
US005642481A 
O 

Umted States Patent [19] [11] Patent Number: 5,642,481 
Pedrizetti [45] Date of Patent: Jun. 24, 1997 

[54] METHOD AND SYSTEM FOR VALIDATING 5,371,892 12/1994 Petersen et a1. ...................... .. 395F100 
A MEMORY WINDOW 1N SYSTEM 5,448,710 9/1995 Liu .................... .. 395/497.03 
ADDRESS SPACE 5,450,570 9/1995 Richek et a1 ...... .. 395/500 

5,497,490 3/1996 Harada etal .... .. 395/700 
7 2 . - - 5,519,851 5/1996 Bender eta] .... .. 395/500 
[ 51 Inventor sigma D Pedmem’ Issaquah’ 5,530,858 6/1996 Stanley et a1 .... .. 395/650 

" 5,553,245 9/1996 Su et a1. ................................ .. 395/284 

[73] Assignee: Microsoft Corporation, Redmond. _ 
wash Pnmary Examiner-Robert W. Beausoliel. Jr. 

Assistant Examiner—A1bert Decady 
[21] APPL No; 412,558 Attorney, Agent, or Fim1-—Jones & Askew 

[22] Filed: Mar. 29,1995 [57] ABSTRACT 

[51] Int. Cl.6 .................................................... .. G06F 11/34 The Pmsent inven?m Pmvidcs a System and mcmod for 
52 US CL " “ 95 [18501; 4 vahdaung system address space for adapter cards havmg an 
{58} Fi d d of Search 33,95,185 01 31985332 mfonnatlon structure of a prede?ned format. Validation is 

395 283 28;‘ 5’00 7'00’ accomplished by verifying the prede?ned format of the 
’ ’ ’ ’ 8 3,929’ information structure via a memory window. Because veri 

’ ?cation is conducted via a memory window, it is only 
[56] R efemnc es Cited successful when the address space of the memory window is 

free of control by other components of the computer that 
US. PATENT DOCUMENTS would otherwise have interfered with veri?cation. Thus, 

4905182 2/1990 Fitch a al 364/900 only a memory window that is suitable for adapter card 
4:931:923 6/1990 Fitch et a1. 364/200 anocauon ‘5 vahdalcd‘ 
5,056,060 10/1991 Fitch et a1. 395/282 
5,161,102 11/1992 Gri?in 61.31. ......................... .. 395/800 18 Chum‘ s, 3 Drawmg' Sheets 

52 

DE'T'ECT‘ A VALIDATION EVENT 

REREAD A SE1‘ OF TUPLES OF TTE 
CARD VIA THE MEMORY WINDOW 

l 
RETRIIVE A hEMORY WINDOW 

56 

ATTEMYI 
TO VERIFYTRE ll PLE 

CALCULATE A SUBSEQUENT CY CLIC 
REDUNDANCY CHECK VALUE BASED ON 

THE DEAD TUPLES 

ARE TIE 
CYCLIC REDUNDANCY 

FORMAT BY WALKING THOUGH 
THE TUPLES VIA THE MEMORY 

WINDOW_ ARE THE 

READASET OFT'UPIE OFTHE CARD 
VIA THE MEMORY WINDOW 

1 
CALCULATE A CY CLIC REDUNDANCY 
CHECK VALUE BASED ON THE READ 

TUPIES 

CHECK VALUES 
CONSISI‘ENI‘.’ 

NO 

HAVE 8 
ITERATTONS BEEN 
COMPIEI'ED? 

72 

YES 

ALLOCATE THE MEMORY WINDOW 

READ THE SET OF TUPLES OF THE 
CARD VIA m ALLOCATED MEMORY 

W1ND( )W 

M71 
UNALLOCATE THE ALLOCATED 

MEMORY WINDOW 

DETERMBIE AN ALLOCATl-l) CYCLIC 
REDUNDAN CY CHECK VALUE BASH) 0N 

ARE THE CYCLIC 
REDUNDANCY CHECK 
VALUES CONSIS 1 EN 1 3 





US. Patent Jun. 24, 1997 

DETECT A VALIDATION EVENT 

5,642,481 Sheet 2 of 3 

REREAD A SET OF TUPLES OF THE 
CARD VIA THE MEMORY WINDOW 

1 

I 

RETRIEVE A MEMORY WINDOW 

L 54 
A'I'I‘ENIPT 

TO VERIFY THE TUPLE 

56 

CALCULATE A SUBSEQUENT CYCLIC 
REDUNDANCY CHECK VALUE BASED ON 

THE READ TUPLES 

66\_> 
ARETHE 

CYCLIC REDUNDANCY 

FORMAT BY WALKING THROUGH 
THE TUPLES VIA THE MEMORY 

WINDOW. ARE THE 
TUPLES VALID 

‘) 

60 
YES ( 

READASET OFTUPLES OFTHECARD 
VIA THE MEMORY WINDOW 

NO 

CALCULATE A CYCLIC REDUNDANCY 
CHECK VALUE BASED ON THE READ 

TUPLES 

CHECK VALUES 
CONSISI‘ENT? 

NO 

70 

HAVE 8 
ITERATIONS BEEN 

COIVIPLETED? 

"7 
ALLOCATE THE MEMORY WINDOW 

62 

so? 
1 

READ THE SET OF TUPLES OF THE 
CARD VIA THE ALIDCATED MEMORY 

WINDOW 

NJ 
UNALLOCATE THE ALLOCATED 

MEMORY WINDOW 

‘L____ 

F%_2 

DETERMINE AN ALLOCATED CYCLIC 
REDUNDANCY CHECK VALUE BASED ON 

THE READ TUPLES 

76) 
78 

ARE THE CYCLIC 
REDUNDANCY CHECK 
VALUES CONSISTENT? 

NO 



US. Patent Jun. 24, 1997 Sheet 3 of 3 5,642,481 

s4 3 

INTERROGATING A MEMORY 
MANAGER TO DETERMINE IF 
A NEXT ADDRESS SPACE IS 
AVAILABLE AS A MEMORY 
WINDOW BETWEEN lIVfB AND 

16 MB ? 

86 

INTERROGATING A NIEMORY 
MANAGER TO DETERMINE IF 
A NEXT ADDRESS SPACE IS 
AVAILABLE AS A NIEMORY 

WINDOW BETWEEN D0000 AND 
F0000 ? 

INTERROGATING A MEMORY 
MANAGER TO DETERMINE IF 
A NEXT ADDRESS SPACE IS 
AVAILABLE AS A MEMORY 

WINDOW BETWEEN C0000 AND 
D0000 ? 

ALLOCATE FIRST AVAILABLE MEMORY 
ADDRESS SPACE AS MEMORY WINDOW 
EVEN THOUGH IT CANNOT BE VERFIED 



5,642,481 
1 

METHOD AND SYSTEM FOR VALIDATING 
A MEMORY WINDOW IN SYSTEM 

ADDRESS SPACE 

TECHNICAL FIELD 

The present invention relates generally to adapter cards 
for computing devices, and more particularly to an improved 
system for, and method of, validating a memory window in 
system address space to support adapter card con?guration. 

BACKGROUND OF THE INVENTION 

From the late 1970’s to the present day, the use of 
computers has proliferated in businesses, homes, academia, 
and a multitude of other environments. This proliferation has 
been due, in part, to the development of standardized 
computers that can be mass produced at affordable costs and 
that include expansion capabilities to support user customi 
zation. 
A standardized computer typically comprises a power 

supply, a central processing unit, system address space, 
input/output ports, and a card expansion system. The com 
ponents of the computer communicate with one another by 
transmitting and receiving signals on a system bus, which is 
a group of electrical connections between the components. 
Each component on the bus has its own address or set of 

addresses and electronically monitors the bus for signals 
coded with that address. Thus, each component receives all 
signals that are transmitted on the bus, but responds only to 
signals with its address or set of addresses. 
Card expansion systems typically comprise a plurality of 

expansion slots connected to the system bus by means of an 
expansion bus. The expansion bus may be of a variety of bus 
standards, such as Industry Standard Architecture (ISA), 
Extended Industry Standard Architecture (EISA), Small 
Computer Systems Interface (SCSI) or Personal Computer 
Memory Card International Association (PCMCIA). These 
bus standards and others were developed by the computer 
industry to allow a variety of adapter cards to be designed 
for operation with computer systems through expansion 
busses. 
As used herein, the phrase “adapter card” means a card 

having a circuit board for installation in an expansion slot of 
a computing device such that it operates in conjunction with 
the computer system to perform certain functions. Cormnon 
types of adapter cards are video display adapters, disk 
controllers, expanded memory boards, serial/parallel 
adapters, mouse controllers, network links and communica 
tion adapters. 
When an adapter card is inserted into an expansion slot of 

a computer, the card must be con?gured by allocating to the 
card, or to a controller of the card if one is present, certain 
system resources with which it can communicate with other 
components of the computer. Such system resources include 
interrupts, direct memory access (DMA) channels, memory 
addresses, and input/output (I/O) ports. Interrupts allow the 
adapter card to interrupt the central processing unit, suspend 
the current program and execute a set of instructions asso 
ciated with the interrupt A direct memory access (DMA) 
channel allows the adapter card to address memory without 
the assistance of the central processing unit. Memory 
addresses permit access to the card through system address 
space. The input/output ports allow access to the card 
through input/output address space. 

In the past, the resources assigned to adapter cards were 
generally con?gured manually by a user. Manual con?gu 

25 

35 

45 

55 

65 

2 
ration often presented a complex series of technical tasks 
because many personal computers cannot determine which 
components are connected to the computer. Furthermore, the 
connected components often failed to detect con?icts when 
another component attempted to share the same resource. 
Accordingly, a user typically had to resolve a resource 
con?ict by ?rst identifying the problem and thereafter 
experimenting with hardware and software con?gurations in 
an attempt to correct the resource con?ict. 

More recently, a computer-implemented process for 
dynamically con?guring adapter cards in a computer system 
has been developed. This computer-implemented con?gu 
ration process is disclosed by U.S. patent application Ser. 
No. 08/250,698, which is commonly assigned with this 
application and is incorporated herein by reference. In 
accordance with the process disclosed in US. patent appli 
cation Ser. No. 08/250,698, adapter cards are con?gured by 
automatically collecting information from a card about its 
con?guration when the card is inserted into an expansion 
slot. On the basis of this information, the computer system 
then allocates resources to con?gure the card 

Before a computer system can obtain con?guration infor 
mation from a card, however, an address space, or “memory 
window”, must be allocated to the card from system address 
space. The memory window enables communications 
between the computer system and the card via the system 
bus by providing an address for transmitting and receiving 
information. 

Address space that is available for allocation to support 
adapter card con?guration is typically listed by a memory 
manager of the computer system. As used herein, the phrase 
available address space means system address space that is 
listed by a computer system as available for adapter card 
allocation, regardless of the actual suitability of the address 
space for such allocation. 
A problem associated with allocating available address 

space as a memory window is that the space may already be 
associated with another component of the computer. Such 
allocation of address space creates a problem because con 
?guration information received through such a memory 
window will be inaccurate due to interference from the other 
component, with which the address space is already asso 
ciated. 

For example, an address space associated with aread only 
memory (ROM) socket may appear available when a ROM 
device is not plugged into the socket. However, decoding 
logic of the ROM socket will attempt to drive the bus 
through the socket’s bus drivers when information is com 
municated through that address space. Thus, if that address 
space is allocated as a memory window for the computer 
system to communicate with an adapter card, the con?gu 
ration information received through the memory window 
will be inaccurate due to the interference caused by the 
ROM socket’s bus drivers. 
At present, however, no means exist for determining 

whether available address space is free address space. As 
used herein, the term free address space means system 
address space that is free from interference caused by other 
components of the computer system. Therefore, a need 
exists in the art for a system for, and method of, validating 
system address space in a computer system to support 
adapter card con?guration. 

SUMMARY OF THE INVENTION 

The present invention provides a better solution to solving 
the problems in the art described above by providing a 



5,642,481 
3 

method and system for validating system address space for 
adapter cards having an information structure of a pre 
de?ned format. Validation is accomplished by verifying the 
prede?ned format of the information structure via a memory 
window. Because veri?cation is conducted via a memory 
window, it: is only successful when the address space of the 
memory window is free of control by other components of 
the computer that would otherwise have interfered with 
veri?cation. Thus, only a memory window that is suitable 
for adapter card allocation is validated. 

In response to a validation event, the method and system 
of the present invention ?rst retrieve an available address 
space as a memory window. The information structure of an 
adapter card is then veri?ed via the memory window as 
having a prede?ned format. If the information structure is 
not of the prede?ned format as veri?ed via the memory 
window, it is assumed that the memory window is associated 
with another component of the computer and is not suitable 
for allocation to support adapter card con?guration. 
Accordingly, a next available address space is retrieved as 
another memory window until the information structure of 
the adapter card is veri?ed via a memory window as having 
the prede?ned format. 

Thus, it is an object of the present invention to provide a 
system for, and method of, validating a memory window in 
system address space. 

It is another object of the present invention to provide a 
system for, and method of, validating a memory window for 
adapter cards having an information structure of a pre 
de?ned format. 

It is a fm'ther object of the present invention to provide a 
system for, and method of, validating a memory window for 
adapter cards having an information structure of a pre 
de?ned format to support adapter card con?guration. 

Further objects, features and advantages of the present 
invention will become apparent upon reviewing the follow 
ing description of the preferred embodiments of the 
invention, when taken in conjunction with the drawings and 
appended claims. 

BRIEF DESCRIPTION OF THE DRAWlNG 

FIG. 1 is a diagrammatic view of the components of a 
computer system used in connection with the preferred 
embodiment of the present invention for validating a 
memory window. 

FIG. 2 is a logical ?ow diagram of the process for 
validating a memory window in accordance with the present 
invention. 

FIG. 3 is a logical ?ow diagram of the process for 
retrieving a memory window for validation in accordance 
with the present invention. 

DETAILED DESCRIPTION 

Turning ?rst to the nomenclature of the speci?cation, the 
detailed description which follows is represented largely in 
terms of processes and symbolic representations of opera 
tions by conventional computer components, including a 
central processing unit (CPU) associated with a general 
purpose computer system, memory storage devices for the 
CPU, and connected pixel-oriented display devices. These 
operations include the manipulation of data bits by the CPU 
and the maintenance of these bits within data structures 
resident in one or more of the memory storage devices. Such 
data structures impose a physical organization upon the 
collection of data bits stored within computer memory and 

10 

20 

25 

35 

50 

55 

65 

4 
represent speci?c electrical or magnetic elements. These 
symbolic representations are the means used by those skilled 
in the art of computer programming and computer construc 
tion to most e?’ecu'vely convey teachings and discoveries to 
others skilled in the art. 

For the purposes of this discussion, a process is generally 
conceived to be a sequence of computer-executed steps 
leading to a desired result. These steps generally require 
physical manipulations of physical quantities. Usually, 
though not necessarily, these quantities take the form of 
electrical, magnetic, or optical signals capable of being 
stored, transferred, combined, compared, or otherwise 
manipulated. It is conventional for those skilled in the art to 
refer to these signals as bits, values, elements, symbols, 
characters, terms, numbers, records, ?les or the like. It 
should be kept in mind, however, that these and similar 
terms should be associated with appropriate physical quan 
tities for computer operations, and that these terms are 
merely conventional labels applied to physical quantities 
that exist within and during operation of the computer. 

It should also be understood ?iat manipulations within the 
computer are often referred to in terms such as adding, 
comparing, moving, etc. which are often associated with 
manual operations performed by a human operator. It must 
be understood that no involvement of a human operator is 
necessary or even desirable in the present invention. The 
operations described herein are machine operations per 
formed in conjunction with a human operator or user that 
interacts with the computer. The machines used for perform 
ing the operation of the ‘present invention, as will be 
understood, include general purpose digital computers or 
other similar computing devices. 

In addition, it should be understood that the programs, 
processes, methods, etc. described herein are not related or 
limited to any particular computer or apparatus. Rather, 
various types of general purpose machines may be used with 
programs constructed in accordance with the teachings 
described herein. Similarly, it may prove advantageous to 
construct specialized apparatus to perform the method steps 
described herein by way of dedicated computer systems with 
hard-wired logic or programs stored in nonvolatile memory, 
such as read only memory. 

This invention will be described with speci?c reference to 
a system for, and method of, validating a memory window 
to support PCMCIA (Personal Computer Memory Card 
International Association) adapter card con?guration. The 
standards for PCMCIA adapter cards and associated systems 
are incorporated herein by reference and may be obtained 
from the Personal Computer Memory Card International 
Association, 1030 E. Duane, Suite G, Sunnyvale, Calif. 
94086. However, this invention should be also understood as 
applicable to validating a memory window to support con 
?guration of other types of adapter cards that have a pre 
de?ned information structure. 

Referring now in more detail to the drawings, in which 
like numerals refer to like parts throughout the several 
views, FIG. 1 shows the components of the preferred 
operating environment, a computer system 12 with a PCM 
CIA card expansion system 13. The computer system 12 
comprises a central processing unit (CPU) 14 that operates 
the computer system 12 in conjunction with an operating 
system 18 to retrieve, process, store and display data. 
The CPU 14 is typically implemented as a 

microprocessor, such as the models 80386 or 80486 manu 
factured by Intel Corporation, Santa Clara, Calif. The CPU 
14 communicates control, address, and data signals with the 



5,642,481 
5 

operating system 18 and with the remaining components of 
the computer system 12 through a system bus 15. 
The operating system 18 comprises a set of computer 

programs that control the internal functions of the computer 
system 12, thereby allowing the computer 12 to run appli 
cation software (not shown). In the preferred embodiment, 
the operating system 18 includes a memory manager 25, 
from which available address space can be ascertained. It 
will be understood by those skilled in the art, however, that 
the present invention can directly ascertain available address 
space by well known methods if the operating system 18 
does not include a memory manager 25. 

The operating system 18 is installed in a mass storage 
device, such as a hard disk drive, a ?oppy disk drive, or a 
ROM chip. During boot up (initialization) of the computer 
system 12, the operating system 18 is loaded into system 
address space 16. 

In the preferred embodiment, the operating system 18 is 
a graphic-based operating system capable of automatically 
con?guring adapter cards. To accommodate automatic 
adapter card con?guration, the preferred operating system 
18 includes a driver 19 for detecting the insertion or removal 
of adapter cards from the computer system 12 and for 
allocating con?guration resources. The function and opera 
tion of the driver 19 are described in detail in US. patent 
application Ser. No. 08/250,698, which is already incorpo 
rated herein by reference. 
An example of an operating system capable of automati 

cally con?guring adapter cards is the “WINDOWS 9 ” 
operating system, which is due to be released by the assignee 
in this application, Microsoft Corporation, Redmond, Wash. 
Further information regarding the “WINDOWS 95” oper 
ating system and its automatic adapter card con?guration is 
available from a variety of publications, including INSIDE 
WINDOWS 95 by Adrian King, which is published by 
Microsoft Press and incorporated herein by reference. 
A basic input/output system (BIOS) program 20 is stored 

in system address space 16 along with the operating system 
18. The BIOS program 20 supplies the device-level control 
or support services for the primary input/output devices of 
the computer during the boot “initialization” process. After 
a boot, the BIOS program 20 accepts requests from appli 
cation programs and from the operating system 18 running 
on the computer system 12 and performs input/output ser 
vices as requested by those programs. These functions and 
operations of conventional BIOS programs are Well known 
and will not be further described herein. 
A series of peripheral ports 22 are provided for receiving, 

transmitting and displaying data. Data is received through a 
keyboard port 24, an external disk drive port 30, or a 
network port 32. Data is transmitted from the computer 
system 12 through the network port 32 and a phone port 34, 
which is typically connected to a modem (not shown). A 
monitor port 26 and a printer port 28 allow data to be 
displayed in electronic and printed form, respectively. 
The PCMCIA card expansion system 13 comprises a 

controller card 36 connected by a PCMCIA expansion bus 
38 to a pair of expansion slots 40 for receiving PCMCIA 
adapter cards 42. The controller card 36 is connected to the 
system bus 15 and interfaces the CPU 14 with the PCMCIA 
adapter cards 42. Thus, the controller card 36 receives, 
processes and retransmits information between the PCMCIA 
adapter cards 42 and the system bus 15. Therefore, the CPU 
14 accesses the PCMCIA adapter cards 42 through the 
controller card 36, and it is the controller card 36 to which 
a memory Window must be allocated for adapter card 

20 

25 

30 

35 

50 

55 

65 

6 
con?guration. The controller card 36, in turn, maps the 
allocated memory window onto the adapter cards 42 during 
the con?guration process. It will be understood by those 
skilled in the art, however, that a memory window can be 
directly allocated for each adapter card when they commu 
nicate directly with the system bus 15. 
The PCMCIA adapter cards 42 each include a card 

information structure (C18) 46 containing a series of pre 
de?ned information structures called tuples 48. The tuples 
48 are of variable length and are stored in tuple sets. Each 
tuple 48 starts with a byte tuple code, which is usually 
followed by a link byte that indicates the relative offset to the 
next tuple of the set. The byte tuple code is not followed by 
a link byte when the next tuple immediately follows or when 
the present tuple is the last of a tuple set. 

In the preferred embodiment, the process of the present 
invention for validating system address space to support 
adapter card con?guration is installed in a mass storage 
device, such as a hard disk drive, a ?oppy disk drive. or a 
ROM chip. During con?guration operations, the memory 
validation sequence is loaded into system address space 16 
and executed by the CPU 14. It will be understood by those 
skilled in the art. however, that the process of the present 
invention can be stored in the controller card 36 or in each 
adapter card when no controller card 36 is present. 
As shown by FIG. 2, the method of the present invention 

for validating adapter cards begins at step 50 and proceeds 
to step 52. At step 52 a validation event is detected. In the 
preferred embodiment, the validation events are the genera 
tion of an interrupt signal when a ?rst PCMCIA adapter card 
42 is inserted into an expansion slot 40 or during the ?rst 
boot of a computer system 12 that has a preinstalled PCM 
CIA adapter card 42. If an interrupt signal is not generated 
upon the insertion of a PCMCIA adapter card 42, the 
expansion slots 40 are intermittently polled by the driver 19 
to determine if a PCMCIA adapter card 42 has been inserted. 
The expansion slots 40 are preferably polled every two 
seconds in such a case. 

Upon the occurrence of a validation event, a next avail 
able address space is identi?ed from the memory manager 
25 and retrieved as a memory window at step 54, the process 
for which is described below in detail. As used herein, the 
phrase next available address space means the ?rst address 
space available above either a preset starting address or a 
previous address space that failed validation. Furthermore, 
the term retrieve means to get, either by actively procuring 
or by receiving. 
The memory window to be validated is preferably 4 

kilobytes in size. It will be understood by those skilled in the 
art, however, that the size of the memory window can be 
varied within the scope of the present invention. 

Proceeding to decisional step 56, an attempt is made to 
verify the format of the tuples 48 via the memory window. 
The purpose of verifying the tuple format is to test the 
memory window for interference caused by bus contention, 
which would result in a veri?cation failure. Thus. the present 
invention assumes that the tuples 48 of the PCMCIA adapter 
card 42 are of the proper prede?ned format and thus that a 
failure of veri?cation is due to interference with the memory 
window. 

Veri?cation of the tuple format is attempted by walking 
through all the tuples 48 of the PCMCIA adapter card 42 via 
the memory window. As used herein the phrase walking 
through means to step through the tuple sets one at a time 
looking for control tuples that indicate a link to other tuple 
sets and counting the valid tuple sets. Veri?cation is suc 



5,642,481 
7 

cessful if at least one valid set of tuples exists and the tuple 
sets can be walked through Without an error. 

An error occurs if the ?rst tuple is not a CISTPL-DEVICE 
tuple and one of the following three exceptions does not 
apply, which are allowed for compatibility with existing C18 
46 structures. First, the CISTPL-DEVICE tuple may be 
preceded by an arbitrary number of CISTPL-NULL tuples. 
Second, if attribute memory is separate from common 
memory, the ?rst tuple in attribute memory can be a 
CISTPL-END tuple if common memory begins with a 
CISTPL-LINKTARGET tuple. Attribute and common 
memory are ditferent areas of memory speci?ed by the 
PCMCIA architecture of the adapter card 42. Third, to 
support old cards formatted by the “MEMCARD” utility, 
which is sold by the assignee in this application, Microsoft 
Corporation, Redmond, Wash, the ?rst tuple may also be a 
CIS'I‘PDLINKTARGE'I‘ tuple. In each of these exceptions, 
the CISTPL-DEVICE tuple must follow the exceptions. 

Additionally, an error occurs if the target of a link tuple 
does not start with a CIS'I'PL-LlNK'I‘ARGE'I‘ tuple. Thus, if 
the target is not valid, an error occurs. Furthermore, an error 
occurs if more than 256 tuples are walked through because 
that is the prede?ned limit. 

If the format of the tuples 48 is veri?ed, the YES branch 
of decisional step 56 leads to step 60. If an error occurs and 
the tuple format could not be veri?ed, it is assumed that the 
memory window is not ?'ee of bus contention, and the NO 
branch of decisional step 56 returns to step 54 where another 
memory window is retrieved. 
At step 60, a tuple set is read via the memory window. A 

cyclic redundancy check value is then calculated at step 62 
from the tuple set that was read at step 60. Next, at step 64 
the tuple set is reread via the memory window. At step 66, 
a subsequent cyclic redundancy check value is calculated 
from the tuple set that was read at step 64. It will be 
understood by those skilled in the art that another type of 
error detection method can be used within ?ie scope of the 
present invention. 

Proceeding to decisional step 68, it is determined whether 
the subsequent cyclic redundancy check value is consistent 
with the cyclic redundancy check value. If the cyclic redun 
dancy check values are not consistent, the NO branch of 
decisional step 68 returns to step 54 where another memory 
Window is retrieved. If the cyclic redundancy check values 
are consistent, the subsequent cyclic redundancy check 
value becomes the cyclic redundancy check value, and the 
YES branch of decisional step 68 leads to decisional step 70. 
At decisional step 70, it is determined whether eight (8) 

iterations, for determining if the subsequent error detection 
value is consistent with the error detection value, have been 
completed. If eight (8) iterations have not been completed, 
the N O branch of decisional step 70 returns to step 64 where 
the tuple set is reread via the memory window. If eight (8) 
iterations have been completed, the YES branch of deci 
sional step 70 leads to step 72. 
At step 72, the memory window is allocated to support 

adapter card con?guration. The perfunctory steps of alloca 
tion are preferably carded out by the operating system 18. 
Thus, as used herein, the term allocate means to allocate the 
memory window or to instruct the proper component of the 
computer system 12 to allocate the memory window. Pro 
ceeding to step 74, the tuple set is read via the allocated 
memory window. An allocated cyclic redundancy check 
value is then calculated at step 76 from the tuple set that was 
read at step 74. Due of the length of time that the mechanics 
of allocation require, the allocated cyclic redundancy check 

10 

20 

25 

35 

45 

50 

55 

65 

8 
provides a last check that is especially useful because it is I 
further spaced apart in time than the earlier cyclic redun 
dancy checks. 

Step 76 leads to decisional step 78 where it is determined 
whether the allocated redundancy check value is consistent 
with the redundancy check value. If the redundancy check 
values are not consistent, the NO branch of decisional step 
78 leads to step 80 where the allocated memory Window is 
unallocated. Step 80 returns to step 54 where another 
memory window is retrieved. If the redundancy check 
values are consistent at decisional step 78, validation is 
complete with no bus contention having been detected for 
the memory window, and ?re YES branch leads to the end 
of the validation process at step 81. 
As best shown by FIG. 3, the process for retrieving a 

memory window begins at step 82 and proceeds to deci 
sional step 84. At decisional step 84, the memory manager 
25 is interrogated to determine if a next address space is 
available between the 1 Meg and the 16 Meg addresses of 
system address space 16. If a next address space is available 
between the 1 Meg and the 16 Meg addresses, that next 
address space is retrieved as the memory window, and the 
YES branch of decisional step 84 returns to step 56 for 
validation of the memory window. If a next address space is 
not available between the 1 Meg and the 16 Meg addresses, 
the NO branch of decisional step 84 leads to decisional step 
86. 
At decisional step 86, the memory manager 25 is inter 

rogated to determine if a next address space is available 
between the D0000 and the F0000 addresses of system 
address space 16. If a next address space is available 
between the D0000 and the F0000 addresses, that next 
address space is retrieved as the memory window, and the 
YES branch of decisional step 86 returns to step 56 for 
validation of the memory window. If a next address space is 
not available between the D0000 and the F0000 addresses, 
the NO branch of decisional step 86 leads to decisional step 
88. 
At decisional step 88, the memory manager 25 is inter 

rogated to determine if a next address space is available 
between the C0000 and the D0000 addresses of system 
address space 16. If a next address space is available 
between the C0000 and the D0000 addresses, that next 
address space is retrieved as the memory window, and the 
YES branch of decisional step 88 returns to step 56 for 
validation of the memory window. If a next address space is 
not available between the C0000 and the D0000 addresses, 
the NO branch of decisional step 88 leads to step 90. 

It will be understood that step 90 is reached only when a 
memory window from the system address space 16 could 
not be validated. In such a case, the ?rst available address 
space between the 1 Meg and the 16 Meg addresses is 
allocated as a default. 

It will be further understood that the order in which the 
memory manager 25 is interrogated for available address 
space may be varied within the scope of the present inven 
tion. Interrogating the memory manager 25 ?rst for available 
address space between the 1 Meg and the 16 Meg addresses 
is preferred because that region of system address space 16 
is most likely to have a valid memory window. Similarly, the 
region of system address space 16 between the D0000 and 
the F0000 addresses is more likely to have a valid memory 
window than the region between the C0000 and the D0000 
addresses. The remaining regions of system address space 
16 are unlikely to have a valid memory window. 
From the foregoing description of the preferred embodi 

ments and the several alternatives, other alternative con 



5,642,481 

structions of the present invention may suggest themselves 
to those skilled in the art. Therefore, the scope of the present 
invention is to be limited only to the claims below and the 
equivalents thereof. 

I claim: 
1. A method of validating system address space of a 

computer system comprising the steps of: 
(a) detecting a validation event; 
(b) retrieving a next address space as a memory window; 

(0) attempting to verify via the memory window that an 
information structure of an adapter card is of a pre 
de?ned format; 
(l) if the information structure is of the prede?ned 

format, going to step (d); otherwise 
(2) returning to step (b); 

(d) reading the information structure via the memory 
window; 

(e) calculating an error detection value based on the read 
information; 

(f) rereading the information structure via the memory 
window; 

(g) calculating a subsequent error detection value based 
on the reread information; and 

(h) determining if the subsequent error detection value is 
consistent with the error detection value; 
(1) if the subsequent error detection value is consistent 

with the error detection value, allocating the memory 
window; otherwise 

(2) returning to step (b). 
2. The method of validating system address space of a 

computer system as recited in claim 1 further comprising the 
steps of: 

(i) reading the information structure via the allocated 
memory window; 

(j) calculating an allocated error detection value based on 
the information read via the allocated memory window; 
and 

(k) determining if the allocated error detection value is 
consistent with the error detection value, if the allo 
cated error detection value is not consistent with the 
error detection value, unallocating the memory window 
and returning to step (b). 

3. A method of validating system address space of a 
computer system comprising the steps of: 

(a) detecting a validation event; 
(b) retrieving a next address space as a memory window; 

(c) attempting to verify via the memory window that an 
information structure of an adapter card is of a pre 
de?ned format; 
(1) if the information structure is of the prede?ned 

format, going to step (d); otherwise 
(2) returning to step (b); 

(d) reading the information structure via the memory 
window; 

(e) calculating an error detection value based on the read 
information; 

(f) rereading the information structure via the memory 
Window; 

(g) calculating a subsequent error detection value based 
on the reread information; 

(h) determining if the subsequent error detection value is 
consistent with the error detection value; 
(1) if the subsequent error detection value is consistent 

with the error detection value, the subsequent error 

15 

25 

35 

45 

55 

65 

10 
detection value becoming the error detection value 
and going to step (i); otherwise 

(2) returning to step (b); 
(i) determining if N iterations of determining if the 

subsequent error detection value is consistent with the 
error detection value have been completed; 
(1) if N iterations have been completed, going to step 

(j); otherwise 
(2) returning to step (f); and 

(j) allocating the memory window. 
4. The method of validating system address space of a 

computer system as recited in claim 3 wherein N is an 
integer between, and including 3 and 10. 

5. The method of validating system address space of a 
computer system as recited in claim 3 wherein N is an 
integer of 8. 

6. The method of validating system address space of a 
computer system as recited in claim 3 further comprising the 
steps of: 

(k) reading the information structure via the allocated 
memory window; 

(1) calculating an allocated error detection value based on 
the information read via the allocated memory window; 
and 

(In) determining if the allocated error detection value is 
consistent with the error detection value, if the allo 
cated error detection value is not consistent with the 
error detection value, unallocating the memory window 
and returning to step (b). 

7. The method of validating system address space of a 
computer system as recited in claim 1 or 3 wherein the 
adapter card is a PCMCIA card having at least one triple of 
the prede?ned format. 

8. The method of validating system address space of a 
computer system as recited in claim 7 wherein the pre 
de?ned format of the information structure is veri?ed by 
walking through the tuples of the PCMCIA card. 

9. The method of validating system address space of a 
computer system as recited in claim 1 or 3 wherein the 
memory window is 4 ln'lobytes in size. 

10. The method of validating system address space of a 
computer system as recited in claim 1, 2, 3 or 6 wherein the 
error detection value, the subsequent error detection value, 
and the allocated error detection value are calculated by a 
cyclic redundancy check. 

11. The method of validating system address space of a 
computer system as recited in claim 1 or 3 wherein retriev 
ing a next address space as a memory window as recited in 
step (b) comprises the steps of: 

(b) (1) interrogating a memory manager to determine if a 
next address space is available above an address of M 
in a system address space; 
(A) if a next address space is available above the M 

address, retrieving the next address space as the 
memory window and going to step (c); otherwise 

(B) going to Step (bXZ); 
(2) interrogating a memory manager to determine if a next 

address space is available below the M address in 
system address space; 
(A) if a next address space is available below the M 

address, retrieving the next address space as the 
memory window and going to step (0); otherwise 

(B) no memory window could be veri?ed, going to step 
(b)(3); and 

(3) reinterrogating the memory manager and allocating a 
?rst available address space above the M address. 



5,642,481 
11 

12. The method of validating system address space of a 
computer system as recited in claim 11 wherein M is an 
address of 1 Meg. 

13. ‘The method of validating system address space of a 
computer system as recited in claim 1 or 3 wherein retriev 
ing a next address space as a memory window as recited in 
step (b) comprises the steps of: . 

(b) (1) interrogating a memory manager to determine if a 
next address space is available between an address of 
M and an address of L in a system address space; 
(A) if a next address space is available between the M 

and the L addresses, retrieving the next address space 
as the memory window and going to step (c); oth 
erwise 

(B) going to step (b)(2); 
(2) interrogating a memory manager to determine if a next 

address space is available between an address of Q and 
an address of R in system address space; 
(A) if a next address space is available between the Q 

and the R addresses, retrieving the next address 
space as the memory window and going to step (0); 
otherwise 

(B) going to step (b)(3); 
(3) interrogating a memory manager to determine if a next 

address space is available between an address of P and 
the address of Q in system address space; 
(A) if a next address space is available between the P 

and the Q addresses, retrieving the next address 
space as the memory window and going to step (c); 
otherwise 

(B) no memory window could be verified, going to step 
(b)(4); and 

(4) reinterrogating the memory manager and allocating a 
?rst available address space between the M and the L 
addresses. 

14. The method of validating system address space of a 
computer system as recited in claim 13 wherein M is an 
address of 1 Meg, L is an address of 16 Meg, P is a 
hexadecimal address of C0000, Q is a hexadecimal address 
of D0000 and R is a hexadecimal address of F0000. 

15. A system for validating system address space of a 
computer system comprising: 

(a) a central processing unit connected to system address 
space of a computer system by a system bus; 

10 

15 

20 

25 

30 

35 

12 
(b) an expansion slot for receiving an adapter card with an 

information structure having a prede?ned format, the 
expansion slot connected to the system bus; 

(0) means for retrieving a next address space as a memory 
window; 

(d) means for verifying via the memory window that the 
information structure of the adapter card is of the 
prede?ned format; 

(e) means for allocating the memory window through 
which the information structure has been veri?ed as 
having the prede?ned format; 

(f) means for reading the information structure via the 
memory window at dilferent time intervals; 

(g) means for calculating an error detection value based 
on the read information at each time interval; and 

(h) means for determining if the error detection values are 
consistent with one another. 

16. The system for validating system address space of a 
computer system as recited in claim 15 further comprising: 

(i) means for reading the information structure via the 
allocated memory window; 

(i) means for calculating an allocated error detection value 
based on the information read via the allocated memory 
window; 

(k) means determining if the allocated error detection 
value is consistent with the error detection value; and 

(1) means for unallocating the memory window if the 
allocated error detection value is not consistent with the 
error detection value. 

17. The system for validating system address space of a 
computer system as recited in claim 15 further comprising a 
controller card connected to the central processing unit and 
the system address space by the system bus, and wherein the 
expansion slot is connected to the system bus through the 
controller card. 

18. The system for validating system address space of a 
computer system as recited in claim 17 wherein the adapter 
card is a PCMCIA card having at least one tuple of the 
prede?ned format. 


