OptiRisk Systems

AMPL Studio User Manual

Last Update
24 April 2008

OpliRisk

SYSTEMS

(J

e

IHVESTOR IN FEOPLE

BS EN 150 2000 : 2000

OptiRisk Systems

Using AMPL Studio

Copyright © Datumatic Ltd, UK. All rights reserved.

OpfiRisk 1

SYSTEMS

Contents
Chapter 1: Acknowledgements of Contributions..............c... 5

Chapter 2: Scope and PUrpoSecccorurermsmarmrmssessssssesssssssssass 6
I TSI eo] o 1= PP 6
THE PUIMPOSE ... eeteieereieeee i s e e s s s s e rass s s e s s s e s s s e e e s e ran s e rnn s s srnn e s ennnnsernnnnsees 6

Chapter 3: Directed Readingccicvmirermimsrerasnsrasnssasassasasnanass 7

Chapter 4: Overview of AMPL Studiocovmveimiranernrannanens 8

AMPL Studio Main WINAOWiiieeeiiiiisieernsserssssssss s sens s sssn s sensssssnsssssnnsanes 8
Menu Bar COMMANGAS......ccuuueierrrniereerrnesssrrensssserennsseerenasssrrsnssseersnsssssesnnnses 10
B oo B2 Tl 1H] o PP 16
Execution and Debugging Tool Bar BUtONS...........ccuuuiiiiiiiiiiniiiii e 17
L] o= (ol SR PPPN 18
EQItING AN ..ceeiii it eaan 21
(@0 170 [PP PPPPPRPPI 21
AMPL SEUAIO = BASICS ..vvuuiierernisreerrnssssersnnsssersnnssesrnnnssssersnnsssssrnnsssssesnnsssssennnns 24
1 LT NV 0T PP UPPTUPN 24

WOrking in AMPL StUAIO ..vuuiiveiicrii s serss s e s e e e e s e e n s e 25
Opening an EXisting WOIrKSPACEcuuuiiruiiiiiieieiniesesie e s e s sssssesnesssnssesanssenneens 25
Creating @ NeW WOrKSPACE. vuuuiiiuiiiiiiie et e s s st s e s e s e s s e s e s eaan s e enaneees 28
Inserting an Existing Project into the Workspacecccuuiiiiiiiiiiiiiiiiceee, 29
Adding a New Project into the WOrkSpace.........ceevevuiiiiiiiiiin v v 32
Activating the Project.......c.oi i 34
Selecting the SOIVEN e e 37
Setting the SoIVer OPLiONS.......... i e e 38
5T o I o g L= 1 o T [PR 42
SOIVING the Problem.......... e e 44
VIEWING RESUIES ...t e e e s e ra e eeenas 45
Solving the project with the SCript........cuuiiiiii i 48
Setting the AMPL Studio OPLiONS..........oiiiiireiiniiiie e e e 49
USING ONIINE NEIP . e e 50
Terminating the AMPL SEUdIO.......cvvuiiiiiiii i e 50

Chapter 5: Introducing AMPL through AMPL Studio 51

Introduction to Models for Linear programmingcccceeveveieennieinnnneeenesennns 51
Fundamental Components of AMPL linear programming Modelcc....... 51
RS PP 52
Parameters ... v 55
VaMADIES. ettt 56
(0] (=0l 1= PP PP 57
L0011 o = | P 58
Stochastic Extension to AMPL: SAMPLccuoiiiiiiiieeeeeee e e e enn s eenns 59

Chapter 6: A Step-By-Step Walk Through Example............ 60

OpfiRisk i

SYSTEMS

A Simple Real World Problemcooeeuiiiiiiiiiiiiiie e 60

Formulating the Problem into Mathematical Formccooiiiiiiiiiiinicnne, 60
Identify the Objective FUNCHONocuumiiiiiee e 61
Identifying the ConStraintscuuvi i 61

Translating the Mathematical Problem into AMPL Model.........cccooeuviiiiiinnnnnn. 62

Using AMPL Studio to Solve the Problem. ... 62
Now the AMPL model is ready for the problem. Now you open the AMPL studio....62
Create WOIKSPACEiiiiiiiiiii e er s e e e s e e s e e e s s an s e ran s e rnanaes 62
Create @ ProjJECEcuuu i 64
Create an AMPL MOdel file.....cuuuiiieereieeieeeiee e eree s e er e s e errs e s e e e s e enn e e eees 66
Solve and Display RESUIES........cuuiiiruiiiiiiiieice e r s er e e 70

Enhance to Data Separated project........ccooviieiiiiiiiii e 71
Creating Data and Model FileSoiiiuuiiiiiiiiiie e er e 71
Solve and Display RESUIES........cuuuiiiruiiiiiiiieie e ra s srs s ea e e e 74

Chapter 7: Connecting to a Database; Importing and
25> Lo] o 3 T« 1R 4

Creating the Databaseccocevuiiiiii i e 75
Importing data from tables.........cccii i s 82
Reading parameters ONY.........vieeriiiiiiiiiiiin e e e r s e e e e eeeas 84
Reading a set and parameterscoiviuiviiiiii i 84
Establishing COrreSPONAENCEScuuiiiuiiiiiiiiieiiie e eaas 85
Reading Other ValUESc..uiiiiiieeiie e e 86
Exporting data into tablesccuoviiiiiiiiiiii 87
Writing rows inferred from the data specificationsccccccceviiiiiiii e, 88
Writing rows inferred from a key specification.........c.ccccuveiiiiiiiiiiiiic e, 90
Importing From and Exporting To the Same Table.........ccccevvvviiiiiiiiiiininnen, 91
Importing and exporting data using two table declarations..........ccccceevviviiiniriennnn. 92
Reading and writing using the same table declaration............cccoeeviiiiiiiiiiiiinnnenn, 94
Index Collections of Tables and ColumNS..........cuvuviiiiiiiininieerin e eeens 95
Indexed collections Of tables.........cooveeieii i 96
Indexed collections of data COlUMNS.........coiviiiiiiiiii 97
Standard and Built-in Table Handlerscouvviiiiiiiiiiiicieceeevi e, 98
Solve and Display RESUILS.......c..civiiiiiiiiiiiieciic e er e 100

Chapter 8: Advanced Features of AMPLcoccveveiinenn 102

Modelling CoOmMMANASiiiriiiiiriir e e errna s 102
L@ 0] [0) o PP 102
Setting up and solving models and dataccceevvieii i, 103
[ToT 113771 g o I 5 | - N 103
MOdifyiNg MOEIS ... e e e e renas 104
Changing the model: fix, unfix; drop, restore........ccceeviviiiiiiiiiiiiii e, 104
Relaxing INtegrality........oocuuuiriiiii i e 105

(DY) o WA\ (o]0 0] =] o £ 105
Browsing through results: display commandcccooeviiiiiiiiiiiineciincv s 105
Other output commands: print and printf ..o, 109
Related SOlULiON ValUESccueiiiiiii i s 110
Other display features for models and INStaNCES........coovevviiiiiiieviinier e, 111
General facilities for manipulating OUtpUL..........ccoviiiiiiiii e, 114

OpfiRisk ’

SYSTEMS

ComMMaANA SCIIPLS..uuiiiriiiire e erra e ee 115

Running scripts: include and commands...........oooiiuniiiiiinn e 115
Iterating over a set: the for’ statement..........coiiiiiniiiiiiiii 116
Iterating subject to a condition: the repeat statementcccoevvviiiiiiiiiiinnen, 116
Testing a condition: the 'if-then-else’ statementcccoovviiiiiiiiicin i 117
Terminating a loop: break and CONtINUEoiiiiiiiiiiiiiie e 117
Stepping through a script: step, next, skip......ccceeiiiiiiiiii e, 117
Manipulating character Strings ... 118
Interactions With SOIVErS.......cccueiiiii e 119
ST P 119
Retrieving results from SOIVEIS.........oi i e 121
Exchanging information with solvers via suffixescccceiiiiiiiiiiiiiieee, 124

Chapter 9: Scripts, Debugging & Tracing in AMPL Studio 128
1S ol £ PPN 128
Debugging and Tracing: step by step walk through example...................... 129

Appendix A: Installation and Licensingcccovvmureresnanes 136

OpfiRisk *

SYSTEMS

Chapter 1: Acknowledgements of
Contributions

AMPL Studio and AMPL components have been designed and developed by Dr
Mustapha Sadki and are the property of Datumatic Ltd UK.

AMPL Studio and AMPL components have been produced through a business
partnership between Datumatic Ltd and UNICOM Consultants, trading as
OptiRisk Systems, who are the distributors for AMPL Studio.

We would like to thank Dr Patrick Valente who has worked closely with Dr
Mustapha Sadki to design and implement the Stochastic Extensions of AMPL
known as SAMPL, which is embedded within AMPL Studio.

We similarly would like to acknowledge Professor Robert Fourer of Northwestern
University and Dr David Gay, formerly of Lucent Technologies for their invaluable
advice and comments in the realisation of AMPL Studio.

We thank Mr Frank Ellison who is the principal architect of FortMP; he has
implemented AMPL driver for FortMP. We acknowledge the help of Dr Bob Bixby,
Dr Irv Lusting and Mr Marc Marshall of ILOG for making the business
arrangement which enables us to resell CPLEX with AMPL and AMPL Studio.

We extend our thanks to Professor Antonio Alonso Ayuso of the University of Rey
Juan Carlos Madrid and Dr Cormac Lucas of Brunel University, for their extensive
testing of the system and valuable feedback.

Other Acknowledgements: --

e The Computational Optimisation and Modelling Group is now part of
CARISMA: The Centre for the Analysis of Risk and Optimisation Modelling
Applications, Brunel University, London (UK).

e AMPL Studio is a trademark of Datumatic Ltd (UK).

e AMPL is a trademark of AMPL Optimization LLC (USA).

e FortMP ™, FortSP™ are trademarks of UNICOM Consultants, trading as
OptiRisk Systems.

e CPLEX™ is a trademark of ILOG Inc.

Dr Gautam Mitra, Dr Mustapha Sadki, Dr Kula Kularajan, and Dr Belen
Dominguez Ballesteros.

January 2005

OpfiRisk ’

SYSTEMS

Chapter 2: Scope and Purpose

The Scope

This document is designed to serve both as a user guide and as a reference
manual.

We assume the user of AMPL Studio has a basic understanding of Linear
Programming (LP) and some experience of using AMPL, which is connected to an
appropriate solver, such as FortMP, CPLEX or MINOS. In this manual, we first
introduce basic concepts of using a graphical user interface (GUI); the GUI
incorporates the ‘look and feel’ as well as a conceptual structure, which closely
resembles Microsoft’s approach to a ‘studio’ environment.

The Purpose

The purpose of this manual is to introduce this modelling studio environment to
an end user, analyst who can create, maintain and revise AMPL models within
the studio environment.

This manual does not provide an introduction to LP modelling. For an
introduction to LP modelling, the reader is referred to

(a)CARISMA and OptiRisk Systems lecture notes.

(b)Text Books by Gautam Mitra (GM), Paul Williams (PW) and Linus Schrage
(LS).

(c) AMPL: A Modeling Language for Mathematical Programming prepared by
Robert Fouer (Northwestern University), David M Gay (AMPL Optimization
LLC), Brian W Kernighan (Princeton University), THOMSONS, BOOKS, COLE,
USA.

(d) Stochastic Programming Lecture Notes, Copyright. CARISMA and OptiRisk
Systems.

OpfiRisk °

SYSTEMS

Chapter 3: Directed Reading

The user of AMPL Studio first needs to study the installation and licensing
procedure, which is explained in Appendix A. Chapter 4 contains an overview of
AMPL Studio; the essential explanation of the main window containing menu
bars, tool bars, also workspaces including file view, model view, edit area, status
bar are explained. The basic aspects of navigating around and the method of
working within the AMPL studio are explained.

A simple outline and explanation of the AMPL modelling language is given in
Chapter 5.

In Chapter 6, a step-by-step work through tutorial is provided and the concepts
of Workspace, Projects, Model File, simple data connection solution and display
of results are illustrated. Chapter 7 explains the connectivity with data and
databases; input and output of scalar data items and data table are explained.
Chapter 8 describes the advanced features of AMPL language. Chapter 9 outlines
scripts, debugging and tracing features of AMPL Studio; the step through
debugging is a uniquely attractive feature of the studio.

OpfiRisk ’

SYSTEMS

Chapter 4: Overview of AMPL
Studio

AMPL Studio Main Window

When you launch AMPL Studio, the Main window appears. All tasks and
commands for using AMPL Studio are carried out from this window. Figure 4.1
shows the Main window with three opened files, steel.dat, steel.mod and
diet_solution.txt.

E1AmplStudio - diet_solution.txt *
Menu Bar Filo Edit View Froject Soler Build Took Stochsstic Window Help
Tool Bar D&- & dB B[2 || B & 4 5 |6

Execution -
A o
Tool Bar -ll@l_'&'- _ "-
w3 wiorkspace © Myworkspace. warmpl ¥ A .
= steal
= 53 Modk| a
[steel.mod : .
hg Area
== Data A L}
[steeldat

Work Space

{1 Databasa
= (22 sir
e EmplStudio Modeling System -Copyright (o) 20
[readme, bt
O diep w
4 * MODEL STATISTICE

5] Fisview [™13 Modetiew | T8 Sclvetvien

“FortMP 3.2j: LP OPTIHAL SOLUTION, Objective = 118.050L832° A

solue_result = solued
output solue message = "FortHP 3.2j: LP OPTIMAL SOLUTIOH, Objective = 118.859L032°
Hotebook

|g [} Coruole | Bh Debug o Sobsions |[5] TimingMeman | ®i Display

T

Far Hel, press Fl 1 Lihe: cald

Status Bar
Line and Column

Figure 4.1: AMPL Studio Main Window

ﬁ If you have a mouse with a wheel between the two buttons, you can use
I Note
the wheel to scroll up and down.

« Menu Bar provides various menu commands to choose from, such as
Save in the File menu, and to display dialog boxes to perform various

tasks. Certain menu commands, followed by a » image on their right hand
side, have their own sub-menu commands.

OpfiRisk ’

SYSTEMS

e.g.

Set Active Project 4
Data
Insert Mew Projeck ... Scripk
Insert Existing Project ... Query command

Figure 4.2: AMPL Studio Sub Menus

The Add To Project Command menu has five sub command
menus, Model, Data, Table Definition, Script and Query
Command.

Tool Bar provides frequently used command buttons.

Execution Tool Bar buttons is used for executing the Models, Projects
and Scripts.

Work Space contains a notebook with three pages, FileView,
ModelView and SolverView.

FileView displays project tree structures containing all the files related
to each project. The project files are arranged under Model, Data,
Database and Script containers. It also displays stand-alone models
and scripts.

ModelView displays the various model components, such as
Parameters, Sets, Variables, Constraints, Problems and
Objectives in separate containers for easy access. Any particular
information can be displayed by clicking on it and diverse parts of the
solution.

SolverView is the sane as ModelView, with the difference that it
displays what solver see after presolve.

Editing Area displays opened model, data, database, script, and Solution
files. New files can be created and any existing files can be edited in this
area. You can open more than one file in this space. The opened files are
displayed in separate panels with the file name appearing in the title bar.

Output Notebook has five tabs to display AMPL Console Messages,
Debug Information, Solution Files, Timing and Memory Information,
and Display all other information. By default AMPL studio will display the
most appropriate window for the user action, but the user can switch to
another window by clicking on the tab at the bottom of the Output

~ OphRisK 9

SYSTEMS

o Status Bar displays messages concerning the execution status of AMPL
Studio.

e Line and Column displays line and column number of the cursor location
in the active document in the editing area.

ﬁ . In the graphic interface Menu Bar, Tool Bar, Execution Tool Bar,
Nefe | work Space and Output Area are dockable:

A dockable element can be detached from, or floated in its own frame
window or it can be attached to, or docked at any side of its parent
window.

Menu Bar Commands

File Menu Edit Menu
@ew Chrl-+r L@
& Open... Chrl+0
Close
Mew Workspace
= Open Waorkspace. .,
Save Waorkspace
Close Warkspace Select Al Chrl+A
I save Chrl+3 & Find... Chrl+F
Save fAs...
Save All @=| Replace.., Ckrl+H
Prinkt... Ckrl+P Read only
Prinkt Setup...
Bookmarks »
[¥3 Send Mail... Bookmarks () 3
Goto Bookmark () »
Recent File r
Recent Waorkspaces r

Exit

OpfiRisk °

SYSTEMS

View Menu Project Menu

v Warkspace Alk+0 Set Active Project
Status Bar alk+1 add To Project

v Cutput Alb+2

v Scripk Bar alk+3

v Prompt command Alk+4 Insert Mew Project ...

Insert Existing Project ...

Full Screen

Solver Menu Build Menu
Minos El Build Model Chrl+F7
Cplex
v FortMp Febuild All F7
& Clean

%, Logo @ Meos

Cplex Settings...
FortMP Setkings ... Skark Debug

Save Problem

Load Solukion
Generake MPS file

Tools Menu Stochastic Menu
Check Syntax
Opki
=pHane Solve SPINE
Generate

Solve current

@enerator options ...
Solver options ...

Report options ...

all sequence

Window Menu
Plet Window
Cascade
Tile
Arrange Icons
Close all

Default positions

v 1 StepByStepl

Help Menu
Help Topics

online

e, armpl.com

Abouk Amplstudio .

Figure 4.3: Overview of Commands in the Menu Bar

Some of the menu items have a keyboard shortcut, indicated on the right-hand
column of the menu. For example, Keyword Save has the shortcut Ctrl + S,
which means that you can save the active document by clicking the Ctrl key and
the S key at the same time.

The following tables (Table 4.1 - Table 4.10) list the command found in the
menus and provide a description of each command.

Command Description

New Creates a new file.
Open Opens a file.
Close Closes an opened document.

New Workspace

Creates a new workspace

Open Workspace

Opens an existing workspace

Save Workspace

Saves the current workspace

Close Workspace

Closes the current workspace

Save Saves the current edited file.

Save As Saves the current edited file with a new name.

Save All Saves all the open files.

Print Prints a document.

Print Setup Selects a printer and printer connection.

Send Mail Sends the active document through electronic
mail.

Recent File Displays a list of previously opened documents.

Recent Workspaces

Displays a list of previously opened workspaces

Exit

Exits AMPL Studio.

OpliRisk

SYSTEMS

12

Table 4.1: File Menu Command descriptions

Command Description

Undo Undoes an unlimited number of nested actions in the
current editor.

Redo Redoes previously undone actions in the current
editor (unlimited).

Cut Deletes the selected text from the editor and puts it
in the clipboard.

Copy Copies the selected text, from the editor or output
window, to the clipboard.

Paste Pastes from the clipboard to the current editor.

Send Email the opened file.

Select All Selects the entire content of the current editor.

Find Displays the Find dialog box for specifying search
criteria.

Find Next Finds the next occurrence of the text displayed in the
Find box.

Find Previous Finds the previous occurrence of the text displayed in
the Find box.

Replace Displays the Replace dialog box for specifying search
criteria and replacing specified strings.

Read Only Set the active document as read only file.

Bookmarks Bookmark a script line.

Bookmarks (#) Bookmark a line with the number.

Goto Bookmark (#) Go to the bookmark number.
Table 4.2: Edit Menu Command descriptions

Command Description

Status Bar Displays the Status Bar.

Workspace Displays the Workspace.

Output Displays the Output Notebook.

Script Bar Display the Script Execution Toolbar.

Full Screen Displays the active file in full screen mode.

OpliRisk

SYSTEMS

Prompt Command

AMPL command line

Table 4.3: View Menu Command descriptions

Command

Set Active Project

Description

When several projects are open, remembers the
project selected in the Project Tree as the active
one.

Add To Project

To insert a model, data, database or script files to the
project.

Ampl Settings

To change the AMPL settings.

Insert New Project

To insert a new project into the opened workspace.

Insert Existing Project

To insert an existing project into the opened
workspace.

Table 4.4: Project Menu Command descriptions

Command

Description

Minos To select the Minos Solver as a default Solver.
CPLEX To select the CPLEX Solver as a default Solver.
FortMP To select the FortMP Solver as a default Solver.
CPLEX Settings To Change the CPLEX Solver settings.

FortMP Settings To Change the FortMP Solver settings.

Table 4.5: Solver Menu Command descriptions

Command Description

Build Model To build the model.

Build Data To build the data

Rebuild All To build the all models and data

Clean To clean all read information from the memory.

Solve Problem

Solve the read problem.

Start Debug

Start to debug the script.

Save Problem

Save the current problem.

Save Solution

Save the solution.

Load Solution

Load the solution.

Table 4.6: Build Menu Command descriptions

OpliRisk

SYSTEMS

Command Description

Options Displays the Default Options dialog box that allows
changing the AMPL Studio options.

Table 4.7: Tool Menu Command descriptions

Command Description

Check Syntax This command performs the syntax check
of a model written using SAMPL’ s
extended AMPL keywords for stochastic
programming.

Solve SPInE The current model is parsed, and then
solved using SAMPL’ s solver. The
solver settings, including the
solution types, can be modified using
the Solver options.. command.

Generate An SMPS representation of the current
model instance is generated using this
command. By default, SAMPL/SPInE
generates Windows/DOS text files. This
may not compatible with other UNIX
based solvers. The advanced option
UnixOutput described in the SP
Generator options (SPG) section
enables the user to change the output
text format to UNIX.

Solve Current This command solves the latest SMPS
instance generated for the current
model. If such instance is not
available, then this command is
equivalent to the Solve SAMPL command.

Generate Options This command displays the Generator
Options dialog box. Settings for the
generator of SMPS instances can be
modified using this command.

Solver Options This command displays the Solver
Options dialog box. Settings for
SAMPL/SPInE’ s solver can be modified
using this command.

Report Options This command displays the Reporting
Options dialog box. This dialog box

enahlea the 118ers to rhanae the wawv

OpliRisk

SYSTEMS

SAMPL/SPInE exports the solution
vectors obtained from the solver.

View Options List

This command displays the current
settings of the SAMPL/SPInE system.
Advanced users can run this command in
order to manually edit the advanced
options provided by SAMPL/SPInE.

All Sequence

This command opens a graphic dialog
box, which displays the structure of
the scenario tree associated with the
current model.

Table 4.8: Stochastic Menu Command descriptions

Command

Description

Cascade

Displays overlapping panels in the editing area.

Tile

Displays panels in the editing area horizontally.

Arrange Icons

To arrange icons.

Close All

Closes all the windows in the Editing Area

Table 4.9: Window Menu Command descriptions

Command

Help Topics

Description
To view AMPL Studio Help Topics

Online

Opens the AMPL Online help window.

www.ampl.com

Go to AMPL web site

About Ampl Studio

Indicates the version of AMPL Studio, the OptiRisk-
Systems products used by AMPL Studio, and contains
copyright information.

Table 4.10: Help Menu Command descriptions

Tool Bar Buttons

The following buttons appear in the tool bar:

Button Description

0O To create a new blank document
= v To open an existing document. AMPL Studio displays an Open
File dialog box requesting the file name you wish to open. The

OpliRisk

SYSTEMS

16

file is then displayed in the editing area.

To open an existing Workspace. AMPL Studio displays an Open
File dialog box requesting the workspace you wish to open. The

= workspace and their related projects and files will be displayed
in the workspace window.

= To save the active document in editing area.

=i To save all the modified files.

& To cut the selection and put it on the clipboard.

To copy the selection and put it on the clipboard.

To insert clipboard contents.

= To undo the last action.

) To redo the previously undone action.

IR To show or hide the workspace window.

[&] To show or hide the output window.

) To manage the currently open windows.

& To find the specified text.

5 To Repeat the last find text action.

)

To replace specific text with different text.
To display the active file in full screen mode.

Table 4.11: Toolbar Buttons and Descriptions

Execution and Debugging Tool Bar Buttons

The following buttons appear in the tool bar:

Button Description

To build a model.

&

To build a data.

OpfiRisk v

SYSTEMS

1 To solve a problem.

a3 To reset the project.

To run script.

Go.

To step out of a loop in a script and avoid going through
all the iterations.

To go to the next solution of the model or project, or to
the next instruction in stepping mode, or to the next
choice point in ‘stop at choice point’ mode.

Continue running the script without stepping.

Watch variable

A To set breakpoints/Marker in the AMPL model or script file.
% To go to the previous breakpoint/marker

% To go to the next breakpoint/marker

% Clear all breakpoints/Markers markers

Table 4.12: Execution Toolbar Buttons and Descriptions

Workspace

AMPL Studio Workspace is divided into three sub windows, FileView,
ModelView, and SolverView. The user can switch between these windows by
clicking on the required tab at the bottom of the Workspace.

The Fileview displays the Workspace Files in the Tree structure.

OpfiRisk °

SYSTEMS

».7) Workspace " Myworkspace wampl " 5 project(s)
+ 7 steel Vﬁ
+ o7 Transp
+ 7 etz
+T egypt2

A diet
=1- (23 Model

=] Diet.mod
—-[ZZ Data
=] Dietza.dat
(21 Database
—-{Z3 Script
A Diet,mdb,run
A Digt.mdb2. run
A Digt,xls.run
A Digt.mdb2. run
=1 readme. diet.txt
=] wariables name

=] disp

[Z] FileMiew | B Modelview | D Solverview |
Figure 4.4: Workspace File View

The ModelView displays the Model Parameters, Sets,
Variables, Constraints, Problems and Objectives information,
which becomes available after the models and their associated data
files are built.

¥ Workspace " Myworkspace " 5 project{s)
+ steel
+ Transp
- Bl etz
+ eqypts
-
+- [Sets
=23 Parameters
o cost
g F_min
o f_max
o: n_min
Or n_max
o amk
-2 variables
e By
-2 Constraints
v diet
3 Problems
-3 objectives
& kotal_cost

=] Fileview B pModehfiew | TG Sobverisw

Figure 4.5: Workspace Model View

OpfiRisk ”

SYSTEMS

The SolverView displays Solved Model information, which
becomes available after the model is solved.

¥ Workspace " Myworkspace " 5 project{s)
skeel

Transp

Met2

egypt2
= A diet
-2 sets
& NUTR
& FOOD
—-[Z1 Parameters
—|-- g cost
& FOoD
g F_min
g f_max
g: n_min
O: n_max
=
—- (2 variables

+

r ey i
[[[[

+
+
+

+

3 Problems
—-{Z3 objectives
2 kakal_cosk

=] Fileview | ™ Modehiew O Solverview |

Figure 4.6: Workspace Solver View

OpliRisk

SYSTEMS

Editing Area

AMPL Studio allows the user to open many files into the editing area. One can
edit existing files or create new files in the Editable Area using the AMPL Studio’s
text editor. The user can edit multiple files by switching between the Editor

Windows. Also the user can Resize, Minimise, Maximise and close any window.

Console

AMPL studio outputs are divided into Console, Debug, Solution, Timing and
Memory, and Display windows. AMPL Studio automatically displays the most
appropriate window for the user action. The user can switch between these
windows by clicking on the required tab at the bottom of the Output Notebook.

The AMPL console output is displayed in the Console Window.

total cost definition :

minimize total cost: sum{j in FOOD} cost[j]=Buy[j];
HUTR definition :

set HUTR;

|_'E1 Conzole F% Debug] L0 Snlutinns] Timings’MemnryJ % Display]
Figure 4.7: Output Console Window

The Debug results are displayed in the Debug Window.

@ Conzole EB Debug |_,EI Snlutinns] Timings’MemnryJ % Display]
Figure 4.8: Output Debug Window

OpliRisk

SYSTEMS

21

The Solution files generated by the solvers will be displayed in the Solution
Window.

Data Filename :Diet2a.dat

Date t1:24:208085

Time 16:56

Constraints 6 : Honzeros
S _Constraints 6

Uariables :B8 : Honzeros

SOLUTION.RESULT
"Optimal solution found®

FortHP 3.2j: LP OPTIMAL SOLUTIOH, Objective = 118.85940832

£

L'Tﬂ'; D:unsnle] % Debug .0 Solutions Timingx’MemDr}IJ E&, Displa}l‘
Figure 4.9: Output Solutions Window

The processing Time and Memory usage of AMPL studio are displayed in the
Timing/Memory Window.

Mame | 1 | ¢z | 3 |
execute o o 134426916
execute 1] 1] 134426916
execute 1] 1] 134465900
execute 1] 1] 134463900
oukpuk 0 0 134465900
Tatal 0.0400576
execute 1] 1] 134465900
execute o o 134426916
execute 1] 1] 134426916
execute o o 134465900
execute 1] 1] 134463900
oukpuk 0 0 134465900
Tatal 0.0400576
execute 0,0200z83 0 134465900

L__E|L EDnsu:uIeJ % DebugJ S0 Solutions TimingMemory % Dizplay
Figure 4.10: Output Timing and Memory Window

All other AMPL Studio output will be displayed in the Display Window.

OpliRisk

SYSTEMS

KEE]

Cl

2

C3

L__E|L EDnsu:uIeJ % DebugJ L Solutiu:unsJ Timina/Memory % Display

Figure 4.11: Output Display Window

OpliRisk

SYSTEMS

AMPL Studio — Basics

This section describes several basic concepts to consider when using AMPL
Studio.

File Types

Models
Model files contain AMPL statements. A stand-alone model is a model that
can be executed in AMPL Studio without any additional requirements.

Data files

Large problems are better organized by separating the model of the
problem from the instance data. The instance data is stored in a data file
(or in several data files).

Projects

AMPL Studio uses the concept of a project to associate a model file with a
number of data files. The model file declares the data but does not
initialise it. The data files contain the initialisation of each data item
declared in the model. The project file then organizes all the related model
and data files. A project provides a convenient way to maintain the
relationship between related files and runtime options for the
environment.

Scripts

Script files contain AMPL Script, a script language for AMPL. A script
handles different models with their data. The models and data files are
associated in the script itself.

The following naming conventions are used to indicate these different files:

.mod Used for files containing models.

.dat Used for files containing data
instances.

.sal or .run Used for scripts written in AMPL
Script.

Jini Used for project files.

.wampl Used for Workspace files

Table 4.12: File extensions and descriptions

OpfiRisk “

SYSTEMS

In this Chapter and in Chapter 6 we will see how to create project files, associate
model and data files with the project, and then find the solution to the problem
using the project file.

Working in AMPL Studio

The model and data files used in the examples in this manual are distributed with
the product. This way the reader will not have to create these files from scratch,
but just open them once AMPL Studio is launched.

Opening an Existing Workspace

To open existing workspaces do the following

Step 1:

Choose the Open Workspace from the File Menu.

T Chrl+M
= Open... Chrl+0

Close

Mew Waorkspace

Close Workspace

I save Chri4-5
Save As...
Save All

Brint. .. Ckel+P
Prinkt Setup...

(¥ Send Mail,..

Recent File r

Recent Workspaces *

Exit

Figure 4.13: Open Workspace from the File Menu

OpliRisk

SYSTEMS

25

Step 2:

AMPL Studio then displays a standard Open File dialog box in order
to select the file that corresponds to the workspace we want to
open.

Open Workspace @
Lock in: |) Bin ~| ol
2ryworkSpace

CATABLES

Dbworkspace.wampl

Mywiarkspace, wampl
Scriptworkspace. wampl %

File name; |Mywnrkspace.wampl
Files aof type: |.-'1'-.m|:|| warkspace ﬂ Cancel

Figure 4.14: Choosing AMPL Workspace File

Select from the directory: AMPL Studio Installed Directory/bin
and choose the workspace hame Myworkspace.wampl and click
on the Open button.

@Na he If you have recently used the workspace, you can

alternatively select it from the Recent Files submenu.

OpfiRisk *

SYSTEMS

The AMPL studio will open the workspace and displays it in the workspace
window as shown below.

E1AmplStudio - Diet.mod

File Edit “iew Project Solver Build Tools Stochastic Window Help

Dw-|cs E@ mm@ (&[] B & &
- Diet.mod

+ 7 Transp [
+T Netz
+ o diet set NUTR:

set FOOD;

param cost {D} » O:

param f_min {FOOD} »= O:
4 param f_max {j in FOODY} »= f min[j]:

5] Fileview | 3 Modelview | D& Solverview |

=

offset 43

D is not defined

error_data

file DietZa.dat

line 5

offset 113

cost is not a subscripted param
error_data

file Diet2a.dat

|

| £

= [F Consale BN DebugJ La Solutions] Timinga’Memor}l] Y Display]

| ampl: J

JFar Help, press F1

Figure 4.15: Opened Workspace in AMPL Studio

Line:0 Col:0

OpfiRisk 7

SYSTEMS

Creating a New Workspace

To create new workspaces do the following

Step 1: Choose the New Workspace from the File Menu.
File Menu
Mt Ckel+I
& Open... Chrl+0
Close

Mew Workspace k

Open Warkspace, ..
Save Waorkspace
Close Warkspace

Save Chrl+5
Save fAs...

Save All

Prinkt... Ckrl+P
Prinkt Setup...

Send Mail, .

Recent File *

Recent Waorkspaces r

Exit

Figure 4.16: New Workspace from the File Menu

Step 2: AMPL Studio then displays a New Workspace dialog box in order to
enter the Workspace name and the Folder where the workspace will
be created.

New workspace [X]

“Wiorkzpace name

Falder |E:"-.F'ru:-gram Files"AmplStudio Modeling S . |

Figure 4.17: New Workspace Dialog box

OpfiRisk »

SYSTEMS

Enter the workspace name as MyFirstAMPLWorkspace and
choose your preferred folder by clicking on the _| button.

The AMPL studio will open the new empty workspace and display it in the
workspace window as shown below.

Eﬁ.ﬁ.mplStudin
File Edit Wiew Project Solver Buld Tools Stochastic Window Help

IDe- B Ee o REREE R S| s % %%
| @ [[B & o[E & 0 & el
Model Entities Browser k)
¥.3| Workspare " MyFirstAMPLWarkspace " O project(s)

[£] Fileview | ™ Modeliew | TR Solverview |

=l AmplStudio Modeling System. Beta wer.1.6h

AMPL Version 288408422 (Visual C++ 6.8)

,.::: ’:E‘L Console I—@g; Debugl L0 Solutionsl Timing;’Memnr}lE& Displa_l,ll

I ampl: I

For Help, press Fl | |Lire:0 oo [[
Figure 4.18: New Workspace in AMPL Studio

Inserting an Existing Project into the
Workspace

To insert an existing project into the current workspace do the following

Step 1: Choose the Insert Existing Project Menu from the Project
Menu.

Project Menu

OpfiRisk »

SYSTEMS

Step 2:

Set Active Project »
add To Project *

Insert Mew Praject ...

Insert Existing Projeckt ...

Figure 4.19: Insert Existing Project Menu from the Project
Menu

AMPL Studio then displays a standard Open File dialog box to select
the file that corresponds to the project we want to open.

Add Project to Workspace

Lock in: |) Bin | £ E-

ICSMyFirstAMPLWorkspace ;}dietxx ;}multmipS

LI TABLES degyptz H etz

}cut r}Fina __'}Newdaknta

~Hdakota ~dModella % Planning

b diet “drodelib dpower

b Dieti & Modelza bsteel

< | >
I

File name: |stesd b Open

Files of type: |,-i'-.mp| Project j Cancel

Figure 4.20: Choosing AMPL Project File

Select from the directory: AMPL Studio Installed Directory/bin
and choose the project file steel.ini and click on the Open button.

OpfiRisk »

SYSTEMS

The AMPL studio will insert the project into the workspace and display it in the
workspace window as below.

Fi] AmpIStudio

File Edit Wiew Project Sobver Build Tools Stochastic Window Help

D@ - @R be e BEEDa 5] % %%
ENEEEEEETE T

Model Enkities Browse

». 3 Workspace " MyFirstAMPLWorkspace,wampl " 1 project(s)
[+ 3 steel

L T Ii'
@ File\iem I.'II: Modef\-"iewl O Solver\fiewl

! AmplStudio Hodeling System. Beta ver.1.6h

AMPL Version 260408422 (Visual C++ 6.0)

L'E, Conzole I—Eg Debugl L0 Solutionsl Timing.-’Memnl_l,lI& Displa_l,ll

I armnpl: I

For Help, press F1 | |Lire:0 ol [[| 4
Figure 4.21: Inserted Project in the Workspace

The file can be viewed in the Editing area by clicking on the file in the
workspace. For example, clicking on the steel.mod will display the steel.mod
in the Editing Area.

OpfiRisk .

SYSTEMS

Eﬂ AmplStudio - steel

File Edit Wiew Project Sobver Build Tools Stochastic Window Help
DE-dE|+serocBE&E)] 4% %5
IENEEEEEETEEE TS
Model Entities Browser : £ i
: nitikies Br t | Y v
b,?g' ‘Waorkspace " MyFirstaMPLWorkspace, ——
= o steel (24|
=23 Model set PROD: # products
L[] steel.mad param rate {PROD} >= 0O: # tons produced per hc
-2 Data param avail >= 0; # hours available in we
{:| Database =
(23 Seript
& readme bxt
| disp
param profit {PROD} ; # profit per ton
param market [PROD} >= 0; # limit on tons sold ir
wvar Make {p in PRODY »= 0, <= market[p]; # tons pr
< il | > -
TN : s morwrimaire Fetsl s St s mmm T aw DOOTIT v Ea+ T 1 a0
[E] FileView | ™3 Modshien | B | || € [J 3 ..
=l AmplStudio Modeling System. Beta wer.1.6h
AMPL Version 260408422 (Visual C++ 6.8)

L'E, Conzole I—Eg Debugl . Solutionsl Timing.-’Memnl_l,lIE Displa_l,ll

I armnpl: I i

For Help, press F1 | |Lire:2 |caliz4 || [A

Figure 4.22: Viewing the Model file from the Inserted Project

Adding a New Project into the Workspace

To insert a new project into a workspace do the following
Step 1: Choose the Insert New Project Menu from the Project Menu.
Project Menu

Set Active Project »
add To Project r

ampl Settings., ..

Insert Mew Praject ...

Insert Existing Project ...

Figure 4.23: Insert New Project Menu from the Project
Menu

OpfiRisk »

SYSTEMS

Step 2:

AMPL Studio then displays an Open New Project dialog box in order
to specify the new project name and the directory where the
project will be created.

*. x|

Project name |MyFirst.-’-‘-.MF'LF'ru:uiect

Project path |E:"~F‘n:ugram FilezhamplStudio Modeling Syst

[v A&dd model and data files [Stochastic model

Model name | MyFirstiMPLProjet mod

Data instance |M_l,lFirst.f3.MP'LF'n:uie-:t.dat

ak. Cancel

S
Figure 4.24: Insert New Project Dialog Box

Enter the project name as MyFirstAMPLProject and choose
your preferred folder by clicking on the - | button.

Also you have the option to add the model and data template files
by choosing the Add template check box. Type the model and data
template files as MYFirstAMPLModel .mod and
MyFirstAMPLData.dat.

Click the OK button to add a new project to the workspace

OpfiRisk >

SYSTEMS

The AMPL studio will insert the project into the workspace and display it in the
workspace window as shown below.

EI] AmplStudio - MyFirstAMPLProject
File Edit “iew Project Solver Buld Tools Stochastic Window Help

DE- & BB g CEEEEP

EXEE

Model Entities Browser

5] Fieview | ™5 Modelview | T ¢ | |

b7 Workspace " MyFirstAMPLWarkspace, LMyELCsIANL)L Bralel,
+ 7 steel # Model file name:
1 a4 MyFirstAMPLProject : S, lniied SR
= 0 Mode! . MyFirstAMPLProject
MyFirstAMPLProjet, mod :
o [:Eta s e # Data file nams:
B[, FirscaMPLPraject dat # CinProgram Files~AmplStudio Modeling Svs
(1 Database
Script
e # set
param
< | >

* [1ine 1 ~
offset @
Can't find file "MyFirstAHPLProject.dat"
E

I:_E'I_ Conzale [—Eg Debug‘ L Snlutiu:m] Timing!Memor_l,l‘ %;?ixplayl

] annpl: |

For Help, press F1 Line: & Cal:0

Figure 4.25: New Project View in the AMPL Studio

You can now start to write a new model and data files. Don’t worry about
writing the model and Data file at this stage. Chapter 5 and 6 will cover
this in more detail.

Activating the Project

As you can see the steel project was active (=£) before you add your new project.
When you add the new project AMPL studio assumes the new project is going to
be your active project and displays it as below

OpfiRisk *

SYSTEMS

Maodel Entities Browser

».2] Workspace " MyFirstaMPLWorkspace,
+ 7 steel
= a# MyFirstAMPLProject
=1-(Z3 Model
] MyFirstaMPLPr ojet. mod
—--[ZZ Drata
EERvFirs
(23 Database
=3 Script

EAMPLProject, dak

< >

+_
=] Fileview | ™2 Modetview | B« [|
Figure 4.26: New Project Active AMPL Studio

To set the steel project back to active project, do the following.
Step 1: Click on the Steel Project Node.

Step 2: Right clicking the mouse will display the following menu.

Set as Active Project

Add Fi ko Project. ..
Unload Project
Add Display

Properties

Figure 4.27: Choosing the Set as Active Project Menu

AMPL Studio will change the steel project back to active project as below.

OpfiRisk »

SYSTEMS

Maodel Entities Browser

».2] Workspace " MyFirstaMPLWorkspace,
+- e B
=l MyFirstaMPLProject
=1-(Z3 Model
] MyFirstAMPLPr ojet. mod
—--[ZZ Data
] MyFirstalMPLPr oject . dat
(23 Database
(3 Script

< >
5] Fileiew | ™3 Modetview | B« | o
Figure 4.28: Workspace with steel project as active

ﬁ You can also activate the steel project by selecting the Set Active
ViMote . .
Project menu from the Project Menu

OpfiRisk *

SYSTEMS

Selecting the Solver

By default AMPL studio provide three solvers, Minos, CPLEX, and FortMP. You can
choose your preferred solver from one of these solvers. In order to choose
FortMP as your default Solver select the FortMP Menu from the Solver Menu.

Solver Menu
Minos
Cplex

FartMp

User defined! -)

Meos Solvers r

Cplex Settings. ..
FartMP Settings ...

Figure 4.29: Selecting the FortMP Solver as the default solver

AMPL Studio also has the facility to use the solvers provided at the NEOS server.
To use one of those solver choose the solver from Neos Solvers dropdown

Minos

EEE @& @ +a3n8eEl|EEC 0B

Cplex

EortMp
User defined(-)

Meos Solvers LOQO—‘
; Cplex Settings... EPMPD
% rsecgdpr;e.dmtm FartMP Settings ... Q00
- [dist.cple:_optiors———————————— COMDOR
- [&] variables name NPT

@ postsolve.cmd

.. diet.&sfortmp_options KNITRO
5 bloctd T
- trlac 7
[stoch
o egyptz BATH
et TS o

User defined(-)

(2] Fileview | " Modelview | T8 Solveriew

* [AMPL Uersion 200m0u22

AWPL Studio Evaluation version

.f: @ Conzole I% Dehugl L0 Solutmnsl T\mingﬂMemowI % Disp\ayl

| amgl | “

Line:5 oo [[
T

/ﬂ

httpijneos.mes.anl.gov/neas/sahversfindex.html

Figure 4.30: Selecting the Neos Solver

OpfiRisk ¥

SYSTEMS

Setting the Solver Options

CPLEX and FortMP solvers have their own solver settings. You can change these
setting accordingly to suite your project needs. In order to change the FortMP
Solver settings choose the FortMP Settings menu from the Solver Menu.

Solver Menu
Minos

Cplex

FartMp

Meos Solvers r

Cplex Settings...

| FaortMP Settings ... |

Figure 4.31: Selecting the FortMP Solver Settings

OpfiRisk »

SYSTEMS

AMPL Studio then displays the following FortMP Solver setting dialog box for your
selection.

FortMP settings

o Basic
Simplex
[Pk contral
tolerence
b airnurn Limits LP Salwer
inpLtoutput ™ Primal
log contral % Dual
MIF caontral ~ IPM
Advanced contral
[Scale
v Presolve Prezalve Level 5
Restart
[MIFP
[Input
W
v MIP Freprocess ~ LP Opfimum
v
v MIP AutoRound M
[Output
K [IPM
[Classzify Bows
| oK | B
Cancel | |

Figure 4.32: FortMP Solver Settings Dialog Box

FortMP Solver settings are divided into Basic, Simplex, IPM Control,
Tolerance, Maximum Limits, Input/Output, Log Control, MIP Control
and Advanced Control. The detail of these can be found in the FortMP Manual.

ﬁNaﬁ:— CPLEX Solver setting can be done in a similar way.

Some additional options may exist for the solvers, which are not displayed in the
solver settings menu. These options can be added in the solver options file. To
include the solver options file, first go to Options menu and tick Insert file options
in project for additional solver options. A solver options file is then included in
the workspace as displayed on the left hand side of AMPL Studio.

OpfiRisk >

SYSTEMS

=

 Opfions ™ H

Saolve zalution

v After zolve wiite file_salution [show MPS file before salve
v After zolve dizplay solution | Short solution report

E dit options

v Save before running tools [+

Workspave

v Reload last workspace at startup [Close files before open work space

v [nzert file options in project for additional solver options

Expand constraints Conszole
" dizplay on editar

e | Clear before parse or solve
" dizplay on conzale

A | ‘wiite to log file [project_name. output
i+ dizplay on both g file [praject_ puit]

Cancel

Figure 4.33: Selecting the file option for additional solver settings.

OpliRisk

SYSTEMS

Ampl5tidio - [idiet:Afortmp_options]
.F\\e Edit View Project Solver Buld Tools Stochastic Window Help

FEEREEENEELEE

[FEEEEE

PR TR T

».3| Workspace " Scriptworkspace.wampl " 6 project(s)
B 4 diet
(22 Model
S pata
(22 Database
(=12 Seript
A Diet.mdb.run
A Digt.mdh2.run
A Digt.ds.run
A Diet.mdbz.run
[readme. dist. bt
] diet. cplex_options
[&] variables name
[PostSalve,cnd
B} et A jans
- trnloctd
- trnloc

Bl
A

5] Fileview | ™ Modeliew | O Solverien |

Options for AMPL/AFORIMP driver

#Display level for solver
displaysolver=2

#Cut generate switch
cutgenerate=0

#DJ tolerance
ditol=1.0e-5

#Integer tolerance
integertol=0.001

#IPM algorithm switch
ipmalgorithm=0

#5witch to retain the log file

>

x| :
AMPL Uersion 208040422

AMPL Studio Evaluation version

L'El Caonsole @ Debug | LB Su\ulmnsl Timing/Memuryl % Disn\ayl

ampl |

For Help, press F1

Page:39 of 134 | Words: 21,302 | @ |

IEEEE

Figure 4.34: Modifying solver settings in solver options file.

41

Build the Model

In order to solve the problem the model and associated data files need to be
built. Do the following steps to build the steel project model and data files.

Step 1: Click on the steel .mod file.

Maodel Entities Browser

b.2) Workspace " MyFirstaMPLWorkspz A
o steel
=1-(Z3 Model

+-- [Data
(23 Database
+-{Z3 Script
=1 readme.txt
=] disp
=l MyFirstAMPLProject
=1-(Z3 Model
] MyFirstaMPLPr ojet.mo
—--[ZZ Drata
=1 MyFirstnMPLPrnie[%. -
>

<
5] Fileview | ™3 Modetview | S« | o
Figure 4.35: Selecting the steel.mod file in the Workspace

Step 2: Click on the El button on the Execution Toolbar to Build the Model.

The AMPL Studio reads the model and displays the following
Console Message.

= C:\Program Files\AmplStudio Hodeling System b.1.6%\Binisteel.mod -
(1] 4

1 v

[FE Console r@:; DebugJ L0 Salutiansl Timing!MemDr}lI Hy Displayl

Figure 4.36: AMPL Console message for reading steel.mod file

Step 3: Click on the steel.dat file.

OpfiRisk *

SYSTEMS

Maodel Entities Browser

o steel
=1-(Z3 Model
=] steel.mod
—--[ZZ Drata
skeel . dat
(23 Database
+-{Z3 Script
=1 readme.txt
=] disp
=l MyFirstAMPLProject
=1-(Z3 Model

] MyFirstaMPLPr ojet.mo

—|--[CZ Diata
< ¥

b.2) Workspace " MyFirstaMPLWorkspz A

5] Fileview | ™3 Modehview | 5 ¢ | |

Figure 4.37: Selecting the steel.dat file in the Workspace

OpliRisk

SYSTEMS

Step 4: Click on the #2 button on the Execution Toolbar to Build the Data.

The AMPL Studio reads the model and displays the following
Console Message.

C:\Program Files\AmplStudio Hodeling System b.1.6\Bin\steel.mod -
]3]

C:/Program Files/AmplStudio Hodeling System b.1.6/Binf\steel.dat
ok?

Humber of variables

Humber of constraints

Number of objectives

Humber of constraints Jacobian matrix nonzeros
Number of objectives gradient nonzeros

[QS Ay L]

I_'E, Console |EQ3 DebugJ L0 SDIutiDnsJ Timingf’Mele_l,J‘ E&, Display]

Figure 4.38: AMPL Console message for reading steel.mod and steel.dat
file

Solving the Problem

Now the Model and Data files are read and the Solver is selected. In order to
solve the problem do the following steps.

Step 1: Click on the £ button on the Execution Toolbar to solve the
problem.

@ You can also select the Solve Problem Menu from the Build
& Nﬂ'ﬁ!— Menu

El Euild Maodel Crl+HF7

&3 Build Data Chrl+Fa
Rebuild all F7
g Clean

Skart Debug »

Save Prablem

Load Solukion
Generate MPS File

OpfiRisk *

SYSTEMS

The AMPL Studio will solve the steel problem using FortMP Solver and display the
solution file in the editing area.

E‘].ﬁmplStudiu - [steel_solution] E@g|
0 File Edit “iew Project Solver Build Tools Stochastic Window Help = | O
D& -5 E DR & 4
[* -~
b3 Workspace " MyFirstAMPLWorkspe MODEL .STATISTICE
-~ steel
523 Moded Problem name rsteal
3 steel.mad Model Filename rsteel mod
-2 Data Data Filename :steel .dat
=] steel.dat Date 2 An s
(2] Database Time _ 114:42
(2 Seript Constraints 2k : MNonzeros
T readme.txt S_Constraints 22ls
1 disp Variables 12 : Nonzeros
-l MyFirstAMPLPraject
=20 Model oo g -
5] MyFirstAMPLPrajet.ma SOLUTION. RESULT
—-[ZZ Data))
=] MyFirstAMPLProject.d: 'Optimal solution Found'
(21 Database 3
p [5 FortMP 3.2j: LF OPTIMAL SOLUTION, Objective = 192000
=] Fileview | ™3 Modebview | 2 « [+]| 4 n
= TIME TAKEH FOR SCALEfPRSLUE= 8.82 SECS, TOTAL 30 FAR = 8.12 SECS i
CRASH{LTSF) EHDED. VARIABLE TYPES:- PLUS BHDD FIX FREE
LOGICALS REMOVED FROM BASIS:- 1 i} a 3]
STRUCTURALS EWTERED INM BASIS:- a 1 a 8
CRASH{ART) EHDED: 1 PASSES: 8 ARTIFICIALS, 8 PIVOTED OUT
TIME TAKEH FOR CRASHIHNG = B.18 SECS, TOTAL 30 FAR = 8.38 SECS
FEASIBLE BASIS REACHED AFTER ITERATIOHN 1
Invert demand: O0bj = 1928680. Suminf = 9.00080 ITER# 2
STATUS = 3 -—- OPTIMUM SOLUTION FOUHD. 1920804, ITER# 2
TIME TAKEH FOR PRIMAL o 8.82 SECS, TOTAL 30 FAR = 8.33 SECS
TIHE TAKEH FOR DUTPUT = §.88 SECS, TOTAL 30 FAR = 8.33 SECS 2

3 , @ Canzale |—|§5 DebugJ LE Solutionsl Timinngemor}lJ s Displa_l,lJ

I

| ampl: |

For Help, press F1 Line:15 Cal:0

Figure 4.39: AMPL Studio Solver Console message and Solution Display

Viewing Results

The user can view various parts of the model and the solution from the
Workspace and their information will be displayed on the display window as
shown below.

Step 1: Click on the ModelView tab on the Workspace.

OpfiRisk *

SYSTEMS

Step 2: Expand the Parameters node and Double Click on the rate
Parameters.

¥ wiorkspace " MyFirstalMPLWOrkspace. war &
-1 2 steal
-3 Parameters
=€>
o avail
ox profit
o> market
+ [Sets

+- (2 variables
T rAncte aimhe

< >
=] Fileview B podelfiew Solverisw

Figure 4.40: Choosing the rate Parameter for Viewing

The AMPL Studio Display Window displays the rate parameters as
below.

i

subscript 1 | rate |
bands 200
coils 140

L'E'; Eu:unsu:ule] % Del:uug] L0 SDIutiDns] TI;FEHQ.-"MEI‘HD[}I 'HE Dizplay

Figure 4.41: Displaying the rate Parameter

OpfiRisk *

SYSTEMS

Step 3: Now Expand the Variable node and Double Click on the Make
Variable.

The AMPL Studio Display Window displays the Make variable value
as shown below.

Bl AmplStudio - [steel_solution.txt *] [|[B]X]
t File Edit “iew Project Solver Build Tools Stochastic Window

Help = ||
O @~ = - = oE S &
& 3 04 A

Maodel Entities Erowser ~
3 Warkspace " MyFirstAMPLYWorkspace. war & MODEL . 5TAT
o 2P cteel

“ﬁ:li - Froblem na
+ = Arameters Model File
ot Data File
=23 variables D
Time
+- [Constraints - Total time
3 Problerms Constraint
+- (3 Ohjectives v »_Constrai
1 Variahles
L [>

- W
=] FileView B pModebfiow | D6 Sokveriew | > =

k]

subscript 1 | Make | Make. init | fMake. init0 Makelb #
bands G000]] 0
coils 1400] 0] o~
{ |

I@ L'E'; Eu:unsu:ule] Eg Del:uug] | Su:ulutiu:uns] Tirningy/ b ermary % Dizplay

| ampl: |

For Help, press F1 Line:29 Col:l
Figure 4.42: Displaying the Make Variable

OpfiRisk Y

SYSTEMS

Solving the project with the Script

In the previous sections you have solved the steel project. During the Solution
process you have gone through a number of steps like Build Model, Build
Data, Selecting the Solver, etc., to generate the solution. This process can be
automated by creating a script file.

The following steel.sal script file was written to automate what we have done
during the previous section. In this case we use CPLEX solver to solve the steel
problem.

] AmptStuo - [seeL.sai BEE)
'}
DE- & HB DR & & 4 B & & =l &
| i k3 P
». 7 Workspace " MyFirstAMPLWorkspace, wampl " 1 projeck(s)
-1 o steel pg=l=l =t
+-(23 Model
+-[ZZ Data model steel . mod;
2 Database data steel.dat:
=[] Script
A steel.sal option salver cplex;
= readme. bxt
] disp solve:
< > i
show; w
[E] Fileview |"[j ModeNiewI i SolverViewJ

=

AmplStudio Modeling System. Beta ver.1.6h ~
AMPL Version 20848422 (Uisual C++ 6.8)

'C:\Program Files\AmplStudio HModeling System b.1.6%\Bin" ;
AmplStudio HModeling System. Beta ver.1.6h
AMPL Version 20840422 (Uisual C++ 6.0)

Parsing ... w

L__Ell Cotzale |EQ5 DebugJ LE Snlutions] Timing.f'Mernc-r_l,lJ % Displa_l,lJ

| ampl: |

Far Help, press F1 Line:12 Cal:o

Figure 4.43: Writing Script File

Clicking on the =! button will execute all the AMPL Statements in the script file
and display the results.

OpfiRisk *

SYSTEMS

Setting the AMPL Studio Options

AMPL Studio has various options for you to choose from. In order to update the
AMPL studio options choose the Options Menu from the Tools Menu.

Tools Menu

o

Figure 4.44: Choosing AMPL Studio Options

AMPL Studio then displays an AMPL Studio options in the following dialog box for
your selection.

Options R E|
Solve golution
v After solve wirite file_solution [show MPS file before zolve
v After sokve display solution [Short zolution repart
Save options
v Save before running tools [v Prampt befare nning tools
Workzpave

v Feload last waorkspave at startup

Expand constraints Congole

" dizplay on editar
FE [Clear before parse or solve
" dizplay on congole

& display on bath [“rite to log file [project_namme.log)

Cancel

Figure 4.45: AMPL Studio Options Dialog Box

AMPL Studio options are divided into Solve Solution, Save Options,
Workspace and Expand Constraints categories.

OpfiRisk *

SYSTEMS

Using online help
Online help can be accessed from the Help Menu. You need an Internet
connection to access www.ampl.com Menu from Help Menu.

Terminating the AMPL Studio
Selecting the Exit menu from the File Menu will terminate the AMPL Studio
session.

OpliRisk

SYSTEMS

Chapter 5: Introducing AMPL
through AMPL Studio

Introduction to Models for Linear
programming

In order to suitably represent the linear programs we make use of mathematical
notations. We call the compact description of the general form of the problem, as
a ‘model’. The fundamental components of a model are:

e Sets

Parameters

Variables, whose values the solver is to determine

An Obijective, to be maximized or minimized

Constraints, that the solution must satisfy

The example below shows a symbolic model:

Given: P, a set of products
a; = Tons per hour of product j, for each j € P
b = hours available at the mill
cy = profit per ton of product j, for each j € P
ujy = maximum tons of product j, for each j € P
Define variables: X; = tons of product to be made, for each j € P
Maximize: §:Cer
JjepP
> /apX,;<b
Subject to: J€P
0<X,<u,, foreachje P

Figure 5.1: A symbolic production model in algebraic form

Fundamental Components of AMPL
linear programming Model

OpfiRisk .

SYSTEMS

Sets

Unordered Sets

The most elementary kind of AMPL set is an unordered collection of character
strings. Usually all of the strings in a set are intended to represent instances of
the same kind of entity.

The declaration of a set need only contain the keyword ‘set’ and a name. For
example a model may declare

set PROD;

to indicate that a certain set will be referred to by the name PROD in the rest of
the model. A hame may be any sequence of letters, numerals, and underscore
(L) characters that is not a legal number. A few names have special meanings in
AMPL and may only be used for specific purposes, while a large number of
names have predefined names that can be changed if they are used in some
other way.

A declared set’'s membership is normally specified as part of the data for the
model. Occasionally, however, it is desirable to refer to a particular set of strings
within a model. A literal set of this kind is specified by listing its members within
braces:

set PROD = {“bands”, *“coils”, *“plate”};

This sort of declaration is best limited to cases where a set's membership is
small, is a fundamental aspect of the model, or is not expected to change often.

Sets of numbers

Set members may also be numbers. In fact a set's members may be mixture of
numbers and strings, though this is seldom the case. In an AMPL model, a literal
number is written in the customary way as a sequence of digits, optionally
preceded by a sign, containing an optional decimal point, and optionally followed
by an exponent; the exponent consists of a d, D, e or E, optionally a sign, and a
sequence of digits.

A set of numbers is often a sequence that corresponds to some progression in
the situation being modeled, such as a series of weeks or years. Just as for
strings, the numbers in a set can be specified as part of the data, or can be
specified within a model as a list between braces, such as {1, 2, 3, 4, 5, 6}. This
sort of set can be described more concisely by notation 1..6. An addition ‘by’
clause can be used to specify an interval more than 1 between the numbers; for

| OpHRISK 2

SYSTEMS

1990.. 2020 by 5

Represents the set

{1990, 1995, 2000, 2005, 2010, 2015, 2020}
This kind of expression can be used anywhere that a set is appropriate.

The members of a set of numbers have the same properties as any other
numbers, and hence can be used in arithmetic expressions.

Set Operations

AMPL has four operators that construct new sets from existing ones:

A union B union: in either A or B

A inter B intersection: in both A and B

A diff B difference: in A but not B

A symdiff B symmetric difference: in A or B but not both

The following example shows how this work:

ampl:set Y1 = 1990 .. 2020 by 5;

ampl:set Y2 = 2000 .. 2025 by 5;

ampl: display Y1 union Y2, Y1 inter Y2;

set Y1 union Y2 := 1990 1995 2000 2005 2010 2015 2020 2025;
set Y1 inter Y2 := 2000 2005 2010 2015 2020;

ampl: display Y1 diff Y2, Y1 symdiff Y2;

set Y1 diff Y2 := 1990 1995;

set Y1 symdiff Y2 := 1990 1995 2025;

Set membership operations and functions

Two other AMPL operators, ‘in” and ‘within’, test the membership of sets. As an
example the expression

“B2"” in NUTR

Is true if and only if the string “B2” is a member of the set NUTR. The
expression

MINREQ within NUTR

is true if all members of the set MINREQ are also members of NUTR - that s, if
MINREQ is a subset of(or is same as) NUTR.

AMPL also provides ‘not in” and ‘not within’, which reverses the truth value of
their results.

OpfiRisk >

SYSTEMS

The built in function ‘card” computes the humber of members in (or cardinality
of) a set; for example, card (NUTR) , is the number of the members in NUTR.

Indexing Expressions

In algebraic notation, the use of sets is indicated informally by phrases such as
“for all i € P” or “for t=1,...,T” or “for all j € R such that ¢ > 0.” The AMPL
counterpart is the indexing expression that appears within braces { ... }. An
indexing expression is used whenever we specify the set over which a model
component is indexed, or the set over which a summation runs. Since an
indexing expression defines a set, it can be used in any place where a set is
appropriate.

The simplest form of indexing expression is just a set name or expression within
braces. For example:

param rate {PROD} > 0 ;
param avail {1..T} > = 0;

References to these parameters are subscripted with a single set member, in
expression such as avail [t] and rate[p].

The names such as t or i that appear in subscripts and other expressions in our
models are examples of dummy indices that have been defined by indexing
expressions. In fact, any indexing expression may optionally define a dummy
index that runs over the specified set.

An indexing expression consists of an index name, the keyword ‘in’, and a set
expression as before. Although a name defined by a model component’s
declaration is known throughout all subsequent statements in the model, the
definition of dummy index name is effective only within the scope of the defining
indexing expression. Once an indexing expression’s scope has ended, its dummy
index becomes undefined. Thus the same index name can be defined again and
again in the model.

As a final option, the set in an indexing expression may be followed by a colon(:)
and a logical condition. The indexing expression then represents only the subset
of members that satisfy the condition. For example:

{j in FOOD: f_max [j] - f_min[j] < 1}

describes the set of all foods whose minimum and maximum amounts are nearly
the same.

Ordered Sets

OpfiRisk ”

SYSTEMS

Any set of numbers has a natural ordering, so numbers are often used to
represent entities, like time periods, whose ordering is essential to the
specification of a model. To describe the difference between this week’s
inventory and the previous week’s inventory, for example, we need the weeks to
be ordered so that the “previous” week is always well defined.

An AMPL model can also define its own ordering for any set of numbers or
strings, by adding the keyword ‘ordered’ or ‘circular’ to the set’s declaration. The
order in which we give the set's members, in either the model or data, is the
order in which AMPL works with them. In a set declared ‘circular’, the first
member is considered to follow the last one, and the last to precede the first; in
an ordered set, the first member has no predecessor and the last member has no
SUCCeSSOr.

There are many functions on ordered sets to retrieve some specific members
from the set. Users are referred to AMPL manual or AMPL textbook for further
details.

Parameters

In AMPL a single named numerical value is called parameter. Although some
parameters are defined as individual scalar values, most occur in vectors or
matrices or other collections of numerical values indexed over sets. Parameters
and other numerical values are the building blocks of the expressions that make
up a model’s objective and constraints.

Parameter declarations have a list of optional attributes, optionally separated by
commas:

parameter declaration:

param name aliasg,: indexingg.: attributesg, ;

The attributes may be any of the following:

attribute:
binary
integer
symbolic
relop expr
In sexpr
= expr

Default expr
relop:
< <= === Il= <> > >=

The keyword integer restricts the parameter to be an integer; binary restricts it
to 0 or 1. If symbolic is specified, then the parameter may assume any literal or

OpfiRisk >

SYSTEMS

numeric value, and the attributes involving <.<=,>= and > are disallowed;
otherwise the parameter is numeric and can only assume a numeric value.

The attributes involving comparison operators specify that the parameter must
obey the given relation. The = and default attributes are analogous to the
corresponding ones in set declarations and are mutually exclusive.

Recursive definitions of indexed parameters are allowed, so long as the assigned
values can be computed in a sequence that only references previously computed
values. For example:

param comb ‘n choose k’ {n in 0..N, k in 0..n}
= 1f k = 0 or k = n then 1 else comb [n-1,k-1] + comb[n-1,k];

Computes the number of ways of choosing n things k at a
time.

Variables

The variables of a linear program have much in common with its numerical
parameters. Both are symbols that stand for numbers, and that may be used in
arithmetic expressions. Parameter values are supplied by the modeler or
computed from other values, while the values of variables are determined by an
optimizing algorithm. Syntactically, variable declarations are the same as the
parameter declaration defined earlier, except that they begin with the keyword
‘'var’ rather than ‘param’. The meaning of qualifying phrases within the
declaration may be different, however when these phrases are applied to
variables rather than to parameters.

Phrases beginning with >= or <= are by far the most common in declarations of
variables for linear programs. For example:

var Make {p in PROD} >=0, <= market[p];

The declaration creates an indexed collection of variables Make [p], one for each
member p of the set PrROD; the rules in this respect are exactly the same as for
parameters. The effect of the two qualifying phrases is to impose a restriction, or
constraint, on the permissible values of the variables. Specifically, >= 0 implies
that all of the variables Make [p] must be assigned non negative values by the
optimizing algorithm, while the phrase <=market [p]says that, for each product
p, the value given to Make[p] may not exceed the value of the parameter
market [p] .In general, either >= or <= may be followed by an arithmetic
expression in previously defined sets and parameters and currently defined
dummy indices. The values following >= and <= are lower and upper bounds on
the variables.

An = phrase in a variable declaration gives rise to a definition, as in parameter
declaration. Because a variable is being declared, however, the expression to the

OpfiRisk °

SYSTEMS

right of = operator may contain previously declared variables as well as sets and
parameters.

A := or ‘default’ phrase in a variable declaration gives initial values to the
indicated variables. Variables are not assigned an initial value by := can also be
assigned initial values from a data file.

Finally, variables can be defined as ‘integer’ or ‘binary’.

Linear Expressions

An arithmetic expression is /inearin a given variable if, for every unit increase or
decrease in the variable, the value of expression increases or decreases by some
fixed amount. An expression that is linear in all its variables, is called a linear
expression.

AMPL recognizes as a linear expression any sum of terms of the form:

constant-expr
variable-ref
(constant-expr) * variable ref

Provided that each constant-expr is an arithmetic expression that contains no
variables, while var-ref is a reference to a variable. The parentheses around
the constant-expr may be omitted if the result is the same according to the rules
of operator precedence.

Objectives

The declaration of an objective function consist of one of the keywords
minimize OF maximize, @ name, a colon, and a linear expression in previously
defined sets, parameters and variables. For example:

minimize Total_cost: sum {j in FOOD} cost[j] * Buyl[jl;

and

maximize Total_Profit:
sum {p in PROD, t in 1..T}
(sum {a in AREA [p] revenue[p,a, t] * Sell[p,a,t] -
prodcost [p] * Make[p,t] - invcost([p] * Invip,t]);

Within AMPL commands, the objective’s name refers to its value.

Although a particular linear program must have one objective function, a model
may contain more than one objective declaration. Moreover, any minimize or
maximize declaration may define an indexed collection of objective functions,
by including an indexing expression after the objective name. In these cases, we

OpfiRisk 57

SYSTEMS

may issue an objective command, before typing solve, to indicate which
objective is to be optimized.

Constraints

The simplest kinds of constraint declaration begins with the keywords subject
to, a name, and a colon. Even the subject to is optional; AMPL assumes
that any declaration not beginning with a keyword is a constraint. Following the
colon in an algebraic description of the constraint, in terms of previously defined
sets, parameters and variables. For example:

subject to Time:
sum{p in PROD} (l/rate[p])* Make[p] <= avail;

The name of a constraint, like the name of an objective, is not used anywhere
else in an algebraic model, though it figures in alternative “columnwise”
formulations and is used in AMPL command environment to specify the
constraint’s dual value and other associated quantities.

Most of the constraints in large linear programming models are defined as
indexed collections, by giving an indexing expression after the constraint name.

The constraint Time, for example, is generalized in the subsequent example to
say that the production time may not exceed the time available in each
processing stage s.

subject to Time{s in STAGE}:
sum {p in PROD} (1l/ratel[p,s])* Make[p] <= avail[s];

The indexing expression in a constraint declaration should specify a dummy index
for each dimension of the indexing set.

AMPL’s algebraic description of a constraint may consist of any two linear
expressions separated by an equality or inequality operator:

linear-expr <= linear-expr
linear-expr = linear-expr
linear—-expr >= linear-expr

While it is customary in mathematical descriptions of linear programming to place
all terms containing variables to the left of the operator and all other terms to the
right, AMPL imposes no such requirement. AMPL also allows double inequality
constraints. The permissible forms for a constraint of this kind are:

const—-expr <= linear-expr <= const-expr
const—-expr <= linear-expr <= const-expr

OpfiRisk ”

SYSTEMS

where each const-expr must contain no variables. The effect is to give
upper and lower bounds on the value of the 1inear-expr.

The example below gives the AMPL model and data files for the symbolic
algebraic model considered in the beginning of this chapter.

set P;
param a {j in P};
param b;
param c¢ {j in P};
param u {j in P};
var x {j in P};
maximize Total_Profit: sum {j in P} c[jl* XI[j];
subject to Time: sum {j in P} (1/alj]l) * X[j] <= b;
subject to Limit {j in P}: 0 <= X[J] <= ulj] ;
Figure 5.2: Basic production model in AMPL

set P := bands coils;

param: a c u =
bands 200 25 6000
coils 140 30 4000 5

param b := 40;

Figure 5.2: Production model data file in AMPL

Stochastic Extension to AMPL:
SAMPL

In addition to supporting AMPL language syntax for deterministic problems, AMPL
Studio has an extension for stochastic programming called SAMPL, available as a
separate package.

SAMPL has additional syntax and commands. Users are referred to SAMPL
manual for more details.

OpfiRisk ”

SYSTEMS

Chapter 6: A Step-By-Step Walk
Through Example

Now you know the basics of AMPL studio. Now we will go through the steps
involved in solving a simple real world problem of National Insurance Associate’s
(NIA) investment problem using AMPL studio. Before we open the AMPL studio
the problem needs to be analysed and translated into mathematical notation, and
then into an AMPL model. The following steps go into detail.

A Simple Real World Problem

National Insurance Associates carries an investment portfolio of stocks, bonds
and other investment alternatives. Currently £200,000 of funds is available and
must be considered for new investment opportunities. The four stock options
National is considering and the relevant financial data are as follows:

Price per Share

Annual rate of return

Risk measure per £ invested
Table: Financial Data

The risk measure indicates the relative uncertainty associated with the stock in
terms of it realising the projected annual return: higher values indicate greater
risk.

National’s top management has stipulated the following investment guidelines

1. The annual rate of return for the portfolio must be 9%

2. No one stock can account for more than 50% of the total sterling investment

They request you to find the investment decisions.

Formulating the Problem into
Mathematical Form

In this problem we need to find the number of stocks A, B, C and D need to be
bought with the provided guidelines and with minimum risk.

OpfiRisk ”

SYSTEMS

Now this problem needs to be presented in the mathematical form. This will
involve three steps

(1) Formulate an LP that minimises risk

(2) Identifying the Decision Variables
The decision that National faces is to decide how much of each
stock to buy.

Let x, be the number of shares of stock A bought
X, be the number of shares of stock B bought
x; be the number of shares of stock C bought
X, be the number of shares of stock D bought

(3) Determine the values of these four variables in order to minimise
National’s risk

Identify the Objective Function

In our example we wish to minimise risk. We risk £0.10 on each pound invested
in stock A, similarly for stock B the risk is 0.07 per pound, for stock C it is 0.05,
and for stock D the corresponding risk is 0.08.

Thus if we buy x, shares of stock A, we have a risk exposure of 0.10*100*x, since
each share costs £100. Similarly, if we buy x, shares of stock B we risk
0.07*50*x,, while for stocks C and D the risk measures are 0.05*80*x, and
0.10*40*x,. Therefore this leads to the following quantity that we wish to
minimise

Risk =0.10*100 x, + 0.07*50 x, + 0.05*80 x, + 0.10*40 x,

Identifying the Constraints

The first constraint concerns the budget. That is we can’t invest more than the
money we have available. This leads to the following constraint

100* x, + 50* x, + 80* x; + 40* x, < 200000

The second constraint concerns the rate of return of the portfolio and is as
follows

100*0.12* x, + 50*0.08* x, + 80*0.06* x; + 40*0.10* x, > 200000*.09

Finally, the cash investment in any one stock cannot exceed 50% of the total
investment

100*x, < 100000

OpfiRisk o

SYSTEMS

50*x, < 100000
80*x, < 100000
40*x, < 100000 andx; 20,x,>20, x;>20,x,>0

Translating the Mathematical
Problem into AMPL Model

AMPL is mainly an algebraic language. That means it follows the algebraic
syntax used in the mathematical representation of the problems. AMPL's main
keyword declarations are set, param, var and maximize/minimize

Since AMPL deal with plain text files the above problem can be rewrite as the
following AMPL model as follows. Where xi, X3, X3 and X4 are replaced with the
most suitable variable names StockA, StockB, StockC and StockD.

Minimize
Risk = 10*StockA + 3.5*StockB + 4*StockC + 4*StockD

Variables
StockA < 1000
StockB < 2000
StockC < 1250
StockD < 2500
Subject to

100*StockA + 50*StockB + 80*StockC + 40*StockD < 200000
12*StockA + 4*StockB + 4.8*StockC + 4*StockD = 18000

Using AMPL Studio to Solve the
Problem.

Now the AMPL model is ready for the problem. Now you open the AMPL studio.

Create Workspace

In order to create a new workspace for NIA's problem create a new workspace
with the following steps.

OpfiRisk >

SYSTEMS

Step 1: Choose New Workspace from the File menu.

File
Mt Ckel+I
& Open... Chrl+0
Close
Mew Workspace
Dpen Warkspace. ..
Save Waorkspace k

Close Warkspace

I save Chrl+5
Save fAs...

Save All

Prinkt... Ckrl+P
Prinkt Setup...

[¥3 Send Mail...

Recent File *

Recent Waorkspaces r
Exit
Step 2: Write workspace name as NIA and choose your appropriate folder

(C:\) by clicking the ellipsis (...) button where you want to create
your workspace.

New workspace [‘5—(|

Workspace hame |Nl":‘"|

Falder |'31"~ J

Cancel
b3

Click OK to create the workspace at your chosen folder.

OpfiRisk >

SYSTEMS

Eﬂ AmplStudio

File Edit View Project Solver Buld Tools Stochastic Window Help

De-lsHR2eoc BB a8 % 3] s3 %52 o &x{

'\

Model Entities Browser]l
L2 Workspace " NIA " O projectis)

=] Fileview | ™3 Modelview | T« | |

x|

AmplStudio HModeling System. Beta ver.1.6h ~
AMPL Version 20048422 (Uisual C++ 6.0) =
d]
y , L__EI|L Cansole lT% Debugl L Su:nlutiu:nnsl TiminngemoryIE Displa_l,JI
I ampl:l
For Help, press F1 Line:0 |CnI:EI A

Create a Project

Step 1: Having created a workspace, we now define a new project
by selecting Insert New Project from the Project menu.

Set Active Project »
add To Project r

ampl Settings., ..

Insert Mew Praject ...

Insert Existing Project ... k

Step 2: Enter the Project name as “stepByStepl” and choose your
preferred folder by clicking the ellipsis (...) button.

Check the ¥ Add templates checkbox and write the Model
name as "StepByStepl.mod” and the Data instance as
“StepByStepl.dat”.

OpfiRisk .

SYSTEMS

New project

Project name

b odel name

[ata instance

|S tepByStepl

Project path |I::"~F'r|:|gram Files"AmplS tudio Modeling Spst

[v Add model and data files [Stochastic model

|S tepByStepl.mod

|S tepByStepl.dat

Cancel

X

Clicking OK will create a new project with the model and data template files

within the created workspace.

OpliRisk

SYSTEMS

Create an AMPL Model file

Eﬂ AmplStudio

File Edit View Project Solver Buld Tools Stochastic Window Help

De-ls R s2elocBERE S8 % 3] «%%5]B o d&Ex|j
'\

Model Entities Browser

EI---._\E StepByStepl
=23 Model
. = SkepByStepl.mod
=2 Data
. = StepByStepl.dat
[T Patahase —
¥ i | >

=] Fileview | ™3 Modelview | T« | |

B3

(I

<

=

offset @ a
vt
.: . 5] Console ll—% Debun | L8 Salutions | TiminngemoryIE Display |
I armpl: I
For Help, press F1 [|Er[,“@:c| o [[[.4

Double clicking on the model file will open the model template file. The lines with
at the beginning are comment lines. The AMPL key words will be in blue and
the numbers in red.

Step 1: Now write your AMPL model in this window.

OpfiRisk °

SYSTEMS

EF]1 AmplStudio - [StepByStep1]

‘ File Edit View Project Saolver Builld Tools Stochastic Window Help . |:|'|
DeEg- B =) R & & | A I
Model Entities Browser rovar e 2 2
b Warkspace " NIA.wampl " 1 praject(s) var Stockd <= 1000:
= ‘fStBDBYStBDI wvar StockB <= Z000;
=22 Madel var Stockl <=1250;
Bl stepyStepl mod wvar StockD <= 2500;
—-[Z2 Data
[E] stepByStepl.dat ### OBJECTIVES #atd
(2] Database
(2 seript # minimize
minimize
Risk = 10#3tocka + 3.5#3tockB + 4=*3tockC + 4#3tockD
“
(5] FileMiew |'Ij Model\-"iew] O o |)| < 1 =
E 1 = B i
line 38 ~
offset 412
syntax error
file C:\Program Files\AmplStudio HModeling System b.1.6\Bin\NIA\StepByStep1.mod
line 38
offset 412
syntax error [
he'
IE L'El Conzale |—@3 Debug] L0 Solutions] Timinga"Memor_l,lI % Display]
| ampl: |
Far Help, press F1 Linge: 38 Cal:0 %
Step 2: To check the syntax of your model choose Build Model menu from

Build menu.

Build Menu
@M

Rebuild all F7

o Clean

Skark Debug 4

Save Prablem

Load Solukion
Generake MP3 file

If any syntax errors occurred then the appropriate error messages
will be displayed in the Console Window. In the above model
displays the following syntax error.

OpfiRisk >

SYSTEMS

EF]1 AmplStudio - [StepByStep1]

‘ File Edit View Project Saolver Builld Tools Stochastic Window Help =
DE- = HE 2o MEE & & 4 B & &
el € # war W = A
b Warkspace " NIA.wampl " 1 praject(s) var Stockd <= 1000:
= ‘fStBDBYStBDI wvar StockB <= Z000;
=22 Madel var Stockl <=1250;
Bl stepyStepl mod wvar StockD <= 2500;
—-[Z2 Data
[E] stepByStepl.dat ### OBJECTIVES #atd
(2] Database
(2 seript # minimize 3
minimize
Risk = 10#3tocka + 3.5#3tockB + 4=*3tockC + 4#3tockD
“
(5] FileMiew |'Ij Model\-"iew] OE 4 |»] < | =
E 1 = B _
line 38 ~
offset 412
syntax error
file C:\Program Files\AmplStudio HModeling System b.1.6\Bin\NIA\StepByStep1.mod
line 38
offset 412
syntax error B
he'
3
I - [Console |—@3 Debug] L0 Solutions] Timinga"Memor_l,lI % Display]
| ampl: |
Far Help, press F1 % Linge: 38 Cal:0
Step 3: Double click on the error line (line 30) will display the following

screen.

EF]1 AmplStudio - [StepByStep1]
‘ File Edit View Project Saolver Builld Tools Stochastic Window Help

|

syntax error

file C:\Program Files\AmplStudio HModeling System b.1.6\Bin\NIA\StepByStep1.mod
line 38

offset wipp

syntax error

DE-=E@ D |m= E & & 4 B & %
[Fiee: x
».3 Warkspace " MIAwampl " 1 projects) ### OBJECTIVES i
= a2 StepByStepl o
=23 Madel # minimize
[stepBystept.mod minimize
- (T2 Data SRR Sk] 5 + 3.5%StomkB + 4x%5t
[E] stepBystepl .dat
1 Database ### CONSTRAINTS Faed
23 Seript]
subject to
subject to
: _ w
[Z] FileWiew |'Ij Mgdel\,l'iew] = | ’| < M1 1NN=Stackd + SN*5+tackR + AN=Stock™ + 4H*!F§1'.nr!kn < 7ﬂﬂ§| 4
E 1 = =
line 38
offset 412

Pl

L'El Console |—@3 Debug] L0 Solutions] Timinga"Memor_l,lI % Display]

| ampl: |

Far Help, press F1 Linge: 38 Cal:0

Step 4: The line has two errors.

68

1. Risk = should be replaced by Risk :
2. Semicolon is missing at the end of line.

EF]1 AmplStudio - [StepByStep1]

‘ File Edit View Project Saolver Builld Tools Stochastic Window Help . |:|'|
LeE-=2 BB 2] o E & & | A4
 Model Enit | # wvar V... : ”
b Warkspace " NI&.wampl " 1 pr var Stockd <= 1000:
= ‘fStBDBYStBDI wvar StockB <= Z2000;
=23 Madel var StockC <= 1250;
DStevaStepl.mod war StockD {= 2500;
+-[CZ Data
(3] Database ### OBJECTIVES #atd
(23 Script
minimize
minimize
Risk : 10#3tockad + 3.5*St0ckBI+ 4#Stock? + 4*StockD;
#a# COMNSTRAINTS #atd
subject to
subject to
¢ _ 3 21: 100=*3tockd + S50*3tockB + S0*=3tock + 40#*ZtockD <= 200000; =
At CZ2: 12*3tockd + 4*5tockB + 4.8*5tockC + 4*StockD »= 18000; "
5] FieView | *t Model « [o | ¢ | >
“; L'El Conzole ||§3 Debug] L0 Solutions] Timinga"Memor_l,lI % Display]
| ampl:|
Far Help, press F1 Ling:29 Col:29

Step 5: Make these corrections and compiling it again will show the following.

EF]1 AmplStudio - [StepByStep1]

‘ File Edit View Project Saolver Builld Tools Stochastic Window Help =& x
heE-=2 =) o E & A
 Filadh L # wvar V ... 3 »
W2 Waorkspace " NIA wampl " ;A wvar Stockhd <= 1000;
= ‘fStBDBYStBDI E wvar StockB <= Z2000;
=22 Model = var Stockl <= 1230;
= StepByStepl.n war StockD {= 2500;
+-177 Data ¥
< | b ### OBJECTIVES #atd
v
[E] Fileview | "3 Modee 4 | v | | B
Z C:\Program Files\AmplStudio HModeling System b.1.6\Bin\HIA\StepByStepd.mod -
ok?
Number of variables 4
Humber of constraints 2
Number of objectives 1
Humber of constraints Jacobian matrix nonzeros 8
Number of objectives gradient nonzeros 4
-
L'El Console |—@3 Debug] L0 Solutions] Timinga"Memor_l,lI % Display]
| ampl:|
Far Help, press F1 Linge: 38 Col:0

OpliRisk v

Solve and Display Results

Step 1: In order to solve the model you need to select the solver. By
default you will receive FortMP solver with your AMPL studio
distribution. FortMP is a powerful solver and capable to handle this
simple problem.

Solver
Minos
Cplex

v

%, Logo @ Meos

Cplex Settings. ..
FortMP Settings ...

Step 2: Now you can run this problem by choosing the Solve Problem
menu from the Build Menu.

El Buid rodel Chrl+F7

Rebuild all F7

o Clean

Skark Debug 4

Save Prablem

Load Solukion
Generake MP3 file

Immediately the problem will be solved and the results will be displayed in the
Editing Area.

OpfiRisk "

SYSTEMS

E"] AmplStudio - [StepByStep1_solution *]

’ File Edit “iew Project Solver Buld Tools Stochastic Window Help — | &
De- & HE 90 |DEE & & | 4 Bl & &4
X MODEL . STATISTICS -
b2 Workspace " NIA.wampl " 1 pr
= a StepBysteni Prohlem name BtepByitenl
=23 Model Model Filename BtepbByEtepl . .mod
1 StepByStepl.mod Data Filename :StepByStepl. dat
+-[Z3 Data Date $2:9:2005
[C] Database Time _ :10:52
(3 Seript Constraints 52 : Nonzeros
S_Constraints H
Variables HE : HNonzeros
SOLUTION.RESULT
'"Optimal solution found'
< » FortMP 3.23: LP OPTIMAL SOLUTIOW, Objectiwve = 14500
o
=] Fileview | 2 Models 4 | » ||, .
- TIME TAKEM FOR CRASHING = 8.88 SECS, TOTAL 30 FAR = 8.82 SECS ~
FEASIBLE BASIS REACHED AFTER ITERATIOHN 1
Invert demand: 0bj = 14588.4 Suminf = @.80088 ITERH 2
FORREST-TOHMLIN ACTIVATED
STATUS = 3 -- OPTIHMUM SOLUTION FOUHD. 14508.8 ITER# 2
TIME TAKEH FOR PRIMAL = B.85 3ECS, TOTAL S0 FAR = B.87 3ECS e
>

<
=] Consale FQQ DebugJ L Salutiansl Timing.f'Memar_l.JJ By Displa_l,l‘

| ampl: |

Far Help, press F1 Line:43 Cal:0

Enhance to Data Separated project
Creating Data and Model Files

The following is the investment problem exploiting structure.

OpfiRisk "

SYSTEMS

| £

StepByStep2 * [=1E3
Data file name: -
CinProgram Files-Ampl3tudio Modeling Syvstem h.1.6%Bin

set
set stocks = A B C D;

param

param risk := A 0.10
E 0.07
C 0.05
D 0.10;

param price := A 100
E 50
C 80
D 40;

param return := A 0.1Z
E 0.08
C 0.06
D 0.10;

param dreturn := 0.09;

param maxallow ;= ?.5;

param money = Z00000;

|

[£

OpliRisk

SYSTEMS

StepByStep2 *

set Ll
set stocks:

PARAMETERS #ad

param

param risk{i in stocks}:
param price {1 in stockslt:
param return{i in stocks}:
param dreturn:

param maxzallow;

PaTram money;

WARIABLES #ad

wvar Wo... H
wvar buyamnt{i in stocks} >=0;

OBJECTIVER R

minimize
minimize
rsk: sum{i in stocks} (risk[i]=price[i]=buvamnt[i]):

CONSTRAINTS #ad

subject to

subject to

ret: sum{i in stocks} (return[i]*price[i]*buyvamnt[i]] r=dreturn*money;
investamnt: sum{i in stocks} (price[i]*buyamnt[i])<{=money;

invest{l in stocks}:price[i]*buyamnt|[1]<=mazallow*maney;

i | A

OpfiRisk ”

SYSTEMS

Solve and Display Results

[LB
©
- |=|EdB mE % & B 4 i &

B 2mpl3tudio Modeling System - Copyright (o) 2003-:4
b2 Workspace " MIa.wampl " 2 project
+ 7 SkepByStepl

- af StepByStep2 MODEL .STATISTICE
=23 Model
=1 stepByStepz.mod Prohlem name StepByvEtep
=-[C Data Model Filename StepByEteps .mod
] stepBystepz.dat Data Filename :StepByStepd. dat
[0 Database Date 12:9:2005
(23 Script Time sl sls
Constraints H] : HNonzeros
5_Constraints e
Variahles HE! : HNonzeros

SOLUTION. RESULT

'"Optimal solution found'

< b
g - 3 _ 3
= Fieview ‘ e FortMP 3.27: LP OPTIMAL SO0LUTICH, Objective 15000)
* [TIME TAKEN FOR INPUT/SETUP - 8.81 SECS, TOTAL 30 FAR = 8.81 SECS ~
SCALING IH PROGRESS ...
SCALING COMPLETE
TIME TAKEH FOR SCALE/PRSLUE= 8.80 SECS, TOTAL 30 FAR = 8.81 SECS
GCRASH{LTSF) EHDED. UARIABLE TYPES:- PLUS BHDD FIX FREE
LOGICALS REMOVED FROW BASIS:- 1 a a a
STRUCTURALS ENTERED IN BASIS:- a 1 a a
CRASH{ART) EHDED: 1 PASSES: @ ARTIFICIALS, 8 PIVOTED OUT
TIME TAKEN FOR CRASHIHNG = 8.80 SECS, TOTAL 30 FAR = 8.81 SECS
FEASIBLE BASIS REACHED AFTER ITERATIOHN 1
Invert demand: 0bj = 156888.0 Suminf = B.P0680 ITER# 2
STATUS = 3 —- OPTIMUM S0LUTION FOUHD. 15000.0 ITER# 2
TIME TAKEH FOR PRIMAL = A.88 SECS, TOTAL 30 FAR = 8.81 SECS
TIME TAKEN FOR OUTPUT = 8.80 SECS, TOTAL 30 FAR = 8.81 SECS =
b *

=] Conzole |_|§5 DebugJ L Solutionsl Timing!Memor_l,J] E Display]

| ampl: |

Far Help, press F1 Line:41 Col:42 [%

OpliRisk "

Chapter 7: Connecting to a
Database; Importing and
Exporting

AMPL allows taking advantage of the structure of indexed data, which is closely
related to the structure of relational tables commonly found in database
applications. In AMPL Studio the user is able to exploit such feature and connect
the models and/or projects to a database in order to work with relational data. In
this chapter we will see how to create a database, how to import and export
data, and how to solve and display the results using the created database.

Creating the Database

A relational database that exploits the structure of the algebraic model for our
problem at hand must be composed of relational tables that reflect the model’s
indexing structure.

To go through the steps we will use as an example the “diet problem”, which
seeks to find the optimum mix of foods that satisfies some vitamins
requirements. The algebraic representation for the diet problem using the AMPL
syntax is shown below.

set FOOD;
set NUTR;

param cost {FOOD} > O0;
param f_min {FOOD} >= 0;

param f_max {j in FOOD} >= f_min[]j];

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

param amt {NUTR,FOOD} >= 0;
var Buy {j in FOOD} >= f_min[]j], <= f_max[]j];
minimize total_cost: sum {j in FOOD} cost[j] * Buyl[jl;

subject to diet {i in NUTR}:
n_minf[i] <= sum {j in FOOD} amt[i,j] * Buyl[j] <= n_max[i];

The first set we find in our example is FOOD. Three parameters cost, f_min,
and f_max are indexed over the set FOOD. Using this indexed structure we
create a relational table, in which the key column will be the column
corresponding to the values for the set FOOD.

OpfiRisk »

SYSTEMS

cost f_min f_max

3.19 2 10
2.59 2 10
2.29 2 10
2.89 2 10
1.89 2 10
1.99 2 10
1.99 2 10
2.49 2 10

We can use an Excel spreadsheet to store such relational table, by just creating a
range that includes the column names; in our example the range is called
“Foods” (see Figure 7.1). The name of the range will be used subsequently

when reading the data from the spreadsheet into the AMPL Studio model.

Microsoft Excel - diet.xls E]@
@ Fil= Edit “iew Insert Format Tools Data Window Help Adobe PDF ;lilﬂ
DEeEHS GGV sBRS - @ A2 ilDE?
AZ | =| FOOD
T I i At < i [it [= F St
1 iz
2 JFOOD cost f_min f_max
3 |BEEF 3.19 2 10
4 |CHK 259 2 10
5 |FISH 229 2 10
6 |[HAM 289 2 10
7 _|MCH 1.89 2 10
8 |MTL 1.99 2 10
9 |SPG 1.99 2 10
10 JTUR 2449 2 10l
11
17
M4 » M} food ||
Ready Sum=115.32

Figure 7.1: Excel range as relational table

In the same way we can create a second relational table with the set NUTR,
which will be the key column, and the two parameters, n_min and n_max, which

are indexed over the set NUTR.

OpliRisk

SYSTEMS

In the Excel spreadsheet we would then create a range, “Nutrients”, that
corresponds to this relational table (Figure 7.2).

Microsoft Excel - diet.xls E]@
@ File Edit “ew Insert Format Tools Data Window Help adobe PDF ;lilﬂ
DEeEHS GGV sBRS - @ A2 ilDE?
Mutrients | = NUTR
T L [< [E F St
12
13
14 INUTR n_min n_max
15 |A 700 20000
16 |C 700 20000
17 |B1 700 20000
18 |B2 700 20000
19 |NA a S0000
20 |CAL 16000 240001
21
22
27
M4 » M} food ||
Ready Sum=172800

Figure 7.2: Excel range "“"Nutrients” as relational table

In a similar fashion a third relational table is created for the parameter amt,
which is indexed over the two sets NUTR and FOOD. The following table has as
key the two columns corresponding to the values for the sets FOOD and NUTR.

OpfiRisk 77

SYSTEMS

NUTR amt
A 60
Bl 10
B2 15
C 20
NA 938
CAL 295
A 8
Bl 20
B2 20
C 0
NA 945
CAL 770
A 8
Bl 15
B2 10

The corresponding Excel range, "Amounts”, would look like Figure 7.3.

OpliRisk

SYSTEMS

' Microsoft Excel - diet.xls g@

@ File Edit Wiew Insert Format Tools
Data Window Help Adobe PDF — | E
hed &8 . -z @ 2

Amounts | =| FOOD
J K | L | m | n —

-
-l

|
=

I
=

TUR
TLIF

]
DRI E
Sum=13366

| Bl B B B o B e e o o Bt i o o e o et et B el ey i sl] e et] L]
| S | el ST P | o P | o0 e B0 e S | ol ot P | | | SR el T | Y o | e | P

e

Figure 7.3: Excel range "Amounts” as relational table

In our Diet.mod model there are other entities indexed over the set FOOD,

such as the variables:

var Buy {j in FOOD}

>= f_min[j], <= f_max[j];

Therefore, some assorted result expressions such as Buy, Buy.rc, {j in FOOD}
Buy[j]/f_max[j], can be included as output columns in our relational tables. In
this case, we can include three new columns to the “Foods” range in our Excel
spreadsheet, as in Figure 7.4. The last three columns Buy, BuyRc, and
BuyFrac, will be then output columns that will be populated once the model is

solved.

OpliRisk

SYSTEMS

[Microsoft Excel - diet.xls

BEX]

J File Edit Wew Insert Format Tools Data Window Help Adobe PDF

=1= %]

DEEHS GRY $BRS o- o

&= A4 ma

Foods =| =| FOOD

T N [, ¢ N NN 2 ¢ i [P N S I = | 3
FOOD cost f_min f max Buy BuyRC BuyFrac
BEEF 3.19 2 10
CHK 259 2 10
FISH 229 2 10
HAM 289 2] 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2449 2 10 1

11
M 4 v} food /||

Ready | Sum=115.22] =

Figure 7.4: Excel range “"Foods” with input and output columns

If we used an Access database to store our relational tables, the relational

database for our example might look like Figure 7.5.

Microsoft Access - LQJ
J File Edit Wiew Insert Tools Window Help

IDFHSRY iR o | K-

= »
=

i open € Design “new | X | B l_
Arnounks
Tables Foods

Quetiss
Forms
Reports
Pages

Macros

Mo n:i ulw:

Ready [) 7
Figure 7.5: Access database for the Diet problem

OpliRisk

SYSTEMS

As in the Excel spreadsheet case, we have three relational tables, Foods,
Nutrients, and Amounts. The design of the Access relational tables is shown in

Figure 7.6.

= - T T
Microsoft Access

JEiIe Edit Wiew Insert Tools indow Help

|Design vigw, FA = Switch panes. F1 = Help.

|BE-HERY | iBRS o) #5=2 N0 0.
— 7 Amounts : Table |l | >
Foods : Table (|| X _ =l X
— 1= Field Mame | DataType | Description [a
Field Marne | DataType | Description [7 [Fooo Text E
(FHFOCD Text [hUTR [Text | 3
| |cost | Murnber | amt | Mumber j
| |F_min Number " M
f_rnaz Mumber =\ ; =
|y Horber Mutrients : Table = 1O mwes
" |Buyrc | Number Field Mame | DataType | Description [
| [BuyFrac Mumber Text
L Mumber
Field Properties | Mumnber v
General | Laokup I Field Properties
Field Size 5] | P I
Format : :
Input Mask Field Size 255
Caption Format .
Default value Inpulj' [z
Yalidation Rule gagtloltnv |
Validation Text e_au ; ik
. Mo Walidation Rule
Allow Zero Length Mo ;ahdét'odn ez 5
Indexed es (Mo Duplicat ;laquwe i N
Unicode Compression Mo ety e LB .
Indexed ‘es (Mo Duplicates)
Unicade Compression Mo

L) [S L o |

Figure 7.6: Access Data Tables Design for the Diet problem

In this case the relational data would be as below.

—

‘B Foods : Table

BEx]

. FoOD | cost | f_min | fmax | Buy | BuyRC | BuyFrac I
id 319 2 10
| [CHK 259 2 10
- [FI=H 229 2 10
| [HAM 2.89 2 10
| [MCH 1.89 2 10
L [MTL 159 2 10
| [SPG 159 2 10
TUR 245 2 10
¥

IRecnrd: NI 4 ” 1k |H I)*I of §

Figure 7.7: Access Relational Data in Foods table

OpliRisk

SYSTEMS

Mutrients : Table g@

NUTR | nmin | n_max
A 700 20000
b |B1 Foo 20000
. |B2 700 20000
e 700 20000
| |CAL 16000 24000
A, 0 50000

Record: 14| 4 2 k| M |ME]af B

Figure 7.8: Access Relational Data in Nutrients table

Amounts : Table g@.
| FOOD | NUTR | amt
id A B0
. |BEEF B1 10
__|BEEF B2 15
. |BEEF C 20
__|BEEF A 938
. |BEEF CAL 295
__|CHK A g
_|CHK B1 201
__|CHK B2 20
_|CHK C 0
__|CHK A 2180
_|CHK CAL 770
__|FIEH A g
__|FISH E1 15
__|FIEH B2 10
__|FISH C 10
__|FIEH A 945
__|FISH CAL 440
__|HAM A 40
| HAM B1 35
| |HAM B2 10
| |HAM C 40
| |HAM A 278
| HAM CAL 430
hACH 15 ﬂ
Record: _l_“ Mﬁl of 48

Figure 7.9: Access Relational Data in Amounts table

Now that we have created the relational database, we will see how the relational
tables are linked to the AMPL Studio model in order to import and export data
from and to the database.

Importing data from tables

In order to use an external relational table, such as the tables created in the
section above, for reading only, you should employ a table declaration that
specifies a read/write status of 1N. The general form of this kind of declaration is

table table-name IN string-listeg. :
kev—spec, data—spec, data—spec,

DDHREK >

SYSTEMS

Each table declaration has two parts. Before the colon, the declaration provides
general information. The table-name is the name by which the table is known
within AMPL. The keyword 1N states that the default for all non-key table
columns will be read-only, i.e., AMPL will use these columns as input columns
and will not write out to them. The optional string-list is specific to the database
type and access method being used, and we will look into it in more detail in a
later section.

After the colon, the declaration gives the details of the correspondence between
AMPL entities and relational table columns. The key-spec names the key
columns, which are surrounded by brackets [...]. The data-spec gives the data
columns. Data values are subsequently read from the table into AMPL entities by
the command

read table table—-name;

ﬁ The table declaration only defines a correspondence. To read values
] hhfﬂ . . s
from columns of a relational table into AMPL sets and parameters, it is
necessary to give an explicit read table command.

For instance, in our Diet problem example, when we want to read the data from
the table “Nutrients”, we would use the following declaration followed by the
read command:

table dietNutrs IN "ODBC" "TABLES/diet.xls"™ "Nutrients":
NUTR <- [NUTR], n_min, n_max;

read table dietNutrs;

In our example the string-list "ODBC" "TABLES/diet.xlIs" "Nutrients" specifies
that we are connecting to the external relational database through an Open
Database Connection (ODBC). It also specifies the external file, in this case an
Excel spreadsheet “diet.xls” located in the directory “TABLES”. The string
“Nutrients” gives the name of the relational table we are declaring. In the
second part of the declaration we find the expression NUTR <- [NUTR], which
indicates that the entries in the key column NUTR are to be copied into AMPL to
define the members of the set NUTR. The expressions n_min and n_max are
the names of the other two columns in the relational table from which we will
read the values into the parameters n_min and n_max.

‘@N he The table-name may be different from the name of the corresponding
v table within the external relational database. In any case, the table-name
should be the same in both, the table declaration and the read command.

In a similar way we can read the data from the "Amounts” relational table

table dietAmts IN "ODBC" "TABLES/diet.xls" "Amounts":
[NUTR, FOOD], amt;

OpfiRisk >

SYSTEMS

read table dietAmts;

Reading parameters only

To assign values from data columns to like-named AMPL parameters, it suffices
to give a bracketed list of key columns and hen a list of data columns. In our Diet
problem example, in the simplest case where there is only one key column we
could write

table Foods IN "ODBC" "TABLES/diet.xls":
[FOOD], cost, f_min, f_max;

read table Foods;

In the same way, when we want to read multidimensional parameters, the name
of each data column must also be the name of an AMPL parameter, and the
dimension of the parameter’s indexing set must equal the number of key
columns.

table Amounts IN "ODBC" "TABRLES/diet.xls":
[NUTR, FOOD], amt;

read table Amounts;

ﬁNofm

The subscripts given by the key column entries must be valid for the
parameters when the values of these parameters are first needed by
AMPL, but the parameters need not be declared over sets hamed as the

key columns

Values of unindexed (scalar) parameters may be supplied by a relational table
that has one row and no key columns, so that each data column contains exactly
one value. The corresponding table declaration has an empty key-spec, [].

Reading a set and parameters

We can read the members of a set form a table’s key column or columns, at the
same time that parameters indexed over that set are read from the data
columns. To indicate that a set should be read from a table, the key-spec in the
table declaration is written in the form

Set-name <- [key-col-spec, key-col-spec,..]
The simplest case involves reading a one-dimensional set and the parameters
indexed over it. In our Diet problem example we have

table Foods IN "ODBC" "TABLES/diet.xls":
FOOD <- [FOOD], cost, f_min, f_max;

OpfiRisk .

SYSTEMS

In this particular case, since the key column [FOOD] is named like the AMPL set
FOOD, the table declaration could be abbreviated to

table Foods IN "ODBC" "TABLES/diet.xls":
[FOOD] IN , cost, f_min, f_max;

For the multidimensional case, an analogous syntax is used fir reading a
multidimensional set along with parameters indexed over it.

Let's suppose we had in our Diet.mod the following sets and parameters:

set FOOD;
set NUTR;
set PAIR within {FOOD, NUTR};

param amt {PAIR} >=0;

In this case we would have a table declaration that might look like

table Amounts IN "ODBC" "TABLES/diet.xls":
PAIR <- [NUTR, FOOD], amt;

Establishing correspondences

Sometimes the AMPL model’s set and parameter declarations do not necessarily
correspond in all respects to the organization of tables in the external relational
databases.

One of the most common differences appears in the names amongst the sets and
parameters and the corresponding columns in the relational tables. A table
declaration can associate a data column with a differently named AMPL
parameter by use of a data-spec of the form

param-name ~ data-col-name

In our Diet problem example, if we had the following table declaration

table Foods IN:
[FOOD], cost, f_min ~ lowerlim, f_max ~ upperlim;

We would be saying that the AMPL parameters f_min and f_max would be read
from the data columns lowerlim and upperlim in the relational table
respectively.

In a similar way, when the AMPL index is not named as the corresponding
column in the relational table, we would have

index ~ key-col-name

OpfiRisk >

SYSTEMS

This index may then be used in a subscript to the optional param-name in one or
more data-specs.

Three common cases where we can benefit from this correspondence are as
follow.

Case 1: as an example, the time periods are counted from 0 in the relational
table, but in the model the time periods start counting from 1:

table tableName IN:
[p ~ PROD, t ~ TIME],
market [p,t+1] ~ market, revenuelp,t+l] ~ revenue;

Case 2: the AMPL parameters have subscripts from the same sets but in different
orders. In this case key column indexes must be used to provide a correct index
order:

For example, we have in the AMPL model
param market {PROD, 1..T};
param revenue {1..T, PROD};

we could have a table declaration as follows

table tableName IN:
[p ~ PROD, t ~ TIME],
market, revenuelt, p] ~ revenue;

Case 3: the values for an AMPL parameter are divided among several database
columns. In this case key column indexes can be used to describe the values to
be found in each column:

For example, if we have the revenue values given in two columns, one for
“p1” and in another column for “p2”, the table declaration would be as
follows

table tableName IN:

[t ~ TIME],
revenue [“pl”, t] ~ revenuepl,
revenue [“p2”, t] ~ revenuep?l;

Reading other values

Any assignable expression, such as a variable name, a constraint name, a
variable or constraint qualified by an assignable suffix, may appear anywhere
that a parameter name would be allowed. Therefore, any assignable expression
can appear in a table declaration.

OpfiRisk %

SYSTEMS

‘4@”6 he An expression is assignable if it can be assigned a value, such as by
) placing it on the left hand side of :=in a 1et command.

In our Diet problem example we could have the following table declaration

table Foods IN:
FOOD IN, cost, f_min, f_max, Buy, Buy.priority ~ prior;

where we are reading from the table Foods the initial values for the Buy
variables, as well as their branching priorities.

Exporting data into tables

In order to use an external relational table for writing only, you should employ a
table declaration that specifies a read/write status of ouT. The general form of
this kind of declaration is

table table-name OUT string-list., :
key-spec, data-spec, data-spec, .. ;

As for the case in which we read data from the table, each table declaration has
two parts. Before the colon, the declaration provides general information. The
table-name is the name by which the table is known within AMPL. The keyword
ouT states that the default for all non-key table columns will be write-only, i.e.,
AMPL will use these columns as output columns and will not read from them. The
optional string-list is specific to the database type and access method being used,
and we will look into it in more detail in a later section.

After the colon, the declaration gives the details of the correspondence between
AMPL entities and relational table columns. The key-spec names the key
columns, which are surrounded by brackets [...]. The data-spec gives the data
columns. Data values are subsequently written to the table by the command

write table table-name;

Depending on the circumstances, the write table command may create a
new external file or table, overwrite an existing table, overwrite certain
columns within an existing table, or append columns to an existing table.

ﬁNofm

This way the write table command allows writing meaningful results back to the
external relational database once the model has been solved.

The key-specs and data-specs in the table declaration for writing external
tables resemble those for reading. Nevertheless, the range of AMPL expressions

OpfiRisk v

SYSTEMS

allowed when writing is much broader, including essentially all set-valued and
numeric-valued expressions. Moreover, whereas the table rows to be read are
those of some existing table, the rows to be written must be determined from
AMPL expressions in some part of a table declaration. Specifically, rows to be
written can be inferred either from the data-specs, or from the key-spec. Each of
these alternatives uses a different syntax.

Writing rows inferred from the data
specifications
If the key-spec is simply a bracketed list of the names of key columns,

[key—-col-name, key-col-name,..]

then the table declaration works similar to the display command, except that
all the items listed in the data-specs must have the same dimension.

In the simplest case, the data-specs are the names of model components
indexed over the same set.

For instance, in our Diet problem example, the table declaration and the write
table command

table Foods OUT "ODBC" "TABLES/diet.xls" "FoodsOut":
[FOOD], f_min, Buy, f_max;

write table Foods;

would have as a result a new range named “FoodsOut” as shown in Figure 7.10.

Microsoft Excel - diet.xls E][E]w

@ File Edit W¥ew Insert Format Tools Data Window Help adobe PDF ;@5
NEeE S E&RY $BRY 9-@ = A 2| @A 2
FoodsOut +| = FOOD
& 1 B 1 © | nb E F G
1 JFOCD f min Buy f max |
2 |BEEF 2 5.3R0G14 10
3 JCHK 2 2 10
4 |FISH 2 2 10
5 JHAM 2 10 10
6 |MCH 2 10 10
7 |MTL 2 10 10
8 |SPG 2 9306053 10
9 |TUR 2 2 10
n)
M| 4 » M} food b FoodsOut | 4 |
Ready Sum=146, 6666567

Figure 7.10: Output table range “"FoodsOut” in Excel

OpfiRisk %

SYSTEMS

Tables of higher-dimensional sets are handled in the same way, with the number
of bracketed key-column names listed in the key-spec being equal to the
dimensions of the items in the data-spec.

We could also write out to a relational table suffixed variables or constraint
names, such as the dual and slack values.

In our Diet problem example, we could for instance write out the dual and slack
values related to the constraint “diet”:

table Nutrients OUT "ODBC" "TABLES/diet.xls" "NutrsOut":
[NUTR],
diet.lslack ~ 1lb_slack, diet.ldual ~ 1lb_dual,
diet.uslack ~ ub_slack, diet.udual ~ ub_dual;

write table Nutrients;

which would have as a result a new relational table “NutrsOut” in our Excel
Spreadsheet diet.xls, as shown in Figure 7.11.

e

Microsoft Excel - diet.xls E]@
@ Fil= Edit “iew Insert Formab Tools Data Window Help Adobe PDF ;@5
DEEdsS gAY {BRY vo- @ = A2 GAE 2
MutrsOut | =| NUTR
il e EilnE F G
1 JHUTR b slack b dual wb slack ub_dual |
2 |A 1266288 0 1804371 a
3 |c 8932 5149 0 18317 .49 a
4 |B1 3362575 0 1896374 a
5 |BZ2 1.14E-13 0.4045585 19300 a
6 A s0000 o -15E-11 -0.00307
7 |cAL 3734 521 -0 4205 378 u] |
a
ik
101
M| 4 » [M} food f FoodsOut % NutresOut | 4 |
Ready Sum=135200.4015

Figure 7.11: Output table range “"NutrsOut” in Excel

More general expressions for the values in data columns can also be used. Since
indexed AMPL expressions are rarely valid column names for a database, they
should generally be followed by ~ data-col-name to provide a valid name for the
corresponding data table column.

For instance, we could have in our Diet problem example the following table
declaration:

table Purchases OUT "ODBC" "TABLES/diet.xls":

OpfiRisk >

SYSTEMS

Buy ~ Servings,
{j in FOOD} 100*Buy[j]/f_max[j] ~ Percent;

write table Purchases;

The resulting relational table is displayed in Figure 7.12.

e

Microsoft Excel - diet.xls E]@
@ File Edit W¥ew Insert Format Tools Data Window Help adobe PDF ;@5
NEeE S E&RY $BRY 9-@ = A 2| @A 2
Purchases j = FooD
T I e [D E F G
1 JFOCD senings Percent |
2 |BEEF 5.360614 53.60614
3 JCHK 2 20
4 |FISH 2 20
5 JHAM 10 100
6 |MCH 10 100
7 |MTL 10 100
8 |SPG 9 306053 93.05053
9 |TUR 2 EEI_
10
M| 4 » M} food 4 FoodsOut f MutrsOut ' Purchases /| « |
Ready Sum=557.3333333

Figure 7.12: Output table range “Purchases” in Excel

'@No fe The expression in a data-spec may also use operators like sum that define
) their own dummy indices.

Writing rows inferred from a key
specification

We can also use table declarations to write one table row for each member of an
explicit specified AMPL set. In this case the key-spec must be of the form

set-spec -> [key-col-spec, key-col-spec, ..]

This form uses an arrow pointing from left to right, i.e., pointing from an AMPL
set to a key column list, indicating that the information will be written from the
set into the key columns.

The set-spec is composed of an explicit expression, such as the name of an AMPL
set, or any other AMPL set-expression enclosed in braces { }. The key-col-spec
gives the names of the corresponding key columns in the database.

OpfiRisk ”

SYSTEMS

The simplest case of this form would be writing database columns for model
components indexed over the same one-dimensional set.

In our Diet problem example, we could have

table FdsOut OUT "ODBC" "TABRLES/diet.xls":
FOOD -> [FoodName], f_min, Buy, f_max;

write table FdsOut;

giving the relational table shown in Figure 7.13.

[

Microsoft Excel - diet. xls E]@
@ File Edit Wew Insert Farmak Tools Data Window Help adobe PDF ;lﬂﬂ
DEEHS RV iBRS - Q= A2 0BT
FdsOut +| =| FoodMame
A | B | ¢ | D B F G
1 |FoodMame f min Buy f max —
2 |BEEF 2 535B0614 10
3 |cHK 2 2 10
4 |FISH 2 2 1a
3 |HAM 2 10 1a
6 IMCH 2 10 10
7 |MTL 2 1a 1a
8 |SPG 2 9306053 1a
9 |TUR 2 2 101
10
4 4 » | M4 MutrsOut # Purchases ' FdsOut / |4
Feady Sum=146,6665667

Figure 7.13: Output table range “"FdsOut” in Excel

or in case we wanted the same name for the table as for the set, we could have
written the declaration as

table FdsOut OUT "ODBC" "TABLES/diet.xls":
[FOOD] OUT, f_min, buy, f_max;

Importing From and Exporting To
the Same Table

In the previous sections you have learnt how to import data from an external
relational table, and how to export data into a different relational table. There
could be cases in which you want to use the same external relational table for
both actions, import and export data. In this case you could use two separate
table declarations, one to read data, and a second declaration to write data.

OpfiRisk 7

SYSTEMS

You may also combine these two declarations into one that specifies some
columns to be read and some columns to be written into.

Importing and exporting data using two
table declarations

The same external relational table can be read by one table declaration and a
read table command, and later on it can be written by another table
declaration and a write table command. These two table declarations
follow the syntax and rules described in the previous sections.

‘4@”6 fe Even though you can use two different table declarations, one to read
) and another one to write the same external relational table, the AMPL
table-name should be different in both table declarations.

In our Diet problem example, we can have an external relational table “Foods”
with some columns that contain input for the model, and other columns that will
contain results.

[

Microsoft Excel - diet. xls E]@
@ File Edit Wew Insert Farmat Tools Data Window Help Adobe PDF = | ﬂ
DeEds &LV s BR T o- ax A2 i 7

Foods | =| FOOD
7T O N [N =301 NN ¢ S | e N - O = AN =
1 e
2 |FOOD cost f min f max Buy BuyEC BuyFrac
3 |BEEF 3.19 2 10
4 |CHK 259 2 10
5 |FISH 229 2 10
6 |[HAM 2.89 2 10
i |[MCH 1.89 2 10
8 |[MTL 1.99 2 10
9 |SPG 1.99 2 10

10 JTUR 249 2 10 1
11 >
M| 4 » M} food /| 4] el il
Ready Sum=115.32

Figure 7.14: Excel range “"Foods” with input and output columns

For instance, in Figure 7.14 we have the columns cost, f_min, and f_max as
input columns, whereas the columns Buy, BuyRC, and BuyFrac are output
columns. This relational table would correspond to the following table

OpfiRisk >

SYSTEMS

table inputFoods IN "ODBC" "TABLES/diet.xls" "Foods":
FOOD <- [FOOD], cost, f_min, f_max;
table outputFoods "ODBC" "TABLES/diet.xls" "Foods":
[FOOD], Buy;
Microsoft Excel - diet.xls B@
@Eile Edit Yiew Insert Format Tools Data Window Help Adobe PDF - = ﬂ
DEEa LY bR «- Wz A2 I e #
Foods | =| FOOD
N i 0 N N 1 [= G | H =
1 1
2 |FOOD cost f min f max Buy
3 |BEEF 3.149 2 10 5360614
4 |CHK 26049 2 10 2
5 |FISH 2.29 2 10 2
6 |[HAM 2.89 2 10 10
7 |[MCH 1.89 2 10 10
8 [MTL 1.99 2 10 10
9 |SPG 1.99 2 10 9306053
10 JTUR 2.49 2 10 2
11
44 » M} food /| <]
Ready SuUm=165.9866567

Figure 7.15: Input/Output table range “Foods” in Excel

The user should be careful when using two separate table declarations for
input and output from the same table:

We could have also used the following table declarations:

table inputFoods IN "ODBC" "TABLES/diet.xls" "Foods":
FOOD <- [FOOD], cost, f_min, f_max;

table outputFoods OUT "ODBC" "TABLES/diet.x1ls" "Foods":
[FOOD], Buy;

or similarly

table inputFoods IN "ODBC" "TABLES/diet.xls" "Foods":
FOOD <- [FOOD], cost, f_min, f_max;

table outputFoods "ODBC" "TABLES/diet.xls" "Foods":

[FOOD], Buy OUT;

In this case all the data columns in the external relational table “Foods” would
have been deleted by the write table outputFoods command, and you would only
find the columns specified in the outputFoods table declaration, i.e., the "FOOD”
and “"Buy” columns:

OpliRisk

SYSTEMS

Microsoft Excel - diet.xls Q@
@Eile Edit Wiew Insert Format Tools Daka window Help Adobe PDF = = ﬂ
hDEEds &LV e wzx A2E e s
Foods | =| FOOD
A | B | ¢ B} E F G H —
1 =
2 |FooD Buy|
3 |BEEF 5. 360614
4 |CHK 2
5 |FISH 2
6 |HAM 10
7 |MCH 10
8 |MTL 10
9 |SPG 9 306053
10 |TUR 2
11
4|4 » | M} food / FoodsOut £ MutrsOut f Purchases £ Fdsc| « |
Ready Sum=>50.60066067

Figure 7.16: Input/Output table “"Foods” if rewriting all columns

ﬁl‘\iaﬁ;

The general convention is that overwriting of an entire existing table or file
is intended only when all the data columns in the table declaration have
read/write status ouT. Selective rewriting or addition of columns is
intended otherwise.

Reading and writing using the same table
declaration

In many cases a single table declaration suffices to read and write the same
external relational table.

The key-

spec may use the arrow <- to read contents of the key columns into an

AMPL set, or use the arrow -> to write members of an AMPL set into the key
columns, or even <-> to do both.

A data-spec may specify read/write status IN for the columns that will only be
read into AMPL, status ouT for the columns that will only be written out from
AMPL, or status INOUT for the columns that will be both read and written.

ﬁl‘\iaﬁ;

The default read/write status for a column in a table declaration is
INOUT.

The read table command related to such combined table declaration will read
only the keys or data columns that are specified in the table declaration with IN
or INOUT read/write status.

OpfiRisk .

SYSTEMS

The write table command related to such combined table declaration will write
only the keys or data columns that are specified in the table declaration with
OUT or INOUT read/write status.

In our Diet problem example, we could use the following table declaration to
read and write the Foods table:

table dietFoods "ODBC" "TABLES/diet.xls" "Foods":
FOOD <- [FOOD],
cost IN, f_min IN, f_max IN,
Buy OUT,
Buy.rc ~ BuyRC OUT,
{j in FOOD} Buy[jl/f_max[j] ~ BuyFrac;

read table dietFoods;

write table dietFoods;

and we would obtain the table as in Figure 7.17.

Microsoft Excel - diet.xls Q@
@ File Edit Yiew Insert Format Tools Data Window Help Adobe PDF - = ﬂ
EzEs &LY Fbad a =z A2 B B

Foods | =| FOOD
KR e E i E e et
1 =
2 |FOOD cost f_ min f_max Buy BuyRC BuyFrac
3 |BEEF 3.19 2 10 5360614 -4 4E-16 0.536061
4 |CHK 2459 2 10 2 1.188841 0.2
5 |FISH 229 2 10 2 1.144408 0z
6 |HAM 2109 2 10 10 -0.30265 1
7 |MCH 1.89 2 10 10 -0.55115 1
8 |MTL 1.99 2 10 o -1.3289 1
9 |SPG 1.99 2 10 9306053 0 0930605
10 |TUR 249 2 10 2 273182 0.2
11 =

44 » M} food ¢ | 4| W[

Ready Sum=173.9354957

Figure 7.17: Input/Output table “"Foods” using one table declaration

Index Collections of Tables and
Columns

Sometimes it is convenient to declare an indexed collection of tables, or to define
an indexed collection of data columns within a table. This can be done with the
table declaration.

OpfiRisk >

SYSTEMS

Indexed collections of tables

The table declarations can be indexed by following the table-name by an optional
{indexing-expr}:

table table-name {indexing-exprl. . string-list.,. : ..

In this case one table is defined for each member of the set specified by the
indexing-expr. Individual tables in this collection are denoted by appending a
bracketed subscript or subscripts to the table-name.

For instance, in our Diet problem example, we could create one different table in
our external relational database for each value of the set FOOD:

table DietSens {j in FOOD}

OUT “ODBC” "TABLES/diet.x1ls" (“Sens” & 7J)
[FOOD], f_min, Buy, f_max;

Which will have as a result the creation of one table per j in FOOD:

Microsoft Excel - diet.xls E]@
@ File Edit Wiew Insert Format Tools Data Window Help Adobe PDF i [E
DeES SAY §BaEREc (0 A TR AR T U)

A | =| FOOD
SensBEEF ~|B i D & ki] H | J 8 B =
SensCHK in Buy f_max |
SensFISH 2 BEROR14 10
SensHAM 2 2 10
SenshiCH 2 %) 10
SenshTL 2 10 10
SensSPG e 2 10 10
7 MTL 2 10 10
g8 SPG 2 8306053 10
9 TUR 2 2 10
10
11
4] 4 » [M| SensBEEF £ SensCHK £ SensFISH £ SensHAM %% SensMCH 4 SensMTL / SensSPG £ SensTUR / [4]

Feady

Figure 7.18: Tables collection

ﬁHafm

You could also create a collection of databases if the table declaration
were to give a string expression for the second string in the string-list.

e.qg.,
table DietSens {j in FOOD}
OUT “ODBC” ("TABLES/diet” & j & *“.x1ls"):
[FOOD], f_min, Buy, f_max;

This table declaration would create a different Excel spreadsheet for
each value in the set FOOD.

In the same way you could make correspond every member of an indexed
collection of AMPL tables to a different data-col-name within the same
external database, and same relational table:

OpfiRisk ”

SYSTEMS

table DietSens {j in FOOD} “ODBC” "TABLES/diet.xls":
[FOOD], Buy ~ (“Buy” & j);

This table declaration would create a different column for each member
of the set FOOD, within the same table DietSens.

Indexed collections of data columns

Due to the natural correspondence between data columns of a relational table
and indexed collections of entities in an AMPL model, each data-spec in a table
declaration normally refers to a different AMPL parameter, variable or expression.
However, occasionally the values for one AMPL entity are split among multiple
data columns. In this case we can define a collection of data columns, one for
each member of a specified indexing set.

The general form for specifying an indexed collection of table columns is the
following

{indexing-expr} < data-spec, data-spec, .. >

Each data-spec has any of the forms previously seen.

For each member of the set specified by the indexing-expr, AMPL generates one
copy of each data-spec within the angle brackets <...>.

The indexing-expr also defines one or more dummy indices that run over the
index set. These indices are used in expressions within the data-specs, and also
appear in string expressions that give the names of columns in the external
database.

In our Diet problem example, if we have the following table declaration:

table dietAmts IN “ODBC” “TABLES/diet.xls”:
[1 ~ NUTR], {j in FOOD} < amt[i,jl ~ (3) >;

The key-spec [i ~ NUTR] associates the first table column with the set NUTR.
The data-spec {j in FOOD} <...> causes AMPL to generate an individual data-
spec for each member of the set FOOD. The result would be as displayed in
Figure 7.19.

OpfiRisk 7

SYSTEMS

-

Microsoft Excel - diet.xls Q@
@ File Edit “iew Insert Format Tools Data Window Help Adobe PDF = = ﬂ
DEEs @Y fBRd o~ Q= A2 P - @)

dietAmts | =| NUTR
R AN [SN DN O [N . S [S [, N[O [-~ ool [
] g |
2 NUTR BEEF CHK FISH HAM MCH MTL SPG TUR
3 A G0 a8 8 40 15 70 25
4 B1 10 20 15 35 15 15 25
5 B2 {5 20 10 10 15 {5 15
6 & 20 0 10 40 35 30 o0
7 P& 935 2180 945 27a 1182 096 1329
8 CAL 295 770 440 430 5 400 370
=]

M| 4[> M) food] 4

Ready Sum=13366

Figure 7.19: Indexed collection of data columns

A similar approach works for writing two-dimensional tables.

Standard and Built-in Table
Handlers

To work with external database files, AMPL relies on table handlers. These are
add-ons, usually in the form of shared or dynamic link libraries that can be
loaded as needed. AMPL Studio is distributed with a “standard” table handler that
runs under Microsoft Windows and communicates via the Open Database
Connectivity (ODBC) application programming interface; it recognizes relational
tables in the formats used by Access, Excel, and any other application for which
and ODBC driver exists on your computer.

As you have seen in the previous examples, AMPL communicates with handlers
through the string-list in the table declaration. The form and interpretation of
the string-list are specific to each handler.

The general form of the string-list in a table declaration for the standard ODBC
table handler is

“ODBC” “connection-spec” “external-table-spec”, . “verbose”

The string "ODBC"” indicates that data transfers using this table should employ
the standard ODBC handler. The connection-spec identifies the database file
name that will be read or written.

OpliRisk

SYSTEMS

‘4@” he If the connection-spec is a filename of the form name.ext, where ext is a
v 3-letter extension associated with an installed ODBC driver, then the
named file is the database file.

Other forms of connection-spec are more specific to ODBC.

The external-table-spec normally gives the name of the relational table, within
the specified file that is to be read or written. As we have seen previously, if the
table name is omitted, then the name of the relational table is taken to be the
same as the table-name of the containing table declaration.

The string verbose is used to request diagnostic messages, such as the DSN=
string that ODBC reports using.

ﬁNgﬁ; The external-table-spec could have the special form
“SQL=sql-query”

In such case, the table declaration applies to the relational table that is
temporarily created by a statement in the Structure Query Language

(SQL).

All the columns specified in the table declaration should have the
read/write status IN, since it does not make sense to write to a temporary
table.

Using our Diet problem example, three common table-handling statements would
be as follows:

Case 1: For a Microsoft Access table in a database file diet.mdb located in the
TABLES directory:

Table Foods IN “ODBC” “TABLES/diet.mdb” :
FOOD <- [FOOD], cost, f_min, f_max;

OpfiRisk >

SYSTEMS

Case 2: For a Microsoft Excel table in a database file diet.xls located in the
TABLES directory:

Table Foods IN “ODBC” “TABLES/diet.xls” :
FOOD <- [FOOD], cost, f_min, f_max;

Case 3: For an ASCII text table in a file Foods.dat located in the TABLES
directory:

Table Foods IN “TABLES/Foods.dat”:
FOOD <- [FOOD], cost, f_min, f_max;

ﬁN i Where no details are given, the table is read by default from the ASCII
e text file using AMPL’s built-in text table handler.

For these built-in table handlers for text and binary files, the table
declaration’s string-list contains at most one string identifying the external
file that contains the relational table.

If the string has the form “filename.tab” the file is considered to be an
ASCII text file.

If the string has the form “filename.bit” the file is considered to be a
binary text file.

If no string-list is given, a text file table-name.tab is assumed.

Solve and Display Results

After solving our Diet problem example we obtain the following solution file.

AmplStudio Modeling System - Copyright (c) 2003-2004, Datumatic Ltd

MODEL.STATISTICS

Problem name :diet

Model Filename :Diet.mod

Data Filename :Diet2a.dat

Date :1:9:2005

Time :20:5

Constraints 16 . Nonzeros
S_Constraints 16

Variables : 8 : Nonzeros

SOLUTION.RESULT

'Optimal solution found'
FortMP 3.2j: LP OPTIMAL SOLUTION, Objective = 118.0594032

DECISION.VARIABLES

OpfiRisk o

SYSTEMS

Name Activity .uc Reduced Cost
Buy ['BEEF'] 5.3606 10.0000 -0.0000
Buy ['CHK'] 2.0000 10.0000 1.1888
Buy['FISH'] 2.0000 10.0000 1.1444
Buy ['HAM'] 10.0000 10.0000 -0.3027
Buy ['MCH'] 10.0000 10.0000 -0.5512
Buy ['MTL'] 10.0000 10.0000 -1.3289
Buy ['SPG'] 9.3061 10.0000 0.0000
Buy ['TUR'] 2.0000 10.0000 2.7316
CONSTRAINTS
Name Slack body dual
diet['A'] 1256.2882 1956.2882 0.0000
diet['B1l'] 336.2575 1036.2575 0.0000
diet['B2'] 0.0000 700.0000 0.4046
diet['C'] 982.5149 1682.5149 0.0000
diet['NA'] -0.0000 50000.0000 -0.0031
diet['CAL'] 3794.6206 19794.6206 0.0000
END

We have also seen along the chapter that by using the table declarations and
write table commands we can also display the results in an external relational

database.

OpliRisk

SYSTEMS

101

Chapter 8: Advanced Features of
AMPL

AMPL provides a variety of commands like model, solve and display that tell the
AMPL modeling system what to do with models and data. These commands are
not part of AMPL modeling language itself but are intended to be used in an
environment where you give a command, wait for the system to display a
response, then decide what command to give next. In AMPL studio, these
commands can be given from the command prompt window.

[amat |

Fig 8.1. Command prompt window in AMPL Studio.

Modelling Commands

Options

The behavior of AMPL commands depends on a variety of options. For example:
Controlling the display of results, Choosing alternative solvers etc.

The option command displays and sets option values. Each option has a name
and a value that may be a number or a character string. For example, the
options promptl and prompt2 are strings that specify formats. The option
display_width has a numeric value, which says how many characters wide the
output produced by the display command maybe.

An option command can be issued at the command prompt.

Example:
ampl: option promptl “A>" ;
A>

The issue of option command with prompt option changes the prompt from ampl
to A>.
One can set solver options also by using this command.

ampl: option cplex_options;

To return all options to their default values use the command ‘reset options’.

OpfiRisk o

SYSTEMS

Setting up and solving models and data

A model can be run from command prompt window. One can choose the solver
for solving the problem by using option command.

To apply a solver to an instance of a model, we use model, data and solve
command.

ampl: option solver cplexamp;
ampl: model steel4.mod;

ampl: data steeléd.dat;

ampl: solve;

If the model declares more than one objective function, we can use objective
command to select the objective function to pass to the solver. It consist of
keyword objective followed by a name from minimize or maximize declaration.
AMPL by default chooses first objective function.

ampl: objective Total_Number;

Modifying Data

To delete the current data for several model components, without changing the
current model itself, use reset data command as in:

reset data MINREQ, MAXREQ, amt, n_min, n_max;

We can then use data command to read in new values for these sets and
parameters. To delete all data type ‘reset data’.
The update data command works similarly, but does not actually delete any data
until new values are assigned. Thus if we type:

update data MINREQ, MAXREQ, amt, n_min, n_max;

but read in new values for MINREQ, amt and n_min, the previous values for
MAXREQ and n_max will remain. If instead we used reset data, MAXREQ and
n_max would be without values.

The ‘reset data’ command also acts to resample the randomly computed
parameters.

The ‘let’ command permits us to change particular data value while leaving the
model the same, but it is more convenient for small or easy to describe changes
than ‘reset data’ or ‘update data’. For example: if a parameter ‘T’ in our data
for some hypothetical model has a value 4 and we can change it to 3 by let
command:

ampl: let T:=3;
ampl: solve ;

OpfiRisk o

SYSTEMS

Modifying models

The ‘delete’ command removes a previously declared model component, provided
that no other component use it in their declarations. The format of the command
is simply ‘delete’ followed by a comma-separated list of names of model
components:

ampl: model dietobj.mod;

ampl: data dietobj.dat;
ampl: delete Total_ Number, Diet_Min ;

Normally we can-not delete a set, parameter or variable, because it is declared
for use later in the model; but we can delete any objective or constraint.

The ‘purge’ command has the same form, but with keyword ‘purge’ in place of
delete. It removes not only the listed components, but also all components that
depend on them either directly or indirectly. If we are not sure which
components depend on some given component, we can use ‘xref’ command to
find out.

To change any component’s declaration we can use ‘redeclare’ command.

ampl: redeclare param f_min {FOOD} >0 integer;

changes the validity conditions on f_min. The declarations of all components

that depend on f_min are left unchanged, as are any values previously read for
f min.

Changing the model: fix, unfix; drop,
restore

The ‘drop’ command instructs AMPL to ignore certain constraints or objectives of
the current model. As an example, the constraints are:

subject to Diet_Max { 1 in MAXREQ} :
sum { j in FOOD} amt[I,j] * Buy [Jj] <= n_max [i] ;

A ‘drop’ command can specify a particular one of these constraints to ignore:

drop Diet_Max[“CAL”] ;

The entire collection of constraints can be ignored by

drop {i in MAXREQ} Diet_Max[i] ;

The ‘restore’ command reverses the effect of drop. It has same syntax, except

for the keyword ‘restore’.
OpfiRisk o

SYSTEMS

The *fix" command fixes specified variables at their current values, as if there
were a constraint that the variables must equal these values; the unfix command
reverses the effect. These commands have the same syntax as ‘drop’ and
‘restore’ except that they name variables rather than constraints.

Relaxing Integrality

Changing option ‘relax_integrality’ from its default of 0 to any nonzero value:
option relax_integrality 1;

tells AMPL to ignore all restrictions of variables to integer values. Variables
declared integer gets whatever bounds we specified for them, while variables

declared binary are given a lower bound of zero and an upper bound of one. To
restore integrality restrictions, set ‘relax_integrality’ option back to 0.

A variable’s name followed by the suffix ‘.relax’ indicates its current integrality
relaxation status: 0 if integrality is enforced, nonzero otherwise. We can make
use of this suffix to relax integrality on selected variables only. For example,

ampl: let Buy[‘CHK’].relax=1;
relaxes integrality only on the variable Buy [“CHK’] .

Some of the solvers that work with AMPL Studio provide their own directives for
relaxing integrality but may have different effect as AMPL’s ‘relax_integrality’
option.

DISPLAY Commands

AMPL provides a rich variety of commands and options to help examine and
report the results of optimization.

Browsing through results: display
command

The easiest way to examine data and result values is to use ‘display’ command. It
is also possible to capture the output of display command in a file, by adding
>filename to the end of ‘display’ command; this redirection mechanism applies as
well to other commands that produces the output.

OpfiRisk o

SYSTEMS

The contents of the sets are shown by typing ‘display’ and a list of set names.
For example a set of week days defined as the set WEEK would give the
following result.

ampl: display WEEK;
set WEEK : = MON TUE WED THURS FRI SAT SUN;

The argument of ‘display’ need not be a declared set; it can be any of the
expression that evaluate to sets. For example, we can see the union of all the
sets AREA[p] (where PROD = ({prodl, prod2, prod3, prod4},
AREA[prodl] = east, AREA[prod2] = north, AREA[prod3] = west,
AREA [prod4] = south):

ampl: display union {p in PROD} AREA[p];
set union {p in PROD} AREA[p] := east north west south;

The ‘display’ command can also be used to see the value of a scalar model
component.

ampl: display T;
T=4

Or the value of individual components from an indexed collection.

ampl: display avail([“reheat], avail[“roll”] ;
avail [‘reheat’] = 35
avail [“‘roll’] = 40

or an arbitrary expression:

ampl: display sin(l)”2 + cos(1l)"2;
sin(1)"2 + cos(1l)"2 =1

The major use of display, however, is to show whole indexed collection of data.
For ‘one-dimensional’ data — parameters or variables indexed over a simple set —
AMPL uses a column format. For example, if avail is indexed over some set, the
use of display would work as:

ampl: display avail;
avail[*] :=

reheat 35

roll 40

4

For ‘two-dimensional’ parameters or variables — indexed over a set of pairs or
two simple sets — AMPL forms a list for small amounts of data or a table for
larger amounts.

The ‘display’ command can show the value of any arithmetic expression that is
valid in AMPL model. Single valued expression poses no difficulty, as in the case
of these three profit components indexed over say set PROD and some set
representing time period:

ampl: display sum{p in PROD, t in 1..T} revenuelp,t]*selllp,t];

OpfiRisk .

SYSTEMS

sum{p in PROD, t in 1..T} revenue[p,t]*sell[p,t] = 787810

Suppose however we want to see all the individual values of revenue[p,t] *
sell[p,t]. Since, we can type ‘display revenue, sell’ to display the separate values
of revenue [p,t] and sell [p, t], we might want to ask for the products of these
values by typing:

ampl: display revenue * sell;

syntax error
context: display revenue >>> * <<< sell ;

AMPL does not recognize this kind of array arithmetic. To display an indexed
collection of expressions, we must specify the indexing explicitly:

ampl: display {p in PROD, t in 1..T} revenuelp,t]l*sell[p,t];

revenue[p,t]*sell[p,t] [*,*] (tr)
: bands coils

1 15000 9210

2 15600 87500

4

To apply the same indexing to two or more expressions, enclose a list of them in
parentheses after the indexing expression.

Formatting options for display

The display command uses a few simple rules for choosing a good arrangement
of data. By changing several options, we can control overall arrangement,
handling of zero values and line width. These options are summarized below
with their default values.

Option Details

display_1col Maximum elements for a table to be
displayed in list format(20)

display_transpose Transpose tables if rows-colums <
display_transpose (0)

display_width Maximum line width (79)

gutter_width Separation between table columns (3)

omit_zero_cols If not 0, omit all-zero columns from
displays (0)

omit_zero_rows If not 0, omit all-zero rows from displays
()

These options can be used with the keyword ‘option’ like

ampl: option display_lcol 0;

to force the display to a compact form, or can be set to a very large nhumber to

force the list format.
OpfiRisk v

SYSTEMS

List format & Compact format example:

display required;
[(*] :=

ampl:
required
Fril 100
Fri2 78
Fri3 52
Monl 100
Mon2 78
Mon3 52
Satl 100
Satz2 78
Thul 100
Thu2 78
Thu3 52
Tuel 100
Tue2 78
Tue3 52
Wedl 100
Wed2 78
Wed3 52

4

In compact format:

Required [*] :=

Fril 100 Monl 100 Satl 100

Fri2 78 Mon2 78 Sat2 78
Mon3 52 Thul 100

Fri3 52

4

Thu2 78 Tue2 78 Wed2 78
Thu3 52 Tue3 52 Wed3 52
Tuel 100 Wedl 100

Numeric Options for display

The numbers in a table or list produced by display are the results of a
transformation from the computer’s internal numeric representation to a string of
digits and symbols. AMPL’s options for adjusting this transformation are shown in
the table below along with their default values. The options falls under two
categories: Options that affect only the appearance of humbers and options that
affect the underlying solutions values as well.

Option

Details

display_eps

Smallest magnitude displayed different
from zero (0)

display_precision

Digits of precision to which displayed
numbers are rounded; full precision if 0

(6)

display_round

Digits left or (if negative) right of
decimal place to which display nhumbers
are rounded, overriding
display_precision (* ")

solution_precision

Digits of precision to which solution

OpliRisk

108

SYSTEMS

values are rounded; full precision if 0
(0)

solution_round Digits left or (if negative) right of
decimal place to which solution values
are rounded, overriding
display_precision (* ")

Other output commands: print and printf

The print command

A print command produces a single line of output:

ampl: print {t in 1..T, p in PROD} Make [p,t] ;
5990 1407 6000 1400 1400 3500 2000 4200

Or, if followed by an indexing expression and a colon, a line of output for each
member of the index set:

ampl: print {t in 1..T}: {p in PROD} Makel[p,t];
5990 1407
6000 1400
1400 3500
2000 4200

Print entries are normally separated by a space, but option ‘print_separator’ can
be used to change this.

The keyword ‘print” (with optional indexing expression and colon) is followed by a
print item or comma-separated list of print items. A print item can be a value, or
an indexing expression followed by a value or parenthesized list of values. Thus a
print item is much like a ‘display’ command, except that only individual values
may appear.

‘print’ command has options ‘print_precision” and ‘print_round’ options, which
work exactly like the ‘display_precision’ and ‘display_round’ options for the
display command.

The printf command

The syntax of printf is exactly the same as that of print, except that the first print
item is a character string that provides formatting instructions for the remaining
items:

ampl: printf “Total revenue is $%6.2f.\n”, sum {p in PROD, t in 1..T}
revenue[p,t] * Selllp,tl];
Total revenue is $787810.00

OpfiRisk o

SYSTEMS

The format string contains two types of objects: ordinary characters, which are
copied to the output, and conversion specifications, which govern the appearance
of successive remaining print items. Each conversion specification begins with the
character % and ends with a conversion character. The complete rules are much
the same as for the ‘printf’ function in C programming language.

Related Solution values

AMPL provides ways of examining objectives, bounds, slacks, dual prices and
reduced costs associated with the optimal solution. AMPL distinguishes the
various values associated with a model component by use of “qualified” names
that consist of a variable or constraint identifier, a dot(.), and a predefined
“suffix” string.

Objective functions

The name of the objective function (from a minimize or maximize declaration)
refers to the objective’s value computed from the current values of the variables.
This name can be used to represent the optimal objective value in display, print,
or printf.

ampl: print 100* Total_Profit;
7000

Here Total_Profit was an objective function.

Bounds and slacks

The suffixes ./b and .ub on a variable denote its lower and upper bounds, while
slack denotes the difference of a variable’s value from its nearer bound.

ampl: display Buy.lb, Buy, Buy.ub, Buy.slack;

: Buy.1lb Buy Buy.ub Buy.slack;
BEEF 2 2 10 0
CHK 2 10 10 0
FISH 2 2 10 0
HAM 2 2 10 0
MTL 2 6.23596 10 3.76404
SPG 2 5.25843 10 3.25843
2 2 10 0

TUR

4

The reported bounds are those that were sent to the solver. Thus they include
not only the bounds specified in >= and <= phrases of var declarations, but also
certain bounds that were deduced from the constraints by AMPL's presolve
phase.

OpfiRisk -

SYSTEMS

The suffixes ./b, .body, and .ub on constraints give the current values of these
parts of the constraints, while the suffix .s/ack refers to the difference between
the body and the nearer bound.

Dual values and reduced costs

Associated with each constraint in a linear program is a quantity variously known
as the dual variable, marginal value or shadow price. In the AMPL command
environment, these dual values are denoted by the names of the constraints,
without any qualifying suffix. For example, let there be a collection of constraints
named ‘Demand”:

subject to Demand {j in DEST, p in PROD}: sum { i1 in ORIG} Trans[I, j,pl=
demand[]j,p];

and a table of dual values associated with these constraints can be viewed by

ampl: display Demand;
Demand [*, *]

: bands coils plate :=
DET 201 190.714 199
FRA 209 204 211
FRE 266.2 273.714 285
LAF 201.2 198.714 205
STL 206.2 207.714 216

WIN 200 190.714 198

4

A nearly identical concept applies to the bounds on a variable. The role of the
dual value is played by the variable’s so called reduced costs, which can be
viewed from the AMPL command environment by use of the suffix .rc

Details about dual values and reduced costs can be found in AMPL book and in
standard linear programming textbooks.

Other display features for models and
instances

Displaying model components: the show
command

show command lists the names of all components of the current model:

ampl: model example.mod;
ampl: show;

parameters: demand limit
sets: DEST ORIG PROD
variables: use cost
constrg}nts: Demand_supply

OpfiRisk -

SYSTEMS

objective: Total_cost
checks: one, called check_1.

The display may be restricted to one or more types:

ampl: show vars;
variables: use cost

The show command can also display the declarations of individual components.

ampl: show Total_ cost;
minimize Total_cost: sum { i in ORIG, 3 in DEST, p in PROD}
demand [p] *use[i, j] ;

Since the check statements in a model do not have names, AMPL numbers them
in the order they appear.

Displaying model dependencies: the xref
command

The xref command lists all model components that depend on a specified
component, either directly(by refereeing to it) or indirectly (by referring to its
dependents). If more than one component is given, the dependents are listed
separately for each.

Example:

ampl: xref demand, Trans ;

2 entities depend on demand:
check 1

Demand

5 entities depend on Trans:
Total_Cost

Supply
Demand
Multi
Mini_Ship

In general the command is simply the keyword ‘xref’ followed by a comma-
separated list of any combination of set, parameter, variable, objective and
constraint names.

Displaying model instances: the expand
command
In checking a model and its data for correctness, we may want to look at some

of the specific constraints that AMPL is generating. The ‘expand’ command
displays all constraints in a given indexed collection or specific constraints that

OpfiRisk e

SYSTEMS

ampl: model example.mod;
ampl: data example.dat;
ampl: expand Supply;
subject to Supply[‘GRAY’]:

Trans[‘GRAY’, "FRA'] + Trans[‘GRAY’, 'DEN’] + Trans
[“GRAY’, ‘LAN’] + Trans

[“GARY’, “‘WIN’'] = 1400;
subject to Supply[‘CLEV’]:

Trans[‘CLEV’, "FRA'] + Trans[‘CLEV’, 'DEN’] + Trans
[“CLEV’, ‘LAN’] + Trans

[“CLEV’, ‘WIN’] = 2600;

Similarly objectives can also be expanded. When expand is applied to a variable,
it lists all of the nonzero coefficients of that variable in the linear terms of
objectives and constraints. When a variable also appears in nonlinear expressions
within an objective or constraint, the term +nonlinear is appended to represent
those expressions.

The command ‘expand’ alone produces an expansion of all variables, objectives
and constraints in a model.

Generic synonyms for variables, constraints
and objectives

Synonym Details

_nvars Number of variables in the current
problem

_ncons Number of constraints in the current
problem

_nhobjs Number of objectives in the current
problem

_varname{l.._nvars} Names of variables in the current
problem

_conname{1.._ncons} Names of constraints in the current
problem

_objname{1..n_objs} Names of objectives in the current
problem

_var{l.._nvars} Synonyms for variables in the current
problem

_con{1.._ncons} Synonyms for constraints in the
current problem

_obj{1.._nobjs} Synonyms for objectives in the current
problem

Resource listing

OpfiRisk o

SYSTEMS

Changing option show_stats from its default of 0 to nonzero value requests
summary statistics on the size of the optimization problem that AMPL generates:

ampl: model steelT.mod;

ampl: data steelT.dat;

ampl: option show_stats 1;

solve;

Presolve eliminates 2 constraints and 2 variables.
Adjusted problem:

24 variables, all linear

12 constraints, all linear ; 38 nonzeros
1 linear objective; 24 nonzeros.

MINOS 5.5 optimal solution found.

15 iterations, objective 515033

Changing option times from its default value of 0 to a nonzero value requests a
summary of AMPL’s translator’s time and memory requirements. Similarly, by
changing option gentimes to a nonzero value, we can get a detailed summary of
the resources that AMPL's genmod phase consumes in generating a model
instance.

General facilities for manipulating output

Redirection of output

We can direct all output to a file instead of it appearing on display console, by
adding a > and the name of the file:

ampl: display supply >multi.out;

The first command specificying >filename creates a new file by that name(or
overwrites any existing file of the same name). Subsequent commands add to
the end of the file, until the end of session or a matching close command:

ampl: close multi.out;

To open a file and append output to whatever is already there(rather than
overwriting), use >> instead of >.

Output logs

The log_file option instructs AMPL to save subsequent commands and responses
to a file. The option’s value is a string that is interpreted as a filename:

ampl: option log_file ‘multi.tmp’;

The log file collects all AMPL statements and the output that they produce.
Setting log_file to the empty string turns of writing to the file.

OpfiRisk e

SYSTEMS

Limits on messages

By specifying option eexit n, where n is some integer, we determine how AMPL
handles error messages. If n in not zero, any AMPL statement is terminated after
it has produced abs(n) error messages; a negative value causes only the one
statement to be terminated, while a positive value results in termination of the
entire AMPL session.

The default value for —eexit is -10. Setting it to 0 causes all error messages to be
displayed.

Command Scripts

A scriptis a sequence of commands, captured in a file, to be used and re-used.

Running scripts: include and commands

AMPL provides several commands that cause input to be taken from a file. The
command:

include filename

is replaced by the contents of the named file. An include can even appear in the
middle of some other statement, and does not require a terminating semicolon.

The ‘model’ and ‘data’ commands are special cases of ‘include’ that put the
command interpreter into model or data mode before reading the specified file.
By contrast, ‘include’ leaves the mode unchanged. For working with a small
model, it might be convenient to put the model and data command and all the
data statement in a file and then read in by use of ‘include’ command.

The statement:

commands filename;

is very similar to include, but is a true statement that needs a terminating
semicolon and can only appear in a context where a statement is legal.

For example, ‘commands’ command may find its use while performing sensitivity
analysis on a model by changing a parameter value. In this case we have to
solve the model repeatedly by changing the data. So it would be better to put all
these statements in a file and then call it by use of ‘commands’ command.

OpfiRisk -

SYSTEMS

In many cases ‘commands’ command can be replaced by ‘include’ command. In
general it is best to use commands within command scripts, however, to avoid
unexpected interactions with repeat, for, if statements.

Iterating over a set: the ‘for’ statement

Many times we may have to repeat a few commands a few times. AMPL provides
looping commands that can do this work automatically, with various options to
determine how long the looping should continue.'for’ statement, executes a
statement or collection of statements once for each member of some set.

For example:

model steelT.mod;

data steelT.dat;

for {1..4} {

solve;

display Total_ Profit > steelT.sens;
option display_1lcol 0;

option omit_zero_rows 0;
display Make > steelT.sens;
display Sell > steelT.sens;
option display_lcol 20;
option omit_zero_rows 1;
display Inv > steelT.sens;
let avail([3] := avail[3] + 5;
}

The *for’ statement can be iterated over any set also.

Between the opening and closing brace of ‘for’ statement, we can place other
statements like let, print, printf etc.

Iterating subject to a condition: the repeat
statement

A second kind of looping construct, the repeat statement, continues iterating as
long as some logical condition is satisfied.
Generally the ‘repeat’ statement has the one of the following forms as illustrated:

repeat while condition {...};
repeat until condition {..};
repeat {..} while condition;
repeat {..} until condition;

The loop body, here indicated by {...}, must be enclosed in braces. Passes
through the loop continue as long as the while condition is true, or as long as
unti/ condition is false. A condition that appears before the loop body is tested

— before every pass: if 3 while condition is false or an wnti/ condition js true before

OpfiRisk e

SYSTEMS

the first pass, then the loop body is never executed. A condition that appears
after the loop body is tested after every pass, so that the loop is executed at
least once in this case. If there is no while or unti/ condition, the loop repeats
indefinitely and must be terminated by other means, like the break statement.

Testing a condition: the ‘if-then-else’
statement

The if-then-else statement conditionally controls the execution of statements or
groups of statements.

In the simplest case, the if statement evaluates a condition and takes a specified
action if the condition is true:

If Make [“coin”,2] < 1500 then printf “under 1500\n” ;

The action may also be a series of commands grouped by braces as in the for
and repeat commands.

An optional else specifies an alternative action that also may be a single
command or group of commands:

If Make [“coin”,2] < 1500 then printf “under 1500\n” else printf “Over
1500\n"” ;

AMPL executes these commands by first evaluating the logical expression
following /f. If the expression is true, the command or commands following then
are executed. If the expression is false, the command or commands following
else, if any, are executed.

Terminating a loop: break and continue

Two other statements work with looping statements to make some scripts easier
to write. The continue statement terminates the current pass through a 7or or
repeat loop; all further statements in the current pass are skipped, and execution
continues with the test that controls the start of the next pass(if any). The break
statement completely terminates a for or repeat loop, sending control
immediately to the statement following the end of the loop.

Stepping through a script: step, next, skip

If we suspect that a script might not be doing what we want it to do, we can tell
AMPL to step through it one command at a time. This facility can be used to
provide an elementary form of “symbolic debugger” for scripts.

OpfiRisk w

SYSTEMS

To step through a script that does not execute any other scripts, reset the option
‘single_step’ to 1 from its default value of 0. For example:

ampl: option single_step 1;
ampl: commands steelT.sa’;
steelT.sa7:2(18) data..
<2>ampl:

The expression steelT.sa7:2(18) gives the filename, line number and
character number where AMPL has stopped in its processing of the script. It is
followed by the beginning of the next command (data) to be executed. On the
next line we are returned to the ampl: prompt. The <2> in front indicates the
level of input nesting; “2” means that execution is within the scope of a
commands statement that was in turn issued in the original input stream.

At this point we may use step command to execute individual commands of the
script. If step is followed by a number, that number of commands will be
executed.

<2> ampl: step;
steelT.sa7:4(36) option ..

To help through lengthy compound statement (for, repeat or if) AMPL provides
alternatives to step. The next command steps past a compound command rather
than into it. Typing ‘next n’ step past n commands in this way.

The commands skip and ‘skip n” works like step and ‘step n’, except that they
skip the next 1 or n commands in the script rather than executing them.

Manipulating character strings

String functions and operators: ‘&', length,
match, substr, sub, gsub

The concatenation operator ‘&’ takes two strings as operands, and returns a
string consisting of the left operand followed by the right operand. For example:

ampl: model diet.mod;
ampl: data diet2.dat;
ampl: display NUTR, FOOD;

set NUTR := A B1 B2;
set FOOD := BEEF CHK FISH;
ampl: set NUTR_FOOD := setoff {i in NUTR, j in FOOD} 1 & “_" & 7j;

ampl: display NUTR_FOOD;
set NUTR_FOOD :=

A_BEEF B1_BEEF B2_BEEF
A_CHK B1_CHK B2_CHK
A _FISH B1_FISH B2_FISH;

Numbers as arguments to ‘&’ are automatically converted to strings. Numeric
operands are always converted to full precision.

OpfiRisk e

SYSTEMS

The ‘length’ string function takes a string as argument and returns the number
of characters in it. The ‘match’ function takes two string arguments, and returns
the first position where second appears as a substring in the first, or zero if the
second never appears as a substring in the first. The ‘substr’ function takes a
string and one or two integers as arguments. It returns a substring of the first
argument that begins at the position given by the second argument; it has the
length given by the third argument, or extends to the end of the string if no third
argument is given. An empty string is returned if the second argument is greater
than the length of the first argument, or if the third argument is less than 1.
AMPL provides two other functions, ‘sub’ and ‘gsub’, that look for the second
argument in the first, like match, but that then substitute a third argument for
either the first occurrence(sub) or all occurrences(gsub) found.

Interactions with Solvers

We briefly discuss the mechanisms used by AMPL to control and adjust the
problems sent to solvers, and to extract and interpret information returned by
them.

Presolve

AMPL’s presolve phase attempts to simplify a problem instance after it has been
generated but before it is sent to a solver. It runs automatically when a ‘solve’
command is given or in response to other commands. Any simplifications that
presolve makes are reversed after a solution is returned, so that one can view
the solution in terms of the original problem. Thus presolve normally proceeds
silently behind the scenes. Its effects are only reported when we change option
show_stats from its default value of 0 to 1.

We can determine which variable and constraints presolve eliminated by testing,
to see which variables/ constraints have a status of “pre”.

ampl: print { j in 1.._nvars: _var[j].status = “pre” } : _varname [j];
Inv[‘bands’, 0]
Inv[‘coils’, 0]

ampl: print { i in 1.._ncons: _con[i].status = “pre”}: _conname [1] ;
Init_Inv [“‘bands’]
Init_Inv [“‘coils’]

We can then use ‘show’ and ‘display’ to examine the eliminated components.

Activities of the presolve phase

OpfiRisk e

SYSTEMS

e AMPL first assigns each variable whatever bounds are specified in its ‘var’
declaration or the special bounds *-Infinity” and ‘Infinity” when no lower or
upper bounds are given.

e The presolve phase tries to use these bounds together with the linear
constraints to deduce tighter bounds that are still satisfied by all of the
problem’s feasible solutions. Concurrently, presolve tries to use the tighter
bounds to detect variables that can be fixed and constraints that can be
dropped.

e Presolve works on a problem in two parts. In first part it applies some
tests to deduct some bounds on variables and deduce linear constraints.
In second part, there are a series of passes through the problem, each
attempting to deduce still tighter variable bounds from the current bounds
and the linear constraints.

Controlling the effects of presolve

To turn off presolve entirely, set option presolve to 0; to turn off the second part
only, set it to one (1). A higher value for this option indicates the maximum
number of passes made in part two of presolve; the default is 10.

Following presolve, AMPL saves two sets of lower and upper bounds on the
variables: ones that reflect the tightening of the bounds implied by constraints
that presolve eliminated, and ones that reflect further tightening deduced from
constraints that presolve could not eliminate. The problem has the same solution
with either set of bounds, but the overall solution time may be lower with one or
the other, depending on the optimization method in use and the specifics of the
problem.

Some other variables to control presolve effects:
var_bounds : set it to 2 to pass the second set of bounds to the solver.

For integer variables, AMPL rounds any fractional lower bounds up to the next
higher integer and any fractional upper bounds down to the next lower integer.
To prevent the inaccuracies of finite precision computation, AMPL subtracts the
value of option ‘presolve_inteps’ from each lower bound and adds it to each
upper bound. If increasing this value to the value of option ‘presolve_intepsmax’
would make a difference to the rounded bounds of any of the variables, AMPL
issues a warning.

To examine first and second set of presolve bounds we can use suffixes, .Ibl and
.ubl and .Ib2 and .ub2 respectively. The suffixed .Ib and .ub give the bound
values currently passed to the solver, based on current values of options
‘presolve’ and ‘var_bounds’.

Detecting infeasibility in presolve

OpfiRisk =

SYSTEMS

Presolve can determine many conditions that can make the problem infeasible.

a)

b)

d)

If any variable’s lower bound is greater than its upper bound then there
can be no solution satisfying all the bounds and other constraints, and an
error message is printed.

Presolve’s more sophisticated tests can also find infeasibilities that are not
due to any one variable.

When the implied lower and upper bounds for some variable or constraint
body are equal then due to imprecision in the computations, the lower
bound may come out slightly greater than the upper bound, causing
AMPL’s presolve to report an infeasible problem. To circumvent this
difficulty, we can reset the option ‘presolve_eps’ from its default value of 0
to some small positive value. Differences between lower and upper
bounds are ignored when they are less than this value. If increasing the
current ‘presolve_eps’ value to a value no greater than ‘presolve_epsmax’
would change presolve’s handling of the problem, then presolve displays a
message to this effect.

An imprecision in the computations can cause the implied lower bound on
some variable or constraint body to come out slightly lower than the
implied upper bound. Here no infeasibility is detected, but the presence of
bounds that are nearly equal may make the solver’s work much harder
than necessary. Thus whenever, the upper bound minus the lower bound
on a variable or constraint body is positive but less than the value of
option ‘presolve_fixeps’, the variable or constraint body is fixed at the
average of two bounds. If increasing the value of ‘presolve_fixeps’ to at
most the value of ‘presolve_fixepsmax’ would change the results of
presolve, a message to this effect is displayed.

The number of separate messages displayed by presolve is limited to a
value of ‘presolve_warnings’, which is 5 by default. Increasing option
‘show_stats’ to 2 may elicit some additional information about the presolve
run.

Retrieving results from solvers

AMPL sets two built in parameters after each run of ‘solve’ command to indicate
the solver’s status after a run of the optimization problem. These two parameters

are:

solve_result_num: Contains a number
solve_result : Contains a character string

This can be interpreted as the following:

OpfiRisk e

SYSTEMS

Number String Interpretation

0-99 solved Optimal solution found

100-199 solved? Optimal solution
indicated, but error likely

200-299 infeasible Constraints cannot be
satisfied

300-399 unbounded Objective can be
improved without limit

400-499 limit Stopped by a limit that
one sets (such as on
iterations)

500-599 failure Stopped by an error
condition in the solver

This status information is used in scripts, where it can be tested to distinguish
among cases that must be handled in different ways.

The built in parameter solve_exitcode records the success or failure of the most
recent solver invocation. Initially -1, it is reset to 0 whenever there has been a
successful invocation and to some system dependent nonzero value otherwise.

Solver status of objectives and problems

Sometimes it is convenient to be able to refer to the solve result obtained when a
particular objective was most recently optimized. For this purpose, AMPL
associates with each built in solve result parameter a ‘status’ suffix:

Built in parameter Suffix
solve_result result
solve_result_num .result_num
solve_message .message
solve_exitcode .exitcode

Appended to an objective name, this suffix indicates the value of the
corresponding built in parameter at the most recent so/ve in which the objective
was current.

Solver statuses of variables

AMPL provides facilities to let solver return an individual status for each variable.
The major use of solver status values from an optimal basic solution is to provide
a good starting point for the next optimization run. The option ‘send_statuses’,
when left at its default value of 1, instructs AMPL to include statuses with the
information about variables sent to solver at each solve.

AMPL refers to a variable’s solver status by appending .sstatus to its name. Thus

we can print the status of variables with disp/ay command,

OpfiRisk -

SYSTEMS

A table of the recognized solver status values is stored in option sstatus_table:

ampl: option sstaus_table;
option sstatus_table “\

0 none no status assigned\

1 bas basic\

2 sup superbasic\

3 low nonbasic<= (normally =) lower bound \

4 upp nonbasic>= (normally=) upper_bound\

5 equ nonbasic at equal lower and upper bounds\
6 btw nonbasic between bounds\

Solver statuses of constraints

Implementation of the simplex method typically adds one variable for each
constraint that they receive from AMPL. Each added variable has a coefficient of
1 or -1 in its associated constraint, and coefficients of 0 in all other constraints. If
the associated constraint is in inequality, the addition is used as a “slack” or
“surplus” variable; its bounds are chosen so that it has effect of turning the
inequality into an equivalent equation. If the associated constraint is an equality,
the added variable is an “artificial” one whose lower and upper bounds are both
zero.

To accommodate statuses of these logical variables, AMPL permits a solver to
return status values corresponding to the constraints as well as the variables.
The solver status of a constraint, written as the constraint name suffixed by
.sstatus, is interpreted as the status of the logical variable associated with that
constraint.

AMPL statuses

Only those variables, objectives and constraints that AMPL actually sends to a
solver can receive solver statuses on return. So that we can distinguish these
from components that are removed prior to a solve, a separate "AMPL status” is
also maintained. We can work with AMPL statuses much like solver statuses, by
using the suffix .astatus in place of .sstatus and referring to option astatus_table
for a summary of the recognized values:

ampl: option astatus_table;
option astatus_table “\

0 in normal state (in problem)\

1 drop removed by drop command\

2 pre eliminated by presolve

3 fix fixed by fix command\

4 sub defined variable, substituted out\
5 unused not used in current problem\

-
~ =

OpfiRisk -

SYSTEMS

Exchanging information with solvers via
suffixes

AMPL employs various qualifiers or suffixes appended to component names to
represent values associated with a model component. AMPL can not anticipate all
of the values that a solver might associate with model components, however.
The values recognized as input or computed as output depend on the design of
each solver and its algorithms. To provide for open ended representation of such
values, new suffixes may be defined for the duration of AMPL session, either by
the user for sending values to a solver, or by a solver for returning values. For
this purpose we have user defined suffixes and solver defined suffixes.

User defined suffixes can be used to pass preferences for variable selection and
branch direction to an integer programming solver. Similarly solver suffixes can
be used for sensitivity analysis and infeasibility diagnosis. Users are referred to
the AMPL book by R. Fourer, D. Gay and B.W. Kernighan (Chapter 14 -
Interaction with solvers) for details.

Defining and using suffixes

A new AMPL suffix is defined by a statement consisting of the keyword ‘suffix’
followed by a suffix name and then one or more optional qualifiers that indicate
what values may be associated with the suffix and how it may be used. The
suffix statement causes AMPL to recognize suffixed expression of the form
component-name.suffix name, where component-name refers to any currently
declared variable, constraint or objective. The definition of a suffix remains in
effect until the next ‘reset’ command or the end of the current AMPL session.
There are a few optional qualifiers of the suffix statement and they may appear
in any order.

The optional ‘type’ qualifier in a suffix statement indicates what values may be
associated with the suffixed expressions, with all numeric values being the
default.

Suffix type Values allowed

None specified Any numeric value

Integer Integer numeric values

Binary Qor1l

Symbolic Character strings listed in option suffix-
name_table

All numeric-valued suffixed expressions have an initial value of 0. Their
permissible values may be further limited by one or two bound qualifiers of the
form

>= arith-expr

OpfiRisk al

SYSTEMS

<= arith-expr
Where arith-expr is any arithmetic expression not involving variables.

For each symbolic suffix, AMPL automatically defines an associated numeric
suffix, suffix-name_num. An AMPL option suffix-name_table must then be
created to define a relation between the .suffix-name and .suffix-name_num
values, as in the following example:

suffix iis symbolic OUT;
option iis_table “\

0 non not in the iis\
1 low at lower bound\
2 fix fixed\

3 upp at upper bound\

4

Each line of the table consist of an integer value, a string value, and an optional
comment.

The optional /n-out qualifier determines how suffix values interact with the
solver:

In-out Handling of suffix values

IN written by AMPL before invoking the
solver, then read in by solver

ouT written out by solver, then read by
AMPL after the solver is finished

INOUT both read and written, as for IN and
OUT above

LOCAL neither read nor written

Alternating between Models

We have seen earlier how AMPL commands can be set up to run as programs
that perform repetitive actions. In several examples, a script solves a series of
related model instances, by including a so/ve statement inside a loop. The result
is a simple kind of sensitivity analysis algorithm, programmed in AMPL's
command language.

Much more powerful algorithmic procedures can be constructed by using two
models. An optimal solution for one model yields new data for the other, and the
two are solved in alteration in such a way that some termination condition must
eventually be reached. To use two models in this manner, a script must have
some way of switching between them. Switching can be done with previously
defined AMPL features, or more clearly and efficiently by defining separately-
named problems and environments.

OpfiRisk -

SYSTEMS

Named problems

At any point during an AMPL session, there is a current problem consisting of a
list of variables, objectives and constraints. The current problem is named Initial
by default and comprises all variables, objectives and constraints defined so far.
We can define other “named” problems consisting of subsets of these
components, however, and can make them current. When a named problem is
made current, all of the model components in the problem’s subset are made
active, while all other variables, objectives and constraints are made inactive.
More precisely variables in the problem’s subset are unfixed and the remainder
are fixed at their current values. Objectives and constraints in the problem’s
subset are restored and the remainder are dropped.

We can define a problem most straightforwardly through a problem declaration
that gives the problem’s name and its list of components. For example:

problem Cutting_Opt : Cut, Numer, Fill;

A new problem cutting_opt is defined, and is specified to contain all of the
cut variables, the objective Number and all of the Fill constraints. At the
same time, cutting_opt becomes the current problem. Any fixed cut
variables are unfixed, while all other declared variables are fixed at their current
values. The objective Number is restored if it had been previously dropped,
while all other declared objectives are dropped; and similarly any dropped Fill
constraints are restored, while all other declared constraints are dropped.

Any problem statement that refers to only one problem has the effect of making
that problem current.

We can display the current problem by using command ‘problem’:

ampl: model cut.mod;
ampl: data cut.dat;
ampl: problem;
problem Initial;

The current problem is always Initia/ until other named problems have been
defined. The ‘show’ command can give a list of the named problems that have
been defined.

ampl: show problems;
problems: Cutting_opt Pattern_Gen

We can also use ‘show’ to see the variables, objectives and constraints that make
up a particular problem or indexed collection of problems and use ‘expand’ to see
the explicit objectives and constraints of the current problem, after all the data
values have been substituted.

OpfiRisk e

SYSTEMS

Named environments

In the same way that there is a current problem at any point in an AMPL session,
there is also a current environment. Whereas a problem is a list of non fixed
variables and non dropped objectives and constraints, an environment records
the value of all AMPL options. By naming different environments, a script can
easily switch between different collections of option settings.

At the start of an AMPL session the current environment is named Initial and
each subsequent problem statement that defines a new named problem also
defines a new environment having the same name as the problem. An
environment initially inherits all the option settings that existed when it was
created, but it retains new settings that are made while it is current. Any
‘problem’ or ‘solve’ statement that changes the current problem also switches to
the correspondingly named environment, with options set accordingly.

In more complex situations, we can declare named environments independently
of named problems, by use of statement that consists of the keyword ‘environ’
followed by a name:

environ Master;

For a more detailed description of the advance features of AMPL language, users
are referred to the book on AMPL by R. Fourer, D. Gay and B.W. Kernighan and
the AMPL website (www.ampl.com).

OpfiRisk 127

SYSTEMS

Chapter 9: Scripts, Debugging &
Tracing in AMPL Studio

In AMPL studio we can include script file. Prominent among the unique
advantages of AMPL studio are the debugging and tracing features.

Scripts

In Chapter 4, we have already seen the ways of running a script file. A new
script file can be added to a project by right clicking on the script folder of any
project or by choosing to add script file to an active project from the Add to
project submenu under project-menu.

Model Entities Browser .

b7 Warkspace " Scriptworkspace, wanpl " 6 project(s) -~

= diet
+-[Z3 Model
-2 Daka
o Diek2a, dak
(2] Database
i D;ﬁ &dd scripk File ..

A Diek.rdb2. run
A Digk. xls.run
A Diek.rmdb2. run
=] readme. diet. txt
=] diet.cplex_options
] diet. afortmp_options
[&] variables name
[&] Postsolve.crmd
+-F trnlocid i

File Edit Wiew M= Solver EBuild Tools Stochasktic Window Help

Set Active Project r i g E %‘* @

Add To Project Model l
Data
- diet
L+-L|:I Modd Insert Mew Project ... —
--[ZZ Data Insert Existing Project ... 20rip |
o0 Diee2ggat Cuery command
P | e—

To run a script file for the project, the script file (.sa or .run) file first needs to be

=l

opened in AMPL Studio and then by use of it can be run.

OpfiRisk -

SYSTEMS

Debugging and Tracing: step by
step walk through example

We illustrate the debugging feature by use of an example. We consider the
example ‘stoch’ present under AmplStudio Modeling System
1.6.J\Examples\Script.

1. We load the workspace Scriptworkspace.wampl and consider the project
stoch.

Madel Entities Browser E]

».Z) Workspace " Scriptworkspace . wampl " 6 projectis)
+- 4 diet

I trnlocld

I trnloc

,e

7 egypt2

I ocut

- [H-[E

[Z] Fileview B Modehiew | T8 Salverview |

2. We load the stoch.run file by double clicking on it.

OpfiRisk -

SYSTEMS

£ T AmpIStiidio = [stoch.rin]

EFMB Edt Wiew Project Solver Buld Tools Stochastic Window Help

EREICT- DR 8 FEE:
I5E i x
b2 Workspace: " Scriptworkspace wampl " 6 project(s) e
- o diet # STOCHASTIC PROGRAMMING PROELEM
- trrlactd # USING BENDERS DECOMPOSITION
f-ir trnlac e R T T e S
Fhir stach
-2 Model
(2 Data
(2] Datahase
=3 Script model gtoch.mod;
Wad<toch run data stoch.dat;
[readme. stack.txt))
[variables # Needs licence for #variables » 300
[& variables? #option solver minos;
[0 Poastsolve, crd option solver afortmp;
B emt?
-t ot
option omit_zero_rows 1;

t displ .0ooont;
@ Filebiew | ™2 Model/iew B8 Solvetien OFLish C1Spiay £ps

x

3. The script file can be run in one go by using Start Debug Script -> Run
script submenu under the Build menu or the =4 button on the script bar.

NN Tools Stochastic wWindow Help

El Build Model Chrl+F7 E A

I

I Rebuild Al F7 ke
M Clean CHASTIC PEOGEAMMI

NG BENDERZ DECOME
¥4 SolveProblem F9 bomm e

| Start Debug Script |'§J, Run Script Chr+FS

=+ @o Fs

Load Solukion

Generate MP3 file

H LLE & =

ot

4. To step through the script file use Start Debug Script -> Go submenu from
the Build menu or the £ button from the script bar.

OpfiRisk =

SYSTEMS

0(s® Tools Stochastic Wwindow Help

il Build Model Ctr+F7 A
Rebuild Al = S

3% Cean JCHASTIC PROGRAMM:
- [Wi3 BEWDERS DECOMI

|¥¥) SolveProblem P9 Lo

| Stark Debug Script =] Chr+FS

|'5[} Go F5

pal
[
=
53]
[}
=%
=
el

Load Solution

Generate MPS file

|l m LIE

Homt

AMPL studio then steps through the script file.

[

] Amp[Sttidio = [stoch.run]

EHI& Edit Wiew Project Solver Buld Tools Stochastic Window Help

-2 HE DEE & & A E % 0
‘-X
+.3 Warkspac " Seriptwarkspace.wampl " 6 praject(s) e rE e e e
W o diet # STOCHRSTIC PROGRAMMING PROBELEM
& trocld # USING BENDERS DECOMPOSITION
#or tmloc s e e e e e e e L
= stoch
#-(20 Model
- (22 Data
(2] Database
=3 Script mode] stoch.mad;
P o (= ta stoch.dat;
[readme.
[&] variables # Needs licence for #variables > 300
& variablesz #option solver minos;
[Postsalve cmd option solver afortmp;
o equptz
#F ot
option omit_zero rows 1;

@ Fileiew | ¥ Modeliew 08 Solverview option display sps .000001:

*

AMPL Uersion 2008408422

AMPL Studio Evaluation version

B eeeeate TR kil @ Gl e [1B Tirnis edarreres | B3 Pierdane |

5. When using step by step debugging feature (Step 4) to proceed a single

step (analogous to AMPL’s step command) use Start Debug Script -> Step
T
under Build menu or ¥ button on script bar

OpfiRisk .

SYSTEMS

0 Tools Stochastic Window Help

&l Buid Model Ctrl+F7 A
I [p in PROD} invl[}
' Rebuild Al F7
2 Clean n FAP default Inf:
|## Solve Problem Fo [1..50%} { printf !
| Start Debug Scripk
|{‘F Step F10
Load Solution 1 Mext Fi1
Generate MPS file =i Stop Fiz

AMPL studio then processes one step at a time.

&1 AmplStudio - [stoch:run]
ﬂFiIe Edit View Project Solver Buld Tools Stochastic Window Help

DE&- 2 HBE &R & & A | ENER VR TIE .
ser i

¥.3) Workspace " Scriptwarkspace.wampl " 6 projsct(s) e o S R
o diet # STOCHASTIC PROGRAMMING PROBLEM
#a tmloctd # USING BEMDERS DECOMPOSITION
+4r tmloc f: crEs RGeS R B AR
= stoch

(20 Madel

[Data

(2] Database
=23 Seript model stoch.mod;

data stoch.dat;

[readme, stack ket

1] variables # Needs licence for #variables > 300
] wariables? #option solver mines;
18] Postsalve.cnd SMoption solver afortmp:

% eqypt2

ER T

option omit_zers_rows 1;

@ Fileiew | ™12 ModeMiew 08 Solvertiow Eleindicplepps (000001

* [AHPL Version 26040422

AMPL Studio Evaluation version

6. To step past a compound statement (analogous to AMPL’s next
command) rather than into it, use Start Debug Script ->Next under Build

1}

menu or use button on the script bar.

OpfiRisk o

SYSTEMS

E0[(s® Tools Stochasktic Wwindow Help
El Buid Model Ctr+F7 E A
p in PROD} inwvl([g

Rebuild all F7
5 Clean GAP default Infi
|#% Solve Problem Fa 1..50} { printf '

| Start Debug Scripk

{# Step F10
Load Salution () et F11
izenerate MPS file =z Stop Fiz

|

AMPL studio then just steps past the compound statement (For loop in
the screen shot)

[’

E(] AmplStudio = [stoch. |’

@F\\e Edt View Project Solver Buld Took Stochastc Window Help

-2 HB DEE & &4 i % R
el Entites Browser g 1= if t = 1 then Sellllp].val else 3elllp,t,s].vals
b2 Workspate " Scriptworkspace. wampl " 6 projectis) param INV {p in PROD, t in 1..T, = in 3CEN}
- oA dik 1= if t = 1 then Invl[p].val else Inv[p,t,s].val;
-7 trrloctd
- brmloc {5 in SCEN} {
- stoch printf "BCEMARIO ¥shn', s:
+ 20 Modsl display {p in PROD, t in 1..T}
#- (3 Data MARE[p,t.s], SELL[p,t,s], INV[p,t.s]):
(2 Database }
=23 Serint
A stochurun
[readme stack.tt display Make;
1] variables display Inv;
1] variahles? display Jell:
] Postsolve.and
T eyt display Expected Profit;
IR T

5] Fieiew B biodelyiew | T Salveriiew

x

4 20800 6580 2008
[coils,*,]

: BASE HIGH LoOW =

2 1733 8 17133

3 440 [

4 k200 1858 4200

Inv [bands,x,*]

: BASE HIGH LOW B
2 6 100 @
[coils,*,]

: BASE HIGH LOW :=
2 20 0 20

7. To see the value of any variables or parameter double click on the
variable or parameter name in the script file. AMPL studio displays its
value in Output console as well as in the script file.

OpfiRisk =

SYSTEMS

a

D@ &/HB +& CRE & & A 15 % Foda
i s x
[E] dlist cplex_aptions] solve Sub;
T[] diet.Afortrnp_options printf "~n";
[variables name
&) Postsabve, cmd if Btage2 Profit { Min_Btage? Profit - 0.00001 then
4 trloctd 2 AP = min (GAP, Min Stagel Profit Stage? Fioft = 39919
- tnloc option display_leol 0; #
=L stoch display GRP, Make, 3ell, Inv;
+-(20 Model let nfUT := nClT + 1;
+- [Data let cut_type[nCUT] := "polnt";
(2] Database let {t in 2..T, s in SCEN} time_price[t,=,nCUT] := Time[t,s].dual;
=2 Seript L let {p in PROD, s in 3CEM} balZ_price(p,s.nCUT] := BalanceZ[p,s].dual;
A stachun 1 let {p in FROD, t in Z..T, 5 in 3CEN}
[readme.stack.tat sell_lim_price(p,t,s.nCUT] := 3ell[p,t,s].urc;
[variatles
& variatles2 | else hreak;
[0 Pastsolve, omd I
-5 eqypty {v] printf "~nRE-S0LVING MASTER PROBLEMnnn';

| 15 Fieien | ™3 Modehew | & Solveivien

|~ |3 u5ae 8 4500
‘ 4 b208 1050 4200

Expected_Profit = 505648
ITERATION 1
Presolve eliminates @ constraints and 1 variable.
Adjusted problen:
G4 variables, all linear
27 constraints, all linear; 84 nonzeros
1 linear objective; 54 nonzeros.
FortHP 3.2j: LP OPTIMAL SOLUTION, Objective = 399192
| |Hin_Stage2 Profit = Infinity
GAP = Infinity
‘ Stage2 Profit = 399192

8. At any time to stop stepping through the script file use Start Debug Script

-> Stop under build menu or the # button on the script bar.

NN Tools Stochastic Window Help

]l Build Model Chrl+F7 A
Febuild All F7
3 Clean ds licence for &
= oh Solver minos:
|#% SolveProblem F9 n solver afortmp,
| Stark Debug Scripk
i Step F10
Load Solution H1 Mext Fi1
Generake MPS file | E Fiz |
| ”] opti

AMPL studio processes the complete script file and displays the final
results.

OpliRisk o

coils 4 LOV k280 k208

i
RE-SOLUING MASTER PROBLEM

Preselve elininates @ constraints and S4 variables.
Adjusted problen:

7 wariables, all linear

4 constraints, all linear; 11 nonzeros

1 linear objective; 7 nonzeres.

ForthP 3.2z LP OPTIMAL SOLUTION, Objective = 585707.7143

Bl Fle EdR View Frojed Sobver Buld Tok Fochsstic Widow kel &
D - SR 2f 00 DAY 68 A5 BE% EBEF I |
* (i)
- diet. cpiex_otions ~ calve Sub;
[diet. Afertwp _options printf "“n";
[varizbles name : g 3 g
[&) Pastsobve.crd if Stage? Profit < Min_Stage2 Profit - 0.00001 then {
[rrloctd let GAP i= min (GAP, Min_Stage2 Profit - GtageZ Profit);
& tloc an display_lcol 0;
= stach 4 disploy OAP, Make, Sell, Inv:
(21 Model let nCUT := nCUT + 1: f
7 [Data let eut_type[nCUT] := "point"; 3
(23 Database let {t in 2..T, = in SCEN} time_price[t,s,nCUT) := Time[t,s].dusl;
= (2 Siript L let {p in PROD, s in SCEM} bal2_price[p,s,nlUT] := Balance2[p,s].dual;
W3t let {p in PROD, t 1n 2..T, = in SCEN}
[readme stack bt sell_lim_price(p.t.s.nCUT] := 8ell[p.t.s].urc:
[varisbles
& varisblesz LY glga break;
& postsive.cnd (A
(v agypt2 v printf "~nRE-SOLVING MASTER PROBLEMnn';
b4
= coils 2 LOW 2528 2588 20 [t__
coils 3 BASE huBA 4508 L]
coils 3 LOW huga hs8e [!]
coils 4 BASE 4208 4200 L]
coils 4 HIGH 1858 1858 [!]
[!]

Cutput

[Console rE[-, Debug | @ Sohtion | [Tringibemory | %, Dipiay |

[amek |

For Help, press Fi
L

Ik

Appendix A: Installation and
Licensing

Users should follow the step by step procedure as illustrated by screenshots
below:

5 AmplStudio Modeling System| 1. 6. J'setup

Chooze ingtallation language:

Cutch [Metherlands

Englizh [Lnited Statez]
Ezperanto

French [France]
German [Germany]
Pulish

Ruszzian

— Ghiogt [nztaller YWizard

l Mext = I[Cancel

OpfiRisk .

SYSTEMS

o AmplStudio Modeling System 1-6.J'setup

Welzome to the AmplStudio Modeling System 1.6.] Setup program. Thiz program will inztal
AmplStudio Modeling System 1.6.) on vour computer,

[t iz strangly recommended that you exit all Windows programs before running this Setup
pragram. Chck Cancel to quit Setup and cloge any programs pou have running. Chck Mest to
cohtinue with the Setup program.

WARMIMG: Thiz program iz protected by copyright law and inkernational treaties.

[Inautharized repraduction or diztribution of this pragram, or any portion of i, may resulk in

gevere civil and criminal penalties, and will be prozecuted to the masimunm extent pozzible
under law.

— Ghozt [nztaller YWizard

< Back]I Mext = I[Cancel]

o AmplStudio Modeling System 1°6.J'setup

Pleaze clozely read the following licenze agreement. Do wou accept all the termz of the following
licenze agreement?

Lizenze Agreement

Thiz licenze relates to all the Software supplied by OptiRizk-spstems including executable
programs, documentation, and supporting files [the Products] and this document sets out the
termz and conditions relating to pou [the Licenzee) and pour uge of these Products. By

inztalling and uzing the product vou accept the terms of this icense az part of the install
process.

'ou require a wzer licensze to use the Software under the fallowing terms;

1 The Software rmust not be installed or used an more than one complker wnrkstatlnn at any u

[RSPPURVE 'UIVENN I SNSRI TN N A St [R L B T [

Ao o

[Jives, | agree with all the terms of thiz license agreement

— Ghiogt [nztaller YWizard

OpfiRisk 137

SYSTEMS

|'|‘:-E| Ampl5tudio Modeling System 1. 6. J'setup

Pleaze closely read the following license agreement. Do vou accept all the terms of the following
license agreement™?

Lizenze Agreement

Thiz licenze relates ta all the Saoftware supplied by OptiRisk-zostems including executable
programs, documentation, and zupparting files [the Products] and this document sets out the
terms and conditionz relating to you [the Licenzee) and vour uge of these Products. By

inztaling and using the product you accept the terms of this license as part of the instal
pIOCEss.

Y'ou require a uzer license to use the Software under the following terms;

1 The Saoftware muzt not be installed or uzed on more than one computer workstation at any M

JESSPPURPEES RN f SRRSO [N | 5O R U SR [1§ U AU [U) U Y B T

[¥]¥es, | agree with all the berms of this license agreement

— Ghozt [nstaller YWizard

[< Back][Mext =][Canicel]

|'|‘:-E| AmpiStirdio Modeling System . 6. J'setup

Irmpartant information about Ampls tudio Modeling System 1.6..

AMPL-Studio application demo wersion ver. 1.6.). Build: 20070320,
Ewpires on 30 May 2007

— Ghozt [nztaller Wizard

< Back]I Mext = I[Cancel

OpliRisk

SYSTEMS

138

|I'|'|:-EL Ampl5tudio Modeling System 1. 6. J'setup

Select the destination folder where vou want ta inztall AmplStudio Maodeling System 1.6.0. Ta
inztall ko a different location, click Browse, and select anather folder.

Inztallation falder

C:Program Files*AmplStudio bModeling System 1.6.J |[Browse...]

Space required on your hard dizk: B0.77 MB [available: 3.04 GB]

— Ghozt [metaller YWizard

< Back]k M ext > J[Cancel]

I AmplStudio Modeling System 1.6 J'setup

Jeseipen

Criztarn Full inztallation.

— Ghost [nstaller YWizard

< Back]I M ext I[Cancel

OpliRisk

SYSTEMS

139

|'E AmplStudio Modeling System 1. 6. J'setup

D ezcription

Custom ingtallation.

— Ghost [nstaller YWizard

< Back]I Mext » I[Cancel]

|I'|'§.L Ampl5tudio Modeling System 1-6.J'setup

A — : Description
o = | A pplication [28.61 ME] F

-- [Help [compiled viewlets] [14.81 MB) This: file iz required for application.
- [Marwal [7.91 ME]
(- [#] Example [9.44 MB]

Space required an your hard dizk: 4596 MB [available: 3.04 GE]
— Ghost Installer wizard

[< Back]I Mext » I[Cancel

OpfiRisk 1“0

SYSTEMS

|I'|'|:-EL Ampl5tudio Modeling System 1. 6. J'setup

L

Select program group:;

AmplStudio Modeling System 1.6.) |

Accezsones

Administratiee Tools
Advanced el ook, Proceszor
America Online

AntiFirewmal

BBC Alerts

BitS pirit %3

Broadcom

DC++

Diell

Dell Accessores

Dell Games

Dell QuickSet v]

Ghozt Installer \Wizard

[< Back]I fext I[Cancel]

|'|‘:-E| AmpiStudio Modeling System™. 6. J'setup

Yau are now ready tainstall AmplStudio Modeling System 1.6..

Fresz the Mest button to begin the installation or the Back button to re-enter the installation
iriforrnaticn.

Ghost Installer wizard

< Back]I Mext = I[Cancel

OpfiRisk o

SYSTEMS

|'.‘;.E' AmplStudio Modeling System™. 6. J'setup

Pleaze wait, AmplStudio Modeling System 1.6.0 inztallation iz in progress.

[f wou want ta interript installation process, press the Cancel button, But in thiz caze caorect
working of the program iz nok guaranteed.

Copying file...
C:AProgram Files'AmplStudio Modeling Systern 1.6.J%B inAmplStudio. exe

(§ER]

— Ghiost [nztaller YWizard

Cancel

||'|‘:||E| Ampl5tudio Modeling System 1.6 J'setup

AmplStudio Modeling System 1.6.0 has been successfully installed.
Prezs the Finizh button ta exit Setup program.

..

[] Run AMPLStudic

— Ghozt [nztaller Wizard

OpfiRisk e

SYSTEMS

	Cover_AmplStudio.pdf
	OptiRisk Systems

