
QUICK START GUIDE TO 
COMPUTATIONAL PROTEIN DESIGN USING 

COST FUNCTION NETWORK (CFN)

This document has been produced as a companion to Traoré et. al. (2013) in Bioinformatics, to get
you started with using the CFN-based approach for CPD. It presents a detailed example of how to
apply the approach to predict the optimal sequence or a sub-optimal ensemble of sequences for a
protein design problem targeting stability enhancement. The goal of this example is to assist the
user in setting up and applying this new CPD framework for their own protein design problems. 

For  reviewers,  we  also  included  a  “Very  QuickStart”  (see  section VII)  that  avoids  all  problem
generation steps (requiring extensive installations: amber9, osprey 2.0 and therefore also MPIJava).
This  is  achieved  by making available  the energy matrices  computed by  osprey for  all  35  CPD
problems in  the paper,  as  well  as  their  translation to  the CFN “wcsp” format.  Together  with
Python translation scripts, this should allow for a painless reproduction of computational results.

Otherwise,  the setup for  performing this  CPD approach can be devised  in five main  steps:  (i)
Parameterization of molecular structural system; (ii) Selection of search sequence-conformation
space; (iii) Computation of pairwise energy terms; (iv) Optimization of sequence-conformations;
(v)   Score refinement and statistical  analysis  of top-score models.   The details  of each step are
described below. 

I. ARCHIVE CONTENTS 

The archive of the pipeline used to generate energetic models (based on a patched version of the
open source solver  osprey 2.0),  the conversion to CFN models  (based on Perl scripts)  and CFN
solving  (based  on  the  open  source  solver  toulbar2)  is  available  at  the  following  address
http://genoweb.toulouse.inra.fr/~tschiex/CPD/SpeedUp.tgz. The example of protein design is in the
example.1MJC directory. It contains the following directories:

 osprey2: patched  osprey 2.0 with  MPIJava sources and classes, compiled with Sun/Oracle
Java7 64 bits compiler.

 bin: contains toulbar2 binary file and  a binary file for sequence analysis
 conf_info: will contain sequence-conformation files
 dat: directory for interaction energy matrix files during computation
 dat.save: will contain the saved matrix file
 files: contains some intermediary files
 inp: amber, cplex and osprey input files
 patch: patch to be applied to the original osprey2.0 sources if required
 pdbs: generated structures from selected results
 scripts: scripts to setup  input files and making some analysis
 postmin_ana: post-minimization and repacking directory

It is assumed that you have installed java, amber9 and that our patched version of osprey2.0 can be
executed.  All executions are assumed to run under a 64 bits Linux system with a Bourne shell. If
you lack any of these software, intermediary files are also available in the archive for IMJC or the
Very QuickStart can be tried (section VII).

II. PARAMETERIZATION OF MOLECULAR STRUCTURAL SYSTEMS 

You need a protein structure to redesign. In the example described here, we choose to redesign the
“Cold-shock protein  A from  E. coli”.  The  crystal  structure  of  this  protein  is  available  in  the

http://genoweb.toulouse.inra.fr/~tschiex/CPD/SpeedUp.tgz


Protein Data Bank (PDB id: 1MJC). After downloading the structure, ATOM records are extracted
from the 1MJC.pdb file and saved into the 1MJC_edited.pdb file. Missing heavy atoms in crystal
structures as well as hydrogen atoms are then added using the tleap module of the Amber 9. Here is
given  an  example  of  input  tleap file  to  accomplish  this  task  for  the  edited  1MJC  structure
(1MJC_edited.pdb): tleap.inp file 

source leaprc.ff 99SB       #The force field parameter to be used
X = loadpdb 1MJC_edited.pdb #The edited pdb file 
set default PBradii mbondi2 #Radii set to be used(minimization step)
check X
saveamberparm X 1MJC.prmtop 1MJC.inpcrd
quit

The command to run tleap is:  

$AMBERHOME/exe/tleap -f inp/tleap.in

Note that the environment variable $AMBERHOME must be set to point to the home directory of
the amber package. 

For visual  inspection of the structure,  a  pdb file (1MJC.hbuild.pdb)  can be generated using the
following command: 

$AMBERHOME/exe/ambpdb -pqr -p 1MJC.prmtop  -aatm  <  1MJC.inpcrd >  1MJC.hbuild.pdb

Finally, the molecular system is subjected to 500 steps of minimizations with the sander module of
Amber 9  (Case  D.  A. et  al.,  2006), using the Generalized Born/Surface  Area (GB/SA)  implicit
solvent model (Hawkins et al., 1996). A harmonic constraint with force constraint of 1 kcal.mol -1 is
applied to heavy atoms during this step in order to remain close to the starting conformation.
Underneath is given the input script used to perform this task with the sander module of amber9:
imin.inp file.   

Initial minimization 
 &cntrl
  imin          = 1,
  maxcyc        = 500,
  ncyc          = 250,
  ntb           = 0,
  igb           = 7,
  rbornstat     = 1,
  gbsa          = 1,
  intdiel       = 4.0,
  cut           = 12,
  ntr           = 1,
  restraint_wt  = 1.0,
  restraintmask = '!@H='
 /

The commands for running the minimization step, followed by the generation of the resulting
structure are: 

$AMBERHOME/exe/sander -O -i imin.inp -o 1MJC.min.out -c  1MJC.inpcrd  -p 1MJC.prmtop  
-r 1MJC.restrt  -ref 1MJC.inpcrd

$AMBERHOME/exe/ambpdb -pqr -p 1MJC.prmtop -aatm  <1MJC.restrt> model.pdb

The  minimized  structure  (model.pdb)  can  be  visualized  using  pymol (Schrödinger,  2010) for
example.  After  checking  the  minimized  structural  model,  we  can  address  the  definition  of
mutation space  using a  metric  based  on the residue  depth in the molecule  (its  distance  from
solvent).  

III. SELECTION OF SEQUENCE-CONFORMATION SPACE 



Next, it is necessary to determine which residues to mutate and which ones to repack as well as the
amino acid type to be considered at each mutable position. 3 mutable residues (residues 17, 19 and
30) are selected in this example (1MJC). Allowed mutations at these selected positions depend on
the  burial  of  residues  within  the  protein.  Residues  are  classified  as  core,  boundary  or  surface
according to their solvation radius (see methods Traore et al, Bioinformatics 2013). For this purpose,
the atomic radii set included in the last column of the structure file (model.pdb) is used. 
According to this stratification, the amino acids residues 19 and 30 are then classified into the core
layer while the residue 17 is defined in the boundary layer. 
Mutable residues in the core (residues 19 and 30) are allowed to mutate to hydrophobic amino acids
(V,L,I,F,M,Y,W), boundary residues (residue 17) to hydrophilic amino acids (S,T,D,N,E,Q,H,K,R)
and surface residues (no residue in this example) to both sets. In addition, the alanine type and the
wild-type residue are considered at all mutable positions. The others residues of the core and the
boundary regions (residues 4, 5, 7, 8, 10, 11, 20, 21, 23, 28, 29, 31, 32, 33, 36, 43, 44, 48, 50, 51, 52, 53, 54,
66 and 67) are enabled to repack  (i.e., flexible residues) in order to allow structural rearrangements
around mutable residues. 

Below  is  given  the  command  to  accomplish  the  above  tasks  as  well  as  the  generation  of
configuration files required to compute the pairwise energy matrix using  osprey2.0 (see  osprey2.0
user manual for further details).

./scripts/Config_mutation_space.pl inp/model.pdb inp/plist

The file plist contains the list of mutable residues:

17 LAYER
19 LAYER
30 LAYER

The configuration files generated in the inp directory are:

 System.cfg: information about the protein system being redesigned
 KStar.cfg: force field parameters and rotamer file specification
 DEE.cfg: parameters for energy matrix and DEE/A* computations

IV. COMPUTATION OF PAIRWISE ENERGY TERMS  

This  stage  consists  of  the  pairwise  energy  terms  computation  and  the  generation  of  the
corresponding matrix in text format (what is  required to build CFN models).  This is  achieved
using osprey 2.0 (Chen et al., 2009; Gainza et al., 2013). You should try the patched an d compiled
version available in the Osprey2.0 directory which should work under most 64 bits Linux systems
with Java (6 or above) installed. If not, please look to the Appendix to, patch and compile Osprey
2.0 yourself. 

The command lines for computing pairwise energy matrices are:

java -cp Osprey2.0/src:Osprey2.0/src/mpiJava/lib/classes -Xmx2G KStar -t 5 –c 
inp/KStar.cfg computeEmats inp/System.cfg inp/DEE.cfg >matrix.out 2>&1  < /dev/null

The single and pairs interaction matrix files are saved into the ‘dat’ directory. These generated text
matrices  have  to  be  concatenated  into  a  single  text  matrix  (called
1MJC.matrix.28p.17aa.usingEref.txt) which is then used to generate the input file for toulbar2.
  
The following command line performs the concatenation and saves the combined text matrix
into dat.save directory.

./scripts/concat_pairwise_matrix.sh dat.save

V. SEQUENCE-CONFORMATION OPTIMIZATION



The CFN-based optimization using toulbar2 is performed by scripts/CFN.sh. 

./scripts/CFN.sh 1MJC.matrix.28p.17aa.usingEref.txt

This script involves the following steps: 

1) The translation of the pairwise matrix to the CFN ‘wcsp’ format:

mat=1MJC.matrix.28p.17aa.usingEref.txt # name of the matrix file
./scripts/mat2wcsp.pl –mat $mat -mwcsp -minself >make_wcsp.out

Where –mwcsp is a flag for translating to the CFN ‘wcsp’ format and –minself specifies the use of
reference  energy.  The  script  creates  the  input  for  toulbar2:
1MJC.matrix.28p.17aa.usingEref_self_digit8.wcsp

2) The computation of the GMEC (followed by the extraction of the solution from the output
and the translation of the costs into energy values).

name=1MJC.matrix.28p.17aa.usingEref_self_digit8
./bin/toulbar2 $name.wcsp –l=3 -m -d: –s > $name.wcsp.out
grep -A 1  "New solution"  $name.wcsp.out|tail -1 > $name.wcsp.sol
./scripts/mat2wcsp.pl -mat $mat -minself -tb2sol $name.wcsp.sol > $name.wcsp.gmec.out

The  file  $name.wcsp.sol  contains  the  solutions  found  by  toulbar2  and  $name.wcsp.gmec.out
contains corresponding energies (translation of unary and binary costs into kcal.mol -1 and the
corresponding total energy).

3) The computation of sub-optimal ensemble (the cost of the GMEC is used to enumerate sub-
optimal solutions within some threshold from the GMEC energy (2 kcal.mol-1))

ew=$(( 2 * 10 ** 8 )) # 2kcal.mol-1

lb=`egrep "^Optimum:" ${name}.wcsp.out|awk '{print $2}'` # lowerbound
ub=$(( $lb + $ew ))  # upperbound
./bin/toulbar2 $name.wcsp -d: -a -s -ub=$ub >$name.wcsp.enum 2>&1

4) Solutions from $name.wcsp.enum are extracted, sorted and translated into osprey format using
the following command line:

./scripts/simple_ana.sh $mat 

VI. SCORE REFINEMENT AND STATISTICAL ANALYSIS OF TOP-SCORE MODELS  

First, from the enumerated sub-optimal sequence-conformation models, the unique sequences are
extracted and their occurrences are determined. This task is performed by the simple_ana.sh script
and the result file is  $name.wcsp.enum.res.ana.  A fasta format file is also generated from these
unique sequences, and Weblogo (Crooks et al., 2004) can be used to visualize the propensity of each
amino acid type at each mutable position. 
Second, in order to evaluate the effect of the relaxation of side-chains and backbone degrees of
freedom  of  the  best  conformation  for  each  unique  sequence  on  the  energy  ranking,  energy
minimization and rescoring steps are carried out as well as the number of conformation accessible
to each mutant within some threshold (0.2 kcal.mol-1  here). 
The extraction of unique sequences (best  conformation) and structure building using  osprey is
performed by scripts/GenStruct.sh.

The tleap module of amber9 is used to produce the .inpcrd file of the generated models which are
then subjected to energy minimizations  using the  sander  module of  amber9.  In this example,
1000  steps  of  minimizations  are  performed  using  the  Generalized  Born/Surface  Area  (GB/SA)
implicit solvent model  (Hawkins et al., 1996).  Here is the command line for the generation of
amber input files and the minimization of unique sequence structures: 



./scripts/amberin.pl 

./scripts/amber-postmin.sh 

The  amberin.pl script  generates  all  input  files  required  for  the  minimization  of  all  selected
conformations (best conformation per sequence) while the amber-postmin.sh script performs the
minimization.  The  energy  of  the  refined  structure  is  then  reevaluated  using  osprey
(computeEnergyMol command).
In order to assess the effect of the minimization on the conformational variability, a repacking
optimization can be carried out on the minimized structures. This is accomplished by performing
a matrix computation using osprey and sub-optimal enumeration using CFN-based approach with
some initEw value (0.2 for example) for each of the unique sequences. These tasks are performed by
run_post_ana.sh. 
Here is given the description of some modifications accomplished in the configuration files of each
of the unique sequences:

 System.cfg:  the parameter “pdbName” points to the pdb file of the minimized structure
of the considered sequence.

 KStar.cfg: unchanged.
 DEE.cfg:  the “initEw”  parameter is  set  to 0.2;  all  lines  “resAllowed” are  deleted;  the

“minEnergyMatrixName”,  “erefMatrixName”  and  “maxEnergyMatrixName”
parameters should have a different name for each sequence; parameter “AddWTRots” and
“AddWT” are set to true.

In the directory  postmin_ana, each sequence has its own subdirectory because text matrices are
written  into  the  dat sub-directory.  For  each  sequence,   the  matrix  computation  and  CFN
optimization are identical to the process defined above, except that the reference energy is not used
during the optimization step since each sequence is optimized independently (flag –minself is not
used). Also notice that if you just need the number of conformation within initEw, the flag ‘-s’ can
be omitted.  
The following command lines perform the matrix computation using osprey as well as the CFN-
based repacking using toulbar2:

./scripts/run_post_ana.sh
cd postmin_ana
./run_mutantMatrices.sh  
./run_mutantPostCFN.sh

For the rescoring and the energy matrix computation, the script  run_post_ana.sh generates two
files for each mutant computeMats.sh and PostMinCFN.sh. The first one reevaluates the energy of
the minimized structures and the second one carries out the repacking. The computation for all
mutants can directly be performed using run_mutantMatrices.sh (applies all computeMats.sh) and
run_mutantPostCFN.sh (applies all PostMinCFN.sh).

VII. VERY QUICK START 

To be able to just  reproduce the main results  w/o major efforts or software installation, please
download the energy matrices produced by osprey 2.0 and their translated version to the “wcsp”
format  the  problems  considered  in  the  paper.  Each  file,  compressed  with  the  strong  “xz”
compressor,  (available  under  most  Linux  distributions)  is  available  at
http://genoweb.toulouse.inra.fr/~tschiex/CPD.

Download and extract the wcsp file of the problem of your choice (the 1MJC instance is  used
below) in the example  directory (please  be  sure  to have the required disk  space  available)  and
uncompress it:

unxz 1MJC.matrix.28p.17aa.usingEref_self_digit8.wcsp.xz

This creates (a possibly large) .wcsp file for toulbar2.
 You can identify the GMEC using  toulbar2 directly on the “wcsp” files as described in

section V (item 2).

http://genoweb.toulouse.inra.fr/~tschiex/CPD


 You can enumerate all solutions within 2 kcal/mol of the GMEC using toulbar2 directly
on the wcsp files, once the GMEC has been identified and stored above. Just follow Section
V, item 3.

For testing the ILP approach, notice that IBM ILOG cplex is free for academics. You must contact
the IBM academic initiative to be able to download and install the cplex software. Please proceed as
described  on  the  dedicated  IBM  academic  initiative  web  site  at  http://www-
01.ibm.com/software/websphere/products/optimization/academic-initiative/.

You can then translate any of the “wcsp” files to the cplex “lp” format using the wcsp2cplex.py 1

scripts:

./scripts/wcsp2cplex.py 1MJC.matrix.28p.17aa.usingEref_self_digit8.wcsp > 1MJC.lp
 

Under  cplex  command  line  interface,  you  can  identify  the  GMEC  with  the  following
commands:

read 1MJC.lp
read inp/cplex.prm
optimize
write 1MJC.sol
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VIII. APPENDIX: INSTALLING AND PATCHING OSPREY 2.0

This is required only if the patched provided version in Osprey2.0 directory does not work on your
system. You can download the Java sources of osprey 2.0 from the following web site:

http://www.cs.duke.edu/donaldlab/software/osprey/request_download.html

Once extracted, the files to patch are in the src directory of the osprey 2.0 installation directory (the
path to this directory is assumed to be available in the $OSPREYHOME environnement variable). 

patch $OSPREYHOME/src/RotamerSearch.java < patch/RotamerSearch.patch
patch  $OSPREYHOME/KSParser.java < patch/KSParser.patch

Then recompile osprey (the MPIJava library must be available too, see Osprey documentation):

javac –cp mpiJava/lib/classes $OSPREYHOME/src/*.java

http://www.cs.duke.edu/donaldlab/software/osprey/request_download.html

	I. Archive contents
	II. Parameterization of molecular structural systems
	III. Selection of sequence-conformation space
	IV. Computation of pairwise energy terms
	V. Sequence-Conformation optimization
	VI. Score refinement and statistical analysis of top-score models
	VII. Very Quick start
	References
	VIII. Appendix: installing and patching Osprey 2.0

