
ENGG364: Microcomputer Interfacing

Lab 2: Parallel Port Programming & General Interfacing

School of Engineering, University of Guelph

Fall 2012

Start Date: Wednesday (Week#4)
Due Date: No Report is Required

1 Objectives:

The purpose of this lab is to:

• Develop fundamental concepts associated with programming parallel ports available on the MC68HC12
micro-controller.

• Design and construct a system which displays the 8-bit binary (ASCII) code of a pressed PC keyboard
on LED’s.

• Design an equivalent software decoder to display BCD numbers on a 7-segment display.

2 Introduction

Data transfer between the I/O device and the interface chip can proceed bit-by-bit (serial) or in multiple bits
(parallel). Data are transferred serially in low-speed devices such as modems and low-speed printers. Parallel
data transfer is mainly used by high-speed I/O devices. In this lab we will only be concerned with parallel I/O
interfacing.

After you become familiar with the on-chip ports, we are going to perform several practical experiments
to learn how to interface the M68HC12 to the real world. In the previous lab you became familiar with
programming techniques using the assembler directives. In real life, the MCU deals with outside devices using
its internal registers, memory, timer, A/D, serial ports, and I/O ports. Usually there is an electronic interfacing
circuit between the MCU and the outside world. The outside device could be input or output devices. The
input devices could be digital or analog. Digital input devices include switches, keyboards, digital integrated
sensors that send 0V (logic 0) or 5V (logic 1), and so on. There are many analog input devices — for example,
all types of transducers. A transducer is an analog device that converts some form of energy to an electrical
signal (this will be covered later on in the course).

3 Preparation

The preparation for this lab involves the familiarity with :

• I/O parallel ports of the 68HC12 and programming them.

• The Light Emmitting Diodes (LEDs) on the Dragon12-Plus2.

• The Seven Segment Display on the Dragon12-Plus2.

1

3.1 MC68HC12 I/O Ports

The 68HC812A4 has 91 I/O pins arranged in Twelve I/O ports. All of these pins serve multiple functions
depending on the operation mode and data in the control registers. Ports A through J and ports S and T are
used as general-purpose I/O pins under the control of their associated data direction registers. Port AD is fixed
as either inputs for the A/D converter or as logic inputs and does not have a data direction register. Each pin
of the bidirectional ports has an associated bit in a specific port data register and another in a data direction
register. The data direction register bits are used to specify the primary direction of data for each I/O pin.
When an output pin is read, the value at the input to the pin driver is returned. When a pin is configured as
an input, that pin becomes a high-impedance input. If a write is attempted to an input pin, its value does
not affect the I/O pin but is stored in an internal latch. When the pin becomes an output, this value appears
at the I/O pin. Data direction register bits are cleared by reset to configure I/O pins as inputs.

So to configure a pin in a certain port as an output pin, a ‘1’ should be written to the corresponding
data direction register, else a ‘0’ should be written. The following example illustrates how to configure port A
on the MC68HC12.

3.1.1 Example of Configuring a Port

Problem: Write an instruction sequence to set port J as an output port, and output the value $CD to it.
Solution: Since port A is bi-directional, we need to configure it as an output port. Figure 1 shows the Port
A Data Register and Data Direction Registers. Notice that in the code below the label PORTA was set to
$0000 which is the address of Port A data register and the label DDRA was set to $0002 which is the address
of the ‘A’ data direction register.

0 0

Bit7 Bit0

Bit7 Bit0123456

0 0 0 0 0 0On Reset

On Reset 0 0 0 0 0 0 0 0

123456

PA0

DDRA7 DDRA0

Address: $0002

Address: $0000

PA7

1 = Associated pin is an output

0 = Associated pin is an input

Port A Data Direction Register (DDRA)

Port A Data Register (PORT A)

Figure 1: Port A, Data/Direction Registers

2

REGBAS EQU $0000 ; base address of all I/O registers

PORTA EQU $0000 ; offset of PORTA from REGBAS

DDRA EQU $0002 ; offset of DDRJ from REGBAS

LDX #REGBAS

LDAA #$FF ; Set all pines of PORTA (all output)

STAA DDRA,X ; set PORTA as an output port

LDAA #$CD ; value to output to PORTA

STAA PORTA,X ; output the data

END

3.1.2 Dragon12-Plus2 Port Allocation

It should be noted that the ports on the Dragon12-Plus2 are multiplexed, that is they can have one of two or
more possible functions.

The following table provides a summary:

Port and Pin I/O Usage Comments

PAD0 Selects EVB or alternate execution mode Set to 0 for EVB Mode

PAD1 Selects EVB or alternate execution mode Set to 0 for EVB Mode

PORT A Connected to Keypad on Dragon12-Plus2 Can be used as General Purpose I/O

PORT B Conncected to LEDs on Dragon12-Plus2 Can be used as General Purpose I/O

PORT E External Signals (E-clk, IRQ, XIRQ, etc) Not to be used

PORT H Connected to DIP Switches and Push Buttons Can be used as General Purpose I/O

PORT J Used to Enable LEDs on Dragon12-Plus2 Not to be used

PORT P Used to Enable 7-Segment Displays Not to be used as General Purpose I/O

PORT H Connected to LCD Module on Dragon12-Plus2 Can be used as General Purpose I/O

Please refer to Appendix A for detailed description of the MCU connectors H1-H8 i.e. how
to access the I/O ports on the Dragon12-Plus2 Board and Appendix B for the address of some
registers utilized in certain ports.

3.2 Simple Interface to LED’s

The light emitting diode (LED) is one of the most often used output devices in an embedded system. In many
embedded systems, LEDs are simply used to indicate that the system is operating properly.

An LED can illuminate if it is forward-biased and has sufficient current flowing through it. The current
required to light an LED may range from a few to more than 10 mA. The voltage drop across the LED when
it is forward-biased can range from 1.6V to more than 2.2V.

LED indicators are easy to interface with micro-controllers. All you need is enough current to drive the
LED and a series resistor to absorb the voltage drop (limit the current to some acceptable value!). The circuit
in Figure 2 is often used to interface with an LED. Using a 5-volt supply and assuming that the LED has a 1.7
volt drop across it, a suitable resistor will limit the current to 10 mA. An I/O port pin of a micro-controller
generally does not have enough drive to supply the current. So an inverter is often used as a switch to turn
the LED on and off. When the inverter’s output is low (close to 0V), the diode has a 2.0V voltage drop, and
by ohm’s law: 5V = 2.0V + Irx × Rx. When setting the Irx to 10mA, the resistor Rx is solved to be 300Ω.

3.3 Seven Segment Decoder

Digital readouts found in electronic calculators and digital watches use LEDs. Each digit of the readout is
formed from seven segments, each consisting of one LED that can be illuminated by digital signals. A BCD-

3

VCC

68HC12

74HC04

PP0

R x

Figure 2: An LED connected to an inverter

a

b

c

d

e

f
g BCD Input Seven Segment Decoder

DCBA a b c d e f g

Figure 3: Seven Segment Display.

to-seven-segment decoder is a combinational circuit that accepts a decimal digit in BCD and generates the
appropriate outputs for the selection of segments that display the decimal digit. In this lab you will attempt
to interface the MPU to a seven segment display located on the Dragon12-Plus2 Board using software.

Notice that Port P is used to multiplex and enable the 4 units of 7-Segment Display.

• PP0 is connected to Digit 3 of the 7-Segment display.

• PP1 is connected to Digit 2 of the 7-Segment display.

• PP2 is connected to Digit 1 of the 7-Segment display.

• PP3 is connected to Digit 0 of the 7-Segment display.

Refer to Appendix C for more details of how to utilize the 7-Segment Displays on the
Dragon12-Plus2 board.

4 Requirements

You are required to accomplish the following for this lab:

1. Use the example provided to you in Section 3.1.1 to familiarize yourself with configuring I/O ports and
apply the same technique to port B instead of port A.

2. The user will type characters on the PC keyboard whose values will be sent to the PC’s serial (COM)
port by software on the PC. The PC serial port will be connected to the serial port on the ’HC12. The
software on-board the ’HC12 will monitor its serial port for the 8-bit character codes and latch new codes
on one of its parallel output ports. Use Port B on the Dragon12-Plus2 board since this port is

4

already connected to the LEDs.
Please refer to:

(a) Appendix D in this handout for information on utility routines that can help you get a char from
the keyboard and printing a char to the terminal.

(b) Your text book Section 4.8 page 173 for using the D-Bug12 functions to perform I/O operations.

3. Seven Segment ‘Software’ Decoder:

• Input a number via the PC keyboard using the Debug12 utility functions.

• Display the number read on Digit0 of 7-Segment display on the Dragon12-Plus2 board.

• Use Port P (since it is connected to the 7-Segment Displays).

5 Academic Misconduct

The policy for this course is zero tolerance for any form of academic misconduct. Consultation with other
students is encouraged especially on design issues. However, directly copying another student’s work or copying
portions of code for example assembly language code) is an honour code violation and will result in a failing
grade and may result in a failing grade in the course. Students will automatically be referred to the Director
of the School and Dean of the college for action. Please refer to the regulations outlined in the student
handbook regarding academic misconduct.

5

6 Appendix A - MCU Connections

Eight pin header connectors (H1 .. H8), surrounding the breadboard provide access to the MCU’s I/O and bus
lines as seen in Figure 4. These connectors are located adjacent to the prototype area.

Figure 4: Main Pin Headers on the Dragon12-Plus2 Board

1. Connector H1 located at upper/left of breadboard.

2. Connector H2 located at lower/left of breadboard (below H1).

3. Connector H3 located at bottom/left of breadboard.

4. Connector H4 located at bottom/right of breadboard.

5. Connector H5 located at lower/right of breadboard.

6. Connector H6 located at upper/right of breadboard.

7. Connector H7 located at top/right of breadboard.

8. Connector H8 located at top/left of breadboard.

Table 1 provides a brief description of the signals.
I/O Pin Usage

Many I/O pins of the MC9S12DG256 on the Dragon12-Plus2 board are used by on-board peripherals, here are
examples:

1. PORT A: Keypad.

6

Connector Signal Name Port Description

H1 PP3, PP2, PP1, PP0 Port P(0..3) Gen Purpose I/O
H1 PK3, PK2, PK1, PK0 Port K(0..3) Gen Purpose I/O
H1 PT0, PT1, PT2, PT3 Port T(0..3) NOT USED

H2 PT4, PT5, PT6, PT7 Port T(4..7) NOT USED
H2 PK5, PK4 Port K(4..5) Gen Purpose I/O
H2 PJ1, PJ0 Port J(0..1) NOT USED
H2 PB0, PB1, PB2, PB3, PB4 Port B(0..4) Gen Purpose I/O

H3 PB5, PB6, PB7 Port B(5..7) Gen Purpose I/O
H3 PH7, PH6, PH5, PH4 Port H(4..7) Gen Purpose I/O
H3 PE7, PE6, PE5, PE4 Port E(4..7) NOT USED

H4 PH3, PH2, PH1, PH0 Port H(0..3) Gen Purpose I/O
H4 PE3, PE2, PE1, PE0 Port E(0..3) NOT USED

H5 PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7 Port A(0..7) Gen Purpose I/O
H5 PAD00, PAD08, PAD01, PAD09 Port AD0(0,1,8,9) Analog-to-Dig

H6 PAD02, PAD03, PAD04, PAD05, PAD06, PAD07 Port AD0(2..7) Analog-to-Dig
H6 PAD10, PAD11, PAD12, PAD13, PAD14, PAD15 Port AD1(0..5) Analog-to-Dig

H7 PS0, PS1, PS2, PS3, PS4, PS5, PS6, PS7 Port S(0..7) Serial Comm
H7 PM6, PM7 Port M(6,7) NOT USED

H8 PM0, PM1, PM2, PM3, PM4, PM5 Port M(0..5) NOT USED
H8 PP4, PP5, PP6, PP7 Port P(4..7) Gen Purpose I/O

Table 1: MCU Connectors J8/J9 Pin Assignments

2. PORT B: Light Emmitting Diodes (LEDs)

3. PORT H: DIP and Pushbutton Switches

4. PORT K: Liquid Crystal Display (LCD)

5. PORT P: 7-Segment Display

6. PORT AD: Light Sensor, Temp Sensor, Trimmer Pot

IMPORTANT:
Fortunetly, it’s unlikely that all on-board peripherals will be used by one application program. So the I/O pins
on unused peripheral devices can still be used by your circuits on the breadboard. For instance, if you don’t
touch the 4x4 on-board keypad, the entire port A will be available to your circuits.

7

7 Appendix B - Port Registers

Each port within the M68HC12 has several registers that are used to control its functionality and also give the
status of the port following a read/write transaction. Table 2 provides a brief description of the regular I/O
ports and their associated registers. Ports A, B, E, K can be used for Input/Output based on how the “Data
Direction” register has been programmed.

Port Register Description Address Current Usage

PORT A PORTA Data Register A $0000 Keypad
DDRA Data Direction Register A $0002

PORT B PORTB Data Register B $0001 LED
DDRB Data Direction Register B $0003

PORT P PORTP Data Register P $0258 7-Seg Display
DDRP Data Direction Register P $025A

PORT H PORTH Data Register H $0260 DIP Switches
DDRH Data Direction Register H $0262

PORT E PORTE Data Register E $0008 IRQ, XIRQ
DDRE Data Direction Register E $0009

PORT K PORTK Data Register K $0032 LCD
DDRK Data Direction Register K $0033

Table 2: M68HC12 I/O Ports and Associated Registers

Table 3 provides a brief description of the I/O ports (H,J) that have interrupt capability (Wakeup). Port
P is very similar to ports H and J in functionality.

Port Register Description Address

PORT H PTH Data Register H $0260
DDRH Data Direction Register H $0262
PTIH Input Register H $0261
RDRH Reduced Drive Register H $0263
PERH Pull Devide Enable H $0264
PPSH Polarity Select Register H $0265
PIEH Interrupt Enable Register (Wakeup) $0266
PIFH Interrupt Flag Register H $0267

PORT J PTJ Data Register J $0268
DDRJ Data Direction Register J $026a
PTIJ Input Register J $0269
RDRJ Reduced Drive Register J $026b
PERJ Pull Device Enable J $026c
PPSJ Polarity Select Register J $026d
PIEJ Interrupt Enable Register J $026e
PIFJ Interrupt Flag Register J $026f

Table 3: I/O Ports with Interrupt Enable Capability

8

Table 4 provides a brief description of other I/O ports and registers that are used for “Real Time Inter-
rupt” (Section 6.7 in Text Book), “Analog-to-Digital Conversion” (Section 12.3 in Text Book), and “Serial
Communication”.

Port Register Description Address

RTI RTICTL Real Time Interrupt Control Register (RTR0:RTR6) $003B
CRGFLG The CRG Flag Register (RTIF) $0037
CRGINT The CRG Interrupt Enable Register (RTIE) $0038

PORT ATD ATD0CTL0 Control Register 0 (Reserved) $0080
ATD0CTL1 Control Register 1 (Reserved) $0081
ATD0CTL2 Control Register 2 (ADPU) $0082
ATD0CTL3 Control Register 3 (S8C, S4C, S2C, S1C) $0083
ATD0CTL4 Control Register 4 (PRS4:PRS0) $0084
ATD0CTL5 Control Register 5 (SCAN, MULT, CC, CB, CA) $0085
ATDSTAT0 Status Register 0 (SCF) $0086
ATDSTAT1 Status Register 1 (Reserved) $0087
PORTAD0 Data Input (Bit7:Bit0) $008F
ATD0DR0H Result Register 0 (High Byte) $0090
ATD0DR7H Result Register 7 (High Byte) $009E

PORT SCI 0 SCI0BDH Baud Rate Register High $00C8
SCI0BDL Baud Rate Register Low $00C9
SCI0CR1 Control Register 1 $00CA
SCI0CR2 Control Register 2 $00CB
SCI0SR1 Status Register 1 $00CC
SCI0SR2 Status Register 2 $00CD
SCI0DRH Data Register High $00CE
SCI0DRL Data Register Low $00CF

Table 4: M68HC12 Ports and Registers

9

8 Appendix C - Evaluation Board “Displays of Dragon12-Plus2 Board”

The Dragon12-Plus2 Board has several means to display information by the MCU12. Here are some examples:

1. Light Emmitting Diodes, (LEDs) (connected to Port B)

2. Seven-Segment Displays, (connected to Port P)

3. Liquid Crystal Display, (connected to Port K).

Each peripheral is connected to a specific port as demonstrated above. These ports can still be used as
general purpose ports if the peripherals are not used.

1. If you don’t use the LCD or just unplug the LCD, the Port K will be available as well.

2. Port B drives LEDs, but if you ignore the status of the LEDs, the port B can drive any other I/O devices
on the breadboard.

Please refer to the “Dragon12-Plus2 Trainer, User’s Manual” for more details.

LEDs:

Each port B line is monitored by an LED. In order to turn on port B LEDs, the PJ1 (port J pin 1) must be
programmed as output and set for logic zero.

7-Segment LED multiplexing

There are 4 digits of 7-Segment LEDs on the Dragon12-Plus2 board. The type of the 7-Segment display on
board is called common cathode. in an individual digit, all anodes are driven individually by an output pot
and all cathodes are internally connected together. Before sending a number to a 7-Segment LED, the number
must be converted to its corresponding 7-segment code depending how the 7-segment display is connected to
an output port.

The Dragon12-Plus2 board uses port B to drive 7-segment anodes and used PP0-PP3 (i.e., Port P) to drive
common cathodes. In the next few paragraphs we will explain how to multiplex 7-segment by displaying the
number 1234 on the display. By convention, the 7-Segments are called segment a, b, c, d, e, f and g, as shown
in Figure 5.

Figure 5: The Dragon12 7-Segment

The segment a, b, c, d, e, f, g and Decimal Point are driven by (PORT B) PB0, PB1, PB2, PB3, PB4, PB5,
PB6, PB7, respectively. The hex value of the segment code is shown in the following table:

The schematic for multiplexing 4 digits is shown in Figure 7.

10

Figure 6: Hex Value of the numbers ‘1, 2,3, 4’

Figure 7: Multiplexing the 7-Segment Displays on the Dragon12-Plus2 Board

The digits 3, 2, 1 and 0 are driven by PP0, PP1, PP2 and PP3, respectively (PORT P). The 7-Segment
LED is turned on one at a time at 250 HZ refresh rate. It’s so fast that our eyes will perceive that all digits
are turned on at the same time. To display the number ‘1234’ on the 7-Segment display, the following steps
should be taken:

1. Output $06 to Port B, set PP0 low and PP1, PP2 and PP3 high. The number 1 is shown on the digit 3
(the leftmost digit) but other 3 digits are turned off.

2. Delay 1ms.

3. Output $5B to Port B, set PP1 low and PP0, PP2 and PP3 high. The number 2 is shown on the digit 2
but other 3 digits are turned off.

4. Delay 1ms.

5. Output $4F to Port B, set PP2 low and PP0, PP1 and PP3 high. The number 3 is shown on the digit 1
but other 3 digits are turned off.

6. Delay 1ms.

7. Output $66 to Port B, set PP3 low and PP0, PP1 and PP2 high. The number 4 is shown on the digit 0
(the rightmost digit) but other 3 digits are turned off.

8. Delay 1ms.

9. Go back to step 1.

11

9 Appendix D - Evaluation Board “Using D-Bug12 Routines”

The D-Bug12 monitor provides a few subroutines to support I/O operations. One can utilize these I/O routines
to facilitate program development. The D-Bug12 currently provides access to 18 different utility routines
through a table of 16-bit pointers beginning at address $EE80 as shown in Table 5. This appendix will provide
you with some information that will allow you to utilize internal D-Bug12 routines.

Please refer to Page 173, Section 4.8 in your text book “Using the D-Bug12 Functions to
Perform I/O Operations for detailed examples.

Function Description Vector Table Address

far main() Start of D-Bug12 $EE80

getchar() Get a char from SCI0 or SCI1 $EE84

putchar() send a char out SCI0 or SCI1 $EE86

printf() Formatted Output - binary to char $EE88

far GetCmdLine() Obtain a line of input from the user $EE8A

far sscanhex() Convert and ASCII hex to binary int $EE8E

isxdigit() Checks for membership [0..0,a..f,A..F] $EE92

toupper() Converts lower case char to upper case $EE94

isalpha() Checks for membership in [a..z,A..Z] $EE96

strlen() Returns the length of a string $EE98

strcpy() Copies a null terminated string $EE9A

far out2hex() Displays 8-bit number as 2 ASCII chars $EE9C

far out4hex() Displays 16-bit number as 4 ASCII chars $EEA0

SetUserVector() Setup user interrupt service routine $EEA4

far WriteEEByte() Write a data byte to on-chip EEPROM $EEA6

far EraseEE() Bulk erase on-chip EEPROM $EEAA

far ReadMem() Read data from M68HC12 memory map $EEAE

far WriteMem() Write data to M68HC12 memory map $EEB2

Table 5: D-Bug12 Utility Routines Summary

Here are a set of rules that you can follow to utilize these utility routines:

1. Calling a function from assembly language is simple.

• First, push the parameters onto the stack in the proper order, loading the first or only
function parameter into the D Accumulator. In other words if you have two parameters or
arguments then one will be passed by the D Accumulator and the other pushed onto the stack.

• Then call the function with a JSR instruction.

• The code following the JSR instruction should remove any parameters pushed onto the stack. If a
single parameter is stacked, a PULX or PULY instruction is one of the most efficient ways to unstack
it.

2. All 8-bit and 16-bit function results are returned in the D Accumulator. Char values returned in the D
accumulator are located in the 8-bit B Accumulator.

3. Boolean function results are zero for False and non-zero values for True.

12

Example #1:
To output a single character to the control terminal SCI (i.e., screen) you can use the int putchar(int);
function whose “Pointer Address” is located at $EE86. If the control SCI’s transmit data register is full when
the function is called, putchar() will wait until the transmit data register is empty before sending the character.

Adding the following instruction sequence in your program will output the character “A” to the control
SCI:

putchar equ $EE86

...

ldd #‘A’

jsr [putchar,PCR]

...

The addressing mode used in the jsr instruction of this example is a form of indexed indirect addressing
that uses the program counter as an index register. In reality, the HCS12 does not support PCR. Instead,
the PCR mnemonic is used to instruct the assembler to calculate an offset to the address specified by the
label putchar. The MiniIDE software supports this syntax. However, if you are using an assembler that does
not support program-counter relative indexed addressing the following two instruction sequence can be used
instead:

ldx putchar ; load the address of putchar

jsr 0,x ; call the subroutine

Important: If the name of a library function is preceded by the keyword far, then it is located in the
expanded memory and must be called by using the call instruction.

Example #2:
To retrieve a single character from the control terminal SCI use the int getchar(void); function whose pointer
address is located in “$EE84”. If an unread character is not available in the receive data register when this
function is called, it will wait until one is received. Because the character is returned as an integer, the 8-bit
character is placed in accumulator B.

Adding the following instruction sequence in your program will read a character from the SCI0 port

getchar equ $EE84

...

jsr [getchar,PCR]

...

Example #3:
The following is a sample code for utilizing the getchar() and printf() utility routines Notice that there are
two org statements. The first org statement is to set the starting address of the variables and constants at
location $1000. The second org statement is to set the start address of the main program to be executed to
location $1100. When you attempt to run your program you need to issue the command g $1100 in the miniIDE
environment.

CR EQU $0D ; ASCII Code for Carriage Return

LF EQU $0A ; ASCII Code for Line Feed

getchar EQU $EE84 ; Address of Debug12 Utility Function getchar()

printf EQU $EE88 ; Address of Debug12 Utility Function printf()

ORG $1000 ; Start Address of variables/constants

13

msg db "char pressed is %c",CR,LF,0

ORG $1100 ; Start Address of main program

getnewval LDX getchar ; get the character from the keyboard

JSR 0,X

CMPB #$1B ; Check if the char is an ESC

BEQ terminate ; jump to end of program

PSHD ; push char on stack (parameter for printf)

LDD #msg ; second parameter in ACC D

LDX printf ; Load Index Reg X with printf address

JSR 0,X ; print message on terminal

BRA getnewval ; repeat getting new chars

terminate SWI ; end of program (return to D-Bug12)

14

