VMware Scripting API

User’s Manual

000000000000 0000 000
J0o0O0000c00o000000o O
000000000000 0000000
00000000000 0000000
oo0o00o00e00o000e00 0O
o000 0000000000000 08
0000000000 000000000
o000 00000000e00000
Jdo00ooo0ooooooooo -
o0000oo0 0000000000

]
]
]

8 vmware

VMware, Inc.

3145 Porter Drive
Palo Alto, CA 94304
Www.ymware.com

Please note that you can always find the most up-to-date technical
documentation on our Web site at http://www.vmware.com/support/.
The VMware Web site also provides the latest product updates

Copyright © 1998-2005 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos.
6,397,242, 6,496,847, 6,704,925, 6,711,672, 6,725,289, 6,735,601, 6,785,886, 6,789,156 and 6,795,966; patents
pending. VMware is a registered trademark and the VMware boxes logo, GSX Server, ESX Server, Virtual SMP,
VMotion and VMware ACE are trademarks of VMware, Inc. Microsoft, Windows, and Windows NT are registered
trademarks of Microsoft Corporation. Linux is a registered trademark of Linus Torvalds. All other marks and
names mentioned herein may be trademarks of their respective companies.

Revision 20050214 Item: AP1-ENG-Q304-005

Table of Contents

Introduction

Introducing the VMware Scripting APls

Supported Products

Intended Audience

O Co co N

Getting Support from VMware

9

Using the VMware Scripting APIs

Installing the VMware Scripting API

GSX Server

ESX Server

Installing the VMware Scripting APl on a Windows Machine
Installing VmPerl Scripting APl on a Linux Machine

Using VYmCOM

VmCOM Objects

VmConnectParams

VmServerCtl

Property

Methods

VmCollection

VmCtl

Properties

Methods

VmQuestion

Symbolic Constant Enumerations

VmExecutionState

VmPowerOpMode

VmProdinfoType
VmProduct

VmPlatform

Using VMCOM to Pass User-Defined Information Between a Running Guest

Operating System and a Script

Guestinfo Variables

10
11
11
11
11
12

15
16
17
18
18
18
20
21
21
23
28
29
29
29
30
31
31

32
32

Sending Information Set in a VmCOM Script to the Guest Operating System _

33

Sending Information Set in the Guest Operating System to a VmCOM Script _

33

Using Sample VmCOM Programs

35

Copyright Information

36

MiniMUI Visual Basic Sample Program

37

38

JScript and VBScript Sample Programs
JScript Sample Program 1

38

VBScript Sample Program 2

40

VBScript Sample Program 3

43

Using VmPerl

49

VMware:VmPerl:ConnectParams

51

VMware:VmPerl:Server

52

VMware:VmPerl:VM

54

Additional Information on get_tools_last_active
VMware:VmPerl:Question

60

62

Symbolic Constants

63

VM_EXECUTION_STATE_<XXX> Values

63

VM_POWEROP_MODE_<XXX> Values

63

Infotype Values

64

VM_PRODINFO_PRODUCT_<XXX> Values

65

VM_PRODINFO_PLATFORM_<XXX> Values

65

Using VmPerl to Pass User-Defined Information Between a Running Guest

Operating System and a Script

66

GuestInfo Variables

66

Sending Information Set in a VmPerl Script to the Guest Operating System 67
Sending Information Set in the Guest Operating System to a VmPerl Script 67

www.vmware.com

69

Using Sample VmPerl Scripts
Copyright Information

71

Listing the Virtual Machines on the Server

72

Starting All Virtual Machines on a Server

74

Checking a Virtual Machine's Power Status

77

Monitoring a Virtual Machine’s Heartbeat

79

Answering Questions Posed by a Virtual Machine

82

Suspending a Virtual Machine

86

Setting a Virtual Machine’s IP Address Configuration Variable
Getting a Virtual Machine’s IP Address

88
91

Adding a Redo Log to a Virtual Disk (ESX Server only)

93

Committing a Redo Log to a Virtual Disk without Freezing the Virtual Machine

(ESX Server only)

95

Error Codes and Event Logging

929

Error Codes

100

Error Handling for the VmCOM Library

100

Error Handling for the VmPerl Library

100

Common VmCOM and VmPerl Errors

101

103

Event Logging
Using the Event Viewer

103

Reading the Event Log

105

vmware-cmd Utility

vmware-cmd Utility Options

107
108

109

vmware-cmd Operations on a Server
vmware-cmd Operations on a Virtual Machine

110

<powerop_mode> Values

115

vmware-cmd Utility Examples

116

Retrieving the State of a Virtual Machine

116

Performing a Power Operation

116

Setting a Configuration Variable

117

Connecting a Device

117

VMware ESX Server Resource Variables

VMware ESX Server System Resource Variables

119
120

Virtual Machine Resource Variables for ESX Server

124

Using ESX Server Virtual Machine Resource Variables Efficiently
Using the Server Object

129
129

Reusing a Single Server Object

Index

131

www.vmware.com

CHAPTER

Introduction

This release of VMware™ scripting APIs version 2.1.5 comprises two components: VmCOM and
VmPerl.

VmCOM is a Component Object Model (COM) interface for languages such as Microsoft® Visual
Basic®, Microsoft® Visual Basic® Scripting Edition (also known as VBScript), Microsoft® Visual C++°
and JScript®. You may install the VmCOM Scripting APl on machines with the Microsoft® Windows
operating system.

®

VmPerl is an application programming interface (API) that utilizes the Perl scripting language. You
may install the VmPerl Scripting APl on machines with the Microsoft Windows or Linux operating
system.

VMware Scripting APl User’s Manual

Introducing the VMware Scripting APIs

You may install the Scripting APIs on the GSX Server host and on remote workstations, connecting
to GSX Server or ESX Server.

VmCOM

VmPerl
GSX Server on a Windows host

Windows remote
workstation

Linux remote workstation

ESX Server

GSX Server on a Linux host

Although the interfaces for VmCOM and VmpPerl are different, both components are functionally
equivalent. Depending on your operating system, you can either use VmCOM or VmPerl to
accomplish the same tasks.

VMware has designed VmCOM and VmPerl to provide task automation and simple, single-purpose
user interfaces. The Scripting APIs are not intended for building advanced interactive user
interfaces.

For example, you can use the VMware Scripting APIs to perform power operations (start, stop,
suspend or reset) on VMware servers and virtual machines, locally and remotely across servers. You
can also use the API to register and unregister virtual machines and gather information about
them, including sending and receiving configuration to a virtual machine. You can also send
properties you define, from the host or a script, into a virtual machine's guest operating system
and vice versa.

We provide example scripts and applications demonstrating possible uses for the Scripting APIs.
The directory in which you installed VmCOM contains two subdirectories; MiniMUI, that contains a
sample Visual Basic project that uses VmCOM, and SampleScripts, that contains sample VmCOM
scripts. Similarly, the directory in which you installed VmPerl contains a subdirectory,
SampleScripts, that contains sample VmPer! scripts.

Supported Products

We support the installation of the VmCOM and VmPerl Scripting APIs on VMware™ GSX Server™ 2.x,
GSX Server 3.x and VMware ESX Server™ 2.x. For more information see:

www.vmware.com

www.vmware.com/support/gsx2/doc (GSX Server 2.0)
www.vmware.com/support/gsx25/doc (GSX Server 2.5)
www.vmware.com/support/gsx3/doc (GSX Server 3.x)
www.vmware.com/support/esx2/doc (ESX Server 2.0 and ESX Server 2.0.1)
www.vmware.com/support/esx21/doc (ESX Server 2.1)

www.vmware.com/support/esx25/doc (ESX Server 2.5)

Intended Audience

This manual is written for programmers that are familiar with either the Perl language or the
Component Object Model (COM) interface for programming languages. Readers of this manual
should be comfortable with developing system administration and system monitoring programs
and general debugging techniques. In addition, developers who use this manual should be
familiar with the operation and management of VMware GSX Server, the host operating system
used for this application, and VMware ESX Server.

Getting Support from VMware
See www.vmware.com/support/developer or full details on the VMware Scripting APIs support
policy.

CHAPTER 1 Introduction

http://www.vmware.com/support/gsx2/doc
http://www.vmware.com/support/gsx25/doc
http://www.vmware.com/support/esx2/doc
http://www.vmware.com/support/esx21/doc
http://www.vmware.com/support/gsx3/doc
http://www.vmware.com/support/esx25/doc
http://www.vmware.com/support/developer

VMware Scripting APl User’s Manual

10

Using the VMware Scripting APlIs

By using the VMware Scripting APIs, you can access and administer virtual machines without using
a local or remote console. The virtual machines — or the server for that matter — do not have to
be running in order to use the VMware Scripting APIs.

Note: We support a maximum of two scripting connections to a virtual machine at a time.

Each VmCOM object and Perl module is described in the following chapters and includes the
methods, the properties, and their usage. In addition, sample scripts and lists of error codes are
provided. For VmCOM sample scripts, see Using Sample VmCOM Programs on page 35 and for
VmPerl scripts, see Using Sample VmPerl Scripts on page 69. For the list of error codes, see Error
Codes on page 100.

Note: For more information about VMware API development, see www.vmware.com/support/
developer.

www.vmware.com

http://www.vmware.com/support/developer
http://www.vmware.com/support/developer

CHAPTER 1 Introduction

Installing the VMware Scripting API

GSX Server

You have the option of installing the VMware Scripting APl on your GSX Server when you installed
the software.

However, if you want to run VMware Scripting APIs on a remote workstation, you need to install
VmCOM or VmPerl on that machine. Your administrator will provide you with the appropriate script
or executable file, or ask you to download it from the VMware Management Interface (requires
customization).

ESX Server

To download the VMware Scripting API packages, go to the Download page, www.vmware.com/
download of the VMware Web site. Click Download next to the appropriate ESX Server version.
Enter your email address and password, then accept the end user license agreement, to get to the
packages. Click on the appropriate APl package link.

The links are:

COM API EXE — COM Scripting API for Windows operating systems. Use this package on a
Windows client machine.
Perl API EXE— Perl Scripting API for Windows operating systems. Use this package on a
Windows client machine.

Perl API Compressed Tar Archive — Perl Scripting APl for Linux operating
systems. Use this package on a Linux client machine.

Installing the VMware Scripting APl on a Windows Machine
You have a choice of installing either the VmCOM or the VmPerl Scripting API.

1. Choose Start > Run and browse to the directory where you saved the downloaded installer
file (the name is similar to VMware -VmPERLAPI - <xxXxXX> . exe Of VMware -
VmCOMAPT - <xxXxx> . exe, Where <xxxx > is a series of numbers representing the version
and build numbers).

2. Theinstaller starts. Click Next.

3. Acknowledge the end user license agreement (EULA). Select Yes, | accept the terms in the
license agreement, then click Next.

4. Choose the directory in which to install the Scripting API. To install it in a directory other than
the default, click Change and browse to your directory of choice. If the directory does not
exist, the installer creates it for you. Click Next.

11

http://www.vmware.com/download
http://www.vmware.com/download

VMware Scripting APl User’s Manual

12

Note: Windows and the Microsoft Installer limit the path length to 255 characters for a path
to a folder on a local drive and 240 characters for a path to a folder on a mapped or shared
drive. If the path to the Scripting API program folder exceeds this limit, an error message
appears. You must select or enter a shorter path.

5. Click Install. The installer begins copying files to your machine.
6. Click Finish. The VMware Scripting APl is installed.

If you install VmCOM, two folders named MiniMUI and SampleScripts are created in the same
directory as the VmCOM Scripting API. The MiniMUI folder contains a sample Microsoft Visual Basic
6 project that uses VmCOM. The SampleScripts folder contains VBScript and JScript samples using
the VmCOM Scripting API. See Using Sample VmCOM Programs on page 35 for additional
information.

If you install VmPerl, a SampleScripts (Samples) folder is created in the same directory as the
VmPerl Scripting API. The SampleScripts folder contains sample scripts using the VmPerl Scripting
API. See Using Sample VmPerl Scripts on page 69 for additional information on the sample scripts.

At any time, you can decide to remove this software from your system by running the installer and
selecting the Remove option. Alternately, use Add/Remove Programs in the Control Panel to
remove the Scripting API.

Installing VmPerl Scripting APl on a Linux Machine
You can install only the VmPerl Scripting APl on a Linux machine. VmCOM is not supported.

1. Copy the VmPerl package to the machine on which you want to run the VMware Scripting
API.

2. Inaterminal window, become root so you can carry out the installation.
3. Untar the package
tar xzf VMware-VmPERLAPI-v.v.v-####.tar.gz
where v . v . v is the specific version number and #### is the build number.
4. Change to the directory where you expanded the package.
cd vmware-api-distrib
5. Run the install script.
. /vmware-install.pl

6. Press Enter to read the end user license agreement (EULA). You may page through it by
pressing the space bar. If the Do you accept? prompt doesn't appear, press Q to get to
the next prompt.

7. Choose the directory to install the VmPerl executable files or accept the default location.

www.vmware.com

CHAPTER 1 Introduction

This directory includes the uninstall script for the VmPerl API.
8. Choose the directory to install the VmPerl library files or accept the default location.

This directory includes the sample scripts for the VmPerl API. The SampleScripts directory
contains example scripts that demonstrate use of the VmPerl API. You may customize these

scripts for your particular organization. See Using Sample VmPer! Scripts on page 69 for more
information on the sample scripts.

This completes the VmPerl APl installation.

At any time, you can decide to remove this software from your system by invoking the following
command as root:

<executable files directorys>/vmware-uninstall-api.pl

13

VMware Scripting APl User’s Manual

www.vmware.com

14

CHAPTER

Using VmCOM

The VmCOM component exposes VmServerCt1 and VmCt1 as the primary objects for
communicating with VMware components. VmConnectParams, VmCollection and
VmQuest ion are support objects used as inputs or outputs to the methods and properties of the
primary objects.

AVmServerCtl object represents a server and exports server-level services, such as virtual
machine enumeration and registration. A VimCt 1 object represents a virtual machine on a
particular server and provides virtual machine specific methods such as power operations. You
must first activate the VmServerCt1 or vmCt 1 object by calling its Connect () method
before accessing any other method.

The Connect () method requires a VmConnectParams input parameter containing the host
identifier and user credentials supplied for authentication. If the host identifier is not supplied or is
undefined, the authentication is performed on the local system. If the user name and password are
also not supplied, the current user is authenticated on the local machine. Otherwise, you may
supply the user name and password for authentication as that user.

Unlike the VmServerCt1 object, VmCt 1. Connect () also takes a string specifying the
configuration file name of the virtual machine that will be connected.

15

VMware Scripting APl User’s Manual

16

Once a VmServerCt1 object is connected, you can enumerate the virtual machines on the
server, and register or unregister the virtual machines. You can obtain a list of virtual machines on a
particular server from the VmServerCtl.RegisteredVmNames property. This property
returns a collection object named VmCollection. The collection’s elements comprise virtual
machine configuration file names and you can enumerate these elements using, for example, the
for each syntax in Visual Basic. If you know the configuration file name of a specific virtual
machine, you can connect the VvmCt 1 object directly without using a VmServerCt1 object.

You can use languages such as Visual Basic or Visual C++ to access VmCOM components. For
example, to use VmCOM from Visual Basic, choose Project > References, and enable the check box
for VMware VmCOM <version> Type Library. If this entry is not present, verify that the VMware
product is installed correctly.

To use VmCOM from another language, refer to the documentation for that language. Look for the
section in the documentation that describes ActiveX® components or the COM interface for that
language.

VmCOM Objects

The VmCOM component provides the following objects:
. VmConnectParams

. VmServerCtl

. VmCollection

. VmCtl

. VmQuestion

www.vmware.com

VmConnectParams

This object supplies connection information and user credentials to

VmServerCtl.Connect () or VimCt1l.Connect () and exposes the properties listed in the
following table. All VvmConnect Params properties allow you to retrieve (GET) and modify (PUT)
these properties.

The security for your connection depends upon the security configuration of your VMware server.

CHAPTER 2 Using VmCOM

If you're connecting to a VMware server or a virtual machine on a server, then the connections is
encrypted as long as the VMware server is configured to encrypt connections.

Property Name

Property Type

Access Type

Description

Hostname

string

GET/PUT

Retrieves and sets the name of a server, where Hostname is
the server’s hostname or IP address. If Hostname is not given
or undefined, the authentication is performed on the local
system. The Clibrary connects to the local host and uses current
user information when it connects. However, this user
information is not passed back to VmConnectParams.

Otherwise, you may supply the user name and password for
authentication as that user.

Port

integer

GET/PUT

Retrieves and sets the TCP port to use when connecting to the
server. Its default value is 0 (zero), indicating the default port
number (902) should be used. Otherwise, enter the correct port
number.

A port number set to a negative value is treated as an incorrect
value and the default port number is used instead.

Username

string

GET/PUT

Retrieves and sets the name of a user on the server.

Password

string

GET/PUT

Retrieves and sets the user’s password on the server.

17

VMware Scripting APl User’s Manual

18

VmServerCtl

The vmServerCt1l object represents a VMware server running on a particular machine.

Property

The vmServerCt1l object includes the properties listed in the following table. All of the
properties can be retrieved (GET); some of the properties can also be modified (PUT).

Note: The Resource property applies only to ESX Server.

Property Name

Property Type

Access Type

Description

RegisteredVmNames

string

GET

Returns a VmCollection of strings specifying
the configuration file names of the virtual machines
currently registered on the server. The server must
be connected using Connect (), or this property
throws an error.

Resource(<variable_name>)

Note: This property applies
only to ESX Server.

string

GET/PUT

Accesses the value of a ESX Server system resource
variable identified by the string
<variable_name>.The property throws an error if it
accesses an undefined system variable.

See VMware ESX Server System Resource Variables
on page 120 for a list of server system variables.

Methods

The VmServerCt1 object also exposes the methods listed in the following table. Except where
noted otherwise, these methods are synchronous; the method does not return until it finishes its
operation, fails, or times out. Most operations time out after 2 minutes.

Note: ESX Server 2.x supports a maximum of 200 registered virtual machines per server.

www.vmware.com

CHAPTER 2 Using VmCOM

Method

Description

object.Connect(<params>)

The Connect () method connects the object to a VMware GSX Server or
VMware ESX Server where params is a VmConnect Params object that
specifies the system and user information.

There is no method to disconnect from a server. To reconnect to a different
server, destroy the VmServerCt1 object, create a new one, then call its
Connect () method.

The total number of connected VmCt 1 and VmServerCt1 objects cannot
exceed 62. The Connect () method fails with error code
vmErr_INSUFFICIENT_RESOURCES if this limit is reached. In order to connect new
objects, destroy one or more connected VmCt 1 or VmServerCt1 objects.
For example, you can do this by setting an object to Nothing in Visual Basic.

object.RegisterVm(<vmName>)

The RegisterVm method registers a virtual machine on a server where
vmName is a string specifying the virtual machine’s configuration file name.

object.UnregisterVm(<vmName>)

The UnRegisterVm method unregisters a virtual machine from a server
where vmName is a string specifying the virtual machine’s configuration file

name.

19

VMware Scripting APl User’s Manual

20

VmCollection

The VvmCollection object is a collection of variants that are typically strings. You can
enumerate its elements by using the for each syntaxin Visual Basic. You can individually access
each element by passing its index to the Item property, or by using the

VmCollection (<index_as_integers) array syntax in Visual Basic. The first element's
index is always the integer 1 (one).

Both VmServerCtl.RegisteredVmNames and VmQuestion.Choices return a
VmCollection of strings.

The vmCollection object includes the read-only (GET) properties listed in the following table:

Property Name Property Type | Access Type | Description
Count integer GET Gets the number of elements in the collection.
Item(<index_as_integer>) string GET Gets the element at the specified index.

www.vmware.com

CHAPTER 2 Using VmCOM

VmCtl

The VmCt 1 object represents a virtual machine running on a particular server machine and
exposes symbolic constant enumerations, properties and methods.

Properties

The VinCt 1 object includes the properties listed in the following table. All of the properties can be
retrieved (GET); some of these properties can also be modified (PUT).

Note: The last four properties that are listed in the following table apply only to ESX Server.

Property Name Property Type Access Type | Description

ExecutionState VmExecutionState | GET Current state of the virtual machine; powered on,
powered off, suspended, or stuck. For more
information on VmExecutionState, see
VmExecutionState on page 29.

PendingQuestion VmQuestion GET Returns a VmQuestion object if the virtual machine is
currently in the vmExecutionState_Stuck state.
Otherwise, an error is thrown

Guestinfo(keyName) string GET/PUT Accesses a shared variable identified by the string
keyName.

For additional information, see Using VmCOM to Pass
User-Defined Information Between a Running Guest
Operating System and a Script on page 32.

Config(keyName) string GET/PUT Accesses the value of a configuration variable
identified by the string keyName. When a virtual
machine process is spawned on the server, the
process reads configuration variables from the virtual
machine's configuration file into memory. If you write
a configuration variable by using the Config ()
property, the new value is written into memory and is
discarded when the virtual machine process
terminates. You cannot change the value of a
configuration variable in a virtual machine’s
configuration file.

The property throws an error if it accesses an
undefined configuration variable.

Do not change the memory size while a virtual
machine is suspended. First power off the virtual
machine, then change its memory size.

21

VMware Scripting APl User’s Manual

Property Name

Property Type

Access Type

Description

ConfigFileName

string

GET

Returns the configuration file name for the virtual
machine. This method fails if the VmCtl object is not
connected.

Heartbeat

integer

GET

Returns the current heartbeat count generated by
the VMware Tools service running in the guest
operating system. The count is initialized to zero
when the virtual machine is powered on.

The heartbeat count is typically incremented at least
once per second when the VMware Tools service is
running under light load conditions. The count stays
constant if this service is not running.

ToolsLastActive

integer

GET

Returns an integer indicating how much time has
passed, in seconds, since the last heartbeat was
detected from the VMware Tools service.

This value is initialized to zero when the virtual
machine powers on. It stays at zero until the first
heartbeat is detected, after which the value is always
greater than zero until the virtual machine is power-
cycled again.

For additional information, see the next section.

DevicelsConnected
(devName)

Boolean

GET

Returns True if the specified device is connected.
Otherwise, False is returned.

Productinfo(infoType)

integer, VmProduct
or VmPlatform

GET

Returns an integer representing the value of the
product information field specified by infoType,
which is of type VmProdInfoType. See
VmProdinfoType on page 30 for a list of valid types
and return values.

Uptime

integer

GET

Accesses the uptime of the guest operating system
on the virtual machine.

Pid

integer

GET

Returns the process ID of a running virtual machine.

Resource(<variable_name>)

Note: This property applies
only to ESX Server.

string

GET/PUT

Accesses the value of a virtual machine resource
variable identified by the string <variable_name>.The
property throws an error if it accesses an undefined
variable.

See Virtual Machine Resource Variables for ESX Server
on page 124 for a list of virtual machine variables.

Id

Note: This property applies
only to ESX Server.

string

GET

Returns the unique (world) ID for a running virtual
machine.

22

www.vmware.com

CHAPTER 2 Using VmCOM

Property Name Property Type Access Type | Description

Capabilities integer GET Returns the access permissions for the current user.

Note: This property applies This number is a bit vector, where 4=read, 2=write,

only to ESX Server. and T1=execute. For a user with all three permissions, a
value of 7 is returned when this property is used in a
script.

RemoteConnections integer GET Returns the number of remotely connected users.

Note: This property applies This value includes the number of remote consoles,
only to ESX Server. Scripting APIs, and Web-based management

interface connections to the virtual machine.

Additional Information on ToolsLastActive

If the guest operating system is heavily loaded, this value may occasionally reach several seconds. If
the service stops running, either because the guest operating system has experienced a failure or
is shutting down, the ToolsLastActive value keeps increasing.

You can use a script with the ToolsLastActive property to monitor the start of the VMware
Tools service, and once started, the health of the guest operating system. If the guest operating
system has failed, the ToolsLastActive property indicates how long the guest has been
down. The following table summarizes how you may interpret the ToolsLastActive property
values

ToolsLastActive Property Value | Description

0 The VMware Tools service has not started since the power-on of the virtual machine.
1 The VMware Tools service is running and is healthy.
2,3,4,0r5 The VMware Tools service could be running, but the guest operating system may be

heavily loaded or is experiencing temporary problems.

Greater than 5 The VMware Tools service stopped running, possibly because the guest operating
system experienced a fatal failure, is restarting, or is shutting down.

Methods
The VmCt 1 object includes the methods listed in the following table.

You can connect to a virtual machine, start, stop, suspend and resume virtual machines, query and
modify the configuration file settings, and connect and disconnect devices.

Except where noted otherwise, these methods are synchronous; the method does not return until
it finishes its operation, fails or times out. Most operations time out after 2 minutes, except for
power operations, which time out after 4 minutes.

23

VMware Scripting APl User’s Manual

24

Note: Two methods, object .AddRedoand object . Commit,thatare listed in the following
table, apply only to ESX Server. Similarly, the object . SetRunAsUser and
object .RunAsUser methods apply only to GSX Server.

Method

Description

object.Connect(<params>, <vmName>)

The Connect () method establishes a connection with a virtual
machine where params is a VmConnect Params object that
specifies the system and user information and vmName is a string
specifying the virtual machine’s configuration file name.

You should use this as the first method invoked on a VmCt 1 object.
You must first activate the VmCt 1 object by calling its

Connect () method before accessing any other method or
property.

There is no method to disconnect from a virtual machine. To
reconnect to a different virtual machine, destroy the VmCt 1 object,
create a new one, then call its Connect () method.

The total number of connected VmCt 1 and VmServerCtl
objects cannot exceed 62. The Connect () method fails with
error code vmErr_INSUFFICIENT_RESOURCES if this limit is reached.
In order to connect new objects, destroy one or more connected
VmCt 1l or VmSexrverCt1l objects. For example, you can do this
by setting an object to Nothing in Visual Basic.

object.Start(<mode>)

The Start () method powers on a previously powered-off virtual
machine or resumes a suspended virtual machine, where mode is a
VmPowerOpMode object that specifies the Start operation'’s

behavior. For more information, see VmPowerOpMode on page 29.

If the virtual machine is powered off, then it is powered on. If it is
suspended, this method resumes the virtual machine. If the virtual
machine is in any other state, the Start () method fails and
throws an error.

object.Stop(<mode>)

The Stop () method shuts down and powers off a virtual
machine where mode is a VmPowerOpMode object that
specifies the Stop operation’s behavior. For more information, see
VmPowerOpMode on page 29.

This method always fails if the virtual machine is not in the
vmExecutionState_On state.

object.Reset(<mode>)

The Reset () method shuts down, then reboots a virtual

machine where mode is a VmPowerOpMode object that
specifies the operation’s behavior. For more information, see
VmPowerOpMode on page 29.

This method always fails if the virtual machine is not in the
vmExecutionState_On state.

www.vmware.com

CHAPTER 2 Using VmCOM

Method

Description

object.Suspend(<mode>)

The Suspend () method suspends a virtual machine where
mode is a VmPowerOpMode object that specifies the Suspend
operation’s behavior. It saves the current state of the virtual machine
to a suspend file. For more information, see VmPowerOpMode on
page 29.

This method always fails if the virtual machine is not in the
vmExecutionState_ On state.

object. AddRedo(<diskDevName>)
Note: This method applies only to ESX Server.

This method adds a redo log to a running virtual SCSI disk specified
by <diskDevName>, that is associated with the virtual machine
specified by the VmCt 1 object. Changes made to the virtual disk
accumulate in the new redo log. This disk must be a ESX Server
virtual disk stored on a VMFS volume.

The virtual disk can be in persistent, undoable or append mode. The
redo log for a virtual disk in persistent mode uses the file name of
the virtual disk with . REDO appended to it (for example, if the disk
is called, vm . dsk, the redo log is called vin. dsk . REDO). A
virtual disk in undoable or append mode already has a redo log
associated with it, so the new redo log you create is called
vm.dsk.REDO.REDO, whose parent is the existing redo log,
vm.dsk.REDO.

This method fails if the specified virtual disk does not exist, the
specified virtual disk is in nonpersistent mode, an online commit is
already in progress, or the virtual disk already has two redo logs
associated with it.

If you add a redo log using the AddRedo () method, but do not
commit your changes with the Commit () method, then the redo
is automatically committed when the virtual machine is powered
off.

25

VMware Scripting APl User’s Manual

26

Method

Description

object.Commit(<diskDevName>, <level>, <freeze>,
<wait>)

Note: This method applies only to ESX Server.

This method commits the changes in a redo log to a running virtual
SCSI disk specified by <diskDevName> that is associated with the
virtual machine specified by $vm.

<level> can be 0 or 1. When <level> is 0, there can be one or two
redo logs associated with the disk. If <level> is 0, then the top-most
redo log (the redo log being modified) is committed to its parent.
For example, if there is currently only the disk vin. dsk with a
single redo log vm . dsk . REDO, then the changes in

vm.dsk . REDO are committed to vm. dsk. If a second REDO log
vm.dsk .REDO.REDO has been added, then the changes in
vm.dsk .REDO.REDO are committed to vm. dsk . REDO.

<level>canbe 1 only when there are two redo logs associated with
the disk, vm. dsk . REDO and vin. dsk . REDO . REDO. When
<level> is 1, the changes in the next-to-top REDO log,

vm.dsk . REDO, are committed to vm. dsk. In this case, the
virtual machine is not frozen while the redo log is being committed.
Also, when the log is committed, vin. dsk . REDO . REDO is
renamed to vm. dsk . REDO.

<freeze> can be 0 or 1. If <freeze> is 0, then the virtual machine is
not frozen when changes are committed, though it runs more
slowly. If <freeze> is 1, then the virtual machine is frozen until the
commit operation finishes. If <level> is 0, then the virtual machine
must be frozen when changes are committed and <freeze> is
ignored.

<wait> can be 0 or 1. If <wait> is 0, then the method returns as
soon as the commit begins. If <wait> is 1, then the method does
not return until the commit completes.

The method fails if the specified virtual disk does not exist, the
specified virtual disk is in nonpersistent mode, an online commit is
already in progress, or the virtual disk currently has no redo logs.

www.vmware.com

CHAPTER 2 Using VmCOM

Method

Description

object.AnswerQuestion(<question>, <choice>)

The AnswerQuestion () method replies to a question where
questionisaVmQuestion object that represents the
question that requires an answer and choice represents the
index of the selected answer to the question. The index is an integer
and the first choice’s index is always 1 (one). The second choice’s
index is 2, and so on.

When a virtual machine is in the
vmExecutionState_Stuck state and requires user input to
continue, use this method to answer the current question or
dismiss the current error message.

First, get a VmQue st ion object from
vmCt1l.PendingQuestion. You can retrieve the possible
choices and their respective indices from the
VmQuestion.Choices property. Then, use the
AnswerQuestion method to answer the question.

object.ConnectDevice(<devName>)

The ConnectDevice () method sets a virtual device to the
connected state where devName is a string that identifies the
virtual device you want to connect. The virtual machine must be
powered on for this method to succeed, otherwise a
vmeErr_BADSTATE error is returned.

Use the Config () property to set configuration parameters
relevant to the virtual device before calling the
ConnectDevice () method. The following code example
illustrates connecting a virtual drive to a CD image file:

vm.Config("idel:0.devicetype") = "cdrom-
image"

vm.Config("idel:0.filename") = "/iso/
foo.iso"

vm.ConnectDevice ("idel:0")

object.DisconnectDevice(<devName>)

The DisconnectDevice () method sets a virtual device to
the disconnected state where devName is a string that identifies
the virtual device you want to disconnect. The virtual machine must
be powered on for this method to succeed, otherwise a
vmeErr_BADSTATE error is returned.

object.SetRunAsUser(<myuseraccount>,
<mypassword>)

Note: This method applies only to GSX Server 3.1.

Runs the virtual machine as the user specified by the
<myuseraccount> and <mypassword>.

object.RunAsUser

Note: This method applies only to GSX Server 3.1.

Returns the name of the user running the virtual machine.

27

VMware Scripting APl User’s Manual

28

VmQuestion

The VmQuestion object is created and returned by VvmCt1 . PendingQuestion (). It
describes a question or error condition requiring user input. Once the script selects one of the
possible answers, it passes the object and the selected answer as inputs to
VmCtl.AnswerQuestion().

The VmQuest ion object includes the read-only (GET) properties listed in the following table:

Property Name | Property Type | Access Type | Description

Text string GET Gets the question text.

Choices string GET Gets a VmCollection of strings representing a list of possible
answers to the question.

Id integer GET Gets an integer used internally by the VmCOM component to identify

the question.

www.vmware.com

CHAPTER 2 Using VmCOM

Symbolic Constant Enumerations

The VmCt 1 object exposes the following symbolic constant enumerations, where each element
of an enumeration is a symbolic constant:

. VmExecutionState
. VmPowerOpMode
. VmProdIinfoType

. VmProduct

. VmPlatform

VmExecutionState

The VmExecutionState symbolic constant enumeration specifies the state (or condition) of a
virtual machine. The possible values are listed in the following table:

VmExecutionState Values Description
vmExecutionState_On The virtual machine is powered on.
vmExecutionState_Off The virtual machine is powered off.
vmExecutionState_Suspended The virtual machine is suspended.
vmExecutionState_Stuck The virtual machine requires user input. The user must answer a question or dismiss
an error.
vmExecutionState_Unknown The virtual machine is in an unknown state.
VmPowerOpMode

The VmPowerOpMode symbolic constant enumeration specifies the behavior of a power
transition (start, stop, reset, or suspend) method.

During a soft power transition, the VMware Tools service runs a script inside the guest operating
system. For example, the default scripts that run during suspend and resume operations,
respectively release and renew DHCP leases, for graceful integration into most corporate LANs. You
may also customize these scripts. For more information on using these scripts, see your VMware
product documentation.

The following table includes the possible values for a VmPowerOpMode symbolic constant
enumeration.

29

VMware Scripting APl User’s Manual

30

VmPowerOpMode Values

Description

vmPowerOpMode_Soft

To succeed, soft power transitions
require the current version of the
Vmware Tools service to be installed
and running in the guest operating
system.

Start when a virtual machine is suspended — After resuming the virtual machine, it
attempts to run a script in the guest operating system to restore network
connections by renewing the DHCP lease. The Start() operation always succeeds.
However, if the VMware Tools service is not present or is malfunctioning, the running
of the script may fail.

Start when virtual machine is powered off — After powering on the virtual machine,
the operation attempts to run a script in the guest operating system when the
VMware Tools service becomes active. This default script does nothing during this
operation as there is no DHCP lease to renew. The Start() operation always succeeds.
However, if the VMware Tools service is not present or is malfunctioning, the running
of the script may fail.

Stop — Attempts to shut down the guest operating system and then powers off the

virtual machine.

Reset — Attempts to shut down the guest operating system, then reboots the virtual
machine.

Suspend — Attempts to run a script in the guest operating system that safely

disables network connections (such as releasing a DHCP lease) before suspending
the virtual machine.

vmPowerOpMode_Hard

Start — Starts or resumes a virtual machine without running any scripts; a standard
power on or resume.

Stop, reset or suspend — Immediately and unconditionally powers off, resets, or
suspends the virtual machine.

vmPowerOpMode_TrySoft

First attempts to perform the power transition operation with
vmPowerOpMode_Soft. If this fails, the same operation is performed with
vmPowerOpMode_Hard.

VmProdinfoType

VmProdInfoType symbol
when reading the Product

ic constant enumeration specifies the type of product information
Info property.

VmProdInfoType Values

Description

vmProdIinfo_Product

The VMware product type is returned as VmProduct. For more information on
VmProduct, see the following section.

vmProdIinfo_Platform

The host platform type is returned as VmPlatform. For more information on VmPlatform,
see VmPlatform on page 31.

vmProdinfo_Build

The product’s build number.

vmProdinfo_Version_Major

The product’s major version number.

www.vmware.com

CHAPTER 2 Using VmCOM

VmProdInfoType Values

Description

vmProdinfo_Version_Minor

The product’s minor version number.

vmProdinfo_Version_Revision

The product’s revision number.

VmProduct

The VvmProduct symbolic constant enumeration denotes a YMware product type. The

Product Info property returns this information when the requested product information type
isvmProdInfo Product.

VmProduct Values

Description

vmProduct_WS

The product is VMware Workstation.

vmProduct_GSX

The product is VMware GSX Server

vmProduct_ESX

The product is VMware ESX Server.

vmProduct_ UNKNOWN

The product type is unknown.

VmPlatform

The vmPlat form symbolic constant enumeration denotes a VMware machine’s platform type.
The ProductInfo property returns this information when the requested product information
type is vmProdInfo Platform

VmPlatform Values

Description

vmPlatform_WINDOWS

The host platform is a Microsoft Windows operating system.

vmPlatorm_LINUX

The host platform is a Linux operating system.

vmPlatform_VMNIX

The host platform is the ESX Server console operating system.

vmPlatform_UNKNOWN

The host platform is unknown.

31

VMware Scripting APl User’s Manual

32

Using VmCOM to Pass User-Defined
Information Between a Running Guest
Operating System and a Script

When the guest operating system is running inside a virtual machine, you can pass information
from a script (running in another machine) to the guest operating system, and from the guest
operating system back to the script, through the VMware Tools service. You do this by using a class
of shared variables, commonly referred to as Guestinfo. VMware Tools must be installed and
running in the guest operating system before a Guestinfo variable can be read or written inside the
guest operating system.

For example, create and connect a VmCt 1 object, assuming the virtual machine is powered off.
Next, set the GuestInfo variable with the VmCOM API. Then, power on the virtual machine and use
the VMware Tools service to retrieve the variable. See Sending Information Set in a VmCOM Script
to the Guest Operating System on page 33 for an example of this procedure.

See your server documentation for more information about VMware Tools.

Guestinfo Variables

You pass to the virtual machine variables you define yourself. What you pass is up to you, but you
might find it useful to pass items like the virtual machine’s IP address, Windows system ID (SID, for
Windows guest operating systems) or machine name.

This is useful in situations where you want to deploy virtual machines on a network using a
common configuration file, while providing each machine with its own unique identity. By
providing each virtual machine with a unique identifying string, you can use the same
configuration file to launch the same nonpersistent virtual disk multiple times in a training or
testing environment, where each virtual machine would be unique on the network. Note that in
the case of persistent or undoable disks, each virtual disk file must be copied into its own directory
if it shares its file name with another virtual disk file.

When a virtual machine process is created on the server, all Guestinfo variables are initially
undefined. A Guestinfo variable is created the first time it is written.

You identify a GuestInfo variable with a key name. You can define and create any number of
GuestInfo variable key names. The information you pass is temporary, lasting until the virtual
machine is powered off and all consoles connected to the virtual machine are closed.

www.vmware.com

CHAPTER 2 Using VmCOM

Sending Information Set in a VmCOM Script to the Guest Operating
System

To send information from a VmCOM script to a running guest operating system, you use the
GuestInfo () property. You need to specify the string value of the configuration variable
identified by keyName.

For example, you might want to deploy virtual machines for a training class. When a virtual
machine starts, you want to display a banner welcoming the student to the class. You can pass
their name from a VmCOM script to the guest operating system on a student’s virtual machine.

If you have not already done so, connect a VinCt 1 object and set the student’s name for this
virtual machine to “Susan Williams":

vm.GuestInfo("name") = "Susan Williams"

This statement passes a string “name” to the guest operating system. A script in the guest
operating system reads the string, then calls a command (specific to the guest operating system)
to set the student’s name in the banner. (This operation is explained in the following section).

This setting lasts until you power off the virtual machine and close all connected consoles.
Retrieving the Information in the Guest Operating System
In the running guest operating system, you use the VMware Tools service to retrieve variables set

for the virtual machine. You can then use this passed “name” string inside a guest operating system
startup sequence. Use the following to read the Guestinfo variable keyName.

In a Windows guest operating system:
VMwareService.exe --cmd "info-get guestinfo.<keyNames>"
In a Linux guest operating system:

/etc/vmware-tools/viware-guestd --cmd 'info-get guestinfo.<keyName>'
For example, to get the current value for the “name” variable, you can type the following in a Linux
guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-get guestinfo.name'

Sending Information Set in the Guest Operating System to a VmCOM
Script
Similarly, in a virtual machine’s guest operating system, you can use the YMware Tools service to

set GuestInfo variables for the virtual machine. Use the following to write the Guestinfo variable
keyName.

In a Windows guest operating system:

VMwareService.exe --cmd "info-set guestinfo.<keyName> <value>"

33

VMware Scripting APl User’s Manual

34

In a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.<keyName> <values'
Continuing with the previous example, Susan Williams prefers “Sue”. To set the value of “Sue
Williams” for the “name” variable, type the following in a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.name Sue Williams'

Retrieving Information in a VmCOM Script

With the VmCOM AP, you use the GuestInfo (keyName) property to retrieve information set
in the guest operating system, into a VmCOM script running on any machine, including GSX Server
or any remote workstation that can connect to the virtual machine.

For example, to retrieve Sue’s name set by the VMware Tools service, query the guest operating
system by using the YmCOM API:

str = vm.GuestInfo ("name")

www.vmware.com

CHAPTER

Using Sample VmCOM Programs

This section contains sample VmCOM programs written by VMware to demonstrate example uses
of the VmCOM API. You can modify them to suit the needs of your organization.

These sample programs are installed with the VmCOM component. During installation, two folders
named MiniMUI and SampleScripts are created in the same directory as the Scripting API. The
MiniMUI folder contains a sample VmCOM project that you may open with Microsoft Visual Basic 6.
The SampleScripts folder contains VBScript and JScript samples using the VmCOM Scripting API.

Note: You may also obtain these sample scripts from the VMware Web site. The scripts on the
Web site are saved with a TXT extension for online viewing. Remove the .TXT extension before
using these scripts.

35

VMware Scripting APl User’s Manual

36

Copyright Information

Each sample script and sample program included with the VmCOM Scripting APl includes a
copyright. However, for brevity, we do not include this copyright in its entirety with each sample
script and sample program in this manual. Instead, we include the first line of the copyright
followed by ellipses, to indicate its placement. The complete copyright is as follows:

Copyright (c) 1998-2004 VMware, Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of the software in this file (the "Software"), to deal in the
Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

The names "VMware" and "VMware, Inc." must not be used to endorse or
promote products derived from the Software without the prior written
permission of VMware, Inc.

Products derived from the Software may not be called "VMware", nor may
"VWMware" appear in their name, without the prior written permission of
VMware, Inc.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
VMWARE, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

www.vmware.com

CHAPTER 3 Using Sample VmCOM Programs

MiniMUI Visual Basic Sample Program

The MiniMUI sample program illustrates the use of VmCOM interfaces from a Visual Basic
application. It is a control panel application allowing users to get status information and to perform
power operations on virtual machines registered on a particular server.

The source code demonstrates how to:

. initialize a server object

. enumerate virtual machines on a server

. perform power operations on a virtual machine
. handle errors and get status information

. answer a question for a stuck virtual machine

To run the program, open the project file in Visual Basic. The source for the MiniMUI application is
in the MiniMUI folder in the VmCOM Scripting API directory. The following image shows the
application’s main window.

&, YMware Mini-MUI COM Sample Program [_[o[x]
Hostrame Ussimame Passwerd
sdney leb [_Connectta local server |

Last operation's status

[Vintual mackine requires user input to contirue

Registered vitual machines __ Reheh |
Configuration fle [State
“wms\nin2 000 win2000.vms off
wvms\h72uh72vme off
“vwms\nidsmpscsighostedintdsmpscsighosted vms stuck,

Virtual machine configuration name
I

[g Fease | | Uniegister |
Paver o HESUME. Fower off Shutdown HEstart FEeset Stspend|
[Vb tpe Vaiisble name Variable valus
@ Conlgusion | | T
 Gussinio
Read | _Wiite | _Heart beat Tools last aclive
Product infa
Version Product Plattorm Buid
Device name

Connect device | Disconnect device | Get connection state |

Selected vittual machine requires input to this question o message:
14 redo log for undoable disk ntdSmpS esiGhosted ymdk was found

Comit | Discard | Append | Cancel |

37

VMware Scripting APl User’s Manual

JScript and VBScript Sample Programs

The sample scripts included in the SampleScripts folder are designed to run under the Windows
Script Host environment, which is included with all Microsoft Windows 2000 and subsequent
compatible operating systems. To run a script under a different environment, such as an ASP or
HTML page, refer to that environment’s documentation.

Each sample program comprises two files: a script, witha . js (JScript) or . vbs (VBScript)
extension, and the accompanying Windows Script File with the same name and the .ws£f
extension. For example, the first sample program consists of the files samplel. js and
samplel.wst. Both the script and the associated . ws£ file must be in the same directory when
you execute the sample program.
To execute a sample program, type the following in a command line window:

cscript //nologo sample<ns>.wst

where <n> is the sample program number.

Note: The cscript command loads the Windows Script Host environment and is included
with the supported operating system. The . j s or .vbs script contains the program’s actual logic.
The associated . wsf file defines and initializes an execution environment for the script. In this
example, the . wsf file loads VmCOM:'s type library to allow the script to use YmCOM'’s symbolic
constants. For more information on symbolic constants, see Properties on page 21.

JScript Sample Program 1

This JScript program connects to the local server and lists all registered virtual machines. If a virtual
machine is in the stuck state, the pending question is also displayed.

The source for the sample program 1 script is in the SampleScripts folder in the VmCOM Scripting
API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-APl/doc/samplel.js.txt.

// VmCOM JScript Sample Script (samplel)
// Copyright (c) 1998-2004 VMware, Inc.

// This program is for educational purposes only.
// It is not to be used in production environments.

// Description:

www.vmware.com

38

http://www.vmware.com/support/developer/scripting-API/doc/sample1.js.txt

CHAPTER 3 Using Sample VmCOM Programs

// This script displays the virtual machines on the local server.
// It prints the configuration file path and current execution
// state of each VM. If a VM is in the stuck state, the current
// question and its choices are also printed.

//

// Instructions for Windows 2000 and later operating systems:
//

// - save the contents of this file to a file named 'samplel.js'
// unless it's already named that way

//

// - there should be an accompanying file named 'samplel.wsf'
// It is placed in the same directory as this file during

// product installation. This file is responsible for setting
// up the Windows Script Host environment and loading the

// VmCOM type library, thereby enabling this script to

// reference symbolic constants such as vmExecutionState On
//

// - in a command line window, type:

// cscript //nologo samplel.wsf

//

cp = WScript.CreateObject ("VmCOM.VmConnectParams") ;
server = WScript.CreateObject ("VmCOM.VmServerCtl") ;
server.Connect (cp)

vmCollection = server.RegisteredVmNames

for (j = 1; j <= vmCollection.count; j++) {

vmName = vmCollection (j) ;
vm = WScript.CreateObject ("VmCOM.VmCtl") ;
vm.Connect (cp, vmName) ;

str = "config path=" + vmName + " O0S=" + vm.Config("guestOs") + " state=";
execStateString = State2Str(vm) ;
str += execStateString;

if (execStateString == "STUCK") {

question = vm.PendingQuestion;
str += " pending question='" + question.text + "' choices=";

choices = question.choices
for (i = 1; i <= choices.count; i ++) {
str += "[" + choices (i) + "] ";

}

WScript.Echo(str) ;

39

VMware Scripting APl User’s Manual

40

}

function State2Str(vm) {
switch (vm.ExecutionState) {
case vmExecutionState On:
return "ON";
break;
case vmExecutionState Off:
return "OFF";
break;
case vmExecutionState Suspended:
return "SUSPENDED";
break;
case vmExecutionState Stuck:
return "STUCK";
break;
default:
return "UNKNOWN";
break;

}

The source for the sample program 1 accompanying Windows Script File is in the SampleScripts
folder in the VmCOM Scripting API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-APl/doc/sample 1.wsf.txt.

Note: [f you are using Microsoft® Internet Explorer as your browser, select View > Source to view
the file. Alternately, right-click this link and download this file.
<job id="Samplel">
<reference object="VmCOM.VmCtl" />

<script language="JScript" src="samplel.js" />
</job>

VBScript Sample Program 2

This VBScript sample program 2 provides similar functionality to sample program 1. It also
connects to the local server and lists all registered virtual machines. If a virtual machine is in the
stuck state, the pending question is displayed.

In addition, sample program 2 also illustrates how to handle a virtual machine that is waiting for
input to a question (that is, the virtual machine is in the vmExecutionState Stuck state).
For example, if a virtual machine is configured with an undoable disk and a redo log is found, this

www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/sample1.wsf.txt

CHAPTER 3 Using Sample VmCOM Programs

script automatically keeps the redo log during a shutdown operation or appends the redo log
during a power-on operation.

Note: The script’s question-answering code is highly dependent on the version of your server
product and the language used in the question. This script can malfunction with a newer version
of the server product or different language version of the VMware server product. This sample
program is for example purposes only and is written for VMware GSX Server.

The source for the sample program 2 script is in the SampleScripts folder in the VmCOM Scripting
APl directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-APl/doc/sample2.vbs.txt.

VmCOM VBScript Sample Script (sample2)
Copyright (c) 1998-2004 VMware, Inc.

This program is for educational purposes only.
It is not to be used in production environments.

Description:

This script displays the virtual machines on the local server.
It prints the configuration file path and current execution
state of each VM. If a VM is in the stuck state, the current
question and its choices are also printed.

Additionally, if a VM is stuck on an undoable disk related
question, the script automatically answers 'Keep' on a power-off
and 'Append' on a power-on.

NOTE: the question-answering logic used is language and product
dependent, and is only provided for illustration purposes only!

Instructions for Windows 2000 and later operating systems:

- save the contents of this file to a file named 'sample2.vbs'
unless it's already named that way

- there should be an accompanying file named 'sample2.wsf'
It is placed in the same directory as this file during
product installation. This file is responsible for setting
up the Windows Script Host environment and loading the
VmCOM type library, thereby enabling this script to
reference symbolic constants such as vmExecutionState On

41

http://www.vmware.com/support/developer/scripting-API/doc/sample2.vbs.txt

VMware Scripting APl User’s Manual

' - in a command line window, type:
' cscript //nologo sample2.wsf

Set cp = CreateObject ("VmCOM.VmConnectParams")
Set server = CreateObject ("VmCOM.VmServerCtl")

server.Connect cp
Set vmCollection = server.RegisteredVmNames

for each vmName in vmCollection
Set vm = CreateObject ("VmCOM.VmCtl")
vm.Connect cp, vimName
s = "path=" & vmName & " state=" & State2Str(vm) & " os=" & vm.Config("guestos")

if vm.ExecutionState = vmExecutionState Stuck then
Set g = vm.PendingQuestion
Set choices = g.choices
s = s & " question= '" & g.text & "' choices="
for each choice in choices
s =5 & "[" & choice & "] "
next

" If this looks like an undoable disk save question,
' automatically answer 'Append' or 'Keep'
1
' NOTE: this code makes a lot of assumptions about the product
! and the language used, and may break under some environments.
! It is shown for illustration purposes only!

Set r = new RegExp

r.pattern = "undoable disk"
r.ignorecase = True

Set matches = r.Execute (q.text)

if matches.count > 0 then
for i = 1 to choices.count

if choices (i) = "Append" or choices (i) = "Keep" then
WScript.Echo(s)
s =" --> Automatically selecting '" & g.choices(i) & "' as answer"
vm.AnswerQuestion q, 1
exit for
end if
next
end if

www.vmware.com

42

CHAPTER 3 Using Sample VmCOM Programs

end if
WScript.Echo (s)
next

function State2Str (vm)
select case vm.ExecutionState

case vmExecutionState On
State2str = "ON"

case vmExecutionState Off
State2Str = "OFF"

case vmExecutionState Suspended
State2Str = "SUSPENDED"

case vmExecutionState Stuck

State2Str = "STUCK"
case else
State2Str = "UNKNOWN"

end select
end function

The source for the sample program 2 accompanying Windows Script File is in the SampleScripts
folder in the VmCOM Scripting API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-APl/doc/sample2.wsftxt.

Note: If you are using Microsoft Internet Explorer as your browser, select View > Source to view
the file. Alternately, right-click this link and download this file.
<job id="Sample2">
<reference object="VmCOM.VmCtl" />

<script language="VBScript" src="sample2.vbs" />
</job>

VBScript Sample Program 3

This VBScript sample program lists, then starts locally registered virtual machines that are not
already running on a server. This script powers on powered-off virtual machines and resumes
suspended virtual machines that have the line "autostart=true" in their configuration files.

This script includes a slight delay after starting each virtual machine. This delay balances the load
on the server. Do not start many virtual machines in rapid succession without this delay.

You can use a script like the following to start selected virtual machines automatically after a server
boots. However, this script must be configured as a service for it to run without requiring a login
from a user.

43

http://www.vmware.com/support/developer/scripting-API/doc/sample2.wsf.txt

VMware Scripting APl User’s Manual

Tools exist that allow any application, including a script, to run as a service. One example is the
instsrvand srvany programs from the Microsoft Windows 2000 Resource Kit. If you use
srvany to implement the service, then configure your service to launch the cscript program.
Set the program’s argument to the path of the script’s . ws£ file. Refer to the Microsoft Windows
2000 Resource Kit documentation for more details. If you choose to use a different tool, then refer
to your specific tool's documentation to configure the script to run as a service.

The source for the sample program 3 script is in the SampleScripts folder in the VmCOM Scripting
API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-APl/doc/sample3.vbs.txt.

' VmCOM VBScript Sample Program 3
' Copyright (c) 1998-2004 VMware, Inc.

' This program is for educational purposes only.
' It is not to be used in production environments.

' Description:

' This script gets a list of virtual machines registered on
' the local server. It attempts to power-on each VM that
' is not already running and has a line in the config file:

! autostart=true

' Instructions for Windows 2000 and Windows XP host:
' - save the contents of this file to a file named 'sample3.vbs'

' - there should be an accompanying file named 'sample3.wsf'

! It is placed in the same directory as this file during

! product installation. This file is responsible for setting
' up the Windows Script Host environment and loading the

! VmCOM type library, thereby enabling this script to

' reference symbolic constants such as vmExecutionState On

' - in a command line window, type:
! cscript //nologo sample3.wsf

www.vmware.com

44

http://www.vmware.com/support/developer/scripting-API/doc/sample3.vbs.txt

Set connect_params =

' By default,
' To connect to a remote server,
' the values appropriately.

connects to the local server.

' connect_ params.hostname = "<host>"
' connect_params.username = "<user>"
' connect_params.password = "<password>"

' And use this if your port
' connect params.port = 902

Set vm server =

' Handle errors non-fatally from here on
On Error Resume Next

CHAPTER 3 Using Sample VmCOM Programs

CreateObject ("VmCOM.VmConnectParams")

uncomment these lines and set

number is different

CreateObject ("VmCOM. VmServerCtl")

' Try connecting to server a few times. It's possible the VMware services
' are still in the process of starting up. We'll wait a maximum of

''12 * 10 = 120 seconds = 2 minutes
1

connected = false

for tries = 1 to 12

vm_server.Connect connect params

if Err.number = 0 then
connected = true
exit for

end if

WScript.Echo "Could not connect to server:

WScript.Echo "Retrying in 10 seconds ..."
WScript.Sleep 10000
Err.clear

next

if not connected then

WScript.Echo "Failed to connect to server.

WScript.Quit
end if

' Get a list of all VMs from the server.
Set vmlist = vm_server.RegisteredVmNames

for each config in wvmlist
' Connect to the VM
Set vm = CreateObject ("VmCOM.VmCtl")

" & Err.Description

Giving up."

45

VMware Scripting APl User’s Manual

vm.Connect connect_params, config

if Err.Number <> 0 then
WScript.Echo "Could not connect to VM " & config & ": " & Err.Description
Err.Clear
else
' Check that the VM should be started automatically
auto_start = vm.Config("autostart")
if Err.Number <> 0 then
if Err.Number <> vmErr NOPROPERTY then
WScript.Echo "Could not read autostart variable: " &
Err.Number & ": " & Err.Description
else
WScript.Echo "This VM is not configured for autostart: " & config
end if
Err.Clear
else
if auto_start = "true" or auto_start = "TRUE" then
' Check that the VM is powered off

power state = vm.ExecutionState
if Err.Number <> 0 then
WScript.Echo "Error getting execution state: " &
Err.Number & ": " & Err.Description
Err.Clear
else
if power state = vmExecutionState Off or power state =
vmExecutionState Suspended then
WScript.Echo "Powering on " & config
vm.Start (vmPowerOpMode_ Soft)
if Err.Number <> 0 then
WScript.Echo "Error powering on " & config & ": " & Err.Description
Err.Clear
else
' Wait between starting up VMs to smooth out the load on the server
WScript.Sleep 5000

end if
end if
end if
end if
end if
end if
next

www.vmware.com

46

CHAPTER 3 Using Sample VmCOM Programs

The source for the sample program 3 accompanying Windows Script File is in the SampleScripts
folder in the VmCOM Scripting API directory.

You can also find it on the VMware Web site, saved with a .TXT extension for online viewing, at
www.vmware.com/support/developer/scripting-APl/doc/sample3.wsf.txt.

Note: If you are using Microsoft Internet Explorer as your browser, select View > Source to view
the file. Alternately, right-click this link and download this file.

<job id="sample3">
<reference object="VmCOM.VmCtl" />

<script language="VBScript" src="sample3.vbs" />
</job>

47

http://www.vmware.com/support/developer/scripting-API/doc/sample3.wsf.txt

VMware Scripting APl User’s Manual

www.vmware.com

48

CHAPTER

Using VmPerl

The VmPerl interface provides controlled access to VMware servers and virtual machines. You can
incorporate VmPerl function calls in a Perl script you write to automate the day-to-day functioning
of your server and virtual machines.

The VmPerl APl consists of four modules or packages:

. VMware:VmPerl:ConnectParams — that provides connection information and
authentication (user credentials) when connecting to a server.

. VMware:VmPerl:Server — that controls interaction with a GSX Server or ESX Server machine.

. VMware:VmPerl:VM — that controls interaction with a particular virtual machine on a GSX
Server or ESX Server.

. VMware:VmPerl:Question — that provides for user interaction when there is a question or
error condition requiring a response.

VMware:VmPerl:Server and VMware:VmPerl:VM are the primary modules for communicating with
VMware components. VMware:VmPerl:ConnectParams and VMware:VmPerl:Question are support
modules used as inputs or outputs to the methods and properties of the primary modules.

A VMware:VmPerl::Server object represents a server and exports server-level services, such as
virtual machine enumeration and registration. A VMware:VmPerl:VM object represents a virtual

49

VMware Scripting APl User’s Manual

50

machine on a particular server and provides virtual machine specific methods including power
operations. You activate the VMware:VmPerl::Server or VMware:VmPerl:VM object by calling its
connect () method before accessing any other method.

The connect () method requires a $connectparams input parameter containing the host
identifier and user credentials supplied for authentication. If the host identifier is not supplied or is
undefined, the authentication is performed on the local system. If the user name and password are
also not supplied, the current user is authenticated on the local machine. Otherwise, you may
supply the user name and password for authentication as that user.

Unlike a VMware:VmPerl::Server object, $vm- >connect () also takes the string $vm_name
specifying the configuration file name of the virtual machine that will be connected.

Once a VMware:VmPerl:Server object is connected, you can enumerate the virtual machines on
the server, and register or unregister the virtual machines. You can obtain a list of virtual machines
on a particular server by using the $server->registered vm names () method. This
method returns an array of strings specifying the configuration file names of the virtual machines
currently registered on the server. If you know the configuration file name of a specific virtual
machine, you can connect the VMware:VmPerl:VM object directly without using a
VMware:VmPerl:Server object.

www.vmware.com

CHAPTER 4 Using VmPerl

VMware::VmPerl::ConnectParams

VMware:VmPerl:ConnectParams:new(Shostname, $port, Susername, $password) connects to the
given hostname and network port and authenticates the connection with the supplied user name
and password.

The VMware:VmPerl:ConnectParams module supplies connection information and user
credentials to the $server->connect () or $vm->connect () methods and exposes the
methods listed in the following table. All VMware:VmPerl:ConnectParams methods have both
read and write permissions, allowing you to retrieve (GET) and set (PUT) the values.

The security for your connection depends upon the security configuration of your VMware server.
If you're connecting to a VMware server or a virtual machine on a VMware server, then the
connections are encrypted as long as the VMware server is configured to encrypt connections.

Method Description

Sconnectparams->get_hostname() Gets or sets the name of a server, where $Shostname is the server’s

Returns the defined value on success or unde £ hostname or IP address. If Shostname is not given or undefined,

(undefined value) on failure or if the value is not set. the authentication is performed on the local system. The C library

Set the value and retry the API call. connects to the local host and uses current user information when it
connects. However, this user information is not passed back to

$connectparams->set_hostname($hostname)
$connectparams.

Otherwise, you may supply the user name and password for
authentication as that user.

$connectparams->get_port() Gets or set the TCP port to use when connecting to the server. Its
Returns the defined value on success or unde £ default value is 0 (zero), indicating the default port number (902)
(undefined value) on failure or if the value is not set. should be used. Otherwise, enter the correct port number.

Set the value and retry the API call. A port number set to a negative value is treated as an incorrect
$connectparams->set_port(sport) value and the default port number is used instead.
$connectparams->get_username() Gets or set the name of a user on the server.

Returns the defined value on success or unde £
(undefined value) on failure or if the value is not set.
Set the value and retry the API call.

Sconnectparams->set_username($username)

$connectparams->get_password() Gets or set the user’s password on the server.

Returns the defined value on success or unde £
(undefined value) on failure or if the value is not set.
Set the value and retry the API call.

Sconnectparams->set_password($password)

51

VMware Scripting APl User’s Manual

52

VMware::VmPerl::Server

The VMware:VmPerl::Server module represents a VMware server running on a particular machine.

Method

Description

$server->connect($connectparams)

Returns the defined value on success or unde £
(undefined value) on failure.

Connects the object to a VMware GSX Server or a VMware ESX Server
where Sconnectparams specifies the system and user
information.

The total number of connected VMware:VmPerl:VM and
VMware:VmPerl:Server objects cannot exceed 62. The

connect () method fails with error code
VM_E_INSUFFICIENT_RESOURCES if this limit is reached. In order to
connect new objects, destroy one or more connected
VMware:VmPerl:VM or VMware:VmPerl:Server objects.

Sserver->get_last_error()

Returns the error code and descriptive string.

Gets details about the last error that occurred in an array of form
[$error_num, $error_ string].

Sserver->is_connected()

Returns the defined value on success or unde £
(undefined value) on failure (if the server is not
connected or if there is a failure). You can use
$vm->get_ last error todetermineifan
error occurred or if the server is not connected.

Use this method to determine whether or not a connection exists to
the server specified by $server.

The remaining methods only work after you connect to the server with $server-

>connect ().

Note: Two methods, $server->get resourceand $server-s>set resource, that
are listed in the following table, apply only to ESX Server.

Method

Description

Sserver->registered_vm_names()

Returns a list of virtual machine configuration
file names, an empty list (if no virtual machines
are registered or if there is a failure). You can use
$vm->get_last_error todetermine if
an error occurred or there are no registered
virtual machines.

Gets an array of strings specifying the configuration file names of the
virtual machines currently registered on the server. The array is indexed
beginning at 0 (zero). The server must be connected using the
connect () method, or this method throws an error.

Sserver->register_vm(Svm_name)

Returns the defined value on success or unde £
(undefined value) on failure.

Registers a virtual machine on a server where $vm_name is a string
specifying the virtual machine’s configuration file name.

www.vmware.com

CHAPTER 4 Using VmPerl

Method

Description

$server->unregister_vm($vm_name)

Returns the defined value on success orunde £
(undefined value) on failure.

Unregisters a virtual machine from a server where $vm_name is a string
specifying the virtual machine’s configuration file name.

$server->get_resource
(“system.<variable_name>")

Returns the defined value on success orunde £
(undefined value) on failure.

$server->set_resource
(“system.<variable_name>, <value>")

Returns the defined value on success or unde £
(undefined value) on failure.

Note: These methods apply only to ESX Server.

Gets or sets the value of the ESX Server system resource variable specified
by system.<variable_name>. For a list of ESX Server system variables, see
VMware ESX Server System Resource Variables on page 120.

53

VMware Scripting APl User’s Manual

VMware::VmPerl::VM

The VMware:VmPerl:VM object represents a virtual machine running on a particular server.

You can connect to a virtual machine, start, stop, suspend and resume virtual machines, query and
modify the configuration file settings, and connect and disconnect devices.

Except where noted otherwise, these methods are synchronous; the method does not return until
it finishes its operation, fails or times out. Most operations time out after 2 minutes, except for
power operations, which time out after 4 minutes.

Method

Description

Svm->connect(Sconnectparams, Svm_name)

Returns the defined value on success or unde £
(undefined value) on failure.

Establishes a connection with a virtual machine using the specified
parameters where $connectparams specifies the system and
user information and $vm_name is a string specifying the virtual

machine’s configuration file name.

The total number of connected VMware:VmPerl:VM and
VMware:VmpPerl:Server objects cannot exceed 62. The

connect () method fails with error code
VM_E_INSUFFICIENT_RESOURCES if this limit is reached. In order to
connect new objects, destroy one or more connected
VMware:VmPerl:VM or VMware:VmPerl:Server objects.

Svm->get_last_error()

Returns the error code and descriptive string.

Gets details about the last error that occurred in an array of form
[Serror num, S$error string].

Svm->is_connected()

Returns the defined value on success or unde £
(undefined value) on failure (if the virtual machine is
not connected or if there is a failure). You can use
$vm->get_last_error todetermineifan
error occurred or if the virtual machine is not
connected.

Use this method to determine whether or not a connection exists to
the virtual machine specified by $vm.

The remaining methods only work after you connect to the virtual machine with

$vm->connect ().

Note: The following table includes some ESX Server-specific methods, and are specifically noted.

www.vmware.com

CHAPTER 4 Using VmPerl

Method

Description

Svm->start(Smode)

Returns the defined value on success or
undef (undefined value) on failure.

Powers on a previously powered-off virtual machine or resumes a suspended
virtual machine where $Smode specifies the operation’s behavior based on
the value of the VMware:VmPerl:VM_POWEROP_MODE_<XXX> where
<XXX> is HARD, SOFT, or TRYSOFT. If Smode is not specified, the default
mode is VM_POWEROP_MODE_SOFT. For more information, see
VM_POWEROP_MODE_<XXX> Values on page 63.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you
must specify VMware:VmPerl:VM_POWEROP_MODE_HARD as the mode or
the operation will fail.

f the virtual machine is powered off, then it is powered on. If it is suspended,
this method resumes the virtual machine. If the virtual machine is in any other
state, the start () method fails and throws an error.

Svm->stop(Smode)

Returns the defined value on success or
undef (undefined value) on failure.

Shuts down and powers off a virtual machine where $mode specifies the
operation’s behavior based on the value of the
VMware:VmPerl:VM_POWEROP_MODE_<XXX> where <XXX> is HARD, SOFT,
or TRYSOFT. If $Smode is not specified, the default mode is
VM_POWEROP_MODE_SOFT. For more information, see
VM_POWEROP_MODE_<XXX> Values on page 63.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you
must specify VMware:VmPerl:VM_POWEROP_MODE_HARD as the mode or
the operation will fail.

This method always fails if the virtual machine is not in the
VM_EXECUTION_STATE_ON state.

Svm->reset(Smode)

Returns the defined value on success or
undef (undefined value) on failure.

Shuts down, then reboots a virtual machine where $mode specifies the
operation’s behavior based on the value of the
VMware:VmPerl:VM_POWEROP_MODE_<XXX> where <XXX> is HARD, SOFT,
or TRYSOFT. If $mode is not specified, the default mode is
VM_POWEROP_MODE_SOFT. See VM_POWEROP_MODE_<XXX> Values on
page 63.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you
must specify VMware:VmPerl:VM_POWEROP_MODE_HARD as the mode or
the operation will fail.

This method always fails if the virtual machine is not in the
VM_EXECUTION_STATE_ON state.

55

VMware Scripting APl User’s Manual

56

Method

Description

Svm->suspend(Smode)

Returns the defined value on success or
undef (undefined value) on failure.

Suspends a virtual machine where $Smode specifies the operation’s behavior
based on the value of the VMware:VmPerl:VM_POWEROP_MODE_<XXX>
where <XXX> is HARD, SOFT, or TRYSOFT. It saves the current state of the
virtual machine to a suspend file. If Smode is not specified, the default mode
is VM_POWEROP_MODE_SOFT. For more information, see
VM_POWEROP_MODE_<XXX> Values on page 63.

Note: If you are connecting to GSX Server 1.x or ESX Server 1.x, then you
must specify VMware:VmPerl:VM_POWEROP_MODE_HARD as the mode or
the operation will fail.

This method always fails if the virtual machine is not in the
VMware:VmPerl:VM_EXECUTION_STATE_ON state.

svm->add_redo($disk)
Returns the defined value on success or
undef (undefined value) on failure.

Note: This method applies only to ESX
Server.

This method adds a redo log to a running virtual SCSI disk specified by
$disk, thatis associated with the virtual machine specified by $vm.
Changes made to the virtual disk accumulate in the new redo log. This disk
must be a ESX Server virtual disk stored on a VMFS volume.

The virtual disk can be in persistent, undoable or append mode. The redo log
for a virtual disk in persistent mode uses the file name of the virtual disk with
.REDO appended to it (for example, if the disk is called, vm . dsk, the redo
log is called vm. dsk . REDO). A virtual disk in undoable or append mode
already has a redo log associated with it, so the new redo log you create is
called vin. dsk . REDO . REDO, whose parent is the existing redo log,
vm.dsk.REDO.

This method fails if the specified virtual disk does not exist, the specified
virtual disk is in nonpersistent mode, an online commit is already in progress,
or the virtual disk already has two redo logs associated with it.

If you add a redo log using the $vm->add_redo () method, but do not
commit your changes with the $vm->commit () method, then the redo
is automatically committed when the virtual machine is powered off.

www.vmware.com

CHAPTER 4 Using VmPerl

Method

Description

Svm->commit($disk, Slevel, $freeze, Swait)
Returns the defined value on success or
undef (undefined value) on failure.

Note: This method applies only to ESX
Server.

This method commits the changes in a redo log to a running virtual SCSI disk
specified by $di sk that is associated with the virtual machine specified by
Svm.

Slevel canbe 0 or 1.When $1level is 0, there can be one or two redo
logs associated with the disk. If $1evel is 0, then the top-most redo log
(the redo log being modified) is committed to its parent. For example, if there
is currently only the disk vim. dsk with a single redo log vim. dsk . REDO,
then the changes in vm. dsk . REDO are committed to vin. dsk. If a
second REDO log vm. dsk . REDO . REDO has been added, then the
changes in vin. dsk . REDO . REDO are committed to vm. dsk . REDO.

$level can be 1 only when there are two redo logs associated with the
disk, vin. dsk . REDO and vin. dsk . REDO . REDO. When Slevelis 1,
the changes in the next-to-top REDO log, vm . dsk . REDO, are committed
to vm. dsk. In this case, the virtual machine is not frozen while the redo log
is being committed. Also, when the log is committed,
vm.dsk.REDO.REDO is renamed to vim. dsk . REDO.

Sfreeze canbe 0 orl.If Sfreezeis 0, then the virtual machine is not
frozen when changes are committed, though it runs more slowly. If
Sfreeze is 1,then the virtual machine is frozen until the commit
operation finishes. If $1evel is 0, then the virtual machine must be frozen
when changes are committed and Sfreeze is ignored.

Swait canbe 0 or1.If Swait is 0, then the method returns as soon as the
commit begins. If Swait is 1, then the method does not return until the
commit completes.

The method fails if the specified virtual disk does not exist, the specified
virtual disk is in nonpersistent mode, an online commit is already in progress,
or the virtual disk currently has no redo logs.

Svm->get_connected_users()

Returns the defined value on success or an
empty list undef (undefined value) on
failure.

Returns a list of local and remote connected users, and their IP addresses. This
list includes remote console connections, APl connections, and Web-based
management interface connections to the specified virtual machine.

Svm->get_execution_state()

Returns the defined value on success or
undef (undefined value) on failure.

Returns the virtual machine's current state: powered on, powered off,
suspended, or stuck. For a list of the execution states, see
VM_EXECUTION_STATE_<XXX> Values on page 63.

Svm->get_guest_info(Skey_name)

Returns the defined value on success or
undef (undefined value) on failure.

Svm->set_guest_info(Skey_name, Svalue)

Returns the defined value on success or
undef (undefined value) on failure.

It accesses a shared variable identified by the string $key name.

If you write a GuestInfo variable by using the set_guest_info ()
method, the new value is written into memory and is discarded when the
virtual machine process terminates.

For additional information, see Using VmPerl to Pass User-Defined

Information Between a Running Guest Operating System and a Script on
page 66.

57

VMware Scripting APl User’s Manual

Method

Description

Svm->get_config_file_name()

Returns the defined value on success or
undef (undefined value) on failure.

Returns a string containing the configuration file name for the virtual
machine. This method fails if the VMware:VmPerl:VM object is not
connected.

Svm->get_config(Skey_name)

Returns the defined value on success or
undef (undefined value) on failure.

Svm->set_config(Skey_name, Svalue)

Returns the defined value on success or
undef (undefined value) on failure.

Accesses the value of a configuration variable identified by the string
key_name. When a virtual machine process is spawned on the server, the
process reads configuration variables from the virtual machine's
configuration file into memory.

If you write a configuration variable by using the set_config () method,
the new value is written into memory and is discarded when the virtual
machine process terminates. You cannot change the value of a configuration
variable in a virtual machine’s configuration file.

The method throws an error if it accesses an undefined configuration
variable.

Do not change the memory size while a virtual machine is suspended. First
power off the virtual machine, then change its memory size.

Svm->get_product_info(Sinfotype)

Returns the defined value on success or
undef (undefined value) on failure.

Gets information about the product. For additional information, see Infotype
Values on page 64.

Svm->get_heartbeat()

Returns the defined value on success or
undef (undefined value) on failure.

Returns the current heartbeat count generated by the VMware Tools service
running in the guest operating system. The count is initialized to zero when
the virtual machine is powered on.

The heartbeat count is typically incremented at least once per second when
the VMware Tools service is running under light load conditions. The count
stays constant if the service is not running.

Svm->get_tools_last_active()

Returns the defined value on success or
undef (undefined value) on failure.

Returns an integer indicating how much time has passed, in seconds, since
the last heartbeat was detected from the VMware Tools service.

This value is initialized to zero when the virtual machine powers on. It stays at
zero until the first heartbeat is detected, after which the value is always
greater than zero until the virtual machine is power-cycled again.

For additional information, see Additional Information on
get_tools_last_active on page 60.

Svm->get_pending_question()

Returns the defined value on success or
undef (undefined value) on failure.

Returns a Vmware:zVmPerl:Question object if the virtual machine is currently
in the VM_EXECUTION_STATE_STUCK state. Use Squestion->get_text() to
retrieve the actual question text. For additional information, see
VMware:VmPerl:Question on page 62.

www.vmware.com

CHAPTER 4 Using VmPerl

Method

Description

Svm->answer_question($question, $Schoice)

Returns the defined value on success or
undef (undefined value) on failure.

Replies to a question where $question represents the question and
$choice represents the index of the selected answer to the question. The
index is a number associated with an answer. The first choice’s index is always
0. The second choice’s index is 1, and so on.

Use this method to answer the current question or dismiss the current error
message when a virtual machine is in the VM_EXECUTION_STATE_STUCK
state and requires user input to continue.

First, get a VMware:VmpPerl:Question object from the VMware:VmPerl:VM
objectsget_pending question () method. You can retrieve the
possible choices and their respective indices from the
VMware:VmPerl:Question object’s get _choices () method. Then, use
the answer_question () method to answer the question.

Svm->device_is_connected($dev_name)

Returns the defined value on success or false
on failure (if the device is not connected or if
there is a failure). You can use

$vm->get last errortodetermine
if an error occurred or if the device is not
connected.

Determines the connection state where $dev_name identifies the virtual
device.

Svm->connect_device(Sdev_name)

Returns the defined value on success or
undef (undefined value) on failure.

Sets a virtual device to the connected state where $dev_name identifies
the virtual device you want to connect. The virtual machine must be
powered on for this method to succeed, otherwise a VM_E_BADSTATE error is
returned.

Usethe set_config () method to set configuration parameters relevant
to the virtual device before calling the connect_device () method.
The following code example illustrates connecting a virtual drive to a CD
image file:

S$vm->set_config("idel:0.devicetype") = "cdrom-image"
$vm->set_config("idel:0.filename") = "/iso/foo.iso"

$vm->connect_device ("idel:0")

Svm->disconnect_device (Sdev_name)

Returns the defined value on success or
undef (undefined value) on failure.

Sets a virtual device to the disconnected state where $dev_name is a string
identifying the virtual device you want to disconnect. The virtual machine
must be powered on for this method to succeed, otherwise a
VM_E_BADSTATE error is returned.

59

VMware Scripting APl User’s Manual

60

Method

Description

Svm->get_resource (“<variable_name>")

Returns the defined value on success or
undef (undefined value) on failure.

Svm->set_resource (“<variable_name>,
<value>")

Returns 1 on success or undef (undefined
value) on failure.

Note: These methods apply only to ESX
Server.

Gets or sets the value of the virtual machine resource variable specified by
<variable_name>.

For a list of virtual machine resource variables, see Virtual Machine Resource
Variables for ESX Server on page 124.

Svm->get_uptime()

Accesses the uptime of the guest operating system on the virtual machine.

Svm->get_id()

Note: This method applies only to ESX
Server.

Returns the unique (world) ID for a running virtual machine.

Svm->get_pid()

Returns the process ID of a running virtual machine.

Svm->get_capabilities()

Note: This method applies only to ESX
Server.

Returns the access permissions for the current user. This number is a bit
vector, where 4=read, 2=write, and 1=execute. For a user with all three
permissions, a value of 7 is returned when this property is used in a script.

Svm->get_remote_connections()

Note: This method applies only to ESX
Server.

Returns the number of remotely connected users. This value includes the
number of remote consoles, Scripting APIs, and Web-based management
interface connections to the virtual machine.

Svm->set_runas_user(Suser, Spassword)

Note: This method applies only to GSX
Server 3.1.

Runs the virtual machine as the user specified by the Suser and $password.

Svm->get_runas_user()

Note: This method applies only to GSX
Server 3.1.

Returns the name of the user running the virtual machine.

Additional Information on get_tools_last_active

If the guest operating system is heavily loaded, this value may occasionally reach several seconds. If
the service stops running, either because the guest operating system has experienced a failure or
is shutting down, the value keeps increasing.

You can use a script with the get_tools_ last_active () method to monitor the start of
the VMware Tools service, and once started, the health of the guest operating system. If the guest
operating system has failed, the get _tools_ last_active () method indicates how long
the guest has been down. The following table summarizes how you may interpret the
get_tools_last_active () method values:

www.vmware.com

CHAPTER 4 Using VmPerl

get_tools_last_active Method Value

Description

0 The VMware Tools service has not started since the power-on of the virtual
machine.

1 The VMware Tools service is running and is healthy.

2,3,4,0r5 The VMware Tools service could be running, but the guest operating system

may be heavily loaded or is experiencing temporary problems.

Greater than 5

The VMware Tools service stopped running, possibly because the guest

operating system experienced a fatal failure, is restarting, or is shutting down.

61

VMware Scripting APl User’s Manual

VMware::\VmPerl::Question

The VMware:VmPerl:Question method describes a question or error condition requiring input. The
script selects one from the list of possible answers.

Method Description

Squestion->get_text() Gets the question text.

Returns the defined value on success or unde £
(undefined value) on failure.

Squestion->get_choices() Gets an array of strings representing a list of possible answers to the

Returns the defined value on success or unde £ question.
(undefined value) on failure.

Squestion->get_id() Gets an integer used internally by VmPerl to identify the question.

Returns the defined value on success or unde
(undefined value) on failure.

www.vmware.com

62

CHAPTER 4 Using VmPerl

Symbolic Constants

The VMware:VmPerl:VM object exposes the following symbolic constants:
VM_EXECUTION_STATE_<XXX> Values
VM_POWEROP_MODE_<XXX> Values
Infotype Values
VM_PRODINFO_PRODUCT_<XXX> Values
VM_PRODINFO_PLATFORM_<XXX> Values

VM_EXECUTION_STATE_<XXX> Values

VM_EXECUTION_STATE_<XXX> values specify the state (or condition) of a virtual machine. The
possible values are listed in the following table:

Execution_state Values Description

VM_EXECUTION_STATE_ON The virtual machine is powered on.

VM_EXECUTION_STATE_OFF The virtual machine is powered off.

VM_EXECUTION_STATE_SUSPENDED The virtual machine is suspended.

VM_EXECUTION_STATE_STUCK The virtual machine requires user input. The user must answer a question or
dismiss an error.

VM_EXECUTION_STATE_UNKNOWN The virtual machine is in an unknown state.

VM_POWEROP_MODE_<XXX> Values

VMware:VmPerl:VM_POWEROP_MODE_<XXX> specifies the behavior of a power transition (start,
stop, reset, or suspend) method. If Smode is not specified, the default mode is
VM_POWEROP_MODE_SOFT. However, if you are connecting to GSX Server 1.x or ESX Server 1.,
then you must specify VMware:VmPerl:VM_POWEROP_MODE_HARD as the mode or the
operation will fail.

During a soft power transition, the VMware Tools service runs a script inside the guest operating
system. For example, the default scripts that run during suspend and resume operations,
respectively release and renew DHCP leases, for graceful integration into most corporate LANSs. You
may also customize these scripts. For more information on these scripts, see your VMware product
documentation. Refer to the section on executing scripts.

The possible values are listed in the following table:

63

VMware Scripting APl User’s Manual

Powerop_mode Values

Description

VM_POWEROP_MODE_SOFT

To succeed, soft power transitions require the
current version of the Vmware Tools service to
be installed and running in the guest operating
system.

Start when a virtual machine is suspended — After resuming the virtual
machine, the operation attempts to run a script in the guest operating
system to restore network connections by renewing the DHCP lease. The
Start() operation always succeeds. However, if the VMware Tools service is
not present or is malfunctioning, the running of the script may fail.

Start when virtual machine is powered off — After powering on the
virtual machine, it attempts to run a script in the guest operating system
when the VMware Tools service becomes active. This default script does
nothing during this operation as there is no DHCP lease to renew. The
Start() operation always succeeds. However, if the VMware Tools service is
not present or is malfunctioning, the running of the script may fail.

Stop — Attempts to shut down the guest operating system and then
powers off the virtual machine.

Reset — Attempts to shut down the guest operating system, then
reboots the virtual machine.

Suspend — Attempts to run a script in the guest operating system that

safely disables network connections (such as releasing a DHCP lease)
before suspending the virtual machine.

VM_POWEROP_MODE_HARD

Start — Starts or resumes a virtual machine without running any scripts; a
standard power on or resume.

Stop, reset or suspend — Immediately and unconditionally powers off,
resets, or suspends the virtual machine.

VM_POWEROP_MODE_TRYSOFT

First attempts to perform the power transition operation with
VM_POWEROP_MODE_SOFT. If this fails, the same operation is performed
with VM_POWEROP_MODE_HARD.

Infotype Values

$infotype specifies the product information for the get _product_info () method.

Infotype Values

Description

VM_PRODINFO_PRODUCT

The VMware product is returned as VmProduct. For more information on
VmProduct, see the following section.

VM_PRODINFO_PLATFORM

The host's operating system is returned as VmPlatform. For more
information on VmPlatform, see VM_PRODINFO_PLATFORM_<XXX> Values
on page 65.

VM_PRODINFO_BUILD

The product’s build number.

VM_PRODINFO_VERSION_MAJOR

The product’s major version number.

64

www.vmware.com

CHAPTER 4 Using VmPerl

Infotype Values

Description

VM_PRODINFO_VERSION_MINOR

The product’s minor version number.

VM_PRODINFO_VERSION_REVISION

The product’s revision number.

VM_PRODINFO_PRODUCT_<XXX> Values

The get_product_info method returns the VMware product when the requested
$infotypeis VM PRODINFO PRODUCT <XXX>.

VM_PRODINFO_PRODUCT Values

Description

VM_PRODUCT_WS

The product is VMware Workstation.

VM_PRODUCT_GSX

The product is VMware GSX Server.

VM_PRODUCT_ESX

The product is VMware ESX Server.

VM_PRODUCT_UNKNOWN

The product is unknown.

VM_PRODINFO_PLATFORM_<XXX> Values

The get_product_info method returns the host’s platform when the requested
$infotypeis VM_PRODINFO PLATFORM <XXX>.

VM_PRODINFO_PLATFORM Values

Description

VM_PLATFORM_WINDOWS

The platform is a Microsoft Windows operating system.

VM_PLATORM_LINUX

The platform is a Linux operating system.

VM_PLATFORM_VMNIX

The platform is the VMware Service Console.

VM_PLATFORM_UNKNOWN

The platform is unknown.

65

VMware Scripting APl User’s Manual

66

Using VmPerl to Pass User-Defined
Information Between a Running Guest
Operating System and a Script

When the guest operating system is running inside a virtual machine, you can pass information
from a script (running in another machine) to the guest operating system, and from the guest
operating system back to the script, through the VMware Tools service. You do this by using a class
of shared variables, commonly referred to as Guestinfo. VMware Tools must be installed and
running in the guest operating system before a Guestinfo variable can be read or written inside the
guest operating system.

For example, create and connect a VMware:VmPerl:VM object, assuming the virtual machine is
powered off. Next, set the GuestInfo variable with the VmPerl API. Then, power on the virtual
machine and use the VMware Tools service to retrieve the variable. See Sending Information Set in
a VmpPerl Script to the Guest Operating System on page 67 for an example of this procedure.

See your VMware product documentation for more information about VMware Tools.

Guestinfo Variables

You pass to the virtual machine variables you define yourself. What you pass is up to you, but you
might find it useful to pass items like the virtual machine’s IP address, Windows system ID (SID, for
Windows guest operating systems) or machine name.

This is useful in situations where you want to deploy virtual machines on a network using a
common configuration file, while providing each machine with its own unique identity. By
providing each virtual machine with a unique identifying string, you can use the same
configuration file to launch the same nonpersistent virtual disk multiple times in a training or
testing environment, where each virtual machine would be unique on the network. Note that in
the case of persistent or undoable disks, each virtual disk file must be copied into its own directory
if it shares its file name with another virtual disk file.

When a virtual machine process is created on the server, all Guestinfo variables are initially
undefined. A Guestinfo variable is created the first time it is written.

You identify a GuestInfo variable with a key name. You can define and create any number of
GuestInfo variable key names. The information you pass is temporary, lasting until the virtual
machine is powered off and all consoles connected to the virtual machine are closed.

For an example showing how the VMware guest service can be invoked in a Perl script, see the
sample Perl script to get the IP address of a guest operating system on Setting a Virtual Machine’s
IP Address Configuration Variable on page 88.

www.vmware.com

http://www.vmware.com/support/gsx2/doc/tools_gsx.html

CHAPTER 4 Using VmPerl

Sending Information Set in a VmPerl Script to the Guest Operating
System
To send information from a VmPerl script to a running guest operating system, you use VmPer|

API's $vm->set guest info () method. You need to specify a variable name ($key name)
and its value (svalue).

For example, you might want to deploy virtual machines for a training class. When a virtual
machine starts, you want to display a banner welcoming the student to the class. You can pass
their name from a VmPerl script to the guest operating system on a student’s virtual machine.

If you have not already done so, connect a VMware:VmPerl:VM object and set the student’s name
for this virtual machine to “Susan Williams":

$vm->set_guest info("name", "Susan Williams");

This statement passes a string “name” to the guest operating system. You can write a script that
reads the string, then calls a command (specific to the guest operating system) to set the student’s
name in the banner. This operation is explained in the following section.

This setting lasts until you power off the virtual machine and close all connected consoles.
Retrieving the Information in the Guest Operating System
In the running guest operating system, you use the VMware Tools service to retrieve variables set

for the virtual machine. You can then use this passed “name” string inside a guest operating system
startup sequence. Use the following to read the Guestinfo variable key name.

In a Windows guest operating system:
VMwareService.exe --cmd "info-get guestinfo.<key name>"
In a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-get guestinfo.<key names'

For example, to get the current value for the “name” variable, you can type the following in a Linux
guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-get guestinfo.name'

Sending Information Set in the Guest Operating System to a VmPerl
Script
Similarly, in a virtual machine’s guest operating system, you can use the YMware Tools service to

set GuestInfo variables for the virtual machine. Use the following to write the Guestinfo variable
key name.

In a Windows guest operating system:

VMwareService.exe --cmd "info-set guestinfo.<key name> <value>"

67

VMware Scripting APl User’s Manual

68

In a Linux guest operating system:
/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.<key name> <values'

Continuing with the previous example, Susan Williams prefers “Sue”. To set the value of “Sue
Williams” for the “name” variable, type the following in a Linux guest operating system:

/etc/vmware-tools/vmware-guestd --cmd 'info-set guestinfo.name Sue Williams'

Retrieving Information in a VmPerl Script

With the VmPerl API, you use the $vm->get guest info () method to retrieve information
set in the guest operating system, into a VmPerl script running on any machine, including GSX
Server or any remote workstation that can connect to the virtual machine.

For example, to retrieve Sue’s name set by the VMware Tools service, query the guest operating
system by using the VmPerl API:

$vm->get guest info('name')

www.vmware.com

CHAPTER

Using Sample VmPerl Scripts

This section contains sample Perl scripts written by VMware to demonstrate example uses of the
VmPerl API. You can modify these scripts to suit the needs of your organization. These scripts are
located in the SampleScripts subdirectory in the VmPerl directory or on the VMware Web site.

Note: The scripts on the Web site are saved with a .TXT extension for online viewing. Remove the
TXT extension before using these scripts.

The sample scripts illustrate:
Listing the Virtual Machines on the Server
Starting All Virtual Machines on a Server
Checking a Virtual Machine’s Power Status
Monitoring a Virtual Machine's Heartbeat
Answering Questions Posed by a Virtual Machine
Suspending a Virtual Machine
Setting a Virtual Machine’s IP Address Configuration Variable
Getting a Virtual Machine's IP Address

69

VMware Scripting APl User’s Manual

Adding a Redo Log to a Virtual Disk (ESX Server only)

Committing a Redo Log to a Virtual Disk without Freezing the Virtual Machine (ESX Server
only)

Note: If you plan on using the VMware Perl APl remotely on a Windows machine, you must copy
your scripts into the same directory in which you installed the VMware Perl API.

www.vmware.com

70

CHAPTER 5 Using Sample VmPerl Scripts

Copyright Information

Each sample script and sample program included with the VmPerl Scripting APl includes a
copyright. However, for brevity, we do not include this copyright in its entirety with each sample
script and sample program in this manual. Instead, we include the first line of the copyright
followed by ellipses, to indicate its placement. The complete copyright is as follows:

Copyright (c) 1998-2004 VMware, Inc.

Permission is hereby granted, free of charge, to any person obtaining a
copy of the software in this file (the "Software"), to deal in the
Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

The names "VMware" and "VMware, Inc." must not be used to endorse or
promote products derived from the Software without the prior written
permission of VMware, Inc.

Products derived from the Software may not be called "VMware", nor may
"VMware" appear in their name, without the prior written permission of
VMware, Inc.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
VMWARE, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

71

VMware Scripting APl User’s Manual

72

Listing the Virtual Machines on the Server

You can use a script like the following to generate a list of all the registered virtual machines on a
server. You need to know the name of the machine and you must provide a valid user name and
password to connect to the server.

This script (enumerate . pl), saved with a . TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-APl/doc/enumerate.pl.txt.

#!/usr/bin/perl -w

#
Copyright (C) 1998-2004 VMware, Inc.
#
#
#
#
enumerate.pl
#
This script lists all of the registered virtual machines
on the server specified by hostname.
#
usage:
enumerate.pl <hostname> <user> <password>
#
BEGIN {
if ($"0 eq "MSWin32") {
@INC = (

Set the path to your VmPerl Scripting directory if different
'C:\Program Files\VMware\VMware VinPerl Scripting API\perl5\site perl\5.005',
'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site perl\5.005\MSWin32-x86') ;

use VMware: :VmPerl;

use VMware: :VmPerl: :Server;

use VMware: :VmPerl: :ConnectParams;
use strict;

my ($server name, Suser, $passwd) = @ARGV;

Use the default port of 902. Change this if your port is different.
my Sport = 902;

Create a new VMware::VmPerl::Server to connect to the server
To connect to the remote server, use the following line:

www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/enumerate.pl.txt

CHAPTER 5 Using Sample VmPerl Scripts

my $connect_params =
VMware: :VmPerl: :ConnectParams: :new($server name, $port, Suser, $passwd) ;

To connect to a local server, you would use the following line:
my S$connect params =
VMware: :VmPerl: : ConnectParams: :new (undef, $port, Suser, Spasswd) ;

+*

To connect to a local server as the current user, you would use the
following line:
my $connect params = VMware::VmPerl::ConnectParams::new() ;

++

Establish a persistent connection with server
my S$server = VMware::VmPerl::Server::new() ;
if (!$server->connect ($connect params)) {
my ($error number, $error string) = $server->get last error();
die "Could not connect to server: Error S$error number: $error string\n";

print "\nThe following virtual machines are registered:\n";

Obtain a list containing every config file path registered with the server.
my @list = $server-sregistered vm names() ;
if (!defined($1list[0])) {
my ($error number, $error string) = $server->get last error();
die "Could not get list of VMs from server: Error S$error number: ".
"S$error string\n";

print "$ \n" foreach (@list);

Destroys the server object, thus disconnecting from the server.
undef S$server;

73

VMware Scripting APl User’s Manual

74

Starting All Virtual Machines on a Server

You can use a script like the following to start all virtual machines that are not already running on a
server. This script powers on powered-off virtual machines and resumes suspended virtual
machines that have the line "autostart=true" in their configuration files.

This script includes a slight delay after starting each virtual machine. This delay balances the load
on the server. Do not start many virtual machines in rapid succession without this delay.

This script (startallvms.pl), saved with a TXT extension for online viewing, can be found on
the VMware Web site at www.vmware.com/support/developer/scripting-APl/doc/startallvms.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1998-2004 VMware, Inc.

startallvms.pl

This script powers on all VMs on the system that are not
already running.

#
#
#
#
#
#
#
#
#
#
usage:
startallvms.pl <hostname> <user> <password>
#
BEGIN ({
if (370 eg "MSWin32") {
@INC = (
Set the path to your VmPerl Scripting directory if different

'C:\Program Files\VMware\VMware VinPerl Scripting API\perl5\site perl\5.005',
'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site perl\5.005\MSWin32-x86') ;

use VMware: :VmPerl;

use VMware: :VmPerl: :VM;

use VMware: :VmPerl: :Server;

use VMware: :VmPerl: :ConnectParams;
use strict;

my ($server name, Suser, $passwd) = @ARGV;

Change this to your port if it is different.
my Sport = 902;

www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/startallvms.pl.txt

CHAPTER 5 Using Sample VmPerl Scripts

Create a ConnectParams object
my $connect params =
VMware: :VmPerl: : ConnectParams: :new ($server name, $port, Suser, $passwd) ;

Create a Server object
my Sserver = VMware::VmPerl::Server::new() ;

Establish a persistent connection with server
if (!$server->connect ($connect params)) {
my ($error number, $error string) = $server->get last error();
die "Could not connect to server: Error $error number: $error string\n";

Get a list of all virtual machine configuration files registered
with the server.
my @list = $server-sregistered vm names() ;

if (tdefined($list[0])) {
my ($error number, $error string) = $server->get last_error();
die "Could not get list of VMs: Error Serror number: Serror string\n";

my Sconfig;
foreach $config (elist)
my Svm = VMware::VmPerl::VM::new() ;

Connect to the VM, using the same ConnectParams object.
if (!$vm->connect ($connect params, Sconfig)) {
my ($error number, $error string) = $server->get last error();
print STDERR "Could not connect to VM $config: Error $error number: ".
"serror string\n";
} else {
Only power on VMs with the config setting autostart = "true"
my Sautostart = $vm->get config("autostart");

if (Sautostart && Sautostart =~ /true/i) {

Only try this for VMs that are powered off or suspended.
my Spower state = $vm->get execution state();

if (!defined (Spower state)) {
my (Serror number, $error string) = S$server->get last error();
print STDERR "Could not get execution state of VM $config: Error ".

75

VMware Scripting APl User’s Manual

"Serror number: Serror string\n";
} elsif ($power state == VM _EXECUTION STATE OFF ||
$power_state == VM_EXECUTION_STATE_ SUSPENDED) {

print "Powering on $config...\n";

if (1$vm->start()) {
If an error occurs, report it and continue
my ($error number, S$error string) = $server-s>get last error();

print STDERR "Could not power on VM $config: Error ".

"Serror number: Serror string\n";
} else {

Delay slightly between starting each VM.
This prevents too much initial load on the server.

Warning: starting many VMs in rapid succession
is not recommended.

sleep 5;

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef $vm;

Destroys the server object, thus disconnecting from the server.
undef S$server;

Www.vmware.com
76

CHAPTER 5 Using Sample VmPerl Scripts

Checking a Virtual Machine’s Power Status

You can use a script like the following to determine whether a virtual machine is running,
suspended or powered off. Once you know its power status, you can use this information in
conjunction with other scripts to start, stop or suspend a virtual machine.

This script (status . pl), saved with a . TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-APl/doc/status.pl.txt.

#!/usr/bin/perl -w

#
Copyright (C) 1998-2004 VMware, Inc.
#
#
#
#
status.pl
#
This script returns the current power status (on, off, suspended) of the
virtual machine specified by config on the server defined by hostname.
#
usage:
status.pl <path to config file> [<server> <user> <passwords>]
#
If server, user and password are not given, connect to the local server
as the current user.
#
BEGIN {

if ($70 eg "MSWin32") {

@INC = (

Set the path to your VmPerl Scripting directory if different
'C:\Program Files\VMware\VMware VirPerl Scripting API\perlS5S\site perl\5.005',

'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site perl\5.005\MSWin32-x86') ;

use VMware: :VmPerl;

use VMware: :VmPerl: :VM;

use VMware: :VmPerl: :ConnectParams;
use strict;

Retrieves a pre-defined constant value.
sub vm_constant {
my $constant_str = shift;
return VMware::VmPerl::constant ($constant str, 0);

77

http://www.vmware.com/support/developer/scripting-API/doc/status.pl.txt

VMware Scripting APl User’s Manual

if (@ARGV < 1) {
print "Usage $0: <path to config file> [<server> <user> <passwords>]\n";
exit (1) ;

my $state string map = {};

my @state strings = (
"VM_EXECUTION_ STATE ON",
"VM_EXECUTION_ STATE OFF",
"VM_EXECUTION STATE SUSPENDED",
"VM_EXECUTION_ STATE STUCK",
"VM_EXECUTION_ STATE UNKNOWN"

)i

foreach my $state string (@state strings) {
$state string map->{vm constant ($state string)} = $state string;

}

Read in parameters.
my ($cfg path, $server name, $Suser, $passwd) = @ARGV;

Use the default port of 902. Change this if your port is different.
my S$port = 902;

my Sconnect params = VMware::VmPerl::ConnectParams: :new ($server name, Sport, Suser, Spasswd) ;

my $vm = VMware::VmPerl::VM::new() ;
if (!$vm->connect ($connect params, $cfg path)) {
my ($error number, $error string) = $vm->get last_error();
die "Could not connect to vm: Error $error number: S$error string\n";

Get the power status of the virtual machine.
my $cur state = $vm->get execution_ state();
if (!defined(Scur state)) ({
my (Serror number, $error string) = $vm->get last error();
die "Could not get execution state: Error $error number: $error string\n";

}

print "The execution state of $cfg path is: $state_string_map—>{$cur_state}\n”;

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef S$vm;

www.vmware.com

78

CHAPTER 5 Using Sample VmPerl Scripts

Monitoring a Virtual Machine’s Heartbeat

The following sample Perl script provides one method to monitor a virtual machine's heartbeat. If
the heartbeat is lost or is not detected, the script powers on a second instance of the virtual
machine.

This script (hb_check.pl), saved with a TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-APl/doc/hbcheck.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1998-2004 VMware, Inc.

hbcheck.pl

ConfigToCheck for a heartbeat within a certain interval in seconds.
If no heartbeat is received within the specified Interval, then this
script will forcefully shutdown ConfigToCheck, and start ConfigToStart.

usage:

#
#
#
#
#
#
#
You can use this script to check the virtual machine specified by
#
#
#
#
#
hbcheck.pl <ConfigToCheck> <ConfigToStart> [Intervall

#

BEGIN {
if (370 eq "MSWin32") {
@INC = (
Set the path to your VmPerl Scripting directory if different
'C:\Program Files\VMware\VMware ViiPerl Scripting API\perl5S\site perl\5.005'
'C:\Program Files\VMware\VMware VimPerl Scripting API\perl5\site perl\5.005\MSWin32-x86"');

Import required VMware Perl modules and version.
use VMware: :VmPerl;

use VMware: :VmPerl: :VM;

use VMware: :VmPerl: :ConnectParams;

use strict;

Display the script usage.

sub usage () {
print STDERR "Usage: hbcheck.pl <config to _check> <config to start> [interval in secs]\n";
exit (1) ;

79

http://www.vmware.com/support/developer/scripting-API/doc/hbcheck.pl.txt

VMware Scripting APl User’s Manual

80

Retrieves a pre-defined constant value.
sub vm_constant {
my $constant_ str = shift;
return VMware::VmPerl::constant ($constant str, 0);

Read in command line options.

usage () unless (scalar (@ARGV) == 3 || scalar (@ARGV) == 2);
my $cfg to check = shift;

my $cfg to start = shift;

my S$interval = shift;

Set the interval to 30 seconds if it is not specified.
$interval ||= 30;

Connect to the local host on the default port as the current user.
Change the port number if it is different.
my $connect params = VMware::VmPerl::ConnectParams: :new(undef, 902, undef, undef);

Initialize the object for the virtual machine we want to check.
my $vm = VMware::VmPerl::VM::new() ;
if (!$vm->connect ($connect params, $cfg to_ check)) {
my ($error number, $error string) = $vm->get last_error();
die "Could not connect to virtual machine at $cfg to check:\n"
"Error S$error number: S$error string\n";

Check to see if the virtual machine is powered on; if not, end.

my $vm_state = $vm->get execution_state();

if (! (Svm state eq vm constant ("VM EXECUTION STATE ON")))
Destroys the virtual machine object, thus disconnecting from the virtual machine
undef S$vm;
die "The virtual machine $cfg to check\nis not powered on. Exiting.\n";

Maintain the last read heartbeat value for comparison.

The heartbeat count begins at zero, so a value of -1 ensures
at least one comparison.

my $last hb = -1;

while ($vm->is connected()) ({

Get the current heartbeat count. This should steadily increase
as long as VMware tools is running inside the virtual machine.
my $hb = $vm->get heartbeat () ;

unless (defined $hb) {

www.vmware.com

CHAPTER 5 Using Sample VmPerl Scripts

my ($error number, $error string) = $vm->get last_error();
die "Could not get virtual machine heartbeat:\n"
"Error Serror number: $error string\n";

if ($hb == $last_hb) {
Since we don't have a heartbeat, we need to do something
about it. Let's shut this virtual machine down, and then start
the backup virtual machine (specified by vm to start).
Use the "TRYSOFT" mode to shutdown gracefully if possible.
$vm->stop (vm_constant ("VM_POWEROP_MODE_TRYSOFT")) ;
undef S$vm;

Initialize the new virtual machine object.
my $vm_to_start = VMware::VmPerl::VM::new() ;
if (!$vm to start->connect (Sconnect params, $cfg to start)) {
my ($error number, $error string) = $vm to start->get last error();
die "Could not connect to virtual machine at $cfg to start:\n"
"Error Serror number: $Serror string\n";

Start the new virtual machine and clean up.
my $start ok = $vm to_ start-s>start();
unless ($start ok)
my (Serror number, $error string) = $vm_to start->get last error();
undef $vm to_ start;
die "Could not start virtual machine $cfg to start:n"
"Error Serror number: $error string\n";
}
undef $vm_to_start;
die "Lost heartbeat of $cfg to check, \npowered on $cfg to start.\n";
} else {
Wait $interval seconds before checking for the virtual machine's heartbeat.
print "Got heartbeat count $hb\n";
sleep ($interval) ;
1

$last_hb = $hb;

81

VMware Scripting APl User’s Manual

82

Answering Questions Posed by a Virtual
Machine

You can use a script like the following to answer a question posed by a virtual machine in a stuck
state; that is, one that is waiting for user acknowledgment before it can complete an operation
such as suspending or resuming the virtual machine. The script allows the question to be
answered at the command line, saving you the effort of connecting to the virtual machine from a
console or the VMware Management Interface in order to answer the question.

This script (answer_question.pl), saved with a .TXT extension for online viewing, can be
found on the VMware Web site at www.vmware.com/support/developer/scripting-APl/doc/
answerquestion.pl.txt.

#!/usr/bin/perl -w

#
Copyright (C) 1998-2004 VMware, Inc.
#
#
#
#
answerquestion.pl
#
You can use this script to check if the virtual machine specified by
config is stuck. If it's stuck, you can answer any question posed by this
virtual machine to allow it to continue.
#
usage:
answerquestion.pl <config-filex>
BEGIN {

if ($70 eq "MSWin32") {

@INC = (

Set the path to your VmPerl Scripting directory if different
'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site perl\5.005',
'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site perl\5.005\MSWin32-x86") ;

Import the required VMware Perl modules and version.
use VMware: :VmPerl;

use VMware: :VmPerl: :VM;

use VMware: :VmPerl: :ConnectParams;

use VMware: :VmPerl: :Question;

use strict;

www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/answerquestion.pl.txt
http://www.vmware.com/support/developer/scripting-API/doc/answerquestion.pl.txt

Read in command line options.
my $cfg = shift or die "Usage: $0 <config-file>\n";

Connect to the local host on the default port as yourself.
my $connect_params = VMware::VmPerl::ConnectParams: :new() ;

Initialize the object for the virtual machine we want to check.

my $vm = VMware::VmPerl::VM::new() ;
my $vm ok = $vm->connect ($connect params, $cfg);
unless ($vm_ok) {
my ($err, $errstr) = $vm->get last error();
undef S$vm;
die "Could not connect to vm; error $Serr: Serrstr\n";

CHAPTER 5 Using Sample VmPerl Scripts

Check the power state of the virtual machine. If it's stuck, get the

question and list the possible responses.
my S$state = $vm->get execution state();
if (!defined(sstate)) {

my ($err, $errstr) = $vm->get last error();

Destroys the virtual machine object, thus disconnecting from the virtual machine

undef S$vm;

die "Could not get execution state of vm; error Serr: Serrstr\n";

if ($state ne VM_EXECUTION_STATE STUCK) ({
print "There is no question to answer.\n";
} else {
my $qg = $vm->get pending question() ;
unless (defined(sq)) {
undef S$vm;
die "Could not get the pending question.\n";
1
my $text = $g->get_text();
unless (defined(Stext)) {
undef S$vm;
die "Could not get the text of the pending question.\n";
1
my @choices = $g->get choices() ;
unless (defined($Schoices[0])) {
undef $vm;

die "Could not get the choices to answer the pending question.\n";

}
Print question and choices for user:
print "\n" . $g->get_text() . "\n";

83

VMware Scripting APl User’s Manual

my Sanswer;

do {
prompt (@choices) ;
Sanswer = get_answer () ;

}

until (valid_answer ($answer,@choices)) ;

my $op_ok;
$op_ok = $vm->answer question($q, Sanswer-1);
unless ($op_ok) {
my (err, Serrstr) = $vm->get last_error();
undef $vm;
die "Could not answer pending question; error S$err: S$Serrstr\n";

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef S$vm;

Prints answer choices, prompts user for an answer number.
sub prompt {
my @choices = shift;
print "To answer the question, type the number that corresponds to\n";
print "one of the answers below:\n";
for (my $i = 0; $i <= $#choices; $i++)
print "\t" . ($i + 1) . ". $choices[$i]\n";
}

print "Final answer? ";

Reads user's answer number.
sub get answer {
my Sanswer;
chop ($Sanswer = <STDIN>) ;
print "\n";

Remove unintentional whitespace.
$answer =~ s/" (\s*) (.*?) (\s*)$/$2/;

return S$answer;

Checks if an answer number is within the valid range of choices.
sub valid answer {

my Sanswer = shift;

my @choices = shift;

www.vmware.com

84

CHAPTER 5 Using Sample VmPerl Scripts

Sanswer--; # convert to 0O-based indexing.
if ($answer < 0 || %answer > S#choices) ({
my $num = scalar (@choices) ;
print "Valid answer numbers are from 1 to $num; please try again.\n";
return O;
1
else {
return 1;
1

85

VMware Scripting APl User’s Manual

86

Suspending a Virtual Machine

A script like the following allows you to suspend a virtual machine remotely without connecting to
it through a remote console or the VMware Management Interface.

This script (suspend. pl), saved with a .TXT extension for online viewing, can be found on the
VMware Web site at www.vmware.com/support/developer/scripting-APl/doc/suspend.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1998-2004 VMware, Inc.

This script suspends to disk the virtual machine specified by config on
the server defined by hostname.

#
#
#
#
#
suspend.pl
#
#
#
#
usage:
suspend.pl hostname user password config
BEGIN {
if ($%0 eq "MSWin32") {
@INC = (
Set the path to your VmPerl Scripting directory if different
'C:\Program Files\VMware\VMware VinPerl Scripting API\perl5\site perl\5.005',
'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site perl\5.005\MSWin32-x86') ;

use VMware: :VmPerl;

use VMware: :VmPerl: :VM;

use VMware: :VmPerl: :ConnectParams;
use strict;

if (@ARGV < 1) {
print "Usage $0: <path to config file> [<server> [<user> <password>]]\n";
exit (1) ;

my ($cfg path, $server name, Suser, $passwd) = @ARGV;
Use the default port of 902. Change this if your port is different.
my $Sport = 902;

Connect to the local host on the default port as yourself.

www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/suspend.pl.txt

CHAPTER 5 Using Sample VmPerl Scripts

my $connect params = VMware: :VmPerl: :ConnectParams: :new ($server name, $port, Suser, $passwd) ;

Create a new VMware::VmPerl::VM object to interact with a virtual machine.
my Svm = VMware::VmPerl::VM::new() ;

Establish a persistent connection with virtual machine.
if (!$vm->connect ($connect params, $cfg path)) {
my ($errorNumber, $errorString) = $vm->get last error();
Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef S$vm;
die "Cannot connect to vm: Error $errorNumber: SerrorString\n";

Gets the Power status of the virtual machine to determine if it is running.
my $curState = $vm->get execution state();

if ($curState != VM _EXECUTION STATE ON) {
print "Can only suspend a powered on Virtual Machine.\n";
} else {
Suspends the running vm.
if (!$vm->suspend()) {
my ($errorNumber, $errorString) = $vm->get last error();

print "Couldn't suspend: Error $errorNumber: $SerrorString\n";

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef $vm;

87

VMware Scripting APl User’s Manual

88

Setting a Virtual Machine’s IP Address
Configuration Variable

This Perl script invokes the VMware guest operating system service to set a virtual machine’s IP
address “ip” configuration variable. This sample script complements the following sample script
that retrieves a virtual machine’s IP address “ip” configuration variable. The saveguestip.pl script
runs inside a virtual machine, while the getguestip.pl sample script runs in the host operating
system or another machine. See Getting a Virtual Machine’s IP Address on page 91.

For more information on passing information between a script and a guest operating system, see
Using VmPerl to Pass User-Defined Information Between a Running Guest Operating System and a
Script on page 66.

This script (saveguestip.pl, formerly known as configsetip.pl), saved with a TXT
extension for online viewing, can be found on the VMware Web site at
www.vmware.com/support/developer/scripting-APl/doc/saveqguestip.pl.txt.

#!/usr/bin/perl -w
#
Copyright (C) 1998-2004 VMware, Inc.

saveguestip.pl

#
#
#
#
#
#
#
This script demonstrates the use of the VMware guest service to set

a configuration variable from within a running virtual machine's guest
operating system. It stores the guest operating system's IP address.
The host can retrieve the IP address with a corresponding script.

#

#

#

#

#

#

#

#

usage:
saveguestip.pl

NOTE :

This script should be run from within a running virtual machine's guest
operating system. The corresponding script getguestip.pl can be run
from the host operating system.

if (@ARGV != 0) {
print "Usage: $0\n";
exit (1) ;

www.vmware.com

http://www.vmware.com/support/developer/scripting-API/doc/saveguestip.pl.txt

my (Serr) ;

Get the IP for the Guest
my (Sip) = (undef);
$ip = &get_ip();

if (1defined ($ip)) {
die "$0: Could not get guest ip\n";
1

else {
print "$0: guest ip is $ip\n";
1

Sets the ip address configuration variable.
Serr = &set_ip variable();
if ($err != 0) {

die "$0: Could not set guest ip\n";

Captures IP address from the OS.
sub get ip
my ($myip, @iparr) = (undef, []);

For Windows Guest OS.

if ($70 eqg "MSWin32")
$ = Tipconfig";
@iparr = /IP Address.*? (\d+\.\d+\.\d+\.\d+)/ig;
Smyip = Siparr[0];

For Linux Guest OS.

CHAPTER 5 Using Sample VmPerl Scripts

Please ensure that ifconfig is in your path. The root user has it by default.

else {
$_ = Tifconfig";
@iparr = /inet addr: (\d+\.\d+\.\d+\.\d+)/ig;

Smyip = S$iparr[0];

return Smyip;

Stores the IP address in the guestinfo name space.
sub set ip variable {
if ($70 eqg "MSWin32")

Please ensure that VMwareService is in your path.
VMwareService needs double quotes around the command.

89

VMware Scripting APl User’s Manual

T,
7

my $cmd = "VMwareService -cmd " . '"' . "info-set guestinfo.ip $ip"
system($cmd) ;

}

else {
Please ensure that vmware-guestd is found in the path used below

system("/etc/vmware/vmware-guestd --cmd 'info-set guestinfo.ip $ip'");

}

return $°?;

www.vmware.com

20

CHAPTER 5 Using Sample VmPerl Scripts

Getting a Virtual Machine’s IP Address

This script runs in the host operating system (or another machine) and invokes the VMware Perl
APl to retrieve the value of the “ip” variable (a virtual machine’s IP address). This sample script
complements the preceding sample script (Setting a Virtual Machine’s IP Address Configuration
Variable on page 88), that sets a virtual machine’s IP address configuration variable in the guest
operating system.

For more information on passing information between a script and a guest operating system, see
Using VmPerl to Pass User-Defined Information Between a Running Guest Operating System and a
Script on page 66.

This script (getguestip.pl), saved with a TXT extension for online viewing, can be found on
the VMware Web site at www.vmware.com/support/developer/scripting-APl/doc/getguestip.pl.txt.

#!/usr/bin/perl -w

#
Copyright (C) 1998-2004 VMware, Inc.
#
#
#
#
getguestip.pl
#
This script returns the value of the guest info variable 'ip' set by
the guest 0OS in a virtual machine on a given server.
#
usage:
getguestip.pl <path to config file> [<server> <user> <passwords>]
#
BEGIN {

if ($70 eg "MSWin32") {

@INC = (

Set the path to your VmPerl Scripting directory if different
'C:\Program Files\VMware\VMware VirPerl Scripting API\perlS5S\site perl\5.005',
'C:\Program Files\VMware\VMware VmPerl Scripting API\perl5\site perl\5.005\MSWin32-x86') ;

use VMware: :VmPerl;

use VMware: :VmPerl: :VM;

use VMware: :VmPerl: :ConnectParams;
use strict;

if (@ARGV ne 1 && @ARGV ne 4) {

91

http://www.vmware.com/support/developer/scripting-API/doc/getguestip.pl.txt

VMware Scripting APl User’s Manual

92

print "Usage $0: <path to config file> [<server> <user> <passwords>]\n";
exit (1) ;

Read in parameters.
my ($cfg path, $server name, Suser, $passwd) = @ARGV;

Use the default port of 902. Change this if your port is different.
my Sport = 902;

If $server name, $user, and Spasswd are missing, connect to localhost as current user.
my $connect params = VMware: :VmPerl: :ConnectParams: :new ($server_name, $port, Suser, Spasswd) ;

my Svm = VMware::VmPerl::VM: :new() ;
if (!$vm->connect ($connect params, $cfg path)) {
my ($error number, S$error string) = S$vm->get last error();
undef $vm;
die "Could not connect to vm: Error Serror number: $error string\n";

Get the IP address of the virtual machine.
my $ip = $vm->get guest info('ip');
if (!defined($ip)) {
my ($error number, $error string) = $vm->get last_error();
undef S$vm;
die "Could not get IP address: Error $error number: Serror string\n";
}
if (1($ip)) |
undef $vm;
die "The guest 0S did not set the variable 'ip'.\n";

}

print "The IP address of $cfg path is:\n$ip\n";

Destroys the virtual machine object, thus disconnecting from the virtual machine.
undef $vm;

www.vmware.com

CHAPTER 5 Using Sample VmPerl Scripts

Adding a Redo Log to a Virtual Disk (ESX
Server only)

You can add a redo log to a virtual SCSI disk in a running virtual machine on ESX Server. You can
specify the disk on the command line or let the script give you a choice of disks to select that are
associated with the virtual machine.

For example, you can write a script to back up a virtual disk. Add a new redo log, then back up the
virtual disk. The virtual disk is no longer changing as all data is now written to the redo log.

For more information about the $vm->add_redo () method, please see VMware:VmPerl:VM
on page 54.

This script (addredo . pl), saved with a .TXT extension for online viewing, can be found on the
VMware Web site at
www.vmware.com/support/developer/scripting-APl/doc/addredo.pl.txt.

Note: This script applies only to ESX Server.

#!/usr/bin/perl -w
#
Copyright (C) 1998-2004 VMware, Inc.

addredo.pl

#
#
#
#
#
#
#
This script takes a specification of a server name, user, password,
and the path for the config file of a virtual machine on that

server. It then displays the disks in the virtual machine

configuration, allows the user to choose a disk and then adds a redo
log to that disk. The user can also specify the disk directly as the
fifth argument on the command line.

#
#
#
#

usage:
addredo.pl server user password config [virtual disk]

BEGIN {
if ($"0 eq "MSWin32") {

@INC = ("./5.00503/1lib",
"./5.00503/1ib/MSWin32-x86/auto",
"./5.00503/1ib/MSWin32-x86",
"./site/5.00503/1ib",
"./site/5.00503/1ib/MSWin32-x86/auto",

93

http://www.vmware.com/support/developer/scripting-API/doc/addredo.pl.txt

VMware Scripting APl User’s Manual

"./site/5.00503/1ib/MSWin32-x86") ;
} else {
push (@INC,
("/usr/lib/perl5/site_perl/5.005/i386-1inux",
"/usr/lib/perl5/5.00503",
"))

use VMware: :VmPerl;

use VMware: :VmPerl: :Server;

use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :VM;

use strict;

if (@ARGV != 4 && @ARGV != 5)
print "Usage $0: server user password path to config file [virtual disk]\n";
exit (1) ;

my ($serverName, Suser, S$passwd, S$cfg, $disk) = @ARGV;
my Sport = 902;

Open up a VM object for the virtual machine associated with the
specified config file.
my Sparams = VMware: :VmPerl::ConnectParams: :new (SserverName, Sport, Suser, Spasswd) ;
my $vm = VMware::VmPerl::VM: :new() ;
my Serr = $Svm->connect (S$Sparams, S$cfg);
if (!defined($err)) ({
my ($errorNumber, $errorString) = $vm->get last error();
die "Cannot connect to vm: Error SerrorNumber: SerrorString\n";

Add a REDO log to the specified disk
Serr = $vm->add redo($disk) ;
if (!defined($err))
my ($errorNumber, $errorString) = $vm->get last error() ;
die "Cannot add redo log: Error $errorNumber: SerrorString\n";

Svm->disconnect () ;

www.vmware.com

924

CHAPTER 5 Using Sample VmPerl Scripts

Committing a Redo Log to a Virtual Disk
without Freezing the Virtual Machine (ESX
Server only)

To use this script, you must have a virtual disk with two redo logs (<disk>.REDO and
<disk>.REDO.REDO). You can use this script to commit a virtual disk’s redo log
(<disk>.REDO) to its virtual disk.

You specify the disk on the command line or let the script give you a choice to select of disks that
are associated with the virtual machine. The virtual machine is not frozen when the redo
log(<disk>.REDO) is committed to the virtual disk, but the script waits until the commit finishes.

For example, you keep the virtual disk of a virtual machine in undoable mode. At some point, you
may want to commit your changes and back up the entire contents of the virtual disk. You can add
a (second) new redo log using the $vm->add_redo () method. The original redo log is no
longer changing; all data is now written to the new redo log.

You can then commit the original redo log to the base virtual disk by using the $vm->commit ()
method with $1evel with a value of 1. The presence of the second redo log allows you to
commit changes from the original redo log to the virtual disk without freezing the virtual disk.
Once the commit is done, you can back up the virtual disk.

For more information about the $vm->commit () method, please see VMware:VmPerl:VM on
page 54.

This script (commitnext . pl), saved with a . TXT extension for online viewing, can be found on
the VMware Web site at
www.vmware.com/support/developer/scripting-APl/doc/commitnext.pl.txt.

Note: This script applies only to ESX Server.

#!/usr/bin/perl -w
#
Copyright (C) 1998-2004 VMware, Inc.

commitnext.pl

This script takes a specification of a server name, user, password,
and the path for the config file of a virtual machine on that
server. It then displays the disks in the virtual machine

#
#
#
#
#
#
#
#
#
#

95

http://www.vmware.com/support/developer/scripting-API/doc/commitnext.pl.txt

VMware Scripting APl User’s Manual

configuration and allows the user to choose a disk. It then commits
the next-to-top redo log (there must be at least two redo logs) of
that disk to its. The virtual machine is not frozen during the committing
process, but the script waits until the commit finishes. The user can
also specify the disk directly as the fifth argument on the command line.
#
usage:
commitnext.pl server user password config [virtual disk]
#
BEGIN {

if ($"0 eq "MSWin32") {

@INC = ("./5.00503/1ib",

"./5.00503/1ib/MSWin32-x86/auto",
"./5.00503/1ib/MSWin32-x86",
"./site/5.00503/1ib",
", /site/5.00503/1ib/MSWin32-x86/auto",
"./site/5.00503/1ib/MSWin32-x86") ;

} else {

push (@INC,

("/usr/lib/perl5/site perl/5.005/1386-1linux",
"/usr/lib/perl5/5.00503",
"))

use VMware: :VmPerl;

use VMware: :VmPerl: :Server;

use VMware: :VmPerl: :ConnectParams;
use VMware: :VmPerl: :VM;

use strict;

if (@ARGV != 4 && @ARGV != 5)
print "Usage $0: server user password path to config file [virtual disk]\n";
exit (1) ;

my (SserverName, Suser, Spasswd, S$cfg, $disk) = @ARGV;
my S$port = 902;

Open up a VM object for the virtual machine associated with the
specified config file.
my Sparams = VMware: :VmPerl: :ConnectParams: :new ($serverName, S$port, Suser, S$Spasswd);
my Svm = VMware::VmPerl::VM: :new() ;
my Serr = $vm->connect (Sparams, $Scfg);
if (!defined($err))
my ($errorNumber, $errorString) = $vm->get last error();

www.vmware.com

926

CHAPTER 5 Using Sample VmPerl Scripts

die "Cannot connect to vm: Error SerrorNumber: SerrorString\n";

Make the API timeout much larger (this is 8 minutes in milliseconds),
since the commit may take a while.
$vm->set_timeout (480000) ;

Commit the next-to-top REDO log
if (!$vm->commit ($disk, 1, 0, 1)) {
my ($errorNumber, $errorString) = $vm->get last error();
die "Cannot commit redo log: Error SerrorNumber: SerrorString\n";

Svm->disconnect () ;

97

VMware Scripting APl User’s Manual

www.vmware.com

28

CHAPTER

Error Codes and Event Logging

This chapter includes information to help you use the VMware Scripting APIs. In particular, we
describe VMware Scripting API errors. We also describe how you can use Event Viewer to view and
manage event logs for virtual machines on a Windows machine.

929

VMware Scripting APl User’s Manual

100

Error Codes

The following sections describe error handling in the VMware Scripting APIs.

Error Handling for the VmCOM Library
VmCOM methods and properties throw error exceptions when they fail. VYmCOM supports the
ISupportErrorInfo interface for detailed error reporting.

For example, in Visual Basic, use standard error trapping and examine the err object to retrieve
detailed error information. The object's Description field contains a string describing the failure.
The Number field contains a VmCOM error code. For more information on VmCOM error codes,
see Common VmCOM and VmPerl Errors on page 101.

If a remote virtual machine or server unexpectedly disconnects, most operations fail, giving you
either the vmErr NOTCONNECTED or vmErr DISCONNECT error code. You cannot
reconnect to an existing VmCt1 or VmServerCt1 object. Instead, destroy the object (for
example, Set obj = Nothingin Visual Basic), then create a new object and call Connect ()
onit.

If a virtual machine operation fails with error code vmErr NEEDINPUT, obtain a VmQuestion
object from VmCt 1. PendingQuestion property and examine the question or error
description. Then call AnswerQuestion () to answer the question or dismiss the error.

Error Handling for the VmPerl Library

The error codes listed in the following section apply to, and can be returned by, all of the VmPerl
modules.

When a $server method returns an error, use $server->get last error () ina script
to retrieve the error code and, optionally, its description. For example, to return an error code and a
description of the error in your scripts, use:

my (Sret, $string) = $server->get last error();
Alternately, to return only the error code in your scripts, use:
my Sret = $server->get last error();

When a $vm method returns unde £, use $vm->get last error () inascript to retrieve the
error code and, optionally, its description.

For example, to return an error code and a description of the error in your scripts, use:
my (Sret, $string) = $vm->get last error();
Alternately, to return only the error code, in your scripts, use:

my Sret = $vm->get last error();

www.vmware.com

Common VmCOM and VmPerl Errors

The following table is a partial list of common VmCOM and VmPerl errors. Any error code not listed

CHAPTER 6 Error Codes and Event Logging

in this table indicates an internal failure in VmCOM, VmPerl or another VMware component.

VmCOM Error Code

VmPerl Error Code

Description

vmErr_BADSTATE

VM_E_BADSTATE

You attempted to move a virtual machine from a
valid state to an invalid one. For example, you tried
to restore a non-suspended virtual machine or
power on an already powered-on virtual machine.
Either change the virtual machine’s state (for
example, from powered on to suspended) or
attempt a different operation.

vmErr_BADVERSION

VM_E_BADVERSION

The version of the YmCOM component/VmPer!
module and the VMware server product are
incompatible.

vmErr_DISCONNECT

VM_E_DISCONNECT

The network connection to the virtual machine
was lost.

vmErr_INSUFFICIENT_RESOURCES

VM_E_INSUFFICIENT_RESOURCES

The operation failed because an internal or system
limit was exceeded. For example, the

Connect () method may return this error if the
maximum number of connected objects has been
reached.

vmErr_INVALIDARGS

VM_E_INVALIDARGS

The specified arguments are not valid for this
operation.

vmErr_INVALIDVM

VM_E_INVALIDVM

The specified virtual machine configuration file
does not exist. The path to the configuration file
may have been entered incorrectly or the virtual
machine is not registered.

vmErr_NEEDINPUT

VM_E_NEEDINPUT

The operation did not complete because the
virtual machine is stuck and waiting for user input;
that is, the user must answer a question or
acknowledge an error before the virtual machine
can continue its operation.

vmErr_NETFAIL

VM_E_NETFAIL

A network failure or misconfiguration prevented
the operation from completing.

vmErr_NOACCESS

VM_E_NOACCESS

The operation could not be completed because of
an access violation (a permissions problem).

vmErr_NOMEM

VM_E_NOMEM

Your system has run out of memory. Shut down
some processes to free up memory.

vmErr_NOPROPERTY

VM_E_NOPROPERTY

The requested variable or property name does not
exist.

101

VMware Scripting APl User’s Manual

102

VmCOM Error Code

VmPerl Error Code

Description

vmErr_NOTCONNECTED

VM_E_NOTCONNECTED

An operation was attempted on a disconnected
virtual machine. Connect the virtual machine
before performing this operation.

vmErr_NOTSUPPORTED

VM_E_NOTSUPPORTED

The attempted operation is not supported by your
version of VMware server.

vmErr_PROXYFAIL

VM_E_PROXYFAIL

The Scripting API could not connect to the server
because of a proxy failure. You see this error only if
you have configured your remote workstation to
use a Web proxy. For more information on using a
Web proxy, see your VMware product
documentation.

vmErr_TIMEQUT

VM_E_TIMEOUT

There is no response to the request (the operation
timed out).

vmErr_UNSPECIFIED

VM_E_UNSPECIFIED

An unspecified error has occurred.

vmErr_VMBUSY

VM_E_VMBUSY

You attempted to connect to a virtual machine
thatis under the control of a local console running
on the server.

vmErr_VMEXISTS

VM_E_VMEXISTS

You attempted to register a virtual machine that is
already registered.

vmErr_VMINITFAILED

VM_E_VMINITFAILED

The virtual machine process could not be started
on the server.

www.vmware.com

CHAPTER 6 Error Codes and Event Logging

Event Logging

If you are running GSX Server on a Windows machine, you can use Event Viewer to view the
following types of events for virtual machines:

Power transitions

By default, Event Viewer logs an event whenever the virtual machine changes power state
(on, off, or suspended).

Messages

Messages occur whenever an error condition exists in a virtual machine. The Event Viewer
logs a message with its type (hint, warning, error, or question), the text of the message, and
the choices to acknowledge a message.

I\/\essage answers

When a message is acknowledged, the answer is logged with the message that is answered
and the choice that was selected as the answer for that message.

By default, the Event Viewer logs all three types of events. However, you may turn off logging for
one or more of these event types by editing the config. ini file.

. Change directories to the VMware GSX Server program directory. The default location is

C:\Program Files\VMware\VMware GSX Server.

2. Editthe config. ini file with a text editor of your choice. Add one or more of the

following configuration variables. Each configuration variable turns off event logging for that
event type.

eventlog.win.power = "FALSE"
eventlog.win.message = "FALSE"
eventlog.win.answer = "FALSE"

Using the Event Viewer

. Open the Event Viewer application. This application is typically in the Administrative Tools

folder. Refer to your operating system’s documentation for additional information on this
application.

2. Open the Application Log file.

The Event Viewer is displayed as shown in the following image.

103

VMware Scripting APl User’s Manual

| Bevenewener SI=E
| acion view Hc:-.\@\g\@ |
Tree | Application Log 184 event(s)

[l Evere vower Goca) | |eee [Date [Time [source [Cateqor: [Event_[=]
) Application Lag sigiz002 IZUTHOPM Yiware G5 Server Vitclmachines 1100 |
Security Lag sigjzon 12:16:52 P Vhware G54 Server Virtual machines 1100
SystemLog sigjz002 12:16:48 PM WMware G5 Server Virtual machines 1100

Sigfz002 12:16:13 PM WMware GSK Server Virtual machines 1100
5i9f2002 12:16:08 PM WMware GSX Server Virtual machines 1100
Sisizonz 1Z:16:07 FM Vhdware G5 Server Virtusl machines 1102
sigjzo0 1Z:16:05PM Vhware G54 Server Vitual machines 1101
Sf9iz002 12:15:57 PM ¥Mware GSX Server Virtual machines 1100
Sf9i2002 12:15:51 PM WMware GSX Server Yirtual machines 1100
5i9f2002 12:15:51 PM WMware GSX Server Virtual machines 1102
| Dwarning sigizo0z 1ZSSOPM Viware G54 Server Vitusl machines 1101
sisizonz 1Z:AS:SOPM Vhware G54 Server Virtusl machines 1102
A\ warning sigjzo02 12:15:49PM Vhware G54 Server Vitual machines 1101
rlr\fﬂvM:Pmr\ Siaiznng. 17015148 DM WMuiake (G5 Sovuer ik |=\Im=rhm== 1102 ks
I I

You can use the filtering feature in Event Viewer to see selected events on a virtual machine. All
virtual machine events are stored in the “Virtual Machines” category. By contrast, all serverd and
authd events are stored in the default “None” category.

Each event type has an event ID. For example, all virtual machine power transition events share the
event ID 1100. You may use this event ID to filter virtual machine events. The event IDs for virtual
machines are listed in the following table.

Event ID Event Type

1100 Power transition events
1101 Message events

1102 Message answer events

Right-click on a single event log and select Properties. The Event Properties window is displayed
with additional details about the event as shown in the following image.

Event Properties zlx|
Event |
Date: 5/3/2002 Souce: ‘hware GSX Server
Time: 1217 Category: Vittual machines
Type: Information EvertID: 1100 +

User: Nt B

Computer: BROOKLYN

Description:

Vitual machine powered on (was powered olf]. d wmwinZk\windoms
200 professianal ume

Data: & Bytes £ Words

£l

]

0K i

www.vmware.com

104

CHAPTER 6 Error Codes and Event Logging

Reading the Event Log
Each event always begins with a string that describes what happened to the virtual machine.

Power Transitions

The Event Viewer logs virtual machine power transitions as Windows information type events
(EVENTLOG_INFORMATION_TYPE). Each power transition event log begins with a simple string
indicating the new power state of the virtual machine. Power transition event log strings follow. In
these examples, D: \ foo . vinx is the path to the configuration file for the virtual machine.

Virtual machine powered on (was powered off): D:\foo.vmx.
Virtual machine powered off (was powered on): D:\foo.vmx.
Virtual machine suspended (was powered on): D:\foo.vmx.
Messages
The Event Viewer logs messages with a severity appropriate for the message:

VMware hints have an “info” type and are logged as a Windows information type event
(EVENTLOG_INFORMATION_TYPE).

VMware warnings have a “warning” type and are logged as a Windows warning type event
(EVENTLOG_WARNING_TYPE).

VMware errors have a “error” type and are logged as a Windows error type event
(EVENTLOG_ERROR_TYPE).

VMware questions have a “question” type and are logged as a Windows information type
event (EVENTLOG_INFORMATION_TYPE).

Each message event log begins with a simple string indicating that a message was received. The
message event log includes the type of message and the message text. Example message event
log strings follow.

This first example is for a message hint.
Virtual machine received hint: D:\foo.vmx.

Don't forget to install VMware Tools inside this virtual machine.
Wait until your guest operating system finishes booting, then choose

'VMware Tools Install...' from the Settings menu in VMware GSX
Server. Then follow the instructions that are provided.
[Ok]

This second example is for an error message.
Virtual machine received error: D:\foo.vmx

Failed to resume disk ide0:0. The disk was modified since the
virtual machine was suspended.

105

VMware Scripting APl User’s Manual

Error encountered while trying to restore ide0:0 state from file
\foo.vmss.

[OK]
This third example is for a question.
Virtual machine received question: D:\foo.vmdk.
Select an action for the redo log of undoable disk D:\foo.vmdk.
[Commit, Discard, Keep]
Message Answers
The Event Viewer logs message answers as Windows information type events
(EVENTLOG_INFORMATION_TYPE). Each message answer event log begins with a simple string

indicating that an answer to a message was received. The message answer event log includes the
type of message, the message text, and the answer.

An example message answer event log string follows.
Virtual machine received answer "Discard": D:\foo.vmdk.

Select an action for the redo log of undoable disk D:\foo.vmdk.

www.vmware.com

106

CHAPTER

vmware-cmd Utility

You can use the vmware - cmd utility to perform various operations on a virtual machine,
including registering a virtual machine (on the local server), getting the power state of a virtual
machine, setting configuration variables, and so on.

Note: The previous vimware-control utility is deprecated. If you are using scripts with the
vmware-control utility, update your scripts with the new vmware - cmd utility or they will not
work with VMware GSX Server 2.x, GSX Server 3 or ESX Server 2.x.

By default, the vmware - cmd utility is installed in the /usr/bin directory (Linux operating
system) orin C: \Program Files\VMware\VMware VmPerl Scripting API
(Windows operating system).

107

VMware Scripting APl User’s Manual

vmware-cmd Utility Options

The vimware-cmd utility takes the following options.

Option Description

-H Specifies an alternate host other than the local host. If the -H option is used, then the -U
and -P options must also be specified.

-0 Specifies an alternative port. The default port number is 902.

-U Specifies the username.

-P Specifies the user's password.

-h Prints a help message, listing the options for this utility.

-q Turns on the quiet option with minimal output. The specified operation and arguments

are not specified in the output.

-V Turns on the verbose option.

www.vmware.com

108

CHAPTER 7 vmware-cmd Utility

vmware-cmd Operations on a Server

The syntax for this utility on a server is:

vimware-cmd -s <options> <server-operation> <argumentss

The vmware - cmd utility performs the following operations on a VMware server.

Server Operation

Description

vmware-cmd -l

Lists the virtual machines on the local server. Unlike the other server
operations, this option does not require the - s option.

vmware-cmd -s register <vm-cfg-path>

Registers a virtual machine specified by <vm-cfg-path> on the server.

vmware-cmd -s unregister <vm-cfg-path>

Unregisters a virtual machine specified by <vm-cfg-path> on the server

vmware-cmd -s getresource <vm-cfg-path>
<variable_name>

Note: These methods apply only to ESX Server.

Gets the value of the ESX Server system resource variable specified by
system.<variable_name>. For a list of ESX Server system variables, see
VMware ESX Server System Resource Variables on page 120.

vmware-cmd -s setresource <variable_name>
<value>

Note: These methods apply only to ESX Server.

Sets the value of the ESX Server system resource variable specified by
system.<variable_name>. For a list of ESX Server system variables, see
VMware ESX Server System Resource Variables on page 120.

109

VMware Scripting APl User’s Manual

vmware-cmd Operations on a Virtual Machine

The syntax for this utility on a virtual machine is:

vmware-cmd <options> <vm-cfg-path> <vm-operation> <argumentss

The vmware - cmd utility performs the following operations on a virtual machine, where
<vm-cfg-paths> represents the complete path to the virtual machine’s configuration file.

Note: The following table includes some ESX Server and GSX Server-specific methods, and are

specifically noted.

Virtual Machine Operation

Description

vmware-cmd <vm-cfg-path> getstate

Retrieves the execution state of a virtual machine: on, off, suspended, stuck
(requires user input) or unknown.

vmware-cmd <vm-cfg-path> start
<powerop_mode>

Powers on a previously powered-off virtual machine or resumes a suspended
virtual machine. Hard, soft or trysoft specifies the behavior of the power
operation <powerop_mode>. If <powerop_mode> is not specified, the
default behavior is soft. For more information, see <powerop_mode> Values
onpage 115.

vmware-cmd <vm-cfg-path> stop
<powerop_mode>

Shuts down and powers off a virtual machine. Hard, soft or trysoft specifies
the behavior of the power operation <powerop_mode>. If
<powerop_mode> is not specified, the default behavior is soft. For more
information, see <powerop_mode> Values on page 115.

vmware-cmd <vm-cfg-path> reset
<powerop_mode>

Shuts down, then reboots a virtual machine. Hard, soft or trysoft specifies the
behavior of the power operation <powerop_mode>. If <powerop_mode> is
not specified, the default behavior is soft. For more information, see
<powerop_mode> Values on page 115.

vmware-cmd <vm-cfg-path> suspend
<powerop_mode>

Suspends a virtual machine. Hard, soft or trysoft specifies the behavior of the
power operation <powerop_mode>. If <powerop_mode> is not specified,
the default behavior is soft. For more information, see <powerop_mode>
Values on page 115.

110

www.vmware.com

CHAPTER 7 vmware-cmd Utility

Virtual Machine Operation Description
vmware-cmd <vm-cfg-path> addredo This operation adds a redo log to a running virtual SCSI disk specified by
<disk_device_name> <disk_device_name>, that is associated with the virtual machine specified by

Note: This operation applies only to ESX <vm-cfg-path>. Changes made to the virtual disk accumulate in the new
Server. redo log. This disk must be a ESX Server virtual disk stored on a VMFS volume.

The virtual disk can be in persistent, undoable or append mode. The redo log
for a virtual disk in persistent mode uses the file name of the virtual disk with
.REDO appended to it (for example, if the disk is called, vin . dsk, the redo
log is called vm . dsk . REDO). A virtual disk in undoable or append mode
already has a redo log associated with it, so the new redo log you create is
called vin. dsk . REDO . REDO, whose parent is the existing redo log,
vm.dsk.REDO.

This operation fails if the specified virtual disk does not exist, the specified
virtual disk is in nonpersistent mode, an online commit is already in progress,
or the virtual disk already has two redo logs associated with it.

If you add a redo log using the vmware-cmd addredo command, but
do not commit your changes with the vmware-cmd commit command,
then the redo is automatically committed when the virtual machine is
powered off.

111

VMware Scripting APl User’s Manual

Virtual Machine Operation

Description

vmware-cmd <vm-cfg-path> commit
<disk_device_name> <level> <freeze>
<wait>

Note: This operation applies only to ESX
Server.

This method commits the changes in a redo log to a running virtual SCSI disk
specified by <disk_device_name> that is associated with the virtual machine
specified by <vm-cfg-path>.

<level> can be 0 or 1. When <level> is 0, there can be one or two redo logs
associated with the disk. If <level> is 0, then the top-most redo log (the redo
log being modified) is committed to its parent. For example, if there is
currently only the disk vm . dsk with a single redo log vin. dsk . REDO,
then the changes in vm. dsk . REDO are committed to vim. dsk. Ifa
second REDO log vmm. dsk . REDO . REDO has been added, then the
changes in vin. dsk . REDO . REDO are committed to vm. dsk . REDO.

<level> can be 1 only when there are two redo logs associated with the disk,
vm.dsk.REDO and vin. dsk . REDO . REDO. When <level> is 1, the
changes in the next-to-top REDO log, vin. dsk . REDO, are committed to
vm. dsk. In this case, the virtual machine is not frozen while the redo log is
being committed. Also, when the log is committed, vin. dsk . REDO . REDO
is renamed to vin. dsk . REDO.

<freeze> can be 0 or 1. If <freeze> is 0, then the virtual machine is not frozen
when changes are committed, though it runs more slowly. If <freeze> is 1,
then the virtual machine is frozen until the commit operation finishes. If
<level> is 0, then the virtual machine must be frozen when changes are
committed and <freeze> is ignored.

<wait> can be 0 or 1. If <wait> is 0, then the method returns as soon as the
commit begins. If <wait> is 1, then the method does not return until the
commit completes.

The method fails if the specified virtual disk does not exist, the specified virtual
disk is in nonpersistent mode, an online commit is already in progress, or the
virtual disk currently has no redo logs.

vmware-cmd <vm-cfg-path> setconfig
<variable> <value>

Sets a configuration variable for the virtual machine connected to the remote
console.

vmware-cmd <vm-cfg-path> getconfig
<variable>

Retrieves the value for a configuration variable for the virtual machine
connected to the remote console.

vmware-cmd <vm-cfg-path> setguestinfo
<variable> <value>

Writes a GuestInfo variable into memory. The variable is discarded when the
virtual machine process terminates.

vmware-cmd <vm-cfg-path> getguestinfo
<variable>

Retrieves the value for a Guestinfo variable.

www.vmware.com

CHAPTER 7 vmware-cmd Utility

Virtual Machine Operation

Description

vmware-cmd <vm-cfg-path>
getproductinfo <prodinfo>

Returns information about the product, where <prodinfo> is product,
platform, build, majorversion (product’s major version number), minorversion
(product’s minor version number) or revision.

If product is specified, the return value is one of the following: ws (VMware
Workstation), gsx (VMware GSX Server) esx (VMware ESX Server) or unknown
(unknown product type).

If platform is specified, the return value is one of the following: windows
(Microsoft Windows), linux (Linux operating system) or unknown (unknown
platform type).

vmware-cmd <vm-cfg-path>
connectdevice <device_name>

Connects the specified virtual device to a virtual machine.

vmware-cmd <vm-cfg-path>
disconnectdevice <device_name>

Disconnects the specified virtual device from the virtual machine.

vmware-cmd <vm-cfg-path> getconfigfile

Returns a string containing the configuration file name for the virtual
machine. This method fails if the virtual machine is not connected.

vmware-cmd <vm-cfg-path> getheartbeat

Returns the current heartbeat count generated by the VMware Tools service
running in the guest operating system. The count is initialized to zero when
the virtual machine is powered on.

The heartbeat count is typically incremented at least once per second when
the VMware Tools service is running under light load conditions. The count
stays constant if this service is not running.

vmware-cmd <vm-cfg-path>
gettoolslastactive

Returns an integer indicating how much time has passed, in seconds, since
the last heartbeat was detected from the VMware Tools service.

This value is initialized to zero when the virtual machine powers on. It stays at
zero until the first heartbeat is detected, after which the value is always
greater than zero until the virtual machine is power-cycled again.

vmware-cmd <vm-cfg-path> answer

Prompts the user to answer a question for a virtual machine waiting for user
input.

vmware-cmd getresource <vm-cfg-path>
<variable_name>

Note: This method applies only to ESX
Server.

Gets the value of the virtual machine resource variable specified by
<variable_name>. For a list of ESX Server virtual machine resource variables,
see Virtual Machine Resource Variables for ESX Server on page 124.

vmware-cmd setresource <vm-cfg-path>
<variable_name> <value>

Note: This method applies only to ESX
Server.

Sets the value of the virtual machine resource variable specified by
<variable_name>. For a list of ESX Server virtual machine resource variables,
see Virtual Machine Resource Variables for ESX Server on page 124.

vmware-cmd <vm-cfg-path> getuptime

Note: This method applies only to ESX
Server.

Accesses the uptime of the guest operating system on the virtual machine.

113

VMware Scripting APl User’s Manual

Virtual Machine Operation

Description

vmware-cmd <vm-cfg-path> getid

Note: This method applies only to ESX
Server.

Returns the unique (world) ID for a running virtual machine.

vmware-cmd <vm-cfg-path> getpid

Note: This method applies only to ESX
Server.

Returns the process ID of a running virtual machine.

vmware-cmd <vm-cfg-path>
getcapabilities

Note: This method applies only to ESX
Server.

Returns the access permissions for the current user. This number is a bit
vector, where 4=read, 2=write, and 1=execute. For a user with all three
permissions, a value of 7 is returned when this property is used in a script.

vmware-cmd <vm-cfg-path>
getremoteconnections

Note: This method applies only to ESX
Server.

Returns the number of remotely connected users. This value includes the
number of remote consoles, Scripting APIs, and Web-based management
interface connections to the virtual machine.

vmware-cmd <vm-cfg-path> setrunasuser
<username> <password>

Note: This method applies only to GSX
Server 3.1.

Runs the virtual machine as the user specified by the <username> and
<password>.

vmware-cmd <vm-cfg-path> getrunasuser

Note: This method applies only to GSX
Server 3.1.

Returns the name of the user running the virtual machine.

114

www.vmware.com

CHAPTER 7 vmware-cmd Utility

<powerop_mode> Values

The following table describes hard, soft and trysoft power operations.

Powerop_mode Values Description

soft Start when a virtual machine is suspended — After resuming the virtual machine, the
To succeed, soft power operations operation attempts to run a script in the guest operating system. The Start operation
require the current version of always succeeds. However, if VMware Tools is not present or is malfunctioning, the
VMware Tools to be installed and running of the script may fail.

running in the guest operating Start when virtual machine is powered off — After powering on the virtual machine, it
system. attempts to run a script in the guest operating system when the VMware Tools service

becomes active. The default script does nothing during this operation as there is no
DHCP lease to renew. The Start operation always succeeds. However, if VMware Tools
is not present or is malfunctioning, the running of the script may fail.

Stop — Attempts to shut down the guest operating system and then powers off the
virtual machine.

Reset — Attempts to shut down the guest operating system, then reboots the virtual
machine.

Suspend — Attempts to run a script in the guest operating system before suspending
the virtual machine.

hard Start — Starts or resumes a virtual machine without running any scripts; a standard
power on or resume.

Stop, reset or suspend — Immediately and unconditionally powers off, resets, or
suspends the virtual machine.

trysoft First attempts to perform the soft power transition operation. If this fails, the hard
power operation is performed.

115

VMware Scripting APl User’s Manual

vmware-cmd Utility Examples

This section includes examples of using the vmware - cmd utility on a virtual machine.

Retrieving the State of a Virtual Machine

The following examples illustrate retrieving the execution state of a virtual machine.

Change directories to the directory (folder) containing the vimware - cmd utility or include the full
path to the utility when typing the following on a command line. Note that you must use double

quotes when specifying a path with spaces; for example,
"C:\Program Files\VMware\VMware VmPerl Scripting API\vmware-cmd"

In a Linux guest operating system:

vmware-cmd /home/vmware/win2000.vmx getstate
where /home /vmware/win2000 . vmx is the path to the virtual machine’s configuration file.
In a Windows guest operating system:

vimware-cmd C:\home\vmware\win2000.vmx getstate

where C: \home\vmware\win2000.vmx is the path to the virtual machine’s configuration file.

Performing a Power Operation
The following examples illustrate performing a power operation. The first example illustrates
powering on a virtual machine and the second example illustrates performing a hard reset.
Change directories to the directory (folder) containing the vimware - cmd utility or include the full
path to the utility when typing the following on a command line. Note that you must use double
quotes when specifying a path with spaces; for example,
"C:\Program Files\VMware\VMware VmPerl Scripting API\vmware-cmd"
In a Linux guest operating system:

vimware-cmd -v /home/vmware/win2000.vmx start
where -v indicates the verbose option, /home /vmware/win2000 . vmx is the path to the

virtual machine’s configuration file and start is the power operation. Since a
<powerop_mode > is not specified, the default soft behavior is performed.

Similarly, in a Windows guest operating system:
vimware-cmd -g C:\home\viware\win2000.vmx reset hard

where -q indicates the quiet option (only the results of the operation are printed),
C:\home\vmware\win2000.vmx is the path to the virtual machine’s configuration file and
reset is the power operation. This example specifies a hard reset so the virtual machine is
immediately and unconditionally reset.

www.vmware.com

116

CHAPTER 7 vmware-cmd Utility

Setting a Configuration Variable
The following example illustrates setting a configuration variable in a Linux guest operating
system.

Change directories to the directory (folder) containing the vimware - cmd utility or include the full
path to the utility when typing the following on a command line.
viware-cmd foo.vmx setconfig idel:0.file /tmp/cdimages/foo.iso

where foo . vmx is the virtual machine’s configuration file, ide1:0.£ileis the variable and its
value is /tmp/cdimages/foo.iso

Connecting a Device
The following example illustrates connecting a virtual IDE device in a Windows guest operating
system.

Change directories to the directory (folder) containing the vmware - cmd utility or include the full
path to the utility when typing the following on a command line. Note that you must use double
quotes when specifying a path with spaces; for example,

"C:\Program Files\VMware\VMware VmPerl Scripting API\vmware-cmd".

vimware-cmd D:\foo.vmx connectdevice idel:0

where D: \ foo . vmx is the virtual machine’s configuration file and ide1 : 0 is the device name.

117

VMware Scripting APl User’s Manual

www.vmware.com

118

CHAPTER

VMware ESX Server Resource Variables

This chapter includes ESX Server resource variables that you can set on ESX Server and on virtual
machines running on ESX Server. You can get and set these resource variables through the
VmCOM resource property and the VmPerl get _resource and set_resource methods.

119

VMware Scripting APl User’s Manual

VMware ESX Server System Resource Variables

Use these variables to return or set statistics on ESX Server. For more information on the VmCOM
resource property, see VmServerCtl on page 18. For more information on the VmPerl
get_resource and set_resource methods, see VMware:VmPerl:Server on page 52.

In the following table, # represents the number for a particular CPU. For example, if an ESX Server
has four physical CPUs, then #is 0, 1, 2, or 3.

<HTL> represents the host target LUN for a SCSI device. For example, for vimhbal:2: 0, 1
represents the host adapter, 2 represents the target on the adapter, and 0 specifies the LUN.

<vmnic> represents the physical network interface card, for example, vimnico.

Variable Name Variable Type | Description

System Statistics

system.sys.cosUptime INT VMware Service Console uptime, in seconds.
system.sys.vmkUptime INT VMkernel uptime, in seconds.

CPU Statistics

system.cpu.number INT Number of CPUs on the ESX Server system. On hyperthreading-

enabled systems, this number of CPUs reflects the number of logical
CPUs (double the number of physical CPUs).

system.cpu.# INT Information about the CPU (specified by #).
system.cpu..idlesec FLOAT Idle time, in seconds, of the physical or logical CPU (specified by #).
system.cpu.#.usedsec FLOAT Time, in seconds, the physical or logical CPU (specified by #) is in use.

Memory Statistics

system.mem.avail INT Amount of memory, in KB, available for all virtual machines.
system.mem.COS INT Amount of memory, in KB, allocated to the service console.
system.mem.COSavail INT Amount of free memory, in KB, available to the service console.
system.mem.active INT Amount of memory (subset of system.mem.size) that has been

recently used.

system.mem.cosUsage INT Amount of memory, in KB, currently used by the service console. The
sum of system.mem.COSavail and system.mem.cosUsage should
equal the value for system.mem.COS.

system.mem.cpt-tgt INT Total amount of data, in KB, read from suspend files for all virtual
machines.
system.mem.cptread INT Sum of cptread (KB read from suspend files) for all running virtual
machines.
www.ymware.com

120

CHAPTER 8 VMware ESX Server Resource Variables

Variable Name

Variable Type

Description

system.mem.mctltgt

INT

Total amount of memory, in KB, that the vmmemct1 balloon drivers
should reclaim from all guest operating systems in running virtual
machines. The value of system.mem.memctl should always
approach this number.

system.mem.memctl INT Total amount of memory, in KB, that the vmmemct 1 balloon drivers
have reclaimed from all guest operating systems in running virtual
machines.

system.mem.overhd INT Sum of the current overhead memory, in KB, for all running virtual
machines.

system.mem.ovhdmax INT Sum of the maximum overhead memory, in KB, for all running virtual
machines.

system.mem.reservedMem INT Reserved memory, in KB, across all running virtual machines. This

Note: This applies only to ESX number is the total of user-set minimum memory sizes and the

Server 2.1.1 and higher. default minimum memory sizes (50% of the specified maximum) on
all virtual machines.

system.mem.reservedSwap INT Reserved swap space, in KB, across all virtual machines. This value is

Note: This applies only to ESX equal to the difference between the max (maximum) memory size

Server 2.1.1 and higher. and min (minimum) memory size, for all virtual machines.

system.mem.shared INT Memory allocated to running virtual machines that is securely
shared with other virtual machines.

system.mem.sharedCommon INT Total amount of memory, in MB, that's required for a single copy of

Note: This applies only to ESX shared pages in running virtual machines.

Server 2.1.1 and higher.

system.mem.sharedVM INT Total amount of shared memory, in MB, for running virtual machines.

Note: This applies only to ESX This is the same value as the sum of system.mem.shared and

Server 2.1.1 and higher. system.mem.sharedCommon.

system.mem.size INT Sum of the current memory size, in KB, for all running virtual
machines.

system.mem.sizetgt INT Sum of the target memory size, in KB, for all running virtual
machines.

system.mem.swapin INT Cumulative memory, in KB, swapped into memory since the last

Note: This applies only to ESX time ESX Server was booted.

Server 2.1.1 and higher.

system.mem.swapout INT Cumulative memory, in KB, swapped out to disk since the last time

Note: This applies only to ESX ESX Server was booted.

Server 2.1.1 and higher.

system.mem.swapped INT Sum of currently swapped memory, in KB, for all running virtual

machines. It is the same value as when system.mem.swapin is
subtracted from system.mem.swapout.

121

VMware Scripting APl User’s Manual

122

Variable Name Variable Type | Description

system.mem.swaptgt INT For all running virtual machines, the target memory size, in KB, used
for swapping to the VMFS swap files.

system.mem.sysCodeSize INT VMkernel code size (memory used to store the executable

Note: This applies only to ESX instructions of the VMkernel).

Server 2.1.1 and higher.

system.mem.sysHeapSize INT Amount of memory allocated, in KB, to the VMkernel heap file.

Note: This applies only to ESX

Server 2.1.1 and higher.

system.mem.sysUsage INT Amount of overhead memory, in KB, currently used by the VMkernel.

Note: This applies only to ESX

Server 2.1.1 and higher.

system.mem.totalMem INT Total amount of memory, in KB, on ESX Server.

Note: This applies only to ESX

Server 2.1.1 and higher.

system.mem.totalSwap INT Total amount of swap space, in MB, on ESX Server.

Note: This applies only to ESX

Server 2.1.1 and higher.

system.mem.vmMaxSize INT Memory size of the largest virtual machine that can be powered on,
if the minimum (min) size is unspecified.

system.mem.vmkUsage INT Amount of memory, in KB, currently used by the VMkernel.

system.mem.vmkernel INT Amount of memory, in MB, currently allocated to the VMkernel.

Disk Statistics

system.disk.<HTL> KBread INT Total data read (in KB) for the target SCSI device specified by <HTL>.

system.disk.<HTL>.KBwritten INT Total data written (in KB) for the target SCSI device specified by
<HTL>.

system.disk.<HTL>.busResets INT Total number of bus resets for the target SCSI device specified by
<HTL>. We convert bus and device resets to virtual disk files
(excluding raw devices) into aborts, so if you compare counters from
the virtual machine with this information, then they do not always
match.

system.disk.<HTL>.cmds INT Total number of commands for the target SCSI device specified by
<HTL>.

system.disk.<HTL>.cmdsAborted INT Total number of commands aborted for the target SCSI device
specified by <HTL>. We convert bus and device resets to virtual disk
files (excluding raw devices) into aborts, so if you compare counters
from the virtual machine with this information, then they do not
always match.

system.disk.<HTL>.reads INT Total number of reads for the target SCSI device specified by <HTL>.

system.disk.<HTL>.writes INT Total number of writes for the target SCSI device specified by <HTL>.

www.vmware.com

CHAPTER 8 VMware ESX Server Resource Variables

Variable Name Variable Type | Description

Network Statistics

system.net.<device>.totKBRx INT Total amount of data received (in KB) on the virtual switch attached
to <device>. This data includes both local (virtual machine to virtual
machine) and remote (physical network to virtual machine) traffic.

system.net.<device>.totKBTx INT Total amount of data transmitted (in KB) on the virtual switch
attached to <device>. This data includes both local (virtual machine
to virtual machine) and remote (virtual machine to physical network)
traffic.

system.net.<device>.totPktsRx INT Total number of packets received on the virtual switch attached to
<device>. This data includes both local (virtual machine to virtual
machine) and remote (physical network to virtual machine) traffic.
Note: In releases prior to ESX Server 2.1.1,there may be
inconsistencies when non-unicast packets (broadcasts, multicasts,
and unicasts to virtual NICs in promiscuous mode) are received.

system.net.<device>.totPktsTx INT Total number of packets transmitted on the virtual switch attached
to <device>. This data includes both local (virtual machine to virtual
machine) and remote (physical network to virtual machine) traffic.

Note: In releases prior to ESX Server 2.1.1,there may be
inconsistencies when non-unicast packets are transmitted.

Miscellaneous Statistics

system.worlds string Space-delimited set of IDs listing running virtual machines.

system.net.adapters string Space-delimited set of bonds and physical network adapters; for
example, bond0 or vmnet_ 0.

system.disk HTL string Space-delimited set of disks specified as a set of host target LUN
(HTL); for example, vmhba0: 0: 0 or vmhbal:0:1.

123

VMware Scripting APl User’s Manual

124

Virtual Machine Resource Variables for ESX
Server

Use these variables to return or set resource statistics on virtual machines running on ESX Server.
For more information on the VmCOM resource property, see VmCtl on page 21. For more
information on the VmPerl get _resource and set_resource methods, see
VMware:VmPerl:VM on page 54.

In the following table, <HTL> represents the host target LUN for a SCSI device that is assigned to a
particular virtual machine. For example, for vimhbal:2: 0, 1 represents the host adapter, 2
represents the target on the adapter, and 0 specifies the LUN.

Similarly, <MAC> represents the media access control (MAC) address for virtual network adapters.

The virtual machine session lasts until all remote connections are closed, including remote
consoles and remote control connections through the API.

Note: You can set a configuration variable as many times as you want through the API (per virtual
machine session), but only the latest change is kept in the virtual machine session.

All of the variables in the following table can be queried by using the $vm->get_resource ()
method. Some of these variables can also be modified with the $vm->set _resource ()
method. These variables that can be both queried and modified are indicated, where appropriate,
in the table.

Following the table, we include some tips on using these resource variables efficiently. See Using
ESX Server Virtual Machine Resource Variables Efficiently on page 129.

Note: The following table includes a brief description for each of the resource variables. For
additional information, refer to the man pages for cpu (8) , hyperthreading (8), mem(8),
and diskbw (8).

Variable Name Variable Type Description

CPU Statistics

cpu.number INT Number of CPUs configured for the virtual machine.

cpu.emin INT Effective min (minimum) percentage of a CPU that is assigned

to the virtual machine on CPU x. cpu.emin is always greater
than cpu.min. This emin value can change when the virtual
machine powers on or off, and when any changes are made to
CPU allocations for any running virtual machines.

www.vmware.com

CHAPTER 8 VMware ESX Server Resource Variables

Variable Name Variable Type Description

cpu.extrasec FLOAT Amount of usedsec (cumulative processor time, in
milliseconds, consumed by the virtual CPU) over and above
the value guaranteed by emin.

cpu.syssec FLOAT Amount of CPU time, in milliseconds, used by the VMkernel on
behalf of the virtual machine (for example, for I/O processing).
This CPU time is included in usedsec, described later in this
table.

cpu.uptime INT Amount of elapsed time, in seconds, since the virtual machine
was powered on.

cpu.usedsec INT Number of seconds of CPU time used by a virtual machine.

Note: Foran SMP virtual machine, this variable reports only
the amount used by virtual CPU 0. To report the total used by
all virtual CPUs, calculate the sum of all cpu.<n>.usedsec
variables, where <n> is the number of virtual CPUs returned by
the cpu.number variable.

cpu.waitsec FLOAT Number of milliseconds that a virtual machine is idle or
blocked on some event.

cpu.affinity string CPU affinity set as a comma-delimited set of numbers, with
Read-write each number referring to a CPU number. For example, if a CPU
affinity setis 0, 1, 3, then a virtual machine runs on CPU 0, 1, or
3.
cpu.htSharing string Specifies how the virtual CPUs in a virtual machine are allowed
Read-write to share physical packages on a hyperthreaded system. The
values are:

- any — Default for all virtual machines on a
hyperthreaded system. The virtual CPUs may freely
share packages at any time, with any other virtual CPUs.

+ none — Virtual CPUs in this virtual machine cannot
share packages with each other, or with virtual CPUs
from any other virtual machines.

- internal — Applies only to SMP virtual machines. Virtual
CPUs on a virtual machine may share packages with
each other, but not with virtual CPUs from other virtual

machines.
cpu.max INT Maximum CPU percentage for a virtual machine. The valid
Read-write range of values is 0 to the number representing the total

physical CPU resources. The maximum may be greater than
100 for SMP virtual machines that may use more than one full
physical CPU.

cpu.min INT Guaranteed minimum CPU percentage reserved for a virtual

Read-write machine.

125

VMware Scripting APl User’s Manual

Variable Name Variable Type Description
cpu.shares INT Number of CPU shares assigned to a virtual machine.
Read-write

Memory Statistics

mem.active INT Amount of memory, in KB, actively used by a virtual machine.

mem.cpt-tgt INT Amount of memory, in KB, that the virtual machine reads into
physical memory from its suspend file. This matches the
memory size of the virtual machine, or is 0 (zero), if the system
is not swapping from the virtual machine’s suspend file.

mem.cptread INT Size, in KB, of the suspend file (for a virtual machine) that has
been read into memory. If the system memory is low, the
suspend file is used as a special swap file for the VMkernel,
when the virtual machine is resumed.

mem.mctltgt INT The VMkernel believes this is the size, in KB, of the vmmemct 1
balloon driver in the guest operating system for a virtual
machine. This value should approach mem.memctl (next row
in this table).

mem.memctl INT Amount of reclaimed memory, in KB, after running the
vmmemct1 module for a virtual machine.

mem.overhd INT Overhead memory, in KB, for a virtual machine.

mem.ovhdmax INT Maximum overhead memory, in KB, for a virtual machine.

mem.shared INT Amount of memory, in KB, that is shared through transparent
page sharing either within a virtual machine or with other
virtual machines running on the same server.

mem.size INT Size of the actual memory, in KB, for a virtual machine. This
value should approach mem: sizetgt (next row in this table).

mem.sizetgt INT Target memory size, in KB, for a virtual machine.

mem.swapin INT KB swapped into memory since the last time the virtual
machine was booted.

mem.swapout INT KB swapped out to disk since the last time the virtual machine
was booted.

mem.swapped INT Amount of memory, in KB, swapped in and out to the VMFS
partition swap file for a virtual machine. This value should
approach mem.swaptgt (next row in this table).

mem.swaptgt INT Target memory size, in KB, to swap to the VMFS swap file for a
virtual machine.

mem.affinity string Specifies memory affinity for a virtual machine to a single

Read-write NUMA node.

www.vmware.com

CHAPTER 8 VMware ESX Server Resource Variables

Variable Name Variable Type Description
mem.max INT Size of the maximum memory for a virtual machine. (This is the
Read-write amount of memory a virtual machine thinks it has.)
In ESX Server 2.0, mem.max is in KB. In ESX Server 2.0.1 and
higher, mem.max is in MB.
mem.min INT Size of the minimum memory for a virtual machine.
Read-write In ESX Server 2.0, mem.min is in KB. In ESX Server 2.0.1 and
higher, mem.min is in MB.
mem.shares INT Number of memory shares assigned to a virtual machine.
Read-write You can use memory shares to calculate proportional server
resource allocation between virtual machines.
Disk Statistics
disk.HTL string Space-delimited set of disks specified as a set of host target
LUN (HTL); for example, vmhba0: 0: 0 or vmhbal: 0:1.
disk.<HTL>.KBread INT Total data read (in KB) for the virtual machine on the target
device specified by <HTL>.
disk.<HTL>.KBwritten INT Total data written (in KB) for the virtual machine on the target
device specified by <HTL>.
disk.<HTL>.busResets INT Number of bus resets that occurred on the target device
specified by <HTL> due to a command from the virtual
machine.
disk.<HTL>.cmds INT Total number of commands made by the virtual machine on
the target device specified by <HTL>.
disk.<HTL>.cmdsAborted INT Total number of commands made by the virtual machine that
were aborted on the target device specified by <HTL>.
disk.<HTL>.reads INT Total number of disk reads for the virtual machine on the target
device specified by <HTL>.
disk.<HTL>.writes INT Total number of disk writes for the virtual machine on the
target device specified by <HTL>.
disk.<HTL>.shares INT Number of disk shares assigned to the virtual machine on the
Read-write target device specified by <HTL>.
Network Statistics
netadapters string Space-delimited set of MAC addresses corresponding to virtual
network adapters.
net.<mac>.totKBRx INT Total amount of data received (in KB) by the virtual adapter

specified by <mac>. This data includes both local (virtual
machine to virtual machine) and remote (physical network to
virtual machine) traffic.

127

VMware Scripting APl User’s Manual

Variable Name Variable Type Description

net.<mac>.totkBTx INT Total data transmitted (in KB) by the virtual adapter specified
by <mac>. This data includes both local (virtual machine to
virtual machine) and remote (virtual machine to physical
network) traffic.

net.<mac>.totPktsRx INT Total number of packets by the virtual adapter specified by
<mac>. This data includes both local (virtual machine to virtual
machine) and remote (physical network to virtual machine)
traffic.

net.<mac>.totPktsTx INT Total number of packets transmitted by the virtual adapter
specified by <mac>. This data includes both local (virtual
machine to virtual machine) and remote (virtual machine to
physical network) traffic.

Other Virtual Machine Statistics

worldid INT World ID for a virtual machine.

pid INT Process ID for a virtual machine.

1 uptime INT Uptime, in seconds, of a running virtual machine.

128

www.vmware.com

CHAPTER 8 VMware ESX Server Resource Variables

Using ESX Server Virtual Machine Resource
Variables Efficiently

This section describes how you can query virtual machine variables more efficiently, by minimizing
overhead.

Note: These tips apply both to both the VmCOM and VmPerl APIs, although the examples use
only the VmPerl API.

Using the Server Object

You can query virtual machine resource values by using either the virtual machine object or the
server object. For the latter, the resource value string used in the query must be qualified with the
virtual machine’s world ID number.

For example, if a virtual machine’s world ID is 131, then the following VmPerl queries return
identical values.

$server->get resource ("vm.131l.cpu.usedsec") ;
$vm->get resource ("cpu.usedsec") ;

However, querying through the virtual machine object has slightly more overhead than querying
through the server object, so we recommend that you use the server object.

Reusing a Single Server Object

There is some overhead associated with creating and connecting a server object or a virtual
machine object. Therefore, if you expect to query system or virtual machine resource values very
frequently, then we recommend you perform all queries using a single connected server object.

For example, in VmPerl:

one-time setup of server object

my $conn params = VMware::VmPerl::ConnectParams: :new ($server name, $port, $user, Spasswd) ;
my S$server = VMware::VmPerl::Server::new() ;

$server->connect ($conn_params) ;

query system / vm resources
$server->get_ resource ("system.worlds") ;
$server->get_resource("vm.<...>");

one-time teardown of server object
S$server->disconnect () ;

129

VMware Scripting APl User’s Manual

www.vmware.com

130

Index

Symbols

Schoice 59

Sconnectparams 50, 52, 54
Sdev_name 59

Sinfotype 58, 64, 65
Skey_name 57, 67-68

$Smode 55

Squestion 59

Svm_name 54

A

access permissions 23,60, 114
add_redo() method 56
adding 25,56, 111

adding redo log 25, 56, 111
AddRedo() method 25
answer_question() method 59

answering a question 28,49, 58,59, 62,
82-85,103,105-106, 113

AnswerQuestion() method 27, 28, 100
APlincompatible with server 101
authd 104

C

Capabilities property 23

choice 27

Choices property 20, 27, 28
collection object 16

command, cscript 38, 44
Commit() method 26

commit() method 57

committing redo log changes 26, 57,
112

concepts
VmCOM 15
VmPerl 49

Config property 21, 27
config.ini file 103
ConfigFileName property 22

configuration file for virtual machine
16,19, 21, 24,50, 53, 54,58,101,113
configuration variable 21, 58, 88-90,

91-92,112

Connect() method 15,17, 19, 24, 100,
101

connect() method 50, 52, 54, 101
Connect_device() method 59
ConnectDevice() method 27
connected users 23,60, 114

connecting
to a device 27,59, 113
toaserver15,19,24, 49,52 54
to a virtual machine 24, 54, 102

connection parameters 15,17, 19, 24,
52,54

connection security 17, 51

connections, total number of simulta-
neous 19, 24,52, 54

Count property 20

CPU statistics 120, 124-126
cscript 38, 44

D

device, connecting to 27,59, 113
device, disconnecting from 27,59, 113
device_is_connected() method 59
DevicelsConnected property 22
devName 27

DHCP lease 29, 63
disconnect_device() method 59
DisconnectDevice() method 27
disconnected virtual machine 102

disconnecting from a device 27, 59,

113

disk statistics 122, 127

E

error condition requiring user input 28,

49,59,62,103,105-106

error handling 100

error, VmCOM 101-102
vmErr_BADSTATE 27,101
vmErr_BADVERSION 101

vmErr_DISCONNECT 100, 101
vmErr_INSUFFICIENT_RESOURCES

131

132

101
vmErr_INVALIDARGS 101
vmErr_INVALIDVM 101
vmErr_NEEDINPUT 100, 101
vmErr_NETFAIL 101
vmErr_NOACCESS 101
vmeErr_NOMEM 101
vmErr_NOPROPERTY 101
vmErr_NOTCONNECTED 100, 102
vmErr_NOTSUPPORTED 102
vmeErr_PROXYFAIL 102
vmErr_TIMEOUT 102
vmErr_UNSPECIFIED 102
vmErr_VMBUSY 102
vmErr_VMEXISTS 102
vmErr_VMINITFAILED 102
error, VmPerl 101-102
VM_E_BADSTATE 59, 101
VM_E_BADVERSION 101
VM_E_DISCONNECT 101
VM_E_INSUFFICIENT_RESOURCES
101
VM_E_INVALIDARGS 101
VM_E_INVALIDVM 101
VM_E_NEEDINPUT 101
VM_E_NETFAIL 101
VM_E_NOACCESS 101
VM_E_NOMEM 101
VM_E_NOPROPERTY 101
VM_E_NOTCONNECTED 102
VM_E_NOTSUPPORTED 102
VM_E_PROXYFAIL 102
VM_E_TIMEOUT 102
VM_E_UNSPECIFIED 102
VM_E_VMBUSY 102
VM_E_VMEXISTS 102
VM_E_VMINITFAILED 102
ESX Server 18,53, 109
CPU statistics 120
disk statistics 122
memory statistics 120-122
network statistics 123
set resource variable 18, 53, 109

ESX Server, resource variable 120-123
event ID 104

Event Viewer 103-106

ExecutionState property 21

G

get resource variable 18, 22, 53, 60,
109,113

get_capabilities() method 60
get_choices() method 59, 62
get_config() method 58
get_config_file_name() method 58
get_connected_users() method 57
get_execution_state() method 57
get_guest_info() method 57, 68
get_heartbeat() method 58
get_hostname() method 51

get_id() method 60, 62
get_last_error() method 52, 54, 59, 100
get_password() method 51
get_pending_question() method 58
get_pid() method 60

get_port() method 51
get_product_info() method 58, 64, 65
get_remote_connections() method 60
get_resource() method 53, 60
get_text() method 58, 62
get_tools_last_active() method 58, 60
get_uptime() method 60
get_username() method 51

getting resource variables for ESX
Server 18,53, 109, 120-123

getting resource variables in a virtual
machine 22,60, 113, 124-128

guest operating system 23, 32-34, 60,
66-68

uptime 22,60, 113
Guestlnfo property 21
GuestInfo variable 32-34, 66-68, 112
H
hard power transition 30, 64, 115
heartbeat 22, 58, 79-81, 113
Heartbeat property 22
host platform 31, 65, 113
hostname 17, 51
|

ID for a running virtual machine 22, 60,
114

www.vmware.com

Id property 22, 28

index 59

infoType 22

input, requiring 27, 28,49, 58,59, 62,
82-85,103,105-106, 113

installation
VmCOM 11-12
VmPerl 11-12
instsrv 44

insufficient memory 101

insufficient resources 19, 24, 52, 54,
101

invalid power transition 101
is_connected() method 52, 54
ISupportErrorinfo 100

Item property 20

J

JScript 38, 38-40

K

keyName 21, 33-34
L

limits 19, 24, 52, 54, 101
Linux operating system
installing VmPerl on 12
list of virtual machines 16, 38-40, 40—
43,43-47,50,72-73,74-76, 109
M
memory 101
memory size 21, 58
memory statistics 120-122, 126-127
memory, values stored in 21, 57
messages 103

method, YmCOM
AddRedo() 25
AnswerQuestion() 27, 28, 100
Commit() 26
Connect() 15,17, 19, 24,100, 101
ConnectDevice() 27
DisconnectDevice() 27
RegisterVm() 19
Reset() 24
Start() 24
Stop() 24
Suspend() 25

UnregisterVm() 19

method, VmPerl
add_redo() 56
answer_question() 59
commit() 57
connect() 50,52, 54,101
connect_device() 59
device_is_connected() 59
disconnect_device() 59
get_capabilities() 60
get_choices() 59, 62
get_config() 58
get_config_file_name() 58
get_connected_users() 57
get_execution_state() 57
get_guest_info() 57, 68
get_heartbeat() 58
get_hostname() 51
get_id() 60, 62
get_last_error() 52, 54,59, 100
get_password() 51
get_pending_question() 58
get_pid() 60
get_port() 51
get_product_info() 58, 64, 65
get_remote_connections() 60
get_resource() 53, 60
get_text() 58, 62
get_tools_last_active() 58, 60
get_uptime() 60
get_username() 51
is_connected() 52, 54
register_vm() 52
registered_vm_names() 50, 52
reset() 55
set_config() 58, 59
set_guest_info() 57, 67
set_resource() 53, 60
start() 55
stop() 55
suspend() 56
unregister_vm() 53

MiniMUI Visual Basic project 12, 37
N

network failure 101

network port 51

network statistics 123, 127-128

no response 102

133

134

not enough memory 101
P
passing information between script
and guest operating system 32-34,
66-68
password 17,51
PendingQuestion property 21, 27, 28,
100
permission 101
Pid property 22
platform 31, 65,113
platform information 31
port17,51,108
power status of a virtual machine 21,
57,77-78,110
power transition 29, 63, 103, 105
hard 30,64, 115
invalid 101
soft 30,64, 115
trysoft 30,64, 115

powering off a virtual machine 24, 29—
30,55,63-64,110,115

powering on a virtual machine 24, 29—
30,55,63-64,110,115

process ID for a running virtual
machine 22,60, 114

product information 22, 30, 31, 58, 64,
65,113
Productinfo property 22
property
Capabilities 23
Choices 20, 27, 28
Config 21,27
ConfigFileName 22
Count 20
DevicelsConnected 22
ExecutionState 21
Guestinfo 21
Heartbeat 22
Id 22,28
Item 20
PendingQuestion 21, 27,28, 100
Pid 22
Productinfo 22
RegisteredVmNames 18
RemoteConnections 23

Resource 18, 22
Text 28
ToolsLastActive 22, 23
Uptime 22
proxy 102
proxy failure 102
Q
question 49, 58, 59, 62, 82-85, 103,
105-106,113
R
reconnect to a virtual machine 24
redo log 25, 40, 56,93, 111
redo log, committing changes to 26,
57,95,112
register_vm() method 52
registered_vm_names() method 50, 52
RegisteredVmNames property 18
registering virtual machine 52, 102,
109
RegisterVm() method 19
RemoteConnections property 23
Reset() method 24
reset() method 55
resetting a virtual machine 24, 29-30,
55,63-64,110,115
Resource property 18, 22
resource variable 119-128
get 18, 22,53,60,109,113
set 18,22,53,60,109,113
resuming a suspended machine 24, 55,
110,115
S
sample scripts, VmCOM 12, 35-47
connecting to server and listing vir-
tual machines 38-40, 40-43
listing and starting virtual machines
43-47
sample scripts, VmPerl 69-92
answering question for stuck virtual
machine 82-85
determining power status 77-78
listing and starting virtual machines
74-76
listing virtual machines 72-73

www.vmware.com

monitoring virtual machine heart-
beat 79-81
retrieving a configuration variable
91-92
setting a configuration variable 88—
920
suspending a virtual machine 86-87
sample scripts. VmPerl 13
script 32-34, 66-68
security 17,51, 101
server
connecting to 15, 19, 24, 38-40,
40-43,49,52,54
incompatible with APl 101
security 17, 51
virtual machines on 16
VmServerCtl 15, 18-19, 100
VMware:VmPerl:Server 49, 52-53

serverd 104

set_config() method 58, 59
set_guest_info() method 57, 67
set_resource() method 53, 60

setting resource variables for ESX Server
120-123

setting resource variables in a virtual
machine 22,60, 113, 124-128

setting resource variables in ESX Server
18,53,109

shared variables 32-34, 66-68

simultaneous connections 19, 24, 52,
54

soft power transition 30, 64, 115
srvany 44

Start() method 24

start() method 55

starting a virtual machine 24, 29-30,
55,63-64,110,115
state of virtual machine 21,57, 110
Stop() method 24
stop() method 55
stopping a virtual machine 24, 29-30,
55,63-64,110,115
string

Skey_name 57

keyName 21

Suspend() method 25
suspend() method 56

suspended machine, resuming 24, 55,
110,115

suspending a virtual machine 25, 29—
30, 56,63-64,86-87,110,115

T

TCP port 17, 51

Text property 28

time out 102

ToolsLastActive property 22, 23
trysoft power transition 30, 64, 115
U

undoable disk 40

uninstalling VmPerl 13
unregister_vm() method 53
unregistering virtual machine 109
UnregisterVm() method 19

uptime 22, 60,113

Uptime property 22

userinput 27, 28,49, 58,59, 62, 82-85,
103,105-106, 113

user name 17,51, 108

user permissions 23, 60, 114

users, connected 23, 60, 114

Vv

variable 21,32-34, 58,6668, 112
VBScript 38, 40-43, 43-47

virtual device 22, 27,59, 113

virtual machine 22, 49, 54-61,66, 113
configuration file 16, 19, 21, 24, 50,
53,54,58,101,113
connecting to 24, 54, 102
CPU statistics 124-126
disconnected 102
disk statistics 127
event logging 103-106
execution state 29, 63
heartbeat 22, 58,79-81,113
D 22,60,114
list of 16, 38-40, 40-43,43-47, 50,
72-73,74-76,109
memory size 21,58
memory statistics 126-127

135

136

network failure 101

network statistics 127-128

no response 102

power operations 24-25, 29, 55-56,
63,103,105

power state 21,57,77-78,110
process ID 22,60, 114

reconnect 24

registering 52, 102, 109

resetting 24,29-30, 55,63-64, 110,
115

security 17, 51

set resource variable 22,60, 113
starting 24, 29-30, 43-47, 55, 63—
64,74-76,110,115

stopping 24,29-30,55,63-64,110,
115

suspending 25, 29-30, 56, 63-64,
86-87,110,115

unregistering 109

VmCtl 15,21-27, 32,100

waiting for input 27, 28, 59, 100

virtual machine, resource variable 124—
128

Visual Basic 37, 100
vm.See virtual machine.
VM_E_BADSTATE 59, 101
VM_E_BADVERSION 101
VM_E_DISCONNECT 101

VM_E_INSUFFICIENT_RESOURCES 52,
54,101

VM_E_INVALIDARGS 101
VM_E_INVALIDVM 101
VM_E_NEEDINPUT 101
VM_E_NETFAIL 101
VM_E_NOACCESS 101
VM_E_NOMEM 101
VM_E_NOPROPERTY 101
VM_E_NOTCONNECTED 102
VM_E_NOTSUPPORTED 102
VM_E_PROXYFAIL 102
VM_E_TIMEOUT 102
VM_E_UNSPECIFIED 102
VM_E_VMBUSY 102
VM_E_VMEXISTS 102

VM_E_VMINITFAILED 102
VM_EXECUTION_STATE_<XXX> 63
VM_POWEROP_MODE_<XXX> 55-56,
63
VM_PRODINFO_PLATFORM_<XXX> 65
VM_PRODINFO_PRODUCT_<XXX> 65
VmCollection 16, 20
VmCOM
AddRedo() method 25
AnswerQuestion() method 27, 28,
100
Commit() method 26
concepts 15
Connect() method 15,17, 19, 24,
100, 101
ConnectDevice() method 27
DisconnectDevice() method 27
error handling 100
RegisterVm() method 19
Reset() method 24
sample scripts 12, 35-47
Start() method 24
Stop() method 24
Suspend() method 25
UnregisterVm() method 19
use with Windows operating system
7
VmConnectParams 15,17, 19, 24
VmCtl 15,21-27,32,100
VmCtl. AddRedo 25
VmCtl.AnswerQuestion 27, 28, 100
VmCtl.Commit 26
VmCtl.Connect 17, 24
VmCtl.ConnectDevice 27
VmCtl.DisconnectDevice 27
VmCtl.PendingQuestion 27, 28, 100
VmCtl.Reset 24
VmCtl.Stop 24
VmCtl.Suspend 25
vmErr_BADSTATE 27, 101
vmErr_BADVERSION 101
vmErr_DISCONNECT 100, 101
vmeErr_INSUFFICIENT_RESOURCES 19,
24,101
vmErr_INVALIDARGS 101

www.vmware.com

vmErr_INVALIDVM 101
vmErr_NEEDINPUT 100, 101
vmeErr_NETFAIL 101
vmErr_NOACCESS 101
vmErr_NOMEM 101
vmErr_NOPROPERTY 101
vmErr_NOTCONNECTED 100, 102
vmErr_NOTSUPPORTED 102
vmErr_PROXYFAIL 102
vmErr_TIMEOUT 102
vmErr_UNSPECIFIED 102
vmErr_VMBUSY 102
vmErr_VMEXISTS 102
vmErr_VMINITFAILED 102
VmExecutionState 29
vmName 24

VmPerl
add_redo() method 56
answer_question() method 59
commit() method 57
concepts 49
connect() method 50, 52, 54, 101
connect_device() method 59
device_is_connected() method 59
disconnect_device() method 59
error handling 100
get_capabilities() method 60
get_choices() method 59, 62
get_config() method 58
get_config_file_name() method 58
get_connected_users() method 57
get_execution_state() method 57
get_guest_info() method 57, 68
get_heartbeat() method 58
get_hostname() method 51
get_id() method 60, 62
get_last_error() method 52, 54, 59,
100
get_password() method 51
get_pending_question() method 58
get_pid() method 60
get_port() method 51
get_product_info() method 58, 64,
65
get_remote_connections() method
60

get_resource() method 53, 60
get_text() method 58, 62
get_tools_last_active() method 58,
60
get_uptime() method 60
get_username() method 51
is_connected() method 52, 54
register_vm() method 52
registered_vm_names() method 50,
52
reset() method 55
sample scripts 13, 69-92
set_config() method 58, 59
set_guest_info() method 57, 67
set_resource() method 53, 60
start() method 55
stop() method 55
suspend() method 56
unregister_vm() method 53
use with Linux operating system 7
use with Windows operating system
7
VmpPlatform 31
VmPowerOpMode 24-25, 29
vmProdInfo_Platform 31
vmProdinfo_Product 31
VmProdinfoType 22, 30
VmProduct 31
VmQuestion 27, 28, 100
VmQuestion.Choices 20
VmServerCtl 15, 18-19, 100
VmServerCtl.Connect() 17, 19, 24
VmServerCtl.RegisteredVmNames 20
VMware Tools 22, 23, 32-34, 58, 60,
66-68,113
VMware:VmPerl:ConnectParams 49, 51
VMware:VmPerl:Question 49, 58, 59,
62
VMware:VmPerl:Server 49, 52-53
VMware:VmPerl:VM 49, 54-61, 66
vmware-cmd
options 107
server operations 109

virtual machine operations 110-
114

vmware-control 107

137

w
waiting for user input 27, 28, 40-43,
49, 58,59, 62,82-85,103, 105-106,
113
Web proxy 102
Windows operating system

installing Scripting APIs on 11-12
Windows Script File 38, 40, 43, 47

138 WWwW.vmware.com

	VMware Scripting API User's Manual
	Table of Contents
	Introduction
	Introducing the VMware Scripting APIs
	Supported Products
	Intended Audience
	Getting Support from VMware

	Using the VMware Scripting APIs
	Installing the VMware Scripting API
	GSX Server
	ESX Server
	Installing the VMware Scripting API on a Windows Machine
	Installing VmPerl Scripting API on a Linux Machine

	Using VmCOM
	VmCOM Objects
	VmConnectParams
	VmServerCtl
	Property
	Methods

	VmCollection
	VmCtl
	Properties
	Methods

	VmQuestion
	Symbolic Constant Enumerations
	VmExecutionState
	VmPowerOpMode
	VmProdInfoType
	VmProduct
	VmPlatform

	Using VmCOM to Pass User-Defined Information Between a Running Guest Operating System and a Script
	GuestInfo Variables
	Sending Information Set in a VmCOM Script to the Guest Operating System
	Sending Information Set in the Guest Operating System to a VmCOM Script

	Using Sample VmCOM Programs
	Copyright Information
	MiniMUI Visual Basic Sample Program
	JScript and VBScript Sample Programs
	JScript Sample Program 1
	VBScript Sample Program 2
	VBScript Sample Program 3

	Using VmPerl
	VMware::VmPerl::ConnectParams
	VMware::VmPerl::Server
	VMware::VmPerl::VM
	Additional Information on get_tools_last_active

	VMware::VmPerl::Question
	Symbolic Constants
	VM_EXECUTION_STATE_<XXX> Values
	VM_POWEROP_MODE_<XXX> Values
	Infotype Values
	VM_PRODINFO_PRODUCT_<XXX> Values
	VM_PRODINFO_PLATFORM_<XXX> Values

	Using VmPerl to Pass User-Defined Information Between a Running Guest Operating System and a Script
	GuestInfo Variables
	Sending Information Set in a VmPerl Script to the Guest Operating System
	Sending Information Set in the Guest Operating System to a VmPerl Script

	Using Sample VmPerl Scripts
	Copyright Information
	Listing the Virtual Machines on the Server
	Starting All Virtual Machines on a Server
	Checking a Virtual Machine’s Power Status
	Monitoring a Virtual Machine’s Heartbeat
	Answering Questions Posed by a Virtual Machine
	Suspending a Virtual Machine
	Setting a Virtual Machine’s IP Address Configuration Variable
	Getting a Virtual Machine’s IP Address
	Adding a Redo Log to a Virtual Disk (ESX Server only)
	Committing a Redo Log to a Virtual Disk without Freezing the Virtual Machine (ESX Server only)

	Error Codes and Event Logging
	Error Codes
	Error Handling for the VmCOM Library
	Error Handling for the VmPerl Library
	Common VmCOM and VmPerl Errors

	Event Logging
	Using the Event Viewer
	Reading the Event Log

	vmware-cmd Utility
	vmware-cmd Utility Options
	vmware-cmd Operations on a Server
	vmware-cmd Operations on a Virtual Machine
	<powerop_mode> Values
	vmware-cmd Utility Examples
	Retrieving the State of a Virtual Machine
	Performing a Power Operation
	Setting a Configuration Variable
	Connecting a Device

	VMware ESX Server Resource Variables
	VMware ESX Server System Resource Variables
	Virtual Machine Resource Variables for ESX Server
	Using ESX Server Virtual Machine Resource Variables Efficiently
	Using the Server Object
	Reusing a Single Server Object

	Index

