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Abstract

Distributed systems consists of multiple computers (nodes) that communicates through a
computer network. In distributed systems it is often desirable to have the nodes share infor-
mation in a consistent manner. In some special cases it is desirable to have all nodes contain
exactly the same information at all times.

This report describes a replicated local data store called RLDS which is a general purpose
caching and replicating system that supports in-memory and on-disk caching as one logical unit.
The proof-of-concept system described in this thesis is intended to be used with trading systems
at a financial company.

Acceptance testing shows that the proof-of-concept system works in a consistent manner,
however performance wise there is still room for improvements, for example, object serializing
could be optimized.
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Chapter 1

Introduction

This report describes a replicated local data store called RLDS. RLDS is a general purpose
caching and replication system that supports caching in-memory and on disk as one logical
unit, the data store. RLDS instances running on different hosts are connected via a group-
communication layer and the data store is replicated amongst these hosts allowing all hosts to
have an exact copy of the data store. Objects can be added to the store from any host and all hosts
in the communication group will store the object in its local data store ensuring that all hosts
have the same objects. Applications communicate with the RLDS through a generic application
programming interface (API) and the focus of the system has been on making it generic and
reliable and within that making it fast.

The RLDS is intended to be used by online marketing systems (OMSs) at Nomura to provide
a common data store where they can store and retrieve serializable Java objects in a replicated
and consistent manner. RLDS is written intirely in the Java programming language to ease the
integration with the existing OMSs and other systems at Nomura which would be users of the
system.

The work has been done at Nomura Sweden AB located in Umeå. Nomura Sweden AB is a
part of the global investment bank Nomura Holdings Inc., which in turn is member of Nomura
Group, one of the major industrial and financial conglomerate groupings of Japan.

Nomura has large systems that handles orders from their customers to different stock mar-
kets. Nomura has many different customers that perform tradings in different markets which
respectively have different requirements on number of transactions, time taken to perform a
transaction et cetera.

In Chapter two the problem is described along with the background, purpose and method to
tangle the problem. Chapter three shows the design for reliability and distribution of data and
takes the reader through the implementation of the design. Chapter four shows some conclusions
of the thesis and Chapter five acknowledges the persons who helped me throughout this thesis.
In the appendices the reader can find a user’s manual, the evaluation and testing procedure and
algorithm description.
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Chapter 2

Problem Description

This chapter gives background to the problem the purpose of the solution, what is wanted and
what it will solve.

2.1 Background
At Nomura, direct market access systems (DMAS [5]) handle large amounts of data that are sent
to the systems in a high pace. The messages received are typically market orders and must be
handled fast and efficiently. The overall system consists of at least two data centres (two as of
today), where one data centre is working as the primary and the other works as secondary. The
data centres run OMSs, Online Market Systems [12], which allows customers to execute trades
on market systems such as the Nordic stock exchange OMX.

The data centres contains multiple OMSs which handles different types of trading and on
different markets. Nomura has different customers that performs different trading on different
markets. This means that customers that performs day trading have high speed demands on
transactions and they need to be carried through immediately. On the other hand, other cus-
tomers may only need the transaction to be carried out during the day.

2.1.1 Example of the Current System
An example describes the flow of the system. An order come in to the system to the OMS,
the OMS processes the order and then sends the order ro external markets. An order reply is
returned to the OMS and later on an execution report from the market is returned to the OMS,
i.e. a confirmation that the buy has been carried out. Confirmation messages are also sent to the
customer who issued the order.

The example in Figure 2.1 illustrates the typical system where order management is divided
into two instances, one which handles orders beginning with the letters A to M and one which
handles orders beginning with the letters N to Z. These two instances have a backup running at
another data centre, typically not located in the same building. As of today, both data centres
are located in London and the communication within a data centre and between data centres is 1
Gbps. The average latency between the two data centres is, as of today, 0.147ms. Minimum and
maximum are 0.117ms and 23.837ms respectively. Under normal conditions the orders come to
the primary data centre and the backup is only used when a crash occurs.

One OMS consists of multiple components which can be divided into two groups, one that
has high demand on speed that performs the actual trading and one that runs at a lower priority

3
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Figure 2.1: Example of the system as it is today

that runs “after” the high speed ones creating reports, logs and such. Some components are
dependent on other components or depends on other components as part of a sequence through
the OMS.

Figure 2.2: Crash of entire primary data center

2.1.2 Crashes
Since the system is quite complex there exists a number of possible scenarios for the system, or
parts of the system, to crash. The first crash would be that a whole data centre goes down, as
illustrated in Figure 2.2. If the whole primary data centre crashes, the secondary, backup, data
centre has to manually be set “in charge” as the primary.
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Another possible crash is that a computer that hosts an OMS crashes. This is illustrated
in Figure 2.3 with the OMS from A to M crashes. This crash is similar to the one mentioned
above with the one exception that only the crashing OMS from data centre 1 will be replaced by
setting the backup OMS in data centre 2 in charge. With this scenario the OMS from A-M will
be running on data centre 2 and the OMS from N-Z will be running on data centre 1.

In the example above, if the OMS from A-M crashes on data centre 1 and the OMS from
N-Z crashes on data centre 2 the OMS A-M will run on data centre 2 and the OMS N-Z will run
on data centre 1. If OMS A-M crashes on both data centre 1 and 2, only OMS N-Z will continue
running on data centre 1.

Figure 2.3: Crash of entire primary OMS

A third scenario is that one or more components in an OMS crashes. When this happens,
that OMS’s backup in data centre 2 will be started and now we have two OMSs located in two
data centres that does 50% of the work each. An illustration of this type of crash is found in
Figure 2.4. The green boxes are the components that are running.

It is possible to have multiple crashes of the same or of different sorts. These will be handled
as combination of the crash recovery techniques described above. Similary, if all hosts crash at
both data centres this will be the same as if the whole data centres came to a halt. However,
there is no protection against the crash of both data centres.

2.2 The Need for Replication
Nomura wants their different systems to be as fast as possible while guaranteeing synchroniza-
tion and validity of data within their system. It is not just important for the system to be fast
while running in normal operation. If an OMS crashes its backup needs to be up and running as
soon as possible. A solution to this is suggested via the use of a replicated local data store. This
makes it desirable to have the data in data store replicated in both data centres. For illustration
of the desired system see Figure 2.5. The grey part is the RLDS and is what is designed and
constructed as a result of this thesis.

The figure illustrates the API, the OMSs, and other applications which use the RLDS, the
store (in-memory and on disk) and the communication between instances of RLDS on different
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Figure 2.4: Crash of components as part of the OMS

hosts. Since the store is modelled as a single logical unit any host can run the in-memory and
choose whether or not to run the disk store.

The goals of the proof-of-concept system are:

– Provide a data store that is accessible from different data centres;

– Provide a generic interface that not only OMSs but other applications and systems can
use;

– Support insertion of data from different data centres and synchronization between the
hosts at these data centres;

– Handle crashes of hosts and data centres as described previously.

Nomura wants a system that is generic and that can be used in more areas than the one
described previous in this chapter. Thus, the proposed system will have an interface through
which OMSs as well as other applications can access the system. Existing related products to
this system include Ehcache [6], Terracotta [13], Velocity [10], to some extent memcached [7].
Neither of these where chosen because Nomura wants a custom made system that they can have
total control and ownership of.

2.2.1 Types of Data
Two primary classes of data are to be stored in the data store: customer information and order
information. Customer information is about customers and is only needed to be stored in mem-
ory, not persistently to disk because this customer information is saved in a separate database.
The data are located in another database and the data store is either primed with the data or
entries are fetched from their database at lookup. Customer information can, in addition to the
static data, contain real time data such as the number of orders placed by that customer or total
profit et cetera and are normally used by the OMS to determine whether an order is valid or not.

Order information is created in real time and is primarily contained in memory, but is repli-
cated to the alternate data centre where it is stored persistent on disk. The persistent data on disk
is used when system crashes occur.
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Figure 2.5: Example of the augmented system

Both these types of data need to be modifiable by the OMSs and they also might need to be
manually modified and this is done by an administrative application which uses the API.

2.2.2 Handling of Crashes
To ensure that the replicated data store can handle the crashes described above, synchronization
between data stores on different data centres is required. In the most common case data centre 1
will be the primary, with the data in the store replicated to data centre 2, where the data is stored
on disk. If both data centres crash, the data store must restart using the data that is persistent on
disk.

There is one instance of the RLDS active on each host and these are connected to each other.
Each of these can be individually configured to have its copy of the data store only in memory
or both in memory and on disk. This is further explained in Chapter three.

The system is configurable to either recover from disk in under a minute or recover from
disk in under 30 minutes. When recovering in under a minute the data from disk is not cached
in memory which it is when recovering in under 30 minutes. Apart from these time constraints,
the data store operates as fast as possible.
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Chapter 3

A Design for Reliability and
Distribution of Data and Its
Implementation

In this chapter the design and implementation of the Replicated Local Data Store (RLDS) is de-
scribed. The RLDS is written in the Java programming language. The system has been designed
and implemented with consideration to the methodology and technology described in the Dis-
tributed Systems course given by the department of computing science at Umeå university. The
different parts of the design and the overall architecture of the system are illustrated in Figure
3.1 and described more in detail further on in this chapter.

The design consist of an application programming interface (API) to serve as the generic
interface for the OMSs and other applications. It consists of two storage modules, for storing
objects in primary memory and for storing objects on disk. It also has a group communication
module (GCM) that supports reliable and totally ordered messaging between instances of the
data store located in the same or different data centres. The most important module of the
system is the controller. The controller is responsible for synchronizing data between instances.
The overall implementation is illustrated as an unified modeling language (UML) diagam in
Figure 3.2.

Figure 3.1: Overall architecture of the design

9
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Figure 3.2: UML diagram of the overall system

Here is an example to illustrate how the system should work. Take the example described in
Chapter 2 (Figure 2.5) where two OMS ran at one data centre with backups running at a second
data centre. To allow these OMS to have access to the same data all OMS run an instance of
the RLDS connected to each other via the group communication module (GCM). All they need
is to be part of the same process group. If both OMSs on both data centres are members of the
same group their respective data store will look identical.

OMS A-M in both data centres is running the RLDS and is part of group A. OMS N-Z in
both data centres is running the RLDS and is also part of group A. If OMS A-M in the primary
data centre adds an object O both the OMS N-Z in the primary data centre and the OMSs in the
secondary data centre will add object O. The same goes for updates and deletion.

3.1 Application Programming Interface
The application programming interface (API) provides a generic interface that the OMSs and
any other applications can access the data store through. The API handles the communication
between these components and the controller module. The interface supplies methods for inser-
tion of objects, accessing objects and deletion of objects. In accordance with requirements from
Nomura, the API contains a method (putSafe) for putting an object into the data store that will
guarantee that the object is stored. This method will not return to caller until it has completed
the put action.

The UML description of the interface can be seen in Figure 3.3. The interface is designed to
be as simple and self-describing as possible. All that is needed to store an object is to make sure
it is serializable and a unique key in form of an String along with it. A serializable object is an
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// Assuming the rlds has been set and initialized
// RLDS rlds = ...
// Creating a key
String key = "key1";
// Creating a serializable object
Serializable object = new SomeSerializableObject();

// Store the object associated with key
rlds.put(key, object);

// Get the object associated with key
Serializable object2 = rlds.get(key);

// Delete the object associated with key
rlds.delete(key);

Listing 3.1: Accessing objects through the API example

object that allows for transforming the object into a stream of bytes and from a stream of bytes
back into an object. This is also known as marshalling and un-marshalling. The system utilizes
native support in Java for serializing and de-serializing objects.

Figure 3.3: Application Programming Interface to the RLDS

The key associated with the object used when storing an object into the RLDS is used for
accessing that object from the RLDS as well as deleting it. See Listing 3.1 for an example of
how to access objects making use of the API.

There exists another method for putting objects into the RLDS, putSafe. This is a blocking
method that flushes the object to the replication part and to the in-memory store as well as to
disk store and will not return until the object is properly stored. The arguments to putSafe is the
same as for put. See the User’s Guide in appendix A.

The interface provides another functionality for ensuring that entered objects are stored
properly and that is the flush method. It can be used whenever you want to make sure that
the objects put into the RLDS are properly stored and replicated. This method is always called
internally to ensure safe operation and is also blocking. If the RLDS is configured without disk
store this method returns immediately.

The API provides two methods for starting up and shutting down the RLDS. These are
initialize and shutdown respectively. The initialize method is used to connect the RLDS to the
group communications manager. The shutdown function is to be called when the system is
shutting down and performs flushing of objects and recursively shuts down different modules of



12 Chapter 3. A Design for Reliability and Distribution of Data and Its Implementation

the system such as GCM and data stores, et cetera.

3.2 Store
The store is responsible for storing the objects, in-memory and/or on disk. The in-memory store
is designed to be used with different cache eviction rules such as Least Recently Used (LRU),
Least Frequently Used (LFU), Most Recently Used (MRU) or First In First Out (FIFO) to handle
the case when system memory runs out. Currently, in the proof-of-concept system only LRU
is implemented. The disk part handles storing the objects on secondary disk and also handles
retrieving objects from disk after a system crash or in the case that object is evicted from the
system memory and need to be retrieved.

The store is the interface between the controller and the in-memory store and between the
in-memory store and the disk store. The store interface has many similarities with the API
and contains five public methods: put, get, delete and flush for storing, accessing, deleting and
flushing to secondary storage, respectively. The fifth method, shutdown, is used to make cleaner
exists when the system is shutting down. These are used by the controller to forward requests
from the calling program or from the replication part. Put takes an object of type Element which
is the element to be stored and get and delete takes a String representation of the key associated
with an Element.

The class Element is the wrapper class for serializable objects put into the store. The El-
ement objects holds a serializable object as payload, a string representation of the key, a hit
counter and a timestamp for when the Element last was accessed. The hit counter and the time-
stamp are updated every time the payload is accessed and are used to implement different kinds
of eviction policies for the memory store. As mentioned above, the memory eviction policy
implemented in the proof-of-concept system is the LRU policy.

In addition to the attributes mentioned above, the Element class contains a view index num-
ber that dictates which group view the Element was stored in. A group view is set of group
members at a given point in time that contains information about which members where a part
of the group at that particular time. Group views are associated with an integer value.

3.2.1 Memory Store
The in-memory store is a cache for the disk store or stand-alone if no disk store is present and is
simply a hash table that maps keys to wrapper elements. The in-memory store contains the same
index as the disk store. However, due to disk size being larger than random access memory the
in-memory store may only contain a subset of the disk store. It implements the store interface
and forwards calls to the disk store if there is any present.

Apart from the store interface the in-memory store contains a method for accessing all the
Elements from a specific view. This is done by the getAllFromViewIndex method.

The Least Recently Used (LRU) eviction policy is the policy implemented in the proof-of-
concept system. The eviction is only intended for the in-memory store and not for the disk
store since the disk space is considered to be enough on most machines. However, the eviction
policy should not be needed since the amount of data is considered to fit in physical memory of
intended servers.

3.2.2 Disk Store
The disk store is an extension of the in-memory store by supporting storing of Element objects
persistently on disk.
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Incoming requests to the disk store are queued in a worker queue that is handled by a worker
thread that writes these changes to disk. The disk part is divided into two files, a data file and
an index file. The data file contains the serialized elements and the index file contains the key to
the element and the position and size to the serialized object in the data file. The worker thread
acts as a spool by writing objects from the queue to disk as fast as possible. The worker writes
the index file after a given timeout or when the flush method has been invoked. The spool is
needed because it takes more time to access disk than memory and without a spool requests to
the disk will block the system. The disk store needs both an data-file to store the elements and
an index-file to keep track of were the actual data is stored. The index and data file names are
specified in the constructor of the RLDS implementation RLDSImpl.

An illustration of the store is found in Figure 3.4.

Figure 3.4: Illustration of the memory and disk store

3.3 Group Communication Module
The group communication module (GCM) is used to provide a common communication layer
for the proof-of-concept system running on different hosts on different data centres. The GCM
provides process groups with group management, view synchronization of group members and
totally ordered reliable multicast. A process group is a set of members that upon signals to the
group all members in the group will receive that signal.

Figure 3.5: The layering structure of the GCM
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The GCM consists of a group manager that handles creation, joins and leaves from groups
and is divided into several layers to enforce loose coupling and modularity. These layers are
group member layer, ordering layer, multicaster layer and communicator layer, as illustrated in
Figure 3.5. The group member is a member in one group and a GCM instance can have many
group members since it can be a member of several groups. The ordering layer is responsible
for ordering the outgoing and incoming messages. The total ordering is achieved by one group
member is elected through the Bully Algorithm 1 to be the sequencer of the group. Every
message is sent to the sequencer which decides the order of the message and sends it to the rest
of the group ensuring total order of messages throughout the group.

The multicaster layer achieves reliable multicast through keeping a list of the latest received
messages and broadcasting incoming messages not found in the list once. This means that all
members will send every message to all other members as described in [4]. The communication
layer handles the communication between group members. The communication channel used is
TCP over IP.

All messages are sent through the GCM so that if the group changes the GCM will notice
this and handle the group management involved in this. This way the view of the group can
be kept coherent and synchronized, as in view synchronous systems [2]. The GCM interface
contains methods for creating, joining, disconnecting and removing groups. As well as sending
messages to the group and registering for messages and group view changes. The interface also
has a method for connecting to the group manager.

3.3.1 Group Manager
The group manager is a central point discovery service that is used to connect members to a
group. The group manager is responsible for delivering consistent views of the group to the
groups members. The group manager acts as a name server in the system and handles the initial
connection between group members in a group. The group manager is only needed to set up
a group and when group members have joined the group the group manager could crash and
the group would still function. If the group manager has crashed no new members can join the
group.

3.3.2 The Object Group Design Pattern
The object group design pattern is an object behavioral pattern for group communication and
fault-tolerance in distributed systems [9]. Events within the object group honor the Virtual
Synchrony model [3]. In virtual synchrony multiple programs in a network can be organized
into process groups. Messages are sent to the process group instead to individual programs
where each message is delivered to all the group members and in the same order. Owing to
virtual synchrony, the size of an object group can vary at run-time, while client applications are
interacting with the object.

Take the example where we have a network phone book service spread across multiple
hosts, see Listing 3.2. The client applications have one object reference that represents the
entire group, and don’t need to worry about references to a particular group member. The install
and remove operations are multicast to the whole group since they change the replicated state of
the directory object. The lookup operation does not need to be replicated since it does not alter
the state and can be performed on a single member.

A request to the object group will return as long as at least one group member is alive.
When a new member wants to join the group operations on the group will be suspended. Then

1The bully algorithm is an election algorithm used in distributed systems. For details see Appendix B.
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interface Directory {
void install(String key, Object value) throws EntryExistsException;
Object lookup(String key) throws NoSuchEntryException;
Object remove(String key) throws NoSuchEntryException;

}

Listing 3.2: Sample network phone book service

the internal state of one group member is transfered to the new member. This could be tedious
since the interal state contains the whole data store. After that group operations are resumed.
This procedure is fault-tolerant because if the member which supplies its internal state fails
another member will take over (and redo from start), and if the new member fails it will be
discarded and the group will carry on as before.

Figure 3.6: Structure of the Object Group Pattern

Structure

Figure 3.6 shows the overall structure of the Object Group Pattern. The different parts are;
client application, object group reference, communication subsystem, object implementation
and object group. The client application creates an instance of an object group reference and
binds the reference to a target group by using a name server to perform the name-to-object
mapping. After that, operations issued through the reference will be carried out on the object
group.

The object group reference is a surrogate object with the same interface as the group mem-
bers. When a member function is called on the group reference, the call will marshall the
arguments, multicast the request to the group members, wait for a response, unmarshall the
response and return the result to the calling client.

The communication subsystem provides a low-level interface to reliable multicast, group
management, and light-weight processes. For the sake of flexibility and portability, the commu-
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nication subsystem implements a generic interface onto the real interface provided by the actual
communication system implemented.

An object implementation provides the functionality of the service, e.g., it implements a
phone directory. Each group member implements the same interface. The object implementa-
tions form a logical object group. Through reliable multicast each group member are ensured to
receive all requests client applications have issued through the object references. Group mem-
bers are ranked based on their life-time, where the oldest receives rank 0, next oldest rank 1 and
so on. When an object joins or leaves a group all members obtain a view change notification to
inform about new ranks, number of members et cetera.

Figure 3.7: View Management Protocol of the Object Group Pattern

View Management

A member of a group always knows which members are in the group through the use of views.
A view is an ordered set of object references, one per group member, ordered from the oldest
member, the next oldest, and further on to the newest member. Each member knows its own rank
and the ranking is consistent at all members. Joins and parts from a group forces the change of
view at all members in the group. View management is an important component of the Virtual
Synchrony model [3] and the object group pattern view management protocol is illustrated in
Figure 3.7.

In Figure 3.7 object N requests to join a group containing three members where object C is
the coordinator. The coordinator is always the oldest member. N sends a JOIN REQUEST to C
which in turn sends a FLUSH REQUEST to all group members to ensure that cached requests
are delivered to the client in the old view. All members respond to C with a FLUSH ACK when
done. Now user requests are held back until the new view is installed. When C has received all
acknowledge messages from the group it sends a STATE MSG to the new member. After the
state transfer is done C sends out the new view to all members (including the new member) and
user requests are now allowed again. If the coordinator fails, the group members will receive a
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failure notification from the communication subsystem and there will become a new coordinator,
the next oldest member, and the view transfer will be restarted with the new coordinator.

Summary

The object group pattern can be used to provide fault-tolerant client/server systems through
active replication, passive replication or multi-versioning. The pattern can be used to provide
efficient group communication over any multicast channel through providing a high-level in-
variable interface to such functionality. Load sharing and scalability are also possible through
splitting tasks on different members. This is why the object group design pattern is used in this
system.

There are some drawbacks to the object group pattern such as requiring fault-tolerant name
servers and putting a really high bar for the communication system. It needs realiable, totally
ordered multicast of network messages, a group management protocol to ensure that object
group members have consistent views on which objects are in the group, failure detection, and
consistent propagation of failure notifications.

3.4 Controller
Behind the API we have the controller that handles all complexity with synchronization and
replication of data. The API together with the controller contains the functionality of ensuring
that the object put into the RLDS is stored properly and replicated to all recipients as well as
ensuring updates/insertions on other members are propagated to this instance. The controller
part handles the request from the API and handles the intergration and interface towards the in-
memory store. Incoming objects from the API are put down through the GCM. When an object
later is delivered from the GCM the object is stored in-memory and possibly on disk.

The initialize method of the RLDS interface starts the GCM implementation and creates/joins
a given group. The method also registers message and group view listeners which can be used
by client applications to get callback upon view changes in the group.

Upon putting an object into the RLDS the controller sends the message through the GCM
and only stores objects that are delivered from the GCM. This means that all objects are put
through the replication system and received/delivered through this to ensure that all members
receive the same object, and in the same way.

When the GCM deliveres a group view change to the controller the RLDS determines if
it is a new member and then the RLDS enters synchronization mode. If it is a rejoin from
a member the members exchanges objects that are new since the group view index when the
member left/crashed. When the synchronization is done the controller enters primary mode and
works as normal.

3.4.1 Replication Model
The replication algorithm is based on the database replication algorithm presented in [1]. The
algorithm is efficient and provably correct for database replication over partitionable networks
that provides global persistent consistent order. Compared to two-phase commit protocols this
algorithm can perform higher throughput (actions/second) as demonstrated in [1].

The system model consists of a set of nodes that each hold a complete copy of the database.
The crash of any component running within a node will be detected and treated as a global node
crash. A node may crash and may recover with its old identifier. The nodes communicate by
exchanging messages through a group communication layer which provides reliable multicast
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messaging with total ordering guarantees. The communication layer also provides notifications
to the replication system on node crash/recover and node voluntary join/part. This is detected
through the communication sub system.

The conceptual algorithm is divided into four states; Prim, NonPrim, Exchange and Con-
struct, as illustrated in Figure 3.8. In Prim state the node belongs to primary component. When
a client submits a request it is multicast using the group communication to all the nodes in the
component. In NonPrim state the node belongs to a partitioned group and requests are queued
at the node. A node switches to the Exhange state upon a view change. All nodes in the view
will exchange information to synchronize their knowledge. In the Construct state all nodes that
synchronized in the Exchange state can attempt to install the primary component by querying
all members with a create request. If all members response state will change to Prim state. If a
view change happens before all responses are received the state changes to Exchange.

Figure 3.8: Conceptual Replication Algorithm

3.4.2 Replication Styles
There exists two major replication styles, passive and active replication [11].

In passive replication a single primary replica executes all invocations with one or more
secondary replicas poised to take over from the primary if the primary fails. Periodically the
state of the primary is retrieved and multicast to the group. Recovery involves electing a new
primary, its initialization to the last checkpoint of the primary and the subsequent replay of
logged messages to restore its state to the point just prior to the failure.

In active replication all of the replicas of an object are loaded into memory, and operate
concurrently. Invocations and responses are multicast to all of the replicas, every server replica
executes every invocation and returns a response. Thus, the occurence of a fault at one replica
could be masked by the continued operation of other replicas. Active replication is desirable in
real-time systems since the latency is the execution time of the fastest live replica. However it
is more memory intensive and CPU intensive.

The one used in the system presented in this thesis is the active replication.

3.4.3 Replica Consistency
One assumption made on behalf of replication is that all replicas of an object should be indin-
stinguishable in function and behavior. All replicas must maintain a consistent state and handle
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invocations and results in an identical way. In short, Narasimhan [11] makes the follow criteria
for replica consistency.

– Replicas must behave in a deterministic manner at all times. Two replicas for the same
object that start from the same consistent state and performs the identical invocations are
guaranteed to reach a consistent final state.

– Replicas must start operation from a consistent initial state. All replicas must have iden-
tical initial state at system startup. During recovery from a failure a new or recovering
replica will start from the last checkpointed state and replay logged invocations and re-
ponses to restore its state to the point where it can process new messages.

– Replicas must execute the same sequence of invocations. By assuring this and that all
replicas start from the same consistent initial state, we guarantee that all updates to inter-
nal state occur in a consistent way across all replicas.

– Replicas must process each distinct invocation only once. In active replication all replicas
execute every invocation and returne a response, resulting in duplicate results at the client.
In passive replication a recovering primary replica might receive a repeat invocation of an
invocation already processed by the failed primary. These duplicate messages must be
detected and discarded.

The proof-of-concept system relates to these criterias in the following way. Replicas start
out with the same empty state and performs the same actions, ensuring the same consistent state.
If a replica crashes and recovers it will perfom the actions missing from its crashing state to the
other replicas state. The underlying communication layer ensures that duplicate action is not
delivered to the system making sure that invocations only are executed once.
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Chapter 4

Evaluation and Testing

This chapter shows the evaluation of the proof-of-concept system and the test performed to
demonstrate that the system performs as it should.

The tests are performed on two Solaris 10, Sun V240, 2GB ram, 2x1.3GHz UltraSPARC IIIi
server machines located at the department of Computing Science, separated by gigabit (1Gbps)
ethernet.

4.1 Evaluation
The evaluation and the profiling of the proof-of-concept system is performed with the help of
jiprof, a profiling agent that logs everything you do in the Java Virtual Machine (JVM) and
presents this in a text-document. When using a profiling agent to get a picture of the memory
and processing footprint of an application it is important to note that the profiling agent poses
some overhead on the system. The profiling agent I used, jiprof, creates an overhead of 100%
which means that running the system with the profiling agent runs twice as long as without.

4.2 Testing
Apart from the JUnit test that have run during the development of the proof-of-concept system
a few overall test cases have been created and executed to show that the system is working
properly.

The first test is developed to show that the group communication works and the case is as
follows. Create a group manager and run two group communication instances from two differnt
computers, both connected to the internet. Connect these members to the group manager and
have one of the members creating a group and have both members joining the group. After this,
one member will send a large amount (10000) sequential strings to the group. That members
as well as the other member will check that it receives all strings and in the right order. After
this a crash is simulated for the group manager by “killing” the corresponding system process.
Now the same large set of strings will be sent again and verified. After this a simulated crash
is created for one of the members. The remaining member now sends a couple of messages to
the group (with only itself as member). Now the “crashed” member is restarted and sends out a
couple of messages to the group.

The second test has its purpose to show that the store works, both the memory store and the
disk store. The test case starts out with the creation of a memory store with a disk store attached
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to it. After this 50000 Java Objects are put into the store and the program is closed. Now the
store with disk store is initialized with the data files created previously. All 50000 objects are
fetched from the store and verified. After this the store is cleared and all 50000 objects (now
removed) are attempted to be fetched from the store, which will result in 50000 error messages.

The third test case test, the replication part and the overall function of the system. A group
manager is started and two instances of the RLDS are started on two different computers both
connected to the internet. Both members connect to the group manager and joins the group.
After this one member put a couple of objects into the RLDS and the other member verifies that
it has these objects in its own local store by fething the objects. After this, one of the members
are simulated to crash and the remaining member stores a couple of more objects into the RLDS
before the crashed member recovers. The crashed member will now recover (that is, start up
again) and try to access the objects the other member has stored while the crashed member was
down. Now the recovered member will store a couple of objects into the RLDS that the other
member will retrieve.



Chapter 5

Conclusions

This report has shown the work of designing and creating a proof-of-concept system, a repli-
cated local data store, to act as a generic common data store to be used by OMS and other
applications through a given application programming interface. The system handles replica-
tion between instances separated by network/ethernet and recovery from certain host failures,
including network failure and host crash.

5.1 Limitations and Future Work
Dispite the fact the proof-of-concept system works there still exist some limitations that leaves
room for improvements. The proof-of-concept system has no support for primitive data types
which means that even to put a simple primitive integer int into the system it has to be auto-
boxed into an Integer object to be accepted into the system. In a future version of the system
it would speed up the system by supporting primitive data types. However this is coupled to
the serializing method used and would mean that a custom serializing method would have to
be created. This custom method would have other benefits as well. For example, if the serial-
izing would be detached from the system different methods could be created which would be
optimized for the current data types of the current instance.

One limitation of the proof-of-concept system is that it only handle host failures and treats
all errors as such. This is fairly naive approach and could be developed and evaluated further.
Possible it could also improve the perfomance of the system.

The only memory eviction policy implemented is the least recently used (LRU) policy and
this is enough to provide a proof-of-concept system but in a real system more eviction policies
would be desired.

The guarantees given in subsection 2.2.2 that the system should recover from disk under one
minute or under 30 minutes with prepopulated chache is not guaranteed by the system. Tests
have shown that it works with a large number of objects stored in the system but there is no limit
on the maximum number of objects stored in the system.

Group Communication Module

The election algorithm chosen for the group communication is designed for synchronous sys-
tems and the proof-of-concept system is an asynchronous which means that the algorithm is not
provable correct. The algorithm should be exchanged in a future version for e.g. the invitation
algorithm or a ring based election algorithm.

23



24 Chapter 5. Conclusions

The ordering part of the communication module only supports total ordering which gives no
other guarantees but the same order at all member. In a future version this could be extended to
use FIFO-total (first in first out) ordering which is also total ordered but messages sent from one
member in order will be received by all other members in that order.

Controller

The replication model described and used in the system produces much overhead in terms of
data traffic. For every message sent, that is every object stored, updated or removed from the
proof-of-concept system approximately 50 messages are sent by the controller and group com-
munication module. The replication model together with the group communication module is
primary designed for two data centres and it does not scale well. The number of messages
grows square, O(n2), with respect to number of hosts. This has a big negative effect on the per-
formance of the proof-of-concept system and this means that the system most likely won’t be
used in a production environment. In a future version a different replicaion and communication
model could be discussed to make the proof-of-concept system faster and more efficient.
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Appendix A

User’s Guide

This appendix is to be used as an aid for using the Application Programming Interface (API) to
the system. The methods in the interface is described and in the end of this chapter an example
is given.

A.1 Application Programming Interface
The RLDS interface is the application programming interface (API) towards the proof-of-concept
system. The API supplies methods for insertion, deletion, updating and retrieving objects to and
from the replicated data store. The API has the following methods:

put - Put a serializable object into the RLDS bound to a given key. put(String key, Serializable
o)

putSafe - Put a serializable object into the RLDS bound to a given key. This method flushes the
object to disk and to other group members ensuring that the object given as a parameter
really will be stored. putSafe(String key, Serializable o)

get - Get the serializable object from the RLDS associated with the given key. public Serializable
get(String key)

delete - Remove a serializable object from the RLDS associatedwith the given key. delete(String
key)

shutdown - Shutdown method to ensure clean shutdowns. shutdown()

flush - Flushes data to disk, does nothing if no disk store is present. flush()

initialize - Connects the GCM to registry. initialize(String groupName, String
host, int port)

A.1.1 Configuration
The Configuration object is sent to the implementation of the proof-of-concept system, the
RLDSImpl class, at contruction with configurable values set. The configurable values are:

member name - A human readable name of this current instance. This is mainly to ease the
debugging and development of the system.
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path to data file - A path to the data file that will contain all the objects stored on disk.

path to index file - A path to the file that will contain the data store’s index.

delete files on startup? - This boolean configuration value has an effect if there already exists
files at the data and index paths. If this boolean value is set those files will be trucated at
startup.

disk store thread sleep interval - The sleep interval of the disk store worker thread. This value
affect how long the disk store will sleep and wait for data to be written to disk. Changing
this value could optimize the performance of writing objects to disk storage. The value is
in milliseconds.

disk store index write timeout - Similar to the disk store thread sleep interval. This value
affect the maximum number of milliseconds between the data store’s index is written to
disk storage. Changing this value could optimize the performance of writing objects to
disk storage.

controller timeout - This value determines how long time the group communication module
(GCM) should wait before classifying an group member as failed. The value is entered in
milliseconds.

A.1.2 Group Manager
The group manager is needed in the initial setup of a group and acts a nameserver that maps a
group name to its members. The group manager is started through the Server class which takes
one argument, the port number upon which to listen to incoming connections from prospecting
group members.

A.1.3 Examples
Two examples follows. The first example, Listing A.1, is an example of creating an RLDS
instance and accessing it through the API. The second example, Listing A.2, is an example of
creating two RLDS instances, connecting them and accessing objects through both instances.
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// Start the group manager
Server s = new Server(3003); // Port
s.start();

// Configuration
Configuration config = null;
config = new Configuration("member Foo", "index.dat", "data.dat");

// RLDS instance
RLDSImpl rlds = null;
rlds = new RLDSImpl(config);
// Connect to the group manager and
// create/join the group "grp1"
rlds.initialize ("grp1", "localhost", 3003);

// Create a sample object and key
String key = new String("bar");
Serializable object = new String("Moose");

// Put the sample object into the store
rlds.put(key, object);

// Get the ’Moose’ back from the store and print it
String o = (String)rlds.get(key);
System.out.println(o);

// Delete the ’Moose’ from the store
rlds.delete(key);

// Trying to get the ’Moose’ from store now
// would cause an exception to be raised
// rlds.get(key);

Listing A.1: Example of creating an RLDS instance and accessing it through the API
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// Assuming that the group manager is started at some
// ’host’ with port 3003

// -- At host A --
// RLDS instance A previously initialized
// RLDSImpl a = ...;

// Connect to the group manager and
// create/join the group "grp1"
a.initialize ("grp1", "host", 3003);

// Create a sample object and key
String key = new String("bar");
Serializable object = new String("Moose");

// Put the sample object into the store
a.put(key, object);

// -- At host B --
// RLDS instance B previously initialized
// RLDSImpl b = ...;

// Connect to the group manager and
// create/join the group "grp1"
b.initialize ("grp1", "host", 3003);

// Create a key for the ’Moose’ object
String key = new String("bar");
// Get the ’Moose’ back from the store and print it
String o = (String)b.get(key);
System.out.println(o);
// Notice that instance A added the object and
// instance B can access it

// Delete the ’Moose’ from the store
b.delete(key);

// -- At host A --
// Trying to get the ’Moose’ from store now
// would cause an exception to be raised
// because instance B deleted it
// a.get(key);

Listing A.2: Example of creating two RLDS instances and connecting them
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The Bully Algorithm

The bully algorithm is a leader (or coordinator) election algorithm used in distributed computing
systems to dynamically select a leader by an process identifier [8].

Each process starts up with an unique identifier that can be ordered and has a list of all
members in the system. When a process P notices that the coordinator no longer is responding
to requests process P initates an election as follows:

1. P sends an ELECTION message to all processes with higher ID.

2. If P gets no responses, it wins the election and broadcasts that P is the new leader.

3. If P gets a response from a process with higher ID, that process is now the leader.

A process can receive an ELECTION message at any time and if the process initiating the
election has a lower identifier than the receiving process the receiving process replies an OK
message and starts its own election (unless the receiving process is already running an election).

If a process crashes and recovers it will start an election. If this happens to the process with
the highest identifier it will win and thus the “bully” will win.

As described above any process that receives an ELECTION message from a process with
lower identifier will forward this ELECTION to its higher members and thereby ensuring that
the process with highest identifier will always win.

In best case the process with next highest identifier will notify that the coordinator is down
and only send out messages to lower processes telling them about their new leader. In the worst
case the lowest identifier will notice the coordinator is down and all higher processes will run
elections.
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Appendix C

Source Code

The source code is available per request.
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