? NAME

30 MAPS FIRST, S, 15
40 MAPT LAST, §, 15

50 MAP? ADDRESS

60 MAPS STREET, §, 15
70 MAP3 CITY, §, 10

80 MAP3 STATE, 5, 2

90 MAPZ PHONE

100 MAPY HOME, 8, 3

110 MAPE RUSINESS, B, 3
120 MAPZ TRANSACTIONS (12)
130 MAPR BALANCE, F

140 MAPR CREDIT, F

150 MAPY fTD, F

Here are the results of using the & command in interactive mode to determine
the Locations of several of the variables above:

MEMORY MAPPING SYSTEM Page 8-14

READY

BCUSTOMER® 1D (RET)
MAPT Uinformatted, size 279, located at {-278

BTRANSACTIONS EET)
MARY Unformatted Array (123, size 18, base lLocated at &3

ACETY (HET)
MAPS String, size 10, located at 45~54

AHOME (RET)
MAPS Binary, size 3, located at 57-59

ACREDIT (FET)
MAPS Floating point Array (12), size 6, base located at &9

We can also use the @ command to locate urmapped variahles, For example:

READY
DIM A2, 3.4 (BET]
A (FETY

Dynamic Floating point Array (2,3,4), size 6, base located at 1034

A=13 LT
wA (RE7)

Fixed Fioating point, size 6, lLocated at 78-77
Dyramic Floating point Array (2,.8,4Y, size 6, hase located at 1032

Note that we allogated fwo different variables: a fixed floating point
variable, A, and a dynamic floating point Array variable, ALZ2,3.40.

CHAPTER 9

INTERACTIVE COMMAND SUMMARY

Whenever ALphaB&SIC interactive mode 13 not either compiling or exscuting @
program, 1t is in interactive command mode:; that means it 15 waiting for a
commandg from vour terminal to initiate some action. The action taken
depends on the type of dnput vou enter, which falis into ane of the
following main categories:

e 3

- Stetements. Program statements are either contained within a
BASTIC program or are used for immediate compilation and execution
at the interactive command level. Ffor dmmediate compilation and
execution of a statement, enter the statement without a line
numher. Statements entered following Line numbers (any integer
between 1 and A5%34, inclusivel) are used to builld a source program
in memory on 2 single Uins basis, BASIC automatically adds ths
single Limes to the source program in the numeric order of their
Line numbers. Entering a line number alone and them & RETURRN
deletes the line associated with that Line number from the source
RrOGran .

£. Interactive system commands. fommands result in contralied
actions by BASIC which can affect the scurce program in memory,
files on the disk, and the system itself. Commands arg never
entered into the program as statements. 1f vou atfempt te do so,
AlphaBASIC responds with an error message.

Statements are covered in detail in Chapter 10 of this manual. The
remainder of this chapter details the available interactive commands, tne
corresponding actions performed, and shows examples as you would sotuslly
see them. Most of the interactive commands are entered affter the oprompi
RE&DY. We distinguish the commands you may enter by the T} symbol, which
means “type a RETURN.Y

INTERACTIVE COMMAND SUMMARY Page 92

9.1 BREAK

This s a debugoing feature not usually found in other versions of BARIC,
it takes the forms

BREAK {C-F+(Line#T{,{~-FLine#Z, ... {-H L ine#N}tl}

RAEAK allows you to set breakpoints from the interactive mode on ong or mare
Lines in the program in memory, pricr to running the program. During
gxecution, when BASIC encounters a Lime that has a breakpoint set on it,
BASIC suspends program execution and prints the message "Break at line
annn't, The system then returns to fnteractive command mode to allow you to
inspect or change variable wvalues. This suspension of execulion ooours
hefore the Line that has the breakpoint set on it s executed. There is no
Limit to the number of breakpoints that may be set in one program. There is
no additional overhead pald in execution speed when breakpoints are setl.
Breakpoints are cleared from within the interactive mode by Typing a minus
sign in front of the Line number, or by recompiling the program {which
slwavs clears all breakpoints). If vou type BREAK and do net follow it with
a Line number, BASIC Lists all current breakpoints on vour terminal.

BREAK (FET) or BREAK (RET)
Mo breakpoints set 30

The following are various forms of the BREAK commend:

HREAK Lists all currently set breakpoints, i1 any
aREAK 120 Sets a breakpoint at lLine 120

BREAK 120 Clears the breakpoint at Line 120

BREAK 120,.130,.40.504 Sets bhreakpoints at linmes 120,130,408, ang 500
BREAK 50,60 Clears the breakpeint at %8 and sets one at 60

Onice a breakpeint has been reasched, vou wmay optionally continue the
gxecution of the program by either a CONT command or a single-step command.
(For information on the single-step debugging feature, see Section .17,
"Single-Sten (Linefeed).™) You may start the program over again by using
the RUN command:; it will once more break at the first breakpoint set. I
any case, the breakpoints remain set after they have been reached until they
sre expbicitly cleared by a BREAK -nn command, are gensrally cleared by
compiling the program, or you leave BASIC,

F.2 BYE

BYE says goodbye to the BASIC interactive mode and returns vour terminal to
the ARMOS command level. You then see the AMOS prompt {.}. Remember that
any program left in memory is Lost forever, so you may want to save it first
using the SAYE command. This is the format of BYE:

INTERACTIVE COMMAND SUMMARY Bage 93

BYE (fz7)

@

9.5 COMPILE

When using COMPILE in the interactive mode, do not specify a source program.
BASIC compiles the current sSource program in MEmory. The obiect code is
built up in another ares of memory. The compiled program 1s not execuled;
instead, controb is returned to the interactive command mode and you ses the
READY prompt. Compilation sets all variables to zero and deletes all
variables that may have been generated as a result of direct statements.

READY
TEMFTLE (RET)
Compile time was 7.07 seconds

READY
it no program is in memory, vou gel an error message and a prompl.
READY

Ne source program in text buffer

HEADY

P46 CONT

CONT, Hor "continue,.” causes & suspended proaram to continue execution from
the point at which it was suspended. Youw may suspend a program by using a
BREAK command previous to program execubion or by using a STOP statement
within the program. You may not continue a program after it has finished.
The following s an example of CONT after a2 STOP statement suspended z
program:

Frogram stap in Line 700

(The program continues by next executing the
first Line numbesred higher than Line 700.3

CONT also continues a program which you have partially exscuted using the
single=-step feature.

TNTERACTIVE COMMAND SUMMARY Page Y4

5.5 CONTROL-C

Pressing the Control and € keys simultaneously interrupts a running program
and returns you to interactive command mode. pepending on the operation
neing performed, the Control-{ symbol (7C) may be displayed on the terminal
sereen, The Line number of the source program which was interrupted s
displaved wia the message "Operator interrupt in Lipe nn." The program may
be restarted from the beginning by the RUN command.

{Type a Lontroi-0} or [Type a Control-C3 "¢ [displays]
Operator interrupt in tine 700 Pperator interrupt in line 700
READY

NOTE: In the compiler mode, while running a program, typing a Controi-C
causes almost the same message to appear. The difference is that it always
displays the fontrol~f (°C) and gives the filename of the program as weli.
it then returns you to AMGS command level. For example:

"
Operator interrupt in Line 10 of MUM.RUN

EY

in the interactive mode, vou may restart a program from the beginning
following a Control=C hy using the RUN command or single-step (tinefeed)
command .

¥.6 DBELETE

The DELETE command s used to delete groups of source Lines from the program
text. It takes the form:

SELETE line#1{,Linedil}

if the command 1is Followed by 2 single Line number, only that Line 1is
deleted, If the command is followed by two Line numbers separsted by a
comma, all Linss of text which fall between and including the two line
numbers are deleted from the program. (NOTE: Although you ususliy separate
the two Line numbers with & comma, you can also use a dash, space, or other
non-numeric character,) Here is an example Llisting before and after a
DELETE:

TNTERACTIVE COMMAND SUMMARY o Page 9-5

LIST [RET)

10 FOR T = 1 TO 10

2l PRINT TABLIL, 53 0NE"
30 PRINT TAB(L,53 TWO"
40 PRINT Tas (I, 507 gy"
56 PRINT TAB(I 57 7TENT
67 NEXT T

READY
DELETE 20,40 BET

READY
LT8T [RED)

10 FOR I = 1 70 10

5T PRINT TRB(T,5) "TEN"
60 NEXT 1

READY

Remember, you can says "DELETE 20 40% or "DELETE 20~407, too.

9.7 LIsTY
The LIST command takes the form:
LIST {line#l{, Lined23}

The source program (if ope is loaded ioto memory) Lines are listed in
rumaric sequence on your terminal. IF no line numbers follow the LIST
commanc, BASIC lists the entire program, You may sbort the Listing by
entering fontrol-0, which returns vou to interactive command mode. I one
Lire number follows the LIST command, only the single Line following that
Ling number iz Listed. If the command i3 followsd by twe 1ine numbers
separated by a comma, space or othep . hon-numeric character, only the
indicated Lines and the lines between them are Listed. BSome examples:

READY READY READY

TIET TrEy L I57T 10 (i) {87 0,30 EED

10 =1 10 A= T A=t

T0 % TROWERS OF TWO:" F0 7 TPOWERS OF TWO:"
I0OF0R A=0 TO 1D - READY A0 FOR A=D YO A0

&0 EALF Y PR -

S0 X=Xr TNENT A READY

READY

(NOTE: Remember that the "?" symbol i3 an abbreviation for the PRINT
keyword,

INTERACTIVE COMMAND SUMMARY Page 9-6

F.85 LDAD

The LOAD command copies the specified BASIC program itito memory from the
disk so that you can edit or execute it. You must give a wvalid AMOS fFile
specification after the LOAD command. 1F you do mot supply a file
extension, BASIC uses the default extension of WBAS. 'If -you do not supply
an account and device specification, BASIC assumes the account and device
you are logged into. For example:

READY
LOAD PAYROL (RET)

HEARY

The command above tells BASIC to search for and load inte memory th% disk
file PAYROL.EBAS that exists im the account and device you are logged into.

1f BASTC can't find the file you want to load, it displays an error message.
For example, if vou try to load in the non-existing file LTSGR BASIION T,

YO GEE

Cannot OPEN LSTSAR,.BAS[IN0,11 -~ file not found

The LOAD command does not clear the text buffer before it loads the
reguested file, and therefore may be used to concatenate or merge several
programs or subroutines together to he saved as & single program. The
separats routines must not duplicate Line numbers in the ofher routines that
they are to be merged with or else the new Line numbers will overlay the old
snes just as if the file had been edited in from your terminsl. IMPORTANT
NOTE: You should always use the NEW command prior to any LOAD command if
vou desire to ensure that the text buffer is clear.

Two exampies of LOAD:

READY READY
LOAT PWRSE (FET TOAD pSKe2-PWRS2.BASIS0, 11 (BED
READY READY

9.9 HNEW

This command ciears out all current source code, object code, user symbols
and variables., It initializes the compiler fo accept new source program
statements or direct statements:

READRY

NEW [HED)

READY

INTERALTIVE COMMAND SUMMARY Page ¥-7

If you do not use the NEW command before loading in a new program, any Lines
in the new program with the same Line numbers as other program Lines already
in memory will overlay and replace the old lLines: you will thus merge the
cld and new programs,

910 RuUN

This 13 the usual command to use to initiate the execution of the HrOgGran
which 1s in memory. BASIC first checks to see if the program has heen
compiled since the last editing change to the source code, I it has not ,
BASIC automatically compiles the source program to ensure that the ohiiect
code is up to date. RUN resets all variables to zero (and strings to nulll
and 1t then executes the compiled obiect code. Execution may bhe interrupted
at any time by typing a Control~C on your terminal,

READY

RN (ET)

{(The orogram currently in memory
begins at the lowest Line number.)

.71 3SAvE

The SAVE command saves the entire sowrce program on the disk in the
specified account and device, You must enter the name of the orogram (1-6
tharacters) following the BAVE command. The program is saved in ASCIL
tarmat. The default extension is .BAS, and the default account and devic
are the device and account you are logged into, The oprogram may b

i

g

11

e

displayed or edited with the normal text editors outside of AlphaBASTIC.
z previous version of the program (same name) already exists on the disk
the account you are writing the file to, that program is first deleted
before the new program is saved. BASIC does not automatically create a3

backup file. The program name may be a full system file specification.

3 e

SAVE PAYROL (RET) SAVE DSKZ2:PAYROL.BASISO,1] BET)
READY READY

The S8vE command may also he used to save the compiled ohiiect orogram on
disk for Llater running without recompilation. To save the object woroaram,
enter the program name followed by the exnlicit extension .RUN. 1Ff vou have
changed the program since the last time it was compited, RBASIC now
automatically compiles the orogram for you, Then the object program is
saved on The disk:

SAVE PAYROL , RUN [RET)
(Saves the obiect proaram on the disk as PAYROL.RUN,D

READY

{Changed A0 April 1981

INTERACTIVE COMMAND SUMMARY Page 9~8

In the interests of security, BASIC will not let yow save a program that s
ie oam mccount that is not within the same project as the. account you are
Logged into. for example, 1f you are logged into PEZ U100 ,2% and want to
save a program in D3KZ:0340,13, you sees

SEADY
TAVE NEWPRGI340,17 EED

2Cannot OPEN NEWPRG.BAS[I340,1]1 ~ Protection viclation

Q.17 SINGLE~STER (LINEFREDD

The single-step function is a feature not found in many versions of BASIC,
and is very useful in debuggina programs and in teaching the principles of

AASIC programming to newcomers, To use the Sﬁmqtemgfem command, type a
Linefasad. {That iﬂf press the terminal key labeled LF, LINEFEED, or #'&E

The single-step function causes the current Line in the program to be Listed
on your terminal and then executed. Any output generated hy the execution
of & PRINT statement then follows on the next Line., After the Line has heen
executed, the execution pointer is advanced to the next Line and control
retyrns To you +n the interactive command mode, Successive single-step
commands may be used to follow the program through its paces. Lingle—step
is tegal at the beginning of the program, after program S5TOP statements,
hreakpoint interrupts, and other functions that suspend program execulion.
After partially single-stepping through a program, you may exescute the
remainder of it normally by using the CONT command. Also, you may start
over at the heginning and execute it noarmally by using the RUN commarid. if
vou try to single-step past the end of the program, you see:

sxxErng of PFrogramixs

anel The naxit Linefeed executes the first program statement again.

1f vou single—step a statement that asks for input from the terminal, enter
§

the input fol 3ow@d by a RETURN: then you may proceed to the next statement
by typing another Linefeed,

Remember that the single-step function is performed by hitting the Uine-feed
key and not by actually entering the words "single-step.”

ing is a demonstration of the single-step process for a sm abt
su would see 3t on your CRT. The symbol % represents the

which vouw press to sse the next statement and the results of
nai actuwally see an echo of the linefeed key on the CRT.) Note
that {éﬁ@ JJ is a multi~statement Line, When single-stepping, all
statements on a Line are executed. BASIC returns control to the interactive
mode a3t the beginning of each Line.

{Changed "0 April 19813

INTERACTIVE COMMAND SUMMARY Page F~9

LIST (HED)

10 PRINT “This is a demonstration of single~gtep”
A FOR T =1 fo 3

A0 PRINT 1001 & PRINT 10=I"1 @ PRINT 1807 1#1

¥

COMPILING

TompTle Time was 0.20 seconds

10 PRINT "This 15 & demonstration of single-step”
This 13 a demonstration of single~step

¥
20 FOR I = 1 70 3

ks PRINT (%] : PRINT 1OwITF = PRINT 10°T=I
a0

18

1o
v
40 NEXT T
¥

30 PRINT 1021 : PRINT 10%I71 1 PRINT 107 1#1
20

A0

200
40 NEXT I

7 S

30 PRINT 10%1 : PRINT 10#*I°1 = PRINT 107 1#1
20

o7

600
¥

403 NEXT 1

**% End of Program sk

CHAPTER 10

PROGRAM STATEMENTS

The source program contains statements which are executed in Sequence . one
at 2 time, as BASIC encounters them, Each of these statements normally
starts with a wverb followed by optional variables or statement modifiers.
Many of these statements can also be used in the interactive mode as direct
statements, This chapter tists all the program statements and gives some
examples for clarity.

10,1 ALLOCATE
The format is:
ALLOCATE filespec,number-of-blocks

This statement allocates a random access file on the disk. 1t is discussed
in detatl in Chapter 153, "AlphaBASIC File I/0 System.”

T0.2 CHAIN
The format isg
CHAIN fiiespec
where the filespec may take the forms:

thevniIBASI-program=~name{ .RUNI{Ip,pnl}
{hevn:AMOS~monitor—command, PRG{p . onl)
{hevn:icommand=file.CMb{lp. onl}
Lhevei:Ycommand=-file,.00{lp, onl’

The CHAIN statement causes control 1o be passed to the specified BASIC
program,. command file, or monitor command program. The program name may bhe
a full file specification, including device and account specifications. The

PROGRAM STATEMENTS Page 10-2

CHATM statement causes the current program to be cleared from memary. The
specitied file is then located and executed from the beginning. & chained
BASIC program must be a fully compiled program with the externsion .RUN in
order to be referenced by the CHARIN command. it may be in user memory
{having previously been loaded via the monitor LOAD command) or it may be in
SYSTEm Memory. {The System Operator may place a fTile in system memory by
modifying the system initialization command file,) If it is not already in
memary, 1t 35 loaded from the specififed disk account into user memory and
then executed. If it cannot be located, you are returned to AMOS command
Level with the srror message:

Prannot find program NAME . RUN

=

Some examples of the CHAIN statement:

FOCHAIN TRPAYROLY TOOOHATN TDSKI:PAYROL ,CMDIDVTOO, 737
There 13 no provision to start the chained file at any point other than the
heginning. You may pass common variables between chained BASIC orograms
gither by writing them out to a file and then having the chained program
read them back in, or by using the C(OMMON assembly Language subroutine.
{&ee COMMGN - BASIC Subroutine to Provide Common VYariable Storage,
(DWM-00TTH-TRY n the "RAGLC Programmer's information” section of the AM-T00
documentation package.)

For more
Programs,

information on CHAIN, see Chapter 14, "Chaining to BASIC and System

1
i

0.3 LLOsE
The format is:
CLOSE #file-channel

This statement closes an 170 fite to further processing. 1t is discussed 1in
deteil in Chapter 153, "AlphaBASIC File 170 Svstem.”

W.e BIM
The format is:
DIM variabtel (expri{,axpr?, ..expridi{, ... {,variablenN{expri{,expré,...exprNii’}

The dimension statement defines an array which is allocated dynamically at
gxecut ion Time. Once allocated, an array cannot be redimensioned during the
execution of the nprogram. There i3 no Limit to the number of subseripts
that may bhe used to define the individust levels within the array. The
statement BIM AC20) defines an array with 20 elements, referenced as A{1)

PROGRAM STATEMENTS Fage T3

through AQZD)Y. Multiple arrays may be dimensioned by a single DIM statement
by separating them with commas.

Subscripts are evaluated at execution time and not at compile Time, thereby
allowing wvarifasbles as well as numeric constants to be used as subscripts,
The statement DIM A(H,() aliocates an array whose sige depends on the sctual

values of B and { at the time the DIM statement s executed.

It a reference to an array s made during program execution without a
previous DIM statement to define the array, BASIC assigns a default array
size of 10 elements for each subscript Level referred to.

String arrays may be allocated, such as DIM A%(5). The size of the areay
depends on the current default string size in effect as specified by the
tast STRSIZ command, since each element in the array must be this number of
bytes, For instance, 1f the current STRSIZ is 10, the statement DIM AF(S)
would atlocate 5 elements * 10 bytes per element, or 50 bytes of memory for
the grray. Below are some examples of valid DIM statements:

BIM ACTDD

DIM C(B,.B), C$10,4)
DIM TEST(A,Bxé)

DIM ACB{4))

.5 END
The format s

END
This statement causes the program to terminate execution. The END statement
does not terminate compilation of the program nor is it reguired at the end
of the program. It other program statements follow the end of the program

{e.g., subroutines), fterminating the program with EHND prevents vour program
from incorrectly enfering those statements and trying to execute them,

1.6 FILERASE
The format ju:
FILEBASE n
Thig statement sets the number used to refer to the first record of a random

file. It is discussed 1in detail in Chapter 15, TAlphaBASIC File 1/0
System,’

PROGRAM STATEMENTS Fage 104

10.7 FOR, MEXT AND STER
The format is:

FOR control-variable = expressiont TO expression? {STEP {~lexpression3d}
{Statements}
NEXY dcontrol-variablel

These statements initialize and control program loops. A toop s a
structure in which the same statement or statements can be performed several
times. Whether or not a2 loop is executed depends wupon the value of a2
special gontrobevartabie.” AlphaBASIC FOR~NEXT loops foliow the same
format and restrictions as do other forms of BASIC. The contrel-variable
used may be subscripted, and must be a floating point variable. The
delimiters indicating the number of incrementations or decrementations to be
perfarmed on that varisble may be any valid expression. FOR initializes the
variable to the first expression. NEXT increments or decrements the wvalue
of the wvariable sach subseguent loep. The variable name may be omitted 3n
the MEXT statement. in which case the variable of the previocus FOR statement
ig the one that i1s incremented, The control-variable ds incremented or
decremented in units indicated by the STEP statement. If no STEP modifier
is used, the step value i3 assumed to be a positive 1. tnlike some other
BASICs, an AlphaBASIC FOR-NEXT Lloop will alwavs be performed st least once,
sven it wvou specify something Like FOR § = O to . FOR and HNEXT statements
are iliegal as direct statements except when they are incorportated into the
same multi-statement Line. For example:

FOR T = 7 76 10 « PRIMT T NEXT I
Here are examples of some of the different forms FOR-NEXT loops may take:

10 OFOR COUNTER = 1 70 10

200 1¥ COUNTER/Z = INT(COUNTER/Z) THEN PRINT COUNTER "is even.” &
ELSE PRINT COUNTER:"is odd.”

A0 MEXT CDUNTER

10 OINPUT “Enter date of first Surnday in the month: 7 BAY
20 PRINT “The Sundays this month are on these dates:” @ PRINT DAY
A0 FOR ASDAYHT 1O 31 STEP 7 ; PRINT A : NEXT A

1OFOR L o= 10 T STERP -1
20 PRINT 1
oy

Locps within Lloops are legal and are called nested loops. Loops may bDe
nested to many Levels. Fach time the outermost locop iz incremented f{or
decremented) once, the Loop nested within it is executed from beginning to
end. During the execution of the second loop, the third Locp (it anyr s
futly executed each time the second variable is incremented. And so on, for
each nested loop in the series., For example:

128 This program prints out oa two-dimensional array,
2000 and demonstrates nested loops.

PROGRAM STATEMENTS Page -5

30 DIM MATRIX(S,5)
40 1 The nested loops:
58 FOR 1 =1 T0 S

&0 ForR J = 1 10 5

70 MATRIXIT, 2= I-d
af PRINT MATRIXN(I J):
Fal NEXT J

100 PRINT

TG ONEXT I

The program above orintg:

H
i

1

i

Pl o d 080] o
i

§ el LT b

j "
™

B]])

It 1% not good programming practice to bhranch out of a loop before its
compietion (via GOTOs, ON GOTOs, eto.) unless vou give careful conmsideration
to the BASIC system stack area. The stack area used by the loop is not
reclaimed if you branch out of the Loop, and doing so can cause a stack
overftlow error during program execution. A cleaner way of exiting a loop is
simply to set the control-variable to the terminal value specified in the
FOR statement. For example:

10 REM Example of exiting ocut of a FOR-NEXT Loop.

24

A0 STARYTLOOP:

&0 FOR I=1 TO 100

50 IRPUT "Enter number of pennieg:” ,PENNIES

A0 IF PERNIES<0 GOTO NEGATIVEWALUE ! Don"t jump out of the loop!
0 PRINT "You have " PENNIES/100:"dellars,” © GOTO ENDTLOOP

G ¢ If # < 0, print error message and set I to terminal value.

20 NEGATIVE"VALUE:

100 FRINT "You can't have negative pennies!”™ 1 =100

P10 F End of loop, where we increment or decrement I.
120 ENRTLOOP:

130 NEXT I PIF I = 100, we'lre all done.
140 PRINT "We'lre all done."

T0.8 GBOSUR (OR CALLY AND RETURN
The formats are:

G058 label or Line number
CaLl label or Line number

RETURM

PROGRAM STATEMENTS Page 10-6

Calls & subroutine which starts at the [Line number or Label referenced by
the S0SUB or C&LL statements. The subroutine exits via the RETURN
statement ., which returns control to the statement following the GOSUR or
CALL statement. Fxecubting a RETURN statement without first executing a
GOSUR siatement resulis dn an error message. Both S0SUB and RETURN are
iliegatl as direct statements. Note that the CALL verbk is merely ancther way
of specifving GOSUR for those programmers used to this wverh from other
Languages,

It s often the gase that yvou want to perform the same operation at various
points within your program. A subroutine i3z a set of program statements
that you may execute mpore than once simpiy by including an invocation for
that subroutine (called a "call”) within vour program at the point where you
wouid Like to execute the routine. For egxample:

O ! Thiz program contains 2 subroutine that validates numeric entries
20 1 to make sure that they are greater than 0 and are less than 100,
30 PRINT “We are going to perform several mathematical operations,”

40 PRINT "Your entries must be greater than 0 and less than 100.7

500 PRINT 1 INPUT “Enter two numbers to be added:; ",A.B

A0 GOSUB VALIDATE U Check to make sure numbers are valid.
FEOPRINT AT iR T=" A4E

A0 PRINT INPUT "Enter two numbers to be subtracted: ",A,B

20 GOSUR VALIDATE {heck to make sure numbers are valid.

100 PRINT Ap=":B:"=s";

110 PRINT @ INPUT “Ent two numbers to be divided: ", 4.B

120 GOSUB VALIDATE I Check to make sure numbers are valid,
TAD PRINT AT/ 7B "="24/H

140 PRINT @ PERINT “"Thatts all...”

150 £ab

200 1 Subroutine to validate the data

20 VALIDATE:

220 IF & <= J OR B <= {) THEN &

PRINT “Error -~ negative or zere number!™ @ END

]
A-B
e

PEE IF A »= 100 08 B >= 100 THEN &
PRINT "Error - Number too big!"™ : END
A&l RETURN

Remember that & (ampersandl} s the symhol for a coantinuation Line,

Note that we included an FRD statement at line 1130 to separste the main
Grogran from our subroutine; otherwise, BASIC executes the VALIDATE
subroutine after it reaches line 140, and we get a VRETURN withour GOSUBY
Brrar,

Also note that the wuse of GOSUBs helps to modularize vour programs, andg thus
makes them sasier to design and maintain. Even before you completely "“flesh
out™ vour programs, you can insert dummy routines that will Later contain
comnlete code, For example:

10 1 This program will be a complete dental package.

20 PRINT "Welcome to the Acme Dental Package."

A0 Perform initialization of dats files

FROGRAM STATEMENTS Fage 107

A0 GOSUB INIT

30 1 Ask user to pick function from main menu.
40 GOSUB MENU

70 ! bo End-of-day Processing

BO GOSUB DAY'END

90 1 Findsh up, close files, and exit.

OO GOSUB FIMISHIUP

110 END

115 ! The subroutines start here,

200 TNIT:

210 PRIMT “"This section will initialize files.”

220 RETURN

R00 MENU:

3210 PRINT “This section will display the main menu and®
320 PRINT "ask wuser for selections.”

BED RETURN

00 DAY'END:

&1 PRINT "This section will perform dav-end processing.”
420 RETUIRM

SO0 FINISHIUR:

540 PRINT “This section will close files and clean up final data.”
521 RETURN

You can nest subroutines. For example:

101 semonstrating nested subroutines

20 PRINT "Main Program:”

200 GOSUBR QUTERMOST | OQUTERMOST calls. MEXTMOST asnd INNERMOST
0 BRINT ¢ Return from Qutermost™

56 BND

&0

100 ! Here are the subroutines:

110 QUTERMORT :

120 PRINT Gutermost subroutine”

1 A0 GOSUER NEXTMOST

140 PRINT Retyrr from Nextmest'

15} RETURN

Ta0

200 NEXTMOST »

210 PRINT Mextmost subroutine”

220 BGOSR TNNERMOST

St PRINT Return from Innermost”
Fa RETURN

250

EO0 TMNNERMOST

EXEE PRINT ¥ Innermost subrout ine”
A2 RETURN

The program above prints:

PROGRAM STATEMENTS Page 10-8

Main Programs
Outermost subroutine
Mextmost subroutine
Innermost subroutine
Return from Innermost
Beturn from Neximost
Return from Qutermost

NOTE: ¥You should zlways exit a subroutine via the RETURN statement for that
sulrroutine rather than using a GOTO statement., The reason for this s that
subroutine processing places certain information on BASIC's stack area; 1f
you do not executs & RETURMN statement, the stack area used by That
subroutine is not reclaimed. Doing multiple bramches out of & subroutine
rhus results in a "stack overflow” error message,

0.9 GOTO
The farmat s

GOT0 label or Line number

G070 Label or Line numbser

The GOTO statement transfers execution of the program to a new program Line,
This orogram Line must be identified sither by a Line number or a

tabel somewhere i the program. You may use GOTOs to transfer control to s
program Line thet s either before or after the program line containing the
GOTO statement dtself. For example:

101 Program to demonstrate use of G0TOs.

0 FRINT "This program computes your acocount balance. Enter a”
30 PRINT “Control-C to stop; enter deposits as negative amount.”
&1 INPUT YEnter old account balance: " BALANCE

50 CALCULATE BALANCE:

&1 PRINT ¢ INPUT "Enter debit amount: " ,DEBIY

76 BALANCE = BALANCE ~ DERIT

#4 PRINT "bebit was: " DEBIT;"— Current balance is:";BALANCE
a4 GOTO CALCULATETBALANCE

You cam see that Lines 50 through 90 constitute an endless loop in which
control is eternally transferred from Line 90 back te Line 50 until the user
types a lontrob-0,

1T you use GOTOs on & multi~statement line, remember te place it Last on Lhe
Lime: any statements after the GOTO will never get executed. For example:

10 PRINT GROSS @ NET = GROSS -~ DEDUCTION @ GOTO GETTTAX @ PRINT DEDUCTION

The lLast statement, PRINT DEDUCTIONS, can never he executed.

PROGRAM STATEMENTS fage 10-9

10 IF, THEN AND ELSE
The format is:

iF pupression {THEN} {Statﬁmant}{éa@&ifi@n%ﬁ}{5LSE{5tatemeﬁ€}{%ab@iiLiﬂ@ﬁ}}
The conditional processing features in AlphaBASIC give a wide variety of

formats which duplicate just about all the functions performed by other
versions of BASIC. Some of the format combimations that are acceptable are:

IF expression THEN |ine#

IF expression THEN GOTO Line#/label

IF expression GOV Line#/label

IF expression THEM Line# EILSE GOTO Line#/label

IF expression THEN GOTO Uinef/Lahel ELSE GOTO Line#/lahel
I¥ expression THEN statement

I¥ expression statement

If expression statement ELSE statement

if expression THEN statement EL3ZE statement

Notice from the examples above that you may sometimes omit the GOTO keyvword
when transferring control to another program location. You may not omit
the GOT0 keyword when: 1) you are referring to a lLabel: or 2) when you are
referring fo either a program label or a bine number im an ELSE clause.

fou may also omit the THEN keyword, except when vou are transferring control
to another program lLocation and are omitting the GOTO keyword.

The above formats may be nested to any depth, and, rather than go %ﬂtg
detaii, we suggest that vou experiment with them to determine the actusl
restrictions that exist. Some examples:

IF A=5 THEN GOTO PROGRAMPEXIY

IF A=5 GOTO PROGRAM'EXIT

IF A»T4 THEN 110 ELSE 60TO 220

if BE="END” PRINT "ENB OF TERTY

IF TOTAL » 14.5% GOTO START

1E P=5 AND @=6 IFf R=7 PRINT 567 ELSE PRINT 56 ELSE PRINT "NONE!
IF A=1 PRINT 1 ELSE IF B2 THEN 33% ELSE GOTO 345

IF & AND B THEN PRINT A and B are nonzero.”

Note that the expression evaluated by the IF statement s wusually an
expression that contains relative operators f(e.g., IF A& = By IF & > 0
etc.). However, the expression may be any legal expression. For example:

A = 0

B o= 1

IF B THEN PRINT "B is not zerg."

IF (8 AND A} FRINT "nonzero numbers' ELSE PRINT "at lLeast one zera number.”

When the IF stetement evaluates the expression, i1t returns either a zero
@r

(for false) or a =1 number <(for true), and conditicnally performs tThe
specified operations in response to That evaluation.

(Changed 31 October 1981

PROGRAM STATEMENTS Page T0-10

NOTE: A multi-statement Line may take the place of & single statement in an
IF~THEN statement., For example;

IF A = % THEN PRINT 4 7 PRINT 5 ELSE PRINT "Answer iz 0"

It & eguals three, the statement above prints:

Otherwise, 10 prints:

Answer is [

INPUT {“prompi-string”,variabliet{,variabled.. .. ,variablen)

Allows date 1o be entered from your terminal and loaded into specific
variabies at run-time. The INPUT statement contains one or maore variables
separated by commas. I you omit the optional prompl string, BASIC displays
a2 oguestion mark on the terminal display to signal 2 request Tor data entry.
it you provide the prompt string, BASIC displays it instead of the guestion
mark to prompt the wuser of your program for data. (NOTE: If wou wish to
suppress @ prompt altogether, wse a null prompt string; Tor examples; INPUY
TULASLBELY Your prompt string must be in the form of a siring Literal; that
15, it must be enclosed with auotation marks. For examole:

INPUT "Enter vour account number: " ACCOUNT® NUM
tnter vour account number:

Yeyss

fou may specify both numeric and string variables in the INPUT stetement. &
numeric variable reguires that the data entered he in one of the acoceptabls
floating point formats, String variables require that the data be am ASCII
string of characters. Some examples of valid INPUT statements are:

NPT A

INPUT "Enter account #, name, and age: Y, NEW'ACCOUNT, NAMES, AGE
INPUT "7 8 B0

INPUT "Enter positive number " NUMBER

INPUT G(E)

If you specify multiple variables in the INPUT statement, vou are sxpected
to enter multiple items of data. I1f the data being entered is numeric, vou
may sepsrate date items with commas or spaces. If the dats being entersd is
string, vou must separate dats items with commas. If you mix floating point
and string Tnput, vou must use commas to separate the data being input. For
example, 1% A, B, and C are numeric variables and D% and E% are string
variables, consider the following legal examples:

{Thanged %1 Gotober 19813

PROGRAM STATEMENTS Page 10-71

TNPUT A,8,C ! Separate floating point dsta with commas

2 4,2.3

TNPUT AR, L P 0r, separate floating point data with SECES
21 2 3

INPUT ALB, D%, ! Separave string data from numeric data with commas
201 2LDAY,E

INPUT DE,E% ! Separate string data from other string date with commas
2 DAY MONTH

(NOTE: For information on the statement to use 1f you want to enter strings
that contain commas, quotes, and other special characters, see Section
T0.12, TINPUT LINE.™

It a user of your program does not enter as many items of date a3 are
expected by the variables in the INPUT statement, BASIC displavs a double
auestion mark to ask for moare. For example:

IHPUT A,B.C

F s

77 3

The direct statement above asks for three items af numeric data, Because we
only entered two values, BASIC responded with a "277 symbol to ask for the
third value,

de careful fo correctly enter the type of data. that the variables in the
INPUY statement expect. It an error accurs (for example, 4f wvou enter a
string for a numeric wvariable), BASIC sets that variable to zero. For
axample:

INPUT A1
T ME
PRINT A1

a
Therefore, your programs should make sure that the correct data. has heen
enteread. {Remember that the mode independence of AlphaBASIC permits the
entry of numeric data for string variablesy AlphaBASIC avtomatical ly
canverts such date to string format.)

a2 wvalue has not been assigned to a variable, BASIC assumes that the
variable contains a zero (if & numeric varisble) or a null (if & steing
variable)., I you type a RETURN or a Clontrol={ in response to an INPUT
statement request for data, BASIC {eaves the variahle heing inputted set to
& zero or naullt (if @ value has pot vet been assigned) or to the valus
previcusly assigned to the variable,

(Changed 31 October 1981

PROGRAM STATEMENTS CPage 112

Far example:

Be?
INPUT &

?

PRINT &
3

1T you type @ RETURN or Control-C in respoense to a dats request, and the
INPUT stetement contains several variables, BASIC skips over any variables
remaining in the INPUT statement, leaving their values unchanged. An
example might help to clarify:

10 INPUT “Enter day, menth, year: LAY MONTH, YEAR
20 PRINT Uhay iU DAY, "Month " sMONTH,"Year:" ; YEAR

33 PRINT : GOTO 10

RUN

Enter day, month, vear: 21,4

79

Pav: 21 Months & Year: [}
Enter day, month, vear: &

])

Day: 8 Months: & Year: 0

Enter day, month, vear: 31,12,1980
aysr 31 Months 7 Year; 1980

Enter day, month, year: “(
Dperator interrupt in Line 10

You mey also use The INPUT statement to read data from sequential files. It
takes the form:

INPUT #file~channel ,variablel{,variable?,...variableN)

NOTE: INPUT skips over nulls in data, and just waits for the next
character, (This is important to know 1f you plan to input from devices.}

For more dnformation on this use of the statement, see Chapter 15,
"AlphaBASIC File 1/0 System.™

10.12 INPUT |INE

The format is:

INPUT LINE {"prompt-string”,}variable?

tChanged 231 October 1981)

FROGRAM STATEMENTS Fage 10-13

Although vou may specify a numeric variable, the real purpose of INPUT LINE
% to allow you to enter string data from vour termimal <that includes
commas, oquotation marks, blanks, and other special characters. You wili
usually want to use INPUT (see the section abover for inputting numeric data
or multiple items of string data.

INPUT LINE loads inte the specified string variable an entire Line up to but
not dncluding the carriage return and lLinefeed that end the line. Po not
specify more than one string variable in the INPUT LINE statement.

HBASIC never prints a question mark prompt for INPUT LIME as it dees for
INPUT, but you may include your own prompt string, which BASIC will display

as 8 reguest for data. Such 2 prompt string must be a string literal
enclosed in guotation marks.

Untike INPUT, if vou type a RETURN in response to a data request . INPUT LINE
sets the wvariable to zero (if npumeric wvariable) or null (if string
variabple), (Remember, in like case, INPUT leaves the value of the variable
unchanged.)

When you use INPUYT LINE, remember that the default size of unmapped steing
variables s ten bytes: if you want to use strings larger than that, use the
STRSIZ statement to reset the default string size. (See Section 10,726 for
information on STRSIZ.D

Some examples of the statement are:

INPUT LINE A3
FNPUT LINE "ENTER YOUR FULL NAME, PLEASE: " NAME

You may alsc use the INPUT LINE statement to read data from a sequential
file. It takes the form:

INPUT LINE #file~channel ,variablel

For more infeormation on using INPUT LINE and files, see Chapter 15,
"AlphaBASIC File 1/0 System.”

1013 Il
The format is:
KILL filespec

RILL deletes a file from a disk. It is discussed in detail in Chapter 15,
"AlphaBASIC File 170 System.”

{Lhanged 31 (ctober 1981

PROGRAM STATEMENTS Page 1014

10,14 LOOKRUP
The format is:
LOOKUP filespec, resultevariable
The result varisble must he & floating point number.

Ths

statement searches for a file and returns 1ts size. It is8 discussed in
getail

5
tail in Chepter 15, "AlphaBASIC File 170 System.”
s LET
The format is:

LET variable = sxpression
Assigns a3 calculsted wvalue to a specific variabie during execution of the
program. You do not have to specify the LET keyword in an assignment
statement .

LET A% = 12.4
LET BUMG4,5) = AT+SaR(B1)

LET UF = TIANUARYT

A = 12,4

SUMCL.SY = Al+SaR(BY
CE = "jANUARYY

T3.976 0N ~ GOSUB {CALL)

The formats are:

OM expression GOSUR Label/limed#1{,label/line#?,...label/Lineth}
ON expression CALL label/line#td, <ahﬁtfiiﬂe#§f§*giab@ifé%ﬂeﬁﬁﬁ

The sxpression can be any valid expression which is evaluated and truncated
to 8 positive ?ﬁg@ﬁ$? result. The result of the expression evaluation s
then tested. The SubFGuﬁﬁﬂe at label/line#1 is executed 1{f the result fs 1,
the subroutine at label/line#i?2 is executed if it is 2, ete. It the result

5 zern, negative or great@$ than N, the program falls through to the next
statement,

As with the GOSUB statement, the verb CALL may be used in place of the verb

GOSUB, giving an ON CALL statement. Here is an animation program using ON -
GOBUE:

{Changed 31 fctober 1981

FROGRAM STATEMENTS Page 10~15

101 = INT(3*RNDCDI+1) YRandom number from 1 to 3.
20 ON I GOSUB UP, DOWN, STRAIGHT 6o to 1 of % subroutines,
30 8070 10

40 UP: PRINT "/"; TAB(-1,3); : RETURN IDraw symbol, 9o up 1 row.
50 DOWN: PRINT TABC(-1,4):"\": : RETURN 'Go down 1 row, draw symbol.
&1 STRAIGHT: PRINT fﬁmf; : RETURN Draw symbol.

1017 ON - 6OTO
The format s
ON expression GOTO label/line#1{,label/iLine#2,...Label /i inesN}

The ON GGTO statement allows mubti-path G070 branching to one of several
points within the program based on the result of evaluating an eupression,

The expression can be any valid expresston which e evaluated and truncated
to a positive integer result. The result s then tested +to branch o
Label/linef! 1f 1, label/line#2 if 2, Label/Linefs if 3, ete. If the result
is zerc, negative or greater than N, the program falls through to the pext
statement. The following is 2 portien of a menu-selection program:

10 PRINT TAB(Z2)"Select One of the Following Operations:' : PRINT
20 PRINT TAB(25)™, insert/Edit NAME Information.'

B0 PRINT TAB(OZ5)2, Insert/Edit PHONE NUMBER Information.”

41 PRINY TAR(2%3"3, fuit without +nsertien or editing.”

50 PRINT : INPUT "Your choice €1, 2 ar 337 A

50 ON & GOTO NAME, PHONE . QUIT

100 NAME: INPUT "Select a name: " ,N

[THE PROGRAM CONTINUES WITH ALL THREE ALTERNATIVESI

13.18 OPEN
The format is:
OPEN #file-channel ,filespec,modef,recsize,recnum}

Gpens an 170 file for processing. It is discussed in detail in Chapter 15,
“AlphaBASIC File 1/0 System.”

{{hanged 31 October 1981)

PROGRAM STATEMENTS Page 10-16

10,99 PRINT
The format is:
PRINT gxpression-Llist

The PRINT statement tells BASIC to evaluate and display the expressions that
you specify. For example:

PRINT B+4"HELLOYS" youo

returng:

7 HELLO YOU
BASIC prints & carriage return/line~feed after the expression List.
Remember that an expression may consist of & string or numeric variable,
mumeric constant, string Literal, funstion with arguments, operator symbols,
or @& combination of fthese elements. For example, the following 13 ong
string expression: “"STRING DATA” + NAMES + MIDS(AS,1,2).

BASIC displays numeric dats with a trailing blank. it also prints one
Leading blank if the number is positive, or no Leading blank if the number
i3 negative. BASIC displays string data with no leading or trailing blanks.

You may place more than one expression after the PRINT keyword iF vou
separate them with commas or semicolons. If vou zeparate the expressions by
semicolons, BASIC does not print extra spaces when it prints the evaluations
of thoss expressions. For exsmple:

PRINT 1241232 208/2

returng:

There are no blanks between the numbers shove except for the normal leading
and trailing blanks displaved with numeric data.

It vou separate the expressions by commas, BASILC prints the dats in "print
Fornes " BASIC givideg the area in which data 95 to be displayed inta five
zones of Y4 spaces each. I an expression in & PRINT stetement i3 followed
Dy & comma, BASIC prints that expression in the next available print zone.
For example, the statements:

20 PRINT 34,1024,-32,-100.2,20
:%S @g}:ﬁé‘? é%&#ﬂ!’?ﬁ?ig@%!‘?iﬁgfﬁﬁ’ﬁﬁ%i}i}ﬁﬂg\??ﬁf?;%ﬁaﬂiw@i’gf?

display;
B4 Hida -5z =130.2 20

A4 B L DRD &
5 .i :

COhanged 31 October 18812

PROGRAM STATEMENTS Fage H-17

Wher vou Look. at the display above, remember that BASILC prints numeric
data with a leading and tratiling blank if the number is pesitive, but just

a trailing blark if the number is negative,

Note that the strings in Line 30 were displayed on two different lLines

that 1s because when BASIC still has an expression to print aftier it

printed something in the fifth zone, it starts over again with the firgt

zone on the next line.

If you end the PRINT statement expression List with a semicolon or comma,
BASIC does not output & carriage return/Line-feed when it finishes
displaying that expression List. This wiil make the output resulting from
the next PRINT or INPUT statement to appear on the current display Line.
The next output will appear in the next print zone if the current PRINT
statement ends with a comma; or, the next output will appear immeditately
following the last character of the current PRINT statement 4f the PRINT

statement ends with 2 ssmicolon,

Here are 5 few examples of the PRINT statement (for illustrative purposes,

we are assuming that A$ fs "HERE" and A eguals 7):

PRINT ¥ields g blank Line

BRINT A ields 7

PRINT A% "¥ielos MERE

PRINT 12 tYields 3

PRINT TANY TEXT™ ‘Yiekds ANY TEXT

FRINT "NOTE THE COMMA™ _ AS Yielkds NOTE THE COMMA HERE
TOUYOL ARE NUMBER - A ‘Yields YOU ARE NUMBER 7

TOUYOU ARE BUARTIN CLASS.T Yields YOU ARE # 7 IN CLASS.
PRINT "THERE ARE™: [Bemicelon suppresses carriage-
PRINT A2 DAYS LEFT." freturn/Linefesd and yvields

ITHERE ARE 7 DAYS LEFT.

(Remember that the "9 symbol is an abbreviation for the PRINT kevward.?

You may alsc use the PRINT statement for writing data to seguential files,

It takes the form:
FRINT #file-channel ,expression~List

Far details on this, refer to Chapter 15, "AlphaBASIC File I/0 System.”

TH.20 PRINT USING
The formats are:
variablesexpression USING formatestring

PRINT USING Termat-string, expression-list
PRINT expression USING format-stering

{Changed 31 October 1981

PROGRAM STATEMENTS Page 10-18

FRINT USING is supported for formatting output and fs8 described extensively
in Chapter 13, "Formatting Output (PRINT USING and Extended Tabs).™

.21 RANDOMIZE
The format g
HANDOMIZE

Resets the random number generator seed to begin a new random number
seguence starting with the next RND(XY function cell., (See Bection 11.1.9
for information on the random number generator.,)

15,27 READR, BESTORE, AND DATA
The formats are:

READ variablel{,variable?,....variablen}
RESTORE
DATA dataid{,datal,...datanN)

these calls allow date to be an integral part of the source program with 2
method for getting this data into speeific wvariables dn an orderly fashion.
DATA statements are followed by one or more Literal wveluss separsted by
COMMAY . String lLiterals need not be enclosed in guotes unless the Literal
data contains a comma. ALL data stetements are nlaced into a dedicated ares
in memory no matier where they appear in the source program. READ
statements are followed by one or more variables separated by commas. Each
time a READ statement is executed, the next item of deta is retrieved from
the DATA statement pool and loaded into the variable named in the READ
statement,. It there is no more data teft in the data pool, the program can
only continue to read data {f a RESTORE statement 18 executed, which
reinitializes the reading of the dats pool from the beginning again.
Otherwise, an error message results and the program is aborted. Here are
some Torms that BEAD and DATA may take,

DATA 1,2,.3,4,5

DATA 2.%,0.555,0NE STRING, 4,47
READ A,B,C

READ A%

READ CC2,3) BS(4)

The foliowing i1s & program example using READ, RESTORE, and DATA:

10 !sample program to iliustrate READ, DATA and RESTORE

20 PRINT TAB(102"This program gives you an estimate of your automobile’s”
A0 PRINT TABO1QM"value (due to depreciationd over a period of five yzars.”
40 PRINT o INPUT LIMNE "How much did vou pay for your car? $7, . WORTH

50 RRINT YBased on national averages, your car will depreciate this way”

(Changed 31 October 1981

PROGRAM STATEMENTS Page 10~19

GU PRINT @ FOR 1T = 1 TO &

I PRINT "After the "2 ot READ YEARS : PRINT YEARS ;" vear, your car “:

BO PRINT "will he worth about”; 1 READ PERCENT

90 WORTH = WORTH + PERCENT

T PRINT WORTH USTING ”$$§#§#§gm##“

T} WEXT § & PRINT

200 DATA f%?gtﬁm???ﬁeacnd$m?8ythirdﬁH?Q@fouﬁthfmgﬁfféftthRQ

200 RESTORE . .
FHOINPUT LINE “Would vou Like to see another depreciation schedule? .13
3200 IF LD, 10=0yY or LECT,10="" THEN GOTO 40 ELSE PRINT “Goodhye, "

A program run of the ahove gxample might read;

This program gives vou an estimate of vour automabilets
value (due to depreciation’ over a period of five years.

How much did you pay for vour car? PREEL, 7O) ,
Based on natipnal averages, your car witl depreciate this way:

After the first year, your car will be worth about $4,648,.79
After the second year, your car wiil Be warth about $5,.184.05
After the third year, your car will be worih BBout B4 096,98
After the fourth year, your car WillL be worth sbout 25,218,586
Atter The F1TTh vear, vour Car witl be worth abeut $2,787.59

Would vou Like to see another depreciation. schedule? N
Goodbye . : | | "

tatement 300 restored the data in the data pool,. bullt from lLine 200, in
case the user of this program had elected to continue.

The READ statement is also used for reading data from random access files.
The format is:

HEAD #?éi@wahaﬁmei#varéabiaﬁ{fva?%&biewzﬁ&@avar%abieN}

It 48 dizcussed in detaii 4n Chapter 15, “"AlphaBASIC File 1/0 Svstem.”™

10.2% SCaLE
The format ig:
SUALE value

SCALE 18 a scaled arithmetic modifier. It 9% discussed in detail in Chapter
e, UScated Arithmetde.®

(Changed 31 Octoher 1981

PROGRAM STATEMENTS Page ti-20

10.24 SIGNIFICANCE

The format is:
SIGHIFICANCE value

The significance statement allows vou to dynamically change the default
value of the numeric significance of the system for unformatted printing.
The significance value can be any value from 1 through 11 and represents the
maximum number of digits to be printed in unformatted numbers. Rounding off
to the specific number of digits is not performed wuntil just before the
printing of the result., The statement SIGNIFICANCE 8, for instance, sels
the number of printable digits to 8. The value is interpreted at run-tUime
and therefore may be any valid numeric expression, including variables. The
current significance of the system iz ignored when PRINT USING is in effect.

Mote that the SIGNIFICANCE statement onty affects the final printed result
of all numeric calculations. The calculations themselves and the storage of
intermediate results are always performed in full 1i=digit precision fo
minimize the propagation of errors.

The significance of the system is set at 6 digits when the system is Tirst
started. Thisz 1% equivalent to standard single-precision formats wsed in
most of the popular versions of BASIC. The significance is not reset by the
BUN command and therefore may bhe set in dinteractive mode in a direct
sratement fust prior to the actuwal runming of a test program. Of course,
any SIGNIFICANCE statements encountered during the execution of the program
resaet the value.

10.2% sTOP
The format is:
STOR
Causes the program to suspend execution and print the message "Program siop
at line nnnn,”™ If you are in interactive mode, you may then continue to the

next statement in sequence by exeputing a CONT command or & single-stepg
command .

.26 STRSIZ
The format 1s:

STRSIZ value

The sitring size statement sets the default value for all unmapped strings
which are encountered for the first time during the compilation phase.
Inttially, the default value of all strings in the absence of a3 STREIZ

{Changed 37 October 1981)

FROGRAM STATEMENTS Page 10-21

statement 1is 10 bytes. The statement STRSIZ 25, for instance, csuses all
newly allocated strings which follow to have # maximum size af 2% bytes
instead of 10 bytes. This includes the allocation of string arravs. The
stze value is evaluated at compilation time and therefore must be a single
positive integer.

.27 WRITE
The format ig:
WRITE #file~channel expression-list

Writes & record to a random access file. ¥t is discussed 1in detail in
Chapter 15, "AlphaBASIC File 1/0 System."”

T0.28 XCaLL
The format fg:

KCALL routinel ,argumenti{,argument?, ... argumentN}}
Executes an external assembly Language subroutine. Assembly language
subroutines are discussed in detail 4n Chapter 18, ™"Calling Fxternal
Azsembly Language Subroutines.”
For information on the assembly language subroutines available for use with

BASIC programs, see the "BASIC Programmer's Information” section of the AMOS
Software Update Documentation Packet.

{Changed %1 Qctober 1981)

CHAPTER 11

BASTC FUNCTIONS

The foilowing s a 1ist of the currently implemented AlphaBASIC functions.
Functions compute and return a value and are elements of an expression. The
function either operates on or is controlled by the argument, which is
enciosed in parentheses., There are four main zategories of functions.
Mumeric and trigonometric functions return numeric values. fontrol
functions are used to indicate the status of file dinput and output
eperations and system operations. String functions operate on numeric
values or strings of ong or more characters in length, and return siring
values.,

Functions are different from program statements in that they return a value.
in arder to see or wuse that value, you must include the function in &
program statement that evaluates the expression that the function call i3 =
wnart of. For sxample:

10 sardiéd

will not displey 2 value. You must sither assign the values returned by the
function to a wvariable or display the value via a PRINT statement 1f vou
want 1o use or sse the value returned, For example:

20 RAOY = LGRS
EQORESULT = ROOT + (SGRONUMBER) + 24)

or:

EE S

A0 PRINT “Arswers are: ": SGRO16) + 100, SeR(24)

Tt NUMERIC FUNCTIONS

Mumeric functions accept a string or numeric aroument, and returs a mamertc
value., Mots that the mode independencs feature of the sxpression processor
performs avtomatic conversionz if a numeric argument is used where 2 string
argument is expected, and vice versa.

BASIC FUNCTIONS Page 112

1.1 ABS OO

Returns the absolute value of the argument X. For example, ABS(~32.4)
returns 2.4, and ABS(U17.2") returne 17.2.

T1.7.2 ASC(A}

Returns the ASCIT decimal value of the first character of argument A, The
argument may be either a string literal or string variable. For example:

ABCLVAT)
ASC (AR

T1.1.3 0 EXP OO

Returns the constant e (2.7182818285) raised to the power X.

174 FACT(N

Returns the factorial of ¥,

TLT.5 0 FIdix

Returns the integer part of X (fractional part truncated}.

TT.t.d INT(XD

Returns the largest integer less than or eogual to the argument ¥. The only
time vou will see a difference between using INT and FIX s {f vyou are
working with negative mumbers. For example, the largest integer Less than
or equal to 23.4 is 23, However, the Largest integer less than or sgual 1o
=254 i3 =24, (FIX would have returned ~2%.%

1107 LoeOo

Returns the natural (base e) logarithm of the argument X,

BASIL FUNCTIONS Fage 11-3

iT.1.8 L0&10

Returns the decimal {(base 10) logarithm of the argument ¥.

T1.1.9 RNDOD

Returns a random number generated by a pseudo-random number gensrator. The
number returned is based on a previous value known as the "seed,” and s
petween 0 and 1. The argument X controls the number to be returned, If X
is negative, it is used as the seed to start a new sequence of numbers. if
X is zere or positive, the next number in the seguence is returned,
depending on the current value of the seed (this 1s the normal mode), The
RANDOMIZE statement may be used to create a seed which s truly random and
not based on a fixed beginring value set by the system.

NOTE: If you want to generate a random number grester than or equal 1o
number A and Less than number B, you can use the expression:
(B-AJ*RND{D}+A. Note that the INT function is used when generating random
integer numbers. For example, to generate a random integer greater than or

egual to 5 and Less than %1, wuse the expression: INT(2EERNDIDILE) where
26=B-5

1.1 BGNOO

Returns a wvalue of =1, 0 or 1 depending on the sign of the argument X,
Gives =1 if ¥ is negative, 0 if ¥ 4s 0 and 1 iF X 18 positive.

T1.1.%1 SQR{X)

Returns the sguere root of the argument X,

111,08 vap (s
Returns the numeric value of the string variable or string Literal &

converted to floating point under normal BASIC format rules, For example,
YALCMIZEY Y returns 123,

11.2 TRIGONOMETRIC FUNCTIONS
The following trig functiens are implemented in full 1i-digit accuragys

SIN{XS Sine of ¥
COSIXs Cosine of X

BASIC FUNCTIONS Page 114

TANOX) Tangent of %
ATN{XD Arotangent of ¥
SN Arcsine of ¥
ACR{YD Arccosine of X

DATNOX,Y) Double arctangent of X,¥

1.3 CONTROL FUMCTEONS

Lontrol functions indicate the status of tile znput and, output operations,
and provide information on system operations.

TELELY EQF(K:

The EOF function returns a value giving the status of a file whose
file~channel number is X. The file i3 assumed to be open for seguential
Tnput processing. The values returned by the EOF function are:

=1 if the file i1s not open or the file-chanmel number X is zera.
(NOTE: A file-channel number of zero indicates that the
terminal is being used as the file.)

0 f the file is not yet at end-of-file during input calls

s

if the file has reached the end-of-file sondition

bue to the method used by the AMOS operating system for processing 4iles,
the end-of-file status is not achieved until after an INPUT statement has

been executed which reaches the end-of-file condition., Any INPUT statements
which reach end-of-file return numeric zero or null string values forever
more. This means that the normal sequence for processing seguential input
fites would be to INPUT the data into the variables amd then test the EOF(X)
status before actually wusing the data in those variables, stnce 1 an
end-of~file has been reasched that deta will be no good.

End-of-file should only be tested for sequential input files. Filaes opsn
for output or for rendom processing always return a zero value.

T.5.2 EREON

The ERF function returns an indication of a file soft error condition. Soft
errors during file access operations do not give you any indication unless
vou guery the file with the ERF functian. It the returned valug of ¥ i3 not
zera, an error or abnormal condition exists as & result of the preceding
file operation, The only soft errors currently returned concern ISAM file
operations. For mere information, see Chapter 19, "Using ISAM From Within
BASEC.Y

BASIC FUNCTIONS Page 11-%

T1.E.3 0 ERROX)

Returns & status code which refers to program status during error fTrapping.
There are s% separate codes. A complete list of these codes 4s found in
Section 17.2.1, "Error Codes Returned by ERR.Y If X is {}, FRE returns the
specific code of the error detected; if X i3 1, ERR returns the number of
the last progrem Line encountered hefore the error occurred. IF X is 2, ERE
returns the file number of the last file accessed.

13,4 OTHER CONTROL FUNCTTONS

See tChapter 12, “Hystem Functions,” for dnformation on the following
functions:
MEMOXD - Returns the number of free hytes in system memory.

BYTEMXY - tnables vou to b?%ﬂa in & data bits from a memory lLocation.

WORDIKY = Fnables you to bring in 16 deta bits from 2 memory location.

DATE - Sets or reads the system date.
TG0 - Enables the 170 ports to be read from or writfen fo.
Timg - Sets or reads the system time,

T1.4 STRING FUNCTIONS

The following string funclions accept numeric or string argumenis, and
return strings. Mote that the mode independence feature of the supression
processor performs automatic conversions if a numeric argument s used where
a string argument s expected, and vice versa.

TTe&. T ASCON

Returns the ASCIT decimal value of the first character in string
string AS reads, for example, “"Zirconium's atomic number ds2, ¢
of the statement PRINT ASCCA%) g 90, the ASLII valuse {in base 1
case f. For the statement PRINT A% £{“A$“§ whers the argument
quotation marks and i3 the Lliteral string to be
Time BASIL returns the A8CTT value of &, or &%,

T1.d.2 CHRBIXD OR CHR{Y)

Returns a single character having the ASCIT decimal value of X, iy one
charact iz generated for each CHE function sali. For dnstance, 1T you
Type PRINT CHRR(PD) a3 a direct statement, the upper casse tetter 7 is
returned o vy

-0 BEY B4

BASTC

11.46.3

Performs a
the Xth character position.
character position
measured from the start of the string, with
represented as

Qor

NOTE:

11

Returns
characters

FUNMCTIONS

INSTROK, A, 8%
search
the
one.,

AS="ELEPHANT
A= ANT

PRINT INSTR(T,A$,B8%)
6
(Subrstring B% starts

the sixth character
from the et}

shah LSS

tracsiated

AF=""CROCODILEY

TOINSTROZ,AS,.7CODp')

&

(The specified string
begins at the fourth
character position)

a atring which is similar to tha argument string (4%, but with

Lower case, I

the
Some direct statements will itluystrate:

for the substring B within the string A%, peginning at
It returns a value of zero if 8% is not in
if B% is found within A%,

A%,
Character position ig

first character position

TINSTRAB, "MEADOWLARIC® " LARK'™)
0

{(The specified string
is not found in the siring
CARKT, which is the string
starting at the Bth position)

;#LﬁRKH

Remember the 7% swvmbol is an abbreviation for "PRINT.O

atl

is A is for Alpha'™, the

function LOS(AS) vields the string a is for alpha",

AL,

Returns the leftmost X characters af the string expression
t the

“How s the time", the function LEFTS(AS, 7Y producss
substring "Now is ", which includes the trailing blank after "ig™.

Length in charscters of the sEring expression AR,
thou, Romen?'”, the function LEN(A$} returns the
are 2B characters in that string,

If A% 4
rmber 28
including spaces and
ion,

T

MIDCAS, M, Y)Y or MIDSCAS, X, YD

ne the substring composed of the o

U irg At

aracters of the string expression A%
the Xth character and extending for Y cheracters, A null 5Lring
urned it X 15 greater than the tength of A%, If A% reads "The gquick
bDrown fox dumped over the stseping dog”, then the function MIDOAR, 17,15

OG-0 BEY BOS

BASIC FUNCTIONS Fage 11-7

Mib (A% 17,15} returns the substring "fox jumped over', which begins at the
seventeenth letter of the string and is fifteen characters long.

Thaa,8 RIGHTIAR XY or RIGHTH{AS,X)
®eturns the rightmost X characters of the string expression A%, 14 A% 18 "I
THINK, THEREFORE I AM", the function RIGHT(AS,4) oproduces the szubstring

TYoaMT, s enother example, RIGHT(1Z234,2) returns 34. (Remember that vou
can use numeric arguments for many string functions.)

T1.4,.9 SPACE(XY or SPACES OO
geturns a string of % spaces in lLength, The statement
7O PRINT VCOLUMN A"z @ PRINT SPACE(I0); : PRINT "COLUMN BT
autputs the following:
COLUMN A COLUMN 8
where the 10 spaces between the first and second strings are the result of
the SPACECID)Y function, SPACE is especially handy for padding strings to a
fixad length. For example:
5 STREIZ 2%
10 Iname must he 25 spaces

20 INPUT TNeme? ' NAMES
0 OIF LEN(NAMESI<ZS THEN NAMES = NAMES + SPACE(25-LEN(NAMES))

4,10 STROOY or STRSOO

Returns a string which is the c¢haracter representation of the numeris
sxpressiaon ¥, No Lleading space s returned for positive numbers.

11,411 ucsiam)
Raturns a string which is similar to the argument string (A%}, except that

all characters are translated to upper case. If A% is "M is for Micro,” the
function UES(AS) yields the string "M IS FOR MICRO.™

{Changed 30 Aprit 19812

SYSTEM FUNCTIONS

AlphaBASIC supports a unigue groun of ooerators called systen functions,
which provide the ability to get to the 140 ports, physical memory
(somaetimes referred to in other BASICs as PEEK and FOKEY » and varicus systenm
parameters. The syntax of a system function parallels that of 2 standard
function, with the reserved word representing the desired function followed
by optional arguments snclosed within parantheses. The major difference is
that the reserved word of a system function may appear on the left side of
an assignment statement, where it is used as an output or write conditicn fo
the system function. System functions used within expressions on the right
side of an assigrment statement perform an input or read operation and
deliver back a result to he used in the sxpression evaluation.

12,1 BYTEOO AND WORBOX

The BYTE and WORD system functicns allow you to inspect and alter any memory
Locations within the 64K memory addressing range of the machine, These
operations have often been called PEEK and POKE statements 4n other

implementations of BASIC. The BYTE functions deal with & bits of data in
the range of 0-255, and the WORD functions deal with 16 bits of deta in the
range of D=-6%5535%, dnclusive. Any unused bits are dgnored, with no error

message. MNote that these commands are not protected:; it 4s possible to
tause severe damage to the operating system in memory if you use the
cammands improperly.,

BYTE(H) = <axpr> fwrites the low byte of expr into decimal memory loc
WORD (X} = <expr> fwrites the low word of expr into decimal memory loc
A = BYTE{¥: 'reads de¢imal memory loc ¥ and places the hyie into
& = WORD{K) freads decimal memory loc % and places the word into

DWM-0Q0100-01 REY B4

e

e

SYETEM FUNCTIONS Page 12-2

12.2 DATE

The DATE system function 1s identical to the TIME fumction except that it
sets and returns the two-word system date. On the AMOS/L system, vou cannot
set the DATE function. The system will fignore a DATE = <expr> command.

DATE = <exprr 'sets system date to exnr
& = DATE freturns system date into A

The foltowing program translates the binary data stored in the system DATE
Location dinto floating point form.

11 The system stores the date in binary form; the small crogram
below translates the binary date into tloating point form. It
also allows you to set the system date from within BASIC,

25 MAPT BINDATE,R, 4

MAPT FILLDATE,ABINDATE

MAEZ MONTH,B,1

MAR? DAY,B,1

MAPZ YEAR,B,

BINBATE = DATE

PRINT ”Maﬁthz“;MQNTﬁy”Dayz”;@&Yy”¥ea?:”;Y%ﬁﬁ

LHPUT "Enter Month, Day, Year: ", MONTH, DAY, VEAR

DATE=BINDATE

PRI “ﬁont%:”;MONTHf“ﬁay:”;SAY,”?&aF:”;YEAR

The I syvstem function allows the 286 /0 norts to be selectively read from
wreitten to, in o both cases only one byte is considered, and an output
expressi greater than 235 merely ignores the unused bits, The range of
ports available s O to 285,

<expr>» lwrites the low byte of expr to decimal port X
00Xy ireads decimal port X and places the result into &

system, T (x) is 0-25%, it accesses the 256 extesrnal 10

oy the MI-100/7 (the addresses on the AMOS/L svstem are

the number 43 2%56=-5%11, it accesses the internal
{addresses FFFEDO~FFFEFF.D)

sitive integar value which specifies the decimal number of bytes
i use for varicus memory aress used by the compiler system. The
mmon use of this is to return the number of free bytes (eft 4n the
ima wmory pariition. This MEMIO) call duplicates the action performed by
the FREOO function in other wversions of BASIC, Other values of the
argument X refurn memory asllocations which pertadn to various areas in use

b3

P00 T

HEY 804

SYSTEM FUNCTIONS Page 1g-3

by the compiler, and may or may not be of use to YOU The byte counts
returnad for the various values of ¥ are:

- Free memory space remaining in current user partition

- Yotal size of current user partition

- Size of source code text area

= Size of user Label tree

« Size of user symbol tree (varisble names and user function names)
Size of compiled obiect code ares

= Size of data pool resulting from all compiled DATA statements
= Size of array index area {(dynamic lLinks to variable arrays)

- Size of variable storage area (excluding arrays)

= Size of dummy data termination field {(always zero)

0~ 8ize of file I/0 lLinkage and buffer area

1T~ Size of variable array storage area {dvnamically allocated

at run~time)

B R B R SRR S (W N LN R
H

Some of these wvalues will be meaningless when running the run—time object
modute in compiler mode, such as 2, 3 and &,

MOTE: The statement PRINT MEM s eguivalent to the statement PRINT MEMIO) .

2.5 TIME

The TIME svstem function requires no argument and is used to retrieve the
time of day as stored in the system monitoer communications area. The time
is ztored as s two-word integer representing the number of clock ticks since
midnight. On the AMOS/L system, TIME returns the number of seconds singe
midright ., so that in the example below, CLOCK would equal 1.

You are responsible for conversions to printable format in those cases where
it is required, One ziock tick represents one interrupt from the (FPU Line
clock, which is usually 80 hz for domestic systems and 50 hz for overseas
systems, Dividing the time by the clock rate gives the rnumber of seconds

since midnight. Converting this %o current time 13 then accomplished by
suceessive divisions by 60 to get minutes, and again by 60 to get hours.

On the AMOS/L system, you cannot set the time. The TIME=expression command
wWwill be ignored.

TIME = expression isets time-of=day in system to expression
A = TIME tretyurns time~of-day in clock ticks into A

Duf-00100-07 REY BO4

SYSTEM FUNCTIONS Page 1Z2-4

The small program below converts the value returned by TIME into actual
hours, minutes, and seconds.

Y T = TIME oGet time

120 CLOCK = &0 I Clock freguency in Hz

TR0 HOURS = INTOT/C(CLOCK Ty U Compute hours
TG MINS = INT(T/CCLOCK™2)) - (HOURS * Gils P Compute minutes

150 1 Compute seconds :

TE0 SECS = INT(T/CLOCK) =~ ((HOURS # (40°2)) + {(MINS = 4032

TED HYMOD: ! Adjust HOURS to Pé-hour clock range.,

T8O IF HOURS > 23 THEN HOURS = HOURS - 26z GOTO HIMOD

190 PRINT (HOURS USING THITY T (MINS USTNG BE: AL I
Tt (SECS USING “HIM):

There are a coupie of things vou should note about the program above:

T, The value CLOCK will vary depending on whether your system operates
on &0 Hz or 50 Hz.

i

- Since TIME returns the number of clock ticks since 1Z:00, % vour
system has been on for a couple of days this number can easily
cause HOURS to exceed 2%: line 140 converts the value of HOURS to a
number within the range of a 24~hour clock,

S Note the wuse of the PRINT USING statement in Line 170 to orint

single=digit time values with a Leading zero. {The next chapter
contains more information on PRINT USING.)

PEM-O0100-01 REV BO4

CHAPTER 13

FORMATTING OUTPUT (PRINT USING AND EXTENDED TARS)

Mast BASIC business applications programs spend a great deal of effort in
generating reports and printouts in which data must be neatly and clearly

presented, In other words, correctly formatting output is wsually a major
concern of the BASIC programmer,

ElphaBASIC preovides several important features that help vou to format data,
This chapter discusses how to employ the USING modifier to format numeric
and string data via formet strings. We alse discuss the extended 1tab
functions that allow you to contrel the output of dats on the terminal
screen,

13,1 THE USING MODIFIER

The USING modifier allows you te format numeric or string dete using a
format string (sometimes called an “editing mask") specified by you.
Although vou can use the USING modifier to store the formatted data in a
string vaeriable, you may also use it in combination with the PRINT ztatement
to send the formatted deta to a terminal display or to a file, (For
informatfon on PRINT, see Section 10,19, “PRINT® and Section 15.3.9,
TERINT,T

Ry “formatting” data. we mean the process of adjusting the appearance of
data (e.g., by inserting commas or spaces) 50 that it fits the pattern of a
specific formatr string. it might help to think of the format string ags a
template or pattern with which you are going to controtb the format of vyour
data, The USING modifier allows you to apply the format string to vour
data,

dsing format strings and the USING modifier, you can do such things as: Line
calumns of numbers up by their decimal pointsy insert dollar signs and
commas inte numeric data to represent dollar amounts: Line up numeric and
string data within specified fields; generate and print leading =zeros for
numaric dataz print asterisks instead of leading spaces; print numaeric data
in exponential form, eto,

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) FPage 132

The ections below talk about the speciat formatting characters within the
*ﬁ*ma? string that ellow vou to perform such adjustments.

The statements in which vou use the USING modifier take these forms, where
grpreszion s usually a numeric or string constant, or a numeric or string
variahle:

variable = expression USING format-string
PRINT expression USING format-~string
BRINT USING format-string, expression-iist

For example, 1f vou want to farmat the number 2%4%.678 with the format
striang "REAREE BEY . vou could say:

NUMBER = 2345, @?3 USING “REHHA4, 417
PRINT 2345.4678 USING “SS4#AH . #a
PRINT USING “SSEHHH HHY 2945 478

(MOTE: You may use the first and second formats only for numeric data; vou
may use the third format for string and numeric data. Alse, remember that
USING has the lowest oprecedence of all cperaters. Therefore, all other
cperations in expressions surrounding the USING operator are performed
before formatting s done. For example, PRINT 23+4 USING THHE7+7 gY
produces 27.0.) The format siring may be a string expression (for example,
MIDE{AS,4,5), & string constant (for example, “###.8#, or a string
variable (for example, MASKSE),

use the third PRINT USING vartant above,. you may supply & Llist of
ions to be formatted, separating the expressions with commas ag with
Lar PRINT statement (e.g., PRINT USING “HHESH.HE" AB . C.D,E3. Ef
- more expressiong than the format string is.meant o handle, BAS

» format string until each of the slements in the expression ilﬁL
formatted. If vou supply fewer expressions than the format string
ts meant to handle, BASIC ignores the unused portion of the format string.

fou may also send formatted data to a file by specifying a
f@i““=ﬂd?“ mumber after the PRINT keyword (e.g., PRINT #1, USING
?ﬁwmﬁimql”‘W@¢ a{f wmvmmwiést}& For information on sending data to fites,
15,% ;s,* "BRINT.

TING CHARADTERS

The nelow discuss the special characters that make up the farmat
string; 5 G :tal characters control the output of vyour data.
ihar&aiera x&hwr than these special formatting characters which sopear in a
format string are cutput Literally as part of vour data,

(Changed 30 Aonril 1G8R1:

FORMATTING OQUTPUT (PRINT USING AND EXTENDED TABS) Fage 13-%

13.2.1 The \ Symbol (S$tring Fislds)

Altheugh vyou will most often be dnterested in formattisg numeric data, you
may abkso specify fields for string data via the backsiash swmbol (V. Tuo
packsbazhes define a string fisld whose size equals the number of charscters
enclosed in the backslashes plus the backslashes themselves.

Althouwgh the usual practice is to enclose blanks in the string Tield (e.g.,
Y V3, AlphaBASIC permits the use of any characters. Singe these
characters are never printed, but simply define the size of the field by
which a string is to be formatted, ner-hlank characters serve only as 2
comment . However, when using several string fields within a single format
string, it can be useful teo visually separate them from the spaces between
the fields by using non~blanks within the backslashes. For example:

Mo] @ L} oy \momeen gl dR e A= field3-\"

String fields allow you to define the placement and size of string data.
For example, 1f Af%="Now is the time.", theng

PRINT USING "As he ¢gnce said, "\eomeeosom oo VI RS
nroduces:

As he once said, ‘Now is the time.®

If the string to be formatted is larger than the string field, BASIC ignores
the extra characterz. If the string to be formatted 1is smaller than the
string field, BASIC adds trailing blanks to the string to make it the same
size as the fleld, and thus left justifies it in the field.

You may combine string fields and numeric fields within a single format
string. (See the section below for information on numeric flelds.) For
sxample:

5 BTREIZ 25

10 MART MASK 5.42,."\-1T0char—}\ HHEE A Y TS pharee-ei

15 §8="{in millions2"

20 PRINT USING MASK,'YEAR 1979 ,234.556,0%, "YEAR 19807 ,5678.406,08

produces:

YEAR 1979 234,56 {in millions)
YEARR 198D S&TR .46 {in milltons)

NOTE: Remember that the default string size is 10 characters, so vou will
warnt to explicitly define any strings over 10 characters vig MAP statements
or dnclude a STREIZ statement in yvour program to adjust the default string
size.

FORMATTING QUTPUT (PRINT USING AMD EXTENDED TABS) Fage 13-4

13.2.2 The | Symbol (One-character String Field)

The exclamation wmark identifies a one~charagter. string field, BASLE
replaces the exclamation mark with a corresponding string. (If the string
constant or string variable contains mors than one charascter, BASIC fgnores
any characters past the firat.) FEor gxample:

10 STRETZ 40
20 MASKS="The temperature ig: g = gaiv
30 PRINT USING MASKS,S50,UF",10,"C",68,"F",20,"C",86," F",30,"C" 104, F" 40, C"

printg:

The temperature is: BF = 10¢
The temperature i1s: 20
The temperature 1ss 868 = 300
The {emperature 15¢ &0

&
]
#

-
oK
B
T,
Hi 8

It no string is available to be substituted for the ! symbol, BASIC simply
nrints the ! swvmbol instead. For example, if we took our sample program
agbove and removed the first “FY from the PRINT USING expression list, the

firgt of our display would lopk Like thisg:

The temperature im: 500 = 10c¢

T2, 2.3 The # Symbol [Mumeric Fields)

& format string always indicates that vou want to format
Each # symbol dn & format string represents one numeric
est mumeric format string wouwld consist of just # symbols,

The # in
numeric data,
digit, The simpl
For example:

PRINT O USING "gdugy

The statement above teils BASIC to format the rnumeric variable C dinto a
field of four digits, with no fractional part. If the format string causes
BASIC te remove the fractional part of a number, BASIC rounds the number to
the next integer, rather than truncating it. For example:

T 23R4V LRR USING pHgye FE)

it the sumeric fisld s too small to contain the spegified number (for
example, if we had specified the number &30456.56 with the format string
VHEERTY . BASIC prints the number in standard BASIC format preceded by a %
symbol, indicating overflow., For example:

PRINT 150450 USING Tgapge [RET)
'f?R?&Aﬁ

FORMATTING QUTPUT (PRINT USING AND EXTENDED TABS) . Page 13-3

it the mumeric field is larger than the sheciPed nuwber, BASIC right
justifies the number in the Tield, inserting leading blanks inte the digit
positions not needed, For example:

PRINT USING “Hagsgyr 23 BT
23

{Four blanks precede the number 23.) Note that other formatting characters
discussed below {e.g., the $% and %% symbols) aiso define digit positions as
well as perform special formatting functions.

MOTE: You cannot Tormat string dete with & numeric field format string. If
you try to do so, BASIC fust prinmbs the format string, indicating that it
was unable to format the data. For example:

PRINT USING “HHEESY ,"Hi there' EE
iachi

13.2.4 The Period Symbol (Decimal Point?

You may include one period within a numeriec field to specify where a decimal
point is to appear in the formatted number. For example:

PRINT USENG “#HM#. 84", 2345502, 1100657 ,200,3.95
produces: | .
2345.50
100,66
200.10
TRLR

If the number specified contains more digits to the right of the decimat
point than the format string, BASIC rounds the number so that it containg
the right number of digits in the fractional part. 1T the format string
contains more digits to the right of the decimal point than the specified
number, BASIC fills in the ynused digit positions with zeros (as in the case
cf the pumber 200, abovel. I the formet string spegifies any digits in
front of the decimal point, BASIC orints at least one digit im front of the
decimal point for each number, even if that digit is a zero.

13.4.5 The 3% Symbol (Floating Dollar Sigm

The %% symbol at the front of a numeric field format string ftelis BASIC to
insert s doilar sign at the front of the formatted number. The double
dollar sign symbol defines two digit positions, one of which is taken up by
the dollar sign itsel .

For sxample:

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABSS Fage 13-6

PRINT USING ”%S#####wﬁﬁ“ﬁ??ﬁﬁﬂwééﬁ?ﬁﬁﬁ3@5@2

produces:

b a,‘

Notice the difference between using the double dollar sign to produce a
floating dollar sign, and simply using the single non-formatting character
TEY in the formet string:

PRINT USING CBHBRER AR 17500, 66,100,345.7
produces:

$ 17500.66
LS
§ 3RS0

Because you will use the $$% symbol to format data that represents money
amounts, you may want to use the floating comma symbol in combination w@th
the 5% symbol. {(See the paragraph below for information on this Tormatting
character .}

Remember that you can include non-formatting characters in a format string.
'n the case above, a single dollar sign is not a formatting character, and

so BASIC simply prints 4t as part of the formatted data. As amother
example:

PRINT USING THEANZY 23,45,.56.78,99.84
produces
YA
71
1007

In the example above, the "% symbol is not a special formatting
charscter., As another example:

FRINT USING "The telephone number is: (H##) 88 BHBEY,714,555,.1212
produces:

The telephone number ds: (714) 555 1212

FORMATTING OQUTPUT (PRINT USING AND EXTENDED TABS) Page 13-7

1E2.2.6 The Comma Symbol (Floating {ommas?

By dincluding a comma. in your format string, you tell BASIC to insert a comma
every three digits to the left of the decimal point. For example:

FRINT &507501.89 USING "Higsaihy 447
oroduces:

5,507,501 89

BASIC treats any comma fo the right of the decimal point as a
non—-formatting, printable character, FEach comma defines one digit position.

1%5.2.7 The =% Symbol (Asterisk Fill}

8y includina a double asterisk symbol at the front of your formst string,
yvou tell BASIC to replace any leading blanks that would normally be output
in frent of & number with asterisks. This is especially useful when
printing checks. The double asterisk defines twe digit positions. For
pramole:

BRINT 23171.4% USING “wxfidfdigs. 44"
produces:

wddkkk 257, 69
NOTE: You wili orobably use asterisi~fill formatting when printing dollar
amounts: remember that you may include a doltar sign symbol in the formet
string. For example:

PRINT 231.4% USING "waRfgiisg gg”
prints:

*ARF IR 4G

132.2.% The I Svmbol {Leading leros)
Yo generate Lleading zeros, include the Z symbol within your format string.
The format string must begin with one # symbol followed by a series of Is.

The tatal size of the formatted string is the number of Is plus the one #
symbot., For example:

PRINT 14% USING "gZ7221"
Grodunes:

000123

(Changed 30 April 19871

FORMATTING OUTPUT (PRINT USING AND EXTENDED TARSY Page 1%5-§

T2.2.9 The Minus Symbol {(Trailing Minus Signd

You may cause the sign of a number te be printed following the number by
ending a numeric field in a format string with & minus sign., 1f the number
is positive, BASIC prints a hlank after the number: if it is negative, BARIC
prints a minus sign after the number, For example:

0 MAPT MASK,S 26, == Ty SBHAHEY, g0
20 Ch= " Credit:™ : p3="Debit "
K PRINT USING MA&KFC$,3é5ﬁé?ﬁ&$p@ﬁ6?a8@££$ﬁ?ﬁﬁ,8?ﬁ0$,~%4§ﬁﬁ%3

sroguces;

{redit: EEL5 .67
Debit: ERAT ., R~
Cradit: STHTTHEG
Debat: 55456 T3~

13.2.30 The "77" Symbol (Exponential Format)

You may specify exponential format by following the numeric field in a
format string with four circumflexes (°°""). These symbols define the
spaces taken up by the £ nn"” exponent characters. BASIC Left justifies the
significant digits, adijusting the exponent as necessary. {As with other
muﬁ@ric formats, BASIC allows any decimal point arrangement .} For example:

Tl PRINT USING ”n#####”“““”K?QG§23éSmﬁéySQGQF.GGG&
prints:
LIRGGYE LR

L ERANEERTE

STOmEDE

T35 FORMATTING FXAMPLES AND HINTS

examples above used the PRINT statement to print farmatte@ data.
mk that you may also format a value without displaying it by using the
USING modifier without the PRINT statament. For examanle:

AR = B OUSING 03

The startement above formats the number in B using the format string in (%,
and Lleaves a string result in A%, (NOTE: This format of the USING modifier

FORMATTING OUTPUT (PRINT USING AND EXTENDED TABS) Page 13-9

is only for formatting numeric data. Also note that even though we are
formatting numeric data, the result is always a string.) This type of format
altlows wou to create headings and image Lines that vou use more than once,
and to inspect and manipulate formatted data before printing it.

You may not use the USING modifier recursively. That is, yvou may not use a
format string that is itself the result of a USING modifier. (For example,
it wyou have specified % = B USING "###£.44”, vou may not say: N$ = i USING
(8.2

When using the PRINT USING format, remember that PRINT USING differs from
the regular PRINT statement in ¢that the use of semicolons 1o separate the
elements of the print List has no effect on the spacing of those formatied
elements.

Below is a sample program that uses the USING medifier to formaf output inte
a small report. It alse demonstrates the wuse of subroutines, MAP
statements, and file-handling.

FORMATTING QUTPUT (PRINT USING AND EXTENDED TARS) Page 1E-10
5 ! Tiny report generator
T BTRSIZ 100
20 MAPT HEADING,5,49, H Y oy i 11 S §m oo oo §
30 MART MASK,S,S4, ' Yommerm] (o ey SERUHEREE , U HITZZILRZITIV
40 1 Main Program
50 GORUB TNSTRUCTIONS ! pisplay Instructions.
a0 OFEN #71,“REPORT.DAT",OUTPUT | Open file te hold report .,
T BOSUR GETYHEADER P Get and write header for report.
& 1 = 1 U Initialize Line counter.
2 BOSUBR WRITE'RERORT ! Get and write data to report.
T CLOSE #1 ! Close out file,
114 Fub
200 INSTRUCTIONS: ! Bisplay instructions
210 FRINT & Helcome to the Mini Report Generator’ PRINT
220 PRINT "We will first ask vou to enter three. titles {max 10 char="
2E] PRINT "acters each). These will form the heading of your report.”
c&0 PRINT “Then we'll ask for each line of the report.” : PRINT
250 PRINT % Fieild #1 is a string (maximum of 10 characters.”
2al FRIMT 7 Enter zero to end report .}
a0 PRINT 7 Fleld #2 45 2 number (maximum of 7 characters) to”
280 PRINT ¢ be sxpressed as a dollar amount. Don't enter commas.)’
290 PRINT 7 Field #3 s a number {(maximum of 10 characters)®
00 FRINY that can represent any non-dollar data.” : PRINT
310 EETURN
400G GET'HEADER: | Input and write header to file.
410 INPUT “Enter Title #1: FLTITLETS
INFUT VEnter Title #2: “.TITLEZS
IMPUT "Enter Title #35: ", TITLERS
Pokrite header to file,
PRINT #1. USTING HEADING, TITLEIS, TITLERS, TITLELS + PRINT #1
RETURN
BOC WRETEREPORY: ! Input and write data to file.
514 PRINT PRINT “Line #"271p"-—" ! Keep track of number of lines.
50 IHBT Enter Field #1: ",.FIELD1S
540 IF FIELDIS="0" THEN RETURN
5 INPUT 7 Enter Field #2: ", FIFLDY
5 INPYT M Enter Field #3: ", FIELDSR
5 24 #1, UBING MASK, FIELDIS, FIELDZ2, FIELDS
5 £ e
5E GOTG WRITETREPGRT
We can use the program to generate very different types of reports. For

gxample:

FORMATTING OUTPUT (PRINT USING AND EXTE

HED TARS: Page 1E8~11

BART NO,

549, 67 0000002274
%s &7 0000002595

¥
K
£

EMPLOYEE SALARY _ PAYROLLY

R. Emith
J. Buwann
- Bnowles
. Filbery

DOO00GGES4
ﬁﬁﬁﬁﬁ%ﬂ&g&

5.4 EXPANDED TAB FUNCTIONS

?h@ TAE function in AlphaBASIC has heen expanded beyvond the normal usage to
e by && ;» minal screen handling, such as cursor control and other special

N &)
g To be used only in a PRINT statement, the TAB funciion cperates
t.&u%ifaﬁéi manner when suppilied with only s single numeric argument

as TAB(X:, In this case the Function causes the carriage to be
positioned over to the "X+1¥ column on the current Line, Far iﬁ%@aﬂcw
TARCEY would cause 5 spaces to he ﬁv%ﬁ%wﬁg and the following characler
would begin in column six, When supplied with two arguments such as

TABIRA LY, however, the TAB function performs special ORT functions.

ia wa&%tiv@ﬁ the R, 0 arguments sre trzated as (row.columnd
positioning the cursor ¢ the ferminel screen, The

re are then printed beginning in that posd ?Gﬁ“ Ag in
the R and ¢ a#gu%@mﬁa may be expressions, rainals are
with row T {tog of ?@ﬁﬂﬁ ang column 1 (left @ﬁﬁ of each

use TAB for cursor pogi ving, remember to follow the TAB
& Sémfpﬁzﬁﬁ {le.g., PRINT 7T 3,50z~ otherwise, BARIC will
8 carriage return/linefeed after it positions the cursor, thus

o :
destroying vour careful positioning.

IF the value of B s =1, the function is interpreted as & special terminal
command and the sppropriate command code must be specified as zm@ e
ar %um@h;@ The codes are tranpami o the terminal driver (TDY 1 iy
. doss the actual erpretation and performs the SQ?”EﬁL
your teeminsl., The foll JW1H@ List gives the standard decimal
£

{?

H

for all the terminal drivers supperted by Alpha Micro:

codes In use

{ode Funotion
{ Llear soreen and set normal intens sity
E Lursor home (move o 1,1 « Goper Latt cornerd
2 sursor return (move to column 7 without Ling-fead)
b CUrsocr up ong fow
i £

down one row

DEM-O0T00~01 BEY BO4

FORMATTING OUTPUT (PRINT USING AND EXTENDED TARS) Page 13~12

5 Cursar lLeft one column

& Lursor right one column

7 Lock kevboard

g Unilock kevhoard

K Erase to end of Line

10 Erase to end of screesn

11 Enter background display mode (reduced intensity)
12 Enter foreground display mode (normal intensity)
T3 Enable protected flelds

T4 Disagble protected fields

15 Deiete Line

164 Ingsert Line

17 Delete character

18 Insert character
1e Read cursor address
2 Read chracter at current curser address

21 Ftart blinking field

22 End blinking field

23 Staert lLine drawing mode
24 End Line drawing mode

25 Set horizontal position
26 Set vertical position

27 Set terminal attributes

28 Cursor On

29 Curser Off

the actual routines that perform the screen controls are in the specific

terminal drivers and not in AlphaBASIC itself, Mot all terminal drivers
have all of the functions above simply because not all terminals are able to
perform all of these functions. If vour termirmal has additional featuras,
Alpha Micro recommends starting at 64 (decimal) when vyou assign function
codes in your terminal driver.

DWM-00T00-01 REV BO4

CHAPTER 14

SCALED ARITHMETIC

AlphaBASIC uses a floating point format which gives an accuracy of 11
stgnificant digits. Unfortunately, this accuracy 15 absolute only when
deating with numbers that are total integers {i.e., there are no numbers to
the right of the decimal point). This fact stems from the conversions that
are required from decimal input to the binary floating point format used in
the hardware. Ffor most business users, the actusl range of numbers contains
two digits to the right of the decimal point and nine digits to the left of
the decimal point. When the fractional part of the number is converted
between decimal and binary formats, a small but significant error s
sometimes introduced which may propagate into inaccuracies when dealing with
absolute dollars-and-cents values,

Az an example of the kinds of inaccuracies that can accur, take s look at
the following program:

T SIGHIFICANCE 11
200 PRINT 26.4~INT(26,.4)

Instead of the expected answer of %, We see the answer:
< BY9Y9R099900

This 18 not an error in BASIC, but simply represents the side effects of
converting a decimal fraction to binary representation and back again. Soma
decimal fractions cannot be exactly expressed as a binary fraction in &

finite number of digits, and so round~off error occurs.

The error was only visible because our program set the number of significant
digits to 11. (The usual number of significant digits is six.} Such errors
can asccumulate and presest themselves when you do a large number of
multiplications and divisions using decimal fractions,

AlphaBASIC incorporates a scaling feature which helps to alleviate this
problem by storing all floating point numbers with a scale offset, This
offset designetes where the 11 absoluts accuracy digits are logated in
relation to the decimal point, BASIC deoes this by mubltipiying every input
number by the scaling factor and then dividing it out again before printing.

(Changed %1 Gotober 1981)

SCALED ARTTHMETIC Page 14-2

.
{Th ‘ 2 gimplified expl anation, and many other checks and conversions are
dﬂﬁ@ witernally 1o scaled numbers.,)

The scaling factor represents the number of decimal places that the 1t-digit
Twingow" ism sffactively ghifted to the right in any floating point ~umber.
For example, the most common application is in a business environment where
the scaling factor of 2 would be used to give absclute 11 plece zccuracy o
8 which extend 7 places to the W%th of the decimal point. This means
the wvalue of 30,17 is multiplied by the scaling factar of 2 digits
3%: ancl stored as the fioating point value of S012. Since this value is
nteger. it has sbsolute accuracy. Just before printing, BASIC divides
wmber by the scaling factor to reduce 3t *o its intended value of

st

have bheen included into the system to take care of all the

effects of storing scaled numbers. For example, whan
2t numbers to integer or binary format, B8ASIC must unscale
number first before converting it. When RﬁSEQ multiplies two scaled

result s a number which must be unscaled once, while

numbers together,
division of fwe scaled numbers creates exactly the opposite problem.
bealing with scaled numbers for exponential, logarithmic and trigonometric

functions creates even more exotic problems. ALL these conversions are done
automaticaelly by AlphaiBASIC, so you are relieved of the programming task of
ask of them.

kesping b

etic 15 normally entered at the start of a oprogram and
in effect throughout the program. The statement for setting the

it scaled mode is:

The scald LY
It may not be

valuss as
scald

must be a degimal digit in the range of ~30 to +30.
able, since scaling is done at compile time for constant
Uorun-time for dnput ang oulpult conversions. MNegative
Mgdt window to the left. NOTE: You won't offes use a
tor, singe that takes care of the case where your
rather than too small.

of caution are in order here. ﬁﬁ% BASIC detects the SCALE
furing compilation, BASIC scales all sonstant values that follow

H

i
factor so that they are stored properiy. In addition, 2
comnmand 15 generated dn the executable program which causes the
to be performed on INPFUT and PRINT values when the program is
two or more different SCALE statements are executed in the same
¥ strange results may come oul wunless you are toatally
what i3 happening with compile-time and run—time copversicns,

i

some ver

Tamili

We suggest that you play with this one a bit before delving dnto 4t full
stean,

Gutober 1981

SCALED ARITHMETIC Page 143

It you are using a positive scaling factor to adjust real numbers, note that
using SCALE does nothing to prevent inaccuracies if the scale factor wvou use
is not large enough to cause AlphaBASIC to handle your data as integers.
For example, if vou want tp handle numbers that have three digits to the
right af the decimal point, a scaling factor of 2 will Lesve one digit to
the right of the decimal point, and scaling error can still oeour. B0, if
you will be wusing numbers with a fractional part of two digits, use 3
scaling factor of 2; 1f the fractional part will be three digits, use. a
scaling factor of 3: and s0 on.

One other word of cautianm. Floating point numbers that are stored in files
by the sequential output PRINT statement are unscaled and output in AZCTI
with no preoblems. Floating peint numbers that sre writtem to random agcess
files by using the WRITE statement are not unscaled first; any program that
reads this file as input must either be operating in the same scaling mode
in which the data was written, or else must apbly the scale factor
explicitly to all values from the file. Binary and string values, of
Lourse, are never modified, regardless of the svaling factor currently in
UGEE .,

(Changed 31 Gctober 1987

CHAPTER 15

ALPHABASIC FILE I/0 BYSTEM

This chapter containg information on creating and using disk fiies from
Wwithin vour BASIC programs. Since these processes differ somewhat depending
on whether you want to use seguential or random datse files, we discuss
spguentiel and rendom files generally before getting inte the specific
commands you canm use to manipulate these files, HKeote the sample program at
the end of the chapter:; 1t demonstrates defining a logical record, computing
the logical record blocking factor far 5 random file, eallocating a random
file, opaning and closing a random file, searching for a file, and writing
and reading data to and from a random file,

AlphaBASIC supports both sequential and random accoess disk files. You may
write data either in ASCII or in packed binary formats., Files that
AlphaBAZIC programs create are compatible with all other system wtility
formats, and BASIL files may be interchanged with fites from other
Languages. That s, BASIC data files gan be read and manipulsted by
programs written 1in other languages. Conversely, files created by other
Languages and system utilities may be read and manipulated by programs
written in AlphaBASIC.

Files are created and referenced by the general statements OPEN, (LOSE,
ENBUT , INPUT LINE, PRINT, READ, and WRITE. all file references are done by
a fTile-channel number, which may be any integer value from 0 fo 65555, You
might think of the file-channel npumber as designating an information
channel, Onece a file has been associated with i1, the file channel serves
as & pipeline through which data can be transferred between vour program and
the file. Once you closs that file, the file channel s no longsr
associated with 1t, and you mav open another file on that file channel, You
may never have twoe files open at the same Time with the same file channel.
The file channel always follows the verb in any file 170 statement and may
be any numeric expression which s pregeded by 2 pound sign (¥, File
channel zero is defined as your terminal, and is legal in file stetements fo
allow you to write generatized programs which may selectively output to
either a fite or to the terminal at run~time. However, you may nol uss #0
as & Tile channel for a random File.

{(Changed 30 April 19812

ALPHABASIC FILE I/70 SYSTEM Page 15-2

There s npo absclute Limit to the number of fiies that may be ogpen at anvy
given fime in a program, but since each file requires a certain amount of
memory, there s a practical Limit to this number based on memory available
in vour partition.

BASYC asutomatically closes all open files when the program exits or when a
CHATH statement 15 gxgcuted, 11T the files have not already been explicitiy
ciosed wia a2 CLOSE statement., BASIC cannot open twe Tiles with the same
file—~channel number at the same time, but after BAZIC closes a Tile, another
file may be opened using the same file-channel aumber. ALL fTile statements
are wvatid as direct statements, but BASIC closes any open fTiles before 5t
executes ancther BUN command, This prevents statements i an execulting
ocrogram from reading or writing to files which were opensd by a direct
statement, inder the current version of AlphaBASIC, sach open file reguires
shout S80 bytes of free memory for buffers and control blocks.

15,01 SEQUENTIAL ASLII FILES

Sequential disk files are the easiest to wnderstand and mplement in

AlphaBASIC, BASIC writes data to a sequentiasl file in ASCII format, and
stores numeric data as ASCII string values, A sequential data Tile usually
has the extension LBAT wunless you explicitly order otherwise in the OFEN

statement that opens that file, NOTE: Sequential 4$iles mey not contain
nonASCTT data le.g., binary or floating point datad. Therefore, you may
onty use PRINT, INPUT and INPUT LINE for transferring data to and from
sequent ial files, (Remember that PRINT converts floating point and binary
data to orinteble (ASCII} form.: The READ and WRITE statements do not
convert data o ASCLI form, and 30 are used for transferring data to and
from random file

ol

=

data files are normal ASCII files in all respects, and you
ianipulate them by using the svstem text editors, the printer spooler,
or any of the other system utilities,

fo open 2 seguential file, use the OPEN statement, specifying either INPUT,
QUTPUTY . or APPEND mode.

Use the PRINT statement (followed by 3 non-zero file-channel number} o
write data to seguential files. The PRINT statement automatically appends a
carriage return/ line-feed to your dats in the same manner that it does when
sending data to a terminel display. (See Section 10.19 for information on
using commas and semicolons to format PRINT statement output.’

s the

: INPUT or INPUT LINE statements {(followed by a non—zero file-channel
numbert o read dats from 8 seguential file. Remember that the INPUT
statement reads one pliece of date for each varisble specified, while the
INPUT LINE statement (31f you specify a string variable) reads into the
: string variable the entire Line of A5CIT date wup o (but not

the carriage return/ Line~faed at the end of the Line. IMPUT and
POLINE work exactly the same for files as they do for terminal input
groept that yvou omit 2 promet siring and must include a file-channel number,

{(fhanged 20 Apeil 19813

ALPHABASIC FILE 1/0 SYSTEM Page 15+%

ﬁ@ct%@gﬁ T5.3.7 and 15.3.8 talk shout INPUT and INPUT LINE. (Ablso, see
Sections 10,11 and 10,12 for more information on INPUT and ITRPUT LINE.}

15,2 RANDOM FILES

Random access, or direct access, files are more complex than seguentiasl
files, but offer 2 much mors flexible method for storing and retrieving dats
in different formate. Random files are written in "unformatied” or packed
data mode. Random Tile disk blocks are contiguously allccated on the disk.
The maior advantage of random files cver seguential files is the flexibility
with which wvou may accesz data 1n a rancdom file., You may only open a
seguential fite for input or output, but you may open 2 random file for
input and output simultanecusiy. fccessing date in a sequential file
reguires that you step through the file record by record. In the case of &
random file, howsver, vou may access any record without referring to any
other record in that file. In addition, random files can centain data in
ary format supported by AlphaBASIC (unlike seguential files, which may only
contain ASCYI datad. '

1R.72.1 Legicsl Regords

ALL program accesses to random files are made via the “logical record”
apnroach. A Llogiecal record iz defimed as a fixed number of bytes whose
format is explicitly under control of the program performing the access,
physical blocks on the disk are each 512 bytes long, and each random file
must be preallocated as some given number of these 512-byte blocks. Logical
racords may be any length from 1 byte to 512 bytes. (Logical vrecords coan
never averian chystoal disk blocks,} The AlphsBASIC 170 system
sutematically computes the number of Logical rscords that it dnto onme disk
block, and performs the blocking and unblocking functions Tor vou. For
example, 1f your Logical record size 1s defined as 100 hytes, then each
block on the disk contains 5 logical recerds with the Last 12 bytes of sach
block being unused, Therefore, the most efficient wse of random Tiles comes
when the Leogical record size 1s a power of 2 that s, ¢ divides evenly
into 512 bytes (32, &4, 128, efc.).

1%.2.7 8Blocking Factor and Record Size

which gives the mumber of physical 512~byvte blocks to allocatse. It i3 wp Lo
you to calculate the maximum number of logical records required in the file,
ard then to calculate how many disk blocks are reqguired to completely
contain the number of logical records you desire, For dnstance, assume The
Logical record size is 100 and you need a maximum of 252 logical records in
your Tile, Each disk block 98 512 bytes,. and therefore containg 5 logival
records. You need 252 logical records, so dividing 252 by % gives 50 full
disk blocks plus 2 logical records remaining. Singe the file must be

Random access files are preallocated once, using the ALLOCATE statement,
+
!

ALPHABASIC FILE I/0 SYSTEM Page 15-4

aliocated in whole disk blocks, vou need 51 biocks, which gives you a
maximum of 253 logical records, These logical records are referenced in
yaur program as records O tbr@ugh 252, since the first record of any random
il is record 0O, unles you have used FILEBASE. (See Section 10.6,

“¥LL£E£$Eu”} {M@?Ei When youy record size does not divide evenly into S?Z
bytes, 0 i3 a good ﬁd@a to consider expanding it se that it dees. This is
for two reasons: 1) you LL be using the same rnumber of physical disk
blocks whether or not vou expand the record size, so you're nolt saving
anything by not doing so; and 2) this leaves you room. for future expansion
of the date in the record.) '

When you are cpening a random file, vou must specify the logical record size
in o the OPEN statement {(also specifyi ng RANDOM model); it 1s possible to get
things fouled up ¥ you do not have the record size correct. No logical
record size is maintained withim the file structure itself. This fact does
make it nice in one respect: a Tile which s accessed by many programs can
have dts record size expanded without recompiling all the aceessing
programs. Here 1s how: Assume {(as an example) that vou have a file which
is considered the parameter descriptor fite far all other files in the
entire system. This file gives the record size as 100 bytes for the vendor
name and addrese file. ALL program: which reference the venpdor file first
read this perameter file to get the size of the vendor file logicnal record.
The programs then set the size into s variable and use this varisbie in the
OPEN statement for the record size, Each READ or WRITE statement then
manipulates the 100 bytes of data by reading or writing to or from variables
whose size totals 100 bytes. Let's say you now want to expand the file to
120 bytes and that most of the programs do not have to make use of the extra,
20 bytes until some time in the future. You write a program which copies
the 1ll-byte file dnte a new 120-byte file and then vou update the main
parameter Tile to indicate that the new record size for the vendor filse s
120 byvtes %nsi@ad of 100. Each program now opens the file using the new
120-byte record size (since it is read in from the parameter file at
run-timel, but only READS or WRITEs the first 100 bytes of each record due
to the varizbles used by the READ and WRITE calls.

15,3 FILE I/70 STATEMENTS
Later sections in this chapter show you the general format of each of the
fite I/0 statements and give detailed asxamples of their usses.

Although vou will want to read each of those sections garefuliy, we'd like
to give a summary here of how to create and use sequential and random files.
Remember that the steps bhelow are only suggestions, and you may want to omit
or add steps.

USING SEQUENTIAL FILES FOR QUTPUT:
T. Use the LOCKUP commend to see if the file already exists.

When you output to a sequential file, yvou are creating a brand new
file, Tt a file of the same name and extension already exists in

ALFHABASIC FILE I/0 3YSTEM Fage 1535

the account vou are writing to, BASIC automatically deletes the old
tite for you before it opens the new gutput file. Therefore, i1
you don't want BASIC to delete an existing file, be sure to use the
LOGKUP command befare you open a file for outpul to make sure that
such a file does not already exist.

1 the file already exists, you can go shead and gpen it 114 vou
want BABIC to delete the existing file for voud or you can choose
another file name and wuse the LOGKUP command again to see if that
file already exists, T

lige the OPEN statement to open the file for OQUTRUT,
Begin using PRINT statements {specifying the file-channel rmumber
assacitated with the file by the OPEN statement) to weite data to

the file,

When finished, use the CLOSE statement teo close the file.

URBING SEQUENTIAL FILES FOR INPUT:

1.

2.

%

tse the LOOGKUR command to see 17 the file already exists. {1f it
doesn’t exist, double~check your file names.)

se the OPEN statement (o open the file for INPUT.
Begin wsing INPUT LINE or INPUT statemenis to read data from the
file (specifying the fite-channel number associated with the filse

by the OPEN statement).

thecl the EOF function after each input to make sure you haven't
read beyond the end of the file,

when finished, use the CLOGE statement to close the Tile,

USING SEQUENTIAL FILES IN APPEND MODE:

tse the LOOKUP command to see if the file exists,

dse the OGPEN statement to open the file for APPEND,

dse the PRINT satatement {specifying the file-charnel rum b e
azsociated with the file by the OPEN statement) fo write data to
the

grid of the file,

When finished, use the CLOSE statement fto close the file,

(Changed 30 April 19812

ALPHABASIC FILE I/0 SYSTEM Page 13-4

USING RANDOM FILES FOR INPUT/OUTRUT:

ol
sy
p
e

Y. Use the LOOKUP command to see if the file already exists.
does, you can skip down to step #3%,

2. IF the file doesn't exist, you must create it. First, decide what
size the logical records will be (in decimal bytes). Then compute
the blocking factor as discussed +n Section 15.2.2, "Blocking
Factor and Record Size.," Use the ALLOCATE command %o create the
file with the number of disk blocks needed.

3. Use the OPEN sfatement to open the file for RANDOM pracessing,
Specify the size of the logical records in the file, and the
record-number variable that will hold the number of the Logical
record you are currently accessing.

%. Use READ and WRITE statements {(specifying the file-channel number

assaciated with the file by the OPEN statement) to read and write
data in the file, Remember to change the record-numher variable to
the correct record number before performing each read or write
eperation s0 that vyou access the logical record vou want. Make
sure that the record-number variable contains a valid record number
hetore performing the file §/0.

5. wWhen you are Tinished reading and writing the file, use the [LOSF
statement to close the file,

USING RANDOM FILES IN RANDOM'FORCED MODE:

When a3 random file s open in this mode, a READ operation forces a disk

access, even 11 the requested block i3 already in memory, Likewise, 1T a

WRITE 15 oerformed, the block is reread, modified and forced ocut to disk,

even 1 the buffer is not yet full, This mode is intended to make it sasier
H

Tor people to use FLOCK and similar locking routines.
The command format for using RANDOM® FORCED mode ism:
QFEN Hfile-channel . filespec ,RANDOM FORCED record—size, recordi-variabie

For an explanation of OPEN, refer to the next section.)

o

153.%.1 OPEN
¥You must open a file before vou can transfer dats £o or from the file. Tha
ORFEN statement assigns a unigue fiite-channel number to a file and also
specities the name that is either to he given to an output fiile, or to be
used in leocating an input file, The general format ig:

OPEN #file-channel, filespec, mode, record-size, recordé-variable
The parts of this OPEN command sre defined as follows:

(Changed 30 april 19581

ALPHABASIC FILE I/0 SYSTEM Fage 15-7

file-channel Ay numeric expression which evaluates to an integer from
~65535 (0 is defined as the user terminal and treated as
suchl, If the file is random, you cannot use #0 as the fils

channel.
filespec Any string expression which evaluates to s Legal file
descriotion. ¥ay be a string varisble or string literal.

(1t it is a string Lliteral, remember to enclose it in
gquotation marks.)

mode Specifies the mode for opening the file:

IMPUT - Opens an existing sequential Tile
for input operations.

QUTEYT = freates a seguential file for cutput
operations.

RAMDOM - Opens an existing random file for
random read/write.

INBEXED -~ Opens an 1SAM data file and primary
index file,

INDEXEDEXCLUSIVE = Qpens an ISAM date Tile and primary
index file for esxclusive access.

APPENE -~ Jnens a sequential file, so that vou
write data to the end of 1.

RANDOM® FORCED - Jp=ns an existing random file. &t
time of next disk acoess, reads
specified block from disk whether or
not 1ttty already in mewmory, or
writes speoified block o disk
whether or not buffer is full,

The remaining tTwo opfions must be used for RAMDOM, RAMBOM®FORCED ITNBEXED and
INDEXEDFEXCLUSIVE modes only:

Recard-size An expression which dynamically specifies at run-time the
Llegical record size for read/write operations on the file,

Record-

variable A nor-subseripted numeric variable which must contain the
record number of the desired random access for REAR or WRITE
statements when they are executed. TE must e &

floating-point variable.

Ay attempts your proaram makes to read or write to a file which has not
been opened result in the error message 10 to uncpened file in Line non,
and the program is aborted., The filespec string may be a5 brief as the name
of the file, in which cagse it i3 azssumed tn have am extensian of .DAT and to

{Changed 31 2ctober (1981

ALPHABASIC FILE I/0 SYSTEM Page 15-8

reside in your disk account. The filespec string may be a complete file
specification, if you desire, giving the explicit Llocation of the fite,
which may be in another disk sccount or even on another disk drive. Some
exanples are:

CPEN #1, "DATFILY, INPUT

OPEN #1535, "PAYROL.TMP", OQUTRUT

OPEN #A, C%, OUTPUT

OPEM #3, "DSKI:OFILE.ASQE200, 200", SUTPUT
OFEN #1, "VENDORLDAT" . RANDOM, 100, RECNUM
OPEN #1+x, MIDB(AS,2,3%), OUTPUT

OFEN H#25,"MASTER" . INDEXED .80, RELKEY

The OPEM statement is ome of ¢he only statements which reference the file by
its actual ASCIT filespec in the standard operating system fTormat. Most
references in the program are made to the file-channel number which is
asgigned in the OPEN statement #file~channel.

The CLOSE statement ends the transfer of dats to or from a file. Once 2
fite has been c¢losed, no further references are allowed to that file untit
another OPEN statement for that file is executed. Any files that are still
open when the program exits are closed automatically. The format of the
CLOSE statement isg

CLOSE g#file-channel

ifies the file~channel number associated with the
H

where #file-channel spec
W ose, For example, it you have previously opened s file

file wyou want to cl
VENBOR.DAT:
OFEN 8%, "VENDOR.DATLZ200,171", INPUT

to close that file, use the statement:

CLOSE #3

TECELE D KELL

The KILL statement erases one file from +the disk. It does not nesd a
file-channel number and no OPEN or CLOSE need be performed to KILL a file.
The format for the KILL statement js:

KILL filsspec

For example:

KILL "NMNEWDAT., DATY

{{hanged %1 October 1987

ALPHABASIC FILE I/0 SYSTEM Page 15-9

As in the OPEN statement, the filespec is any string expression which
evaluates fto a legal file description. KILL assumes an extension of ,DAT.
It you try to erase a file that does not exist, vou see the error messane:

File not found

You may not erase a Tile that exists in an account outside of the project
Yoy are logged into. For example, if you are logged inte account [110,27
and the program you are running tries te kill a file in account F200,10, you
see a protection violation error message.

15.3.4 LOOKUP

The LOOKUP statement looks for a file on the disk and returns a flag which
tells wyou if the file was found, and if s0, how many disk blocks it
contains. The format for the statement ig:

LOCKUP filespec, result-variable

As in the OPEN statement, the filespec s any string expression which
evaluates tc & legal file description. The result-variable ig any legal
floating point variable which receives the result of the search. The LOOKUP
resulf-variable may return:

N Fite was not found

Positive #n File was found; it is a seqguentisl file, and contains
n disk blocks.

Megative #n Fite was found; it is a random file, and containg n
disk blocks,

Remember that the number returned by LOOKUP is the number of physical disk
plocks used by the file. You must multiply this number of $12-byte blocks
by the file's blocking facter to find cut how many logical records your file
contains. For example, after we execute:

LOOKUP "ONURT. BATY BL0CKS
the variable BLOCKS contains the rumber of disk blogks n the file

CNURT.DAT, or a 0 4f the file does not exist. We must multiply BLOLKS by

the blocking factor of the file to see how many Logical records can it in
the file,

(Chenged 31 October 1981)

ALPHABASIC FILE 170 SYSTEM Page 1510

15.3.5 ALLOCATE

The ALLOCATE statement preallocates a random file on The disk, which vou may
then open for random processing. A attempt to allocate a file which
already exists results in an error message, A random file need only he
allocated once and may then be opened for random read/weite aoperations as
many times as desired. The statement format is:

ALLOCATE filespec, number-—af-hlocks

As i the OPEN statement, the filespec s any string expression which
svaluates fo a legal file description. The number-of~blocks is & fleating
point expression which represents the number of physical 592-byte disk
olocks to be allocated to the file. For example:

RILLOCATE FILES, BLOCKE
ALLGUAYE "NEW. DAY, 20

15.5.6 FILEBASE

buring rnormel operation, BASIC refers to the first record in a random fite
ag reserd number zero {i.e., vou set the record number varisble to zero to
access the first record in the file). In some applications you may want
BASIC o refer to this first record by some number othker than zero: for
instance, to allow you to use zers to flag some special condition, such as a
deleted record. The FILEBASE command allows vou to set the number used to
refer to the first record. For example:

FILERASE 1

tells BASIC that the first record in the file ig record number one, 0ot
regord number zera. You may use any numeric argument with FILFBASE.

Note that FILEBASE does not associate its velue with a file, but only takes
effect when you execute the program it is in. IT one program USes &
FILEBASE command when referencing a file, all other programs which reference
that file should also use a FILEBASE command with the same valus.

YRR INPUT

brice a sequantial file has been opened for input, you may use a special form
T the INPUT statement to read data from the file. The INPUT statement uses
a file-channel number corresponding to the file-channel assigned in the OPEN
statemant . The wvariables dn the Llist may be either numeric or string
variables, but sust follow the format of the dete in the file being read,
(Weird results ocgur 9T you attempt to read string dseta into 8 numeric
variable, or vicewversa.) The gensral format of the INPUT statement fis:

INPUT #fiiew-chamnel variablet{ variable?,variablel}

(Uhanged 31 Gotober 19813

ALPMABASIC FILE 170 SYSTEM Page 15-11

buring the reading of the input data into the wvarfable list, all teading
spaces are bypassed unless they are enclosed within quotes, just as in the
normal Torm o5t the INPUT statement. Also, all carriage-return: and
Line-feeds are bypassed, allowing the file created by the PRINT statements
to contain formatted line data 1F desired. Commas, spaces and end-of=line
characters all terminate numeric data and then are bypassed,

Az with the non-file version of the INPUT statement described in Section
10,11, the dats being input must be in the proper format. In the case of
the file version of the INPUT statement, that means vou must be aware of the
rutes for properly separating data when vou first write the data out to the
file using the PRINT statement. Here are the rules to follow when weiting
datas to a file:

- Separate all floating point dats with spaces or commas.

2. Separate all sitring data with commas.
3. Separate all floating point data and string date with commas.

Keep in mind the characteristics of the PRINT statement when writing data to
a file, so that vyou do not conflict with the rules above. Section 10.19
discusses the PRINT statement. Using PRINT to send data to a file formats
that data in exactly the same way that it would if you were to use PRINT to
send data to the terminal screen. Remember that PRINT does not separate the
data with commas for vou. For example, the following statement:

PRINT #1000 "HELLO" TAGE” “DATE™
sends the following Line to the file:

HELLD AGE DATE
If vou try to use INPUT to resd that data in the file into three different
string variables, the first wvariable will contain "HELLD BRGE

BATEY and the cther two string variables will contain null data,
To read the data asbove 3s three separate pieces of string dats,

remember to separate the data by explicitly placing commas into
Foe example;

YOou must
gi

he file,
pgihi‘? #% {j{} ”HEE«L‘.{)H; ”:ge”; iﬁAﬁEﬁ; 23@@%; H{}ATEN

sends the following Line to the file:
HELLO, AGE DATE

which will be input correctly by the following statement:

INFUT A100 A%, B%,0%

(Changed 31 Octgber 19817

ALPHABAGIC FILE 170 SYSTEM Fage 15-14

Hote that the statement:
FPRINT #100 "HELLO™, ", 24, ", "DATE"

will dmproperiy format the data in the file because the unguoted commas
above will cause PRINT to separate the data with spaces as well as commas:
HELLO . 24 . DATE

{For more information on INPUT, see Section 10.11. Also, see the section on
INRUT LINE, helow.)

15.3.8 INPUT LINE

After a sequentiasl file hes been opened for inpul, the data can be read from
by & special form of the INPUT LINE statement which uses 3z
srel number corvesponding to the file channel assigned in the OPEN
. The variables in the List may be either numeric or siring

riables, but must foliow the format of the data in the file being read.
Unpredictable resublts occur if wvou attempt to read string data into a
rumeric variable, or vige-versa, The general format of the INPUT LINE
statement i3s3

gtatemen

INPUT LIKE #file-channel ,variablel

MEUT O LIME statement operation is ddentical to that of the INPUT
with the exception that input into 2 string variable accepts the
Uine up o but not including the carriage-return angd Lipe~feed that
Line. This allows commas, quotes, blanks and other special
1. The

ers to he input. Also, IMPUT LINE accepts blank tines as inpu
INPUT LINE statement may be used in sequential file &?Jg@ﬁ%*ﬂ% as well as
the W?w7§&F terminal INPUT statement. You will ususll use INPUT LINE
. onge string wvariable to read in one Line of th@ file at a time.
zee Section 10,72 for more information on INPUT LINE.

e quential fiie for outpul, youw will write dats to it
e PRINY statement using a file-channel number which
u&&nnei assigned in the OPEN statement, ALL the
te o vou when you use the normal form of the PRINT

. wtputs to the terminal) asre also available for sending
kieﬁ ﬁﬁa?aﬁﬁﬂﬁ PRINT USING for formatted datas. PRINT writes data
in the same format as it would aspear if wou used PRINT to send
terminal ﬁz$p{ay fi.e., tF you left off the File-ghannel
ilowing are the format and some examples of the PRINT statement.

wWwith

PHINY #file-channel , expressicn~iist
& L

ALPHABASIC FILE T/0 SYSTEM Page 15-13

PRINT #1; A; 8; C

PRINT #4, USING A%, A, SOR{A)

PRINT g1, USING "H## .87, 80100
PRINT #1, U"THIS 185 & SINGLE LINET
PRINT #2, "WRITE TO'.“PRINT ZONES",

Section 15.%,7 explains the required format for datea when wvou are using the
INPUT statement To read the dataz from the file, For more information on
PRINT, see Section 10.19

T5.3.90 READ

The READ statement reads 2 selected logical record from a random file which
has been opened for random access processing. The Logical record which s
transferred by the system 1/0 is the one whose record number i3 currently in
the record-number variable mentioned in the OPEN statement. The format of
the READ statement is:

READ #file-ghannel variablet{,variable-2... . ,varizhlei}

The variables in the List may be any format, but they obviously should matech
that of the designated record format. The date 1s read into the varisbles

as unformatted bytes, without regard to variable type. The data is
transferred inte sach variable wuntil the variable has been ﬁempigtaiy
filled, Thers the nmext variable in the List fs filled, and so on. IT the

record is longer than the variagble list specifies, all excess data in the
record will not be trensferred. An attempt to transfer more dats then is in
the logicel record size results in an error message. The most efficient use
of the random Tiles comes when the varisble or variables used are mapped by
the MAP statement to the sxact picture of the record format in use. {See
Chapter £, “Memory Mapping System,” for information on MAP statements.)
dlso see the sample program at the end of this chapter for 2 demeonstration
of creating and reading a random file.)

T5.3.11 WRITE

The WRITE statement is used to write a selected logical record inte a random
fite which has been opened for random access processing, The logical record
which ds transferred by the system I/0 i3 the one whose record number ds
currently in the record-number varisble mentioned 1in the OPEN statement.
The format of the WRITE statement is:

WRITE ffile~channel ,expression-Llist

The variables in the List may be any format, but they obviously should mateh
that of the desvgnated record format, The data fs written inte the logical
record from the user variables sas unformatted lbyvtes, witheut regard o
variable type. The dates s transferred from each variable until the

variable has been completely emptied. Then the next vartabls in the List is

{Changed 31 CGotober 1281)

BLPHABASIC FILE 1/0 SYSTEM Fage 15=-14

used,. and so on. If the record g Longer than the vartable list specifies,
all excess data in the record will not be modified. An attempt to transfer
more gata than is in the logical record size results in an error message.
fhe most efficient use of randem files comes when the variable or variabies

Eig

used are mapped by the MAF statement to the axact opicture of the record
format in use.

4

The program helo e% @ very simple demonstration of Llimited dats
manipulation, ; hat you could easily write modules that would ek pand
its furctio O !ﬂ&i@d% deleting customer records, changing data in
Pxisting customer records, adding more customer records to @ partially
filled file, and so on.

Some of the file~handling commands demonstrated by the program are: LOOKUP,
ALLOGCATE, OPEM, CLOSE, READ, and WRITE. Moetice that we also wuse the
extended TAR fuynctions to clear the soreen and nosttion the cursor, and use
the MAP statement to define all logical records and variables wused din the
orogram,

5 ¢ OSAMPLE PROGRAM TO CREATE AND ACCESS A RANDOM FILE

10 {
15 U This program simulates a very simple information management system,

sl PoNotice that we use MAP statements to map all varisbles used in the
25 Poprogram; although this is not strictly necessary (except Tor the
0 ! @e**ﬁ*?iﬁﬂ of the fontrol record and Legical record templates), it

5 P is handy to have all variables defined at the front af the Grogram,

45 Potefine fontrol record that containg info about file

50 M&Pf HEADERTRECORD

55 TOTAL RECS,F P Teral number of records in file
&1l INYUSE,F PoNumber of records i use

&5 FILLER,S, 82 POFTller bytes needed to pad record

I 1o éﬁ bytes

;

£y s,

7 Dobetine logicsl record (84 decimal bvtes

80 Map CUSTOMER® THFO

8R MARZ NAME &, 2 I Mame and address

an MARZ BTREET 35,10

@5 MaRZ CEYY 5,1

100 MARZ STATE,§,2

108 MAP2 IbTayM F P Customer 1D number
110 MAPZ CARINEG

115 MARE MOREL, 5,10 Poinformation about car
124 MAPE YEAR 5,4

125 MAP L INEL %&ﬂ”* #B1 U oboes owner have insurance?
1

1

LAl A D g
L7

P Miscellaneous variables used by the oG ran

TAD MAPT BLOCKS,F P # oof disk blocks used by file
145 MAPY BYTES,F g oot bytes used by all records
TR0 MAPT REC'SIZELF 6,64 P # ot bytes in racord (fh, decimal)

{Lhanged %1 Ouiober

SLPHABARIC FILE T/0 5YSTEM Page 15-15

155
160
165
170
175
180
185
190
105
200
2015
210
215
224
225
254
253
244
245
230
2585
60
265
290
25
280
285
290
225
00
205
2140
15
220
525
ER0
335
340
345
50
55
360
ELE
AT0
305
380
285
290
595
400
405
4515
420

MAPT RECPNUM,F P fontaing current record number
MAPT RESULT,F POLOGKUF command result varisbhle
MAPT QUERY,B,3,.7Y P Seratoh variable (dnit to nulll
MAFT NYALF i Seratoh variable for user input

£
i
i
§
I
i
¢
H

a¥

H
i

RE

BEGIN MATN PROGRAM

Use LOOKUP command to sse if file already exists, If it does, go to
routine that will read information from the file; otherwise, creats
Tile. First, ask user for total number of records we can write tog file.
Then, see how many Dytes this reguires (S4*TOTALTRECS). We can fit
gxactiy B regords per odisk block (518=8%484), If can™t fit even number
of records per block, allocate one extra block,. WNow that we know how
many disk blocks to atlocate, ALLOCATE and (OPEN the file.
ART:

LOOKUR "CUSTMR.DATY, RESULY @ IF RESULT <> & GOTO READTFILE

PRINT Tapi~1,00; TABLIO,%); I Clegar screen; position curser
INPUT "Enter total number of file recordss 7, TOTALTRECS

BYTES = TOTAL'RECS = REC*SIZE @ BLOCKS = BYTES/H1Z

IF BLOCKS <> INT(BYTES/S12) THEN BLOCKE = FIX(BLOCKSY + 1

ALLOUATE "CUSTME.DATY . BLOCKS

OPEN #2, VCUSTMR.DATY . RANDOM, RECPSIZE, RECPNUM

fowrdte dndtial file header fo Record) (REC'NUM = 0. File header is
! control record that tells us how many records are in file
POLTOTALTRELSY and, of those, how many are In use (INTUSE:.

REC'HUM = [@ IN'USE = 0 : WEITE #2, HEADER'RECORD

RECTNUM = 1 P Get ready to write to next record
U Clear soreen and position cursor

PRINT TABR(-1,.03: "Entering info..."; TABOUO,.9)

PRINT "when you are through, enter a RETURN for fustomer Name."
GOSUE GET? INFOD Eoger info and write it to file

READ INFORMATION FROM EXISTING FILE

Gpen Tile for dnput. Get control record to sse how many records are

in wuse, Ask ussr if wants to read from file; i mot, exit.

fheok to see 1f existing File is empty; i1 80, exit. Teil the

user what customers we have info for; ask which customer user wanls
info on (1 customer, ALL, or nonel. Check to make sure user snters
valid customer rnumber. Just g RETURN {(=null) means user wants to Guit.
pisplay desired info until user enters a RETURN to auit.

ADTFILE:

GPEN 45, "CUSTHMR.DATY, RANDOM, RECP'SIZE, RECPNUM
RECTNUM = 3 1 READ #3, HEADER'RECORD
PRINT = INPUY "Do vou want to read Tile (Y or WN}? U, QUERY
GUERY = UCSCQUERYY @ TF (QUERY = "N™) GOTO READTEXNIT
¢ {lear screen and position cursor
PRINT TAB(-1,0): "Reading file...": TAB(10,1)
IF CINTUSE = [THEN PRINT "File i3 smpty” 1 GOTO REARTEXIY
! Show user what customers we have info on
PRINT "Hera i3 a List of the customers for whom we have info:”
FOR RECTHIM = 1 7O INPUSE
READ #Z, CUSTOMERPINFO @ PRINT
PRINT "CUSTOMER #:7; IDTNUM; SPACE(R); "CUSTOMER NAME: 7 NAME
REXT RECPHNUM

(Changed %7 Dcotober 19811

ALPHABASIC FILE I/0 SYSTEM Fage 15-16

{Changed *1

Find out what info we should display

SETPNUM:

BUERY= "7 « PRINT b Set dinitial choice to null

PRINT ”tm?%r the ID number of the customer whose infe vou want te¥
PRINT "see. (Enter just a carriage return to end program; enter TALLYY
INPUT "o see info for all customers.y: Y. QUERY

IF (QUERY="") G0OTO READTEXIT I dser wants to guit
QUERY = USCOQUERYY » IF {QUERY = "ALLYY THEN 6OTG DISPLAY'ALL

I Check o see that customer number is valid. Convert string ta
Ponumeric so that we do numeric, not string, comparison.
NOUERY = VALIQUERY

IFOLHGUERY < 1 OR NGUERY > INTUSE) THEN &

PRINT ¢ PRINT "Invalid number." : GOTG GET®NUM

U Read des erﬁﬁ record {(set REC'NUM to customer number).

RECTHUN = NGUERY : READ #7%, CUSTOMER? INFO
GUIUR BDISPLAYUINFQ odiaplay record
GOTO GETINUM b See 1T user wants to see another

User wants to display all customer records

@KS :&f Qh

= 1TO O INTUSE
"1

A“ FR, CUSTOMER'INFD I get next record
aﬁkda QES?LQY@Z%EQ U bisplay information in record
NEXT RECTNUM
GUTO GETP NUM Podee 1F user wants to Look again

Time to lLeave Dragram

?EQ*§EK§“'

??zm? T PRINT "Closing display file...”

Subroutine to display information in record

BISPLAY ! INFO;

PRINT ¢ PRINT "CUSTOMER #:'°; IRTNUM; Y= ": NAME
PRINT SPACECR); "Street address:': SPACE(T: STREET
: S?ﬁﬂtiy}; UCltyr My CITY: SPACE(S): "State: " STATE
SEACECRS; "Car model: V: MODEL: ' Car vear: "2 YEAR
%?A%h{%?*
? f?M%MR&mgﬁ #= 20 PRINY "No inzurance.™ BLSE PRINT “Car s insured.”
LURN

get information from user amd write it to the fiie

& welre not trying to add data to a full file
Ef “?§“* = TOTALTRECSE) THEM PRINTY “File dg full...” @ GOTO BEXIT
Pofiear &&ﬁ% tTo null 30 we can test to see 1T user wants to guit
ﬁﬁwg o

! 8tart entering data. Pad it to proper length with spaces

toso that complete logical record comes out to exactl ¥ A4 bytes,

Lo

ALPHABASIC FILE 1/0 SYSTEM

P45
F50
G55
G40
965
e
G75
FE0
FEZ
GO
F95
1000
1605
1014
1015
1020
Hr
1030
1055
1040
HI45
1050
1055
1060
1065
1070
1075
1080
1085

4
§

INFUT "Customer pame: ", NAME : IF NAME = " G070 EXIT
NAME = NAME + SPACE(Z0 - LEM{HAME))

INPUT “Street address: ", STREET

STREEY = STREET + SPACE(MS ~ LENM(STREET!)
IMPUT "Citw: M, CITY

CITY = CITY + SPACE(TZ - LEMOCITYY)

IMPUT "State:r ", STATE

STATE = STATE + SPACE(Z - LEN(STATE))
INPUT "Car model: "', MODEL

MODEL = MODEL + SPACECIC - LENCMODELY)
INPUT "lar year: 7, YEAR

YEAR = YEAR + SPACE(4 -~ LEN(YEAR))

INFUT "{ar insurance? {Y or N): ., QUERY

Page 15-17

QUERY=UCS{QUERYY ¢ IF (QUERY = ¥} INSURANCE = 1 ELBSE INSURANCE = 0
IDFNUM = RECTNUM ! Customer number s just record #
P Write whole record; increment records=in~use counter and bump

PORECTNUM s0 we are ready to write to next record

WRITE #2, CUSTOMERTINFO @ INPUSE = INUSE + 1 : REL'NUM
PRINT "Customer ID Mumber is:™: IDfNUM

GOTO GET'INFO

We want to stop entering data

EXITe

PRINT "Now closing output file.”

REC'MUM = 0 1 WRITE #2, HEADERTRECORD
PRINT "Total number of records in file:';
PRINT TOTAL'RECS . "Records in use:™; INTUSE
CLOSE #2

RETURHN

{Changed 31 October 19813

REC NUM + 1

CHAPTER 16

CHAINING TO BASIC AND SYSTEM PROGRAMS

The CHAIN statement terminates execution of the current orogram and
initiates the execution of a new program. or system function. The new.
program to be executed must be named in the CHAIN statement dtself; that
name may be a fulil file zpecification. The file named in the statement may
be another AlphaBASIC program (compited only), or it may be a system command
ar command file, This allows your program fo execute a command file and
invoke system commands as well as execute other AlphaBASIC commands.

Té. 1 CHAINING TO ANOTHER ALPHABASIC PROGRAM

LHATH assumes a default extension of .RUN, which designates a new AlphaBASIC
Orog e an o be executed. It the extension of the evaluated file
specification 15 indeed LRUN (either explicitly or by default), the
specified BASIC program is loaded into memory and executed. (If you do not
specify a device and account, BASIC fallows the search pattern outlined in
section 3.10, "Library Searching,” in looking for RUN files. If vou do
specify a device and account, BASIC looks in the spegified area.) ALL
variables in the new program are first cleared to zero prior to execution.
Also, all variables in the current program are set to zero {or null, §F
strings}. The BASIC program that vou specify must be a compiled (.JRUN)
file. Some examples of legal CHAIN statements. are:

CHAIN "PAYROL™
CHATN "PAYROL . RUN'
CHALIN "D :PAYROLTIOT 1370

bue to the fact that programs are compiled and not interpreted, there is no
way o execute a preogram at any entry point other than its physicsl
beginning. There is also no internal method for passing parameters between
programs, but you can accomplish this fumction for yourself by using the
BASIC assembly Language subroutine COMMON to store data in a2 common MEmory
area, LOMMON allows you to store information efther in system memory (where
orograms run by all users on the system can access the information) or an
individual user’s memory partition (where only programs run by that ussr can

DUM-O0T00-01 REV B4

CHAINING 70O BASIC AND SYSTEM PROGRAMS Page 16-2

dccess the information), For details on using COMMON, see COMMON = BASIC
Subreutine to Provide Common Variable itorage in the "BASIC Frogrammer’'s
Intermation” section of the AMOS &ofFwnre Update Documentation Packet. Ir
addition to sharing infarmation, you <2an use the common area to Dass
parameters to the chained program. For axamnle, the current orogram can
Hass s parameter Lo the new program which it uses in an ON-GOTO statement to
begin sxecution at some point in the new program based on the value passed
in the parameter,

Another way to make sure that chained programs can share information i3 the
use of disk files. The current BASIC nrogram carn open a date file, write
the varjables it wants to share inte that file, and: then ciose the file,
When the rew file is chained in, it can open the file and read the NECessary
information.

T6.2 CHAINING TO SYSTEM FUNGCTIONS

P

It 18 sometimes desirable to transfer execution to a s¥stem function or a
command ftile from a BASIC program. If the extension. of the file in the
CHALN statement s not LRUN, the file s a system command program or system
command file (a PRG (on the AMOS/L system, LIT), ..DO or LCMD file). In
this case, the AlphsBASIC run~time package creates a dummy command file at
the top of the current user partition and transfers coptrol to the monitor
command processor. The monitor then interprets this dummy command file as a
direct command and executes it. Note that thesdummy commard €1 le ereated by
the run~time package 1s merely the one-lLine name specified in the CHAIN
statement. It 1s not the command file itself, which is the target. functiom:
desired. Some valid examples are:

CHAIN "SYSTAT.LITET 47
CHAIN “TESTI.CMpY

CHAIN "DSKO:BOKUP, CMDEZ, 277
CHAIN "TRANS,DOLTI0O, 00

Mote that i1 the device and account are not spec ified, the action taken is

the same as if vou had entered the command directly from yvour kevbhbesrd.
» Y oyou omit device and asecunt specifications, the monitor command

pracessor searches for command files or programs in the following order:

T, System memory

2. User memory

d» The account and device vou are Lagged into.

(NOTE:z To load 2 file inte your user memory Qa?ﬁitéﬁmgnagw the monitor Lewvel
LOAD command. Yo load the file into system memory {where it .may be acgessed

by all users on the system), the System Operator must add the appropriate
SYETEM command Line to the system initialization command File.)

DWM-DO100~31 REYV BO4

CHAINING TO BASIC AND SYSTEM PROGRAMS Fage 163

Mote alse that when you chain to 2 monitor command, after the command has
finished executing, 1t returns you to the monitor level, rather than BASIC.
This means that if you wish to automatically return to some AlphaBASIC
program, vou have 1o execute a command file whose firal command +s a RUN
commarxd which specifies that original BASIC program.

CHAPTER 17

ERROR TRAPPING

AlphaBASIC allows your program to trap errorg that would normally cause the
system to print an error message and abort the program run. When you are in
interactive mode, an error relurns you to AlphaBASIC: if you are iR compiler
mode, an erercor returns yvouw to the monitor, Use of the ON ERROE 74070 and
RESUME statements causes immediate action to be taken to recover from errors
detected within the program.

T7.1 ON ERROR GOTC STATEMENT

Error frapping is ensbled and disabled by using the ON ERROR GOTO statement
in one of two forms. The first form specifies & Line number {or Llabel)
within the program, When the program encounters this ON ERROR statement, it
atores the Line number and sets a flag enabling error trapping. It an errore
ceours any time after this, BASIC transfers control to the routine specified
by the Line number or lebel. Examples of this form of the statement are:

Ol ERBOR GOTO 500
O EREOR GOTO TRAP'ROUYINE

The error routine must then take appropriate action based on the Type of
Error,

The second form of the statement disables further wuser error irapping by
specifying a Line number of zero or leaving the ldne number off completely.

ON ERROR GOTO (O
ON ERROR GOTO

After executing the above form, 11 an error occurs, the program prints the
standard error message and aborts the grogram run,

A special case exists when the above statesent is encountered within an
error recovery routine (prior to executing the RESUME statement). In this
instance, the user error trapping is disabled and the existing error is
forced to Dbe processed by BASIC's error handling as f no error trapoing

ERROR TRAPPING Fage 17~¢

[l

were ever enabled. It 1s recommended that all error trapping routines
execute the ON ERROR GOTO 0 statement for all errors which have no special
TELOVERY processing.

NOTE: If an error occurs within the error trapping routine itself, that
error s processed and the error message (?Error in error trapping)

acours, There is no method to detect errors withim The &rpor FRCovery
rout ine,

17.2 ERR{X} FUNCTIONM

The ERR function returns the following data based on conditions at the time
ot the error:

ERR{D) 5 numeric code specifying the type of error detected
ERR{T) = last line number encountered prior to the error
ERR(ZY = last file number accessed (only relevant for file errars)

17.2.1 Error (odes Returned by ERR

Code Meaning

1 Control-C interrupt
P System error
A out of memory
% out of data
5 MEXT without FOR
& RETURN without GOSUR
7 RESUME without ERROR
& Subscript out of range
& Floating point overflow
i Divide by zero
11 Iitegal function value
17 LCALL subroutine not found
1A Filae already open
14 10 to unopensd file
15 Record size overflow
14 File specification arror
37 Fite not found
18 Device not ready
1 Davice full
20 Device error
21 Bevice in use
27 Illegal user code
23 Protection violation
24 Write protected
25 File type mismatoh
26 Device does not exist

i1 Bitmap kaput

ERROR TRAPFING Page 17-3

28 Bisk not mounted

29 Fite already exists

0 Redimensioned array

21 itlegal record numher

¥ Invalid filename

i3 Stack overflow

B Invalid syntax code

35 Unsupported Function

Eé Invalid subroutine version

For example, 1f PRINT ERR(D) returns a 10, vou know that the orogram tried
to divide a number by zero,

TP.5 RESUME STATEMENT

The RESUME statement is used to resume execution of the program atter the
arror recovery procedure has been performed. It also re-enables (ontrok-{
detection, which i3 turned off while BASIC processes the error trapoing
routine., The statement takes on two forms similar to the forms of the ON
ERROE 6070 statement, The first form specifies a lLine number {or label)
within the program where the execution is to be resumed:

RESUME 410
RESUME TRY'AGAIN

the second form specifies a Line number of zero, or no Line number at all,
and causes the execution to be resumed at the statement which caused the
ereor O ocour:

RESUME 0
RESUME

Both forms cause the error condition to be cleared and error trapping to be
gnabled again.

NOTE: You must never use the GOTO statement to exit from an error trapping
routineg, You must use RESUME. This is because RESUME clears the Erpor
stack, but G070 does not, which causes problems for later error handling.

17,4 CONTROL=-C TRAPPING

When you type a Control=C on your keyhoard during the exscution of an
AlphaBASIC program, the program is suspended at the next statement. Action
taken then depends upon the status of the error trapping flag. If no error
trapping s enabled, the program is aborted and the appropriate message is
printed on the terminal. If error trapping is enabled, the earror trappiog
routine 13 entered with the code in ERRCM being set to 1. This feature
aillows you to prevent wusers from inadvertently exiting progrems during
critical times such as file updates.

DWM-00100-01 REV BOA

ERROR TRAPPING Fage 17«4

Lontral=0 getion s suspended during error recovery processing to prevent
accidentally aborting the praogram during an error routine. The Control—0 is
detected immediately uwan execution of the GESUME statement; the oprogram
continues with the Lline following the one that was interrupted, if the
RESUME statement did not specify a Line number,

TELS SAMPLE PROGRAMS

The simple program below contains an errop trapping routine that handles
"divide by zero”™ errors. Note that a successful error trapping routine must
either resolve the error or exit the program. For example, 17 the program
petow had merely printed an error message and then RESUMEd back to the Line
where the error occurred, the "divide by zero”™ error would still exist,
BARIC would asgain transfer cantrsi to the error trapping routine, and we
would be in an eternal Loop. Instead, the program resolves the srror by
changing the valuess of the problem variasbles to 1, and then resuming program
execution; this time around, a divide-by-zerc error cannot aeour, and
averything is all right.

10 ON ERROR GOTO DIVIDE'BY'IERD

20 IMPUT "Enter two numbers: ", A, B

E0 PRINT "A/B =" A/B

£ END

50 DIVIDETBRY'FERO:

&0 EIT error 18 not "divide by zero” axit the Orogran.

70 TP (EREDY < 103 THEN END

20 BRINT ™ Division by zere undefinedl~- setting A and B to 1

S A=1 28= 1 I Reset A and B so that division works,
10U RESUME f Go back to Line where problem occourred.

Two sample runs of the program Look tike this:

Enter two numbers: 7,3
AlB = LB6GLET

Enter two numbers: 3,0
/8B = Division by zero undefined!—- setting A and B to 1
AfE =

DWW-00T00=-01 REV BO4

ERROR TRAPBING ' Page 17-%

The

following program shaws a small, uncomplicated error trap routine that

handles a Control-C. fNotice that we enable the eprror. trappinag routine
CATOUHICTRLC: fust before the wuser enters input. Directly afterward, we
disable our routine and re-enable the regular BASIC error trapping vis the
ON ERROR 6070 0 statement. This 1% to catch any errors other than a
fontrol=0 that might ocecur in the rest of the program.

T
20
30

&0

ERARGH TRAPPING SAMPLE PROGRAM

! pefine error code for Control-C, and various string variables.

S0 MAPT CONTROL'C,F, 1
600 MAPT SCRATCH,S,16,7 &

70

a0

el

1040
Hl
120
1E0
140
150
T60
170
THG
10
200
210
220
230
240
250
260
270
280
290
SO0
310

320
330
400
A0
240
AT
B0
290
&0
410
420
430
&40
450

MAPT ANSWER,8,16," 7
MAP1 QUERY,S,1

PoBegin Main Program

START: PHINT
BRINT “This program converts positive decimal numbers to binary.”

Poask wuser for decimal number,

GET'NUMBER:
Y Turr on our error trap to cateh Control-0 on input,
0N ERROR GOTG CATOMYCTRLE
INPUT “Enter 2 number between 1 and 6553%; ", NUMBER
POLf wser typed s Control-0, welve already caught it, so turn off our
P error trapping and turp regublar BASIC error trapping back on in
' case other error ooours,
N ERROR &0TO0 O
TF NUMBER < 0 GOTO GET'NUMBER
CURRENT=NLMBER

PoMow calcoculate answer,

CALCIL ATE:
IF (CURRENT/Z = FIX{CURRENT/Z23}) THEN &
SCRATCH=SCRATCH+"" ELSE SCRATOH=SCRATCOH+TY™
TF FIACICURRENT/ZY = {2 GOTO DISPLAY ! bone.
CURRENT=FIX(CURRENT/2) Poget rid of remaindsr.
GOTG CALCULATE

Pobisplay routine. Reverses string so that answer 13 in proper order.
DISPLAY:

FOR I = 1 TO LENCSORATCHD
AMSWER=ANSWER+SCRATOHE-1211

HEXT 1
PRINT The decimal number” ;NUMBER; 1" ANSWER;"in binary.”
SCRATOH= 7 % o ANSWER = © ¢ P Indtialize answer to null.

GOTO GET'HUMBER

ERROR TRAPPING Fage 17-6&

460 1 Error trapping routine. Just Looks for Control=C. Gives user change
470 1 To guit or resume.

480

490 CATCHICTRIC:

500 IF (ERROD) <> CONTROL'C) THEN RESUME

514 INPUT "Do you wish to quit? (Y or N)}: " ,QUERY

520 QUERY = UCSIRUERYY ¢ IF (QUERY = "N") THEN RESUME GOTAHEAD
530 PRINT : PRINT "So long..." : PRINT

540 END

550 GOTAHEAD: | User wanis to resume afier "0

364 FRINT © PRINT "Resuming...” 1 PRINT

Y0 GOTO GET'NUMBER

A sample run of the program above Looks Like this:
WRUN CNYRT (BED)

This program ctonverts positive decimal numbers to hinary.
Enter a number between 1 and 65535: 24
The decimal number 24 4s 17000 in binary.
tnter g number hetween 1 and #553%%: "¢ Tvou typed a Control-C]
o wvou wish to oult? ¥ or Ni: ¥ (Ren)

o long, ..

CHAPTER 18

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES

RiphaBASIC supports the wuse of external assembly language subroutine
orograms callable from your BASIC programs. There are several good reasons
why vou might want to use an assembly language program to carry out &
function rather than using ancther BASIC program.

Assembly language programs are generally much smaller and faster than
equivalent BASIC programs; when speed and size are important factors, you
may want to sode your programs into assembly language. Yet another reason
for wusing assembly language programs fis simply that some tasks are too
awkward (or even impossible) to do from within a higher—ievel language.

Assembly language programs are uniquely suitable for applications that
regquire that vou work more closely with the hardware or operating system
than is gonvenient or possible in RBRASIC.

This chapter explains how to write your own assembly language subroutines
for BASIC, and on calling such routines frem within a BASIC program.

Although you may want to write your own assembly language subroutines, note
that we do provide a set of existing assembly language subroutines 1in the
BASIL bLibrary Account, DSKO:VT7,67. (For infarmation on these subroutines,
see the AlphaBASIC XCALL Subroutine User's Manual, PSS-10008-00,

In addition, a set of business-oriented assembly language subroutines s
availeble from vour dealer.

fo cali an assembly language subroutine from an AlphaBASIC orogram, use the
XCALL statement. The syntax for this statement is as follows:

ACALL routinelargumenti{,arqument2,...argumentN}}

The routine to be called is an assembly language program which has been
assembled using the machine language assembler. The resulting .PRG program
file {or JLIT program on AMOS/L systems) must then be renamed to give 1f the
assumed extension .SBR, indicating +that it 1s a subroutine and not &
runrabhie program,

DWM-O0T00-031 REV BO4

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Fage T8-2

When the XCALL statement is executed by the AlphaBASIC run=time system, the
named subroutine s located in memory and then called as a subrroutine {see
Section 18,1, below, for more information on asutomatic subroutine Lloading .l

AlphaBASIC saves all registers, then sets certain parameters into
these registers for use by the external subroutine. The addresses of the
arguments are galoulated and entered into an argument List in memory along
with their sizes and type codes. The base address of this List is then
passed to the user routine in register BE {op AMOS systems? or A (on AMOS/L
syatemsl,

The arguments may be one of two hasic forme:

te A wvariasble name, in which case the argument entry in the List
cferences the selected variable within the user tmpure area. This

vertable is available to the 2alled ﬁuh? autine for both inspection
and modiftication,

2. A expression {numeric or string), in which case the expression is
evaluyated and the gsult 45 placed on the arithmetic stack
(referenced by RS {on %ﬁﬁ% systems) or AS {on AMOS/L systems)y.

fs result, ingstead of a single variable, is then referenced in
@ argument list entry, It 1is only -available for inspection,
nae the stack 13 cleared when the subroutine axits.

The uger rouwtine iz fr
on the %M% %}*5ng R
may use stack Tfo
completed exacution, a refurn must
gracut g BTN zubroutine returns

reg to use and modifty a gnaral work registers {six
R3z 1H on the AMGSAL systewms, AD-A& ard DO-DTY, and
roowork space as reguired. When the subroutinme hag
be made %o the run-time system hy
cructfon.

8.1 AUTOMATIC SUBROUTINE LOADING

When & aﬁﬁfﬁ program calls & subroutine via an XCALL statement, BASIC
attempts to locate the subroutine in user or system memory. If it is unable
te doe se, it atfempts to load the subroutine From the gdigk, following the
search patlern outlined in Section 3, i, "Library gGeerching.”

it & BASIE program fetches a subroutine Trom disk, BASIC ltoaeds it into
memery only for the duration of its exeoution, nge the subroutine has
completed 1ts execution, it 98 removed from memory if it was Loaded via this
avtomatic procedurs,

o

Therefore, 3f a subroutine is to be called a Lerge number of times, it +s
wise to ilosd it inte memory (using the monitor LOAD commandY o avold the
overhead of fetehing the subroutine from digk

NOTE: Subrogtines loaded into memory via the monitor LOAD command remain in

memary until you reset the system or until you use the monitor command DEL
to delete them.}

DeM-DO 00037 REV BO4

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTTINES Page 183

8.2 SPECIFIC INFORMATION FOR AMOS SYSTEMS

18.2.1 Register Parameters

The folliowing registers are sel up by the run~time system o be used as
reguiraed by the external subroutine, They may pe modified, if desgired,
since they have been saved before the subroutine was called;

RQ Indexes the user impure variable area. BRD ig used throughout the
run—time svstem to reference all user variasbles. Details on the
format of this area are not available at this time. RO may be
used as a work register,

R3 Points te the base of the argument List. R3S may bhe wused to scan
the argument List for retrieval of the argument parameters.

Ré& Points to the base of the free memory area that may be used by the
external subroutine as work space. This is actually the address
cf the first word following the argument List in memory, and, it
desired, may be used to store a terminator word to stop the
scannitng of the argument Llist.

RA Thiz 15 the arithmetic stack index used by the run-time svystem.
The stack is built at the top of the user partition and drows
downward g3 ftems are added to 1. When the external subroutine
is galled, RS points to the ourrent stack base. Zitce the
arithmetic stack may contain valid data, the external subroutine
must not use the word indexed by ®% or any words above it

1R 2.4 Argument List Format

The List of arguments specified in the XCALL statement may range from no
arguments st all to a number Uimited only by the space on the command Line.
To pass these arguments to the external subroutine, an argument list g
butllt in memory which describes each variable named in the List and tells
where 1t can be logated +n the user impure ares. The variables themselves
are not actually passed to the subroutine, but rather their absolute
locations In memory are,

in this way, the subroutine may inspect them and modify them directly in

thetir respective locations. This does not apply to expressions which are
built on the stack as described previously.

PWM-00100-01 REY B4

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES. Page 18-4

R points to the first word of the argument list, which is a hinary count of
how many arguments were gontained in the XCALL statement. Following this
count word comes one 3-word descriptor block for each argument specified,
If there are no arguments in the XCALL statement, the argument List consists
only of the single count word containing the value of zera. '

The format of each 3 word block describing one argument s as follows:

Word 1 Yariabie iype code. Bits {3 contain the type code for the
specific variahle: Osunformated, 2=string, é4=floating point,
b=hinary, 7 through 17 are currently unassigned, ®it 4 is set to
indicate the wvariable s subseripted or cleared to indicate the
variable is not subscripted. Other bits n the type code woerd are
meaningless,

Word 2 Absolute address of variable in a user impure area. This address
is the first byte of the variable no matter what its tvpe or size
might he.

Word 3 Size of the variable in byres.

Mote thet the above descriptions also apply to the gxpression arguments,
except that the results are Llocated above the address specified by RS
instead of below it.

The argument {ist is built in free memory directiy above the currenily
lLlocated user impure area. Ré& points to the word fmmediately following the
last word in the argument List. You may scan the argument List and
determine its end either by decrementing the count word at the base of the
List or by scanning until the scan index reaches the address in R4,

2.5 Free Memory Usage

When the subroutine is called, indexes R4 and RS mark the beginning and snd
of the free memory that s curreptly available for use as workspace, This
area i3 not opreserved by the rup—time sysatem, and the subroutine must not

count an its security between XCALL statements.

Note that the word at R4 may be used as the first woerd, but the word at RS
13 the base of the arithmetic stack and must not he destroved, The last
word of actually free memory is at ~2(R5).

The run~time system has its own intarnal mamery management system and does
not wonform to the AMOS operating system memory management methaod.
Therefore, the external subroutine must not use the GETMEM monitar calls to
generate a block of work space in memory. Also, if any file calls are to be
done they must be done with internal buffers, since the INIT call sets up &

buffer by using the GETMEM monitor call.

DWM-00100-01 REV B4

CALLING EXTERMNAL ASSEMBLY LANGUAGE SUBROUTINES Page 185

1

LPRC OINFORMATION FOR AMOS/L SYSTEMS

18,451 Register Parametars

The following registers are set oo by the run-time system to be used as
required by the external subroutine. They may be wmodified, 1f desired,
since they have hesn saved bhefore the subroutine was called:

A} Indexes the user impure variable area. A0 1s used throughout the
run—time system to reference all wusepr variables., Details on ths
tormat of this area are not available at this time. A0 may be
uses as a work register,

AR Points to the base of the argument List. A% may be used to scan
the argument i1ist for retrieval of the argument parameters.

Ay Points to the base of the free memory area that may be used by the
external subroutine as work space., This iz actually the address
ot the first word following the argument List in memory, and, if
gesired, may be wused to store 2 terminator word to stop the
scanning of the argument Llist,

A5 This s the arithmetic stack index used by the run=time svstem.
The stack is Bbuilt at the top of the user partiticon and grows
downward as items are added to it. When the external subroutine
s gal A% points to the currant stack base. Since the
arithmetic stack may contain valid data, the external subroutine
must not use the word indexed by A5 or any words above it,

Argument List Format

The tist of arguments specified in the XCALL statement may range from no
ts at all to a number Llimited only by the space on the command Line,

these arguments to the external subroutine, an argument tist is
memory which describes each variable named inm the List and tells

cann be located in the user impure area.

The wvariables themselves are not actually passed to the subroutine, but
rather their absolute locations in memory are. 1In this way, the subroutine
may inspect them and wmodify them directly in their respective ilocations.
This does not apply to expressions which are built on the stack as described
praviously,

A% peints to the first word of the argument list, which is a binary count of
how many arguments were contained in the XCALL statement, Following this
v oword comes one F-word descoriptor hiock for each argument specified.
there are no arguments in the XCALL statement, the argument List consists
only of the single count word containing the valtue of zero.

DUM-O0T 0001 REV BOG

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 1TH-6

The format of each 10-byte block describing one argument is as Toliows:

Entry 1 One word containing a variable type code. BRBits 0-% contain the
tvpe code for the specific wvariable: O=unformated, Ze=string,
s4=floating point, é&sbinary, 7 through 17 are currently unassioned,

Bit 4 is gset to indicate the wvariable is subscripted or clearsd o
indicate the variable is not subscripted. Other bits in the type
code word are meaningless,

Entry 2 One longword containing an absclute address of variable in & user

impure area. This address iz the first byte of the variable no
matter what its type or size might be.

Entry 3 Une Longword containing the size of the variable in bytes,

Note that the sbove descriptions also apply to the expression aroument s,
except that the results are located above the address specified by 45
instead of bhelow it,

the argument list is built in free memory directly above the currently
allocated user fimpure area. A4 points to the word immediately following the

Liast and
af the

Last word in the argument list, You may scan the argument
determine its end either by decrementing the count word at the base
List or by scanning until the scan index reaches the address in A4,

18.5.5 Converting Arguments to Binary Format

A standard subroutine, $GTARB, is provided in the system subroutine library
SYSLIB.LIB to assist in converting floating point and string arguments o
dinary format for processing within an ALphaBPASIC subroutine.

For further information, see fppendix € dn the AMOS/L Monitor Calls

Manual, DES-10003-00.

18.%.4 Free Memory Uuage

When the subroutine is called, indexes A4 and AS mark the heginning and and
at the free memory that is currently available for use as workspace., This
area 1s not preserved by the run~time system, and the subroutine must not
count on ity sscurity between XCALL statements,

Mote that the word at 544 may be used as the first word, but the word at 45
is the Dbase of the arithmetic stack and must not be destroved. The last

ward of asactually free

The run~-time system ha

memory 18 at ~20A%),

5 itz own internal memory management system and dogs

not conform to the AMOS/L cperating system memory management method,

DWM-GOT0-01 ’REY 804

CALLING EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES Page 18-7

Therefore, the external subroutine must not use the GETMEM monitor calls to
generate a bloclk of work space in memorvy. Also, 1% any file calls are to be
done they must he done with internal buffers, since the INIT call sets up a
buffer by using the GETMER monitor calli.

18.32.8%8 focating Open Files

& standard library routine, #FLSET, is provided in the system subroutine
tibrary, SYSLIB.LIB, to locate the DDR associated with a file that has been
opened by an AlphaBASIC nrogram.,

For further information, see Appendix £ of the AMOS/L Monitor Calls
Manual, B§S-10003-00,

18.5.6 Program Headers

ALL AlphaBASIC subroutines must contain a program header at the start of
the subroutine. Program Theaders are defined by using the PHDR macro,
discussed in Appendix & of the AMOS/L Monitor Calls Manual, DSS=1000%-00.

PWM-00100-01 REV BO4

CHAPTER 19

USING ISAM FROM WITHIN BASIC

This chapter discusses the I13AM irnformation management system and its use
fprom within BASIC. Tt ds important when reading the following sections thet
you be familiar with opening and using random dats Tiles. iF vou are not,
refer first to Chapter 15, "AlphaBASIC File I/0 System.”

The 1SAM program s a tool for organizing and retrieving data. The name
stands for "indexed Seguential Access Method,” and refers to the manner in
which the data s organized.

ALphaBASIC has the ability to process indexed sequential files by tinking to
the TI1SAM assembly language peckage (which must reside either in system
memory or in individual user memory). ISAM supports multiple index files
via some elementary ISAM statements that allow the direct control of index
file and data file items. This chapter assumes that you are familiar with
the Alpha Migro ISAM system. For more detailed information on ISAM fites
and the 1SAM assembly lLanguage package, please refer to the 1SAM Systenm
Yaer’s Guide (DWUM-000-06%.

19.% FILE STRUCTURE

A indexed sequential file consists of one data fite and one or more index
£iles which link to the data file. The data file i3 structured in the same
way a@s a normal random access file except that ISAM Links all records which
are not surrently active to each other in a chain called the “free dats
record tist.” ALL data records reside in the data file and the data records
may be any size up to the maximum of 3512 bytes. As in the normal random
file, data records are not split scross physical 512-byte Elock bhoundaries
in the file. Index files are arranged in a complex balanced Tree structure
and sontain one symbolic key for each active data record plus a link to thet
data record in the data file. This Link is the retative record number and
‘e used 4in the same manner as its counterpart in a normal random access
file. The index file also contains an array of internal links which
comprise the sequentiat agcess tree structure.

Two references wused din this manual may be confusing iFf they are not
understood. When we talk about an "indexed file,” we are speaking of the

{Changad 31 Jotcher 1981}

USTING 15AM FROM WITHIN BASIC Page 19=27

entire fite structure in general, including the data file and one or more
index files. We talk about an "index file” when specifically speaking of
the portion of the structure which contains only the symbolic kevs and the
tree links. ISAM stores symbolic keys in an index file in ASCII collating
sequence, Index tiles may be primary or secondary.

TMPORTANT NOTE: Both INDEXED and INDEXEDRSEX{LUSIVE modes reguire that 15AM
be able to write to the disk containing the index files asven 1f vou do not
nltan 1o do anything more than read from the disk; therefore, make sure that
that disk containing the index files is not write-protected.

ALL dndexed seguential files must be created by the ISMBLD program prior 1o
access by any AlphaBARIC program. There js no method for the grestion of a
new indexed file within the AlphaBASIC language since this would reguire a
profribxitive amcount of seldom-used code. You may, however, create irdexed
filtes by using the feature that allows a BASIC program to coreats and then
gxecuts a command file. This command file gould set up parameters and then
call the [SMBLD program to perform the actual greatiocn of the files,

For compatibility with existing structures, the data file must have an
extension of LIDA and all index files must have an extension of JIDX. Thers
must be at least one index file which iz called the primary index file.
There may also be additional index files called secondary index fites which
alsc Link to the primary data file. The primary index file must always be
opened in any program in order to gain access to the data file, This i3
true even 1Y you only dintend to asccess the dats fils through one of the
secondary index files in the current program. For information on file
structures and operating the ISMBLD program, refer to the IEAM System
User's Guide (DWM-00100-063.

19,2 SYMBOLIC AND RELATIVE KEYS

Indexed files are accessed by one of two specific types of kevs. The
retative key s already familiar to us zince it is the same type of key used

t¢ agcess normal random files, The relative kev is the fleoating point
record-number variable specitied in the OPEN statement for the indexsd file.
Procontaing the number of the logical record to be accessed. A relative key
when used with an indexed file is used only to access a specific record in a
data file,

The symbolic key is new to us and is wsed only with indexed files. Symbolic
keys are ASCIT strings of variable lengths and are used to access the index
file (primary or secondary). Symbolic keys are specified in thes [8AM
statements when accessing the index file, and are used to retrieve the
relative key of the associsted date record in the datas file. The concept of
symbolie versus relative kevs and their different uses s an important one,
aricd misuse of them causes the ISAM system to malfunction dn & rnumber of
Ways, Symbolic kevs are used with the ISANM statement; relative keys are
used with the OPEN statement so that READ and WRITE statements can be
successfully performed. In most instances, the use of the relative key is
transparent to you, and s merely 3 device automatically set up and
referenced by the above calls,

{(Changed %1 October 19813

UEING ISAM FROM WITHIN BASIC Page 19-3

18,3 THE 1SAM STATEMENT
You access Indexed files by a special statement in AlphaBASIC salled the
ISAM statement. This statement has the general form:

1A% gfile-channel ,code . symbolic-key
&

ALL ISAM statements follow the above format using a different numeric value
in "code" to specify the specific function to be performed by the I15AM
package. ALL ISAM statements directly trenslate into a specific type of
call to the assembly languace 15AM program. A symbolic key must always be
specified even for those functions which do not reguire the use of one.
(This sitmplifies syntax checking and execution coding.) You may use a summy
string variable 1f you desire. Briefly, the following codes are used by the
ISAM statement:

1 - Find a record in the data file by symbolic key (i.e., return
the relative record number in the vartable specified by the
OFEN statement that opens the data filefprimary index filed.

2 = Find the next data record (by the order in which the symbolic
kevs appear in the index file), Return the relative record
number in the variasble specified by the (QPEN statemant.

A - Add a symbolic key fto an index file.
& = Delete g symbolic key from an index file.

5 - Locate the next free data record in the data file (returning
the relative record number in the variable specified in the
GPEN statement) .

& - Deiete & record from s dats file, and return that record to
the fTres Lizt,

Foo- Perform code 2 {exnlained sbhovel) and return the symbolic key,

“oode®

An ervor results 1f an ISAM statement i1s execwied with the value of
3 | o
gl numeric

not soual to one of the asbove numbers. The “code™ may bhe any Leg
sxpression which is resolved at run-time.

19.3.1 The ISAM 3Statement [odes
uiler explanation of the IS5AM codes. Some reqguire a relative
key as input; others return a relative key to be used when asccessing the
data record. This relative key iz returnsd in the variable specitied by the
OPEN statement for the dndex file being accessed by the ISAM statement.
This then sets up the system for an tmmediate sccess to the corresponding
data record visa a READ or WRITE statement.

Below its a T

{thanged 31 Ooctoher 128713

UBTNG ISAM FROM WITHIN BASIC Page 194

Code 1 - [5AM searches in the specified index fite for the key which
matches the symbolic key in the ISAM statement. If a match is found,
T5%8M returns the associated relative key so that your program can
access the data file, 1f the key s not found, ISAM returns ah error
code 3% (zee Section 19.8, "Error Processing”r.

Code 7 - I154M accesszes the specified index file and logates the next
Symbolic kev. TSAM then returns the corresponding relative key in
preparation for a READ op WRITE to the data File. 1f this 1s the
first access to the fite following the OPEN statement, I13%AM Locates
the first symbolic key. If this statement Toblows 2 previcus codes 1
statement, ISAM locates the next symbolic key following the code 1
key, TIf there are no more keys in the index file, ISAM returns an
and-of-index-File earrar (38, and your program should not ascess the
dats Tile further until ISAM returns a valid relative kev.

Code 3 - I5AM adds the specified symbolic key to the dndex fT1lg
Flong with the relstive key. The relative key must he in the
corresponding variable specified in the OPEN statement. I3AM normally
sets up this relative key hy a pripgr code 5 18AM statement which
delivers the rext free data record to be used., This reletive key then
hecomes the result of any index sesrch which Locates this specific
associated symbolic kev.

Code 4 - I5AM locates the specified svmbolic key in the index file,
deletes it, then returns the corresponding data record retative key so
that the dete record may be deleted and returned to the free List by
using & code & TSAM statement., If 18%AM cannot locate the svmbolic key
in the index file, 11 gives you a "record not Tound” error,

Code 5 - ISAM extracts the next available data record from the free
Tist and returns the relative key in preparation for & code 3 index
key addition statement. If no more datas records are free in the data
fiie, I%8M returns a “datas Tile full® error. ALL free records in the
data Tile are kept in g linked Llist catled the "free List.” This list
i butly dndtially by ISMBLD and containg all the records in the data
file, As code & TSAM statements are executed, I5AM again returns the
records to the free List for reuse. 15AM does not modify the index
file and ignores the symbolic key fn the statement. This call must be
nade only to the primary index fite nuwber,

Code & ~ the data record specified by the relative key 1% returnsd
To the free List for reuse by & code 5 call., The index file s not
modified and the symbolic key in the statement 13 dgnored. This call
must be mades only to the primary index file number.

Code 7 - Same as code ¢ above, except that ISAM also returns the
symbolic key. The symbolic key variable in your code 7 ISAM statement
must bhe the same size as or larger than the key defined in the ISAM
Tndex file,

{Changed 31 October 1981

USING 1SAM FROM WITHIN BASIC Page 19-5

19,4 OGPENING AN INDEXED FILE

As with other types of fites, an indexed file must he opened with a specific
fiile~channel number prior to any referances To rhe file by other statements
The OPEN statement follows the zame format as ihat peed by the normal wamdmm
files except that you specify INDEXED or THOBEXER EXCLUSIVE mode.

OFEN #file~channel ,Tilespeo, INDEXED, record-size,relative-key
OPEN #f1le~channel ,filespec, INDEXEDEXCLUSIVE, record-size, relative~key

#file~channel Any numeric expression that gvatuates to an
integer from (-A5535 (0 s defined as the user
terminall .,

filespec Any string expression that evaluates 1o &
agal aMns fite specification {optionally
including account and device specificationsl,
specifies the data file/primary incdex file or
the secondary index file. (The primary index
fite alwavs has the Same nane as vhe datsa
file, but has the LIDX extensiong the data
fite has the I1DA extersion.’

INDEXED specifies indexed sequential mode.
TNBEXED EXCLUSIVE Specifties indexaed exclusive mode, {See
Section 19,7 for more information,’

recard-size Expression that specifies the Logical record
size for the data fite,

relative-kay-

variable Floating point wvariable that containsg the
record number of the logical record you want
to access.

The filespec must refer to the name given to the index fiie during the
ISMBELD creation. Tf this is a call to open a secondary index file, you must
have already previously opened the corresponding primary index File on
another file number so that the data file may be accessed.

iz ar example, assume that an indexed file structure ponsists of the primary
index and data files named MASTER.IDX and MASTER.IDA respsctively. The
structure also has secondary index files named ADRESS.IDX amc PAYROL, IDX
which access the MASTER.IDA file in different seguences. If you desire to
process the file structure via the ssguence used by the ADRESS.IDX index
file, the following two statements are reqguired:

OFEN #1, "MASTER®, INDEXED, RECSIZ, RELKEY
OPEN #Z, "ADRESS", INDEXED, RECSIZ, RELKEY

The +irst statement opens both the date file and the primary index file.
NOTE: Remember that there are now three files opened: 13 the data file,

USTNG TSAM FROM WITHIN BASIC Page 196

MASTER.IDA: 23} the primary fdndex file, MASTER.IDX: and %3 the secondary
index file, ADRESS,IDX.

Note that the record size expression (RECSIZ) and the relative key variable
(RELKEYY are ddentical in both statementy. Thisz s important since they
both refer to the same date file {(MASTER.IDAR)Y. ISAM statements may then he
made referring to either index file (#1 or #2) but all READ and WRITE
statements must be made to the dats file (#1) which is associeted with the
primary index file. In other words, READ and WRITE statements must not be
made to file #7. ’

19.5 READ AND WRITE STATEMENTS

The ISAM calis do not access the dates records {hemselves but merely deliver
back the relative key of the associated date record to he used, Normal READ
and WRITE statements are then used to actually retrieve or write into the
data record itzelf., These READ and WRITE statements follow the same format
used when accessing a normal random access deta Tile in AlphaBASIC. The
relative key associated with the primary Tile {23 specified in the O(PEN
statement} must contain g valid relative key for the gperation or an ercor
results. READ and WRITE statements as mentioned hefore must only be made

using the primary index file-channel number., For example:

10 OPEN #3,PAYROL" , INDEXED 67 .NUM'REC
20 I3SAM #3,1 NAME ! Get record
A0 READ #3,UABEL | Read record

12.6 C(LOSING AN INDEXED FILE

In order to ensure that all data records have been rewritten to the data
file and that all Links 1in the index file have been properly updated and
rewritten to the disk, it is imperative that all index files {(primary and
secondary) be closed using the normal CLOSE statement, referencing the
correct file-channel number. Failure to do so may result in destroying the
Link structure, NOTE: It makes no difference in which order you close the
ISAM files; however, remember that you cannot access a secondary index file
it wou have alrsedy closed the primary index.

19.7 INDEMEDTEXCLUSIVE MODE

when your program is the only program that needs to access an [SAM indexed
file, vwyou can specify INDEXED'EACLUSIVE as the mode in which you open the
file. For esxample:

OPEN #5 . "PAYROLY L INDEXEDTEXCLUSTIVE, 100, RECTNUM

USING ISAM FROM WITHIN BASIC Page 197

The statement above opens the data file PAYRGL.IDA and the primery index
file BAYROL.IDY in exclusive mode. The main adventage of IMDEXEDTEXCLUSIVE
mode i3 2 Large increase in the speed with which.your programg ©an access
the indexed file. 1t also prevents other users from accessing your indexed
file until you close the file. Otherwise, it works in the same way as
INGEXED mode.

In INDEXEDTEXCLUSIVE wmode,. I5AM knows that no other program is going o
access the indexed file while vour program 1s working with it. Therefore,
ISAM can Take full advantage of prior knowtedge about the file for syery
sccess and can speed up your access time considerably.

when vour program opens an indexed file in the more common INBEXED mode, vou
must use file-locking procedures to protect your indexed file 1f other
crograms are going to ascess it while you are working with the fite. {For
information on the $ile-iocking subrowtines XLOCK and FLOCK, see the TBASIC
Programmer's Information” section of the AM-100 documentation packet.}

When your program opens an indexed file in INDEXEDTEXCLUSIVE mode, I15AM will
not allow another user to access the specified indexed filey 1F they try to
do 8o, they see a "file not fournd” error message. This means that you only
have to worry about file-iocking at the moment in which you are spening the
indexed file. You may prevent ancther program from accessing your indexad
file at the moment that vou are opening 1t by securing the file vias the
fite~locking routines XLOCK or FLOCK, or just by making sure that no other
user s running a program That accesses the file.

Remember: The advantage of an indexed file opened in INDEXED'EXCLUSIVE mode
is that ne other user can access the file while vou are using 11, It you
need to have several programs access the file, use the INDEXED mede; in that
case, remember to use file~locking procedures to prevent users from trying
to access the file at the same time,

One feature of the TNDEXED'EXCLUSIVE mode is that it temporarily renames the
LIDK File to an LIDY extemnsion to prevent I5AM from letting other programs
access the file. 1f something should go wrong (sueh as a system crashl,
ISAM may not he able to rename the file teo its originmal .IDX extension, and
vou will have to do so yourselT.

For more information on INDEXEDTEXCLUSIVE mode, see Important Notige for
15AM Users, in the “User's Information” section of the AM-T0D “documentation

nackest

19.8 ERROR PROCESSING

Every 1SAM statement may potentially return some kind of an error. These
errors fall into two categories: hard or soft errors, Hard errors are those
grrors returned to ISAM by the monitar; such errors indicate invalid disk
operations (s.0., file not foundl. Soft errars cccur within the ISAM
processor aned indicate an error or conditicon peculiar only to ISAM files,

USTNG 15AM FROM WITHIN BASIC Page 19-8

Hard errors cause AlphaBASIC fo print an error message and abort to the
manitor or (it srror trapping is enabled) pass control o your own error
trapping routine. (%ee Chapter 17, "Error Trapping,” especially Section
17.1, TON ERROR GOTO Statement,” for information on writing vour own error
trapping routines,)

128,11 Soft Errors

S5o0ft errors never resull in an error message oF error trap, and BASLC does
not ston program execution when a soft error occurs. It is therefore wup to
your program to test for such errors., You must test for a soff error after
pvery IS&M statement. Otherwise you have no way of knowing whether or not
the statement was successfully executed. Use the ERF file error function.
ERF i3 used in much the same way as the EOF function. You must specify the
file number used in the 1SAM statement whose success you want to test. 1f
the ERF function returns 2 zero, the preceding ISAM statement was
successfully executed; 3f ERF returns & nonzero number, some errar Was
detected, and your program must take corrective action before accessing the
file again, For exwsmple:

TSAM #2, 7, PARTINO
1F ERF(2) <> 0 THEN GOTC ISAM!ERROR

The routine ISAMTERHOR might print anm error message and then exit. (See
Section 11.3.2, "ERF(XI” for more information on ERF.)

The soft error codes returned by ERF are:

32 - Illegal ISAM statement code

E3 - Record not found in dndex file search

%4 - duplicate kev found in index file during attempted
key addition

5o Link structure s smashed and must he re-crested

& o= Index file 95 full

7 o~ pata file iz full i.e., free List 135 empfyl

& ~ gnd of file during seguential key read

18,9 USING INDEXED SEQUENTIAL FILES
The sections helow give step-hy-step instryctions for using indexed files.
For a complete demonstration of using ISAM from within BASIC, refer to the

sample BASIC orogram in Section 19,10 at the end of this chapter.

Remember that wou must Load the 1SAM program into memory before using a
BASIC program that uses ISAM statementsz. tse the monitor LOADR command:

LLOAD SYS:ISAM.PRG

UG INEG TEAM FROM WITHIN SASIC < Page 19-9

(NOTE: The "S§YS:" device specification iz an ersatz device specification
that specifies the System Library account, DSKU:01,43. The command above is
the same az: LOADR DRSKD:ISAM,PRGLT,41.) On the AMOS/L system, the .PRGE is
replaced by .5YS.

12,9.7 fLreating an Indexed File

tUse the I8MBLD program to oreate a date/index file combination. IT you want
a secondary index file, use ISMBLD acain to create that file. While using
ISMBLE, yvou may either isnad the empty datalindex file with information from
an ordinary seguential file, or vou may leave the file smply and le

BASIC program enter the data, For inforsation on using ISMBLD, see the
ISAM System User's Guide,

19.%.8 Adding Data to an Indexed File
From within your BASIC program:
1. Open the data/index file with an OPEN statement. For example:
OPEN #1, TPHOMES", INBEXED, RECSIZE, BRELKEY

Remember 1o open any secondary index files that you might want to

use vig separate OPEN statements on ditferent file-chammel numbers:
OPEN A%, TIDMUMY, INDEXED, RECSIZE, RELKEY

d. Use g code 1 ISAM statement to see T the index entry you wanpt fto
aodd already exists. For esxample:

ISAM 81, T, NAME
Cheok to see if an error was refurned:
IF ERFCTY = O THEN PRINT “Dunlicate name’ : GOTS GET'MAME

(I ne error occurred, the dndex entry already exists, and you
can®t add ft.)

If wou are

4
secondary i

o
o7
&

; secondary index files, also check to see that
iex eniries don't already exist.

oy

-~ Now, uze a code b OLSAM statewent to get the next free dats record.
For exampl

.
e

Toak F1.5 hummy
a fite s full

Check to make sure that am grror {e.g., 37 -~ Tdat
{f d not oocur. For example:

rae List s emptyT) di

DWM-GOT00-001 REY 24

USING ISAM FROM WITHIN BASIC Page 19-10

19.9.3

IF ERFOYTY <> 00 THEN SOTQ ISAMTERROR
If no error occurred, the record number of the next free record is
in the relative key variable defined by the OFEN statement. Now
¥ou can write your data to the data files

WRITE #1, INFOD
Now wvou must add the symbolic keys for that data record to the
index files, using a code 3 ISAM statement. (These symbolic keys
will then Link to that date record.} Be sure to check for an ISAM

arror after each addition.

After adding all vour information, close the ISAM files.

Reading Data Records in Symbolic Key Order

LSAM stores symbolic kevs in the index file in ASCII collating seausnce. To
retrieve records in the order in which their keys appear in an index fite:

1.

Open the indexed sequential file with an OPEN statement. T ovou
also want to open one or mere secondary index files that
tross—-index to the primary index file, use one OPEN statement for
sach secondary index file.

Use a code £ I3AM statement to Tind the next symbolic kev.

Check to make sure that the ISAM statement didn't return an error,
Far example;

IF ERFOTIY = 38 THEM PRINT “End of the file™ : GUTS PROMPT
IF ERFOTY < O THEN GOTO ISAMERROR

The proper relative key is in the relative key wvariable specified
by the OPEN statemenif; now use a READ statement to read in the data
record associated with that key. (Hemember that the READ statement
iz done to the primary data/index file, even though you may have
specified a2 symbolic key contained in a secondary index fileld

Repeat thess procedures to step throuwgt the data records in the
order of the symbolic keyz in the index files. (C{loss all files
when vou are done.

DRM~-GOT00-01 REY BOA

USING ISAM FROM WITHIN BASIC Page 15-11

19.¢.4

Ta

19.9.,5

Reading Date Records Randomly by Symbolic Key

Open the datafindex file with an OPEN statement. You must also
ppen any secondary index file you want to use.

e a code 1 ISAM statement to locate the data record you want to
find. The statement must contain the symbolic key associated with
the data record vou want, and must contain the file-channel number
assoviated with the index file that contains the symbolic kev.,

fheck for a "record not found” error; this indicates that the
symbol ie key was not found in the specified index file,

if the record was found, the proper relative key is now in the
relative key variable defined in the OPEN statement. Use a READ
statement to read in the data. (The READ statement includes the
file-channel number associated with the data file/primery index

file even 3f the symbolic key used belonged to a secondary index
file.)

Repeat steps 2 through & for each record you want.

{lose all files.

tpdating Data Records

You may sometimes want to change the data in a record in the data fite. You
may oo so by first finding the record vou want and then rewriting itz

1.

4

@

Open the deta/index file with an OPEN statement.

record you want via one of the methods above (1.,e., by
ode 1 or code 2 TSAM statementl.,

fheck *to make sure that +the record was found. {Use the ERF
function.)

Now the correct relative key is in the relative key variable
definsd by the OPEN statement, so use the WRITE statement to
rewrite the data record. {(Remember to specify the file-channel
number asscciated with the data/primary index file.)

Repeat steps 2 through 4 for all records you want to rewrite.

fiose the files.

The steps above o not change the dindex files, so do not change the symbolic
key in the record you rewrite,

USTING TSAM FROM WITHIN BAZIC Page 1912

1 you need to change the symbolic key(s) in the data record, you must first
delete the key in the correct index file (code &), and then add the new key
to the index file (code %Y. You do not need to delete and re-create the
data record during this operation unless vou are entering completely new
data.

19.9.6 Dheleting a Dats Record

peleting a data record from an indexed sequential file entails not anly
deleting the record itself from the data file but also deleting all symbol ic
keys associated with that deta record from all dndex files.

1. Open the data/primary index file and all secondary index Tiles
needed,

ate the data record via one of the symbolic keys (a code T I3AM
=3

o see fthat the statement was executed successfully (i.e.,
that FRF returned a zerol. For sxample:

L
5
£
e
&
pcs

IF ERF(AY = 3% THEN PRINT "Record not found” : GOTO PROMET
IF ERF(Z2) <» 0 THEN GOTQ ISAM'ERROR

&, Read the data record with a READ statement. (The file number must
be the number associated with the datalprimary index file.) Extract
gach symbolic key from that record.

k¥ 2]
3

Now you must delete all symbolic keys that are associated with the
delsted record in each index file. Use code & THAM statements to
do se, specifyving the symbolic keys you extracted from the data
record in the step above.

f. After you delete each symbolic key, ghesk for errors.

F. Now go ashead and delete the data record by using 2 code 6 ISAM
statement,

2, Check to see thal no 8rror OCCUPTad.
9. fLlosze all fites.

NOTE: A geod check on the file structure would be to store the relative key
in angther variahie and then compare the relative kevs returned by each I15AM
code 4 statement to ensure that the symbolic keys all did indeed link to the
correct date record, You should also check after each ISAM statement to sae
it oany ereor oocurred.

USING TSAM FROM WITHIN BASIC Page 19-13

1910 SAMPLE ISAM PROGRAM

The sample program below will make clearer the use of the commands discussed
above, For formation on using ISAM from within & BASIC program,
consult the ap Userfs Guide, (DWM-00100-063.

We first create or enter our program using the text editor VUE. wWe'll call
i1 SAMPLE.RAS. After the program has been entered, we compite it:

LCOMPIL SAMPLE (RED)

after we compile the program, and before we run it, we first use the program
TEMBLE to bulld the ISAM $iles LABFLS.IDA (the data file), LABELS.TDX (the
primary index file), and HASH.IDE (the secondary index file). HNote that we
build an empty Tile {f.e.., we type a RETURM after the Load fTrom filgs™
promptl) . We use the BASIC program below to place data into the file

LISMBLD LABELS (FET)

Size of key: 25 (REY)
Position of key: 1 (HE7)
Stze of data record: 67 (g7
Mumber of records to allocate: 30 (FET
Emtries per index blogk: 10 (0

Pmpty index blocks to allocate: 20 {RET)
Primary Rirectory: ¥ [RET}

Dats tile device: LAeT

Ltoad from files (RET)
< ISMBLD HASH {meT]

Size of key: 10 FET

Position of key: S8 [RET)

Size of data record: &7 [FET)

Number of records to allocate: 50 RET)
@5 ner index block: 10 (EET

index bhiocks to allogater 20 [FED

?z%mary Directory? N (Rer)

Secondary index to Tile: LABELS [(BET)
Endd of nrimary file
Mo records loaded

On the AMOS/L system, you are not asked how many entries per index block,
; | o i for you, and informs you of the number., Now, before we run
program, we must lead ISAM inte memory:

SLOAD DEKD:ISAMOPRGDY, 4T (Use .LIT on AMOS/L} (RED)

On the AMOS/L system,. you would use ISAM.SYS. Then we run our BASIC program:

LRUN 3AMPLE (BETD

DRM-O0T00-01 BREV 804

HSING ISAM FROM WITHIN BASIC Page 19-15

500 WRITE #1, LABEL

Bi0 ¢ add key to primary index file,

520 ISAM #1, 3, NAME

5A0 IF ERFOTY <> 0 THEN GOTO ISAMTERROR
& 1 Add key to secondary index file.

550 TSAM #2, 3, HASH

56 IF ERF(ZY <> {0 THEN GOTO ISAMTERROR
570 GOTG PROMPY

580

590 DELETETRECORD:

600 INPUT VENTER NAME: "z NAME

410 NAME = NAME + SPACE(Z5-LENINAME:?

a20 P Werify that the key exists.

430 TEAM H1, 1, NAME

H4{1 IF BERF(T) = 3% THEN PRINT "RECCRD NOT FOUNR' 2 GOTO PROMPT
550 PFOEHF{T) <x 0 THEN 60TO ISAM'ERROR
64 READ #1, LABEL

A70 1 Delete the key from the primary index.
&80 TSAM #1, 4, NAME

&9 IF BRFOTY <> O THEN GOTO ISAMPERROR
7O Y pelete the key from the secondary index.
10 TSAM #2, 4, HASH :
TE IF ERF{2) <> 0 THEN GOTO ISAM'ERROR
TAL U belete the data record in data fite,

74l T5aM #1, A, NAME

7503 TFOERF{TY <> 3 THEN GOTO TSAMPERROR
&l GOTG PROMET

T

FED INGUIRETRECORD:

TR0 THPUYT YREY NAME 1) OR HASH (2): "z FUNCTION
BO0 TF FUMCTION = 2 THEN GOTO BYTHASH

214 INPUT TNAME: UV MNAME

B0 NAME = NAME + SPACE(25-LEN(NAME})

820 1 Locate the racord.

#40 TSaM #1, 1, NAME

B0 TF ERFLTY = 33 THEN PRINT "RECORD NOT FOUND™ & GOTO PROMPY
&80 IF ERFOTY <> THEN G070 ISAMPERROR

BP0 ! mRead the record.
SR0 READTRECORD:

290 READ #1, LAREL

200 PRINT NAME, MASH

210 PRINT ADDRESS, STATE, ZIP
320 GOTO PROMPT

FAG U Locate record by hash code.
P40 BY THASH:

50 THPUY "HASH: “: HAGSH

Gai HASH = HASH + SPACECTO-LEN{HASH})

Y7 TRAM #2, 1, HABH

980 TFOERF(2) = A% THEN PRINT "RECORD NOT FOUNDY < GOTO PROMPT
PR TFOERF(Z) <> {1 THEN GOTD ISAMTERROR

1500 HOTO READTRECORD

USING TSAM FROM WITHIN BASIC Page 19-16

TO20 PRINTILABELS:

1080 ¢ Read null key to get to front of file.

1040 NAME = SPACE(ZS)

10560 ISAM #1, 1, NAME

1060 ' Loon thru file doing seguential reads until we hit the end.
1070 LO0P:

1080 I5AM #1, 2, NAME

1090 IF ERF{TY = 38 THEN GOTC PROMPT ! we hit end=-of-file.
1100 TFOERF(TY <> 0 THEN GOTO ISAMPERROR

1110 READ #1, LABFL

1120 PRINT

1130 PRINT NAME, HASH

1140 PRINT ADDRESS, STRTE, ZIP

1154 HOTO LO0OF

1140

170 ENDYET:

1180 ¢ Be sure and close files bhefore we exit.

1190 CLOSE #1

1200 CLOSE g2

1210 EMND

1220

1230 ISAMTERROR: UERF(YY returned an 154M error
1240 BRINT "?FATAL ISAM ERRORT P oother than RECORD NOT FOUND.

1250 END

ARPENDIY A

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS

The following four sections summarize the syntax of the AMOS man%@@r
commands that invoke and control RASIC, and the BlohaBAST{ commands,

statements and functions.

Commands are instructions to BASIC that affect the way it handles a progran.
For example, the SAVE command rells BASIC te save a copy of a program on tﬁ@
dick. Commands are not part of the program itself, and may only be used in

interactive mode,

sratements are instructions to BASIC from within the program; you might
think of them as program ‘verbs” which tell BASIC how to operate on the
program data. For example, the PRINT statement rells BASIC to display the
specifieq data. Although most often part of a program, yOu oan alse use
some statements directly in interactive mode, outside of & program.

Functions are elements of an expression which compute and return & value,
For example, ABS{X) computes and returns +he absolute value of ¥. You may
alse use functions (in combination with program statements) directly in
interactive mode, outside of a program.

The svntax of the commands, statements and functions is iltustrated in this
appendix usinag certain conventions. The curly brackets { and ¥ are used o
erclose options available for certain commands and statements,. These may be
nested several deepn. Certain commands and statements permit a series of
sptional elements. The elements are numbered T through N, and the variable
number of elements +n this available series s pictured using three dots
{onuta For sxample:

INPUT {”prﬁmptmﬁﬁﬁimg”,}war%abi&i{,va@iabtazswmvariabiﬁN}

indicates that your INPUT statement may request an input of a minipum of one
nomeric or string variable, You may also cause it to reguest two numeric or
string variables, but if you do, the two variahles must bhe separated by
COMMAas., Amd o forth to variableN, where W is some arbitrary numbar. You
may aslso optionally supply a string Literal prompt string.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Fage A~7

For the AMOS monitor commands, the underlined dot represents the AMOS orompt
you see at the AMOS command level, The @ET) indicates that you should type
@ RETURN at the point where you see the symbol, following the text.

Whern we use the term "filespec,” we are tallking about an AMOS file
specification which contains the name of the file and optionally Includes =a
device, account, and extension specification. For instance:

heviidfilenamel.extM Project ,programer—numberl}

AL BMOS MONITOR COMMANDS

These commands are used only from the AMOS command level, They are
itlustrated much as you would see them on wvour terminal,

ALt.l BASRIC

LBASIC (ET)

READY
Flaces you in the interactive mode of AlphaBASIC and gives vyou the prompt
W READY., From here YL may gnter certain statements or
statement/ function combinations without Line numbers. BASIC responds to

valid entries with immediate resulis. Invalid entries cause an error
message Yo bhe returned. You may also enter any valid statements, functions,
constant values, variables, arithmetic operators, 5Erings, data or
expressions {meaning any combination of the above) as long as they are
preceded by a Uine number from 1 to 653534, These limes combine o form a
BASIC program, Line entries dnpvalid dus to syntactical errors or illegat
formats are reported immediavtely via error messages. Other illegal entries
which cannot be detected immediately are reported during program compilation
OF Drogran run,

You exit from BASIC back to the AMOS command level via the BYE command.,

LLOMPIL Fitespec [EED

The file specification may simply be the filemame of a BASIC program in your
account, or it may be a complete file specification including device name,
fiiename and extension and account number. The default extension 1s .BAS,
Lf the file you specify i3 not found, the system error message

TCannot OPEN Filespec - File not found

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A=-3

is returned to you., When the file is found, the system heging To Process
the file. At the end of the compitation process, 2 new file %aa been
created in your account calied by the filename and with the extension .RUN.

Thig s the compiled program.

a.1.% Controi-f

[Type a CONTROL and & € simultansouslyl
¢
gperator interrupt in Line nonn of FILE.RUN

A Control-€ interrupts the execution of the program currently running.
Returns you to AMOS command level.

B.t.4 RHUN

LEUN fitespec (RET)

(The program commences,)

st this command, fne moniter loads the AlphaBASIC run-time packags, RUN,
into memory and éxecutes it, RUN in turn lLoads the fully compiled program
which is specified, having the extension LRUN, into memory and executes it
Your program begins to run from the heginning. Tnterruptions to Yhe program
may occur if there is an error in nrogramming, if there is a STOP statement
in the program, if you type a Control-C during execution, or 1f the program
finishes.

Al 2 ALPHABASIC COMMANDS

The rommands are used in the ipteractive mode of BASIC to control BASIC
itsel ¥,

A.2.1 BEEAK
GREAK {{-3iineff1{,{-}line#2,. ... {-FLinefl}}
sts all breakpoints set if no Line number is specified. Setls a hreakpoint

R
at the aspecified Line number 1f the specified number is positive, or clears
a breskpoint at the specified Line number if it 18 negative.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A—4

A.2.2 BYE
BYE

Heturns you To AMOS command lLevel.

A.2.% COMPILLE
COMPILE

Compiles the program currently in memory.

A.Z.4& LONT
CONT

Program execulion resumes from the last point of cessation.

A.72.% CONTROL~C
[Press CONYROL KEY and € KEY simultanecusly]
{(Terminal rings and vou see the message "Operator interrupt in Line nnnn®™.0

Imterrupts a running program and returns you to interactive mode.

A.Z2.6 DELEYE
DELETE Line#td, Linedf2}

Deletes the program Linel(s) between and including those specified.

ALZ2.7 LIST
LIST fiinef 14, Linef2F)

Lists the entire program in memory, or the Line(s} between and including
those specified.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-5

A.Z.8B LGAD
1 oan filespec

the default file extension is .BAS. Loads the specified program into memary
from the disk.

A.2.9 NEW
WEW

Clears memory of all source code, object code, user symbols and variables.

A.2.10 RUN
RUN
fhecks a flag to determine 1f the program has been compiled. If not, the

program is compiled. RUN then initiates the execution of the oprogram in
memory, starting at the lowest Line number.

ALZ.TT SAVE
SAVE filespecd.RUN?
Saves the program in memory on the disk with the specified name and default

extension of .BAS. If the extension .RUN is specified, the object code is
saved on the disk with the program name and extension .RUN,

A.72.%7 BINGLE-STEP (LINEFEED?
(Press linefeed key)

Executes the current program Line and returns you to interactive mode.

A.% ALPHABASIC STATEMENTS

Statements are used within the source program. Some of them may be used as
direct statements. Mote that those statements that accept a file
specification accept it as a string Literal (for example: "DSKO:INIT.BAS™)
encilosed in quotationm marks, as a string variable (for example: FSPECE), or

a string expression (for example: MID$(A%,1,64) which evaluates to 2 valid
file specification,

SUMMARY OF COMMANDS,. STATEMENTS AND FUNCTIONS Page A-b

ALELT ALLOCATE

ALLOCATE filespec, number-of-hincks

Allocates & random file on the disk with the specified number of disk
o

biooks. Then vou can use the OPEN statement to gpen the Tile for random

processing,

B.R.2 (HAIN
(HAIN fileaspeg
Causes the current program to be deleted from memory and the program with

the specified filename, and the optional device name and axtension, to he
Loaded into memory and execulted.

A.%.F {LOSE

S”“‘i

CLOSE #ftle~channel

toses the specified file., No further reading to or writing Trom that file
& ' Looanother OPEN statement for that file is processed. ALL
1Les are d*fm§?7fﬁimy closed at program completion.

A.R & DATA
DATA datal{,datal,...dataN?

FLOrEs mumeric constants or string Literals in a dedicated wemory area &t

program exsoution, The DATA statement enables data to be an integral part
of the grogram. Mumeric ifems wmay not contain commas within them,

Individual data strings or constants are separated by commas in the DATA
statements. The data between esch pair of commas i ﬁrawﬁ conzecutively from
the dedicated memory area and assigned to the respective READ statemant
variable unt either data 1s exhausted or no further READ statemenis ocour.
it is exhausted, uzing RESTORE reinitiaslizes the data placed in the

data pool by the DATA statement. Motice the READ and RESTORE commands
helnw,

oy omore arravs which

are allocated at the time of program
tring and/or numeric variables

are allowed, ant any number of

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-7

subscripts may be used to define the separate Llevels of mach array.
subscripts may be any legal numeric expression containing variables or

constants.

.R%,6 END
END

rCauses the program to terminate execution, It is not reguired unbtess other
program Lines {8.0.. subroutines) follow the program end.

8,%.7 FILEBASC
FILEBASE n

Teils BASIC that the first record in the file is record number , not record
number zero. You may use any numeric argument with FILEBASE.

ETLEBASE does not associate its value with a spegific fite, but only takes
effect when the program it is in is executed.

A,B. R FOR, 10, STEP and NEXT
FOR variable = expression TO expression {STEP {~Ivalue}
(program statements,if any, to be affected by the loop?

MEXT {variablel

Tnitializes a Loop during program execution, Variables may he subzoripted.
STEP defaylts to positive 1 1f not specified. T STEP is negative, the
values must be gpenified from Larger to amaller {i.2.,
FOR A=10 TO 1 STEP -1; FOR X=~1 TG -10 STEP -2). The statement NEXT (with
the optional variable specifying the particular Loop) continues the loop
unt il the second walue (following T0) is reached by incrementation or
decrementation.

A.F.8 GOSUR or CALL and RETURN

GORUE Label or Lined CALL label or Lined
specified subroutine specified subroutine
RETURN RETURN

GOSUR and CALL perform identical functioms. If a Label is specified, the

SUMMARY OF COMMANDS, STATEMENTS AKD FUNCTIONS Page A-8

subreutine must be prefaced by the Label name and a colon: otherwise, the
first Lire of the subroutine must staert with The specitied Line#.
Subro may be nested, RETURN terminates the subroutine and returns
cortrol e statement following the SOSUR or CALL statement.

PIT T
H H

SGT0

GOT0 Label or Line#

Unconditional transfer statement transfers control to the Label or Line
number dndicated, 1t may also be written G0 70,

arwl FLSE

THEN {statementP{linedt{label’ {FL3FE {statement?{linedIiahel}}
Lstatement M Linel b label} {ELSE {statement i inedH label})

al proceszing statement with many different optional formals.
BASIC statementys are legel withis the statemesnt. Also,
statamants may be nested to any depth.

to b entered from your terminal and sssigred to the spesiiied
string variablels) during program cun. Input 18 prompted with a
: vou supply 8 text prompt. (ommas are the feeminators
you input. A carriage return from the terminal without
% input and teaves all the fellowing variables unchanged,

hetween <
entering date short

channel varisbletd,variahle?, .. variablen)

gnters data from associated with the specified file channel. Forp

use with sequent i

LEPUT LINE {("prompt-string’ ,rvariablel

Mein purpose s to read entire line of input inte string variables. Acts
the same as for numeric variables. For string varisbies, allows an
i ‘ data, except carriage return and Linefezed, to be entered

im Trom vour terminal during program execution and assigned to the
acified string variable, Mo auotstion marks for literal strings are

SUMMARY 0OF [OMMANDS, STATEMENTS AND FUNCTIONS Page AU
required, There is no prompt gymbol by default, Dbut you can define the
orompt fext in the statement. :

INPUT LINE #file-channel,variabled

enters data From Tthe file associated with the specified file number. For
uee with sequential files.

8.5, 14 KILL
Kiti, filespec

Crases the specified file from the disk, A file can be kilied without being
apened or closed. Only files in your account or project can be killed.

LET variable = expression

Assians 3 vaiue to a variable. Use of the actual word LET is optional
(i.e., LET A=Y may be written A=1).

-

ALRLTE LOOKUP

LOOKUR fiilespec, variable
Looks for the specified fite. 1f found, the specified variable assumes the
number of disk blocks the file contains, 1f neot found, the specified

variable assumes 0. If the fila is sequential, variable contains positive
number: if file is random, variable contains negative numbar.

AL3LFT7 ON ERROR GOTO and RESUME
ON EREOR GOTO label/lined ON ERROR GQTO {03

(Disables further error trapping

RESUME Label/lined RESUME

(Brarch to area of program resumption) {Branch to Line causing srror)

rasult of a program error, controt s transferred to the specitied

{abel or Line number for processing. In the error Lrapping routine, the
statement RESUMF causes the program to resume al the statement causing the
error, or at the label or Lline number specified. In the case of a

fantrol-(, the program resumes at the statement immediately following the
nee that was interrupted by the Control-~C.

{Changed 30 April 1331

SUMMARY OF COMMANDS . STATEMENTS AND FUNCTIONS Page fA=-1{)

A.3.18 ON-GOSUB or CALL

ON expression GOSUBR label/Uinef1{,lsbel/line#2,...label/inelN}
ON expression CALL label/lUineft{,.iabel/linef?,...Label/inefiN}

Enables multi-path branching to subroutines based on the positive integer
valus of the expression (i.e., on expression=t, branch to label/linedt,
ero.l.

ALB5L18 ON-ROTO
ON expression GOTC tabei/Uinef#t{,label/Uinef2, ... Label/ UinaiN}

Erables multi-path transfers of program control based on the positive

inteager wvalue of the expression {(i.e., on expression=1, hranch G
Leoel/line#tt, ato.d,

B.3.20 DPEN

OPEN #file-channel ,filespec,model ,record-size, recordi~variable’

Assians & specific dnteger file-channel number to the specified file and
also specifies whether the file 45 being opened for input, output or random
(hoth dnput and output) opecvatioms, or I5AM cpsrations. (Mode may he:
ITNPUT , QUTRUT , APPEND RANDOMTFORCED RANDOM, INDEXEDR, ar
TMDEXED EXCLUSIVE,Y If the mode selected s RANDOM, record-size is an
expression that gpecifies the logical record size, and recordf~veriable is a
vartable that maintains the current logical record number,

ALEL2T PRINT

PRINT {expression—iist}

? {expression-Listh

Gutputs a blank Line, or the expression{s) specified., A semicolon or comma
at the end of the List of expressions inhibits carriage return/ilinefeed
atter & PRINT cutput, The expresfsions to be printed may consist of numeric
or string expressions, string or numeric variables, numeric constants,
string Literals, functions, or combinations of the above, String Literals
must be pltaced within guotation marks. The werd PRINT may be replaced with
the guestion mark symbol.

{Changea 30 &pril 19813

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS page A-11

A.%.22 PRINT USING

variable = expression USING format-string
PRINT USING format-string, expression-List
PRINT expression USING format-siring

For formatted output where the characters are specifically positioned, The
stripg contains one or more special formatting characters to control the
printed output, such as character placement , field size, Leading asﬁer§$k§f
flpating dollar signs, numeric sign, commas, exponential format and numeric
string size. The List is made of the exporession(s) you want printed.

A.%.2% RANDOMIZE
HANDOMIZE

pesets the random number generator seed 1o begin & new random number
seauence starting with the next BRNR (XY fungtion call.

R.E.24 READ and RESTORE
READ variablei{,variable?,...variableN}

Assigns next group(s) of data in dedicated memory 1o variablels).

REGTORE

Readies data in the dedicated memory area for rereading from the beginning
ot the data pool.

READ and RESTORE, along with the DATA statement, enable data to be an
integral part of the program. The data +n the data pool 1s drawn
consecuytively from the dedicated memory area by READ and assigned teo the
respective READ statement variable until either data 1is exhausted or no
further READ statemenis OoCur. 1f data s exhausted, using RESTORE
reinitializes the data pool., See the DATA statement above.

READR has another operation within the file I/0 system which has no relation
toy the DATA or RESTORE statements.

READ #F%le-channel,variablet{,variableZ,...variableN}

This operation of the READ statement reads into the specified variable(s)
4ata from the random file associated with the specified file channel . 1t
ceads from the logical record whose record number is currently in the
recordi-variable defined by the OPEN statement for that file.

SUMMARY OF COMMANDS, STATEMENTS AMD FUNCTIONS Page A-12

A.A.25 SCALE
SCALE value

Sets the number of decimal places by which all #loating point numbers are
offset when they are calculated, to minimize error propagation.

A.E.26 GIGNIFICANCE
SIGNIFICANCE value

where the wvalue is between T and 11. Sets the maximum number of printable
digits in unformatted numbers., Numbers are calculated in full Ti-digit
accuracy, then rounded off te the value of sitgnificance just prior to
printing, Not in effest when PRINT USING statements are being used,

R.5.27 BTOP
STeR

Suspends program execution and returng you to interactive mods or AMDS
monitor level, depending on whers vou were at program commencement, You see
a message identifying the Line of the program stop. In the compiler mode,
from the AMOS monitor level, the message adds, "Enter (R to continue:s™,
From the interactive mode of BASIC, the program may be continued by the [ONT

or singlie-stepn (linefeed) commands.

A, 8 28 STRBIZ
STREIZ valye

Assigns the maximum size in bytes of all following strings. STRSIZ must be
assigned a positive integer.

ALR.29 WRITE
WRITE #file~channel variableld{ variablel,...variableN}

Writes the data currently assigned to the specified wvariablels) inte the
random file associated with the specified file channel. It writes into the
Logical record whose record number s currently fin the record-~variable
defined hy the OPEN statement for the file.

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A-15

A.3.30 XCALL
KCALL ?Qatiﬂeﬁia?gumentﬁ{fargumentﬁﬁﬁ*gargum@ntN}}

calls an assembly language program as a BASIC subrautine . The argument may
he a variable or an expression.

A.4 ALPHABASILC FUNCTION STATEMENTS

The following is a List of the AlphaBASIC functions, Functions almost
always reguire an argument. Depending on the function, the argument may be
s wvariable, a string or a fixed value. The argument is used either to
cantral the function or as data upon which the function operates,

We hawe organized the AlphaBASIC functions into Two categories: those that
accept numeric arguments and those that accept string arguments. However,
he aware that because of the mode independence of AlphaBASIC, such
distinctions are often hazy. For example, although the sguare roct
function, SGR, is a numeric function, you can give it a string argument as
Ltong as the mode independence feature can convert that string to numeric
data. For examples

BRINT SGR{1SD

&

PEINT SQR(7IS™)

A

In the same way, you can use the string function LEFTS to excerpt characters
from numeric data as if that data were a string:

PRINT LEFTSOMZ237 .20
12

PRINT LEFTH{45%6,2)

45

.47 NUMEREC FUNCTIONS

Thase funciions reocuwire arguments which can be svaluated as numbers. X may
ba any expression, but f it containg string variables or literals, they
@

must represent numeric vaitues, For exampl ARS T2 returns 13.

BWM-00100-01 REV BO4

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS : Page A=~74

Aubo1.7 ABS(X) - Returns the absolute value of the argument X.

Acbuted CHROX) - Returns a single character having the ASCII decimal wvalue
of X. Only one character is generated for each CHR function call.

AL4.1.% EXPOXY ~ Returns the constant e (2.71828) raised to the power X.

R4,.%.4 FACTOX) - Returns the factorial af K.

LR A I

EES |

FIX{IX) - Returns the integer part of X (fractional part truncated),

A.4.1.6 INT(X) - Returns the largest integer less than or ecual to the
argument X.

A.4,7.7 LOGOO - Returns the natural (base e) togarithm of the argument X,

A.g. 1.8 LOGHD = Returns the decimal (base 100 logarithm of the argument X,

A.4.1.9 RNDIXY - Returns a random number generated by a pseudo-random
number generator based on the seed. The argument X controls the number to
be returned, I X is negative, it s used as the seed to start a new
secuence of numbers, If X is zero or positive, the next number in the
sequence s returned, depending on the current value of the seed (this s
the normal mode).

Aak, 110 SGNOG - Returns a wvalue of =1, O or 1 depending on the sign of
the argument ¥. Gives =1 if X is negative, 0 if X s 0 and 1 if ¥ is
positive,

DWM-00T00-01 rEY 204

SUMMARY OF COMMANDS, STATEMENTS AND FUNMCTIONS - Fage A~15
A.b.1.11 SRR{XY -~ Returns the sguares root of the argument X.

A.4.1.17 STREX) or STRS(X) = Returns a string which is the character
repr esemia?ﬁ@m of the numeric expression X. HNo leading space s returned
for positive numbers.

A.b.2 TRIGOMOMETRIC FUNGTIONS

The following trig functions are implemented in full 1t~digit accuracy:

SIMOKD Sine of X

COROKI Cositne of X

TANOH Tangent of X

ATMAONS Arctangent of X

ASNOXD Arcsine of X

EHERS Arccosine of X

DRTMOX, Y pouble arctangent of X.¥

Al .3 CONTRGL FUNCYIONS
The following control functions test certain file rconditions and control and

roturn informatinn about certain system operations

A &.3.% DATE - The DATE system function sets and returns the twomword
system date. You cannot sel the DATE on the AMOSYL system.

#

DATE gxpression tsets sysiem date to expr
A = DATE freturns syastem date into A

B,4,3.7 TIME - The TIME system funciion reguires no argument and s used to
set and r@?r%eue the time of day as sfored in the system monitor
communications area. The time s staored as 3 two-word integer representing
rhe number of clock ticks since midmight. One clock tick represents one
interrupt from the CPU Line clock fusually &0 or 50 HWz)., DUividing the time

by the cloek rate gives the number of seconds since midnight, Converting
this +to current time is then accomplished by successive divisions by 60 to
get minutes, and agsin by &0 o get hours, Oy fhe AMOS/L system, TIME

returns the seconds since midnight. The TIME cannot be set on the L~ the
TiME=express fan command will be dgnored.

TIME = exprpression Izets time-of-day in system To expr
A = TIWME treturns time—af-day in clock ticks into A

DWM~OOT00-01 REY BO4A

SUMMARY OF COMMANDS, STATEMENMTS ARND FUNCTIONS Page A-164

Ac4uB.5 BYTE and WORD -~ These system functions allow. you to.inspect and
alter any memory locations within the A4 memory addressing range of the
machine, The BYTE functions deal with % b ts of data in the range of (-25%
and the WORD functions deal with 16 hi s of data in the range of QWé§§33E
inclusive. Any unused bits are @gmmredf with no error message.

BYTEMNY = axppr fwrites the Low byte of expr into decimal memory Lo ¥
WORD (X = axpr ‘writes the Low word of expr into decimal memory lLoc X

A = BYTEQD reads decimal memory Loc X and places the byte into A

A = WORD{X) !reads decimal memory toe X and places the word into A

A 5.4 EOF(X) - The EOF (end-of~file) function returns a value giving the
status of a sequential file open for input whose file number is Ko The

values returned by the EGF function are:

-1 3f the file is not open or the file number X is zerao
0 if the file is not vel at end-of-file during inputs
T 4f the file has reached the end-gf-file condition

EOF should only be tested for sequential input files

A.&.5.5 ERF(X) - Returns s file error-condition coda. If the returned

aaam of X is not zero, an error or abnormal condition exists as a result of
the preceding file operation, (See Chapter 19 for a lList of the error codes
returned by ERF.2

A.b. 3.6 ERR(X) - Returns a status code for X which refers 1o program status
during error trapping. (See Chapter 17 for s tist of the grror codes
returned by ERR.D

AchoB.7 X000 - The 0 system function allows the 7564 /¢ ports tQ ba
salectively read from or written to. In bhoth cases only one byie s
considered, and an output expression gﬂﬁa?$“ than 25% merely ifgnores the
unised bits. The range of ports available is 0 to 255,

O = <expr» lwrites the low byte of expr to decimal port ¥
A # L0{X) lreads decimal port X and plages the result into A

ystem, 1f (x) is =285, 3¢ accesses the 256 external 10
ports as 1t does on the ANM~1O0/T (the addre ases on the AMOS/L system are
FEFFOD-FFFFFFY . o othe number s 2%6~%11, it accesses the internal
(on=beard) I0 ports {(addrssses FFEEQO-FFFEEF .3

Nete: On the AMOS/L g
i

A6 3B MEMOX) - Returns a oositive int eger which specifies the number of
bytes currently in use for various memaciy areas used by the compiler sv

L

Fas 4

i
]

A-4,%.9 SPACE(K) or SPACES(N) =~ Returns a string of X spaces in length.

DWM-O01 00031 REY 864

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A=17

A.b.4 STRING FUNCTIONS

The arguments of these fumctions are Literal strings or string variables.
For example, if A% is "Now is the time”, the LEN function {which computes
the number of characters in a string) returns 1% 4n both of these cases?

PEINT LEN{"Now is the time’)

PRINT LENCASS

A4 4.1 ASCCAS) - Returns the ASCIT decimal value of the first character in
string A%, The function ASC(YCY) returns the ASCIL decimal value of the
character 0, 67,

B.h_&.7 INSTR(X,A%,.BI) - Performs a search for the substring BS within the
string A%, heginning at the ¥th character positicen. It returns & value of
serc if B% is not in A%, or the character position if BE is found within AS,
Character position is measured from the start of the string, with the Tirst
character position represented as one.

A 4.4.% LCS(A%) - Returns & string which ig didentical to the argument
string (A%), with all characters transiated to Lower case.

Bobab. 4 LEFT(AS,XY or LEFTR(AS,X) - LEFT$(a%,%) Returns the leftmost X
characters of the string expression A%,

G.6.4.% LENCA%) - Returns the number of characters in the string expression
A%,

Bod o bt MINDCAE,X,Y) or MIDE(AS,X,Y) - Returns the substring composed of the
characters of the string expression A% starting at the Xth character and
extending for ¥ characters. A null string ig returned if ¥ > LEN(AS).

Aob.b,7 RIGHT(AS,X) or RIGHTH(A%,X} -~ Returns the rightmost X characters of
the string expression A%,

SUMMARY OF COMMANDS, STATEMENTS AND FUNCTIONS Page A~18

Aoh. 4.8 ULS(A3) ~ Returns a string which 1is fddentical to the argument
string (A8), with all characters transiated ta Upper case.,

3

chah.9 VALCAS) - Returns the numeric wvalue of the string expression A%
converted under normal BASIC format rules,

APPENDIX B

MESSAGES QUTPUT BY ALPHABALTC

Below 18 a complete tist of all messages output by the AlphaBasic system
{9,8,, BASIC, RUN, and COMPIL), along with a brief explanation of each.

Bitmap kaputl
Your program attempted a file operation (GPEN, ALLOCATE, etc.) on
a device with a bad pitmap.

freak at Line n
The program reached the breakpoint that was set at Line n.

5 .

n't continue

fae}
fev)

You have attempted to continue a program which is not stopped at &
hreakpoint, or which has reached a point where it can a0 90
further {e,g., it has reached an EMD statement’.

cannot Tind wxxxxxx
The program oooooo was not found.

COMPILE
SASTC is telling vouw that it s compiling your program.

Compile time was x.x seconds,

BASIC is telling vyou haow tong (in elapsed time, not comput ing
rimed it took to compile your program.

Lopying Trom xXXAX® XX
The program you are compiling containsg a ++INCLUDE command . Thia
message 15 displayed as the file specified in the ++ INCLUDE
command i3 copied Into your program.

DELRETE what?
Yoo have specified a DELETE command without specifying what
Line(sy are to he deleted.

bevice does not exist

The device you specifiad in a file operation (OPENC LOOKUF, efc.?
does not exist,

{Changed 30 Aprii 1931

MESSAGES OUTPUT BY ALPHABASIC Page B2

Yhevice driver must be loaded inte user or sysiem memory
1f vou are accessing & pon-DSK device, the appropriate device
driver must be loaded into user or System memory.

Bevice esrror
An error has oocurred on the referenced device,

Bevice futl
the specitied device has run out of room during a WRITE, CLOSE, or
LOCATE operation. Remember that an ALLOCATE reguires contiguous
space, 80 that a Device full error may occur when there are
g number of non-contiguous blocks available,

Deyice i use
T

ne specified device is currentiy assigned to another user.

Pevice not ready
The specified disk i3 not ready for use,

Disk net mounted
The specified disk has not been mounted. Mount it via the MOUNT
monitor command or via the XMOUNT subroutine.

DMivide by zero
Your program attempted to perform a division by zero.,

Duplicate label
Your program has defined the same label name more than once.

wxx Ernd of Program kek
You have reached the end of the program during single-stepping,

Enter <UR> fo continue:

You have reached a S$T0F statement in your pregram., You mavy
continue from the STOP statement via a carriage-return, or may
abort the run via a Control-C.

TErrar in Error Trapping
ey erpar occurred while you were in the error trapping routine,

File already exists
Your orogram tried to greate a file which already exists.

Fiie already onen
You have attempted to open a file that is already open on the same
fite number.,

File not found
BASIL was unable to locate the specified file.

Filgaspec srror
The file specification vou gave in a file operation {(OPEN, LOOKUP,
gto.tr 38 dn error, ALL file specifications must conform to the
system standard (i.e., Devn:Filename.Extensionin,.pnll,

MESSAGES OQUTPUT BY ALPHABASIC P - Page B3

Fite type mismatch :
Your program tried to perform a sequential operation on a random
file or vice-versa.

Floating point overflow
A floating point overflow occurred during a calculation.

Tliegal expression
The specified expression is not valid.

furnction value
The specified value is not valid for the particular function,

ol
o
=
2]

Wi
o

Titegal GOTQ or GOSUB
The format of the GOTH or HOSUR stavement s invalid.

TLiegal Line number

The specified Line number is invalid (e.g., not between 1 and
6583545 . '

Iliegal NEXT variable
The wvariable in the NEXT statement-is invalid (e.g., net floating
peinti.

Itiegal or undefined wariable in overlay
The variabile specified in a MAP statement overlay {(via @) has not
heen previously defined, or is not a mapped variable.

Illegal PRINT USING format
The edit format used in a PRINT USING stdtement 1s invalid.

iliegal record number
The relative record number specified in a random file processing
statement (i.®., READ or WRITE} 98 sither less than the current
FILEHBASE or outside of the file.

Itlegal SCALE argument

The argument given in a SCALE statement s invalid (the argument
nust range between 30 and +30).

ITilegal size for variable type
The specified variable size 45 not wabid. for the particular
vartable type. Floating point warisbles must be size &, and
binary variables must have sizes 1 through 5.

ILlegal STREIZ argument
The argument given in a STRRIZ statement iz invaelid.

Itiegal subroutine name
The name specified a3 3 subroutine g not valid.

Tilegal subsgript
The subscript expression is not valid.

DWM-00100-07 'EY BOSA

MESSAGES OUTPUT BY ALPHABASIC : ' L Page Bed

Tilegal TAR format
Your program has incorrectly specified a TABR function.

Itlegel tvpe code
The variable type code a MAP statement is not valid.

Titlegal user code
The specified PPN was not found on the specified device, or is not
in oa valid format.

Tinsufficient memory to initialize RUN
Memory 4s too full to handls complete execution of BUN.

Tinsufficient memory to load program xxxxxxx
The RUN program did not find encugh free memory to be able to load
the specified program.

Internal stack error (X%, yy¥yyy). Please submit an S$PR.
Please submit an §PR, stating that you received this error message
and specifying the 0000, yyyyyy numbers giverr in the message.

Invalid filename
The specified filename was not a Legal filename.

Invalid subroutine version
The subroutine specified in the XCALL statement is not the corract
type for the processor (L or T) you are running on.

TInvalid syntax code’l
Ay internal error has ococurred in BASIC. Please notify Alphas
Micro of this error. Provide an example of what caused it,

iC to unopened file
The program tried to write to or from a file that was not open.

Line number must he from 1-65534
The Lline number entered is not in the legal range of Line numbers.

Line x not found
The specified Line was not found for a BELETE . LIST, stc,

THested ++INCLUDE files are not permitted
Your program centains a ++INCLUDE command that specifies a file
which also contains a ++ INCLUBE command.

NEXT without FOR
AONEXT statement was encountered without a matching FOR statement .

Mo breakpoints set
There are currentiy no breakpoints set in vour program.

No scurce program in text huffer
You tried to compile when there was no program in memory.

Operator interrupt
You typed a Control-C to interrupt program execution,

DUM~-QIITO0-01 REV BO4

MESSAGES CUTPUT BY ALPHABASIC ' Page B-5

Out of dats
&4 READ statement was encountered after the data i all DATA
statements had been wused.

Out of memory
BASIC has run out of memory in which o execute your Orogram.

out of memory ~ fompilation aborted
COMPIL s telling you that it does not have enough free memory to
tinish compiling vour program.

Program name:
You fried to SAVE or LOAD a3 program without providing a filename.
Enter the filepame at this point.

Protection violation
Your orogram tried to write into another account where you do not
have write privileges.

Record size overflow
Your program tried to read a file reord Cdinto a wvariable larger
thar the file record size.

Redimensioned array
You tried to redimension an array.

RESUME without error
A RESUME statement was encountered, bub no error has occurred.

RETURN without GOSUB

4 return statement was encountered, but not corresponding GOSUB
has heen sxecuted. :

Buntime was x.x seconds
HASIC iz telling vou how Llong 1T took to run your program.

TRuntime package (RUNLPRE) not found
BAZIEC or COMPIL was unable To locate the run—time package, of did
At nhave sufficient memory in which to lLoad 1t.

TRUN file is in an incompatible format. The program fite you tried to RUN
ig not a JRUN file, or is from a different processcr iype.

Source Line overflow

A Line in the source program, including continuation Lines,
axceeads 500 characters.

Stack overflow
BASTC's internal stack has overflowed. This is often caused by
masting BOSURs too deep, or branching out of FOR-NEXT Loans.

Subroutine not found
The spesified subroutine could not be found.

PHM-OCTO0-01 REY B804

MESSAGES OUTPUT BY ALPHARASIC : Fage B4

Subscript aut of aﬂgﬂ

The specified subscript is outside thv range specified in the DIM
or MAP statement for the subscripted variable.

Syntax error
The syntax of the specified Line i3% invalid.

System commands are illegal within the source program
BASIC system commands {(LOAD, OELETE, LISYT, etc.) are not valid
within a BASIC source program.

System errop
Thias 93 used as 2 catchrall error message indicating that BASIC
cannot identify the sxact problem during the exscution of the
specified line. For example, 1% BASIC encounters & "Buffer ot
INITed” ervor message, 1t displays “System srror,’” because it
doesn’t know how to handle this condition.

Yempararily all arrays must be less than 32K
The array size you specified is Larger than 32K bytes,

5.-4

fnable to find +¢IMCLUDE file XX .nixx
A T IBE commands specifies g file-wmoooxongx-—which
L

One of wvour WL
cat

Ef
BASID cannot & .

-
o

Undetined e number or Label

ing number or Label specified in a3 GOTO or GOSUBR statement is
efined within the program.,

trnmapped variable
You COMPILed a progrem, using the /M option, and COMPIL
encountersd an unmapped variable,

Unsuppurted function
Your program called s function which BUNSML does not sunport .

AlohaBASIO allows an alternate version of RUN palled RUMSML. The
program s {dentical to RUN.PRG, except that i1 does not support

trigonometric f;m?tiﬁm¢ nar the EXP, LG, LOGHI, FACT, and
operations, Using RUNSML saves memory for users who do not need

these funetiomns, Since RUNSML can be used in place of RUNLFPRS,
¢ Alpha Wiero dealers may rename RUNSML to RUN.OERG. But if you

his error mwessage, vou know you have the RUNSML version,
regardless of itz name.,

rried to write on a write-protected device

Wrong number of subscripts
The number of subscripts specified is not the same as the number

de £

ined in the DIM ar MAP statement for the subscripted variable,

DWM-001 00

-7 REV B4

APPENDIX ©

RESERVED WORDS

Below 45 a Uist of the reserved words used by the BASIC compiler. Some of
these reserved wards designate reutines that have not been implementsd at

this time, However, you must net use any of these reserved words as
variable names or labels. MOTE = This restriction applies to string

variables as well as numeric variables, (Ear instance, END$% and END are
both illegal variable names.)

ABS absolute value

ACS arccosine

ALLOCATE allocate file

AND togical ANMD

APPEND weite to end of seguential files
A5¢ ASCTI value

ASH arcsine

ATHN arctangent

BREAK set breakpoint

RYE exit fo monitor
BYTE memory bhyte

CALL call subroutine
CHAIN chain next program
LHR character value
CHRE character value
CLOSE close file

CoMPILE compile program
CONT continue sxecution
£08 cosine

DATA data statement
DATE system date

DATH double arctangent
DEF define function
DELETE delete lines

DIM dimension

ELSE el e

EMb and of program

EOF end of fiie

Eay logical equivalence
EREF file error

ERR grror status

EREOR arror

EXP axponentiation

PWM-00100-01 REV B4

RESERVED WORDS

EXFAND
FACT
FILEBASE
FIX
FOR
&0
GOSUR
GOTO
1F
g ++INCLUDE
INDEXED
THDEXED EXCLUSIVE
TNPUT
TNPUT LINE
INSTR
INT
e
1AM
KTLL
LCS
LEET
LEFTH
LEN
LET
LINE
LYST
LOAD
LOG
LOGT0
LOOKUP
MARD
MAX
MEM
M
MIDS
MIN
NEW
NEXT
NOEXPAND
NOT
ON
OPEN
OR
SUTPYT
PRINT
R ANDOM
RANDOM! FORCED
RANDOMTT E
READ
REM
RESTORE
RESUM
RIGHT
RIGHTS

PWM-D0T00-01 rEY BOG

Page -2

expand mode on
factorial

fiie hase offset
i

loop indtiation
program jump

call subroutine
program jump
conditional test
fetch source code from another fiLe
1SAM file

I6AM file

input data

input data tine
search string
integer

input/ output

ISAM control

Kitl file

lower case string
Left string

left string

length string
varisble asaignment
Line

List text

load program
natural logarithm
base TU logarithm
lockup file

man variable
maximum value
mEmory $ize

mid string

mid string

mintmun value

NRW DrOgram

Loop termination
expand mode off
logical complement
on (60TO, GOSUB, ERROR)
open file

ltogical OR

autout

print on ferminal/file
random file

random file
randomize BND function
read deta

remark Line
restore data
resume after error
subiroutine exit
right string

right string

RESERVED WORDS

RETURN
RIGHT
RIGHTS
RND
RUM
FAVE
SCALE
36N
SIGNIFICANCE
SIH
SPACE
SPACES
S QR
STER
STOR
5TH
STRE
STRSI1Z
suU8
TAR
TAN
THEN
TIME
T0

UCS

LS ING
VAL
WORD
WRITE
KCALL
XOR

tChanged %1 Dotober 198713

subroutine exit

right string

right string

random number

run Drogram

saye program

gset scale Ffactor

sign

set significance

sine

spaces

spaces

sguare root

step

5LOD program

numertic to string conversion
numeric to string conversion
set string size

subr (GOSUB)

tab

tangent

aptional statement verb
system Time

0

upper case string

using

string to numeric conversion
memary word

write file

external subroutine call
logical XOR

Page (-3

APPENDIX D

THE ASCIT CHARACTER SET

contain charts that List the complete ASCIL character

The next few mpages
of the

set. We provide the octal,. decimal and bexadecimal representations
ASCYT values,

Mote that the first A2 characters are non-printing fontrol-characters.

THE ASCII CHARACTER SET Fage D-7

THE CONTROL CHARACTERS

[HARACTER GLTAL BECIMAL HEH MEANING
MULE 060 3 a0 Mgl L {(fill character)
S0H 1y 1 0 Start of Heading
51X g & 32 Start of Text
ET¥ LS % 03 End of Text
ELT 04 & {i& End of Transmission
ENG 35 5 e Erauiry
ALK (13) {6 Acknowledge
REL nar 7 a7 Bell code
as Mo & 08 Back Space
WY 1 g [Horizontal Tab
LF iz 10 (A Line Feed
¥y Mz 11 o8 Vertical Tab
FF & 1 ac Form Feed
{8 s 13 i {arriage Return
20 Ay T4 g Shift Qut
51 o7 15 0F Ghifr In
nLE 020 16 10 Bata Link Escape
I 021 17 11 Device Controlb 4
pe2 Oge 18 18 Device fontrol 7
pDeE 03 19 13 hevice Control 3
BCs (324 20 14 Device fontrol &
NAK 5 21 1% Negative Acknowledge
SYH 026 2e 16 Synchronous Idle
£Te 327 2% 17 Encd of Transmission Blocks
CAN 020 2h 18 Cangel
EM (=4 25 19 End of Medium
5% 032 2 A Special Seaquence
B8 033 27 1B Escape
F3 R4 28 1 File Separator
&8 {35 29 1 Group Separator
[036 A0 1E Record Separator
L5 037 At 1F Unit Separator

THE ASCIT CHARACTER SET Page D=3

PRINTING CHARACTERS

CHARACTER QCTAL RECIMAL HEX MEANING
ip 040 A7 20 Space
! (141 %3 21 Excliamation Mark
. 042 24 22 Ruotation Mark
g 043 35 2% Mumber Sign
% D44 36 24 plilar Sign
% 045 37 25 Parcent Sign
& D46 R 26 Ampersand
! 47 g 27 Apostrophe
{ o080 40 28 Onening Parenthesis
3 351 &1 29 Closing Parenthesis
® a5 Ly 2A fsterisk
+ 083 43 e FLus
- 54 44 20 Comma
- 055 45 an Hyphen or Minus
. 056 4 Z7E Periad
/ o587 47 ZF Siash
0 0af 48 D fero
3 041 49 &1 ne
F 062 ElL 2 Two
3 563 51 33 Three
& (b4 5€ %4 Four
5 065 53 x5 Five
& 066 54 R& Six
67 55 7 Seven
& n7a 56 A8 Eight
o 071 57 e Nine
: o7ve 58 ZA Colon
M 073 59 3B Semicolon
< 074 &0 3¢ iess Than
= a7s &1 3D Egual S%ign
» 07 &2 AE Greater Than
? nrs &3 AF Question Mark
& 100 &4 40 Commercial At

{Changed %1 October 1981

THE ASCII CHARACTER SET

Page D4

CHARALTER QU TaL BECIMAL HEX MEANING
A 1641 &5 oy Upper lase lLetter
B 12 &6 & Upper Case Letter
L 103 &7 4% Upper fase Lstter
i Té & aé Upper (ase Letler
g 10 6 45 Unper Case Letter
B 1604 70 &6 Upper (ase Letter
& 1097 7 47 Uoper Case Letter
H 114 i 48 Upper Casse Letter
¥ 311 A &G tnper Case Leltter
J 112 Té& Ly Upper Case Letter
K 113 75 48 Upper Case Lelter
L 114 e & Upper (ase Letter
M 718 77 &b Upper Case Letter
] 114 i &E Ypper Lase Letier
0 11 7Y 4F Upper fase Letter
B 10 & 50 Upper Case Letter
@ 121 1 =1 Upper Case Laltter
R 122 o 52 Upper Case Letter
5 123 a5 53 Upper (ase Letter
T 124 g4 S Upper (ase Letter
4 125 #E 55 Upper Case Lattsr
¥ 1d6 &6 g6 Upper Case Letter
El 127 &7 ¥4 Unper lase Letter
x 130 3 g8 Upper Lase lLetter
¥ 139 a9 5% Uoper Case Leatter
z 152 il SA tpper {ase Letter
L 133 21 58 Opening Bracket
5 134 9 5L Back 3lash
) 125 93 D tlosing Bracket
" T34 Q4 3k Circumflex

127 5 BF Underlineg

- 140 D6 &0 Grave Accent
& 147 Q¥ &1 Lower (ase Letter
b 142 o8 42 Lower (ase Letter
= T4L3E 99 &% Lowsr {ase Letter
Iy 144 il & Lower Uase Lalter
o) 145 10 A% lower Case Leltter
¥ 146 102 ot Lower Lase Letter
g 14T 103 &7 Lower (ase fetfer
5 150 104 H8 Lowsr Case Letler
i 151 105 62 Lower (ase Lelter
i 157 106 A Luwer Lase Letter
k 15% 07 &8 Lower Lass Letter
H 154 108 HE Lower (ase Letter
m 155 109 &b Lower lase Letier
n 156 118 HE Lower (ase Letter
o 187 111 &F Lower Lase lLetter

{(Changed 31

Gotober 192813

THE ASCII CHARACTER SET

Page =%

CHARACTER GLTAL DECIMAL HEX MEANING

£ 160 112 {1 Lower (ase Letter
s 161 1132 71 Lower Case Lelter
r 162 t14 e Lower Case Letter
§ 163 115 b Lower Lase lLetter
A 164 116 Th Lower {ase Letter
U 165 117 75 Lower Case Letter
Y 1466 118 Té Lower Case Letier
W 167 119 7T Lower {ase lLetter
% 170 120 TR Lower Case Letter
¥ 171 121 7Y Lower Case Lelter
z 172 122 TA Lower (ase Letter
{ 177 123 7B Opening Brace

] 174 124 7 Vertical Line

* 17 125 n Closing Brace

- 174 126 7E Tilde
DEL 17T 127 3 belete

(Changed 31 Cctober 19812

APPENDIX E

SAMPLE PROGRAM ~ NUMERIC CONVERSION FOR BASES 2 -~ 146,

This appendix contains a sample AlphaBASIC orogram that converts a nunber
between one number base and another, You may corwvert numbers from the
binary through hexadecimal (2-16) number bases to another number base in the
same range., For example, vyou can translate an octal number to its
hexadecimal form, or vice versa, Helow is a sample run of the programs:

PCONVRT"—-CONVERT BETWEEN NUMBER BASES
Enter positive numbers, any base from 2 to 16
(Enter a zero to FROM BASE? fe end the program

FROM RASET 14
U0 BASET 2 (ET)
SASE 10 NUMRER? 344 (RET)

RASE 7 NUMBER = 101101100

(RET]

FROM BASE? O (FED)

&

The program:

D TCONYRTY —— PROGRAM TG CONVERT BETWEEN NUMBER BASES

100 MABT IN‘VARIABLES PINPUT BASE YARIABLES
105 MARZ INTNUMBER 5,50 HMnput number string
0 MARZ IN'BASE . F ‘hase of input number,
! 2 through 16 valid
2000 MART QUTTVARIABLES TOUTRPUT BASE VARIABLES
205 MAPZ QUT "NUMBER 5,50 foutput number string
210 MARZ OUTYBASE F thase of output number,

! g through 14 valid

SO0 maAPT YALID'DIGIT,S, 16, "012345A7RGABCDEFY IVALID DIGITS
‘bhase x containsg x Leftmost
! digits

i

(Changed %0 april 198710

SAMPLE FROGRAM ~ NUMERIC CONVERSION FOR BASES Z - 16, Page E-2

SO0 ®mAPT MISCIVARIABLES TMISCELLANEDUS VARIABLES

P05 MAPZ BASET0'NUMBER,F Pinput string converted to
! base 10

P11 MARZ ERRORTFLAG,F iflag set if invalid digit
! found

LR MARZ LEADING'BLANK,F iflag reset when first non—
! hiank character found

PL0 MAPZ LOOPRTTLF PEOR-NEXT index #1

GEE MARZ LODOP'Z2,F PEOR-NEXT index #Z

$EQ MARE WORK'™ . F lscrateh variable used in
! conversion to ouiput
! base

FSTART OF PROGRAM

TG DISPLAY BANNER:

1005
110
s

2005
2005

200

PRINT CHREE G4 "CONVRT CHRE (B4 "= ONVERT BETWEEN NUMBER BASESY
PRINT TAROIO): "Enter positive numbers, any base from 2 o 167
PRINT TARCIO);"(Enter a zero to FROM BASE? to end the program.’”

ENTERTIN'BASE: PENTER INMPUT BASE
PRINT ihlant Line between header
! or previcus conversion
INTBASE=D tset to rzero in case of
i carriage return
INFUT TFROM BASET ', IN'BASE lenter input base
IF INBASE=D GOTO END'GFPROGRAM iif zerofearriage return, end
TF IN'RASE»=Z AND INPBASE<=1é GOTO ENTERTQUT'BASE
PEINT CHRES (73 "INVALLID BASE!Y Ihases 2 to 16 oniy
SOTO ENTERPIN'BASE ilre-enter base
ENTER'QUTTBASE ; TENTER QUTPUT BASE
DUT TBASE=(lget to zerp in case of
i carriage return
INPUT " TO BASE? Y OUTRASE tepter output base
TF QUTRASE=] GOTO ENTER®IN'BASE 1% zerofcarriage return,
! re-enter input base
I QUT'BASE>=2 AND OUTPBASE<=16& GOTO ENTERPIN'NUMBER
PRINT [HRBITI; "INVALID BASE!" thagses 2 1o 16 only
GOTO ENTER'QUT 'RASE tre=enter cutpul base
FNTER' IN"NUMBER, PENTER INPUT NUMBER
TRINUMBER="" tnet to null string in case
! of carriage return
PRINT "BASEY; INTRASE: "NUMBER? '': inprompt for input number
ENPUT LINE U7 INPNUMBER fenter input number
POYALIGATE TNUMBER TOHRCK /COMVERT INPUT NUMBER
LEADING 'RLANK=T : ERROR'FLAGSD Hadtialize flags
SASE T TNUMBER=D tinitialize base 10 number
EOR LOOPTT=T TO LEMCINNUMBER] leheck one character at a time
TF OINTNUMBERDLOGP T 10" " GOTO NON'BLANK fskip 1f norblank
PF LEADINGYBLANKE=0 LOOP I=L EN{INTNUMBERD i not Leading
GOYO ENDTLOOPYY I blank, end

: conversiton of

SAMPLE PROGRAM - NUMERIC CONVERSION FOR BASES 2 - 16. Page E~3

! input number;
U otherwise skip it
2455 MOMTRLANK: IPROCESS MNON-BLANE CHARACTERS
2461 LEADTNG ' BLANK=(treset Leading blank flag,
! non-blank found

2465 ERROR FLAG=Y %aﬁﬁum%_inva&iﬁ character
! until walid one found

2670 EGR LOGP' =T TO INPBASE FOHECK FOR VALID DIGIT using
! valid character List
2ATR TF TMANUMBERLLOOPT T 10<VALID DIGITILOORP Y 2210 GOTO ENDTLOGPYY
Yirvalid character,

! try next
F4R0 BASETO ' NUMBER=BASEI I NUMRERS INTRASESL O0P 2~1 leonvert and shift
2AES ERRORTFLAG=0 tragete--val td found
A LOOP I IN BASE Ing need to check

! moce digits

2a%% ENDTLOOP Y
2500 BEXT LOGPR'2
2505 IF ERROR'FLAG<>(D LOOP'i=LENCIN®NUMBER)

Inext valid or end
11f bhad character
i found, check

! ne further
2RO ENRTLGORY T

2515 MNEXT LOORPYY tnext character in
! input string
! or el

Yt 1F ERRORPFLAGSD GOTO CALCULATEOUT NUMBER

£545 PRINT CHRS(?I U INVALID BASE" ;TN BASE ;"NUMBER!™ Ihad charagter

2530 GOTO EMTER'IN'BASE Hound, display
‘message and

fstart over

CULATETOUT ' NUMBER: POONYERT TO OUTPUT BASE
P NEMBER=TY tgtart with null string
CONTINUECALCULATION:
HORK T 1= INT (BASETO NUMBER/QUT'BASED fremainder of mumberibase is
! hage 10 valus of 5
! digit going from
i T Left
26210 U MUMBER=YALIDTRIGITL+BASEY D ' NUMBER-WORK ' 1 #QUT P BASE o 1 1+0UT "NUMBER
P o adiust for position

! in valid digits string
2HEE BASETO NUMBER=WORK 1 ‘new number ts integer part
! of number/base
£430 TF BASETO'NUMBER<D GOTO CONTINUE'CALLULATION teone when new
: number = {3

2800 PRINTQUTTNUMBER: CPRINT QUTPUT NUMBER
CRIG FRINT "BASE” :0UT"BASE; "NUMBER = " 2007 HUMBER

290 GETINERT:
2905 GUTO ENTERPINFRASE fatart over from the 1op

POF T PROGRAM: TEND OF PROGRAM
£ fgo throwgh the formalities

ALPHA BASIC USER'S MANUAL - INDEX Page Index-1

Index

L 1 S X
. Pmdy BT
. -

I T T T0=14 to T0-17

T e e e e e s ke s s e e oa s A=AD
B v v s e s e m m e s s e w o os . B=7, B-11

ABSCXY . o o o o e e e e .. T2, A4
Ahsotute value . . o v+ 4 w s . 1ie?
Acocount specification o 2=

BUSCKY 0 0 e w e e e e A4, A5
ALLOCATE L L L L . v o v o o o o 1533, 15~10, A-6, B=1 to B=?
AlphaBASIC -

Alphabetic character L . .
Alphanumeric character
AM-100 dnstruction set L
AMOS command level L
AMOE momitor level . .
Ampersand symbel (&)
Apoatrophe L L L,
Apcestrophe symbol (') . . . & . . 3

§

P
B R CE

[

m
s

e e N I g
; H

1
3

| APPEND mode . . & o & &« o w w o o 15=5, 15=7, A-10
Application program o « » o w & o 1=7
ATGumEnt L 4 o L o s w e v s ow ow 111, 1105 to 11-6
Argument list, . . 183
Arithmetic stack 18=2
Array allocation o . Be=

2

Array default size o+ & o » o . A3

Array variable b=

Mumeric variable 43

String variable o . . o . « . & 4-3
L S 1
il

I

(thanged 31 Gotober 1981

ALPHA BASIC USER'S MANUAL ~ TNDEX Page Index-2

collating sequence . . , . 3%-5

Format o . 0 0 b a h e o 18]
ASNOKY W v v w e e e e e e e Ttwb, B=15
bly language 11

e x a a s oa e s o2 ow o« Vl=4, A-15

e r s s s s oaowowoa B=F, B-11, 18e4, B3

i

b
o

S s 4 4w m e e s s oa e s e gmi, A~2, B, (-1
BLTONYM o 5% % o v 2 w w s e
compiter . . . L . . .
NEerpreter o v o o o . . .

[- e
LENgUage

1

i

y

= n *® =
. =1 ta 2«2, 2+4
T
2 s s s o r % s s oa e =gy A3
°® x s m e = ow e s o i, Wl

interrupt

i

i

t, =2, A=
~1, A=16

mw%&mmfzﬁamwwmm&m
b LR TR AT e B e o aed

: P w s e e a w w ow ow o o« =S 1014, A=T

sarriage return/linefeed L. . . . 10-17

CHATHN s e s e a s o e eoa e w 10=Y, 15-2, 16~1, A-6

CHROED W v 0 0 o s s s s s e w o A=14

ar CHEED) . . 0 . o . . . 11-5

Pick o v w h e e e e e . T3, A-1S

e e m e e e o s ow s e oo 1Bl TBeR. 19«4, A-f, B-7

LBNgUAGE 2 . . o« . 1-1 to 12

symbol () L o L Pmh4, 33

Com Separator . . 4 . . o« s = e =1

| Comma symbol (.,
Command Tile & « « s s+ =
COMMON .« . & 4 s 4 4 s o v w
Common variable
COMPYL . w v s s e e e e e e e .
COMPEL display & v 4 e v e s e
COMPILLPRE & . » v s 4 w o 5 s s
COMPILE & o 0w o s e e e a s a s

g
Lompiled program o .+ . .

~ fu

i

& to 10-17

16~1

PRe

-
0

i

i
M T TR el
ES

gvh, 2=8, Fed, A-Z, B~1, B-5, (=]

§ Pl
TR P L D D AN U b b 1O LR el O b

4

i

s w e w s n s m e = . Be=d
e L . ~1s #=1 to 2~2,. 2«6
OBLTOMN & o W e e e e s m s oG
“. = Ed = & = £ = L = » L = #*
T e
"
;i = w8 o® % = s & w & = ®w u m =

i

A Program . . . e s s s

kY

[R5
?

=

§

L E w & = @ @ a

]

= a4 83 s % & = & 5 m » a
O LINE . L. s s s s e oa

function . .+ . . .« o« s

R I
P~k
% B o

=
e

= Trapning e .

e Tl b PPN AT NG DG PN TG G R S5 e D PE I G e o od el
| H ﬂ

{Changed 31 Octoher 19281)

ALPHA BASIG USERTS MANUAL

Control-variable . . . «
COS{XY & & v &+ 5 & = = =
Py Line clock o 0 w0 s s
Creating & program < .

DATA . & -« &« = s 2 & = =
Data file . . & & & & o
pata Tormal . « & « & & w
Array STructufe . o« .
Binary vartable . o o
Floating point variahle
Simole variable - « - «
String vartable
Untformatvted varisble .

Data record o . ¢ « o & =
ratas structure e e = s w
Data tvpe o & 2 5 5 & = =

BATE + & & o 4 « & & s =
DATHIY Y)Y o & o« o & = s
Debugging . . 2 5 e 2 e s
Debugging features . . .
DELETE . & » & & » & =
bevice specification . .
N
Dimenzion BrrEY . . o« e =
irect statement
Disk BTOrage
Dummy command file . . .
puplicate Uine number o .

iTiNg A progran

(A mEFK . . 4 e s s
ELSE & & & s e 4 e s s s
EMD L . o 4 4 s s = s s
gng~nf-file . .
FOF{X) e % % % e = & a a
ERFOAY W &+ & & = w
A
EREGRE L . & & & o o « =
Error gcropagalion . o . .
Error trapping - . « - -
Even address o« + « = s

Exclamation mark symbol (1

Exclamation symbol (3)
Execution moade
EXFOEY o o 6 v ¢« s e s
EEPAND
Expanded mode
Expanded Ta&R funztion . .
Expression o . . . o .

Function with argumant

Numeric constant o e

Mumaric variable L . .

{(Thanged 31 Gotober 1881)

THNDEX

» B
a w &
S @ =
= B &
ES » B
= 3 @
E
s = =
® = 3
n ® ®
a & L3
Ll » L
= = a
" =» @
e El o
@ &
= o=
EIE
o= B
@ a o=

 w o o®
= @
® o= &
= a ow
= = @
& = =
om om
m o= @
= = o=
A omow
& ow &

= m ow
s = o8
2 = =
& %
ERE
= w ow
v s oa
e 8w
s s &
s = =
& = =
= a o
% a oW
. wow
5 & @

104
Pimh, A~15
1i-34
26

[
—

0-18, A-6, B-5

3§

H

b=, B~

L3

i

S

#=5
B

PO L - D VU W R g N
i3 §
wodd @ m

Eel i
O B S B AN S A C IR I A
k1

oo
ERN

Z—3
151
10-%,
10-3,
b,
Ti=b,
b,
A% «g“"gf
RS
10~20, 141

171

Bedy

A2

31

81

1M-2, A-14

Tty

By

13-11

G TR, 1015,
1-16

10=-164

-14

A-B

=7, B-1
A-16

A-16

A=16

17-2, A-15

-1

Page Index~3

ALPHA BASIC USER'S MANUAL - INDEYX ' : o ©Page Index-4

perator symbol 1018

e Lrveral o o H0=16

g varteble, . . 1014

i LIBT 4 e e e a e e a e 14
RECRESE0T 4 e . ow o« . 118

reEEg TErM & 4 = 4w 5 ow s s Bl
rended TAB L 13-4
ension JBAS L =1, 2=3
T T
ension DAT 8T
ension JPRE L . L 18
nsion LRUN =1, 2=3, 2=0, Q7 161
e -

L

T e
¢t

Yo e e e e e e e a e a . 11-2, A=14
U ostatement 5=1, 184
L T L R

- S n e e e s e e s oa e 15.8

e et

T L T

boe m e s s s w o w s o= 18-8

T
T
T L
foe = e e a m w s e o 15=11
T - R Y

AUMDET o s a v s s o s e e . The
specification . . . o & . o 29

P L
s s s o5 s s s s oa e » o =%, A=F, B3}
e e w a e e w e oa s s 112, A-14

point arcay o= . Bed

goint datae . . ¢« BB

i format H4=1

point hardware 11

potnt instruction . . . 42
point number . . L . . . &1
point variable 4=1, 6=3, B=4
a e s o mor s ow a s b, A=T, Bei to B-%

B

e

T B
T B
T A
A

4Tt
B ® s s 2 ®m " & & & = [

= aa ow e ow s THel

s e w s e w s 184
B w ke« s o on s s ow e w2, 0B, A=F, B-X, B~5 to B-é&
= 5 & 3 % 8 & % 8 = & =@ (E“"”gp ‘tc}’”gy s&l"”gp 8“35 E‘"é

Changed 81 October 19871

ALPHA BASTIL USER'S MANUAL - INDEX - Page Index—3

Hardware floating point . o & « « 67
Higher-level language . . « . - « =1

PG 80Pt 0w e s e e s s oo e s o« te-l to 1d-2

/0 processing o« s e e ow o= o2 on =l

IOCKY W 4 v a4 2 e w s s s owow e EmD

1 S T

THCLUDE » w0 v & n o = o 2 o » = « 3=5 to 3=6, B~2, B-4, B-6

index File . & . & & 52 s 2 & e o« T8

INDEXED v v o w v = » o n a « = = 15=7, 19=2, 19-5, A-10

Tndexed Seguential Fi 19-1

INDEXEDTEXCLUSIVE » © . w « = & » 157, 19-2, 19-5, A-10

INIY monidtor call o . & « « = = « 18-4

THPUT & ot m s n s e e s s e 3-8, 1010, Y=b, 15-1, 155,
15=-10 to 15~12, A-2

Input call o o o & o o & o 2 = = 11-4

INFUT LINE . . 2 2 ¢« s« = = = 1O-12, 1510, A-8

INPUT mode . . . 4 o s & s o= on o« 15T, A-T0

TNSTROLLAS,BEY . . o o & o = = « TVi-éa, A-17

INT conversion . . s« + s a = = = 6-3

1 1 O R S

Integer onsiant o -+ 2 s o= o= - H—8

Integer fruncation . . + « & = » O3

Integer variable . o . « « » « o &=1, 6=2 to &3

interactive command mode -

interactive compiler . « « & «

Interactive interpreter . - +« + =

Integractive mode L & » » &« & o =

Interactive mode direct statement 3-7

INterrupting Orograms . .« « = o« o« 2vF. F-&, 97, A-3

TEAM . L . s s e e s s s e e s o= Hlmb, 191

ISAM statement . . 4 s & 4 = = o= PE=3

ISMBID & 4 4 4 v e m omoa s e e e V=2, 1913

W
i
@
P
&
=
2

b FE T3
R R

, 21 tg 2-2, 10-1

i

&iii 4 » = = =¥ = ® ®w ® % @ = &/ = ﬁﬁmgy ﬁm@

Label
Labsl name .,
LOSCARY & . v 2 & s o s s
LOBOHY . 4 s o« s e s e
Leading blank . . & & & « « » =
LEFTE o 2 v v 6 2 & w o 5 = & = =
Lefterelative (+) position . . .
LEMCAEY 0 v w o s & & -

i
Iofan i

i b b b
[
[

Gy A-1T7

10-16

~2p 11-6, A-17
=1

-3
—3

s wend

. « = = T, A=t
e =14, A-9
Lime editing . . - x m e s s s s -
Line Label L . . . s s e s s s e -

L mumber
Linetesd . . - .
Linefeed key
CTST

I

2-5, 2=7, 3-2 to 3-3
Arb

L)

i

i

“ ® * @ a L) mooe LI B o= @

LO&D . . . o . . .

w

H

#

[

a

B

n

o

u

®
5@‘@?%‘?iﬁiﬁf%-ﬂ
Py RFT O D0 dad g LA

%

=
b
W Oh

A—=d, B2
2T 96

)
%

{fhanged 31 Qotober 19812

ALFHA BASIC USER'S MANUAL -

Loading a program
LOBLXY o ¢ 5 o o ¢ 2w o
LOSTD & & & o 5 4 o 5 s &
Logical (Boclean) operator
togioal record L
LOOKUF . . 0 4 s « 5 = o &
LOCD . . v - s 4 s s s
Lower csse

@

character . . .

MAP © o & & & 4 2 s = o s
MAR statement . . o & = & &

Origin & & 5 5 52 ¢ e«

g

Tvpe cod® . . 4 4w s o W

Yalue . . . 4 4 o % s e =

Yaritable name
MAF statement format . . .
MAP statement syntax . - .
Mapped variabls o o « & &
Mathematical operator . . .
Mathematical variable . . .
Maximum Line length
MEM{XY . o & & & & & 5 s @
Memory allocation o .« o «
Memory mapping o o o 4 o« =
Memory partition . . « .« .
MEmOryY US8 + » s 4 s & o =
MIBE fumction o o « a v o«
Mode independence . . o .
Mondtor level o . o « & o« =
MOUNT & & . . & 4 o 4 e s s
Multiple atatesment Line . .

Mame Terminator - o o o « =
MEW h s s e e s e e
NEXT & 4 ¢ & = 2 o =2 = = =
MOEXPAND . . & & o & o « =
Mormal {(ummapped}
Null byte (02 . . « 5 - = =
MUll s1ring « » o 0 4 o« v .
Numeric argument . .« « »
Numeric conversion o . . .
NMumeric function
Numeric significance . . .
Numeric wvariable . . . L .

Birary . . 4 « 4w s s = =

Floating point . . « . -

Integer o &+ 2 & 4 a4 s « =

SEring . . 4 4 s s e o ow

Unformatted+ . .

{Changed 31 (ctober 19813

INBEX
- = e
5w e
4w s
s s
v oa e
 n s
e & s
= a e
s e =
s s ow
W s
= e s
s 2 om
4 e w
s ow
o« = =
s s ow

= @ o®
F T
A w
@ @ o=
w8 ow
& 8w
= = =
= & om
s ow @
= & =
& & oa
4 a =
s = =
= omow®
w o ow o

s w ow
w o= o=
LT Y
@ w o=
EE T
5 = =
PR
s @ oa
s = &
® s @
= = o=

=3
11-2, A-ih

11-3, A-14

b g

155

-5, 15~9, A~9, 8-1 to B-Z
104

Ak, 41

H

8«11, B~3 to B4, B-6
g2

[B I]
w0

H

H

- Y

i

i

i-2
s B=16

g
Frd

¥

H

to -2

i

mmmm%%%m%%ﬂmmmwmwm&

i

i E
L L IV I AV IR R - B B L e S S L S it S LT

b2, 7=, 11-6, &-17

S-2, -2 to 7=3, 11-1, 11-%
=1, 2~1 to 2-2, 2-8

B2

2l B

&1

2w, 96, A=5

104, A-7, B=3 to B-S
34
4o
8-5
6-2,
711
5-2,
111
10-20
42

10-10, 1i~4, 11-7, A-17

422, 62, B4
b1, 6=1, 8=h
b7, 6=3

-2, B4

4=, 6=3, B4
1=1, 2=5, 93
2-3

Page Index~é

ALPHA BASIC USER'S MANUAL -

Obiect program
OMN - CALL
ON - GOSUB
ON = GOTO . . o o w4
ON ERROR G070
OPEN - e 4 s

Jperator . o o . . a4
Operator precedence . .
QUTEUT mode o .+ & & .

Fackea binary format
Paramater desgriptor 41
Parentheses
PEEK « & o = 4 4 2 = W
Percent sign (%) . . .
Physical block
Physical memory
POKE . & o o s e s 4 .
Faound sign {#)
Precision o « o o w o »

A

PRINT USING

Prant zone . . . o« . .
Program compilation . .
Frogram debugging . . .
Program execution . ., .
Program form

indentation
interruption .
Labal « . . « .
Line W« o o =

UMY L s e s s s
Frogram statement . . .
Prompt . . - . s 4 s s

Program
Frogram
Programn
Frogran
Program

RANDOM
Random

ritate £ R
acress disk file
Bandom access filse L .
RANDOM fiile twps . . .
RAMDOM* FORCED wmode . .

Random rnumber
Rendom number generatar
Random number seguence

HANDOMIZE
RBange check . o . . .
Re-entrant code
¥

READY . o .+ « « & .+

Record-number-variable

(Changed 31 Cotcher

INDEX

% = % ® owm
LI T T T
8 & B @ =
P8 ® & om
a = & = =
B = & B &
L Y
® e w ow om
= & w a =
m » 8 o=

EE T S
e & @ @
s = & & =
* s ® ®
= ow a8 @»
= = % & =
a6 v ow B
* = = o &
N
= w8 s ow
= = = m @
E R T S
= = 8 8 =
® = ® = =
Roow o2 s =
s s 4 & &
= 2 = o=
s 4w o= o=
= s a3 & =
& & e 8 @
= 2 8 = =
& s s & &
@« ® = =@ =
s ® 8 = =
L
& w8 3 ou
¥ w a o=

= = 5 = =a
P
2 s o=
= = = om o=
o ow w8 @
s & ®m e oW
I T T

1981

Page Index~7

12, é~1, 2-4

10-14, A=-10

10,14, A-10

10-15, A-10

171, A-G

8=~5, 15-1, 15~4, 15-6, 15=~12 to 15-1%,
19=2, 19-5, A-10, B~1 to B-2

5=3

B2

15~7, A=10)

1B

TE=&

51

121

L

15-%

=1

121

151

4=2

Swde 10=14, 13-1, 13=-11, 14-3, 15-1,
T8-11 to 15-12, A=10

160-17, 10-20, 12~4, 13-1, 15=-12,
A=t(, B=3

10-16

2

2=, 9=g, -8
b, 10=2, 10-5, 10-20
-7

2=F. A1

a2

B3

i3

1~2, 10-2
101

2=z

15-7, A=10
151

1523, 191
154

15-6 to 15-7,
10~18

10-18, 11-3
10-18

10~18, A-11
B3

1o

10-18 to 10=19, 15-1, 15=4, 157,
15-13, 19~2, 19-6, A-11, B-3, B-5
2=2

157

A-10

ALPHA BASIC USER'S MANUAL -

RBecorde-size | ‘
Relative key

REFM « « . o v 2 o w v & . .
Reserved word : w

Regident monitor
RESTORE . . . & o & & & » .
RESUME
RETURN
RIGHTE . .« . . o
RIGHTSCAS. XY
RIGHTOAZ, XY o . .
Right~relative ¢(-) position
BNDOXD w0 w o e w . .
HTH instruction
RUM L . L . . s s .. »

RUNSML o
Run—-time package
BUM.PRG . L . . s v 0w w ®
Rurting proorams . . o v .

SAVE L L L . . e e e e
Saving a program
Saving a source file . ., .,
Saving an object file , . .
Scale o . . . L . . w . .
Scale offser
Scaling factoer
Seed . L L L . L
Zemtcolon separator
Semicolon symbol 2y . . .
sequential disk fite . . .
seguential inbut processing
SENCXY L L L L L
SIGNIFICANCE
FINGKY o L s e e . e .
Single=step . uw v v v W a4 W
soft error
Source code . . L . L . . .
SCUPCE DROGTAR . o« w « .
SPACES (XY . &
SPACE(ON: 2 & 2 a s m s s w
SGRIKY
Square brackets
Statement modifier
Statement verb o . . . o .
STEP . w o . e e e e . .
STOP
ST o e e . . L.
STREQD & o a s 4 v v o w .
STR{X: € s e a2 w w s o oa
String argument
STeing array . . w w w s

(Changed %1 October 1981

IMNDEX

Rom a
s ow
A 8 om
o5 o
I
® = o
= & =
@ & @
® 4 =
® & o=
EE T
= a =
% =
= o oW
LI
s @ o=
= % @
EREE TN
& = om
2 & =
LI ™
s e ow
8 = =
2 & om
® =
s = =
& W o=
® @ e
@ = @
ER
owow
= & o=

= w =
» % o=
« ow oW
o
® @ ow
s & o=
& s ow

2
s &
s B @
= w o

Page Index-§

anrels sl

i

i
(AR S D

5
9

Lo

L
bt P g

. 8=12, C-1
10-18, A-11

17=1, 17-3 to 17=4, A=G, B-9

10-5, A~7, B-5

§-2

11-7, A=17

1=7, A=17

71

W-18, 11=3, A-14

182

2=1 to 2=2, Z-4, 2=6, 10~20, 15-2,
AeB, A=5, Be1, B4

1

le €-6&
P

1
2=y G, A3, BB

14-1 to 14-2, A=-12, B-%
Th1

t4-2

T1-3

=1

10-14 to 10~97

15=-1 to 15=2

-4

T1-3, A-14

b=, HI=20, A~12
Yi-&, A-1%

d~b, G~8, b-5

14

-2

2=1 to Zmb, 9=3, 10~1
-7, A=16

11-7, A-14

T3, A-15

71

-1

-1

=&, A~7

=8, 1=-20, A-12, B2
BeX

11-7. A-15

117, A-15

111

10-3

ALPHA BASIC USER'S MANUAL

String conversion

String data

w 0w = w ® @ =

String format . . &« o -

Steing funct
String Liter
String null
String stze
pefault si
STRSIZ .

107 2 s = o e

al w . s A e
e 4 v = oa s w
s e s s s = o m

o - T

el = = @ @ w 3

String variable . . + . -

Array mode

Single mode . . o .+ . .

STRS1Z . .
Subfield .
Subroutine
Subroutine L
Subsorint .
Subscrioting
Substring .

Subistring modifier

£ = & # 3 " a
= = El * [# o
= Ll = = = R

inking . . .
s e w m e w e
s m o= o oa

= 0w & & = » *

Subistring overflow . . .
Substring truncation .

Symbolic key

Syntax . .
Symiax error

B I s 3 uz
B ® " " & & 3
= = ES @ L S

SYNTax Darser o . . ¢ s« s
Svatem command

Svstem funct

T&B
AWMy L .
Terminal

THEN . o .
TiME . . .
Timesharing
IS S

g

»

£ oo NN

= B ® » o= & o
5 o= w8 @ W &
2 = = = & = a
= = = = @ @ &
e 0w om m w8 o=
s om o= o= ow " =
w % 0w B ® ow 0w

Trailing blank . . . & &

Tree structurs s & % = o

Trigonometri
Type code .

UCSRLas%s L
UCsCAY L .
YOSy . .
Unformatied
informatted
Upper gase o
User dmpure
USING o L .
USING MODIFI

VALLAY ., .
variable

{(Changed 31

¢ funetion .

® L I
" B » 3 £ = £l
= » = = = = =
= a El El 3 a 3

data . . .
variable . .
haragter L
BUEE & . .

= = = = - = =

ER . . 4 .

= 9 “ © @ "o

n - & = £l » [

Gotober 19873

TNBEX

& = a
5 m &
R
= & =
EE
s w =
& @ o
8w
s & @
w w o

@ ® @
= ® =
A a ow®
®ow @
5 = =
PR
oo
a = =
5w o=
= = =

a B -
L] B =
& & @
® LY

LY =
& w ®
= - -
= - =
£ L] B
= & B
a EY
® oa E
E 3
& & &
& S a
® a Bl
= LY
= = #
“ @ m
@] »
- - »
® E ES
e =3
» = o

H

¥

I wen i
[AWIES (B 48]
i%

H
(S IR LT B U TR AN S N
w
£
i
[A¥]

i

i

i

A - RV RS RV
H

i~

o2

)

i

(e

i

ja iy

~3, 10~20, A-12, B~3

o I
§omd
ol

§

14
I L
A

10-2

W

H

118
=1, =3

i

5

ER AR e g

i

B
i
[

"

85
o 194

\3«&»—&
Eobg
i 1k
P “pp—- N

el
=3
121, 16-2

T3-11, B3

Ti=4, A-15

114

-9, A-8

122 to 12-F, A~15
1-1 to 1-2

A7

10-16

b, 18m7

s 11-3, A-18
p D2 6

Fage Index—9

ALPHA BASIC USER'S MANUAL

Variable length
Variable name . . . o+ .« .
Yartable tree
VUE w o o o 4 4 - a s e

Word boundary
WORDCX)
WRITE - « . .

XCALL & . o o v o e . .
XMOUNT . o L
Isng o ¢ v 4 e e s s s .

(Changed 31 October 1981}

INDEX

CPEge Index-10

i
~2s 41
=11
-&

[T o Q- R—.)

By

121, A-14

T4=3, 15-1, 15-4, 15-7, 15~13,
19-2, 19-6, A~12, B=2 to B-3

151, 413
B2
114

;. TECHNICAL PUBLICATIONS FILE REFERENCE AlphaBASIC User's Manual, DWM-00100~01 » REY BO3

TECHNICAL PUBLICATIONS READERS COMMENTS

We apprecigie your help in evaluating our documneniation efforts. Flease feel tree 1o aitach additional commeanis.
I you require a writien response, chenk here; L)

MOTE: This forem is for comments on documentation arty. To subrnit reperts on software probiems, use Software
Performance Reports (SPRs), availabie from Alpha Micro,

Please comment an the usefulness, organization, and clarity of this manuat;

Digd yvou find arvors in this manaal? 30, piease specify the error and the number of the page on which iy egourrad.

Wihat kinds of manuals would vou like 10 sae in the fuiura?

Please ndicate the type of reader that vou represent icheck all that apply 1
i Alphe Micro Dealer or OEM

. Non-programmer, using Aipha Micro computer for:
1 Business sppitcations

1 Edusation aoplications

Fame] .. e .

il beientific applicatians

Ll Other {piease specifyl:

Sgsambity tanguags
Higher-lavel ianguage
Exparienced programmer
LITHE Rrogramming 8x Qerience
Studar

Cither {nlease speaifvl:

MAME: LDATE:

THFLE: | PHONE NUMBER . _ _
GRGANIZATION: b
HRESS: —

CitY: STATE: ZiP OR COUNTHEY:

STAPLE STAPLE

FOLD FOLD

3@@&@?%@»&@%%@ﬂ@ﬂ#&@%@@ﬂ@v@ﬁ&&@@mﬁm&ﬁ@&@e&3930&?'E'“@@&@83&&%#&&@?6&1&$$%@$@?@QQ

T G U il S e SR 0 B T S U 0 T T M A L 0 VI i 53 3 O D0 TN . e R S0 s e S L) S b i i s 0 7 1

PLACE

2TAMP
HERE |
S

e

T ALONG LM

v
W,

@ e

ol

e

IFE8Y Sky Park Neorth
PO Box 18347
frwine, California R8744

ATTN: TECHMICAL PUBLICATIONS

aaﬁ%@%@sﬁ&fﬂaasﬁ‘%&w&w%&ms»n@&.’saasﬂu@*wm@»&%ﬁ»#&nﬁ&mﬁawmsuH@@ﬂs%ﬂ@@ﬁ»ﬂ@&l&@&q&-ﬁﬁ

FOILD PO

P - [
4T G R T S . T 1 8 D 5 T ey e e £ S T 8 S i T e 97 4 S S S 5 S) S 0 4 R 9 e P g ——

