

OptiRisk Systems

AMPL Studio User Manual

Last Update
24 April 2008

1

OptiRisk Systems

Using AMPL Studio

2

Contents

Chapter 1: Acknowledgements of Contributions.................. 5

Chapter 2: Scope and Purpose ... 6

The Scope... 6
The Purpose.. 6

Chapter 3: Directed Reading .. 7

Chapter 4: Overview of AMPL Studio 8

AMPL Studio Main Window ... 8
Menu Bar Commands...10
Tool Bar Buttons..16
Execution and Debugging Tool Bar Buttons..17
Workspace..18
Editing Area ..21
Console ..21
AMPL Studio – Basics ...24
File Types ...24

Working in AMPL Studio ... 25
Opening an Existing Workspace ..25
Creating a New Workspace...28
Inserting an Existing Project into the Workspace ..29
Adding a New Project into the Workspace..32
Activating the Project...34
Selecting the Solver ...37
Setting the Solver Options..38
Build the Model ...42
Solving the Problem...44
Viewing Results ...45
Solving the project with the Script...48
Setting the AMPL Studio Options...49
Using online help...50
Terminating the AMPL Studio..50

Chapter 5: Introducing AMPL through AMPL Studio 51

Introduction to Models for Linear programming ... 51
Fundamental Components of AMPL linear programming Model 51

Sets..52
Parameters ...55
Variables...56
Objectives...57
Constraints ...58

Stochastic Extension to AMPL: SAMPL ... 59

Chapter 6: A Step-By-Step Walk Through Example............ 60

3

A Simple Real World Problem ... 60
Formulating the Problem into Mathematical Form .. 60

Identify the Objective Function ...61
Identifying the Constraints ...61

Translating the Mathematical Problem into AMPL Model 62
Using AMPL Studio to Solve the Problem. .. 62

Now the AMPL model is ready for the problem. Now you open the AMPL studio....62
Create Workspace ...62
Create a Project ..64
Create an AMPL Model file..66
Solve and Display Results...70

Enhance to Data Separated project... 71
Creating Data and Model Files ..71
Solve and Display Results...74

Chapter 7: Connecting to a Database; Importing and
Exporting….. 75

Creating the Database ... 75
Importing data from tables... 82

Reading parameters only..84
Reading a set and parameters ..84
Establishing correspondences ...85
Reading other values ...86

Exporting data into tables .. 87
Writing rows inferred from the data specifications ..88
Writing rows inferred from a key specification..90

Importing From and Exporting To the Same Table....................................... 91
Importing and exporting data using two table declarations..................................92
Reading and writing using the same table declaration...94

Index Collections of Tables and Columns... 95
Indexed collections of tables...96
Indexed collections of data columns..97

Standard and Built-in Table Handlers .. 98
Solve and Display Results... 100

Chapter 8: Advanced Features of AMPL 102

Modelling Commands... 102
Options...102
Setting up and solving models and data ..103
Modifying Data ..103
Modifying models ..104
Changing the model: fix, unfix; drop, restore ...104
Relaxing Integrality..105

DISPLAY Commands .. 105
Browsing through results: display command ..105
Other output commands: print and printf ..109
Related Solution values ..110
Other display features for models and instances...111
General facilities for manipulating output...114

4

Command Scripts... 115
Running scripts: include and commands ..115
Iterating over a set: the ‘for’ statement ...116
Iterating subject to a condition: the repeat statement116
Testing a condition: the ‘if-then-else’ statement ...117
Terminating a loop: break and continue ..117
Stepping through a script: step, next, skip...117
Manipulating character strings ..118

Interactions with Solvers .. 119
Presolve..119
Retrieving results from solvers..121
Exchanging information with solvers via suffixes ..124

Chapter 9: Scripts, Debugging & Tracing in AMPL Studio 128

Scripts .. 128
Debugging and Tracing: step by step walk through example 129

Appendix A: Installation and Licensing 136

5

Chapter 1: Acknowledgements of
Contributions

AMPL Studio and AMPL components have been designed and developed by Dr
Mustapha Sadki and are the property of Datumatic Ltd UK.

AMPL Studio and AMPL components have been produced through a business
partnership between Datumatic Ltd and UNICOM Consultants, trading as
OptiRisk Systems, who are the distributors for AMPL Studio.

We would like to thank Dr Patrick Valente who has worked closely with Dr
Mustapha Sadki to design and implement the Stochastic Extensions of AMPL
known as SAMPL, which is embedded within AMPL Studio.

We similarly would like to acknowledge Professor Robert Fourer of Northwestern
University and Dr David Gay, formerly of Lucent Technologies for their invaluable
advice and comments in the realisation of AMPL Studio.

We thank Mr Frank Ellison who is the principal architect of FortMP; he has
implemented AMPL driver for FortMP. We acknowledge the help of Dr Bob Bixby,
Dr Irv Lusting and Mr Marc Marshall of ILOG for making the business
arrangement which enables us to resell CPLEX with AMPL and AMPL Studio.

We extend our thanks to Professor Antonio Alonso Ayuso of the University of Rey
Juan Carlos Madrid and Dr Cormac Lucas of Brunel University, for their extensive
testing of the system and valuable feedback.

Other Acknowledgements: --

• The Computational Optimisation and Modelling Group is now part of
CARISMA: The Centre for the Analysis of Risk and Optimisation Modelling
Applications, Brunel University, London (UK).

• AMPL Studio is a trademark of Datumatic Ltd (UK).
• AMPL is a trademark of AMPL Optimization LLC (USA).
• FortMP ™, FortSP™ are trademarks of UNICOM Consultants, trading as

OptiRisk Systems.
• CPLEX™ is a trademark of ILOG Inc.

Dr Gautam Mitra, Dr Mustapha Sadki, Dr Kula Kularajan, and Dr Belen
Dominguez Ballesteros.

January 2005

6

Chapter 2: Scope and Purpose

The Scope

This document is designed to serve both as a user guide and as a reference
manual.

We assume the user of AMPL Studio has a basic understanding of Linear
Programming (LP) and some experience of using AMPL, which is connected to an
appropriate solver, such as FortMP, CPLEX or MINOS. In this manual, we first
introduce basic concepts of using a graphical user interface (GUI); the GUI
incorporates the ‘look and feel’ as well as a conceptual structure, which closely
resembles Microsoft’s approach to a ‘studio’ environment.

The Purpose

The purpose of this manual is to introduce this modelling studio environment to
an end user, analyst who can create, maintain and revise AMPL models within
the studio environment.

This manual does not provide an introduction to LP modelling. For an
introduction to LP modelling, the reader is referred to

(a) …..CARISMA and OptiRisk Systems lecture notes.
(b) …..Text Books by Gautam Mitra (GM), Paul Williams (PW) and Linus Schrage

(LS).
(c) AMPL: A Modeling Language for Mathematical Programming prepared by

Robert Fouer (Northwestern University), David M Gay (AMPL Optimization
LLC), Brian W Kernighan (Princeton University), THOMSONS, BOOKS, COLE,
USA.

(d) Stochastic Programming Lecture Notes, Copyright. CARISMA and OptiRisk
Systems.

7

Chapter 3: Directed Reading

The user of AMPL Studio first needs to study the installation and licensing
procedure, which is explained in Appendix A. Chapter 4 contains an overview of
AMPL Studio; the essential explanation of the main window containing menu
bars, tool bars, also workspaces including file view, model view, edit area, status
bar are explained. The basic aspects of navigating around and the method of
working within the AMPL studio are explained.

A simple outline and explanation of the AMPL modelling language is given in
Chapter 5.

In Chapter 6, a step-by-step work through tutorial is provided and the concepts
of Workspace, Projects, Model File, simple data connection solution and display
of results are illustrated. Chapter 7 explains the connectivity with data and
databases; input and output of scalar data items and data table are explained.
Chapter 8 describes the advanced features of AMPL language. Chapter 9 outlines
scripts, debugging and tracing features of AMPL Studio; the step through
debugging is a uniquely attractive feature of the studio.

8

Chapter 4: Overview of AMPL
Studio

AMPL Studio Main Window
When you launch AMPL Studio, the Main window appears. All tasks and
commands for using AMPL Studio are carried out from this window. Figure 4.1
shows the Main window with three opened files, steel.dat, steel.mod and
diet_solution.txt.

Figure 4.1: AMPL Studio Main Window

If you have a mouse with a wheel between the two buttons, you can use
the wheel to scroll up and down.

• Menu Bar provides various menu commands to choose from, such as
Save in the File menu, and to display dialog boxes to perform various

tasks. Certain menu commands, followed by a � image on their right hand
side, have their own sub-menu commands.

9

e.g.

Figure 4.2: AMPL Studio Sub Menus

The Add To Project Command menu has five sub command
menus, Model, Data, Table Definition, Script and Query
Command.

• Tool Bar provides frequently used command buttons.

• Execution Tool Bar buttons is used for executing the Models, Projects
and Scripts.

• Work Space contains a notebook with three pages, FileView,
ModelView and SolverView.

FileView displays project tree structures containing all the files related
to each project. The project files are arranged under Model, Data,
Database and Script containers. It also displays stand-alone models
and scripts.

ModelView displays the various model components, such as
Parameters, Sets, Variables, Constraints, Problems and
Objectives in separate containers for easy access. Any particular
information can be displayed by clicking on it and diverse parts of the
solution.

SolverView is the sane as ModelView, with the difference that it
displays what solver see after presolve.

• Editing Area displays opened model, data, database, script, and Solution
files. New files can be created and any existing files can be edited in this
area. You can open more than one file in this space. The opened files are
displayed in separate panels with the file name appearing in the title bar.

• Output Notebook has five tabs to display AMPL Console Messages,
Debug Information, Solution Files, Timing and Memory Information,
and Display all other information. By default AMPL studio will display the
most appropriate window for the user action, but the user can switch to
another window by clicking on the tab at the bottom of the Output
Notebook.

10

• Status Bar displays messages concerning the execution status of AMPL
Studio.

• Line and Column displays line and column number of the cursor location
in the active document in the editing area.

In the graphic interface Menu Bar, Tool Bar, Execution Tool Bar,
Work Space and Output Area are dockable:

A dockable element can be detached from, or floated in its own frame
window or it can be attached to, or docked at any side of its parent
window.

Menu Bar Commands
File Menu

Edit Menu

11

View Menu

Project Menu

Solver Menu

Build Menu

Tools Menu

Stochastic Menu

12

Window Menu

Help Menu

Figure 4.3: Overview of Commands in the Menu Bar

Some of the menu items have a keyboard shortcut, indicated on the right-hand
column of the menu. For example, Keyword Save has the shortcut Ctrl + S,
which means that you can save the active document by clicking the Ctrl key and
the S key at the same time.

The following tables (Table 4.1 - Table 4.10) list the command found in the
menus and provide a description of each command.

Command Description

New Creates a new file.

Open Opens a file.

Close Closes an opened document.

New Workspace Creates a new workspace

Open Workspace Opens an existing workspace

Save Workspace Saves the current workspace

Close Workspace Closes the current workspace

Save Saves the current edited file.

Save As Saves the current edited file with a new name.

Save All Saves all the open files.

Print Prints a document.

Print Setup Selects a printer and printer connection.

Send Mail Sends the active document through electronic
mail.

Recent File Displays a list of previously opened documents.

Recent Workspaces Displays a list of previously opened workspaces

Exit Exits AMPL Studio.

13

Table 4.1: File Menu Command descriptions

Command Description

Undo Undoes an unlimited number of nested actions in the
current editor.

Redo Redoes previously undone actions in the current
editor (unlimited).

Cut Deletes the selected text from the editor and puts it
in the clipboard.

Copy Copies the selected text, from the editor or output
window, to the clipboard.

Paste Pastes from the clipboard to the current editor.

Send Email the opened file.

Select All Selects the entire content of the current editor.

Find Displays the Find dialog box for specifying search
criteria.

Find Next Finds the next occurrence of the text displayed in the
Find box.

Find Previous Finds the previous occurrence of the text displayed in
the Find box.

Replace Displays the Replace dialog box for specifying search
criteria and replacing specified strings.

Read Only Set the active document as read only file.

Bookmarks Bookmark a script line.

Bookmarks (#) Bookmark a line with the number.

Goto Bookmark (#) Go to the bookmark number.

Table 4.2: Edit Menu Command descriptions

Command Description

Status Bar Displays the Status Bar.

Workspace Displays the Workspace.

Output Displays the Output Notebook.

Script Bar Display the Script Execution Toolbar.

Full Screen Displays the active file in full screen mode.

14

Prompt Command AMPL command line

Table 4.3: View Menu Command descriptions

Command Description

Set Active Project When several projects are open, remembers the
project selected in the Project Tree as the active
one.

Add To Project To insert a model, data, database or script files to the
project.

Ampl Settings To change the AMPL settings.

Insert New Project To insert a new project into the opened workspace.

Insert Existing Project To insert an existing project into the opened
workspace.

Table 4.4: Project Menu Command descriptions

Command Description

Minos To select the Minos Solver as a default Solver.

CPLEX To select the CPLEX Solver as a default Solver.

FortMP To select the FortMP Solver as a default Solver.

CPLEX Settings To Change the CPLEX Solver settings.

FortMP Settings To Change the FortMP Solver settings.

Table 4.5: Solver Menu Command descriptions

Command Description

Build Model To build the model.

Build Data To build the data

Rebuild All To build the all models and data

Clean To clean all read information from the memory.

Solve Problem Solve the read problem.

Start Debug Start to debug the script.

Save Problem Save the current problem.

Save Solution Save the solution.

Load Solution Load the solution.

Table 4.6: Build Menu Command descriptions

15

Command Description

Customize [Future Functionality]

Options Displays the Default Options dialog box that allows
changing the AMPL Studio options.

Table 4.7: Tool Menu Command descriptions

Command Description

Check Syntax This command performs the syntax check

of a model written using SAMPL’ s

extended AMPL keywords for stochastic

programming.

Solve SPInE The current model is parsed, and then

solved using SAMPL’ s solver. The

solver settings, including the

solution types, can be modified using

the Solver options… command.

Generate An SMPS representation of the current

model instance is generated using this

command. By default, SAMPL/SPInE

generates Windows/DOS text files. This

may not compatible with other UNIX

based solvers. The advanced option

UnixOutput described in the SP

Generator options (SPG) section

enables the user to change the output

text format to UNIX.

Solve Current This command solves the latest SMPS

instance generated for the current

model. If such instance is not

available, then this command is

equivalent to the Solve SAMPL command.

Generate Options This command displays the Generator

Options dialog box. Settings for the

generator of SMPS instances can be

modified using this command.

Solver Options This command displays the Solver

Options dialog box. Settings for

SAMPL/SPInE’ s solver can be modified

using this command.

Report Options This command displays the Reporting

Options dialog box. This dialog box

enables the users to change the way

16

SAMPL/SPInE exports the solution

vectors obtained from the solver.

View Options List This command displays the current

settings of the SAMPL/SPInE system.

Advanced users can run this command in

order to manually edit the advanced

options provided by SAMPL/SPInE.

All Sequence This command opens a graphic dialog

box, which displays the structure of

the scenario tree associated with the

current model.

Table 4.8: Stochastic Menu Command descriptions

Command Description

New Window [Future Functionality]

Cascade Displays overlapping panels in the editing area.

Tile Displays panels in the editing area horizontally.

Arrange Icons To arrange icons.

Close All Closes all the windows in the Editing Area

Table 4.9: Window Menu Command descriptions

Command Description

Help Topics To view AMPL Studio Help Topics

Online Opens the AMPL Online help window.

www.ampl.com Go to AMPL web site

About Ampl Studio Indicates the version of AMPL Studio, the OptiRisk-
Systems products used by AMPL Studio, and contains
copyright information.

Table 4.10: Help Menu Command descriptions

Tool Bar Buttons
The following buttons appear in the tool bar:

Button Description

 To create a new blank document

To open an existing document. AMPL Studio displays an Open
File dialog box requesting the file name you wish to open. The

17

file is then displayed in the editing area.

To open an existing Workspace. AMPL Studio displays an Open
File dialog box requesting the workspace you wish to open. The
workspace and their related projects and files will be displayed
in the workspace window.

 To save the active document in editing area.

 To save all the modified files.

 To cut the selection and put it on the clipboard.

 To copy the selection and put it on the clipboard.

 To insert clipboard contents.

 To undo the last action.

 To redo the previously undone action.

 To show or hide the workspace window.

 To show or hide the output window.

 To manage the currently open windows.

 To find the specified text.

 To Repeat the last find text action.

 [Future Functionality]

 To replace specific text with different text.

 To display the active file in full screen mode.

Table 4.11: Toolbar Buttons and Descriptions

Execution and Debugging Tool Bar Buttons
The following buttons appear in the tool bar:

Button Description

 To build a model.

 To build a data.

18

 To solve a problem.

 To reset the project.

 To run script.

 Go.

To step out of a loop in a script and avoid going through
all the iterations.

To go to the next solution of the model or project, or to
the next instruction in stepping mode, or to the next
choice point in ‘stop at choice point’ mode.

 Continue running the script without stepping.

 Watch variable

 To set breakpoints/Marker in the AMPL model or script file.

 To go to the previous breakpoint/marker

 To go to the next breakpoint/marker

 Clear all breakpoints/Markers markers

Table 4.12: Execution Toolbar Buttons and Descriptions

Workspace
AMPL Studio Workspace is divided into three sub windows, FileView,
ModelView, and SolverView. The user can switch between these windows by
clicking on the required tab at the bottom of the Workspace.

The Fileview displays the Workspace Files in the Tree structure.

19

 Figure 4.4: Workspace File View

The ModelView displays the Model Parameters, Sets,
Variables, Constraints, Problems and Objectives information,
which becomes available after the models and their associated data
files are built.

 Figure 4.5: Workspace Model View

20

The SolverView displays Solved Model information, which
becomes available after the model is solved.

 Figure 4.6: Workspace Solver View

21

Editing Area
AMPL Studio allows the user to open many files into the editing area. One can
edit existing files or create new files in the Editable Area using the AMPL Studio’s
text editor. The user can edit multiple files by switching between the Editor
Windows. Also the user can Resize, Minimise, Maximise and close any window.

Console
AMPL studio outputs are divided into Console, Debug, Solution, Timing and
Memory, and Display windows. AMPL Studio automatically displays the most
appropriate window for the user action. The user can switch between these
windows by clicking on the required tab at the bottom of the Output Notebook.

The AMPL console output is displayed in the Console Window.

Figure 4.7: Output Console Window

The Debug results are displayed in the Debug Window.

Figure 4.8: Output Debug Window

22

The Solution files generated by the solvers will be displayed in the Solution
Window.

Figure 4.9: Output Solutions Window

The processing Time and Memory usage of AMPL studio are displayed in the
Timing/Memory Window.

Figure 4.10: Output Timing and Memory Window

All other AMPL Studio output will be displayed in the Display Window.

23

Figure 4.11: Output Display Window

24

AMPL Studio – Basics
This section describes several basic concepts to consider when using AMPL
Studio.

File Types

• Models
Model files contain AMPL statements. A stand-alone model is a model that
can be executed in AMPL Studio without any additional requirements.

• Data files
Large problems are better organized by separating the model of the
problem from the instance data. The instance data is stored in a data file
(or in several data files).

• Projects
AMPL Studio uses the concept of a project to associate a model file with a
number of data files. The model file declares the data but does not
initialise it. The data files contain the initialisation of each data item
declared in the model. The project file then organizes all the related model
and data files. A project provides a convenient way to maintain the
relationship between related files and runtime options for the
environment.

• Scripts
Script files contain AMPL Script, a script language for AMPL. A script
handles different models with their data. The models and data files are
associated in the script itself.

The following naming conventions are used to indicate these different files:

File Extension Description

.mod Used for files containing models.

.dat Used for files containing data
instances.

.sa1 or .run Used for scripts written in AMPL
Script.

.ini Used for project files.

.wampl Used for Workspace files

Table 4.12: File extensions and descriptions

25

In this Chapter and in Chapter 6 we will see how to create project files, associate
model and data files with the project, and then find the solution to the problem
using the project file.

Working in AMPL Studio
The model and data files used in the examples in this manual are distributed with
the product. This way the reader will not have to create these files from scratch,
but just open them once AMPL Studio is launched.

Opening an Existing Workspace
To open existing workspaces do the following

Step 1: Choose the Open Workspace from the File Menu.

Figure 4.13: Open Workspace from the File Menu

26

Step 2: AMPL Studio then displays a standard Open File dialog box in order
to select the file that corresponds to the workspace we want to
open.

Figure 4.14: Choosing AMPL Workspace File

Select from the directory: AMPL Studio Installed Directory/bin
and choose the workspace name Myworkspace.wampl and click
on the Open button.

If you have recently used the workspace, you can
alternatively select it from the Recent Files submenu.

27

The AMPL studio will open the workspace and displays it in the workspace
window as shown below.

Figure 4.15: Opened Workspace in AMPL Studio

28

Creating a New Workspace
To create new workspaces do the following

Step 1: Choose the New Workspace from the File Menu.

File Menu

Figure 4.16: New Workspace from the File Menu

Step 2: AMPL Studio then displays a New Workspace dialog box in order to

enter the Workspace name and the Folder where the workspace will
be created.

 Figure 4.17: New Workspace Dialog box

29

Enter the workspace name as MyFirstAMPLWorkspace and

choose your preferred folder by clicking on the button.

The AMPL studio will open the new empty workspace and display it in the
workspace window as shown below.

Figure 4.18: New Workspace in AMPL Studio

Inserting an Existing Project into the
Workspace
To insert an existing project into the current workspace do the following

Step 1: Choose the Insert Existing Project Menu from the Project

Menu.

Project Menu

30

Figure 4.19: Insert Existing Project Menu from the Project
Menu

Step 2: AMPL Studio then displays a standard Open File dialog box to select

the file that corresponds to the project we want to open.

Figure 4.20: Choosing AMPL Project File

Select from the directory: AMPL Studio Installed Directory/bin
and choose the project file steel.ini and click on the Open button.

31

The AMPL studio will insert the project into the workspace and display it in the
workspace window as below.

Figure 4.21: Inserted Project in the Workspace

The file can be viewed in the Editing area by clicking on the file in the
workspace. For example, clicking on the steel.mod will display the steel.mod
in the Editing Area.

32

Figure 4.22: Viewing the Model file from the Inserted Project

Adding a New Project into the Workspace
To insert a new project into a workspace do the following

Step 1: Choose the Insert New Project Menu from the Project Menu.

Project Menu

Figure 4.23: Insert New Project Menu from the Project
Menu

33

Step 2: AMPL Studio then displays an Open New Project dialog box in order
to specify the new project name and the directory where the
project will be created.

Figure 4.24: Insert New Project Dialog Box

Enter the project name as MyFirstAMPLProject and choose

your preferred folder by clicking on the button.

Also you have the option to add the model and data template files
by choosing the Add template check box. Type the model and data

template files as MYFirstAMPLModel.mod and

MyFirstAMPLData.dat.

Click the OK button to add a new project to the workspace

34

The AMPL studio will insert the project into the workspace and display it in the
workspace window as shown below.

Figure 4.25: New Project View in the AMPL Studio

You can now start to write a new model and data files. Don’t worry about
writing the model and Data file at this stage. Chapter 5 and 6 will cover
this in more detail.

Activating the Project
As you can see the steel project was active () before you add your new project.
When you add the new project AMPL studio assumes the new project is going to
be your active project and displays it as below

35

Figure 4.26: New Project Active AMPL Studio

To set the steel project back to active project, do the following.

Step 1: Click on the Steel Project Node.

Step 2: Right clicking the mouse will display the following menu.

 Figure 4.27: Choosing the Set as Active Project Menu

AMPL Studio will change the steel project back to active project as below.

36

Figure 4.28: Workspace with steel project as active

You can also activate the steel project by selecting the Set Active
Project menu from the Project Menu

37

Selecting the Solver
By default AMPL studio provide three solvers, Minos, CPLEX, and FortMP. You can
choose your preferred solver from one of these solvers. In order to choose
FortMP as your default Solver select the FortMP Menu from the Solver Menu.

 Solver Menu

Figure 4.29: Selecting the FortMP Solver as the default solver

AMPL Studio also has the facility to use the solvers provided at the NEOS server.
To use one of those solver choose the solver from Neos Solvers dropdown

Figure 4.30: Selecting the Neos Solver

38

Setting the Solver Options
CPLEX and FortMP solvers have their own solver settings. You can change these
setting accordingly to suite your project needs. In order to change the FortMP
Solver settings choose the FortMP Settings menu from the Solver Menu.

Solver Menu

 Figure 4.31: Selecting the FortMP Solver Settings

39

AMPL Studio then displays the following FortMP Solver setting dialog box for your
selection.

Figure 4.32: FortMP Solver Settings Dialog Box

FortMP Solver settings are divided into Basic, Simplex, IPM Control,
Tolerance, Maximum Limits, Input/Output, Log Control, MIP Control
and Advanced Control. The detail of these can be found in the FortMP Manual.

CPLEX Solver setting can be done in a similar way.

Some additional options may exist for the solvers, which are not displayed in the
solver settings menu. These options can be added in the solver options file. To
include the solver options file, first go to Options menu and tick Insert file options
in project for additional solver options. A solver options file is then included in
the workspace as displayed on the left hand side of AMPL Studio.

40

Figure 4.33: Selecting the file option for additional solver settings.

41

 Figure 4.34: Modifying solver settings in solver options file.

42

Build the Model
In order to solve the problem the model and associated data files need to be
built. Do the following steps to build the steel project model and data files.

Step 1: Click on the steel.mod file.

 Figure 4.35: Selecting the steel.mod file in the Workspace

Step 2: Click on the button on the Execution Toolbar to Build the Model.

The AMPL Studio reads the model and displays the following
Console Message.

Figure 4.36: AMPL Console message for reading steel.mod file

Step 3: Click on the steel.dat file.

43

Figure 4.37: Selecting the steel.dat file in the Workspace

44

Step 4: Click on the button on the Execution Toolbar to Build the Data.

The AMPL Studio reads the model and displays the following
Console Message.

Figure 4.38: AMPL Console message for reading steel.mod and steel.dat
file

Solving the Problem
Now the Model and Data files are read and the Solver is selected. In order to
solve the problem do the following steps.

Step 1: Click on the button on the Execution Toolbar to solve the

problem.

You can also select the Solve Problem Menu from the Build
Menu.

45

The AMPL Studio will solve the steel problem using FortMP Solver and display the
solution file in the editing area.

Figure 4.39: AMPL Studio Solver Console message and Solution Display

Viewing Results
The user can view various parts of the model and the solution from the
Workspace and their information will be displayed on the display window as
shown below.

Step 1: Click on the ModelView tab on the Workspace.

46

Step 2: Expand the Parameters node and Double Click on the rate

Parameters.

Figure 4.40: Choosing the rate Parameter for Viewing

The AMPL Studio Display Window displays the rate parameters as
below.

 Figure 4.41: Displaying the rate Parameter

47

Step 3: Now Expand the Variable node and Double Click on the Make
Variable.

The AMPL Studio Display Window displays the Make variable value
as shown below.

 Figure 4.42: Displaying the Make Variable

48

Solving the project with the Script
In the previous sections you have solved the steel project. During the Solution
process you have gone through a number of steps like Build Model, Build
Data, Selecting the Solver, etc., to generate the solution. This process can be
automated by creating a script file.

The following steel.sa1 script file was written to automate what we have done
during the previous section. In this case we use CPLEX solver to solve the steel
problem.

Figure 4.43: Writing Script File

Clicking on the button will execute all the AMPL Statements in the script file
and display the results.

49

Setting the AMPL Studio Options
AMPL Studio has various options for you to choose from. In order to update the
AMPL studio options choose the Options Menu from the Tools Menu.

Tools Menu

Figure 4.44: Choosing AMPL Studio Options

AMPL Studio then displays an AMPL Studio options in the following dialog box for
your selection.

 Figure 4.45: AMPL Studio Options Dialog Box

AMPL Studio options are divided into Solve Solution, Save Options,
Workspace and Expand Constraints categories.

50

Using online help
Online help can be accessed from the Help Menu. You need an Internet
connection to access www.ampl.com Menu from Help Menu.

Terminating the AMPL Studio
Selecting the Exit menu from the File Menu will terminate the AMPL Studio
session.

51

Chapter 5: Introducing AMPL
through AMPL Studio

Introduction to Models for Linear
programming

In order to suitably represent the linear programs we make use of mathematical
notations. We call the compact description of the general form of the problem, as
a ‘model’. The fundamental components of a model are:

• Sets

• Parameters

• Variables, whose values the solver is to determine

• An Objective, to be maximized or minimized

• Constraints, that the solution must satisfy

The example below shows a symbolic model:

Given: P, a set of products

 aj = Tons per hour of product j, for each j Є P

 b = hours available at the mill

 cj = profit per ton of product j, for each j Є P

 uj = maximum tons of product j, for each j Є P

Define variables: Xj = tons of product to be made, for each j Є P

Maximize:
j j

j P

c X
∈

∑

Subject to:

(1/)

0 , for each

j j

j P

j j

a X b

X u j P

∈

≤

≤ ≤ ∈

∑

Figure 5.1: A symbolic production model in algebraic form

Fundamental Components of AMPL
linear programming Model

52

Sets

Unordered Sets

The most elementary kind of AMPL set is an unordered collection of character
strings. Usually all of the strings in a set are intended to represent instances of
the same kind of entity.

The declaration of a set need only contain the keyword ‘set’ and a name. For
example a model may declare

set PROD;

to indicate that a certain set will be referred to by the name PROD in the rest of
the model. A name may be any sequence of letters, numerals, and underscore
(_) characters that is not a legal number. A few names have special meanings in
AMPL and may only be used for specific purposes, while a large number of
names have predefined names that can be changed if they are used in some
other way.

A declared set’s membership is normally specified as part of the data for the
model. Occasionally, however, it is desirable to refer to a particular set of strings
within a model. A literal set of this kind is specified by listing its members within
braces:

set PROD = {“bands”, “coils”, “plate”};

This sort of declaration is best limited to cases where a set’s membership is
small, is a fundamental aspect of the model, or is not expected to change often.

Sets of numbers

Set members may also be numbers. In fact a set’s members may be mixture of
numbers and strings, though this is seldom the case. In an AMPL model, a literal
number is written in the customary way as a sequence of digits, optionally
preceded by a sign, containing an optional decimal point, and optionally followed
by an exponent; the exponent consists of a d, D, e or E, optionally a sign, and a
sequence of digits.

A set of numbers is often a sequence that corresponds to some progression in
the situation being modeled, such as a series of weeks or years. Just as for
strings, the numbers in a set can be specified as part of the data, or can be
specified within a model as a list between braces, such as {1, 2, 3, 4, 5, 6}. This
sort of set can be described more concisely by notation 1..6. An addition ‘by’
clause can be used to specify an interval more than 1 between the numbers; for
instance,

53

1990.. 2020 by 5

Represents the set

{1990, 1995, 2000, 2005, 2010, 2015, 2020}

This kind of expression can be used anywhere that a set is appropriate.

The members of a set of numbers have the same properties as any other
numbers, and hence can be used in arithmetic expressions.

Set Operations

AMPL has four operators that construct new sets from existing ones:

A union B union: in either A or B

A inter B intersection: in both A and B

A diff B difference: in A but not B

A symdiff B symmetric difference: in A or B but not both

The following example shows how this work:

ampl:set Y1 = 1990 .. 2020 by 5;

ampl:set Y2 = 2000 .. 2025 by 5;

ampl: display Y1 union Y2, Y1 inter Y2;

set Y1 union Y2 := 1990 1995 2000 2005 2010 2015 2020 2025;

set Y1 inter Y2 := 2000 2005 2010 2015 2020;

ampl: display Y1 diff Y2, Y1 symdiff Y2;

set Y1 diff Y2 := 1990 1995;

set Y1 symdiff Y2 := 1990 1995 2025;

Set membership operations and functions

Two other AMPL operators, ‘in’ and ‘within’, test the membership of sets. As an
example the expression

“B2” in NUTR

Is true if and only if the string “B2” is a member of the set NUTR. The

expression

MINREQ within NUTR

is true if all members of the set MINREQ are also members of NUTR – that is, if

MINREQ is a subset of(or is same as) NUTR.

AMPL also provides ‘not in’ and ‘not within’, which reverses the truth value of
their results.

54

The built in function ‘card’ computes the number of members in (or cardinality

of) a set; for example, card(NUTR),is the number of the members in NUTR.

Indexing Expressions

In algebraic notation, the use of sets is indicated informally by phrases such as
“for all i Є P” or “for t=1,…,T” or “for all j Є R such that cj > 0.” The AMPL
counterpart is the indexing expression that appears within braces { … }. An
indexing expression is used whenever we specify the set over which a model
component is indexed, or the set over which a summation runs. Since an
indexing expression defines a set, it can be used in any place where a set is
appropriate.

The simplest form of indexing expression is just a set name or expression within
braces. For example:

param rate {PROD} > 0 ;

param avail {1..T} > = 0;

References to these parameters are subscripted with a single set member, in

expression such as avail[t] and rate[p].

The names such as t or i that appear in subscripts and other expressions in our

models are examples of dummy indices that have been defined by indexing
expressions. In fact, any indexing expression may optionally define a dummy
index that runs over the specified set.

An indexing expression consists of an index name, the keyword ‘in’, and a set
expression as before. Although a name defined by a model component’s
declaration is known throughout all subsequent statements in the model, the
definition of dummy index name is effective only within the scope of the defining
indexing expression. Once an indexing expression’s scope has ended, its dummy
index becomes undefined. Thus the same index name can be defined again and
again in the model.

As a final option, the set in an indexing expression may be followed by a colon(:)
and a logical condition. The indexing expression then represents only the subset
of members that satisfy the condition. For example:

{j in FOOD: f_max [j] – f_min[j] < 1}

describes the set of all foods whose minimum and maximum amounts are nearly
the same.

Ordered Sets

55

Any set of numbers has a natural ordering, so numbers are often used to
represent entities, like time periods, whose ordering is essential to the
specification of a model. To describe the difference between this week’s
inventory and the previous week’s inventory, for example, we need the weeks to
be ordered so that the “previous” week is always well defined.

An AMPL model can also define its own ordering for any set of numbers or
strings, by adding the keyword ‘ordered’ or ‘circular’ to the set’s declaration. The
order in which we give the set’s members, in either the model or data, is the
order in which AMPL works with them. In a set declared ‘circular’, the first
member is considered to follow the last one, and the last to precede the first; in
an ordered set, the first member has no predecessor and the last member has no
successor.

There are many functions on ordered sets to retrieve some specific members
from the set. Users are referred to AMPL manual or AMPL textbook for further
details.

Parameters

In AMPL a single named numerical value is called parameter. Although some
parameters are defined as individual scalar values, most occur in vectors or
matrices or other collections of numerical values indexed over sets. Parameters
and other numerical values are the building blocks of the expressions that make
up a model’s objective and constraints.

Parameter declarations have a list of optional attributes, optionally separated by
commas:

parameter declaration:

param name aliasopt indexingopt attributesopt ;

The attributes may be any of the following:

attribute:
 binary

 integer

 symbolic

 relop expr

 In sexpr

 = expr

 Default expr
 relop:

 < <= = == != <> > >=

The keyword integer restricts the parameter to be an integer; binary restricts it
to 0 or 1. If symbolic is specified, then the parameter may assume any literal or

56

numeric value, and the attributes involving <.<=,>= and > are disallowed;
otherwise the parameter is numeric and can only assume a numeric value.

The attributes involving comparison operators specify that the parameter must
obey the given relation. The = and default attributes are analogous to the
corresponding ones in set declarations and are mutually exclusive.
Recursive definitions of indexed parameters are allowed, so long as the assigned
values can be computed in a sequence that only references previously computed
values. For example:

param comb ‘n choose k’ {n in 0..N, k in 0..n}

 = if k = 0 or k = n then 1 else comb [n-1,k-1] + comb[n-1,k];

Computes the number of ways of choosing n things k at a

time.

Variables

The variables of a linear program have much in common with its numerical
parameters. Both are symbols that stand for numbers, and that may be used in
arithmetic expressions. Parameter values are supplied by the modeler or
computed from other values, while the values of variables are determined by an
optimizing algorithm. Syntactically, variable declarations are the same as the
parameter declaration defined earlier, except that they begin with the keyword
‘var’ rather than ‘param’. The meaning of qualifying phrases within the
declaration may be different, however when these phrases are applied to
variables rather than to parameters.

Phrases beginning with >= or <= are by far the most common in declarations of
variables for linear programs. For example:

var Make {p in PROD} >=0, <= market[p];

The declaration creates an indexed collection of variables Make[p], one for each

member p of the set PROD; the rules in this respect are exactly the same as for

parameters. The effect of the two qualifying phrases is to impose a restriction, or
constraint, on the permissible values of the variables. Specifically, >= 0 implies

that all of the variables Make[p] must be assigned non negative values by the

optimizing algorithm, while the phrase <=market[p]says that, for each product

p, the value given to Make[p] may not exceed the value of the parameter

market[p].In general, either >= or <= may be followed by an arithmetic

expression in previously defined sets and parameters and currently defined
dummy indices. The values following >= and <= are lower and upper bounds on
the variables.

An = phrase in a variable declaration gives rise to a definition, as in parameter
declaration. Because a variable is being declared, however, the expression to the

57

right of = operator may contain previously declared variables as well as sets and
parameters.

A := or ‘default’ phrase in a variable declaration gives initial values to the
indicated variables. Variables are not assigned an initial value by := can also be
assigned initial values from a data file.

Finally, variables can be defined as ‘integer’ or ‘binary’.

Linear Expressions

An arithmetic expression is linear in a given variable if, for every unit increase or
decrease in the variable, the value of expression increases or decreases by some
fixed amount. An expression that is linear in all its variables, is called a linear
expression.

AMPL recognizes as a linear expression any sum of terms of the form:

constant-expr

variable-ref

(constant-expr) * variable ref

Provided that each constant-expr is an arithmetic expression that contains no

variables, while var-ref is a reference to a variable. The parentheses around

the constant-expr may be omitted if the result is the same according to the rules
of operator precedence.

Objectives

The declaration of an objective function consist of one of the keywords

minimize or maximize, a name, a colon, and a linear expression in previously

defined sets, parameters and variables. For example:

minimize Total_cost: sum {j in FOOD} cost[j] * Buy[j];

and

maximize Total_Profit:

 sum {p in PROD, t in 1..T}

 (sum {a in AREA[p] revenue[p,a,t] * Sell[p,a,t] –

prodcost[p] * Make[p,t] – invcost[p] * Inv[p,t]);

Within AMPL commands, the objective’s name refers to its value.

Although a particular linear program must have one objective function, a model

may contain more than one objective declaration. Moreover, any minimize or

maximize declaration may define an indexed collection of objective functions,

by including an indexing expression after the objective name. In these cases, we

58

may issue an objective command, before typing solve, to indicate which

objective is to be optimized.

Constraints

The simplest kinds of constraint declaration begins with the keywords subject

to, a name, and a colon. Even the subject to is optional; AMPL assumes

that any declaration not beginning with a keyword is a constraint. Following the
colon in an algebraic description of the constraint, in terms of previously defined
sets, parameters and variables. For example:

subject to Time:

 sum{p in PROD} (1/rate[p])* Make[p] <= avail;

The name of a constraint, like the name of an objective, is not used anywhere
else in an algebraic model, though it figures in alternative “columnwise”
formulations and is used in AMPL command environment to specify the
constraint’s dual value and other associated quantities.

Most of the constraints in large linear programming models are defined as
indexed collections, by giving an indexing expression after the constraint name.

The constraint Time, for example, is generalized in the subsequent example to

say that the production time may not exceed the time available in each

processing stage s.

subject to Time{s in STAGE}:

 sum {p in PROD} (1/rate[p,s])* Make[p] <= avail[s];

The indexing expression in a constraint declaration should specify a dummy index
for each dimension of the indexing set.

AMPL’s algebraic description of a constraint may consist of any two linear
expressions separated by an equality or inequality operator:

linear-expr <= linear-expr

linear-expr = linear-expr

linear-expr >= linear-expr

While it is customary in mathematical descriptions of linear programming to place
all terms containing variables to the left of the operator and all other terms to the
right, AMPL imposes no such requirement. AMPL also allows double inequality
constraints. The permissible forms for a constraint of this kind are:

const-expr <= linear-expr <= const-expr

const-expr <= linear-expr <= const-expr

59

where each const-expr must contain no variables. The effect is to give

upper and lower bounds on the value of the linear-expr.

The example below gives the AMPL model and data files for the symbolic
algebraic model considered in the beginning of this chapter.

set P;

param a {j in P};

param b;

param c {j in P};

param u {j in P};

var x {j in P};

maximize Total_Profit: sum {j in P} c[j]* X[j];

subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;

subject to Limit {j in P}: 0 <= X[j] <= u[j] ;

Figure 5.2: Basic production model in AMPL

set P := bands coils;

param: a c u :=

 bands 200 25 6000

 coils 140 30 4000 ;

param b := 40;

Figure 5.2: Production model data file in AMPL

Stochastic Extension to AMPL:
SAMPL

In addition to supporting AMPL language syntax for deterministic problems, AMPL
Studio has an extension for stochastic programming called SAMPL, available as a
separate package.

SAMPL has additional syntax and commands. Users are referred to SAMPL
manual for more details.

60

Chapter 6: A Step-By-Step Walk
Through Example

Now you know the basics of AMPL studio. Now we will go through the steps
involved in solving a simple real world problem of National Insurance Associate’s
(NIA) investment problem using AMPL studio. Before we open the AMPL studio
the problem needs to be analysed and translated into mathematical notation, and
then into an AMPL model. The following steps go into detail.

A Simple Real World Problem
National Insurance Associates carries an investment portfolio of stocks, bonds
and other investment alternatives. Currently £200,000 of funds is available and
must be considered for new investment opportunities. The four stock options
National is considering and the relevant financial data are as follows:

Stock

A B C D

Price per Share £100 £50 £80 £40

Annual rate of return 0.12 0.08 0.06 0.10

Risk measure per £ invested 0.10 0.07 0.05 0.08

Table: Financial Data

The risk measure indicates the relative uncertainty associated with the stock in
terms of it realising the projected annual return: higher values indicate greater
risk.

National’s top management has stipulated the following investment guidelines

1. The annual rate of return for the portfolio must be 9%

2. No one stock can account for more than 50% of the total sterling investment

They request you to find the investment decisions.

Formulating the Problem into
Mathematical Form
In this problem we need to find the number of stocks A, B, C and D need to be
bought with the provided guidelines and with minimum risk.

61

Now this problem needs to be presented in the mathematical form. This will
involve three steps

(1) Formulate an LP that minimises risk

(2) Identifying the Decision Variables

The decision that National faces is to decide how much of each
stock to buy.

Let x1 be the number of shares of stock A bought

 x2 be the number of shares of stock B bought
 x3 be the number of shares of stock C bought
 x4 be the number of shares of stock D bought

(3) Determine the values of these four variables in order to minimise
National’s risk

Identify the Objective Function
In our example we wish to minimise risk. We risk £0.10 on each pound invested
in stock A, similarly for stock B the risk is 0.07 per pound, for stock C it is 0.05,
and for stock D the corresponding risk is 0.08.

Thus if we buy x1 shares of stock A, we have a risk exposure of 0.10*100*x1 since
each share costs £100. Similarly, if we buy x2 shares of stock B we risk
0.07*50*x2, while for stocks C and D the risk measures are 0.05*80*x2 and
0.10*40*x2. Therefore this leads to the following quantity that we wish to
minimise

 Risk =0.10*100 x1 + 0.07*50 x2 + 0.05*80 x1 + 0.10*40 x2

Identifying the Constraints
The first constraint concerns the budget. That is we can’t invest more than the
money we have available. This leads to the following constraint

 100* x1 + 50* x2 + 80* x3 + 40* x4 ≤ 200000

The second constraint concerns the rate of return of the portfolio and is as
follows

 100*0.12* x1 + 50*0.08* x2 + 80*0.06* x3 + 40*0.10* x4 ≥ 200000*.09

Finally, the cash investment in any one stock cannot exceed 50% of the total
investment

 100*x1 ≤ 100000

62

 50*x2 ≤ 100000
 80*x3 ≤ 100000
 40*x4 ≤ 100000 and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 , x4 ≥ 0

Translating the Mathematical
Problem into AMPL Model
AMPL is mainly an algebraic language. That means it follows the algebraic
syntax used in the mathematical representation of the problems. AMPL’s main
keyword declarations are set, param, var and maximize/minimize

Since AMPL deal with plain text files the above problem can be rewrite as the
following AMPL model as follows. Where x1, x2, x3 and x4 are replaced with the
most suitable variable names StockA, StockB, StockC and StockD.

Minimize
Risk = 10*StockA + 3.5*StockB + 4*StockC + 4*StockD

Variables

StockA ≤ 1000

 StockB ≤ 2000

 StockC ≤ 1250

 StockD ≤ 2500

Subject to

 100*StockA + 50*StockB + 80*StockC + 40*StockD ≤ 200000

 12*StockA + 4*StockB + 4.8*StockC + 4*StockD ≥ 18000

Using AMPL Studio to Solve the
Problem.
Now the AMPL model is ready for the problem. Now you open the AMPL studio.

Create Workspace
In order to create a new workspace for NIA’s problem create a new workspace
with the following steps.

63

Step 1: Choose New Workspace from the File menu.

File

Step 2: Write workspace name as NIA and choose your appropriate folder

(C:\) by clicking the ellipsis (…) button where you want to create
your workspace.

Click OK to create the workspace at your chosen folder.

64

Create a Project
Step 1: Having created a workspace, we now define a new project

by selecting Insert New Project from the Project menu.

Step 2: Enter the Project name as “StepByStep1” and choose your

preferred folder by clicking the ellipsis (…) button.

 Check the � Add templates checkbox and write the Model

name as “StepByStep1.mod” and the Data instance as

“StepByStep1.dat”.

65

Clicking OK will create a new project with the model and data template files
within the created workspace.

66

Create an AMPL Model file

Double clicking on the model file will open the model template file. The lines with
at the beginning are comment lines. The AMPL key words will be in blue and
the numbers in red.

Step 1: Now write your AMPL model in this window.

67

Step 2: To check the syntax of your model choose Build Model menu from

Build menu.

 Build Menu

If any syntax errors occurred then the appropriate error messages
will be displayed in the Console Window. In the above model
displays the following syntax error.

68

Step 3: Double click on the error line (line 30) will display the following

screen.

Step 4: The line has two errors.

69

1. Risk = should be replaced by Risk :
2. Semicolon is missing at the end of line.

Step 5: Make these corrections and compiling it again will show the following.

70

Solve and Display Results
Step 1: In order to solve the model you need to select the solver. By

default you will receive FortMP solver with your AMPL studio
distribution. FortMP is a powerful solver and capable to handle this
simple problem.

 Solver

Step 2: Now you can run this problem by choosing the Solve Problem

menu from the Build Menu.

Immediately the problem will be solved and the results will be displayed in the
Editing Area.

71

X

Enhance to Data Separated project

Creating Data and Model Files
The following is the investment problem exploiting structure.

72

73

74

Solve and Display Results

75

Chapter 7: Connecting to a
Database; Importing and
Exporting

AMPL allows taking advantage of the structure of indexed data, which is closely
related to the structure of relational tables commonly found in database
applications. In AMPL Studio the user is able to exploit such feature and connect
the models and/or projects to a database in order to work with relational data. In
this chapter we will see how to create a database, how to import and export
data, and how to solve and display the results using the created database.

Creating the Database
A relational database that exploits the structure of the algebraic model for our
problem at hand must be composed of relational tables that reflect the model’s
indexing structure.

To go through the steps we will use as an example the “diet problem”, which
seeks to find the optimum mix of foods that satisfies some vitamins
requirements. The algebraic representation for the diet problem using the AMPL
syntax is shown below.

set FOOD;

set NUTR;

param cost {FOOD} > 0;

param f_min {FOOD} >= 0;

param f_max {j in FOOD} >= f_min[j];

param n_min {NUTR} >= 0;

param n_max {i in NUTR} >= n_min[i];

param amt {NUTR,FOOD} >= 0;

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize total_cost: sum {j in FOOD} cost[j] * Buy[j];

subject to diet {i in NUTR}:

 n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

The first set we find in our example is FOOD. Three parameters cost, f_min,
and f_max are indexed over the set FOOD. Using this indexed structure we
create a relational table, in which the key column will be the column
corresponding to the values for the set FOOD.

76

FOOD cost f_min f_max

BEEF 3.19 2 10

CHK 2.59 2 10

FISH 2.29 2 10

HAM 2.89 2 10

MCH 1.89 2 10

MTL 1.99 2 10

SPG 1.99 2 10

TUR 2.49 2 10

We can use an Excel spreadsheet to store such relational table, by just creating a
range that includes the column names; in our example the range is called
“Foods” (see Figure 7.1). The name of the range will be used subsequently
when reading the data from the spreadsheet into the AMPL Studio model.

Figure 7.1: Excel range as relational table

In the same way we can create a second relational table with the set NUTR,
which will be the key column, and the two parameters, n_min and n_max, which
are indexed over the set NUTR.

77

NUTR n_min n_max

A 700 20000

C 700 20000

B1 700 20000

B2 700 20000

NA 0 50000

CAL 16000 24000

In the Excel spreadsheet we would then create a range, “Nutrients”, that
corresponds to this relational table (Figure 7.2).

Figure 7.2: Excel range “Nutrients” as relational table

In a similar fashion a third relational table is created for the parameter amt,
which is indexed over the two sets NUTR and FOOD. The following table has as
key the two columns corresponding to the values for the sets FOOD and NUTR.

78

FOOD NUTR amt

BEEF A 60

BEEF B1 10

BEEF B2 15

BEEF C 20

BEEF NA 938

BEEF CAL 295

CHK A 8

CHK B1 20

CHK B2 20

CHK C 0

CHK NA 945

CHK CAL 770

FISH A 8

FISH B1 15

FISH B2 10

… … …

The corresponding Excel range, “Amounts”, would look like Figure 7.3.

79

Figure 7.3: Excel range “Amounts” as relational table

In our Diet.mod model there are other entities indexed over the set FOOD,
such as the variables:

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

Therefore, some assorted result expressions such as Buy, Buy.rc, {j in FOOD}
Buy[j]/f_max[j], can be included as output columns in our relational tables. In
this case, we can include three new columns to the “Foods” range in our Excel
spreadsheet, as in Figure 7.4. The last three columns Buy, BuyRc, and
BuyFrac, will be then output columns that will be populated once the model is
solved.

80

Figure 7.4: Excel range “Foods” with input and output columns

If we used an Access database to store our relational tables, the relational
database for our example might look like Figure 7.5.

Figure 7.5: Access database for the Diet problem

81

As in the Excel spreadsheet case, we have three relational tables, Foods,
Nutrients, and Amounts. The design of the Access relational tables is shown in
Figure 7.6.

Figure 7.6: Access Data Tables Design for the Diet problem

In this case the relational data would be as below.

Figure 7.7: Access Relational Data in Foods table

82

Figure 7.8: Access Relational Data in Nutrients table

Figure 7.9: Access Relational Data in Amounts table

Now that we have created the relational database, we will see how the relational
tables are linked to the AMPL Studio model in order to import and export data
from and to the database.

Importing data from tables
In order to use an external relational table, such as the tables created in the
section above, for reading only, you should employ a table declaration that

specifies a read/write status of IN. The general form of this kind of declaration is

 table table-name IN string-listopt :

 key-spec, data-spec, data-spec, … ;

83

Each table declaration has two parts. Before the colon, the declaration provides
general information. The table-name is the name by which the table is known

within AMPL. The keyword IN states that the default for all non-key table

columns will be read-only, i.e., AMPL will use these columns as input columns
and will not write out to them. The optional string-list is specific to the database
type and access method being used, and we will look into it in more detail in a
later section.

After the colon, the declaration gives the details of the correspondence between
AMPL entities and relational table columns. The key-spec names the key
columns, which are surrounded by brackets […]. The data-spec gives the data
columns. Data values are subsequently read from the table into AMPL entities by
the command

 read table table-name;

The table declaration only defines a correspondence. To read values

from columns of a relational table into AMPL sets and parameters, it is

necessary to give an explicit read table command.

For instance, in our Diet problem example, when we want to read the data from
the table “Nutrients”, we would use the following declaration followed by the

read command:

table dietNutrs IN "ODBC" "TABLES/diet.xls" "Nutrients":

NUTR <- [NUTR], n_min, n_max;

 read table dietNutrs;

In our example the string-list "ODBC" "TABLES/diet.xls" "Nutrients" specifies
that we are connecting to the external relational database through an Open
Database Connection (ODBC). It also specifies the external file, in this case an
Excel spreadsheet “diet.xls” located in the directory “TABLES”. The string
“Nutrients” gives the name of the relational table we are declaring. In the
second part of the declaration we find the expression NUTR <- [NUTR], which
indicates that the entries in the key column NUTR are to be copied into AMPL to
define the members of the set NUTR. The expressions n_min and n_max are
the names of the other two columns in the relational table from which we will
read the values into the parameters n_min and n_max.

The table-name may be different from the name of the corresponding
table within the external relational database. In any case, the table-name
should be the same in both, the table declaration and the read command.

In a similar way we can read the data from the “Amounts” relational table

table dietAmts IN "ODBC" "TABLES/diet.xls" "Amounts":

[NUTR, FOOD], amt;

84

 read table dietAmts;

Reading parameters only
To assign values from data columns to like-named AMPL parameters, it suffices
to give a bracketed list of key columns and hen a list of data columns. In our Diet
problem example, in the simplest case where there is only one key column we
could write

table Foods IN "ODBC" "TABLES/diet.xls":

[FOOD], cost, f_min, f_max;

 read table Foods;

In the same way, when we want to read multidimensional parameters, the name
of each data column must also be the name of an AMPL parameter, and the
dimension of the parameter’s indexing set must equal the number of key
columns.

table Amounts IN "ODBC" "TABLES/diet.xls":

[NUTR, FOOD], amt;

 read table Amounts;

The subscripts given by the key column entries must be valid for the
parameters when the values of these parameters are first needed by
AMPL, but the parameters need not be declared over sets named as the
key columns

Values of unindexed (scalar) parameters may be supplied by a relational table
that has one row and no key columns, so that each data column contains exactly
one value. The corresponding table declaration has an empty key-spec, [].

Reading a set and parameters
We can read the members of a set form a table’s key column or columns, at the
same time that parameters indexed over that set are read from the data
columns. To indicate that a set should be read from a table, the key-spec in the
table declaration is written in the form

 Set-name <- [key-col-spec, key-col-spec,…]

The simplest case involves reading a one-dimensional set and the parameters
indexed over it. In our Diet problem example we have

table Foods IN "ODBC" "TABLES/diet.xls":

FOOD <- [FOOD], cost, f_min, f_max;

85

In this particular case, since the key column [FOOD] is named like the AMPL set
FOOD, the table declaration could be abbreviated to

table Foods IN "ODBC" "TABLES/diet.xls":

 [FOOD] IN , cost, f_min, f_max;

For the multidimensional case, an analogous syntax is used fir reading a
multidimensional set along with parameters indexed over it.

Let’s suppose we had in our Diet.mod the following sets and parameters:

set FOOD;

set NUTR;

set PAIR within {FOOD, NUTR};

…

param amt {PAIR} >=0;

In this case we would have a table declaration that might look like

table Amounts IN "ODBC" "TABLES/diet.xls":

PAIR <- [NUTR, FOOD], amt;

Establishing correspondences
Sometimes the AMPL model’s set and parameter declarations do not necessarily
correspond in all respects to the organization of tables in the external relational
databases.

One of the most common differences appears in the names amongst the sets and
parameters and the corresponding columns in the relational tables. A table
declaration can associate a data column with a differently named AMPL
parameter by use of a data-spec of the form

 param-name ~ data-col-name

In our Diet problem example, if we had the following table declaration

table Foods IN:

 [FOOD], cost, f_min ~ lowerlim, f_max ~ upperlim;

We would be saying that the AMPL parameters f_min and f_max would be read
from the data columns lowerlim and upperlim in the relational table
respectively.

In a similar way, when the AMPL index is not named as the corresponding
column in the relational table, we would have

index ~ key-col-name

86

This index may then be used in a subscript to the optional param-name in one or
more data-specs.

Three common cases where we can benefit from this correspondence are as
follow.

Case 1: as an example, the time periods are counted from 0 in the relational
table, but in the model the time periods start counting from 1:

 table tableName IN:

 [p ~ PROD, t ~ TIME],

market[p,t+1] ~ market, revenue[p,t+1] ~ revenue;

Case 2: the AMPL parameters have subscripts from the same sets but in different
orders. In this case key column indexes must be used to provide a correct index
order:

 For example, we have in the AMPL model
 param market {PROD, 1..T};

 param revenue {1..T, PROD};

 …

 we could have a table declaration as follows

 table tableName IN:
 [p ~ PROD, t ~ TIME],

market, revenue[t, p] ~ revenue;

Case 3: the values for an AMPL parameter are divided among several database
columns. In this case key column indexes can be used to describe the values to
be found in each column:

For example, if we have the revenue values given in two columns, one for

“p1” and in another column for “p2”, the table declaration would be as

follows

 table tableName IN:

 [t ~ TIME],

revenue[“p1”, t] ~ revenuep1,

revenue[“p2”, t] ~ revenuep2;

Reading other values
Any assignable expression, such as a variable name, a constraint name, a
variable or constraint qualified by an assignable suffix, may appear anywhere
that a parameter name would be allowed. Therefore, any assignable expression
can appear in a table declaration.

87

An expression is assignable if it can be assigned a value, such as by

placing it on the left hand side of := in a let command.

In our Diet problem example we could have the following table declaration

 table Foods IN:

 FOOD IN, cost, f_min, f_max, Buy, Buy.priority ~ prior;

where we are reading from the table Foods the initial values for the Buy
variables, as well as their branching priorities.

Exporting data into tables
In order to use an external relational table for writing only, you should employ a

table declaration that specifies a read/write status of OUT. The general form of

this kind of declaration is

 table table-name OUT string-listopt :

 key-spec, data-spec, data-spec, … ;

As for the case in which we read data from the table, each table declaration has
two parts. Before the colon, the declaration provides general information. The
table-name is the name by which the table is known within AMPL. The keyword

OUT states that the default for all non-key table columns will be write-only, i.e.,

AMPL will use these columns as output columns and will not read from them. The
optional string-list is specific to the database type and access method being used,
and we will look into it in more detail in a later section.

After the colon, the declaration gives the details of the correspondence between
AMPL entities and relational table columns. The key-spec names the key
columns, which are surrounded by brackets […]. The data-spec gives the data
columns. Data values are subsequently written to the table by the command

 write table table-name;

Depending on the circumstances, the write table command may create a
new external file or table, overwrite an existing table, overwrite certain
columns within an existing table, or append columns to an existing table.

This way the write table command allows writing meaningful results back to the
external relational database once the model has been solved.

The key-specs and data-specs in the table declaration for writing external

tables resemble those for reading. Nevertheless, the range of AMPL expressions

88

allowed when writing is much broader, including essentially all set-valued and
numeric-valued expressions. Moreover, whereas the table rows to be read are
those of some existing table, the rows to be written must be determined from

AMPL expressions in some part of a table declaration. Specifically, rows to be

written can be inferred either from the data-specs, or from the key-spec. Each of
these alternatives uses a different syntax.

Writing rows inferred from the data
specifications
If the key-spec is simply a bracketed list of the names of key columns,

 [key-col-name, key-col-name,…]

then the table declaration works similar to the display command, except that

all the items listed in the data-specs must have the same dimension.

In the simplest case, the data-specs are the names of model components
indexed over the same set.

For instance, in our Diet problem example, the table declaration and the write

table command

table Foods OUT "ODBC" "TABLES/diet.xls" "FoodsOut":

 [FOOD], f_min, Buy, f_max;

 …

 write table Foods;

would have as a result a new range named “FoodsOut” as shown in Figure 7.10.

Figure 7.10: Output table range “FoodsOut” in Excel

89

Tables of higher-dimensional sets are handled in the same way, with the number
of bracketed key-column names listed in the key-spec being equal to the
dimensions of the items in the data-spec.

We could also write out to a relational table suffixed variables or constraint
names, such as the dual and slack values.

In our Diet problem example, we could for instance write out the dual and slack
values related to the constraint “diet”:

table Nutrients OUT "ODBC" "TABLES/diet.xls" "NutrsOut":

 [NUTR],

 diet.lslack ~ lb_slack, diet.ldual ~ lb_dual,

 diet.uslack ~ ub_slack, diet.udual ~ ub_dual;

…

 write table Nutrients;

which would have as a result a new relational table “NutrsOut” in our Excel
Spreadsheet diet.xls, as shown in Figure 7.11.

Figure 7.11: Output table range “NutrsOut” in Excel

More general expressions for the values in data columns can also be used. Since
indexed AMPL expressions are rarely valid column names for a database, they
should generally be followed by ~ data-col-name to provide a valid name for the
corresponding data table column.

For instance, we could have in our Diet problem example the following table
declaration:

 table Purchases OUT "ODBC" "TABLES/diet.xls":

 [FOOD],

90

Buy ~ Servings,

{j in FOOD} 100*Buy[j]/f_max[j] ~ Percent;

 …

 write table Purchases;

The resulting relational table is displayed in Figure 7.12.

Figure 7.12: Output table range “Purchases” in Excel

The expression in a data-spec may also use operators like sum that define

their own dummy indices.

Writing rows inferred from a key
specification

We can also use table declarations to write one table row for each member of an
explicit specified AMPL set. In this case the key-spec must be of the form

 set-spec -> [key-col-spec, key-col-spec, …]

This form uses an arrow pointing from left to right, i.e., pointing from an AMPL
set to a key column list, indicating that the information will be written from the
set into the key columns.

The set-spec is composed of an explicit expression, such as the name of an AMPL
set, or any other AMPL set-expression enclosed in braces { }. The key-col-spec
gives the names of the corresponding key columns in the database.

91

The simplest case of this form would be writing database columns for model
components indexed over the same one-dimensional set.

In our Diet problem example, we could have

 table FdsOut OUT "ODBC" "TABLES/diet.xls":

 FOOD -> [FoodName], f_min, Buy, f_max;

 …

 write table FdsOut;

giving the relational table shown in Figure 7.13.

Figure 7.13: Output table range “FdsOut” in Excel

or in case we wanted the same name for the table as for the set, we could have
written the declaration as

 table FdsOut OUT "ODBC" "TABLES/diet.xls":

 [FOOD] OUT, f_min, buy, f_max;

Importing From and Exporting To
the Same Table
In the previous sections you have learnt how to import data from an external
relational table, and how to export data into a different relational table. There
could be cases in which you want to use the same external relational table for
both actions, import and export data. In this case you could use two separate

table declarations, one to read data, and a second declaration to write data.

92

You may also combine these two declarations into one that specifies some
columns to be read and some columns to be written into.

Importing and exporting data using two
table declarations

The same external relational table can be read by one table declaration and a

read table command, and later on it can be written by another table

declaration and a write table command. These two table declarations

follow the syntax and rules described in the previous sections.

Even though you can use two different table declarations, one to read

and another one to write the same external relational table, the AMPL

table-name should be different in both table declarations.

In our Diet problem example, we can have an external relational table “Foods”
with some columns that contain input for the model, and other columns that will
contain results.

Figure 7.14: Excel range “Foods” with input and output columns

For instance, in Figure 7.14 we have the columns cost, f_min, and f_max as
input columns, whereas the columns Buy, BuyRC, and BuyFrac are output

columns. This relational table would correspond to the following table

declarations:

93

table inputFoods IN "ODBC" "TABLES/diet.xls" "Foods":

FOOD <- [FOOD], cost, f_min, f_max;

table outputFoods "ODBC" "TABLES/diet.xls" "Foods":

[FOOD], Buy;

Figure 7.15: Input/Output table range “Foods” in Excel

The user should be careful when using two separate table declarations for

input and output from the same table:

We could have also used the following table declarations:

table inputFoods IN "ODBC" "TABLES/diet.xls" "Foods":

FOOD <- [FOOD], cost, f_min, f_max;

table outputFoods OUT "ODBC" "TABLES/diet.xls" "Foods":

[FOOD], Buy;

or similarly

table inputFoods IN "ODBC" "TABLES/diet.xls" "Foods":

FOOD <- [FOOD], cost, f_min, f_max;

table outputFoods "ODBC" "TABLES/diet.xls" "Foods":

 [FOOD], Buy OUT;

In this case all the data columns in the external relational table “Foods” would
have been deleted by the write table outputFoods command, and you would only
find the columns specified in the outputFoods table declaration, i.e., the “FOOD”
and “Buy” columns:

94

Figure 7.16: Input/Output table “Foods” if rewriting all columns

The general convention is that overwriting of an entire existing table or file

is intended only when all the data columns in the table declaration have

read/write status OUT. Selective rewriting or addition of columns is

intended otherwise.

Reading and writing using the same table
declaration
In many cases a single table declaration suffices to read and write the same

external relational table.

The key-spec may use the arrow <- to read contents of the key columns into an
AMPL set, or use the arrow -> to write members of an AMPL set into the key
columns, or even <-> to do both.

A data-spec may specify read/write status IN for the columns that will only be

read into AMPL, status OUT for the columns that will only be written out from

AMPL, or status INOUT for the columns that will be both read and written.

The default read/write status for a column in a table declaration is

INOUT.

The read table command related to such combined table declaration will read
only the keys or data columns that are specified in the table declaration with IN
or INOUT read/write status.

95

The write table command related to such combined table declaration will write
only the keys or data columns that are specified in the table declaration with
OUT or INOUT read/write status.

In our Diet problem example, we could use the following table declaration to

read and write the Foods table:

table dietFoods "ODBC" "TABLES/diet.xls" "Foods":

FOOD <- [FOOD],

cost IN, f_min IN, f_max IN,

Buy OUT,

Buy.rc ~ BuyRC OUT,

{j in FOOD} Buy[j]/f_max[j] ~ BuyFrac;

 …

 read table dietFoods;

 …

 write table dietFoods;

and we would obtain the table as in Figure 7.17.

Figure 7.17: Input/Output table “Foods” using one table declaration

Index Collections of Tables and
Columns
Sometimes it is convenient to declare an indexed collection of tables, or to define
an indexed collection of data columns within a table. This can be done with the

table declaration.

96

Indexed collections of tables
The table declarations can be indexed by following the table-name by an optional
{indexing-expr}:

 table table-name {indexing-expr}opt string-listopt : …

In this case one table is defined for each member of the set specified by the
indexing-expr. Individual tables in this collection are denoted by appending a
bracketed subscript or subscripts to the table-name.

For instance, in our Diet problem example, we could create one different table in
our external relational database for each value of the set FOOD:

 table DietSens {j in FOOD}

 OUT “ODBC” "TABLES/diet.xls" (“Sens” & j) :

 [FOOD], f_min, Buy, f_max;

 …

Which will have as a result the creation of one table per j in FOOD:

Figure 7.18: Tables collection

You could also create a collection of databases if the table declaration

were to give a string expression for the second string in the string-list.
e.g.,
 table DietSens {j in FOOD}

 OUT “ODBC” ("TABLES/diet” & j & “.xls"):

 [FOOD], f_min, Buy, f_max;

This table declaration would create a different Excel spreadsheet for

each value in the set FOOD.

In the same way you could make correspond every member of an indexed
collection of AMPL tables to a different data-col-name within the same
external database, and same relational table:

97

 table DietSens {j in FOOD} “ODBC” "TABLES/diet.xls":

 [FOOD], Buy ~ (“Buy” & j);

This table declaration would create a different column for each member

of the set FOOD, within the same table DietSens.

Indexed collections of data columns
Due to the natural correspondence between data columns of a relational table

and indexed collections of entities in an AMPL model, each data-spec in a table

declaration normally refers to a different AMPL parameter, variable or expression.
However, occasionally the values for one AMPL entity are split among multiple
data columns. In this case we can define a collection of data columns, one for
each member of a specified indexing set.

The general form for specifying an indexed collection of table columns is the
following

 {indexing-expr} < data-spec, data-spec, … >

Each data-spec has any of the forms previously seen.

For each member of the set specified by the indexing-expr, AMPL generates one
copy of each data-spec within the angle brackets <…>.

The indexing-expr also defines one or more dummy indices that run over the
index set. These indices are used in expressions within the data-specs, and also
appear in string expressions that give the names of columns in the external
database.

In our Diet problem example, if we have the following table declaration:

 table dietAmts IN “ODBC” “TABLES/diet.xls”:

 [i ~ NUTR], {j in FOOD} < amt[i,j] ~ (j) >;

The key-spec [i ~ NUTR] associates the first table column with the set NUTR.
The data-spec {j in FOOD} <…> causes AMPL to generate an individual data-
spec for each member of the set FOOD. The result would be as displayed in
Figure 7.19.

98

Figure 7.19: Indexed collection of data columns

A similar approach works for writing two-dimensional tables.

Standard and Built-in Table
Handlers
To work with external database files, AMPL relies on table handlers. These are
add-ons, usually in the form of shared or dynamic link libraries that can be
loaded as needed. AMPL Studio is distributed with a “standard” table handler that
runs under Microsoft Windows and communicates via the Open Database
Connectivity (ODBC) application programming interface; it recognizes relational
tables in the formats used by Access, Excel, and any other application for which
and ODBC driver exists on your computer.

As you have seen in the previous examples, AMPL communicates with handlers

through the string-list in the table declaration. The form and interpretation of

the string-list are specific to each handler.

The general form of the string-list in a table declaration for the standard ODBC

table handler is

 “ODBC” “connection-spec” “external-table-spec”opt “verbose”opt

The string “ODBC” indicates that data transfers using this table should employ
the standard ODBC handler. The connection-spec identifies the database file
name that will be read or written.

99

If the connection-spec is a filename of the form name.ext, where ext is a
3-letter extension associated with an installed ODBC driver, then the
named file is the database file.

Other forms of connection-spec are more specific to ODBC.

The external-table-spec normally gives the name of the relational table, within
the specified file that is to be read or written. As we have seen previously, if the
table name is omitted, then the name of the relational table is taken to be the

same as the table-name of the containing table declaration.

The string verbose is used to request diagnostic messages, such as the DSN=
string that ODBC reports using.

 The external-table-spec could have the special form

 “SQL=sql-query”

In such case, the table declaration applies to the relational table that is
temporarily created by a statement in the Structure Query Language
(SQL).

All the columns specified in the table declaration should have the
read/write status IN, since it does not make sense to write to a temporary
table.

Using our Diet problem example, three common table-handling statements would
be as follows:

Case 1: For a Microsoft Access table in a database file diet.mdb located in the
TABLES directory:

 Table Foods IN “ODBC” “TABLES/diet.mdb” :

 FOOD <- [FOOD], cost, f_min, f_max;

100

Case 2: For a Microsoft Excel table in a database file diet.xls located in the
TABLES directory:

 Table Foods IN “ODBC” “TABLES/diet.xls” :

 FOOD <- [FOOD], cost, f_min, f_max;

Case 3: For an ASCII text table in a file Foods.dat located in the TABLES
directory:

 Table Foods IN “TABLES/Foods.dat”:

 FOOD <- [FOOD], cost, f_min, f_max;

Where no details are given, the table is read by default from the ASCII
text file using AMPL’s built-in text table handler.

For these built-in table handlers for text and binary files, the table
declaration’s string-list contains at most one string identifying the external
file that contains the relational table.

If the string has the form “filename.tab” the file is considered to be an
ASCII text file.

If the string has the form “filename.bit” the file is considered to be a
binary text file.

If no string-list is given, a text file table-name.tab is assumed.

Solve and Display Results
After solving our Diet problem example we obtain the following solution file.

AmplStudio Modeling System - Copyright (c) 2003-2004, Datumatic Ltd

MODEL.STATISTICS

 Problem name :diet

 Model Filename :Diet.mod

 Data Filename :Diet2a.dat

 Date :1:9:2005

 Time :20:5

 Constraints :6 : Nonzeros

 S_Constraints :6

 Variables :8 : Nonzeros

SOLUTION.RESULT

 'Optimal solution found'

 FortMP 3.2j: LP OPTIMAL SOLUTION, Objective = 118.0594032

DECISION.VARIABLES

101

 Name Activity .uc Reduced Cost

Buy['BEEF'] 5.3606 10.0000 -0.0000

Buy['CHK'] 2.0000 10.0000 1.1888

Buy['FISH'] 2.0000 10.0000 1.1444

Buy['HAM'] 10.0000 10.0000 -0.3027

Buy['MCH'] 10.0000 10.0000 -0.5512

Buy['MTL'] 10.0000 10.0000 -1.3289

Buy['SPG'] 9.3061 10.0000 0.0000

Buy['TUR'] 2.0000 10.0000 2.7316

CONSTRAINTS

Name Slack body dual

__

diet['A'] 1256.2882 1956.2882 0.0000

diet['B1'] 336.2575 1036.2575 0.0000

diet['B2'] 0.0000 700.0000 0.4046

diet['C'] 982.5149 1682.5149 0.0000

diet['NA'] -0.0000 50000.0000 -0.0031

diet['CAL'] 3794.6206 19794.6206 0.0000

END

We have also seen along the chapter that by using the table declarations and
write table commands we can also display the results in an external relational
database.

102

Chapter 8: Advanced Features of
AMPL

AMPL provides a variety of commands like model, solve and display that tell the
AMPL modeling system what to do with models and data. These commands are
not part of AMPL modeling language itself but are intended to be used in an
environment where you give a command, wait for the system to display a
response, then decide what command to give next. In AMPL studio, these
commands can be given from the command prompt window.

Fig 8.1. Command prompt window in AMPL Studio.

Modelling Commands

Options

The behavior of AMPL commands depends on a variety of options. For example:
Controlling the display of results, Choosing alternative solvers etc.
The option command displays and sets option values. Each option has a name
and a value that may be a number or a character string. For example, the
options prompt1 and prompt2 are strings that specify formats. The option
display_width has a numeric value, which says how many characters wide the
output produced by the display command maybe.
An option command can be issued at the command prompt.

Example:
ampl: option prompt1 “A>” ;

A>

The issue of option command with prompt option changes the prompt from ampl
to A>.
One can set solver options also by using this command.

ampl: option cplex_options;

To return all options to their default values use the command ‘reset options’.

103

Setting up and solving models and data

A model can be run from command prompt window. One can choose the solver
for solving the problem by using option command.
To apply a solver to an instance of a model, we use model, data and solve
command.

ampl: option solver cplexamp;

ampl: model steel4.mod;

ampl: data steel4.dat;

ampl: solve;

If the model declares more than one objective function, we can use objective
command to select the objective function to pass to the solver. It consist of
keyword objective followed by a name from minimize or maximize declaration.
AMPL by default chooses first objective function.

ampl: objective Total_Number;

Modifying Data

To delete the current data for several model components, without changing the
current model itself, use reset data command as in:

reset data MINREQ, MAXREQ, amt, n_min, n_max;

We can then use data command to read in new values for these sets and

parameters. To delete all data type ‘reset data’.

The update data command works similarly, but does not actually delete any data
until new values are assigned. Thus if we type:

update data MINREQ, MAXREQ, amt, n_min, n_max;

but read in new values for MINREQ,amt and n_min, the previous values for

MAXREQ and n_max will remain. If instead we used reset data, MAXREQ and

n_max would be without values.

The ‘reset data’ command also acts to resample the randomly computed
parameters.

The ‘let’ command permits us to change particular data value while leaving the
model the same, but it is more convenient for small or easy to describe changes

than ‘reset data’ or ‘update data’. For example: if a parameter ‘T’ in our data

for some hypothetical model has a value 4 and we can change it to 3 by let
command:

ampl: let T:=3;

ampl: solve ;

104

Modifying models

The ‘delete’ command removes a previously declared model component, provided
that no other component use it in their declarations. The format of the command
is simply ‘delete’ followed by a comma-separated list of names of model
components:

ampl: model dietobj.mod;

ampl: data dietobj.dat;

ampl: delete Total_Number, Diet_Min ;

Normally we can-not delete a set, parameter or variable, because it is declared
for use later in the model; but we can delete any objective or constraint.
The ‘purge’ command has the same form, but with keyword ‘purge’ in place of
delete. It removes not only the listed components, but also all components that
depend on them either directly or indirectly. If we are not sure which
components depend on some given component, we can use ‘xref’ command to
find out.

To change any component’s declaration we can use ‘redeclare’ command.

ampl: redeclare param f_min {FOOD} >0 integer;

changes the validity conditions on f_min. The declarations of all components

that depend on f_min are left unchanged, as are any values previously read for
f_min.

Changing the model: fix, unfix; drop,
restore

The ‘drop’ command instructs AMPL to ignore certain constraints or objectives of
the current model. As an example, the constraints are:

subject to Diet_Max { i in MAXREQ} :

 sum { j in FOOD} amt[I,j] * Buy [j] <= n_max [i] ;

A ‘drop’ command can specify a particular one of these constraints to ignore:

drop Diet_Max[“CAL”] ;

The entire collection of constraints can be ignored by

drop {i in MAXREQ} Diet_Max[i] ;

The ‘restore’ command reverses the effect of drop. It has same syntax, except
for the keyword ‘restore’.

105

The ‘fix’ command fixes specified variables at their current values, as if there
were a constraint that the variables must equal these values; the unfix command
reverses the effect. These commands have the same syntax as ‘drop’ and
‘restore’ except that they name variables rather than constraints.

Relaxing Integrality

Changing option ‘relax_integrality’ from its default of 0 to any nonzero value:

option relax_integrality 1;

tells AMPL to ignore all restrictions of variables to integer values. Variables
declared integer gets whatever bounds we specified for them, while variables
declared binary are given a lower bound of zero and an upper bound of one. To
restore integrality restrictions, set ‘relax_integrality’ option back to 0.

A variable’s name followed by the suffix ‘.relax’ indicates its current integrality
relaxation status: 0 if integrality is enforced, nonzero otherwise. We can make
use of this suffix to relax integrality on selected variables only. For example,

ampl: let Buy[‘CHK’].relax=1;

relaxes integrality only on the variable Buy[‘CHK’].

Some of the solvers that work with AMPL Studio provide their own directives for
relaxing integrality but may have different effect as AMPL’s ‘relax_integrality’
option.

DISPLAY Commands

AMPL provides a rich variety of commands and options to help examine and
report the results of optimization.

Browsing through results: display
command

The easiest way to examine data and result values is to use ‘display’ command. It
is also possible to capture the output of display command in a file, by adding
>filename to the end of ‘display’ command; this redirection mechanism applies as
well to other commands that produces the output.

106

The contents of the sets are shown by typing ‘display’ and a list of set names.
For example a set of week days defined as the set WEEK would give the
following result.

ampl: display WEEK;

set WEEK : = MON TUE WED THURS FRI SAT SUN;

The argument of ‘display’ need not be a declared set; it can be any of the
expression that evaluate to sets. For example, we can see the union of all the

sets AREA[p] (where PROD = {prod1, prod2, prod3, prod4},

AREA[prod1] = east, AREA[prod2] = north, AREA[prod3] = west,

AREA[prod4] = south):

ampl: display union {p in PROD} AREA[p];

set union {p in PROD} AREA[p] := east north west south;

The ‘display’ command can also be used to see the value of a scalar model
component.

ampl: display T;

T=4

Or the value of individual components from an indexed collection.

ampl: display avail[“reheat], avail[“roll”] ;

avail [‘reheat’] = 35

avail [‘roll’] = 40

or an arbitrary expression:

ampl: display sin(1)^2 + cos(1)^2;

sin(1)^2 + cos(1)^2 = 1

The major use of display, however, is to show whole indexed collection of data.
For ‘one-dimensional’ data – parameters or variables indexed over a simple set –
AMPL uses a column format. For example, if avail is indexed over some set, the
use of display would work as:

ampl: display avail;

avail[*] :=

reheat 35

roll 40

;

For ‘two-dimensional’ parameters or variables – indexed over a set of pairs or
two simple sets – AMPL forms a list for small amounts of data or a table for
larger amounts.

The ‘display’ command can show the value of any arithmetic expression that is
valid in AMPL model. Single valued expression poses no difficulty, as in the case
of these three profit components indexed over say set PROD and some set
representing time period:

ampl: display sum{p in PROD, t in 1..T} revenue[p,t]*sell[p,t];

107

sum{p in PROD, t in 1..T} revenue[p,t]*sell[p,t] = 787810

Suppose however we want to see all the individual values of revenue[p,t] *
sell[p,t]. Since, we can type ‘display revenue, sell’ to display the separate values
of revenue [p,t] and sell [p, t], we might want to ask for the products of these
values by typing:

ampl: display revenue * sell;

syntax error

context: display revenue >>> * <<< sell ;

AMPL does not recognize this kind of array arithmetic. To display an indexed
collection of expressions, we must specify the indexing explicitly:

ampl: display {p in PROD, t in 1..T} revenue[p,t]*sell[p,t];

revenue[p,t]*sell[p,t] [*,*] (tr)

: bands coils

1 15000 9210

2 15600 87500

;

To apply the same indexing to two or more expressions, enclose a list of them in
parentheses after the indexing expression.

Formatting options for display

The display command uses a few simple rules for choosing a good arrangement
of data. By changing several options, we can control overall arrangement,
handling of zero values and line width. These options are summarized below
with their default values.

Option Details

display_1col Maximum elements for a table to be
displayed in list format(20)

display_transpose Transpose tables if rows-colums <
display_transpose (0)

display_width Maximum line width (79)

gutter_width Separation between table columns (3)

omit_zero_cols If not 0, omit all-zero columns from
displays (0)

omit_zero_rows If not 0, omit all-zero rows from displays
(0)

These options can be used with the keyword ‘option’ like

ampl: option display_1col 0;

to force the display to a compact form, or can be set to a very large number to
force the list format.

108

List format & Compact format example:

ampl: display required;

required [*] :=

Fri1 100

Fri2 78

Fri3 52

Mon1 100

Mon2 78

Mon3 52

Sat1 100

Sat2 78

Thu1 100

Thu2 78

Thu3 52

Tue1 100

Tue2 78

Tue3 52

Wed1 100

Wed2 78

Wed3 52

;

In compact format:

Required [*] :=

Fri1 100 Mon1 100 Sat1 100 Thu2 78 Tue2 78 Wed2 78

Fri2 78 Mon2 78 Sat2 78 Thu3 52 Tue3 52 Wed3 52

Fri3 52 Mon3 52 Thu1 100 Tue1 100 Wed1 100

;

Numeric Options for display

The numbers in a table or list produced by display are the results of a
transformation from the computer’s internal numeric representation to a string of
digits and symbols. AMPL’s options for adjusting this transformation are shown in
the table below along with their default values. The options falls under two
categories: Options that affect only the appearance of numbers and options that
affect the underlying solutions values as well.

Option Details

display_eps Smallest magnitude displayed different
from zero (0)

display_precision Digits of precision to which displayed
numbers are rounded; full precision if 0
(6)

display_round Digits left or (if negative) right of
decimal place to which display numbers
are rounded, overriding
display_precision (“ ”)

solution_precision Digits of precision to which solution

109

values are rounded; full precision if 0
(0)

solution_round Digits left or (if negative) right of
decimal place to which solution values
are rounded, overriding
display_precision (“ ”)

Other output commands: print and printf

The print command

A print command produces a single line of output:

ampl: print {t in 1..T, p in PROD} Make [p,t] ;

5990 1407 6000 1400 1400 3500 2000 4200

Or, if followed by an indexing expression and a colon, a line of output for each
member of the index set:

ampl: print {t in 1..T}: {p in PROD} Make[p,t];

5990 1407

6000 1400

1400 3500

2000 4200

Print entries are normally separated by a space, but option ‘print_separator’ can
be used to change this.

The keyword ‘print’ (with optional indexing expression and colon) is followed by a
print item or comma-separated list of print items. A print item can be a value, or
an indexing expression followed by a value or parenthesized list of values. Thus a
print item is much like a ‘display’ command, except that only individual values
may appear.

‘print’ command has options ‘print_precision’ and ‘print_round’ options, which
work exactly like the ‘display_precision’ and ‘display_round’ options for the
display command.

The printf command

The syntax of printf is exactly the same as that of print, except that the first print
item is a character string that provides formatting instructions for the remaining
items:

ampl: printf “Total revenue is $%6.2f.\n”, sum {p in PROD, t in 1..T}

revenue[p,t] * Sell[p,t];

 Total revenue is $787810.00

110

The format string contains two types of objects: ordinary characters, which are
copied to the output, and conversion specifications, which govern the appearance
of successive remaining print items. Each conversion specification begins with the
character % and ends with a conversion character. The complete rules are much
the same as for the ‘printf’ function in C programming language.

Related Solution values

AMPL provides ways of examining objectives, bounds, slacks, dual prices and
reduced costs associated with the optimal solution. AMPL distinguishes the
various values associated with a model component by use of “qualified” names
that consist of a variable or constraint identifier, a dot(.), and a predefined
“suffix” string.

Objective functions

The name of the objective function (from a minimize or maximize declaration)
refers to the objective’s value computed from the current values of the variables.
This name can be used to represent the optimal objective value in display, print,
or printf.

ampl: print 100* Total_Profit;

7000

Here Total_Profit was an objective function.

Bounds and slacks

The suffixes .lb and .ub on a variable denote its lower and upper bounds, while
slack denotes the difference of a variable’s value from its nearer bound.

ampl: display Buy.lb, Buy, Buy.ub, Buy.slack;

: Buy.lb Buy Buy.ub Buy.slack;

BEEF 2 2 10 0

CHK 2 10 10 0

FISH 2 2 10 0

HAM 2 2 10 0

MTL 2 6.23596 10 3.76404

SPG 2 5.25843 10 3.25843

TUR 2 2 10 0

;

The reported bounds are those that were sent to the solver. Thus they include
not only the bounds specified in >= and <= phrases of var declarations, but also
certain bounds that were deduced from the constraints by AMPL’s presolve
phase.

111

The suffixes .lb, .body, and .ub on constraints give the current values of these
parts of the constraints, while the suffix .slack refers to the difference between
the body and the nearer bound.

Dual values and reduced costs

Associated with each constraint in a linear program is a quantity variously known
as the dual variable, marginal value or shadow price. In the AMPL command
environment, these dual values are denoted by the names of the constraints,
without any qualifying suffix. For example, let there be a collection of constraints
named ‘Demand’:

subject to Demand {j in DEST, p in PROD}: sum { i in ORIG} Trans[I,j,p]=

demand[j,p];

and a table of dual values associated with these constraints can be viewed by

ampl: display Demand;

Demand [*,*]

: bands coils plate :=

DET 201 190.714 199

FRA 209 204 211

FRE 266.2 273.714 285

LAF 201.2 198.714 205

STL 206.2 207.714 216

WIN 200 190.714 198

;

A nearly identical concept applies to the bounds on a variable. The role of the
dual value is played by the variable’s so called reduced costs, which can be
viewed from the AMPL command environment by use of the suffix .rc
Details about dual values and reduced costs can be found in AMPL book and in
standard linear programming textbooks.

Other display features for models and
instances

Displaying model components: the show
command

show command lists the names of all components of the current model:

ampl: model example.mod;

ampl: show;

parameters: demand limit

sets: DEST ORIG PROD

variables: use cost

constraints: Demand_supply

112

objective: Total_cost

checks: one, called check_1.

The display may be restricted to one or more types:

ampl: show vars;

variables: use cost

The show command can also display the declarations of individual components.

ampl: show Total_cost;

minimize Total_cost: sum{ i in ORIG, j in DEST, p in PROD}

demand[p]*use[i,j] ;

Since the check statements in a model do not have names, AMPL numbers them
in the order they appear.

Displaying model dependencies: the xref
command

The xref command lists all model components that depend on a specified
component, either directly(by refereeing to it) or indirectly (by referring to its
dependents). If more than one component is given, the dependents are listed
separately for each.

Example:

ampl: xref demand, Trans ;

2 entities depend on demand:

check 1

Demand

5 entities depend on Trans:

Total_Cost

Supply

Demand

Multi

Mini_Ship

In general the command is simply the keyword ‘xref’ followed by a comma-
separated list of any combination of set, parameter, variable, objective and
constraint names.

Displaying model instances: the expand
command

In checking a model and its data for correctness, we may want to look at some
of the specific constraints that AMPL is generating. The ‘expand’ command
displays all constraints in a given indexed collection or specific constraints that
one identifies.

113

ampl: model example.mod;

ampl: data example.dat;

ampl: expand Supply;

subject to Supply[‘GRAY’]:

 Trans[‘GRAY’,’FRA’] + Trans[‘GRAY’,’DEN’] + Trans

[‘GRAY’, ‘LAN’] + Trans

[‘GARY’, ‘WIN’] = 1400;

subject to Supply[‘CLEV’]:

 Trans[‘CLEV’,’FRA’] + Trans[‘CLEV’,’DEN’] + Trans

[‘CLEV’, ‘LAN’] + Trans

[‘CLEV’, ‘WIN’] = 2600;

Similarly objectives can also be expanded. When expand is applied to a variable,
it lists all of the nonzero coefficients of that variable in the linear terms of
objectives and constraints. When a variable also appears in nonlinear expressions
within an objective or constraint, the term +nonlinear is appended to represent
those expressions.

The command ‘expand’ alone produces an expansion of all variables, objectives
and constraints in a model.

Generic synonyms for variables, constraints
and objectives

Synonym Details

_nvars Number of variables in the current
problem

_ncons Number of constraints in the current
problem

_nobjs Number of objectives in the current
problem

_varname{1.._nvars} Names of variables in the current
problem

_conname{1.._ncons} Names of constraints in the current
problem

_objname{1..n_objs} Names of objectives in the current
problem

_var{1.._nvars} Synonyms for variables in the current
problem

_con{1.._ncons} Synonyms for constraints in the
current problem

_obj{1.._nobjs} Synonyms for objectives in the current
problem

Resource listing

114

Changing option show_stats from its default of 0 to nonzero value requests
summary statistics on the size of the optimization problem that AMPL generates:

ampl: model steelT.mod;

ampl: data steelT.dat;

ampl: option show_stats 1;

solve;

Presolve eliminates 2 constraints and 2 variables.

Adjusted problem:

24 variables, all linear

12 constraints, all linear ; 38 nonzeros

1 linear objective; 24 nonzeros.

MINOS 5.5 optimal solution found.

15 iterations, objective 515033

Changing option times from its default value of 0 to a nonzero value requests a
summary of AMPL’s translator’s time and memory requirements. Similarly, by
changing option gentimes to a nonzero value, we can get a detailed summary of
the resources that AMPL’s genmod phase consumes in generating a model
instance.

General facilities for manipulating output

Redirection of output

We can direct all output to a file instead of it appearing on display console, by
adding a > and the name of the file:

ampl: display supply >multi.out;

The first command specificying >filename creates a new file by that name(or
overwrites any existing file of the same name). Subsequent commands add to
the end of the file, until the end of session or a matching close command:

ampl: close multi.out;

To open a file and append output to whatever is already there(rather than
overwriting), use >> instead of >.

Output logs

The log_file option instructs AMPL to save subsequent commands and responses
to a file. The option’s value is a string that is interpreted as a filename:

ampl: option log_file ‘multi.tmp’;

The log file collects all AMPL statements and the output that they produce.
Setting log_file to the empty string turns of writing to the file.

115

Limits on messages

By specifying option eexit n, where n is some integer, we determine how AMPL
handles error messages. If n in not zero, any AMPL statement is terminated after
it has produced abs(n) error messages; a negative value causes only the one
statement to be terminated, while a positive value results in termination of the
entire AMPL session.
The default value for –eexit is -10. Setting it to 0 causes all error messages to be
displayed.

Command Scripts

A script is a sequence of commands, captured in a file, to be used and re-used.

Running scripts: include and commands

AMPL provides several commands that cause input to be taken from a file. The
command:

include filename

is replaced by the contents of the named file. An include can even appear in the
middle of some other statement, and does not require a terminating semicolon.

The ‘model’ and ‘data’ commands are special cases of ‘include’ that put the
command interpreter into model or data mode before reading the specified file.
By contrast, ‘include’ leaves the mode unchanged. For working with a small
model, it might be convenient to put the model and data command and all the
data statement in a file and then read in by use of ‘include’ command.

The statement:

commands filename;

is very similar to include, but is a true statement that needs a terminating
semicolon and can only appear in a context where a statement is legal.

For example, ‘commands’ command may find its use while performing sensitivity
analysis on a model by changing a parameter value. In this case we have to
solve the model repeatedly by changing the data. So it would be better to put all
these statements in a file and then call it by use of ‘commands’ command.

116

In many cases ‘commands’ command can be replaced by ‘include’ command. In
general it is best to use commands within command scripts, however, to avoid
unexpected interactions with repeat, for, if statements.

Iterating over a set: the ‘for’ statement

Many times we may have to repeat a few commands a few times. AMPL provides
looping commands that can do this work automatically, with various options to
determine how long the looping should continue.‘for’ statement, executes a
statement or collection of statements once for each member of some set.

For example:

model steelT.mod;

data steelT.dat;

for {1..4} {

solve;

display Total_Profit > steelT.sens;

option display_1col 0;

option omit_zero_rows 0;

display Make > steelT.sens;

display Sell > steelT.sens;

option display_1col 20;

option omit_zero_rows 1;

display Inv > steelT.sens;

let avail[3] := avail[3] + 5;

}

The ‘for’ statement can be iterated over any set also.

Between the opening and closing brace of ‘for’ statement, we can place other
statements like let, print, printf etc.

Iterating subject to a condition: the repeat
statement

A second kind of looping construct, the repeat statement, continues iterating as
long as some logical condition is satisfied.
Generally the ‘repeat’ statement has the one of the following forms as illustrated:

repeat while condition {...};

repeat until condition {…};

repeat {…} while condition;

repeat {…} until condition;

The loop body, here indicated by {…}, must be enclosed in braces. Passes
through the loop continue as long as the while condition is true, or as long as
until condition is false. A condition that appears before the loop body is tested
before every pass; if a while condition is false or an until condition is true before

117

the first pass, then the loop body is never executed. A condition that appears
after the loop body is tested after every pass, so that the loop is executed at
least once in this case. If there is no while or until condition, the loop repeats
indefinitely and must be terminated by other means, like the break statement.

Testing a condition: the ‘if-then-else’
statement
The if-then-else statement conditionally controls the execution of statements or
groups of statements.
In the simplest case, the if statement evaluates a condition and takes a specified
action if the condition is true:

If Make [“coin”,2] < 1500 then printf “under 1500\n” ;

The action may also be a series of commands grouped by braces as in the for
and repeat commands.

An optional else specifies an alternative action that also may be a single
command or group of commands:

If Make [“coin”,2] < 1500 then printf “under 1500\n” else printf “Over

1500\n” ;

AMPL executes these commands by first evaluating the logical expression
following if. If the expression is true, the command or commands following then
are executed. If the expression is false, the command or commands following
else, if any, are executed.

Terminating a loop: break and continue

Two other statements work with looping statements to make some scripts easier
to write. The continue statement terminates the current pass through a for or
repeat loop; all further statements in the current pass are skipped, and execution
continues with the test that controls the start of the next pass(if any). The break
statement completely terminates a for or repeat loop, sending control
immediately to the statement following the end of the loop.

Stepping through a script: step, next, skip

If we suspect that a script might not be doing what we want it to do, we can tell
AMPL to step through it one command at a time. This facility can be used to
provide an elementary form of “symbolic debugger” for scripts.

118

To step through a script that does not execute any other scripts, reset the option
‘single_step’ to 1 from its default value of 0. For example:

ampl: option single_step 1;

ampl: commands steelT.sa7;

steelT.sa7:2(18) data…

<2>ampl:

The expression steelT.sa7:2(18) gives the filename, line number and

character number where AMPL has stopped in its processing of the script. It is
followed by the beginning of the next command (data) to be executed. On the

next line we are returned to the ampl: prompt. The <2> in front indicates the

level of input nesting; “2” means that execution is within the scope of a
commands statement that was in turn issued in the original input stream.
At this point we may use step command to execute individual commands of the
script. If step is followed by a number, that number of commands will be
executed.

<2> ampl: step;

steelT.sa7:4(36) option …

To help through lengthy compound statement (for, repeat or if) AMPL provides
alternatives to step. The next command steps past a compound command rather
than into it. Typing ‘next n’ step past n commands in this way.
The commands skip and ‘skip n’ works like step and ‘step n’, except that they
skip the next 1 or n commands in the script rather than executing them.

Manipulating character strings

String functions and operators: ‘&’, length,
match, substr, sub, gsub

The concatenation operator ‘&’ takes two strings as operands, and returns a
string consisting of the left operand followed by the right operand. For example:

ampl: model diet.mod;

ampl: data diet2.dat;

ampl: display NUTR, FOOD;

set NUTR := A B1 B2;

set FOOD := BEEF CHK FISH;

ampl: set NUTR_FOOD := setoff {i in NUTR, j in FOOD} i & “_” & j;

ampl: display NUTR_FOOD;

set NUTR_FOOD :=

A_BEEF B1_BEEF B2_BEEF

A_CHK B1_CHK B2_CHK

A_FISH B1_FISH B2_FISH;

Numbers as arguments to ‘&’ are automatically converted to strings. Numeric
operands are always converted to full precision.

119

The ‘length’ string function takes a string as argument and returns the number
of characters in it. The ‘match’ function takes two string arguments, and returns
the first position where second appears as a substring in the first, or zero if the
second never appears as a substring in the first. The ‘substr’ function takes a
string and one or two integers as arguments. It returns a substring of the first
argument that begins at the position given by the second argument; it has the
length given by the third argument, or extends to the end of the string if no third
argument is given. An empty string is returned if the second argument is greater
than the length of the first argument, or if the third argument is less than 1.
AMPL provides two other functions, ‘sub’ and ‘gsub’, that look for the second
argument in the first, like match, but that then substitute a third argument for
either the first occurrence(sub) or all occurrences(gsub) found.

Interactions with Solvers

We briefly discuss the mechanisms used by AMPL to control and adjust the
problems sent to solvers, and to extract and interpret information returned by
them.

Presolve

AMPL’s presolve phase attempts to simplify a problem instance after it has been
generated but before it is sent to a solver. It runs automatically when a ‘solve’
command is given or in response to other commands. Any simplifications that
presolve makes are reversed after a solution is returned, so that one can view
the solution in terms of the original problem. Thus presolve normally proceeds
silently behind the scenes. Its effects are only reported when we change option
show_stats from its default value of 0 to 1.
We can determine which variable and constraints presolve eliminated by testing,
to see which variables/ constraints have a status of “pre”.

ampl: print { j in 1.._nvars: _var[j].status = “pre” } : _varname [j];

Inv[‘bands’, 0]

Inv[‘coils’, 0]

ampl: print { i in 1.._ncons: _con[i].status = “pre”}: _conname [i] ;

Init_Inv [‘bands’]

Init_Inv [‘coils’]

We can then use ‘show’ and ‘display’ to examine the eliminated components.

Activities of the presolve phase

120

• AMPL first assigns each variable whatever bounds are specified in its ‘var’
declaration or the special bounds ‘-Infinity’ and ‘Infinity’ when no lower or

upper bounds are given.

• The presolve phase tries to use these bounds together with the linear
constraints to deduce tighter bounds that are still satisfied by all of the
problem’s feasible solutions. Concurrently, presolve tries to use the tighter
bounds to detect variables that can be fixed and constraints that can be
dropped.

• Presolve works on a problem in two parts. In first part it applies some
tests to deduct some bounds on variables and deduce linear constraints.
In second part, there are a series of passes through the problem, each
attempting to deduce still tighter variable bounds from the current bounds

and the linear constraints.

Controlling the effects of presolve

To turn off presolve entirely, set option presolve to 0; to turn off the second part
only, set it to one (1). A higher value for this option indicates the maximum
number of passes made in part two of presolve; the default is 10.

Following presolve, AMPL saves two sets of lower and upper bounds on the
variables: ones that reflect the tightening of the bounds implied by constraints
that presolve eliminated, and ones that reflect further tightening deduced from
constraints that presolve could not eliminate. The problem has the same solution
with either set of bounds, but the overall solution time may be lower with one or
the other, depending on the optimization method in use and the specifics of the
problem.

Some other variables to control presolve effects:
var_bounds : set it to 2 to pass the second set of bounds to the solver.

For integer variables, AMPL rounds any fractional lower bounds up to the next
higher integer and any fractional upper bounds down to the next lower integer.
To prevent the inaccuracies of finite precision computation, AMPL subtracts the
value of option ‘presolve_inteps’ from each lower bound and adds it to each
upper bound. If increasing this value to the value of option ‘presolve_intepsmax’
would make a difference to the rounded bounds of any of the variables, AMPL
issues a warning.

To examine first and second set of presolve bounds we can use suffixes, .lb1 and
.ub1 and .lb2 and .ub2 respectively. The suffixed .lb and .ub give the bound
values currently passed to the solver, based on current values of options
‘presolve’ and ‘var_bounds’.

Detecting infeasibility in presolve

121

Presolve can determine many conditions that can make the problem infeasible.

a) If any variable’s lower bound is greater than its upper bound then there
can be no solution satisfying all the bounds and other constraints, and an

error message is printed.

b) Presolve’s more sophisticated tests can also find infeasibilities that are not
due to any one variable.

c) When the implied lower and upper bounds for some variable or constraint
body are equal then due to imprecision in the computations, the lower
bound may come out slightly greater than the upper bound, causing
AMPL’s presolve to report an infeasible problem. To circumvent this
difficulty, we can reset the option ‘presolve_eps’ from its default value of 0
to some small positive value. Differences between lower and upper
bounds are ignored when they are less than this value. If increasing the
current ‘presolve_eps’ value to a value no greater than ‘presolve_epsmax’
would change presolve’s handling of the problem, then presolve displays a

message to this effect.

d) An imprecision in the computations can cause the implied lower bound on
some variable or constraint body to come out slightly lower than the
implied upper bound. Here no infeasibility is detected, but the presence of
bounds that are nearly equal may make the solver’s work much harder
than necessary. Thus whenever, the upper bound minus the lower bound
on a variable or constraint body is positive but less than the value of
option ‘presolve_fixeps’, the variable or constraint body is fixed at the
average of two bounds. If increasing the value of ‘presolve_fixeps’ to at
most the value of ‘presolve_fixepsmax’ would change the results of

presolve, a message to this effect is displayed.

e) The number of separate messages displayed by presolve is limited to a
value of ‘presolve_warnings’, which is 5 by default. Increasing option
‘show_stats’ to 2 may elicit some additional information about the presolve

run.

Retrieving results from solvers

AMPL sets two built in parameters after each run of ‘solve’ command to indicate
the solver’s status after a run of the optimization problem. These two parameters
are:

solve_result_num: Contains a number
solve_result : Contains a character string

This can be interpreted as the following:

122

Number String Interpretation

0-99 solved Optimal solution found

100-199 solved? Optimal solution
indicated, but error likely

200-299 infeasible Constraints cannot be
satisfied

300-399 unbounded Objective can be
improved without limit

400-499 limit Stopped by a limit that
one sets (such as on
iterations)

500-599 failure Stopped by an error
condition in the solver

This status information is used in scripts, where it can be tested to distinguish
among cases that must be handled in different ways.
The built in parameter solve_exitcode records the success or failure of the most
recent solver invocation. Initially -1, it is reset to 0 whenever there has been a
successful invocation and to some system dependent nonzero value otherwise.

Solver status of objectives and problems

Sometimes it is convenient to be able to refer to the solve result obtained when a
particular objective was most recently optimized. For this purpose, AMPL
associates with each built in solve result parameter a ‘status’ suffix:

 Built in parameter Suffix

solve_result .result

solve_result_num .result_num

solve_message .message

solve_exitcode .exitcode

Appended to an objective name, this suffix indicates the value of the
corresponding built in parameter at the most recent solve in which the objective
was current.

Solver statuses of variables

AMPL provides facilities to let solver return an individual status for each variable.
The major use of solver status values from an optimal basic solution is to provide
a good starting point for the next optimization run. The option ‘send_statuses’,
when left at its default value of 1, instructs AMPL to include statuses with the
information about variables sent to solver at each solve.

AMPL refers to a variable’s solver status by appending .sstatus to its name. Thus
we can print the status of variables with display command.

123

A table of the recognized solver status values is stored in option sstatus_table:

ampl: option sstaus_table;

option sstatus_table ‘\

0 none no status assigned\

1 bas basic\

2 sup superbasic\

3 low nonbasic<= (normally =) lower bound \

4 upp nonbasic>= (normally=) upper_bound\

5 equ nonbasic at equal lower and upper bounds\

6 btw nonbasic between bounds\

‘;

Solver statuses of constraints

Implementation of the simplex method typically adds one variable for each
constraint that they receive from AMPL. Each added variable has a coefficient of
1 or -1 in its associated constraint, and coefficients of 0 in all other constraints. If
the associated constraint is in inequality, the addition is used as a “slack” or
“surplus” variable; its bounds are chosen so that it has effect of turning the
inequality into an equivalent equation. If the associated constraint is an equality,
the added variable is an “artificial” one whose lower and upper bounds are both
zero.

To accommodate statuses of these logical variables, AMPL permits a solver to
return status values corresponding to the constraints as well as the variables.
The solver status of a constraint, written as the constraint name suffixed by
.sstatus, is interpreted as the status of the logical variable associated with that
constraint.

AMPL statuses

Only those variables, objectives and constraints that AMPL actually sends to a
solver can receive solver statuses on return. So that we can distinguish these
from components that are removed prior to a solve, a separate “AMPL status” is
also maintained. We can work with AMPL statuses much like solver statuses, by
using the suffix .astatus in place of .sstatus and referring to option astatus_table
for a summary of the recognized values:

ampl: option astatus_table;

option astatus_table ‘\

0 in normal state (in problem)\

1 drop removed by drop command\

2 pre eliminated by presolve

3 fix fixed by fix command\

4 sub defined variable, substituted out\

5 unused not used in current problem\

‘;

124

Exchanging information with solvers via
suffixes

AMPL employs various qualifiers or suffixes appended to component names to
represent values associated with a model component. AMPL can not anticipate all
of the values that a solver might associate with model components, however.
The values recognized as input or computed as output depend on the design of
each solver and its algorithms. To provide for open ended representation of such
values, new suffixes may be defined for the duration of AMPL session, either by
the user for sending values to a solver, or by a solver for returning values. For
this purpose we have user defined suffixes and solver defined suffixes.
User defined suffixes can be used to pass preferences for variable selection and
branch direction to an integer programming solver. Similarly solver suffixes can
be used for sensitivity analysis and infeasibility diagnosis. Users are referred to
the AMPL book by R. Fourer, D. Gay and B.W. Kernighan (Chapter 14 –
Interaction with solvers) for details.

Defining and using suffixes

A new AMPL suffix is defined by a statement consisting of the keyword ‘suffix’
followed by a suffix name and then one or more optional qualifiers that indicate
what values may be associated with the suffix and how it may be used. The
suffix statement causes AMPL to recognize suffixed expression of the form
component-name.suffix name, where component-name refers to any currently
declared variable, constraint or objective. The definition of a suffix remains in
effect until the next ‘reset’ command or the end of the current AMPL session.
There are a few optional qualifiers of the suffix statement and they may appear
in any order.
The optional ‘type’ qualifier in a suffix statement indicates what values may be
associated with the suffixed expressions, with all numeric values being the
default.

Suffix type Values allowed

None specified Any numeric value

Integer Integer numeric values

Binary 0 or 1

Symbolic Character strings listed in option suffix-
name_table

All numeric-valued suffixed expressions have an initial value of 0. Their
permissible values may be further limited by one or two bound qualifiers of the
form
 >= arith-expr

125

 <= arith-expr

Where arith-expr is any arithmetic expression not involving variables.

For each symbolic suffix, AMPL automatically defines an associated numeric
suffix, suffix-name_num. An AMPL option suffix-name_table must then be
created to define a relation between the .suffix-name and .suffix-name_num
values, as in the following example:

suffix iis symbolic OUT;

option iis_table ‘\

0 non not in the iis\

1 low at lower bound\

2 fix fixed\

3 upp at upper bound\

‘;

Each line of the table consist of an integer value, a string value, and an optional
comment.

The optional in-out qualifier determines how suffix values interact with the
solver:

In-out Handling of suffix values

IN written by AMPL before invoking the
solver, then read in by solver

OUT written out by solver, then read by
AMPL after the solver is finished

INOUT both read and written, as for IN and
OUT above

LOCAL neither read nor written

Alternating between Models

We have seen earlier how AMPL commands can be set up to run as programs
that perform repetitive actions. In several examples, a script solves a series of
related model instances, by including a solve statement inside a loop. The result
is a simple kind of sensitivity analysis algorithm, programmed in AMPL’s
command language.

Much more powerful algorithmic procedures can be constructed by using two
models. An optimal solution for one model yields new data for the other, and the
two are solved in alteration in such a way that some termination condition must
eventually be reached. To use two models in this manner, a script must have
some way of switching between them. Switching can be done with previously
defined AMPL features, or more clearly and efficiently by defining separately-
named problems and environments.

126

Named problems

At any point during an AMPL session, there is a current problem consisting of a
list of variables, objectives and constraints. The current problem is named Initial
by default and comprises all variables, objectives and constraints defined so far.
We can define other “named” problems consisting of subsets of these
components, however, and can make them current. When a named problem is
made current, all of the model components in the problem’s subset are made
active, while all other variables, objectives and constraints are made inactive.
More precisely variables in the problem’s subset are unfixed and the remainder
are fixed at their current values. Objectives and constraints in the problem’s
subset are restored and the remainder are dropped.

We can define a problem most straightforwardly through a problem declaration
that gives the problem’s name and its list of components. For example:

problem Cutting_Opt : Cut, Numer, Fill;

A new problem Cutting_opt is defined, and is specified to contain all of the

Cut variables, the objective Number and all of the Fill constraints. At the

same time, Cutting_opt becomes the current problem. Any fixed Cut

variables are unfixed, while all other declared variables are fixed at their current

values. The objective Number is restored if it had been previously dropped,

while all other declared objectives are dropped; and similarly any dropped Fill

constraints are restored, while all other declared constraints are dropped.

Any problem statement that refers to only one problem has the effect of making
that problem current.

We can display the current problem by using command ‘problem’:

ampl: model cut.mod;

ampl: data cut.dat;

ampl: problem;

problem Initial;

The current problem is always Initial until other named problems have been
defined. The ‘show’ command can give a list of the named problems that have
been defined.

ampl: show problems;

problems: Cutting_opt Pattern_Gen

We can also use ‘show’ to see the variables, objectives and constraints that make
up a particular problem or indexed collection of problems and use ‘expand’ to see
the explicit objectives and constraints of the current problem, after all the data
values have been substituted.

127

Named environments

In the same way that there is a current problem at any point in an AMPL session,
there is also a current environment. Whereas a problem is a list of non fixed
variables and non dropped objectives and constraints, an environment records
the value of all AMPL options. By naming different environments, a script can
easily switch between different collections of option settings.

At the start of an AMPL session the current environment is named Initial and
each subsequent problem statement that defines a new named problem also
defines a new environment having the same name as the problem. An
environment initially inherits all the option settings that existed when it was
created, but it retains new settings that are made while it is current. Any
‘problem’ or ‘solve’ statement that changes the current problem also switches to
the correspondingly named environment, with options set accordingly.

In more complex situations, we can declare named environments independently
of named problems, by use of statement that consists of the keyword ‘environ’
followed by a name:

environ Master;

For a more detailed description of the advance features of AMPL language, users
are referred to the book on AMPL by R. Fourer, D. Gay and B.W. Kernighan and
the AMPL website (www.ampl.com).

128

Chapter 9: Scripts, Debugging &
Tracing in AMPL Studio

In AMPL studio we can include script file. Prominent among the unique
advantages of AMPL studio are the debugging and tracing features.

Scripts

In Chapter 4, we have already seen the ways of running a script file. A new
script file can be added to a project by right clicking on the script folder of any
project or by choosing to add script file to an active project from the Add to
project submenu under project-menu.

To run a script file for the project, the script file (.sa or .run) file first needs to be

opened in AMPL Studio and then by use of it can be run.

129

Debugging and Tracing: step by
step walk through example

We illustrate the debugging feature by use of an example. We consider the
example ‘stoch’ present under AmplStudio Modeling System
1.6.J\Examples\Script.

1. We load the workspace Scriptworkspace.wampl and consider the project
stoch.

2. We load the stoch.run file by double clicking on it.

130

3. The script file can be run in one go by using Start Debug Script -> Run

script submenu under the Build menu or the button on the script bar.

4. To step through the script file use Start Debug Script -> Go submenu from

the Build menu or the button from the script bar.

131

AMPL studio then steps through the script file.

5. When using step by step debugging feature (Step 4) to proceed a single
step (analogous to AMPL’s step command) use Start Debug Script -> Step

under Build menu or button on script bar

132

AMPL studio then processes one step at a time.

6. To step past a compound statement (analogous to AMPL’s next
command) rather than into it, use Start Debug Script ->Next under Build

menu or use button on the script bar.

133

AMPL studio then just steps past the compound statement (For loop in
the screen shot)

7. To see the value of any variables or parameter double click on the

variable or parameter name in the script file. AMPL studio displays its
value in Output console as well as in the script file.

134

8. At any time to stop stepping through the script file use Start Debug Script

-> Stop under build menu or the button on the script bar.

AMPL studio processes the complete script file and displays the final
results.

135

136

Appendix A: Installation and
Licensing

Users should follow the step by step procedure as illustrated by screenshots
below:

137

138

139

140

141

142

	Cover_AmplStudio.pdf
	OptiRisk Systems

