

ATT7026A User Manual

Table of Contents

Chapter 1 Introduction	3
1.1 Features	3
1.2 Functional description	4
1.3 Block diagram	4
1.4 Pin definition	5
1.5 Application diagram	8
Chapter 2 System Functions	9
2.1 Power supply monitor ·····	9
2.2 System reset ·····	9
2.3 ADC	10
2.4 Active power measure ·····	11
2.5 Active energy measure ·····	11
2.6 Reactive power measure	11
2.7 Reactive energy measure	12
2.8 apparent power measure	13
2.9 Voltage RMS measure ····	13
2.10 Current RMS measure	14
2.11 Voltage line-frequency measure ·····	14
2.12 Power factor measure	14
2.13 Voltage and current phase angle measure	14
2.14 Voltage phase sequence measure	15
2.15 Current phase sequence measure	15
2.16 Start-up and creep setting	16
2.17 power direction judgement ·····	16
2.18 Voltage- depreciation detecting ·····	16
2.19 Hardware port detecting ·····	17
2.20 Application for 3-phase 3-wire and 3-phase 4-wire	17
2.21 energy pulse output ·····	17
2.22 Parameter output registers definition	19
2.23 Parameter output registers specification	21
3 Calibration	24
3.1 Hardware calibration ·····	24
3.2 Software calibration	26
3.3 Calibration register definition	26
3.4 Calibration register specification	28
3.5 Calibration flow chart and parameter calculation	32
Chapter 4 SPI communication interface	34
4.1 SPI communication interface introduction	34
4.2 SPI reading	35
4.3 SPI writing ·····	36
4.4 SPI write special command	37
Chapter 5 Electrical Characteristics	
5.1 Electrical parameter ·····	38
5.2 Packaging information	40

Chapter 1 Introduction

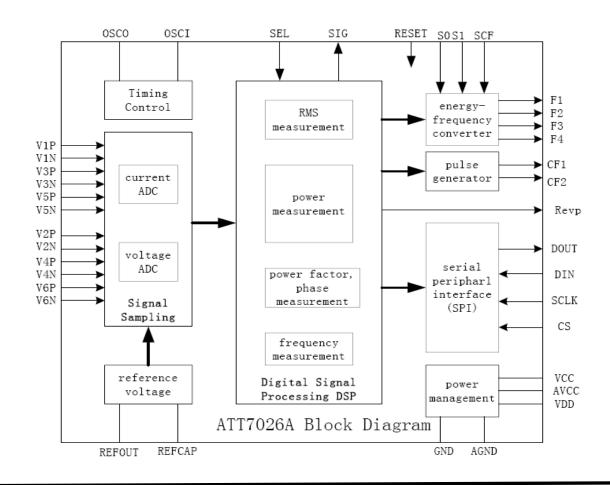
1.1 Features

- High accuracy, less than 0.1% over a dynamic range of 1000 to 1;
- Active energy measure accord with 1S, 0.5S, supports IEC 687/1036, GB/T 17215-1998;
- Reactive energy measure accord with 2S, 3S, support IEC 1268, GB/T17882-1999;
- Compatible with 3-phase 3-wire and 3-phase 4-wire;
- Provide instantaneous active power, reactive power, and apparent power;
- Provide power factor, phase difference, line frequency;
- Provide voltage RMS, current RMS, RMS precision overmatches 0.5%;
- Provide voltage and current phase sequence detecting;
- Provide RMS output for 3-phase current vector summation;
- Provide RMS output for 3-phase voltage vector summation;
- · Provide voltage-lost detected;
- · Provide indication for reverse power;
- Provide calibration pulse output for active and reactive energy;
- Provide active and reactive pulse output for driving electromechanical counter and stepper motor;
- Selectable calculating mode for 3 phase energy combined;
- · Adjustable meter constant;
- Adjustable startup current;
- Accurate measure for active, reactive and apparent power which contain 21st harmonic;
- · Provide gain and phase compensation, nonlinear compensation for little current;
- Easy to use SPI port to communicate with host MCU;
- Supplies resistance network calibration and software calibration;
- Single +5V power supply;
- QFP44 package.

1.2 Functional description

ATT7026A is a high accuracy 3-phase electronic energy metering chip which is suitable for 3-phase 3-wire and 3-phase 4-wire.

ATT7026A incorporates 6 second-order sigma-delta ADCs, reference voltage circuitry and the entire signal processing required calculating power, energy, RMS data, power factor and frequency.


ATT7026A is suitable for measuring active power, reactive power, apparent power, active energy and reactive energy for each phase and 3 phases combined; it is also suitable for measuring voltage RMS, current RMS, power factor, phase difference, and frequency. ATT7026A is qualified for 3-phase multi-rate multifunctional electronic energy meter.

ATT7026A supports two kinds of calibration methods: resistance network calibration and software calibration. Resistance network calibration applies to system which uses resistance network to sample in voltage channel, the system error can be calibrated to suffice class 1S via adjusting resistance network. Software calibration compensates gain and phase via correlative registers, which can calibrate the system error to suffice class 0.5S. The pulse for active energy (CF1) and reactive energy (CF2) can be used directly to calibrate error. Refer to chapter 3 for detailed calibration method.

SPI port is used to transfer data to and from host MCU for all measuring result and calibration data. Refer to chapter 4 for detailed SPI reading and writing method.

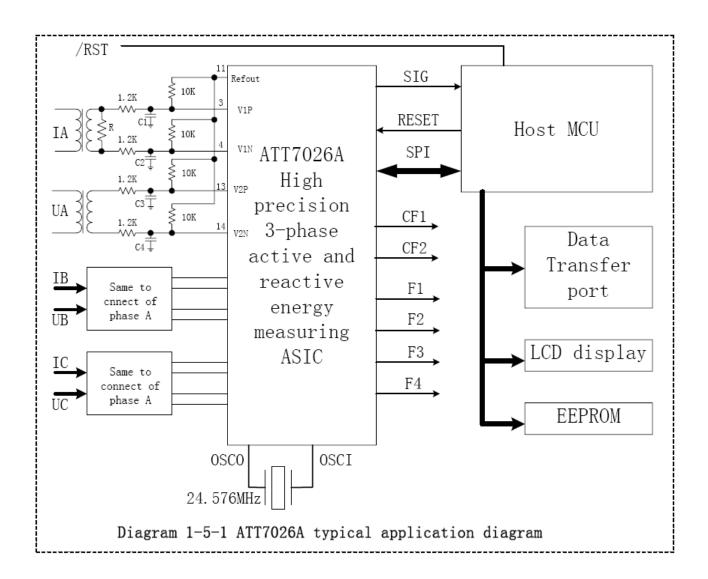
Power supply monitor circuitry safeguards ATT7026A's performance.

1.3 Block diagram

1.4 Pin definition

Pin	Name	I/O	Description				
1	RESET	I	ATT7026A reset, low active. Internally pull-high 47K resistance.				
2	SIG	0	SIG would go low when ATT7026A power on reset or unconventional reset. After the host MCU sends calibration data via SPI, SIG would goes high immediately.				
3, 4	V1P/V1N	I	Analog inputs for A phase current channel. The maximum input signal level is ±1.5V. Both inputs have internal ESD protection circuitry and in addition an over voltage of ±6V can be sustained on these inputs without risk of permanent damage.				
5	REFCAP	0	Internal reference voltage, 2.4V, can be connected to external reference voltage. This pin should be decoupled with a 10µF and a 0.1uF capacitor to AGND.				
6, 7	V3P/V3N	I	Analog inputs for B phase current channel. The maximum input signal level is ±1.5V. Both inputs have internal ESD protection circuitry and in addition an over voltage of ±6V can be sustained on these inputs without risk of permanent damage.				
8, 15	AGND	AGND	The analog ground is the ground reference for all analog circuitry.				
9, 10	V5P/V5N	I	Analog inputs for C phase current channel. The maximum input signal level is ±1.5V. Both inputs have internal ESD protection circuitry and in addition an over voltage of ±6V				

			can be sustained on these inputs without risk of permanent damage.
11	REFOUT	0	Reference voltage output, acts as bias for input signals.
12, 18	AVCC	AVCC	Analog power supply, the supply voltage should be maintained at $5V\pm5~\%$ for specified operation. This pin should be decoupled with a $10\mu F$ and a $0.1uF$ capacitor to AGND.
13, 14	V2P/V2N	I	Analog inputs for A phase voltage channel. The maximum input signal level is ±1.5V. Both inputs have internal ESD protection circuitry and in addition an over voltage of ±6V can be sustained on these inputs without risk of permanent damage.
16,17	V4P/V4N	I	Analog inputs for B phase voltage channel. The maximum input signal level is ±1.5V. Both inputs have internal ESD protection circuitry and in addition an over voltage of ±6V can be sustained on these inputs without risk of permanent damage.
19,20	V6P/V6N	1	Analog inputs for C phase voltage channel. The maximum input signal level is ±1.5V. Both inputs have internal ESD protection circuitry and in addition an over voltage of ±6V can be sustained on these inputs without risk of permanent damage.
21, 22	S0/S1	I	Select coefficient for output frequency. Internally pull-high 300K resistance.
23, 44	GND	GND.	Digital ground.
24	TEST	I	Test pin, should tie to GND normally. Internally pull-low 47K resistance.
25	SCF	I	Select coefficient for output frequency, cooperate with S0/S1. Internally pull-high 300Kresistance.
26	SEL	I	System mode selection, high for 3-phase 4-wire, low for 3-phase 3-wire. Internally pull-high 300K resistance.
27	CF1	0	Active energy pulse output.
28	CF2	0	Reactive energy pulse output.
29, 30	F1/F2	0	Low frequency active energy pulse output denotes 3-phase average active power. Be used for driving electromechanical counter.
31,32	F3/F4	0	Low frequency reactive energy pulse output denotes 3-phase average reactive power. Be used for driving electromechanical counter.
33,39	VDD	VDD	3.0V Power output. This pin should be decoupled with a 10µF and a 0.1uF capacitor to GND.
34,41	VCC	VCC	Digital power supply, the supply voltage should be maintained at 5V±5%. This pin should be decoupled with a 10µF and a 0.1uF capacitor to GND



35	CS	1	SPI selection signal, low active, Internally pull-high 200K
			resistance.
36	SCLK	1	SPI serial clock input (Schmitt).
			Notice: Data is output at the rising edge and input at the
			falling edge.
37	DIN	1	SPI serial data input (Schmitt). Internally pull-low 200K
			resistance.
38	DOUT	0	SPI serial data output. It is high-impedance output when CS
			is high.
40	REVP	0	Goes high when any one phase active power is negative,
			goes low when all phase active power is positive.
42	OSCI	1	System oscillator input.
			Oscillator frequency is 24.576MHz.
43	OSCO	0	System oscillator output.

Note: In application circuitry schematics, both analog ground and digital ground (Pin 8, 15, 23, and 44) must be short connected to guarantee equipotential.

1.5 Application diagram

Chapter 2 System Functions

2.1 Power supply monitor

ATT7026A contains an on-chip power supply monitor. The analog supply (AVCC) is continuously monitored by the ATT7026A. If the supply is less than 4V±5%, the ATT7026A will be reset. This is useful to ensure correct device start-up at power-on and power-down. The power supply monitor has built in hysteresis and filtering. This gives a high degree of immunity to false trigger due to noisy supplies, as illustrated in the figure 2-1. The power supply should be decoupled so that the ripple at

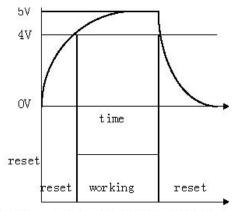
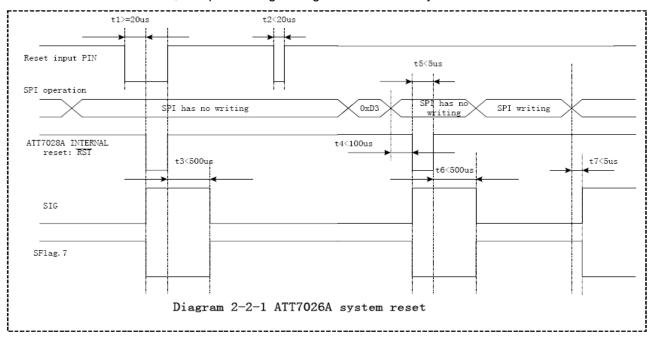


Diagram 2-1-1 power supply monitor

AVCC does not exceed 5V±5% for normal operation.

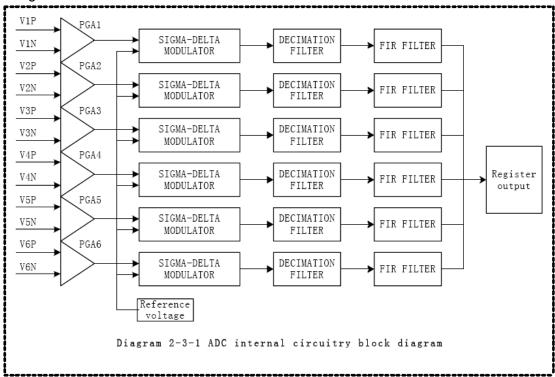

2.2 System reset

ATT7026A provides two kinds of reset method: hardware reset and software reset.

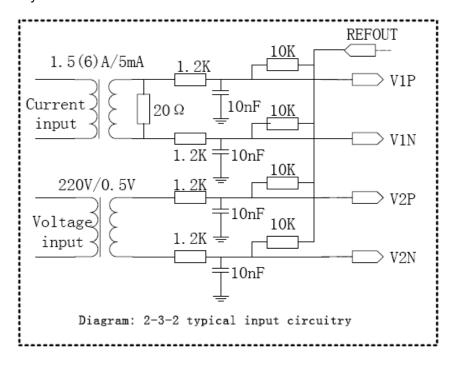
Hardware reset is executed via external RESET pin, which has internal 47K pull-high resistance. So in normal working, the RESET pin is high level. If RESET pin is pulled to low level overstep 20us, ATT7026A would be reset, when RESET pin goes to high level, ATT7026A would go to normal working state from reset state.

Software reset is executed via SPI port, if we write 0xD3 to SPI port, ATT7026A would be reset and start working renewedly from initial state.

The SIG pin is high level in reset state. After ATT7026A goes to normal working state from reset state, SIG pin would be pulled to low level from high level in about 500us, here the chip start normal working. Once the calibration data is written, SIG pin would go to high level immediately.



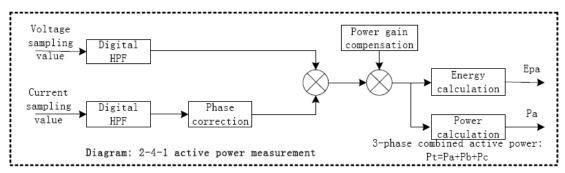
2.3 ADC


There are 6 ADCs in ATT7026A, all of which use fully differential voltage inputs, with amaximum input voltage of ±1.0V. For proper application, we suggest that voltage channel input set at 0.5V and current channel input (at base current –lb) set at 0.1V.

The typical value of reference voltage (Refcap and Refout) is 2.4V.

Block diagram of ADC in ATT7026A:

Typical input circuitry:

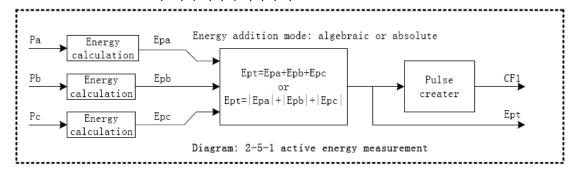

2.4 Active power measure

Calculation of active power for each phase is achieved by multiplication, addition and digital filtering, which act on input voltage and current signals.

The over-sampling of sigma-delta ADC guarantees sampling rate of input signals, and the sampled data contains information for up to 21st harmonic. And according to the formula

$$P = \frac{1}{N} \sum_{n=0}^{N} U(n) \bullet I(n)$$
, the active power contains information for up to 21st harmonic.

The measure elements of active power is illustrated in the nether figure, 3-phase combined active power Pt=Pa+Pb+Pc.


2.5 Active energy measure

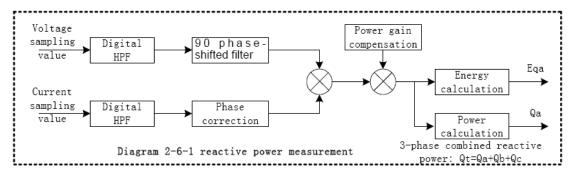
Calculation of active energy is achieved via instantaneous active power integrating to the time.

The formula of single phase active energy: $Ep = \int p(t)dt$

The 3-phase combined active energy could be summated according to algebraic addition mode or absolute addition mode, which could be set.

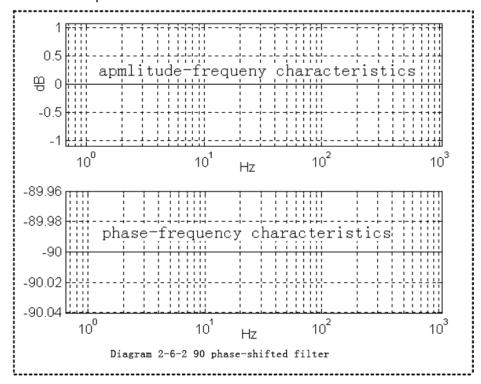
Algebraic addition mode: Ept=Epa+Epb+Epc
Absolute addition mode: Ept=|Epa|+|Epb|+|Epc|.

2.6 Reactive power measure


According to real reactive power (sine reactive power) well-defined formula, the reactive power .

$$Q = \sum_{n=1}^{\infty} U_n I_n \sin(\varphi)$$

Calculation of reactive power is similar to the calculation of active power. The only difference is that

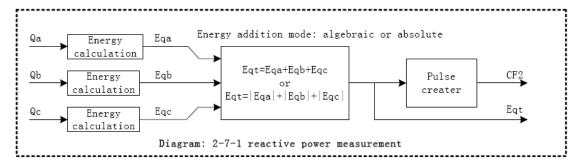


the voltage signals are 90 degree phase shifted. The metrical bandwidth is restricted by the bandwidth of digital phase-shifted filter. The metrical bandwidth of ATT7026A reactive power could also up to 21st harmonic.

The digital 90° phase-shifted filter in ATT7026A has ascendant frequency response characteristic, as illustrated in the figure 2-6-2. It is a linear filter that amplitude-frequency characteristic is 1 and all frequency component in the frequency-band would be processed -90° phase-shifted. So ATT7026A can achieve corking measurement veracity even though measure very highly harmonic reactive power.

Noticed: when calibrate reactive power, we must insure the reactive power arithmetic of standard-meter is same to ATT7026A reactive power arithmetic, or else the difference of arithmetic would bring definite error, especially to harmonic reactive power.

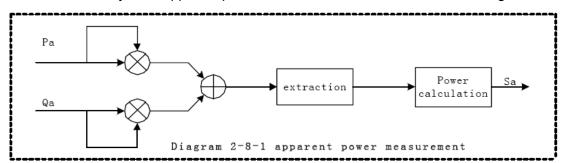
2.7 Reactive energy measure


Calculation of reactive energy is achieved via instantaneous reactive power integrating to the time.

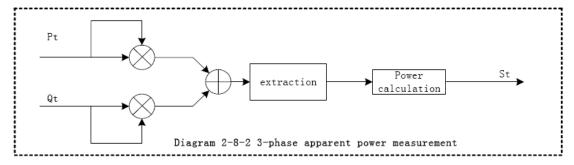
The formula of single phase reactive energy: $Eq = \int q(t)dt$

The 3-phase combined reactive energy could be summated according to algebraic addition mode or absolute addition mode, which could be set.

Algebraic addition mode: Eqt=Eqa+Eqb+Eqc
Absolute addition mode: Eqt=|Eqa|+|Eqb|+|Eqc|.

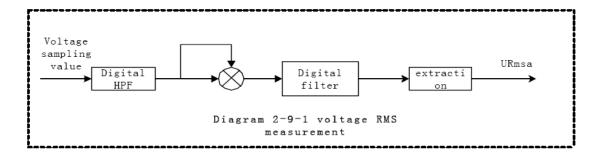

2.8 apparent power measure

Apparent power has two kinds of calculation formula:

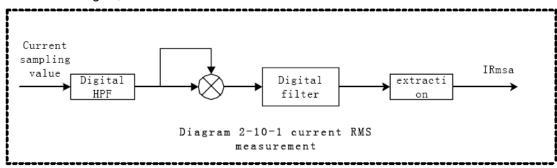

PQS apparent power formula 1:
$$S = \sqrt{P^2 + Q^2}$$

RMS apparent power formula 2: S=Urms*Irms

Because of ATT7026A could supply voltage RMS and current RMS directly, RMS apparent power formula 2 can be achieved convenient via external MCU, so ATT7026A supplies only apparent power value which is achieved by PQS apparent power formula 1,as illustrated in the nether figure.


ATT7026A calculates 3-phase combined apparent power according to formula 1, which bases on 3-phase combined active power and 3-phase combined reactive power, as illustrated in the nether figure.

2.9 Voltage RMS measure


Voltage RMS is calculated through square, extraction, filtering of voltage samples. When voltage channel input 10mv ~ 1000mv signal, the voltage RMS error less than 0.5%.

2.10 Current RMS measure

Current RMS is calculated through square, extraction, filtering of current samples. When current channel input 2mv ~ 1000mv signal, the current RMS error less than 0.5%.

2.11 Voltage line-frequency measure

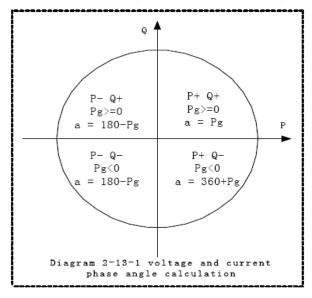
ATT7026A can output voltage frequency parameter directly. ATT7026A could select any one phase voltage in A/B/C 3 phase as benchmark of voltage line-frequency measure. Measurable voltage line-frequency range is 10Hz ~ 500 Hz.

2.12 Power factor measure

Power factor calculation formula:
$$Pf = sign(Q) \times \frac{abs(P)}{abs(Q)}$$

The symbol of power factor is determined by symbol of reactive power.

2.13 Voltage and current phase angle measure


According to electrotechnician, power factor Pf=cos(Pg), thereinto Pg is the angle between voltage and current. In ATT7026A, the voltage and current phase angle is defined as: Pg= sign(Q)*acos(|Pf|). According to this method, ATT7026A could supply 3-phase combined phase angle which come from 3-phase combined power factor: Pgt=sign(Q)*acos(|Pft|)

ATT7026A phase angle Pg could only be denoted as $\pm 90^\circ$, the expression is same to power factor. If we want to use $0^\circ \sim 360^\circ$ denote different quadrant phase angle, we need do some switchover as follows:

If active power is positive, reactive power is also positive, actual phase angle is Pg;

If active power is positive, reactive power is negative, actual phase angle is 360°+Pg; If active power is negative, actual phase angle is 180°-Pg.

2.14 Voltage phase sequence measure

ATT7026A can detect voltage phase sequence, but the voltage phase sequence detection criterion of 3-phase 3-wire and 3-phase 4-wire is not same.

In 3-phase 4-wire mode, voltage phase sequence detection detects according as the over-zero point sequence of A/B/C 3 phase voltage. The correct criterion of voltage phase sequence is A phase voltage over-zero —> C phase voltage over-zero, or else voltage phase sequence is error. In addition, if any one phase in A/B/C phase has not voltage input, ATT7026A would also regard voltage phase sequence as error.

In 3-phase 3-wire mode, voltage phase sequence detection detects according as the angle of A phase voltage and C phase voltage. If the angle of A phase voltage and C phase voltage is about 300°, ATT7026A would regard voltage phase sequence as right, or else voltage phase sequence is error.

The flag of voltage phase sequence is in flag register SFlag, SFlag[bit3] = 1 denotes A/B/C voltage phase sequence is error, SFlag[bit3] = 0 denotes A/B/C voltage phase sequence is right.

2.15 Current phase sequence measure

ATT7026A can detect current phase sequence. Current phase sequence detection detects according as the over-zero point sequence of A/B/C 3 phase current. The correct criterion of current phase sequence is A phase current over-zero —> B phase current over-zero —> C phase current over-zero, or else current phase sequence is error. In addition, if any one phase in A/B/C phase has not current input, ATT7026A would also regard current phase sequence as error.

The flag of current phase sequence is in flag register SFlag, SFlag[bit4] = 1 denotes A/B/C current phase sequence is error, SFlag[bit4] = 0 denotes A/B/C current phase sequence is right

Noticed: current phase sequence detection function need be turn on via phase detection enable control register EnDtlorder.

2.16 Start-up and creep setting

ATT7026A implements start-up and creep via judging current and start-up threshold. If ATT7026A detected any one phase current more than start-up threshold, the corresponding phase start measure. If ATT7026A detected any one phase current less than start-up threshold, the corresponding phase stop measuring.

The default value of ATT7026A start-up current threshold register 'Istartup' is 0x000280, which denotes ATT7026A start-up at 0.1% and prevents creeping at 0.08% when input sampling signal is 100my in rated current lb.

2.17 power direction judgement

ATT7026A supplies real time power direction judgement, which could implentment four-quadrant power measurement expediently.

Negative power indication REVP: if any one phase active power is negative, REVP would output high level, goes low when 3 phase power is positive.

Power direction indication register PFlag: used to indicate the direction of A/B/C/3-phase combined active and reactive power.

Bit0-3: indicate the direction of A, B, C, and 3-phase combined active power respectively, 0 denotes positive direction, 1 denotes negative direction.

Bit4-7: indicate the direction of A, B, C, and 3-phase combined reactive power respectively, 0 denotes positive direction, 1 denotes negative direction.

2.18 Voltage- depreciation detecting

ATT7026A can detect A/B/C 3 phase voltage-depreciation status basing on configured threshold voltage.

Threshold voltage could be configured via voltage-depreciation threshold setting register FailVoltage. After power on reset, voltage-depreciation threshold setting configures disparate reference basing on current working mode (3-phase 3-wire/3-phase 4-wire) . If voltage RMS has not being calibrated, in 3-phase 4-wire mode, threshold is about 50mv in voltage channel, in 3-phase 3-wire mode, threshold is about 300mv in voltage channel. If voltage RMS has being calibrated, voltage-depreciation threshold setting register FailVoltage must be configured renewedly, please refer to section about voltage-depreciation threshold setting.

Voltage-depreciation status is indicated by status flat register: SFlag.

SFlag bit0/1/2 = 1 denotes A/B/C 3-phase voltage is less than configured threshold voltage, SFlag bit0/1/2 = 0 denotes A/B/C 3-phase voltage is higher than configured threshold voltage.

2.19 Hardware port detecting

ATT7026A can detect hardware port automatically. System will reset when hardware port changes. ATT7026A has external input port: S0/S1/SCF,SEL.

2.20 Application for 3-phase 3-wire and 3-phase 4-wire

In 3-phase 4-wire mode, ATT7026A uses 3 element measurement method, 3-phase combined power calculated formula is

$$P_{4} = U_{A} I_{A} + U_{B} I_{B} + U_{C} I_{C}$$

$$Q_{4} = U_{A} I_{A} \angle 90^{\circ} + U_{B} I_{B} \angle 90^{\circ} + U_{C} I_{C} \angle 90^{\circ}$$

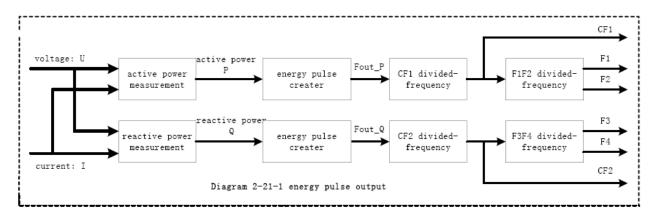
$$S_{4} = \sqrt{p_{4}^{2} + Q_{4}^{2}}$$

In 3-phase 3-wire mode, ATT7026A uses 2 element measurement method, 3-phase combined power calculated formula is:

$$P_{3} = U_{AB} \dot{I}_{A} + U_{CB} \dot{I}_{C}$$

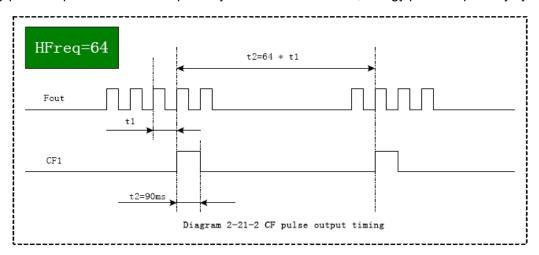
$$Q_{3} = U_{AB} \dot{I}_{A} \angle 90^{\circ} + U_{CB} \dot{I}_{C} \angle 90^{\circ}$$

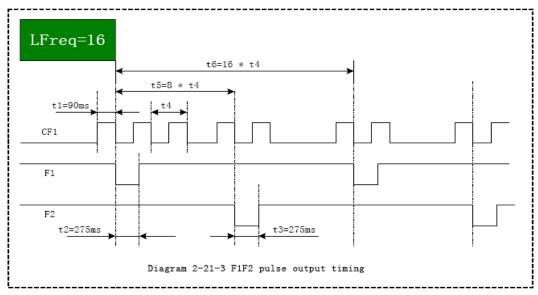
$$S_{3} = \sqrt{p_{3}^{2} + Q_{3}^{2}}$$


In 3-phase 3-wire mode, B phase channel doesn't take part in power measurement. But ATT7026A could output B phase channel parameter solely. If we present signal to B phase voltage and current channel, we could read corresponding parameter (Pb/Qb/Sb/URmsb/IRmsb/Pfb/Pgb) in 3-phase 3-wire mode. The voltage and current signal on B phase channel wouldn't blight normal measurement in 3-phase 3-wire mode.

2.21 energy pulse output

ATT7026A provides two kinds of pulse output: high-frequency pulse output CF1/CF2 and low-frequency pulse output F1/F2/F3/F4.


This is energy pulse illustrated diagram:



In power measurement signal processing circuitry, switched voltage and current signal multiply to get hold of instantaneous power, which integrating to the time to turn into energy. A/B/C phase energy is summated according to algebraic addition mode or absolute addition mode, through switching the result to frequency signal and divided-frequency, then we get hold of energy pulse output signal which could be used to calibrate.

Underside is divided-frequency sketch map when high-frequency output constant is 64. The pulse-width of energy pulse output is 90ms. When pulse cycle is less than 180ms, energy pulse output duty cycle is 1:1.

Underside is divided-frequency sketch map when low-frequency output constant is 16. The pulse-width of energy pulse output (F1/F2) is 275ms. When pulse cycle is less than 550ms, energy pulse output duty cycle is 1:1.

2.22 Parameter output registers definition

Measurement parameters output register list:

	· ·	S output registe	
Address	Name	Reset value	Function description
0x00	RESERVED		Reserved.
0x01	r_Pa		Phase A active power
0x02	r_Pb		Phase B active power
0x03	r_Pc		Phase C active power
0×04	r_Pt		3-phase combined active power
0x05	r_Qa		Phase A reactive power
0×06	r_Qb		Phase B reactive power
0×07	r_Qc		Phase C reactive power
0x08	r_Qt		3-phase combined reactive power
0×09	r_Sa		Phase A apparent power
0x0A	r_Sb		Phase B apparent power
0x0B	r_Sc		Phase C apparent power
0x0C	r_St		3-phase combined apparent power
0x0D	r_URmsa	0x000000	Phase A voltage RMS
0×0E	r_URmsb	0×000000	Phase B voltage RMS
0x0F	r_URmsc	0×000000	Phase C voltage RMS
0x10	r_IRmsa		Phase A current RMS
0x11	r_IRmsb		Phase B current RMS
0x12	r_IRmsc		Phase C current RMS
0x13	r_IRmst		The RMS of phase ABC current vector sum .formula: $I_{rms} = \sqrt{\frac{1}{T} \int_0^T (ia+ib+ic)^2 dt}$
0x14	r_Pfa		Phase A power factor
0x15	r_Pfb		Phase B power factor
0x16	r_Pfc		Phase C power factor
0x17	r_Pft		3-phase combined power factor
0x18	r_Pga		Phase A phase angle
0x19	r_Pgb		Phase B phase angle
0x1A	r_Pgc		Phase C phase angle
0x1B	r_Pgt		3-phase combined phase angle
0x1C	r_Freq	0×000000	Line frequency
0x1D	RESERVED		Reserved.
0x1E	r_Epa	0×000000	Phase A active energy
0x1F	r_Epb	0×000000	Phase B active energy
0x20	r_Epc	0×000000	Phase C active energy
0x21	r_Eqt	0×000000	3-phase combined active energy
0x22	r_Eqa	0×000000	Phase A reactive energy
0x23	r_Eqb	0×000000	Phase B reactive energy
	<u> </u>	1	<u> </u>

0x24	r_Eqc	0x000000	Phase C reactive energy
0x25	r_Eqt	0×000000	3-phase combined reactive energy
0×26	RESERVED		Reserved.
0x27	RESERVED		Reserved.
0x28	r_RSPIData		Last data that SPI read
0x29	RESERVED		Reserved.
0x2A	RESERVED		Reserved.
0x2B	r_URmst	0×000000	The RMS of phase ABC voltage vector sum $ \text{formula: } U_{\textit{rms}} = \sqrt{\frac{1}{T} \int_0^T \left(ua + ub + uc\right)^2 dt} $
0×2C	r_SFlag		Status of phase-cut, phase sequence, and SIG
0x2D	r_WSPIData1		Last data that SPI write
0x2E	r_WSPIData2		Same to 0x2D, is last data that SPI read too
0x2F	RESERVED		Reserved.
0x30	r_EFlag	0x010000	Status of energy register
0x31	r_Epa2	0×000000	Phase A active energy, same to Epa, but would be clear to 0 after read.
0x32	r_Epb2	0×000000	Phase B active energy, same to Epb, but would be clear to 0 after read.
0x33	r_Epc2	0x000000	Phase C active energy, same to Epc, but would be clear to O after read.
0x34	r_Ept2	0x000000	3-phase combined active energy, same to Ept, but would be clear to 0 after read.
0x35	r_Eqa2	0x000000	Phase A reactive energy, same to Eqa, but would be clear to 0 after read.
0×36	r_Eqb2	0×000000	Phase B reactive energy, same to Eqb, but would be clear to 0 after read.
0x37	r_Eqc2	0×000000	Phase C reactive energy, same to Eqc, but would be clear to 0 after read.
0x38	r_Eqt2	0×000000	3-phase combined reactive energy, Eqt, but would be clear to 0 after read.
0x39	RESERVED		Reserved.
0x3A	RESERVED		Reserved.
0x3B	RESERVED		Reserved.
0x3C	RESERVED		Reserved.
0x3D	r_PFlag		The direction of active and reactive power, positive is 0, negative is 1.
0x3E	r_ChkSum1	0x043D03	Calibration data checkout register (3-phase 4-wire mode)
		0×16BD03	Calibration data checkout register (3-phase 3-wire mode)
0x3F	RESERVED		Reserved.

2.23 Parameter output registers specification

2.23.1 power register (Address: 0x01~0x0C)

Register list: (refresh time is about 1/3 second. For the first time, correct value would be come into being in 650ms.)

Addr	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C
Reg	Pa	Pb	Рс	Pt	Qa	Qb	Qc	Qt	Sa	Sb	Sc	St

ATT7026A power register uses supplementary code, the MSB is symbol bit. We can judge current quadrant according to the direction of active and reactive power in ATT7026A power register. Because of apparent power always ≥ 0 , so the symbol bit of apparent power is 0 at all time.

The formats of power register:

For each single phase to A/B/C: the power parameter is X

X: 24bits, supplementary code

If it is greater than 2^23 , then XX = $X-2^24$

Else XX=X

The real power is: XXX=XX*2^15/2^23

For 3-phase combined data: the power parameter is T

T: 24bits, supplementary code

If it is greater than 2^23 , then $TT = T-2^24$

Else TT=T

The real power is: TTT=TT*2^17/2^23

The unit of power is Watt (w), which is relevant to pulse constant. Above mentioned real power is according to 3200 imp/kwh, if pulse constant set as EC, then the real power should multiply 3200/EC as the result.

2.23.2 RMS register (Address: 0x0D~0x13, 0x29, 0x2B)

Register list: (refresh time is about 1/3 second. For the first time, correct value would be come into being in 650ms.)

Addr	0x0D	0x0E	0x0F	0x10	0x11	0x12
Reg	URmsa	URmsb	URmsc	IRmsa	IRmsb	IRmsc
Addr	0x13		0x2B			
Reg	IRmst		URmst			

ATT7026A RMS register uses supplementary code, the MSB is symbol bit. Because of RMS always ≥ 0 , so the symbol bit of RMS is 0 at all time.

Vrms: 24bits, supplementary code

The real voltage RMS is: Urms=Vrms*2^10/2^23

Unit is Volt (V) or Ampere (A).

2.23.3 power factor register (Address: $0x14\sim0x17$)

Register list: (refresh time is about 1/3 second. For the first time, correct value would be come into being in 650ms.)

Addr	0x14	0x15	0x16	0x17
Reg	Pfa	Pfb	Pfc	Pft

ATT7026A power factor register uses supplementary code, the MSB is symbol bit. The symbol bit of power factor is decided by symbol bit of reactive power, please refer to power factor measurement section: 2.13.

PF: 24bits, supplementary code

If PF > 2^23, then PFF=PF-2^24

Else PFF=PF

The real power factor is: $pf = PFF/2^2$

2.23.4 phase angle register (Address: 0x18~0x1B)

Register list: (refresh time is about 1/3 second. For the first time, correct value would be come into being in 650ms.)

Addr	0x18	0x19	0x1A	0x1B
Reg	Pga	Pgb	Pgc	Pgt

ATT7026A phase angle register uses supplementary code, the MSB is symbol bit, denotes the angle in -90 $^{\circ}$ \sim +90 $^{\circ}$.

Θ: 24bits, supplementary code

If $\theta > 2^23$, then $\alpha = \theta - 2^24$

Else $\alpha = \theta$

The real phase angle is:

 $Pg = (\alpha/2^2)^2 180/pi$ (angle)

Or Pg = $(\alpha/2^2)^2$ (radian)

2.23.5 line frequency register (Address: 0x1C)

ATT7026A line frequency register uses supplementary code format, the MSB is symbol bit, the symbol bit is 0 at all time.

Freq: 24bits, supplementary code

The real frequency is: $f = Freq^2^10/2^23$

Unit: Hz

2.23.6 energy register (Address: 0x1E~0x25, 0x31~0x38)

Register list:

Addr	0x1E	0x1F	0x20	0x21	0x22	0x23	0x24	0x25
Reg	Ера	Epb	Ерс	Ept	Eqa	Eqb	Eqc	Eqt
Addr	0x31	0x32	0x33	0x34	0x35	0x36	0x37	0x38
Reg	Epa2	Epb2	Epc2	Ept2	Eqa2	Eqb2	Eqc2	Eqt2

ATT7026A provides two kinds of energy registers, one is increased energy register, and the other is cleared energy register. Cleared energy register append '2' as identifier. There is no influence if we read increased energy register. But if we read cleared energy register, the increased energy register would be cleared to 0 at next energy refresh. The range of increased energy register is 0x0000000 ~ 0xFFFFFF. If energy overflows from 0xFFFFFF to 0x0000000, the overflow flag would be brought. Please refer to specification about status of energy register: 2.23.8.

Energy register: 24bits, unsigned data.

This data is relevant to pulse constant.

For example, if the pulse constant is set to 3200 imp/kwh, then the unit data for these energy registers is 1/3200kwh.

2.23.7 Status flag register (Address: 0x2C)

SFlag bit definition:

	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Def								
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Def					Cstart	Bstart	Astart	
	Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
Def	SIG			lorder	Uorder	PC	PB	PA

Bit00: =1denotes phase A power failure

Bit01: =1denotes phase B power failure

Bit02: =1denotes phase C power failure

Bit03: =1denotes voltage phase sequence is error

Bit04: =1denotes current phase sequence is error

Bit07: SIG would go low when ATT7026A power on reset or unconventional reset, at the same time this bit (SFlag.7) is set to 1; After the host MCU sends calibration data via SPI, SIG would goes high immediately, and SFlag.7 would be cleared to 0 simultaneous. So the Bit07 in SFlag register is synchronous with SIG signal.

Bit09: =1denotes phase A is in creep protection state.

Bit10: =1denotes phase B is in creep protection state.

Bit11: =1denotes phase C is in creep protection state.

2.23.8 Status of energy register (Address: 0x30)

This register would be cleared to 0 automatically after be read.

Bit0~2: Phase A, B, C positive active energy register overflow.

Bit3: 3-phase positive active energy register overflow.

Bit4~6: Phase A, B, C positive reactive energy register overflow.

Bit7: 3-phase positive reactive energy register overflow.

Bit8~10: Phase A, B, C negative active energy register overflow.

Bit11: 3-phase negative active energy register overflow.

Bit12~14: Phase A, B, C negative reactive energy register overflow.

Bit15: 3-phase negative reactive energy register overflow.

Bit16: Calibration request after system reset. This bit will be set to 1 after system reset.

2.23.9 Active and reactive power direction register (Address: 0x3D)

Power direction indication register (PFlag): used to indicate the direction of phase A,B,C, and 3-phase combined active and reactive power.

Bit0-3: denotes the direction of phase A, B, C, and 3-phase combined active power, 0 is positive and 1 is negative.

Bit4-7: denotes the direction of phase A, B, C, and 3-phase combined reactive power, 0 is positive and 1 is negative.

2.23.10 Calibration data checkout register (Address: 0x3E)

ATT7026A provides two special register: ChkSum1, which used to conserve all calibration data's checkout. External MCU can use them to examine calibration data's error. The checkout is summation of all calibration data from 0x01 to 0x3F.

After external MCU has written the calibration data, ATT7026A calculate and update the checkout in 1/3 second.

2.23.11 SPI read checkout register (Address: 0x28)

This register conserves the last read data by SPI. This register could be used to checkout when SPI read data.

2.23.12 SPI write checkout register (Address: 0x2D、0x2E)

These registers conserve the last written data by SPI. These registers could be used to checkout when SPI write data.

Noticed: WSPIData1 and WSPIData2 are irrelative, but the definition is identical.

3 Calibration

3.1 Hardware calibration

ATT7026A supplies resistance network calibration, which calibrates the energy meter via adjusting

resistance value in voltage sampling channel. The system active error can be calibrated to suffice class 1S and reactive error can be calibrated to suffice class 2S via hardware calibration. If we select hardware calibration, SCF/S0/S1 can not be pulled high all or no connected.

Start-up and creep:

When current input is rated current (lb), the sampling voltage is 0.1V, ATT7026A can start-up at 0.1% and prevents creeping at 0.08%.

Single-phase high-frequency output CF formula:

Voltage channel input: Vu Current channel input: Vi

ATT7026A ADC gain: G = 0.648

Single-phase high-frequency output: CF = 1600*Vu*Vi*G₂/HFreq

Single-phase low-frequency output: LF = CF/Lfreq

HFreq is decided by SCF/S1/S0

List 3-1:

SCF	S 1	S0	Hfreq	LFreq
0	0	0	256	16
0	0	1	128	16
0	1	0	128	8
0	1	1	128	4
1	0	0	64	16
1	0	1	64	8
1	1	0	64	4
1	1	1	Software ca	libration

When Vu=0.5v, Vi=0.1v, the relation in CF and SCF/S1/S0:

List 3-2:

SCF	S1	S0	HFreq	LFreq	CF (Hz)
0	0	0	256	16	0. 1312
0	0	1	128	16	0. 2624
0	1	0	128	8	0. 2624
0	1	1	128	4	0. 2624
1	0	0	64	16	0. 5249
1	0	1	64	8	0. 5249
1	1	0	64	4	0. 5249
1	1	1	Softwa	are calib	ration

Design advisement:

① We should calculate CF basing on rated voltage Un (Unit: volt), rated current Ib (Unit: amp) and selected calibration constant (Unit: imp/kWh). Then select HFreq in list 3-2 according on CF.

CF calculated formula: CF = EC*Un*lb/3600000

- ② When selected electromechanical counter ratio is N:1, we could calculate LFreq according to formula: LFreq=EC*2/N
- ③ Basing on HFreq and LFreq, we can select SCF/S0/S1 according to list 3-2.

Design illustrated:

If Rated voltage: Un = 220V Rated current: Ib = 5A

Calibration constant: 1600 imp/kWh Electromechanical counter ratio: 400:1

Then CF=EC*Un*lb/3600000=1600*220*5/3600000=0.4889Hz

Input ADC current and voltage signal is 0.1V and 0.5V in rated current and rated

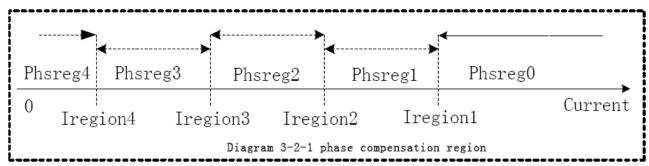
voltage. According to CF and list 3-2, we select HFreq=64.

LFreq=EC*2/N=1600*2/400=8

SCF/S1/S0=101

3.2 Software calibration

ATT7026A supplies software calibration.


Power calibration is completed by the active power gain calibration and the phase compensation.

As usually, for class 1 and 0.5 meter, we need only calibrate active power gain at one point: rated voltage (Un) / rated current (Ib) / power factor 1.0.

The phase compensation uses subsection calibration method, maximum five phase compensation region is supplied, as illustrated in the nether figure.

In fact, class 1 meter need not do subsection. For higher accuracy class, we maybe need do two or more subsection according to phase error.

Phase compensation is completed in rated voltage (Un) / rated current (Ib) / power factor 0.5L.

Voltage and current RMS are calibrated by the register in the ATT7026A. Correlative calculated formula please refers to the following detailed specification.

ATT7026A high-frequency pulse output (calibration pulse rate) can be set by the register HFConst. Starting current can be set by the register Istartup.

3.3 Calibration register definition

Address	Name	Reset value	Function description	
0x00	RESERVED		Reserved.	
0x01	RESERVED	0x000000	Reserved.	
0x02	w_Iregion1	0x000000	Phase calibration region 1 setup	
0x03	w_lregion2	0x000000	Phase calibration region 2 setup	
0x04	w_Iregion3	0x000000	Phase calibration region 3 setup	
0x05	w_Iregion4	0x000000	Phase calibration region 4 setup	
0x06	w_PgainAO	0x000000	Phase A active power gain 0	
0x07	w_PgainBO	0x000000	Phase B active power gain 0	

Rev1.0

0×08	w PgainCO	0×000000	Phase C active power gain 0
0x09	w_rgainA1	0x000000	Phase A active power gain 1
0x0A	w_PgainB1	0x000000	Phase B active power gain 1
0x0B	w_rgainC1	0x000000	Phase C active power gain 1
0x0C	w_rgarnor w PhsregA0	0x000000	Phase A region O phase calibration
0x00		0x000000	· .
	w_PhsregA1		Phase A region 1 phase calibration
0x0E	w_PhsregA2	0x000000	Phase A region 2 phase calibration
0x0F	w_PhsregA3	0x000000	Phase A region 3 phase calibration
0x10	w_PhsregA4	0x000000	Phase A region 4 phase calibration
0x11	w_PhsregB0	0x000000	Phase B region 0 phase calibration
0x12	w_PhsregB1	0x000000	Phase B region 1 phase calibration
0x13	w_PhsregB2	0x000000	Phase B region 2 phase calibration
0x14	w_PhsregB3	0x000000	Phase B region 3 phase calibration
0x15	w_PhsregB4	0x000000	Phase B region 4 phase calibration
0x16	w_PhsregCO	0x000000	Phase C region O phase calibration
0x17	w_PhsregC1	0x000000	Phase C region 1 phase calibration
0x18	w_PhsregC2	0x000000	Phase C region 2 phase calibration
0x19	w_PhsregC3	0x000000	Phase C region 3 phase calibration
0x1A	w_PhsregC4	0x000000	Phase C region 4 phase calibration
0x1B	w_UgainA	0x000000	Phase A voltage gain
0x1C	w_UgainB	0x000000	Phase B voltage gain
0x1D	w_UgainC	0x000000	Phase C voltage gain
0x1E	w_Iregchg	0x000000	Active power calibration region setup
0x1F	w_lstartup	0x000280	Starting current threshold setup
0x20	w_HFConst	0x000010	High-frequency calibration pulse output setup
0x21	w_LFConst	0x000010	Low-frequency pulse output setup
0x22	RESERVED	0x000000	Reserved.
0x23	RESERVED	0x000003	Reserved.
0x24	RESERVED	0x000000	Reserved.
0x25	RESERVED	0x000000	Reserved.
0x26	w_lgainA	0x000000	Phase A current gain
0x27	w_lgainB	0x000000	Phase B current gain
0x28	w IgainC	0x000000	Phase C current gain
0×29	w FailValtage	0×068000	Threshold value of power failure (3-phase 4-wire mode)
UX29	w_FailVoltage	0×190000	Threshold value of power failure (3-phase 3-wire mode)
0×2A	w_EAddMode	0×000000	Calculating mode of 3 phase energy (sum in Algebra/absolute)
0x2B	RESERVED	0x000000	Reserved.
0x2C	RESERVED	0x000003	Reserved.
0x2D	RESERVED	0×000000	Reserved.
0x2E	RESERVED	0x000000	Reserved.

0x2F	RESERVED	0x000000	Reserved.
0x30	w_EnDtlorder	0x000000	Current phase sequence detecting enable
			control
0x31	RESERVED	0x0020C4	Reserved.
0x32	RESERVED	0x040000	Reserved.
0x33	RESERVED	0x000000	Reserved.
0x34	RESERVED	0x000000	Reserved.
0x35	RESERVED	0x000000	Reserved.
0x36	RESERVED	0x000000	Reserved.
0x37	RESERVED	0x000000	Reserved.
0x38	RESERVED	0x000000	Reserved.
0x39	RESERVED	0x000000	Reserved.
0x3A	RESERVED	0x000000	Reserved.
0x3B	RESERVED	0xF99999	Reserved.
0x3C	RESERVED	0x000000	Reserved.
0x3D	RESERVED	0x000000	Reserved.
0x3E	w_HFDouble	0x000000	Pulse constant reduplication select
0x3F	w_UADCPga	0x000000	Voltage channel ADC gain select

3.4 Calibration register specification

3.4.1 Calibration pulse rate: HFConst (Address: 0x20)

The frequency for the meter calibration can be selected by the register HFConst.

HFConst can not be written data which is greater than 0x000D00.

Enactment:

High-frequency pulse constant: EC

Rated input voltage: Un Rated input current: Ib

Voltage input channel signal: Vu Current input channel signal: Vi ATT7026A gain: G = 0.648 HFConst calculated formula:

HF _{Const} =
$$INT[5760000000 \times \frac{G \times G \times V_u \times V_i}{U_n \times I_b \times EC}]$$

3.4.2 Low-frequency pulse output setup register: LFConst (Address: 0x21)

LFConst is calculated by selected electromechanical counter ratio (N:1).

LFConst formula: LFConst=EC*2/N

3.4.3 power gain calibration register: Pgain (Address: 0x06~0x0B)

Power gain is calibrated in power factor $cos(\Phi)=1$.

We need calibrate active power gain only in 100%lb, then write the calibration data to Pgain0 and Pgain1 simultaneous.

As known:

The error from standard meter: err

Formula:

$$P_{gain} = \frac{-err}{1 + err}$$

If Pgain >= 0, then Pgain = INT[Pgain*2²³]

Else if Pgain < 0, then Pgain = $INT[2^{24} + Pgain^{*2}]$

Noticed: err could be read from standard meter, or be achieved via calculating according to nether formula:

$$err = \frac{ATT7026A \text{ measured energy} - \text{true energy}}{\text{true energy}}$$

3.4.4 Phase calibration region setup register: Iregion (Address: 0x02~0x05)

The ATT7026A is calibrated for phase compensation at maximum five current points to cover the complete current range. Generally speaking, we needn't use subsection calibration.

As known:

Current region: Is Gain: G = 0.648

Formula:

Iregion = INT[$G*Is*2^{23}$]

For the accuracy class 1 meter, we need not do subsection. For higher accuracy class, we maybe need do two or more subsection according to phase error. If we set two phase compensation region, only the register Iregion4 should be used and the Iregion1/2/3 should be set to zero.

If set 2 phase compensation region, we must implement phase compensation in I>=Iregion4 and I<Iregion4 respectively. The phase compensation coefficient for the high current range (I>=Iregion4) should be set to the registers Phsreg0/1/2/3, and the phase compensation coefficient for the low current range (I<Iregion4) should be set to the register Phsreg4.

3.4.5 phase calibration register: Phsreg (Address: 0x0C~0x1A)

PhsregA0、PhsregA1、PhsregA2、PhsregA3、PhsregA4

PhsregB0、PhsregB1、PhsregB2、PhsregB3、PhsregB4

PhsregC0、PhsregC1、PhsregC2、PhsregC3、PhsregC4

These registers correspond region Reg0 \times Reg1 \times Reg2 \times Reg3 \times Reg4 respectively. After active power calibration have been completed for the phase, phase calibration can be done, and phase calibration should be processed in 0.5 lagging ($\cos(\Phi)$ =0.5).

As known:

The error from standard meter in 0.5L: err

Phase calibration formula: (Θ is radian)

 $\Theta = a\cos((1+err)^*0.5) - \pi/3$

If $\theta >= 0$, Phsreg = INT[$\theta * 2^{23}$]


```
Else if \theta < 0, Phsreg = INT[2 +\theta*2]
```

3.4.6 voltage RMS calibration register: Ugain(Address: 0x1B~0x1D)

When Ugain=0, the real input voltage RMS Ur can be read from the more precise voltage RMS meter, DataU is the measured voltage channel RMS register which is read from ATT7026A by SPI.

As known:

```
The real input voltage RMS: Ur

The measured voltage RMS: Urms = DataU*2 1/2

Formula:
Ugain = Ur/Urms-1

If Ugain >= 0, then Ugain = INT[Ugain*2]

Else if Ugain < 0, then Ugain = INT[2 + Ugain*2]
```

3.47 current RMS calibration register: Igain (Addrress: 0x26~0x28)

When Igain=0, the real input current RMS Ir can be read from the more precise current RMS meter, Datal is the measured current channel RMS register which is read from by SPI.

As known:

```
The real input current RMS: Ir

The measured current RMS: Irms = Datal*2 10 23

Formula:
Igain = Ir/Irms-1

If Igain >= 0, then Igain = INT[Igain*2 23

Else if Igain < 0, then Igain = INT[2 + Igain*2 23]

Noticed:
```

ATT7026A can provide RMS parameter for A/B/C 3 phase current vector summation: IRmst. For the accuracy of IRmst, the nether current RMS calibration method is recommended.

When input rated current lb, the sampling voltage in current channel is about 100mv, the read parameter from current RMS register is about 60A in Igain=0, at this time the current RMS should be calibrate to N*lb, the real RMS could be get via (MCU read ATT7026 current RMS) / (N). N*lb should near 60A to the best of its abilities.

For example, if rated current Ib = 1.5A, then N = 40. If rated current Ib = 5A, then N = 12.

3.4.8 Starting current setup register: Istartup (Address: 0x1F)

```
As known:
Starting current select lo
Gain: G = 0.648
Formula:

Istartup=INT[G*lo*2]
```


3.4.9 Threshold value of power failure setting register: FailVoltage (Address: 0x29)

Threshold value of power failure is setup according to calibrated voltage.

Formula: FailVoltage = Un*2¹³*D

Un: denotes calibrated rated voltage

D: denotes power failure voltage value, is a percent

For example, ① In 3-phase 4-wire, calibrated rated voltage Un is 220v, power failure

voltage value is 10%, then FailVoltage = 220*2 ** 10% = 0x02C000. Scilicet when

0x02C000 was written to threshold value of power failure setting register, if input voltage is less than Un*10% (22v), power failure indication would be brought. ② In 3-phase 3-wire, calibrated rated voltage

Un is 100v, power failure voltage value is 60%, then FailVoltage = $100*2^{-*}*60\%$ = 0x078000. Scilicet when 0x078000 was written to threshold value of power failure setting register, if input voltage is less than Un*60% (60v), power failure indication would be brought.

3.4.10 3 phase energy addition mode select register: EAddMode (Address: 0x2A)

As default, EAddMode[Bit0] = 0, in 3-phase 4-wire, denotes absolute addition mode, in 3-phase 3-wire, denotes algebraic addition mode.

When EAddMode[Bit0] = 1, in 3-phase 4-wire, denotes algebraic addition mode, in 3-phase 3-wire, denotes absolute addition mode.

3.4.11 Current phase sequence detecting enable control register: EnDtlorder(Address: 0x30)

Only when EnDtlorder = 0x005678, ATT7026A can open current phase sequence detecting function. When EnDtlorder $\neq 0x005678$, ATT7026A can not detect current phase sequence.

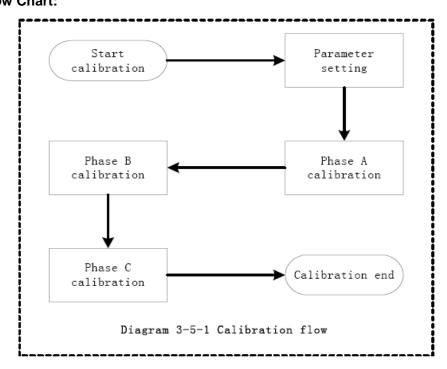
3.3.12 Voltage channel ADC gain select register: UADCPga (Address: 0x3F)

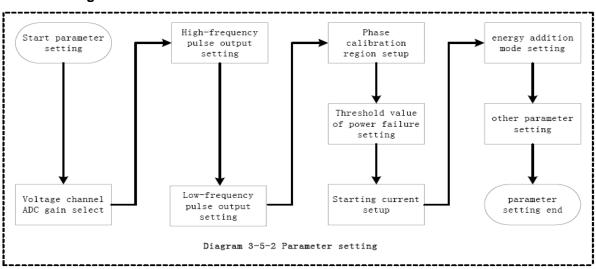
ATT7026A provides voltage channel ADC gain select register UADCPga, which is used to control amplificatory multiple of voltage channel ADC. In rated voltage Un, it is recommended that (the sampling signal Vu) * (amplificatory multiple) is about 0.5v.

Value of UADCPga	Voltage channel ADC gain
0×465500	2
0x465501	4
0×465502	8
0×465503	16
0xA5xxxx	Forbid be written
Other value	1

3.4.13 Pulse constant reduplication select register: HFDouble (Address: 0x3E)

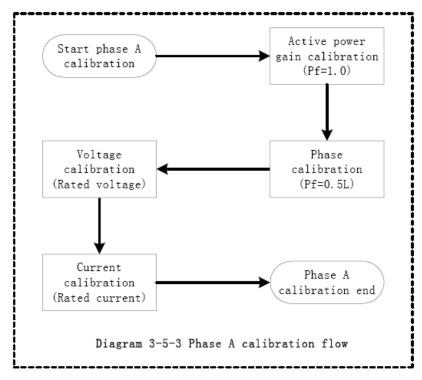
ATT7026A provides Pulse constant reduplication select register: HFDouble. This register is used to control Pulse constant reduplication in small current. Scilicet in small current (I < 5% Ib), we can magnify pulse constant via HFDouble register, consequently expedite calibration speed. This register is only used in calibration.


Noticed: the function should be used in small current.


Value of HFDouble	Pulse constant reduplication rate
0x5533CC	2
0x5533CD	4
0x5533CE	8
0x5533CF	16
Other value	1

3.5 Calibration flow chart and parameter calculation

The standard energy meter is necessary when calibrate energy meter which designed using ATT7026A. CF1 should be connected to the standard meter, then calibrate according to error reading in standard meter. ATT7026A need only calibrate active power; the reactive power need not be calibrated. Calibration Flow Chart:



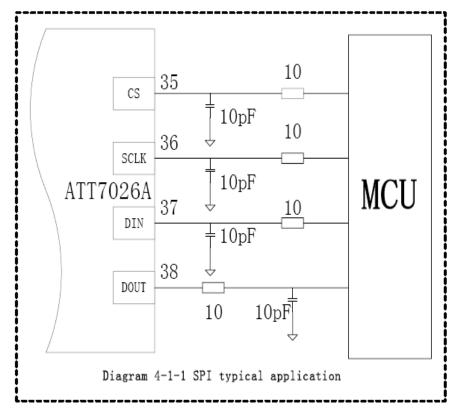
Parameter setting:

Detached phase calibration:

In detached phase calibration, the calibration of detached phase current maybe influence the accuracy of A/B/C 3 phase current vector summation register IRmst. To current RMS calibration, please refer to the specification of current calibration register in 3.4.8 section.

Chapter 4 SPI communication interface

4.1 SPI communication interface introduction

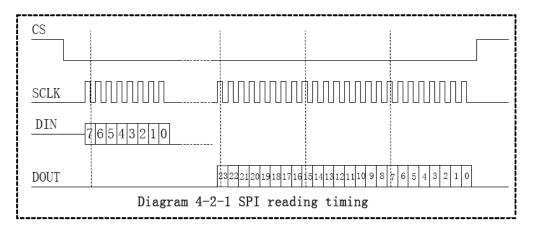

ATT7026A has a built-in SPI serial communication interface, which use passive working mode. The SPI have 2 controlled lines and 2 data lines: CS, SCLK, DIN, and DOUT.

CS: SPI selection signal (input pin), the control line of allowing accessing SPI. CS switches from high level to low level denotes SPI communication starting, CS switches from low level to high level denotes SPI communication is over. So when we start SPI communication, CS pin must be input falling edge '\''; when we stop SPI communication, CS pin must be input rising edge '\''.

DIN: serial data input (input pin), used to transmit data to ATT7026A.

DOUT: serial data output (output pin), used to read data from ATT7026A.

SCLK: serial clock (input pin), control data transmission rate. In SCLK falling edge '↓', the data on DIN pin is sampled to ATT7026A, In SCLK rising edge '↑', the data in ATT7026A is output to DOUT pin. SPI communication interface is connected to external MCU as nether sketch map:



SPI signal line should be series connected a small resistance to prevent possible disturbance. This resistance associates with autoeciousness capacitance in chip's input port can compose a low pass filter, which could eliminate surge in SPI interface. It is recommended that $10-100\Omega$ resistance is used. If the autoeciousness capacitance in chip's input port is not sufficient great, we could increase an external capacitance (about 10pF) at input port. To select appropriate resistance and capacitance parameter, we should process relevant experiment and analyse according to SPI transmission rate and the type of MCU.

4.2 SPI reading

All the measurement parameter and calibration parameter is transferred to external MCU via SPI. SPI reading timing:

Command format meaning:

```
7 6 5 4 3 2 1 0
```

Bit7=0: host MCU read measurement and calibration register from ATT7026A.

Bit7=1: host MCU write measurement and calibration data to ATT7026A.

Bit6...0: register address, refer to register definition section.

SPI reading working procedure:

After host MCU write 8-bits command byte, a waiting period of time maybe needed, and then host MCU could read 24-bits data via SPI. Host MCU needn't wait if SCLK is less than 200 KHz. The waiting period of time is about 3us if SCLK is greater than 200KHz. Data format refer to parameter output register specification section.

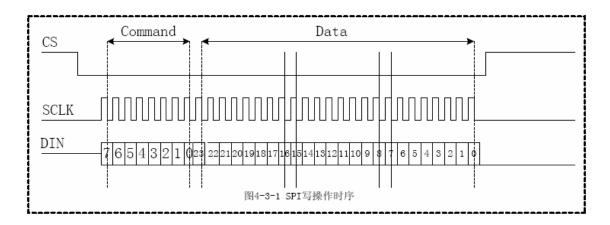
Noticed:

When transfer, the MSB is transmitted firstly, the LSB is transmitted last.

When SCLK is high level, data on DIN or DOUT pin is updated. CS should be operate one times at every register's reading or writing.

SPI reading demonstration:

01 ReadSpi(Byte Com) 15 delay(3); 16 17 ; Enable SPI


```
02 | {
                                                ; Read 24-bits Data From SPI
03
                                               for (n=23, Data=0; n>=0; n--)
       CS=1;
                                        18
04
                                                {
       SCLK=0;
05
                                        19
                                                   SCLK=1;
06
       CS=0;
                                        20
                                                   Data. n=DOUT;
07
       ; Send 8-bits Command to SPI
                                       21
                                                   SCLK=0;
08
       for (n=7; n \ge 0; n--)
                                        22
                                               }
09
                                        23
                                                ; Disable SPI
           SCLK=1;
10
                                        24
                                               CS=1
                                                ; Return Data From SPI
11
           DIN=Com. n;
                                       25
12
           SCLK=0;
                                       26
                                               return(Data);
                                       27 | }
13
14
       ; waiting 3us
                                       28
```


4.3 SPI writing

Host MCU can write calibration register in ATT7026A via SPI.

SPI writing timing:

Command format meaning:

```
7 6 5 4 3 2 1 0
```

Bit7/6 = 1 0: write command, used to update calibration data register.

Bit7/6 = 1 1: write special command; refer to write special command section.

Bit7 = 0: host MCU read measurement and calibration register from ATT7026A.

Bit5...0: register address, refer to register definition section.

SPI writing working procedure:

After host MCU write 8-bits command byte, host MCU needn't wait and can write 24-bits data via SPI immediately.

Noticed:

When transfer, the MSB is transmitted firstly, the LSB is transmitted last.

SPI writing demonstration:

```
041
01| WriteSpi(Byte Com,UINT Data)
                                               CS=1;
02| {
                                        051
                                               SCLK=0;
031
       ; Enable SPI
                                        061
                                               CS=0;
071
       : Send 8-bits Command to
                                        171
                                                    SCLK=1:
SPI
                                        181
                                                   DIN=Data.n;
180
       for(n=7;n>=0;n--)
                                        19|
                                                   nop;
09|
                                        20|
                                                   nop;
       {
101
           SCLK=1;
                                        21|
                                                   nop
11|
           DIN=Com.n;
                                        22|
                                                   SCLK=0;
           SCLK=0;
12|
                                        23|
                                                : Disable SPI
13|
                                        241
                                                CS=1;
       : Send 24-bits Data to SPI
                                        25|
14|
       for(n=23,Data=0;n>=0;n--)
15|
                                        23|}
                                        24|
16
```


4.4 SPI write special command

ATT7026A provides special command to cooperate with software calibration; the operation process is consistent with SPI writing operation timing.

Command format meaning:

7 6 5 4 3 2 1 0

Bit7/6 = 1 1: write special command.

Bit7/6 = 1 0: write command, used to update calibration data register.

Bit7/6 = 0 X: read command, host MCU read measurement and calibration register from ATT7026A.

Bit5...0: the type of special command.

SPI write special command working procedure:

After host MCU write 8-bits command byte, host MCU needn't wait and can write 24-bits data via SPI immediately.

Noticed:

When transfer, the MSB is transmitted firstly, the LSB is transmitted last.

Special command specification:

ATT7026A special command includes: 0xC3, 0xC6, 0xC9, and 0xD3.

Special command	8-bits command	24-bits data	Special command specification
Clear calibration data	0xC3	000000 h	Sending 0xC3000000 can resume calibration data register to reset initialization.
Read calibration data	0×C6	00005A h	Sending command=0xC6 and data≠ 0x00005A can read data register (00-7FH) via SPI. Sending command=0xC6 and data= 0x00005A can read calibration data register via SPI, and can not read 00-7FH register. When reading calibration data register, the reading value from 0x00 is 0xAAAAAA invariable, or else ≠ 0xAAAAAAA.
Enable writing calibration	0×C9	000000 h or 000001 h	calibration data writing operation,

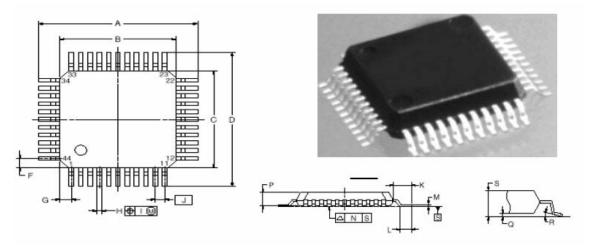
data			calibration data register via SPI. Host MCU can read the last written data from 0x002D/0x002E register after enabling SPI writing operation. Sending 0xC9000001 can disable SPI calibration data writing operation, that could prevent calibration data register from being written in error. After SPI calibration data writing operation is closed, if host MCU write SPI port, the read data from 0x002D/0x002E is 0x200361 invariable.
Software reset	0xD3	000000 h	Sending 0xD3000000 can reset ATT7026A.

Chapter 5 Electrical Characteristics

5.1 Electrical parameter

Test Object	Min	typical	Max	unit	Test condition
VCC	4. 75	5	5. 25	V	

VDD		3		V	
Reference voltage	2. 3	2. 4	2.6	V	
Reference power TC		30		ppm	
Input voltage range		1.5		V	Difference input Vpp
VOH (F1, F2, F3, F4)	4. 5			V	IOH=10mA
VOL (F1, F2, F3, F4)			0.5	V	IOL=10mA
VOH(CF1, CF2, REVP)	4. 5			V	IOH=5mA
VOL (CF1, CF2, REVP)			0.5	V	IOL=5mA
Logicinputhigh – level ¹	2.5			Vmin	
Logicinputlow - level ¹			0.8	Vmax	
$Logicoutputhigh-level^2$	2.5			Vmin	Ioh=2mA
Logicoutputlow – level ²			0.8	Vmax	Io1=2mA
Reference voltage output resistance: Minimum load resistance Maximum load capacitance	2	130	100	Ω KΩ pF	
Positive power supply current		28		mA	VDD=3.0; VCC=5V
ADC bit digit		16		bit	
ADC sampling speed		3. 2		kHz	
ADC dynamic rage		88		DB	
ADC whole harmonic distortion		-95		DB	
ADC channel disturbance		-92		DB	
Crystal frequency		24. 576		MHz	
Temperature	-40		85	$^{\circ}$	


Note 1: denotes CS, SCLK, DIN, SEL.

Note 2: denotes DOUT.

5.2 Packaging information

Packaging information: 44Pin QFP (Quad Flat Package 10X10)

NOTE1.Controlling dimension ---millimeter.

2.Each lead centerline is located within 0.12mm(0.005inch) of its true position (T.P.)at maximum material condition

ITEM	MILLIMETERS	INCHES
A	13.6±0.4	0.535 +0.017 -0.016
В	10.0 ± 0.2	0. 394 ^{+0. 008} -0. 009
С	10.0±0.2	0. 394 ^{+0. 008} -0. 009
D	13.6±0.4	0. 535 ^{+0. 017} -0. 016
F	1.0	0.039
G	1.0	0.039
Н	0.35 ^{+0.08} _{-0.07}	0.014±0.003
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8 ± 0.2	0.071 ^{+0.008} _{-0.009}
L	0.8±0.2	0.031 ^{+0.009} -0.008
М	0. 17 ^{+0. 08} _{-0. 07}	0.007 +0.003 -0.004
N	0.10	0.004
P	2.7 ± 0.1	0. 106 ^{+0. 005} -0. 004
Q	0.1 ± 0.1	0.004 ± 0.004
R	3° ^{+7°} -3°	3° ⁺⁷ ° -3°
S	3.0 MAX	0.019 MAX

NEC CODE	P44GB-80-3B4-4
EIAJ CODE	
Weight(Reference Value)	0.54g