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ABSTRACT 
 
The SMC3 motor drive has been built using an Analog Devices 
ADSP-2101 digital signal processor (DSP). The SMC3 is de-
signed to work with two-phase step motors, which are perma-
nent magnet motors with many (typically 100) poles. The 
firmware in the SMC3 DSP drives the step motor phase wind-
ings using field-oriented control rather than using single steps. 
This method derives the maximum theoretical performance 
from the motor. This paper describes field-oriented control, 
and how the SMC3 hardware and firmware implements it. 
 

I.  INTRODUCTION 
 

Step motors, as typically driven in industrial appli-
cations, can exhibit undesirable behavior such as step-
ping resonances and skipped steps. However, this is due 
to the drive method that is used, and is not due to the 
motor itself. The name "step motor" indicates how the 
motor is typically driven.  

Step motors are low in cost because of their high-
volume use in industry, and they also produce high 
torque at a given motor winding current (because of their 
many poles). This is desirable for low-speed position 
control, and also for reducing mechanical force-speed 
conversion such as gearing.  

The SMC3 uses field-oriented control (also called 
vector control), which derives the maximum theoretical 
performance from the motor. This approach is not wide-
spread because, until recently, electronic components 
constrained drives to simple schemes such as stepping. 
In addition, it was not until the mid-1980s that the full 
dynamic theory of electric machines was worked 
out [Kr89]. The SMC3 does not need a tachometer be-
cause speed is derived from position, and position is 
derived from an incremental position encoder or directly 
from the motor's phase-winding voltages. 

Section II of this paper provides some background 
on step motor theory and field-oriented control. Sec-
tion III discusses the hardware design of the SMC3, and 
Section IV discusses the firmware design. Section V 
presents some experimental results, and Section VI of-
fers some concluding remarks. 
 

II.  FIELD-ORIENTED MOTOR CONTROL 
 

The step motors driven by the SMC3 are two-phase 
motors; they have two sets of wires wound on the stator 
(the stationary part of the motor). These two phase-
windings are perpendicular to each other, and are re-

ferred to as windings A (or 1) and B (or 2). When the 
windings conduct current, they produce magnetic fields 
that add to each other vectorially to produce an overall 
stator flux. The stator flux interacts with the rotor mag-
nets to produce torque. When the stator and rotor fluxes 
are directly opposite each other, the motor is in a stable 
equilibrium and zero torque is produced. When the stator 
and rotor fluxes are aligned with each other, the motor is 
in an unstable equilibrium position. Any other relative 
orientation of the stator and rotor fluxes produces torque 
in the motor. As an example, consider Fig. 1. 

 
Figure 1:  Step Motor Diagram 

(adapted from www.cs.uiowa.edu/~jones/step/types.html) 
 

 (a) Position 1  (b) Position 2 

 
Fig. 1 portrays a two-phase step motor with the 

windings labeled "1" and "2". The rotor has six poles (in 
north-south pairs). In Fig. 1(a), current excites winding 1 
such that the stator magnetic field leaves "north" at the 
top of the figure and enters "south" at the bottom of the 
figure. This will attract the rotor into the position shown. 
If the power to winding 1 is removed and current is 
commanded in winding 2 as shown in Fig. 1(b), then the 
rotor will move 30° (one step) clockwise. If the power to 
winding 2 is then removed and current is commanded in 
winding 1 in a direction opposite that shown in Fig. 1(a), 
then the rotor will rotate an additional 30° clockwise. 
Next, if winding 1 current is removed and current is ap-
plied to winding 2 in a direction opposite that shown in 
Fig. 1(b), then the rotor will rotate another 30° clock-
wise. Finally, if winding 2 current is removed and cur-
rent is applied to winding 1 in the direction shown in 
Fig. 1(a), the motor will rotate yet another 30°. 

At this point we have taken the electrical excitation 
through one complete cycle, but the motor has moved 
only 120°, or 1/3 of a mechanical revolution (cycle). In 
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general, the relationship between electrical frequency 
and mechanical frequency is given by the equation 

fe = fm × P / 2 

where P is the number of rotor poles. The motors in-
tended for the SMC3 are 100-pole motors, and  so 
fe  = 50 × fm. 

The stator magnetic field can be oriented in any di-
rection by commanding the proper proportion of current 
in windings A and B. By maintaining the stator magnetic 
field vector 90° (electrical) ahead of the magnetic field 
vector of the rotor (in the direction of rotation), then the 
motor is field-orientated, and torque will be maximum 
(for a given power supply voltage). If winding A and B 
currents are sine-waves phased 90° with respect to each 

other, then the resulting stator magnetic field vector will 
rotate at the sinusoidal frequency. 
 

III.  HARDWARE DESIGN 
 
The following sections describe the various aspects 

of the SMC3 hardware. The SMC3 functional diagram is 
shown in Fig. 2 and a photograph of the SMC3 is shown 
in Fig. 3. 

The DSP program code is stored in a 27128 
EPROM. At reset, the DSP boots in the program code 
and then proceeds to execute it. One reason for choosing 
the ADSP-2100 family of DSPs is that a 2-chip solution 
is possible because of the single EPROM bootstrapping 
(TI does not provide this feature). A 20 MHz crystal 
oscillator is mounted on the bottom side of the SMC3. 

 
 

Figure 2:  SMC3 Hardware Functional Diagram  

 
 
 

Figure 3:  SMC3 Photograph 
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A.  Dual PWM Generator 

The DSP generates two sinusoidal waveforms (for 
windings A and B) with frequencies and amplitudes 
computed by the DSP. The DSP firmware approximates 
the sine functions with the five-term, four-quadrant se-
ries expansion found in [Ma92]. The sine-waves are in 
PWM form, as signed PWM duty ratios. The sine-waves 
are applied to the motor windings through two full H-
bridge power drivers (again, one for each winding). For 
smooth, steady-state motor operation, the two motor 
winding voltages must be sine-waves in quadrature. 
Each PWM on-time is represented by nine bits (one sign 
bit and eight magnitude bits). 

The 18 PWM bits are sent out serial port 1 
(SPORT1) of the DSP, nine bits at a time. The PWM bits 
propagate through two 74HC595 shift registers. Mean-
while, a 74HC590 (8-bit counter) is driven at 10 MHz by 
a divide-by-two flip-flop (which is itself driven by the 
20 MHz DSP clock). The eight LSBs of the shift regis-
ters comprise the winding A and B PWM duty-ratio 
magnitudes. The ninth bit is the sign bit. It switches the 
H-bridge for bipolar drive.  

The PWM magnitudes are compared with the 
counter output by two 74HC688 comparators. When the 
two inputs of a comparator are equal, the comparator 
output asserts low, which resets a flip-flop output that 
ends the PWM on-time and interrupts the DSP through 
IRQ2. Since the counter runs at 10 MHz, IRQ interrupts 
occur at a frequency of 10 MHz /256 = 39.0625 kHz. 
The PWM duty ratio is determined by the formula 

254,,0,
256

1 …=
+

= NND  
where N is the 8-bit magnitude that comes from the DSP. 

The end of a PWM cycle interrupts the DSP, which 
then computes new values of D for the A and B PWM 
signals. The composite 18-bit PWM data stream is 
shifted out of the DSP before the end of the PWM cycle, 
so that when it occurs, the updated values of D are 
loaded into the shift registers at the 255 count (reload 
state), starting the new cycle.  

For development and testing, it is hard to view a 
PWM waveform as a duty ratio changing in time. To 
recreate an approximate waveform, the PWM outputs 
are low-pass filtered with resistor-capacitor combina-
tions and are available at test points on the SMC3. They 
normally appear as approximate (obviously sampled) 
sine magnitudes (haversines) that are in quadrature with 
each other. An example will be shown in Section V. 

 

B.  Power Drivers 

The SMC3 contains two identical full H-bridge 
power drivers, one for each phase-winding. This section 
will consider only the winding A driver; the B driver is 
identical to it. 

The full H-bridge driver provides bipolar drive to 
the motor windings, connected between the positive and 

negative A output terminals. Heat sinks mounted on the 
MOSFETs (not shown in Fig. 3) are required for dissipa-
tion of MOSFET conduction and switching losses. The 
TO-220 MOSFET packages, shown in Fig. 3, have a 
1.7 °C/W thermal resistance and can be operated with 
heat sinks at an output power of only a few watts.  

 The Power Integrations INT-200 low-side and INT-
201 high-side MOSFET drivers work in pairs to prevent 
shoot-through (turning on both high and low-side MOS-
FETs at the same time). Both low and high-side drive 
waveforms are applied to the INT-200s. The PWM sign 
bit selects between the positive and  negative low-side 
drivers, and also gates the PWM waveform to the high-
side drivers. The PWM signal is diode-ORed with a cur-
rent-limiting signal (derived from the sense circuits de-
scribed below in Section III C). This provides a fast, 
direct path for over-current turn-off.  

The gate drive to the MOSFETs must exceed the 
source voltage when on by at least 12 V. This is accom-
plished by charging bootstrap capacitors through diodes 
connected to the 15 V supply when the low-side drivers 
pull the output-side terminals of these capacitors to 
ground. Then the capacitors charge to 12 V (minus the 
diode drop). When the low-side switches are off and 
high-side on, the capacitors supply 12 V above the 
power supply to the INT-201s for gate drive to turn the 
high-side MOSFETs on. The series gate resistors are 
chosen to tailor the switching time to be as fast a possi-
ble without excessive voltage spikes in the circuit due to 
parasitic inductance. 

 

C.  Sense Circuits 

The output sense circuits measure motor winding 
voltages and currents. The winding voltage zero cross-
ings are detected and input to the DSP as comparator 
output waveforms, and the currents are measured as 
scaled analog voltages (3.5 A/V). These voltages are 
input to an Analog Devices AD7811 ADC. The ADC 
outputs are sent to the serial port 0 (SPORT0) input of 
the DSP. The SPORT0 output simultaneously sets the 
channel for the next A/D sample acquisition. 

These measurements make it possible to implement 
many different firmware-level control schemes, includ-
ing winding-sensed (sensorless) control. The DSP reads 
digitized motor winding voltages and currents from the 
motor and performs appropriate firmware-level signal 
processing. The DSP uses this feedback to compute the 
appropriate quantities (torque or speed), and then com-
pares the acquired value to the commanded value. The 
error difference is processed by a firmware-level control-
ler to achieve the desired dynamic loop response. The 
output quantities of the controller are the duty ratios, D, 
that are sent to the dual PWM generator via DSP 
SPORT1. 

To sense winding-voltage zero crossings, low-cost 
LM358 differential amplifiers low-pass filter the switch-
ing noise from the winding voltages before driving 
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LM393 zero-crossing comparators. The zero-crossing 
digital waveforms are inputs to the DSP. 

Similarly, another set of LM358 op-amps low-pass 
filter the winding currents before driving LM393 op-
amps which output to the ADC.  

 

D.  External Data Bus 

Eight bits are available externally from a 74HC373 
latch. The input byte is gated onto the DSP external bus 
for read cycles addressing data memory. These eight bits 
include three encoder bits (two quadrature bits and an 
absolute-position index bit), two phase-winding zero-
crossing bits, a stop-command bit that can be asserted 
with a pushbutton, and two configuration jumpers. These 
eight bits are also available on a connector on the SMC3, 
as indicated in Fig. 3. The configuration jumpers can be 
used to select code segments in program boot memory. 

 

IV.  DSP Firmware 

A.  DSP Firmware Functions 
 

The DSP firmware functional diagram is shown in 
Fig. 4 and discussed in this section. First consider the 
inputs to the DSP. As seen in Fig. 4, the ADC inputs 
come into SPORT0. This data consists of sensed motor 
winding currents, as described above in Section III C, 
and a pot voltage that sets the commanded quantity. The 
other DSP input is the external data memory. This con-
sists of encoder counts, and the zero crossings of the 
motor winding voltage, as described above in Sec-
tion III D. 

The phase and speed estimator in Fig. 4 estimates 
the motor electrical phase which corresponds to the rotor 
position. The phase can be estimated using encoder 
counts, motor currents, zero crossings of the motor volt-
ages, or any combination of these quantities. The present 
implementation of the SMC3 firmware includes only the 
encoder driver, although the hardware exists to sense 
motor currents and voltage zero-crossings.  

The phase output of the phase estimator inputs to 
the phase controller, which advances the commanded 
motor phase to keep it 90° ahead of the estimated phase, 
for field orientation. 

The phase and speed estimator in Fig. 4 also esti-
mates the rotational speed of the motor. A couple of op-
tions in the firmware provide speed estimates. One op-
tion is by differentiating the phase estimate. However, 
numerical differentiation is a difficult task because dif-
ferentiation amplifies noise. Another option that has 
been implemented in the firmware for speed estimation 
is Kalman filtering. This gives a more accurate speed 
estimate, but if encoder data is available, numerical dif-
ferentiation works well because of the high resolution of 
the encoder (4000 pulses per mechanical revolution). As 
we migrate the firmware towards winding-sensed con-
trol, the Kalman filter (or some type of phase-lock loop) 
will be used for speed estimation. The speed estimate is 
input by the speed controller to adjust PWM magnitude 
to achieve the desired motor speed. 

The winding currents that come from the ADC go 
into a current estimator for filtering. This part of the 
firmware has not yet been implemented, but generally a 
Kalman filter or phase-lock loop will be used to obtain a 
smooth current estimate. The sensed winding currents 
are quite noisy due to electrical switching noise, making 
current estimation a challenging problem [Si00]. The 
current estimate will then be input to the current control-
ler, which will adjust the PWM outputs so that the com-
manded motor winding quantities are currents rather 
than voltages. This will make the sources driving motor 
windings appear as current sources rather than voltage 
sources, which will allow sensing of the motor induced 
voltages across the windings, to obtain their zero cross-
ings. (If the sources across the motor windings appear as 
voltage sources, then the sensed winding voltages are 
merely the H-bridge voltage outputs and not the motor 
induced voltages.) 

 
 

B.  DSP Firmware Tasks 

The bulk of the work in the firmware is done in the 
10 µs timer interrupt routine. This routine takes advan-
tage of the ADSP-2101 secondary register set; registers 
do not have to be saved and restored at the beginning 
and end of the routine. This routine is where the latch 
data is read, and where the Encoder Driver and the Zero 
Crossing Driver (see Fig. 4) are called. The Phase & 
Speed Estimator, and the Phase Controller, are also 

 

Figure 4: Firmware Architecture 
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called from the timer interrupt. For the Phase Controller 
block, the timer interrupt calls either an open-loop or a 
closed-loop control routine. (This option can be set with 
a firmware constant, or with a configuration jumper that 
is read from external memory.) The open-loop phase-
control routine simply advances the commanded motor 
phase without any feedback of motor position or veloc-
ity. The motor phase advance rate can be set with a 
firmware constant, or with the user-adjustable pot setting 
that comes from the ADC. 

The closed-loop control routine advances the com-
manded phase on the basis of measured phase (however 
measured). Presently only encoder-based control has 
been implemented in the firmware. The encoder data is 
available as a two-bit quadrature signal with a value of 
00, 01, 10, or 11. The difference between the previous 
and the present encoder data is used to derive the direc-
tion and rate of the motor rotation. We are presently us-
ing a 1000-line encoder, with 4000 encoder transitions 
per mechanical revolution. We can keep track of the 
motor speed as long as the encoder does not exceed two 
transitions per 10 µs interrupt. This translates to a maxi-
mum encoder sample rate of  200 kHz, which translates 
to 50 mechanical revolutions per second or 3000 rpm, 
the maximum rate the present controller can handle. The 
closed-loop phase controller simply advances the com-
manded phase in step with the encoder-derived motor 
phase to maintain the field orientation of the motor. 

The timer routine uses a counter to call the speed 
controller of Fig. 4 every 100 timer interrupts (a 1 ms 
period). Without speed control, the motor speed varies 
(especially at low speeds) due to motor bearing imper-
fections, asymmetry, and other anomalies. The speed 
controller uses optional encoder count differentiation or  
Kalman filtering to estimate the motor speed. The con-
troller then adjusts the magnitude of the sine-wave from 
the phase controller to maintain a constant motor speed. 

The timer routine presently contains 120 instruc-
tions, which consumes (at 50 ns per instruction) 6 µs. 
We are therefore using about 60% of our throughput in 
the timer interrupt. 

The IRQ2 interrupt is generated by the PWM hard-
ware (as discussed above in Section III A) at a frequency 
of  39.0625 kHz. The IRQ2 interrupt routine sends the 
PWM data out SPORT1 and initiates an A/D conversion. 
The firmware presently acquires only one channel of 
ADC data (a user-adjustable pot setting), but three addi-
tional channels include the two motor winding currents 
and the motor supply voltage.  

The IRQ2 interrupt occurs at 39.0625 kHz and must 
complete within 25.6 µs. It presently involves only 
13 instructions, which takes less than 1 µs. The routine 
will grow longer as more ADC channels are used and 
ADC multiplexing logic is required, but there does not 
appear to be any danger of overrunning our allotted 
throughput budget. 

The RX0 interrupt occurs whenever ADC data is 
available on SPORT0. This routine extracts and formats 
the converted data, and essentially comprises the ADC 
Driver block in Fig. 4.  

The Main Routine of the firmware is an infinite loop 
that is interrupted by the interrupt routines discussed 
above. The Main Routine computes the sine of the phase 
that is output by the PWM Generator, performs magni-
tude limiting, and performs miscellaneous administrative 
tasks. 

 

C. Frequency Synthesis 

The quadrature sine waves are generated digitally by 
the DSP firmware. Frequency is the rate of phase, dφ /dt. 
Assume that the phase variable, φ, is N bits. It is incre-
mented by an amount ∆φ at a rate of fc times per second. 
The phase is then scaled appropriately and the sine of the 
phase is computed.  

In this case, the phase iteration rate, fc, is the fre-
quency of the IRQ2 interrupt, or the PWM  frequency of 
39.0625 kHz. The phase of one cycle of a sine-wave 
(2π radians) is scaled to the word-length of the phase 
variable (N bits) so that when the variable exceeds its 
allowable range, it wraps continuously into the adjacent 
sine cycle. With this scaling, no end-of-cycle rollover 
calculation is required. Therefore, one bit of the N-bit 
phase variable represents 2π / 2N degrees of phase. In the 
case of the ADSP-2100 family, with a data word size of 
16 bits, N = 16, and an LSB represents 2π / 216 = 
96 µrad. The sine of the phase is therefore computed as 
sin(2πφ /2N), where φ is the N-bit value of the phase 
variable. The output frequency of the sinusoid is, in gen-
eral, 

cNout ff 





 ∆=

2
φ

 
For a commanded output frequency, the required phase-
increment value is calculated as: 









=∆

c

outN

f
f

2φ
 

In the DSP code, fout is multiplied by 22N / fc. After mul-
tiplying, the upper N bits of the 2N-bit product are taken 
as the result, effectively dividing the product by 2N.  

As an example, assume that we want to drive the 
motor at a constant 1200 rpm. This corresponds to 20 
mechanical revolutions per second, which, for a 100-
pole motor, corresponds to 1000 electrical revolutions 
per second. Therefore, we desire fout = 1 kHz. Given an 
fc of 39.0625 kHz, we obtain the desired phase incre-
ment of  
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bits 7.101677
kHz 39.0625

kHz 1216 ≅=





=∆ϕ

 
Since ∆φ has a resolution of ± 1/2 bit, fout has a reso-

lution of 216 [(1/2) / 39.0625 kHz] = 0.30 Hz. 
 
 

V. EXPERIMENTAL RESULTS 
 

The  SMC3 design has progressed to the point 
where closed-loop phase control (encoder-based) has 
been successfully implemented. Figure 5 shows an oscil-
loscope trace of some phase-winding A data for of a 
size 23 step-motor. The power converter supply voltage 
was about 7 V. The top trace is the commanded PWM 
duty-ratio magnitude; the second trace is the sensed 
winding current; the third trace is the PWM polarity; and 
the bottom trace is the sensed winding-voltage zero 
crossings. Though the motor induced voltage waveform 
zero-crossing cannot yet be obtained, the bottom trace is 
the present operation of the zero-crossing hardware. It is 
sensing the drive voltage, with zero-crossings in syn-
chronism with the polarity reversals of the drive sinu-
soid. It can be seen that the sensed winding current is 
noisy and will have to be filtered in firmware in order to 
be used for current control. Likewise, the induced-
voltage zero crossings will need to be filtered because of 
the time jitter (noise) of the transitions. 

 

Figure 5:  Oscilloscope Traces 
 
 

VI. CONCLUSION 
 

This paper has discussed the hardware and software 
design for the SMC3, a field-oriented, two-phase step-
motor controller. The hardware is based on an ADSP-
2100-family digital signal processor. 

Our present work focuses on the development of 
closed-loop current control. This will drive the PWM 
outputs to command a given current rather than a given 

voltage, thus causing the driving sources across the mo-
tor windings to function as current sources rather than 
voltage sources. This will then enable us to observe the 
induced motor voltage across the motor windings. This 
in turn will allow us to implement closed-loop phase 
control without encoders. However, in order to imple-
ment current control, we need an accurate estimate of the 
winding currents [Fe93]. These are available in the DSP 
from the ADC, but are noisy (see Fig. 5), necessitating a 
firmware filtering algorithm before completing the  cur-
rent control loop [Si00]. 

After current control is complete, we will be in a 
position to implement sensorless phase control. After 
sensorless phase control is implemented, we will be able 
to experiment with other types of control (e.g., torque 
control or speed control) using various interesting con-
trol technologies (fuzzy logic [Be00], H∞ control [Qi00], 
optimal control [Cr00], etc.) 
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