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Abstract. The classical programming languaqes such as PASCAL or ALGOL 88 do not provide {ull data 

type security. Run-time errors are not precluded on basic operations. Type safety necessitates a 

refinement of the data type notion which allows subtypes. The compiler must also be able to ensure 

that basic operations are applicable. This verification consists in determining a local subtype of 

globally declared variables or constants. This may be achieved by improved compiler capabilities 

to analyze the program properties or by language constructs which permit the expression of these 

properties. Both approaches are discussed and illustrated by the problems of access to records via 

pointers, access to variants of record structures, determination of disjoint collections of linked 

records, and determination of integer subrenge. Both approaches are complementary and a balance 

must be found between what must be specified by the programmer and what must be discovered by the 

compiler. 
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1. Introduction 

The type of an object defines how that object 

relates to other objects and which actions may be 

applied to it. Unfortunately the classical tyoe 

systems of ALGOL 801187S], PASCAL[1874], ALGOL 68 

[1975] ... do not convey enough information to de- 

termine staticly whether a given action applied 

to a value will be meaningful. For example, in AL- 

GOL 80 the type procedure does not include the ty- 

pe of acceptable parameters, in ALGOL 88 the type 
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reference ignores the fact that a reference may be 

dummy, in PASCAL type unions [variants of record 

structures) are unsafe because of the possibility 

of erring on the current alternative of the union. 

In all these languages the problem of subscript ran- 

~e is not safely treated by the type concept, LiKe- 

wise, the classical type systems define only loose 

relationships between objects. For example, in PAS- 

CAL, a pointer to a record must De considered as 

potentially designating any record of a given type. 

One cannot express the fact that two linked linear 

lists of the same type do not intermix. Finally, the 

rules of the language or the programming discipline 

accepted by the programmer are not statiely enfor- 

77 



cad by the compilers, so that run-time checks are 

the widely used remedy. However these expensive run- 

time checks are usually turned off before the "least" 

programming error has been discovered. 

In the interest of increased reliability of soft- 

ware products, the language designer may reply upon : 

- The design of a refined and safe type system, which 

necessitates linguistic constructs which propaga- 

te strong type oropertles. The rules of the lan- 

guage must then be checkable by a mere textual 

scan of programs le.g. ALGOL 68[1975] end EUCLIO 

[1976] provide a secure use of type unions). This 

language design approach may degenerate to large 

and baroque programming languages. 

The design of a refined compiler wkich performs 

a static treatment of programs and provides im- 

proved error-detection capabilities. The language 

then remains simple and flexible, but security is 

offered by compiler verifications [e.g. EUCLIO 

legality assertions which the compiler generates 

for the verifier]. This compiler design approach 

may degenerate into futurustic and mysterious au- 

tomatic program verifiers. 

We illustrate the two approaches by means of examples; 

The comelier techniques we propose for the static ana- 

lysis of programshave e degree of sophistication 

comparable to program optimization techniques ra- 

ther than program verification techniques, Cousot 

[1976]. It is shown that the language design ap- 

proach and the compiler design approach are strong- 

ly related since both need a refinement of the ty- 

pe notion. They differ by the fact that one needs 

a type checker whereas the other uses a type dis- 

coverer, but we show the close connexion between 

type checking and discovery. 

We show that strong type enforcement or dis- 

covery may be equivalent (e.g. nil references,type 

unions, collections of non intermixing pointers). 

This is not the case for infinite type systems [e.g. 

integer ranges), which are not compile time checkable. 

In such a case type discovery is really needed and 

can be facilitated by appropriate syntactic cons- 

tructs. Finally we propose a means by which langua- 

ge designers can establish a balance between the 

security offered by full typing [within a suitable 

linguistic framework to properly propagate strong 

type properties), and the simplicity offered by the 

flexible Ibut incomplete) classical type systems. 

2. Nil and Non-nil Pointers 

Among the objections against the use of poin- 

ters ere the faotsthat they can lead to serious ty- 

pe violations (PL/I) and that they may be left dang- 

ling. One can take care of these objections, by gua- 

ranteeing the type of the object pointed at (PASCAL 

[1974] except for.variant of records), and ensuring 

that pointers point only to explicitly allocated 

heap cells (disjoint from variable cells) which re- 

main allocated until they are no longer accessible 

IPASCALE1874] when "dispose" is not used). However 

a pointer may always have the nil value which points 

to no element at all ; this is a source of frequent 

errors. 

The type of a value may be viewed as a static 

summary of the meaningful operations on that value. 

However the operations prescribed by a syntactically 

valid construct are not always dynamically meaning- 

ful. This is the case when dereferencing a pointer 

value which happens to be nil. 

The pointer type notion must then be refined so 

that one can distinguish : 

- the type of pointers to a record type 

- the subtype of non-nil pointers to that re- 

cord type 

- the subtype of nil pointers to that record 

type (which happens to have only one value) 

The rule is that dereferencing can be applied 

only to pointers of non-nil subtype. Since this 

rule must be enforceable by the programming system. 

the language designer has three solutions : 

Run-time checks Ithese checks are usually ve- 

ry cheap for pointers when using the hard- 

ware memory protection facilities. However 

for system implementation languages genera- 

ting code in master-mode this hardware detec- 

tion is not always utilizable. Moreover, for 

more complicated examples such as array sub- 

scripting these run-time checks are very 
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e x p e n s i v e .  

S a f e  l a n g u a g e  d e s i g n ,  w i t h  s t r o n g  t y p i n g  i . e .  

a t y p e  s y s t e m  w h i c h  e n s u r e s  t h a t  any  o p e r a -  

t i o n  p r e s c r i b e d  by  a s y n t a c t i c a l l y  v a l i d  cons -  

t r u c t  will a l w a y s  be dynamically meaningful. 

This type scheme must distinguish between nil 

and non-nil pointer types, disallow tyoe vio- 

lations (i.e. forbid the type o£ an object 

to be changed from the tyoe"nil or non-nil 

pointer",to the type"non-nil pointer9 and 

syntactically check the correct use of ope- 

rations (i.e. authorize dereferencing for non- 

nil pointers only). 

- Compile time checks, to recognize the safe 

use o£ a type scheme which is too tolerant. 

We illustrate now this last strategy. 

2.1 Static Correctness Check of Access to Records 

via Pointers 

Consider the simple problem of searching for a 

record with value "n" in a linked linear list L : 

value next 

L ,F-Fq__Tq? .... 

The PASCAL solution is given by PASCALF1974] (p. 64) 

as follows : 

[ 1 )  pt := L; b := true; 

(2 )  { P 1 }  

[ 3 )  w h i l e  [ p t  <> n i l )  and b do 

(4 )  ( { P 2 }  

( 5 ]  i ~  p t + . v a l u e  = n t h e n  

(6 )  b := f a l s e  

(7 )  { P 3 }  

(8) else 

(9 )  { P 4 }  

( 1 0 )  p t  := p t + . n e x t ;  

( 11 )  { P 5 } ) ;  

The above piece of program is correct with re- 

gard to accesses to records via pointers, since 

pt is not nil when dereferenced at lines (5) and 

(10). This fact is established by the programmer 

using a simole propagation algorithm from the test 

of line (3). This reasoning is easily mechanized as 

f o l l o w s  : a s s o c i a t e  i n v a r i a n ~ P 1 ,  P2, P3, P4 and P5 

t o  o o i n t s  [ 2 1 , [ 4 } , ( 7 1 ,  (9 )  and (11 )  r e s p e c t i v e l y .  

A c c o r d i n g  t o  t h e  s e m a n t i c s  o f  t h e  o r o g r a m m i n g  

l a n g u a g e  PASCAL ( H o a r e  and W i r t h [ 1 9 7 3 ] ) ,  t h e s e  i n -  

v a r i a n t s  a re  r e l a t e d  as d e f i n e d  by  t h e  s u b s e q u e n t  

s y s t e m  o f  e q u a t i o n s  : 

( 1 )  P1 = [ a t  = L)  and (b = t r u e )  

[ 2 )  P2 = (P1 o r  P5) and ( ( p t  <> n i l )  and b) 

( 3 )  P3 = [P2 and ( p t + . v a l u e  = n ) )  and (b = f a l s e )  

(4 )  P4 = P2 and [ o t + . v a l u e  <> n) 

( 5 )  P5 = P3 o r  (~ p t '  I s ° t ' ( p 4 )  and p t  = o t ' + . n e x t )  
- -  p t  

( E q u a t i o n  [ 5 )  has been  d e l i b e r a t e l y  o v e r s i m p l i f i e d ,  

see D e m b i n s k i  and S c h w a r t z [ 1 9 7 6 ] ) .  

S i n c e  i n  g e n e r a l  i t  i s  u n d e c i d a b l e  to  f i n d  a 

s o l u t i o n  t o  s y s t e m s  such as t h e  one a b o v e ,  we mus t  

c o n s i d e r  s i m p l i f i c a t i o n s  [ t o  t h e  p r e j u d i c e  o f  t h e  

precision of our results), For that purpose we will 

ignore the existence of the boolean variable b, of" 

the fields "value" in records o£ the linear list, 

and thus focusing on pointers. Moreover, we will 

consider only the pointer variable pt, and the fol- 

lowing mredicates on st : 

pt = nil, pt <> nil, (at = nil) or (pt<> nil) 

respectively denoted by nil, non-nil,T . These pre- 

dicates form a complete lattice whose HASSE's die- 

g r a m  . is  : 

L = 

T 

nil / ~non-nil 

Where i is used to denote the fact that nothing is 

Known about the variable pt. 

Since we are only considering an oversimplified 

subset Of the set of predicates, our system of equa- 

tions can be simplified accordingly : 

( 1 ' )  P1 = T 

(2') P2 = (PI or P5) and non-nil 

( 3 ' )  P3 = P2 

( 4 ' )  P4 = P2 

[ 5 ' )  P5 = P3 o r  T 

( I n  e q u a t i o n  (1 )  we c o n s i d e r  ( p t  = L)  s i n c e  L may 
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be an emoty or non-empty linear list, we get (pt = 

nil) or [pt <> nil] denoted T, in equation [5] we 

only consider the fact that the {unction 'next' 

(when defined] delivers a (nil or non-nil] oointer 

value which is assigned to pt]. 

Our system of equations is of the form : 

< P 1 ,  P 2 ,  P I ,  P4 ,  PS> = F [ < P 1 ,  P 2 ,  P I ,  P 4 ,  PS> ]  

w h e r e  F i s  an o r d e r  p r e s e r v i n g  a p p l i c a t i o n  f r o m  t h e  

c o m p l e t e  l a t t i c e  [ 5  i n  i t s e l f .  T h e r e f o r e ,  t h e  K n a s -  

t e r - T a r s k i  t h e o r e m  s t a t e s  t h a t  t h e  a p p l i c a t i o n  F 

has  a l e a s t  f i x p o i n t  [ T a r s k i [ 1 9 5 5 ] ) .  M o r e o v e r ,  s i n c e  

F i s  a c o m p l e t e  o r d e r - p r e s e r v i n g  m o r p h i s m  f r o m  t h e  

complete lattice L s in itself, this least fixpoint can 

he de£ined as the limit of Kleene's sequence, Kleene 

[1952] : 

~O = <l, ± l ± l > 

I i = F [ ~  0 ] 

= < T , [ ±  o r  ± ]  end  n o n - n i l ,  i ± , [ ±  OF T ] >  

- < T ,  l l i T > 

12 = F[Ii ] 

= <T,(T or T] and non-nil, l i ,(l or T]> 

= <T, non-nil I ± T > 

~3  = F [ ~ 2 ]  

= < T , ( T  or T]  and  n o n - n i l , n o n - n i l , n o n - n i ] , ( l  o r  T ] >  

: <T, non-nil ,non-nil,non nil, T > 

= <T,(TOF T] and non-nil,non nil,non-nil,[non-ni] 

or T ] >  

= <T ,  n o n - n i l  , n o n - n i l , n o n - n i l ,  T > 

= h 3 

Thus, Kleene's sequence converges in a finite num- 

ber o{ steps, which is obvious since L s is a finite 

lattice. The solution to our system of equations tells 

us that P2 = P3 = P4 = non-nil, which according to 

our interpretation means that pt is not nil at lines 

[4], [7] and [g] of our program, which imolies that 

the accesses of records through ot at lines [5] and 

[10] are staticly shown to be correct. With regard 

to the value of PI and PS, its interpretation is 

that pt may be nil at program points [2] and [11], 

in particular, the test on pt at line [3] may not 

be identically true. 

The simple programmer's idea of zeneralizing 

constant propagation may be derived from the above 

Kleene's sequence when eliminating useless computa- 

tions. A symbolic execution of the program (where 

elementary actions are interpreted according to the 

simolified equations oreviously established) gives 

the following computation sequence : 

P1 = T,  ( P ,  = ± ,  i ~ [ 2 ,  5 ] ]  l 

P2 = [P1 o r  P 5 ]  and  n o n - n i l  

[ T  o r  $ ]  and  n o n - n i l  

= n o n - n i l  

P3 = P2 

= non-nil 

P4 = P2 

non-nil 

P5 = P3 or T 

non-nil or T 

= T 

P2 = [PI or P5] end non-nil 

[ T  or T]  and non-nil 

non-nil, same as above, stun, 

Kildall[1973] and Wegbreit[1975] algorithms have 

been recognized, they are "efficient" versions of 

the Kleene's sequence. Following Sintzoff[1972] we 

call this technique the abstract interpretation of 

programs. Abstract since some details about the data 

o£ the orogram are forgotten, and interpretation 

since both a new meaning is given to the program 

text and the information is gathered about the pro- 

gram by means o£ an fnterpretor which executes the 

program according to this new meaning. We then get 

a static summary of some facets of the possible exe- 

cutions of the program. A theoretic framework o£ 

abstract interpretation o£ programs together with 

various examples are given in Cousot[1g76]. 

2.2 A Safe Linguistic Framework to Handle Nil Poin- 

ters 

A comolete and satisfactory solution of the 

problem of dereferencing or assigning to a nil name 

(as in ref real [nil] := 3,14] is proposed by Meer- 

tens[1976] within the framework of ALGOL 68. The 

pointer types are restricted to non-nil values by 

exclusion of nil-names (this is achieved by not pro- 

viding e reoresentation for the nil symbol), so that 

any name refers to a value. The type void is used 

to represent nil-names. Finally the type o£ nil end 

non-nil oointers is the union of the previous ones. 
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For example we can write a construction like 

mode list = union [ref cell, void] 

mode cell : struct [integer value, list next] 

to represent linked linear lists. An emety list is 

represented by the value empty, the only void value. 

Our routine would have to be rewritten : 

list pt :: L; 

while case pt in 

Ire# cell pt'] ~> if value of ot'=n then false 

else 

(ot := next of ot'~ true] 

fi, 

~> false out 

eSaO 

do skip od; 

This program is safe, since in ALGOL 88 the 

non-safe coercion of pt from mode union [ref cell, 

void] to mode ref cell has to be made explicit by 

a conformity case construct. The idea is therefore 

to force the programmer to explicitly perform the 

run-time tests, which in this example is dictated 

anyway by the logic of the problem {the rewritten 

version admittedly looks a bit cumbersome, but more 

convenient ways of expressing such a flow of con- 

trol may be exhibited [Oijkstra[1875]]]. 

2.3 Remarks 

It is remarkable that both approaches necessi- 

tate the same secure type system, yet they differ 

in the choices of making it available or not to the 

programmer. 

The refined type system considers the pointer 

type as the onion of two sybtypes : pure [non-nil) 

pointers and dummy (nil) pointers. Type safety is 

guaranteed by requiring strong typing : the type 

of a value determines which operations may be mea- 

ningfully applied to it. 

In both cases the type correctness has to be 

verified or established by the compiler. For that 

purpose an [often implicit) system of equations is 

used. In one case the solution to that system of 

equations has to be found by the compiler, in the 

other case the compiler simply verifies that the 

solution supplied by the programmer [by means of 

adequate syntactic constructs] is correct. Since in 

this examole the type system is finite, both ap- 

proaches are equivalent as far as type verifications 

are concerned. 

3. Variants of Record Structures 

3.1 Unsafe Type Unions in PASCAL 

In ALGOL BeEIg75] a variable may assume values 

aT different types. The type of this variable is 

then said to be the union of the types of these va- 

lues. In PASCAL[1974] the concept of type unions 

is embodied in the form of variants of record struc- 

tures : a record type may be specified as consis- 

ting of several variants, optionally discriminated 

by a tag field. 

Example : 

type mode = [int, char]; 

type charint = 

record 

case tag : mode of 

int : [i : integer]; 

char : (c : character] 

end; 

vat digit, letter, alphanum : charint 

In a program containing these declarations the 

occurrence of a variable designator alohanum.c is 

only valid, if at this point that variable is of 

type character. It is so, [if and] only if alpha- 

num.tag = char. However this is not staticly veri- 

fied by the PASCAL compilers for the following rea- 

sons : 

The tag field of a variant record definition 

is optional, and may exist only in the pro- 

grammer's mind. 

- When present, the tag field may be assigned, 

thus allowing to realize implicit type trans- 

fer functions. For instance, a variable of 

type character : 

alphanum.tag ~= char; 

alphanum.c := 'H'; 

may be interpreted as being of type integer 

for the purpose of printing the internal 
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representation : 

alphanum.tag := int~ 

writeln[alohanum.i]; 

(Note that the tag is appropriately set, but without 

care about its value one can write as well : 

alphanum.c :: 'H'; 

writeln[alphanum.i]:] 

3.2 Safe Type Unions in ALGOL 68/EUCLID 

Suggestions have been made to provide syntactic 

structures which ensure that type-unions are safe, 

i.e. compile-time checkable. Such features forbid 

assignments to the ta Z fields and let the compiler 

determine the current tag value from context using 

a statement similar to the "inspect when", of SIMULA 

[I 974 ]. 

In ALGOL 68 ~ 975] we would write : 

mode charint = union (integer, character]~ 

integer digit ~ character letter ; 

charint alohanum~ 

The tag field is hidden from the programmer, and 

may be checked usin Z conformity clauses. 

The antagonism with PASCAL is more obvious in 

EUCLID[1978] which handles variant records in a 

type-safe, ALGOL 68-1ike manner. Since EUCLIO al- 

lows parameterized-tyoes, the tag will usually be 

a formal parameter of the type declaration : 

type mode : [int, char] 

type charint [ta Z : mode] = 

record 

case tag of 

int ~> var i : integer ~ end int 

char ~> vat c : character ~ end char 

end case 

end charint 

When a variable of the record type "charint" is 

declared, the actual tag parameter may be a cons- 

tant : 

vat digit : charint lint] 

vat letter : charint (char] 

or any, which allows type unions : 

vat alphanum : charint [any] 

ALGOL 68 or EUCLID are type-safe when dealin Z with 

type unions since : 

- No assignments to the tag fields are authorized 

once they have been initialized. 

- Unitin Z is allowed and safe : 

alphanum := letter~ 

is legal, because the type of the right hand side 

value eharint[char] may be coerced to the type 

of the left hand side variable charint[any] (the 

t~b e charint[any] permits alohanum to hold either a 

value of typecharint[char] ora value of type charint 

[int]]. 

- There is no de-uniting coercion, since if 

letter :: alphanum 

were allowed, the principle of type-checking 

would be violated. The only way to retrieve an 

object which has been united and to retrieve it 

in its original type is by a discriminating case 

statement. This ensures that the type transfer 

is safe since the ta Z is explicitly tested : 

case discriminatin Z x : alphanum on tag of 

int => digit :: x ~ end int 

char ~> letter := x ; end char 

end case 

This discrimatin g case statement ensures a cam- 

olete run-time check o£ which variant of a record 

is in use, corresponding to the checks which can 

be carried out by the compiler for all non-union 

tyoes~ 

3.3 Static Treatment of Type Unions 

PASCAL has been deliberately designed to pro- 

vide flexible type unions at the expense of secu- 

rity [Wirth [1975]] : however, a wise compiler should 

be able to discern the secure programs by using the 

following abstract interpretation of these programs: 

Record values will be abstractly represented 

by their tag fields. We will consider a program with 

a single record tide with variants identified by a 

single ta Z, [the generalization to nested variants 

and numerous record types is straightforward]. The 

tag is of enumerated type T which is a finite set 

of discrete values. This set is augmented by a null 

value which represents the non-initialized value. 

Since a t  the same program point, but at two diffe- 

rent moments of program execution, two different 

values may be assumed by a tag field of a record 
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variable, a static summary of the potential pro- 

gram executions must consider a set of values for 

tag fields. (More generally, this is the case for 

variables o{ enumerated type]. Thus the abstract 

values o{ the tag will be chosen in 2 T, the power- 

set of T, which is a finlte complete lattice. More- 

over, if the program contains simple variables of 

enumerated type T, it is convenient to take ac- 

count of them in the program abstract interpreta- 

tion process. Finally, if the program contains 

m simple variables of type T or record variables 

with tag of type T, our abstract data space is 

(2 T x ... x 2 T] m times. Since this space is a com- 

plete finite lattice, the abstract execution of 

programs can be performed at compile time. 

Example : 

type oerson = 

record 

case sex : (male, female] of 

end ; 

vat paul, mary, senior : person; 

(1) 
paul,sex := male; 

(2} 

paul.age := ...; 

(3} 
mary.sex := female; 

(4) 
mary.age := ...; 

(S) 

if paul.age £ mary.age then 

(6) 

senior := paul; 

{7) 
else 

(6} 

senior := mary; 
(9) 

end; 
[10] 

The symbolic execution o f  that  piece of 

program would be : 

i 
line i 

[I) 

[2) 

[3) 

[4) 

5) 

paul mary senior 

{null} {null} {null} 

{male} { n u l l }  { n u l l }  

the assignment to paul.age is ignored 

{male} I {female} I{null} 
the assignment to mary.age is ignored. 

Since the value of the test is statlcly un- 

Known, this gives rise to two execution paths 

[6] and [8] : 
I 

[6) {male} I {female} { n u l l }  
i 

[7] {male} [ {female} {male} 

[8) {male} {female} { n u l l }  

9] {male} {female} {female} 

10] The two execution paths are joined together: 

i ' {male}u{male} female}u{female}i{male} u {Female} 

= {mole} = {female} = {mole, female} 

Note that at line [10] it is clear that "senior" 

may have tag values "male" or "female". However, we 

don't appreciate the qact that : 

senior.sex = if paul.age ~ mary.age then male 

else female {i 

but neither do ALGOL 68 nor EUCLIO. With these lan- 

guages it is evident that in some cases the program- 

mer knows perfectly well which alternative of a 

union type is used, but is unable to exploit this 

Knowledge, since he must use a discriminating case 

statement. This same limitation arises with our 

static treatment of programs, more powerful schemes 

exist [Sintzoff[1975]]. 

Finally, in the static treatment of programs 

useful information will be gathered from case sta- 

tements, and if statements, used as ALGOL 68 confor- 

mity tests. 

Example : 

{Paul = {male} ; Mary = {Female} ; Senior = {Male, 

if Senior.Sex = Paul.sex then 

. . .  [ I )  . . .  

else 

... [2) ... 

fi 

Female}} 
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The abstract interpretation of a test (A = B) in a 

context where A and B are variables which may as- 

sume set of values S A and S B delivers a context 

where A and B may assume the set of values S An S B 

on the true path. (Thus in {I) we get Paul = Senior 

= (Male} n {Male, Female} = {Male}).The context De- 

livered for the false path is : 

A = i__f (ISA nSBI = 1) and not (SAc S 8) then S A -  S B 

else S A f i 

(Thus in (2] we get Paul : {male} and Senior = {Fe- 

male}). 

When this abstract interpretation of programs 

is terminated we can recognize secure programs by 

the following facts : 

There are no assignments to tag fields, other 

than for initialization(which is recognized 

by the fact that the tag value is changed from 

null to some value). We can also authorize use- 

less tag assignments, i.e. those which assign 

to a tag without changing its value. 

The unsafe de-uniting coercions must be checked. 

This cannot occur when a record variable is as- 

signed to another, since all record variables 

are considered to be of union types. (Note that 

such an assignment may indirectly modify a 

tag value, but this is safe). Oe-uniting coer- 

cions only occur when accessing a field in a 

record. This is safe only if the tag has been 

staticly established to be of correct value. 

Otherwise, a warning is reported to the ueer, 

and a run-time check inserted in the program. 

3.4 Flexibility Versus Security 

This compiler aoproach has the advantage of fle- 

xibility over the secure language approach. It 

is clear that all EUCLIO orograms translated in- 

to PASCAL will be recognized to be safe by this 

technique. 

Following Wirth[1975] there appear to be three 

different motivations behind the desire for variants 

of record structures : 

I. The need for heterogeneous structures, in two 

main cases : 

1.1 Static variants to describe classes of data 

which are different but yet closely related. 

For examole, Men and Women may be described 

as Persons depending on their sex, thus 

EUCLIO authorizes : 

type Person (Sex = {Male, Female)) = ... 

type Man = Person(Male) 

type Woman = Person(Female) 

In PASCAL however, variables of abstract 

type Man and Woman may be staticly recogni- 

zed when their tag values never change. 

1.2 Dynamic variants, to describe objects whose 

components depend on a possibly changing 

state. For example a car may be moving or 

stopped, thus EUCLID authorizes : 

type Car {State : {moving, stopped, des- 

troyed)) = ... 

vat mycar : Car{an__~) 

Since the actual oarameter supolied for the 

tag is any, the variable can be changed from 

one variant to another during execution, by 

assigning values of different variants to 

the variable. However, no refinement is al- 

lowed, and no proper subset of the possible 

tag values can be used : 

vat mycar : Car({moving, stopped}) 

This fact may be discovered by a static ana- 

lysis of the program, and might be useful 

in memory allocation. 

2. Storage Sharing (Overlays). This implies the use 

of the same storage area (expressed in the lan- 

guage as "the same actual variable") for diffe- 

rent purposes i.e. for representing different 

abstract variables whose lifetimes are disjoint 

{block structure is not incorporated in PASCAL). 

This is a typical case of free union, where no 

tag will be carried along to indicate the cur- 

rently valid variant. This tag may be staticly 

simulated, provided that one ensures an appro- 

priate setting of the tag upon assignment to 

fields of the variant. Unsafe assignments will 

be identified and therefore the mutation from 

one abstract variable to another may be reported 

to the user. 
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3. Realization of implicit type transfer functions. 

EUCLID in recognition of the Tact that control- 

led breaches of the type system are sometimes 

necessary, provides unchecked type conversions, 

by means oT type converters : 

i := unsigned-int <<= character['H') 

assigns to i the internal code of the character 

'H'. We have seen how a PASCAL comoiler might 

reoort this fact to the user. 

Finally, it is clear that PASCAL provides fle- 

xibility at the expense of security. We have shown 

that a compiler may report to the user which cons- 

tructs have been used in either secure or insecure 

ways. The results of this static treatment of pro- 

zrams might also be useful in code generation. Thus 

we get a sophisticated compiler for a simple lan- 

guage. It is obvious then, that the programs will 

not be very readable, since the programmer has no 

preestablished constructs for expressing his inten- 

tions. However some simple intentions of the program- 

mer which can be simoly caught by comoilers may ne- 

cessitate rich and not necessa~lyeasy to understand 

language constructs. This is the case in our next 

examole concerning dynamic allocation of records. 

4. Disjoint Collections of Linked Records 

4.1 Collections in EUCLID 

Suppose in PASCAL we have to reoresent two sets 

of records [of type R], we can use two arrays : 

vat $I, $2 = arrayE1..n] of R; 

With such a declaration, the PASCAL comoiler knows 

that the sets $1 and $2 are disjoint, that is to 

say any modification of $1 has no side effect on $2 

and vice-versa. Suppose that n, the maximal cardina- 

lity of the two sets is not known, we will use dy- 

namically linked linear lists : 

tyDe list = + elem; 

elem = record 

next : list; 

val : R; 

end; 

vat $I, $2 : list; 

This tffme, the readers of the orogram (e.g. PASCAL 

compilers] have to supoose that the sets $I and $2 

may s h a r e  e l e m e n t s  and i t  i s  now n e c e s s a r y  t o  scan 

all the orozram to state the contrary. 

In LIS[1974] one can specify that two pointers 

never refer to the same record ; the declarations 

0SI : domain of elem; 

0S2 : domain of elem; 

soecify that DS1 and OS2 will be sets of disjoint 

dynamic variables, Now, i£ $I and $2 are pointers 

into different domains : 

$1 : + DSI~ 

$2 : + OS2; 

they oeint to different records of the same type. 

Unfortunately the confusion between a pointer to 

the first element of the linked structure, and the 

list is valid only in the programmer's intellect. 

$I and $2 ooint to different records of type elem, 

which themselves may point to the same record. Thus 

the idea of domains has to be recursively applied 

in order to soecify that elements of domain 0SI 

ooint only to elements of 0S1 : 

0SI : domain of eleml; 

tyoe eleml = record 

next : + 0SI; 

val : R ; 

end; 

and that elements of 0S2 can ooint only to elements 

of DS2 : 

0S2 : domain of elem2 ; 

tyoe elem2 = record 

next : t OS2; 

val : R 

end; 

Since we want to guarantee that two pointers into 

different domains can never refer to the same va- 

riable we have to consider that +DSI and +DS2 are 

different tyoes of Dointers. The trouble is now that 

eleml and elem2 are different types, so that we have 

to write twice the alzorithms (insertion, search, 

deletion ...) which handle the two similar lists $I 

and $2. 

EUCLIDE1978] is more flexible and authorizes 

tyoes to be oarameterized. Thus we will describe 

the tyoes of lists $I and $2 once, as deoending on 

the domain (called collection in EUCLIO] to which 
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they Delong. 

The type elem is parameterized by the name C of the 

collection to which elements of type elem point. 

This collection C is a collection of records [o ~ 

type elem] pointing to C : 

type elem(C : collection of elem(C)] = 

record 

vat next : +C 

vat val : R 

end record 

vat 0SI : collection of elem[OS1] 

vat $1 : + 0SI 

var OS2 : collection of elem(OS2] 

vat $2 : + 0S2 

Now the operations on lists $I and $2 can be des- 

cribed once, it just suffices to pass the name of 

the collection 0SI or OS2 to which they refer as 

a parameter : 

insert[OS1, $1, r) 

will insert the record r in list $I which belongs 

to collection 0SI. Now we have to declare the type 

of the formal parameter OS corresoondin Z to the 

possible actual parameters 0SI and 0S2 : 

procedure insert[OS : collection of elem[OS], 

vat S : OS, val : R] 

It is clear that OS, 0SI, 0S2 are just formal [or 

actual but different] collections of the same type. 

To make conspicuous that different collections will 

have the same type, we now want to give the name 

"listsupport" to the type o£ the collections sum- 

porting linked linear lists : 

type listsupport = collection of elem(?] 

Since the type of a collection such as 0SI de- 

pends on its name 0SI, the type of the collec- 

tion must be parameterized by that name : 

type listsupoort[OS : ?] = collection o_~ 

elem(OS] 

A declaration such as : 

vat 0SI = listsupport[OS1] 

means that 0SI is a collection of elements pointing 

to 0S1. However the above declaration of listsup- 

port is incomplete since OS is a collection of type 

"listsupport" : 

type listsupport(OS : listsupport[?]] = 

collection of elem(OS) 

Since we have entered a reeursive question (each use 

of listsuoport in the definition of listsuoport must 

be provided by an actual parameter] we have to sol- 

ve it by some lanzuaze convention : 

type listsuooort(OS : listsuoport[perameter]) = 

collection of elem(OS] 

The keyword parameter indicates that a shorthand 

has been used, the actual parameter will be pro- 

vided later. 

Since we succeeded in defining whet is the type of 

collection supporting lists we now want to replace 

the definitions of this type by the name of that 

type, in particular in the de£inition of type elem, 

to indicate that records of type elem point to col- 

lections of type listsuoport. We get : 

type listsuooort (OS : listsupport(parameter]] 

= forward 

type elem CO : listsupport(oarameter]] = 

record 

vat next : +C 

vat val : R 

end record 

type listsuooort = collection of elem(OS] 

vat 0S1 : listsupport(OS1]; $I : + 0SI 

var 0S2 : listsupoort[OS2]; $2 : + 0S2 

which is precise but somewhat overcomplicated when 

compared with the PASCAL declarations : 

type list = + elem; 

elem = record 

next : list; 

va l  : R 

end; 

var $I, $2 : list ; 

{$I and $2 are disjoint linked linear lists}. 

Apart from the difficulty of copeing with a new lin- 

guistic notion, the EUCLIO approach has the advan- 

tage of the precision. Since the comniler Knows that 

$I and $2 are disjoint lists, it can produce better 

code especially for register allocation. 

Moreover the combination of collections and 

restricted variants in records may yield efficient 

memory allocation strategies. Suppose we have a re- 

cord type R with two variants Ra, Rb of different 
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memory sizes say 1 and 3 words : 

Type Rtyoe = (Re, Rb] 

Type R (tag : Rtype] = record 

case tag  i n  

Ra = . . .  end Ra 

Rb ~ , . .  end Rb 

end ease;  end r e c o r d  

We have the following alternatives for memory allo- 

cation of collections of R : 

0 1 :  c o l l e c t i o n  o f  R[Ra] I I I I I I I I I v a t  

v a t  C2 : collection of R[Rb] I 1 t 

v e t  C3 : c o l l e c t i o n  o f  R { u n k n o w n } l l  I I I  

[ t h e  t y p e  o f  r e c o r d s  o f  c o l l e c t i o n  C3 i s  unknown 

(it may be R[Ra] or R[Rb]].The type of a record 

will not change once allocated). 

vat C4 : collection of R[any] I I ---I I I---1 

(The records of collection C4 can change from one 

variant to another during execution, by assigning 

values of different variants to the records). 

The main defect of collections is that the num- 

ber of collections is determined at compile time. 

Thus we cannot declare an array o~ disjoint linear 

lists : 

T I l l  

T [ 2 ]  

C1 

TEn] 

It has not been recognized that a globally declared 

collection is in fact the union of smaller collec- 

tions which are valid at various program ooints 

[which would be useful to the compiler). A similar 

criticism is that the concept of collection cannot 

be used recursively, that is to say one cannot par- 

tition a collection into disjoint sub-collections. 

Although of quite limited expressive cower the no- 

tion of collection in EUCLIO may appear somewhat 

difficult to understand. However its usefulness to 

compilers seems undeniable and we may in PASCAL let 

the compiler discover the collections. 

4.2 Compiler Discovery of Disjoint Collections 

We will represent a collection by the set of 

pointer variables which point within that collec- 

tion. 

Examole : 

X Y Z 

C1 ~ C2 

Collection 01 will be denoted (V;W], collection C2 

will be denoted [×, Y, Z]. We will try to partition 

the pointer variables of a program into disjoint 

collections. However in ooposition to EUCLID, we 

will not try to rind global collections but local 

ones• Thus the local invariants we will try to com- 

mute at each program 9oint will be restricted to 

be of the form : 

[V, W are pointers to the same collection] 

and 

[X, Y, Z are oointers to the same collection] 

which we will denote : 

{V, W / X , Y , Z }  

We now have to define the conjunction ~ of such pre- 

dicates (i.e. the union of sets of collections) for 

example : 

{A ,B ,C  / D,E} ~ {F ,A ,G / H} = { A , B , C , F , G  / D,E / H} 

I £  on one hand A may p o i n t  to  a r e c o r d  r e f e r e n c e d  

by B and C, o r ,  on the o t h e r  hand A may p o i n t  t o  a 

r e c o r d  r e f e r e n c e d  by F and G, i t  i s  c l e a r  t h a t  A, B, 

C, F and G may p o i n t  on the same r e c o r d .  

The i n s t r u c t i o n s  o f  the p rogram p r o v i d e  u s e f u l  i n -  

formation• After the instructions : 
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X : = nil ; 

X := Y; {where Y i s  known to be nil} 

if X = nil then ... 

new [X] 

it is Known that X will point to no record at all, 

or will be the only pointer to the newly allocated 

record. Thus we have isolated a collection (empty 

or consisting of a single record). With an input 

predicate 

P1 = { X  i ,  X 2 . . . . .  X . . . . .  X n / Yi  . . . . .  Yn } 

the above instructions lead to an output predicate: 

P2 = extract(X, PI) 

{X / X 1 . . . . .  X / Y Y } 
n i" "''" n 

More generally, with an input predicate P,I, a poin- 

ter assignement such as : 

X+.next ... +,next := Y+.next ... +.next 

o p t i o n a l  o p t i o n a l  

may cause  X and Y t o  i n d i r e c t l y  p o i n t  t o  a common 

r e c o r d .  Hence t h e y  a r e  p u t  i n  t h e  same c o l l e c t i o n .  

The output predicate will be P2 = P1 u {X,Y}. 

A sensible remark is that the value delivered by 

the right-hand side of the assignment may be nil, 

in which case this may cause a collection to be 

broken into two disjoint sub-collections. For sim- 

plicity, we ignore this fact, other than in the 

obvious case : 

{ P 1 }  X := Y + . n e x t  . . .  + . n e x t  { P 2 }  ; 

optional 

which will cause X to be disconnected from its 

collection and be connected to a record of the 

collection of Y. When X end Y are not the same 

variable, the output assertion P2 will be rela- 

ted to the inout assertion PI by : 

P2 = e x t r a c t ( X ,  P1) ~ {X ,  Y} 

Now, we will give an example. We have cho- 

sen the copying of a linked linear list : 

The following PASCAL procedure is supposed to do 

the job : 

procedure copy ($1 : list; vat $2 : list]; 

var CI, C2, L : list; 

bezin 

{P0} 

C1 :: $1~ $2 :: nil; L := nil: 

~P1} 
w h i l e  Cl <> n i l  do 

b e g i n  

{ P 2 }  

new(C2)~ C2+.val := Cl+.val~ C2+.next := nil; 

{ P 3 }  

i f  L = n i l ' t h e n  

{ P 4 }  

$2 := C2 

{PS} 

e l s e  

{ P 8 }  

L + . n e x t  := C2 { P 7 } ;  

{ P 6 }  

L := C2; C1 := C l . n e x t ;  

{ P 9 }  

e nd 

{ P l O }  

end~ 

According to our abstract interpretation o£ 

the basic constructs of the lenzuage we can now 

establish the following system of equations : 

[I] P1 = extract[L,extract[S2,extract(C1,PO) 

U { C 1 , $ 1 } ) ]  

[ 2 ]  P2 = P1 u P9 

( S i n c e  t h e  t e s t  [C1 <> n i l )  g i v e s  us no i n f o r -  

m a t i o n  on c o l l e c t i o n s  when t r u e ]  

( 3 )  P3 = e x t r a c t [ C 2 , P 2 ]  

(The a s s i g n m e n t  o f  n o n - o o i n t e r  v a l u e s  and a 

deed  m o d i f i c a t i o n  i n  t h e  s t r u c t u r e  p o i n t e d  t o  

by  C2 a r e  i g n o r e d )  

[ 4 ]  P4 = e x t r a e t ( L , P 3 ]  

( 5 ]  P5 = e x t r a c t [ S 2 ,  P4) ~ { $ 2 ,  C2} 

(6 ]  P6 = P3 

( s i n c e  we i g n o r e  t h e  £ a c t  t h a t  L <> n i l )  

[ 7 )  P7 = P6 ~ { L , C 2 }  

( 8 )  P8 = P5 ~ P7 
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[9] P9 = extract(L,PB] u {L,C2} 

[The statement Cl :: Cl.next leaves C1 in the 

same collection) 

[I0] PIO = extract[CI,P1 ~ P9] 

Since the theoretical conditions which ensure 

that the above system of equations has a solution 

are verified [Cousot[1076]) we can compute the least 

fixpoint using a #inite Kleene's sequence. 

We start with the most disadvantageous initial ore- 

dicate PO, where on the one hand the parameters 

($1,$2] and on the other hand the local variables 

[CI,C2,L] are supposed to be in the same collection: 

* PO = {$I,S2 / CI,C2,L} Pi = ±, ¥i { [1,10] 

[I) => P1 = extract[L,extract(S2,extract[O1,PO] 

{ c l , s l } ) l  

: extract[L,extract(S2,{SI,S2/C1/C2,L} 

u { C l , S l } ) )  

= e x t r a c t [ L , e x t r a c t ( S 2 , { S 1 , S 2 , C l / C 2 , L } ] ]  

= e x t r a c t [ L , { S l , C l / S 2 / C . 2 , L } ]  

* P1 = {S1,C1/$2/02/L} 

[2 ]  => P2 = P1 u P9 = P1 u ± = P1 

[ 3 ]  => P3 = e x t r a c t ( C 2 , P 2 ]  = {SI,G1/S2/G2/L} 

( 4 ]  => P4 = e x t r a c t ( L , P 3 ]  = {$1,C1/$2/C2/L} 

(5) => P5 = extract[S2,P4] u {$2,C2} 

{$I,CI/$2/C2/L} u {$2,C2} 

* P5 = { $ I  , C 1 / $ 2 , C 2 / L }  

(6 => P8 = P3 = { $ 1 , 0 1 / $ 2 / C 2 / L }  

(7 => P7 = P6 u { L . C 2 }  

{$1 ,C1 /$2 /C2 /L}  u { L , C 2 }  

{ $ I  , C 1 / $ 2 / C 2 ,  L}  

(8 => P8 = P5 u P7 

= { $ 1 , C 1 / $ 2 , C 2 / L }  u { $ 1 , C 1 / $ 2 / C 2 , L }  

= { $ 1 , C 1 / $ 2 , C 2 , L }  

[ g ]  => P9 = e x t r a c t ( L , P S ]  u { L , C 2 }  

* P9 : {$1,01/$2,C2,L} 

We go on c y c l i n g  i n  t h e  w h i l e - l o o p  u n t i l  t h e  i n -  

variant PO ..... PIO have stabilized : 

[2] => P2 = PI u P9 

: { S 1 , C l / $ 2 / C 2 / L }  ~ { $ 1 , C l / S 2 , C 2 , L }  

* P2 = {$1,01/$2,C2,L} 

* ( 3 )  => P3 = e x t r a c t ( C 2 , P 2 ]  = { $ 1 , C 1 / $ 2 , L / C 2 }  

* [ 4 ]  => P4 = e x t r a c t [ L , P 3 )  = {$1,CI/$2/L/C2} 

We come back f o r  P4 w i t h  t he  v a l u e  o f  t h e  p r e v i o u s  

pass ,  so we s t o p  on t h a t  p a t h .  

*[8] => P6 = P3 = { $ 1 , C I / $ 2 , L / 0 2 }  

(7] => P7 = P6 ~ {L,C2} 

* P7 = { $ 1 , C 1 / $ 2 , L , 0 2 }  

(8] => P8 = P5 u P7 

{ $ 1 , C I / $ 2 , C 2 / L }  ~ { $ 1 , C 1 / $ 2 , L , 0 2 }  

* P8 = { $ 1 , C 1 / $ 2 , L , C 2 }  

Same v a l u e  as above ,  s t o p  on t h a t  p a t h .  I t  r e m a i n s  

only the path out o£ the loop : 

(10]=> PIO = extract[el, P1 ~ P9) 

: extract(C1, {$1,CI/$2/C2/L} 

{ $ 1 , C l / $ 2 , C 2 , L } ]  

: e x t r a c t [ e l ,  { $ 1 , C 1 / $ 2 , C 2 , L } ]  

* PIO = { 0 1 / $ 1 / $ 2 , C 2 , L }  

The £inal results are marked by a star [*]. The 

main result is that although $I and $2 may share 

records on entry of the procedure "copy" : 

PO = {$1,$2/C1,C2,L} 

it is guaranteed that this is not the case on exit 

of the orocedure : 

PIO = { C 1 / $ 1 / $ 2 , C 2 , L } .  

4.3 Remarks 

a. This abstract interpretation of programs may be 

refined as in EUCLIO : when records have variants 

one can associate with each collection the set 

of tags of all records in the collection. This 

in fact will be the main application o£ our de- 

velopments of oaragraph 3,  We will be more #le- 

xib]e than the "one oT" or "any" of EUCLID, and 

authorize collections with say two variants 

{A,B} amon Z three possibilities {A,8,C}. Other- 

wise stated we reason on the following type hie- 

rarchy : 

{ A , B , E }  = T 

{ A , B }  { A , C }  { B , C }  

{A} {B} {C}. 

{}=± 
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whereas EUCLID uses a simplified type inclusion 

scheme : 

{ A , B , C }  = T 

/ \ 
( A }  ( B }  {C }  

\ l /  
{ } : a  

b. Besides and in opposition with EUCLID the collec- 

tions are defined as local invariants, Very pree 

cise and detailed information can beJgathered 

whereas the EUCLID programmer would have to 

globally specify the union of such information. 

This localization of collections may have impor- 

tant c o n s e q u e n c e s  : 

- An optimizing compiler will be able to limit 

the number of objects which are supmosed to 

have been modified by side-effects when assi- 

gning to objects designated by pointers, [use- 

ful in register allocation], 

- Run-time tests may be inserted before a sta- 

tement : 

dispose[X}~ 

to verify that no variable in the collection 

of X may access the record which X points to, 

- The garbage collector may be called when all 

variables in a collection are "dead" [i.e. 

are not used before being assigned to), 

- e t c . . .  

The s i m p l e  a b s t r a c t  i n t e r p r e t a t i o n  o f  p r o g r a m s  

we i l l u s t r a t e d  h e r e  may be f u r t h e r  i n v e s t i g a t e d  

t o  r e c o g n i z e  t h a t  d a t a  s t r u c t u r e s  a r e  used  i n  

s t y l i z e d  ways .  B o o m [ 1 9 7 4 ] ,  K e r r [ 1 9 7 5 ] .  

c .  I t  i s  f a i r  h o w e v e r  t o  say  t h a t  EUCLID c o m p i l e r s  

may use  t h e  same t e c h n i q u e s  t o  l o c a l l y  r e f i n e  

t h e  c o l l e c t i o n s  p r o v i d e d  by t h e  p r o g r a m m e r .  The 

advantage of EUCLID i~ then thatwhen the programmer 

has declared his intentions (or better part of 

intentions since the expressive power of col- 

lections is limited), he is forced to conform 

to his declarations. For example he will not 

be able to use the same pointer variable to 

traverse two lists which are built in diffe- 

rent collections. On the contrary this may con- 

fuse the automatic discovery of collections. The 

advantage however must be counterbalanced by the 

fact that parameterized collections (which are 

necessary with recursive data structures) may 

become inflexible and difficult to use. 

We now come t o  an e x a m p l e  where  a c o o p e r a t i o n  

b e t w e e n  t he  p r o g r a m m e r  and t h e  c o m p i l e r  i s  a b s o l u -  

t e l y  n e c e s s a r y  f o r  s e c u r e  and cheap  use o f  t y p e  

u n i o n s ,  t h a t  i s  t o  say  a case when t h e  c o m p i l e r  

has d e f i n i t e  d i s a d v a n t a g e s  o v e r  t h e  p r o g r a m m e r .  

5. Integer 8ubrange Type 

A subrange type such as : 

type index = 0..9 

is used to specify that variables of type index 

will possess the properties of variables of the 

base integer type, under the restriction that its 

value remains within the specified range. [Wirth 

[19751). In Cousot[19751, we developed a techni- 

que to have the compiler discover the subrange of 

integer variables. Let us take an obvious example : 

i i= I; 

{P1} 
w h i l e  i _< 1000  do 

{ P 2 }  

i := i+1 { P 3 } ;  

{ P4} 

L e t  us d e n o t e  by  [ a , b ]  t h e  p r e d i c a t e  a _< i _< b .  

The s y s t e m  o f  e q u a t i o n s  c o r r e s p o n d i n g  t o  o u r  exam-  

p l e  i s  : 

(1 )  P1 = [ 1 , 1 1  

[ 2 ]  P2 = [P1 u P3)  n [-oo, 1 0 0 0 ]  

[ 3 ]  P3 = P2 + [ 1 ,  1 ]  

( 4 ]  P4 = (P1 u P 3 ]  n [ 1 0 0 1 ,  +oo1 

w h e r e  + i s  d e f i n e d  by [ a ,  b ]  + [ c ,  d ]  = [ a + c , b + d ] ,  

and u and n a r e  u n i o n  and i n t e r s e c t i o n  o f  i n t e r -  

v a l s .  Suppose  we knew t h e  s o l u t i o n  t o  t h a t  s y s t e m ,  

i i e .  

P1 = [ 1 , 1 ] ,  P2 = [ 1 ,  10001 , P3 = [ 2 ,  1 0 0 1 1 ,  

P4 = [ 1 0 0 1 ,  10011 

I t  i s  o b g i o u s  t o  l e t  t h e  c o m p i l e r  v e r i f y  t h a t  

t h i s  s o l u t i o n  i s  a - F i x p o i n t  o-F t h e  s y s t e m  : 
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[ 1 ]  -~-> P1 = [ 1 ,  1 ]  

( 2 ]  ~ >  P2 = (P1 u P3]  n [-oo, 10001 

( [ 1 ,  1 ]  u [ 2 ,  1 0 0 1 ] )  n [ - o o  I 0 0 0 ]  

[ [ 1 ,  1 0 0 1 ]  n [ -oo, 1 0 0 0 ] ]  

= [ 1 ,  1 0 0 0 ]  

[ 3 ]  ~ >  P3 = P2 + [ 1 ,  1 ]  

: [ 1 ,  1 0 0 0 ]  + [ 1 ,  1 ]  

[1 + 1,  1000 + 1 ]  

: [2, 1001] 

( 4 ]  ~ >  P4 = (P1 U P3]  n [ 1 0 0 1 ,  +~1 

[ [ 1 ,  1 ]  u [ 2 ,  1 0 0 1 ] ]  n [ 1 0 0 1 ,  +~1 

[I, 1 0 0 1 ]  n [ 1 0 0 1 ,  +~ ]  

: [ 1 0 0 1 ,  1 0 0 1 ]  

If on the contrary we want the compiler to dis- 

cover this fixpoint, we may try to solve the equa- 

tions by algebraic manipulations [Cheatham and 

TownleyE1g761] which may be quite inextricable. The 

other way is to use Kleene's sequence, but the trou- 

ble is that our abstract data space is an infinite 

lattice, and we may have infinite sequences. Since 

compilers must work even for programs which may 

turn out to loop, the only way to cope with the 

undecidable problem is to accept approximative ans- 

wers. For example in the program : 

for i := I to 100 do 

begin 

n := i; 

w h i l e  n <> 1 do 

if even(n] then n := n/2 

else n := 3 * n + I; 

write (i] 

end; 

Cousot[1975] will discover an approximate range 

for n which will be [1, +~].However, if the actual 

range of n were known by the programmer and if the 

programmer could tell this to the compiler, then 

a verification would be simpler [in most cases but 

not on this difficult example]. 

We can now state our main objection against sub- 

range types in PASCAL : the fact that range asser- 

tions must be given globally in the declaration pre- 

vent the programmer from giving the solution of the 

system of equations to the compiler. 

The programmer can only give an approximation of 

the solution, which is usually insufficient for the 

compiler to discover local subranges. To make it 

clear, instead of P1, Pi, PI, P4 the programmer is 

only able to declare vat i : 1 ..1001 that is to 

say that PJ u P2 o P3 u P4 E [I, 10011 which adds 

an inequation to tiTe system o£ equations but does 

not provide its solution. We then consider integer 

suorange types as union types since the global de ~ 

claration must be the union of all local subranges. 

Thus, if we declare : 

var i : 0..2; 

we really want to say that the type of i at each 

program point is one of the following alternatives: 

0..2 

. 2, 0 .0 

]t 

.2 

We t h e n  u n d e r s t a n d  a criticism by  H a b e r m a n n [ 1 9 7 3 1  

that sLbranges ere not types, since a global sub- 

range type definition does not determine the set 

of operators that are applicable to variablesof 

that type. 

For example, let f be a {unction with one formal 

parameter o# type 2..I0 and i a variable globally 

declared of type d.,5. The variable i may be used 

at program point p in the expression f[i] provided 

that i may be united to the subrange 2..10. Oyna- 

mically the local type of i at program point p is 

i..i, wnich is simply derived from the value T of 

the variable i. in the expression f[i], i must be 

coerced from the type i..i to the type 2..10. This 

is safe when 2 ~ i and i s 10. Staticly this signi- 

fies that the subrange of i at program point p must 

be a subrange of 2..5. This subrange of 2..5 cannot 

be locally specified in PASCAL. 

This understanding of subranges leads us to the con- 

clusion that integer subranges should be specified 

locally. Moreover, and in opposition with our pre- 

vious examples we cannot exbeet the compiler to be 
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able to discover these local subrange properties. 

It is then essential that orogrammers provide them, 

by means of assertions or as previously by means of 

conformity clauses so that we would write in the 

spirit of ALGOL 88 (MeertensL1975]) : 

i := 1; 

while case i in 

[I..I000)o:(i := O + I; true), 

out :false 

c o P e  

do skip od; 

These constructs give the solution of the system of 

equations which the compiler has to solve for 

strong type checking. The redundancies [equations 

identically verified) can be eliminated. Moreov!~r 

the PASCAL restriction that the bounds of ranges 

must be manifest eonston~is o definite advantoge 

since this verification will involve no symbolic 

formula manipulations. Run-time tests will remain 

necessary in difficult cases, but their number will 

be decreased. 

6. Conclusion 

We illustrated the Tact that unsecure data 

types [which do not guarantee all operations on 

values of that type to be meaningful] can be con- 

sidered as the union of secure (sub) types. Exam- 

oSes of these were pointers, varionts in records, 

records in collections, integer subranges. 

A type-saTe programming system must staticly de- 

termine which sate subtyDe of the union is used when 

checking correct use of operations on union typed 

objects. The language designer may achieve this 

goal by one of the followin Z alternatives: 

- Incorporate rules and constructs in the 

language so that any operation of the langua- 

ge can be staticly shown to be operatin Z on 

correctly typed arguments. 

- Design a compiler in order to verify that 

the security rules have not been transgres- 

sed, although not enforced by the language. 

I t  was a r g u e d  t h a t  i n  b o t h  c a s e s ,  t h e  same 

c o m p i l i n g  t e c h n i q u e s  mus t  be u s e d ,  and c o m p a r a b l e  

results will be obtained by type checking or type 

discovery as long as finite type systems are consi- 

dered. The main difference between these approaches 

is the one between security (at the expense of fle- 

xibility) or simplicity [at the expense of preci- 

sion, and of the possibility that compiler warnings 

be ignored). 

However when the type union system is infinite [in- 

teger subrenge type), it has been shown that static 

type checking necessitates language constructs which 

eilow subtypes to be locally derived. 

The argument was based upon the observation 

that type verification consists in establishing 

a solution to e system of type equations. Global 

tyae declarations give an approximation of the so- 

lutions to that system. The discovery of o particu- 

lar solution from that approximation may involve 

infinite computations. On the contrary, if the lan- 

guage is designed to directly provide a solution 

to the compiler, type checking consists in a 

straightforward verification. 

This reasoning might turn out to be useful 

to language designers who until now could not lo- 

gically prove the validity of their design of lan- 

guage constructs. Moreover this reasoning may ser- 

ve as a basis to define type safety in languages 

and prove particular languages to be type reliable. 
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