TRACE32 Online Help		
TRACE32 Directory		
TRACE32 Index		
TRACE32 Documents	e	5
ICD In-Circuit Debugger	C	∋
Processor Architecture Manuals		7
Blackfin	🖻	∍
Blackfin Debugger		1
General Note		3
Brief Overview of Documents for New	v Users	3
Warning		4
Application Note		5
Location of Debug Connector		5
Quick Start JTAG		6
Troubleshooting		8
SYStem.Up Errors		8
FAQ		8
Configuration		9 9
General System Settings		0
SYStem.CONFIG	Configure debugger according to target topology 1	0
Daisy-chain Example	1	2
	Assign core to TRACE22 instance	3
SYStem CPU	CPU type selection 1	4 5
SYStem CouAccess	Bun-time memory access (intrusive) 1	5
SYStem JtagClock	JTAG clock selection 1	6
SYStem.LOCK	Lock and tristate the debug port 1	6
SYStem.MemAccess	Real-time memory access (non-intrusive) 1	7
SYStem.Mode	System mode selection 1	8
SYStem.Option IMASKASM	Interrupt disable 1	8
SYStem.Option IMASKHLL	Interrupt disable 1	8
Breakpoints		9
Software Breakpoints	1	9

On-chip Breakpoints	19
Breakpoint in ROM	19
Example for Breakpoints	20
Memory Classes	21
JTAG Connector	22
Support	23
Available Tools	23
Compilers	23
Realtime Operation Systems	23
3rd Party Tool Integrations	25
Products	26
Product Information	26
Order Information	26

Version 06-Nov-2015

30-Jun-14 TrBus.Out and TrBus.Set were moved to general_ref_t.pdf.

General Note

This documentation describes the processor specific settings and features for the Blackfin Embedded Media Processor. TRACE32-ICD supports all Blackfin devices which are equipped with the JTAG debug interface.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are only valid for a single CPU the name is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

- "Debugger Basics Training" (training_debugger.pdf): Get familiar with the basic features of a TRACE32 debugger.
- "T32Start" (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances for different configurations of the debugger. T32Start is only available for Windows.
- "General Commands" (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

- "Processor Architecture Manuals": These manuals describe commands that are specific for the processor architecture supported by your debug cable. To access the manual for your processor architecture, proceed as follows:
 - Choose Help menu > Processor Architecture Manual.
- "RTOS Debugger" (rtos_<x>.pdf): TRACE32 PowerView can be extended for operating systemaware debugging. The appropriate RTOS manual informs you how to enable the OS-aware debugging.

Warning

Signal Level

The debugger output voltage follows the target voltage level. It supports a voltage range of 0.4 ... 5.2 V.

ESD Protection

NOTE:	To prevent debugger and target from damage it is recommended to connect or disconnect the debug cable only while the target power is OFF.
	 Recommendation for the software start: Disconnect the debug cable from the target while the target power is off. Connect the host system, the TRACE32 hardware and the debug cable. Start the TRACE32 software. Connect the debug cable to the target. Switch the target power ON. Power down: Switch off the target power. Disconnect the debug cable from the target.

Location of Debug Connector

Locate the debug connector on your target board as close as possible to the processor to minimize the capacitive influence of the trace length and cross coupling of noise onto the JTAG signals.

Starting up the Debugger is done as follows:

1. Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the TRACE32 software was started.

b:

2. Select the CPU type to load the CPU specific settings.

SYStem.CPU BF537

3. Enter debug mode:

SYStem.Up

This command resets the CPU and enters debug mode. After the execution of this command access to the registers and to memory is possible. Before performing the first access to external SDRAM or FLASH the External Bus Interface Unit (EBIU) must be configured.

4. The following command sequence is for the BF537 processor and configures the SDRAM controller with default values that were derived for maximum flexibility. They work for a system clock frequency between 54 MHz and 133 MHz.

In the example a ST M29W320DB flash device is used in 16-bit mode. All four memory banks and CLKOUT are enabled.

; configure SDRAM controller Data.Set 0xFFC00A1sLONG 0x0091998D Data.Set 0xFFC00A14 %WORD 0x0025		; EBIU_SDGCTL ; EBIU_SDBCTL ; EBIU SDRRC	
Data.Set 0xFFC00A1C %WORD 0x03A0			
; enable all flash memory banks and clock out ; EBIU_AMGCTL Data.Set 0xFFC00A00 %WORD 0x00FF			
; ST M29W320DB flash device in 16-bit mode			
FLASH.Create 1. 0x20000000x20003FFF	0x4000	AM29LV100 Word	
FLASH.Create 1. 0x200040000x20007FFF	0x2000	AM29LV100 Word	
FLASH.Create 1. 0x200080000x2000FFFF	0x8000	AM29LV100 Word	
FLASH.Create 1. 0x200100000x203FFFFF	0x10000	AM29LV100 Word	

5. Load the program.

```
Data.LOAD.Elf demo.dxe ; The file demo.dxe is in ELF format
```

The option of the **Data.LOAD** command depends on the file format generated by the compiler. For information on the compiler options refer to the section **Compiler**. A detailed description of the **Data.LOAD** command is given in the "General Commands Reference".

The start up can be automated using the programming language PRACTICE. A typical start sequence is shown below:

b::	; Select the ICD device prompt
WinClear	; Delete all windows
SYStem.CPU BF537	; select the processor
SYStem.Up	; Reset the target and enter debug mode
Data.Load.Elf sieve.dxe	; Load the application
Register.Set PC main	; Set the PC to function main
Data.List	; Open disassembly window *)
Register	; Open register window *)
PER.view	; Open window with peripheral register *)
Break.Set sieve	; Set breakpoint to function sieve
Break.Set 0x1000 /p	; Set on-chip breakpoint to address 1000 ; Refer to the restrictions in ; On-chip Breakpoints.

*) These commands open windows on the screen. The window position can be specified with the WinPOS command.

SYStem.Up Errors

The **SYStem.Up** command is the first command of a debug session where communication with the target is required. If you receive error messages while executing this command this may have the following reasons.

All	The target has no power.
All	There are additional loads or capacities on the JTAG lines.
All	The JTAG clock is too fast.

FAQ

No information available

System Overview

SYStem.CONFIG

Configure debugger according to target topology

Format:	SYStem.CONFIG <parameter> <number_or_address> SYStem.MultiCore <parameter> <number_or_address> (deprecated)</number_or_address></parameter></number_or_address></parameter>		
< <i>parameter</i> > (General):	state CORE <core></core>		
(JTAG):	DRPRE <bits> DRPOST <bits> IRPRE <bits> IRPRE <bits> IRPOST <bits> IRPOST <bits> TAPState <state> TCKLevel <level> TriState [ON OFF] Slave [ON OFF]</level></state></bits></bits></bits></bits></bits></bits>		

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. ARM + DSP). The information is required before the debugger can be activated e.g. by a **SYStem.Up**. See **Daisy-chain Example**.

For some CPU selections (**SYStem.CPU**) the above setting might be automatically included, since the required system configuration of these CPUs is known.

TriState has to be used if several debuggers ("via separate cables") are connected to a common JTAG port at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down resistor, other trigger inputs needs to be kept in inactive state.

	Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).
$\bigcirc \mathbf{\vee}$	

state	Show multicore settings.
CORE	For multicore debugging one TRACE32 GUI has to be started per core. To bundle several cores in one processor as required by the system this command has to be used to define core and processor coordinates within the system topology. Further information can be found in SYStem.CONFIG.CORE .
DRPRE	(default: 0) <number> of TAPs in the JTAG chain between the core of interest and the TDO signal of the debugger. If each core in the system contributes only one TAP to the JTAG chain, DRPRE is the number of cores between the core of interest and the TDO signal of the debugger.</number>
DRPOST	(default: 0) <number> of TAPs in the JTAG chain between the TDI signal of the debugger and the core of interest. If each core in the system contributes only one TAP to the JTAG chain, DRPOST is the number of cores between the TDI signal of the debugger and the core of interest.</number>
IRPRE	(default: 0) <number> of instruction register bits in the JTAG chain between the core of interest and the TDO signal of the debugger. This is the sum of the instruction register length of all TAPs between the core of interest and the TDO signal of the debugger.</number>
IRPOST	(default: 0) <number> of instruction register bits in the JTAG chain between the TDI signal and the core of interest. This is the sum of the instruction register lengths of all TAPs between the TDI signal of the debugger and the core of interest.</number>
TAPState	(default: 7 = Select-DR-Scan) This is the state of the TAP controller when the debugger switches to tristate mode. All states of the JTAG TAP controller are selectable.
TCKLevel	(default: 0) Level of TCK signal when all debuggers are tristated.
TriState	(default: OFF) If several debuggers share the same debug port, this option is required. The debugger switches to tristate mode after each debug port access. Then other debuggers can access the port. JTAG: This option must be used, if the JTAG line of multiple debug boxes are connected by a JTAG joiner adapter to access a single JTAG chain.
Slave	(default: OFF) If more than one debugger share the same debug port, all except one must have this option active. JTAG: Only one debugger - the "master" - is allowed to control the signals nTRST and nSRST (nRESET).

Daisy-chain Example

0	Exit2-DR	
1	Exit1-DR	
2	Shift-DR	
3	Pause-DR	
4	Select-IR-Scan	
5	Update-DR	
6	Capture-DR	
7	Select-DR-Scan	
8	Exit2-IR	
9	Exit1-IR	
10	Shift-IR	
11	Pause-IR	
12	Run-Test/Idle	
13	Update-IR	
14	Capture-IR	
15	Test-Logic-Reset	

Format:	SYStem.CONFIG.CORE < coreindex> < chipindex> SYStem.MultiCore.CORE < coreindex> < chipindex> (deprecated)
<chipindex>:</chipindex>	1i
<coreindex>:</coreindex>	1 k

Default coreindex: depends on the CPU, usually 1. for generic chips

Default *chipindex*: derived from CORE= parameter of the configuration file (config.t32). The CORE parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger the systems topology must be mapped to the debuggers topology model. The debugger model abstracts chips and sub-cores of these chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the **SYStem.CPU** is selected a generic chip or none generic chip is created at the default *chipindex*.

None Generic Chips

None generic chips have a fixed amount of sub-cores with a fixed CPU type.

First all cores have successive chip numbers at their GUIs. Therefore you have to assign the coreindex and the chipindex for every core. Usually the debugger does not need further information to access cores in none generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a none generic chip, two GUI are connected to the same coordinate or a GUI is not connected to a core. The initial state of the system is value since every new GUI uses a new *chipindex* according to its CORE= parameter of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must be merged by calling **SYStem.CONFIG.CORE**.

SYStem.CPU

Format:	SYStem.CPU <cpu></cpu>	
<cpu>:</cpu>	BF531 BF532 BF533 BF534	
Default selection: BF534.		

Selects the CPU type.

SYStem.CpuAccess

Run-time memory access (intrusive)

Format:	SYStem.CpuAccess Enable Denied Nonstop
Default: Denied.	
Enable	Allow intrusive run-time memory access. In order to perform a memory read or write while the CPU is executing the program the debugger stops the program execution shortly. Each short stop takes 1 100 ms depending on the speed of the debug interface and on the number of the read/write accesses required. A red S in the state line of the TRACE32 screen indicates this intrusive behavior of the debugger.
Denied	Lock intrusive run-time memory access.
Nonstop	 Lock all features of the debugger, that affect the run-time behavior. Nonstop reduces the functionality of the debugger to: run-time access to memory and variables trace display The debugger inhibits the following: to stop the program execution all features of the debugger that are intrusive (e.g. action Spot for break-points, performance analysis via StopAndGo mode, conditional break-points etc.)

Format: SYStem.JtagClock [<frequency>]

SYStem.BdmClock < frequency> (deprecated).

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK). Any frequency up to 50 MHz can be entered, it will be generated by the debuggers internal PLL.

For CPUs which come up with very low clock speeds it might be necessary to slow down the JTAG frequency. After initialization of the CPUs PLL the JTAG clock can be increased.

If there are buffers, additional loads or high capacities on the JTAG/COP lines, reduce the debug speed.

SYStem.LOCK

Lock and tristate the debug port

Format:

SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the debug connector of the debugger is tristated. The main intention of the lock command is to give debug access to another tool.

Format:	SYStem.MemAccess Denied <cpu-specific></cpu-specific>
BTC	"BTC" allows a non intrusive memory access while the core is running, if a Background Telemetry Channel (BTC) is defined in your application. Any information on how to create such a channel can be found in Analog Devices' VisualDSP++ user's manual. The JTAG clock speed should be as fast as possible to get good performance
Denied	Real-time memory access during program execution to target is disabled.

SYStem.Mode

Format:	SYStem.Mode < mode>
<mode>:</mode>	Down Go Attach Up
Down	Disables the debugger.
Go	Resets the target with debug mode enabled and prepares the CPU for debug mode entry. After this command the CPU is in the system.up mode and running. Now, the processor can be stopped with the break command or if a break condition occurs.
Attach	User program remains running (no reset) and the debug interface is initialized.
Up	Resets the target and sets the CPU to debug mode. After execution of this command the CPU is stopped and prepared for debugging.
StandBy	Not supported.
NoDebug	Not supported.

SYStem.Option IMASKASM

Interrupt disable

Format: SYStem.Option IMASKASM [ON | OFF]

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler single stepping.

SYStem.Option IMASKHLL

Interrupt disable

```
Format:
```

SYStem.Option IMASKHLL [ON | OFF]

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

18

There are two types of breakpoints available: software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints. A special breakcode is patched to memory so it only can be used in RAM or FLASH areas. There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The Blackfin processor has a total of six instruction and two data on-chip breakpoints.

A pair of two breakpoints may be further grouped together to form a range breakpoint. A range breakpoint can be including or excluding. In the first case the core is stopped if an address in the range is detected, in the second case the core is stopped when an address outside of the range is observed.

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger about ROM (FLASH,EPROM) address ranges in target. If a breakpoint is set within the specified address range the debugger uses automatically the available on-chip breakpoints.

Assume you have a target with FLASH from 0×20000000 to 0×200 FFFFF and RAM from 0×0 to 0×1000000 . The command to configure TRACE32 correctly for this configuration is:

Map.BOnchip 0x2000000--0x200FFFFF

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x0 /Program	;	Software Breakpoint 1
Break.Set 0x1000 /Program	;	Software Breakpoint 2

On-chip breakpoints:

Break.Set	0x20000100	/Program	;	On-chip	Breakpoint	1
Break.Set	0x2000ff00	/Program	;	On-chip	Breakpoint	2

The following memory classes are available:

Memory Class	Description
Р	Program
D	Data

Signal	Pin	Pin	Signal
GND	1	2	EMU-
N/C	3	4	GND
VDDIO	5	6	TMS
N/C	7	8	TCK
N/C	9	10	TRST-
N/C	11	12	TDI
GND	13	14	TDO

JTAG Connector	Signal Description	CPU Signal
TMS	JTAG-TMS, output of debugger	TMS
ТDI	JTAG-TDI, output of debugger	TDI
тск	JTAG-TCK, output of debugger	тск
/TRST	JTAG-TRST, output of debugger	/TRST
тро	JTAG-TDO, input for debugger	TDO
/EMU	JTAG Emulation Flag	/EMU
VDDIO	This pin is used by the debugger to sense the target I/ O voltage and to set the drive levels accordingly. If the sensed voltage level is too low (e.g. target has no power) the debugger powers down its drivers to prevent the target from damage.	VDDIO

Available Tools

CPU	ICE	FIRE	ICD DEBUG	ICD MONITOR	ICD TRACE	POWER INTEGRATOR	INSTRUCTION SIMULATOR
ADSP-BF531			YES				
ADSP-BF532			YES				
ADSP-BF533			YES				
ADSP-BF534			YES				
ADSP-BF536			YES				
ADSP-BF537			YES				
ADSP-BF538			YES				
ADSP-BF538F			YES				
ADSP-BF542			YES				
ADSP-BF544			YES				
ADSP-BF547			YES				
ADSP-BF548			YES				
ADSP-BF549			YES				

Compilers

Language	Compiler	Company	Option	Comment
ASM	VISUALDSP++	Analog Devices Inc.	ELF/DWARF2	
С	VISUALDSP++	Analog Devices Inc.	ELF/DWARF2	
С	GCC	Free Software Foundation, Inc.	ELF/DWARF2	
C++	VISUALDSP++	Analog Devices Inc.	ELF/DWARF2	

Realtime Operation Systems

Name	Company	Comment
ThreadX	Express Logic Inc.	
ThreadX	Express Logic Inc.	3.0, 4.0, 5.0
uC/OS-II	Micrium Inc.	2.0 to 2.92
uCLinux	Freeware II	Kernel Version 2.4 and 2.6
VDK	Analog Devices Inc.	

CPU	Тооі	Company	Host
ALL	ADENEO	Adeneo Embedded	
ALL	X-TOOLS / X32	blue river software GmbH	Windows
ALL	CODEWRIGHT	Borland Software Corporation	Windows
ALL	CODE CONFIDENCE TOOLS	Code Confidence Ltd	Windows
ALL	CODE CONFIDENCE TOOLS	Code Confidence Ltd	Linux
ALL	EASYCODE	EASYCODE GmbH	Windows
ALL	ECLIPSE	Eclipse Foundation, Inc	Windows
ALL	RHAPSODY IN MICROC	IBM Corp.	Windows
ALL	RHAPSODY IN C++	IBM Corp.	Windows
ALL	CHRONVIEW	Inchron GmbH	Windows
ALL	LDRA TOOL SUITE	LDRA Technology, Inc.	Windows
ALL	UML DEBUGGER	LieberLieber Software GmbH	Windows
ALL	ATTOL TOOLS	MicroMax Inc.	Windows
ALL	VISUAL BASIC INTERFACE	Microsoft Corporation	Windows
ALL	LABVIEW	NATIONAL INSTRUMENTS Corporation	Windows
ALL	CODE::BLOCKS	Open Source	-
ALL	C++TEST	Parasoft	Windows
ALL	RAPITIME	Rapita Systems Ltd.	Windows
ALL	DA-C	RistanCASE	Windows
ALL	TRACEANALYZER	Symtavision GmbH	Windows
ALL	SIMULINK	The MathWorks Inc.	Windows
ALL	TA INSPECTOR	Timing Architects GmbH	Windows
ALL	UNDODB	Undo Software	Linux
ALL	VECTORCAST	Vector Software	Windows
ALL	WINDOWS CE PLATF. BUILDER	Windows	Windows

Product Information

OrderNo Code	Text	
LA-7833	JTAG Debugger for BLACKFIN (ICD)	
JTAG-BLACKFIN	supports Blackfin Core includes software for Windows, Linux and MacOSX requires Power Debug Module debug cable with 14 pin connector	

Order Information

Order No.	Code	Text
LA-7833	JTAG-BLACKFIN	JTAG Debugger for BLACKFIN (ICD)
Additional Options		
LA-7960X	MULTICORE-LICENSE	License for Multicore Debugging