Device Drivers Should Not Do Power Management

Chao Xu, Felix Xiaozhu Lin, and Lin Zhong
Rice University, Houston, TX

Abstract

We argue that device drivers are not the best place to im-
plement power management policies for components on
a system-on-a-chip (SoC). We present empirical evidence
that device driver developers are inadequately implement-
ing power management and show the information needed
for good power management policies is available outside
the device drivers. We implement a software central agent
to infer the needed information and accomplish power
management without device driver support. We further
show that simple hardware support can eliminate the over-
head of our approach and extend it to support all SoC
components.

1 Introduction

Modern mobile systems employ a powerful, heteroge-
neous system-on-chip (SoC) as their primary computa-
tional engine. The SoC not only hosts the multicore ARM
processor (main CPU) that runs the high-level operating
system, e.g., Linux and iOS, but also integrate numer-
ous specialized computational resources, e.g., DSP, GPU,
and video/audio codec, along with controllers for I/O de-
vices such as 12C, SPI and UART. Like other systems, the
operating system exposes the functions of these special-
ized resources and I/O to user-space software via device
drivers.

Because not all components of an SoC are used all
the time, the operating system must carefully put idle
components into low-power states for energy conservation

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.

APSys *14, June 25-26, 2014, Beijing, China

Copyright 2014 ACM 978-1-4503-3024-4/14/06 ...$15.00.

and wake them up properly for the next job, a practice
known as power management. Today a significant portion
of this responsibility is shared by device drivers. The
device driver developers decide at which line of the driver
code to enable or disable a device.

The central, perhaps controversial, argument of this
paper is: we should relieve device drivers from the re-
sponsibility of implementing power management for SoC
components. Rather, they should only provide implemen-
tations of power state transition but leave the decision
of state transition to a central agent. We support this
argument in two parts.

First, we show that device drivers are bad places to im-
plement power management for the following reasons.
(i) Device driver developers tend to do a poor job in
implementing power management. Even in the official
Linux release, many SoC components have to wait for
many months to see power management implemented in
their drivers, e.g., UART, SPI and USB controller [1-3].
For those that do have power management implemented,
the policies tend to be suboptimal, missing opportunities
for further energy saving, e.g., watchdog timer [4] and
GPIO [5]. This is because driver developers often fo-
cus on functionality, leaving power management as an
afterthought. (ii) The power state of components on a
modern SoC have close dependencies between each other.
A device driver with poor power management policy may
cause other power-hungry components from entering a
low-power state and thus ruin the power management
efforts of their drivers.

Second, we show that information needed for good
power management policies is available outside the de-
vice drivers. We observe that power management of a
SoC component requires the following three pieces of
information. (i) the quality of service (Qos) requirement,
e.g., wakeup latency; (if) power and latency information
about its low-power states; (iif) if the component has pend-
ing tasks. We observe that (i) is provided by other parties,
e.g., user-space software or other dependent drivers and

(ii) is data sheet information, available offline from the
vendor or by profiling. The reason that today’s power
management is implemented by device drivers is because
(iif) is conveniently available in device drivers.

Our key insight is that (iii) can be made available out-
side the driver. We show that by monitoring memory
access, we are able to infer (iii) to properly power manage
SoC components with a software central agent. While this
software approach comes with limitations, it demonstrates
the feasibility of power management without device driver
support.

Most importantly, we show that with small hardware
modification, the limitations of our software implemen-
tation can be eliminated. In particular, modern SoCs
already come with a hardware global power manager that
performs low-power listening for components and imple-
ments clock/power gating for power management. We
show that this hardware manager already has part of infor-
mation (iii). With the information held by this hardware
manager and small modifications to SoC components,
power management of SoC components can be efficiently
realized without device driver support.

2 Background

2.1 Mobile SoC basics

A modern mobile SoC consists of tens of hardware mod-
ules from general-purpose cores to specialized IP blocks
including DSP, GPU, video/audio codecs and I/O con-
trollers. Only some modules are capable of initiating
interconnect communication with other modules; these
modules are called master modules while others are called
slave modules. Note that a master module can also initiate
communication with another master module. Computa-
tional units, such as CPU, GPU and DSP, are usually
master modules. Non-computational units such as I/O
controllers are usually slave.

Device drivers run on the CPU and control other hard-
ware modules, by accessing their registers.

2.2 Hardware support for power manage-
ment

We next sketch the hardware support for power manage-
ment available on mobile SoCs. Although our descrip-
tions stem from our understanding of the TI OMAP4,
a popular mobile SoC with abundant public informa-
tion [6], we observe similar hardware support on other
SoCs [7-12].

A hierarchy of modules and domains

Hardware modules may share clock and power supplies.
This effectively organizes all modules into a hierarchy of
domains.

[User programs or dependent drivers]}J

QoS req.
Li PM
PE’_. ‘ inux PM_QoS ‘
1’d —— N
> M .
o Device Drivers _QUS callback lll
£ pm_get/put (g /| CORE voltage domain
g ‘ Linux runtime_PM ‘
& ‘ Platform-specific (e.g. hwmod) ‘ I(.jécl)lﬁgrﬁ:ower
o MPU voltage | |IVA voltage
@ domain domain LAPER clock
% m o domain
%:rE CORE li| li| GPIO
o voltage domain

Figure 1: Resources (clock, power) are managed in a hier-
archical way in SoCs. Users of a module make QoS require-
ments. Drivers adjust power management policy according
to the requiements with the help from PM_QoS framework.
Drivers carry out the policy with the help from runtime_PM
framework.

Hardware modules: A module can be configured by
software to be in either enabled or disabled mode.
A module is functional only when it is enabled. When
amodule is disabled, it can be in one of several low-
power states where clock and power can be gated to con-
serve energy. Note that software, e.g., device drivers, only
determines the disabled/enabled mode; and hardware de-
termines the specific low-power state for the disabled
module.

Clock domain: a group of modules sharing the same
clocks. Depending on whether the clocks are gated or not,
the domain is either active or inactive. The state
transition is controlled by hardware automatically.

Power domain: encompassing one or more clock do-
mains, a power domain is a group of modules sharing
the same power supply. The domain could either be on,
retention (retention flip-flops are still powered on to
preserve hardware state) or of £ (all flip-flops are pow-
ered off and hardware state is lost). The state transition
is controlled by hardware. Software only controls which
low-power state to enter.

Voltage domain: encompassing one or more power
domains, a voltage domain is a group of modules that
share the same voltage source. It can be either in on,
sleep (supplying regular voltage, but limited current),
retention (voltage drops to retention-level) or of £
(voltage drops to zero). The state transition is controlled
by hardware. Software only controls which low-power
state to enter.

The domains are the basic units of clocks management,
power management, voltage management, correspond-
ingly. The clock, power and voltage supplied to a module
are only gated or lowered if the respective domain enters
a low-power state under automatic hardware control.

Global power manager

A hardware unit called the global power manager centrally
controls the clock/power/voltage supplies on the SoC.
The global power manager is always-on because it is
responsible to wake-up other modules or domains. When
the entire SoC is suspended, it listens for wake-up events
from outside and wakes up the SoC accordingly.

For hardware modules, the global power manager au-
tomatically gates the clock that drives the module’s bus
interface if there is no bus communication, and reactivates
it if a new communication is initiated by a master module.
However, only if the module is set to disabled by soft-
ware can the global power manager gate all its clocks. For
I/O controller modules that may serve as a slave in the
I/O protocol (e.g., SPI), the global power manager detects
events coming from outside of the SoC on behalf of the
module if it is disabled. It then activates the module
until the module generates an interrupt to CPU, so that
the device driver has the chance to enable the module.

For clock domains, power domains and voltage do-
mains, the global power manager automatically drives
them to a low-power state if all the encompassed modules
are configured as disabled; and it drives them back to
functional if any encompassed module is configured as
enabled.

2.3 Software support for power manage-
ment

Most Linux systems implement power management in
device drivers. Drivers are responsible to correctly set
the mode of the modules, i.e., enabled or disabled.
It is up to the hardware (global power manager) to au-
tomatically gate or lower the clock, power and voltage
supplies to the module by driving the respective domain
to low-power state. During initialization, the kernel sets
the target low-power states of domains, as some of them
have multiple low-power states.

Linux runtime PM framework

Linux provides the runtime PM framework as a unified
interface to manage power state of modules on differ-
ent platforms. pm_runtime_get() and pm_runtime_put ()
are the most important APIs. Calling them will in-
crease and decrease a reference counter for a device,
respectively. The framework maintains the reference
counters for all devices. The framework calls platform-
specific routines to set the module to enabled mode
each time pm_runtime_get() function is called. But it
only sets the module to di sabled mode if the reference
counter changes from one to zero. Another useful API is
pm_runtime_put _autosuspend(), which allows the driver
to specify a timeout after this API is called. It is useful to
implement the timeout QoS requirement.

Linux PM_QoS framework

Linux provides the PM_QoS framework to allow users of
a module to express QoS requirements, such as a timeout
before setting the module to low-power mode, wakeup
latency, never power off, etc. When a user changes the
QoS requirement, the PM_QoS framework aggregates all
users’ requirements (e.g. maximum timeout) and calls
the callbacks supplied by device drivers to update the
PM parameters, such as the target low-power state, the
timeout, etc. Note that clock gating and power gating are
controlled outside of the device driver; from the driver’s
point of view, only one low-power state is supported:
disabled. Thus, drivers are only able to fulfill sim-
ple QoS requirements, such as timeout. Currently the
framework is not widely used for SoC modules.

Device drivers for SoC modules

Device drivers do power management with the help
of the above two frameworks. Device drivers register
callbacks with PM_QoS framework to receive notifica-
tions when users change QoS requirements. Ideally, be-
fore issuing a task on a module, the device driver calls
pm_runtime_get() to set the module to enabled mode.
After there is no pending task to run on a module, the
device driver calls pm_runtime_put() to set the module
to disabled mode. Failing to do so causes the mod-
ule stuck in enabled mode. And it further causes the
encompassing clock domain, power domain and voltage
domain stuck in a high-power state.

3 Problems with device driver PM

Depending on device drivers to implement power man-
agement has the following two problems:

First, device drivers tend to do a poor job in implement-
ing power management. For some drivers, power manage-
ment comes as an afterthought. For example, drivers for
the OMAP4’s UART and USB EHCI controller, and those
for the Samsung Exynos’s keypad, SPI, and USB PHYs
were not patched with power management implementa-
tions for several years after being introduced [1-3,13, 14].
For drivers that do have power management implemen-
tations, the power management can be coarse-grained,
missing further energy saving opportunities. For exam-
ple, before two patches [4, 5], the OMAP4 GPIO driver
and Watchdog driver enabled the modules in the driver
probe() function and disabled them in the driver remove()
function. Such implementations barely save any energy
during runtime. The aforementioned power inefficiencies
in drivers affect all mobile systems that use OMAP4 and
Exynos.

Second, dependencies enlarge the damage caused by
one driver that does poor power management. Because of

the hierarchical power management hardware support in
SoCs, one poor device driver prevents the entire domain
from entering low-power mode, ruining the power man-
agement efforts of the device drivers for other modules in
the same domain. For example, because OMAP4 UART
driver does not do power management, the entire L4_PER
power domain is always on. According to our measure-
ments, the L4_PER domain drains 17 mW more power
when it is on compared to when it is in retention.
There are also functionality dependencies between mod-
ules. For example, on OMAP4, DSP is kept on by its
driver if the IVA is enabled.

4 Fundamental PM information

We study what information is essential to do good power
management and whether power management can be done
in places other than the device drivers.

A good power management policy saves as much en-
ergy as it can while it fulfills the QoS requirements speci-
fied by the users. Much research focuses focus on design-
ing algorithms to make good power management policies,
e.g., [15-17]. These algorithms require complex infor-
mation like the workload statistics and therefore are not
commonly used in practice. In Linux, the power man-
agement algorithms used by drivers are usually simple.
They just translate users’ requirements to PM parameters
according to the data of different low-power states (cur-
rently SoC module drivers only support one low-power
state, disabled), or set the timeout to the value given
by PM_QoS framework, etc. The algorithms require the
following three pieces of information:

(i) The QoS requirements from the users: The QoS
requirements are the inputs to the power management
algorithms. They affect when and to what power state a
device is transited.

(ii) Data of the device in different power states: These
are another part of inputs to the power management al-
gorithms. The data include power consumption in all
hardware states, the latency and energy consumption for
transition between two states.

(iii) Whether a device has pending tasks: Only when a
device has done all pending tasks, the power management
policy sets the device to disabled, possibly after a timeout.
When there is a new pending task for a disabled device,
it needs to be enabled. Note that the functionality of
a device is not damaged if it is set to disabled once it
finishes one task and set to enabled before it starts next
task. But this incurs unnecessary power state transition
overhead. So a good power management policy keeps the
module enabled until it finishes all pending tasks.

We observe that (i) is provided by other parties, e.g.,
user-space software or other dependent device drivers.
(i7) is static information and is available offline (from

QoS regq.

Linux PM_QoS

Central PM

Agent
QoS callback
Dev. Driver More task?

Enable/Disable

PM callback 7

pm_get/put ()
‘ Linux runtime PM ‘

Controller

Figure 2: The central PM agent calls PM callbacks pro-
vided by the driver to enable/disable a module. PM QoS
practice remains the same.

the vendor or profiling). (iii) is conveniently available
in device drivers and that is the reason that today power
management is implemented by device drivers. (iii) is
available in device drivers because they usually either
maintain a queue of pending tasks or a counter of users
that have tasks running on the device. Device drivers can
know whether there are pending tasks by checking if the
queue is empty or if the counter reaches zero.

Our key insight is that information (iii) can be made
available in other ways. We next demonstrate that they
can be inferred by monitoring memory access.

S Central PM agent

To avoid mishandled power management in the drivers,
we advocate the use of a central PM agent. In this section,
we describe one way to realize the agent. We provide early
results validating its effectiveness and discuss hardware
support that can improve its performance.

5.1 Inference of pending tasks

To implement power management outside device drivers,
one has to know if there is pending work for the target
module. While one can ask device drivers to export this
information, we find it can be inferred with reasonable
accuracy and overhead, without device driver support.
Our critical observation is that (i) on ARM-based SoC,
all modules are memory-mapped, i.e. the registers of the
modules and memory are mapped to the same address
space and (i) typically, when a module has pending tasks,
CPU frequently accesses its memory-mapped registers.
We use an example on the I2C controller to demon-
strate our second observation. To prepare a read/write
transaction, the device driver configures the I2C registers
to setup the address of the message buffer, the length
of the message, etc. During the transaction, the module
frequently interrupts the CPU. The driver handles inter-
rupts by reading/writing the IRQ status register. When the

transaction is completed, the CPU receives a last interrupt
and then reads the IRQ status register. Register access
occurs throughout the utilization cycle of the I2C module.

This suggests the module has no pending task if its
registers have not been accessed for a certain time d. With
a smaller d, the inferred moment is closer to the actual
moment the module finishes all tasks. But to avoid false
inference, d needs to be greater than the largest register
access interval when a module is being used. Given the
largest register access interval occurs when the module is
using DMA to transfer data, d has to be greater than the
longest DMA duration.

It is easy to detect when a non-functional module has
a new task, which is indicated by the first register access
after it has been set to disabled mode.

Note that due to the nature of our inference algorithm,
the moment the algorithm infers a module has finished
all tasks can be at most 2d time later than the actual
moment, and thus losing some power saving opportunities.
However, using a central PM agent prevents power bugs
such as an entire power domain is kept on by a driver with
poor PM. Hence, the tradeoff is worth paying.

5.2 Design of a central PM agent

The design of the central PM agent consists of two parts:
the monitor part and the controller part. The monitor
infers whether a module has pending tasks. The con-
troller calls the PM callbacks provided by the driver to set
the module to enabled/disabled mode based on the
inference of the monitor.

Figure 2 shows the relationship between the central PM
agent and existing Linux PM frameworks. For QoS sup-
port, a driver does not need to change its current practice,
i.e., it registers callbacks with the PM_QoS framework to
receive notifications about user requirement changes. The
driver still calls runtime_PM APIs to implement power
state transitions. The only modification to the driver is
that it has to wrap these calls and provide them to the
central PM agent as PM callbacks. For the central PM
agent to manage a module, the module’s device driver
needs to register its PM callbacks with the central PM
agent, without modification to the central PM agent itself.
This gives driver developers the flexibility to decide if
they want the central PM agent to manage their modules.

5.3 OMAP4-based implementation

Because modules are memory-mapped in ARM, we im-
plement a Linux loadable kernel module to monitor the
access to a module’s registers on OMAP4 via memory
exception. Figure 3 illustrates how the central PM agent
works. During initialization, the monitor removes the read
and write permissions of the memory pages mapped to
the registers of the target module and marks all modules
as “idle”. It then sets up a timer to check whether the

register access

Module Driver
Disabled *ll x
A K time
<~ |d d
T T Central PM
mark “busy” mark “busy” Agent
set to Enabled
remove r/w remove r/w remove r/w
mark “idle” mark “idle” Mark “idle”
set to Disabled
Figure 3: The central PM agent sets the module to

enabled mode if the module was disabled when a mem-
ory exception occurs. It sets the module to disabled mode
if the module has not been accessed for d.

module has pending tasks every d interval. Given the
highest bandwidth of DMA on OMAP4 is around 100
MBps, we choose d = 100 ms, which allows 10 MB of
data to be transferred per interval. Because the largest
DMA transaction of SoC modules occurs when the imag-
ing subsystem handles a photo, the size of which is still
smaller than 10 MB, d = 100 ms is large enough.

When a memory exception occurs, the monitor first
checks if the module was marked as “idle”. If so, it reports
to the controller that the module has a new task. After the
controller confirms the module has been set to enabled
mode, it adds back the read/write permissions and marks
the module as “busy”. If the module was marked as
“busy”, then the permissions are granted immediately.

When the timer interrupt occurs, for the modules that
are marked as “idle”, the monitor reports to the controller
the module has no pending task. At the end of the timer
interrupt service routine, all modules are marked as “idle”,
and permissions of memory pages of all modules are
removed.

The controller part calls the PM callbacks provided
by the driver to set the device to enabled/disabled
mode based on the inference of the monitor. It confirms
the monitor after a module has been set to enabled
mode.

5.4 Evaluation

We evaluate the central PM agent on Pandaboard Rev
B2 which uses OMAP4460 SoC. It runs Linaro Android
release 13.10. The kernel version is 3.2.

Effectiveness of the central PM agent

We show that the central PM agent provides power man-
agement to drivers lacking PM. To demonstrate efficacy,
we show that our power management decisions match
those of device drivers with PM.

We use the central PM agent to automatically control
the SDIO controller and 12C controller. The WiFi NIC
on Pandaboard uses them to communicate with CPU. The

SDIO driver does not have a good power management
policy, while the I2C does have one. We replace power
management code in I2C driver with some dummy code,
which is only used to calculate how much time the original
power management code allows the device to stay in
disabled mode. We compare the result with when
it is controlled by our central PM agent. We connect
the Pandaboard to WiFi and intensively browse websites
using the default Android browser for 10 min. The result
shows for 12C, the device driver would have allowed 12C
to stay in disabled mode for 131.6 s. Our central
PM agent allows it to do so for 126.1 s, which is a 4.2%
decrease. The decrease is due to the monitor has the
latency when inferring there is no pending task. The
central PM agent sets the SDIO in disabled mode for
42.2s.

We also use the central PM agent to automatically con-
trol the MMC controller. The file system of Pandaboard
is on a MMC card. The MMC driver has power man-
agement implementations. In 10 min, we transmit four
0.2MB files to Pandaboard and call “sync” after each
transfer every minute. We also open some Android apps
once every minute, which causes the OS to load programs
from the MMC card. The result shows the device driver
would have allowed MMC to stay in disabled mode
for 498.6 s. Our central PM agent allows it to do so for
493.3 s, which is a 1.0% decrease.

With the central PM agent controlling the above three
modules, the Android device is able to run robustly for
more than one day. We haven’t seen any loss of function-
ality caused by the central PM agent.

Overhead of the central PM agent

The overhead mainly comes from the memory excep-
tion handling. We measure this overhead using hardware
performance counters. It shows handling each memory
exception costs around 2500 cycles, which is around 8 us
when the CPU runs at its lowest frequency 300 MHz.
Note this overhead occurs only once for each module ev-
ery d = 100 ms. Even for the busiest driver, adding 8 us
extra execution time every 100 ms is negligible.

5.5 Hardware support

The monitor part of our central PM agent implementa-
tion has the following limitations: (i) it relies on memory
exceptions, which adds overhead, though small; (i) it
is unable to detect whether a slave module has pending
tasks if it is used by a computational module other than
CPU; (iii) it only works for modules that frequently com-
municate with the CPU through register access. We next
show that small hardware modifications can completely
eliminate these limitations.

First, a hardware module essentially knows if it is busy
processing a task. Today, some but not all SoC compo-

nents provide a register bit indicating this information. If
all SoC modules provide a busy/idle register, the monitor
can detect when the modules have finished all pending
tasks by periodically sampling these registers; this elimi-
nates the overhead caused by memory exceptions. Note
that we propose sampling the busy/idle register, rather
than letting the module interrupt the central PM agent
every time it finishes a task; the sampling approach filters
out the transient idle period in the middle of consecutive
tasks, preventing excessive power state transitions.

Second, the hardware global power manager on today’s
mobile SoCs is already capable of detecting when there
is a new task for a module that is disabled, no matter
whether the task is issued by the CPU or other compu-
tational modules. For example, OMAP4’s global power
manager, called the Power, Reset and Clock Management
module (PRCM), listens on the system bus and detects
when there is bus activity targeted at a module that is
disabled [18]. This is how it automatically reactivates
bus interface clock(§2.2). We only need to modify the
PRCM to let it expose this information to the central PM
agent.

With the above hardware support, the monitor part
of the central PM agent is able to monitor all on-chip
modules with little overhead, thus solving the limitations.

6 Related work

Android opportunistically suspends the entire system if
there is no user interaction for a period of time. It allows
an app to change the power management policy through
the wakelock framework. That is, an app can hold a
wakelock to prevent the suspension. The opportunistic
suspension and the wakelock framework together create
burden on application developers and lead to power bugs
[19,20].

Our work focuses on Linux’s runtime power manage-
ment, which is complementary to Android’s opportunistic
suspension. Compared to the opportunistic suspension ap-
proach, runtime power management is more fine-grain in
that it allows individual SoC modules to enter a low-power
state when they are not used. With careful runtime power
management, if all modules are idle, SoCs can reach simi-
lar power states as system-wide suspension [21]. Runtime
PM will become more important in the future as there
will be more always-on services, e.g., voice recognition
and live image processing [22].

There is a large body of literature on power manage-
ment policies and their system realization, e.g., [15-17].
Our work is orthogonal since we address where in the
system power management should be implemented.

7 Conclusion

We argue that device drivers are not the best place to
implement power management. Because due to the de-
pendencies in the SoC power management hardware, one
device driver that does not have good power management
ruins the efforts of other drivers and we present empiri-
cal evidence that device driver developers are not doing
a good job in implementing power management. We
show the information needed for good power manage-
ment policies is available outside the device drivers and
implement a software central PM agent to control three
modules on OMAP4 SoC. The central PM agent does
as efficient power management as the drivers do. It is
also able to manage a module (SDIO) that does not have
power management implemention in its driver. As future
work, we propse to add hardware support to the central
PM agent to eliminate the limitations of a pure software
implementation.

Acknowledgement

The work was supported in part by NSF Awards
#1054693, #1065506, and #1218041. The authors thank
the anonymous reviewers for their useful feedbacks.

References

[1] Govindraj Raja. Omap2+: Uart: Add runtime pm support
for omap-serial driver. http://www.spinics.net/
lists/linux-omap/msg58443.html, 2011.

[2] Mark Brown. spi/s3c64xx: Implement runtime
PM support. http://www.spinics.net/lists/
linux-samsung-soc/msg08912.html, 2012.

[3] Roger Quadros. USB: Implement runtime idling and
remote wakeup for OMAP EHCI controller. https:
//lkml.org/1lkml/2013/7/10/355,2013.

[4] Paul Walmsley. Watchdog: omap_wdt: add fine grain
runtime-pm. http://permalink.gmane.org/
gmane.linux.ports.arm.omap/54608,2011.

[5] Felipe Balbi. gpio: omap: be more aggressive with
pm_runtime. http://www.spinics.net/lists/
linux-omap/msg64196.html, 2012.

[6] OMAP4460 multimedia device technical reference man-
ual, 2011.

[7] NVIDIA Tegra 4 4-PLUS-1 quad-core processors techni-
cal reference manual, 2013.

[8] Samsung Exynos 5 quad (exynos 5250) RISC micropro-
cessor user’s manual, 2012.

[9] i.MX 6Dual/6Quad applications processor reference man-
ual, 2013.

Intel Atom processor Z36xxx and Z37xxx series datasheet,
2013.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

P. Choudhary and D. Marculescu. Power management of
voltage/frequency island-based systems using hardware-
based methods. IEEE Trans. VLSI Systems, March 2009.

T. Hattori, T. Irita, M. Ito, E. Yamamoto, H. Kato,
G. Sado, Y. Yamada, K. Nishiyama, H. Yagi, T. Koike,
Y. Tsuchihashi, M. Higashida, H. Asano, I. Hayashibara,
K. Tatezawa, Y. Shimazaki, N. Morino, K. Hirose,
S. Tamaki, S. Yoshioka, R. Tsuchihashi, N. Arai,
T. Akiyama, and K. Ohno. A power management scheme
controlling 20 power domains for a single-chip mobile
processor. In ISSCC, 2006, pages 2210-2219, Feb 2006.

Mark Brown. Input: samsung-keypad: Implement runtime
power management support. http://www.spinics.
net/lists/linux—input/msgl8796.html,
2011.

Vivek Gautam. dwc3/xhci: Enable runtime power
management. https://lkml.org/1lkml/2013/1/
28/229,2013.

Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online
strategies for dynamic power management in systems with
multiple power-saving states. ACM TECS, (3), 2003.

Tajana Simunic, Giovanni De Micheli, and Luca Benini.
Event-driven power management of portable systems. In
Proc. Int. Symp. System Synthesis, 1999.

Qinru Qiu and Massoud Pedram. Dynamic power manage-
ment based on continuous-time markov decision processes.
In Proc. ACM/IEEE DAC, 1999.

Christophe Vatinel. OCP disconnect proposal. http:
//www.ocpip.org/uploads/documents/OCP_
Disconnect_Proposal_0.3.pdf, 2008.

Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and
Samuel P Midkiff. What is keeping my phone awake?
Characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proc. ACM MobiSys, 2012.

Abhilash Jindal, Abhinav Pathak, Y Charlie Hu, and
Samuel Midkiff. Hypnos: understanding and treating
sleep conflicts in smartphones. In Proc. ACM EuroSys,
2013.

Rafael J Wysocki. Technical background of the android
suspend blockers controversy, 2010.

Rafael J] Wysocki. Power management in the Linux ker-
nel: current status and future. http://events.
linuxfoundation.org/sites/events/
files/slides/kernel_PM_plain.pdf,2013.

