Ontic: Language Specification
and
User’s Manual

Robert Givan
David McAllester
Carl Witty
Kevin Zalondek

Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge Mass. 02139

Draft 4, March, 1992

Abstract: Ontic is an integrated system for the development and manipu-
lation of technical information. Ontic can be used to develop and examine
abstract mathematical concepts and theorems, formal system specifications,
system implementations, and system verifications. At the foundation of the
Ontic system is a formal language, also called Ontic. The Ontic language is
a simple generalization of strongly typed functional programming languages
such as ML or the typed A-calculus. However, unlike functional program-
ming languages, Ontic can be used to define objects that are best understood
declaratively, such as the concept of a differentiable function on real numbers.
The Ontic language is expressively equivalent to classical Zermelo-Fraenkel
set theory with the axiom of choice. However, Ontic is also a functional pro-
gramming language in the sense that a simple subset of the Ontic language
is executable.

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract
N00014-85-K-0124 and N00014-89-j-3202.



Contents

1 Introduction

2 The Basic Language
2.1 Symbols, Numbers, and Pairs . . . . ... ... ... .....
2.2 Nondeterminism . . . . . . . .. ... Lo
23 Let . . .
24 Thunks. . . .. ..
2.5 Formulas and Conditional Expressions . . . .. .. ... ...
2.6 Some-such-that, Exists, and Forall . . . . . . ... ... ... ..
2.7 Sets ...
2.8 Lambda Expressions and Definitions . . . . . . ... ... ..
2.9 Currying . . . . ...
2.10 Basic Semantics . . . . . . ..o
2.11 Operator Spaces . . . . . . . . . . o

2.12 Type Restrictions in A-expressions . . . . . . . . . . ... ...

3 Recursion
3.1 The Fixed Point Restriction on Recursive Definitions . . . . .

3.2 Transfinite Limit Semantics for Recursion . . . . . . . . . ..

4 Large Thunks and Other Features

4.1 Large Primitive Thunks . . . . . . . ... ... .. ... ...



4.2 Type Checking . . . . . . . . . ... ...

4.3 Structures . . . . . ...
4.4 Type Coercion . . . . . . . . . . . .
5 Proofs
5.1 Show, Suppose, and Let-be . . . . . . . . .. ... ... ... .
5.2 Suppose-For-Refutation . . . . . . ... .. ... .. ... ...
5.3 Case Analysis . . . . . . . . ...
5.4 Suppose-there-is and Consider . . . . . . . ... ... .. ...
5.5 Write-As Constructions . . . . . . . .. .. ... ... ... ..
5.6 Write-as-like Proofs . . . . . . . .. .. ... L.
5.7 Proof Idioms. . . . . . . . .. ...
5.8 Induction Proofs . . . . . ... .. ... .
59 Modules . . . . ..
5.10 The Emacs User Interface . . . . . .. .. ... .. ... ...
6 Examples
6.1 Constructing the Real Numbers . . . . . . ... ... ... ..
6.2 Axiomatizing the Real Numbers . . . . . . .. ... ... ...
6.3 Unification . . . . . . . . ...

7 Epilogue

44
45
49
50
o1
53
56
o7
60
67
70

71
72
77
79

81



1 Introduction

Ontic is an integrated system for programming and mathematics. Program-
ming and mathematics are similar activities.! Both involve definitions. In
mathematics one defines concepts — in programming one defines procedures
and subroutines. In both cases one often finds that, after writing certain
definitions, the definitions do not have the desired properties — they do not
allow one to prove a desirable theorem, or they do not produce the desir-
able behavior when executed. In both cases definitions must be “debugged”.
Mathematics and programming are also similar in other ways. For example,
they both involve sophisticated notions of syntactically well formed expres-
sions.

In spite of the great similarity of programming and mathematics, they are
different in one important respect. Unlike theorems, programs run. This has
a variety of implications. First, program execution often uncovers errors —
execution serves as a kind of mechanical error detection. More importantly,
however, execution often allows one to better understand programs. For
example, if one does not understand the description of the append function
given in these Lisp manual, one can simply apply the append procedure to
>(a b c)and ’(d e f) and see that theresult >(a b ¢ d e f). Given this
execution, one can form a conjecture about what the append procedure does
in general. One can then reread the description in the manual and perhaps
run some further test cases. In general, executing test cases can clarify one’s
understanding.

One of the primary motivations for the Ontic system is to provide a mech-
anism in the domain of mathematics that is analogous to running test cases
for computer programs. We view running test cases for computer programs
as analogous to answering mathematical questions. For example, given a def-
inition of differentiable function, and a definition of polynomial, one can ask
whether a polynomial is differentiable (it is). Or one could ask whether the

!The analogy between programming and mathematics underlying Ontic should not be
confused with the “propositions as types” and “proofs as programs” framework espoused
by intuitionistic logicians [Martin-Lof, 1982], [Constable et al., 1986]. Ontic is a purely
classical system — in Ontic a program denotes a classical function and a type denotes a
classical set.



absolute value function is differentiable (it is not). Getting answers to specific
questions can clarify one’s understanding. This kind of question answering
can also uncover errors in definitions.

«

The Ontic system responds to any question with “yes”, “no”, or “I don’t
know”. This is done using a combination of knowledge and reasoning. On-
tic’s knowledge consists of a large set of definitions and theorems. Ontic’s
reasoning consists of an automated inference procedure which automatically
accesses the stored knowledge. The inference procedure has been carefully
designed so that for any question, no matter how difficult, the system al-
ways responds quickly. Furthermore, adding a fact to the knowledge base
can never confuse the system — if a question could be be answered before
the fact was added, that same question can still be answered after the fact
is added. Great care has been given to making the system as intelligent as
possible, but it can not be omniscient — there will always be questions for
which the answer is “I don’t know”.

In addition to writing definitions of mathematical concepts, one can use
the Ontic system to write and verify mathematical proofs. If the Ontic
system answers “yes” when asked if a formula @ is true, then we say that
® is “obvious” to the Ontic system. A proof in the Ontic system consists
of a series of statements where each statement is either self evident (relative
to Ontic’s knowledge base) or is derivable from previous steps using one of
Ontic’s built in proof rules. The Ontic system allows the user to define any
mathematical concept and to prove any mathematical theorem provable from
the axioms of classical Zermelo-Fraenkel set theory with the axiom of choice.
Of course the intelligence of the Ontic system allows proofs to written much
more concisely than in classical set theory.

Although Ontic is equivalent to set theory, the Ontic system does not use
classical set theoretic syntax. In fact, Ontic avoids the syntax of first order
logic altogether. The Ontic language is a generalization of functional pro-
gramming languages such as Lisp. Some Ontic expressions can be treated as
computer programs and executed. Other expressions are not executable but
can be used in formulating questions. Even the nonexecutable expressions
are written in a Lisp-like notation. Anyone familiar with Lisp should have
little difficulty in learning to read and write Ontic expressions.



Like pure Lisp, Ontic provides a fairly small number of primitives that
can be used to define a tremendous variety of procedures and concepts. The
Ontic user is invited to develop her or his favorite branch of mathematics, or
to invent and experiment with new mathematical concepts. Ontic should be
thought of as an intelligent assistant for answering questions about user de-
fined procedures and concepts. By answering questions, Ontic can uncover
unintended properties of definitions (what programmers call “bugs”). By
verifying proofs, Ontic can also provide increased confidence in the correct-
ness of programs and mathematical theorems. Most of all, by being able to
“understand” any mathematical concept, Ontic provides a new kind of envi-
ronment in which mathematical hackers can explore and enjoy mathematics.

This manual is designed to support effective use of the Ontic system. On-
tic is designed to be used with a minimum of training. It is hoped that an
understanding of the inference mechanisms underlying the Ontic implemen-
tation is not required in using the system. This manual does not provide any
such description of the inference mechanisms. However, it seems appropriate
to make a few comments about the Ontic implementation and its relation to
other systems.

Ontic’s proof verification system is similar in motivation to a variety
of other proof verification systems [Gordon et al., 1979], [Boyer and Moore,
1979], [Constable et al., 1986, [William Farmmer, 1990], [Harper et al., 1987].
However, both the formal language of Ontic and the automated reasoning
mechanisms underlying Ontic are significantly different from other systems.
The Ontic language is simple. Although Ontic is a kind of type theory,
there is no distinction between terms and types and the Ontic language On-
tic is little more than pure untyped Lisp with nondeterminism. Both the
semantics and the proof theory of Ontic correspond to classical set theory.
The automated inference mechanisms are based on general purpose forward
chaining techniques rather than term rewriting or backward chaining tactics
[McAllester, 1989]. The forward chaining inference mechanisms are based
on a general theory of local inference relations [McAllester et al., 1989,
[McAllester and Givan, 1989], [Givan et al., 1991]. Readers interested in
the deeper theoretical issues underlying Ontic and other verification systems
might start by examining these references.



2 The Basic Language

The Ontic language is largely based on the syntax and semantics of Lisp. This
section describes the Ontic language in much the same way that a Lisp man-
ual would describe Lisp. However, those readers familiar with denotational
semantics should not have great difficulty in assigning a fairly straightforward
denotational meaning to Ontic expressions. Ontic includes the fundamental
constructs of Lisp — numbers, the functions + and *, quoted symbols, the
primitives cons, car, and cdr, conditional expressions (the primitive if),
recursive definitions, and first class A-expressions.? These primitives provide
an adequate programming language. In addition, Ontic provides some non-
standard primitives. For example, Ontic provides the primitive either such
that the expression (either A B) nondeterministically selects the value of
A or the value of B. This makes Ontic a nondeterministic language — each
expression has a set of possible values. Ontic includes a small number of addi-
tional primitives that provide all of the expressive power of Zermelo-Fraenkel
set theory.

2.1 Symbols, Numbers, and Pairs

symbols and quotation. A quoted symbol denotes that symbol. For ex-
ample, ’foo denotes the symbol foo. Distinct quoted symbols always denote
distinct values.

numbers, + and *. The Ontic language includes decimal numerals. A
decimal numeral, such as 375 or -257, denotes the corresponding integer in
the standard way. Rational numbers and real numbers are not supported as
primitives. The Ontic language also includes the functions + and * which
denote addition and multiplication on integers.

cons, car, and cdr. The function cons is the pairing function. This function
takes two objects x and y and produces the pair of those two objects. For ex-
ample, (cons ’foo ’bar) is the mathematical pair containing the symbols
foo and bar. The expression (cons ’foo 325) denotes the pair containing

2Qntic is a purely functional language — side effects are not allowed.



the symbol foo and the integer 325. The functions car and cdr extract the
first and second components of pairs respectively. For example, (car (cons
>foo 325)) denotes the symbol foo while (cdr (cons ’foo 325)) denotes
the integer 325.

list. Expressions of the form (1ist e; ey --- e,) are treated as abbrevia-
tions for (cons e; (cons ey --- (cons e, ’nil))).

2.2 Nondeterminism

either. Ontic can be viewed as a nondeterministic programming language
— a given expression can have many different possible values. Nondetermin-
ism is introduced with the primitive either.®> For example, the expression
(either ’foo 325) has two possible values — the symbol foo and the in-
teger 325. The expression (list (either ’foo 325) (either ’foo 325)
(either ’foo 325) (either ’foo 325)) has sixteen possible values, one
of which is (1ist ’foo 325 325 ’foo). Ontic allows either to be used
with any number of arguments. For example, (either ’a ’b ’c ’d) has
four possible values.

Nondeterminism allows the Ontic language to be viewed as a notation for
set theory. In general, each Ontic expression has a set of possible values. For-
mally, this is equivalent to saying that each Ontic expression denotes a set —
its set of possible values. Although it is possible to think of Ontic as a purely
declarative language in which expressions denote sets, many readers will find
it easier to think of Ontic as a nondeterministic programming language in
which a given expression has a set of possible values. The programming
language view will be used throughout the remainder of this section.

3The primitive either is essentially the same as McCarthy’s primitive amb [McCarthy,
1967].



2.3 Let

let. Ontic includes the special form let which can be used in expressions
of the form (let ((x e)) b) where z is a variable and e and b are Ontic
expressions. The value of the expression (let ((z e)) b) is the value of
b in an environment in which x has been bound to the value of e. More
precisely, each possible value of (1et ((x e)) b) can be derived by binding
x to a possible value of e and then computing a possible value of b in the
resulting environment.

The expression

(let ((x (either ’foo ’bar)))
(cons x x))

has two possible values, (cons ’foo ’foo) and (cons ’bar ’bar).

Note that (cons (either ’foo ’bar) (either ’foo ’bar)) has four dif-
ferent possible values while the above expression has only two. This example
shows that g-reduction, i.e., the substitution of an expression for a variable
bound to that expression, does not preserve meaning.

The special form let can bind more than one variable. In Ontic the
expression

(let ((xq e1)

(z, e,))
b)

is equivalent to

(let ((xq e))
(let ((z9 e2))



(let ((x, ey))
b))

Unlike most Lisp implementation of let, the Ontic implementation allows
early variables to be used in latter bindings, e.g., x; can appear in es.

2.4 Thunks

A thunk is an expression of the form (lambda () e) where e is some Ontic
expression. The word thunk originated as a description of the data structure
used to represent a call-by-name argument in Algol 60.# In Lisp, thunks are
used to represent delayed computation. The value of a thunk (lambda ()
e) is a “procedure” which, when called on no arguments, computes a value
of e.

Thunks play an important rule in nondeterministic programming lan-
guages. For example, the expression

(let ((x (either ’foo ’bar)))
(cons x x))

has two possible values while the expression

(let ((x (lambda () (either ’foo ’bar))))
(cons (x) (x)))

has four possible values.

an-integer and a-symbol. Ontic includes several primitive thunks. The
thunk an-integer, when applied to no arguments, nondeterministically gen-
erates some integer. The thunk a-symbol, when applied to no arguments,

4Sussman and Abelson attribute the origin of the term thunk to the sound made by
data structures when pushed onto the Algol stack [Sussman and Abelson, 1985].



nondeterministically returns a symbol. The expression

(let ((x (an-integer)))
(+ x x))

has all the even integers as its set of possible values. Note that this is different
from the expression (+ (an-integer) (an-integer)) which has all integers
as possible values. The expression (cons (a-symbol) (an-integer)) has
an infinite number of different possible values, each of which is a pair of a
symbol and an integer.

2.5 Formulas and Conditional Expressions

In Ontic formulas are syntactically different from expressions. Expressions
can have many different values or fail to have any values at all. A formula,
on the other hand, always has exactly one truth value — a formula is always
either true or false.

is. If e; and ey are Ontic expressions, then (is e; ep) is an Ontic formula
which is true if and only if every possible value of e; is also a possible value of
es. For example, the formula (is 2 (a-number)) is true while the formula
(is ’foo (a-number)) is false. The formula (is ’foo ’bar) is false while
the formula (is ’foo ’foo) is true. Note that in the case where expressions
e; and es both have exactly one possible value, the formula (is e; ep) is true
just in case the value of e; is the same as the value of e;. In other words, for
expressions with exactly one value, the primitive is acts as an equality test.
In expressions where e; has exactly one value and e, has many values, we can
think of e, as expressing a type and the formula (is e; ey) as expressing
the statement that e; denotes an object of type e;. In cases where e; and
e both have many possible values, the formula (is e; e3) can be viewed
as a statement that e; is a subtype of es. For example, if an-even-integer
is a thunk which, which called, generates an even number, then the formula
(is (an-even-integer) (an-integer)) expresses the statement that ev-
ery even integer is an integer. If e; has no possible values then the formula
(is e ey) is true.

10



there-exists. If e is an Ontic expression then (there-exists e) is a for-
mula which is true if e has some possible value. For example, the formula
(there-exists (a-symbol)) is true, while the formula

(there-exists (a-square-circle))

is false assuming that a-square-circle is a thunk that, when applied to no
arguments, fails to have any value.

at-most-one. If e is an Ontic expression then (at-most-one e) is a for-
mula which is true if there is at most one possible value of e. For exam-
ple (at-most-one (a-square-circle)) and (at-most-one ’foo) are both
true while (at-most-one (a-symbol)) is false.

and, or, not, implies and iff. Formulas can be constructed from other
formulas using the Boolean operations. For example, if ® and ¥ are formulas
then so are (not ®) and (or & V).

if. Formulas can be included in conditional expressions. A conditional ex-
pression is an expression of the form (if ® e; e3) where ® is a formula and
e and ey are expressions. If ® is true, then v is a possible value of (if ® ¢
e9) if and only if v is a possible value of e;. If ® is false then v is a possible
value of of (if ® e; ey) if and only if v is a possible value of e;.

when. Ontic includes the primitive when where an expression of the form
(when ® e) isequivalent to (if ¢ e (a-square-circle)). In other words,
if ® is true then (when ® e) is equivalent to e. However, if ® is false then
(when @ e) has no possible values.

cond. Ontic also includes the Lisp special form cond. An expression of the
form

(cond (Py e1)
((I)z 62)

(P, €,))

11



is semantically equivalent to

(if &,
€1

(if @,

€2

(when @,, ¢€,))).

Note that if none of the formulas in a cond expression are true then the
cond expression has no possible values. This is different from Lisp where
the value is nil if none of the conditions are true — having no value is quite
different from having the value nil.

Equality. Ontic also includes equality. A formula of the form (= e; e3)
is true just in case the set of possible values of e; is the same as the set of
possible values of e;. This definition of the meaning of equality is essentially
forced by the constraint that formulas have well defined truth values — a
formula always has exactly one truth value no matter how many possible
values the terms in that formula have. Semantically, the formula (= e; e3)
is equivalent to the the conjunction of (is e; e3) and (is ey e1).

2.6 Some-such-that, Exists, and Forall

some-such-that. Ontic includes a primitive some-such-that for expressing
generate and test expressions. The expression (some-such-that x e ®(x)),
where z is a variable e is an expression, and ®(x) is a formula, is equivalent
to the following.

(let ((z €))
(when ®(z) z))

For example, the expression

12



(some-such-that = (an-integer) (= (x 3 x) (+ x 8)))

has a single possible value — the number 4.

exists and forall. Ontic also includes the primitives exists and forall for
concisely expressing quantified statements. The formula (exists ((x e))
®(x)) is semantically equivalent to (there-exists (some-such-that = e
®(x))). For example, the following formula is true.

(exists ((x (an-integer)))

= x3x) (+x8)))

The formula (forall ((z e)) ®(z)) is semantically equivalent to (is e
(some-such-that = e ®(z))). For example, the following formula is true.

(forall ((x (an-integer)))

(exists ((y (an-integer)))
(= (+ xy) 0)))

Ontic also allows the primitives exists and forall to bind several vari-
ables. As with let, the bindings are done sequentially. The formula

(exists ((xq1 e1) (x9 €9) ... (x, €,))
O(xy, ... x,))

abbreviates

(exists ((z7 e1))
(exists ((zg e3))

&exists ((z,, €n))
(I)(Ilfl,ﬂ?g, .. ,l’n)))) .

13



A similar comment holds for the primitive forall.

2.7 Sets

the-set-of-all. Ontic allows for the construction of sets using the special
primitive the-set-of-all. An expression of the form (the-set-of-all e)
has exactly one possible value which is the set of all possible values of the
expression e. For example, given an operator a-number-greater-than we
can represent the set of all integers greater than a given integer x by the
expression

(the-set-of-all (a-number-greater-than z)).

This expression has a single value which is the set of all integers no smaller
than x. An expression of the form (the-set-of-all e) is similar to the
thunk (lambda () e) — both expressions have a single possible value that
either is, or is a representation of, the set of all possible values of e. In many
applications it seems to be natural to make a distinction between sets and
thunks. In Ontic thunks are different objects from sets — a thunk is never
equal to a set.

a-member-of and a-subset-of. Ontic provides two primitive nondetermin-
istic operators for dealing with sets. If s is an expression that denotes a set,
i.e., has a single possible value which is a set, then each element of the set
denoted by s is a possible value of the expression (a-member-of s). Simi-
larly, each subset of the set denoted by s is a possible value of the expression
(a-subset-of s).

2.8 Lambda Expressions and Definitions

lambda. Ontic has first class lambda expressions. The expression (lambda
((x €)) b(x)) has one possible value, namely the operator that takes a
possible value x of the expression e and nondeterministically maps = to a
possible value of b(z).

14



definitions. Ontic also allows definitions. A definition has the form

(define name e)

where name is a symbol and e is an expression. For example, one can define
a function that multiplies a number by 2 as follows.

(define double
(lambda ((z (an-integer)))
(+ x x)))

This definition introduces the symbol double as an abbreviation for the
above A-expression. Any A-expression has a single possible value so the
above definition is well formed. Recursive definitions are allowed with certain
restrictions discussed below.

To avoid confusion, in any definition (define f e) the expression e must
have a single possible value — the expression abbreviated by a defined symbol
must be singleton. Since M-expressions always have exactly one possible
value, this constraint will always be satisfied when defining operators or
thunks.

Definitions of the above form can be abbreviated as follows.

(define (double (z (an-integer)))
(+ x %))

In A-expressions with more than one argument the type of an argument
can depend on the value of an earlier argument. For example consider the
following.

(define (a-set-of-integers)
(a-subset-of (the-set-of-all (an-integer))))

15



(define an-integer-upper-bound
(lambda ((s (a-set-of-integers)) (u (a-subset-of s)))
(some-such-that y (a-member-of s)
(is (member-of u) (an-integer-less-than-or-equal-to y)))))

In the above definition the type of u involves the first argument s. An
expression of the form (an-integer-upper-bound s u) will have a value only
when s is a set of integers, u is a member of s, and there exists an element of
s which is at least as large as every element of u.> A type that depends on the
value of an earlier argument is called a dependent type. The above definition
has been given in the long form (with an explicit A\-expression) to emphasize
the fact that dependent types can occur in arbitrary A-expressions, not just
in the parameters of a defined operator.

2.9 Currying

Currying. In Ontic, all multi-argument operators are actually abbrevia-
tions for Curried expressions built up from single-argument A-expressions.
Ontic A-expressions of more than one argument are actually just abbrevia-
tions for nested A-expressions each of which takes only one argument. For
example, a A\-expression of the form (lambda ((x e) (y h)) b(x, y)) is ac-
tually an abbreviation for (lambda ((z e)) (lambda ((y h)) b(x, y))).
This representation of multi-argument operators by single argument opera-
tors is called Currying. An application of the form (f a b) is treated as an
abbreviation for ((f a) b).

Currying simplifies both the formal semantics and the implementation of
the Ontic system. For the most part the user can ignore Currying and just
assume that operators can take more than one argument. However, Ontic
does allow the user to write expressions of the form (f a) where f is a
A-expression of two arguments. In this case (f a) denotes an operator of
one argument. The fact that all A-expressions are actually Curried is also

°If s is the set of all integers and u is the set of all even integers then there is no possible
value for (an-integer-upper-bound s u) even though s and u match the types of the
operator an-integer—-upper-bound.

16



important in understanding the use of the primitive a-domain-member-of
as described in section 4.2.

2.10 Basic Semantics

This section discusses the meaning of Ontic expressions at a more detailed
level than that given in previous sections. Each Ontic expression has a set
of possible values. The set of possible values of an Ontic expression can
be precisely defined by structural induction on expressions. This precise
definition is just a more formal treatment of the informal discussion presented
in the previous section. Because the formal semantics is largely determined
by the informal discussion of the previous sections, a complete presentation
of a formal denotational semantics is not given here. Instead, this section
points out some of the highlights and subtleties of of the formal semantics.

Each Ontic expression has a set of possible values. There are six basic
kinds of values — symbols, integers, cons cells, thunks, operators, and sets.
Every Ontic value belongs to exactly one of these groups. Each kind of value
either is, or is a representation of, a standard Mathematical object.

e We assume the reader is familiar with symbols and integers.

e A cons cell is any value that can be returned by the operator cons
applied to two other values. A cons cell is a representation of a math-
ematical pair.

e A thunk is value which, when applied to no arguments, has a set of
possible values. A thunk is a representation of a set of values — the
set of possible values of applying the thunk to no arguments.

e An operator consists of two things — a domain set and a set of in-
put/output pairs. The domain set is the set of values to which the
operator can be applied. Each input/output pair specifies a possible
output value for a given input value. A given input value can be asso-
ciated with more than one possible output value. Also, there may be
elements of the domain set which are not associated with any output

17



value. However, every input value in an input/output pair must be a
member of the domain set.

Ontic operators of more than one argument are internally Curried (see
section 2.9). This implies that internally every operator takes only a
single argument. An expression of the form (lambda ((x A) (y B))
E) has a single possible value which is an operator. When this operator
is applied to a possible value of A it returns an operator which can then
be applied to a possible value of B.

e We assume the reader is familiar with sets — sets are one kind of
Ontic value. A set carries exactly the same information as a thunk
— thunks are just representations of sets. However, the distinction be-
tween thunks and sets seems to greatly improve the intuitive readability
of Ontic expressions.

Let £ be an Ontic expression and let p be a semantic variable interpreta-
tion, i.e., a map from variables to semantic values.® We let V(E, p) denote
the set of possible values of the expression E under variable interpretation p.
The formal definition of V(E, p) is by structural induction on the expression
E. More precisely, we first define V(E, p) for the case where F is a numeral
or a quoted symbol. In both of these cases V(FE, p) is a singleton set. (Re-
call that V(E, p) is the set of possible values of £ and that numerals and
quoted symbols have exactly one possible value.) A variable always has a
single possible value — the value assigned to that variable by the given se-
mantic variable interpretation. In other words, if x is a variable then V(z, p)
is the singleton set {p(x)}. We now define the possible values of other ex-
pressions by structural induction. We consider an expression F and assume
that for any expression W smaller than E we have defined V(W, p) for all
possible variable interpretations p. Given this assumption we can proceed
to define V(E, p) for an arbitrary variable interpretation p. For example,
V((either S W), p) equals the union of the sets V(S, p) and V(W, p).
For the most part the rest of the definition of V(E, p) is a straightforward
formal treatment of the informal semantics given in the previous section.

6Unlike most treatments of semantics, we give no specification of a semantic domain.
The variable interpretation p can be any function whose domain is the set of Ontic
variables.

18



Most cases will be left as exercises for the reader. (We encourage readers to
reread the previous and assign a formal denotational semantics to each kind
of Ontic expression.)

One particularly interesting case is A expressions. Because Ontic op-
erators are internally Curried, we need only consider A-expressions of one
argument. We define V((lambda ((x T)) W), p) to be the operator whose
domain set is V(T, p) and whose input/output pairs are those pairs <a, b>
where a is a member of V(7T', p) and b is a member of V(W, p[z := a]) where
plr := a] is the variable interpretation that is identical to p except that it
maps x to a. The semantics of A\-expressions is related to the semantics of
application. If (S W) is an application expression then V((S W), p) is the
set of values b such that there exists an operator f in the set V(S, p) and a
value a in V(W) p) such that the pair <a, b> is an input/output pair of f.

2.11 Operator Spaces

This section extends the basic Ontic language with two additional kinds of
expressions. These expressions do not extend the kinds of semantic values in
the ontic language — every value of these new expressions is either a thunk
or an operator. However, these new expressions make it more convenient to
use Ontic expressions as types. The new primitive a-function is also closely
related to the axiom of choice in Zermelo-Fraenkel set theory.

an-operator-from. Ontic includes expressions of the form
(an-operator-from d to 7).

Each possible value of the expression (an-operator-from d to r) is an
operator f whose domain is the set of possible values of the expression d
and such that for any domain value x, i.e., any possible value of d, every
possible value of (f x) is also a possible value of r. For example, consider
the operator double defined as follows.

(define (double (x (an-integer)))
(+ x x))

19



The operator double is a possible value of (an-operator-from (an-integer)
to (an-integer)). Consider the operator an-integer-greater-than which
takes an integer and returns an integer x and returns an integer greater
than x. The operator an-integer-greater-than is also a possible value of
(an-operator-from (an-integer) to (an-integer)).

The primitive an-operator-from can take more than one domain type.
For example, the operator + which takes two integers and returns an integer
is a possible value of (an-operator-from (an-integer) (an-integer) to
(an-integer)). In general, the possible values of an expression of the form
(an-operator-from 71 ... 7, to o) are all the operators f whose domain
sets are the sets of possible values of 7, ..., 7, and such that for any possible
values x1, ..., x, of 7y, ..., 7, respectively, we have that every possible value
of (f 1 ... x,) is a possible value of o. Because all Ontic operators are
Curried, the expressions (an-operator-from 7 7 to o) is equivalent to
the expression (an-operator-from 7; to (an-operator-from 7 to 0)).

The axiom of choice is incorporated into Ontic by including the primitive
construct a-choice-function-from. The primitive a-choice-function-from
is similar to the primitive an-operator-from except that it introduce bound
variables to represent elements of the domain types and it always returns a
function rather than an arbitrary operator. For example, the possible values
of the expression

(a-choice-function-from (x (an-integer))
to (an-integer-greater-than x))

are all operators f such that for any integer x there is exactly one pos-
sible value of (f z) and that value is an integer greater than z. Note
that the value f must be a function, i.e., for any element = of the domain
type (f x) must have exactly one possible value. The function successor
which takes an integer z and return z + 1 is a possible value of the above
a-choice-function-from expression. A function such as successor is
called a “choice function” because it selects a possible value of the expression
(an-integer-greater-than z). The operator an-integer-greater-than
is not a possible value of the above a-choice-function-from expression be-

20



cause it is not a function — it has more than one possible output value for
a given input value. For any expression of the form

(a-choice-function-from (x 7) to BI[x])
if the ontic system can prove the formula
(forall ((x 7)) (there-exists BI[x]))
then the ontic system will infer
(there-exists (a-choice-function-from (x 7) to B[x])).

This is the set-theoretic axiom of choice.

As with an-operator-from, the primitive a-choice-function-from can
take more than one domain type. For example one can write the following.

(a-choice-function-from (x (an-integer)) (y (an-integer))
to (an-integer-between x y))

All operators, including functions, are Curried. So the above expression is
equivalent to the following.

(a-choice-function-from (x (an-integer))
to (a-choice-function-from (y (an-integer))
to (an-integer-between x y)))

2.12 Type Restrictions in \-expressions

Where ever a bound variable is introduced, Ontic allows a “such-that” nota-
tion which allows a formula to be used to further restrict the possible values
of the bound variable. For example, consider the following definitions of
subtraction on the natural numbers.

21



(define (a—-number-not-less-than (n (a-natural-number)))
(either n (a-number-not-less-than (+ 1 n))))

(define (difference (x (a-natural-number))
(y (a-natural-number)
such-that
(is x (a-number-not-less-than y))))
(some-such-that z (a-natural-number)

=x (+y2)))

The above definition of the difference function is an abbreviation for the
following.

(define difference
(lambda ((x (a-natural-number))
(y (a-natural-number)
such-that
(is x (a-number-not-less-than y))))
(some-such-that z (a-natural-number)

=x (+y2)))))

Such-that restrictions can also be used in quantified formulas. For exam-
ple, the following formula is true (under any standard definition of the terms
involved).

(forall ((s1 (a-set-of-integers))
(s2 (a-set-of-integers)
such-that
(there-exists (a-member-of (intersection sl s2)))))
(exists ((y (+ (a—member-of sl1) (a-member-of s2))))
(is y (an-even-number))))

Such-that restrictions can also be used with the operator the-set-of-all.

22



For example, one might write the following.

(the-set-of-all = (an-integer)
such-that (exists ((y (an-integer)))
=x (+yy))))

Most of the axioms of set theory are incorporated into principles for
reasoning about the primitives that have been described in this section. In
principle much of mathematics could be done with just these primitives.
However, the primitives described above do not allow for recursive definitions.
Recursive definitions greatly reduce the complexity of a variety definitions
and proofs. The next section discusses the semantics of recursion in Ontic.

3 Recursion

Ontic allows recursive definitions — definitions in which the symbol being
defined appears in the body of the definition. Recursive definitions are re-
stricted to the case where a symbol is either defined to be a thunk or operator.
For recursively defined operators the symbol being defined can not appear
in the type restriction on the arguments of the operator.” The recursive def-
inition must also satisfy a semantic fixed point condition. Any “ordinary”
recursive definition will satisfy the fixed point criterion and for the most part
the fixed point restriction can be ignored. The fixed point restriction on
recursive definitions is discussed below.

Consider the following recursive definition of the natural numbers.
(define a-natural-number

(lambda ()
(either 0 (+ 1 (a-natural-number)))))

The above definition defines a thunk, a-natural-number which, when ap-

"This restriction simplifies the mechanisms for reasoning about recursive definitions.

23



plied, can return any natural number. This thunk can also be defined using
the following syntax.

(define (a-natural-number)
(either 0 (+ 1 (a-natural-number))))

An exponentiation function can be defined as follows.

(define (expt (x (an-integer)) (y (a-natural-number)))
(if (=y 0)
1
(x z (expt z (- y 1)))))

As stated above, the symbol being defined, expt in this case, can not
appear in the type restrictions on the arguments. In this example the type
restrictions are (an-integer) and (a-natural-number).

3.1 The Fixed Point Restriction on Recursive Defi-
nitions

The vast majority of recursive definitions encountered in practice satisfy
the fixed point criterion. For this reason casual users should simply write
recursive definitions and assume they will satisfy the fixed point criterion. If
a definition does not satisfy the fixed point criterion the ontic system will
print out an error message and refuse to accept the definition. If this happens
there are simple techniques for modifying the definition so that it becomes
acceptable to the Ontic system. These modification techniques are described
in section ??. Such modifications are usually quite simple, such as declaring
the output type of a defined operator, and do not require an understanding
of the fixed point restriction. For the sake of completeness, however, the
fixed point restriction is discussed in some detail here.

For any recursive definition, whether or not it satisfies the fixed point
restriction, Ontic assigns a well defined meaning to the defined symbol. The

24



meaning is a transfinite limit over all ordinals. In this section we are not
concerned with the details of this method of assigning meaning — we simply
assume that Ontic has some way of assigning such meanings.® The fixed
point restriction on recursive definitions states that Ontic must be able to
automatically prove that the transfinite limit meaning is a fixed point of the
recursive definition. The concept of a fixed point is best understood in terms
of an example. Consider the following definition.

(define (an-integer-list)
(either ’nil (cons (an-integer) (an-integer-list))))

This definition satisfies the fixed point restriction — Ontic can verify that
the transfinite limit meaning derived from this definition is a fixed point of
the definition. The transfinite limit meaning is such that an-integer-list
is a thunk which, when applied, can return any finite list of integers. The
meaning of the thunk is a fixed point of the definition in the sense that the
call (an-integer-list) has exactly the same set of possible values as the
body of the above definition, i.e., the same of possible values as

(either ’nil (cons (an-integer) (an-integer-list))).

Consider an arbitrary recursive thunk definition.

(define (a-foo)
Cla-foo])

In the above definition the body C[a-foo] is an expression that involves
a-foo. The meaning of a-foo should be a fixed point of this definition. This
means that the expression (a-foo) should have the same set of possible
values as C[a-foo].

There are recursive definitions which do not have fixed points. For example,
consider the following.

(define (a-paradoxical-object)

8The transfinite limit meaning is described in more detail in section 3.2.

25



(if (there-exists (a-paradoxical-object))
(fail)
1)

The transfinite limit meaning assigned by Ontic is such that a-paradoxical-operator
is a thunk which, when applied, returns the single value 1. But this meaning is
not a fixed point of the above definition. The expression (a-paradoxical-object)
has the single value 1 while the expression

(if (there-exists (a-paradoxical-object)) (fail) 1)

has no possible values. This definition has no fixed point, no matter how we
interpret the meaning of a-paradoxical-object the expression (a-paradoxical-object)
must have a different set of possible values than the body of the definition.

There are two ways a definition can fail to satisfy the fixed point restric-
tion. First, the transfinite limit meaning of the defined term may not, in
fact, be a fixed point of the definition. In this case there is no alternative
but to either modify the definition or give up. A second way a definition can
fail to satisfy the fixed point condition is that the transfinite limit meaning
is a fixed point but the Ontic system is not powerful enough to prove this
fact automatically. In this case the definition can usually be made to satisfy
the fixed point criterion by adding declarations to the definition that On-
tic can use in its attempt to prove that the meaning is a fixed point. Such
declarations are described in section ?7?.

It is worth noting that a given recursive definition can have more than one
fixed point. As an example consider the following definition of the natural
numbers.

(define (a-foo-number)
(either 0 (+ 1 (a-foo-number))))

Given this definition Ontic interprets a-foo-number as the thunk which,
when applied, returns any nonnegative integer. Suppose, however, that for
some reason we wished to interpret a-natural-number as the the thunk
which, when applied, return any integer. This latter interpretation is also a

26



fixed point of the above definition — the expression (a-foo-number) would
have the same set of possible values as

(either 0 (+ 1 (a-foo-number))).

For any definition satisfying the fixed point restriction, the fixed point as-
signed by the transfinite limit meaning is always the least fixed point of the
definition. If a recursive definition of a thunk a-foo is accepted by the Ontic
system then the meaning of that thunk is the least fixed point of the defi-
nition, i.e., the set of possible values of (a-foo) is the smallest set possible
given that a-foo must denote a fixed point of the definition. Another way of
saying this is that only those possible values which are forced by the definition
are actually included as possible values of (a-foo).

All of the above aspects of recursive thunk definitions apply to recursive
definitions of other operators. Consider the following definition of append on
integer lists.

(define (append (11 (an-integer-list)) (12 (an-integer-list)))
(if (= 11 ’nil)
11
(cons (car 11) (append (cdr 11) 12))))

Given this definition, Ontic interprets append as the normal append op-
erations on lists. The operator defined in a recursive definition can not be
used in the type constraints on the parameters to that operator. Thus the
domain of the operator is directly given and independent of the transfinite
limit process for constructing the meaning of the operator. The standard
meaning of the append operation on lists is a fixed point of the above defi-
nition in the sense that for any integer lists x and y we have that (append
x y) is equivalent to

(if (= z ’nil)

x
(cons (car x) (append (cdr z) ¥)))

Recursive operator definitions can fail to have any fixed point, or have

27



more than one fixed point. As an example of an operator with more than
one fixed point consider the following.

(define (an-integer-greater-than (x (an-integer)))
(either (+ 1 x)
(+ 1 (an-integer-greater-than x))))

Given this definition, Ontic interprets an-integer-greater-than to be
the operator such that for any integer z, the possible values of (an-integer-greater-than
x) are precisely the integers greater than x. However, if we interpret an-integer-greater-than
as the operator which takes an integer and then returns any integer whatso-
ever, then we also get a fixed point of the above definition. As with thunks,
the transfinite limit semantics constructs the least possible fixed point. The
semantic value of a recursively defined operator f is such that for any values
x1, To, ..., T, we have the set of possible values of (f xy =5 ... x,) is the
least set possible given that f must be a fixed point of the definition.

3.2 Transfinite Limit Semantics for Recursion

This section provides a more detailed discussion of the process by which
semantic meaning is assigned to recursively defined thunks and operators.
First we consider thunks. Consider an arbitrary recursive definition of the
following form.

(define a-foo
(lambda ()
Cla-fool))

The meaning of a recursively defined thunk is a transfinite limit of a series
of approximations or “versions” of the thunk. Given the above definition,
one can write the expression (version a-foo a) where o is an ordinal.’

9Expressions of this form are used internally in reasoning about recursively defined
thunks and operators. Such version expressions are not intended to be used by Ontic
users. Ordinals are used internally in reasoning about recursively defined terms but are

28



The ordinals are totally ordered — given any two ordinals one is less than
than the other. Furthermore, any subset of the ordinals contains a least
member. Ordinals are like natural numbers. There is a least ordinal, which
is normally written as 0, a next least ordinal written as 1, a next least written
as 2 and so on. There is also a least ordinal which can not be reached in
this way, written as w — w is the least ordinal larger than all of 0, 1, 2,

Of course there are ordinals larger than w. The expression (version
a-foo 0) denotes the thunk which, when applied, does not have any possible
values. The expression (version a-foo 1) is the thunk whose body is given
by the recursive definition of a-foo where each recursive call to the thunk
a-foo is replaced by a call to the thunk (version a-foo 0). The expression
(version a-foo 2) is the thunk given by the definition where recursive calls
invoke (version a-foo 1). Again consider an arbitrary recursive definition.

(define a-foo
(lambda ()
Cla-foo]l))

Given this definition, the expression (version a-foo «) is equivalent to

(lambda ()
(let ((8 (an-ordinal-less-than a)))
C[(version a-foo £3)1))

As an example, consider the following definition of a thunk that returns a
list of integers.

(define (an-integer-list)
(either ’nil (cons (an-integer) (an-integer-list))))

The expression (version an-integer-list 0) denotes the thunk which,
when applied, has no value. The expression (version an-integer-list

not provided as primitives for the user. To use ordinals in proofs the user can define
ordinals in the same way as any other mathematical concept.

29



1) denotes the thunk which, when applied, has the single value nil. The
expression (version an-integer-list 2) denotes the thunk which, when
applied, can return either nil or a list of one integer. If n is a finite or-
dinal then (version an-integer-list n) denotes the thunk which, when
applied, can return any integer list of length less than n. If « is any infi-
nite ordinal then (version an-integer-list «) denotes the thunk which,
when applied, can return any finite list of integers. Note that if a and
are any two infinite ordinals then (version an-integer-list «) has the
same value as (version an-integer-list (3). This is because (version
an-integer-list w) is a fixed point of the definition. Most recursive defi-
nitions reach a fixed point at w.

As an example of a recursive definition which reaches a fixed point at an
ordinal larger than w consider the definition of a Borel set. A Borel set is
a subset of the real numbers. Any open interval is a Borel set. However,
the Borel sets are closed under countable intersections and countable unions.
The set of Borel sets is the least family of sets that satisfy these two condi-
tions. The set of Borel sets is defined recursively below. The versions of this
recursive definition reach a fixed point at the first uncountable ordinal.

(define (a-borel-set)
(either (open-interval (a-real-number) (a-real-number))
(family-union (a-countable-set-of a-borel-set))
(family-intersection (a-countable-set-of a-borel-set))))

Not all recursive definitions reach fixed points. Consider the following
definition of a “well founded set”.

(define (a-pure-set)
(a-subset-of (the-set-of-all (a-pure-set))))

Given this definition we have that (version a-pure-set 1) is a thunk
which, when applied, returns the empty set. The expression (version
a-pure-set 2) is a thunk which, when applied, returns either the empty set
or the set containing the empty set. (version a-pure-set 3) is a thunk

30



which, when applied, has four possible values. For any finite ordinal n we
have that (version a-pure-set n) is a thunk which, when applied, has a
finite set of possible values — the set of all hereditarily finite sets of rank n
that can be built from the empty set. (version a-pure-set w) is a thunk
which, when applied, can return any hereditarily finite set built from the
empty set. (version a-pure-set w + 1) is a thunk which, when applied,
can return any subset of hereditarily finite sets — including infinite subsets.
Because any set has more subsets than members, there can not be any fixed
point of the above definition — for any ordinal o we have that (version
a-pure-set « + 1) is a thunk which, when applied, has more possible val-
ues than (version a-pure-set ).

The meaning of a recursively defined thunk is taken to be the transfinite
limit of the versions the thunk. More precisely, given a recursive definition
of a-foo, the thunk a-foo can be defined in terms of the versions of a-foo
as follows.

(define a-foo
(lambda ()
(let ((a (an-ordinal)))
(let ((v (version a-foo «)))

(v)))))

To compute a value for the call (a-foo) one first selects an ordinal n.
One then constructs the thunk (version a-foo n) and calls this thunk to
get a value. For example, given the above definition of an-integer-1list,
the symbol an-integer-list denotes a single well defined thunk which,
when applied, can return an integer list of any finite length. This is a fixed
point of the definition. Given the definition of a Borel set, the expression
(a-borel-set) returns any one of a very large collection of possible subsets
of the real numbers. The definition of a Borel set does reach a fixed point
and the recursive definition is acceptable to Ontic. Any set built purely
from the empty set is a possible value of (a-pure-set). Unfortunately, this
well defined meaning for the expression (a-pure-set) is not a fixed point
of the definition. The class denoted by (the-set-of-all (a-pure-set))
is not a possible value of (a-pure-set). This fact is closely related to the

31



fact that the collection of all sets does not contain itself — the collection
of all sets is a “class” rather than a set. The collection of all pure sets is
not a set. So there is a possible value of (a-subset-of (the-set-of-all
(a-pure-set))) which is not a possible value of (a-pure-set).

Recursive operator definitions are treated in the same manner as recursive
thunk definitions. For example consider the following definition of the append
function on integer lists.

(define (append (11 (an-integer-list)) (12 (an-integer-list)))
(if (= 11 ’nil)
11
(cons (car 11) (append (cdr 11) 12))))

Given this recursive definition, (version append «) is equivalent to the
following.

(lambda ((11 (an-integer-list)) (12 (an-integer-list)))
(let ((f (an-ordinal-less-than «)))
(if (= 11 ’nil)
11
(cons (car 11) ((version append () (cdr 11) 12)))))

For any ordinal o (version append «) denotes an “approximation” to
the append function. (version append «) is the operator whose definition
is given by the recursive definition of append except that recursive calls to
append use the version of append at a smaller ordinal than a. The larger
the ordinal a the better the approximation. Let n be a finite ordinal. If
we apply the operator (version append n) to the lists 11 and 12 there are
two possible results. If the length of 11 is less than n then the application
will return the expected append of 11 and 12. If the length of 11 is greater
than or equal to n then the application will fail to have a value. If « is
any infinite ordinal then (version append «) denotes the ordinary append
function. The recursive definition of append reaches a fixed point at w.

The recursive definition of the append function is treated as an abbrevi-

32



ation for the following.

(define append
(lambda ((11 (an-integer-list)) (12 (an-integer-list)))
(let ((a (an-ordinal)))
(let ((v (version append «)))
(v 11 12)))))

Note that the symbol append, as defined above, denotes a single well
defined operator. Furthermore, an application of this operator to two integer
lists has exactly one possible output value, namely the expected append of
those two lists. For any version of append used to compute the output, either
no output is produced or the output is the expected value.

4 Large Thunks and Other Features

There are a variety of features of Ontic which simplify definitions and theo-
rems. The first such feature described in this section are the large primitive
thunks. The large primitive thunks allow one to talk about “any set” or
“any operator”. These large thunks are formulated carefully to avoid set-
theoretic paradoxes. This makes some aspects of these thunks rather subtle.
A second convenient feature is type checking. The Ontic system checks that
in every application the operator is being applied to values of the correct
type. This type checking process reduces the time required to write defini-
tions and proofs by identifying ill-formed expressions. A fourth convenient
feature is the ability to define structures similar to the structures used in pro-
gramming languages such as Scheme or Common Lisp. The final convenient
feature discussed in this section is type coercion. Type coercion provides a
form of object oriented behavior analogous to that found in the Common
Lisp CLOS system or in C++.

33



4.1 Large Primitive Thunks

Every Ontic value is either a symbol, an integer, a cons cell, a thunk, an
operator, or a set. The thunks a-symbol and an-integer were discussed in
section 2. Ontic also provides the primitive thunks a-cons-cell, a-thunk,
an-operator, and a-set. These six primitive thunks correspond to the six
kinds of Ontic values. The last four primitive thunks will be called large
primative thunks.

The semantics of large primitive thunks is a little tricky. The basic prob-
lem is that the set of output values of a large primitive thunk is extremely
large. Intuitively we would like the set of possible values of (a-set) to include
all sets. It should at least include all sets that arise in normal mathematics.
A similar observation holds for the expressions (a-cons-cell), (a-thunk)
and (an-operator). Unfortunately, one can prove that there is no set of
all sets. In particular, the set denoted by (the-set-of-all (a-set)) can
not be a possible value of (a-set). (the-set-of-all (a-set)) is a set,
but is not a member of itself. There must be sets which are not possible
values of (a-set) and hence there must be sets which are not members of
(the-set-of-all (a-set)).

Fortunately, the large primitive thunks can be made large enough to in-
clude all the objects that arise in normal mathematics. In particular, the
large primitive thunks cover all objects that can be named without using
the large primitive thunks. The (the-set-of-all (a-set)) is not a possi-
ble value of (a-set) because the large primitive thunk a-set is used it its
definition. An expression that does not contain a large primitive thunk will
be called a predicative expression. Expressions that contain large primitive
thunks will be called impredicative. Any Ontic value that is a possible value
of a predicative expression is also a possible output value of one of the six
primitive thunks.

All “normal” mathematics can be done with purely predicative expres-
sions. For example, the expression (the-set-of-all (an-integer)) which
denotes the set of all integers, is predicative. Similarly, the set of all subsets
of the integers can also be defined by a predicative expression as follows.

34



(define the-set-of-integer-subsets
(the-set-of-all
(a-subset-of
(the-set-of-all (an-integer)))))

Since normal mathematics can be done with predicative expressions, one
might think that the large primitive thunks are not needed at all. How-
ever, large primitive thunks are natural for expressing certain concepts. For
example, consider the following definitions.

(define (union (s1 (a-set)) (s2 (a-set)))
(the-set-of-all
(either (a-member-of s1)
(a-member-of s2))))

(define (a-superset-of (s (a-set)))
(some-such-that s2 (a-set)
(is s (a-subset-of s2))))

(define (a-thing)

(either (a-symbol)
(an-integer)
(a-cons-cell)
(a-thunk)
(an-operator)

(a-set)))

(define (a-list)
(either ’nil
(cons (a-thing) (a-list))))

(define (a-list-member-of (1 (a-list)))

35



(when (not (= 1 ’nil))
(either (car 1)
(a-list-member-of (cdr 1)))))

(define (map (f (an-operator))
(1 (a-list)
such-that (is (a-list-member-of 1)
(a-domain-member-of £))))
(if (= 1 ’nil)
‘nil
(cons (f (car 1)) (map f (cdr 1)))))

The above definitions are extremely general.!”

4.2 Type Checking

a-domain-member-of. An Ontic operator consists of two things — a do-
main set and a set of input/output pairs. All applications of the form (f a)
must be well typed in the sense that for all possible values of f and a the
value of f is an operator and the value of a is an element of the domain of that
operator. There are certain cases where one might like to apply operators
to objects that are not necessarily elements of the domain of the operator.
For example, consider the map operator defined in the previous section. One
might like to define the map operation as follows.

(define (map (f (an-operator)) (1 (a-list)))
(if (= 1 ’nil)
’nil
(cons (f (car 1)) (map f (cdr 1)))))

10The primitive a-domain-member-of is needed in the definition of map to ensure that
the expression (f (car 1)) is well typed. The primitive a-domain-member-of is de-
scribed in the next section.

36



However, in this definition the application (f (car 1)) is not well typed
— the value of (car 1) is not guaranteed to be in the domain of £. However,
by rewriting this definition as follows, the application becomes well typed.

(define (map (f (an-operator))
(1 (a-list)
such-that (is (a-list-member-of 1)
(a-domain-member-of £))))
(if (=1 ’nil)
‘nil
(cons (f (car 1)) (map f (cdr 1)))))

Alternatively, one can guarantee that the application is well typed by using
the following definition.

(define (map (f (an-operator)) (1 (a-list)))
(if (= 1 ’nil)
‘nil
(when (is (car 1) (a-domain-member-of f))
(cons (f (car 1)) (map f (cdr 1))))))

Intuitively, the application (f (car 1)) will be well typed in any execu-
tion of this procedure which reaches the application. This example exploits
the fact that in the Ontic system well-typedness is context sensitive, i.e.,
whether or not a given expression is well typed depends on the context in
which that expression appears. In the above definition, the occurrence of
(f (car 1)) is well typed because it appears in a place which can only be
“reached” when the formula (is (car 1) (a-domain-member f)) is true.
Similarly, the occurrence of the expression (car 1) is well typed because it
can only be reached when the formula (= 1 ’nil) is false.!!

1Tn the Ontic system one can not take the car or cdr of the symbol nil.

37



4.3 Structures

defstruct. Ontic allows for structure definitions analogous to those in com-
mon Lisp. For example, suppose we wish to define the concept of a point in
the z — y plain. We can do this using the following structure definition (here
we assume the concept of a real number).

(defstruct an-xy-point
(x-coordinate (a-real-number))
(y-coordinate (a-real-number)))

This structure definition is an abbreviation for the following series of defini-
tions.

(define (make-an-xy-point (x (a-real-number))
(y (a-real-number)))
(list ’an-xy-point x y))

(define (an-xy-point)
(let ((x (a-real-number))
(y (a-real-number)))
(make-an-xy-point x y)))

(define (x-coordinate (p (an-xy-point)))
(car (cdr p)))

(define (y-coordinate (p (an-xy-point)))
(car (cdr (cdr p))))

Structure definitions can involve dependent types. For example, we can define
a directed graph as follows.

38



(defstruct a-directed-graph
(the-node-set (a-subset-of
(the-set-of-all (a-symbol))))
(the-arc-set (a-subset-of
(the-set-of-all
(cons (a-member-of the-node-set)
(a-member-of the-node-set))))))

In the above definition the type of the second slot, the-arc-set, depends on
the object in the first slot. Every arc in the arc set must be an arc between
two nodes that are elements of the node set. In general the slot names in
a structure definition are treated as variables and slot names can appear in
the types of later slots.

Structure definitions can also include a “such-that” clause. For example, we
can define a rectangle to be a structure consisting of four x-y points which
are the corners of the rectangle.

(defstruct a-rectangle
(lower-left (an-xy-point))
(lower-right (an-xy-point))
(upper-left (an-xy-point))
(upper-right (an-xy-point))
such-that
(and (= (y-coordinate lower-left)
(y-coordinate lower-right))
(= (y-coordinate upper-left)
(y-coordinate upper-right))
(= (x-coordinate lower-left)
(x-coordinate upper-left))
(= (x-coordinate lower-right)
(x-coordinate upper-right))))

As another example, we can define a group to be a domain, an identity
element, an inverse operation and a group operation satisfying certain con-

39



ditions.

(define (a—monadic-function-on (d (a-set)))
(lambda-fun ((x (an-element-of d)))
(an-element-of d)))

(define (a-binary-function-on (d (a-set)))
(lambda-fun ((x (an-element-of d)) (y (an-element-of d)))
(an-element-of d)))

(defstruct (a-group)
(domain (a-set))
(ident (an-element-of domain))
(inverse (a-monadic-function-on domain))
(operator (a-binary-function-on domain))
such-that
(and (forall ((x (an-element-of domain))
(y (an-element-of domain))
(z (an-element-of domain)))
(= (operator (operator x y) z)
(operator x (operator y z))))
(forall ((x (an-element-of domain)))
(and (= (operator x ident) x)
(= (operator x (inverse x)) ident)))))

Structure definitions can also be recursive. For example, one might define a
data structure for representing information about employees as follows.

(defstruct an-employee-record
(age (a-natural-number))
(salary (a-natural-number))
(supervisor (either ’none (an-employee-record))))

40



In general, a structure definition of the form

(defstruct name
(slot-1 type-1)

(slot-n type-n)

such-that
D)

is an abbreviation for the following:

(define (name)
(let ((slot-1 type-1)

(slot-n type-n))

(when ¢
(1ist ’name slot-1 --- slot-n))))
(define (make-name (slot-1 type-1) --- (slot-n type-n))
(when &
(1ist ’name slot-1 --- slot-n)))

(define (slot-1 (x (name)))
(car (cdr z)))

(define (slot-n (x (name)))
(car (cdr ... (cdr z))))

41



4.4 Type Coercion

defcoercion and def-o-piece. A coercion function maps objects of a variety
of different types into a standard type. For example, consider directed graphs,
groups, and lists as defined above. An object of any of these types can be
viewed as a set. We can define a coerce-to-set operation which maps
objects of these types to sets. The function coerce-to-set is declared to be a
coercion function using the primitive defcoercion. The value of the coercion
function is defined for various types using the Ontic primitive def-o-piece

(defcoercion coerce-to-set
(a-set))

(def-o-piece (coerce-to-set (g (a-directed-graph)))
(the-node-set g))

(def-o-piece (coerce-to-set (g (a-group)))
(domain g))

(def-o-piece (coerce-to-set (1 (a-list)))
(if (= 1 ’nil)
the-empty-set
(insert (car 1) (coerce-to-set (cdr 1)))))

The primitive defcoercion is used to introduce the coercion function
and declare its output type. The defcoercion form also defines the co-
ercion function to be the identity operation on the given output type. For
example, the following definition is implicitly present in the above declaration
of coerce-to-set.

(def-o-piece (coerce-to-set (s (a-set)))

s)

42



The primitive def-o-piece is used to define the value of the coercion
function on various types. For each def-o-piece form the Ontic system
checks to make sure that the new domain type, e.g., the type (a-group)
above, does not overlap with any of the previous domain types. This ensures
that the various domain types are pairwise disjoint and that only one defi-
nition can be used in any single application of the coercion function. Ontic
also checks each definition introduced with def-o-piece to ensure that the
value generated is an instance of the output type declared for the coercion
function.

If f is a coercion function, i.e., a function introduced using defcoercion,
then the domain of f is open-ended — the objects to which f can be applied
can always be expanded. If f is a coercion then the possible values of the
expression (a-domain-member-of f) are not well defined. At any point in
time there are certain objects, i.e., those that can be coerced using f, that
are definitely possible values of (a-domain-member-of f). However, one
can never be sure that a particular object is not in the domain of f. The
domain of a coercion function is usually a very useful type. For example,
consider the following definitions.

(define (a-virtual-set)
(a-domain-member coerce-to-set))

(define a-vmember-of (s (a-virtual-set))
(a-member-of (coerce-to-set s)))

(define (a-vsubset-of (s (a-virtual-set)))
(a-subset-of (coerce-to-set s)))

(define (set-difference (s1 (a-virtual-set))
(s2 (a-virtual-set)))
(the-set-of-all
(some-such-that x (a-vmember-of si1)

43



(not (is x (a-vmember-of s2))))))

5 Proofs

Most traditional proof systems are defined by rules of inference — each state-
ment must be derived from previous lines using one of the inference rules.
The Ontic system does not work this way. In Ontic each line must be an “ob-
vious consequence” of the preceding lines. The notion of obviousness is best
viewed as a semantic rather than a syntactic notion. Ontic uses a complex
automated inference procedure to determine whether a given statement is
obvious. The inference mechanisms used in determining if a given statement
is obvious at a given point in a proof are not described here. Readers in-
terested in the inference mechanisms should consult technical papers on the
inference mechanisms such as [McAllester et al., 1989], [McAllester, 1990,
[McAllester, 1991b], [McAllester, 1991a).

Ontic is a knowledge intensive system. Ontic maintains a “lemma li-
brary” containing a set of definitions and theorems. Ontic automatically
accesses definitions and theorems from this library when it determines if a
given statement is obvious. In this way the notion of obviousness can change
over time as more theorems are added to the lemma library. Proofs never
make explicit reference to definitions or theorems. If a theorem is in the
lemma library then any particular instance of that theorem is obvious to the
Ontic system. Usually, however, the obviousness of a statement requires a
combination of many definitions and theorems and a “subconscious” infer-
ence process that puts the definitions and theorems together in verifying a
statement.

The next section describes the basic structure of ontic proofs and the
three basic proof constructs show, suppose, and let-be. Three later sections
describe other general purpose proof constructs, specific methods for proving
specific kinds of formulas, and induction proofs.

44



5.1 Show, Suppose, and Let-be

A proof is a kind of expression that is read by the system. The result of
reading a proof is one or more lemmas which are added to the lemma library.
There are three basic kinds of proof expressions — show expressions, suppose
expressions, and let-be expressions. The simplest proof expressions are show
expressions of the form (show ®) where ® is a formula. A series of show
expressions can often be given which culminate in some desired result. For
example, consider a group g with group operation op. We can define an
identity element of g to be an element id such that for any other element
x we have that (op id x) equals (op x id) equals x. Suppose that we
wish to show that a group has at most one identity element. In particular,
suppose that we are considering two identity elements id1 and id2. We wish
to show (= idl id2). This can be done with the following series of show
expressions.

(show (= (op idl id2) id1))
(show (= (op idl id2) id2))
(show (= idl id2))

This is a simple “Socratic” proof — it is a series of show expressions
leading to a desired result. Reading the three show assertions given above
results in the addition of three lemmas to the current context (the notion
of context is described in the next section). It might be more desirable to
prevent the first two lemmas from being added since they are really just steps
in the proof of the third expression. To express the fact that the first two
expressions are just steps in the proof of the third we can place the first two
equations inside the third show expression resulting in the following proof.

(show (= id1l id2)

(show (= (op idl id2) id1))
(show (= (op id1 id2) id2)))

This proof only adds a single lemma to the current context. In general,
a show expression either fails or generates exactly one lemma — the for-

45



mula that is shown. Any number of proofs can be placed inside the show
expressions. The proofs inside a show expression are called the body of that
expression.

Let-be proofs are used to prove universally quantified formulas. In the
above example we are really interested in proving that any group has at most
one identity element. This result is actually more general than group theory.
It applies to any structure, like a group, that contains a set of elements and
a binary operation on those elements. We might call such structures binary
operator structures and define them in ontic as follows.

(defstruct a-binary-operator-structure
(domain (a-set))
(operator (a-function-from (a-member-of domain)
(a-member-of domain)
to (a-member-of domain))))

For any binary operator structure we can define the concept of an identity
element.

(define (identity-of (m (a-binary-operator-structure)))
(some-such-that id (a-member-of (domain m))
(forall ((x (a-member-of (domain m))))
(and (= ((operator m) x id) x)
(= ((operator m) id x) x)))))

We now wish to prove that for any binary operator structure there is at most
one identity element. This can be done with the following proof.

(let-be ((m (a-binary-operator-structure)))
(show (at-most-one (identity-of m))
(suppose (there-exists (identity-of m))
(let-be ((x (identity-of m))
(y (identity-of m)))
(show (= x y)

46



(show (= ((operator m) x y) x))
(show (= ((operator m) x y) y)))))))

This proof generates the following single lemma.

(forall ((m (a-binary-operator-structure)))
(at-most-one (identity-of m)))

In general, a let-be expression has the following form.

(let-be ((x; m) ... (x, 7))
<sub-proof>

<sub-proof>)

The sub-proofs are called the body of the expression. Each sub-proof in
the body generates one or more lemmas. The lemmas generated subproofs
usually contain one or more of the bound variables of the let-be expression,
e.g., one or more of the z;’s in the above expression. A let-be expression
generates a lemma for each lemma generated by a subproof. If a subproof

generates ®lyy, ..., yx], where yi, ..., yx are bound variables of the let-be
expression, then the let-be expression generates a lemma of the form (forall
((yr 1) oo Qe 7)) Plya, .., yk]). The variables y1, ..., yx can be any

subset of the bound variables of the let-be expression.

A let-be expression can only be used to introduce objects that are known
to exist. For example suppose we define an “impossible number” to be a
number that is both even and odd.

(define (an-impossible-number)
(both (an-even-number) (an-odd-number)))

If we then try to evaluate (let-be ((x (an-impossible-number)))
...) the system will generate an error stating that it is unable to prove

47



(there-exists (an-impossible-number)). It does not really matter if
the type involved actually exists — to use a let-be expression the system
must be able to prove that objects of the given type exist. In the above
proof about binary operator structures the system is able to prove that bi-
nary operator structures exist. However, a binary operator structure need
not contain an identity element so before we can evaluate a let-be expression
that introduces an identity element we need to first suppose that some iden-
tity element exists. In general, a suppose proof expression has the following
form.

(suppose ®
<subproof>

<subproof>)

If ¥ is a lemma generated by one of the subproofs in the body of the suppose
expression, then the suppose expression generates the lemma (implies ¢
).

Ontic proofs are Socratic in the sense that for any show expression of the
form (show ® <subproof> ... <subproof>) the goal formula ® must be
an obvious consequent of the set of lemmas generated by the subproofs, i.e.,
the goal formula must be obvious in a context where the lemmas generated
by the subproofs are included in the lemma library. It is useful to study the
structure of the above proof that any operator structure has at most one
identity element. Consider the following proof fragment.

(show (at-most-one (identity-of m))
(suppose (there-exists (identity-of m))
(let-be ((x (identity-of m))
(y (identity-of m)))
(show (= x y)
)

The body of the outer show expression consists of a single subproof. This

48



subproof generates the following lemma.

(implies (there-exists (identity-of m))
(forall ((x (identity-of m))
(y (identity-of m)))
(=xy)))

When this lemma is included in the lemma library Ontic is able to prove
(at-most-one (identity-of m)). The relation between a goal and the
subproofs used to show that goal is “semantic” in the sense that the facts
proven in the subproofs must “obviously imply” the goal. The notion of
obviousness is determined by Ontic’s internal theorem proving mechanisms.

5.2 Suppose-For-Refutation

Ontic allows for proof by contradiction. Proofs by contradiction are also
known as refutations. In a refutation proof one supposes the negation of the
formula one is trying to prove. Ontic provide a primitive proof constructor
called suppose-for-refutation. Suppose-for-refutation has the same
syntax as suppose but behaves somewhat differently. Consider a proof ex-
pression of the following form.

(suppose-for-refutation P
<subproof>

<subproof>)

If Ontic can derive a contradiction from the supposition ® and the lemmas
generated by the subproofs then the above expression generates the theorem
(not ®). Otherwise the above proof expression fails. A proof that there is
no bijection between a set and its power set might start as follows.

(let-be ((s (a-set)))

49



(suppose-for-refutation
(there-exists (a-bijection-between s (power-set s)))

D)

5.3 Case Analysis

Each proof is read in a context. A context consists of a current set of defi-
nitions, known lemmas, suppositions, and a current goal formula. The goal
component of a context is important in proofs that involve case analysis. For
example, consider the following definition of the mod2 function on integers.

(define (mod2 (n (an-integer)))
(if (is n (an-even-integer))
0
1))

Now suppose that we wish to prove that (is (* n (mod2 n)) (either
0 n)). This can be done with the following proof.

(let-be ((n (an-integer)))
(show (is (* n (mod2 n)) (either 0 n))
(suppose (is n (an-even-integer)))
(suppose (not (is n (an-even-integer))))))

Under the supposition that n is an even integer Ontic finds the goal
formula obvious — under this supposition (mod2 n) is 0 so (* n (mod2 n))
is also 0. The first suppose expression generates the implication stating that
the supposition implies the given goal formula. Similarly the second suppose
expression generates an implication that stating that the second supposition
implies the given goal formula. Given these two implications the truth of the
goal is obvious.!?

12The current Ontic implementation does a certain amount of case analysis automat-

50



Consider an arbitrary suppose expression (suppose ¢ <subproof> ...
<subproof>). If this show expression is read in a context with a goal formula
U, and if Ontic is able to determine that W is an obvious consequence of the
supposition ® and the lemmas generated by the subproofs, then in addition to
the implications generated by the subproofs, the suppose expression generates
the implication (implies ® W). Each subproof is read in a context with
the same goal formula V.

5.4 Suppose-there-is and Consider

Consider and Suppose-there-is are both similar to let-be. They both have
exactly the same syntax as let-be but have slightly different usage. Suppose-
there-is is used in cases where the types of the bound variables are not known
to exist. For example, the proof that there is at most one identity element
of a binary operator structure can be stated as follows.

(let-be ((m (a-binary-operator-structure)))
(show (at-most-one (identity-of m))
(suppose-there-is ((x (identity-of m))
(y (identity-of m)))
(show (= x y)
(show (= ((operator m) x y) x))
(show (= ((operator m) x y) y))))))

The suppose-there-is expression in the above proof generates the same
universally quantified that would be generated by a let-be expression but the
suppose-there-is expression does not require Ontic to verify that objects of
the specified types exist. By using the appropriate proof form, either let-be
or suppose-there-is, the user provides a declaration to the Ontic system re-
garding what the user expects the Ontic system to know. This declaration is
useful in uncovering faulty assumptions about the state of Ontic’s knowledge.

The proof construct consider is also syntactically identical to let-be. How-

ically and the proof of the formula (is (* n (mod2 n)) (either 0 n)) can be read
successfully even if the case analysis in the body of the show is omitted.

o1



ever, consider is intended to be used to introduce witnesses to existential
statements. For example consider the following proof that in a partial order
in which every set has a least upper bound, every set also has a greatest
lower bound.

(suppose-there-is ((1 (a-lattice)
such-that
(forall ((s (a-subset-of (domain 1))))
(there-exists (a-least-upper-bound 1 s)))))
(let-be ((s (a-subset-of (domain 1))))
(show (there-exists (a-greatest-lower-bound 1 s))
(consider ((x (a-least-upper-bound 1
(the-set-of-all (lower-bound 1 s)))))
(show (is x (a-greatest-lower-bound 1 s)))))))

In the above proof consider is used to introduce a “witness” to the state-
ment (there-exists (a-greatest-lower-bound 1 s). A consider expres-
sion can only be used in a context where a goal is present. In a context with
goal U the expression (consider ((z; 7)) ... (z, 7,)) <subproof> ...
<subproof>) is equivalent to the following let-be expression.

(let-be ((x; m) ... (x, 7))
(show W
<subproof>

<subproof>))

A consider expression will either fail or will generate the goal expression of
the context in which it is read.

The proof constructs let-be, suppose-there-is, and consider all allow
such-that restrictions on the bound variables. A such-that restriction is
used in introducing the variable 1 in the above proof about lattices.

52



5.5 Write-As Constructions

If an integer n is not prime then it can be written as a product pg where p
and ¢ are both integers greater than one. The statement “n can be written as
pq” is an instance of a general kind of proof step which we call a “write-as”
step. Write-as proof steps are closely related to the fundamental semantics
of Ontic expressions. Consider the following definition.

(define (a-composite-number)
(* (an-integer-greater-than 1)
(an-integer-greater-than 1)))

The above definition states that a composite number is any number that
can be written as the product of two integers greater than one. A proof
about composite numbers might start as follows.

(let-be ((n (a-composite-number)))
(let-be ((g (integers-mod n)))
(show (not (is g (a-field)))
(consider ((p (an-integer-greater-than 1))
(9 (an-integer-greater-than 1)))
such-that (is n (*x p @))
(show (not (there-exists ((multiplicative-inverse g) p)))

)

The write-as step in the above proof is the following subproof.
(consider ((p (an-integer-greater-than 1))
(g (an-integer-greater-than 1)))

such-that (is n (* p q))

In general, a write-as step has the following form.

53



(consider ((x; 1)

(xn, ™))
(such-that (is s ?))
)

Expressions such as the above are subject to both syntactic and semantic
conditions. The syntactic restrictions are rather severe (they may be relaxed
in later versions of the system). The such-that formula must be an is for-
mula. Equality formulas can not be used even when the both terms involved
are singleton and the is formula is semantically equivalent to the equality
formula. No variable z; may appear in any type 7;. The expression ¢ must
be of the form (¢; ... tx) where each bound variable x; appears as one of the
t;’s and the order of the z;’s in ¢t must agree with the order in which the z;’s
are introduced in the consider expression. Finally, no bound variable z; can
appear as a proper subexpression of any ¢;. For example, the following is a
syntactically well formed write-as expression.

(consider ((f (a-binary-operator-on s))
(x (an-element-of s)))
such-that (is z (f (an-element-of s) x))

)

The following expression is syntactically ill-formed both because the vari-
ables are introduced in an order that is inconsistent with the order in which
they are used in the such-that expression, and because an equality is used
instead of an is formula.

(consider ((x (an-element-of s))
(f (a-binary-operator-on s)))

such-that (= z (f (an-element-of s) x))
D)

To understand the semantic restriction again consider the general form

o4



of a write-as proof.
(consider ((x; 7)

(T Tn))
(such-that (is s ?))
)

For this expression to be syntactically well formed ¢ must be of the form
(t; ... t,) where each x; appears as one of the t;’s. Let ¢’ be the result of
replacing each z; in t by the corresponding type 7;. Ontic must be able to
verify the truth of the formula (is s t'). For example, consider following
the write-as proof fragment.

(let-be ((n (a-composite-number)))
(consider ((p (an-integer-greater-than 1))
(g (an-integer-greater-than 1)))
such-that (is n (*x p q))
)

This proof fragment is semantically well formed because Ontic can verify
the formula

(is n
(* (an-integer-greater-than 1)
(an-integer-greater-than 1))).

as another example consider the following proof fragment.

(consider ((f (a-binary-operator-on s))
(x (an-element-of s)))
such-that (is z (f (an-element-of s) x))

D)

95



This fragment is semantically well formed provided that Ontic can verify
the following formula.

(is z
((a-binary-operator-on s)
(an-element-of s)
(an-element-of s)))

5.6 Write-as-like Proofs

The write-as proof steps described in the previous section are used to intro-
duce objects whose existence can be inferred from statements of a given form.
For example, if one knows that the formula (is n (f (an-integer))) is
true then one can use a write-as proof fragment to introduce the integer
whose existence is implied by this formula. This would be done with the
following write-as proof.

(consider ((x (an-integer)))
such-that (is n (f x))
)

There are other cases in which the existence of objects can be inferred
from formulas of a certain kind. In particular, if one knows the formula (not
(is s t)) one can infer that there exists some possible value of s that is not
a possible value of t. This object whose existence can be inferred from this
statement can be introduced with the following proof fragment.

(consider ((x s))

such-that (not (is x ?))
)

Another case in which the existence of certain objects can be inferred is
when one knows a formula of the form (not (at-most-one s)) In this case

56



there must exist two distinct possible values of s. These two objects can be
introduced with a proof fragment of the following form.

(consider ((x s)
(y s))
such-that (not (= x y))
)

Any proof fragment in which a such-that condition immediately follows
all of the variable bindings in a consider proof must be of one of the above
three forms, i.e., it is either a write-as proof fragment justified by a formula
of the form (is s t), or the introduction of a individual whose existence is
justified by a formula of the form (not (is s %)), or the introduction of
two individuals whose existence is justified by a formula of the form (not
(at-most-one s)).

5.7 Proof Idioms

Although Ontic proofs are not based on explicit proof rules, there are certain
patterns, or idioms of inference, which are guaranteed to be successful. Each
idiom can be viewed as an inference rule. For the most these idioms are
rather obvious. For example, to prove a formula of the form (is s t) where
s has more than one possible value one uses the following proof fragment.

(show (is s t)
(suppose-there-is ((x s))
(show (is x t)

)

If the inner show succeeds the outer show is guaranteed to succeed. The
following is a list of proof idioms. In each case if the inner show succeeds
the outer show is guaranteed to succeed. The inner shows may be given in
any order and inner shows which are obvious to Ontic can be omitted. Any
proof idiom that involves consider allows the consider subproof to contain

o7



a such-that after the bindings, i.e., the consider subproof can be a write-as
or write-as like proof step as described in sections 5.5 and 5.6.

with consider proofs that involve write-as steps

(show (is x (f (a-fo0)))
(consider ((y w))
(show (is y (a-foo0))
)
(show (is x (f y))
D))

(show (is x (either s t))
(suppose (not (is x s))
(show (is z t)

)

(show (is z (some-such-that y (a-foo) P[y]))
(show (is z (a-foo))

o)
(show P[z]
o))

(show (a-most-one (a-foo))
(suppose-there-is ((x (a-foo))
(y (a-fo00)))
(show (= x y)
)

(show (there-exists (a-foo))
(consider ((z; 71)

(xn ™))

58



(show (there-exists t[zy, ..., X))
)
(show (is t[xq, ..., x,] (a-foo0))

)

(show (forall ((x 7)) ®[z])
(suppose-there-is ((z 7))

(show ®[z])))

(show (exists ((z (a-foo))) P[z])
(consider ((z; 71)

(xp, T2))
(show (is =z, (a-foo))
co))
(show ®[z,])))

(show (is f (an-operator-from 7 to o))

(show (is (a-domain-member-of f) 7)
)

(show (is 7 (a-domain-member-of f))
)

(suppose-there-is ((z 7))
(show (is (f x) o))

o))

(show (is f (an-operator-from 71 75 to o))
(show (is (a-domain-member-of f) 7y)
)
(show (is 7 (a-domain-member-of f))
)

(suppose-there-is ((z 7))

59



(show (is (f x) (an-operator-from 7, to o))

)

(show (is f (a-function-from 7 to o))
(show (is (a-domain-member-of f) 7)
)
(show (is 7 (a-domain-member-of f))
)
(suppose-there-is ((z 7))
(show (is (f x) o))
co))
(show (singleton (f z))
D))

(show (is f (a-function-from 73 7» to o))
(show (is (a-domain-member-of f) )
)
(show (is 7 (a-domain-member-of f))
)
(suppose-there-is ((z 71))
(show (is (f z) (a-function-from 7, to o))

)

5.8 Induction Proofs

Proving facts about recursively defined thunks and operators requires mathe-

matical induction. For example, consider the following definition of a a-node-connected-to
The operator a-node-connected-to takes two arguments, a graph and a

node in the graph, and nondeterministically returns any node that can be

reached from the given node by traversing arcs of the graph.

(define (a-node-connected-to (g (a-graph)) (n (a-node-of g)))

60



(either n
(a-node-connected-to g (a-neighbor-of g n))))

It should be clear that for any graph g and node n of g the possible values
of (a-node-connected-to g n) are all nodes of g. We would like to be able
to write a proof of the following form.

(let-be ((g (a-graph)))
(suppose-there-is ((n (a-node-of g)))
(show (is (a-node-connected-to g n)
(a-node-of g))
.J))

Unfortunately, the proof constructs discussed in the previous sections
can not be used to fill in the above proof. Given the recursive definition
Ontic knows that the expression (a-node-connected-to g n) is equivalent
to (either n (a-node-connected-to g (a-neighbor-of g n))). Unfor-
tunately, this equivalence, in itself, does not imply the desired theorem — the
equivalence is true of a nonstandard interpretations of a-node-connected-to
which includes the number 1 in the possible output values independent of
the inputs. This equivalence is called the fixed point equation of the defini-
tion (see section 3). In general, properties of recursively defined thunks and
operators can not be proved from the fixed point equation alone.

In Ontic, properties of recursive concepts are proved by computational
induction — when verifying a property of an operator we assume that the
property holds for recursive calls to the operator and, under this assump-
tion, show that the property holds for the operator. This is analogous to
the classical notion of partial correctness for computer programs. An Ontic
induction proof that every node connected to a node of ¢ is a node of g is
given below.

(let-be ((g (a-graph)))

(show-by-induction-on ((n (a-node-of g))
(m (a-node-connected-to g n)))

61



(is m (a-node-of g))))

The above proof works as written — no additional detail is needed. Con-
sider the show-by-induction-on subproof.

(show-by-induction-on ((n (a-node-of g))
(m (a-node-connected-to g n)))
(is m (a-node-of g)))

This proof fragment generates the following lemma.

(forall ((n (a-node-of g))
(m (a-node-connected-to g n)))
(is m (a-node-of g)))

In general, the proof construct show-by-induction-on has the same syn-
tax as suppose-there-is except that the type given to the final variable
must be an application of a recursively defined thunk or operator. The in-
duction is always a computational induction on the definition of the recursive
operator in the final variable binding. In computational induction we assume
that the desired result holds for recursive calls to the procedure and prove
that this implies the desired result for the procedure. To capture the idea
that the recursive calls satisfy the induction hypothesis the system creates
a version of the recursive procedure which is guaranteed to satisfy the hy-
pothesis. This version is called “wishful” because the induction hypothesis is
assumed to hold by a kind of wishful thinking. Ontic automatically converts
the above show-by-induction-on to the following.

(suppose (forall ((n (a-node-of g))
(m ((wishful-version-of a-node-connected-to)

g
n)))

(is m (a-node-of g)))
(suppose (forall ((g (a-graph))

62



(n (a-node-of g)))
(is ((wishful-version-of a-node-connected-to) g n)
(either n
((wishful-version-of a-node-connected-to)
g
(a-neighbor-of g n)))))
(suppose-there-is ((n (a-node-of g))
(m (either n
((wishful-version-of a-node-connected-to)
g
(a-neighbor-of g n)))))
(show (is m (a-node-of g))))))

The first suppose expression given the induction hypothesis for the wish-
ful version. The induction hypothesis is identical to the lemma to be proved
except that the call to the operator a-node-connected-to has been replaced
by a call to the wishful version. If there operator on which the induction is
being performed appears more than once the binding list then only the out-
ermost application in the final binding is replaced by the wishful version. Ex-
amples of this will be given below. The second suppose gives the fact that the
wishful version is like the original in that any value generated by the wishful
version is generated by recursion on the definition of a-node-connected-to
but where the wishful version is still used on recursive calls. The type of
m in the suppose-there-is proof expresses the fact that m is generated by
a call to a-node-connected-to in which recursive calls have been replaced
by the wishful version. Finally, given these suppositions, the system proves
that m is a node of g. If the innermost show succeeds then the original
show-by-induction-on succeeds.

Now consider an arbitrary recursive definition.

(define (f (y1 7)) ... (yx 7))
B[’yl, ooy Yk, f])

The body of the definition is an expression that involves the parameters

63



of the procedure as well as the operator f that is being defined. Given the
way that Ontic expands show-by-induction-on proofs it is possible to state
an induction proof idiom which has the standard idiom property that if the
innermost show succeeds the whole proof is guaranteed to succeed. The proof
idiom is stated for induction on the recursive definition of f as stated above.

(show-by-induction-on ((x; 71)

'(xn Tn)

(y (f t1 ... t)))
Olzy, ..., xp, Y]
(suppose-there-is ((z Blt, ..., t,, (wishful-version-of f)]))
(show ®lxy, ..., y,, 2]
o))

If the innermost show succeeds the overall induction proof is guaran-
teed to succeed. In the body of the induction proof the induction hypoth-
esis and recursive unrolling properties are assumed for the wishful version.
The following is the instance of the above general idiom for the proof about
a-node-connected-to.

(show-by-induction-on ((n (a-node-of g))
(m (a-node-connected-to g n)))
(is m (a-node-of g))
(suppose-there-is ((m2 (either n

((wishful-version-of a-node-connected-to)
g
(a-neighbor-of g n)))))

(show (is m (a-node-of g))

0))

If the inner show succeeds then the induction proof is guaranteed to suc-
ceed. As pointed out above, however, this particular proof succeeds without
a body. In general the body only need generate enough lemmas to make the
automated induction proof succeed in the presence of those lemmas.

64



As another example of an induction proof consider the following definition
of append.

(define (a-list)
(either ’nil (cons (a-thing) (a-list))))

(define (append (11 (a-list)) (12 (a-list)))
(if (= 11 ’nil)
12
(cons (car 11) (append (cdr 11) 12))))

(let-be ((12 (a-list)))
(show-by-induction-on ((11 (a-list)))
(singleton (append 11 12))))

(let-be ((12 (a-list))
(13 (a-list)))
(show-by-induction-one ((11 (a-list)))
(= (append (append 11 12) 13)
(append 11 (append 12 13)))))

Both of the above proofs are by computational induction on the definition
of the thunk a-1ist. The first of the two proofs establishes that append
is a function (has exactly one output for any particular pair of input lists).
To better understand the variety of possible induction proofs it is worth
considering the Ontic expansion of the proof that append is a function. This
expansion is given below.

(let-be ((12 (a-list)))
(suppose (forall ((11 ((a-wishful-version-of a-list))))
(singleton (append 11 12)))
(suppose (forall ((11 ((a-wishful-version-of a-list))))
(is 11 (either ’nil

65



(cons (a-thing)
((a-wishful-version-of a-list))))))
(suppose-there-is
((11 (either ’nil
(cons (a-thing)
((a-wishful-version-of a-list))))))
(show (singleton (append 11 12)))))))

The expansion of the second induction proof above, the proof that append
is associative, is similar — it is also a computational induction on the defini-
tion of a-list. It is interesting to note that the associativity of append can
also be proved by induction on the definition of append as in the following
proof.

(show-by-induction-on ((11 (a-list))
(12 (a-list))
(13 (a-list))
(14 (append (append 11 12) 13)))
(= 14 (append 11 (append 12 13))))

The fact that the append of two lists is a list can also be proven by list
induction on the first argument to append or by computational induction on
append itself. The induction on append itself is given below.

(show-by-induction-on ((11 (a-list))
(12 (a-list))
(13 (append 11 12)))
(is 13 (a-list)))

It is interesting to compare the above induction proof with the following
proof attempt.

(let-be ((11 (a-list))
(12 (a-list)))

66



(show-by-induction-on ((13 (append 11 12)))
(is 13 (a-list))))

This proof attempt fails because the induction hypothesis is not strong
enough. This failed proof attempt constructs the following induction hypoth-
esis.

(suppose (forall ((13 ((wishful-version-of append) 11 12)))
(is 13 (a-list)))
)

The above successful proof that the append of two lists is a list generates the
much stronger induction hypothesis.

(suppose (forall ((11 (a-list))
(12 (a-list))
(13 ((wishful-version-of append) 11 12)))
(is 13 (a-list)))

This stronger induction hypothesis can be used for arbitrary invocations of
the wishful version of append while the weaker induction hypothesis can only
be used when the wishful version is applied to the particular lists 11 and 12.
In general, including more bindings within a show-by-induction-on will
generate a stronger induction hypothesis and will generally make the proof
more likely to succeed.

5.9 Modules

When Ontic first reads a definition it usually does not fully understand the
newly defined concept. A concept is “fully understand” when occurrences of
the concept no longer have to be replaced by the definition of the concept.
In practice this means that the lemma library must contain enough facts

67



about the concept so that the definition of the concept is no longer needed,
or only needed in rare occasions. For example, a real number is defined as a
set of rational numbers — the set of rationals less then or equal to the reals.
However, once enough facts have been proven about the real numbers this
definition is no longer useful and we can think of a real number as a point
on a line. Until enough facts are proven, however, the definition of a real as
a set of rationals must be invoked. The idea that definitions are only needed
until enough facts have been proven motivates the concept of a module. An
Ontic module consists of a set of definitions and lemmas. The following is a
simple example of the use of an Ontic module.

(defmodule
(define (make-an-employee-record (n (a-name)) (s (a-whole-number)))
(list ’a-structure-object ’the-employee-record n s))

(define (an-employee-record)
(make-employee-record (a-name) (a-whole-number)))

(define (employee-name (r (an-employee-record)))
(car (cdr r)))

(define (employee-salary (r (an-employee-record)))
(car (cdr (cdr r))))

(let-be ((n (a-name))
(s (a-whole-number)))
(show (is (make-employee-record n s)
(an-employee-record))
(show (= (employee-name (make-an-employee-record n s))
n))

(show (= (employee-salary (make-an-employee-record n s))

68



§))))

(let-be ((r (an-employee-record)))
(show (is (employee-name r) (a-name)))
(show (is (employee-salary r) (a-whole-number)))
(show (= r (make-an-employee-record (employee-name r)
(employee-salary r))))))

The above module has essentially the same effect as the following defstruct.

(defstruct an-employee-record
(employee-name (a-name))
(employee-salary (a-whole-number)))

Once the lemmas in the above module are proven the definitions which
given the implementation of the employee records in terms of lists are no
longer needed. However, Ontic does not forget the definitions — Ontic heuris-
tically reduces the amount of effort it invests in using the definitions. Ontic
always attempts to find the smallest way of writing any given expression. The
expression (make-an-employee-record n s) is smaller (has fewer tokens)
than the expression (list ’a-structure-object ’the-employee-record
n s)). Since the list expression is not the smallest way of writing the record
term, lemmas about lists will not be automatically applied to the record
term. Inside the module, however, the definitions are not allowed to reduce
the size of expressions and the system focuses on the term

(list ’a-structure-object ’the-employee-record n s)

rather than
(make-an-employee-record n s).

This makes the lemmas within the module easier to prove. In general, it
a good idea to put definitions inside modules that include lemmas stating
the most basic facts about the definitions. However, modules should not
contain more than the basic facts about a definition because inference in-

69



volving defined symbols is more efficient outside of the module containing
the definition.

5.10 The Emacs User Interface

The Ontic system is implemented in Common Lisp and runs as an inferior
process to the emacs text editor under unix. Ontic definitions and proofs
are written in an emacs buffer in ontic mode. In an appropriately configured
emacs system, emacs enters ontic mode whenever it is used to edit a file
which ends in extension .ont. The following characters are defined in Ontic
mode. Most character commands start with the <control>-z prefix.

C-z e Evaluate Form. This is used to enter definitions and to run
proofs. Place the cursor at any line that is part of a definition
or proof and type this character command. When performed on
a proof the cursor moves through the proof and stops at the first
place it is unable to verify a step. The user can then add proof
detail at that point. Any proof that is read successfully expands
the lemma library. When this command is performed inside
a module the entire module is read and the lemma library is
not expanded unless the the entire module succeeds. To prevent
accident expansion of the lemma library one can insert the proof
(show false) at the end of the module. The Ontic system is
loaded the first time this command is executed so you should
expect a considerable delay. The progress of the load is reported
in the mode line of the emacs buffer.

C-z f Faith load a file. File is read into a buffer named *faith* and
evaluated in faith-mode. Faith mode is a way of extracting def-
initions and lemmas from a file without wasting time verifying
proofs. It should only be used with files that have been pre-
viously verified. If an error happens during a faith load the
*faith* buffer is brought to the currently selected window so the
user can see where the error occurred. If no errors occur the
temporary *faith* buffer is killed.

70



C-zi Ontic-init. This will restore the lemma library the initial state.
All definitions and lemmas entered since starting the system will
be lost. If ontic hasn’t yet been started, this command will start
it.

C-z r Evaluate a region. This is like the evaluate expression command
except that it evaluates all expressions in the current region.

C-z b Evaluate the buffer. This evaluates the entire buffer.

C-z g Abort last command. This is useful for terminating verifications
where the user can see a problem with a proof while the system
is still evaluating it.

C-z s Restart the ontic lucid process. This has the same effect as C-zi
but takes much longer since it starts a new lisp process. This
command is useful if for some reason the Lisp process becomes
unresponsive.

C-u C-z e Evaluate a form using faith-mode. This is like the evaluate
region command except that proofs are not checked.

C-u C-zr Evaluate a region using faith-mode. This evaluates a region
without checking proofs.

C-u C-z b Evaluate the buffer using faith-mode. This evaluates the
buffer without checking proofs.

6 Examples

Ontic can be viewed as a strongly typed functional programming language.
As a programming language, the main difference between Ontic and other
typed functional languages involves the nature of Ontic’s type system. Ontic
uses “semantic” types. Intuitively this means that any set which can be
formally defined as a mathematical object can be used as a type in Ontic.
This implies that, given application of an operator to an argument, it is not
possible in general to determine if the argument is a member of the type
accepted by the operator. We will not discuss this observation further here

71



except to say that we do not feel that this poses any difficulty in practice —
in our experience this kind of type checking is practical.

Ontic, however, is more than a functional programming language. Ontic
is a language for formally defining arbitrary concepts. Since most readers
are already familiar with the variety of programs that can be written in a
functional programming language, this section emphasizes examples of things
that can be defined in Ontic which can not be defined in other programming
languages. It is important to remember that not all Ontic expressions are
executable. Rather than execute expressions, the Ontic system reasons about
them. We start with the Dedekind cut construction of the real numbers.

6.1 Constructing the Real Numbers

The classical Dedekind cut construction of the real numbers is given below.
It is interesting to note that this construction is purely predicative, i.e., the
primitives a-set and a-thing are never used.

We start with some simple subsets of the integers and simple relation on
integers.

(define (a—natural-number)
(either 0 (+ 1 (a—natural-number))))

(define (a-whole-number)
(either 1 (+ 1 (a-whole-number))))

(define (an-integer-greater-than (n (an-integer)))
(either (+ n 1)
(an-integer-greater-than (+ n 1))))

Now we construct the nonnegative fractions.

72



(defstruct fraction

(numerator (a-natural-number))
(denominator (a-whole—number)))

(define (frac-+ (f1
(make-fraction (+

(*

(define (frac-*x (f1
(make-fraction (*

(*

(a—-fraction)) (f2 (a-fraction)))

(* (numerator f1) (denominator f£2))
(* (numerator f2) (denominator f1)))
(denominator f1) (denominator f£2))))

(a-fraction)) (f2 (a-fraction)))
(numerator f1) (numerator f2))
(denominator f1) (denominator £2))))

(define (a-fraction-less-than (f1 (a-fraction)))
(some-such-that f2 (a-fraction)
(is (* (numerator f1) (denominator £2))
(an-integer-greater-than (* (numerator f2)

(denominator £1))))))

(define (frac-difference (f1 (a-fraction))

(make-fraction (-

(*

(f2 (a-fraction-less-than f1)))

(* (numerator f1) (denominator f2))
(* (numerator f2) (denominator f1)))
(denominator f1) (denominator £2))))

(define (an-equivalent-fraction (f1 (a-fraction)))
(some-such-that f2 (a-fraction)
(= (x (numerator f1) (denominator f2))
(* (numerator f2) (denominator f£1)))))

Two fractions can represent the same rational number. We now we construct

73



the nonnegative rational numbers by stating that each rational number is an
equivalence class of rationals.

(define (the-rational-class-of (f (a-fraction)))
(the-set-of-all (an-equivalent-fraction f)))

(define (a-rational)
(the-rational-class—-of (a-fraction)))

(define (rat-+ (r1 (a-ratiomal)) (r2 (a-rational)))
(the-rational-class-of
(frac-+ (a-member-of rl) (a-member-of r2))))

(define (rat-* (rl1 (a-ratiomal)) (r2 (a-ratiomnal)))
(the-rational-class-of
(frac-* (a-member-of rl1l) (a-member-of r2))))

(define (a-rational-less-than (r (a-rational)))
(the-rational-class-of
(a-fraction-less-than (a-member-of r))))

(define (rat-difference (r1 (a-rational))
(r2 (a-rational-less-than ri1)))
(the-set-of-all
(the-rational-of
(frac-difference (a-member-of ril)
(a-member-of 12)))))

Now we construct the nonnegative real numbers as Dedekind cuts in the
rationals. Intuitively, each real number x gets identified with the set of
rationals less than or equal to x. The second clause in the following definition

74



is needed to ensure that if  happens to be a rational then x is included in
the set.

(define (a-cut)
(some-such-that s (a-subset-of

(the-set-of-all (a-rational)))

(and (is (a-rational-less-than (a-member-of s))

(a-member-of s))
(forall ((r (a-ratiomnal)))
(implies (not (is r (a-member-of s)))
(exists ((r2 (a-rational-less-than r)))

(not (is r2 (a-member-of s)))))))))

(define (cut-+ (x (a-cut)) (y (a-cut)))
(the-set-of-all (rat-+ (a-member-of x) (a-member-of y))))

(define (cut-* (x (a-cut)) (y (a-cut)))
(the-set-of-all (rat-* (a-member-of x) (a-member-of y))))

(define (a-cut-less-than (c¢ (a-cut)))
(some-such-that c2 (a-cut)
(and (not (= c2 ¢))
(is ¢2 (a-subset-of ¢)))))

(define (a-cut-greater-than (c (a-cut)))
(some-such-that c2 (a-cut)
(and (not (= c2 ¢))
(is ¢ (a-subset-of c2)))))

(define (a—nonzero-cut)
(some-such-that ¢ (a-cut)

75



(there-exists (a-member-of c))))

(define (cut-difference (c1 (a-cut))
(c2 (a-cut-less-than c1)))
(the-set-of-all
(let ((r1 (a-member-of c1))
(r2 (a-member-of c¢2)))
(when (is r2 (a-rational-less-than rl1))
(rat-difference ri1 r2)))))

The cuts represent the positive reals. We can now define a real number to be
a pair of a cut and a sign. Care must be taken to ensure that there is only
one representation of zero.

(define (a-sign)
(either 1 -1))

(defstruct a-real-number
(sign (a-sign))
(magnitude (if (= sign 1)
(a-cut)
(a-nonzero-cut))))

(define (real-+ (x (a-real-number)) (y (a-real-number)))
(cond ((= (sign x) (sign y))
(make-a-real-number (sign x)
(cut-+ (magnitude x)
(magnitude y))))
((= -1 (sign x))
(real-cut-difference (magnitude y) (magnitude x)))
((= -1 (sign y))

76



(real-cut-difference (magnitude x) (magnitude y)))))

(define (real-cut-difference (cl1 (a-cut)) (c2 (a-cut)))
(cond ((= c1 c2) (make-a-real-number 1 0))
((is ¢l (a-cut-greater-than c2))
(make-a-real-number 1 (cut-difference cl c2)))
((is c2 (a-cut-greater-than cl1))
(make-a-real-number -1 (cut-difference c2 c1)))))

(define (real-* (x (a-real-number)) (y (a-real-number)))
(make-a-real-number (* (sign x) (sign y))
(cut-* (magnitude x) (magnitude y))))

(define (a-real-less-than (x (a-real-number)))
(if (=1 (sign x))
(either (make-a-real-number -1 (a-nonzero-cut))
(make-a-real-number 1
(a—cut-less-than
(magnitude x))))
(make-a-real-number -1
(a-cut-greater-than
(magnitude x)))))

6.2 Axiomatizing the Real Numbers

Most modern textbooks on real analysis introduce the real numbers by giving
a set of axioms that the real numbers satisfy. This can also be done using the
impredicative features of the Ontic language, i.e., the primitives (a-set) and
a-thing. The following structure definition assumes that certain concepts
have already been defined, such as the concept of a total order, the concept
of a commutative function, and the concept of the least upper bound of a

7



set. We leave it to the reader to define these concepts. This definition of the
reals is categorical, i.e., any two structure objects satisfying the such-that
formulas in the structure definition must be isomorphic. We say that the
definition determines the structure of the real numbers up to isomorphism.
Of course one would like to prove many statements. One would like to prove
that the Dedekind cut construction of the reals given in the previous section
provides a model of the axiomatic specification given here. One would also
like to prove that any two structure instances satisfying the given conditions
are isomorphic. These statements can be proven using the Ontic verification
system described in section 5.

(defstruct the-reals
(domain (a-set))
(less-or-equal (a-total-order-on domain))
(plus (a-binary-function-on domain))
(times (a-binary-function-on domain))
(zero (an-element-of domain))
(one (an-element-of domain))
(minus (a-unary-function-on domain))
(one-over (a-unary-function-on domain))

such-that
(not (= zero one))
(is plus (an-associative-function-on domain))
(is plus (a-commutative-function-on domain))
(forall ((x (an-element-of domain)))
(and (= (plus x zero) x)
(= (plus x (minus x)) zero)))

(is times an-associative-function)
(is times a-commutative-function)
(forall ((x (an-element-of domain)))
(and (= (times x one) X)
(implies (not (= x zero))
(= (times x (one-over x)) one))))

78



(forall ((x (an-element-of domain))
(y (an-element-of domain))
(z (an-element-of domain)))
(= (times x (plus y 2z))
(plus (times x y) (times x z))))

(is zero (less-or-equal one))
(forall ((x (an-element-of domain))
(y (an-element-of domain))
(z (less-than y)))
(is (plus x z) (less-than (plus x y))))
(forall ((x (an-element-of domain))
(z (an-element-of domain)))
(implies (and (is zero (less-or-equal x))
(is zero (less-or-equal y)))
(is (zero (less-or-equal (times x y))))))
(forall ((s (a-subset-of domain)))
(implies (and (there-exists (an-element-of s))
(there-exists
(an-upper-bound-of domain
less-or-equal
s)))
(there-exists (a-least-upper-bound-of domain
less-or-equal

§)))))

6.3 Unification

An expressions is a kind of tree. Tree is a general concept.

Unification is a good example of a concept that can be defined declara-
tively. The thunk an-expression is defined in section 2.11.

79



(defstruct a-variable
(variable-print-name (a-symbol)))

(define a-substitution
(lambda-fun ((var (a-variable))) (an-expression)))

(define (apply-substitution (sub (a-substitution))
(exp (an-expression)))
(if (is exp (a-variable))

(sub exp)

(if (is exp (a-symbol))
exp
(map (lambda ((x2 (an-expression)))

(apply-substitution sub e2))
exp))))

(define (a-unifier-of (el (an-expression))
(e2 (an-expression)))
(some-such-that sub (a-substitution)
(= (apply-substitution sub el)
(apply-substitution sub e2))))

(define (compose-substitutions (sl (a-substitution))
(s2 (a-substitution)))
(lambda ((var (a-variable)))
(apply-substitution s1 (s2 var))))

(define (as-general-a-substitution-as (s (a-substitution)))
(some-such-that s2 (a-substitution)
(exists ((s3 (a-substitution)))

80



(= s (compose-substitutions s3 s2)))))

(define (a-most-general-unifier (el (an-expression))
(e2 (an-expression)))
(some-such-that u (a-unifier-of el e2)
(forall ((u2 (a-unifier-of el e2)))
(is u (as-general-a-substitution-as u2)))))

7 Epilogue

Most interactive verification systems require the user of the system to have a
fairly deep understanding of the inference mechanisms involved. The Ontic
system has been designed to be easy to use. Our hope is that people will
be able to use the system with very little understanding of the underlying
inference mechanisms The inference mechanisms have not been discussed in
this manual. We believe that in order for a system to be easy to use it
must be intelligent. People have great difficulty writing proofs for facts that
seem “obvious”. A system which demands proofs of obvious facts is very
difficult to use. Conversely, any sufficiently intelligent verification system
should be fairly easy to use — a system which rarely required any proof of
any form would be quite easy to use. Ease of use can not be separated from
intelligence.

The Ontic system is under continuous development and is steadily gaining
intelligence. The current system requires far less proof detail than did the
earlier Ontic system described in [McAllester, 1989]. The fact that the system
is still evolving rapidly implies that many of the examples in this manual
will be obsolete in a matter of months — many of the proofs given above are
already no longer needed.

Ontic has already undergone a long period of evolutionary development.
We feel that any truly useful verification system must undergo such develop-
ment. It seems that theory alone can not predict whether a given technique

81



will work. Building a system provides a host of information about what
methods work well and what kinds of proofs are difficult to verify. We ex-
pect to continue to benefit by examining verifications done by users other
than ourselves. Users can help the Ontic project by reporting cases where
Ontic appears particularly stupid. Of course we are equally interested in
cases where Ontic appears spectacularly intelligent.

References

[Boyer and Moore, 1979] Robert S. Boyer and J Struther Moore. A Compu-
tational Logic. ACM Monograph Series. Academic Press, 1979.

[Constable et al., 1986] R. L. Constable, S. F. Allen, H. M. Bromely, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, D. J. Rowe, T. B. Knoblock, N. P.
Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing
Mathematics with the Nuprl Development system. Prentice-Hall, 1986.

(Givan et al., 1991] Robert Givan, David McAllester, and Sameer Shalaby.
Natural language based inference procedures applied to schubert’s steam-
roller. In AAAI-91, pages 915-920. Morgan Kaufmann Publishers, July
1991.

[Gordon et al., 1979] Michael Gordon, Arthur J. Milner, and Christopher P.
Wadsworth.  Edinburgh LCF: A Mechanized Logic of Computation.
Springer-Verlag, 1979. Volume 78 of Lecture Notes in Computer Science.

[Harper et al., 1987] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. In LICS-87, pages 194-204. IEEE Computer
Society Press, 1987.

[Martin—LOf, 1982] Per Martin-Lof. Constructive mathematics and computer
programming. In Sizth International Congress for Logic, Methodology, and
Philosophy of Science, pages 153-175. North Holland, 1982.

[McAllester and Givan, 1989] D. McAllester and R. Givan. Natural language
syntax and first order inference. Memo 1176, MIT Artificial Intelligence
Laboratory, October 1989. To Appear in AlJ.

82



[McAllester et al., 1989] D. McAllester, R. Givan, and T. Fatima. Taxo-
nomic syntax for first order inference. In Proceedings of the First Inter-
national Conference on Principles of Knowledge Representation and Rea-
soning, pages 289-300, 1989. To Appear in JACM.

[McAllester, 1989] David A. McAllester. Ontic: A Knowledge Representa-
tion System for Mathematics. MIT Press, 1989.

[McAllester, 1990] D. McAllester. Automatic recognition of tractability in
inference relations. Memo 1215, MIT Artificial Intelligence Laboratory,
February 1990. To appear in JACM.

[McAllester, 1991a] David McAllester. Socratic sequent systems. SIGART
Bulletin, 2(3):98-101, July 1991.

[McAllester, 1991b] David McAllester. Some observations on cognitive
judgements. In AAAI-91, pages 910,915. Morgan Kaufmann Publishers,
July 1991.

[McCarthy, 1967] John McCarthy. A basis for a mathematical theory of com-
putation. In P. Braffort and D. Hirschberg, editors, Computer Programing
and Formal Systems. North-Holland, 1967.

[Sussman and Abelson, 1985] Gerald Sussman and Herald Abelson. Struc-
ture and Interpretation of Computer Programs. MIT Press, 1985. page
317.

[William Farmmer, 1990] Javier Thayer William Farmmer,

Joshua Guttman. Imps: An interactive mathematical proof system. In
CADE-10, pages 653-654. Springer-Verlag, 1990.

83



