
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been

made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

 and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

NOTICES
On April 1, 2003, Mitsubishi Electric Semiconductor Application Engineering Corporation, a member of the Mitsubishi Electric group, joined the new Renesas Technology group and changed its name to Renesas Solutions Corp. Please note the following changes:------------------------------User Registration------------------------------Changed from: regist@tool.mesc.co.jp (not available) regist@tool.maec.co.jp (available until July 1, 2003) to: regist_tool@renesas.com------------------------------Tool Technical Support------------------------------Changed from: support@tool.msc.hoku.melco.co.jp (not available) support@tool.mesc.co.jp (not available) support@tool.maec.co.jp (available until July 1, 2003) to: support_tool@renesas.com------------------------------Tool Homepage------------------------------Changed from: http://www.tool-spt.mesc.co.jp/ (not available) http://www.tool-spt.maec.co.jp/ (available until July 1, 2003) to: http://www.renesas.com/en/tools------------------------------Company Name------------------------------Changed from: Mitsubishi Electric Semiconductor Software Corp. Mitsubishi Electric Semiconductor Systems Corp. Mitsubishi Electric Semiconductor Application Engineering Corp. to: Renesas Solutions Corp.Tool news, "New Companies Established"http://www.renesas.com/eng/products/mpumcu/toolhp/toolnews/n030401/tn0.htm------------------------------Product Name Changes of Tools------------------------------Regarding the products of software tools and some accessory tools, please note that product names have gradually been changed since April 2001. In some documents, the old product names may be used. We apologize to all of you for inconvenience that will be caused by this alteration. For the product name changes, please refer to this page.http://www.renesas.com/eng/products/mpumcu/toolhp/henkou/index_e.htm

MSD-AS308-UE-990401

Relocatable Assembler
for M16C/80 Series

AS308 V.1.00
User's Manual

ADVANCED AND EVER ADVANCING MITSUBISHI ELECTRIC

• Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and

other countries.

• IBM, AT, and OS/2 are registered trademarks of International Business Machines Corporation.

• Intel and Pentium are registered trademarks of Intel Corporation.

• Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.

• All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Precautions to be taken when using this manual

• The information in this manual does not convey any guarantee or license for the use of the intellectual property rights

or any other rights owned by Mitsubishi Electric Corporation, Mitsubishi Electric Semiconductor Systems Corporation,

or third parties.

• Mitsubishi Electric Corporation and Mitsubishi Electric Semiconductor Systems Corporation will not assume any re-

sponsibility for damage caused by or infringements on third parties’ proprietary rights arising from the use of the

product data, drawings, tables, programs, algorithms, or other materials in this manual.

• The product data, drawings, tables, programs, algorithms, and all other materials in this manual reflect the latest

information at the time of publication. However, Mitsubishi Electric Corporation and Mitsubishi Electric Semiconductor

Systems Corporation reserve the right to make changes without notice for improvements on characteristics, etc. Please

contact your nearest office of Mitsubishi or its distributor to get the latest information about the product described here

before making your final decision to purchase, as necessary.

• Using technical information shown in the product data, drawings, and tables; programs, and algorithms contained in

this manual, you must evaluate not only technological contents, programs, and algorithms by stand-alone, but also the

overall system and judge whether they are applicable or not on the your own responsibility. Mitsubishi Electric Corpo-

ration and Mitsubishi Electric Semiconductor Systems Corporation shall have no liability for whether they are appli-

cable or not.

• Mitsubishi semiconductors products are neither designed nor manufactured with any intention or whatsoever to cause

hindrance to social systems or a threat to human life. When you plan to use the product described here in special

applications such as transport or moving vehicles, medical, aerospace, or nuclear control, or submarine repeaters or

systems, please consult your nearest office of Mitsubishi or its distributor.

• This manual may not be copied, in whole or part, without the written consent of Mitsubishi Electric Corporation and

Mitsubishi Electric Semiconductor Systems Corporation.

For inquiries about the contents of this manual or software, send an e-mail or fax using a text file the installer gener-

ates in the following directory to your nearest Mitsubishi office or its distributor.

\SUPPORT\Product-name\SUPPORT.TXT

Mitsubishi Tool Homepage http://www.tool-spt.mesc.co.jp/index_e.htm

3

AS308 V.1.00 Contents

Contents

Specifications of AS308.. 10

Detail of Specifications .. 11

Outline of Function ... 13

Configuration ... 13

Functions... 15

Outline of as308 functions .. 16

Outline of ln308 functions.. 17

Outline of lmc380 functions ... 17

Outline of lb308 functions.. 17

Outline of xrf308 functions .. 17

Outline of abs308 functions .. 17

AS308 Functions .. 18

Relocatable Assemble... 18

Unit of Address Management (Section) 19

Rules on Section Management ... 21

Label and symbol .. 25

Management of Label and Symbol Addresses 25

Library File Referencing Function ... 27

Management of Include File .. 29

Code Selection by AS308 ... 30

Optimized Selection by AS308 .. 31

Example of Optimization Selection by as308 35

SB Register Offset Description ... 36

Special Page Branch... 37

Referencing Special Page Vector Table 39

Macro Function ... 40

Repeat Macro Function ... 43

Conditional Assemble Control ... 43

AS308 V.1.00 User's Manual

4

AS308 V.1.00 Contents

Source Line Information Output .. 46

Symbol Definition .. 46

Environment Variables of as308 ... 46

Output messages .. 49

Compatibility with M16C/60 commands 51

AS308 processing when option command -mode60 is specified

52

Replacement command list ... 53

Input/Output Files of AS308 ... 54

Relocatable Module File ... 56

Assembler List File .. 57

Assembler Error Tag File ... 58

Absolute Module File... 59

Map File .. 60

Link Error Tag File ... 61

Motorola S Format .. 62

Intel HEX Format... 62

Library File .. 63

Library List File .. 64

Cross Reference File .. 66

Absolute List File ... 67

Starting Up Program... 68

Precautions on Entering Commands 68

Structure of Command Line .. 68

Rules for Entering Command Line .. 69

Method for Operating as308... 71

Command Parameters .. 71

Rules for Specifying Command Parameters 72

Include File Search Directory .. 74

5

AS308 V.1.00 Contents

as308 Command Options ... 74

-. .. 75

-abs16 ... 76

-C .. 77

-D .. 78

-F .. 80

-H .. 81

-I .. 82

-L... 83

-mode60.. 84

-mode60p ... 85

-M.. 86

-N .. 87

-O .. 88

-S .. 89

-T .. 90

-V .. 91

-X .. 92

Error Messages of as308 ... 93

Warning Messages of as308 .. 108

6

AS308 V.1.00 Contents

Method for Operating ln308... 111

Command Parameters ... 111

Rules for Specifying Command Parameters 112

Command File ... 113

-. .. 115

-E .. 116

-G .. 117

-L... 118

-LD .. 119

-LOC ... 120

-M.. 121

-MS/-MSL.. 122

-NOSTOP ... 123

-O .. 124

-ORDER.. 125

-T .. 126

-V .. 127

@ .. 128

Error Messages of ln308 .. 129

Warning Messages of ln308 ... 134

Method for Operating lmc308 ... 138

Command Parameters .. 138

Rules for Specifying Command Parameters 139

-. .. 140

-E .. 141

-H .. 142

-ID ... 143

-L... 144

-O .. 145

-V .. 146

-protect1.. 147

-protect2.. 148

7

AS308 V.1.00 Contents

Error Messages of lmc308 ... 149

Warning Messages of lmc308 .. 151

Method for Operating lb308.. 152

Command Parameters .. 152

Rules for Specifying Command Parameters 153

-. .. 155

-A .. 156

-C .. 157

-D .. 158

-L... 159

-R .. 160

-U .. 161

-V .. 162

-X .. 163

@ .. 164

Error Messages of lb308 .. 165

Warning Messages of lb308 ... 169

Method for Operating xrf308 .. 170

Command Parameters .. 170

Rules for Specifying Command Parameters 170

-. .. 172

-N .. 173

-O .. 174

-V .. 175

@ .. 176

Error Messages of xrf308 ... 177

Method for Operating abs308... 179

Precautions using abs308 ... 179

-. .. 182

-D .. 183

-O .. 184

-V .. 185

8

AS308 V.1.00 Contents

Error Messages of abs308 ... 186

Warning Messages of abs308 .. 188

Rules for Writing Program .. 189

Precautions on Writing Program ... 189

Character Set .. 190

Reserved Words ... 191

Names ... 192

Lines.. 197

Line concatenation .. 204

Operands .. 206

Rules for Writing Operands ... 206

Operators .. 209

Character String .. 212

Directive Commands .. 213

List of Directive Commands .. 214

..FILE .. 217

..MACPARA .. 219

..MACREP .. 221

.ADDR... 223

.ALIGN .. 225

.ASSERT .. 227

.BLKA.. 229

.BLKB.. 230

.BLKD ... 231

.BLKF .. 232

.BLKL .. 233

.BLKW... 234

.BTEQU .. 235

.BTGLB ... 237

.BYTE ... 238

.DEFINE.. 239

.DOUBLE .. 240

9

AS308 V.1.00 Contents

.ELIF ... 241

.ELSE.. 242

.END ... 243

.ENDIF .. 244

.ENDM .. 245

.ENDR... 246

.EQU ... 247

.EXITM .. 248

.FB .. 249

.FBSYM .. 250

.FLOAT ... 251

.FORM .. 252

.GLB.. 254

.IF.. 255

.INCLUDE ... 258

.INSTR .. 259

.LEN .. 261

.LIST ... 263

.LOCAL ... 264

.LWORD.. 266

.MACRO ... 267

.MREPEAT.. 271

.OPTJ.. 273

.ORG... 275

.PAGE ... 277

.SB .. 278

.SBBIT .. 279

.SBSYM .. 280

.SECTION ... 282

.SJMP ... 284

.SUBSTR .. 285

.VER ... 288

.WORD ... 289

? .. 291

@ .. 293

10

AS308 V.1.00 Specifications of AS308

Specifications of AS308

AS308 has been designed based on the following specifications. Make sure

AS308 in your system is used within the range of this specification.

Item Specification

Number of files opened simultaneously

Maximum 9 files

Number of characters in a file name

128 bytes (characters) on a personal computer

512 bytes (characters) on a workstation

Number of characters in a command line

128 bytes (characters) on a personal computer

512 bytes (characters) on a workstation

Number of characters that can be set in environment variables

256 bytes (characters)

Number of characters in a name

32 bytes (characters)

Total number of names Depends on the memory capacity of the host

computer by which tasks are processed.

Number of macro definitions 65535

11

AS308 V.1.00 Specifications of AS308

Detail of Specifications

Character Set
You can use the following characters when writing an assembly program to be

assembled by AS308.

Uppercase aplphabets
A B C D E F F G H I J K L M N O P Q R S T U V W X Y Z

Lowercase alphabets
a b s d e f g h i j k l m n o p q r s t u v w x y z

Numerals
0 1 2 3 4 5 6 7 8 9

Special characters
" # $ % & ' () * + , - . / : ; [\] ^ _ | ~

Blank

(Space) (Tab)

New paragraph or line

(Carriage return) (Line feed)

Always be sure to use 'en'-size characters when writing in-

structions and operands. You cannot use multi-byte char-

acters (e.g., kanji) unless you are writing comments.

12

AS308 V.1.00 Specifications of AS308

Number of Characters on Command Line
The number of characters that can be entered on a command line is 128 char-

acters (bytes) for the PC version or 512 characters (bytes) for the workstation

version.

The number of characters may be limited below the above

specification depending on the operating environment (type

of OS) of AS308.

Method for Entering File Name

• The maximum length of a file name is 128 characters (bytes) including

directory specification for the PC version or 512 characters (bytes) in-

cluding directory specification for the workstation version. However, the

number of characters on a command line must not exceed the above-

mentioned size including the startup program name and all command

options.

• Descriptions of file names are subject to the naming conventions of the

PC and workstation OS in addition to the above rules. Refer to the

user's manual of your OS for details.

Although workstations permit you to use a file name that is

separated by the period (.) in two or more places, this does

not apply when using AS308. AS308 allows use of the pe-

riod in only one place of a file name. Furthermore, some

AS308 programs restrict file name extensions (characters

following the period) also. Refer to the method for starting

up each AS308 program for details.

13

AS308 V.1.00 Outline of Function

Outline of Function

AS308 is a software system that assists you at the assembly language level in

developing control programs for the M16C/80 series of single-chip microcom-

puters.

It converts source programs written in assembly language into files of source

level debuggable format. AS308 also includes a program that converts source

programs into files of M16C/80 series ROM programmable format. Further-

more, AS308 can be used in combination with the C complier(NC308) of sepa-

rate product.

Configuration

AS308 consists of the following programs.

Assembler driver (as308)
This program starts up macro processor and assembler processor in succes-

sion. The assembler driver can process multiple assembly source files.

Macro processor
This program processes macro directive commands in the assembly source

and performs preprocessing for the assembler processor to generate an as-

sembly source file.

The assembly source files generated by macro processor

are erased after assembler processor finishes its process-

ing. This does not modify the assembly source files written

by the user.

14

AS308 V.1.00 Outline of Function

Assembler processor
This program converts the assembly source file preprocessed by the macro

processor into a relocatable module file.

Linkage editor (ln308)
This program links the relocatable module files generated by the assembler

processor to generate an absolute module file.

Librarian (lb308)
This program reads in a relocatable module file and generates a library file and

manages it.

Load module converter (lmc308)
This program converts the absolute module file generated by the linkage edi-

tor into a machine language file that can be programmed into ROM.

Cross referencer (xrf308)
This program generates a cross reference file that contains definitions of vari-

ous symbols and labels in the assembly source files created by the user.

Absolute lister (abs308)
This program generates an absolute list file that can be output to a printer.

This file is generated based on the address information in the absolute module

file.

15

AS308 V.1.00 Outline of Function

Functions

Relocatable programming function
This function allows you to write a program separately in multiple files. A sepa-

rately written program can be assembled file by file. By allocating absolute

addresses to a single file, you can debug that part of program independently of

all other parts. You can also combine multiple source program files into a

single debug file.

Optimized code generation function
AS308 has a function to select the addressing mode and branch instruction

that are most efficient in generating code for the source program.

Macro function
AS308 has a macro function to improve a program's readability.

Source level debug information output in high-level lan-

guage
AS308 outputs source level debuggable high-level language information for

programs developed in M16C/80 series's high-level languages.

File generation
Each program in AS308 generates a relocatable module file, absolute module

file, error tag file, list file, and others.

IEEE-695 format file generating function
The binary files generated by AS308 are output in IEEE- 695 format. There-

fore, AS308 can be shared with other M16C/80 series development tools us-

ing formats based on the IEEE-695 format.

IEEE (Institute of Electrical and Electronics Engineers, USA)

16

AS308 V.1.00 Outline of Function

Outline of as308 functions

• Generates relocatable module files

• Generates assembler list files

Structure of as308
The name as308 represents a program to control these two programs.

AS308 uses the assembler driver to control the macro pro-

cessor and assembler processor. Therefore, neither macro

processor nor assembler processor can be invoked directly

from your command line.

Outline of macro processor functions

• This program processes macro directive commands written in the source

file.

• The processed file is available in a file format that can be processed by

assembler processor.

Outline of assembler processor functions

• This program converts the assembly languages written in the source file

and those that derive from processing by macro processor into a relo-

catable module file.

17

AS308 V.1.00 Outline of Function

Outline Processing by as308
• After interpreting the input command lines, as308 activates each pro-

gram of macroprocessor and assembler processor.

• as308 controls the command options added when each program starts

up and the file names to be processed.

• Each program is started up sequentially in the following order:

1 Macro processor

2 Strucured processor

3 Assembler processor

Outline of ln308 functions

• Generates an absolute module file

• Generates an map file

• Assigns sections

• Utilizes relocatable modules in library file

Outline of lmc380 functions

• Generates Motorola S format file

• Generates Intel HEX format file

Outline of lb308 functions

• Generates a new library file

• Renewal a library file

• Generates a library list file

Outline of xrf308 functions

• Generates a cross reference file

• Controls output information of symbol

Outline of abs308 functions

• Generates absolute list files

18

AS308 V.1.00 AS308 Functions

AS308 Functions

The as308 assembler converts an assembly source file into a relocatable module

file that can be read in by the linkage editor. It therefore allows you to process

assembly source files that include macro directive commands.

Relocatable Assemble

• The as308 assembler is capable of relocatable assembling necessary

to develop a program in separated multiple files. It generates a relocat-

able module file from assembly source files that contains the relocat-

able information necessary to link multiple files.

• The ln308 editor references section information and global symbol infor-

mation in the relocatable module file generated by as308 while it deter-

mines the addresses for the absolute module file section by section.

Regarding hardware conditions, consider the actually used

system as you write source statements and perform link pro-

cessing. Hardware conditions refer to (1) RAM size and its

address range and (2) ROM size and its address range.

Programs as308 and ln308 have no concern for the physi-

cal address locations in the actual ROM and RAM of each

microcomputer in the M16C/80 series. Therefore, sections

of the DATA type may happen to be allocated in the chip's

ROM area depending of how files are linked. When linking

files, be sure to check the addresses in the actual chip to

ensure that sections are allocated correctly.

19

AS308 V.1.00 AS308 Functions

Unit of Address Management (Section)

AS308 manages addresses in units of sections.

Separation of sections are defined as follows:

• An interval from the line in which directive command ".SECTION" is writ-

ten to a line preceding the line where the next ".SECTION" is written.

• An interval from the line in which directive command ".SECTION" is writ-

ten to the line where directive command ".END" is written.

Sections cannot be nested by definition.

Start and end of a section
One section begins from a line where the section is defined and continues to

the end of th esource file (the line where directibe command .END is written)

or a line where another section is defined.

.SECTION ram,DATA ; start of ram section

work: .BLKB 10 ; end of ram section

.SECTION program,CODE ; start of program section

JSR sub1 ; end of program section

.SECTION subroutine ; start of subroutine section

sub1: NOP ;

MOV.W work ;

RTS ; end of subroutine section

.END ; End of Source

20

AS308 V.1.00 AS308 Functions

Type of Section
You can set a type for a section in which units addresses are controlled by

AS308. The instructions that can be written in a section vary with its type.

CODE (program area)

• This area is where a program is written.

• All commands except directive commands to allocate a memory area

can be written here.

• Specify that CODE-type sections be located in a ROM area in the abso-

lute module.

Example:
.SECTION program,CODE

DATA (variable data area)

• This area is where memory where contents can be modified is located.

• Directive commands to allocate a memory area can be written here.

• Specify that DATA-type sections be located in a RAM area in the abso-

lute module.

Example:
.SECTION mem,DATA

ROMDATA (fixed data area)

• This area is where fixed data other than programs is written.

• Directive commands to set data can be written here.

• All commands except directive commands to allocate a memory area

can be written here.

• Specify that ROMDATA-type sections be located in a ROM area in the

absolute module.

Example:
.SECTION const,ROMDATA

21

AS308 V.1.00 AS308 Functions

Section Attributes
Attribute is assigned to a section in which units addresses are controlled by

AS308 when assembling the source program.

Relative

• Addresses in the section become relocatable values when assembled.

• The values of labels defined in a relative-attribute section are relocat-

able.

Absolute

• Addresses in the section become absolute values when assembled.

• The values of labels defined in an absolute-attribute section are abso-

lute.

• If you want to assign a section an absolute attribute, specify its address

with directive command ".ORG" in a line following the line where direc-

tive command ".SECTION" is written.

Example:
.SECTION program,CODE

.ORG 1000H

Alignment of sections
Relative-attribute sections can be adjusted for alignment so that their start

addresses always fall on even addresses as addresses are determined when

linked. If you want sections to be aligned this way, specify "ALIGN" in the

operand of directive command ".SECTION".

Example:
.SECTION program,CODE,ALIGN

Rules on Section Management

This section describes how AS308 converts the source program written in mul-

tiple files into a single executable file.

22

AS308 V.1.00 AS308 Functions

Section Management by as308
• Absolute-attribute section have their absolute addresses determined se-

quentially beginning with the specified address.

• Relative-attribute section have their (relocatable) addresses determined

sequentially beginning with 0, section by section. All start addresses

(relocatable) of relative-attribute sections are 0.

Section Management by ln308
• Sections of the same names in all files are arranged in order of files

specified.

• Absolute addresses are determined sequentially beginning with the first

section thus sorted.

• Start addresses of sections are determined sequentially beginning with

0 unless otherwise specified.

• Sections that differ each other are located at contiguous addresses un-

less otherwise specified.

• Sections of the same name are allocated in order of files specified.

• Sections are allocated in the order they are entered in the file that is

specified first.

• If an attempt is made to allocate an absolute attribute after another ab-

solute attribute, ln308 outputs a warning.

• For section type "DATA", if addresses overlap in two or more sections,

ln308 outputs a warning. Sections will be allocated overlapping each

other.

• For section type "CODE" or "ROMDATA", if addresses overlap in two or

more sections, ln308 outputs an error.

• If an attempt is made to allocate an absolute attribute after a relative

attribute in sections of the same name, ln308 outputs an error.

• If section names are the same and information on section attribute or

type is inconsistent, ln308 outputs a warning.

23

AS308 V.1.00 AS308 Functions

Example of section allocation by ln308
The following shows an example of how sections are actually allocated.

Section definition of file1.a30

.SECTION program

:

.SECTION subroutine

.ORG 10000H

:

.END

Section definition of file2.a30

.SECTION subroutine

:

.SECTION interrupt

:

.END

Section definition of file3.a30

.SECTION interrupt

:

.SECTION program

:

.END

24

AS308 V.1.00 AS308 Functions

The example below shows how sections are located when their start addresses

are not specified by a link command.

Example 1

>ln308 file1 file2 file3

Result of section location

program REL CODE 000000 000003 file1

 REL CODE 000003 000003 file3

subroutine ABS CODE 001000 000003 file1

 REL CODE 001003 000002 file2

interrupt REL CODE 001005 000002 file2

 REL CODE 001007 000003 file3

Example 2

>ln308 file1 file2 file3 -order interrupt=0f000

Result of section location

interrupt REL CODE 00F000 000002 file2

 REL CODE 00F002 000003 file3

program REL CODE 00F005 000003 file1

 REL CODE 00F008 000003 file3

subroutine ABS CODE 001000 000003 file1

 REL CODE 001003 000002 file2

25

AS308 V.1.00 AS308 Functions

Label and symbol

The as308 assembler determines the values of labels and symbols defined in

the absolute attribute section. These values are not modified even when link-

ing. Furthermore, the label and symbol information of the following conditions

are output as relocatable information:

• Global label and global symbol
Information on global labels and global symbols are output to relocatable infor-

mation.

• Local label and local symbol
Information on local labels and local symbols are output to relocatable informa-

tion providing that they are defined in the relative attribute section. However, if

command options (-S and -SM) are specified when assembling, information on

all local labels and local symbols are output to a relocatable file.

Management of Label and Symbol Addresses

This section describes how the label, symbol, and bit symbol values are man-

aged by AS308.

AS308 divides the label, symbol, and bit symbol values into global, local, relo-

catable, and absolute as it handles them.

The following explains the definition of each type.

Global

• The labels and symbols specified with directive command ".GLB" are

made the global labels and global symbols, respectively.

• The bit symbols specified with directive command ".BTGLB" are made

the global bit symbols.

• The names defined in a file, if specified to be global, are made referencible

from an external file.

• The names not defined in a file, if specified to be global, are made the

external reference labels, symbols, or bit symbols that reference the

names defined in an external file.

26

AS308 V.1.00 AS308 Functions

Local

• All names specified with neither directive command ".GLB" nor ".BTGLB"

are made the local names.

• Local names can be referenced within the file in which they are defined.

• Local names can have the same label name used in other files.

Relocatable

• The values of local labels, symbols, and bit symbols in a relative-at-

tribute section are made the relocatable values.

• The values of the externally referencible global labels, symbols, and bit

symbols become relocatable values.

Absolute

• The values of the local labels, symbols, and bit symbols defined in an

absolute-attribute section become absolute values.

The diagram below shows the relationship of labels explained above.

Converting Relocatable Values

The ln308 editor converts the relocatable values in the relocatable module file

into absolute values in the following manner.

• Addresses determined after relocating sections are made the absolute

address.

• In the following cases, ln308 outputs a warning.
If the determined actual address lies outside the range of branch instructions

and addressing modes determined by as308.

27

AS308 V.1.00 AS308 Functions

Library File Referencing Function

If all of the following conditions are met, ln308 links relocatable modules en-

tered in a library file.

• Condition 1
Library file reference was specified on the command line.

• Condition 2
After all specified relocatable module files have been allocated, some global

labels remain whose values are depending determination.

The ln308 editor links the entire relocatable module where

necessary global labels are defined.

Rules for referencing library modules

The ln308 editor determines the relocatable modules to be linked in the order

described below. A relocatable module that has been determined to be linked

is relocated section by section. Sections are relocated in the same way as

sections are relocated in a relocatable module file.

1 The ln308 first searches the global label information of relocatable mod-

ules entered in a library file. Relocatable modules are referenced in the

order they are entered in the library file.

2 The labels searched from the library file are compared with the labels

whose values are pending. If any labels match, ln308 links this relocat-

able module in the library file to the absolute module file.

3 After going over the relocatable modules in the library file, if there re-

mains any global label whose value is pending (i.e., a relocatable mod-

ule in the library file contains an external reference label), ln308 again

searches modules in the library file in the order they are entered.

28

AS308 V.1.00 AS308 Functions

Example of referencing library modules

libsmp1.a30

.GLB sym1 ; External reference symbol

.SECTION progr1

:

.END

libsmp.lib

 libsmp2.a30

.GLB sym2

sym2 .EQU 2

.SECTION prog2

:

.END

 ibsmp3.a30

.GLB sym1

.GLB sym2 ; External reference symbol

sym1 .EQU 1

.SECTION prog3

:

.END

Input command to link

>ln308 libsmp1 -L libsmp.lib

Result to link

processing "libsmp1.r30"

processing "libsmp.lib (libsmp3.r30)"

processing "libsmp.lib (libsmp2.r30)"

29

AS308 V.1.00 AS308 Functions

Management of Include File

The as308 assembler can read an include file into any desired line of the source

program. This facility can be used to improve the legibility of your program.

Rules for Writing Include File

To write an include file, follow the same rules that you follow for writing a source

program.

Directive command ".END" cannot be written in an include

file.

Reading Include File into Source Program

Write the file name you want to be read in the operand of directive command

".INCLUDE". All contents of the include file are read into the position of this

line.

Example:
.INCLUDE initial.inc

30

AS308 V.1.00 AS308 Functions

Code Selection by AS308

The as308 assembler is designed to choose the shortest code possible from

the M16C/80 series's addressing modes. This section outlines the M16C/80

series's addressing modes and explains how to write mnemonics in the source

program.

Optimized Code Selection
The as308 assembler optimizes code selection when one of the following con-

ditions applies:

• Operands that have a valid value when assembling in which however,

no addressing mode is specified

• Operands in which symbols declared in ".SBSYM" or ".FBSYM" are used.

Outline of Mnemonic Description
The M16C/80 series allows you to write the specifiers listed below and an

addressing mode in its mnemonics and operands. The specifiers and ad-

dressing modes you can specify differ with each mnemonic. Refer to the "M16C/

80 Series Software Manual" for details on how to write mnemonics.

• Size specifier
Specify the size of the data to be operated on by the mnemonic. You cannot

omit this specifier; it must always be entered.

• Jump distance specifier
Specify the distance to the jump address of a branch instruction or subroutine

call instruction. (You normally do not need to specify this.)

• Instruction format specifier
Specify the format of op-code. The code lengths of op-code and operand differ

with each op-code format. (You normally do not need to specify this.)

• Addressing mode
Specify the addressing mode of operand data. You can omit this specification.

The section to specify the address range of relative addressing in AS308 is

referred to as an addressing mode specifier.

• Here, ':16' and ':8' are the addressing mode specifiers.
MOV.W work1:16[SB],work2:8[SB]

31

AS308 V.1.00 AS308 Functions

Optimized Selection by AS308

The as308 assembler generates optimum-selected or most suitable code for

the source statements shown below.

• When jump distance specifier is omitted

The jump distance specifier cannot be omitted if the oper-

and is indirect addressing. An error is generated if this speci-

fier is omitted.

• When instruction format specifier is omitted

• When addressing mode specifier is omitted

For an addressing mode with displacement, be sure to

specify the displacement.

• Combination of the above

The following explains optimum selection by as308 for each case listed above.

When jump distance specifier is omitted (normally omitted)

The as308 assembler performs optimum selection when all of the following

conditions are met:

• When the operand is written with one label.

• When the operand is written with an expression that contains one label.
Label + value determined when assembled

Label - value determined when assembled

Value determined when assembled + label

• When operand labels are defined in the same section.

• The section where the instruction is written and the section where the

operand label is defined both are absolute-attribute sections and are

written in the same file.

If conditions to perform optimum selection are not met, as308

generates code as directed by directive command ".OPTJ".

32

AS308 V.1.00 AS308 Functions

The following shows instructions selected by as308.

• Unconditional branch instruction
The shortest instruction possible to branch is selected from jump distances '.A',

'.W', '.B', and '.S'.

Size '.S' is selected only when the branch instruction and

the jump address label are present in the same section.

• Subroutine call instruction
The shortest instruction possible to branch is selected from jump distances '.A'

and '.W'.

• Conditional branch instruction
Jump distance '.B' or alternative instruction is generated.

The source line information in a list file is output directly as

written in the source lines. Code of alternative instruction is

output to the code information section.

Optimum selection is not performed for the 'ADJNZ' instruc-

tion.

When instruction format specifier is omitted (normally omit-

ted)

The instruction format specifier normally is omitted.

The as308 assembler performs optimum selection for mnemonics where in-

struction format specifiers are omitted.

If instruction format specifiers are omitted, as308 first determines the address-

ing mode before it selects the instruction format.

33

AS308 V.1.00 AS308 Functions

When addressing mode specifier is omitted

If addressing mode specifiers are omitted, as308 selects the most suitable

code in the following manner:

• In cases of addressing with displacement, if the displacement value is

determined when assembled, the most suitable addressing mode is

selected.

• If directive command ".SB" or ".FB" is defined, an 8-bit SB relative ad-

dressing mode (hereafter called SB relative) or 8-bit FB relative address-

ing mode (hereafter called FB relative) is selected depending on condi-

tion.

The next page shows the condition under which one of the two addressing

modes above is selected.

Selection of SB relative

SB relative is selected when the following conditions are met.

The SB register value must always be set using directive

command ".SB" before SB relative addressing can be used.

• When an operand value is determined when assembling the source pro-

gram and the determined value is in an addressing range in which SB

relative can be selected.
The SB relative selectable address range is a range in the 64-Kbyte address

space and range in the result added -0 to +255 to value of the 16-bit register

(SB).

Optimization is not performed unless the SB register value

is defined by an expression in which it will be determined

when assembling the source program.

• When the symbol declared by directive command ".SBSYM" is written

in the op-code.

34

AS308 V.1.00 AS308 Functions

For 1-bit operation instructions, the addressing mode is

selected in the following manner:

• When the mnemonic has a short format in its instruction format...
Short format SB relative is selected.

• When the mnemonic does not have a short format in its instruction for-

mat...
A 16-bit SB relative addressing mode is selected.

Selection of FB relative

FB relative is selected when the following conditions are met.

The FB register value must always be set using directive

command ".FB" before FB relative addressing can be used.

• When an operand value is determined when assembling the source pro-

gram and the determined value is in an addressing range in which FB

relative can be selected.
This address range is a range in the 64-Kbyte address space and range in the

result added -128 to +127 to value of the 16-bit register (FB).

• When the symbol declared by directive command ".FBSYM" is written in

the op-code.

• When the following expression that includes a symbol defined by direc-

tive command ".FBSYM" is written in the op- code.
(symbol) - value determined when assembled

(symbol) + value determined when assembled

Value determined when assembled + (symbol)

35

AS308 V.1.00 AS308 Functions

Example of Optimization Selection by as308

The examples below show the addressing modes optimum selected by as308

and how they are written in the source file.

Address register relative with 8-bit displacement

Example:
sym1 .EQU 11H

ABS.B sym1+1[A0]

SB relative

Example 1:
sym2 .EQU 2

sym3 .EQU 3

.SB 0

.SBSYM sym3

ABS.B sym3-sym2

Example 2:
.SB 100H

sym4 .EQU 108H

ABS.B sym4

36

AS308 V.1.00 AS308 Functions

SB Register Offset Description

Programming with AS308 allows you to enter a description to specify an offset

address from the SB register value.

Function

• Operation is performed on the address value specified by the directive

command ".SB" plus a specified offset value.

• Code is generated in SB relative addressing mode.

Rules for writing command

• This description can be entered for an operand where the SB relative

addressing mode can be written.

• A label, symbol, or numeric value can be used to write the offset.

Description example
sym1 .EQU 1200H

.SECTION P

.SB 1000H

MOV.B #0,sym1[SB]

MOV.B #0,sym1[-SB]

.END

AAAAAAAAAA

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAASB register value : 1000HAAAAA

AAAAAAAAAAsym1[SB] : add 1200H to 1000 H

sym1[-SB] : add 1000H to 200H

sym1-SBregister value
1200H-1000H

37

AS308 V.1.00 AS308 Functions

Special Page Branch

The M16C/80 series assembly language allows you to branch at a special

page using a special page vector table by writing a "JMPS" mnemonic.

Special Page Subroutine
The M16C/80 series assembly language allows you to call a special page sub-

routine using a special page vector table by writing a "JSRS" mnemonic.

Special Page Vector Table
The following outlines the special page vector table:

• The special page vector table is allocated in addresses 0FFFE00H to

0FFFFDBH.

• One vector table consists of two bytes.

• Each vector table is assigned a special page number.

• The special page number decreases from 255 to 254, and so on every 2

bytes beginning with address 0FFFE00H.

For details about the special page vector table, refer to the "M16C/80 Series

Software Manual."

This manual only shows how to set and reference the special page vector

table.

38

AS308 V.1.00 AS308 Functions

Setting Special Page Vector Table
The special page vector table is used to store the 16 low-order bits of an ad-

dress in the special page.

Rules for writing command

• Always be sure to define a section.

• Use the directive command ".ORG" to define the absolute address.

The address you set here must be an even-numbered ad-

dress.

• Use the directive command ".WORD" to store the 16 low-order bits of an

address in the special page in ROM.

Description example

.SECTION sp_vect,ROMDATA

.ORG 0FFFE00H

sub1: .WORD label_0 & 0FFFFH ; Special page number 255

sub2: .WORD label_1 & 0FFFFH ; Special page number 254

sub3: .WORD label_2 & 0FFFFH ; Special page number 253

;

.ORG 0FFFFDAH

sub238: .WORD label_237 & 0FFFFH

AAAA
AAAA
AAAA

AAAA
AAAA

FFFE00
(sub1)

FFFE02
(sub2)

FFFE04
(sub3)

00

02

04

00

00

00

AAAAA
AAAAA
AAAAA

AAAAA
AAAAA

B3

B4

FC

F3

F3

00

FF0000
(label_0)

FF0002
(label_1)

FF0004
(label_2)

:

39

AS308 V.1.00 AS308 Functions

Referencing Special Page Vector Table

There are two methods to reference the special page vector table as described

below.

• Specify your desired special page number.

• Specify the address of your desired special page vector table.

Rules for writing command

• When specifying a special page number, always be sure to write "#" at

the beginning of the number.

• When specifying the address of a special page vector table, always be

sure to write "\" at the beginning of the address.

Description example
.SECTION p

main:

JSRS \sub1

JSRS \sub2

JSRS \sub3

.SECTION special

.ORG 0FF0000H

label_0:

MOV.B #0,R0H

RTS

label_1:

MOV.B #0,R0L

RTS

label_2:

JMP main

.END

The content of ".SECTION p" in the above example can be written differently,

like the one shown below.
.SECTION p

main:

JSRS #255

JSRS #254

JMPS #253

40

AS308 V.1.00 AS308 Functions

Macro Function

This section describes the macro functions that can be used with AS308. The

following lists the macro functions available for AS308:

• Macro function
To use a macro function, define it with directive commands ".MACRO" and

".ENDM" and call up the defined macro.

• Repeat macro function
To use a repeat macro function, use directive commands ".MREPEAT" and

".ENDR" to define it.

Each macro function is described below.

Macro Function

• A macro function can be used by defining a macro name (macro defini-

tion) and calling up the macro (macro call).

• A macro function cannot be made available for use by macro definition

alone.

• Macro definition and macro call have the following relationship.

Example of source program After expansion

AAAAA
AAAAA

.SECTION program
main:

:
Body
.END

mac .MACRO
Body
.ENDM

.SECTION program
main:

:
mac
.END

AAAA
AAAA

Macro definition

Macro call Expanded macro
positionAAAA

AAAA

41

AS308 V.1.00 AS308 Functions

Macro Definition

• Macro definition means defining a collection of more than one line of

instructions to a single macro name by using directive command

".MACRO".

• Macro names and macro arguments are case-sensitive, so that lower-

case and uppercase letters are handled differently.

• End of macro definition is indicated by directive command ".ENDM".

• Lines enclosed with directive commands ".MACRO" and ".ENDM" are

called the macro body.

• Macro definition can have formal parameters defined.

• Recursive definition is allowed for macro definition.

• Macros can be nested in up to 65,535 levels including both macro defi-

nition and macro call.

• Macros of the same name can be redefined.

• Macro definition can be entered outside the range of a section.

• Any instructions you can write in source programs can be written in the

macro body.

Bit symbols cannot be written in the macro body.

• Macro formal parameters (up to 80 arguments) can be written.

• Macro local labels can be written for up to a total of 65,535 labels in one

assembly source file.

Macro Local Labels

• The labels defined with directive command ".LOCAL" are made macro

local labels.

• Macro local labels can be used in only macro definition.

• The label names declared to be macro local labels are allowed to be

written in places outside the macro with the same name.

• The labels you want to be used as macro local labels must first be de-

clared to be a macro local label before you define the label.

42

AS308 V.1.00 AS308 Functions

Macro Call

• Macro call can be accomplished by writing a macro name that has been

defined with directive command ".MACRO".

• Code for the macro body is generated by macro call.

• Macro names cannot be forward referenced (i.e., you cannot call a macro

name that is defined somewhere after the line where macro call is writ-

ten). Always make sure that macro definition is written in places before

the macro call line.

• Macro names cannot be externally referenced (i.e., you cannot call a

macro name that is defined in some other file). If you want to call the

same macro from multiple files, define the macro in an include file and

include it in your source file.

• The content of the macro-defined macro body is expanded into the line

from which the macro is called.

• Actual parameters corresponding to macro-defined formal parameters

can be written.

Macro definition

Macro call

Formal parameter

 Real parameter

p1 and work correspond
one for one.
0 and p2 correspond one
for one.

 In this example, a warning message is output because there is no real argument
corresponding to p3.

AAA
AAA

mac .MACRO p1,p2,p3
Body
.ENDM

mac work,#0

AAA

43

AS308 V.1.00 AS308 Functions

Repeat Macro Function

• The macro body enclosed between directive commands ".MREPEAT"

and ".ENDR" is expanded repeatedly into places after the specified line

a specified number of times.

• Repeat macros are expanded into the defined line.

• Labels can be written in repeat macro definition lines.

This label is not a macro name. There is no macro call avail-

able for repeat macros.

Conditional Assemble Control

The as308 assembler allows you to specify whether or not you want a speci-

fied range of lines to be assembled by using conditional assemble directive

commands.

Configuration of Conditional Assemble Block

The diagram below shows the configuration of a conditional assemble block.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

Conditional
assemble
block

Conditional assemble
block can be written.

Conditional assemble
block can be written.
Can be omitted.
Can be written for
multiple instances.

Conditional assemble
block can be written.
Can be omitted.

Nest

CE=Conditional expression

.IF CE

Body

.ELIF CE

Body

.ELSE

Body

.ENDIF

.IF CE

Body

.ELIF CE

Body

.ELSE

Body

.ENDIF

44

AS308 V.1.00 AS308 Functions

Executing Conditional Assemble

The following shows examples of how conditional assemble is executed after

selecting from three messages. Here, the assembly source file name is

"sample.a30".

Conditional assemble execution examples are shown below.

Assebly Source File)

.SECTION outdata,ROMDATA,ALIGN

.IF TYPE==0

.BYTE "PROTO TYPE"

.ELIF TYPE>0

.BYTE "MASS PRODUCTION TYPE"

.ELSE

.BYTE "DEBUG MODE"

.ENDIF

.END

Command Input 1)

>as308 sample -Dtype=0

Assembled Result 1)

.SECTION outdata,ROMDATA,ALIGN

.BYTE "PROTO TYPE"

.END

45

AS308 V.1.00 AS308 Functions

Command Input 2)

>as308 sample -Dtype=1

Assembled Result 2)

.SECTION outdata,ROMDATA,ALIGN

.BYTE "MASS PRODUCTION TYPE"

.END

Command Input 3)

>as308 sample -Dtype=-1

Assembled Result 3)

.SECTION outdata,ROMDATA,ALIGN

.BYTE "DEBUG MODE"

.END

Next, the following shows an example of how to set a value to "TYPE" in the

assembly source file.

TYPE .EQU 0

.SECTION outdata,ROMDATA,ALIGN

.IF TYPE==0

.BYTE "PROTO TYPE"

.ELIF TYPE>0

.BYTE "MASS PRODUCTION TYPE"

.ELSE

.BYTE "DEBUG MODE"

.ENDIF

.END

46

AS308 V.1.00 AS308 Functions

Source Line Information Output

The as308 assembler outputs to a relocatable module file the information that

is necessary to implement source debugging of "NC308" and "Macro descrip-

tion of AS308."

Symbol Definition

The as308 assembler allows you to define symbols by entering command op-

tion (-D) when starting up the program. This function can be used in combina-

tion with a condition assemble function, etc.

Environment Variables of as308

The as308 assembler references the environment variables listed below.

Environment Variables Program

AS308COM as308

BIN308 as308

INC308 as308

LIB308 ln308

TMP308 as308,ln308,lb308

AS308COM
The as308 assembler adds the command options set in the environment vari-

ables as it processes a file.

The command options set in this environment variable can be nullified by us-

ing two consecutive hyphens (--).

The command options listed below can be set to this environment variable.

47

AS308 V.1.00 AS308 Functions

How to set up AS308COM

PC version
SET AS308COM=-L -N -S -T

Workstation version
setenv AS308COM '-L -N -S -T'

When setting a character string containing spaces to this

environment variable while operating on a workstation, al-

ways be sure to enclose the character string with quotations

as you enter it.

How to clear the settings on AS308COM

PC version
SET AS308COM=

Workstation version
unsetenv AS308COM

Example for using AS308COM

When environment variable AS308COM is set, as308 sets the command op-

tions in the following order.

1 as308 first sets the command options set in AS308COM.

2 as308 sets the command options entered from a command line.

The following shows an example for setting an option to AS308COM, an ex-

ample for entering a command option from a command line, and an example

of a valid command option.

Example for setting up AS308COM
SET OPT308=-L -N -S -L

Command input example -1
as308 -Dsym=0 --N

Option that becomes valid when executing as308 -1
as308 -Dsym=0 -L -S -T

Command input example -2
as308 -O\tmp --T -SM -LM

Option that becomes valid when executing as308 -2
as308 -O\tmp -N -SM -LM

48

AS308 V.1.00 AS308 Functions

BIN308
The assembler driver (as308) invokes the macro processor and assembler

processor residing in the directory you have set.

If this variable is set, always make sure that macroprocessor and assembler

processor are placed in the directory you have set.

INC308
The assembler as308 retrieves include files written in the assembly source file

from the directory set in INC308. Multiple directories can be specified. If mul-

tiple directories are specified, as308 searches the directories sequentially from

left to right in the order they are written.

How to set INC308

Personal computer version
Separate the directory names with a semicolon as you write them.

SET INC308=C:\COMMON;C:\PROJECT

Workstation version
Separate the directory names with a colon as you write them.

setenv INC308 /usr/common/:/usr/project

TMP308
Programs generate a work file necessary to process files in the directory that is

set in this environment variable.

The work file normally is erased after as308 finishes its processing.

49

AS308 V.1.00 AS308 Functions

Output messages

The programs are included this products output informations of process to

screen.

Error Messages

This chapter describes the error messages output by each AS308 program.

Types of Errors

There are following two types of error messages.

• Error message
This refers to an error encountered during program execution that renders the

program unable to perform its basic function.

• Warning message
This refers to an error encountered during program execution that presents some

problem even though it is possible to perform the basic function of the program.

Please try to solve all problems that have caused genera-

tion of a warning message. Some warnings may result in a

fault when operating your system on the actual chip although

no problem might have been encountered during debugging.

50

AS308 V.1.00 AS308 Functions

Return Values for Errors

When terminating execution, each AS308 program returns a numeric value to

the OS indicating its status at termination.

The table below lists the values that are returned when an error is encoun-

tered.

Return value Content

0 Program terminated normaly.

1 Program was forciby terminated by input of control C.

2 Error relating ro the OS's file system or memory system

occured.

3 Error attributeable to the file being processed occured.

4 Error in input form the command line occured.

51

AS308 V.1.00 AS308 Functions

Compatibility with M16C/60 commands

AS308 supports the -mode60 command option. This option assembles pro-

grams developed with AS30.

The below commands cannot be replaced even when using

the -mode60 command option. Change the source program.

• MOVA src,R0

• MOVA src,R1

• MOVA src,R2

• MOVA src,R3

src= dsp[A0],dsp[A1],dsp[SB],dsp[FB],abs16

• JMPI.A A1A0

• JSRI.A A1A0

• PUSHC INTBL

• PUSHC INTBH

• POPC INTBL

• POPC INTBH

• MUL.W generic,A0

• MULU.W generic,A0

generic= R0,R1,R2,R3,A0,A1,[A0],[A1]

dsp[SB],dsp[FB],dsp[A0],dsp[A1],abs16

• LDC

• STC

• LDE.B/W [A1A0],generic

• STE.B/W generic,[A1A0]

generic= R0L/R0,R0H/R1,R1L/R2,R1H/R3

A0,A1,[A0],[A1],dsp[SB],dsp[FB]

dsp[A0],dsp[A1],abs16

• BSET:G bit,R2

• BSET:G bit,R3

• BAND, BCLR, BNAND, BNOR, BNOT, BNTST, BNXOR, BOR, BTST,

BTSTC, BTSTS, BXOR and BM are not replaced in the same way as

BSET.

52

AS308 V.1.00 AS308 Functions

AS308 processing when option command -mode60 is specified

When the command option -mode60 is specified, processing with AS308 is as

follows.

• Format specifiers of the MOV, CMP, OR, SUB, AND, NOT, PUSH and

POP commands are ignored.

• Addressing mode specifiers of the JMPI and JSRI commands are ig-

nored.

• Format specifiers of the ADD command are ignored.

• When adding to the stack pointer (SP) using the ADD command, the

size specifier is processed as ".L".

• LDINTB is replaced with LDC before processing.

• The STZ, STNZ and STZX commands are processed by byte size.

• The LDE and STE commands are replaced with the MOV command

before processing.

• 1-bit operating commands are replaced with commands for AS308 be-

fore processing.

• Bit operating commands BAND, BCLR, BNAND, BNOR, BNOT, BNTST,

BNXOR, BOR, BTST, BTSTC, BTSTS, BXOR and BMcnd are replaced

in the same way as BSET. See the replacement command list.

53

AS308 V.1.00 AS308 Functions

Replacement command list

AS30 source format >> Format when replaced

LDINTB #imm20 LDC #imm24,INTB

LDE.B/W abs:20,dest MOV.B/W abs,dest

LDE.B/W dsp:20[A0],dest MOV.B/W dsp[A0],dest

STE.B/W src,abs:20 MOV.B/W src,abs

STE.B/W src,dsp:20[A0] MOV.B/W src,dsp[A0]

BSET:G bit,R0 BSET bit,R0L

BSET bit,R0H

BSET:G bit,R1 BSET bit,R1L

BSET bit,R1H

BSET:G bit,A0 Assembly is possible for bits 0 ~ 7.

BSET:G bit,A1 Assembly is possible for bits 0 ~ 7.

BSET:G [A0] BITINDEX.B [A0]

BSET 0,0

BSET:G [A1] BITINDEX.B [A1]

BSET 0,0

BSET:G base:8[A0] BITINDEX.B [A0]

BSET 0,base

BSET:G base:16[A0] BITINDEX.B [A0]

BSET 0,base

BSET:G base:8[A1] BITINDEX.B [A1]

BSET 0,base

BSET:G base:16[A1] BITINDEX.B [A1]

BSET 0,base

BSET:G bit,base:8[SB] BSET bit,base[SB]

BSET:S bit,base:11[SB]

BSET:G bit,base:16[SB]

BSET:G bit,base:8[FB] BSET bit,base[FB]

BSET:G bit,base:16 BSET bit,base

54

AS308 V.1.00 Input/Output Files of AS308

Input/Output Files of AS308

The table below lists the types of files input for AS308 and those output by

AS308. Any desired file names can be assigned. However, if the extension of

a file name is omitted, AS308 adds the extension shown in () in the table

below by default.

as308

Input Files Output Files

Source file (.a30) Relocatable module file (.r30)

Include file (.inc) Assembler list file (.lst)

Assembler error tag file (.atg)

ln308

Input Files Output Files

Relocatable module file (.r30) Absolute module file (.x30)

Library file (.lib) Map file (.map)

Linkage error tag file (.ltg)

lmc308

Input Files Output Files

Absolute module file (.x30) Motorola S format file (.mot)

Intel HEX format file (.hex

55

AS308 V.1.00 Input/Output Files of AS308

lb308

Input Files Output Files

Relocatable mofule file (.r30) Library file (.lib)

Relocatable module file (.r30)

Library list file (.lls)

xrf308

Input Files Output Files

Source file (.a30) Cross reference file (.xrf)

Assembler list file (.lst)

abs308

Input Files Output Files

Absolute module file (.x30) Absolute list file (.als)

Assembler list file (.lst)

56

AS308 V.1.00 Input/Output Files of AS308

Relocatable Module File

A relocatable module file is one of the files generated by as308. This file is

linked by ln308 to generate an absolute module file.

Format of relocatable module file

The relocatable module file generated by as308 is based on the IEEE-695

format.

Since this file comes in a binary format, it cannot be output

to a display screen or printer; nor can it be edited. Note that

if you open or edit this file with an editor, file processing in

the subsequent stages will not be performed normally.

File name of relocatable module file

The file name of the relocatable module file is created by changing the exten-

sion of the assembly source file (.a308 by default) to "r30." (sample.a30 -->

sample.r30)

Directory for relocatable module file generated

If you specified the directory with command option (- O), the relocatable mod-

ule file is generated in that directory. If no directory is specified, the relocatable

module file is generated in the directory where the assembly source file re-

sides.

57

AS308 V.1.00 Input/Output Files of AS308

Assembler List File

Only when you specified command option (-L or -LM), as308 generates source

line information and relocatable information as a file in text format that can be

output to a display screen or printer .

Format of assembler list file

The information listed below is output to an assembler list file. The output

format of this assembler list file is shown in Example of Assembler List File -1.

(1) List line information : SEQ.

Outputs the line numbers of the assembler list.

(2) Location information : LOC.

Outputs the location addresses of a range of object code that can be deter-

mined when assembling.

(3) Object code information : OBJ.

Outputs the object code corresponding to mnemonics.

(4) Line information : 0XMSDA

Outputs information on the results of source line processing performed by as308.

Specifically, this information contains the following:

0 XMSDA Contents

0-9 Indicates the include file's nest lebel.

 x Indicates that this line was not assembled in condition asemble.

 M Indicates that this is a macro expansion line.

 S Indicates that jump distance specifier S was selected.

 B Indicates that jump distance spedifier B was selected.

 W Indicates that jump distance spedifier W was selected.

 A Indicates that jump distance spedifier A was selected.

 Z Indicates that zero form (:Z) was selected for the instruction for-

mat.

 S Indicates that short form (:S) was selected for the instruction for-

mat.

 Q Indicates that quick form (:Q) was selected for the instruction for-

mat.

 * Indicates that 8-bit displacement SB relative addressing mode

was selected.

58

AS308 V.1.00 Input/Output Files of AS308

(5) Source line information :*....SOURCE STATEMENT....

Outputs the assembly source line.

File name of assembler list file

The file name of the assembler list file is created by changing the extension of

the assembly source file (.a30 by default) to ".lst" (sample.a30 --> sample.lst)

Directory for assembler list file generated

If you specified the directory with command option (- O), the assembler list file

is generated in that directory. If no directory is specified, the assembler list file

is generated in the directory where the assembly source file resides.

Assembler Error Tag File

Only when you specified command options (-T and -X), as308 outputs to a file

the errors that were encountered when assembling the assembly source file.

Format of assembler error tag file

The assembler error tag file is output in a format that allows you to use an

editor's tag jump function.

This file is output in order of the assembly source file name, error line number,

and error message as shown below.
sample.err 21 Error (asp308): Operand value is not defined

sample.err 72 Error (asp308): Undefined symbol exist "work2"

File name of assembler error tag file

The file name of the assembler error tag file is created by changing the exten-

sion of the assembly source file (.a30 by default) to ".atg" (sample.a30 -->

sample.atg)

Directory for assembler error tag file generated

If you specified the directory with command option (- O), the assembler error

tag file is generated in that directory. If no directory is specified, the assembler

error tag file is generated in the directory where the assembly source file re-

sides.

59

AS308 V.1.00 Input/Output Files of AS308

Absolute Module File

The ln308 editor generates one absolute module file from multiple relocatable

module files.

Format of absolute module file

This file is output in the format based on IEEE-695.

Since this file comes in a binary format, it cannot be output

to a screen or printer; nor can it be edited. Note that if you

open or edit this file with an editor, file processing in the

subsequent stages will not be performed normally.

File name of absolute module file

The file name of the absolute module file normally is created by changing the

extension ".r30" of the relocatable module file that is entered first from the

command line into ".x30". (sample.r30 --> sample.x30)

If you specify a file name using command option (-O), the file is generated in

specified name.

Directory for absolute module file generated

The absolute module file normally is generated in the current directory.

If you specify a path in the file name of command option (-O), the absolute

module file is generated in the directory of that path.

60

AS308 V.1.00 Input/Output Files of AS308

Map File

Only when you specify command option (-M, -MS or -MSL), ln308 outputs link

information on last allocated section address, and symbol information to a map

file. Symbol information is output only when you specify command option (-MS

or -MSL).

Format of map file

The information below is output to a map file sequentially in a list form. The

output format of a typical map file is shown in Example of Map File.

(1) Link information
This information includes command lines, relocatable module file names, and

the dates when the relocatable module files were created.

(2) Section information
This information includes the relocated section names, attributes, types, store

addresses, section sizes, whether or not sections are aligned, and module names

(relocatable module file names).

(3) Global label information
This information includes global label names and addresses. This information

is output only when you specify command option "-MS/-MSL".

(4) Global symbol information
This information includes global symbol names and numeric values. This infor-

mation is output only when you specify command option "-MS/-MSL".

(5) Global bit symbol information
This information includes global bit symbol names, bit positions, and memory

addresses. This information is output only when you specify command option "-

MS/-MSL".

(6) Local label information
This information includes module names (relocatable module file names), local

label names, and addresses. This information is output only when you specify

command option "-MS/-MSL".

(7) Local symbol information
This information includes module names (relocatable module file names), local

symbol names, and numeric values. This information is output only when you

specify command option "-MS/-MSL".

(8) Local bit symbol information
This information includes module names (relocatable module file names), local

bit symbol names, bit positions, and memory addresses. This information is

output only when you specify command option "-MS/-MSL".

61

AS308 V.1.00 Input/Output Files of AS308

File name of map file

The file name of the map file is created by changing the extension ".x30" of the

absolute module file into ".map". (sample.x30 --> sample.map)

Directory for map file generated

The map file is generated in the directory where the absolute module file re-

sides.

Link Error Tag File

Only when you specify command option (-T), ln308 outputs link error informa-

tion to a file. In this case, locations in error are output with the assembly

source lines.

Format of link error tag file

This file is output in the same format as an assembler error tag file. An editor's

tag jump function can be used.

The link error tag file is output in order of the assembly source file name, error

line number, and error message as shown below.
smp.inc 2 Warning (ln308): smp2.r30 : Absolute-section is written

after the absolute-section 'ppp'

smp.inc 2 Error (ln308): smp2.r30 : Address is overlapped in 'CODE'

section 'ppp'

File name of link error tag file

The file name of the link error tag file is created by changing the extension

".x30" of the absolute module file into ".ltg". (sample.x30 --> sample.ltg)

Directory for link error tag file generated

The link error tag file is generated in the directory where the absolute module

file resides.

62

AS308 V.1.00 Input/Output Files of AS308

Motorola S Format

The lmc308 generates a Motorola S format file that can be programmed into

EPROM.

Format of Motorola S file

The following can be specified when generating a Motorola S format file.

• Set the length of one data record to 16 bytes or 32 bytes.

• Set the start address of a program.

File name of Motorola S file

The file name of the Motorola S file is created by changing the extension ".x30"

of the absolute module file into ".mot". (sample.x30 --> sample.mot)

Directory for Motorola S file generated

The files are generated in the current directory.

Intel HEX Format

Only when you specify command option (-H), lmc308 generates an Intel HEX

format file that can be programmed into EPROM.

Format of Intel HEX file

The following can be specified when generating an Intel HEX format file.

• Set the length of one data record to 16 bytes or 32 bytes.

IF the address value exceeds 1Mbytes of machine language

file, the file of Original HEX format for Mitsubishi microcom-

puters is generated. This file can not be program into

EPROM.

63

AS308 V.1.00 Input/Output Files of AS308

File name of Intel HEX file

The file name of the Intel HEX file is created by changing the extension ".x30"

of the absolute module file into ".hex". (sample.x30 --> sample.hex)

Directory for Motorola S file generated

The files are generated in the current directory.

Library File

The lb308 librarian generates one library file from the relocatable module files

generated by as308 by integrating them as modules into a single file.

Format of library file

The library file is based on the IEEE-695 format.

Since this file comes in a binary format, it cannot be output

to a screen or printer; nor can it be edited. If you open or

edit this file with an editor, file processing in the subsequent

stages will not be performed normally.

File name of library file

The library file is generated using the file name specified on the command line.

The extension is ".lib". A library file name cannot be omitted on the command

line.

Directory for library file generated

If a path is specified on the command line, the library file is generated in that

directory. If no path is specified, the library file is generated in the current

directory.

64

AS308 V.1.00 Input/Output Files of AS308

Library List File

The lb308 librarian generates a list file indicating library files and the relocat-

able modules entered in each library file.

Format of library list file

This file is output in a text format that can be output to a screen and printer. By

referencing this file, it is possible to get approximate information about the

relocatable modules entered in the library file. The format of a typical library

list file is shown in Example of Library List File.

The following shows the information output to a library list file.

(1) Library file information

This information is output one for each library file. The library file information

contains the following:

• Library file name (Library file name:)

Indicates the library file name.

• File update date and time (Last update time:)

Indicates the date and time the library file was updated last.

• Number of modules (Number of module(s):)

Indicates the total number of modules entered in the library file.

• Number of global symbols (Number of global symbol(s):)
Indicates the total number of global labels and global symbols entered in the

library file.

65

AS308 V.1.00 Input/Output Files of AS308

(2) Module information

This information is output one for each module entered in the library file. The

module information contains the following:

• Module name (Module name:)

Indicates the module names entered in the library file.

• Version information (.Ver:)
Indicates a character string that is specified by the directive command ".VER".

• Entered date and time (Date:)

Indicates the date and time when each module is entered in the library file.

• Module size (Size:)

Indicates the code and data sizes of the modules entered in the library file.

These sizes differ from the file sizes of the relocatable mod-

ule files.

• Global symbol name (Global symbol(s):)

Indicates the global symbol and global label names defined in the modules.

• External reference symbol name
Indicates the global symbol and global label names externally referenced by the

module.

Example of Library List file

Librarian (lb308) for M16C/80 Series Version 1.00.00

Library file name: libsmp.lib

Last update time: 1995-Jul-7 15:44

Number of module(s): 1

Number of global symbol(s): 12

Module name: sample

.Ver: .VER "sample program file"

Date: 1995-Jul-7 15:43

Size: 00894H

Global symbol(s): btsym5 btsym6 btsym7

 btsym8 btsym9 sub1

 sub2 sym5 sym6

 sym7 sym8 sym9

66

AS308 V.1.00 Input/Output Files of AS308

Cross Reference File

The xrf308 generates from the assembly source file a file that contains sum-

mary information on lines where symbols and labels are defined and refer-

enced.

Format of cross reference file

This file is output in a text format that can be output to a screen and printer.

Therefore, you can print this file to a printer during debugging and check posi-

tions in the assembly source file where symbols are defined. The format of a

typical cross reference file is shown in Example of Cross Reference File.

Information in cross reference file

The following explains the information that is output to a cross reference file.

(1) Label name
This indicates a label name.

(2) File name
This indicates a file name in which the above label is written.

(3) Reference line number and classification symbol
This indicates a line number in which the label is defined and declared and a

symbol denoting its classification as follows:

:d Definition line

:j Reference line for branch instruction

:s Reference line for subroutine call instruction

Example of Cross Reference File

btsym0

 sample.a30

 00023:d

btsym1

 sample.a30

 00024:d

btsym2

 sample.a30

 00025:d

btsym20

 sample.a30

 00033:d

67

AS308 V.1.00 Input/Output Files of AS308

File name of cross reference file

The file name of the cross reference file is created by changing the extension

of the assembler list file (.lst) or assembly source file (.a30) to ".xrf". (sample.lst

--> sample.xrf; sample.a30 --> sample.xrf)

However, if multiple file names are specified, the cross reference file name is

derived from the first specified file name by changing its extension to ".xrf."

Directory for cross reference file generated

If a path is specified on the command line, the cross reference file is generated

in that directory.

If a directory is specified with command option (-O), the cross reference file is

generated in that directory.

If a directory is not specified in neither way, the file is generated in the current

directory.

Absolute List File

The absolute list files generated by abs308 are output in a format that can be

output to a screen or printer.

Format of absolute list file

The absolute list file is the same format as that of the assembler list file except

that location information is converted into absolute address information.

File name of absolute list file

The file name of the absolute list file is derived by changing the extension of

the assembler list file (.lst) to ".als". (sample.lst --> sample.als)

Directory for absolute list file generated

If command option (-O) is specified, the absolute list file is generated in that

directory.

Otherwise, the file is generated in the current directory.

AS308 V.1.00

68

Starting Up Program

Starting Up Program

This section explains the basic method for operating each program included

with AS308.

To operate any program included with AS308, always input a command from

the prompt of your personal computer or workstation.

Precautions on Entering Commands

• When using Windows, be sure to use the MS-DOS prompt to input a

command.

• Although personal computers do not discriminate between uppercase

and lowercase letters you input from the prompt, workstations are case

sensitive. Therefore, when starting up each AS308 program on a work-

station, always be sure to input program names using lowercase letters.

• Workstations discriminate between uppercase and lowercase letters in

file names as they process files.

Structure of Command Line

Input the following information on a command line.

Program Name

This is the name of a program you want to use.

When operating on a workstation, always be sure to input a

program name using lowercase letters.

AS308 V.1.00

69

Starting Up Program

Command Parameter

All information necessary to execute a program correctly is called "command

parameters." For example, command parameters include the file names to be

processed by the program you are going to start up and the command options

that indicate program functions using symbols.

Command parameters include the following information:

• File name
This means the name of a file to be processed by the program started up.

When operating on a workstation, use uppercase and low-

ercase letters correctly as you input a file name.

• Command option
Specify command options on the command line to use the functions of AS308

programs.

Rules for Entering Command Line

When starting up each AS308 program, observe the rules for entering a com-

mand line described below.

Number of Characters on Command Line

• The number of characters that can be entered on a command line is 128

characters (bytes) for the PC version or 512 characters (bytes) for the

workstation version.

The number of characters may be limited below the above

specification depending on the operating environment (type

of OS) of AS308.

AS308 V.1.00

70

Starting Up Program

Method for Entering Command Line

• Always be sure to enter space between the startup program name and

the file name.

• Always be sure to enter space between the file name and each com-

mand option.

File Name

• The maximum length of a file name is 128 characters (bytes) including

directory specification for the PC version or 512 characters (bytes) in-

cluding directory specification for the workstation version. However, the

number of characters on a command line must not exceed the above-

mentioned size including the startup program name and all command

options.

• Descriptions of file names are subject to the naming conventions of the

PC and workstation OS in addition to the above rules. Refer to the

user's manual of your OS for details.

Although workstations permit you to use a file name that is

separated by the period (.) in two or more places, this does

not apply when using AS308. AS308 allows use of the pe-

riod in only one place of a file name. Furthermore, some

AS308 programs restrict file name extensions (characters

following the period) also. Refer to the method for starting

up each AS308 program for details.

Command Options

• Command options are not case sensitive regardless of whether you are

operating on a PC or workstation. Therefore, they can be entered in

either uppercase or lowercase.

• Always be sure to add a hyphen (-) when entering a command option.

71

AS308 V.1.00 Method for Operating as308

Method for Operating as308

This section explains the method for operating as308 to utilize its functions.

The basic function of as308 is to generate a relocatable module file from the

assembly source file.

Command Parameters

The table below lists the command parameters of as308.

Parameter name Function

Source file name Source file name to be processed by as308.

-. Disables message output to a display screen.

-abs16 To specify the 16-bit absolute addressing mode

-C Indicates contents of command lines when as308 has in-

voked macro processor and assemble processor.

-D Sets constants to symbols.

-F Fixes the file nameof ..FILE expansion to the source file

name.

-H Header information is not output to an assembler list file.

-L Generates an assembler list file.

-mode60 To specify AS308 programs

-mode60p To process structured commands for AS30

-M Generates structured description command variables in byte type.

-N Disables output of macro command line information.

-O Specifies a directory to which the generated file is output.

-S Specifies that localsymbol information be output.

-T Generates an assembler error tag file.

-V Indicates the version of the assembler system program.

-X Invokes an external program as a tag file argument.

72

AS308 V.1.00 Method for Operating as308

Rules for Specifying Command Parameters

Follow the rules described below to specify the command parameters of as308.

Order in which to specify command parameter

• Command parameters can be specified in any desired order.
as308 (assembly source file) (command option)

Assembly source file name (essential)

• Always be sure to specify one or more assembly source file names.

• A path can be specified for the assembly source file name.

• Up to 80 assembly source file names can be specified.

If any of the multiple assembly source files thus specified

contains an error, that file is not processed in the subse-

quent processing stages.

• Assembly source files with extension ".a30" can have their extensions

omitted when you specify them.

Command options

• Command options can be omitted.

• Multiple command options can be specified.

• Some command options allow you to specify a character string or a

numeric value.

Do not enter a space or tab between the command option

and the character string or numeric value.

• If you want a subsequent command option to be nullified, add two con-

secutive hyphens (--) when entering that command option.

Command options can only be nullified in as308. There-

fore, this function cannot be used when starting up any other

program.

73

AS308 V.1.00 Method for Operating as308

Example:

• Option L only is valid.

as308 sample -L

• Option S only is valid.

as308 sample -S

• Option S only are valid.

as308 sample -L -S --L

• Options L only are valid.

as308 sample -S -L --S

Method for specifying numeric value

• Always be sure to use hexadecimal notation when entering a numeric

value.

• If a numeric value begins with an alphabet, always be sure to add 0 to

the numeric value when you enter it.

Example:
55

5A

0A5

74

AS308 V.1.00 Method for Operating as308

Include File Search Directory

Include files do not need to be specified from the command line. If a path is

described in the operand of the directive command ".INCLUDE", the software

searches that directory to find the include file.

If the directive command operand does not have a path specification, the soft-

ware searches the current directory. In this case, if the specified file cannot be

found in the current directory and environment variable "INC308" is set, the

software also searches the directory that is set in INC308.

as308 Command Options

The following pages describe rules you need to follow when specifying com-

mand options.

75

AS308 V.1.00 Method for Operating as308

-.
Disables Message Output to Screen

Function

• The software does not output messages when as308 is processing.

• This command option disables unnecessary messages such as copy-

right notes from being output to the screen when executing as308 in

batch processing.

• Error messages, warning messages, and messages deriving from the

directive command ".ASSERT" are output, however.

Description rule

• This command option can be specified at any position on the command

line.

Description example

>as308 -. sample

If processing of sample resulted in generating an error, the following output will

be obtained.

>as308 -. sample

sample.a30 2 Error (as308) : Section type is not appropriate

76

AS308 V.1.00 Method for Operating as308

-abs16
To specify the 16-bit absolute addressing mode

Function

• When the below conditions are satisfied, AS308 selects 16-bit absolute

addressing.

•• When the operand is a label or external reference symbol

•• When addressing mode is not specified

•• When the absolute addressing mode is the selected mnemonic state-

ment

• Unless this option is specified, 24-bit absolute addressing is selected.

Description rule

Always input this option in small letters.

• The option can be specified at any point in the command line.

Description example
>as308 -abs16 sample

77

AS308 V.1.00 Method for Operating as308

-C
Indicates Command Invocation Line

Function

• In cases when a command option is specified in environment variable

(AS308COM), if this option is specified you can confirm the command

options set when invoking macroprocessor and assembler processor

from as308 as the software indicates them on the screen.

Description rule

• This option can be specified at any position on the command line.

Description example

• If '-L -T' is set in AS308COM, the following output will be obtained.
>as308 -C -N sample

• This information is displayed beginning with the next line following "All

Rights Reserved." that is output when AS308 starts up normally.
>as308 -C -N sample

(sample.a30)

mac308 -L -T sample.a30

macro processing now

asp308 -L -T sample.a30

assembler processing now

TOTAL ERROR(S) 00000

 :

>as308 -. -C -N sample

• If this command option is combined with an option to disable message

output to a screen, the following output will be obtained.
>as308 -. -C sample

mac308 -L -T sample.a30

asp308 -L -T sample.m30

78

AS308 V.1.00 Method for Operating as308

-D
Sets Symbol Constant

Function

• The software sets values to symbols.

• The value is handled as an absolute value.

The symbols defined by this option are processed in the

same way as those symbols that are defined in the start

positions of the source program. However, these symbols

are not output to an assembler list file.

• The symbols defined by this option are handled in the same way as the

symbol definitions described in the assembly source file. Namely, if a

symbol definition of the same name is described in the assembly source

file, it means that the symbol is redefined at that description position.

• If multiple files are specified on the command line, the symbols defined

by this option are handled as being defined in all of these files.

Description rule

• Specify this option in the form of -D (symbol name) = (numeric value).

• This option can be specified at any position on the command line.

• Do not enter a space or tab between the command option and the sym-

bol name.

• Values can be defined to multiple symbols. When defining values to

multiple symbols, separate each symbol with the colon while you enter

them in a form like -D (symbol name) = (value): (symbol name) = (value):

and so on.

• No space or tab can be entered in front or after the colon.

79

AS308 V.1.00 Method for Operating as308

Description example

• This example sets 1 to symbol name.
>as308 -Dname=1 sample

• This example sets 1 to symbols name and symbol.
>as308 -Dname=1:symbol=1 sample

• This example defines a symbol named name for files sample1 and

sample2.
>as308 -Dname=1 sample1 sample2

80

AS308 V.1.00 Method for Operating as308

-F
Controls ..FILE Expansion

Function

• This option fixes the file name to be expanded by the directive com-

mand ..FILE to the assembly source file name that is specified from the

command line.

Description rule

• This option can be specified at any position on the command line.

Description example
>as308 -F sample

The file name to be expanded by the directive command "..FILE" described in

the "include.inc" file that is included by the sample.a308 assembly source file

is fixed to "sample". If this option is not specified, the file name to be expanded

by "..FILE" becomes "include".

81

AS308 V.1.00 Method for Operating as308

-H
Disable header output to an assembler list file

Function

• Header information is not output to an assembler list file.

When generating an assembler list file to be processed by

as308, do not specify this option.

Description rule

• This option can be written at any desired position in a command line.

• Specify this option simultaneously with the command option '-L.'

Description example

• Header information is not output to the sample.lst file.
>as308 -L -H sample

82

AS308 V.1.00 Method for Operating as308

-I
Specify an include file search directory

Function

• The include file specified by ".INCLUDE" that is written in the source file

is searched from a specified directory.

Description rules

• This option can be written at any desired position in a command line.

• Specify a directory path immediately after "-I."

• No space or tab can be inserted between this option and a directory

path name.

Description example

• The include file written in the operand of a directive command ".INCLUDE"

is searched from the \work\include directory.
>as308 -I\work\include

83

AS308 V.1.00 Method for Operating as308

-L
Generates Assembler List File

Function

• The software generates an assembler list file in addition to a relocatable

module file.

• The generated list files are identified by the extension ".lst".

• If a directory is specified by command option -O, the assembler list file is

generated in the specified directory.

Description rule

• This option can be specified at any position on the command line.

• This option allows you to specify the 'I' ,'M' and 'S' file format specifiers.

• No space or tab can be entered between the file format specifier and -L.

• Multiple file format specifiers can be specified simultaneously.

• File format specifiers can be entered in any desired order.

• This option can be set in environment variable "AS308COM".

Format specifier Function

C Line concatenation is output directly as is to a list file.

D Information before .DEFINE is replaced is output to a list

file.

I Even program sections in which condition assemble resulted

in false conditions are output to the assembler list file.

M Even macro description expansion sections are output to

the assembler list file.

S Even structured description for AS30 expansion sections

are output to the assembler list file.

Description example
>as308 -LIM sample

>as308 -CDLSMI sample

84

AS308 V.1.00 Method for Operating as308

-mode60
To specify AS308 programs

Function

• Always specify this option to assemble programs written for AS30 (as-

sembler for the M16C/60 Series) with AS308.

• When this option is specified, AS308 replaces some of the commands

in the program (written for AS30).

For details, see "Compatibility with M16C/60 commands" and

"AS308 processing when option command -mode60 is speci-

fied".

Description rule

Always input this option in small letters.

• The option can be specified at any point in the command line.

Description example

• The program written for AS30 is reassembled as as308.
>as308 -mod60 sample

85

AS308 V.1.00 Method for Operating as308

-mode60p
To process structured commands for AS30

Function

• Always specify this option to structured command and assemble pro-

grams written for AS30 (assembler for the M16C/60 Series) with AS308.

When this option is specified, AS308 converts structured

command into assemble program for AS30 and then replace

some of the commands in the program (written for AS30).

For details, see "Compatibility with M16C/60 commands" and

"AS308 processing when option command -mode60 is speci-

fied".

Description rule

Always input this option in small letters.

• The option can be specified at any point in the command line.

Description example

• The structured commands in the assembly source file are processed

and the developed part is output to an assembler list file.
>as308 -mod60p -LS sample

86

AS308 V.1.00 Method for Operating as308

-M
Generate Structured Description Command Variables in Byte Type

Function

• The software processes variables in structured description commands

whose types are indeterminate as the byte type.

Description rule

• This option can be specified at any position of the command line.

• Make sure this option is specified along with a command option "-P."

Description example

>as30 -P -M sample

>as30 -M -P sample

87

AS308 V.1.00 Method for Operating as308

-N
Disables Line Information Output

Function

• The software does not output C language source line information to a

relocatable module file.

• The size of the relocatable module file can be reduced.

Absolute module files generated from the relocatable mod-

ule file that was generated after specifying this option can-

not be debugged at the source line level.

Description rule

• This option can be specified at any position on the command line.

• This option can be set in environment variable "AS308COM". Refer to

"Example for using AS308COM" for details on how to set.

Description example
as308 -N sample

88

AS308 V.1.00 Method for Operating as308

-O
Specifies Generated File Output Directory

Function

• This option specifies the directory to which the relocatable module file,

assembler list file, and assembler error tag file that are generated by the

assembler are output.

• The directory name can be specified including a drive name. It can also

be specified by a relative path.

Description rule

• Write this option in the form of -O (directory name).

• No space or tab can be entered between this option and the directory

name.

Description example

• The relocatable module file is generated in the \work\asmout directory

on drive c.
>as308 -Oc:\work\asmout sample

• The relocatable module file is generated in the tmp directory that is the

parent directory of the current directory.
>as308 sample -O..\tmp

• The relocatable module file, assembler error tag file, and assembler list

file are generated in the \work\asmout directory on drive c.
>as308 -Oc:\work\asmout sample -L -T

89

AS308 V.1.00 Method for Operating as308

-S
Specifies Local Symbol Information Output

Function

• The software outputs local symbol information to a relocatable module

file.

• System label information can also be output a relocatable module file by

adding 'M' to this option.

• Absolute module files generated from the relocatable module file that

was generated after specifying this option can be symbolic debugged

even for local symbols.

The map file (.map) output by ln308 provides information on

symbolic debuggable symbols and labels so you can con-

firm.

Description rule

• If you want system label information and local label information to be

output simultaneously, be sure to input this option as "-SM".

• This option can be specified at any position on the command line.

• This option can be set in environment variable "AS308COM". Refer to

"Example for using AS308COM" for details on how to set.

Description example

• Local symbol information in sample.a30 is output to sample.r30.
>as308 -S sample

• Local symbol information and system label information in sample.a30 is

output to sample.r30.
>as308 -SM sample

90

AS308 V.1.00 Method for Operating as308

-T
Generates Assembler Error Tag File

Function

• The software generates an assembler error tag file when an assembler

error is found.

• The file is output in a format where you can use an editor's tag jump

function.

• Even when you have specified this option, no file will be generated if

there is no error.

• The software does not generate a relocatable module file if an error is

encountered. However, it does generate a relocatable module file in

cases when only a warning has occurred.

• The error tag file name is created from the assembly source file name

by changing its extension to ".atg".

Description rule

• This option can be specified at any position on the command line.

• This option can be set in environment variable "AS308COM". Refer to

"Example for using AS308COM" for details on how to set.

Description example

• The software generates a "sample.atg" file if an error occurs.
>as308 -T sample

91

AS308 V.1.00 Method for Operating as308

-V
Indicates Version Number

Function

• When this option is specified, the software indicates the version num-

bers of all programs included with AS308 and terminates processing.

All other parameters on the command line are ignored when

this option is specified.

Description rule

• Specify this option only and nothing else.

Description example
>as308 -V

92

AS308 V.1.00 Method for Operating as308

-X
Invokes External Program

Function

• After generating an assembler error tag file, the software invokes an

execution program specified following the option '-X'.

• If this option is specified, the software generates an assembler error tag

file when an error occurs regardless of whether or not you specified the

option '-T'.

Description rule

• Input this option using a form like -X (program name).

• No space or tab can be entered between this option and the program

name.

• This option can be specified at any position on the command line.

Description example

• The 'edit' is name of editor program.
>as308 -Xedit sample

Error message of as308

93

AS308 V.1.00

Error Messages of as308

'#' is missing

? '#' is not entered.

! Write an immediate value in this operand.

')' is missing

? ')' is not entered.

! Write the right parenthesis ')' corresponding to the '('.

',' is missing

? ',' is not entered.

! Insert a comma to separate between operands.

'.B' or '.W' is not specified

? Neither .B nor .W is specified.

! Neither .B nor .W can be omitted. Write .B or .W in mnemonic.

'.IF' is missing for '.ELIF'

? .IF for .ELIF is not found.

! Check the position where .ELIF is written.

'.IF' is missing for '.ELSE'

? .IF for .ELSE is not found.

! Check the position where .ELSE is written.

'.IF' is missing for '.ENDIF'

? .IF for .ENDIF is not found.

! Check the position where .ENDIF is written.

Error message of as308

94

AS308 V.1.00

'.MACRO' is missing for '.ENDM'

? .MACRO for .ENDM is not found.

! Check the position where .ENDM is written.

'.MACRO' is missing for '.LOCAL'

? .MACRO for .LOCAL is not found.

! Check the position where .LOCAL is written. .LOCAL can only be writ-

ten in a macro block.

'.MACRO' or '.MREPEAT' is missing for '.EXITM'

? .MACRO or .MREPEAT for .EXITM is not found.

! Check the position where .EXITM is written.

'.MREPEAT' is missing for '.ENDR'

? .MREPEAT for .ENDR is not found.

! Check the position where .ENDR is written.

'.VER' is duplicated

? .VER is specified more than once in the file.

! .VER can be written only once in a file. Delete extra .VER's.

'ALIGN' is multiple specified in '.SECTION'

? Two or more ALIGN's are specified in the .SECTION definition line.

! Delete extra ALIGN specifications.

'BREAK' is missing for 'FOR' , 'DO' or 'SWITCH'

? BREAK is used in an inappropriate location.

! Make sure the BREAK command is written within the FOR, DO, or

SWITCH statement.

'CASE' has already defined as same value

? The same value is written in the operands of multiple CASE statements.

! Make sure the values written in the operands of CASE are unique, and

not the same.

Error message of as308

95

AS308 V.1.00

'CONTINUE' is missing for 'FOR' or 'DO'

? CONTINUE is used in an inappropriate location.

! Make sure the CONTINUE command is written within the FOR or DO

statement.

'DEFAULT' has already defined

? There are multiple instances of DEFAULT in SWITCH.

! Remove unnecessary DEFAULT statements.

'JMP.S' operand label is not in the same section

? Jump address for JMP.S is not specified in the same section.

! JMP.S can only branch to a jump address within the same section. Re-

write the mnemonic.

']' is missing

? ']' is not entered.

! Write the right bracket ']' corresponding to the '['.

Addressing mode specifier is not appropriate

? The addressing mode specifier is written incorrectly.

! Make sure that the addressing mode is written correctly.

Bit-symbol is in expression

? A bit symbol is entered in an expression.

! Bit symbols cannot be written in an expression. Check the symbol name.

Can't create Temporary file

? Temporary file cannot be generated.

! Specify a directory in environment variable 'TMP308' so that a tempo-

rary file will be created in some place other than the current directory.

Can't create file 'filename'

? The 'filename' file cannot be generated.

! Check the directory capacity.

Error message of as308

96

AS308 V.1.00

Can't open '.ASSERT' message file 'xxxx'

? The .ASSERT output file cannot be opened.

! Check the file name.

Can't open file 'filename'

? The 'filename' file cannot be opened.

! Check the file name.

Can't open include file 'xxxx'

? The include file cannot be opened.

! Check the include file name. Check the directory where the include file

is stored.

Can't read file 'filename'

? The 'filename' file cannot be read.

! Check the permission of the file.

Can't write '.ASSERT' message file 'xxxx'

? Data cannot be written to the .ASSERT output file.

! Check the permission of the file.

Can't write in file 'filename'

? Data cannot be written to the 'filename' file.

! Check the permission of the file.

CASE not inside SWITCH

? CASE is written outside a SWITCH statement.

! Make sure the CASE statement is written within a SWITCH statement.

Characters exist in expression

? Extra characters are written in an instruction or expression.

! Check the rules to be followed when writing an expression.

Error message of as308

97

AS308 V.1.00

Command line is too long

? The command line has too many characters.

! Re-input the command.

DEFAULT not inside SWITCH

? DEFAULT is written outside a SWITCH statement.

! Make sure the DEFAULT statement is written within a SWITCH state-

ment.

Division by zero

? A divide by 0 operation is attempted.

! Rewrite the expression correctly.

ELSE not associates with IF

? No corresponding IF is found for ELSE.

! Check the source description.

ELIF not associates with IF

? No corresponding IF is found for ELIF.

! Check the source description.

ENDIF not associates with IF

? No corresponding IF is found for ENDIF.

! Check the source description.

ENDS not associates with SWITCH

? No corresponding SWITCH is found for ENDS.

! Check the source description.

Error occurred in executing 'xxx'

? An error occurred when executing xxx.

! Rerun xxx.

Error message of as308

98

AS308 V.1.00

Format specifier is not appropriate

? The format specifier is written incorrectly.

! Make sure that the format specifier is written correctly.

Illegal directive command is used

? An illegal instruction is entered.

! Rewrite the instruction correctly.

Illegal file name

? The file name is illegal.

! Specify a file name that conforms to file name description rules.

Illegal macro parameter

? The macro parameter contains some incorrect description.

! Check the written contents of the macro parameter.

Illegal operand is used

? The operand is incorrect.

! Check the syntax for this operand and rewrite it correctly.

Include nesting over

? Include is nested too many levels.

! Rewrite include so that it is nested within the valid levels.

Including the include file in itself

? An attempt is made to include the include file in itself.

! Check the include file name and rewrite correctly.

Invalid bit-symbol exist

? An invalid bit symbol is entered.

! Rewrite the bit symbol definition.

Error message of as308

99

AS308 V.1.00

Invalid label definition

? An invalid label is entered.

! Rewrite the label definition.

Invalid operand(s) exist in instruction

? The instruction contains an invalid operand.

! Check the syntax for this instruction and rewrite it correctly.

Invalid option 'xx' is in environment data

? The environment variable contains invalid command option xx.

! Set the environment variable correctly back again. The options that can

be set in environment variables are L, N, S, and T.

Invalid reserved word exist in operand

? The operand contains a reserved word.

! Reserved words cannot be written in an operand. Rewrite the operand

correctly.

Invalid symbol definition

? An invalid symbol is entered.

! Rewrite the symbol definition.

Invalid option 'xx' is used

? An invalid command option xx is used.

! The specified option is nonexistent. Re-input the command correctly.

Location counter exceed 0FFFFFH

? The location counter exceeded 0FFFFFh.

! Check the operand value of .ORG. Rewrite the source correctly.

NEXT not associates with FOR

? No corresponding FOR is found for NEXT.

! Check the source description.

Error message of as308

100

AS308 V.1.00

No 'ENDIF' statement

? No corresponding ENDIF is found for the IF statement in the source file.

! Check the source description.

No 'ENDS' statement

? No corresponding ENDS is found for the SWITCH statement in the source

file.

! Check the source description.

No 'NEXT' statement

? No corresponding NEXT is found for the FOR statement in the source

file.

! Check the source description.

No 'WHILE' statement

? No corresponding WHILE is found for the DO statement in the source

file.

! Check the source description.

No '.END' statement

? .END is not entered.

! Be sure to enter .END in the last line of the source program.

No '.ENDIF' statement

? .ENDIF is not entered.

! Check the position where .ENDIF is written. Write .ENDIF as neces-

sary.

No '.ENDM' statement

? .ENDM is not entered.

! Check the position where .ENDM is written. Write .ENDM as neces-

sary.

Error message of as308

101

AS308 V.1.00

No '.ENDR' statement

? .ENDR is not entered.

! Check the position where .ENDR is written. Write .ENDR as necessary.

No '.FB' statement

? .FB is not entered.

! When using the 8-bit displacement FB relative addressing mode, al-

ways enter .FB to assume a register value.

No '.SB' statement

? .SB is not entered.

! When using the 8-bit displacement SB relative addressing mode, al-

ways enter .SB to assume a register value.

No '.SECTION' statement

? .SECTION is not entered.

! Always make sure that the source program contains at least one .SEC-

TION.

No ';' at the top of comment

? ';' is not entered at the beginning of a comment.

! Enter a semicolon at the beginning of each comment. Check whether

the mnemonic or operand is written correctly.

No input files specified

? No input file is specified.

! Specify an input file.

No macro name

? No macro name is entered.

! Write a macro name for each macro definition.

Error message of as308

102

AS308 V.1.00

No space after mnemonic or directive

? The mnemonic or assemble directive command is not followed by a

blank character.

? Enter a blank character between the instruction and operand.

Not enough memory

? Memory is insufficient.

! Divide the file and re-run. Or increase the memory capacity.

Operand expression is not completed

? The operand description is not complete.

! Check the syntax for this operand and rewrite it correctly.

Operand number is not enough

? The number of operands is insufficient.

! Check the syntax for these operands and rewrite them correctly.

Operand size is not appropriate

? The operand size is incorrect.

! Check the syntax for this operand and rewrite it correctly.

Operand type is not appropriate

? The operand type is incorrect.

! Check the syntax for this operand and rewrite it correctly.

Operand value is not defined

? An undefined operand value is entered.

! Write a valid value for operands.

Option 'xx' is not appropriate

? Command option xx is written incorrectly.

! Specify the command option correctly again.

Error message of as308

103

AS308 V.1.00

Questionable syntax

? The structured description command is written incorrectly.

! Check the syntax and write the command correctly again.

Quote is missing

? Quotes for a character string are not entered.

! Enclose a character string with quotes as you write it.

Reserved word is missing

? No reserved word is entered.

! Write a reserved word [SB], [FB], [A1], [A0], [SP], or [A1A0].

Reserved word is used as label or symbol

? Reserved word is used as a label or symbol.

! Rewrite the label or symbol name correctly.

Right quote is missing

? A right quote is not entered.

! Enter the right quote.

Same items are multiple specified

? Multiple same items of operand are specified.

! Check the syntax for this operand and rewrite it correctly.

Same kind items are multiple specified

? Multiple operand items of the same kind are specified.

! Check the syntax for this operand and rewrite it correctly.

Section attribute is not defined

? Section attribute is not defined. Directive command ".ALIGN" cannot be

written in this section.

! Make sure that directive command ".ALIGN" is written in an absolute

attribute section or a relative attribute section where ALIGN is specified.

Error message of as308

104

AS308 V.1.00

Section has already determined as attribute

? The attribute of this section has already been defined as relative. Direc-

tive command ".ORG" cannot be written here.

! Check the attribute of the section.

Section name is missing

? No section name is entered.

! Write a section name in the operand.

Section type is multiple specified

? Section type is specified two or more times in the section definition line.

! Only one section type "CODE", "DATA", or "ROMDATA" can be speci-

fied in a section definition line.

Section type is not appropriate

? The section type is written incorrectly.

! Rewrite the section type correctly.

Size or format specifier is not appropriate

? The size specifier or format specifier is written incorrectly.

! Rewrite the size specifier or format specifier correctly.

Size specifier is missing

? No size specifier is entered.

! Write a size specifier.

Source files number exceed 80

? The number of source files exceeds 80.

! Execute assembling separately in two or more operations.

Source line is too long

? The source line is excessively long.

! Check the contents written in the source line and correct it as neces-

sary.

Error message of as308

105

AS308 V.1.00

Statement not preceded by 'CASE' or 'DEFAULT'

? CASE or DEFAULT is preceded by a command line in the SWITCH state-

ment.

! Always be sure to write a command line after the CASE or DEFAULT

statement.

String value exist in expression

? A character string is entered in the expression.

! Rewrite the expression correctly.

Symbol defined by external reference data is defined as global

symbol

? The global symbol used here is a symbol that is defined by external

reference data.

! Check symbol definition and symbol name.

Symbol definition is not appropriate

? The symbol is defined incorrectly.

! Check the method for defining this symbol and rewrite it correctly.

Symbol has already defined as another type

? The symbol has already been defined in a different directive command

with the same name. You cannot define the same symbol name in di-

rective commands ".EQU" and ".BTEQU".

! Change the symbol name.

Symbol has already defined as the same type

? The symbol has already been defined as a bit symbol. Bit symbols

cannot be redefined.

! Change the symbol name.

Symbol is missing

? Symbol is not entered.

! Write a symbol name.

Error message of as308

106

AS308 V.1.00

Symbol is multiple defined

? The symbol is defined twice or more. The macro name and some other

name are duplicates.

! Change the name.

Symbol is undefined

? The symbol is not defined yet.

! Undefined symbols cannot be used. Forward referenced symbol names

cannot be entered. Check the symbol name.

Syntax error in expression

? The expression is written incorrectly.

! Check the syntax for this expression and rewrite it correctly.

Temporary label is undefined

? The temporary label is not defined yet.

! Define the temporary label.

The value is not constant

? The value is indeterminate when assembled.

! Write an expression, symbol name, or label name that will have a deter-

minate value when assembled.

Too many formal parameter

? There are too many formal parameters defined for the macro.

! Make sure that the number of formal parameters defined for the macro

is 80 or less.

Too many nesting level of condition assemble

? Condition assembling is nested too many levels.

! Check the syntax for this condition assemble statement and rewrite it

correctly.

Error message of as308

107

AS308 V.1.00

Too many macro local label definition

? Too many macro local labels are defined.

! Make sure that the number of macro local labels defined in one file are

65,535 or less.

Too many macro nesting

? The macro is nested too many levels.

! Make sure that the macro is nested no more than 65,535 levels . Check

the syntax for this source statement and rewrite it correctly.

Too many operand

? There are extra operands.

! Check the syntax for these operands and rewrite them correctly.

Too many operand data

? There are too many operand data.

! The data entered in the operand exceeds the size that can be written in

one line. Divide the instruction.

Too many temporary label

? There are too many temporary labels.

! Replace the temporary labels with label names.

Undefined symbol exist

? An undefined symbol is used.

! Define the symbol.

Value is out of range

? The value is out of range.

! Write a value that matches the register bit length.

WHILE not associates with DO

? No corresponding DO is found for WHILE.

! Check the source description.

Warning Message of as308

108

AS308 V.1.00

Warning Messages of as308

'.ALIGN' with not 'ALIGN' specified relocatable section

? Directive command ".ALIGN" is written in a section that does not have

an ALIGN specification.

! Check the position where directive command ".ALIGN" is written. Write

an ALIGN specification in the section definition line of a section in which

directive command ".ALIGN" is written.

'CASE' definition is after 'DEFAULT'

? CASE is preceded by a DEFAULT description.

! Make sure all DEFAULT commands are written after the CASE state-

ment.

'CASE' not exist in 'SWITCH' statement

? No CASE description is found in the SWITCH statement.

! Make sure the SWITCH statement contains at least one CASE state-

ment.

'.END' statement is in include file

? The include file contains an .END statement.

! .END cannot be written in include files. Delete this statement. The

software will ignore .END as it executes.

Actual macro parameters are not enough

? The number of actual macro parameters is smaller than that of formal

macro parameters.

! The formal macro parameters that do not have corresponding actual

macro parameters are ignored.

Warning Message of as308

109

AS308 V.1.00

Addressing is described by the numerical value

? Addressing is specified with a numeric value.

! Be sure to write '#' in numeric values.

Control register differ size

? The control register is a different size than that of the M16C/80 Series

and other MCU's of the M16C/60 Family.

! Match the data size of the operand to the control register size of the

M16C/80 Series.

Destination address may be changed

? The jump address can be a position that differs from an anticipated des-

tination.

! When writing an address in a branch instruction operand using a loca-

tion symbol for offset, be sure to write the addressing mode, jump dis-

tance, and instruction format specifiers for all mnemonics at locations

from that instruction to the jump address.

Fixed data in 'CODE' section

? Found directive command(.BYTE, .WORD, .ADDR, .LWORD) in the

section type is CODE.

! Speci fy ROMDATA type the sect ion wri t ten any direct ive

command(.BYTE, .WORD, .ADDR, .LWORD).

Floating point value is out of range

? The floating-point number is out of range.

! Check whether the floating-point number is written correctly. Values out

of range will be ignored.

Invalid '.FBSYM' declaration, it's declared by '.SBSYM'

? The symbol is already declared in '.SBSYM'. The '.FBSYM' declaration

will be ignored.

! Rewrite the symbol declaration correctly.

Warning Message of as308

110

AS308 V.1.00

Invalid '.SBSYM' declaration, it's declared by '.FBSYM'

? The symbol is already declared in '.FBSYM'. The '.SBSYM' declaration

will be ignored.

! Rewrite the symbol declaration correctly.

Mnemonic in 'ROMDATA' section

? Found mnemonic in the section type is ROMDATA.

! Specify CODE type to the section written mnemonic.

Moved between address registers as byte size

? Transfers between address registers are performed in bytes.

! Rewrite the mnemonic correctly.

Statement has not effect

? The statement does not have any effect as a command line.

! Check the correct method for writing the command.

Too many actual macro parameters

? There are too many actual macro parameters.

! Extra macro parameters will be ignored.

Too many structured label definition

? There are too many labels to be generated.

! Divide the file into smaller files before assembling.

Unnecessary BREAK is found

? Found two or over BREAK statement in a SWITCH block.

! Check the source program.

111

AS308 V.1.00 Method for Operating ln308

Method for Operating ln308

This section describes how to use the functions of ln308. The basic function of

ln308 is to generate one absolute module file from two or more relocatable

module files.

Command Parameters

The table below lists the command parameters available for ln308.

Parameter name Function

File name Relocatable module filename to be processed by ln308

-. Disable message output to screen.

-E Spedifies start address of absoluute module.

-G Outputs source debug information to absolute module file.

-L Specifies library file to be referenced.

-LOC Specifies section allocation sequence.

-LD Specifies directory of library to be referenced.

-M Generates map file.

-MS Generates mapfile that includes symbol information.

-MSL Generates mapfile that includes fullname of symbol more

than 16 characters.

-NOSTOP Outputs all encounterds errors to screen.

-O Specifies absolute module file name.

-ORDER Specifies section address and allocation sequence.

-T Generates link error tag file.

-V Indicates version number of linkage editor.

@ Specifies command file.

112

AS308 V.1.00 Method for Operating ln308

Rules for Specifying Command Parameters

Follow the rules described below when you specify command parameters for

ln308.

Order in which to specify command parameters

• Relocatable module file names and command options can be specified

in any desired order.
>ln308 (command options) (relocatable module file)

>ln308 (relocatable module file) (command options)

Relocatable module file name (essential)

• Always be sure to specify at least one relocatable module file name.

• A path can be specified in the file name.

• When specifying multiple relocatable module files, always be sure to

insert a space or tab between each file name.

Absolute module file name

• Normally ln308 creates the file name of an absolute module file from the

relocatable module file that is specified first as it generates the absolute

module file.

• Use command option (-O) to specify an absolute module file name.

Library file name

• Use command option (-L) to specify the library file to be referenced. A

path can be specified in the file name.

• Library files are searched from the directory that is set in environment

variable (LIB308). If the relevant file cannot be found, ln308 searches

the current directory. Or if a directory is specified by command option (-

LD), ln308 searches it and if no relevant file is found in this directory,

ln308 searches the current directory.

113

AS308 V.1.00 Method for Operating ln308

Command option

• When you specify a command option, always be sure to insert a space

or tab between the command option and other specifications on the

command line.

Address specification

• The ln308 editor determines absolute addresses section by section as it

generates an absolute module file.

• When invoking ln308, you can specify the start address of a section

from the command line.

• Use hexadecimal notation when specifying address values. If an ad-

dress value begins with an alphabet, add 0 to the value as you specify it.

Example:
7fff

64

0a57

Command File

The ln308 editor allows you to write command parameters in a file and execute

the program after reading in this file.

Method for specifying command file name

• Add @ at the beginning of the command file name as you specify it.

Example:
>ln308 @cmdfile

• A directory path can be specified in the command file name.

• If no file exists in the specified directory path, ln308 outputs an error.

114

AS308 V.1.00 Method for Operating ln308

Rules for writing command file

The following explains the rules you need to follow when writing a command

file to ensure that it can be processed by ln308.

• The name of the command file's own cannot be written in the command

file.

• Multiple lines of command parameters can be written in a command file.

• The comma (,) cannot be entered at the beginning and end of lines

written in a command file.

• If you want to write specification for section allocation in multiple lines,

be sure to enter the "-ORDER" option at the beginning of each new line.

• The maximum number of characters that can be written on one line in

the file is 255 characters. If this limit is exceeded, ln308 outputs an

error.

• Comments can be written in a command file. When writing comments,

be sure to enter the symbol "#" at the beginning of each comment. Char-

acters from # to Carriage Return or Line Feed are handled as com-

ments.

Example of command file description

sample1 sample2

sample3

-ORDER ram=80

-ORDER prog, sub, datasub, and data

-M

115

AS308 V.1.00 Method for Operating ln308

-.
Disables Message Output to Screen

Function

• The software does not output messages when ln308 is processing.

• Error messages are output to screen.

Description rule

• This option can be specified at any position on the command line.

Description example
ln308 -. sample1 sample2

116

AS308 V.1.00 Method for Operating ln308

-E
Specifies Start Address of Program

Function

• This option sets the entry address of an absolute object module. This

address is used to indicate the start address to the debugger.

• Numeric values or label names can be used to specify an address value.

However, local label names cannot be specified.

Description rule

• Input this option using a form like -E (numeric value or label name).

• Always be sure to insert a space between this option and the numeric

value or label name.

• Always be sure to use hexadecimal notation when entering a numeric

value.

• If the numeric value begins with an alphabet ('a' to 'f'), always be sure to

add 0 at the beginning of the value as you enter it.

• This option can be specified at any position on the command line.

Description example

• The address value in global label "num" is specified for the entry ad-

dress of "sample1.x30".
ln308 sample1 sample2 -E num

• f0000 is specified for the entry address of "sample1.x30".
ln308 sample1 sample2 -E 0f0000

117

AS308 V.1.00 Method for Operating ln308

-G
Outputs Source Debug Information

Function

• The software outputs information on C language or macro description

source lines to an absolute module file.

• The absolute module files generated without specifying this option can-

not be debugged at the source line level.

If the absolute module file is derived by linking the relocat-

able module files that were generated by specifying option

(-N) to disable line information output when executing as308,

it cannot be debugged at the source line level even when

you have specified this option (-G) when executing ln308.

• Source debug information is output to an absolute module file.

Description rule

• This option can be specified at any position on the command line.

Description example
ln308 -G sample1 sample2

118

AS308 V.1.00 Method for Operating ln308

-L
Specifies Library File Name

Function

• Specify the library file name to be referenced when linking files.

• The ln308 editor reads global symbol information from the specified li-

brary file as it links the necessary relocatable modules.

Description rule

• Input this option using a form like -L (library file name).

• Always be sure to insert a space between this option and the file name.

• This option can be specified at any position on the command line.

• A path can be specified in the file name.

• Multiple library files can be specified. When specifying multiple library

files, separate each file name with the comma as you specify file names.

There must be no space or tab before or after the comma.

Description example
>ln308 sample1 sample2 -L lib1

The "lib1.lib" file in the current directory or the directory specified in environ-

ment variable (LIB308) is referenced as necessary.
>ln308 sample1 sample2 -L work\lib1

The "lib1.lib" file in the "work" directory that resides below the current directory.
>ln308 sample1 sample2 -L lib1,lib2

The "lib1.lib" and "lib2.lib" files in the current directory or the directory specified

in environment variable (LIB308) are referenced as necessary.

119

AS308 V.1.00 Method for Operating ln308

-LD
Specifies Library File Directory

Function

• Specify the directory name in which you want a library file to be refer-

enced.

• Even when you specify this option, you need to specify the library file

name.

• The directory name specified by this option remains valid until another

directory is specified by this option next time.

• If you have specified a path in the library file name, the directory in which

library files are referenced by ln308 is one that is located by linking the

library file path to the directory specified by this option.

Description rule

• Input this option using a form like -LD (directory name).

• Always be sure to insert a space between this option and the directory

name.

• This option can be specified at any position on the command line.

Description example

• The \work\lib\lib1 file is referenced.
>ln308 sample1 sample2 -LD \work\lib -L lib1

• The \work\lib\lib1 and \work\tmp\lib2 files are referenced.
>ln308 sample1 sample2 -LD \work\lib -L lib1 -LD \work\tmp -L lib2

• The \work\lib\lib1 file is referenced.
>ln308 sample1 -LD \work -L lib\lib1

120

AS308 V.1.00 Method for Operating ln308

-LOC
Specify the assignment of section

Function

• Specifies the address in which the specified section is written.

• Value of symbols in specified section are generated from the address

specified by directive command ".ORG" or specified by command op-

tion "-ORDER".

• Use this option if you write the section on address other than executing

it.

Description rule

• A space is required between the option name and parameter.

• No space is allowed before and after the "=".

• The address cannot be omitted.

• When writing multiple section names and location addresses, separate

each entry with a comma (,).

Description example

• This example describes writing PROG1 section executed from 400h

address on 0FE000h address of ROM.
>ln308 -ORDER PROG1=00400 -LOC PROG1=0FE000

PROG1 section is executed

after moved it address

00400h

FE000h
PROG1

121

AS308 V.1.00 Method for Operating ln308

-M
Generates Map File

Function

• The software generates a map file that contains address mapping infor-

mation.

• The file name of the map file is created by changing the extension of the

absolute module file to ".map".

Description rule

• This option can be specified at any position on the command line.

Description example

• Files "sample1.x30" and "sample1.map" are generated.
>ln308 -M sample1 sample2

122

AS308 V.1.00 Method for Operating ln308

-MS/-MSL
Outputs Symbol Information to Map File

Function

• The fullname of symbolmore than 16 characters are output to mapfile

when -MSL is specified.

• The software generates a map file that contains address mapping infor-

mation and symbol information.

• The file name of the map file is created by changing the extension of the

absolute module file to ".map".

Description rule

• This option can be specified at any position on the command line.

Description example
>ln308 sample1 sample2 -MS

A "sample1.x30" and "sample1.map" f i les are
generated.

123

AS308 V.1.00 Method for Operating ln308

-NOSTOP
Outputs All Errors

Function

• The software outputs all encountered link errors to the screen.

• If this operation is not specified, the software outputs up to 20 errors to

the screen.

Description rule

• This option can be specified at any position on the command line.

Description example
>ln308 sample1 sample2 -NOSTOP

124

AS308 V.1.00 Method for Operating ln308

-O
Specifies Absolute Module File Name

Function

• This option allows you to specify any desired name for the absolute

module file generated by ln308.

• If you do not specify an absolute module file name using this option, the

file name of absolute module file is created by changing to ".x30" the

extension of the relocatable module file name that is specified first on

the command line.

Description rule

• Input this option using a form like -O (file name).

• Always be sure to insert a space between this option and the file name.

• The extension of a file name can be omitted. If omitted, the extension is

".x30".

• A path can be specified in the file name.

Description example

• A "abssmp.x30" file is generated.
>ln308 sample1 sample2 -O abssmp

• A "abssmp.x30" file is generated in the "\work\absfile" directory.
>ln308 -O \work\absfile\abssmp sample1 sample2

125

AS308 V.1.00 Method for Operating ln308

-ORDER
Specifies Section Address and Relocation Order

Function

• Specify the order in which you want sections to be allocated and the

start address of sections.

If the start address is specified for an absolute section, ln308

outputs an error.

• If you do not specify the start address, ln308 allocates addresses begin-

ning from 0.

• If sections of the same name exist in the specified relocatable files, sec-

tions are allocated in the order the files are specified. In this case, if a

section with absolute attribute is arranged after a section with relative

attribute, an error results.

Description rule

• Input this option using a form like -ORDER (section name), (section

name) or -ORDER (section name) = (start address).

• Always be sure to insert a space between this option and the section

name.

• Separate between two section names or between an address value and

a section name with a comma as you specify them. There must be no

space or tab before or after the comma.

• This option can be specified at any position on the command line.

Description example

• Sections are allocated in order of main, sub, and dat beginning from

address 0H.
>ln308 sample1 sample2 -ORDER main,sub,dat

• Sections are allocated in order of main, sub, and dat beginning from

address 0f000H.
>ln308 sample1 sample2 -ORDER main=0f0000,sub,dat

126

AS308 V.1.00 Method for Operating ln308

-T
Generates Link Error Tag File

Function

• The software generates a link error tag file when a link error occurs.

• This file is output in a format that allows you to use an editor's tag jump

function.

• Even when you specify this option, this error file will not be generated if

no error is encountered.

• The error tag file name is created from the relocatable module file that is

specified at the beginning of the command line by changing its exten-

sion to ".ltg". If an absolute module file name is specified with command

option "-O," the tag file name is derived from the specified file name by

changing its extension to ".ltg."

• Error information in the link error tag file is output with the number of

assembly source lines.

Description rule

• This option can be specified at any position on the command line.

Description example

• A "sample1.ltg" file is generated if an error occurs.
>ln308 sample1 sample2 -T

127

AS308 V.1.00 Method for Operating ln308

-V
Indicates Version Number

Function

• The software indicates the version number of ln308.

All other parameters on the command line are ignored when

this option is specified.

Description rule

• Specify this option only and nothing else.

Description example
>ln308 -V

128

AS308 V.1.00 Method for Operating ln308

@
Specifies Command File

Function

• The software starts up ln308 by using the contents of the specified file

as the command parameters.

Description rule

• Input this option using a form like @ (file name).

• No space or tab can be entered between this option and the file name.

• No other parameters can be written on the command line.

Description example
>ln308 @cmdfile

129

AS308 V.1.00 Error Messages of ln308

Error Messages of ln308

'-loc' section 'section' is multiple defined

? The section name specified by the -loc option here has already been

defined before .

! Check the section name.

'-loc' section 'section' is not found

? The section specified by the -loc option cannot be found.

! Check the section name.

'-order' section 'section' is multiple defined

? The section name specified with -order is defined twice or more.

! Make sure that sections are defined only once.

'-order' section 'section' is not found

? The section specified with -order cannot be found.

! Check the section name and re-run.

'CODE' section 'section-1' is overlapped on the 'section-2'

? The CODE sections 'section-1' and 'section-2' are overlapping.

! Relocate the sections so that they will not overlap.

'ROMDATA' section 'section-1' is overlapped on the 'section-2'

? The ROMDATA sections 'section-1' and 'section-2' are overlapping.

! Relocate the sections so that they will not overlap.

'section' is written after the same name of relocatable section

? A relative attribute section is followed by an absolute attribute section of

the same name 'section'.

! Make sure that relative attribute is located after absolute attribute.

130

AS308 V.1.00 Error Messages of ln308

'symbol' is multiple defined

? The symbol 'symbol' is defined twice or more.

! Check external symbol names.

'symbol' value is undefined

? The value of the symbol 'symbol' is not defined yet.

! The program will be processed assuming values = 0. Check the symbol

values.

Absolute section 'section' is relocated

? Absolute section 'section' is going to be relocated.

! Correct the section locating specification.

Address is overlapped in 'CODE' section 'section'

? Addresses are overlapping in a CODE section named 'section'.

! Relocate the section so that its addresses will not overlap.

Address is overlapped in 'ROMDATA' section 'section'

? Addresses are overlapping in a ROMDATA section named 'section'.

! Relocate the section so that its addresses will not overlap.

Can't close file 'file'

? The file 'file' cannot be closed.

! Check the directory information.

Can't close temporary file

? The temporary file cannot be closed.

! Check the remaining storage capacity of the disk.

Can't create file 'file'

? The file 'file' cannot be created.

! Check the directory information.

131

AS308 V.1.00 Error Messages of ln308

Can't create temporary file

? A temporary file cannot be created.

! Check to see if the directory is write protected.

Can't open file 'file'

? The file 'file' cannot be opened.

! Check the file name.

Can't open temporary file

? The temporary file cannot be opened.

! Check the directory information.

Can't remove file 'file'

? The file 'file' cannot be deleted.

! Check the permission of the file.

Can't remove temporary file

? The temporary file cannot be deleted.

! Check the permission of the file.

Can't registered symbol in the list

? Symbols cannot be registered in a list.

! If this error occurs, please contact tool support personnel at Mitsubishi.

Command-file line characters exceed 255

? The number of characters per line in the command file exceeds 255.

! Check the contents of the command file.

Command line is too long

? The command line contains too many characters.

! Create a command file.

132

AS308 V.1.00 Error Messages of ln308

DEBUG information mismatch in file

? Some file whose format version of relocatable module file does not match

that of other file is included.

! Redo assembling using the latest assembler.

Illegal file extension '.xxx' is used

? The file extension '.xxx' is illegal.

! Specify a correct file extension.

Illegal format 'file'

? The format of the file 'file' is illegal.

! Check to see that the relocatable file is one that was created by as308.

Illegal format 'file' :expression error occurred

? The format of the file 'file' is illegal.

! Check to see that the relocatable file is one that was created by as308.

Illegal format 'file' :it's not library file

? The format of the file 'file' is illegal. That is not a library file.

! Check to see that the library file is one that was created by lb308.

Illegal format 'file' :it's not relocatable file

? The format of the file 'file' is illegal. That is not a relocatable file.

! Check to see that the relocatable file is one that was created by as308.

Invalid option 'option' is used

? An invalid option 'option' is used.

! Specify a correct option.

MCU information mismatch in file 'file'

? The MCU information in the file 'file' does not match the actual chip.

! Check to see that the relocatable file is one that was created by as308.

133

AS308 V.1.00 Error Messages of ln308

MCU information mismatch in file xx.r30

? A file generated by as30 is being used.

! Reassemble the file with as308 before linking.

No input files specified

? No input file is specified.

! Specify a file name.

Not enough memory

? Memory capacity is insufficient.

! Increase the memory capacity.

Option 'option' is not appropriate

? The option 'option' is used incorrectly.

! Check the syntax for this option and rewrite it correctly.

Option parameter address exceed 0FFFFFH

? The address specified with an option exceeds 0FFFFFh.

! Re-input the command correctly.

symbol type of floating point is not supported

? Floating-point representation of the symbol type is not supported.

! If this error occurs, please contact tool support personnel at Mitsubishi.

Zero division exists in the expression

? Expression for relocation data calculations contain a divide by 0 opera-

tion.

! Rewrite the expression correctly.

134

AS308 V.1.00 Warning Messages of ln308

Warning Messages of ln308

'-e' option parameter 'symbol' is undefined

? The symbol 'symbol' specified with -e is not defined yet.

! Define 'symbol' in the source program. The program will be processed

assuming values = 0.

'CODE' section 'section-1' is overlapped on the 'section-2'

? The CODE section 'section-1' overlaps 'section-2.' The sections have

been allocated overlapping each other.

! Check to see if these sections are allowed to overlap.

'DATA' section 'section-1' is overlapped on the 'section-2'

? The DATA sections 'section-1' and 'section-2' are overlapping. Sections

are located overlapping each other.

! Check to see if the sections can be located at overlapping addresses.

'ROMDATA' section 'section-1' is overlapped on the 'section-2'

? The ROMDATA section 'section-1' overlaps 'section-2.' The sections

have been allocated overlapping each other.

! Check to see if these sections are allowed to overlap.

'label' value exceed 0FFFFFH

? The value of the label 'label' exceeds 0FFFFFh.

! Check the allocated addresses of sections.

'section' data exceed 0FFFFFH

? The section data exceeds address 0FFFFFH.

! Check the allocated addresses of sections.

135

AS308 V.1.00 Warning Messages of ln308

16-bits signed value is out of range -32768 -- 32767 address

='address'

? Relocation data calculation resulted in the address exceeding the range

of -32,768 to +32,767.

! Overflow is discarded. Check whether the value is all right.

16-bits unsigned value is out of range 0 -- 65535 address='address'

? Relocation data calculation resulted in the address exceeding the range

of 0 to 65,535.

! Overflow is discarded. Check whether the value is all right.

16-bits value is out of range -32768 -- 65535 address='address'

? Relocation data calculation resulted in the address exceeding the range

of -32,768 to +65,535.

! Overflow is discarded. Check whether the value is all right.

24-bits signed value is out of range -8388608 --8388607

address='address'

? Relocation data calculation resulted in the address exceeding the range

of -8,388,608 to +8,388,607.

! Overflow is discarded. Check whether the value is all right.

24-b i ts uns igned va lue is ou t o f range 0 - - 16777215

address='address'

? Relocation data calculation resulted in the address exceeding the range

of 0 to 16,777,215.

! Overflow is discarded. Check whether the value is all right.

2 4 - b i t s v a l u e i s o u t o f r a n g e - 8 3 8 8 6 0 8 - - 1 6 7 7 7 2 1 5

address='address'

? Relocation data calculation resulted in the address exceeding the range

of -8,388,608 to 16,777,215.

! Overflow is discarded. Check whether the value is all right.

136

AS308 V.1.00 Warning Messages of ln308

4-bits signed value is out of range -8 -- 7 address='address'

? Relocation data calculation resulted in the address exceeding the range

of -8 to 7.

! Overflow is discarded. Check whether the value is all right.

8-bits signed value is out of range -128 -- 127 address='address'

? Relocation data calculation resulted in the address exceeding the range

of -128 to 127.

! Overflow is discarded. Check whether the value is all right.

8-bits unsigned value is out of range 0 -- 255 address='address'

? Relocation data calculation resulted in the address exceeding the range

of 0 to 255.

! Overflow is discarded. Check whether the value is all right.

8-bits value is out of range -128 -- 255 address='address'

? Relocation data calculation resulted in the address exceeding the range

of -128 to 255.

! Overflow is discarded. Check whether the value is all right.

Absolute-section is written after the absolute-section 'section'

? The absolute attribute section 'section' is followed by an absolute at-

tribute of the same name. The source program may be allocated at

noncontinued addresses.

! Linkage will be executed. Check the address specification of the source

program.

Absolute-section is written before the absolute-section 'section'

? The absolute attribute is concatenated before the absolute attribute sec-

tion 'section'.

! Concatenation will be executed. Check address specification in the

source program.

137

AS308 V.1.00 Warning Messages of ln308

Address information mismatch in file 'file'

? The address information in the relocatable file 'file' does not match the

addresses information.

! Check to see that the relocatable file is one that was generated by as308.

Address is overlapped in the same 'DATA' section 'section'

? Addresses are overlapping in the DATA sections of the same name 'sec-

tion'. The sections are located overlapping one another.

! Check to see if the sections can be located at overlapping addresses.

JMP.S instruction exist at end of bank(address xxxxx)

? The jump address of a short-jump instruction overlaps a bank boundary.

! Use the directive command '.SJMP' to control code generation so that

short-jump instructions will not be generated at such a position.

Object format version mismatch in file 'file'

? The version information in the relocatable file or library file 'file' does not

match the version information.

! Check to see that the relocatable file or library file is one that was gener-

ated by the AS308 program. Regenerate the file as necessary. If this

error occurs, please contact tool support personnel at Mitsubishi.

Section type mismatch 'section'

? Sections of the same name 'section' have different section types.

! Check the section types in the source file.

138

AS308 V.1.00 Method for Operating lmc308

Method for Operating lmc308

This section explains how to operate lmc308. The primary function of lmc308

is to generate a machine language file in the Motorola S format from the abso-

lute module files generated by ln308.

Command Parameters

The table below lists the command parameters available for lmc308.

Parameter name Function

File name Absolute mdoule file name to be processed by lmc308.

-. Disables message output to screen.

-E Sets the starting address.

-H Converts file into Intel HEX format.

-ID Set ID code for ID check function

-L Selects maximum length of data record area.

-O Specifies output file name.

-V Indicates version of load module converter.

-protect1 Set levet1 for ROM code protect function

-protect2 Set level2 for ROM code protect function

139

AS308 V.1.00 Method for Operating lmc308

Rules for Specifying Command Parameters

Follow the rules described below when you specify the command parameters

for lmc308.

Order in which to specify command parameters

Always be sure to specify command parameters in the following order:

1 Command option

2 Absolute module file name (essential)

>lmc308 (command option) (absolute module file name)

Absolute module file name (essential)

• Specify the absolute module file generated by ln308.

• Specify only one absolute module file name.

• The file extension (.x30) can be omitted.

• No file names can be specified unless their extension is ".x30".

Command options

• Specify command options as necessary.

• Multiple command options can be specified.

• When specifying multiple command options, the command options can

be entered in any order.

140

AS308 V.1.00 Method for Operating lmc308

-.
Disables Message Output to Screen

Function

• The software does not output messages when lmc308 is processing.

• Error messages are output to screen.

Description rule

• Always be sure to specify this option before the file name.

Description example
>lmc308 -. debug

141

AS308 V.1.00 Method for Operating lmc308

-E
Sets the Starting Address

Function

• Set the starting address.

• Output to a Motorola S format file beginning with the address you have

set.

• The Motorola S format file is output with the setting starting address.

Description rule

• Input this option using a form like -E (address value).

• Always be sure to insert a space between this option and the value.

• Always be sure to use hexadecimal notation when specifying an ad-

dress value.

• If the address value begins with an alphabet ('a' to 'f'), always be sure to

add 0 at the beginning of the value as you enter it.

This option cannot be specified simultaneously with "- H".

Description example
>lmc308 -E 0f0000 debug

A "debug.mot" file is generated that starting address is 0f000H.
>lmc308 -E 8000 debug

A "debug.mot" file is generated that starting address is 8000H.

142

AS308 V.1.00 Method for Operating lmc308

-H
Converts File into Intel HEX Format

Function

• The lmc308 generates an Intel HEX format file.

• The lmc308 generates an Original HEX format for Mitsubishi microcom-

puters if the address value exceeds 1Mbytes.

Description rule

• Specify this option before entering a file name.

• This option cannot be specified simultaneously with option "-E".

Description example
>lmc308 -H debug

143

AS308 V.1.00 Method for Operating lmc308

-ID
Set ID code for ID check function

Function

• For details on the ID code check, see the hardware manual of the micro-

computer.

• The specified ID code is stored as 8-bit data in ID store addresses

(FFFFDF, FFFFE3, FFFFEB,FFFFEF, FFFFF3, FFFFF7 and FFFFFB).

And FF is stored in address FFFFFF (Refer to -protect1).

• If you filled in ID store addresses with value in your source prograam,

when this option is specified, the data of ID store addresses are always

changed. Without this option, the filling data are output.

• When this option alone is specified, ID code is FFFFFFFFFFFFFF.

• An ID file (extension .id) is created to display ID codes set with this

option.

• The specified ID code is stored as an ASCII code.

• Always specify this command option in capital letters.

• Add "-ID" to the ID code.

• To directly specify an ID code, specify "-ID#" followed by a number.

Example 1) -IDCodeNo1
ID code: 436F64654E6F31

Address FFFFDF FFFFE3 FFFFEB FFFFEF FFFFF3 FFFFF7 FFFFFB

data 43 6F 64 65 4E 6F 31

Example 2)-IDCode
ID code: 436F6465000000

Example 3)-ID1234567
ID code: 31323334353637

Example 4)-ID#49562137856132
ID code: 49562137856132

Example 5)-ID#1234567
ID code: 12345670000000

Example 6)-ID
ID code: FFFFFFFFFFFFFF

144

AS308 V.1.00 Method for Operating lmc308

-L
Selects Maximum Length of Data Record Area

Function

• The data record length of the Motorola S format is set to 32 bytes.

• The data record length of the Intel HEX format is set to 32 bytes.

Description rule

• Specify this option before entering a file name.

Description example
>lmc308 -L debug

145

AS308 V.1.00 Method for Operating lmc308

-O
Specifies Output File Name

Function

• Specify the file name of the machine language file generated by lmc308.

• A path can be specified in the file name.

Description rule

• Input this option using a form like -O (file name).

• Always be sure to insert a space between this option and the file name.

• Specify this option before entering a file name.

• The file name cannot be specified with an extension. A default exten-

sion is used for the generated file: ".mot" for the Motorola S format and

".hex" for the Intel HEX format.

Description example
>lmc308 -O test debug

A "test.mot" file is generated.
>lmc308 -O tmp\test debug

A "test.mot" file is generated in the "tmp" directory.

146

AS308 V.1.00 Method for Operating lmc308

-V
Indicates Version Number

Function

• The software indicates the version number of lmc308.

If this option is specified, all other parameters on the com-

mand line are ignored.

Description rule

• Specify this option only and nothing else.

Description example
>lmc308 -V

147

AS308 V.1.00 Method for Operating lmc308

-protect1
Set level1 for ROM code protect function

Function

• For details on the ROM code protect function, see the hardware manual

of the microcomputer.

• 3F is stored in protect code store address FFFFFF.

• If you filled in protect code sotre address with value, when this option is

specified, the protect code is changed. When this option is not speci-

fied, filling value is output.

• When options (-ID, -protect1, -protect2) to use ROM protect function is

specified, the following protect code is filled in protect code store ad-

dress.

-ID -protect1 -protect2 Protect code

Specify Non Non FF

Specify Specify Non 3F

Specify Non Specify F3

Specify Specify Specify lmc308 error

Non Specify Non 3F

Non Non Specify F3

Non Non Non Value filling in source program

Description rule

• Always specify this command option in small letters.

• The protect2 option cannot be specified at the same time as the pro-

tect1 option.

Description example
>lmc308 -protect1 sample

148

AS308 V.1.00 Method for Operating lmc308

-protect2
Set level2 for ROM code protect function

Function

• For details on the ROM code protect function, see the hardware manual

of the microcomputer.

• F3 is stored in protect code store address FFFFFF.

• If you filled in protect code sotre address with value, when this option is

specified, the protect code is changed. When this option is not speci-

fied, filling value is output.

• When options (-ID, -protect1, -protect2) to use ROM protect function is

specified, the following protect code is filled in protect code store ad-

dress.

-ID -protect1 -protect2 Protect code

Specify Non Non FF

Specify Specify Non 3F

Specify Non Specify F3

Specify Specify Specify lmc308 error

Non Specify Non 3F

Non Non Specify F3

Non Non Non Value filling in source program

Description rule

• Always specify this command option in small letters.

• The protect1 option cannot be specified at the same time as the pro-

tect2 option.

Description example
>lmc308 -protect2 sample

149

AS308 V.1.00 Error Messages of lmc308

Error Messages of lmc308

'-e' option is too long

? The array of -e option parameters is excessively long.

! Check the syntax for this option and rewrite it correctly.

'xxx' option multiple specified

? The option 'xxx' is specified twice or more.

! Check the syntax for this option and rewrite it correctly.

Address specified by '-e' option exceed 0FFFFH

? The address specified with -e option exceeds 0FFFFFh.

! Rewrite the address value correctly.

Can't close file 'filename'

? The file 'filename' cannot be closed.

! Check the directory information.

Can't create file 'filename'

? The file 'filename' cannot be created.

! Check the directory information.

Can't open file 'filename'

? The file 'filename' cannot be opened.

! Check the file name.

Command line is too long

? The character string on the command line is excessively long.

! Re-input the command correctly.

150

AS308 V.1.00 Error Messages of lmc308

Illegal file format 'filename' is used

? The file format of 'filename' is incorrect.

! Check the file name. Regenerate the file.

Invalid option 'option' is used

? An invalid option 'option' is specified.

! Specify the option correctly again.

MCU information mismatch in file xx.x30

? The file information does not match the MCU information.

! Specify an absolute module file generated by as308 or In308.

Not enough memory

? Memory is insufficient.

! Increase the memory capacity.

Option 'option' is not appropriate

? The option is used incorrectly.

! Check the syntax for this option and rewrite it correctly.

Unknown file extension '.xxx' is specified

? The specified file extension '.xxx' is incorrect.

! Check the file name.

151

AS308 V.1.00 Warning Messages of lmc308

Warning Messages of lmc308

'filename' does not contain object data

? The specified file does not contain object data.

! Check the file name.

Address exceed 0FFFFFH

? The address exceeded 0FFFFFh.

! Check the written contents of the source program. Check to see how

sections are located.

152

AS308 V.1.00 Method for Operating lb308

Method for Operating lb308

This section explains the method for operating lb308 to utilize its functions.

The primary function of lb308 is to manage multiple relocatable module files as

a single library file.

Command Parameters

The table below lists the command parameters available for lb308.

Parameter name Function

File name Relocatable module file name to be processed by lb308.

-. Disable message output to screen.

-A Adds module to library file.

-C Creates new library file.

-D Deletes modules from library file.

-L Generates library list file.

-R Replaces modules.

-U Updates modules.

-V Indicates version of librarian.

-X Extracts modules.

@ Specifies command file.

153

AS308 V.1.00 Method for Operating lb308

Rules for Specifying Command Parameters

Follow the rules described below when you specify command parameters for

lb308.

Order in which to specify command parameters

Always specify the command parameters for lb308 in the following order. If the

command parameters are specified in an incorrect order, lb308 cannot pro-

cess files correctly.

1 Command option

2 Library file name

3 Relocatable module (file) name
lb308 (command option) (library file name) (relocatable module file

name)

Library file name (essential)

• Always be sure to specify the library name.

• A directory path can be specified in the file name.

• The extension (lib) can be omitted on the command line.

Relocatable module file name (relocatable module name)

• Always be sure to specify a relocatable module file name.

• The extension of a relocatable module file name is '.r30'. The extension

can be omitted on the command line.

• Multiple relocatable module files can be specified. In this case, always

be sure to insert a space between each file name.

• A directory path can be specified in the file name. If no directory is

specified, the files residing in the current directory are processed.

154

AS308 V.1.00 Method for Operating lb308

Command options

• Command options are not case sensitive. They can be entered in up-

percase or lowercase.

• At least one of the command options '-A', '-C', '-D', '-L', '-R', '-U', or '-X'

must always be specified when executing the librarian. If none of these

options is specified on the command line or two or more of them are

specified simultaneously, lb308 outputs an error.

Command File

• The librarian allows you to specify a command file name that contains

description of input parameters.

• Refer to the Method for Operating ln308 for details on how to specify a

command file.

155

AS308 V.1.00 Method for Operating lb308

-.
Disables Message Output to Screen

Function

• The software does not output messages when lb308 is processing.

• Error messages are output to screen.

Description rule

• This option alone can be specified in combination with some other op-

tions.

• This option and other options can be specified in any order.

Description example
lb308 -. -A new sample2

156

AS308 V.1.00 Method for Operating lb308

-A
Adds Modules to Library File

Function

• The software adds a relocatable module to an existing library file.

• If the specified library file is nonexistent, lb308 creates a new library file.

• If a relocatable module bearing the same name as one you are going to

add is already entered in the library file, lb308 outputs an error.

• If the relocatable module file you are going to add contains a definition

of the same global symbol name as in the module that is already en-

tered in the library file, lb308 outputs an error.

Description rule

• Input this option using a form like -A (library file name) (relocatable mod-

ule file name).

• Always be sure to insert a space between this option and the library file

name and between the library file name and the relocatable module file

name.

Description example
lb308 -A new.lib sample3.r30

A "sample3" module is added to the "new.lib" file.

157

AS308 V.1.00 Method for Operating lb308

-C
Creates New Library File

Function

• The software creates a new library file.

If a library file of the same name as one you have specified

in this command option already exists, the contents of the

old library file are replaced with those of the new library file.

Description rule

• Input this option using a form like -C (library file name) (relocatable mod-

ule file name).

• Always be sure to insert a space between this option and the library file

name and between the library file name and the relocatable module file

name.

Description example
lb308 -C new sample1 sample2

A new library file named "new.lib" is created that contains sample1 and sample2.

158

AS308 V.1.00 Method for Operating lb308

-D
Deletes Modules from Library File

Function

• The software deletes a specified relocatable module from the library file.

• Once deleted, the module is nonexistent anywhere.

Description rule

• Input this option using a form like -D (library name) (relocatable module

name).

• Always be sure to insert a space between this option and the library file

name and between the library file name and the relocatable module

name.

• Multiple relocatable modules you want to be deleted can be specified.

In this case, always be sure to insert a space between each module

name.

Description example
lb308 -D new sample2

A relocatable module "sample2" is deleted from the "new.lib" library file.

159

AS308 V.1.00 Method for Operating lb308

-L
Generates Library List File

Function

• The software generates a library list file that contains information on a

specified library file. The extension of generated library list file is ".lls".

• A library list file can also be generated that contains information on only

the necessary modules in the library file.

• If a library list file of the same name already exists, this existing file is

overwritten by a new library list file.

Description rule

• Input this option using a form like -L (library file name) [(relocatable module

name]).

• Always be sure to insert a space between this option and the library file

name and between the library file name and the relocatable module file

name.

• Multiple relocatable module names can be specified. In this case, al-

ways be sure to insert a space between each module name.

Description example
lb308 -L new

Information on all modules entered in a library file named "new.lib" are output to

a library list file named "new.lls".
lb308 -L new sample1

Information on module sample1 entered in the "new.lib" library file is output to a

"new.lls" list file.
lb308 -L new.lib sample1 sample3

Information on modules sample1 and sample3 entered in the "new.lib" library

file are output to a "new.lls" list file.

160

AS308 V.1.00 Method for Operating lb308

-R
Replaces Modules

Function

• The software updates a relocatable module in the library file by replac-

ing it with the content of a specified relocatable module file. The module

that is updated in this way is one that has the same name as the speci-

fied relocatable module file name.

Description rule

• Input this option using a form like -R (library file name) (relocatable mod-

ule file name).

• Always be sure to insert a space between this option and the library file

name and between the library file name and the relocatable module file

name.

• Multiple relocatable module file names can be specified. In this case,

always be sure to insert a space between each module file name.

Description example
lb308 -R new sample1

The content of module sample1 in the "new.lib" library file is replaced with the

content of the "sample1.r30" file of the same name.

161

AS308 V.1.00 Method for Operating lb308

-U
Updates Modules

Function

• The software compares the created date of a relocatable module in the

library file with that of a relocatable module file with which you want to

be updated. Then if the date of the relocatable module file is newer than

that of the module, the software updates it.

Description rule

• Input this option using a form like -U (library file name) (relocatable mod-

ule file name).

• Always be sure to insert a space between this option and the library file

name and between the library file name and the relocatable module file

name.

• Multiple relocatable module names can be specified. In this case, al-

ways be sure to insert a space between each module name.

Description example
lb308 -U new sample1

Only when the created date of module sample1 in the "new.lib" file is older than

that of the "sample1.r30" file of the same name, the content of sample1 is up-

dated with the content of the "sample1.r30" file.

162

AS308 V.1.00 Method for Operating lb308

-V
Indicates Version Number

Function

• The software outputs the version number of lb308 to the screen.

If this option is specified, all other parameters on the com-

mand line are ignored.

Description rule

• Specify this option only and nothing else.

Description example
lb308 -V

163

AS308 V.1.00 Method for Operating lb308

-X
Extracts Module

Function

• The software extracts a relocatable module from the library file as a

relocatable module file.

• The library file is not modified by this operation.

• The created date of the relocatable module file thus extracted is the

date when it was extracted from the library file.

• If a file of the same name as the extracted relocatable module file al-

ready exists, the existing file is overwritten.

Description rule

• Always be sure to insert a space between this option and the library file

name.

Description example
lb308 -X new sample3

Module sample3 is extracted from the "new.lib" library file to generate a relocat-

able module file named "sample3.r30".

164

AS308 V.1.00 Method for Operating lb308

@
Specifies Command File

Function

• The software uses the contents of a specified file as command param-

eters as it invokes lb308.

Description rule

• Input this option using a form like @ (file name).

• No space or tab can be entered between this option and the file name.

• No other parameters can be entered on the command line.

Description example
lb308 @cmdfile

165

AS308 V.1.00 Error Messages of lb308

Error Messages of lb308

'filename' is not library file

? The file 'filename' is not a library file.

! Check the file name. Check to see that the file is one that was gener-

ated by lb308.

'filename' is not relocatable file

? The file 'filename' is not a relocatable file.

! Check the file name. Check to see that the file is one that was gener-

ated by as308.

'module' already registered in 'filename'

? The module 'module' has already been registered in the library 'filename'.

! Check the library file name and the relocatable file name.

'module' does not match with 'filename'

? The module name 'module' and the relocatable file name 'filename' do

not match. The module name has been modified.

! Check the relocatable file name.

'module' is multiple specified

? Multiple modules of the same name 'module' are specified.

! Specify the module name correctly again.

'module' is not registered in 'filename'

? The module 'module' is not registered in the library file 'filename'. Speci-

fied processing (to delete or update module) cannot be performed.

! Check the module name.

166

AS308 V.1.00 Error Messages of lb308

'symbol' is multiple defined at 'module1' and 'module2' in

'filename'

? Externally defined symbols of the same name 'symbol' are defined in

two places of the library 'filename', one in 'module1' and another in 'mod-

ule2'.

! Check the relocatable file name.

'symbol' is multiple defined in 'filename'

? The symbol 'symbol' is defined twice in the file 'filename'.

! If this error occurs, please contact tool support personnel at Mitsubishi.

'symbol' is multiple defined in 'module1' and 'module2'

? Externally defined symbol 'symbol' is defined in two places of the library

'filename', one in 'module1' and another in 'module2'.

! Check the relocatable file name.

'xxx' and 'xxx' are used

? The option 'xxx' and the option 'xxx' are used simultaneously.

! Options cannot be specified simultaneously. Re- input the command

correctly.

Can't close file 'filename'

? The file 'filename' cannot be closed.

! Check the directory information.

Can't close temporary file

? The temporary file cannot be closed.

! Check the directory information.

Can't create file 'filename'

? The file 'filename' cannot be created.

! Check the directory name.

167

AS308 V.1.00 Error Messages of lb308

Can't create temporary file

? The temporary file cannot be created.

! Check the directory information.

Can't open file 'filename'

? The file 'filename' cannot be opened.

! Check the file name.

Can't open temporary file

? The temporary file cannot be opened.

! Check the directory information.

Can't write in file 'filename'

? Data cannot be written to the file 'filename'. Memory is insufficient.

! Increase the memory capacity.

Command-file is include in itself

? An attempt is made to include the command file in itself.

! Check to see if the command file is written correctly.

Command-file line characters exceed 255

? The number of characters per line in the command file exceeded 255

characters.

! Check the contents of the command file.

Command line is too long

? The character string on the command line is excessively long.

! Create a command file.

Illegal file format 'filename'

? The file format of 'filename' is incorrect.

! Check the file name.

168

AS308 V.1.00 Error Messages of lb308

Invalid option 'option' is used

? An invalid option 'option' is used.

! Specify the option correctly again.

MCU informatino mismatch in file xx.r30

? The file information does not match the MCU information.

! Specify a relocatable module file generated by as308.

No public symbol is in 'filename'

? There is no public symbol in the file 'filename'.

! Check the contents of the relocatable file.

Not enough memory

? Memory is insufficient.

! Increase the memory capacity.

Symbol-name characters exceed 500

? The symbol name consists of more than 500 characters.

! Divide the library file.

Too many modules

? There are too many registered modules.

! Divide the library file into two or more files.

Unknown file extension '.xxx' is used

? The file extension '.xxx' is incorrect.

! Check the file name.

169

AS308 V.1.00 Warning Messages of lb308

Warning Messages of lb308

'module' is not registered in library

? The module 'module' is not registered in the library. Therefore, no mod-

ules of the specified name were extracted.

! Check the module name.

'module' is not registered in library, can't output list-file

? The module 'module' is not registered in the library. Information on this

module was not output to a list file.

! Check the module name.

'module' was created in the current directory

? The module 'module' was created in the current directory.

! Check the directory name you have specified.

Can't replace, 'module' is older than module in library

? The module 'module' is older than the module in the library. Therefore,

the library module was not replaced with it.

! Check the created date of the relocatable file.

170

AS308 V.1.00 Method for Operating xrf308

Method for Operating xrf308

This section explains the method for operating xrf308 to utilize its functions.

The basic function of xrf308 is to generate from the assembly source file or

assembler list file a cross reference file that contains a list for referencing branch

instructions and subroutine call instructions.

Command Parameters

The table below lists the command parameters available for xrf308.

Parameter name Function

File name Source or assembler list file name to be processed by

xrf308.

-. Disables message output to screen.

-N Specifies that system label information be output.

-O Specifies directory in which to output a file.

-V Indicates version of cross referencer.

@ Specifies command file.

Rules for Specifying Command Parameters

Follow the rules described below when specifying the command parameters of

xrf308.

Order in which to specify command parameters

The command parameters of xrf308 can be specified in any order.
>xrf308 (file name) (command option)

>xrf308 (command option) (file name)

171

AS308 V.1.00 Method for Operating xrf308

Assembly source file name or assembler list file name

• Always be sure to specify at least one file name.

• A path can be specified in the file name.

• Up to 600 files can be specified.

• Always be sure to enter the file extension.

• Always be sure to specify assembler list file whose extension is ".lst".

• When specifying multiple files, insert a space or tab to separate be-

tween file names.

Command options

• Multiple command options can be specified.

Command File

• The xrf308 referencer allows you to specify a command file name that

contains input parameters.

• Refer to the Method for Operating ln308 for details on how to specify a

command file.

172

AS308 V.1.00 Method for Operating xrf308

-.
Disables Message Output to Screen

Function

• The software does not output messages when xrf308 is processing.

• Error messages are output to screen.

Description rule

• This option can be specified at any position on the command line.

Description example
xrf308 -. sample.a30

173

AS308 V.1.00 Method for Operating xrf308

-N
Specifies Output of System Label Information

Function

• Information on system labels output by as30 also is output to a cross

reference file.

• System labels are one that begins with two periods (..).

Description rule

• This option can be specified at any position on the command line.

Description example
xrf308 -N sample.lst

A "sample.xrf" file is generated from a "sample.lst" file.
xrf308 -N sample.a30

A "sample.xrf" file is generated from a "sample.a30" file

174

AS308 V.1.00 Method for Operating xrf308

-O
Specifies File Output Directory

Function

• Specify a directory in which you want the cross reference file to be out-

put.

Description rule

• Input this option using a form like -O (directory name).

• No space or tab can be entered between this option and the directory

name.

• This option can be specified at any position on the command line.

Description example
xrf308 -O\work\list sample.a30

A "sample.xrf" file is generated in a \work\list directory.
xrf308 -O\work\list sample.lst

175

AS308 V.1.00 Method for Operating xrf308

-V
Indicates Version Number

Function

• The software indicates the version number of the cross referencer.

If this option is specified, all other parameters on the com-

mand line are ignored.

Description rule

• Specify this option only and nothing else.

Description example
xrf308 -V

176

AS308 V.1.00 Method for Operating xrf308

@
Specifies Command File

Function

• The software uses the contents of a specified file as command param-

eters as it invokes xrf308.

Description rule

• No space or tab can be entered between this option and the file name.

• No other parameters can be entered on the command line.

Description example
xrf308 @cmdfile

Error Message of xrf308

177

AS308 V.1.00

Error Messages of xrf308

Can't create temporary file

? The temporary file cannot be created.

! Check the directory information.

Can't open file 'xxxx'

? The 'xxxx' file cannot be opened.

! Check the file name.

Command-file is included in itself

? An attempt is made to include the command file in itself.

! Check the written contents of the command file.

Command-file line characters exceed 255

? The number of characters per line in the command file exceeds 255

characters.

! Check the contents of the command file.

Command line is too long

? The character string on the command line is excessively long.

! Create a command file.

Input files exceed 80

? The number of input files exceeds 80.

! Re-input the command. Divide the contents of the command file.

Invalid option 'xxx' is used

? An invalid option 'option' is specified.

! Specify the command option correctly again.

Error Message of xrf308

178

AS308 V.1.00

No input files specified

? No input file is specified.

! Specify a file name.

Not enough memory

? Memory is insufficient.

! Increase the memory capacity.

Option 'xxx' is not appropriate

? The command option is specified incorrectly.

! Check the syntax for this command option and specify it correctly again.

179

AS308 V.1.00 Method for Operating abs308

Method for Operating abs308

Precautions using abs308

If two or more same section declarations exist and the sec-

tion is not output to the assembler list file by the directive

command ".LSIT OFF" in one assembly sourcefile, a correct

actual address might not be generated.

Specify command option "-LM" when the assembler as308

processed the source file that contains macro directive com-

mand.

Specify command option "-LS" when the assembler as308

processed the source file that contains structured directive

command for AS30.

It is needed that header lines are output to assembler list

file. Operate as308 without command option -H.

180

AS308 V.1.00 Method for Operating abs308

Command Parameters

The table below lists the command parameters available for abs308.

Parameter name Function

File name Assembler list or absolute modulefile name to be processed

by abs308.

-. Disables message output to screen.

-D Specifies directory in which to search files.

-O Specifies directory in which to output files.

-V Indicates version of absolute lister.

Rules for Specifying Command Parameters

Follow the rules described below when specifying command parameters.

Order in which to specify command parameters

• Always be sure to specify command parameters in the order given be-

low:

1 Command option

2 Absolute module file name

3 Assembler list file name
>abs308 (command option) (absolute module file name) (assembler list

file name)

File name of absolute module file (essential)

• Always be sure to specify the absolute module file name.

• A path can be specified in the absolute module file name.

• The extension (.x30) can be omitted.

181

AS308 V.1.00 Method for Operating abs308

File name of assembler list file

• Multiple assembler list files can be specified by separating them with a

space or tab.

• A path can be specified in the assembler list file name.

• The file attribute can be omitted.

• The assembler list file name can be omitted.

Command options

• Command options are not case sensitive, so they can be entered in

uppercase or lowercase.

• Always be sure to enter a space or tab between the command option

and its argument.

182

AS308 V.1.00 Method for Operating abs308

-.
Disables Message Output to Screen

Function

• The software does not output messages when xrf308 is processing.

• Error messages are output to screen.

Description rule

• This option can be specified at any position on the command line.

Description example
xrf308 -. sample.a30

183

AS308 V.1.00 Method for Operating abs308

-D
Specifies File Search Directory

Function

• Specify the directory in which you want assembler list files to be searched.

• If this directory is not specified, abs308 searches assembler list files

from the current directory.

Description rule

• Input this option using a form like -D (directory name).

• No space or tab can be entered between this option and the directory

name.

Description example
abs308 sample -Ddir

Assembler list files in "dir" under the current directory are searched.
abs308 sample -Ddir list1

File "list1.lst" is searched in "dir" under the current directory is searched.

184

AS308 V.1.00 Method for Operating abs308

-O
Specifies File Output Directory

Function

• Specify the directory in which you want the absolute list file to be gener-

ated.

• If this directory is not specified, the absolute list file is generated in the

current directory.

Description rule

• Input this option using a form like -O (directory name).

• No space or tab can be entered between this option and the directory

name.

Description example
abs308 sample -Oabslist

The absolute list file is generated in the "abslist" directory under the current

directory.

185

AS308 V.1.00 Method for Operating abs308

-V
Indicates Version Number

Function

• The software indicates the version number of the absolute lister.

If this option is specified, all other parameters on the com-

mand line are ignored.

Description rule

• Specify this option only and nothing else.

Description example
abs308 -V

Error Message of abs308

186

AS308 V.1.00

Error Messages of abs308

Can't create file 'filename'

? The file 'filename' cannot be created.

! Check the directory information.

Can't open file 'filename'

? The file 'filename' cannot be opened.

! Check the file name.

Can't write in file 'filename'

? Data cannot be written to the file 'filename'.

! Check the permission of the file.

Command line is too long

? The command line contain too many characters.

! Re-input the command correctly.

Error information is in 'filename'

? The file 'filename' contains error information.

! Regenerate the assembler list file.

Illegal file format 'filename'

? The file format of 'filename' is illegal.

! Check the file name.

Input files number exceed 80

? The number of input files exceeds 80.

! Re-input the command.

Error Message of abs308

187

AS308 V.1.00

Not enough disk space

? Disk capacity is insufficient.

! Check the disk information.

Not enough memory

? Memory capacity is insufficient.

! Increase the memory capacity.

Section information is not appropriate in 'filename'

? The section information in 'filename' is incorrect.

! Check the file name.

Warning Message of abs308

188

AS308 V.1.00

Warning Messages of abs308

Address area exceed 0FFFFFH

? The address range exceeds 0FFFFFh.

! Check the absolute module file name.

File 'l-filename' is missing corresponding to module in 'a-

filename'

? The file 'l-filename' corresponding to the module in 'a-filename' cannot

be found. The absolute list file for this module was not created.

! Regenerate the assembler list file. Check the directory where the as-

sembler list file resides.

Lines 'num-num' are relocatable address in 'filename'

? The lines 'num-num' in 'filename' not converted to absolute addresses.

! Check to see if the directive command ".LIST OFF" is written in the

assembly source file.

No information of 'l-filename' in 'a-filename'

? The file 'a-filename' does not contain information on 'l-filename'.

! Check the file name.

Overwrite in 'filename'

? The file 'filename' will be overwritten.

! The contents of the old file are not saved anywhere.

Rules for Writing Program

189

AS308 V.1.00

Rules for Writing Program

This section describes the basic rules you need to follow when writing a source

program that can be assembled by AS308.

Precautions on Writing Program

Pay attention to the following when writing a program to be assembled by

AS308:

• Do not use the reserved words of AS308 for names in your source pro-

gram.

• The character strings consisting of AS308 directive commands which

have had the periods removed can be used for names without causing

an error. However, avoid using these character strings because some

of them affect processing performed by AS308.

• System labels (the character strings that begin with "..") written in your

source program may not result in generating an error. However, avoid

using system labels because some of them may be used for AS308

extension in the future.

Rules for Writing Program

190

AS308 V.1.00

Character Set

You can use the following characters when writing an assembly program to be

assembled by AS30.

Uppercase alphabets
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Lowercase alphabets
a b c d e f g h i j k l m n o p q r s t u v w x y z

Numerals
0 1 2 3 4 5 6 7 8 9

Special characters
" # $ % & ' () * + , - . / : ; [] \ ^ _ | ~

Blank

(Space) (Tab)

New parabraph or line

(Carriage retrn) (Line feed)

Always be sure to use 'en'-size characters when writing in-

structions and operands. You cannot use multi-byte char-

acters (e.g., kanji) unless you are writing comments.

Rules for Writing Program

191

AS308 V.1.00

Reserved Words

AS308 handles the same character strings as directive assemble commands

and mnemonics as reserved words. These reserved words are not case-sen-

sitive, so they are not discriminated between uppercase and lowercase. Con-

sequently, "ABS" and "abs" are the same reserved words.

The reserved words cannot be used in the "names" described

later.

Types of Reserved Words

• Directive assemble commands
All directive assemble commands explained in this manual and all character

strings that begin with one period are the reserved words.

• Mnemonic
All assembly language mnemonic of M16C/80 Series are the reserved word.

• Operators
All operators explained in this manual are the reserved word.

• System labels
The system labels are generated by assembler.

AS308 handles all character strings that begin with two period as system labels.

Rules for Writing Program

192

AS308 V.1.00

Names

Any desired names can be defined and used as such in your source program.

Names are classified into the following types, each with a different range of

descriptions that can be entered in the program.

• Label
This name has an address as its value.

• Symbol
This name has a constant as its value.

• Bit symbol
This name has a constant (bit position) and address as its values.

• Location symbol
This name has an address as its value. This symbols are output by as308.

Rules for Writing Names

Length of name
A character string can be entered as a name in up to 255 characters.

Determination of name
Names are case-sensitive, so they are discriminated between uppercase and

lowercase. Therefore, "LAB" and "Lab" are handled as different names.

You cannot use any name that is identical to one of AS308's

reserved words. If this rule is not followed, program opera-

tion cannot be guaranteed.

The following describes the types of names you can define in your program.

Rules for Writing Program

193

AS308 V.1.00

Label

Function

• This is a name assigned to a specific address in the range of addresses

that can be accessed by the CPU.

Rules for writing

• Alphabets, numerals and the underline can be used for this name.

• Numerals cannot be used at the beginning of this name.

• When defining a name, always be sure to add the colon (:) at the end of

the name.

Defining method

• There are two methods to define a label.

1 Allocate a memory area with a directive command.

Example:
flags: .BLKB 1

work: .BLKD 1

2 Write a name at the beginning of a source line.

Example:
name1:

_name:

sym_name:

Referencing method
Write a name in the operand of a mnemonic.

Example:
JMP sym_name

Rules for Writing Program

194

AS308 V.1.00

Symbol

Function

• This is a name assigned to a constant.

Rules for writing

• Numeric values must be a determined value when assembling the source

program.

• Alphabets, numerals and the underline can be used for this name.

• Numerals cannot be used at the beginning of this name.

• This name can be defined outside the range of sections.

Defining method

• To define a symbol, use a directive command that is used for defining

numeric values.

Example:
value1 .EQU 1

value2 .EQU 2

Referencing method
Write a symbol in the operand of an instruction.

Example:
MOV.W R0,value1

value3 .EQU value2+1

Rules for Writing Program

195

AS308 V.1.00

Bit symbol

Function

• This is a name assigned to a specific bit position in specific memory.

• If this name is assigned to each individual bit in 8-bit long memory, one-

byte memory can have 8 pieces of information.

• The bit position thus specified is offset from the least significant bit of

memory specified in the address part by a value specified in the bit

number part.

Rules for writing

• Numeric values must be a determined value when assembling the source

program.

• Alphabets and the underline can be used for this name.

• Numerals cannot be used at the beginning of this name.

• This name can be defined outside the range of sections.

Defining method

• To define a bit symbol, use a directive command that is used for defining

bit symbols.

Example:
flag1 .BTEQU 1,flags

flag2 .BTEQU 2,flags

flag3 .BTEQU 20,flags

Referencing method

A bit symbol can be written in the operand of a 1-bit operation instruction.

Example:
BCLR flag1

BCLR flag2

BCLR flag3

flag3

flags

flag2 flag1

Small address

Large address

01

20

Rules for Writing Program

196

AS308 V.1.00

Location symbol

Function

• This symbol indicates the address of a line you wrote.

• By writing the dollar mark ($) in the operand, you can indicate the ad-

dress of the first byte of op-code in the line you wrote.

Rules for writing

• Write this symbol in the operand of a mnemonic.

• The dollar mark ($) cannot be written at the beginning of a name or

reserved word.

• A location symbol can be written in a term of an expression.

When writing a location symbol, make sure that the value of

the expression is a valid value when your program is as-

sembled.

Description example
JMP.B $+5

When writing an address in a branch instruction operand

using a location symbol for offset, be sure to write the ad-

dressing mode, jump distance, and instruction format speci-

fiers for all mnemonics at locations from that instruction to

the jump address.

Rules for Writing Program

197

AS308 V.1.00

Lines

The as308 assembler processes the source program one line at a time. Lines

in the source program are classified into the following types depending on the

contents in that line.

Directive command line

• This line is where as308's directive command is written.

• Only one directive command can be written in one line.

• Comments can be written in the directive command line.

You cannot write a directive command and a mnemonic in

the same line.

Assembly source line

• This line is where a mnemonic is written.

• Comments can be written in the assembly source line.

• A label name can be written at the beginning of the assembly source

line.

You cannot write two or more mnemonics in one line.

You cannot write a directive command and a mnemonic in

the same line.

Label definition line

• This line is where only a label is written.

Comment line

• This line is where only a comment is written.

Rules for Writing Program

198

AS308 V.1.00

Blank line

• This line contains only space, tab, or line feed code.

Rules for Writing Lines

Separation of lines
Lines are separated by the line feed character, and an interval from a character

immediately after a line feed character to the next line feed character is as-

sumed to be one line.

Length of line
Up to 255 characters can be written in one line. The as308 assembler does not

process the characters in any line exceeding this limit.

When writing lines of statements, make sure that your de-

scription is entered within each line.

The following describes rules on each type of line you need to follow when

writing statements.

Directive command line

Function

• Directive command of assembler can be written in this line.

Rules for writing

• Always be sure to insert a space or tab between the directive command

and its operand.

• When writing multiple operands, always be sure to insert a comma (,)

between each operand.

• A space or tab can be inserted between the operand and comma.

• Some directive commands are not accompanied by an operand.

• Directive commands can be written starting immediately from the top of

a line.

• A space or tab can be inserted at the beginning of a directive command.

Rules for Writing Program

199

AS308 V.1.00

• When writing a comment in the directive command line, insert a semico-

lon (;) after the directive command and operand and write your com-

ment in columns following the semicolon.

• Comments are output to an assembler list file.

The as308 assembler processes anything written in columns

after the semicolon (;) as a comment. Consequently, the

assembler does not generate code for the mnemonics and

directive commands written in columns after the semicolon.

Therefore, be careful with the position where you enter the

semicolon. If a semicolon is enclosed with double quota-

tions (") or single quotation ('), AS308 does not assume it to

be the first character of a comment.

• A space or tab can be inserted between a directive command's operand

and a comment.

Description example
.SECTION area,DATA

.ORG 00H

sym .EQU 0

work: .BLKB 1

.ALIGN

.PAGE "newpage"

.ALIGN ; Comment

Rules for Writing Program

200

AS308 V.1.00

Assembly source line
Refer to the "M16C/80 Series Software Manual" for details on how to write

mnemonics. Here, the following explains rules you need to follow to write the

assembly source lines that can be processed by as308.

Function

• Mnemonics available for the M16C/80 Series can be written in this line.

Rules for writing

• Always be sure to insert a space or tab between the mnemonic and its

operand.

• When writing multiple operands, always be sure to insert a comma (,)

between each operand.

• A space or tab can be inserted between the operand and comma.

• Some mnemonics are not accompanied by an operand.

• Mnemonics can be written starting immediately from the top of a line.

• A space or tab can be inserted at the beginning of an assembly source

line.

• When defining a label in the assembly source line, always be sure to

write the label name in columns preceding the mnemonic.

• Be sure to enter a colon before and after the label name.

• A space or tab can be inserted between the label name and the mne-

monic.

• When writing a comment in the assembly source line, insert a semico-

lon (;) after the mnemonic and operand and write your comment in

columns following the semicolon.

Rules for Writing Program

201

AS308 V.1.00

• Comments are output to an assembler list file.

The as308 assembler does not generate code for the mne-

monics or directive commands written in columns after the

semicolon. Therefore, be careful with the position where

you enter the semicolon. If a semicolon is enclosed with

double quotations (") or single quotation ('), AS308 does not

assume it to be the first character of a comment.

• A space or tab can be inserted between a mnemonic's operand and a

comment.

Description example
MOV.W #0,R0

RTS

main: MOV.W #0,A0

RTS ; End of subroutine

Rules for Writing Program

202

AS308 V.1.00

Label definition line

Function

• Any desired name can be written in this line.

Rules for writing

• Always be sure to enter the colon (:) immediately after a label name.

• Do not write anything between the label name and the colon (:).

• Label names can be written starting immediately from the top of a line.

• A space or tab can be inserted at the beginning of a line.

• When writing a comment in the label definition line, insert a semicolon

(;) after the directive command and operand and write your comment in

columns following the semicolon.

• Comments are output to an assembler list file.

The as308 assembler does not generate code for the mne-

monics or directive commands written in columns after the

semicolon. Therefore, be careful with the position where

you enter the semicolon. If a semicolon is enclosed with

double quotations (") or single quotation ('), AS308 does not

assume it to be the first character of a comment.

• A space or tab can be inserted between a label and a comment.

Description example
start:

label: .BLKB 1

main: nop

loop: ; Comment

Rules for Writing Program

203

AS308 V.1.00

Comment line

Function

• Any desired character string can be written in this line.

Rules for writing

• Always be sure to insert a semicolon (;) at the beginning of a comment.

• A space or tab can be inserted at the beginning of a comment.

• Any desired characters can be written in a comment.

Description example:

; Comment line

MOV.W #0,A0 ; Comment can be written in other lines too.

Blank line

Function

• Nothing apparently is written in this line.

Rules for writing

• Lines can be entered that do not contain any meaningful characters as

may be necessary to improve the legibility of your source program.

• No characters other than the space, tab, return, and line feed charac-

ters can be written in a blank line.

Description example:
loop:

 :

JMP loop

JSR sub1

Rules for Writing Program

204

AS308 V.1.00

Line concatenation

• If a line is ended with "\\," the next line is concatenated to the position

where the "\\" is written.

• A comment can be written in a line where "\\" is written. However, no

comment is output in the result of concatenation.

• If an error occurs in a line where "\\" is written, the error is output in the

last line concatenated.

The upper limit for the maximum number of characters in all

lines that are concatenated is 512 characters. However,

this limit does not include the spaces and tabs at the begin-

ning of concatenated lines.

If a "\" is written immediately after a 2-byte code character, it

may be mistaken for "\\." So be careful.

• Description examples for line concatenation and concatenation results

are shown below.

Example 1:

.BYTE 1,\\

2, \\

3 \\

,4

Concatenation result
.BYTE 1,2, 3 ,4

Rules for Writing Program

205

AS308 V.1.00

Example 2:

.BYTE 1,\\ ;comment

2, ;comment \\

3 ;comment

Concatenation result

.BYTE 1,2, ;comment

3 ;comment

Example 3:

.BYTE 1,\\

2,\\

3, \\

4

Concatenation result

.BYTE 1,2,3, 4

Rules for Writing Program

206

AS308 V.1.00

Operands

Operands can be written in a mnemonic or directive command to indicate the

object to be operated on by that instruction. There are following types of oper-

ands.

Some instructions do not have an operand. If you want to

know whether or not the instruction has an operand, please

refer to the rules for writing each command.

• Numeric value
A numeric value includes an integral and a floating- point number.

• Name
A label name and symbol name can be used.

• Expression
An expression with its terms containing a numeric value and a name can be

entered.

• Character string
Characters or a character string can be handled as ASCII code.

Rules for Writing Operands

Position to write an operand
Always be sure to insert a space or tab between the operand and the instruc-

tion that has the operand.

The following describes rules on each type of operand you need to follow when

writing an operand.

Rules for Writing Program

207

AS308 V.1.00

Numeric value
A numeric value includes an integral and a floating- point number.

Integer

An integer can be written in decimal, hexadecimal, binary, or octal notation. The

table below shows how to write each type of integer.

• Binary
Write a number using numerals 0 to 1 and add 'B' or 'b' at the end of the number.

Example)
10010001B

10010001b

• Octal
Wtite a number using numerals 0 to 7 and add 'O' or 'o' at the end of the number.

Example)
60702O

60702o

• Decimal
Write a number using numerals 0 to 9.

Example)
9423

• Hexadecimal
Write a number using numerals 0 to 9 and alphabets A to F and add 'H' or 'h' at

the end of the number. However, if the number begins with an alphabet, be sure

to add a zero '0' at the beginning of the number.

Example)
0A5FH

5FH

0a5fh

5fh

Rules for Writing Program

208

AS308 V.1.00

Floating-point number
The following range of values can be entered that are represented by a floating-

point number:
FLOAT (32 bits long): 1.17549435 x 10 -38 to 3.40282347 x 10 38

DOUBLE (64 bits long): 2.2250738585072014 x 10 -308 to 1.7976931348623157 x 10 308

Floating-point numbers can only be entered for the oper-

ands of directive commands ".DOUBLE" and ".FLOAT".

Example:
3.4E35 3.4 ×1035

3.4e-35 3.4 ×10-35

-.5E20 -0.5 ×1020

5e-20 5.0 ×10-20

Expression

An expression consisting of a combination of numeric value, name, and opera-

tor can be entered.

• A space or tab can be inserted between the operator and numeric value.

• Multiple operators can be used in combination.

• When writing an expression as a symbol value, make sure that the value

of the expression will be a valid value when your program is assembled.

• The range of values that derive from an expression as a result of opera-

tion is -2147483648 to 2147483648.

Even if the operation results in exceeding the range of -

2147483648 to 2147483648, the assembler does not care

whether it is an overflow or underflow.

Floating-point numbers cannot be written in an expression.

Character constants cannot be used in any terms of an ex-

pression.

Rules for Writing Program

209

AS308 V.1.00

Operators

The table below lists the operators that can be written in as308's source pro-

grams.

 When writing operators "SIZEOF" and "TOPOF", always be

sure to insert a space or tab between the operator and oper-

and.

 Relational operators can only be written in the operand of

directive commands ".IF" and ".ELIF".)

Unary operators

+ Handles value that follows as a ositive value.

- Handles value that follows as a negative value.

~ Logivally NOT's value that follows.

SIZEOF Handles section size(bytes) specified in operand as value.

TOPOF Handles start address of section specified in operand as a value.

Rules for Writing Program

210

AS308 V.1.00

Binary operators

+ Adds values on left and right sides of operand together.

- Subtracts value on right side of operand from value on left side.

* Multiples values on left and right sides of operand together.

/ Divides value on left side of operand by value on right side.

% Handles remainder derived by dividing value on left side of operand by

valueon right side.

>> Bit shifts value on left side operand to right as many times as the value

on right side.

<< Bit shifts value on left side operand to left as many times as the value on

right side.

& Logically OR's values on left and right side of operand for each bit.

| Logically AND's values on left and right sides of operand for each bit.

^ Exclusive OR's values on left and right sides of operand for each bit.

Relational operators

> Evaluates that value on left side of operator is greater than value on

right side. This operator can only be written in operand of directive com-

mands .IF and .ELIF.

< Evaluates that value on right side of operator is greater than value left

side. This operator can only be written in operand of directive commands

.IF and .ELIF.

>= Evaluates that value no left side of operator is equal to or greater than

value on right side. This operator can only be written in operand of direc-

tive commands .IF and .ELIF.

<= Evaluates that value no right side of operator is equal to or greater than

value on left side. This operator can only be written in operand of direc-

tive commands .IF and .ELIF.

== Evaluates that value on left side and right side of operator are equal.

This operator can only be written in operand of directive commands .IF

and .ELIF.

!= Evaluates that value on left side and right side of operator are not equal.

This operator can only be written in operand of directive commands .IF

and .ELIF.

Rules for Writing Program

211

AS308 V.1.00

Operators to priorities operation

() Operation enclosed with () is performed first befor any other operation.

If oneexpression contains multiple parentheses, leftmost pair is giben

priority. Parenthesezed operations can be nested.

Operation Priority in Expression

The as308 assembler follows the order of priority shown below as it performs

arithmetic operation on the expression written in an operand and handles the

value resulting from this operation as an operand value.

1 Operation is performed in order of operator priorities, highest priority

first. Operator priorities are listed in the table below. The smaller the

value shown in this table, the greater the priority.

2 Operators of the same priority are operated on sequentially beginning

from the left side.

3 The priority of operation can be changed by enclosing a given operator

with parentheses.

Priority Type Operator Operator

1 Operator to change priority (,)

2 Unary operator +,-,~,SIZEOF,TOPOF

3 Binary operator 1 *,/,%

4 Binary operator 2 +,-

5 Binary operator 3 >>,<<

6 Binary operator 4 &

7 Binary operator 5 |,^

8 Rlational operator >,<,>=,<=,==,!=

Rules for Writing Program

212

AS308 V.1.00

Expression and Its Value

The following shows a description example of an expression and the value

that results from operations performed by as308.

Expression Result of operation

2+6/2 5

(2+6)/2 4

1<<3+1 16

(1<<3)+1 9

3*2%4/2 1

(3*2)%(4/2) 0

8|4/2 10

(8|4)/2 6

8&8/2 0

(8&8)/2 4

6*-3 -18

-(6*-3) 18

-6*-3 18

Character String

A character string can be entered in the operand of some directive commands.

This character string can be comprised of 7-bit ASCII code characters.

When writing a character string in the operand of a directive command, be

sure to enclose it with single or double quotations unless otherwise specified.

Example:
"string"

'string'

Directive Commands

213

AS308 V.1.00

Directive Commands

AS308 allows you to write directive commands in addition to the M16C/80

series mnemonics in the source programs that can be assembled by AS308.

There are following types of directive commands available.

• Address control directive commands
These commands allow you to specify address determination when assembling

the source program.

• Assemble control directive commands
These commands allow you to specify how operation is executed by as308.

• Link control directive commands
These commands allow you to define information necessary to control address

relocation.

• List control directive commands
These commands allow you to control the format of list files generated by as308.

• Branch optimization control directive commands
These commands allow you to specify that as308 selects the most suitable branch

instruction.

• Conditional assemble control directive commands
These commands allow you to select blocks for which code is generated ac-

cording to conditions set when assembling the source program.

• Extended function directive commands
These commands allow you to control the operations that are not listed above.

• Directive commands output by M16C/80 series tool software
These directive commands and operands all are output by the M16C/80 series

tool software.

The directive commands output by the M16C/80 series tool

software cannot be written in a source program by the user.

Directive Commands

214

AS308 V.1.00

List of Directive Commands

The table below lists the directive commands available with AS308.

The following pages explains rules for writing directive commands for each

type of directive command.

Address control

.ORG Declares address.

.BLKB Allocates RAM area in units of 1 bytes.

.BLKW Allocates RAM area in units of 2 bytes.

.BLKA Allocates RAM area in units of 3 bytes.

.BLKL Allocates RAM area in units of 4 bytes.

.BLKF Allocates RAM area in units of 4 bytes.

.BLKD Allocates RAM area in units of 8 bytes.

.BYTE Stores data in ROM in 1-byte length.

.WORD Stores data in ROM in 2-byte length.

.ADDR Stores data in ROM in 3-byte length.

.LWORD Stores data in ROM in 4-byte length.

.FLOAT Stores data in ROM in 4-byte length.

.DOUBLE Stores data in ROM in 8-byte length.

ALIGN Corrects odd addresses to even addresses.

Assemble control

.EQU Defines symbol.

.BTEQU Defines bit symbol.

.END Declares end of assemble source.

.SB Assigns temporary SB register value.

.SBSYM Selects SB relative displacement addressing mode.

.SBBIT Selects SB relative displacement addressing mode for bit sym-

bol.

.FB Assigns temporary FB register value.

.FBSYM Selects FB relative displacement addressing mode.

.INCLUDE Reads file into specified position.

Directive Commands

215

AS308 V.1.00

Link control

.SECTION Defines section name.

.GLB Specifies global label.

.BTGLB Specifies global bit symbol.

.VER Transfers specified information to map file.

List control

.LIST Controls outputting of line data to list file.

.PAGE Breaks page at specified position of list file.

.FORM Specifies number of columns and lines in 1 page of list file.

Branch instruction optimization control

.OPTJ Controls optimization of branch instruction and subroutine call in-

struction.

Extended Function Directive Commands

.ASSERT Outputs a character string written in the operand to a standard

error output device or file.

? Specifies defining and referencing a temporary label.

..FILE Indicates the assembly source file name being processed by

as308.

@ Concatenates character strings entered before and after @ into a

single character string.

Conditional Assemble Control

.IF Indicates the beginning of a conditional assemble block. Condi-

tions are resolved.

.ELIF Resolves the second and the following conditions.

.ELSE Indicates the beginning of a block to be assembled.

.ENDIF Indicates the end of a conditional assemble block.

Directive Commands

216

AS308 V.1.00

Macro directive commands

.MACRO Defines macro name.Indicates beginning of macro body.

.EXITM Stops expansion of macro body.

.LOCAL Declares local label in macro.

.ENDM Indicates end of macro body.

.MREPEAT Indicates beginning of repeat macro body.

.ENDR Indicates end of repeat macro body.

Macro symbols

..MACPARA Indicates number of actual parameter of macro call.

..MACREP Indicates how many times repeat macro body is expanded.

Character string functions

.LEN Indicates length of specified character string.

.INSTR Indicates start position of specified character string in specified

character string.

.SUBSTR Extracts specified number of characters from specified character

string beginning with specified position.

Directive Commands

217

AS308 V.1.00

..FILE
Indicates the assembly source file name being processed by as308.

Function

• This command expands a file name into the one that is being processed

by as308 (i.e., assembly source file or include file).

The file name that can be read in by this directive command

is a file name with its extension and path excluded.

If command option "-F" is specified, "..FILE" is fixed to an

assembly source file name that is specified in the command

line. If this option is not specified, the command denotes

the file name where "..FILE" is written.

Description format
..FILE

Rules for writing command

• This command can be written in the operands of directive commands

".ASSERT" and ".INCLUDE".

Directive Commands

218

AS308 V.1.00

Description example
.ASSERT "sample" > ..FILE

If the assembly source file name is "sample.a30", a message is output to the

"sample" file.
.INCLUDE ..FILE@.inc

If the assembly source file name is "sample.a30", the "sample.inc" file is in-

cluded.
.INCLUDE "sample" > ..FILE@.mes

If the above line is written in "incl.inc" that is included with the "sample.a30" file,

a character string normally is output to "incl.mes".

If command option (-F) is specified, a character string is output to the

"sample.mes" file.

Directive Commands

219

AS308 V.1.00

..MACPARA
Indicates number of actual parameter of macro call

Function

• This command indicates the number of macro call actual parameters.

• This command can be written in the body of a macro definition defined

by ".MACRO".

If this command is written outside the macro body defined

by ".MACRO", its value is made 0.

Description format
..MACPARA

Rules for writing command

• This directive command can be written as a term of an expression.

Directive Commands

220

AS308 V.1.00

Description example

• The assembler checks the number of macro actual parameters as it

executes conditional assemble.
.GLB mem

name .MACRO f1,f2

.IF ..MACPARA == 2

ADD f1,f2

.ELSE

ADD R0,f1

.ENDIF

.ENDM

:

name mem

:

.ELSE

ADD R0,mem

.ENDIF

.ENDM

Directive Commands

221

AS308 V.1.00

..MACREP
Indicates how many times repoeat macro body is expanded

Function

• This command indicates how many times the repeat macro is expanded.

• This command can be written in the body of a macro definition defined

by ".MREPEAT".

If this command is written outside the macro body, its value

is made 0.

• This command can be written in the conditional assemble operand.

Description format
..MACREP

Rules for writing command

• This directive command can be written as a term of an expression.

Directive Commands

222

AS308 V.1.00

Description example
.MREPEAT 3

MOV.W R0,..MACREP

.ENDR

:

MOV.W R0,1

MOV.W R0,2

MOV.W R0,3

.GLB mem

mclr .MACRO value,name

.MREPEAT value

MOV.W #0,name+..MACREP

.ENDR

.ENDM

:

mclr 3,mem

:

.MREPEAT 3

MOV.W #0,mem+1

MOV.W #0,mem+2

MOV.W #0,mem+3

.ENDR

.ENDM

Directive Commands

223

AS308 V.1.00

.ADDR
Stores data in ROM in 3-byte length

Function

• This command stores 3-byte long fixed data in ROM.

• Label can be defined at the address where data is stored.

Description format
.ADDR (numeric value)

(name:) .ADDR (numeric value)

Rules for writing command

• Write an integral value in the operand.

• Always be sure to insert space or tab between the directive command

and the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• When writing multiple operands, separate them with a comma (,).

• A character or a string of characters can be written in the operand after

enclosing it with single quotations (') or double quotations ("). In this

case, data is stored in ASCII code representing the characters.

The length of a character string you can write in the operand

is less than three characters.

• When defining a label, be sure to write the label name before the direc-

tive command.

• Always be sure to insert a colon (:) after the label name.

Directive Commands

224

AS308 V.1.00

Description example
.SECTION value,ROMDATA

.ADDR 1

.ADDR "dat","a"

.ADDR symbol

.ADDR symbol+1

.ADDR 1,2,3,4,5

.END

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA

.ADDR 1 01

64

61

.ADDR "dat"

00

.ADDR "a"

00

00

00

61

74

Directive Commands

225

AS308 V.1.00

.ALIGN
Corrects odd addresses to even addresses

Function

• This command corrects the address to an even address at which code

in the line immediately following description of the command is stored.

• If the section type is CODE or ROMDATA, the NOP code (04H) is writ-

ten into an address that has been emptied as a result of address correc-

tion.

• If the section type is DATA, the address value is incremented by 1.

• Address correction is not performed if the address in which this com-

mand is written is an even address.

Description format
.ALIGN

Rule for writing command

• This directive command can be written in a section that falls under the

conditions below:

A relative-attribute section in which address correction is directed

when defining the section
.SECTION program,CODE,ALIGN

An absolute-attribute section
.SECTION program,CODE

.ORG 0e000H

Directive Commands

226

AS308 V.1.00

Description example
.SECTION program,CODE,ALIGN

MOV.W #0,R0

.ALIGN

.END

.SECTION program,CODE

.ORG 0f000H

MOV.W #0,R0

.ALIGN

.END

.SECTION count,ROMDATA,ALIGN

.ADDR 1

.ALIGN

.SECTION ram,DATA,ALIGN

.BLKA 1

.ALIGN

.BLKB 1

.END

Address Code

00000 010000
00003 04 NOP code is inserted.

00000
00003 Address is incremented by 1.
00004AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

Source

Directive Commands

227

AS308 V.1.00

.ASSERT
Output a character string written in the operand

Function

• This command outputs a character string written in the operand to a

standard error output device when assembling the source program.

• If a file name is specified, the character string written in the operand is

output to the file.

• If the file name does not have directory specification, the assembler

generates the file in the current directory.

Description format
.ASSERT "(character string)"

.ASSERT "(character string)" > (file name)

.ASSERT "(character string)" >> (file name)

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Always be sure to enclose the character string in the operand with double

quotations.

• If you want the character string to be output to a file, specify the file

name after ">" or ">>".

• The symbol > directs the assembler to create a new file and output a

message to that file. If there is an existing file of the same name, that

file is overwritten.

• The symbol >> directs the message is added to the contents of the

specified file. If the specified file cannot be found, the assembler cre-

ates a new file in that name.

• Space or tab can be inserted before and after ">" or ">>".

• Directive command "..FILE" can be written in the file name.

Directive Commands

228

AS308 V.1.00

Description example
.ASSERT "string" > sample.dat

Message is output to file sample.dat.
.ASSERT "string" >> sample.dat

Message is added to file sample.dat.
.ASSERT "string" > ..FILE

Message is output to a file bearing the same name as the currently processed

file except the extension.

Directive Commands

229

AS308 V.1.00

.BLKA
Allocates RAM area in units of 3 bytes

Function

• This command allocates a specified bytes of RAM area in units of 3

bytes.

• Label name can be defined at the allocated RAM address.

Description format
.BLKA (numeric value)

(name:) .BLKA (numeric value)

Rules for writing command

• This directive command must always be written in a DATA-type section.
Section types can be made the DATA type simply by writing ",DATA" following

the section name when you define a section.

• Always be sure to insert space or tab between the directive command

and the operand.

• Write an integral value in the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• The expression in the operand must have its values determined when

assembling the source program.

• When defining a label name in the allocated area, be sure to write the

label name before the directive command. Always be sure to insert a

colon (:) after the label name.

Description example
symbol .EQU 1

.SECTION area,DATA

work1: .BLKA 1

work2: .BLKA symbol

.BLKA symbol+1

Directive Commands

230

AS308 V.1.00

.BLKB
Allocates RAM area in units of 1 bytes

Function

• This command allocates a specified bytes of RAM area in units of 1

byte.

• Label name can be defined at the allocated RAM address.

Description format
.BLKB (numeric value)

(name:) .BLKB (numeric value)

Rules for writing command

• This directive command must always be written in a DATA-type section.
Section types can be made the DATA type simply by writing ",DATA" following

the section name when you define a section.

• Always be sure to insert space or tab between the directive command

and the operand.

• Write an integral value in the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• The expression in the operand must have its values determined when

assembling the source program.

• When defining a label name in the allocated area, be sure to write the

label name before the directive command. Always be sure to insert a

colon (:) after the label name.

Description example
symbol .EQU 1

.SECTION area,DATA

work1: .BLKB 1

work2: .BLKB symbol

.BLKB symbol+1

Directive Commands

231

AS308 V.1.00

.BLKD
Allocates RAM area in units of 8 bytes

Function

• This command allocates a specified bytes of RAM area in units of 8

bytes.

• Label name can be defined at the allocated RAM address.

Description format
.BLKD (numeric value)

(name:) .BLKD (numeric value)

Rules for writing command

• This directive command must always be written in a DATA-type section.

Section types can be made the DATA type simply by writing ",DATA"

following the section name when you define a section.

• Always be sure to insert space or tab between the directive command

and the operand.

• Write an integral value in the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• The expression in the operand must have its values determined when

assembling the source program.

• When defining a label name in the allocated area, be sure to write the

label name before the directive command. Always be sure to insert a

colon (:) after the label name.

Description example
symbol .EQU 1

.SECTION area,DATA

work1: .BLKD 1

work2: .BLKD symbol

.BLKD symbol+1

Directive Commands

232

AS308 V.1.00

.BLKF
Allocates RAM area in units of 4 bytes

Function

• This command allocates a specified bytes of RAM area in units of 4

bytes.

• Label name can be defined at the allocated RAM address.

Description format
.BLKF (numeric value)

(name:) .BLKF (numeric value)

Rules for writing command

• This directive command must always be written in a DATA-type section.
Section types can be made the DATA type simply by writing ",DATA" following

the section name when you define a section.

• Always be sure to insert space or tab between the directive command

and the operand.

• Write an integral value in the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• The expression in the operand must have its values determined when

assembling the source program.

• When defining a label name in the allocated area, be sure to write the

label name before the directive command. Always be sure to insert a

colon (:) after the label name.

Description example
symbol .EQU 1

.SECTION area,DATA

work1: .BLKF 1

work2: .BLKF symbol

.BLKF symbol+1

Directive Commands

233

AS308 V.1.00

.BLKL
Allocates RAM area in units of 4 bytes

Function

• This command allocates a specified bytes of RAM area in units of 4

bytes.

• Label name can be defined at the allocated RAM address.

Description format
.BLKL (numeric value)

(name:) .BLKL (numeric value)

Rules for writing command

• This directive command must always be written in a DATA-type section.
Section types can be made the DATA type simply by writing ",DATA" following

the section name when you define a section.

• Always be sure to insert space or tab between the directive command

and the operand.

• Write an integral value in the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• The expression in the operand must have its values determined when

assembling the source program.

• When defining a label name in the allocated area, be sure to write the

label name before the directive command. Always be sure to insert a

colon (:) after the label name.

Description example
symbol .EQU 1

.SECTION area,DATA

work1: .BLKL 1

work2: .BLKL symbol

.BLKL symbol+1

Directive Commands

234

AS308 V.1.00

.BLKW
Allocates RAM area in units of 2 bytes

Function

• This command allocates a specified bytes of RAM area in units of 2

bytes.

• Label name can be defined at the allocated RAM address.

Description format
.BLKW (numeric value)

(name:) .BLKW (numeric value)

Rules for writing command

• This directive command must always be written in a DATA-type section.
Section types can be made the DATA type simply by writing ",DATA" following

the section name when you define a section.

• Always be sure to insert space or tab between the directive command

and the operand.

• Write an integral value in the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• The expression in the operand must have its values determined when

assembling the source program.

• When defining a label name in the allocated area, be sure to write the

label name before the directive command. Always be sure to insert a

colon (:) after the label name.

Description example
symbol .EQU 1

.SECTION area,DATA

work1: .BLKW 1

work2: .BLKW symbol

.BLKW symbol+1

Directive Commands

235

AS308 V.1.00

.BTEQU
Defines bit symbol

Function

• This command defines a bit position and memory address. The symbol

defined by this directive command is called a bit symbol.

• By defining a bit symbol with this directive command you can write a bit

symbol in the operand of a 1-bit operating instruction.

• The defined bit position is a bit whose position is offset from the LSB of

a specified address value of memory by a value that indicates the bit

position.

• Bit symbols can be used in symbolic debug.

• Bit symbols can be specified as global.

Description format
(name) .BTEQU (bit position), (address value)

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Separate between the bit position and the bit's memory address with a

comma as you enter them.

• Always be sure to write the bit position first and then the address value.

• An integer in the range of 0 to 65535 can be written to indicate the bit

position.

• Always make sure that the value you specify for the bit position is deter-

mined when assembling the source program.

• A symbol can be written to specify the address value of an operand.

• A label or symbol that is indeterminate when assembled can be written

to specify the address value of an operand.

Directive Commands

236

AS308 V.1.00

No bit symbols can be externally referenced (written in the

operand of directive command '.BTGLB') that are defined

by a symbol that is indeterminate when assembled.

• A bit symbol can be written in the operand.

However, a bit symbol name in the operand cannot be for-

ward referenced. Also, for the operand bit symbol, be sure

to write a bit symbol name whose value is fixed when as-

sembled.

• An expression can be written in the operand.

Description example
bit0 .BTEQU 0,0

bit1 .BTEQU 1,flag

bit2 .BTEQU 2,flag+1

bit3 .BTEQU one,flag

bit4 .BTEQU one+one,flag

Directive Commands

237

AS308 V.1.00

.BTGLB
Specifies global bit symbol

Function

• This command declares that the bit symbols specified with it are global

symbols.

• If any bit symbols specified with this directive command are not defined

within the file, the assembler processes them assuming that they are

defined in an external file.

• If the bit symbols specified with this directive command are defined in

the file, the assembler processes them to be referencible from an exter-

nal file.

Description format
.BTGLB (bit symbol name)

.BTGLB (bit symbol name) [,(bit symbol name)...]

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Write a bit symbol name in the operand that you want to be a global

symbol.

No bit symbols can be specified for external reference that

are defined by a symbol that is indeterminate when as-

sembled.

• When specifying multiple bit symbol names in the operand, separate

each symbol name with a comma (,) as you write them.

Description example
.BTGLB flag1,flag2,flag3

.BTGLB flag4

.SECTION program

BCLR flag1

Directive Commands

238

AS308 V.1.00

.BYTE
Stores data in ROM in 1-byte length

Function

• This command stores 1-byte long fixed data in ROM.

• Label can be defined at the address where data is stored.

Description format
.BYTE (numeric value)

(name:) .BYTE (numeric value)

Rules for writing command

• Write an integral value in the operand.

• Always be sure to insert space or tab between the directive command

and the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• When writing multiple operands, separate them with a comma (,).

• A character or a string of characters can be written in the operand after

enclosing it with single quotations (') or double quotations ("). In this

case, data is stored in ASCII code representing the characters.

• When defining a label, be sure to write the label name before the direc-

tive command.

• Always be sure to insert a colon (:) after the label name.

Description example
.SECTION value,ROMDATA

.BYTE 1

.BYTE "data"

.BYTE symbol

.BYTE symbol+1

.BYTE 1,2,3,4,5

.END

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA.BYTE 1
.BYTE "data"

01
64

61

74

61

Directive Commands

239

AS308 V.1.00

.DEFINE
Defines string symbil

Function

• This command defines a character string to a symbol.

• A symbol can be redefined.

The symbols defined by this directive command cannot be

specified for external reference.

Description format
(symbol name) .DEFINE (character string)

(symbol name) .DEFINE '(character string)'

(symbol name) .DEFINE "(character string)"

Description rules

• When defining a character string that includes a space or tab, be sure to

enclose the string with single (') or double (") quotations as you write it.

Description example
.SECTION ram,DATA

data1: .BLKB 1

flag .DEFINE "#01H, data1"

.SECTION program

CLB flag

Directive Commands

240

AS308 V.1.00

.DOUBLE
Stores data in ROM in 8-byte length

Function

• This command stores 8-byte long fixed data in ROM.

• Label can be defined at the address where data is stored.

Description format
.DOUBLE (numeric value)

(name:) .DOUBLE (numeric value)

Rules for writing command

• Write a floating-point number in the operand.

• Refer to "Rules for writing operand" for details on how to write a floating-

point number in the operand.

• Always be sure to insert space or tab between the directive command

and the operand.

• When defining a label, be sure to write the label name before the direc-

tive command.

• Always be sure to insert a colon (:) after the label name.

Description example
.DOUBLE 5E2

constant: .DOUBLE 5e2

Directive Commands

241

AS308 V.1.00

.ELIF
Rexolves the second and the following conditions

Function

• Use this command to write a condition in combination with ".IF" if you

want to specify multiple conditions for conditional assemble to be per-

formed.

• The assembler resolves the condition written in the operand and, if it is

true, assembles the body that follows.

• If condition is true, lines are assembled up to and not including the line

where directive command ".ELIF", ".ELSE" or ".ENDIF" is written.

Description format
.IF {conditional expression}

body

.ELIF {conditional expression}

body

.ENDIF

Rules for writing command

• Always be sure to write a conditional expression in the operand of this

directive command.

• Always be sure to insert space or tab between the directive command

and the operand.

• This directive command can be written for multiple instances in one con-

ditional assemble block.

Description example
.IF TYPE==0

.byte "Proto Type Mode"

.ELIF TYPE>0

.byte "Mass Production Mode"

.ELSE

.byte "Debug Mode"

.ENDIF

Directive Commands

242

AS308 V.1.00

.ELSE
Indicates the biginnig of ablock to be assembled

Function

• When all conditions are false, this command indicates the beginning of

the lines to be assembled.

• In this case, lines are assembled up to and not including the line where

directive command ".ENDIF" is written.

Description format
.IF {conditional expression}

body

.ELSE {conditional expression}

body

.ENDIF

.IF {conditional expression}

body

.ELIF {conditional expression}

body

.ELSE

body

.ENDIF

Rules for writing command

• This directive command can be written less than once in a conditional

assemble block.

• This directive command does not have an operand.

Description example
.IF TYPE==0

.byte "Proto Type Mode"

.ELIF TYPE>0

.byte "Mass Production Mode"

.ELSE

.byte "Debug Mode"

.ENDIF

Directive Commands

243

AS308 V.1.00

.END
Declares end of assemble source

Function

• This command declares the end of the source program.

• The assembler only outputs the contents written in the subsequent lines

after this directive command to a list file and does not perform code

generation and other processing.

Description format
.END

Rules for writing command

• There must always be at least one of this directive command in one

assembly source file.

The as308 assembler does not detect errors in the subse-

quent lines after this directive command either.

Description example
.END

Directive Commands

244

AS308 V.1.00

.ENDIF
Indicates the end of a conditional assemble block

Function

• This command indicates the end of the conditional assemble block.

Description format
.IF {conditional expression}

body

.ENDIF

Rules for writing command

• Always make sure that there is at least one instance of this directive

command in a conditional assemble block.

• This directive command does not have an operand.

Description example
.IF TYPE==0

.byte "Proto Type Mode"

.ELIF TYPE>0

.byte "Mass Production Mode"

.ELSE

.byte "Debug Mode"

.ENDIF

Directive Commands

245

AS308 V.1.00

.ENDM
Indicates end of macro body

Function

• This command indicates that the body of one macro definition is termi-

nated here.

Rules for writing command

• Always make sure that this command corresponds to directive com-

mand ".MACRO" as you write it.

Description format
(macro name) .MACRO

body

.ENDM

Description example
lda .MACRO value

MOV.W #value,A0

.ENDM

:

lda 0

:

MOV.W #0,A0

Directive Commands

246

AS308 V.1.00

.ENDR
Indicates end of repeat macro body

Function

• This command indicates the end of a repeat macro.

Description format
[(label):] .MREPEAT (numeric value)

body

.ENDR

Rules for writing command

• Always make sure that this command corresponds to directive com-

mand ".MREPEAT" as you write it.

Description example
rep .MACRO num

.MREPEAT num

.IF num > 49

.EXITM

.ENDIF

nop

.ENDR

.ENDM

:

rep 3

:

nop

nop

nop

Directive Commands

247

AS308 V.1.00

.EQU
Defines symbol

Function

• This command defines a value in the range of signed 32-bit integers (-

32768 to 32767) to a symbol.

• Symbolic debug function is made available for use by defining symbols

with this directive command.

Description format
(name) .EQU (numeric value)

Rules for writing command

• The value that can be defined to a symbol must be determined when

assembling the source program.

• Always be sure to insert space or tab between the directive command

and the operand.

• A symbol can be written in a symbol-defined operand.

However, symbol names cannot be entered that are forward

referenced.

• An expression can be written in a symbol-defined operand.

• Symbols can be specified as global.

Description example
symbol .EQU 1

symbol1 .EQU symbol+symbol

symbol2 .EQU 2

Directive Commands

248

AS308 V.1.00

.EXITM
Stop expansion of macro body

Function

• This command stops expanding the macro body and transfers control to

the nearest ".ENDM".

Description format
(macro name) .MACRO

body

.EXITM

body

.ENDM

Rules for writing command

• Make sure that the command is written within the body of a macro defi-

nition.

Description example
data1 .MACRO value

.IF value == 0

.EXITM

.ELSE

.BLKB value

.ENDIF

.ENDM

:

data1 0

:

.IF 0 == 0

.EXITM

.ENDIF

.ENDM

Directive Commands

249

AS308 V.1.00

.FB
Assigns temporary FB register value

Function

• This command assigns a provisional FB register value.

• When assembling the source program, the assembler assumes that the

FB register value is one that is defined by this directive command as it

generates code for the subsequent source lines.

• FB relative addressing mode can be specified in the subsequent lines.

• The assembler generates code in FB relative addressing mode for the

mnemonics that use labels defined by directive command ".FBSYM".

Description format
.FB (numeric value)

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Always make sure that this command is written in the assembly source

file.

• Always be sure to write this command before you use the FB relative

addressing mode.

• An integer in the range of 0 to 0FFFFFH can be written in the operand.

This directive command only directs the assembler to take

on a provisional FB register value and cannot be used to set

a value to the actual FB register. To set an FB register value

actually, write the following instruction immediately before

or after this directive command. Example: LDC #80H,FB

• A symbol can be written in the operand.

Description example
.FB 80H

LDC #80H,FB

Directive Commands

250

AS308 V.1.00

.FBSYM
Selects FB relative displacement addressing mode

Function

• The assembler selects the FB relative addressing mode for the name

specified in the operand of this directive command.

• The assembler selects the FB relative addressing mode for the operand

in absolute 16-bit addressing mode that includes the name specified in

the operand of this directive command.

Description format
.FBSYM (name)

.FBSYM (name)[,(name)...]

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Always be sure to set the FB register value with directive command

".FB" before you write this directive command.

• When specifying multiple names, be sure to separate the names with a

comma as you write them.

• Be careful that the symbol you specify with this directive command is

not a duplicate of the symbol specified by ".SBSYM".

Description example
.FB 80H

LDC #80,FB

.FBSYM sym1,sym2

Directive Commands

251

AS308 V.1.00

.FLOAT
Stores data in ROM in 4-byte length

Function

• This command stores 4-byte long fixed data in ROM.

• Label can be defined at the address where data is stored.

Description format
.FLOAT (numeric value)

(name:) .FLOAT (numeric value)

Rules for writing command

• Write a floating-point number in the operand.

• Refer to "Rules for writing operand" for details on how to write a floating-

point number in the operand.

• Always be sure to insert space or tab between the directive command

and the operand.

• When defining a label, be sure to write the label name before the direc-

tive command.

• Always be sure to insert a colon (:) after the label name.

Description example
.FLOAT 5E2

constant: .FLOAT 5e2

Directive Commands

252

AS308 V.1.00

.FORM
Specifies number of columns and lines in 1 page of list file

Function

• This command specifies the number of lines per page of the assembler

list file in the range of 20 to 255.

• This command specifies the number of columns per page of the assem-

bler list file in the range of 80 to 295.

• The contents specified by this directive command become effective be-

ginning with the page next to one where the command is written. How-

ever, if this directive command is written in the first line of the assembly

source file, the specified contents become effective beginning with the

first page.

• If this directive command is not specified, the assembler list file is output

with the number of lines = 66 and the number of columns = 140.

Description format
.FORM (number of lines),(number of columns)

.FORM (number of lines)

.FORM ,(number of columns)

Directive Commands

253

AS308 V.1.00

Rules for writing command

• This command can be written for multiple instances in one assembly

source file.

• A symbol can be used to describe the number of lines and the number of

columns.

Symbols cannot be used that are forward referenced.

• An expression can be used to describe the number of lines and the

number of columns.

• If you specify only the number of columns in the operand, be sure to

enter a comma (,) immediately before the numeric value you write for

the number of columns.

Description example
.FORM 20,80

.FORM 60

.FORM ,100

.FORM line,culmn

Directive Commands

254

AS308 V.1.00

.GLB
Specifies global label

Function

• This command declares that the labels and symbols specified with it are

global.

• If any labels or symbols specified with this directive command are not

defined within the file, the assembler processes them assuming that

they are defined in an external file.

• If the labels or symbols specified with this directive command are de-

fined in the file, the assembler processes them to be referencible from

an external file.

Description format
.GLB (name)

.GLB (name) [,(name)...]

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Write a label name in the operand that you want to be a global label.

• Write a symbol name in the operand that you want to be a global sym-

bol.

• When specifying multiple symbol names in the operand, separate each

symbol name with a comma (,) as you write them.

Description example
.GLB name1,name2,name3

.GLB name4

.SECTION program

MOV.W #0,name1

Directive Commands

255

AS308 V.1.00

.IF
Conditional assemble control

Function

• This command indicates the beginning of a conditional assemble block.

• The assembler resolves the condition written in the operand and, if it is

true, assembles the body that follows.

• If condition is true, lines are assembled up to and not including the line

where directive command ".ELIF", ".ELSE" or ".ENDIF" is written.

• Any instructions that can be written in a as308 source program can be

written in the conditional assemble block.

Description format
.IF {conditional expression}

body

.ENDIF

Rules for writing command

• Always be sure to write a conditional expression in the operand of this

directive command.

• Always be sure to insert space or tab between the directive command

and the operand.

Function of conditional expression

• Conditional assemble is performed based on the result of the condi-

tional expression.

Directive Commands

256

AS308 V.1.00

Rules for writing conditional expression

• Only one conditional expression can be written in the operand of the

directive command.

• Always be sure to write a relational operator in the conditional expres-

sion.

• The operators listed below can be used.

Relational operators Contents

> True if value on left side of operator is greater than value on right side.

< True if value on right side of operator is greater than value on left side.

>= True if value on left side of operator is equal to or greater than value on

right side.

<= True if value on right side of operator is equal to or greater than value on

left side.

== True if values on left and right sides of operator are equal.

!= True if values on left and right sides of operator are not equal

• Arithmetic operation of a conditional expression is performed in signed

32 bits.

The assembler does not care whether the operation has re-

sulted in overflow or underflow.

• A symbol can be written in the left and right sides of the relational opera-

tor.

Symbols cannot be forward referenced (only the symbols

that are defined after this directive command are referenced).

Forward referenced symbols or undefined symbols written

here are assumed to be 0 in value as the assembler re-

solves the conditional expression.

Directive Commands

257

AS308 V.1.00

• An expression can be written on the left and right sides of the relational

operator. To write an expression, follow the "rules for writing expres-

sion" in Section 1, "Rules for Writing Program".

• A character string can be written on the left and right sides of the rela-

tional operator. Always be sure to enclose the character string with single

quotations (') or double quotations (") as you write it. Which character

string is larger or smaller than the other is resolved by the value of char-

acter code.
"ABC" < "CBA"

-> 414243 < 434241; therefore, condition is true.

"C" < "A"

-> 43 < 41; therefore, condition is false.

• Space or tab can be written before or after the relational operator.

• A conditional expression can be written in the operands of directive com-

mands ".IF" and ".ELIF".

Description example of conditional expression
sym<1

sym < 1

sym+2 < data1

sym+2 < data1+2

'smp1'==name

Description example
.IF TYPE==0

.byte "Proto Type Mode"

.ELIF TYPE>0

.byte "Mass Production Mode"

.ELSE

.byte "Debug Mode"

.ENDIF

Directive Commands

258

AS308 V.1.00

.INCLUDE
Reads file into specified position

Function

• This command reads the content of a specified file into a line of the

source program.

• Nesting level of include files is within 9.

• When you describe an include file name with an absolute path name,

AS308 searches the directory described in the operand field for a file.

An error occurs if no file can be found in the directory.

• When you describe a include file with a relative path name or a file name

alone in the operand field of the inclusion-directing instruction:

1 In an instance in which no directory is designated for the file name des-

ignated in the command line at the time of starting up AS308:

AS308 searches for a file name designated by the inclusion-directing

instruction.

In an instance in which a directory is designated for a file name desig-

nated in the command line at the time of starting up AS308:

AS308 searches for a file name resulting from adding a directory name

specified in the command line to a file name specified by the inclusion-

directing instruction.

2 AS308 searches the directory designated by the command option -I.

3 AS308 searches the directory set in the environment variable INC79.

Description format
.INCLUDE (file name)

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Always be sure to write a file extension in the operand file name.

• A character string that includes directive command "..FILE" or "@" can

be written.

Do not specify INCLUDE the file itself within the include file.

Description example
.INCLUDE initial.a30

Directive Commands

259

AS308 V.1.00

.INSTR
Detects specified character string

Function

• This command indicates a position in the character string specified in

the operand at which a search character string begins.

• A position can be specified at which you want the assembler to start

searching a character string.

The value is rendered 0 if a search character string is longer

than the character string itself. The value is rendered 0 if a

search character string is not included in the character string.

The value is rendered 0 if the search start position is as-

signed a value greater than the length of the character string.

Description format
.INSTR {"(CS)","(SC)",(SP)}

.INSTR {'(CS)','(SC)',(SP)}

CS=character string

SC=search character string

SP=search start position

Rules for writing command

• Always be sure to enclose the operand with { }.

• Always be sure to write the character string, search character string,

and search start position.

• Separate the character string, search character string, and search start

position with commas as you write them.

• No space or tab can be inserted before and after the comma.

• A symbol can be written in the search start position.

Directive Commands

260

AS308 V.1.00

• If you specify 1 for the search start position, it means the beginning of

the character string.

• The 7-bit ASCII code characters including a space and tab can be used

to write a character string.

Kanji and other 8-bit code are not processed correctly. How-

ever, the as308 assembler does not output errors.

• Always be sure to enclose the character string with quotations as you

write it.

If you want a macro argument to be expanded as a charac-

ter string, enclose the parameter name with single quota-

tions as you write it. Note that if you enclose a character

string with double quotations, the character string itself is

expanded.

• This directive command can be written as a term of an expression.

Description example
top .EQU 1

point_set .MACRO source,dest,top

point .EQU .INSTR{'source','dest',top}

.ENDM

:

point_set japanese,se,1

:

point .EQU 7

This example extracts the position (7) of the character string "se"

from the beginning (top) of the specified character string (japanese).

Directive Commands

261

AS308 V.1.00

.LEN
Indicates length of specified character string

Function

• This command indicates the length of the character string that is written

in the operand.

Description format
.LEN {"(character string)"}

.LEN {'(character string)'}

Rules for writing command

• Always be sure to enclose the operand with { }.

• Space or tab can be written between this directive command and the

operand.

• The 7-bit ASCII code characters including a space and tab can used to

write a character string.

Kanji and other 8-bit code are not processed correctly. How-

ever, the as308 assembler does not output errors.

• Always be sure to enclose the character string with quotations as you

write it.

If you want a macro parameter to be expanded as a charac-

ter string, enclose the macro name with single quotations as

you write it. If enclosed with double quotations, the charac-

ter string length of the formal parameter written in macro

definition is assumed.

• This directive command can be written as a term of an expression.

Directive Commands

262

AS308 V.1.00

Description example
bufset .MACRO f1,f2

buffer@f1: .BLKB .LEN{'f2'}

.ENDM

:

bufset 1,Printout_data

bufset 2,Sample

:

buffer1 .BLKB 13

buffer2 .BLKB 6

buf .MACRO f1

buffer: .BLKB .LEN{"f1"}

.ENDM

:

buf 1,data ; data is not expanded.

:

buffer .BLKB 2

Directive Commands

263

AS308 V.1.00

.LIST
Controls outputting of line data to list file

Function

• This command allows you to stop (OFF) outputting lines to the assem-

bler list file.

• Lines in error are output to the list file regardless of whether they are

within the list output disabled range.

• This command allows you to start (ON) outputting lines to the assem-

bler list file.

• All lines are output to the list file if you do not specify this directive com-

mand.

Description format
.LIST [ON|OFF]

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• To stop outputting lines, write 'OFF' in the operand.

• To start outputting lines, write 'ON' in the operand.

Description example
.LIST ON

.LIST OFF MOV.B #0,R0L

MOV.B #0,R0L

.LIST OFF

MOV.B #0,R0L

MOV.B #0,R0L

MOV.B #0,R0

MOV.B #0,R0L

MOV.B #0,R0L

.LIST ON

MOV.B #0,R0L

MOV.B #0,R0L

MOV.B #0,R0L

Example of source file Example of assembler list file output

MOV.B #0,R0L

MOV.B #0,R0L

.LIST OFF

MOV.B #0,R0

Error message

.LIST ON

MOV.B #0,R0L

MOV.B #0,R0L

MOV.B #0,R0L

Line in error

Directive Commands

264

AS308 V.1.00

.LOCAL
Declares local label in macro

Function

• This command declares that the label written in the operand is a macro

local label.

• Macro local labels are allowed to be written for multiple instances with

the same name providing that they differently macro defined or they are

written outside macro definition.

If macro definitions are nested, macro local labels in the

macro that is defined within macro definition are not allowed

to be used in the same name again.

Description format
.LOCAL (label name)[,(label name)...]

Rules for writing command

• Always make sure that this directive command is written within the macro

body.

• Always be sure to insert space or tab between this directive command

and the operand.

• Make sure that macro local label declaration by this directive command

is entered before you define the label name.

• To write a macro local label name, follow the rules for writing name in

Section 1, "Rules for Writing Program".

• Multiple labels can be written in the operand of this directive command

providing that they are separated with a comma. In this case, up to 100

labels can be entered.

Directive Commands

265

AS308 V.1.00

The maximum number of macro local labels that can be writ-

ten in one assembly source file including the contents of

include files is 65,535.

Description example
name .MACRO

.LOCAL m1;'m1' is the macro local label.

m1:

NOP

JMP m1

.ENDM

Directive Commands

266

AS308 V.1.00

.LWORD
Stores data in ROM in 4-byte length

Function

• This command stores 4-byte long fixed data in ROM.

• Label can be defined at the address where data is stored.

Description format
.LWORD (numeric value)

(name:) .LWORD (numeric value)

Rules for writing command

• Write an integral value in the operand.

• Always be sure to insert space or tab between the directive command

and the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• When writing multiple operands, separate them with a comma (,).

• A character or a string of characters can be written in the operand after

enclosing it with single quotations (') or double quotations ("). In this

case, data is stored in ASCII code representing the characters.

The length of a character string you can write in the operand

is less than four characters.

• When defining a label, be sure to write the label name before the direc-

tive command.

• Always be sure to insert a colon (:) after the label name.

Description example
.SECTION value,ROMDATA

.LWORD 1

.LWORD "data"

.LWORD symbol

.LWORD symbol+1

.LWORD 1,2,3,4,5

.END

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA

AAAAA
AAAAA

.LWORD 1 01

64

61

.LWORD "data"

00

00

61

74

00

Directive Commands

267

AS308 V.1.00

.MACRO
Defines macro name and beginning of macro body

Function

• This command defines a macro name.

• This command indicates the beginning of macro definition.

Description format

• Macro definition
(macro name) .MACRO [(formal parameter) [,(formal parameter)...]]

body

.ENDM

• Macro call
(macro name) [(actual parameter)[, (actual parameter)...]]

Rules for writing command

• Always be sure to write a macro name.

• To write a macro name, follow the rules for writing name in Section 1,

"Rules for Writing Program".

• Formal parameters can be defined in the operand.

• Always be sure to insert space or tab between this directive command

and the macro formal parameter.

• Space or tab can be written between this directive command and the

macro name.

Directive Commands

268

AS308 V.1.00

Rules for writing formal parameter

• To write a macro formal parameter name, follow the rules for writing

name in Section 1, "Rules for Writing Program".

• When defining a macro formal parameter, use a name that is unique

including nested macro definitions.

• When defining multiple formal parameters, separate the formal param-

eters with a comma (,) as you write them.

• Always make sure that the formal parameters written in the operand of

directive command ".MACRO" are written within the macro body.

All character strings enclosed with double quotations indi-

cate the character strings themselves and nothing else.

Therefore, do not enclose the formal parameters with double

quotations.

• Up to 80 formal parameters can be entered.

This means that you can enter up to 80 formal parameters

within the range of the number of characters that can be

written in one line.

Rules for writing actual parameter

• Always be sure to insert space or tab between the macro name and the

actual parameter.

• Make sure that the actual parameters you write are corresponded one

for one to the formal parameters when the macro is called.

• When using a special character to write a actual parameter, be sure to

enclose the character with double quotations as you write it.

• Labels, global labels, and symbols can be used to write actual param-

eters.

• An expression can be entered in a actual parameter.

Directive Commands

269

AS308 V.1.00

Expanding actual parameter

• Formal parameters are replaced with actual parameters sequentially from

left to right in the order they are written.

• If no actual parameter is written in macro call that corresponds to a

defined formal parameter, the assembler does not generate code for

this formal parameter part.

• If there are more formal arguments than the actual arguments and some

formal arguments do not have the corresponding actual arguments, the

assembler does not generate code for this formal argument part.

• If a formal parameter written in the body is enclosed with single quota-

tions ('), the assembler encloses the corresponding actual parameter

with single quotations as it is output.

• If one actual parameter contains a comma (,) while at the same time the

argument is enclosed with parentheses "()", the assembler converts the

argument along with its parentheses.

• If there are more actual parameters than the formal parameters, the

assembler does not process the actual parameters that do not have the

corresponding formal parameters.

If the number of actual parameters does not match that of

formal parameters, the as308 assembler outputs a warning

message.

Directive Commands

270

AS308 V.1.00

Example of actual parameter expansion

Example of macro definition
name .MACRO string

.BYTE 'string'

.ENDM

Example of macro call -1
name "name,address"

:

.BYTE 'name,address'

Example of macro call -2
name (name,address)

:

.BYTE '(name,address)'

Description example
mac .MACRO p1,p2,p3

.IF ..MACPARA == 3

.IF 'p1' == 'byte'

MOV.B #p2,p3

.ELSE

MOV.W #p2,p3

.ENDIF

.ELIF ..MACPARA == 2

.IF 'p1' =='byte'

MOV.B p2,R0L

.ELSE

MOV.W p2,R0

.ENDIF

.ELSE

MOV.W R0,R1

.ENDIF

.ENDM

:

mac word,10,R0

:

.IF 3=3

.ELSE

MOV.W #10,R0

.ENDIF

.ENDIF

.ENDM

Directive Commands

271

AS308 V.1.00

.MREPEAT
Indicates beginning of repeat macro bady

Function

• This command indicates the beginning of a repeat macro.

• The macro body is expanded repeatedly a specified number of times.

• The maximum number of repetitions that can be specified is 65,535.

• Repeat macros can be nested in up to 65,535 levels.

• The macro body is expanded into the line in which this directive com-

mand is written.

Description format
[(label):] .MREPEAT (numeric value)

body

.ENDR

Rules for writing command

• Always be sure to write the operand.

• Always be sure to insert space or tab between this directive command

and the operand.

• A label can be written at the beginning of this directive command.

• A symbol can be written in the operand.

Forward referenced symbols cannot be used here.

• An expression can be written in the operand.

• Macro definition and macro call can be written in the body.

• Directive command ".EXITM" can be written in the body.

Directive Commands

272

AS308 V.1.00

Description example
rep .MACRO num

.MREPEAT num

.IF num > 49

.EXITM

.ENDIF

NOP

.ENDR

.ENDM

:

rep 3

:

NOP

NOP

NOP

Directive Commands

273

AS308 V.1.00

.OPTJ
Controls optimization

Function

• This command controls optimization of unconditional branch instructions.

• A jump distance can be specified for unconditional branch instructions

or subroutine call instructions where the jump distance specifier is omit-

ted and the operand is not subject to optimization processing.

• The specified contents become effective beginning with the line follow-

ing one in which this directive command is written.

• Optimization specification by this directive command can be entered for

multiple instances in one assembly source file.

Description format
.OPTJ [OFF|ON], [JMPW|JMPA], [JSRW|JSRA]

Rules for writing command

• The following three parameters can be written in the operand of this

directive command:

1 Optimization control of branch instruction

2 Selection of unconditional branch instruction excluded from optimiza-

tion processing

3 Selection of subroutine call instruction excluded from optimization pro-

cessing

Directive Commands

274

AS308 V.1.00

The following contents can be written in each parameter:

1 OFF Branch instructions are not optimized.

ON Branch instructions are optimized. (Default)

2 JMPW Unconditional branch instructions not subject to optimiza-

tion processing are generated with "JMP.W".

JMPA Unconditional branch instructions not subject to optimiza-

tion processing are generated with "JMP.A". (Default)

3 JSRWSubroutine call instructions not subject to optimization process-

ing are generated with "JSR.W".

JSRA Subroutine call instructions not subject to optimization pro-

cessing are generated with "JSR.W". (Default)

• Each parameter can be specified in any desired order.

• Each parameter can be omitted. If any parameter is omitted, the jump

distance does not change beginning with the default value or previously

specified content.

Description example

A combination of operands shown below can be entered:
.OPTJ OFF

.OPTJ ON

.OPTJ ON,JMPW

.OPTJ ON,JMPW,JSRW

.OPTJ ON,JMPW,JSRA

.OPTJ ON,JMPA

.OPTJ ON,JMPA,JSRW

.OPTJ ON,JMPA,JSRA

.OPTJ ON,JSRW

.OPTJ ON,JSRA

Directive Commands

275

AS308 V.1.00

.ORG
Specifies address value

Function

• Sections in which this directive command is written are assigned abso-

lute attribute.

Absolute-attribute sections cannot have their addresses re-

located when linking programs.

• The addresses of a section in which this directive command is written

take on absolute values.

• The addresses where code is stored for mnemonics that are written in

the lines immediately following this directive command are determined.

• The memory addresses to be allocated by an area allocating directive

command that is written in the lines immediately following this directive

command are determined.

Description format
.ORG (numeric value)

AAA
AAAAAA
AAA
AAA
AAA
AAA
AAA

.SECTION program

.ORG 8000H
main:

NOP
 :

.SECTION ram,DATA

.ORG 800H
work: .BLKB 3

NOP code (04H) is stored at address 8000H. 3-byte area is allocated beginning with
address 800H.

ROM
8000 04

RAM
work 800

801
802

AAA
AAA
AAA
AAA
AAA

AAAAA
AAAAA

AAAAAA
AAAAAA

Directive Commands

276

AS308 V.1.00

Rules for writing command

• This directive command must always be written immediately after a sec-

tion directive command.

If directive command ".ORG" is not found in the line immedi-

ately following description of ".SECTION", the section is as-

signed relative attribute.

• This directive command cannot be written in relative-attribute sections.

• Always be sure to insert space or tab between the directive command

and the operand.

• The values that can be written in the operand are a numeric value in the

range of 0 to 0FFFFFH.

• An expression can be written in the operand. However, this expression

must have its values determined when assembling the source program.

• A symbol can be written in the operand. However, this symbol must

have its values determined when assembling the source program.

• This directive command can not be written in sections that are specified

to be relative attribute.

• This directive command can be written for multiple instances within an

absolute-attribute section.

Description example
.SECTION value,ROMDATA

.ORG 0FF00H

.BYTE "abcdefghijklmnopqrstuvwxyz"

.ORG 0FF80H

.BYTE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

.END

The following statement results in an error.
.SECTION value,ROMDATA

.BYTE "abcdefghijklmnopqrstuvwxyz"

.ORG 0FF80H

.BYTE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Directive Commands

277

AS308 V.1.00

.PAGE
Breaks pages at specified position of list file

Function

• This command causes pages in the assembler list file to break.

• The character string written in the operand is output to the header sec-

tion in the new page of the assembler list file.

The maximum number of characters that can be output to

the header is value subtracted 65 from the number of col-

umns in the list file. Use directive command ".FORM" to set

the number of columns in the list file.

Description format
.PAGE "(character string)"

.PAGE '(character string)'

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Enclose the operand with single quotations (') or double quotations (")

as you write it.

• The operand can be omitted.

Description example
.PAGE

.PAGE "strings"

.PAGE 'strings'

Directive Commands

278

AS308 V.1.00

.SB
Assigns temporary SB register value

Function

• This command assigns a provisional SB register value.

• When assembling the source program, the assembler assumes that the

SB register value is one that is defined by this directive command as it

generates code for the subsequent source lines.

• SB relative addressing mode can be specified in the subsequent lines.

• The assembler generates code in SB relative addressing mode for the

mnemonics that use labels defined by directive command ".SBSYM".

Description format
.SB (numeric value)

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Always make sure that this command is written in the assembly source

file.

• Always be sure to write this command before you use the SB relative

addressing mode.

• AN integer in the range of 0 to 0FFFFH can be written in the operand.

This directive command only directs the assembler to take

on a provisional SB register value and cannot be used to set

a value to the actual SB register. To set an SB register value

actually, write the following instruction immediately before

or after this directive command. Example: LDC #80H,SB

• A symbol can be written in the operand.

Description example
.SB 80H

LDC #80,SB

Directive Commands

279

AS308 V.1.00

.SBBIT
Selects SB relative displacement addressing mode for bit symbol

Function

• The 8-bit SB relative displacement addressing mode is selected by speci-

fying a bit symbol of undefined value for the operand of this command.

Description format
.SBBIT (name)

.SBBIT (name) [, (name)...]

Rules for writing command

• Always be sure to enter a space or tab between the directive command

and operand.

• A bit symbol defined by '.BTEQU' or '.BTGLB' can be written in the oper-

and.

• A forward referenced bit symbol can be written in the operand.

• Before writing this directive command, be sure to set the SB register

value by directive command ".SB".

• When specifying multiple names, separate them with a comma (,).

Description example
.BTGLB extbit

.SB 80H

LDC #80H,SB

.SBBIT bsym,extbit

BCLR bsym ;Select 8 bits SB

BAND bsym ;Select 8 bits SB

BSET extbit ;Select 8 bits SB

Directive Commands

280

AS308 V.1.00

.SBSYM
Selects SB relative displacement addressing mode

Function

• The assembler selects the SB relative addressing mode for the name

specified in the operand of this directive command.

• The assembler selects the SB relative addressing mode for the expres-

sion in absolute 16-bit addressing mode that includes the name speci-

fied in the operand of this directive command.

• The SB relative addressing mode can be selected for the operand that

contains a relocatable value.

The SB relative addressing mode is not selected for the sym-

bols that are defined by using the label name specified by

this directive command.

Description format
.SBSYM (name)

.SBSYM (name)[,(name)...]

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• A label and symbol can be written in the operand.

• Always be sure to set the SB register value with directive command

".SB" before you write this directive command.

• When specifying multiple names, be sure to separate the names with a

comma as you write them.

Directive Commands

281

AS308 V.1.00

Description example
.SB 80H

LDC #80H,SB

.SBSYM sym1,sym2

• In the following case, the SB relative addressing mode is not selected

for sym2.

.SBSYM sym1

sym2 .EQU sym1+1

Directive Commands

282

AS308 V.1.00

.SECTION
Defines section name

Function

• This command defines a section name.

• This command defines the beginning of a section. An interval from one

section directive command to the next section directive command or

directive command ".END" is defined as one section.

• This command defines a section type.

• If 'ALIGN' is specified, ln308 allocates the beginning of a section to an

even address.

• Directive command ".ALIGN" can be written in a ALIGN-specified sec-

tion or an absolute-attribute section.

Description format
.SECTION (section name)

.SECTION (section name),(section type)

.SECTION (section name),(section type),ALIGN

.SECTION (section name),ALIGN

Directive Commands

283

AS308 V.1.00

Rules for writing command

• Always be sure to write a section name when you define a section.

• When you write an assembly directive command to allocate a memory

area or store data in memory or you write a mnemonic, always use this

directive command to define a section.

• Write the section type and ALIGN after the section name.

• When specifying a section type and ALIGN, separate them with a comma

as you write.

• Section type and ALIGN can be specified in any desired order.

• Section type can be selected from 'CODE', 'ROMDATA', and 'DATA'.

• The section type can be omitted. In this case, as308 assumes section

type CODE as it processes assembling.

Description example
.SECTION program,CODE

NOP

.SECTION ram,DATA

.BLKB 10

.SECTION dname,ROMDATA

.BYTE "abcd"

.END

Directive Commands

284

AS308 V.1.00

.SJMP
Controls generation of a short-jump instruction

Function

• This command controls generation of a short-jump instruction.

• No short-jump instruction is generated in lines after one in which ".SJMP

OFF" is written.

• Short-jump instructions are generated in lines after one in which ".SJMP

ON" is written.

Description format
.SJMP ON

.SJMP OFF

Description rules

• Be sure to insert a space or tab between this directive command and

'ON' or 'OFF.'

Description example
:

.SJMP ON ; Generation of short jump is enabled.

JMP lab

NOP

.SJMP OFF

JMP lab ; Generation of short jump is disabled.

NOP

lab:

:

Directive Commands

285

AS308 V.1.00

.SUBSTR
Extracts specified number of characters

Function

• This command extracts a specified number of characters from the speci-

fied position of a character string.

The value is rendered 0 if the extract start position is as-

signed a value greater than the length of the character string

itself. The value is rendered 0 if the number of characters to

be extracted is greater than the length of the character string

itself. The value is rendered 0 if you specify 0 for the num-

ber of characters to be extracted.

Description format
.SUBSTR {"(CS)",(ES),(NC)}

.SUBSTR {'(CS)',(ES),(NC)}

CS=character string

ES=extract start position

NC=number of characters to be extract

Directive Commands

286

AS308 V.1.00

Rules for writing command

• Always be sure to enclose the operand with { }.

• Always be sure to write the character string, extract start position, and

the number of characters to be extracted.

• Separate the character string, extract start position, and the number of

characters to be extracted with commas as you write them.

• A symbol can be written in the extract start position and the number of

characters to be extracted.

• If you specify 1 for the extract start position, it means the beginning of

the character string.

• The 7-bit ASCII code characters including a space and tab can be used

to write a character string.

Kanji and other 8-bit code are not processed correctly. How-

ever, the as308 assembler does not output errors.

• Always be sure to enclose the character string with quotations as you

write it.

If you want a macro argument to be expanded as a charac-

ter string, enclose the parameter name with single quota-

tions as you write it. Note that if you enclose a character

string with double quotations, the character string itself is

expanded.

Directive Commands

287

AS308 V.1.00

Description example
name .MACRO data

.MREPEAT .LEN{'data'}

.BYTE .SUBSTR{'data',..MACREP,1}

.ENDR

.ENDM

:

name ABCD

:

.BYTE "A"

.BYTE "B"

.BYTE "C"

.BYTE "D"

• The length of the character string that is given as actual parameter of

the macro is given to the operand of ".MREPEAT".

• ".MACREP" is incremented 1 -> 2 -> 3 -> 4 each time the ".BYTE" line is

executed. Consequently, the character string that is given as actual

parameter of the macro is given successively to the operand of ".BYTE"

one character at a time beginning with the first character in that charac-

ter string.

Directive Commands

288

AS308 V.1.00

.VER
Transfers specified information to map file

Function

• This command outputs the specified character string to a relocatable

module file so it will be output to a map file when it is generated by

ln308.

• All of the specified character strings are output to a map file.

• The user-specified information can be output to a map file for each relo-

catable module file.

Description format
.VER "(character string)"

.VER '(character string)'

Rules for writing command

• Always be sure to insert space or tab between the directive command

and the operand.

• Write the character string in the operand that you want to be output to a

map file after enclosing it with single quotations (') or double quotations

(").

• Make sure that the operand is written within the range of one line.

• This command can be written only once in one assembly source file.

• This command can be written in any desired line providing that it is en-

tered before directive command ".END".

Description example
.VER 'strings'

.VER "strings"

Directive Commands

289

AS308 V.1.00

.WORD
Stores data in ROM in 2-byte length

Function

• This command stores 2-byte long fixed data in ROM.

• Label can be defined at the address where data is stored.

Description format
.WORD (numeric value)

(name:) .WORD (numeric value)

Rules for writing command

• Write an integral value in the operand.

• Always be sure to insert space or tab between the directive command

and the operand.

• A symbol can be written in the operand.

• An expression can be written in the operand.

• When writing multiple operands, separate them with a comma (,).

• A character or a string of characters can be written in the operand after

enclosing it with single quotations (') or double quotations ("). In this

case, data is stored in ASCII code representing the characters.

The length of a character string you can write in the operand

is less than two characters.

• When defining a label, be sure to write the label name before the direc-

tive command.

• Always be sure to insert a colon (:) after the label name.

Directive Commands

290

AS308 V.1.00

Description example
.SECTION value,ROMDATA

.WORD 1

.WORD "da","ta"

.WORD symbol

.WORD symbol+1

.WORD 1,2,3,4,5

.END

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA.WORD 1 01

64
61.WORD "da"

00

Directive Commands

291

AS308 V.1.00

?
Temporary label

Function

• This command defines a temporary label.

• The assembler references a temporary label that is defined immediately

before or after an instruction.

The labels that can be referenced are only the label defined

before or after an instruction.

• A temporary file can be defined and referenced within the same file.

• Up to 65,535 temporary files can be defined in a file. In this case, if

".INCLUDE" is written in the file, the maximum number of temporary

files you can enter (= 65,535) includes those in the include file.

• The temporary labels generated by the assembler are output to a list

file.

• The temporary labels are changed into "tl0001","tl0002" ... and "tlFFFF".

Description format
?:

(mnemonic) ?+

(mnemonic) ?-

Directive Commands

292

AS308 V.1.00

Rules for writing command

• Write "?:" in the line where you want it to be defined as a temporary

label.

• If you want to reference a temporary label that is defined immediately

before an instruction, write "?-" in the instruction operand.

• If you want to reference a temporary label that is defined immediately

after an instruction, write "?+" in the instruction operand.

Description example
?:

JMP ?+

JMP ?-

?:

JMP ?-

?:
JMP ?+
JMP ?-

?:
JMP ?-

Denotes a temporary label indicated by the arrow.

Directive Commands

293

AS308 V.1.00

@
Concatenates character strings

Function

• This command concatenates macro arguments, macro variables, re-

served symbols, expanded file name of directive command "..FILE", and

specified character strings.

Description format
(character string) @ (character string)

(character string) @ (character string) [@ (character string)...]

Rules for writing command

• Spaces and tabs entered before and after this directive command are

concatenated as a character string.

• A character string can be written before and after this directive com-

mand.

• When you use @ for character data (40H), be sure to enclose @ with

double quotations ("). When a string including @ is enclosed with single

quotation, strings before and after @ are concatenated.

• This command can be written for multiple instances in one line.

If you want a concatenated character string to be a name,

do not insert spaces and tabs before and after this directive

command.

Directive Commands

294

AS308 V.1.00

Description example
.ASSERT "sample" > ..FILE@.dat

If the currently processed file name is "sample1.a30", a message is output to

the sample.dat file.

• A macro definition like the one shown below can be entered:
mov_nibble .MACRO p1,src,p2,dest

 MOV@p1@p2 src,dest

.ENDM

:

mov_nibble L,R0L,H,[A0]

:

MOVLH R0L,[A0]

Technical Support Communication Sheet

To Distributor:

Product Information

Product name :

Version number :

Serial number :

Host Machine name :

OS name :

OS version :

Date : / / (Total Pages)

If this form does not have sufficient space, use another sheet of paper to write your information.

(1 /)

Contact Address

Company :

Department :

Responsible person :

Phone :

FAX :

E-mail :

Address :

Message :

AS308 V.1.00 User's Manual
Second Edition: April 1, 1999
Document No. MSD-AS308-UE-990401

©1999 MITSUBISHI ELECTRIC CORPORATION
©1999 MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

 MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

 MITSUBISHI ELECTRIC CORPORATION

	Precautions to be taken when using this manual
	Contents
	Specifications of AS308
	Detail of Specifications

	Outline of Function
	Configuration
	Functions
	Outline of as308 functions
	Outline of ln308 functions
	Outline of lmc380 functions
	Outline of lb308 functions
	Outline of xrf308 functions
	Outline of abs308 functions

	AS308 Functions
	Relocatable Assemble
	Unit of Address Management (Section)
	Rules on Section Management
	Label and symbol
	Management of Label and Symbol Addresses
	Library File Referencing Function
	Management of Include File
	Code Selection by AS308
	Optimized Selection by AS308
	Example of Optimization Selection by as308
	SB Register Offset Description
	Special Page Branch
	Referencing Special Page Vector Table
	Macro Function
	Repeat Macro Function
	Conditional Assemble Control
	Source Line Information Output
	Symbol Definition
	Environment Variables of as308
	Output messages
	Compatibility with M16C/60 commands
	AS308 processing when option command -mode60 is specified
	Replacement command list

	Input/Output Files of AS308
	Relocatable Module File
	Assembler List File
	Assembler Error Tag File
	Absolute Module File
	Map File
	Link Error Tag File
	Motorola S Format
	Intel HEX Format
	Library File
	Library List File
	Cross Reference File
	Absolute List File

	Starting Up Program
	Precautions on Entering Commands
	Structure of Command Line
	Rules for Entering Command Line

	Method for Operating as308
	Command Parameters
	Rules for Specifying Command Parameters
	Include File Search Directory
	as308 Command Options
	-.
	-abs16
	-C
	-D
	-F
	-H
	-I
	-L
	-mode60
	-mode60p
	-M
	-N
	-O
	-S
	-T
	-V
	-X

	Error Messages of as308
	Warning Messages of as308
	Method for Operating ln308
	Command Parameters
	Rules for Specifying Command Parameters
	Command File
	-.
	-E
	-G
	-L
	-LD
	-LOC
	-M
	-MS/-MSL
	-NOSTOP
	-O
	-ORDER
	-T
	-V
	@

	Error Messages of ln308
	Warning Messages of ln308
	Method for Operating lmc308
	Command Parameters
	Rules for Specifying Command Parameters
	-.
	-E
	-H
	-ID
	-L
	-O
	-V
	-protect1
	-protect2

	Error Messages of lmc308
	Warning Messages of lmc308
	Method for Operating lb308
	Command Parameters
	Rules for Specifying Command Parameters
	-.
	-A
	-C
	-D
	-L
	-R
	-U
	-V
	-X
	@

	Error Messages of lb308
	Warning Messages of lb308
	Method for Operating xrf308
	Command Parameters
	Rules for Specifying Command Parameters
	-.
	-N
	-O
	-V
	@

	Error Messages of xrf308
	Method for Operating abs308
	Precautions using abs308
	-.
	-D
	-O
	-V

	Error Messages of abs308
	Warning Messages of abs308
	Rules for Writing Program
	Precautions on Writing Program
	Character Set
	Reserved Words
	Names
	Lines
	Line concatenation
	Operands
	Rules for Writing Operands
	Operators
	Character String

	Directive Commands
	List of Directive Commands
	..FILE
	..MACPARA
	..MACREP
	.ADDR
	.ALIGN
	.ASSERT
	.BLKA
	.BLKB
	.BLKD
	.BLKF
	.BLKL
	.BLKW
	.BTEQU
	.BTGLB
	.BYTE
	.DEFINE
	.DOUBLE
	.ELIF
	.ELSE
	.END
	.ENDIF
	.ENDM
	.ENDR
	.EQU
	.EXITM
	.FB
	.FBSYM
	.FLOAT
	.FORM
	.GLB
	.IF
	.INCLUDE
	.INSTR
	.LEN
	.LIST
	.LOCAL
	.LWORD
	.MACRO
	.MREPEAT
	.OPTJ
	.ORG
	.PAGE
	.SB
	.SBBIT
	.SBSYM
	.SECTION
	.SJMP
	.SUBSTR
	.VER
	.WORD
	?
	@

	Technical Support Communication Sheet

