M68SDBUG/D

September 1997

M68SDBUG

SERIAL DEBUGGER

USER’'S MANUAL

© MOTOROLA, INC., 1992, 1997; All Rights Reserved

Motorola reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. Motorola does not assume any liability arising out of the
application or use of any product or circuit described herein; neither doesit convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against al claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges that M otorola was negligent
regarding the design or manufacture of the part.

Motorola and the Motorolalogo are registered trademarks of Motorola, Inc. SDI is atrademark
of Motorola, Inc.

IBM-PC isaregistered trademark of International Business Machines Corp.

SDbug softwareis© P & E Microcomputer Systems, Inc.*, 1996; All Rights Reserved. Portions
of the software are © Borland International, 1987. Portions of the software are © TurboPower
Software, 1988.

* P & E Microcomputer Systems, Inc.
PO Box 2044

Woburn, MA 01888-2044
(617)-353-9206

@ MOTOROLA CONTENTS

CONTENT

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION ...ccoiiiiiiiiiiiie e s 1-1
1.2 FEATURESooiiii ettt sr e ne e 1-1
1.3 EQUIPMENT REQUIREDccocciiiiiiiiiiiiiccc e 1-2
1.4 LOADING SOFTWARE........cccoiiiiiiiiiiiiiie e 1-2
1.5 ABOUT THISMANUAL ...ttt e 1-2

CHAPTER 2 SDbug OPERATING PROCEDURE

[2.1 INTRODUCTIONcoovireeeeeceereeeeeeteetesveeeeeetesvseeseaessesseseesnaessessesnssnsensessesnesnaensnsens 2-1
2.1.1 Typeface and Parameter CONVENIONS..........c.occuveeueeiiieiieeeieeeeeteeeeeeeeeeeeee e 2-1
2.1.2 SDbug NUMENCal FOIMELS......c..coeiuiiiiiiiieiie et et eeeneeas 2-2
2.2 STARTUP ...ttt ettt et eeaeeeteeereeneaeseeseeneeeseeaseeneeeseensens 2-2
2.3 MAIN SCREENocviiieiiieeeeeeeeeeee ettt e et e aeaeneeeeeneesreeneeeneeaneenseas 2-4
2.3 1 CPU WINUOW......cciuiiiiieeeieeiie ettt a e eta et e aeeeaneaenteenneeenreenseesneeenns 2-6
2.3.2 SDbugl2, SDbug32 Stack WINAOWc..cccveiuiiiiiiiiiieiiieciecieeetee e 2-8
2.3.3 SDbug16 Instruction Pointer (IP) WINAOWccccoiiiiiiinieieieiese e 2-8
2.3.4 SDbugl6 Breakpoint (BR) WINCOW.........ccccceiimieiiiiecie e 2-9
2.3.5 COUBWINUOW ...ttt ettt e et e et eeteeaneaenteeeseeeneeenseesneeenns 2-9
2.3.6 MEMOIY WINAOWS.....ccueeieiieeitieiesee st ete st steesae s et eee e e saesae s e essesnaesneesneensesseensens 2-11
2.3.7 DEDUG WINAOW ...ttt sttt n b e b nre e 2-12
2.3.8 WINGOW FUNCHON KBYS .. ovoovooooovooooomooeeomooeosseomssmsessoemssesessoesseseesoessesnesoensoe 2-13
2.3.9 Othel WINUOWS........ccuviiiieiiiiciiecie ettt eaaa b e enaeereeenneenreaeneas 2-13

|2.4 GENERAL USEc.oo ittt ea e e teeneeenaenseeneaaneennenn 2-14

CHAPTER 3 USING DEBUGGER COMMANDS

3.1 INTRODUCTION ...ooitiitiiiieiieieiesiesie st stesie s ee s steste b stessesse e eseessessessessessessessessessens 31
3.2 DEBUG WINDOW COMMANDS..........ccoiiiieieieiese sttt sesesee e eneeneenens 3-1
3.2.1 Toggle F3WIiNdow DiSplay........cccoeiieieieeiecie e e et 3-5
3.2.2 Toggle F6 WINndow DisSplay...........ccouiieiiiiiiiiiiiiiieiesieieeee e 3-6
3.2.3 Assemble into PSEUO ROM ...ttt 3-7
S = B = T (o [= 3-8
3.2.5 BIOCK Fill MEMOIY.....cciiiiiiiiieii ettt ettt e et esreene e 3-9

M68SDBUG/D iii

CONTENTS

@ MOTOROLA

CHAPTER 3 USING DEBUGGER COMMANDS (continued)

3.26 Set or ReMOVE Breakpoint........cccoiiriiriiriiiieieeeesees et 3-10
3.2.7 Change Display to Black-and-White MOde............ccceeveiieiiein e 311
328 SaveDatato alog File. ... s 3-12
329 StoplLogging Datato Log File. ..o 3-13
3.2.10 Remove Source-Level Debug INfOrmation..............ocvviririeieiieiicnieseseseeeeeeeienes 3-14
3.2.11 Remove Temporary SYMDOIS........ccciieieiiienieie e e see s sae e e e see e nnas 3-15
3.2.12 Show Disassembled COUE...........ccceuiiiriiiiiiieieee e 3-16
3.2.13 COUNES EXECULION.ccueeieenieieiesiesie ettt sttt e b st sbe bbb enes 3-17
3.2.14 Add or Remove COUNLEr LOCALION.c.eceeruerierreesieeeesieesieeiesseessesneesseessesneesseesees 3-19
3.2.15 Set Debugger Destination Function Code Value...........cccocvevvieeviecieseeseese e 3-20
3.2.16 Set Debugger Source Function Code ValUe.........cccoovrerireneeeeereseese e 3-21
3.2.17 SEEMCU DFC VAIUB......coeiiiieriesie ettt 3-22
3.2.18 MOCIfY RAM DalA.......cciueieieiieriisiesiesieseeeeseesiesesse s e e sseeseeseeseessessessessessessessessenses 3-23
3.2.19 ShEll IO DOS.......cciiiriiiieieiese sttt bbbttt sa bbb enes 3-24
3.2.20 SpeCify DOS COMMENG......c.ciiiriirririeriinieeiere ettt sn e e enes 3-25
3.2.21 Load Memory to Debug WINCOW.........cceiieiuieiieiierie e eie et 3-26
3.2.22 Load Trace Buifer t0 DeDUG WINUOWcouveeeeeeeiiieieeieeieeieeeeeieeeeeeeesieeneeeneeeas 3-27
3.2.23 EVAlUBLE EXPrESSION.......ecviceecieeie ettt sttt te et e e ne e e neeneeennenns 3-28
3.2.24 EXIt DEDUGOEScivieieieeieeeeiete ettt nn e 3-29
3.2.25 EXECULE PrOQIaM.. ... viiiciieieiiessiteeesiteessiies sttt e s s e s sse e s e snbe e nsne e s snseeennneesnnnenens 3-30
3.2.26 Exit Debugger with Target RUNNING.........c.oovoviiiiiiieeeeeeee e 3-32
3.2.27 GO from IP/PC t0 N&Xt INSIIUCH ON ... 3-33
3.2.28 GO from IP/PC 10 AQUIESS.....cueiieieieiieeie ettt e et ee e e 3-34
3.2.29 Single-Step Fast t0 AQArESS.......c..oceeieeecceeec et 3-35
3.2.30 Display HEIP SYSIEM......coueeeeeee s 3-36
3.2.31 L0ad SRECOI Fle.......c.coueiiiiiiiiiiiieiieieee e 3-37
3.2.32 Load Map and S-RECOI FlES...........ccuiiiiiiiieieiese s 3-38
3.2.33 Load IASM DebUg File.. v 3-39
3.2.34 Load and VEriTy File.... oo 3-40
3.2.35 L0OAA BINArY Fil€.....cceeieee ettt et ne 3-41
3.2.36 Load and Verify Binary File........cccoiiiiiieeeee s 3-42
3.2.37 Display MAC UNit CONENESccueeiieeieiiesteeiie et eiesee st esie et enneseesseeneeeeennas 3-43
3.2.38 EXECULE MACIO FlE........oceiieieieee e 3-44
3.2.39 ENAMACIO Fl€......ccuoiuiiiiiiiiiicec e 3-45
3.2.40 SHArt MACIO FIlE.....eiieieieee ettt ns 3-46

M68SDBUG/D

@ MOTOROLA CONTENTS

CHAPTER 3 USING DEBUGGER COMMANDS (continued)

A S o VLV LV = o K PSSR 3-47
3.2.42 Set F3Window Memory DiSplaycccccueiuveieiieiieiecieciece e 3-48
3.2.43 Set F6 Window Memory Displaycoeveieieiiniiiiisieieeeeeses s 3-49
A oo [Y20\ = o 3-50
3.2.45 ReMOVE All BreakPOINES.........eocvieeiiieeeieeeetieeeteeeeieeeeieeeeeieeeeereeeeseeeseseeesreeesnseeeas 3-51
3.2.46 Modify Memory in Program SPace.........oo i 3-52
3.2.47 Toggle Window REFTESN........cc.ooiiiiiiiicieceeeeeee e 3-53
3.2.48 WIITE REMAIK.........ciuiiiiiiiiiiiice et 3-54
3.2.49 Execute HardWar€ RESEL...........cccuiiieiiieiiiiesie ettt nes 3-55
3.2.50 Set Serial-Port ParamELerS.ccoiiiiiiiiiieieieiesesesesesi e see s 3-56
3.2.51 Deactivale Serial POoccueiiiiiiesieeseseee et ees 3-57
3.2.52 ACHVELE SENTAl POM......cciiiiiiiesi e 3-58
3.2.53 SEtMCU SFC VAIUB ...t e s eseeseessesresneeseeneenes 3-59
3.2.54 SCIEeN CAPLUIE......co ittt e e sabe e e s abe e e nnbe e e nsneeeas 3-60
3.2.55 Toggle Code DiSPlIaycouerueriiirieiieiieieie e 3-61
3.2.56 OO SEAICNetiiiieiiteeiee ettt sttt e et sr e e enes 3-62
3.2.57 SOUICE SEEPD ...ttt ettt e e et e et e st e e et e enneaenneenseeenreeaneeennas 3-63
3.2.58 ShOW ProCESSOr SEALUS.......coveieiesiisiesiesiisisee ettt st ens 3-64
3.2.59 SLEP TTACE....ceeeieeeeeieeet et r e n e s 3-65
3.2.60 StEP tO BreakpPOintccecveieeiicie ettt nns 3-66
3.2.61 SEEP 10 AQUIESS.ceeeeeeee ettt 3-67
3.2.62 Add Symbol t0 Map File........ccccuiiieiiiiececeee e 3-68
3.2.63 EXECULE TTOCEeeueiitieieie ettt ettt eee e et e e b e enneesbeesnneeaneeeneas 3-69
3.2.64 Display S RECOI FIlES......ccoeeiiieie ettt ns 3-70
3.2.65 Show Variable@S WINAOWccouiiiiiiiiiiiesiieeeeseeieee et neas 3-71
3.2.66 Compare FiletO MEMOIYccueiiiieeseece ettt ne e nns 3-72
3.2.67 Display the Current SOftWare VErSION.........cc.ccveceriiiiiiinieieieiesiesiese s 3-73
3.2.68 Disable Watchdog Timer ... 3-74
3.2.69 Show Symbol ValUE...........ccooiiiiiiiiiiieeeee e 3-75
3.3 SOURCE-LEVEL DEBUGGING.......cccctttiirieieieriesie sttt ens 3-76
3.4 SDBUG MAGCROS.........ccteieieieiieee ettt eteeitetetesaestase e stasseesaeseesaeseensensessessessesseeseenennes 3-78
35 TRACEBUFFER. ..ottt 3-78

M68SDBUG/D v

CONTENTS @ MOTOROLA

CHAPTER 4 IASM OPERATING PROCEDURE

[4.1 INTRODUCTIONceviuevieitetiectetcteteecteteseeteeestetenaeaesesaetessseseseesesessesssessesessesssnsesnans 4-1
4.1.1 SyStem REQUITEMENLSc.ceiiieieeeestieieeeesteestesee s e e seesreesre s e e sseeseeneesreesseeneesseensens 4-1
4.1.2 SYSIEM OVEIVIBIc.eeieiiieiieiieee ettt sttt b et b et e e e n e e b nbesneeneeneas 4-1
R B €T 1] Lo [7= 1 (= o RS 4-2

4.2 IASMINST CONFIGURATION oo 4-2
4.3 HOTKEY S.....ooitiiiiiiieeee ettt e e et eeteeeeteesseeeabeesseeeseessseeseesnseanseesnseenseesnreesseess 4-4
Y N R 4-5
A5 HELP ...ttt e bt e et e e reeenre e beesnreereeenreereeanreenreeas 4-7
T T 1 | RO 4-7
4.6.1 ThEEAIING SCrEENuoeiveiiitiie ettt e eteeeeteeeebeeeenreeesnseeessseeeans 4-7
4.6.2 Prompt EQITONccoiiiiiiiiece e 4-8
G T - oSSR ORRORP 4-8
4.6.4 WINAOW COMMANGSc.veeiiirieiiiee et e citeeeeiteeestee e sreeesreesssreesabeessbeeesbeeesaresesnsesennns 4-9
4.6.5 CUrsor COMIMANGS........ccccvieirieiiieiee s eereesteeete e s e e sbeesateesbeesseeeaseesareebeesaseesseesssesans 4-10
4.6.6 Insert and Delete COMMEANGS..........ccoueeeiriiiiiiieeciie ettt e eareeens 4-12
4.6.7 BlOCK COMMEANGS........c.oeeiuieiiiiitiecieecieceectee ettt e e te e et e ereeereeereesseeereesseens 4-13
4.6.8 Miscalaneous COMMEANGS.........c...cccuieeirieeiirieecirieeeieeecreeeeeeeeeteeeeeteeeereeeereeeeareeens 4-15
4.6.8.1 TheFind COMMANG........ccoeeiiiiirieiiiecee ettt sre e saae e sbeesaneeree s 4-16
4.6.8.2 TheFind-and-Replace Command...........cccccereeiieiiereeieseese e 4-17

[4.7 ASSEMBLER........cooooeeeeeeeeeeteeeeeeeeeeeeeeereeetereeeereseeeeseereenenereesesesnensesesesneneneseseneeeas 4-18
L R U= = 1O 4-18
4.7.2 ASSEMDIEr DITECHIVES.........eecvieieieectiece ettt etee et e et e enreeebeeenreenreeeneeenns 4-19
A.7.3 Changing BaSE........cccuuiuiiiiiieeeiee ettt esteeneesneeneeeneeenes 4-20
S O 1= o (o = S 4-21
4.7.5 Conditional ASSEMDIY ..o 4-22
AT.6 INCIUAE ...ttt et et e eateeebeeenreeereesareenns 4-23
A G, = o 0= PP 4-24
A.7.8 CONSLANESuveieiiiiiiie et ec e e e e e e e eet e e e aaabeeeeeenteeeeeanreeeeaanseeeeeannreneesans 4-26
7.9 OPCOUES ...ttt ettt ettt a st e e e e er et et aneane e e eneens 4-26
4.7.10 Operands and OPEIalOrS.........cccueiuierieieereerieeeeseesteseesseesseseesseesaesseessesssesseessesssesses 4-27
A.7.11 COMIMENES.uieiieiiiiieeeeitee e e eeree e e e eireeeeeeiteeeeeeeseeeesassseeeesaasraseesasseeesaassaneessnsseneesns 4-28
4.7.12 PSEUAO OPEFEHIONSeiuieeeeeieetieieeieesieeeieeteesteetesseesseesesseesseesesseesseeeesseenseseesses 4-28
4.7.13 LiStNG DITECHIVES.ccueiuiiieieieeteeeietee ettt sb et ee e 4-29
7 T g o N 4-30

4.8 OBJIECT AND MAPFILES. ...ttt ettt eae e s eneas 4-30
49 COMMUNICATIONSttt s e be e s e e sbe e saee s beesaseebeesaeeeabeesanas 4-31

Vi M68SDBUG/D

@ MOTOROLA CONTENTS

CHAPTER 5 PROGRAMMING MCUS

5.1 INTRODUCTIONcoiiiiiiteitieteeieeesiesesee e siesse e sseesaestessesaessessesseeseeseessessessessessessessessenns 5-1
5.2 OVERVIEW ..ottt ettt sttt ab b e e 5-1
5.3 PROGRAMMING REQUIREMENTS.......cciiitiiiieieieieste et 5-2
54 STARTING PROGRAMMINGcccoiiiiiiiiiiieieiesie sttt 5-3
55 PROGRAMMING SCREEN.........c.ccccctiiiiiiiiiiieieieiesiesiese e ste e eseeeeaesseneessessesseeseeneens 5-6
56 SPECIAL USER FUNCTION.........ccciiiiiitiiiiiiieieiesiesie ettt 5-7
5.7 STANDARD PROGRAMMING COMMANDS........cccooviiiiiieieieieniesiese e, 5-8
5.7.1 Blank CheCk MOUUIE.............cccoiiiiiiiiiieieiees ettt 5-9
5.7.2 Blank CheCK RANGEcc.oiiiiiiiiiiiiieiieeeee et 5-10
I T 511
9. 7.4 Erase BYIE RANQE.cccviiiiiiiiiiiic e 5-12
5.7.5 ETASE MOOUIE......o..oooooooooooooooooooeeseeeeeeeeeeeeeeeeeseeeseseeeseseseeeeeeeeeeeeeeeeeeeeeeeeeeeseceseesees 513
5.7.6 Erase WOrd RANGE........c.eiiuiiiiieeeeeeeeeeeee ettt eee et eeneeeareaeneas 5-14
B.7.7 HEID. ettt e e s 5-15
5.7.8 Program BYLES..........coiiiiiiiiiii e 5-16
5.7.9 Program MOGUIE.........c..couiiiuieeiiecie ettt ereeete et eereeebeeenreeereeennes 5-17
5.7.10 Program WOITS.........cceiueririiriiaiirieeieie et eseeste sttt e s e s b s s sne e ese e 5-18
LI 50 I R) SRR 5-19
5.7.12 RESEL ChliD....iviieieeieeieeee ettt eeste st et eeteaseeneeseeneeeeseessessessessesseaneeseeneas 5-20
5.7.13 SNOW MOUUIE.......coouiieieiiiieeeeeeseeee ettt 5-21
5.7.14 SPECITY STRECOI ...ttt bbb 5-22
5.7.15 UPload MOAUIE...........coueeiiieceee ettt ee e ee e ane 5-23
5.7.16 UPIOAH RBNGEceueiuieieiiiesie sttt st st sb et e e e bbb sne e eneas 5-24
B.7.07 VETY MOUUIE.........o ettt ettt ettt e nns 5-25
5.7.18 VETY RANGE.oiueiuiieeeeee st sr b sb e 5-26
5.8 TYPICAL PROGRAMMING SEQUENCE........cccoiiiirinireneree s 5-27
APPENDIX A S-RECORD INFORMATION
A.L INTRODUGCTIONooiitiitiiiieiieieiesiesiesies st sieeieeeeeeseeseestesbessessessesseeseessensessessessessessessens A-1
A.2 SRECORD CONTENT ...cutiiiieieiesiesesieste e e eeesees e sae e stessesseesesseessessessessessessessessensens A-1
A.3 SRECORD TYPES ...ttt sttt sttt sttt ettt b e b nessenneas A-2
A4 S RECORD CREATIONcccoiiiieieiesiesiestesieetesieesieeesaestessassesseasessesseeseensessessessessessessens A-3
A5 S RECORD EXAMPLE. ...ttt sttt st st sre e A-4

APPENDIX B STATUSAND ERROR MESSAGES

M68SDBUG/D vii

CONTENTS @ MOTOROLA

FIGURES
2-1. SDBUGLZ MAIN SCIEEN....ceiitiitiiiieeee ettt r et e e e b e se e 2-4
2-2. SDDUGLE MAIN SCIEEN.......ceeiuieitiiieceeete ettt etee e te e te et e eneasseeaeeneesreenseaneeaneesens 2-5
2-3. SDDBUG32 MaAIN SCIEEN.......oiuiiiiiiieieee ettt 2-6
2-4. CPU WINUOWS.......cuiiiiitiiiiitiiiieiieieiies sttt sttt sse et e e sentestesbesbeeneeneens 2-7
2-5. SACK WINOOWS......ocuviieiiiieii ettt ae et et eneasaeeaeeneesreenseaneesneensens 2-8
2-6. SDDUGLE IP WINAOW.....cuiiiiieieiiecie ettt sttt te e sse e sneensesneesneennesneesneensens 2-8
2-7. SDDBUGLE BR WINUOW ..ottt 2-9
2-8. COUEWINUOWSooviiiiisieitisieeice et sttt bbbttt bbb s enes 2-10
2-9. MEMOIY WINUOWSceiveeieiieeecteee ettt e et eeeaeebeeeneeesseeeneeenseasnseenseean 2-12
pZZc0 L 7= o 0 o VYT e (o S 2-12
5-1. Programming SCIEEN..........ccuiiiieieieieeteete sttt ettt as et e e e s e b sneanenae e eaeens 5-7
A1, SLRECON DIBGIAM.oovvwooooooooeeooo oo oooeeoe oo ooeeeeeesosooeeeeeeessseeeeeemeesoeeeeeemsesooeeeeeesessoeeeeene A-6
TABLES
2-1. SDbug NUMDEr SYMDOIS.......cceiiiieiieiice ettt e e enne s 2-2
2-2. Option Parameter VAIUES..........ccoiiiiieieie ettt snenn e 2-3
2-3. SDbug Special FUNCLION KEYS........ccoviieiierie et cee et ae et nnn 2-13
3-1. Debug Window COMMENGS............coeiuiriiririeieeeieesiesieste sttt sre e 31
3-2. SOUrce Window COMMENGScc.uiuiiiieiieieiieieieeieste sttt see s sneeneenes 3-77
A-1. TASM HOKEYS.....ooeeeece ettt sttt e e s e tessestesreeneenennens 4-4
-2, TASM MENUS ..ottt sttt et e et et e st e st e sbeeneeneeneas 4-5
4-3. Edit Window Status Line INfOrmation...........ccooeereeirnenieresieseeie e 4-8
4-4. TASM Edit WindoW COMMEBNGS..........cociriiiiiiieieieeesesesiesieeieeeeeesie e seesiesresneas 4-9
4-5. TASM CUrsor COMMEBNGScceiuiiieitieiieiiesieeiieeiesieeeieseeseeeseeeeesseeneeeeesseeneeseesseeseens 4-10
4-6. IASM Insert and Delete COmMMENGS.........coereririeiierierie s 4-12
4-7. 1ASM BlIOCK COMMANGS........coiiriiniierieeie et see st see st ee e sreesesreesreensesneesseensens 4-13
4-8. IASM Miscellaneous COMMANGS..........ccueiiiririieieiiesiesiisiesiesieeeeee e siesreeneans 4-15
4-9. ASSEMDIEr DITECHIVES.......c.eiiiieieieieeieie ettt sreenaeeneesneeeeas 4-19
4-10. PSEUAO OPErELIONScciueeieiteeiteeieseesteeteseesseeseeseesseessesseesseesesseesseesesssesseessessssseesses 4-28
4-11. LiStiNG DITECHIVES.......ocuiiuiiiieeieietes ettt b b e 4-29
4-12. Communications Window HOt KEYS........cceeiieiiiiecece e 4-31
5-1. PROGS Startup Command Parametersccueiereniiniiiiiieiiieieieieeese e 5-4
5-2. Standard Programming COMMANGS.........ccceecuereerieeiiesieeseeieeseesreeeeseessesseesseessessesseessens 5-8
viii M68SDBUG/D

@ MOTOROLA CONTENTS

TABLES (continued)
A-1. S-Record Field COMPOSITIONouiiiiiiiiiiieiieiieeee et eneas A-2
A-2. SRECOM TYPES.....ceeiitiiiiie ettt ettt e e te e st et e e eeseeteenaeereeseeneeaseenseeneennen A-3
B-1. SDbug Status and Error MESSAgES..........cceruerierieieieiesiesie sttt sse e e sse e e B-1
B-2. TASM Assembler Error MESSAES......ccvevueieerieeieseesieetesee e eaeseeste e sreessesaesneesseenne e B-3

M68SDBUG/D iX

CONTENTS @ MOTOROLA

x M68SDBUG/D

@ MOTOROLA

GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

This manual provides general information, operating instructions, and MCU programming
instructions for your M68SDbug Serial Debugger (SDbug) software.

SDbug works with target devices that incorporate HCM OS microcontroller units (MCUSs) of the
M68HC12, M68HC16, and M68300 families. The SDbug versions are:

SDbug12, which works with M68HC12 MCUs,
SDbug16, which works with M68HC16 MCUs, and
SDbug32, which works with M68300 M CUs.

1.2 FEATURES

SDbug features include:

Economical means of evaluating target systems incorporating MCUs of the
M68HC12, M68HC16, or M68300 families.

Background-debug mode operation, for use with a personal computer instead of an
on-board monitor.

Integrated assembly/editing/emulation environment for easy development.
As many as seven software breakpoints.
Memory map of your target system.

IASM development software (IASM12, IASM 16, or IASM 32), which includes an
editor, cross assembler, and communications package for use with MCUs of the
corresponding family.

PROG software (PROG12S, PROG16S, or PROG32S) for programming MCUs of
the corresponding family.

M68SDBUG/D

11

GENERAL INFORMATION @ MOTOROLA

1.3 EQUIPMENT REQUIRED

For communication with SDbug, you need an IBM PC or compatible computer running MS-
DOS. The computer must have a serial communication port. Y ou aso need a Motorola SDI[]
interface.

SDbug operates in background debug mode — a backdoor method of talking to the CPU.

There are two methods of loading MCU code using SDbug:
1. Generating code via the SDbug one-line assembler/disassembler.

2. Downloading assembled code from an external source to user program RAM (pseudo
ROM) via SDbug.

1.4 LOADING SOFTWARE

To load the SDbug software on your host computer:
1. Insert the software diskette into the 3.5-inch drive of your computer.

2. Atthe DOS prompt, type the floppy drive letter, followed by the Wwast al | . For
example, if your 3.5-inch drive is drive B, type:i nst al |

3. The install program automatically loads the software. Follow the instructions that
appear on the screen. This completes software loading.

Refer to the hardware user’s manual for connecting your computer to the target system.

1.5 ABOUT THISMANUAL

The rest of this manual explains SDbug functionality:

» [Chapter 2 explains SDbug operating procedure.

» | Chapter 3 explains SDbug commands.

* | Chapter 4 explains how to use IASM development softyvare.

» | Chapter 5 explains how to program MCUs of the M68HC12, M68HC16, and MB8300
families.

* [Appendix A gives information about Motorola S-recorgs.

» | Appendix B explains status and error messages.

A software release guide, which comes with your SDbug, lists part numbers of SDbug
components, lists all software files, and explains any restrictions or limitations.

1-2 M68SDBUG/D

@ MOTOROLA SDbug OPERATING PROCEDURE

CHAPTER 2
SDbug OPERATING PROCEDURE

21 [INTRODUCTION

This chapter explains how to use SDbug. The explanations of this chapter cover startup, general
use, the main screen, source-level debugging, counts, the variable window, macros, and tracing.
Chapter 3 explains debug monitor commands.

211 Typeface and Parameter Conventions

This chapter uses two different typefaces:
1. This typeface for exanpl es,
2. Thistypeface for variables, and
3. Thistypeface for text and explanations.

Also, note these conventions for parameters and keyboard entries:
* add indicates any valid, hexadecimal address or label.
» fileindicates a DOS file name (with or without the path).

* [Pistheinstruction pointer, which points to the next instruction to be executed
(M68HC16 MCUs only).

* nindicates any hexadecimal number: 0-OFFFF for bytes, 0—-OFFFFF for words, and
0—OFFFFFFFF for longwords.

» PC is the program counter, which points to the next instruction to be fetched. (For an

MC68HC16 MCU the PC value equals the IP value plus 6.)

» dtr indicates an ASCII character string. The maximum string length is 256 characters.

» ; indicates that the text string following this character is a comment, not part of the

instruction.
* []indicate an optional parameter.

» label _name indicates a string of 16 or fewer characters: letters, numbers, or
underscores, although the first character must be a letter.

* <CR>indicates the ENTER, RETURN, or carriage-return key of your keyboard.

M68SDBUG/D 21

SDbug OPERATING PROCEDURE @ MOTOROLA

212 SDbug Numerical Formats

Unless otherwise specified, all numbersin SDbug are hexadecimal. SDbug treats any numbers
you enter as hexadecimal, unless you use the proper prefix or suffix, per Table 2-1. (Number
values may have a prefix or a suffix, but must not have both.)

Table 2-1. SDbug Number Symbols

Symbol Meaning

$ Optional prefix for hexadecimal numbers, as $0FF

! Required prefix for decimal numbers, as /255 (which equals $0FF)

% Required prefix for binary numbers, as %11111111 (which equals $0FF
and 1255,)
H Optional hexadecimal-number suffix; an alternative to the $ prefix

(OFFH = $OFF)

Decimal-number suffix; an alternative to the ! prefix (255T = 1255)

(0] Octal-number suffix

Binary-number suffix; an alternative to the % prefix (11111111Q =
%11111111)

22 STARTUP

Before starting SDbug software, read the README file (if any) on your software diskette and
read the software release guide (if any). A README file or software rel ease guide contains
information not available at press time. Then make sure that the SDIO interface and target
system are connected and powered up.

To start SDbug operation, enter the startup command at the DOS prompt:
Sdbug# [option] [option]

where options are parameter values from Table 2-2. Note that spaces must separate multiple
option-parameter values.

2-2 M68SDBUG/D

@ MOTOROLA SDbug OPERATING PROCEDURE

Table 2-2. Option Parameter Values

Value Meaning
SDbug number: 12, 16 or 32
bw Set display to black and white.
coml...com9 Select specified serial /0 port 1 through 9 (the default I/O port is com1).
baud n Set I/O port baud rate n specifies. The rate range is 2400 to 57600; the
default rate is 19200.
freq n Set target frequency n (half the MPB oscillator frequency), entered with all
trailing zeros. The Sdbug12 default is 2000000 (2Mhz); the default for
Sdbug16 or Sdbug32 is 8000000 (8Mhz).
quiet Start the debugger without filling the memory windows or disassembly
window.
sim n Set SIM type value n specifies 0 one of these possible values:
0 SIM 4 LIM (NOMUX)
1 SCIM 5 LIM (MUX)
2 RPSCIM 6 SLIM (MUX)
3 SCIM2 7 SLIM (NOMUX)
(The Sdbugl2 default is 5; the Sdbugl6 and Sdbug32 default is 0.)
path Specify DOS path to the directory and code to be debugged.
running Start the debugger without executing a RESET (see the GOEXIT
command explanation, in Chapter 3).

Example startup commands are:
SDbug12 \iasnl2\ source\ Starts SDbugl2, making available code inthe IASM 12

directory, source subdirectory.

SDbugl2 freq 4000000 sim $04

Starts Sdbugl12 for atarget-system oscillator frequency of
4AMHz, with a non-multiplexed light integration module
(LIM).

SDbugl6 start.s19 Starts SDbug16 and performs a LOADALL command,

loading the s-record and debug map.

SDbug32 con® baud 2400 Starts SDbug32, specifying serial communication port 2 at

M68SDBUG/D

2400 baud.

2-3

SDbug OPERATING PROCEDURE

@ MOTOROLA

If afile named STARTUP.ICD isin the current directory, the debugger software runsthefileasa

macro at startup. (Paragraph 3.4 explains SDbug macrog.) At startup, SDbug shows an opening

screen that lists the version number. Press any key to advance to the main screen (Figure 2-1).

23 MAIN SCREEN

Figure 2-1 shows the SDbug12 main screen, which consists of the CPU window, the stack
window, the code window, the program (F6) memory window, the data (F3) memory window,

and the debug (F1) window.
= C:IWINDOWS}system32\CMD.EXE - sdbug12 freq 8000000 [~]+]
— CPU STACK CODE F2
1] —» ccr BB
B acch B8 (]SSR BGHD ; PC
D a8a8 acca 2C|||0B8? B8 TN
ixh 77 |||8@8a 2C79 BGE 5@8@85
I¥ 1888 ixl 18|{|8a8C 18688 ANDCC #A
I¥Y @868 ivh B8 |||BE8E B8a BGND
SF G888 iyl @6 |||8eaBeF 8@ BGHD
PC B8B83 pch B8 |(|#B168 B8 IHH
SHHINZUC pcl 88 |(|8811 B8 BGHD
88061 BeA 88 |(leai12 a1 MEM
HEMORY TG HEHORY I3
A8 PO A0 B8 B2 B0 BA A6 A8 BeAA Bo BA B6 B2 Bo B4 B6 B6
BAOE B0 A8 2C 72 10 B0 A8 68 ...y, BeAE Bo B8 B6 BA Bo BC B6 BWE
gA18 B8 68 81 BC BA B@ BF 88 BelB Be 18 B6 12 Bo 14 B6 16
A1 90 B8 B8 BB BA B@ 68 F2 BG1i8 Be 18 B6 1A Bs 1C B6 1E
DEBUG Fi
*1load
Mame of 5 record file: ecsgasproglZssrecordss_BB.s19
Loading ... BAHEBYEA loaded.
imd 1139515}
t F1-Debug F2—Code F3-F6—Mem F4-Step FS5—Zoom F7-Trace FB8-DOS F?-Repeat F18-Help-

Figure 2-1. SDbugl2 Main Screen

2-4

M68SDBUG/D

@ MOTOROLA SDbug OPERATING PROCEDURE

Figure 2-2 shows the SDbug16 main screen, which consists of the CPU window, the instruction
pointer (1P) window, the breakpoint (BR) window, the code window, the program (F6) memory
window, the data (F3) memory window, and the debug (F1) window.

E CAWINDOWS\system32\CMD.EXE - sdbuglb
CODE F2
A FE SF ©8864 ||8FEDA
B 88 PC BOFEB6 AFEBAA Ba3Cc COM 3C. R ; IP
D FEBA K 8088 | BR —|| BFEB2 BFB3 BLE BOFEBE
E 8aBd PK a |||-——- BFEB4 FDFC UNDEFIMED
IX BBBBE SK a ||l-———- BFEBG FBFhA RMAC -81 .-86
I¥Y BBBBA HR aaaa |{|——— BFEB8 F2F8& BITE #F8
IZ ABBBA IR aaaa |{| ———— A@FEBA F?F6 ORAB #F6
AM BOBBBEBBE @ l[|—— BFEBC F5F4 LDAE #F4
SMHENZUC2185-PE- |{|—— ABFEBE F3F2 ADCE #F2Z
faeRBARBEABER |{|—— BFE1B FiF@a ADDE #FB
—————— PROGRAN <PAA> _Fh DATA _<DAMy F3
#8888 B8 1F DA @83 FD FC FB FA #0888 B8 1F DA @83 FD FC FB FA
fBBA8 F? F8 F7 Fe F5 F4 F3 F2 fBBA8 F? F8@ F7 Fe F5 F4 F3 F2
#8818 F1 FA EF EE ED EC EB EA #8818 F1 FA EF EE ED EC EB EA
88818 E? E8 E7 E6 E5 E4 E3 E2 88818 E? E8 E7 E6 E5 E4 E3 E2
DERUG Fi
Mo szuch file found: .517
>load
Mame of 8 record file: »c:isgasproglZ2isrecordss_@@.s19
%uading ... BUBAB7EA loaded.
t F1-Debug F2—Code F3-F6—Mem F4-S5tep FS5—Zoom F?-Trace FE-D0OS F?—Repeat FiB-—Help-

Figure 2-2. SDbugl6 Main Screen

M68SDBUG/D 2.5

SDbug OPERATING PROCEDURE @ MOTOROLA

Figure 2-3 shows the SDbug32 main screen, which consists of the CPU window, the code
window, the program (F6) memory window, the stack window, the data (F3) memory window,
and the debug (F1) window.

=] C:AWINDOWS\system32\CMD.EXE - sdbug32 [+ 4]

CFPU CODE F2

DB BA8AAEEE A8 BBBOARBEE

D1 9880000A A1l BO0BBOOA ||| SEESEETET ORI .B #80.DA ; PC

D2 0880BBEA A2 PBOOREOOA |(|BEBH8118 SUB.YW —<AY>. D7

D3 AAPABBAR A3 PBAEAAEH ||Peeas112 MOVE.L D1,D5

D4 BAAABBEE A4 BOOREOOA |(|BG0BE8114 CMP.B DBA.D3

DS B880ABAA AS BEOEAEHH ||(|BBEE116 ASR.B #4.D8

D6 AAPABBAA A6 ABAAEAAEN |PBBAs118 ORI.B #@i,DA

D7 8888808A A7 FFFFFFFF |||888@811C ORI .B #88.DA

CCR = tt5—II1I——XNZUC AlBa812@8 TBLUN.B <AZ>.DA

FC @9PRS16C UB PABE0ace |||peess124 ADD.L D3.D4

AAaBAAAd FF FF FF FF FF FF FF FF
ABARAAAR FF FF FF FF FF FF FF FF
ABARAA1A FF FF FF FF FF FF FF FF
AABBAA18 FF FF F? FF DF FF FF FF

ARKZRELY | |000800AA FF FF FF FF FF FF FF FF
ARKXRNXY | |908aBAA8 FF FF FF FF FF FF FF FF
ARKXRNXY | |808aBA18 FF FF FF FF FF FF FF FF
ARXXRNEY | |80AABA18 FF FF F? FF DF FF FF FF

DEBUG F1
WARHING - stack pointer not on a word houndary.
WARNING — stack pointer not on a word boundary.
EHRNING — CS8BOOT is the only active chip select.

E F1-Debugy F2-Code F3-/F6—Mem F4-S5tep FS5—Zoom F7?-Trace F8-D0OS F?-Repeat FlB-Help-

Figure 2-3. SDbug32 Main Screen

|Paragraphs 2.3.1 through 2.3.6|explain these windows Paragraph 2.3.7|explains the use of
function keys with these windows.

231 CPU Window

The CPU window, at the upper left of the main screen, shows the status of CPU registers.
2-4 shows the CPU windows for SDbug12, SDbugl6, and SDbug32.

2-6 M68SDBUG/D

@ MOTOROLA SDbug OPERATING PROCEDURE

A ad A FE SF B888a8a DB BORRBEEE AQ BBBREBOO
B A8 B B8 PC GFEB6 D1 AAAAABAA Al ARBRBBAA
D Aaas D FEAA K o]5l5]c] D2 AAAAAAAA AZ BEBPRARAAA
E AAAA FH A D3] 000BBEEE A3 B0BBEBEOO
I1¥ 1888 IX BBBBE SK 5] D4 AAAAAARAA A4 ABRRBBAA
1Y @284 1Y BAAAA HR o]51510) D5 AAAAABAA AS ARBRBBAA
SPF G888 I1Z AlAA IR 61515]0) D6 AAARAAEA A6 BEBBRARAAA
PC BAB8A8 (3] JGIGIG]G6G6]5]5]5) D7 000BBBBA A7 FFFFFFFF
SHHINEZUC SHHENZUCZ2185-PEK- CCR = ttS5—I11—¥HNZUC
AaRE1AaA [6]51515151515]6]G]6]6]5]5]5]15]15] FC AAAAB1AC UBR BAHBAAAAA
SDbug12 SDbugl6 SDbug32

Figure2-4. CPU Windows

Use the debug window to change any register value in the CPU window: enter the register, a
space, and the new value:

>a fe Changes the value in register A to $FE.

Y ou may change individual bits in the condition code register by specifying the bitlabel and
entering the value (0 or 1):

>h 0 Changesthe H bit to 0.
or
>ccr %90001000 Changes the CCR bits to 00001000.

To change the value of the AM register (SDbug16 only), you must specify the high-order 20 bits
(AMH) or the low-order 16 bits (AML).

The MCU type determines the registers that may appear in the CPU window:

* For SDbhugl2: A, B, CCR, D, IX, 1Y, PC, and SP. For more information about these
registers, consult the CPU Central Processor Unit Reference Manual for M68HC12-
family MCUs.

e For SDbugl6: A, B, C,CCR, D, E, EK, H, HR, IR, IX, 1Y, 1Z, K, N, PC, PK, S, SK,
SP, V, XK, YK, Z, and ZK. (The SDbug16 also can change values of the
SIGNLATCH, XMASK, and YMASK registers, but these registers do not appear in
the CPU window.) For more information about these registers, consult the CPU
Central Processor Unit Reference Manual for M68HC16-family MCUs.

* For SDbug32: DO D7, A0 A7,CCR, PC, DFC, SFC, and VB. (In the CCR
representation, capital lettersindicate values 1, and lower-case letters indicate values
0.) For more information about these registers, consult the CPU Central Processor
Unit Reference Manual for M68300-family MCUs.

M68SDBUG/D 2.7

SDbug OPERATING PROCEDURE @ MOTOROLA

2.3.2 SDbugl2, SDbug32 Stack Window

The stack window displays contents of the stack. For the SDbug12, the stack window is between
the CPU and code windows. The SDbug12 stack window shows the first ten valuesin the stack.
For the SDbug32, the stack window is between the memory F6 and memory F3 windows. The
SDbug32 stack window shows the contents of the first four long words on the stack. Figure 2-5
shows the SDbug12 and SDbug32 stack windows. (The SDbug16 does not have a stack
window.)

— STACK =
-» ccr HA
acch B8
acca 2C — STACK —
ixh 79 HEREEREY
ixl 1@ KERRRRRY
iﬂli' gg KRR REER
b oo KHEERRES
pcl A8
[5]5]
SDbug12 SDbug32

Figure 2-5. Stack Windows

2.3.3 SDbugl6 Instruction Pointer (1P) Window

The IP window, at the top center of the SDbug16 main screen, shows the value of the instruction
pointer. Figure 2-6 shows the IP window.

r [P =
FFFFA

Figure 2-6. SDbugl6 | P Window

The IP value specifiesthe instruction to be executed next. Note that the IP value awaysis six
bytes less than the program counter (PC) value Use the debug window to change the IP value:
enter |P, a space, and the new value.

NOTE

TheIPisnot aregister for M68HC16-family MCUs, asit does not
exist in the part.

2-8 M68SDBUG/D

@ MOTOROLA SDbug OPERATING PROCEDURE

234 SDbugl6 Breakpoint (BR) Window

The BR window, below the SDbug16 1P window, lists the addresses of active breakpoints. (The
same addresses appear in the debug window.) Figure 2-7 shows the BR window.

Figure 2-7. SDbugl6 BR Window

As many as seven breakpoints may be active at once; their addresses are not in any particular
order in the BR window.

(The BR window pertains to SDbug16 software. To see a comparable list of breakpoints for
SDbug12 or SDbug32 software, enter thelBR command,| without parameters; the list appearsin
the debug window.)

Using the GOTIL| o STEPTIL Jcommand creates a temporary breakpointthat SDbugl6 does not
list in the BR window.

235 Code Window

The code window, at the upper right of the main screen, displays code.|Figure 2-8 shows the code
windows for SDbug12, SDbug16, and SDbug32.

M68SDBUG/D 2-9

SDbug OPERATING PROCEDURE @ MOTOROLA

CODE F2
HAAE Bl BGHD ; PG
ABA? B8 TNY
ABAA 2079 BGE 5$8B8S5
ABAC 1P88 ANDCC #8
ABBE B8 BGND
ABAF PP BGND
AB1A B8 INX
A1l AP BGHD
Aei12 @i MEM
SDbugl2
CODE F2
AFERA An3c COM 3C. % ; LP
AFE@Z EF@3 ELE WFEQB
AFER4 FDEC UNDEFIMED
AFEBG FBFA RMAC -@1.-86
AFEAS F9F8 BITE #F8
AFEBN F7F6 ORAB #F&
AFEAC FGF4 LDAB #F4
AFEBE F3F2 ADCE HF2
AFE1@ F1F@ ADDE HFO
SDbugl6
CODE F2
HAWAS1AC ORI.B #08.D@ ; PC
AAPAS11A SUB.YW —<a?>.D7
AABAS112 MOUE_L D1.D5
AARAS114 CMP.B DB,D3
AARA8116 ASR.B #4.D8
AAPAS118 ORI.B #08.DA
AARAS11C ORI .B #08._DA
A0RA8120 TELUN.B <A2>.DA
AAPAS124 ADD.L D3,D4
SDbug32

Figure 2-8. Code Windows

2-10 M68SDBUG/D

@ MOTOROLA SDbug OPERATING PROCEDURE

The code windows display code in one of three ways

1. If you have not loaded a map file, the code window displays disassembled code The
symbol ; PC, at the right edge of the window shows the program counter location. The
symboal ; I P (only in the SDbug16 code window) shows the instruction pointer
location. The ; TR (trace) symbol indicates the last instruction the CPU executed. The
symbol ; BRindicates active breakpoints, and the symbol ; CT indicates counters.

2. If you have loaded afull map file, the code window can display source code The
symbol - >, at the left of the window, indicates the instruction pointer (SDbugl6) or
the program counter (SDbug12, SDbug32). The symbols and <C>, at the left of
the window, indicate the active breakpoints and counters, respectively.

3. Alternatively, if you have loaded a full map file, the code window can display
disassembled code. Labels defined in the source code appear instead of their address
values. The symbols; PC, ; | P, ; TR, ; BR, and ; CT have the sameroles asfor case 1,
above.

Paragraph 3.3 |explains source-level debugging viathe code window.

23.6 Memory Windows

The F6 and F3 memory windows display memory contents. VValues in these windows are
hexadecimal; when appropriate, values also are in seven-bit ASCIl symbols. A period appearsin
lieu of an unprintable ASCII character |Figure 2-9{shows the memory windows for SDbug12,
SDbug16, and SDbug32.

For the SDbug12 or SDbug32, either memory window displays the memory contents you specify.
(Also, for the SDbug32, the two memory windows bracket the stack window.) For the SDbug16,
the F6 window accesses program memory and the F3 window accesses data memory.

M68SDBUG/D 2-11

SDbug OPERATING PROCEDURE @ MOTOROLA

MEMORY Fé MEMORY F3
AP PP BP PP B2 B0 A OO B B6B@ B6 PP B6 B2 B6 B4 B6 B6
APE8 BB B8 2C 79 10 B9 0@ B0 ...y....||B6B8 B6 B8 B6 BA B6 BC B6 BE
AAiA B8 BP A1 BC B0 @A BF BB B61@ B6 18 B6 12 B6 14 B6 16
BB18 GO 60 B OO B0 B8 6B F2 “.||Be18 B6 18 Be 1A B6 1C B6 1E
SDbug12
—————— PROGRAM (PMM> Féb DATA <DMM> F3
AAAA@ PP 1F DA @3 FD FC FB FA APPPE BB 1F DA @3 FD FC FB FA
AAAAS F? F8 F? F6 F5 F4 F3 F2 AAPPS F? F8 F7 F6 F5 F4 F3 F2
@0610 F1 F@ EF EE ED EC EB EA @0010 F1 F@ EF EE ED EC EB EA
@BA18 E? E8 E? E6 E5 E4 E3 E2 @BB18 E? E8 E? E6 E5 E4 E3 E2
SDbugl6
MEMORY F6 ———— = S§TACK —3 ——— MEMORY F3

AaaaaenAd FF FF FF FF FF FF FF FF ARARAARA | |pBaBAABA FF FF FF FF FF FF FF FF
Aaaaaene FF FF FF FF FF FF FF FF ARARAARA | |pBBBAAB8 FF FF FF FF FF FF FF FF
Aaaaae18 FF FF FF FF FF FF FF FF AnAARARA | |@BBBBAA1@ FF FF FF FF FF FF FF FF
#d8a8818 FF FF F? FF DF FF FF FF RARRAARR | |00BBAA18 FF FF F? FF DF FF FF FF

SDbug32

Figure 2-9. Memory Windows

2.3.7 Debug Window

The debug window is at the bottom of the main screen. Figure 2-10 shows the debug window,
which isidentical for all[SDbug versiong

DEBUG F1

Mo zuch file found: .51%9

*load

Mame of & record file: >c:isgasproglZhssrecordss_00.s19
Loading ... BUBABYED loaded.

>

t F1-Debug F2-Code F3-F6-Mem F4-Step F5-Zoom F?-Trace F8-D0OS F9-Repeat FiB-Help-

Figure 2-10. Debug Window

Use the debug window to enter commands. The prompt symbol is the > character.

2-12 M68SDBUG/D

@ MOTOROLA SDbug OPERATING PROCEDURE

2.3.8 Window Function Keys

To move between windows, and to carry out certain other actions, usethe function (F) keys of
the keyboard. Table 2-3 lists the functions of these keys.

Table 2-3. SDbug Special Function Keys

F Key Function

F1 Go to the debug window

F2 Go to the code window. In this window, you may scroll to see future
code.

F3 Go to the F3 memory window. In this window, you may scroll through
data memory.

F4 Do a single-step trace. (This key has the same role as the STEP
command.)

F5 Shrink or enlarge the code window (if it displays source code).

F6 Go to the F6 memory window or variables window. In the former, you
may scroll through memory. In the latter, you may scroll through CPU
variables.

F7 Go to the code window as a trace window. In this format of the code

window, you may scroll through the trace buffer.

F8 Shell to DOS or execute the DOS STRING command.
F9 Repeat the last command.
F10 Activate the help window.
PgUp & PgDn Page through as many as 30 commands previous entered at the
debugger prompt.

2.39 Other Windows

In addition to the main-screen windows, SDbug includes temporary windows that appear in
certain situations. Help pop-up windows, for example, appear if you press the F10 key or enter
thelHEL P command (For more information, see the explanation of thg HEL P command|in
Chapter 3.)

M68SDBUG/D 2-13

SDbug OPERATING PROCEDURE @ MOTOROLA

Another window is the variables window, which replaces the contents of the[F6 memory
window. The variables window shows values of any variablesin the CPU data space, in byte,
word, long word, or string format. To activate the variables window, enter the VAR command. |
To deactivate the variables window, enter thg MDF6 or SHOWF6 command. |(For more
information, see the explanation of thelVAR command|in Chapter 3.)

24 GENERAL USE

Do most of your debugging from the debug window. Y ou may enter all debug commandsin this
window. Typically, the first command a user entersis one of the load commands If you have
created both an object (.S19) file and amap (MAP) filevigIASM [enter the] LOADALL
command:

> QADAL L Load code and symbols into SDbug.
Fi | enane: Prompt if no filename is given with the)LOADALL command.

In response to the filename prompt, enter the name of the object file. Next, if you have loaded
appropriate reset vectors for the code, enter areset command; this resets the hardware and
initializes the IP and PC correctly.

>RESET Reset the hardware.
The code window shows your code, as either disassembled code or actual source code. At this

point you may start debugging To have the{F3 (or F6) memory window| display code starting at a
useful address, enter thel SHOWF3|(or[SHOWF6) command:

>SHOWF3 nyar r ay Set location myarray as the start of the]F3 window display|

Now you may begin debugging and testing your code, by setting breakpoints or single-stepping
For example, to single-step through 80 instructions, enter this command:

>STEP 50 Single-step through $50 (180) instructions.

NOTE

For many M68HC16 and M68300 MCUs, the watchdog timer is
active after areset. Using thg WATCHDOG |command disables the
timeout, preventing watchdog resets from occurring during your
debug session.

2-14 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

CHAPTER 3
USING DEBUGGER COMMANDS

3.1 INTRODUCTION

This chapter explains SDbug debugger commands, and covers related information on source-
level debugging, macros, and the trace buffer.

3.2 DEBUG WINDOW COMMANDS

Table 3-1 lists SDbug debug commands, noting the CPU types that each command supports.
Paragraphs 3.2.1 through 3.2.70 are standard-format explanations of the individual commands.

Table 3-1. Debug Window Commands

Syntax Meaning SDbug Type
m Toggle F3 window display 32
Toggle F6 window display 32
Assemble into pseudo ROM 12/16/32
Set baud rate 12/16/32
[BF[.X] add add n | Block fill memory 12/16/32

BR [add [n]] Set or remove breakpoint 12/16/32
Change display to black-and-white mode 12/16/32
|CAPTURE file | Save data to a log file 12/16/32
[CAPTUREOFF | Stop logging data to log file 12/16/32
Remove source-level debug information 12/16/32
[CLEARSYMBOL | Remove temporary symbols 12/16/32
Show disassembled code 12/16/32
|COUNT [add] [add] | Counts execution 12/16/32
COUNTER [add] Add or remove counter location 12/16/32
|DEBUGGER_DFC [n] | Set debugger destination function code value 32

M68SDBUG/D 31

DEBUG MONITOR COMMANDS

@ MOTOROLA

Table 3-1. Debug Window Commands (continued)

Syntax Meaning SDbug Type
[DEBUGGER_SFC [n] | Set debugger source function code value 32
Set MCU DFC Value 32
[DMM[.X] add [n]...[n] | Modify RAM data 16

DOS Shell to DOS or executes the DOS_STRING 12/16/32
[DOS_STRING str | Specify DOS Command 12/16/32
|DUMP[.X] add add [n] | Load memory to debug window 12/16/32
[DUMP_TRACE | Load trace buffer to debug window 12/16/32
[EVAL n [op] [n] | Evaluate expression 12/16/32
Exit the program 12/16/32
Execute program 12/16/32
Exit debugger with target running 12/16/32
Go from IP/PC to Next Instruction 12/16/32
Go from IP/PC to address 12/16/32
[GOTILROM add | Single-step fast to address 12/16/32
Display help system 12/16/32
LOAD file Load S-record file 12/16/32
Load map and S-record files 12/16/32
[LOADMAP file | Load IASM debug file 12/16/32
Load and verify file 12/16/32
[LOAD_BIN file add | Load binary file 12/16/32
[LOADV_BIN file add | Load and verify binary file 12/16/32
MAC Display MAC unit contents 16

Execute macro file 12/16/32
End macro file 12/16/32
MACROSTART [file] Start macro file 12/16/32
Show macro list and directory structure 12/16/32

3-2 M68SDBUG/D

@ MOTOROLA

DEBUG MONITOR COMMANDS

Table 3-1. Debug Window Commands (continued)

Syntax Meaning SDbug Type
Set F3 window memory display 12/16/32
Set F6 window memory display 12/16/32
[MM[.X] add [n]...[n] | Modify memory 12/16/32
Remove all breakpoints 12/16/32
[PMML.X] add [n]...[n] | Modify memory in program space 16
Toggle window refresh 12/16/32
REM Write remark 12/16/32
Execute hardware reset 12/16/32
|SERIAL port baud par dbit shit || Set serial-port parameters 12/16/32
Deactivate serial port 12/16/32
Activate serial port 12/16/32
SFC [n] Set MCU SFC value 32
SNAPSHOT Screen capture 12/16/32
Toggle code display 12/16/32
| SOURCEPATH [path] | Code search 12/16/32
Source step 12/16/32
Show processor status 12/16/32
Step trace 12/16/32
Step to breakpoint 12/16/32
[STEPTIL add | Step to address 12/16/32
[SYMBOL charsn | Add symbol to map file 12/16/32
[TRACE [add] [add] | Execute trace 12/16/32
M68SDBUG/D 3-3

DEBUG MONITOR COMMANDS

@ MOTOROLA

3-4

Table 3-1. Debug Window Commands (continued)

Syntax Meaning SDbug Type

[UPLOAD_SREC add add | Display S-record files 12/16/32
VARI[.X] [add] [n] Show variables window 12/16/32
Compare file to memory 12/16/32
Display the current software version 12/16/32
Disable watchdog timer 16/32

[WHEREIS symbol | Show symbol value 12/16/32

M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

ASCIIF3 Toggle F3 Window Display

321 Toggle F3 Window Display

ASCl | F3

This command toggl&sthisplay between hexadecimal bytes and ASCI| characters.
(The display shows periods in lieu of non-printable characters.)

NOTE

This command is only available in SDbug32.

Example:
>ASCI | F3 Change F3 window [display from hexadecimal bytesto

ASCII characters (or vice versa).

M68SDBUG/D 3.5

DEBUG MONITOR COMMANDS @ MOTOROLA

ASCIIF6 Toggle F6 Window Display

3.22 Toggle F6 Window Display

ASCI | F6

This command toggl&stheisplay between hexadecimal bytes and ASCI| characters.
(The display shows periods in lieu of non-printable characters.)

NOTE

This command is only available in SDbug32.

Example:
>ASCl | F6 Change|F6 window|display from hexadecimal bytes to
ASCII characters (or vice versa).

3-6 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

ASM Assemble into Pseudo ROM

3.2.3 Assembleinto Pseudo ROM

ASM add

where:
add Starting address or label for assembly.

This command invokes the one-line assembl er, starting at the specified address.

This assembler assembles user code, including labels, provided that the labels are in a previously
loaded map file. If no map fileisloaded, you may not uselabels. The ASM command does not
define labels. Y our entry must start with an opcode.

During assembly, SDbug shows the current instruction in the debug window. To modify this
instruction, type in anew one. If the code window shows disassembled code, you will see the
change immediately.

To advance to the next location without changing the present location, press <CR>. To end the
assembly session, type a period () at the prompt.

Y ou may press theF10 (help) key|to see the format of assembly-language instructions.

Examples:
>ASM 10500 Start assembly at location $10500.
10500 274c >nop Shows disassembly; prompts for new opcode.

M68SDBUG/D 3.7

DEBUG MONITOR COMMANDS @ MOTOROLA

BAUD Set Baud Rate

3.24 Set Baud Rate

BAUD baud

where:
baud Serial communication speed between 2400 to 57600.

Use this command to set the serial communication speed.

Examples:
>BAUD 57600 Set the communication baud rate at 57600.

3-8 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

BF Block Fill Memory

3.25 Block Fill Memory

BF[.X] add add n

where:

X Program space units; .B or .b = bytes, .W or .w = words, .L or .| =long
words.

add First parameter: fill operation lower limit;
Second parameter: fill operation upper limit.
n Fill pattern of the size set by the .X option.
This command repeats the value n specifies throughout the specified user memory range An

invalid address |eads to an error message. Y ou may use this command at the beginning of a
debug session to initialize an area of memory or an array. The alias of the BF command is FILL.

Examples:
>BF C000 C030 FF Assign value $FF to each byte, $C000-$C030.
>BF C000 Q000 O Assign value 0 to location $C000.

M68SDBUG/D 3-9

DEBUG MONITOR COMMANDS @ MOTOROLA

BR Set or Remove Breakpoint

3.26 Set or Remove Breakpoint

BR [add [n]]

where:
add Addressor label of breakpoint to be set or removed.
n Delayed occurrence number (default = 1).

This command sets or removes a breakpoint at the specified address (by modifying the
breakpoint address table). The debug window shows breakpoint addresses; as many as seven
breakpoints may be active at any time The SDbug16 BR window also shows breakpoint
addresses. The order of breakpoints in the window has no effect on their operation.

An n parameter value in the command delays the occurrence of the breakpoint. Program
execution passes through the breakpoint-address instruction n-1 times. (Each pass decrements the
value of n.) The nth time execution arrives at the instruction, the breakpoint occurs (and n
regains the value you specified in the BR command).

Enter the BR command without parameter values to see alist of active breakpoints, with the
current values of their n parameters. To clear a breakpoint you must re-enter the breakpoint
address. Y ou cannot redefine a breakpoint with a different occurrence number. Y ou must clear
the breakpoint and then set a new breakpoint..

For atemporary, additional breakpoint in RAM or pseudo ROM, use thg GOTIL|or[STEPTIL |
command. For such a breakpoint in ROM, use thg GOTILROM |command.

Examples:
>BR 200 3 Set breakpoint at address $200, to occur the third time
execution arrives at the address.
>BR startl Set breakpoint at label startl.

3-10 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

BW Change Display to Black-and-White Mode

3.27 Change Display to Black-and-White M ode

BW

This command puts the display in black-and-white mode. Use this command if the default color
display is hard to read (for example, if you use alap-top computer). Note also that BW is an
option for the SDbug startup command. Y ou may change to black-and-white mode only once,
following a hardware reset; there is no command to return to color mode.

Example:
>BW Put display in black-and-white mode.

M68SDBUG/D 3-11

DEBUG MONITOR COMMANDS @ MOTOROLA

CAPTURE Save Datato a Log File

3.28 SaveDatatoalogFile

CAPTURE file

where:
file Nameof logfile.
This command logs debug window outputs to the specified file. A prompt asks whether to

append log entries to the specified file or to overwrite previous file contents. If the specified file
does not yet exist, SDbug creates the file.

(This logging stops when you enter thg CAPTUREOFF fommand or end your debugging
session.)

Example:
>capture capfilel.cap Log debug window datato file capfil el. cap.

3-12 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

CAPTUREOFF Stop Logging Data to Log File

3.29 Stop Logging Datato Log File

CAPTURECFF

This command stops logging of debug window outputs. Ending your debugging session is
another way to stop such logging.

(Enter thd CAPTURE]command to begin logging debug window outputs.)

M68SDBUG/D 3-13

DEBUG MONITOR COMMANDS @ MOTOROLA

CLEARMAP Remove Source-Level Debug Information

3.2.10 Remove Source-Level Debug I nformation

CLEARVAP

This command clears the previously loaded map file from SDbug software.

Clearing the map file eliminates symbols and source code debugging. The code window defaults
to simple disassembly.

Example:
>CLEARVAP Delete the current map information.

3-14 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

CLEARSYMBOL Remove Temporary Symbols

3.2.11 Remove Temporary Symbols

CLEARSYMBOL

This command clears the SDbug symbol table.

Example:
>CLEARSYMBOL Delete the current information in the symbol table.

M68SDBUG/D 3-15

DEBUG MONITOR COMMANDS @ MOTOROLA

CODE Show Disassembled Code

3.2.12 Show Disassembled Code

CODE add

where:
add Starting address or label for disassembled code.

This command is an aternative to scrolling in the code window. After execution of any
instruction, the code window revertsto showind IPJand PC values.

Examples:
>CODE 10300 Show code starting at address $10300.
>CODE subl Show code starting at label subl.

3-16 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

COUNT Counts Execution

3.2.13 Counts Execution

COUNT [add] [add]

where:
add First parameter: execution starting address or |abel;
Second parameter: breakpoint address or label.

This command tells how many times a piece of code executes; this can be useful information for
optimizing code. This command starts and stops processor execution of instructions according to
the specified address parameters. When execution stops, count values appear in the code
window. Count values pertain to addresses listed in the internal counter table; use the

[COUNTER]command to add an address to (or remove an address from) the internal table
Parameter possibilities are:

» If the command has two parameter values, the system sets a new breakpoint at the
second address or |abel, then executes code from the first address or label. Execution
continues until it arrives at a breakpoint (which could be the one just set) or until you
press akey. Note that the new breakpoint is permanent: it remains set until you

remove it via thd BR]Jor NOBR|command.
NOTE

Remember that the maximum number of breakpointsis seven. If
seven breakpoints already exist, but you include a second add
parameter value in the COUNT command, the software will ignore
that second add value and issue an error message.

» If the command has one parameter value, the system executes code from that address
or label until it arrives at an existing breakpoint, or until you press a key.

» If the command has no parameter values, the system executes code from the IRPC
value until it arrives at an existing breakpoint, or until you press akey.

When COUNT stops the results are displayed in a temporary window occupying the source
window space. Y ou must press the escape key (Esc) to exit the window.

The processor runs at full execution speed during a COUNT command. However, there is a brief
pause each time execution arrives at a counter address; the screen does not show this pause.

M68SDBUG/D 3-17

DEBUG MONITOR COMMANDS @ MOTOROLA

COUNT Counts Execution

Examples:

>COUNT start tinel Start code execution at label start, stop at label timel, then
show count values of included counter addresses.

>COUNT 1050 Start code execution at address $1050; at stop, show count
values of included counter addresses.

>COUNT start Start code execution at label start; at stop, show count
values of included counter addresses.

>COUNT Start code execution at IP/PC value; at stop, show count

values of included counter addresses.

3-18 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

COUNTER Add or Remove Counter Location

3.2.14 Add or Remove Counter Location

COUNTER [add]

where:
add Addressor label.

This command adds or removes an address from the SDbug internal counter table. For each
address, the system counts code execution. For example, if the counter table contains three
addresses included in a block of code that you execute twice, the system increments the counts
for these addresses by 2. If you enter this command without a parameter value, the system shows
alist of al current counters. The maximum number of addressesin the internal counter tableis
50. (Theinternal counter table is the source for count values displayed via thefCOUNT |
command.)

Examples:
>COUNTER 10300 Add address 10300 to (or remove the address from) the
internal counter table.
>COUNTER Show list of current counters.

M68SDBUG/D 3-19

DEBUG MONITOR COMMANDS @ MOTOROLA

DEBUGGER_DFC Set Debugger DFC Value

3.215 Set Debugger Destination Function Code Value

DEBUGGER_DFC [n]
where:
n Destination function code value.

This command sets the debugger destination function code to the specified n value. (The
default nvalueis5). This new valueis valid only when the processor is not executing. SDbug
uses only the three least significant bits of the n value.

If you enter this command without an n value, the system displays the current
DEBUGGER_DFC vaue.

NOTE

This command is only available in SDbug32.

Examples:
>DEBUGGER_DFC 4 el DFClvalue to $4.
>DEBUGGER DFC Show current DEC jalue.

3-20 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

DEBUGGER_SFC Set Debugger SFC Value

3.216 Set Debugger Source Function Code Value

DEBUGGER_SFC [n]
where:
n Source function code value.

This command sets the debugger source function code to the specified n value. (The
default nvalueis5). This new valueisvalid only when the processor is not executing. SDbug
uses only the three least significant bits of the n value.

If you enter this command without an n value, the system displays the current DEBUGGER_SFC
value.

NOTE

This command is only available in SDbug32.

Examples:
>DEBUGGER_SFC 4 SFCvaueto $4.
>DEBUGGER_SFC Show current SFClval ue.

M68SDBUG/D 3-21

DEBUG MONITOR COMMANDS @ MOTOROLA

DFC Set MCU DFC Value

3.2.17 Set MCU DFC Value

DFC [n]

where:
n Destination function code value.

This command sets the destination function code (DFC) to the specified n value. This new value
isvalid only while the processor is executing. If you are in background debug mode, use the
[DEBUGGER_DFC |command, not the DFC command, to set the DFC. SDbug uses only the three
least significant bits of the n value.

If you enter this command without an n value, the system displays the current DFC value.
NOTE

This command is only available in SDbug32.

Examples:
>DFC 4 Set DFC value to $4.
>DFC Show current DFC value.

3-22 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

DMM Modify RAM Data

3.218 Modify RAM Data

DMWM . X add [n] ... [n]

where:

X RAM units: .B or .b = bytes, W or .w = words, .L or .| = long words.
add RAM address or label to receive data value.
n Datato be entered. The size is defined by the .X option.
This command writes the specified datainto RAM at the specified address. Consecutive data

values (separated by spaces) go into consecutive memory units the .X parameter specifies (the
default is bytes.)

If the command line does not specify data, the software prompts for data, one memory unit at a
time. Such prompts include the memory location and current value To change the value, enter
the new value. To advance to the next location without changing the present location, press
<CR>. To exit this command, type aperiod (.) at the prompt.

NOTE

This command is only available in SDbug16.

Examples:
>DVM 100 1 2 3 4 Put values 1-4 into locations $100-$103.
>DVM B 200 Start interactive memory modification, in bytes.
200 = 41 > Shows current value, prompts for new one.

M68SDBUG/D 3-23

DEBUG MONITOR COMMANDS @ MOTOROLA

DOS Shell to DOS

3219 SheltoDOS

DGOS

This command suspends the debugger, exiting to the DOS prompt. If you have defined a DOS
command viathg DOS_STRING command, the system immediately executes that DOS
command and returns to SDbug.

To return to the debugger, enter| EXIT|at the DOS prompt.

Example:
>DOS Suspend SDbug and shell to DOS.
C:\> DOS prompt.

3-24 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

DOS STRING Specify DOS Command

3220 Specify DOS Command

DOS_STRI NG str

where:
str Command to be executed by DOS

The DOS_STRING command specifies §DOS command|to be executed in background. If a
value isdefined for DOS_STRING and you shell to DOS, the string is then executed in
background. Enter the DOS_STRING command with no parameters to clear any value defined
using the DOS_STRING command. Y ou can then shell to DOS via the[DOS command

Example:
>DOS_STRI NG run. exe Define the routine to be executed the next time you execute
alDOS command}
>DOS Execute the run.exe command in background.
>DOS_STRI NG Clearsthe DOS_STRING.
>DOS Shell to|DOS|

M68SDBUG/D 3-25

DEBUG MONITOR COMMANDS @ MOTOROLA

DUMP Load Memory to Debug Window

3.221 Load Memory to Debug Window

DUVP[. X] add add [n]

where:
X RAM units: .B or .b = bytes, .W or .w = words, .L or .| =long words.
add First parameter: memory range start address,
Second parameter: memory range end address.

n Number of unitsto be displayed on each line. The sizeis defined by the .X
option.

This command uploads data from memory for display in the debug window.

The two add parameter values specify the memory range to be uploaded. The .X parameter value
specifies the uploading units (the default unit is bytes). If the .X parameter specifies words or
long words, the first add parameter must specify an address on an even boundary. The n
parameter specifies the number of memory units (bytes, words, or long words) to be written on
oneline.

If the capture feature is active, SDbug also logs the lines of dumped data to the capture file.

Examples:

>DUMP.B 0 8 3

Dunpi ng nenory data, Press any key to abort.
00000000 4E 71 4E

00000003 71 4E 71

00000006 4E 71 4A

done.

>DUMP. WO 6 2

Dunpi ng nenory data, Press any key to abort.
00000000 4E71 4E71

00000004 4E71 4E71

done.

>DUMP. L 0 12 4

Dunpi ng nenory data, Press any key to abort.
00000000 4E71FFFF 4E71FFFF AE71FFFF AE71FFFF
done.

3-26 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

DUMP_TRACE Load Trace Buffer to Debug Window

3.2.22 Load TraceBuffer to Debug Window

DUMP_TRACE

This command displays the current trace-buffer contents in the debug window. If the capture
feature is active, SDbug also logs the lines of displayed data to the capturefile.

Example:
>DUMP_TRACE Dump trace buffer.
00000004 NOP ; PC
00000002 NCOP ; - 0001
00000000 NOP ; - 0002

M68SDBUG/D 3-27

DEBUG MONITOR COMMANDS @ MOTOROLA

EVAL Evaluate Expression

3.2.23 Evaluate Expression

EVAL n [op] [n]

where:
n First parameter: Expression or first term to be evaluated;
Third parameter: second term to be evaluated.
op Operator.
This command evaluates an arithmetic expression, giving the result in hexadecimal, decimal,
octal, and binary values. This command uses 32-bit, signed integer arithmetic for its evaluations.

The expression can contain the operators for addition, subtraction, multiplication, and division
(+, —, *, and /). Single spaces must separate parameter values.

If this command had only one parameter value, it echoes that value in four bases.

Example:
>EVAL 102T + 54 Evaluate 1102 plus $54.

000BAH 186T 000002720 00000000000010111010Q Answer in four bases.

3-28 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

EXIT Exit Debugger

3.2.24 Exit Debugger

EXIT

This command exits the program, returning to DOS. (Alternatives to the EXIT command are
entering the QUIT command or pressing ALT-X.)

Example:
SEXIT Return to DOS.

M68SDBUG/D 3-29

DEBUG MONITOR COMMANDS @ MOTOROLA

GO Execute Program

3.2.25 Execute Program

GO [add] [add]

where:
add First parameter: execution starting address or |abel;
Second parameter: breakpoint address or label.

Use the GO command to execute user code (G is the alias of the GO command). This command
starts and stops processor execution of instructions according to the specified address parameters:

» If the command has two parameter values, the system sets a new breakpoint at the
second address or label, then executes code from the first address or label. Execution
continues until it arrives at a breakpoint (which could be the one just set) or until you
press akey. Note that the new breakpoint is permanent: it remains set until you

remove it viathor command.

NOTE

Remember that the maximum number of breakpointsis seven. If
seven breakpoints already exist, but you include a second add
parameter value in the GO command, the software will ignore that
second add value and issue an error message.

» If the command has one parameter value, the system executes code from that address
or label until it arrives at an existing breakpoint, or until you press a key.

» If the command has no parameter values, the system executes code from the IRPC
value until it arrives at an existing breakpoint, or until you press akey.

The processor runs at full execution speed during a GO command.

NOTE

Y ou may use the computer serial port for processor execution of
Instructions, converting the F1 window to adumb terminal. To
arrange this functionality, use the commands[SERIAL]

[SERIALON/ and [SERIALOFF] as well as the GO command. For
more information, see the explanations of these other commands.

3-30 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

GO Execute Program
Examples:

>Q0 start tinel Start code execution at label start; break at label timel.

>G0 1050 Start code execution at address $1050.

>G start Start code execution at label start.

>@0 Start code execution at |P/PC value.

M68SDBUG/D 3-31

DEBUG MONITOR COMMANDS @ MOTOROLA

GOEXIT Exit Debugger with Target Running

3.226 Exit Debugger with Target Running

GOEXI T [add]

This command starts target-processor execution of instructions from the specified address
parameter, then exits SDbug while the target system continues executing instructions. The target
system runs without breakpoints. If you enter this command without an add parameter value,
Instruction execution begins from the current |P/PC value.

To restart the debugger without interrupting the target system, you must include therunning
option in the SDbug startup command. This restarts the debugger without executing a reset.
NOTE

If you use the GOEXIT command to start instruction execution and
exit the debugger, then restart the debugger without the running
option, the system halts instruction execution.

3-32 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

GONEXT Go from IP/PC to Next Instruction

3.2.27 Gofrom IP/PC to Next Instruction

GONEXT

This command inserts atemporary breakpoint at thefirst instruction after the current IP
(SDbug16) or PC (SDbug12, SDbug32) value. Code execution stops when it reaches this
temporary breakpoint. This command works only with program code in RAM or pseudo ROM.

(To debug code in ROM, use thgf GOTILROM [command.)

NOTE

This command is similar to thg STEP|command, but does not stop
inside a subroutine or interrupt. Tf the current IP or PC pointsto a
subroutine or interrupt, GONEXT stops code execution at the first
instruction after the subroutine or interrupt.

The processor runs at full execution speed during a GONEXT command.

Example:
>GONEXT Execute code from |P/PC vaue to next instruction.

M68SDBUG/D 3-33

DEBUG MONITOR COMMANDS @ MOTOROLA

GOTIL Go from IP/PC to Address

3.2.28 Gofrom IP/PC to Address

COTI L add

where:
add Execution stop address or label.

This command inserts atemporary breakpoint at the specified addressor label, then starts
execution of code at the IP (SDbug16) or PC (SDbug12, SDbug 32) value. Code execution stops

when it reaches the temporary breakpoint. This command works only with program codein
RAM or pseudo ROM. (To debug code in ROM, use theg GOTILROM |[command.)

The processor runs at full execution speed during a GOTIL command.

Examples:
>CGOTI L subl Execute code from IP/PC to label subl.
>GOTI L 1055 Execute code from | P/PC to address $1055.

3-34 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

GOTILROM Single-Step Fast to Address

3.229 Single-Step Fast to Address

GOTl LROM add

where:
add Destination stop address or label, in ROM.
This command rapidly single-steps through code in ROM, fromthe IP (SDbug16) or PC

(SDbug12, SDbug32) value to the specified address or label. The processor does not run at full
execution speed during a GOTILROM command.

Examples:
>GOT| LROM subl Single-step through code from IP/PC to label subl.
>GOT| LROM 1055 Execute code from |P/PC to address $1055.

M68SDBUG/D 3-35

DEBUG MONITOR COMMANDS

@ MOTOROLA

HELP

3.2.30 Display Help System

HELP

Display Help System

This command, an alternative to F10, activates the help system. The help system works via

temporary pop-up windows Use these keys to maneuver in help windows

arrow keys
<CR>
ESC

PgDn
PgUp

Example:
>HELP

3-36

move within amenu

go to a chosen menu

go to a previous menu or exit
go back one menu page

go forward one menu page

Activate the help system.

M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

LOAD Load S-Record File

3.2.31 Load S-Record File

LOAD [fil €]
where:
file Name of file that contains object code, in S-record format.

This command loads object code of the specified file into your target hardware The code must
bein S-record format. If the fileis not in the current directory, enter the entire DOS path If you
do not specify afile extension, the system assumes the extension .S19.

Note that the LOAD command only loads afile; it does not verify loading, do areset, or affect
any CPU resources. (To load and verify, use the LOADV|command.)

Example:
>LOAD nyfilel Load object codefilenyfil el. s19.

M68SDBUG/D 3-37

DEBUG MONITOR COMMANDS @ MOTOROLA

LOADALL Load Map and S-Record Files

3.232 Load Map and S-Record Files

LOADALL [fil €]

where:
file Name of file that contains object code, in S-record format, and of
corresponding debug map file.

This command loads a specified object-code file and a debug map file at the sametime The
object code must be in S-record format. If the files are not in the current directory, enter the
entire DOS path. The system assumes the file extensions .S19 and .MAP. (Use IASM to create

mepfiles, per{Chepte 4]

Note that the LOADALL command only loads files; it does not verify loading, do areset, or
affect any CPU resources (To load and verify, use the|LOADYV Jcommand.)

Example:

>LOADALL nyfile2 Load object codefilenyfil e2. s19 and map file
myfil e2. map.

3-38 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

LOADMAP Load IASM Debug File

3.2.33 Load IASM Debug File

LOADMAP [fil €]
where:
file Name of debug map file.

This command |oads the specified debug map file into SDbug. If the fileis not in the current
directory, enter the entire DOS path. If you do not specify afile extension, the system assumes

the extension .MAP. (Use |ASM to create map files, per| Chapter 4/)

Example:
>LOADMAP nyfil e3 Load map filenyfi | e3. nmap.

M68SDBUG/D 3-39

DEBUG MONITOR COMMANDS @ MOTOROLA

LOADV Load and Verify File

3.2.34 Load and Verify File

LOADV [fil €]

where:
file Name of file that contains object code, in S-record format.

This command loads object code of the specified file into your target hardware, then begins
verification of thefile. The code must be in S-record format. If the fileisnot in the current
directory, enter the entire DOS path. If you do not specify afile extension, the system assumes

the extension

Verification is comparison of the file contents with the contents of program memory.
Verification ends the first time the system finds memory |ocations whose values do not match In
such a case, the address of the discrepancy appears, then the system returns to the> prompt. If
memory contents match perfectly, a confirmation message appears before the system returnsto
the > prompt.

This command is the same as the successive commandsl LOA D| and IV ERI FY.|

Example:
>LOADV nyfilel Load and verify filemyfi | el. s19.

3-40 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

LOAD_BIN Load Binary File

3.2.35 LoadBinary File

LOAD BIN fil e add

where:
file Name of file that contains binary data code.
add Loading starting address.

This command loads binary code of the specified file into your target hardware starting at the
add parameter value. If thefileis not in the current directory, enter the entire DOS path

Note that the LOAD_BIN command only loads abinary file; it does not verify loading, do a
reset, or affect any CPU resources (To load and verify, use thg LOADV_BIN command.)

Example:
>LOAD BIN nyfilel. bin $100 Load binary filenmyfi | el. bi n at address $100.

M68SDBUG/D 3-41

DEBUG MONITOR COMMANDS @ MOTOROLA

LOADV_BIN Load and Verify Binary File

3.2.36 Load and Verify Binary File

LOADV BIN file add

where:
file Name of file that contains binary data code.
add Loading starting address.
This command loads binary code of the specified file into your target hardware, starting at the

add parameter value, then begins verification of thefile. If the file is not in the current directory,
enter the entire DOS path.

Verification is comparison of the file contents with the contents of program memory.
Verification ends the first time the system finds memory |ocations whose values do not match In
such a case, the address of the discrepancy appears, then the system returns to the> prompt. If
memory contents match perfectly, a confirmation message appears before the system returnsto
the > prompt.

This command is the same as the successive commands LOAD_BIN andVERIFY

Example:
>LOADV_BIN nyfilel.bin $100 Loadbinaryfilenyfil el. bi n at address $100.

3-42 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

MAC Display MAC Unit Contents

3.2.37 Display MAC Unit Contents

MAC

This command displays the contents of the multiply and accumulate unit. This unit includes the
XMASK, YMASK, and SIGNLATCH.

NOTE
This command is only available in SDbug16.

Example:
>NMAC Display MAC unit contents.

M68SDBUG/D 3-43

DEBUG MONITOR COMMANDS @ MOTOROLA

MACRO Execute Macro File

3.2.38 Execute Macro File

MACRO [fil €]

where:
file Macro file name.
This command starts execution of the specified macro file. If you do not supply afile extension,

the system assumes the extension .| CD. Y ou may not nest SDbug macros. (Paragraph 3.4 pives
more information about macros.)

The MACRO command does not define a macro file, it executes a macro file already defined.
Use thee MACROSTART Jand|M ACROEND]|commands to define a macro file.

Example:
>MACRO di vby3 Execute macro filedi vby3. i cd.

3-44 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

MACROEND End Macro File

3.2.39 End MacroFile

MACRCEND

This command ends the definition of a macro file and stores the file.

Use the MACROSTART command to begin the definition of a macro file; use thg MACRO
command to execute a macro file.

Example:
>MACROEND End current macro definition.

M68SDBUG/D 3-45

DEBUG MONITOR COMMANDS @ MOTOROLA

MACROSTART Start Macro File

3.240 Start Macro File

MACROSTART [fil €]

where:
file Name for the new macro file.
This command starts definition of a new macro file. If you do not supply afile extension, the

system assumes the extension .| CD. Subsequent commands you enter become part of the new
macro.

A macro fileisasimple ASCII file that contains one command per line Y ou may not nest
SDbug macros; that is, you may not use the name of one macro in the definition of another.

To end the macro definition, enter thefMACROEND jcommand. Subsequently, to execute the
macro, enter thegMACRO |command. {Paragraph 3.4 Jexplains more about macros.)

Example:
>MACROSTART doubl e Start definition of macro filedoubl e. i cd.

3-46 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

MACS Show Macro List

3.241 Show MacrolList

MACS

This command shows alist of al macro files (that is, al files with the extension .1CD) and
directory structure, in atemporary window. Use the arrow keys to highlight a macro name To
begin execution of the highlighted macro, press <CR>. To close the temporary window without
executing a macro, press <ESC>.

Example:
>MACS Show list of macros.

M68SDBUG/D 3-47

DEBUG MONITOR COMMANDS @ MOTOROLA

MDF3 Set F3 Window Memory Display

3.242 Set F3Window Memory Display

MDF3 add

where:
add Starting address or label for code in the window

This command resets the{ F3 memory window], so that the window show code starting at the
specified address. The alias of MDF3 is SHOWF3.

Examples:
>MDF3 200 Start F3 window display with address $200.
>MDF3 nyarray Start F3 window display at label myarray.

3-48 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

MDF6 Set F6 Window Memory Display

3.243 Set F6 Window Memory Display

MDF6 add

where:
add Starting address or label for code in the window
This command resets the F6 memory window, so that the window shows code starting at the

specified address. In particular, this command deactivates the variables window, restoring the [F6]
[memory window|to the main screen. The alias of MDF6 is SHOWFG.

Examples:
>MDF6 8000 Start F6 window display with address $8000.
>VDF6 t abl e Start F6 window display at label table.

M68SDBUG/D 3-49

DEBUG MONITOR COMMANDS @ MOTOROLA

MM Modify Memory

3.244 Modify Memory

MM.X add [n] ... [n]

where:

X RAM units: .B or .b = bytes, W or .w = words, .L or .| = long words.
add RAM address or label to receive data value.
n Datato be entered. The size is defined by the .X option.

For the SDbug12, this command writes the specified data to the specified memory address.

For the SDbug16, this command is an alternate form of the[DMM command] writing the
specified datainto RAM at the specified address.

For the SDbug32, this command does the same thing, except that it writes the data to space that
thg DEBUGGER_DFC or[DEBUGGER_SFC|command specifies.

Examples:
>MM 100 1 2 3 4 Put values 1-4 into locations $100-$103.
>VWM B 200 Start interactive memory modification, in bytes.
200 = 41 > Shows current value, prompts for new one.

3-50 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

NOBR Remove All Breakpoints

3.245 Remove All Breakpoints

NOBR

This command removes all the addresses from the breakpoint address table. (The SDbugl16 BR
window shows thistable).

Example:
>NOBR Remove all breakpoints.

M68SDBUG/D 3-51

DEBUG MONITOR COMMANDS @ MOTOROLA

PMM Modify Memory in Program Space

3.246 Modify Memory in Program Space

PW .X add [n] ... [n]

where:

X Program space units; .B or .b = bytes, .W or .w = words, .L or .| =long
words.

add Program space address or |abel to receive data value.
n Datato be entered. The size is defined by the .X option.
This command writes the specified data into program space at the specified address Consecutive

data values (separated by spaces) go into consecutive memory units the .X parameter specifies
(the default is bytes.)

If the command line does not specify data, the software prompts for datg one memory unit at a
time. Such prompts include the memory location and current value To change the value, enter
the new value. To advance to the next location without changing the present location, press
<CR>. To exit this command, typeaperiod (.) at the prompt.

NOTE
This command is only available in SDbug16.

Examples:
>PMM 100 1 2 3 4 Put values 1-4 into locations $100-$103.
>PMM 200 Start interactive memory modification.
200 = 41 > Shows current value, prompts for new one.

3-52 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

QUIET Toggle Window Refresh

3.247 Toggle Window Refresh

QU ET

This command turns on the memory-based window refresh, or turns refresh off. (The default is
ON).

NOTE

This command turns off thelcode window}, the|F3 and F6 memory
windows, and (for the SDbug12 and SDbug32) the|stack window,
reducing single-stepping execution time to the minimum. The
QUIET command also helps avoid memory-bus errors when the
windows point to non-existent memory. (Otherwise, such errors are
possible upon a processor reset.)

M68SDBUG/D 3-53

DEBUG MONITOR COMMANDS @ MOTOROLA

REM Write Remark

3.248 WriteRemark

REM

This command lets you write aremark in the debug window. Such aremark can be helpful, for
your documentation or listing, during execution of macro files or during a capture of the debug
window.

Example:
REM your comment here

3-54 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

RESET Execute Hardware Reset

3.249 Execute Hardware Reset

RESET

This command does a hardware reset to the reset vector address in the M CU, then enters
background debug mode.

Example:
>RESET Reset hardware.

M68SDBUG/D 3-55

DEBUG MONITOR COMMANDS @ MOTOROLA

SERIAL Set Serial-Port Parameters

3.250 Set Serial-Port Parameters

SERI AL port baud par dbit shit

where:
port 1or2: port coml or port com2.
baud Baud rate: 9600, 4800, 2400, 1200, 600, 300, 150, or 110.
par Parity: N, E, or O (for none, even, or odd).
dbit 7 or 8: the number of data bits.
shit 1 or 2: the number of stop hits.

This command sets serial-port parameter values, if you want to use the SDbug debug window as
adumb terminal. Y ou must use the SERIAL command to set these before you enter the

SERIALON|command.

The SERIAL command does not activate serial-port functionality, but the command isa
preliminary requirement for this functionality.

(After you enter the SERIAL command, you can enter thdSERIALONJcommand to start the
serial-port functionality. This means that you can enter) GO Fommands to execute instructions via
the computer serial port. To end serial-port functionality, enter the|SERIAL OFF|command.)

NOTE
The SERIAL command isfor using a second serial port to directly
mani pulate the MCU. This does not control the SDI interface.

Example:

>SERIAL 1 9600 N 8 1 Set seria port coml to 9600 baud, no parity, eight databits,
and one stop hit.

3-56 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

SERIALOFF Deactivate Serial Port

3.251 Deactivate Serial Port

SERI ALOFF

This command deactivates serial-port functionality. The debug window returns to its normal
SDbug role; program execution no longer involves the computer serial port.

(The|SERIALON |command activated serial-port functionality. To reactivate this functionality,
enter the[SERIAL ON| command again.)

Example:
>SERI ALOFF End serial-port functionality; restore debug window.

M68SDBUG/D 3-57

DEBUG MONITOR COMMANDS @ MOTOROLA

SERIALON Activate Serial Port

3.252 Activate Serial Port

SERI ALON

This command activates SDbug serial-port functionality. That is, entering this command makes
the debug window act as a dumb terminal, so that you can enter} GO|commands to execute
instructions via the computer serial port.

To end serial-port functionality, enter thel SERIAL OFF|command.

NOTES
Before using the SERIALON command, you must set serial-port

parameters viathg SERIAL fcommand.

While serial-port functionality is activated, pressing thg F1 key
terminates program execution.

The SERIAL |command is for using a second serial port to directly
manipulate the MCU. This does not control the SDI interface.

Example:

>SERI ALON Start serial-port functionality: make debug window a dumb
terminal.

3-58 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

SFC Set MCU SFC Value

3253 Set MCU SFC Value

SFC [n]

where:
n Source function code value.

This command sets the source function code (SFC) to the specified n value. Thisnew valueis
valid only while the processor is executing. If you are in background debug mode, use the

| DEBUGGER_SFC command}, not the SFC command, to set the SFC. SDbug uses only the three
least significant bits of the n value.

If you enter this command without an n value, the system displays the current{ DFC valug.

Examples:
>SFC 4 Set SFC value to $4.
>SFC Show current SFC value.

M68SDBUG/D 3-59

DEBUG MONITOR COMMANDS @ MOTOROLA

SNAPSHOT Screen Capture

3.254 Screen Capture

SNAPSHOT

This command captures a screen, sending the screen to an open capturefile.

3-60 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

SOURCE Toggle Code Display

3.255 Toggle Code Display

SOURCE

This command toggles the debug-window display between source code and disassembled code
A valid map file must be loaded for this command to work.
NOTE

Y our program counter must be set to the correct value before the
source command will show the source code.

Example:
>LOADMAP nyfil e3 Load map filenyfi | e3. map into the SDbug.
>SOURCE Toggle debug window display to source code (or to

disassembled code).

M68SDBUG/D 3-61

DEBUG MONITOR COMMANDS @ MOTOROLA

SOURCEPATH Code Search

3.256 Code Search

SOURCEPATH [pat h]

where:
path Setsthe default search directory.

This command starts a search for source code not in the current directory. The system prompts
for the DOS path.
NOTE

The SOURCEPATH command pertains only to source-code
debugging; do not use it for such actions as downloading S-

records.
Example:
>SOURCEPATH Search for code in another directory.

3-62 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

SS Source Step

3.2.57 Source Step

SS

This command traces one step of source code from the IP (SDbug16) or PC (SDbug12,

SDbug32) value. If your source codeisin C or another high-order language, this command traces
through the steps of object or executable code that correspond to that one high-order-language
step. The processor does not run at full execution speed during an SS command.

Use the LST2M AP executable to convert absolute listing files to P& E debug map files.

Example:
>SS Trace one step of the source code.

M68SDBUG/D 3-63

DEBUG MONITOR COMMANDS @ MOTOROLA

STATUS Show Processor Status

3.2.58 Show Processor Status

STATUS

This command dumps the current status of the processor to the debug window. A common use
for this command is for logging such information to a capture file

Example:
>STATUS Show processor status in the debug window.

3-64 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

STEP Step Trace

3.259 Step Trace

STEP [n]

where:

n The number of stepsto trace.

This command traces n steps of code, starting at the 1P (SDbug16) or PC (SDbugl12, SDbug32)
value. The default n valueis 1. This single-step tracing does not stop at breakpoints. The
processor does not run at full execution speed during a STEP command.

NOTE

The STEP command traces n steps of code, even if that means
halting execution in a subroutine or interrupt. If the current IP or
PC points to a subroutine or interrupt, you can use th GONEXT |
command, which halts code execution at the first instruction after
the subroutine or interrupt.

The two aliases of the STEP command are ST and T.

Examples:
>STEP 10 Trace through $10 (!16) steps.
>ST Trace through 1 step.

M68SDBUG/D 3-65

DEBUG MONITOR COMMANDS @ MOTOROLA

STEPFOR Step to Breakpoint

3.260 Step to Breakpoint

STEPFOR

This command begins continuous step tracing from the I P (SDbug16) or PC (SDbug12,
SDbug32) value. Stepping continues until it arrives at a breakpoint, until it encounters an error,
or until you press akey. The processor does not run at full execution speed during a STEPFOR
command.

Example:
>STEPFOR Step trace from IP/PC to breakpoint.

3-66 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

STEPTIL Step to Address

3.2.61 SteptoAddress

STEPTI L add

where:

add Trace stop address or label.
This command starts continuous step tracing from the 1P (SDbug16) or PC (SDbug12, SDbug32)
value to the specified address or label. This step tracing ignores any breakpoints it may encounter

before arriving at the specified stop address, but you may stop this tracing immediately by
pressing any key.

Example:
>STEPTI L subl Step trace from IP/PC to label subl.

M68SDBUG/D 3-67

DEBUG MONITOR COMMANDS @ MOTOROLA

SYMBOL Add Symbol to Map File

3.262 Add Symbol to Map File

SYMBCOL | abel _nane n

where:
label name ASCII characters of the new label.
n Thenew symbol value.
This command adds the specified label to the symbol table, giving it the specified value The

symbol table contains as many as 30 user-defined labels Creating alabel with the same value as
apreviously defined label erasesthefirst label.

To verify anew symbol, move to the code window, then check the disassembled code.

NOTE

The SYMBOL command does not verify the values you define. Do
not use reserved labels for you assembler.

For SDbug12, do not use these reserved words as labels: A, B,
CCR,D, PC,SP, TMP2, TMP3, X, or Y.

For SDbug16, do not use these reserved words as labels: E, PC, X,
Y,orZ.

For SDbug32, do not use these reserved words as labels: AO, A1,
..., A7; CCR; DFC; DO, D1, ..., D7; PC; SFC; SR; or VBR.

Example:
>SYMBOL start 200 Define the label start = $200.

3-68 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

TRACE Execute Trace

3.263 Execute Trace

TRACE [add] [add]

where:
add First parameter: trace starting address or label;
Second parameter: trace stop address or |abel.

This command starts and stops tracing according to the specified add parameters:

» If the command has two parameter values, the system sets a temporary breakpoint at
the second address or label, then traces code from the first address or label. Tracing
continues until it arrives at the temporary breakpoint just set, until it arrives at an
existing (permanent) breakpoint, or until you press akey.

* If the command has one parameter value, the system traces code from that address or
label. Tracing continues until it arrives at an existing breakpoint, or until you press a

key.
» If the command has no parameter values, the system traces code from the |P

(SDbug16) or PC (SDbug12, SDbug32) value. Tracing continues until it arrives at an
existing breakpoint, or until you press akey.

Tracing yields alog of CPU execution. The system stores thislog in the trace buffer, so does not
execute in real time.|Paragraph 3.5/ gives more information about the trace buffer.

When tracing begins, the system blanks all windows. At the end of tracing, press thg F7 key [to
convert the code window to the trace window. The trace window shows the contents of the trace
buffer, allowing you to scroll through the executed code (To convert the trace window back to

the code window, pressthg F2 key))

Examples:
>TRACE 200 1050 Start code trace at address $200; break at address $1050.
>TRACE 1050 Start code trace at address $1050.
>TRACE start Start code trace at label start.
>TRACE Start code trace at |P/PC value.

M68SDBUG/D 3-69

DEBUG MONITOR COMMANDS @ MOTOROLA

UPLOAD_SREC Display S-Record Files

3.264 Display S-Record Files

UPLOAD_SREC add add

where:
add First parameter: starting address of memory range;
Second parameter: ending address of memory range.

This command displays the contents of the specified memory range, in[S-record format. I the
capture feature is active, SDbug also saves the data to the capturefile.

Example:
>UPLOAD SREC 0 5

Upl oadi ng S records, Press any key to abort.
S10900004E714E714E71B9

done.

3-70 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

VAR Show Variables Window

3.2.65 Show Variables Window
VAR . X] add [n]

where:

X Vaueformats: .B or .b = byte (the default), W or .w =word, .L or .| =
long word, .Sor .s=string.

add Program space address or label that contains a data value.
n Length of astring value (default is 18).
This command activates the variables window, which shows any variables of the CPU data
space. The variables window replaces thelF6 memory window] just as with the F6 memory]

window, you can scroll through variable-window values. If you move to a different window of
the main screen, pressing thg F6 key Imoves you back to the variables window.

Each time you enter a new add parameter value (viaanew VAR command), you add the
corresponding value to the variables window. The system automatically updates these values
each time you enter an execution command (such aCOUNT],|GQ, ol STEP). To delete a
variable from the window, scroll to the value, then press the del ete key.

The variables window remains part of the main screen until you enter the MDF6 or SHOWF6)
command. Either of these commands reactivates thelF6 memory window]

The contents and format of the variables window remain as set by the most recent VAR
command. For example, entering the VAR command with an .X parameter value activates the
variables window with values in the specified format. (If the variables window already is
activated, the new command changes the format of the values.) Entering the VAR command
without an .X parameter value also activates the variables window, but with the value format
unchanged.

Examples:
>VAR. W't ot al val Show two-byte quality at locationt ot al val .
>VAR. S nystring 8 Show eight-character string at location nyst ri ng.

M68SDBUG/D 3-71

DEBUG MONITOR COMMANDS @ MOTOROLA

VERIFY Compare File to Memory

3.2.66 CompareFileto Memory

VERI FY [fil €]

where:
file The name of thefile to verify against memory contents.
This command compares contents of an[S-record]file with contents of program memory. When

you enter the VERIFY command, the system prompts for afile name If thefileis not in the
current directory, enter the entire DOS path.

Verification ends the first time the system finds memory locations whose values do not match. In
such a case, the address of the discrepancy appears, then the system returns to the> prompt. If
memory contents match perfectly, a confirmation message appears before the system returnsto
the > prompt.

Example:
>VERI FY Verify contents of file and memory.

3-72 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

VERSION Display the Current Software Version

3.2.67 Display the Current Software Version

VERSI ON

This command displays the current software version of SDbug and SDI firmwarein the
command window.

Example:

>VERSI ON Display the current software version of SDbug and the SDI
firmaware.

M68SDBUG/D 3-73

DEBUG MONITOR COMMANDS @ MOTOROLA

WATCHDOG Disable Watchdog Timer

3.2.68 Disable Watchdog Timer

WATCHDOG

This command disables the watchdog timer. Y ou may take this action only once, following a
hardware reset. (For many processors, areset enables the watchdog timer.)

NOTE

This command is not available in SDbug12.

Example:
>WATCHDOG Disable watchdog timer.

3-74 M68SDBUG/D

@ MOTOROLA DEBUG MONITOR COMMANDS

WHEREIS Show Symbol Value

3.2.69 Show Symbol Value

WHEREI S | abel _name

where:
label name Label or address.

This command echoes a specified label and displays its address Alternatively, this command
echoes a specified address and displays the label at that address.

Examples:
>WHEREI S st art Show address of label start.
start = 200 System echoes label and shows address.
>WHEREI S 200 Show label at address $200.
start = 200 System echoes address and shows label.

M68SDBUG/D 3-75

DEBUG MONITOR COMMANDS @ MOTOROLA

3.3 SOURCE-LEVEL DEBUGGING

Entering the]LOADALL]or|L OADMA P|command loads a map file into the SDbug, enabling
source-level debugging. If the IP (SDbugl6) or PC (SDbug12, SDbug32) points to a code
location, the code that appears in the code window is your actual source code (If no map fileis
loaded, or if the IP/PC points outside source code, the code window shows disassembled code.)

Create valid map files viglASM]or for other high-level absolute listings (such as C code) use
LST2MAP, per the information in[Chapter 4 |

The code window does not permit editing, but does let you set and remove breakpoints The PC
and IP (SDbug16) or PC (SDbug12, SDbug32) values are highlighted in the code window. To
maneuver within the code window, use the keys or key combinations of (Hold down
the ALT key to see alist of code-window commands at the bottom of the screen When you
release the ALT key, the bottom line reverts to its normal display.)

Note that you may set breakpoints in any module (In this context, module means your main
| ASM |source code or any includefile.)

Even if the module in the code window has no breakpoints, the breakpoints remain activein
other modules. If abreak occursin another such module, the module at breakpoint replaces the
current module in the display.

NOTES

When appropriate, source-code debugging automatically revertsto

symbolic disassembly. Typically, thisis because the code displayed
Isnot in the map file. Code in pseudo ROM from another sourceis

an example.

If you us§ ASM][PMM](SDbug16), or another command to modify
code memory, the code window does not reflect your changesin
source mode. The code window does show your changesin
disassembly mode.

3-76 M68SDBUG/D

@ MOTOROLA

DEBUG MONITOR COMMANDS

Table 3-2. Source Window Commands

Keys(@) Meaning

Alt—B Sets a breakpoint at the highlighted line or removes a breakpoint from
the highlighted line (like the] BR command)

Alt—C Sets a counter at the highlighted line or removes a counter from the
highlighted line (like thel COUNTER command)|

Alt—F Prompts for and finds a search string

Alt—G Executes code from the IP/PC to the highlighted line (like thel GOTIL
command)

Alt-I/Alt-P Sets the IP/PC to the location of the highlighted line

Alt—L Finds the next occurrence after Alt—F

Alt—M Lists available source-code modules (press <CR> or ESC to select
one)

Alt—X Exits SDbug, returning to DOS.

arrow keys Scrolls through code window or maneuvers cursor in code window

<CR> Selects a source-code module (from list displayed via the Ale=M keys)

<ESC> Cancels a request for a source-file module

(1) Hold down the ALT key to see a list of code-window commands at the bottom of the screen

When you release the ALT key, the bottom line reverts to its normal display.

M68SDBUG/D

3-77

DEBUG MONITOR COMMANDS @ MOTOROLA

34 SDBUG MACROS

SDbug macros can automate the debugging process A macro is afile of SDbug commands, all
executed by using thef]MACRO]command. To define a macro, enter thef MACROSTART |
command, specifying aname (The default system extension is.ICD.) Then, enter the commands
of the macro. Any command you can enter in the debug window can be in amacra When you
complete your macro, enter the command MACROEND] this command ends the macro
definition and stores the macro file. (Alternatively, you can use any general-purpose text editor to
define amacro. The macro must be aplain ASCII filewith one command per line.)

To call amacro, enter thg MACRO jcommand, specifying the macro filename in the command.
Macro execution begins immediately.

To seealist of al macro files, enter the MAC ¢gommand; the list appears, in atemporary
window. To call amacro directly from thislist, scroll to highlight the macro name, then press
<CR>. To close the temporary window without executing a macro, press <ESC>.

35 TRACE BUFFER

The trace buffer isacircular, 1024K buffer that supports the SDbug trace functionality. When
you enter thg TRACE command, the system begins execution of the specified instructions,
logging in the trace buffer each instruction the CPU executes

During tracing, the system disables screen refreshes, so tracing happens as rapidly as possible
The only information requested from the CPU between stepsis the IP(SDbugl6) or the PC
(SDbug12, SDbug32) value.

To view the competed trace, press thelF7 keyl The code-window display changes, to show a
disassembly of the addresses in the trace buffer. Use the arrow keysto scroll through the buffer.
NOTES

The trace buffer shows disassembled code, not source code, using
labels whenever possible.

Tracing through self-modifying code does not work properly, as
the trace shows disassembly of the current memory contents.

3-78 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

CHAPTER 4
IASM OPERATING PROCEDURE

4.1 INTRODUCTION

IASM development software is an editor, cross-assembler, and communications package from
P& E Microcomputer Systems. IASM12 isfor M6BHC12 MCUs, IASM16 isfor M68HC16
MCUs, and IASM32 isfor MC68300 MCUs. The three applications of each package are blended
into a single environment for writing, assembling, and debugging source code Via SDbug
software, you can correct source code syntactical errors without leaving the environment The
IASM integrated editor is a standard source file editor. The integrated cross assembler is
optimized for the IASM environment. The built-in communication environment lets you work
with any development system attached to your personal computer. Y ou may download and test
assembled files during the editing and assembly of original source code.

The symbol <CR> indicates the ENTER, RETURN, or carriage-return key of your keyboard.

411 System Requirements

IASM runs under MS-DOS on an IBM PC compatible computer. There should be at least 512
kilobytes of system memory. Communications use ports COM1 or COM2. To print from within
IASM, use the standard DOS printer port.

412 System Overview

IASM lets you generate standard assembly-language source code or read source code in from a
disk file. You may generate three kinds of output files:

» Object files— machine language for the target processor.

» Listing files — copies of input text with machine-code, cycle-timing, and other such
annotations.

* Map files — files used by other P&E Microcomputer software, such as simulators, user
interfaces, and the SDbug.

The options you choose determine which types of files IASM generates. If the system finds an
error during assembly of a file, the system highlights the line that contains the error, places the
cursor on this line, and alerts you.

M68SDBUG/D 4-1

IASM OPERATING PROCEDURE @ MOTOROLA

413 Getting Started

Before starting lASM software, read the README file (if any) of your software diskette and
read the software release guide (if any). The README file or a software release guide contains
information not available at presstime.

To start the environment, type the command line:
>| ASM# [fil enane]

where
isthe appropriate IASM number: 12, 16, or 32
filename isthe optional filename to be loaded into the editor immediately.
Note that the editor gives al file names the extension .ASM as a default. If you do not enter afile

name, the editor starts with the blank file Nonane. asni when you save thisfile, the editor
prompts you to change its name.

4.2 |TASMINST CONFIGURATION

IASMINST.EXE is aconfiguration program for:
1. Changing editor commands.
2. Choosing acolor scheme.
3. Setting up assembler parameters.
4. Setting up communications parameters.

To run this program, enter:
>| ASM NST | ASM#

where # is the appropriate IASM number: 12, 16, or 32.

First, the configuration program lets you modify certain editor parameters In most cases,
pressing <CR> accepts the default value shown. The program asks for a DOS string to be
executed when you press F6. The F6 key is a dedicated shell to DOS; you may leaveits
definition blank if you wish. (It is possible to shell directly from IASM to SDbug, provided that
you have at least 640 kilobytes of memory.)

Next, the configuration program prompts for default settings of all itemsin the ASSEMBLE sub-
menu. [T able 4-2 llists menu and sub-menu items;| paragraph 4.7|includes explanations of the
ASSEMBLE sub-menu items.

4-2 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

Then the configuration program prompts for default settings of al itemsin the COMM sub-

menu] Paragraph 4.9 | ncludes explanations of the COMM sub-menu items.

Y ou may quit the configuration program at this point, if you have set all appropriate parameter
values. Continue this program to configure colors or shading for the current monitor. To select an
attribute, use the up or down arrow keys to highlight the attribute, then press <CR>. Then select
the color for the attribute in the same way. When you are done selecting colors, press ESC.

Lastly, the configuration program asks if you want fast entry mode or random access mode for
reconfiguring editor commands:

If you choose fast entry, follow the on-line instructions Commands appear one at a
time. To leave the command asiit is, press <CR>. To change the command, use the
backspace key. To clear the command, press the C key. To restore the command,
press the R key. Y ou also may specify new keys for the command: press <CR> to
terminate the new key sequence(l) To leave fast entry mode and go to random access
mode, press ESC.

Random access mode lets you alter commands in any order. Instructions for this mode
appear at the top of the screen. Use the cursor keys to select acommand to be
changed. The editing keys are the same as for fast entry mode.

To terminate the configuration program, press the ESC key, then either the Q key or the W key:

Q terminates IASMINST.EXE, accepting all commands as they stand.

W checks for conflicts among command definitions. Error messages point out the
same sequence assigned to two commands; look for the highlighted items to correct
such errors. Other error messages point out lists of keystrokes that are too long; to
correct these errors, eliminate unnecessary key sequences.

NOTE

Generating alisting, option, or map file increases the time
necessary for assembling a program. For efficient operation, set the
listing, option, and debug-map defaults to OFF. Turn the options
on only when you need them.

(). To make <CR> part of the new key sequence, press the scroll-lock key, then <CR>, then press the scroll-lock

key again.

M68SDBUG/D 4-3

IASM OPERATING PROCEDURE @ MOTOROLA

4.3 HOTKEYS

Hotkey labels appear at the bottom of the screen. Table 4-1 explains the functions of these keys.

Table4-1. IASM Hotkeys

Key Name Description
F1 Help Brings up the help system.
F2 Save Saves the file currently in the editor, makes a backup file, and returns

the cursor to its position before you pressed this key.

F3 Load Loads a new file. If you have changed the current file, prompts you to
save the file, then asks for the name of the file to be loaded. (<CTRL>
F3 loads the file specified in the command line when you entered
IASM.)

F4 Assemble | Assembles the file currently in the editor; any options chosen from the
main menu system will be in effect. (Note that only one window may
be open during assembly.)

F5 Exit Ends the editing—assembling session. You may save any changes to
the current file before returning to DOS. If you are in a secondary
window, this key closes the window currently active.

F7 Comm Opens the communications window. Or, if this window already is
open, makes it the active window.

F9 DOS shell Puts you into DOS. (Typing EXIT at the DOS prompt returns you to
IASM.)

F10 Menu Brings up the main menu system on the bottom line of the screen.

4-4 M68SDBUG/D

@ MOTOROLA

IASM OPERATING PROCEDURE

44 MENU

The IASM menu system contains a highlighted bar aong the bottom of the screen. To choose a
menu item, highlight it viathe cursor keys or enter the highlighted letter within your choice (for

example, E in Edit). To go back to a previous menu or return to the editor, press the ESC key.

Table 4-2 explains menu and submenu choices.

Table4-2. IASM Menus

Menu Submenu Choice

Edit (none) Returns you to the editor.

File Load Loads a new file. If you have changed the current file,
prompts you to save the file, then asks for the name of
the file to be loaded.

Save Saves the file currently in the editor, makes a backup
file, and returns the cursor to its position before you
selected Save. The backup filename includes the .BAK
extension.

Dir Shows the directory listing of all files that fit a specific
pattern. (Enter the pattern at the prompt or press <CR>
to accept the default pattern. The original default
pattern is *.asm, which specifies all files of the current
directory that have the extension .ASM.) To load a file
from the listing, position the cursor on the filename and
press <CR>.

Quit Exits IASM.

Communicate Comm Toggles between operating system hardware ports
COM1 and COM2.

Baud Steps through possible baud rates, 110 through 9600.

Parity Steps through N, E, and O, indicating none, even, or
odd parity.

Length Toggles between 7 and 8, indicating the number of bits
to use per character.

Stop Toggles between 1 and 2, indicating the number of

stop bits to use per character.

M68SDBUG/D

4-5

IASM OPERATING PROCEDURE

@ MOTOROLA

Table4-2. IASM Menus (continued)

Menu Submenu Choice
Assemble Assemble Assembles the file currently in the editor; any options
chosen from this submenu will be in effect. (The target
system must be attached and powered up. Note that
only one window may be open during assembly.)
Object Steps through S19, HEX, and OFF, indicating whether
to create an object file during assembly and the type of
object file. Choose the type appropriate for your
development system or PROM programmer. (Creating
an object file increases assembly time.)
Listing Toggles between ON and OFF, indicating whether to
create a listing (.LST) file during assembly. (Creating a
listing file increases assembly time.)
Debug Map Toggles between ON and OFF, indicating whether to
create a map (.MAP) file during assembly. (Creating a
map file increases assembly time.)
Cycle Cntr Toggles between ON and OFF, indicating whether to
(IASM12, include the base instruction cycle counts in the listing
IASM16) file.
Save on F6 Toggles between ON and OFF, controlling the prompt
(IASM32 only) | to save the file before shelling to SDbug32.
Macro Toggles between VIEW and HIDE. VIEW means print
macro source code in the .LST file at every macro call
HIDE means suppress such printing.
Include Toggles between VIEW and HIDE. VIEW means print
INCLUDE-file source code in the .LST file. HIDE
means suppress such printing.
Help (none) Brings up the help menu.

4-6

M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

45 HELP

To bring up the menu-driven help system, press the F1 key from within the editor or pressthe H
key from the main menu.

The help system covers the editor and all original commands, as well as the assembler, including
assembler commands, options, and structures.

The initial window shows allist of topics. There may be more topics than fit in the window; if so,
use the up and down arrow keysto scroll through the topics To choose atopic, use the cursor
keys to move the highlight bar over the topic, then press <CR>. Thefirst help page appears.
Press the page-up or page-down key to see next or previous pages Press the ESC key to exit to
the previous help window. If you are in the first help window, pressing the ESC key exits the
help system.

4.6 EDITOR

The IASM editor lets you type in text viathe keyboard New text starts at the cursor position.
The editor includes several block commands for moving and copying text, several delete
commands for correcting mistakes, and find and find-and-replace commands for changing text.
In many cases you can undo your last several commands via the restore line command.

Paragraphs 4.6.1 through 4.6.8 explain the various editor commands.

46.1 TheEditing Screen

Thetop line of the editing screen is aprompt line. This line displays messages, instructions, and
responses to prompts. When you enter atwo-key command, the editor echoes the first key at the
left edge of the prompt line.

Thetop line of any editing window is a status line. Table 4-3 lists status-line information.

M68SDBUG/D 4-7

IASM OPERATING PROCEDURE @ MOTOROLA

Table 4-3. Edit Window Status Line Information

Item Role or Description

FILENAME.EXT Name and extension of the file being edited. (You may specify full path
names to the editor, but this item shows only name and extension.)

Linen File line-number position of the cursor.

Coln File column-number position of the cursor.

Byte n Byte-number position of the cursor, relative to the first character in the
file.

Insert Indicates that the editor is in insert mode. (Press the Insert key to toggle
between insert and overwrite modes).

Indent Indicates that the editor is in auto-indent mode.

Tab Indicates that the editor is using fixed tab stops.

Save Indicates that the file has been modified since it last was saved.

4.6.2 Prompt Editor

Most IASM user-response prompts include default responses. To accept a default response, press
<CR>. If you enter a specific response on the prompt line, you use the prompt editor. The prompt
editor has the same commands as the full IASM editor, plus these three:

1. Accept entry <CR> or <CTRL>M
2. Abort ESC
3. Insert control character <CTRL>P

463 Tabs

The lASM editor has two kinds of tabs:

* Smart tabs— These tabs echo the appearance of the preceding line. The first
character of any non-space sequence acts as a tab stop for the next line. The smart-tab
mode usually is the easiest tab mode for entering source code.

* Fixed tabs— You may specify fixed tab stops when you run the installation program.
The default stops are column 9 and every 8 columns. Note that the first tab stop
always is in column (tab size + 1).

4-8 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

For either smart or fixed tabs, the editor automatically trandates tabs to spaces When afileis
read into the editor, all tabs are expanded to the default settings When afile is written, the editor
encodes spaces into tabs if this option is enabled via the installation program. This saves disk
space but slows the writing of files.

46.4 Window Commands

Asmany as five windows may be open at any time But during assembly, only one window may
be open and this window must contain the file to be assembled.

Usethe ALT key to access window commands When you hold down the ALT key, the help line
at the bottom of the display shows the command options. Table 4-4 explains the window
commands.

Table4-4. 1ASM Edit Window Commands

Command Keys Description

Add window ALT-F3 Opens another text window and prompts for a file to
edit. If you do not specify a file, the editor creates the
file NONAME.ASM, which you may save later as a
named file. If 5 windows already are open, an error
message appears. If the active window is too small to
divide in half (to make room for the new window), an
error message appears.

Close window ALT-X If two or more windows are open, closes the current
window. If one window is open, closes the window and
leaves IASM.

Next window ALT-F1 Makes the next text window the current window.

Previous window ALT-F2 Makes the previous text window the current window.

Resize window ALT-F4 Lets you change the size of the current window via the
up- and down-arrow keys. To return to the editor, press
<CR> or ESC.

M68SDBUG/D 4-9

IASM OPERATING PROCEDURE @ MOTOROLA

4.6.5 Cursor Commands

There are two ways to move the screen cursor: viathe cursor control keys or via control
characters. To define or modify either method, run the installation program. Table 4-5 explains
the cursor commands.

Table4-5. IASM Cursor Commands

Command Keys Description

Beginning of file <CTRL>PgUp | Moves the cursor to the first character of the file.

or
<CTRL>QR

Beginning of line Home Moves the cursor to column 1 of the current line.

or
<CTRL>QS

Bottom of block <CTRL>QK Moves the cursor to the block-end marker set via the
<CTRL>KK command. This command works even if there is no
block-begin marker or if the block is hidden.

Bottom of screen <CTRL>End Moves the cursor to the last line on the screen.

or
<CTRL>QX

Character left Left arrow Moves the cursor one character to the left.

or
<CTRL>S

Character right Right arrow Moves the cursor one character to the right.

or
<CTRL>D
End of file <CTRL>PgDn | Moves the cursor just beyond the end of the file.
or
<CTRL>QC
End of line End Moves the cursor to the end of the current line and removes
or trailing blanks.
<CTRL>QD

Go to column <CTRL>JC Moves the cursor to the column you enter, 1-120. The system
shows the current column number; overwrite the number to go
directly to the new column. Alternatively, precede the value with
+ or - to offset from the current column.

Go to line <CTRL>JL Moves the cursor to the line you enter, 1-32,767. The system
shows the current line number; overwrite the number to go
directly to the new line (or end of file). Alternatively, precede the
value with + or - to offset from the current line.

4-10

M68SDBUG/D

@ MOTOROLA

IASM OPERATING PROCEDURE

Table4-5. IASM Cursor Commands (continued)

Command Keys Description
Jump to marker <CTRL>QO .. Moves the cursor to one of nine previously set invisible
0.9 <CTRL>Q9 markers.
Line down 1 Moves the cursor down one line; may scroll the screen.
or
<CTRL>X
Line up 1 Moves the cursor up one line; may scroll the screen.
or
<CTRL>E
Page down PgDn Moves the cursor down one page, with a single line of overlap.
or
<CTRL>C
Page up PgUp Moves the cursor up one page, with a single line of overlap.
or
<CTRL>R
Previous cursor <CTRL>QP Moves the cursor to its previous position; very useful after a
position save, find, or find-and-replace.
Scroll down <CTRL>Z Scrolls the screen down one line. The cursor does not change
lines until it hits the top of the screen.
Scroll up <CTRL>W Scrolls the screen up one line. The cursor does not change
lines until it hits the bottom of the screen.
Set marker 0 .. 9 <CTRL>KO .. Sets one of nine invisible markers at the current cursor position.
<CTRL>K9
Top of block <CTRL>QB Moves the cursor to the block-begin marker set via the
<CTRL>KB command. This command works even if there is no
block-end marker or if the block is hidden.
Top of screen <CTRL>Home | Moves the cursor to the top line on the screen.
or
<CTRL>QE
Word left <CTRL> Moves the cursor to the beginning of the word to the left; may
or move across a line break.
<CTRL>A
Word right <CTRL> - Moves the cursor to the beginning of the word to the right; may
or move across a line break.
<CTRL>F

M68SDBUG/D

4-11

IASM OPERATING PROCEDURE

@ MOTOROLA

4.6.6 Insert and Delete Commands

Table 4-6 explains the commands for inserting and deleting characters, words, and lines.

Table4-6. IASM Insert and Delete Commands

Command Keys Description

Delete character Backspace Moves the cursor left one position, deleting the character at that

left or position. Following characters of the line also move left one

<CTRL>H position. If the cursor starts in column 1, this command joins the
line to the preceding one.

Delete current Del Deletes the character at the cursor position. Following

character or characters of the line move left one position. (This command

<CTRL>G does not cross line breaks.)

Delete line <CTRL>Y Deletes the line containing the cursor. Following lines move up
one, and the cursor moves to column 1 of the next line. (A line
deleted via this command cannot be restored.)

Delete to end of <CTRL>QY Deletes all characters from the cursor position to the end of the

line line.

Delete word <CTRL>T Deletes the word to the right of the cursor. This command
works across line breaks, and can be used to remove line
breaks.

Insert control <CTRL>P Lets you insert editor control characters in the text. For

character example, <CTRL>P followed by <CTRL>G inserts <CTRL>G
(the bell character). The editor displays control characters as
upper-case, highlighted letters. (The assembler does not accept
control characters.)

Insert line <CTRL>N Inserts a line break at the cursor position. The cursor remains
at that position.

New line <CR> In insert mode, inserts a line break at the cursor position. In

or autoindent mode, the cursor moves to the next line, either to
<CTRL>M the column of the first non-blank character in the current line. or
to column 1. In overwrite mode, the cursor moves to column 1
of the next line without inserting a new line.
Tab Tab In insert mode, moves the cursor and following text right to the
or next tab stop. In overwrite mode, moves only the cursor right to
<CTRL>| the next tab stop. The extent of movement depends on the kind

of tabs (fixed or smart) in use.

4-12

M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

4.6.7 Block Commands

A block isany defined, contiguous stream of text, from a single character, to many lines-even an
entire file. To define a block, put a block-begin marker at the first character and a block-end
marker after the last. Once you define a block in this way, you can move it, copy it, delete it, or
write it to a file.

The editor highlights defined blocks, but you may change this display via the hide-block

command. Block commands work only with non-hidden, fully defined blocks. Table 4-7 explains
the block commands.

Table4-7. IASM Block Commands

Command Keys Description

Begin block <CTRL>KB Sets the invisible block-begin marker, so you can return the
cursor to the position at any time via the <CTRL>QB command.
If a block-end marker already is set, this command also
highlights the block.

Copy block <CTRL>KC Copies a marked and displayed block, placing the copy at the
cursor position. Markers move to the copied block; the original
block is not affected.

Delete block <CTRL>KY Deletes a marked and displayed block. The undo last deletion
(<CTRL>QU) command usually can restore portions of a block
accidentally deleted, but there is no command to restore a
deleted block completely.

End block <CTRL>KK Sets the invisible block-end marker, so you can return the
or cursor to the position at any time via the <CTRL>QK command.
F8 If a block-begin marker already is set, this command also

highlights the block.

Hide block <CTRL>KH Turns highlighting on or off, for a displayed block, without
affecting the markers.

Mark single word <CTRL>KT Marks as a block the word that contains the cursor or the word
to the left of the cursor. (This single command puts block-begin
and block-end markers around the word.)

Move block <CTRL>KV Moves a marked and displayed block to the cursor position.
Markers remain with the block.

Print block <CTRL>KP Prints the selected block. To cancel this command, press the
ESC key.

M68SDBUG/D 4-13

IASM OPERATING PROCEDURE

@ MOTOROLA

Table4-7. IASM Block Commands (continued)

Command

Keys

Description

Read block from
file

<CTRL>KR

Reads an entire file into the text stream at the current cursor
position, marking the file as a block. The editor prompts for a
filename; if you already have used this command, the prompt
includes the previous filename. Press <CR> to accept the
previous filename, change the previous filename via the
backspace key, or enter a new name. The filename may
include a drive or path identifiers. To cancel this command,
press the ESC key.

Write block to file

<CTRL>KW

Copies a marked and displayed block to a file, without changing
the block or its markers. The editor prompts for a filename; do
not use the .BAK extension, which is reserved for editor backup
files. If the filename exists, another prompt asks whether to
overwrite the file. If you respond no (N), you can enter a new
filename, change the displayed filename via the backspace key,
or cancel the command via the ESC key. This command has no
effect if no block is specified.

4-14

M68SDBUG/D

@ MOTOROLA

IASM OPERATING PROCEDURE

4.6.8 Miscellaneous Commands

Table 4-8 explains the remaining editor commands.

Table4-8. IASM Misceallaneous Commands

Command Keys Description

Abort ESC Halts an operation in progress. The editor regularly checks the
keyboard buffer for the abort command. If it finds one, the
editor empties the buffer and stops the operation.

Exit editor ALT-X Exits to DOS. If an editor file has been modified, a prompt asks
whether to save the file. If you respond yes, the editor saves
the file before exiting to DOS.

Find <CTRL>QF Searches for a string as long as 67 characters globally,
backwards, within the current block, or ignoring case. See text
immediately following this table for more details of the find
command.

Find and replace <CTRL>QA Searches for a string and replaces it with another string. See
text immediately following this table for more details of the find-
and-replace command.

Find next <CTRL>L Repeats the last find or find-and-replace command.

Restore line <CTRL>QL Undoes any changes to the line that contains the cursor. If the
cursor has left the line, this command does not work.

Save to file <CTRL>KN Prompts for a file name, then saves the file in the current
window to the specified file. This becomes the new file in the
current window. (This is particularly useful for NONAME.ASM
files.)

Set undo limit <CTRL>JU Sets the size of the undo buffer, which stores deleted lines. The
default value is 40 lines (but you may change the default via the
installation program).

Show available <CTRL>JR Shows the amount of RAM available to IASM.

memory

Show version <CTRL>JV Displays the current version of IASM.

M68SDBUG/D

4-15

IASM OPERATING PROCEDURE

@ MOTOROLA

Table4-8. IASM Miscellaneous Commands (continued)

Command Keys Description

Toggle <CTRL>QI Enables or disables autoindent. When autoindent is enabled,

autoindent <CR> or <CTRL>M jumps to the next line, to the column of the
first non-blank character of the current line. Indent shows on
the status line

Toggle fixed tabs <CTRL>QT Enables fixed tabs or smart tabs. When fixed tabs are enabled,
Tab shows on the status line.

Toggle insert Insert Enables insert mode or overwrite mode. In insert mode, existing

mode or text moves right as new text is entered, and Insert shows in the

<CTRL>V status line. In overwrite mode, new text replaces existing text.

Undo last <CTRL>QU Restores lines deleted via the delete or delete-line command.

deletion This command does not restore single characters or words. (To
undo changes to the current line, use the restore-line
command. To specify the size of the undo buffer, use the set-
undo-limit command.)

46.81 TheFind Command

The find command, as well as the find-and-replace command, needs additional explanation.

When you enter the find command, the status line clears and a prompt asks for the search string
(aslong as 67 characters). If you have used this command before, the prompt includes the most
recent search string. To select the same search string, press <CR>. To edit or replace the search
string, use these commands:

Deletes the character to the | eft
Restores the previous string

4-16

Backspace
<CTRL>R
<CTRL>S
<CTRL>D

ESC
<CTRL>P

Moves cursor |eft

Moves cursor right

Cancels the command

Enters a control character

M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

After you enter the search string, a prompt asks for options (The editor displays any options of
the most recent search; you may use them again or edit them.) Search options are:

B Backwards search from cursor position

G Globa search from start of file (or from end of file for a backwards
search)

L Search only currently marked block
U Treat adl characters as upper case
W Search for whole word only (ignore the target string if it is part of alonger
word)

After you specify options, the search begins If amatching pattern is found, the cursor appears at
the end of the pattern. When you enter the find command with no option at the search string
prompt, the search continues from the current cursor position.

The find next command uses the same parameters as the find command, but if you specify a
global (G) option, the search restarts from the beginning and stops on the first occurrence. This
means you will never get beyond the first occurrence of your string search.

46.82 TheFind-and-Replace Command

This command is similar to the find command. However, after you specify the search string, this
command prompts for a replacement string. Like the search string, the replacement string may be
aslong as 67 characters. The prompt includes the replacement string (if any) from a previous use
of this command. Y ou may accept, edit, or replace the replacement string, just as you can the
search string.

After you specify the search and replacement strings, the option prompt appears All the find-
command options are available, plus one more:

N Replace without a prompt

After you specify options, the search begins If the search finds a matching pattern and the N
option is not in effect, a prompt requests confirmation that you want the replacement. Respond Y
(replace), N (skip), or A (replace this and all subsequent matches without prompts).

If you specify the N option, replacement of the search string happens without any confirmation
prompts. The screen does not update until al file updates are done.

To abort a find-and-replace operation, press Q or ESC.

M68SDBUG/D 4-17

IASM OPERATING PROCEDURE @ MOTOROLA

4.7 ASSEMBLER

The assembler assembles the file currently in the editor. The assembler produces object, map, or
listing files, according to the options the user chooses. (Optionally, the assembler only checks
syntax, without producing any of these files.) The source file uses factory standard mnemonics
See the environment’ s help screens for alist of acceptable mnemonics.

Each line of the source contains an assembly-language statement. Such a statement contains as
many as four fields, in this order:

| abel operation operand ; comment

Paragraph 4.7.1 explains |abels, paragraph 4.7.10 explains operands and operators, and paragraph
4.7.11 explains comments. Paragraphs 4.7.2 through 4.7.9 collectively explain operations, which
include assembler directives, the cycle adder, conditional assembly, and macros Paragraphs
4.7.12 through 4.7.14 explain pseudo operations, listing directives, and the listing file.

471 Labels

A label may be aslong as 16 characters A label must start with aletter, but the assembler does
not differentiate between upper- and lower-case letters when searching for labels The second and
subsequent characters of alabel may be letters, numeral's, underscores, or dashes Y ou may add a
colon to the end of alabel, but thisis optional; a space suffices. Do not use the reserved words as
labels:

* |ASM12: Do not duplicate A, B, CCR, D, PC, SP, TMP2, TMP3, X, or Y.

* |ASM16: Do not duplicate E, PC, X, Y, or Z.

* |ASM32: Do not duplicate AQO, A1, ..., A7, CCR; DFC; DO, D1, ..., D7; PC; SFC;
SR; or VBR.

Note that labels within macros may not be longer than 10 characters. As paragraph 4.7.7
explains, thisrule lets the assembler keep such labels unique, even for multiple macro calls.

Examples of labels are:

Label :

Thi sl sALabel :

Loop_1

This | abel _is _rmuch_too | ong:

The assembler would truncate the last example to 16 characters So, to the assembler, it would be
the same |abel as:

Thi s_I abel _i s_much_I onger _t han_needed

4-18 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

4.7.2 Assembler Directives

Directives are keywords that control the progress and modes of the assembler. To invoke an
assembler directive, use a/, #, or $ character in column 1, then start the directive in column 2.

NOTE

To use adirective, be sure to put the/, #, or $ character in column
1 and thefirst letter of the directivein column 2. Thisisthe
mandatory directive format.

Table 4-9 lists the directives. The caret (*) indicates that a parameter value must follow the
directive. Note that there must be a space between a directive and a parameter value Paragraphs
4.7.3 through 4.7.9 give more detail on how to use these directives.

Table4-9. Assembler Directives

Directive Action

BASE » Change the default input base to binary, octal, decimal, or
hexadecimal

CYCLE_ADDER_ON Start accumulating instruction cycles (IASM12, IASM16)

CYCLE_ADDER_OFF Stop accumulating instruction cycles and print the total

(IASM12, IASM16)

DPz Make all direct addressing relative to index register Z, to make
the source compatible with an HC11 device (IASM16 only)

ELSEIF Alternate conditional assembly vis-a-vis the IF ~ or IFNOT #
directive.

ENDIF End conditional assembly

IF~ Assemble specified code if condition is true

IFNOT ~ Assemble specified code if condition is false

INCLUDE ' Include specified file in source code

MACRO ~ Create a macro

MACROEND End a macro definition

NODPZ Turn off the DPZ directive (IASM16 only)

SET " Set specified condition to true

SETNOT # Set specified condition to false

M68SDBUG/D

4-19

IASM OPERATING PROCEDURE @ MOTOROLA

4.7.3 Changing Base

The default numerical base of the current file is hexadecimal. The BASE ” assembler directive
changes this default base to binary, octal, or decimal — or back to hexadecimal. The new base
remains in effect until the end of the file, or until you use the BASE ~ directive again.

The parameter value must be in the current base, or must have a base qualifier. (Qualifier
prefixes:% for binary,! for decimal, ané for hexadecimal. The corresponding qualifier
suffixes areQ for binary,O for octal, T for decimal, andH for hexadecimal. Use either a prefix
or a suffix, but not both.)

Examples are:

$BASE 2H Changes default base to binary
$BASE ! 8 Changes default base to octal
$BASE $8 Changes default base to octal

$BASE 100 Changes default base to octal
$BASE 10T Changes default base to decimal
$BASE 0AH Changes default base to decimal
$BASE $10 Changes default base to hexadecimal

NOTE

As stated above, the parameter value must be in the current base
(or must have a base qualifier).

P&E Microcomputer Systems and Motorola recommend always
using a qualifier with the BASE ” directive, to make certain of
setting the default base correctly. Remember that the default base
at the beginning of assembly is hexadecimal.

4-20 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

4.74 Cycle Adder

The assembler contains an internal counter for instruction cycles(IASM12, IASM16): the cycle
adder. The two assembler directives CYCLE_ADDER_ON and CYCLE_ADDER_OFF control
this counter.

When the assembler encounters the CY CLE_ADDER_ON directive, it clears the cycle adder.
The cycle adder starts arunning total of instruction cycles as subsequent instructions are
assembled. (For instructions that have variable numbers of instruction cycles, the cycle adder
takes the smallest number.)

When the assembler encounters the CY CLE_ADDER_OFF directive, it writes the current cycle-
adder valueinto the .L ST file, and disables the cycle adder.
NOTE

For the CYCLE_ADDER_ON and CYCLE_ADDER_OFF
directives to work, the Listing and Cycle Ctr options (from the
Assemble submenu) must be on.

M68SDBUG/D 4-21

IASM OPERATING PROCEDURE @ MOTOROLA

475 Conditional Assembly

The assembler lets you specify blocks of code to be assembled only upon certain conditions To
set up such conditional assembly, use the directives SET #, SETNOT #, IF”, IFNOT *, ENDIF,
and EL SEIF.

The SET ~ directive sets the value of its parameter to true. The SETNOT * directive sets the
value of its parameter to false. The maximum number of SET ” and SETNOT ~ directivesis 25.

Thedirectives IF ~ (or IFNOT #) and ENDIF determine the block of code for conditional
assembly. Code between IF ” and ENDIF is assembled if the parameter value is true Code
between IFNOT ” and ENDIF is assembled if the parameter value isfalse.

The EL SEIF directive can precede ENDIF, providing an alternative For example, if the
parameter value is true, code between IF * and EL SEIF is assembled, but code between ELSEIF
and ENDIF is not. If the parameter value is false, code between IF * and EL SEIF is not
assembled, but code between EL SEIF and ENDIF is EL SEIF gives the same alternative
arrangement to a directive sequence that starts with IFNOT ~.

Example:

$SET debug Sets debug value to true

$SETNOT t est Setstest value to false
nop Always assembles
nop Always assembles

$| F debug Starts block for assembly if debug istrue
jnmp start Assembles

$ELSEI F Starts block for assembly if debug isfalse
jmp end Does not assemble

$ENDI F Ends block for conditional assembly
nop Always assembles
nop Always assembles

$IF test Starts block for assembly if test istrue
jmp test Does not assemble

$ENDI F Ends block for conditional assembly

NOTE

If start4isa SET/SETNOT parameter value, there also can be a
start4 label or parameter value elsewhere in code. IASM treats
such duplicate values as two distinct values.

4-22 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

4.7.6 Include

When the assembler encounters the INCLUDE "' directive, it takes source code from the
specified file. This continues until the end of the specified file or until the assembler encounters
another INCLUDE ' directivelf the assembler reaches the end of the specified file, it continues
taking source code from the file that contained the INCLUDE '~ directive.

The file specification must be in quotes (single or double). If the fileisnot in the current
directory, the specification must be afull path name (The screen window shows the full
specification, provided that it does not exceed 32 characters.)

Includes may be nested to a maximum depth of 10.

The Assemble submenu lets you choose whether to show the source code from include files
within the .LST file.
Examples:

$I NCLUDE ’init.asm

$I NCLUDE "c:\project\init.asnt

NOTE

IASM include files become modules during source-level
debugging via SDbug.

M68SDBUG/D 4-23

IASM OPERATING PROCEDURE @ MOTOROLA

4.7.7 M acros

A macro isanamed block of text to be assembled in lieu of its name. Although similar to an
include file, amacro is more flexible. For example, a macro can receive parameter values.

To define amacro, enter the MACRO ” directive; the name of the macro is the parameter value
for this directive. Code on subsequent lines, to the MACROEND directive, is the macro
definition.

No directives may be within a macro, nor does the macro definition need any parameter names
Instead, the definition includes the sequential indicators %n for the nth parameter values of the
macro call. Your code may pass as many as nine parameter values to a macro.

Example 1. Shows a macro that divides the accumulator by 4
$MACRO di vi de_by 4 Starts macro definition
asra Divides the accumulator by 2
asra Divides the accumulator by 2 again
$MACROEND Ends macro definition
Example 2: Shows a macro that creates atime delay
$MACRO del ay count
| daa #%
| oop: deca
bne | oop
$MACROEND

The name of the second macro is delay. Note, however, that the MACRO ~ directive line also
contains the word count. The assembler ignores any such extrawords in the MACRO * directive
line, so you may include them to identify the parameters of the macra In this example, count
indicates the role of the single parameter value passed to the macro. That value is substituted for
the sequential indicator %1.

If the calling line
del ay 100t

invokes this macro, the loop occurs 100 times. (Note thet decimal qualifier.)

4-24 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

The assembler ignores extra parameter values sent to a macro. But if not enough parameter
values are sent to a macro, the assembler issues an error message.

Make sure that labels within macros are no longer than 10 characters The assembler makes
certain that labels in macros always are unique by changing them each time they are used To do
this, the assembler appends :nnnn (afour-digit hexadecimal number) to each label. Each
successive time the macro is called, the assembler increments the value of :nnnn for the label.

Note that code cannot jump into a macro, but code may jump out of a macro. Macros cannot be
forward referenced (that is, the definition of the macro must appear before areference to the
macro).

If you do not want the listing file to contain code generated during a macro, selectMACROS
hide, from the Assemble submenu. If you do want the listing file to contain this code, select
MACRO view. Note that such code in the listing file is not identical to the macro definition: itis
all upper case, and comments are stripped out. However, this appearance does not affect the
definition itself.

M68SDBUG/D 4-25

IASM OPERATING PROCEDURE @ MOTOROLA

478 Constants

Numerical constants are specific numbers entered into assembly language instructions The
default for al constantsin the assembler is hexadecimal, but you may override the default by
adding a qualifier prefix or suffix to avaue. (Do not use both a prefix and a suffix.)

Qualifier prefixesfor binary, octal, decimal, and hexadecimal are%, !, and $, respectively. The
corresponding qualifier suffixesareQ, O, T, and H.

Y ou may change the default base to binary, octal, or decimal — or back to hexadecimal — via the
BASE ~ directive.

Note that the symbol $ or *, by itself, indicates the current program counter value.
To specify an ASCII constant or string, put it in single or double quotes.

Examples of constants are:
10010111Q = 940010111 = 2270 = 151T = 1151 = 97H = $97
JWP $ jump to myself
JMP * jump to myself
db "this is a string"
LDAA " 7

479 Opcodes

The assembler supports all factory opcode mnemonics. To see the full list of these mnemonics,
look under INSTRUCTION SET, in the on-line help system.

Opcodes cannot start in column 1. If a label starts the line, there must be at least one space (or a
colon) between the label and the opcode.

4-26 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

4.7.10 Operandsand Operators

An operand may be an address, alabel, or a constant, as defined by the opcode Arithmetic, logic,
and shift operations may be performed, within parameters, during assembly.
The operators are:

* multiplication

/ division

+ addition

- subtraction or negation

< left shift

> right shift

% remainder after division

& hitwiseand

| bitwiseor

A bitwise xor

~ shift right 16

Operator precedence follows the rules of algebra; to ater this precedence, use parentheses.

NOTES

If an expression contains more than one oper ator, parenthesis, or
embedded space, braces ({ }) must enclose the entire expression.

IASM software does check for amissing close brace, but cannot
identify expressions that need braces Y ou must use braces when
required, or IASM will give you unpredictable results without
giving you an error message.

Examples of operands and operators are:

| dab #~t abl e load upper four bits of address table into B register
jmp start start is apreviously defined label

jmp start +3 jump to location start + 3

jmp {start>2} jump to location start divided by 4

M68SDBUG/D 4-27

IASM OPERATING PROCEDURE @ MOTOROLA

4711 Comments

A semicolon (;) delineates comments, which may start in any column and extend to the end of
theline. Additionally, if an asterisk (*) or semicolon isin column 1, the entire line is a comment.

Examples of comments are:
;this coment is the only thing on the |ine.
nop this is a comment

*this entire line is a coment

4.7.12 Pseudo Operations

Y ou may use pseudo operations in place of opcode mnemonics Table 4-10 lists these pseudo
operations.

Table 4-10. Pseudo Operations

Pseudo-Op Code Action
rmb n Defines storage, reserving n bytes, where n = number or label.
or No forward references of n are allowed.
dsn
fcbm Defines byte storage, where m = label, number, or string.
or Strings generate ASCII code for multiple bytes; number and
dbm label parameters receive single bytes. Separate multiple
parameters with commas.
fdb n Defines word storage, where n = label, number, or string. Two
or bytes are generated for each number or label. Separate
dw n multiple parameters with commas.
lab: equ n Assigns the value of the number or label n to the label lab. No

forward references of n are allowed.

orgn Sets the origin to the value of the number or label n. No forward
references of n are allowed.

4-28 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

4713 Listing Directives

Listing directives are source-code keywords that control output to the listing file These
directives pertain only to viewing the source-code output; the directives, which may be
Interspersed anywhere in source code, do not affect the actual code assembled Table 4-11 lists
these directives. Note the character (*), which indicates a mandatory parameter value.

To invoke alisting directive, put aperiod (.) in column 1, and start the directive in column 2.
The directive itself does not appear in the listing file. (If you want the directive to appear in the
listing file, use/, #, or $in column 1, instead of the period.)

Table4-11. Listing Directives

Directive Action
eject Begins a new page.
or
page
header '’ Specified string, in quotes, will be a header on listing pages.
The header can be defined only once. The default header is
blank.
list Turns on the .Ist file output. (For this directive to work, the list

choice in the assemble sub-menu must be on.)

nolist Turns off the .Ist file output. This directive is the counterpart of
the list directive. At the end of a file, this directive keeps the
symbol-table from being listed.

pagelength » Sets the length of the page, 110 — 1255 lines. The default
parameter value is !66.

pagewidth » Sets the width of the output, 140 — 1255 columns, wordwrapping
additional text. The default parameter value is !80.

subheader '’ Makes the string specified in quotes a subheader on listing
pages. The subheader takes effect on the next page.

M68SDBUG/D 4-29

IASM OPERATING PROCEDURE @ MOTOROLA

4.7.14 ListingFile

A listing file requested via the menu system is created during assembly. This listing file has the
same name as the file being assembled, but with the extension .LST. (Any existing file that has
the same name is overwritten.) Thelisting file has this format:

AAAAA VWWWW [CC] LLLL Source Code

Thefirst five hexadecimal digits (AAAAA) are the address of the instruction in the target
processor memory.

The next hexadecimal digits (VVVVVVVYV) are the values put into that address (and possibly
the next several addresses). The actual opcode determines the size of thisfield.

The CC field of the format is the number of machine cycles used by the opcode(IASM12 or
IASM 16 only). Note that this value appears only if Cycle Ctr was turned on before assembly.
Also note that the CC value, which always appears in brackets, isa decimal value If an
Instruction has severa possible cycle counts, the CC value is the lowest possibility.

TheLLLL field, as many asfour digits, gives the line count.
The actua source code follows the line count.

At the end of thelisting file is the symbol table This table lists each label and the value of each
label.

The listing directiveslist and nolist affect the .LST file. If thenolist directiveis at the end of the
file, it suppresses the symbol table.
48 OBJECT AND MAP FILES

If an object file is requested via the menu system, it is created during assembly. The object file
has the same name as the file being assembled, but with the extension .S19 or .HEX. The choice
of name depends on the choice made in the assembl e sub-menu. Any existing file with the same
name is overwritten.

If amap fileis requested via the menu system, it is generated during assembly. SDbug and P& E
Microcomputer Systems products use map files during symbolic debugging.

4-30 M68SDBUG/D

@ MOTOROLA IASM OPERATING PROCEDURE

49 COMMUNICATIONS

Press the F7 key to open the communications window for computer serial ports COM1 or
COM2. The parameters of this window (port, baud, parity, word length, and number of stop bits)
come from the options in the COMM sub-menu. (If necessary, consult your development-board
manual for appropriate settings.)

Once the communications window is open, the F7 key toggles between communicating and
editing.

If you change communication parameter values while the communications window is open, the
new values do not take effect until you close and reopen the window. The selected baud rate and
inter-character delays set in the installation program determine the speed of the download
command.

Table 4-12 lists the hot keys available in the communi cations window.

Table4-12. Communications Window Hot Keys

Key Name Description

F1 Help Brings up the help system.

F6 Download Prompts for a file name, then downloads the file through the appropriate
serial port. This download transfers the file as it is; no special protocol is
used.

F7 Edit Moves to the editor window, closing an open view file.

F8, Resize Make the communications window larger or smaller.

F9

F10 Close Closes the communications window, returning control, and the full
screen, to the editor (the cursor must be in the current window).

M68SDBUG/D 4-31

IASM OPERATING PROCEDURE @ MOTOROLA

4-32 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

CHAPTERS
PROGRAMMING MCUS

5.1 INTRODUCTION

PROGXXS is a software product for programming M68HC12, M68HC16, or M68300
microcontroller (MCU) devices. Use PROG12S to program any programmable memory module
of an M68HC12 MCU, use PROG16S to program any programmable memory module of an
M68HC16 MCU, or use PROG32S to program any programmable memory module of an
M68300 MCU.

NOTE

A module is any programmable memory that is a built-in part of an
MCU integrated circuit. There are several types of modules,
including EEPROM, flash EEPROM, block erasable flash
EEPROM, and TPU EEPROM. Modules communicate with the
MCU viathe intermodule bus; a given MCU can have more than
one module. For more information about the memory modules of a
particular MCU type, see the corresponding technical data book.

(The term module also can apply to programmable memory not part of your MCU but accessible
viayour target board. To use PROGS to program such an external module, you must create a
custom .12P, .16P, or .32P file, which is available from P & E Microcomputer Systems.)

5.2 OVERVIEW

PROGS software resides in your host computer. To program an MCU memory module, connect
your SDI] interface between your host computer and your target system.

Next, run PROGS software. This software consists of two parts:

* General program— This program consists of the routines and general interface
functions that control the erasing, programming, verifying, and viewing of
programmable memory modules. This program, which pertains to any MCU
programmable memory module, runs on your host computer; it communicates with
your MCU in background debug mode, via the SDI cable.

M68SDBUG/D 5-1

PROGRAMMING MCUS @ MOTOROLA

» #P files — These files, which havee#xtension .12P.16P or .32P, implement the
general routines and functions for specific modue.#P file consists of addresses,
documentation information, and initialization code (in the form of S-refoftie .#P
files run in the target MCU processo

The full names D.#P files relate them to a type of module and a type d/M®ere are tw .#P
files for each module: one that contains control-register information, and a larger arigyefil
names of control-registe#P files usually include the letter C; array files include the |&itér
digit following the C or K in the file name indicates that the MCU has multiple modules; the
digit identifies the specific model (The software release guide explains the complete naming
convention for .#P files.)

Standard PROG.12P, PROG.16P, or PROG.32P files, which serve the needs of most users, are
available in the Motorola AMCU bulletin board syst&ICU12, MCU16, or MCU32 aws. (To

access this bulletin board, phone 1-512-89133T8e bulletin-board serial transmission format

is eight data bits, no parity, and one stop bit.)

It is possible for advanced programmers to custetd? files; the AMCU bulletin board gives
additional information about customization.

5.3 PROGRAMMING REQUIREMENTS

To program a M68HC12, M68HC16, or MC68300 MCU memory module, you need:
* PROGS software.
* An SDl interfae.

* An IBM or compatible personal computé&he computer must run DOS 3.1 or higher
and must have an IBM-compatderial port.

* Atarget system that contains the MCU device to be prograimrhes target system
can be a test board, an emulator board, or a dedicated programmer board, but it must
have a 10-pin Berg-type connector, to connecteSDi interfa@ cable. The target
system must include an appropriate programming-voltage circuit or you must provide
external programming voltage.

» Code to be programmed into the MCThis code must be in Motorola S-record
format.

The rest of this chapter explains how tod®ROGS software, and how to use the programming
commands.

5.2 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

54 STARTING PROGRAMMING

PROGS downloads S-records to the MCU device. That is, the code you program into the MCU
must be in Motorola S-record format. (If you do not provide a filename extension, the system
uses the default extension .S19.) To create S-records, use an M68HC12, M68HC16, or M68300
assembler (or compiler) that outputs S-records. Although you may store S-records anywhere on
your computer hard drive, it is most convenient to store them in the directory that contains the
PROGS software (or a subdirectory of this directory).

NOTE

To select commands in the programming software, use the cursor
control keysto highlight your selection; alternatively, type one or
more starting letters to highlight the command.

To activate the highlighted command, pressthe ENTER, RETURN, or carriage-return key. This
manual uses the symbol <CR> for this key. Brackets ([]) denote optional parameters.

To abort acommand in progress, press the ESC key. (Pressing the ESC key a second time selects
the quit command.)
When you are ready to program MCUSs, follow steps 1 through 10:
1. Enter the appropriate startup command, such as:
PROGL2S baud 28800 freq 4000000 sim 4

which starts PROG12 at a communication rate of 28800 baud, for a target-system
oscillator frequency of 8Mhz, with a non-multiplexed light integration module (LIM).

Table 5-1 explains parameter values for the startup command syntax:
PROG#S [s] [nl [baud n] [v] [freq n] [simn]

M68SDBUG/D 5.3

PROGRAMMING MCUS

@ MOTOROLA

Table5-1. PROGS Startup Command Parameters

Parameter

Action

#

PROGS number: 12, 16, or 32.

S

Sets serial communication port (the default is com1). The range is
com1 through com9.

Sets monitor as monochrome. For a color monitor, do not use this
parameter.

baud n

Sets I/O port baud rate to n value. The rate range is 2400 to 57600;
the default rate is 9600.

Deactivates S-record verification. For verification, omit this
parameter.

freq n

Set target frequency n (half the MPB oscillator frequency), entered
with all trailing zeros. The PROG12 default is 2000000 (2Mhz), the
default for PROG16 or PROG32 is 8000000 (8Mhz).

sim n

Set SIM type value n specifies 0 one of these possible values:

0 SIM 4 LIM (NOMUX)
1 SCIM 5 LIM(MUX)

2 RPSCIM 6 SLIM (MUX)

3 SCIM2 7 SLIM (NOMUX)

(The PROG12 default is 5; the PROG16 and PROG32 default is 0.)

The main programming screen appears, with the Choose Module command aready

activated. (Paragraph 5.4 explains the main screen.)

2. The choose module window appears in the center of the screen. This window contains
the path to the parent directory, names of any subdirectories, then the names of all .#P
filesin the current directory. Use the arrow, PgUp, or PgDn keysto scroll through this

window.

CAUTION

Selecting a .#P file that does not match the current MCU can lead
to unpredictable programming results or prevent downloading
altogether. It could even cause the loss of important data. Be sure
to select a .#P file appropriate for your MCU type

3. Select the .#P file for the memory module, then press <CR>. The choose module

window disappears, and the messagel ni ti al i zi ng appearsin the status window,

at the bottom of the screen.

5-4

M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

4. TheBase Addr ess? prompt appearsin the base address window. Enter the
hexadecimal address at which you want the module to reside, then press <CR>.
(Paragraph 5.4 includes more information about base addresses.)

The base address window disappears; the name and base address of the .#P file appear
in the .PRG file selected window. Additionally, comments from the first few lines of
the .#P file appear in the status window. These comments specify the MCU type and
module type to which the .#P file pertains. (Such comments aso identify a specia
user function, if one exists for the .#P file.) If somebody has altered the original .#P
file, amessage so informs you.

NOTE

If you see from the status-window comments that you have
selected the wrong #P file, merely select the CM (choose module)
command to select the correct .#P file.

5. To program the module, select appropriate commands from the main screen.
(Paragraph 5.6 explains each command.)

6. When you are done programming the module, proceed to one of the steps below.

7. To program another module of the same MCU, select the CM (choose module)
command, then return to step 3.

8. To usethe same target system to program another M CU, disconnect power from your
target system, if appropriate, then remove the current MCU from the target system
Install anew MCU in the target system and restore power. Select the RE (reset chip)
command, then activate the CM (choose module) command. Return to Step 3.

9. Touse adifferent target system to program another MCU, turn off or disconnect SDI-
interface power, then disconnect the SDI interface from the target system. Disconnect
power from the new target system, if necessary. With SDI-interface power still off,
connect the SDI interface to the new target system. Restore power to the new target
system and the SDI interface. Select the RE (reset chip) command, then activate the
CM (choose module) command. Return to Step 3.

NOTE

The SDI interfaceis an active system component. Altering
hardware connections with interface power on can causeinterface
or computer-port failure.

10. To quit programming, select the QU (quit) command. This exits the programming
software, returning to DOS.

M68SDBUG/D 5-5

PROGRAMMING MCUS @ MOTOROLA

55 PROGRAMMING SCREEN

Figure 5-1 shows the programming screen, which consists of these windows:

Command — This window, at the upper left of the screen, lists and gives you access
to the programming commasdThe title of this window includes the software
version numbe).Paragrap 5.6 explains each command.

Beforeyou select a .#P file, mot active indication is beside each command name; if
this indication remains beside a command name gfter select a .#P file, the
command does not pertain to the particular medul

PRG File Selected — This window, at the top right of the screen, shows the path,
filename, and base address of the seteéte file. (When the programming screen
first appears, the wdmone is in this window.)

S19 File Selected — This window, at the upper right of the screen (just below the PRG
file selected window), shows the path and filename of the selected S-reedié fil
you have not yet specified an S-record, thedmone is in this window.)

Status — This window extends across the bottom of the scRR®mpts, status
indications, and error messages appear in this window.

Temporary windows overlay the programming screen when appiti@ most common
temporary windows are:

Choose Module — This window appears at the center of the programming screen
when you select the CM (choose module) conmun@his window contains the path
to the parent directory, names of any subdirectories, then the namieg®@ffiés in
the current directgr To scroll through this window, use the arrow, PgUp, or PgDn
keys. When you seled .#P file, this window disappears.

Help — The Topics help window appears near the center of the programming screen
when you select the HE (help) commawhen you select one of the topics, a larger
help window appears, giving you the appropriate informafio exit a help window,
press the ESC ke

Base Address — This window appears near the right center of the screen when the
system prompts for a base addrdsis is the MCU address you want for the module;
this address should match the address of any S-record you will program into the
module. PROGS also uses the base address to determine the starting and ending
addresses for such commands as PM (program module), SM (show module), and VM
(verify modulg. When you enter the address, the base address window disappears.

M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

PROG16 - Version X.XX PRG FILE SELECTED

BM - Blank check module none
BR - Blank check range
EB - Erase byte range S19 FILE SELECTED
EW - Erase word range none

EM - Erase Module
PB - Program bytes
PW - Program words
PM - Program module
CM - Choose module
VM - Verify module
VR - Verify range

UM - Upload module
UR - Upload range
SS - Specify S record
SM - Show module
HE - Help

QU - Quit

RE - Reset chip

STATUS

Figure 5-1. Programming Screen

5.6 SPECIAL USER FUNCTION

The command window of Figure 5-2 lists the standard programming commands: those that
pertain to virtually al programmable modules. After you have selected a.#P file, look at the
bottom right corner of the command window. If adown-arrow symbol is at the widow edge, the
module has an extra command (or user function). Comments (from the first few lines of the .#P
file) appear in the status window to identify what the user function does.

Note that a user function depends on the module; if three different modules have user functions,
the three user functions may perform completely different actions.

The SDbug software release guide explains the user function, if any, for the #P file you select.
To highlight and activate the user function, you may need to scroll down aline in the command
window (viathe down-arrow key).

M68SDBUG/D 5-7

PROGRAMMING MCUS

@ MOTOROLA

5.7 STANDARD PROGRAMMING COMMANDS

Table 5-2 lists the standard programming commands, in the order they appear in the command
window. Individual explanations of each command, in alphabetical order, follow the table
Paragraph 5.7 lists atypical programming sequence (To abort acommand in progress, press the

ESC key.)
Table 5-2. Standard Programming Commands
Command Function
BM Blank check module
BR Blank check range
EB Erase byte range
EW Erase word range
EM Erase module
PB Program bytes
PW Program words
PM Program module
CM Choose module (.#P file)
VM Verify module
VR Verify range
UM Upload module
UR Upload range
SS Specify S-record
SM Show module
HE Help
QU Quit
RE Reset chip

5-8

M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

BM Blank Check Module

571 Blank Check Module

BM

This command blank checks the selected memory module That is, the system verifies that each
module location isin its erased state.

If the blank check is successful, the message Er ased appearsin the status window. Otherwise,
the status window shows the address and contents of the first unerased location.

M68SDBUG/D 5.9

PROGRAMMING MCUS @ MOTOROLA

BR Blank Check Range

5.7.2 Blank Check Range

BR

This command blank checks an MCU memory range that you specify. When you select this
command, prompts ask for the hexadecimal starting and ending addresses of the range (Both
these addresses must be inside the module.) Then the system verifies that each location of the
rangeisin its erased state.

If the blank check is successful, the message Er ased appearsin the status window. Otherwise,
the status window shows the address and contents of the first unerased location.

NOTE

Unless the .#P file includes an erase-check-byte routine, the
starting address must be a word boundary and the ending address
must be aword boundary plus 1. Otherwise, the system displays a
message that the .#P file does not implement byte checking.

5-10 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

CM Choose Module

573 Choose Module

CM

This command selects the module to be programmed and the associated .#P file. When you select
this command, the choose module window appears in the center of the screen. This window
contains the path to the parent directory, names of any subdirectories, then the names of all .#P
filesin the current directory. Use the arrow, PgUp, or PgDn keysto scroll through this window,
then select the #Pfile.

The choose module window disappears, and the message Initializing appears in the status
window. Then the Base Address? prompt appears in the base address window. Enter the
hexadecimal base address for the module, then press <CR>. The base address window
disappears; the name and base address of the .#P file appear in the PRG file selected window.
Additionally, comments from the first few lines of the .#P file appear in the status window.
These comments specify the MCU type and modul e type to which the #P file pertains. (Such
comments also identify a special user function, if one exists for the #P file.) If somebody has
altered the original .#P file, a message so informs you.

CAUTION

Selecting a .#P file that does not match the current MCU can lead
to unpredictable programming results or prevent downloading
altogether. It could even cause the loss of important data. Be sure
to select a .#P file appropriate for your MCU type (If you see from
the status-window comments that you have selected the wrong .#P
file, merely select the CM command again to select the correct .#P
file.)

M68SDBUG/D 5-11

PROGRAMMING MCUS @ MOTOROLA

EB Erase Byte Range

5.7.4 EraseByteRange

EB

For specific modules, this command erases bytes of an MCU memory range that you specify.
When you select this command, prompts ask for the hexadecimal starting and ending addresses
of the range. When you enter these addresses (both of which must be inside the module), the
system begins erasing bytes.

When erasing is done, a confirmation message appears in the status window. Should the system
not be able to erase a byte, erasing activity stops and the status window shows the address and
contents of the byte.

NOTE

For most EEPROM modules, it is not possible to erase individual
bytes or words.

5-12 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

EM Erase Module

575 Erase M odule

EM

This command erases the entire module. When you select this command, the system begins
erasing. When erasing is done, a confirmation message appears in the status window. Should the
system not be able to erase the entire module, erasing activity stops and an error message appears
in the status window.

IMPORTANT NOTE

For flash EEPROM and certain other module types, the EM
command erases both the data and control-register portions of the
module.

M68SDBUG/D 5-13

PROGRAMMING MCUS @ MOTOROLA

EW Erase Word Range

576 EraseWord Range

EwW

For specific modules, this command erases words of an MCU memory range that you specify.
When you select this command, prompts ask for the hexadecimal starting and ending addresses
of the range. When you enter these addresses (both of which must be word-boundary addresses,
and both of which must be inside the module), the system begins erasing words.

When erasing is done, a confirmation message appears in the status window. Should the system
not be able to erase aword, erasing activity stops and the status window shows the address and
contents of the word.

NOTE

For most EEPROM modules, it is not possible to erase individual
bytes or words.

5-14 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

HE Help

57.7 Help

HE

This command calls up help information. When you select this command, the help topics
window appears near the center of the programming screen. Use the arrow and <CR> keys to
select atopic. A larger help window appears, giving you the appropriate information If there are
several pages of information, use the PgDn and PgUp keysto scroll through the pages To exit a
help window, press the ESC key.

M68SDBUG/D 5-15

PROGRAMMING MCUS @ MOTOROLA

PB Program Bytes

5.7.8 Program Bytes

PB

This command programs one or more bytes of the module When you select this command, the
system prompts for a starting address Enter the address and press <CR>; the system shows the
contents of that byte and prompts for new data.

» To change the contents of the byte but hold the address constant, enter the new data
and the = symbol, then press <CR>. (This lets you confirm the change in byte
contents by displaying the new contents.)

» To change the contents of the byte and advance to the next byte, enter the new data
and press <CR>. (Optionally, enter the + symbol after the new data, then press
<CR>))

» To advance to the next byte without changing the contents of the current byte, press
<CR> (or enter the + symbol, then press <CR>).

» To change the contents of the byte and return to the previous byte, enter the new data
and the - symbol, then press <CR>.

» Toreturn to the previous byte without changing the contents of the current byte, enter
the - symbol, then press <CR>.
NOTE

To continue backwards, that is, to step to the previous byte two or
more times, your must use the - symbol for each step.

If you try to program beyond the end of the module array, an error message appears This
message asks you to enter aperiod (.) to exit the PB command or aminus sign (-) to go
backward. Pressing <CR> is not required in such a case.

5-16 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

PM Program Module

579 Program Module

PM

This command programs the selected S-record file into the module. When you enter this
command, the system verifies that an S-record file is selected; if you have not yet selected one, a
reminder message appears in the status window.

If you have selected an S-record file, the system checks whether all addresses of the S-record fit
into the module. If so, the system programs the S-record file into the module When
programming is done, a confirmation message appears in the status window. If the system cannot
program a modul e location, programming activity stops, and an error message in the status
window identifies the location.

If all S-record file addresses do not fit into the module, a prompt asks whether to continue. If you
enter Y (yes), the system programsinto the module all the S-record addresses that do fit.

M68SDBUG/D 5-17

PROGRAMMING MCUS @ MOTOROLA

PW

Program Words

5.7.10 Program Words

PW

This command programs one or more words of the module. When you select this command, the
system prompts for a starting address Enter the address and press <CR>; the system shows the
contents of that word and prompts for new data.

To change the contents of the word but hold the address constant, enter the new data
and the = symbol, then press <CR>. (This lets you confirm the change in word
contents by displaying the new contents.)

To change the contents of the word and advance to the next word, enter the new data
and press <CR>. (Optionally, enter the + symbol after the new data, then press
<CR>))

To advance to the next word without changing the contents of the current word, press
<CR> (or enter the + symbol, then press <CR>).

To change the contents of the word and return to the previous word, enter the new
data and the - symbol, then press <CR>.

To return to the previous word without changing the contents of the current word,
enter the - symbol, then press <CR>.
NOTE

To continue backwards, that is, to step to the previous word two or
more times, your must use the - symbol for each step.

If you try to program beyond the end of the module array, an error message appears This
message asks you to enter aperiod (.) to exit the PB command or aminus sign (-) to go
backward. Pressing <CR> is not required in such a case.

5-18

M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

QuU Quit
5711 Quit

QU

This command quits the programming software, returning you to the DOS prompt.

(Another way to select the QU command isto press the ESC key, then press <CR>.)

M68SDBUG/D 5-19

PROGRAMMING MCUS @ MOTOROLA

RE Reset Chip

5712 Reset Chip

RE

This command does a hardware reset of the MCU, restoring its defined reset values (The
technical data book for the MCU lists these values.) When you select this command, the system
carries out the hardware reset, then automatically highlights the CM (choose module) command

If you program another MCU without quitting the programming software, use the RE command
to reset the new MCU. Another use of this command isto recover from an error that prevents
communication between the programming software and the MCU.

5-20 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

SM Show Module

5.7.13 Show Module

SM

This command displays module contents, 48 bytes at atime. When you select this command, a
prompt shows the current default starting address. To accept this default address, press <CR>.
Otherwise, type adifferent starting address, then press <CR>. The temporary show module
window appears. Thiswindow shows module contents, starting with the specified address. The
ASCII representation of each byteis at the right edge of the window.

Use the PgUp, PgDn, arrow, Home, and End keys to scroll through module contents; when you
are done viewing module contents, press the ESC key.

M68SDBUG/D 5-21

PROGRAMMING MCUS @ MOTOROLA

SS Specify S-Record

5.7.14 Specify S-Record

SS

This command specifies an S-record file. When you select this command, the select S19 file
window appears. Enter the file name at the prompt (including the path, as appropriate), then press
<CR>. The select S19 file window disappears, and the name of the selected file appearsin the
S19 file selected window.

If you press <CR> at the filename prompt without entering a filename (or if you enter an invalid
filename), the choose file window replaces the select S19 file window. The choose file window
lists S-record files; select one just as you select a module from the choose modules window. The
choose file window disappears, and the name of the selected file appears in the S19 file selected
window.

NOTE

Both the select S19 file and choose file windows let you change
directories as well as select afile. The directory names begin with a
backslash (\) character.

5-22 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

UM Upload Module

5.7.15 Upload Module

um

This command uploads module contents to a specified file, in S-record format. When you enter
this command, the system prompts for a filename. Enter the filename and press <CR>; the
system begins uploading.

If the file already exists, a prompt asks whether to overwriteit If you enter Y (yes), the system
overwrites the existing file.

NOTE

This command uploads the compl ete contents of MCU memory.
This process can take 30 minutes or longer.

M68SDBUG/D 5-23

PROGRAMMING MCUS @ MOTOROLA

UR Upload Range

5.7.16 Upload Range

UR

This command uploads contents of an MCU memory range that you specify to a specified file, in
S-record format. When you select this command, prompts ask for the hexadecimal starting and
ending addresses of the range. (Both these addresses must be inside the module.) Then the
system prompts for afilename. Enter the filename and press <CR>; the system begins uploading.

If the file already exists, a prompt asks whether to overwriteit If you enter Y (yes), the system
overwrites the existing file.

5-24 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

VM Verify Module

5.7.17 Verify Module

VM

This command compares the contents of the selected S-record to the contents of the module
When you enter this command, the system verifies that an S-record file is selected; if you have
not yet selected one, areminder message appears in the status window.

If you have selected an S-record file, the system checks whether all S-record addresses fit into the
module. If so, the system verifies the contents of the S-records When verification is done, a
confirmation message appears in the status window. If the system cannot verify a module
location, verification activity stops, and an error message in the status window identifies the
location.

If all S-record file addresses do not fit into the module, a prompt asks whether to continue. If you
enter Y (yes), the system verifies the contents of all the S-records that do fit.

This command ignores module contents at addresses the S-record does not mention.

M68SDBUG/D 5-25

PROGRAMMING MCUS @ MOTOROLA

VR Verify Range

5.7.18 Verify Range

VR

This command verifiesan MCU memory range that you specify. That is, the system makes sure
that contents of the range match those of the selected S-record. (If you have not yet specified an
S-record, the system prompts for one.)

When you select this command, prompts ask for the hexadecimal starting and ending addresses
of the range. (Both these addresses must be inside the module.) Then the system verifies that
contents of each byte (or word) of the range match the contents of the corresponding S-record
location.

If the verification is successful, the message Ver i f i ed appearsin the status window. Otherwise,
the status window shows the address and contents of the first location not verified.

5-26 M68SDBUG/D

@ MOTOROLA PROGRAMMING MCUS

5.8 TYPICAL PROGRAMMING SEQUENCE

Although your specific situation determines the most appropriate programming actions, steps 1
through 11 will be typical for most users:

1. Usethe CM command to choose a module.

© © N o 0 &

10.

11.

Use the BM command to blank check the module. (Most modules must be blank
before you can program them.)

If any module locations are not blank, use theEB, EW, or EM command to erase
them.

Use the SS command to specify an S-record.

Use the PM command to program the module.

Use the VM command to verify successful programming.

Optionally, use the SM command to see module contents.

To program another module of the same MCU, return to Step 1, above.

To use the same target system to program another M CU, disconnect power from your
target system, if appropriate, then remove the current MCU from the target system
Install anew MCU in the target system and restore power. Select the RE command,
then return to Step 1.

To use adifferent target system to program another MCU, turn off or disconnect SDI
power, then disconnect the SDI interface from the target system. Disconnect power
from the new target system, if necessary. With SDI-interface power still off, connect
the SDI interface to the new target system. Restore power to the new target system
and the SDI interface. Select the RE command, then activate the CM command.
Return to Step 1.

NOTE

The SDI interfaceis an active system component. Altering
hardware connections with interface power on can causeinterface
or computer-port failure.

To quit programming, select the QU command to exit the programming software and
return to DOS.

M68SDBUG/D 5-27

PROGRAMMING MCUS @ MOTOROLA

5-28 M68SDBUG/D

@ MOTOROLA S-RECORD INFORMATION

APPENDIX A
S-RECORD INFORMATION

A.1 INTRODUCTION

The S-record format for output modules encodes programs or datafilesin a printable format for
transportation between computer systems. This facilitates S-record editing and permits visual
monitoring of such transportation.

A.2 SRECORD CONTENT

S-records are character strings of five fields: record type, record length, memory address,
code/data, and checksum. Each byte of binary datais encoded as a two-character hexadecimal
number: the first character represents the high-order four bits, and the second character represents
the low-order four bits of the byte.

The diagram below shows the S-record layout. Table A-1 shows the composition of each field.

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

There are three possible terminators for an S-record: CR, LF, and NULL.Additionally, an S
record may have an optional initial field to accommodate such other data as line numbers
generated by some time-sharing systems. An S-record fileisanorma ASCII text filein the
operating system in which it resides.

The record length (byte count) and checksum fields ensure accuracy of transmission.

M68SDBUG/D A-1

S-RECORD INFORMATION @ MOTOROLA

Table A-1. S-Record Field Composition

Printable
Field Characters Contents

Type 2 S-record type: SO, S1, and so forth.

Record length 2 Number of character pairs in the record, excluding
type and record length pairs.

Address 4,6,0r8 The 2-, 3-, or 4-byte address at which the data field
is to be loaded into memory.

Code/data 0—n From 0 to n bytes of executable code, memory-
loadable data, or descriptive information. For
compatibility with teletypewriters, some programs
may limit the number of bytes to as few as 28 (of 56
printable characters in the S-record).

Checksum 2 The least significant byte of the one's complement
of the sum of the values represented by the pairs of
characters making up the records length, address,
and the code/data fields.

A.3 SRECORDTYPES

There are eight types of S-records, to accommodate the various needs of the encoding,
transportation, and decoding functions. The various Motorola upload, download, and other
record transportation control programs, as well as cross assemblers, linkers and other file-
creating or debugging programs, use only the S-record types that serve the purpose of the
program. For specific information on which S-records a particular program supports, consult the
user manual for that program. SDebug supports the S-record typeslisted in Table A-2.

A2 M68SDBUG/D

@ MOTOROLA

S-RECORD INFORMATION

Table A-2. S-Record Types

Type

Description

SO

The header record for each block of S-records. The code/data field may
contain any descriptive information identifying the following block of S-records.
The address field is normally zeros.

S1

A record containing code/data and the 2-byte address at which the code/data
is to reside.

S2

A record containing code/data and the 3-byte address at which the code/data
is to reside.

S3

A record containing code/data and the 4-byte address at which the code/data
is to reside.

S7

A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which control is to be
passed. There is no code/data field.

S8

A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which control is to be
passed. There is no code/data field.

S9

A termination record for a block of S1 records. The address field may
optionally contain the 2-byte address of the instruction to which control is to be
passed. If such an address is not specified, the first entry point specification
encountered in the object module input will be used. There is no code/data
field.

Thereis only one termination record for each block of S-records. The usual reason to use S7 or
S8 records is when control is to be passed to a 3- or 4-byte address. Normally, thereis only one
header record, although multiple header records are possible.

A4 SRECORD CREATION

Several dump utilities, debuggers, linkage editors, cross assemblers, or cross linkers may produce
S-record-format programs. Several programs are available for downloading afilein S-record
format from a host system to a microprocessor-based system.

M68SDBUG/D

A-3

S-RECORD INFORMATION @ MOTOROLA

A5 SRECORD EXAMPLE

The following example shows how atypical S-record format module is printed or displayed. The
module consists of one SO, four S1, and one S9 records.

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S113003000144ED492

S9030000FC

The SO record consists of these character pairs:
SO Typeindicator SO, identifying a header record.
06 Hexadecimal value 06, indicating that six character pairs (or ASCII bytes)

follow.
00 Four-character 2-byte address field; zeros.
00
48 ASCIIH, D, and R — "HDR"
44
52

1B Checksum of the SO record

A-4 M68SDBUG/D

@ MOTOROLA S-RECORD INFORMATION

The explanation of the first S1 code/data record is:

S1

13

00

00

2A

S-record type S1, indicating a code/data record to be loaded/verified at a 2-
byte address.

Hexadecimal 13, indicating that 19 character pairs, representing 19 bytes
of binary data, follow.

Four-character, 2-byte, address field; hexadecimal address 0000, where the
00 following dataisto be loaded

The next 16 character pairs of the first S1 record are the ASCII bytes of the
actual program code/data.

The checksum of the first S1 record.

The second and third S1 records each aso contain $13 (19) character pairs. These records end
with checksums 13 and 52, respectively. The fourth S1 record contains 07 character pairs and has

achecksum of 92.

The explanation of the SO termination record is.

SO
03

00
00

FC

S-record type S9, indicating that it is a termination record.
Hexadecimal 03, indicating that three character pairs (3 bytes) follow.
The addressfield, zeros.

Checksum of the S9 record

Each printable character in an S-record is encoded in a hexadecimal representation (ASCII in this
example) of the binary bits actually transmitted. For example, Figure A-1 isadiagram of the first
S1 record described above.

M68SDBUG/D

S-RECORD INFORMATION

@ MOTOROLA

A-6

TYPE LENGTH
S 1 1 3
5 3 3 1 3 1 3 3
0101|0011|0011|0001|0011|0001| 0011|0011
ADDRESS
0 0 0 0
3 0 3 0 3 0 3 0
0011| 0000|0011 0000|0011} 0000| 0011|0000
CODE / DATA
2 8 5 F
3 2 3 8 3 5 4 6
0011|0010/ 0011(1000|0011|0101(0100|0111
CHECKSUM
2 A
3 2 4 1
0011|0010 0100 0001

Figure A-1. S1 Record Diagram

M68SDBUG/D

@ MOTOROLA STATUS AND ERROR MESSAGES

APPENDIX B
STATUSAND ERROR MESSAGES

In most situations, the SDbug system reports conditions and changes, via messages in the debug
window. Table B-1 lists these messages, with probable causes and corrective actions, as

appropriate.

The IASM assembler, however, reports its own error messages on the prompt line. Table B-2
lists IASM assembler error messages.

TableB-1. SDbug Statusand Error Messages

Message

Probable Cause

Corrective Action

Aborted by user

User action.

None (status message).

Assembly
terminated —
opcode form not
valid

During interactive assembly, user
entered a period or other
inappropriate value.

None (status message).

Attempt to set a
breakpoint at
previously defined
counter

Breakpoint address duplicates an
existing counter address.

Change the breakpoint address or
delete the counter.

Attempt to set
breakpoint on odd
address

Breakpoint address value is odd.

Change the address value to an
even number.

Attempt to set
counter at
previously defined
breakpoint

Counter address duplicates an
existing breakpoint address.

Change the counter address or
erase the breakpoint.

Attempt to set
counter on odd
address

Counter address value is odd.

Change the counter value to an
even number.

Bus error not ready

A debugger window points to
unimplemented memory.

Move the window.

Bus error BDM
error

A debugger window points to
unimplemented memory.

Move the window.

M68SDBUG/D

B-1

STATUS AND ERROR MESSAGES @ MOTOROLA

TableB-1. SDbug Statusand Error Messages (continued)

Message Probable Cause Corrective Action
Could not write No system memory available or Fix hardware or write to RAM.
breakpoint/ attempt to write to ROM.
counter to
hardware
Debugger supplied | A debugger window points to Move the window.

DSACK unimplemented memory.

DOS error after An error occurred while running a Correct the error in the outer
shell program from its DOS shell. program.

Instructions Instruction written to an odd Change the address value to an
allowed only on address. even number.

even byte

boundaries

Preset breakpoint | Execution stopped at breakpoint. None (status message).
encountered

Too many Attempt to set an eighth breakpoint. | Delete a current breakpoint before
breakpoints set setting a new one.

Too many counters | Attempt to set a 51st counter. Delete a current counter before
set setting a new one.

Unable to go into Hardware could not go into Fix the hardware.

background mode | background mode.

Unrecognizable or | Parameter value is out of range, Correct the parameter value.
improper wrong type, or otherwise not

parameter value appropriate for this command.

B-2 M68SDBUG/D

@ MOTOROLA

STATUS AND ERROR MESSAGES

TableB-2. IASM Assembler Error Messages

Message Probable Cause Corrective Action
Conditional The variable in the IF or IFNOT Declare the variable via the SET or
assembly variable | statement has not been declared SETNOT directive.
not found via a SET or SETNOT directive.

Duplicate label

The label in the highlighted line
already has been used.

Change the label to one not used
already.

Error writing .LST
or .MAP file—check
disk space

Insufficient disk space or other
reason prevents creation of an .LST
or .MAP file.

Make sure there is sufficient disk
space. Make sure (per your DOS
manual) that your CONFIG.SYS file
lets multiple files be open at the
same time.

Error writing object
file—check disk
space

Insufficient disk space or other
reason prevents creation of an
object file.

Make sure there is sufficient disk
space. Make sure (per your DOS
manual) that your CONFIG.SYS file
lets multiple files be open at the
same time.

Include directives
nested too deep

INCLUDE directives are nested 11
or more levels deep.

Nest includes no more than 10
levels deep.

INCLUDE file not
found

Assembler could not find the file
specified in the INCLUDE directive.

Make sure quotes enclose the file
name. Specify any extension that
exists. If necessary, specify the full
path name.

Invalid base value

Value inconsistent with current
default base (binary, octal, decimal,
or hexadecimal).

Use a qualifier prefix or suffix for
the value, or change the default
base.

Invalid opcode, too
long

The opcode on the highlighted line
is wrong.

Correct the opcode.

MACRO label too
long

A label in the macro has 11 or more
characters.

Change the label to have no more
than 10 characters.

MACRO parameter
error

The macro did not receive sufficient
parameter values.

Send sufficient parameter values to
the macro.

M68SDBUG/D

B-3

STATUS AND ERROR MESSAGES @ MOTOROLA

TableB-2. IASM Assembler Error M essages (continued)

Message Probable Cause Corrective Action
Out of memory The assembler ran out of system Create a file that consists only of an
memory. INCLUDE directive, which specifies

your primary file. Assembling this
file leaves the maximum memory
available to the assembler.

Parameter: invalid, | Operand field of the highlighted line | Correct the representation or
too large, missing | has an invalid number change the parameter value.
or out of range representation. Or the parameter
value evaluates to a number too
large for memory space allocated to
the instruction.

Too many There are 26 or more conditional Limit conditional variables to 25 or
conditional variables. fewer.
assembly variables

Too many labels The assembler ran out of system Create a file that consists only of an
memory. INCLUDE directive, which specifies
your primary file. Assembling this
file leaves the maximum memory
available to the assembler.

Undefined label The label parameter in the Declare the label (or correct the
highlighted line has not been declaration).
declared.
Unrecognized The opcode of the highlighted line | Correct the opcode or make it
operation is unknown or is inconsistent with consistent with parameters.

the number and type of parameters.

‘} not found A mathematical expression is Insert the close brace.
missing its close brace.

B-4 M68SDBUG/D

	CONTENT
	CHAPTER 1 GENERAL INFORMATION
	CHAPTER 2 SDbug OPERATING PROCEDURE
	CHAPTER 3 USING DEBUGGER COMMANDS
	CHAPTER 4 IASM OPERATING PROCEDURE
	CHAPTER 5 PROGRAMMING MCUS
	APPENDIX A S-RECORD INFORMATION
	APPENDIX B STATUS AND ERROR MESSAGES

	GENERAL INFORMATION
	1.1 INTRODUCTION
	1.2 FEATURES
	1.3 EQUIPMENT REQUIRED
	1.4 LOADING SOFTWARE
	1.5 ABOUT THIS MANUAL

	SDbug OPERATING PROCEDURE
	2.1 INTRODUCTION
	2.1.1 Typeface and Parameter Conventions
	2.1.2 SDbug Numerical Formats

	2.2 STARTUP
	2.3 MAIN SCREEN
	2.3.1 CPU Window
	2.3.2 SDbug12, SDbug32 Stack Window
	2.3.3 SDbug16 Instruction Pointer (IP) Window
	2.3.4 SDbug16 Breakpoint (BR) Window
	2.3.5 Code Window
	2.3.6 Memory Windows
	2.3.7 Debug Window
	2.3.8 Window Function Keys
	2.3.9 Other Windows

	2.4 GENERAL USE

	USING DEBUGGER COMMANDS
	3.1 INTRODUCTION
	3.2 DEBUG WINDOW COMMANDS
	3.2.1 Toggle F3 Window Display
	3.2.2 Toggle F6 Window Display
	3.2.3 Assemble into Pseudo ROM
	3.2.4 Set Baud Rate
	3.2.5 Block Fill Memory
	3.2.6 Set or Remove Breakpoint
	3.2.7 Change Display to Black-and-White Mode
	3.2.8 Save Data to a Log File
	3.2.9 Stop Logging Data to Log File
	3.2.10 Remove Source-Level Debug Information
	3.2.11 Remove Temporary Symbols
	3.2.12 Show Disassembled Code
	3.2.13 Counts Execution
	3.2.14 Add or Remove Counter Location
	3.2.15 Set Debugger Destination Function Code Value
	3.2.16 Set Debugger Source Function Code Value
	3.2.17 Set MCU DFC Value
	3.2.18 Modify RAM Data
	3.2.19 Shell to DOS
	3.2.20 Specify DOS Command
	3.2.21 Load Memory to Debug Window
	3.2.22 Load Trace Buffer to Debug Window
	3.2.23 Evaluate Expression
	3.2.24 Exit Debugger
	3.2.25 Execute Program
	3.2.26 Exit Debugger with Target Running
	3.2.27 Go from IP/PC to Next Instruction
	3.2.28 Go from IP/PC to Address
	3.2.29 Single-Step Fast to Address
	3.2.30 Display Help System
	3.2.31 Load S-Record File
	3.2.32 Load Map and S-Record Files
	3.2.33 Load IASM Debug File
	3.2.34 Load and Verify File
	3.2.35 Load Binary File
	3.2.36 Load and Verify Binary File
	3.2.37 Display MAC Unit Contents
	3.2.38 Execute Macro File
	3.2.39 End Macro File
	3.2.40 Start Macro File
	3.2.41 Show Macro List
	3.2.42 Set F3 Window Memory Display
	3.2.43 Set F6 Window Memory Display
	3.2.44 Modify Memory
	3.2.45 Remove All Breakpoints
	3.2.46 Modify Memory in Program Space
	3.2.47 Toggle Window Refresh
	3.2.48 Write Remark
	3.2.49 Execute Hardware Reset
	3.2.50 Set Serial-Port Parameters
	3.2.51 Deactivate Serial Port
	3.2.52 Activate Serial Port
	3.2.53 Set MCU SFC Value
	3.2.54 Screen Capture
	3.2.55 Toggle Code Display
	3.2.56 Code Search
	3.2.57 Source Step
	3.2.58 Show Processor Status
	3.2.59 Step Trace
	3.2.60 Step to Breakpoint
	3.2.61 Step to Address
	3.2.62 Add Symbol to Map File
	3.2.63 Execute Trace
	3.2.64 Display S-Record Files
	3.2.65 Show Variables Window
	3.2.66 Compare File to Memory
	3.2.67 Display the Current Software Version
	3.2.68 Disable Watchdog Timer
	3.2.69 Show Symbol Value

	3.3 SOURCE-LEVEL DEBUGGING
	3.4 SDBUG MACROS
	3.5 TRACE BUFFER

	IASM OPERATING PROCEDURE
	4.1 INTRODUCTION
	4.1.1 System Requirements
	4.1.2 System Overview
	4.1.3 Getting Started

	4.2 IASMINST CONFIGURATION
	4.3 HOTKEYS
	4.4 MENU
	4.5 HELP
	4.6 EDITOR
	4.6.1 The Editing Screen
	4.6.2 Prompt Editor
	4.6.3 Tabs
	4.6.4 Window Commands
	4.6.5 Cursor Commands
	4.6.6 Insert and Delete Commands
	4.6.7 Block Commands
	4.6.8 Miscellaneous Commands
	4.6.8.1 The Find Command
	4.6.8.2 The Find-and-Replace Command

	4.7 ASSEMBLER
	4.7.1 Labels
	4.7.2 Assembler Directives
	4.7.3 Changing Base
	4.7.4 Cycle Adder
	4.7.5 Conditional Assembly
	4.7.6 Include
	4.7.7 Macros
	4.7.8 Constants
	4.7.9 Opcodes
	4.7.10 Operands and Operators
	4.7.11 Comments
	4.7.12 Pseudo Operations
	4.7.13 Listing Directives
	4.7.14 Listing File

	4.8 OBJECT AND MAP FILES
	4.9 COMMUNICATIONS

	PROGRAMMING MCUS
	5.1 INTRODUCTION
	5.2 OVERVIEW
	5.3 PROGRAMMING REQUIREMENTS
	5.4 STARTING PROGRAMMING
	5.5 PROGRAMMING SCREEN
	5.6 SPECIAL USER FUNCTION
	5.7 STANDARD PROGRAMMING COMMANDS
	5.7.1 Blank Check Module
	5.7.2 Blank Check Range
	5.7.3 Choose Module
	5.7.4 Erase Byte Range
	5.7.5 Erase Module
	5.7.6 Erase Word Range
	5.7.7 Help
	5.7.8 Program Bytes
	5.7.9 Program Module
	5.7.10 Program Words
	5.7.11 Quit
	5.7.12 Reset Chip
	5.7.13 Show Module
	5.7.14 Specify S-Record
	5.7.15 Upload Module
	5.7.16 Upload Range
	5.7.17 Verify Module
	5.7.18 Verify Range

	5.8 TYPICAL PROGRAMMING SEQUENCE

	S-RECORD INFORMATION
	A.1 INTRODUCTION
	A.2 S-RECORD CONTENT
	A.3 S-RECORD TYPES
	A.4 S-RECORD CREATION
	A.5 S-RECORD EXAMPLE

	STATUS AND ERROR MESSAGES
	FIGURES
	Figure 2-1. SDbug12 Main Screen
	Figure 2-2. SDbug16 Main Screen
	Figure 2-3. SDbug32 Main Screen
	Figure 2-4. CPU Windows
	Figure 2-5. Stack Windows
	Figure 2-6. SDbug16 IP Window
	Figure 2-7. SDbug16 BR Window
	Figure 2-8. Code Windows
	Figure 2-9. Memory Windows
	Figure 2-10. Debug Window
	Figure 5-1. Programming Screen
	Figure A-1. S1 Record Diagram

	TABLES
	Table 2-1. SDbug Number Symbols
	Table 2-2. Option Parameter Values
	Table 2-3. SDbug Special Function Keys
	Table 3-1. Debug Window Commands
	Table 3-2. Source Window Commands
	Table 4-1. IASM Hotkeys
	Table 4-2. IASM Menus
	Table 4-3. Edit Window Status Line Information
	Table 4-4. IASM Edit Window Commands
	Table 4-5. IASM Cursor Commands
	Table 4-6. IASM Insert and Delete Commands
	Table 4-7. IASM Block Commands
	Table 4-8. IASM Miscellaneous Commands
	Table 4-9. Assembler Directives
	Table 4-10. Pseudo Operations
	Table 4-11. Listing Directives
	Table 4-12. Communications Window Hot Keys
	Table 5-1. PROGS Startup Command Parameters
	Table 5-2. Standard Programming Commands
	Table A-1. S-Record Field Composition
	Table A-2. S-Record Types
	Table B-1. SDbug Status and Error Messages
	Table B-2. IASM Assembler Error Messages

