
Proceedings of the 15th IASTED International Conference on Modelling and Simulation,
March 1-3, 2004, Marina del Rey, California, pp. 157-160

DATABASE ACCESS IN SIMSCRIPT II.5

Stephen V. Rice
Department of Computer and Information Science

The University of Mississippi
201 Weir Hall, P.O. Box 1848, University, MS 38677 USA

tel: (662) 915-5359, fax: (662) 915-5623
email: rice@cs.olemiss.edu

ABSTRACT
Through a new programming interface based on Open
Database Connectivity, programs written in the
SIMSCRIPT II.5 programming language gain the ability
to access relational databases. Retrieving input data,
storing simulation results, and sharing data with other
software tools are facilitated. A common interface to
multiple database management systems, running on local
or remote computers, gives the programmer a flexible
range of choices.

KEY WORDS
Simulation Tools and Languages, Database Management,
SIMSCRIPT, SQL

1. Introduction

The input and output data of a non-trivial simulation
program are typically voluminous. Managing this data
using external flat files is difficult. A modern database
management system (DBMS) offers powerful and
convenient features for the organization, storage, and
retrieval of simulation data. Access to databases from
simulation programs is no longer an option but is a
requirement for large modelling projects.

The input data to a simulation program include model
parameters and configuration information. A DBMS
provides standard and customizable interfaces for data
entry and enforces integrity constraints for data
validation. Simulation input may come from existing
databases; for example, Randell and Bolmsjö used a
database describing a factory to simulate the factory [1].

Without database access, a simulation program may
choose to summarize its results in a small number of
output values. The availability of a database encourages
the storage of large quantities of intermediate results. By
saving the details of simulation runs, decisions can be
made later regarding which summary statistics to
compute.

The power of the DBMS query facility can be applied to
retrieve and aggregate any portion of the output from one
or many simulation runs and models. Tools supplied by
the DBMS manufacturer, or by third-party software
vendors, can be used for report generation, graphing,
animation, statistical analysis, optimization, and data
mining. As noted by Standridge and Centeno, the
database is the centerpiece of a “modular simulation
environment,” providing the mechanism by which
information is shared among software tools [2].
Simulation models may share inputs, and the output from
one model may be input to another.

The DBMS enables concurrent access to simulation data
by multiple users and programs; prevents unauthorized
access to the data; and provides for backup and recovery
of the data.

2. SIMSCRIPT

SIMSCRIPT was among the first programming languages
for computer simulation [3]. The RAND Corporation
developed SIMSCRIPT I in 1962 [4] and SIMSCRIPT II
in 1968 [5] for the U.S. Air Force. SIMSCRIPT II.5 is a
commercial version that has been marketed and improved
by CACI since the 1970s [6].

A model is described in SIMSCRIPT by its entities and
their attributes, and by ordered lists of entities known as
sets. Initially, instantaneous events were provided for
discrete-event simulation, but time-elapsing processes
were added to SIMSCRIPT II.5 in the mid-1970s. The
language is known for its self-documenting, English-like
syntax, which facilitates the communication and
verification of simulation models.

In a 1979 article [7], Harry Markowitz, the principal
inventor of SIMSCRIPT, describes the planned
functionality of SIMSCRIPT II as a series of “levels.”
Database entities were to be added to the language in the
sixth of seven levels; however, only the first five levels
were implemented. He further shows how SIMSCRIPT
entities, attributes, and sets can be mapped to and from
the network, hierarchical, and relational database models.

In the early 1980s, Markowitz and colleagues at IBM
developed an experimental programming language based
on SIMSCRIPT II named EAS-E, an acronym for
Entities, Attributes, Sets, and Events. The
implementation of EAS-E supported database entities
using a CODASYL network-model database [8].

Some SIMSCRIPT II.5 programmers have developed
“home-brewed” database interfaces using SIMSCRIPT
II.5’s ability to call non-SIMSCRIPT routines. The
language itself, however, did not support database access
until 2003.

3. Approach

Open Database Connectivity (ODBC) [9] is a standard
programming interface that uses Structured Query
Language (SQL) [10] to access relational databases.
ODBC provides a common interface to different database
management systems.

SIMSCRIPT II.5 Database Connectivity (SDBC) [11]
was introduced in 2003. It is a library of routines that
enables SIMSCRIPT II.5 programs to create tables in
relational databases; to insert, modify, and delete the rows
of database tables; and to perform database queries. It is
patterned after and utilizes ODBC to provide a common
interface to database management systems.

Figure 1 illustrates the communication between a
SIMSCRIPT II.5 program and a DBMS. First the
program calls an SDBC routine. Using the ODBC
application programming interface (API), the SDBC
routine calls the ODBC Driver Manager, which is
independent of any DBMS. The Driver Manager then
calls the ODBC Driver for the intended DBMS. Using a
DBMS-specific API, the Driver communicates with the
DBMS. After performing the requested operation, the
DBMS communicates the results to the Driver, which
relays them to the Driver Manager. In turn, the Driver
Manager sends the results to the SDBC routine, which
returns them to the SIMSCRIPT II.5 program.

SIMSCRIPT II.5 Program
↓ ↑

SIMSCRIPT II.5 Database Connectivity (SDBC)
↓ ↑

ODBC Driver Manager
↓ ↑

ODBC Driver
↓ ↑

Database Management System (DBMS)

Figure 1. Communication between a
SIMSCRIPT II.5 program and a DBMS

SDBC enables SIMSCRIPT II.5 programs to interact with
any DBMS providing an ODBC 3.0 Driver. If the DBMS
is running on a remote computer, communication over a
network is performed implicitly. The SIMSCRIPT II.5
program and the DBMS may be running on different
types of computers with different operating systems.

The programmer may choose from a number of available
database management systems. To date, SIMSCRIPT II.5
programs have used SDBC to access databases managed
by IBM DB2®, Microsoft Access, Microsoft SQL Server,
MySQL™, Oracle®, and PostgreSQL. The common
interface provided by SDBC means there is only one
interface for the programmer to learn, and one DBMS can
be replaced by another without rewriting source code.

An effort was made in the design of SDBC to provide an
easy-to-use programming interface. The result is a library
of 16 routines, whereas the ODBC API consists of
approximately 75 routines. The SDBC library offers most
of the power of ODBC while hiding ODBC’s complexity.
The following sections describe the SDBC routines.

4. Connecting to a Database

A SIMSCRIPT II.5 program must first connect to a
database. An ODBC data source must have been defined
for the database; it associates a data source name with the
database, an ODBC Driver, and connection parameters
required by the DBMS. The first argument passed to the
SDBC routine named DB.CONNECT.R is the data source
name; the second and third arguments specify the user
name and password for accessing the database. The
following statement connects as user STEVE with
password SECRET to the database identified by the data
source named SIMDB:

 call DB.CONNECT.R("SIMDB", "STEVE", "SECRET")

When the program is finished accessing this database, it
calls DB.DISCONNECT.R to disconnect:

 call DB.DISCONNECT.R

5. SQL Updates

After connecting to a database, the SIMSCRIPT II.5
program may pass SQL statements one at a time to the
DBMS for processing. An SQL statement that modifies
the database is passed to DB.UPDATE.F. This function
returns after the SQL statement has been executed by the
DBMS on the connected database. The number of rows
affected by the operation, if applicable, is returned to the
caller.

 let NUMROWS = DB.UPDATE.F(SQL.COMMAND)

An SQL CREATE TABLE statement is passed to
DB.UPDATE.F to create a table. For example, suppose a
table named RESULT is needed to hold the results of
simulation runs, where each row of the table contains a
run ID and the maximum and average queue length
observed during the run. The following SQL statement
creates this table:

 CREATE TABLE RESULT (RUNID INTEGER,
 MAXQLEN INTEGER, AVGQLEN REAL)

The program stores the SQL statement in a text variable
and then passes it to DB.UPDATE.F for execution by the
DBMS:

 let SQL.COMMAND = CONCAT.F(
 "CREATE TABLE RESULT (RUNID INTEGER, ",
 "MAXQLEN INTEGER, AVGQLEN REAL)")

 let NUMROWS = DB.UPDATE.F(SQL.COMMAND)

Upon return from DB.UPDATE.F, the table has been
created. The table is destroyed by executing an SQL
DROP TABLE statement:

 let NUMROWS = DB.UPDATE.F("DROP TABLE RESULT")

CREATE TABLE and DROP TABLE are examples of
SQL Data Definition Language (DDL) statements. Any
DDL statement supported by the DBMS may be passed to
DB.UPDATE.F for execution.

An SQL INSERT statement inserts one or more rows into
a table. Suppose the maximum and average queue length
for run #101 were 12 and 2.75, respectively. The
following statement inserts a row into the RESULT table
to represent this run:

 let NUMROWS = DB.UPDATE.F(
 "INSERT INTO RESULT VALUES (101, 12, 2.75)")

An SQL UPDATE statement modifies the value of one or
more columns in one or more rows. The following
statement changes the average queue length for run #101
to 2.25:

 let NUMROWS = DB.UPDATE.F(
 CONCAT.F("UPDATE RESULT ",
 "SET AVGQLEN = 2.25 WHERE RUNID = 101"))

An SQL DELETE statement deletes one or more rows.
The following statement deletes the row for run #101:

 let NUMROWS = DB.UPDATE.F(
 "DELETE FROM RESULT WHERE RUNID = 101")

A database transaction is an atomic sequence of updates
to a database in which all or none of the updates are made
permanent. If the transaction is committed, then all of the
changes are made permanent; if the transaction is rolled
back, then all updates made during the transaction are
undone and the database is returned to the state it was in

before the transaction was started. Transactions prevent
concurrent users from seeing one another’s uncommitted
changes to the database (i.e., their work in progress) and
enable the DBMS to restore the database to a correct state
following a system or program failure.

When “auto-commit” is “on,” each SQL statement is
executed as its own transaction. That is, either the
statement completes successfully and all changes made by
the statement are made permanent (the transaction is
committed), or the statement fails and all changes are
undone (the transaction is rolled back). When auto-
commit is “off,” a sequence of SQL statements may be
executed within the same transaction. The current
transaction is terminated by calling DB.COMMIT.R or
DB.ROLLBACK.R and a new transaction is begun.
Auto-commit is turned on or off by calling
DB.AUTOCOMMIT.R and is on by default.

6. SQL Queries and Parameters

A SIMSCRIPT II.5 program may submit queries to the
DBMS for processing. Any SQL SELECT statement may
be passed to DB.QUERY.R. The rows returned by the
query are retrieved one at a time by calling DB.FETCH.F
for each row. DB.FETCH.F returns 1 if it has
successfully retrieved the next row of the query result and
returns 0 when there are no more rows to retrieve. The
value of each column of a retrieved row is obtained by
calling DB.GETINT.F for an integer column,
DB.GETREAL.F for a floating-point column, and
DB.GETTEXT.F for a character-string column, where
each function accepts a column number as its argument.

In the following example, each row with an ID between
100 and 200 is retrieved from the RESULT table and
displayed:

 let SQL.QUERY = CONCAT.F(
 "SELECT RUNID, MAXQLEN, AVGQLEN FROM RESULT",
 " WHERE RUNID BETWEEN 100 AND 200")

 call DB.QUERY.R(SQL.QUERY)

 while DB.FETCH.F = 1
 do
 write DB.GETINT.F(1) as "Run #", i 3
 write DB.GETINT.F(2) as
 " had a maximum queue length of ", i 3
 write DB.GETREAL.F(3) as
 " and an average queue length of ", d(5,1),/
 loop

An SQL parameter is a question mark (?) appearing in an
SQL statement which is replaced by the value of a
program variable or expression. Suppose integer
variables named MIN.ID and MAX.ID contain the
smallest and largest run IDs to be retrieved. The
preceding example can be rephrased using SQL
parameters that take their values from these variables:

 let SQL.QUERY = CONCAT.F(
 "SELECT RUNID, MAXQLEN, AVGQLEN FROM RESULT",
 " WHERE RUNID BETWEEN ? AND ?")

 call DB.SETINT.R(1, MIN.ID)
 call DB.SETINT.R(2, MAX.ID)
 call DB.QUERY.R(SQL.QUERY)

The value of each SQL parameter must be set before the
statement containing the parameters is executed.
DB.SETINT.R, DB.SETREAL.R, and DB.SETTEXT.R
set the value of an integer, floating-point, and character-
string parameter, respectively.

7. Conclusion

SIMSCRIPT II.5 Database Connectivity brings the power
of relational database systems to SIMSCRIPT II.5
programs. By utilizing Open Database Connectivity, a
common interface is provided to multiple database
management systems. The union of SIMSCRIPT II.5 and
modern database technology has been anticipated for
many years and is now a reality.

8. Acknowledgement

The SDBC project was suggested to the author by Ana
Marjanski and was sponsored by CACI. The author
expresses his sincere appreciation to Ana Marjanski and
Harry Markowitz for their helpful comments.

References

[1] L.G. Randell and G.S. Bolmsjö, Database driven
factory simulation: A proof-of-concept demonstrator,
Proc. 2001 Winter Simulation Conference, Arlington,
VA, USA, 2001, 977-983.

[2] C.R. Standridge and M.A. Centeno, Concepts for
modular simulation environments, Proc. 1994 Winter
Simulation Conference, Lake Buena Vista, FL, USA,
1994, 657-663.

[3] R.E. Nance, A history of discrete event simulation
programming languages, in T.J. Bergin and R.G. Gibson
(Eds.), History of programming languages, 8 (New York:
ACM Press, 1996) 369-427.

[4] H.M. Markowitz, B. Hausner, and H.W. Karr,
SIMSCRIPT: A simulation programming language
(Englewood Cliffs, NJ: Prentice-Hall, 1963).

[5] P.J. Kiviat, R. Villanueva, and H.M. Markowitz, The
SIMSCRIPT II programming language (Englewood
Cliffs, NJ: Prentice-Hall, 1968).

[6] CACI Products Company, SIMSCRIPT II.5 reference
handbook (La Jolla, CA: CACI Products Company,
1997).

[7] H.M. Markowitz, SIMSCRIPT, in J. Belzer, A.G.
Holzman, and A. Kent (Eds.), Encyclopedia of computer
science and technology, 13 (New York: Marcel Dekker,
1979) 79-136.

[8] A. Malhotra, H.M. Markowitz, and D.P. Pazel,
EAS-E: An integrated approach to application
development, ACM Transactions on Database Systems,
8(4), 1983, 515-542.

[9] Microsoft Corporation, Microsoft ODBC 3.0
programmer’s reference (Redmond, WA: Microsoft
Press, 1997).

[10] C.J. Date and H. Darwen, A guide to the SQL
standard (Boston: Addison-Wesley, 2000).

[11] CACI Products Company, SIMSCRIPT II.5
database connectivity user’s manual (San Diego, CA:
CACI Products Company, 2002).

