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Chapter 1: ST Microelectronics Spirit1 Module 

1.1 Introduction – block diagram 
The Spirit 1 is a low-power low-datarate RF transceiver capable to operate in sub-GHz bands. I have chosen 

it as radio module due to its small package, low power consumption and high flexibility. It matches the 

tipical WSN (wireless sensor network) system specifications. 

The available frequency bands start from 150MHz and goes up to 956MHz: the supported digital 

modulations are 6 (2-FSK, GFSK, MSK,GMSK, OOK, e ASK) and the datarate goes up to 500kbps. In 

the following chapters there is an overview about the functional modes, protocols, I/O, and all 

main features such as the encryption engine. 

 In Figure 1 you can see the Spirit1 block diagram. 

 

Figure 1 – Spirit1 Block Diagram 

 

In the block diagram is possible to see at least 5 important digital components: the LNA (Low Noise 

Amplifier), two Mixers, two ADCs, a Power Amplifier and a Frequency Synthesizer. 
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Figure 2 - LNA 

In figure 2 the Low Noise Amplifier: it is the first block of the reception chain (apart the antenna). The effect 

of noise from subsequent stages in the receiver signal chain is reduced by the gain of LNA, while the noise 

of LNA itself is directly injected into the received signal. Thus, it is imperative for LNA to boost signal power 

while adding as little noise and distortion as possible. 

 

Figure 3 - Mixers 

In figure 3 there are 2 mixers used by the Spirit1. The mixer brings down the received RF signal to IF signal 

for ease in further processing like filtering, amplification, and digitization. Two mixers are necessary to 

realize a QA (quadrature-amplitude) demodulator. 

 

Figure 4 - ADCs 

In figure 4 you can see the two ADCs placed at the end of the analog receiving chain in order to digitalize 

the information stream. The digitalized data can, subsequently, can be sent to an external processing unit. 

No data are provided by STMicroelectronics about the ADCs used in the Spirit1 module. 
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Figure 5 - Power Amplifier 

In the transmitting chain a power amplifier (PA, in figure 5) converts a low-power radio-frequency signal 

into a larger signal of significant power  in order to drive the antenna (the Spirit1 uses only 1 antenna both 

for transmission and reception). The input is generated by the RF synthesizer, while the output level can be 

configured between -30 dBm and +11 dBm in 0.5 dB steps 

 

Figure 6 - Frequency Synthesizer 

A frequency synthesizers (figure 6) generate the feeding signal of the PA.  The Spirit1 includes a fast startup 

frequency synthesizer with a  settling time of 6 μs and the typical frequency resolution is 33Hz. A crystal 

connected to XIN and XOUT is used to provide a clock signal to the frequency synthesizer. The allowed clock 

signal frequency is either 24, 26, 48, or 52 MHz. As an alternative, an external clock signal can be used to 

feed XIN for proper operation. 
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1.2 Operating Specifications 

1.2.1 Functional Modes 

The Spirit1 is equipped with a controller which switches the functional mode between two main ones: 

transmission (TX) and reception (RX). There are also other states and the complete FSM (finite state 

machine) is shown in figure 7. 

 

Figure 7 – Spirit1 state diagram 

At the power on the device is in Ready State and starting from it the Spirit1 can reach the Standby, 

Lock or Sleep mode. The Lock state is a mandatory transition state to pass through in order to 

reach the TX/RX. Standby and Sleep, on the other hand, allow to reduce by a different amount the 

power consumption. In particular the Sleep mode is suitable for short idle period whereas Standby 

is much more indicated for long inactivity period: it allows the highest reduction in consumption 

but needs a more complex and long re-configuration before starting the operation. 

1.2.2 Transmission and Reception 

The Spirit1 is a radio module capable of both transmission and reception: it allows a bidirectional 

communication. The module can stay in TX and RX for different time periods depending on some dedicated 

registers  which, programmed by the user, determine the behavior of the device. 

In the following lists are reviewed the available management modes for both TX and RX. 
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The device continues to stay in TX mode 

 Until the transmission of the current packet ends 

 Until the TX buffer (TXFIFO) is not empy if the selected mode is Direct Mode 

 Until e SABORT (Spirit Abort) instruction 

State reached after the transmission 

 TX, if Persistent-TX is selected 

 Protocol, if the automatic retransmission is selected 

 Ready State, if no protocol is acitve and the TX ends successfully 

 

The device continue to stay in RX mode 

 Until the reception of the current packet ends 

 Until the RX timeout is reached 

 While Direct Mode is active, until a SABORT instruction or until the RXFIFO is full 

State reached after the reception 

 RX, if Persistent-RX is active 

 Protocol, if the auto-acknoledgement is active 

 Ready, if the RX end successfully and the Low Duty Cycle Mode Reception (LDCR) is not 

active 

 Sleep, in case of LDCR 
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1.2.3 Data Modes 

In Direct Mode is possible to bypass the data framing/deframing and also the data buffering 

normally used on the I/O register of the Spirit1. In particular using two registers, TXSOURCE and 

PCKTCTRL1, is possible to select one of the following data treatment options 

 0 – normal mode 

 1 – direct through FIFO: data packets have to be written, by the external MCU (the Micro 

Controller Unit which is using the Spirit1), directly in the TX FIFO: no processing will be 

automatically performed, the user is responsible for the data coding 

 2 – direct through GPIO o direct mode: the data are reading in “real time” using a GPIO 

specially programmed for this function.  Data are transmitted without any processing. The 

transmission is synchronized using a clock which has to be transmitter on a second GPIO 

 3 – PN9 mode: an internal generator create a pseudo-random binary sequence: this mode 

is suitable for test purpose only 

The TX FIFO register, as well as the RX FIFO, has 96 byte. This two FIFO registers has 2 

programmable thresholds usable to have information about the filling status of the registers.  

 

1.3 Power Output Configuration and Supported Modulations 

1.3.1 Power Output Configuration 

The power output level can be modified using the 8 bit PA_LEVEL register. The user can save up to 8 

different power levels in order to obtain ascending and descending power ramps in order to, for example, 

model the symbols of an ASK (“Amplitude Shift Keying”) modulation. The maximum output power is 

11 dBm (16 in TX boost mode, using additional external hardware in addition at the standard 

configuration), the minimum is -34dBm. 

The PA_RAMP_ENABLE register enables the power ramping. It is possible to configure both the 

steps number and the steps width. In figure 8 a power ramping example is showed: there are two 

different ramps in black and in blue. 
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Figure 8 – Power ramping example 

 

1.3.2 Supported Modulations 

Using the MOD_TYPE field of the MOD0 register is possible to choose between 5 different digital 

modulations: 

 MOD_TYPE:    00 2-FSK         01 GFSK         10 ASK/OOK    11 MSK 

If MOD_TYPE=10 the choice between ASK and OOK depends on the configuration of the 

PA_POWER register: if the power ramping is activated then the ASK modulation will be used. 

The MOD0 register, together with MOD1, determines in addition the transmission datarate. 

1.4 Overview on supported modulations 

In digital modulation, an analog carrier signal is modulated by a discrete signal. According to one 

definition of digital signal, the modulated signal is a digital signal, and according to another 

definition, the modulation is a form of digital-to-analog conversion. In digital wireless 

communication systems, the modulating signal may be represented as a time sequence of symbols 

or pulses. Each symbol represents n bits of information where n = log2m bits/symbol. 
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Advantages of Digital over Analog:   

 Greater noise immunity (due to its finite process)   

 Robustness to channel impairments   

 Easier multiplexing of various forms of information like voice, data, video 

 Security – by using coding techniques to avoid jamming   

 Accommodation of digital error control codes which detect and/or correct transmission 

errors   

 Equalization to improve the performance of over all communication link   

 Supports complex signal conditioning and processing methods 

 

1.4.1 Binary frequency-shift keying (2-FSK) 

 Frequency shift keying (FSK) is the most common form of digital modulation in the high-

frequency radio spectrum, and has important applications in telephone circuits 

 BFSK uses a pair of discrete frequencies to transmit binary (0s and 1s) information 

 The demodulation of a binary FSK signal can be done using very efficient algorithms, even 

on low-power microcontrollers 

 

Figure 9 - Example of BFSK modulation 
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1.4.2 Minimum-shift keying (MSK) 

 MSK is a type of continuous-phase frequency-shift keying that was developed in the late 

1950s and 1960s 

 MSK encoding results in a constant-modulus signal (constant envelope signal) 

 In MSK the difference between the higher and lower frequency is identical to half the bit 

rate: as a result, the modulation index m is 0.5 

 A variant of MSK called GMSK is used in the GSM mobile phone standard. 

 

Figure 10 - Example of MSK modulation 

1.4.3 Gaussian frequency-shift keying (GFSK) 

 GFSK is a type of frequency shift keying modulation that uses a Gaussian filter to smooth 

positive/negative frequency deviations, which represent a binary 1 or 0 

 It is used by Bluetooth: the minimum deviation is 115 kHz 

 A GFSK modulator is similar to a FSK modulator, except that before the baseband 

waveform (levels −1 and +1) goes into the FSK modulator, it is passed through a Gaussian 

filter to make the transitions smoother so to limit its spectral width 

 

Figure 11 -  Example of GFSK modulation 
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1.4.4 Amplitude-shift keying  (ASK) 

 ASK is a form of amplitude modulation that represents digital data as variations in the 

amplitude of a carrier wave 

 ASK uses a finite number of amplitudes, each assigned a unique pattern of binary digits. 

Usually, each amplitude encodes an equal number of bits. Each pattern of bits forms the 

symbol that is represented by the particular amplitude 

 Like AM, ASK is also linear and sensitive to atmospheric noise, distortions, propagation 

conditions on different routes 

 

 

Figure 12 - Example of ASK modulation 

 

1.4.5 On-off keying (OOK) 

 OOK denotes the simplest form of (ASK) modulation that represents digital data as the 

presence or absence of a carrier wave 

 OOK is more spectrally efficient than frequency-shift keying, but more sensitive to noise 

 On-off keying is most commonly used to transmit Morse code over radio frequencies 

 

Figure 13 - Example of OOK modulation 
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1.5 Packets management engine 

Before the transmission data can be interested in a framing operation. The Spirit1 allows a high 

flexibility in order to customize the data packet structure. Using dedicated register is possible to 

chose between three standard options: Stack (with auto-acknowledge), WMBus ( “Wireless Meter-

Bus”) and Basic. 

A really important feature is the Automatic Packet Filtering. There are 4 different filter criteria 

supported: 

 CRC (Cyclic Redundancy Check) Filtering  

 Destination Address Filtering  

 Source Address Filtering 

 Control Field Filtering  

 

1.6 Interfacing with a micro-controller 

The Spirit1 module is equipped with two main interfaces: a standard 4-pin SPI port and 4 

programmable GPIO pins. 

The SPI interface can be used to send command to the Spirit1, to read/write configuration 

registers and to read/write data in the TX/RX buffer FIFOs. The 4 GPIO pin I 4 pin can be used for 

the interrupt management and to send unbuffered data to the transmitter. 

The interrupt status is available in the IRQ_STATUS[3:0] bits. In table 1 there are the supported 

interrupts which can be generated by the Spirit1. 
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Table 1 – Spirit1 Interrupts 
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1.7 Advanced functionality 

1.7.1 Low Duty Cycle Reception Mode (LDCR) 

The Spirit1 can operate in a particular functional mode called Low Duty Cycle which allows to use 

the device with very low power consumption without suspend the transceiver operations. In LDCR 

the Spirit1 controller is configured to use the low-frequency internal RC oscillator (34,7kHz) 

instead of the external crystal (used in this case for the RF Synthesize only). The non used 

functional blocks are shut-down. 

1.7.2 CSMA/CA engine 

The device has an embedded CSMA (Carrier Sense Multiple Access) which is optionally usable. This 

module is dedicated to manage the multiple access on the channel using the carrier sensing. This 

protocol, level MAC of the ISO/OSI standard, avoid collisions between multiple devices operating 

on the same physical channel. 

1.7.3 AGC 

The AGC algorithm (Automatic Gain Control) is used to keep the output power level inside the 

limits specified by the user. Using an upper and a lower limits the AGC algorithms will vary the 

output signal gain in order to track the output power target. 

1.7.4 Temperature Sensor 

A temperature sensor is embedded on the chip and its analog voltage signal can be available on 

the GPIO0. When used the sensor increase the absorbed current of about 400uA in Standby, 

Ready and Sleep states. 

1.7.5 AES Engine 

The integrated cryptographic coprocessor implements the 128-bitbit AES ('Advanced Encryption 

Standard) standard. This peripheral can be used through 3 128-bit registers 

 AES_KEY_IN: register used to provide to the coprocessor the encryption key 

 AES_DATA_IN: register used to provide input data 

 AES_DATA_OUT: read only register, it provides the encrypted data 

 

The AES engine works on 128 bit data-blocks with 128 bit encryption key and provides 4 different 

operations: 

 Data encryption starting from a given key 

 Calculus of the decryption key starting from the encryption one 

 Data decryption starting from a given decryption key 

 Data decryption using a given encryption key 
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1.7.7 Data encoding and integrity check 

The device has error detection and correction capabilities which can be activated by the user 

depending on the security level requested by the application. 

The CRC protocol is available with a 8, 16 or 24 bit checksum. Taking about the error correction 

capabilities there is a FEC (Forward Error Correction) engine with a soft Viterbi coding with a ratio 

equal to 0.5 and k=4.  

1.7.8 Link Layer Protocol 

About link layer protocols the user can configure the device in order to use the auto-ACK and auto-

retransmission functionalities if the selected packet framing is STack. To improve the transmission 

efficiency is also possible to use the auto-ACK with Piggybacking.  
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Chapter 2: iNemo M1 + Spirit1: Real Time Clock Synchronization 
 

2.1 Introduction 
In a wireless sensor network is very important to acquire and transmit not only data but their time stamps 

too. In order to obtain a set of data correctly correlated is necessary that the all the devices on the field are 

synchronized and it is really important also to power-on the interested devices only when necessary 

increasing their battery life. 

Typical WSN devices are very often cheap and with limited calculus capabilities. The only power source is 

almost everytime a small integrated battery and in order to  maximize the autonomy devices have to use 

low power modes when they are not active. In addition the time synchronization is also critical to assure 

that when a device returns active there will be at least another node ready to communicate avoiding “dead 

time” waiting for a receiver node. 

About this purpose is fundamental that the RTCs (Real Time Clocks) of the WSN devices are synchronized in 

order to program synchronized sleep and wake-up of the entire network. 

2.2 Implementation 
In order to test a simply sleep and wake-up loop synchronized between two nodes a  test firmware has 

been developed: it implements fuctionality to transmit the RTC actual value to an RX node between two 

test devices using two iNemo M1 (based on an STM32 uC) equipped with the Spirit1 radio module. This test 

firmware search for an RX node and when it founds it the RTC data are transmitted in order to synchronize 

the two clocks. After the synchronization the two devices goes in standby mode setting a common alarm in 

order to wake-up after the same time using the RTC alarm interrupt event available in the STM32 uC. After 

each wake-up events the two nodes are programmed to redo the synchronization before enter the low 

power mode again.   

 

Figure 14 – Implemented synchronization example 
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The time duration of each active cycle is calculated as follow: 

                                                         

 

An additional check has been added during the synchronization phase: if the TX node does not find any RX 

device within a given time then the node goes anyway in standby mode in order to avoid energy wastes. In 

this way is possible to implement a network polling with given frequency in order to check periodically in 

time if there is the possibility to perform a synchronization.  

 

Figure 15 – flow chart of the implemented firmware. 

 

This basic algorithm can be utilized to develop more advanced management firmware for WSN 

applications. The purpose of this test was to synchronize two development boards without any constrain 

about the maximum clock shift between the internal clocks. The transmission delay has been neglected too 

as well as the time needed to process the received packet. 
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The radio module has been configured as follow: 

 0.5Mbps datarate (maximum available, in order to reduce the transmission time) 

 Stack packet frames 

 64 bit preamble 

 32 bit synchronization key (to evaluate the communication quality using a quality indicator engine) 

 8-bit CRC  

Representing the system time with 32 bit the length of the utilized synchronization message was 144 bit. 

With a datarate of 500kbps the minimum achievable offset between two devices given by the chosen 

algorithm and hardware is 288 us. Taking into account this delay is possible to slightly improve the system 

performance since this is an always present offset. 
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Chapter 3:  Power Consumption Characterization 
 

This chapter provide an overview over different low power technique both for the Spirit1 radio 

module and the STM32 uC utilized in the test platform. The different results are shown in order to 

provide at the user a general idea about the capability of modern wireless communication devices.  

 

Figure 16 – iNemo M1 System-on-Board with the STM32 uC 

To simulate the typical scenario for a small WSN the test device has been programmed to transmit small 

data packets periodically in time: between two transmission different option of low power modes has been 

explored. The power consumption of the entire system has been measured the voltage drop on a 

small resistor (1Ohm)  connected in series at the power supply cable. 

The first two measures has been taken without using any power consumption technique. Both the 

uC and the Spirit1 was configured to operate at the maximum allowed frequency (72 and 52Mhz 

respectively). The radio output power level was set to 0dBm. 

 

Wait for TX Lock Tx 0dBm Tx Wait for next TX

 

Figure 17 – Power consumption with no low power techniques implemented 
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The upper signal shows the current absorbed by the TX nodes, the lower on has been used to 

trigger the oscilloscope. The figure shows very clearly that when the radio module starts the 

transmission operation (Lock TX) the power absorbed rise significantly and then go down a bit 

during the transmission thanks to the low level used for the output. When the development 

device is in idle the current absorbed is appreciably lower. 

 

 

Table 2 – Power consumption with no low power modes (0dBm TX) 

 

 

 

 

 

 

The next step has been to shut down the power module when not in transmission: the Spirit1 has been 

switched off the the microcontroller has been configured in sleep mode (a very “light” low power mode 

which allows a fast switch to the active one). 

As you can see in the following images using low power techniques impact significantly on the 

power consumption, especially when the device is in idle.  

Note: starting from this test the transmission power level has been risen since the system was 

much more efficient thanks to the power saved during the time spent in idle. 

 Current 
Consumption 

Time 
Duration 

Wait for Tx 35 mA / 

Lock Tx 48 mA 550 us 

0dBm Tx 46 mA 350 us 
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Figure 18 – STM32 Sleep Mode + Spirit1 Standby implementation 

 

The current absorbed during idle has dropped from 34 to only 15mA for the entire system.  
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3.1 MCU in Standby Mode 
An further step is to use a deeper sleep mode for the MCU: in this case the standby mode for the STM32 

was used. Using the standby mode the device can achieve much lower level of absorbed current even if it 

will need a reconfiguration after the wake-up and this imply a much longer delay before restart the 

operation. However, if the idle time is order of magnitude greater than the activity time, the standby mode 

is undoubtedly a better solution. 

To wake-up the MCU the RTC alarm interrupt has been used: in this way no external interrupt is 

necessary, all the peripherals can be switched off except the LSI (Low-Speed Internal) oscillator in 

order to minimize the power consumption. 

Wait for TX Wait for TX Wait for TX Wait for TX

 

Figure 19 MCU Standby Mode 

Current Consumption  

 Idle Period 

MCU Sleep MCU Standby 

15 mA 1,735 mA 
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3.2 System battery life simulation  
 

For actual embedded systems one of the most important parameters is the battery life in all that 

applications which cannot use a different power supply. The instantaneous power is not the right 

parameter to evaluate the battery life, the big deal is the energy requested by the system to perform a 

task. The designer’s objective is to minimize this energy choosing the best combination between activity 

time (generally inversely proportional to the energy), performance level and low power modes. If, for 

example, the task is to monitor the temperature of a room to regulate radiators is sufficient to acquire few 

data every 10 minutes using a deep low power state during the idle time. 

To obtain a correct prediction of the system battery life is important to use simulations based on a system 

characterization which provide the trend of the adsorbed power during the task of interest. In this chapter 

the previous studies on the current consumption has been used to estimate the system autonomy using  a 

3.7V 1020mAh Li-Ion battery. The simulation has been developed using the Simulink environment and a 

custom block has used to simulate a load with the same characteristic of the test system.  

 

Figure 20 – Simulink block diagram utilized for the simulation of the battery life 

Thinking at a system usable to acquire environment temperature the block simulating the device 

under test has been configured to simulate the transmission of few data every 5 minutes using 

high power level (10dBm). The simulation has been set to provide in output the battery status 

after few hours of work. In order to have a short simulation time the final battery life as be 

computed starting from the energy consumed in few hours. Since the time to simulate is long 

(hours or better days) and the operation time, where the energy is concentrated, is very 

concentrated (few micro seconds) the simulation steps have to be very small to have good results 

making an eventual exhaustive simulation very expensive computationally. 
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Figure 21 – Result of the Simulink simulation 

The simulation results shows that after an hour the battery charge level has a drop of 0,175%. 

With a linear approximation the system, in this particular condition, would have a 24 days 

autonomy. 
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Chapter 4: design of a PCB integrating the Spirit1 module  
 

4.1 Idea  
The dashboard electric system of the SCXV includes many different subsystems which all together assure 

the communication between the steering wheel board and the other electronic parts of the car. In addition 

the dashboard manages the 4.3” LCD display as well as some compulsory LEDs and some buttons. The goal 

is to have a system capable to ensure that the driver has all the information he needs, with the possibility 

to tune some key parameters (for example the amount of regenerative breaking torque) and have a 

feedback when these changes are applied.  

4.2 System Block Diagram 
 

 

 

Figure 22 CXV Dashboard and Steering System block diagram 

 

The electronic system is built around a main PCB (called “dashboard”) which you can see in the block 

diagram above. On the electronic board there are the STM32 microcontroller (32 bit, based on ARM Cortex 

M3 architecture), the high-speed CAN transceiver (AMIS−30663, fully compatible with the “ISO 11898−2” 

standard) and all discrete components needed to supply the power to the system using the low voltage 

battery as source. A series of Molex Microfit connectors are used to connect the electronic board to LEDs 

and buttons on the dashboard, just in front of the driver. The connection with the LCD display is 

implemented using the I2C protocol (using one of the two I2C peripheral of the STM32) . Finally the 

connection with the steering-wheel electronic board is ensured by a Sub-GHz radio module, a 

STMicroelectronics Spirit1, which allows a transfer rate up to 1Mb/s. A wired CAN bus connections is 

available as radio backup together with an optional cabled power supply. 
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4.3 Schematic and PCB development 
The schematic development began implementing the necessary components to made the MCU (Micro 

Controller Unit) usable, which are the DC-DC converters (required to obtain the 3.3V and the 5V supply 

voltages) and the programmer circuit (needed to download firmware inside the MCU using an external 

programmer such as the ST-Link V2.0 we used). 

 

Figure 23 Dashboard Schematic - MCU 

After that I added the CAN transceiver, the LCD connector (used for the I2C protocol and to supply power 

to the display), the buttons connectors and another one used to read the output of an analog selector used 

to manage different engine maps. 
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Figure 24 Dashboard Schematic – CAN and buttons 

Finally I add the radio module and the needed discrete components to adapt the power output of the 

module with the SMD antenna we used. The connections between the radio module and the MCU uses an 

SPI peripheral and some other GPIO based interrupt lines (dedicated to the radio only). An additional UHF 

connector has been added to add the capability to use external antennas with higher gain. 

 

 

Figure 25 Dashboard Schematic – Spirit1 
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Since we used the OrCAD Capture tool to develop the schematic diagram, we rely on another Cadence CAD 

for the layout of out PCBs, OrCAD Allegro PCB designer. Here is the layout of the dashboard PCB which 

measures 140x100 mm. 

 

Figure 26 Dashboard PCB 

 

The datasheet of the antenna describes how to design the layout and the feeding line and also 

STMicroelectronics gives advice about how to design the antenna circuit. Using the ‘’Cross-Section’’ tool 

integrated in Cadence Allegro CAD is possible to calculate the geometrical parameters needed to obtain a 

characteristic impedence equal to 50 Ohm. 

 

 

Figura 27 - Allegro Cross-Section Tool 
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The antenna feeding line was designed in order to respect the design rules given by the antenna 

manufacturer. The SMD passive components needed to couple correctly the antenna with the radio 

module was placed in order to reduce as much as possible undesired parastitic effects. 

 

 

 

 

Figura 28 – Feeding line layout and: in the upper picture the real PCB, in the lower one the CAD 
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In the following image the placing of the most important components is shown.

• In red the microcontroller
STM32F103

• In white the power section, 
with the 3.3V and the 5V 
DC/DC

• In light blue the LCD 
connector and the ones for 
buttons and LEDs

• In blue the programming
connector and the CAN 
controller section

• In violet the SPIRIT1 radio 
(the antenna is on the top 
rights corner)

 

Figure 29 - Dashboard PCB – Components layout 

 

After the validation of this first PCB, which is actually only a prototype, another one has been developed 

with a better components placing, an improved design of the radio circuit and with more available external 

connectors: all this in a slightly smaller size. 

 

 

Figure 30 Dashboard PCB – Version 2 
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