
1

DSP-Based Field-Oriented Step Motor Control

Dan Simon
Cleveland State University

1960 East 24th Street
Cleveland, OH 44115

216-687-5407
d.j.simon@csuohio.edu

Dennis Feucht
Innovatia Laboratories

14554 Maplewood Road
Townville, PA 16360

814-789-2100
dennis@innovatia.com

ABSTRACT

The SMC3 motor drive has been built using an Analog Devices
ADSP-2101 digital signal processor (DSP). The SMC3 is de-
signed to work with two-phase step motors, which are perma-
nent magnet motors with many (typically 100) poles. The
firmware in the SMC3 DSP drives the step motor phase wind-
ings using field-oriented control rather than using single steps.
This method derives the maximum theoretical performance
from the motor. This paper describes field-oriented control,
and how the SMC3 hardware and firmware implements it.

I. INTRODUCTION

Step motors, as typically driven in industrial appli-
cations, can exhibit undesirable behavior such as step-
ping resonances and skipped steps. However, this is due
to the drive method that is used, and is not due to the
motor itself. The name "step motor" indicates how the
motor is typically driven.

Step motors are low in cost because of their high-
volume use in industry, and they also produce high
torque at a given motor winding current (because of their
many poles). This is desirable for low-speed position
control, and also for reducing mechanical force-speed
conversion such as gearing.

The SMC3 uses field-oriented control (also called
vector control), which derives the maximum theoretical
performance from the motor. This approach is not wide-
spread because, until recently, electronic components
constrained drives to simple schemes such as stepping.
In addition, it was not until the mid-1980s that the full
dynamic theory of electric machines was worked
out [Kr89]. The SMC3 does not need a tachometer be-
cause speed is derived from position, and position is
derived from an incremental position encoder or directly
from the motor's phase-winding voltages.

Section II of this paper provides some background
on step motor theory and field-oriented control. Sec-
tion III discusses the hardware design of the SMC3, and
Section IV discusses the firmware design. Section V
presents some experimental results, and Section VI of-
fers some concluding remarks.

II. FIELD-ORIENTED MOTOR CONTROL

The step motors driven by the SMC3 are two-phase
motors; they have two sets of wires wound on the stator
(the stationary part of the motor). These two phase-
windings are perpendicular to each other, and are re-

ferred to as windings A (or 1) and B (or 2). When the
windings conduct current, they produce magnetic fields
that add to each other vectorially to produce an overall
stator flux. The stator flux interacts with the rotor mag-
nets to produce torque. When the stator and rotor fluxes
are directly opposite each other, the motor is in a stable
equilibrium and zero torque is produced. When the stator
and rotor fluxes are aligned with each other, the motor is
in an unstable equilibrium position. Any other relative
orientation of the stator and rotor fluxes produces torque
in the motor. As an example, consider Fig. 1.

Figure 1: Step Motor Diagram

(adapted from www.cs.uiowa.edu/~jones/step/types.html)

 (a) Position 1 (b) Position 2

Fig. 1 portrays a two-phase step motor with the

windings labeled "1" and "2". The rotor has six poles (in
north-south pairs). In Fig. 1(a), current excites winding 1
such that the stator magnetic field leaves "north" at the
top of the figure and enters "south" at the bottom of the
figure. This will attract the rotor into the position shown.
If the power to winding 1 is removed and current is
commanded in winding 2 as shown in Fig. 1(b), then the
rotor will move 30° (one step) clockwise. If the power to
winding 2 is then removed and current is commanded in
winding 1 in a direction opposite that shown in Fig. 1(a),
then the rotor will rotate an additional 30° clockwise.
Next, if winding 1 current is removed and current is ap-
plied to winding 2 in a direction opposite that shown in
Fig. 1(b), then the rotor will rotate another 30° clock-
wise. Finally, if winding 2 current is removed and cur-
rent is applied to winding 1 in the direction shown in
Fig. 1(a), the motor will rotate yet another 30°.

At this point we have taken the electrical excitation
through one complete cycle, but the motor has moved
only 120°, or 1/3 of a mechanical revolution (cycle). In

2

general, the relationship between electrical frequency
and mechanical frequency is given by the equation

fe = fm × P / 2

where P is the number of rotor poles. The motors in-
tended for the SMC3 are 100-pole motors, and so
fe = 50 × fm.

The stator magnetic field can be oriented in any di-
rection by commanding the proper proportion of current
in windings A and B. By maintaining the stator magnetic
field vector 90° (electrical) ahead of the magnetic field
vector of the rotor (in the direction of rotation), then the
motor is field-orientated, and torque will be maximum
(for a given power supply voltage). If winding A and B
currents are sine-waves phased 90° with respect to each

other, then the resulting stator magnetic field vector will
rotate at the sinusoidal frequency.

III. HARDWARE DESIGN

The following sections describe the various aspects

of the SMC3 hardware. The SMC3 functional diagram is
shown in Fig. 2 and a photograph of the SMC3 is shown
in Fig. 3.

The DSP program code is stored in a 27128
EPROM. At reset, the DSP boots in the program code
and then proceeds to execute it. One reason for choosing
the ADSP-2100 family of DSPs is that a 2-chip solution
is possible because of the single EPROM bootstrapping
(TI does not provide this feature). A 20 MHz crystal
oscillator is mounted on the bottom side of the SMC3.

Figure 2: SMC3 Hardware Functional Diagram

Figure 3: SMC3 Photograph

A-phase H-bridge

MOSFET power switchesA-phase H-bridge
MOSFET gate

Power-driver sense amplifiers
and current-limit comparator

B-phase power driver

Switching power supply

Power driver supply

Dual PWM
generator

DSP reset IC

ADSP-2101 DSP

27128
EPROM

74HC373 Latch
External Input Port

Incremental position
encoder input

Stop and command inputs

AD7811 ADC

Power connector:
+12V, +5V, GND

DSP

Encoder
Interface

4-input
MUX

&
10-bit
ADC

Dual
PWM

Gener-
ator

Power-
switch

translators
and logic

Dual
power
bridge
driver

Motor current sense
amplifiers and analog

processing

Stop Button

To Motor
Windings

User-Adjustable Pot

Power Supply

From Motor
Windings

External
Bytewide

Latch

Configuration
Jumpers

Motor Voltage Zero-
Crossing Detector

15V & 5V
Control
Supplies

Converter

3

A. Dual PWM Generator

The DSP generates two sinusoidal waveforms (for
windings A and B) with frequencies and amplitudes
computed by the DSP. The DSP firmware approximates
the sine functions with the five-term, four-quadrant se-
ries expansion found in [Ma92]. The sine-waves are in
PWM form, as signed PWM duty ratios. The sine-waves
are applied to the motor windings through two full H-
bridge power drivers (again, one for each winding). For
smooth, steady-state motor operation, the two motor
winding voltages must be sine-waves in quadrature.
Each PWM on-time is represented by nine bits (one sign
bit and eight magnitude bits).

The 18 PWM bits are sent out serial port 1
(SPORT1) of the DSP, nine bits at a time. The PWM bits
propagate through two 74HC595 shift registers. Mean-
while, a 74HC590 (8-bit counter) is driven at 10 MHz by
a divide-by-two flip-flop (which is itself driven by the
20 MHz DSP clock). The eight LSBs of the shift regis-
ters comprise the winding A and B PWM duty-ratio
magnitudes. The ninth bit is the sign bit. It switches the
H-bridge for bipolar drive.

The PWM magnitudes are compared with the
counter output by two 74HC688 comparators. When the
two inputs of a comparator are equal, the comparator
output asserts low, which resets a flip-flop output that
ends the PWM on-time and interrupts the DSP through
IRQ2. Since the counter runs at 10 MHz, IRQ interrupts
occur at a frequency of 10 MHz /256 = 39.0625 kHz.
The PWM duty ratio is determined by the formula

254,,0,
256

1 …=
+

= NND
where N is the 8-bit magnitude that comes from the DSP.

The end of a PWM cycle interrupts the DSP, which
then computes new values of D for the A and B PWM
signals. The composite 18-bit PWM data stream is
shifted out of the DSP before the end of the PWM cycle,
so that when it occurs, the updated values of D are
loaded into the shift registers at the 255 count (reload
state), starting the new cycle.

For development and testing, it is hard to view a
PWM waveform as a duty ratio changing in time. To
recreate an approximate waveform, the PWM outputs
are low-pass filtered with resistor-capacitor combina-
tions and are available at test points on the SMC3. They
normally appear as approximate (obviously sampled)
sine magnitudes (haversines) that are in quadrature with
each other. An example will be shown in Section V.

B. Power Drivers

The SMC3 contains two identical full H-bridge
power drivers, one for each phase-winding. This section
will consider only the winding A driver; the B driver is
identical to it.

The full H-bridge driver provides bipolar drive to
the motor windings, connected between the positive and

negative A output terminals. Heat sinks mounted on the
MOSFETs (not shown in Fig. 3) are required for dissipa-
tion of MOSFET conduction and switching losses. The
TO-220 MOSFET packages, shown in Fig. 3, have a
1.7 °C/W thermal resistance and can be operated with
heat sinks at an output power of only a few watts.

 The Power Integrations INT-200 low-side and INT-
201 high-side MOSFET drivers work in pairs to prevent
shoot-through (turning on both high and low-side MOS-
FETs at the same time). Both low and high-side drive
waveforms are applied to the INT-200s. The PWM sign
bit selects between the positive and negative low-side
drivers, and also gates the PWM waveform to the high-
side drivers. The PWM signal is diode-ORed with a cur-
rent-limiting signal (derived from the sense circuits de-
scribed below in Section III C). This provides a fast,
direct path for over-current turn-off.

The gate drive to the MOSFETs must exceed the
source voltage when on by at least 12 V. This is accom-
plished by charging bootstrap capacitors through diodes
connected to the 15 V supply when the low-side drivers
pull the output-side terminals of these capacitors to
ground. Then the capacitors charge to 12 V (minus the
diode drop). When the low-side switches are off and
high-side on, the capacitors supply 12 V above the
power supply to the INT-201s for gate drive to turn the
high-side MOSFETs on. The series gate resistors are
chosen to tailor the switching time to be as fast a possi-
ble without excessive voltage spikes in the circuit due to
parasitic inductance.

C. Sense Circuits

The output sense circuits measure motor winding
voltages and currents. The winding voltage zero cross-
ings are detected and input to the DSP as comparator
output waveforms, and the currents are measured as
scaled analog voltages (3.5 A/V). These voltages are
input to an Analog Devices AD7811 ADC. The ADC
outputs are sent to the serial port 0 (SPORT0) input of
the DSP. The SPORT0 output simultaneously sets the
channel for the next A/D sample acquisition.

These measurements make it possible to implement
many different firmware-level control schemes, includ-
ing winding-sensed (sensorless) control. The DSP reads
digitized motor winding voltages and currents from the
motor and performs appropriate firmware-level signal
processing. The DSP uses this feedback to compute the
appropriate quantities (torque or speed), and then com-
pares the acquired value to the commanded value. The
error difference is processed by a firmware-level control-
ler to achieve the desired dynamic loop response. The
output quantities of the controller are the duty ratios, D,
that are sent to the dual PWM generator via DSP
SPORT1.

To sense winding-voltage zero crossings, low-cost
LM358 differential amplifiers low-pass filter the switch-
ing noise from the winding voltages before driving

4

LM393 zero-crossing comparators. The zero-crossing
digital waveforms are inputs to the DSP.

Similarly, another set of LM358 op-amps low-pass
filter the winding currents before driving LM393 op-
amps which output to the ADC.

D. External Data Bus

Eight bits are available externally from a 74HC373
latch. The input byte is gated onto the DSP external bus
for read cycles addressing data memory. These eight bits
include three encoder bits (two quadrature bits and an
absolute-position index bit), two phase-winding zero-
crossing bits, a stop-command bit that can be asserted
with a pushbutton, and two configuration jumpers. These
eight bits are also available on a connector on the SMC3,
as indicated in Fig. 3. The configuration jumpers can be
used to select code segments in program boot memory.

IV. DSP Firmware

A. DSP Firmware Functions

The DSP firmware functional diagram is shown in
Fig. 4 and discussed in this section. First consider the
inputs to the DSP. As seen in Fig. 4, the ADC inputs
come into SPORT0. This data consists of sensed motor
winding currents, as described above in Section III C,
and a pot voltage that sets the commanded quantity. The
other DSP input is the external data memory. This con-
sists of encoder counts, and the zero crossings of the
motor winding voltage, as described above in Sec-
tion III D.

The phase and speed estimator in Fig. 4 estimates
the motor electrical phase which corresponds to the rotor
position. The phase can be estimated using encoder
counts, motor currents, zero crossings of the motor volt-
ages, or any combination of these quantities. The present
implementation of the SMC3 firmware includes only the
encoder driver, although the hardware exists to sense
motor currents and voltage zero-crossings.

The phase output of the phase estimator inputs to
the phase controller, which advances the commanded
motor phase to keep it 90° ahead of the estimated phase,
for field orientation.

The phase and speed estimator in Fig. 4 also esti-
mates the rotational speed of the motor. A couple of op-
tions in the firmware provide speed estimates. One op-
tion is by differentiating the phase estimate. However,
numerical differentiation is a difficult task because dif-
ferentiation amplifies noise. Another option that has
been implemented in the firmware for speed estimation
is Kalman filtering. This gives a more accurate speed
estimate, but if encoder data is available, numerical dif-
ferentiation works well because of the high resolution of
the encoder (4000 pulses per mechanical revolution). As
we migrate the firmware towards winding-sensed con-
trol, the Kalman filter (or some type of phase-lock loop)
will be used for speed estimation. The speed estimate is
input by the speed controller to adjust PWM magnitude
to achieve the desired motor speed.

The winding currents that come from the ADC go
into a current estimator for filtering. This part of the
firmware has not yet been implemented, but generally a
Kalman filter or phase-lock loop will be used to obtain a
smooth current estimate. The sensed winding currents
are quite noisy due to electrical switching noise, making
current estimation a challenging problem [Si00]. The
current estimate will then be input to the current control-
ler, which will adjust the PWM outputs so that the com-
manded motor winding quantities are currents rather
than voltages. This will make the sources driving motor
windings appear as current sources rather than voltage
sources, which will allow sensing of the motor induced
voltages across the windings, to obtain their zero cross-
ings. (If the sources across the motor windings appear as
voltage sources, then the sensed winding voltages are
merely the H-bridge voltage outputs and not the motor
induced voltages.)

B. DSP Firmware Tasks

The bulk of the work in the firmware is done in the
10 µs timer interrupt routine. This routine takes advan-
tage of the ADSP-2101 secondary register set; registers
do not have to be saved and restored at the beginning
and end of the routine. This routine is where the latch
data is read, and where the Encoder Driver and the Zero
Crossing Driver (see Fig. 4) are called. The Phase &
Speed Estimator, and the Phase Controller, are also

Figure 4: Firmware Architecture

Winding Currents

Zero Crossings

SPORT1
Phase & Speed

Estimator
Phase

Controller
PWM

Generator

ADC
Driver

Zero Crossing
Driver

ADC Inputs
SPORT0

External
Latch

Encoder
Counts

Current
Estimator

Current
Controller

Speed
 Controller

Encoder
Driver

5

called from the timer interrupt. For the Phase Controller
block, the timer interrupt calls either an open-loop or a
closed-loop control routine. (This option can be set with
a firmware constant, or with a configuration jumper that
is read from external memory.) The open-loop phase-
control routine simply advances the commanded motor
phase without any feedback of motor position or veloc-
ity. The motor phase advance rate can be set with a
firmware constant, or with the user-adjustable pot setting
that comes from the ADC.

The closed-loop control routine advances the com-
manded phase on the basis of measured phase (however
measured). Presently only encoder-based control has
been implemented in the firmware. The encoder data is
available as a two-bit quadrature signal with a value of
00, 01, 10, or 11. The difference between the previous
and the present encoder data is used to derive the direc-
tion and rate of the motor rotation. We are presently us-
ing a 1000-line encoder, with 4000 encoder transitions
per mechanical revolution. We can keep track of the
motor speed as long as the encoder does not exceed two
transitions per 10 µs interrupt. This translates to a maxi-
mum encoder sample rate of 200 kHz, which translates
to 50 mechanical revolutions per second or 3000 rpm,
the maximum rate the present controller can handle. The
closed-loop phase controller simply advances the com-
manded phase in step with the encoder-derived motor
phase to maintain the field orientation of the motor.

The timer routine uses a counter to call the speed
controller of Fig. 4 every 100 timer interrupts (a 1 ms
period). Without speed control, the motor speed varies
(especially at low speeds) due to motor bearing imper-
fections, asymmetry, and other anomalies. The speed
controller uses optional encoder count differentiation or
Kalman filtering to estimate the motor speed. The con-
troller then adjusts the magnitude of the sine-wave from
the phase controller to maintain a constant motor speed.

The timer routine presently contains 120 instruc-
tions, which consumes (at 50 ns per instruction) 6 µs.
We are therefore using about 60% of our throughput in
the timer interrupt.

The IRQ2 interrupt is generated by the PWM hard-
ware (as discussed above in Section III A) at a frequency
of 39.0625 kHz. The IRQ2 interrupt routine sends the
PWM data out SPORT1 and initiates an A/D conversion.
The firmware presently acquires only one channel of
ADC data (a user-adjustable pot setting), but three addi-
tional channels include the two motor winding currents
and the motor supply voltage.

The IRQ2 interrupt occurs at 39.0625 kHz and must
complete within 25.6 µs. It presently involves only
13 instructions, which takes less than 1 µs. The routine
will grow longer as more ADC channels are used and
ADC multiplexing logic is required, but there does not
appear to be any danger of overrunning our allotted
throughput budget.

The RX0 interrupt occurs whenever ADC data is
available on SPORT0. This routine extracts and formats
the converted data, and essentially comprises the ADC
Driver block in Fig. 4.

The Main Routine of the firmware is an infinite loop
that is interrupted by the interrupt routines discussed
above. The Main Routine computes the sine of the phase
that is output by the PWM Generator, performs magni-
tude limiting, and performs miscellaneous administrative
tasks.

C. Frequency Synthesis

The quadrature sine waves are generated digitally by
the DSP firmware. Frequency is the rate of phase, dφ /dt.
Assume that the phase variable, φ, is N bits. It is incre-
mented by an amount ∆φ at a rate of fc times per second.
The phase is then scaled appropriately and the sine of the
phase is computed.

In this case, the phase iteration rate, fc, is the fre-
quency of the IRQ2 interrupt, or the PWM frequency of
39.0625 kHz. The phase of one cycle of a sine-wave
(2π radians) is scaled to the word-length of the phase
variable (N bits) so that when the variable exceeds its
allowable range, it wraps continuously into the adjacent
sine cycle. With this scaling, no end-of-cycle rollover
calculation is required. Therefore, one bit of the N-bit
phase variable represents 2π / 2N degrees of phase. In the
case of the ADSP-2100 family, with a data word size of
16 bits, N = 16, and an LSB represents 2π / 216 =
96 µrad. The sine of the phase is therefore computed as
sin(2πφ /2N), where φ is the N-bit value of the phase
variable. The output frequency of the sinusoid is, in gen-
eral,

cNout ff 





 ∆=

2
φ

For a commanded output frequency, the required phase-
increment value is calculated as:









=∆

c

outN

f
f

2φ

In the DSP code, fout is multiplied by 22N / fc. After mul-
tiplying, the upper N bits of the 2N-bit product are taken
as the result, effectively dividing the product by 2N.

As an example, assume that we want to drive the
motor at a constant 1200 rpm. This corresponds to 20
mechanical revolutions per second, which, for a 100-
pole motor, corresponds to 1000 electrical revolutions
per second. Therefore, we desire fout = 1 kHz. Given an
fc of 39.0625 kHz, we obtain the desired phase incre-
ment of

6

bits 7.101677
kHz 39.0625

kHz 1216 ≅=





=∆ϕ

Since ∆φ has a resolution of ± 1/2 bit, fout has a reso-

lution of 216 [(1/2) / 39.0625 kHz] = 0.30 Hz.

V. EXPERIMENTAL RESULTS

The SMC3 design has progressed to the point
where closed-loop phase control (encoder-based) has
been successfully implemented. Figure 5 shows an oscil-
loscope trace of some phase-winding A data for of a
size 23 step-motor. The power converter supply voltage
was about 7 V. The top trace is the commanded PWM
duty-ratio magnitude; the second trace is the sensed
winding current; the third trace is the PWM polarity; and
the bottom trace is the sensed winding-voltage zero
crossings. Though the motor induced voltage waveform
zero-crossing cannot yet be obtained, the bottom trace is
the present operation of the zero-crossing hardware. It is
sensing the drive voltage, with zero-crossings in syn-
chronism with the polarity reversals of the drive sinu-
soid. It can be seen that the sensed winding current is
noisy and will have to be filtered in firmware in order to
be used for current control. Likewise, the induced-
voltage zero crossings will need to be filtered because of
the time jitter (noise) of the transitions.

Figure 5: Oscilloscope Traces

VI. CONCLUSION

This paper has discussed the hardware and software
design for the SMC3, a field-oriented, two-phase step-
motor controller. The hardware is based on an ADSP-
2100-family digital signal processor.

Our present work focuses on the development of
closed-loop current control. This will drive the PWM
outputs to command a given current rather than a given

voltage, thus causing the driving sources across the mo-
tor windings to function as current sources rather than
voltage sources. This will then enable us to observe the
induced motor voltage across the motor windings. This
in turn will allow us to implement closed-loop phase
control without encoders. However, in order to imple-
ment current control, we need an accurate estimate of the
winding currents [Fe93]. These are available in the DSP
from the ADC, but are noisy (see Fig. 5), necessitating a
firmware filtering algorithm before completing the cur-
rent control loop [Si00].

After current control is complete, we will be in a
position to implement sensorless phase control. After
sensorless phase control is implemented, we will be able
to experiment with other types of control (e.g., torque
control or speed control) using various interesting con-
trol technologies (fuzzy logic [Be00], H∞ control [Qi00],
optimal control [Cr00], etc.)

REFERENCES

[An95] ADSP-2100 Family User's Manual (Third Edi-
tion), Analog Devices Inc., 1995.

[Be00] F. Betin, D. Pinchon, and G. Capolino, "Fuzzy
logic applied to speed control of a stepping motor drive,"
IEEE Transactions on Industrial Electronics, vol. 47,
pp. 610-622, 2000.

[Cr00] P. Crnosija, B. Kuzmanovic, and S. Ajdukovic,
"Microcomputer implementation of optimal algorithms
for closed-loop control of hybrid stepper motor drives,"
IEEE Transactions on Industrial Electronics, vol. 47,
pp. 1319-1325, 2000.

[Fe93] D. Feucht, "Sensorless Start-up Positioning of
Brushless DC Motors," PCIM Magazine, vol. 19, pp. 24-
27, March 1993.

[Kr89] P. Krause and O. Wasynczuk, Electromechanical
Motion Devices, McGraw-Hill, 1989.

[Ma92] A. Mar (ed.), Digital Signal Processing Applica-
tions Using the ADSP-2100 Family, Volume 1, Prentice
Hall, 1992.

[Qi00] G. Qingding and S. Yanna, "H∞ control based on
internal model theory for linear permanent magnet syn-
chronous servo motor (LPSM)," Control Theory & Ap-
plications, vol. 17, pp. 509-512, 2000.

[Si00] D. Simon, "Design and rule base reduction of a
fuzzy filter for the estimation of motor currents," Inter-
national Journal of Approximate Reasoning, 2000,
pp. 145-167.

