
STATIC DETERMINATION OF DYNAMIC PROPERTIES

OF GENERALIZED TYPE UNIONS

Patrick Couso~and Radhia Couso~*

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble Cedex, France

Abstract. The classical programming languaqes such as PASCAL or ALGOL 88 do not provide {ull data

type security. Run-time errors are not precluded on basic operations. Type safety necessitates a

refinement of the data type notion which allows subtypes. The compiler must also be able to ensure

that basic operations are applicable. This verification consists in determining a local subtype of

globally declared variables or constants. This may be achieved by improved compiler capabilities

to analyze the program properties or by language constructs which permit the expression of these

properties. Both approaches are discussed and illustrated by the problems of access to records via

pointers, access to variants of record structures, determination of disjoint collections of linked

records, and determination of integer subrenge. Both approaches are complementary and a balance

must be found between what must be specified by the programmer and what must be discovered by the

compiler.

Key words and phrases : Type safety, type unions, subtype, data type, system of equations, type

verification/discovery, error detection capabilities, abstract interpretation of programs, secure

use of oointers/variants of record;structures, domains/collections, integer subrange type, ALGOL

88, EUCLIO, PASCAL.

CR categories : 4.12, 4.13, 4.2, 5.4.

1. Introduction

The type of an object defines how that object

relates to other objects and which actions may be

applied to it. Unfortunately the classical tyoe

systems of ALGOL 801187S], PASCAL[1874], ALGOL 68

[1975] ... do not convey enough information to de-

termine staticly whether a given action applied

to a value will be meaningful. For example, in AL-

GOL 80 the type procedure does not include the ty-

pe of acceptable parameters, in ALGOL 88 the type

* Attache de Recherche au C.N.R.S., Laboratoire
Associ~ N ° 7.

** This work was supported by IRIA-SESORI under

grants 75-035 and 78-180.

reference ignores the fact that a reference may be

dummy, in PASCAL type unions [variants of record

structures) are unsafe because of the possibility

of erring on the current alternative of the union.

In all these languages the problem of subscript ran-

~e is not safely treated by the type concept, LiKe-

wise, the classical type systems define only loose

relationships between objects. For example, in PAS-

CAL, a pointer to a record must De considered as

potentially designating any record of a given type.

One cannot express the fact that two linked linear

lists of the same type do not intermix. Finally, the

rules of the language or the programming discipline

accepted by the programmer are not statiely enfor-

77

cad by the compilers, so that run-time checks are

the widely used remedy. However these expensive run-

time checks are usually turned off before the "least"

programming error has been discovered.

In the interest of increased reliability of soft-

ware products, the language designer may reply upon :

- The design of a refined and safe type system, which

necessitates linguistic constructs which propaga-

te strong type oropertles. The rules of the lan-

guage must then be checkable by a mere textual

scan of programs le.g. ALGOL 68[1975] end EUCLIO

[1976] provide a secure use of type unions). This

language design approach may degenerate to large

and baroque programming languages.

The design of a refined compiler wkich performs

a static treatment of programs and provides im-

proved error-detection capabilities. The language

then remains simple and flexible, but security is

offered by compiler verifications [e.g. EUCLIO

legality assertions which the compiler generates

for the verifier]. This compiler design approach

may degenerate into futurustic and mysterious au-

tomatic program verifiers.

We illustrate the two approaches by means of examples;

The comelier techniques we propose for the static ana-

lysis of programshave e degree of sophistication

comparable to program optimization techniques ra-

ther than program verification techniques, Cousot

[1976]. It is shown that the language design ap-

proach and the compiler design approach are strong-

ly related since both need a refinement of the ty-

pe notion. They differ by the fact that one needs

a type checker whereas the other uses a type dis-

coverer, but we show the close connexion between

type checking and discovery.

We show that strong type enforcement or dis-

covery may be equivalent (e.g. nil references,type

unions, collections of non intermixing pointers).

This is not the case for infinite type systems [e.g.

integer ranges), which are not compile time checkable.

In such a case type discovery is really needed and

can be facilitated by appropriate syntactic cons-

tructs. Finally we propose a means by which langua-

ge designers can establish a balance between the

security offered by full typing [within a suitable

linguistic framework to properly propagate strong

type properties), and the simplicity offered by the

flexible Ibut incomplete) classical type systems.

2. Nil and Non-nil Pointers

Among the objections against the use of poin-

ters ere the faotsthat they can lead to serious ty-

pe violations (PL/I) and that they may be left dang-

ling. One can take care of these objections, by gua-

ranteeing the type of the object pointed at (PASCAL

[1974] except for.variant of records), and ensuring

that pointers point only to explicitly allocated

heap cells (disjoint from variable cells) which re-

main allocated until they are no longer accessible

IPASCALE1874] when "dispose" is not used). However

a pointer may always have the nil value which points

to no element at all ; this is a source of frequent

errors.

The type of a value may be viewed as a static

summary of the meaningful operations on that value.

However the operations prescribed by a syntactically

valid construct are not always dynamically meaning-

ful. This is the case when dereferencing a pointer

value which happens to be nil.

The pointer type notion must then be refined so

that one can distinguish :

- the type of pointers to a record type

- the subtype of non-nil pointers to that re-

cord type

- the subtype of nil pointers to that record

type (which happens to have only one value)

The rule is that dereferencing can be applied

only to pointers of non-nil subtype. Since this

rule must be enforceable by the programming system.

the language designer has three solutions :

Run-time checks Ithese checks are usually ve-

ry cheap for pointers when using the hard-

ware memory protection facilities. However

for system implementation languages genera-

ting code in master-mode this hardware detec-

tion is not always utilizable. Moreover, for

more complicated examples such as array sub-

scripting these run-time checks are very

78

e x p e n s i v e .

S a f e l a n g u a g e d e s i g n , w i t h s t r o n g t y p i n g i . e .

a t y p e s y s t e m w h i c h e n s u r e s t h a t any o p e r a -

t i o n p r e s c r i b e d by a s y n t a c t i c a l l y v a l i d cons -

t r u c t will a l w a y s be dynamically meaningful.

This type scheme must distinguish between nil

and non-nil pointer types, disallow tyoe vio-

lations (i.e. forbid the type o£ an object

to be changed from the tyoe"nil or non-nil

pointer",to the type"non-nil pointer9 and

syntactically check the correct use of ope-

rations (i.e. authorize dereferencing for non-

nil pointers only).

- Compile time checks, to recognize the safe

use o£ a type scheme which is too tolerant.

We illustrate now this last strategy.

2.1 Static Correctness Check of Access to Records

via Pointers

Consider the simple problem of searching for a

record with value "n" in a linked linear list L :

value next

L ,F-Fq__Tq?

The PASCAL solution is given by PASCALF1974] (p. 64)

as follows :

[1) pt := L; b := true;

(2) { P 1 }

[3) w h i l e [p t <> n i l) and b do

(4) ({ P 2 }

(5] i ~ p t + . v a l u e = n t h e n

(6) b := f a l s e

(7) { P 3 }

(8) else

(9) { P 4 }

(1 0) p t := p t + . n e x t ;

(11) { P 5 }) ;

The above piece of program is correct with re-

gard to accesses to records via pointers, since

pt is not nil when dereferenced at lines (5) and

(10). This fact is established by the programmer

using a simole propagation algorithm from the test

of line (3). This reasoning is easily mechanized as

f o l l o w s : a s s o c i a t e i n v a r i a n ~ P 1 , P2, P3, P4 and P5

t o o o i n t s [2 1 , [4 } , (7 1 , (9) and (11) r e s p e c t i v e l y .

A c c o r d i n g t o t h e s e m a n t i c s o f t h e o r o g r a m m i n g

l a n g u a g e PASCAL (H o a r e and W i r t h [1 9 7 3]) , t h e s e i n -

v a r i a n t s a re r e l a t e d as d e f i n e d by t h e s u b s e q u e n t

s y s t e m o f e q u a t i o n s :

(1) P1 = [a t = L) and (b = t r u e)

[2) P2 = (P1 o r P5) and ((p t <> n i l) and b)

(3) P3 = [P2 and (p t + . v a l u e = n)) and (b = f a l s e)

(4) P4 = P2 and [o t + . v a l u e <> n)

(5) P5 = P3 o r (~ p t ' I s ° t ' (p 4) and p t = o t ' + . n e x t)
- - p t

(E q u a t i o n [5) has been d e l i b e r a t e l y o v e r s i m p l i f i e d ,

see D e m b i n s k i and S c h w a r t z [1 9 7 6]) .

S i n c e i n g e n e r a l i t i s u n d e c i d a b l e to f i n d a

s o l u t i o n t o s y s t e m s such as t h e one a b o v e , we mus t

c o n s i d e r s i m p l i f i c a t i o n s [t o t h e p r e j u d i c e o f t h e

precision of our results), For that purpose we will

ignore the existence of the boolean variable b, of"

the fields "value" in records o£ the linear list,

and thus focusing on pointers. Moreover, we will

consider only the pointer variable pt, and the fol-

lowing mredicates on st :

pt = nil, pt <> nil, (at = nil) or (pt<> nil)

respectively denoted by nil, non-nil,T . These pre-

dicates form a complete lattice whose HASSE's die-

g r a m . is :

L =

T

nil / ~non-nil

Where i is used to denote the fact that nothing is

Known about the variable pt.

Since we are only considering an oversimplified

subset Of the set of predicates, our system of equa-

tions can be simplified accordingly :

(1 ') P1 = T

(2') P2 = (PI or P5) and non-nil

(3 ') P3 = P2

(4 ') P4 = P2

[5 ') P5 = P3 o r T

(I n e q u a t i o n (1) we c o n s i d e r (p t = L) s i n c e L may

79

be an emoty or non-empty linear list, we get (pt =

nil) or [pt <> nil] denoted T, in equation [5] we

only consider the fact that the {unction 'next'

(when defined] delivers a (nil or non-nil] oointer

value which is assigned to pt].

Our system of equations is of the form :

< P 1 , P 2 , P I , P4 , PS> = F [< P 1 , P 2 , P I , P 4 , PS>]

w h e r e F i s an o r d e r p r e s e r v i n g a p p l i c a t i o n f r o m t h e

c o m p l e t e l a t t i c e [5 i n i t s e l f . T h e r e f o r e , t h e K n a s -

t e r - T a r s k i t h e o r e m s t a t e s t h a t t h e a p p l i c a t i o n F

has a l e a s t f i x p o i n t [T a r s k i [1 9 5 5]) . M o r e o v e r , s i n c e

F i s a c o m p l e t e o r d e r - p r e s e r v i n g m o r p h i s m f r o m t h e

complete lattice L s in itself, this least fixpoint can

he de£ined as the limit of Kleene's sequence, Kleene

[1952] :

~O = <l, ± l ± l >

I i = F [~ 0]

= < T , [± o r ±] end n o n - n i l , i ± , [± OF T] >

- < T , l l i T >

12 = F[Ii]

= <T,(T or T] and non-nil, l i ,(l or T]>

= <T, non-nil I ± T >

~3 = F [~ 2]

= < T , (T or T] and n o n - n i l , n o n - n i l , n o n - n i] , (l o r T] >

: <T, non-nil ,non-nil,non nil, T >

= <T,(TOF T] and non-nil,non nil,non-nil,[non-ni]

or T] >

= <T , n o n - n i l , n o n - n i l , n o n - n i l , T >

= h 3

Thus, Kleene's sequence converges in a finite num-

ber o{ steps, which is obvious since L s is a finite

lattice. The solution to our system of equations tells

us that P2 = P3 = P4 = non-nil, which according to

our interpretation means that pt is not nil at lines

[4], [7] and [g] of our program, which imolies that

the accesses of records through ot at lines [5] and

[10] are staticly shown to be correct. With regard

to the value of PI and PS, its interpretation is

that pt may be nil at program points [2] and [11],

in particular, the test on pt at line [3] may not

be identically true.

The simple programmer's idea of zeneralizing

constant propagation may be derived from the above

Kleene's sequence when eliminating useless computa-

tions. A symbolic execution of the program (where

elementary actions are interpreted according to the

simolified equations oreviously established) gives

the following computation sequence :

P1 = T, (P , = ± , i ~ [2 , 5]] l

P2 = [P1 o r P 5] and n o n - n i l

[T o r $] and n o n - n i l

= n o n - n i l

P3 = P2

= non-nil

P4 = P2

non-nil

P5 = P3 or T

non-nil or T

= T

P2 = [PI or P5] end non-nil

[T or T] and non-nil

non-nil, same as above, stun,

Kildall[1973] and Wegbreit[1975] algorithms have

been recognized, they are "efficient" versions of

the Kleene's sequence. Following Sintzoff[1972] we

call this technique the abstract interpretation of

programs. Abstract since some details about the data

o£ the orogram are forgotten, and interpretation

since both a new meaning is given to the program

text and the information is gathered about the pro-

gram by means o£ an fnterpretor which executes the

program according to this new meaning. We then get

a static summary of some facets of the possible exe-

cutions of the program. A theoretic framework o£

abstract interpretation o£ programs together with

various examples are given in Cousot[1g76].

2.2 A Safe Linguistic Framework to Handle Nil Poin-

ters

A comolete and satisfactory solution of the

problem of dereferencing or assigning to a nil name

(as in ref real [nil] := 3,14] is proposed by Meer-

tens[1976] within the framework of ALGOL 68. The

pointer types are restricted to non-nil values by

exclusion of nil-names (this is achieved by not pro-

viding e reoresentation for the nil symbol), so that

any name refers to a value. The type void is used

to represent nil-names. Finally the type o£ nil end

non-nil oointers is the union of the previous ones.

80

For example we can write a construction like

mode list = union [ref cell, void]

mode cell : struct [integer value, list next]

to represent linked linear lists. An emety list is

represented by the value empty, the only void value.

Our routine would have to be rewritten :

list pt :: L;

while case pt in

Ire# cell pt'] ~> if value of ot'=n then false

else

(ot := next of ot'~ true]

fi,

~> false out

eSaO

do skip od;

This program is safe, since in ALGOL 88 the

non-safe coercion of pt from mode union [ref cell,

void] to mode ref cell has to be made explicit by

a conformity case construct. The idea is therefore

to force the programmer to explicitly perform the

run-time tests, which in this example is dictated

anyway by the logic of the problem {the rewritten

version admittedly looks a bit cumbersome, but more

convenient ways of expressing such a flow of con-

trol may be exhibited [Oijkstra[1875]]].

2.3 Remarks

It is remarkable that both approaches necessi-

tate the same secure type system, yet they differ

in the choices of making it available or not to the

programmer.

The refined type system considers the pointer

type as the onion of two sybtypes : pure [non-nil)

pointers and dummy (nil) pointers. Type safety is

guaranteed by requiring strong typing : the type

of a value determines which operations may be mea-

ningfully applied to it.

In both cases the type correctness has to be

verified or established by the compiler. For that

purpose an [often implicit) system of equations is

used. In one case the solution to that system of

equations has to be found by the compiler, in the

other case the compiler simply verifies that the

solution supplied by the programmer [by means of

adequate syntactic constructs] is correct. Since in

this examole the type system is finite, both ap-

proaches are equivalent as far as type verifications

are concerned.

3. Variants of Record Structures

3.1 Unsafe Type Unions in PASCAL

In ALGOL BeEIg75] a variable may assume values

aT different types. The type of this variable is

then said to be the union of the types of these va-

lues. In PASCAL[1974] the concept of type unions

is embodied in the form of variants of record struc-

tures : a record type may be specified as consis-

ting of several variants, optionally discriminated

by a tag field.

Example :

type mode = [int, char];

type charint =

record

case tag : mode of

int : [i : integer];

char : (c : character]

end;

vat digit, letter, alphanum : charint

In a program containing these declarations the

occurrence of a variable designator alohanum.c is

only valid, if at this point that variable is of

type character. It is so, [if and] only if alpha-

num.tag = char. However this is not staticly veri-

fied by the PASCAL compilers for the following rea-

sons :

The tag field of a variant record definition

is optional, and may exist only in the pro-

grammer's mind.

- When present, the tag field may be assigned,

thus allowing to realize implicit type trans-

fer functions. For instance, a variable of

type character :

alphanum.tag ~= char;

alphanum.c := 'H';

may be interpreted as being of type integer

for the purpose of printing the internal

8]

representation :

alphanum.tag := int~

writeln[alohanum.i];

(Note that the tag is appropriately set, but without

care about its value one can write as well :

alphanum.c :: 'H';

writeln[alphanum.i]:]

3.2 Safe Type Unions in ALGOL 68/EUCLID

Suggestions have been made to provide syntactic

structures which ensure that type-unions are safe,

i.e. compile-time checkable. Such features forbid

assignments to the ta Z fields and let the compiler

determine the current tag value from context using

a statement similar to the "inspect when", of SIMULA

[I 974].

In ALGOL 68 ~ 975] we would write :

mode charint = union (integer, character]~

integer digit ~ character letter ;

charint alohanum~

The tag field is hidden from the programmer, and

may be checked usin Z conformity clauses.

The antagonism with PASCAL is more obvious in

EUCLID[1978] which handles variant records in a

type-safe, ALGOL 68-1ike manner. Since EUCLIO al-

lows parameterized-tyoes, the tag will usually be

a formal parameter of the type declaration :

type mode : [int, char]

type charint [ta Z : mode] =

record

case tag of

int ~> var i : integer ~ end int

char ~> vat c : character ~ end char

end case

end charint

When a variable of the record type "charint" is

declared, the actual tag parameter may be a cons-

tant :

vat digit : charint lint]

vat letter : charint (char]

or any, which allows type unions :

vat alphanum : charint [any]

ALGOL 68 or EUCLID are type-safe when dealin Z with

type unions since :

- No assignments to the tag fields are authorized

once they have been initialized.

- Unitin Z is allowed and safe :

alphanum := letter~

is legal, because the type of the right hand side

value eharint[char] may be coerced to the type

of the left hand side variable charint[any] (the

t~b e charint[any] permits alohanum to hold either a

value of typecharint[char] ora value of type charint

[int]].

- There is no de-uniting coercion, since if

letter :: alphanum

were allowed, the principle of type-checking

would be violated. The only way to retrieve an

object which has been united and to retrieve it

in its original type is by a discriminating case

statement. This ensures that the type transfer

is safe since the ta Z is explicitly tested :

case discriminatin Z x : alphanum on tag of

int => digit :: x ~ end int

char ~> letter := x ; end char

end case

This discrimatin g case statement ensures a cam-

olete run-time check o£ which variant of a record

is in use, corresponding to the checks which can

be carried out by the compiler for all non-union

tyoes~

3.3 Static Treatment of Type Unions

PASCAL has been deliberately designed to pro-

vide flexible type unions at the expense of secu-

rity [Wirth [1975]] : however, a wise compiler should

be able to discern the secure programs by using the

following abstract interpretation of these programs:

Record values will be abstractly represented

by their tag fields. We will consider a program with

a single record tide with variants identified by a

single ta Z, [the generalization to nested variants

and numerous record types is straightforward]. The

tag is of enumerated type T which is a finite set

of discrete values. This set is augmented by a null

value which represents the non-initialized value.

Since a t the same program point, but at two diffe-

rent moments of program execution, two different

values may be assumed by a tag field of a record

82

variable, a static summary of the potential pro-

gram executions must consider a set of values for

tag fields. (More generally, this is the case for

variables o{ enumerated type]. Thus the abstract

values o{ the tag will be chosen in 2 T, the power-

set of T, which is a finlte complete lattice. More-

over, if the program contains simple variables of

enumerated type T, it is convenient to take ac-

count of them in the program abstract interpreta-

tion process. Finally, if the program contains

m simple variables of type T or record variables

with tag of type T, our abstract data space is

(2 T x ... x 2 T] m times. Since this space is a com-

plete finite lattice, the abstract execution of

programs can be performed at compile time.

Example :

type oerson =

record

case sex : (male, female] of

end ;

vat paul, mary, senior : person;

(1)
paul,sex := male;

(2}

paul.age := ...;

(3}
mary.sex := female;

(4)
mary.age := ...;

(S)

if paul.age £ mary.age then

(6)

senior := paul;

{7)
else

(6}

senior := mary;
(9)

end;
[10]

The symbolic execution o f that piece of

program would be :

i
line i

[I)

[2)

[3)

[4)

5)

paul mary senior

{null} {null} {null}

{male} { n u l l } { n u l l }

the assignment to paul.age is ignored

{male} I {female} I{null}
the assignment to mary.age is ignored.

Since the value of the test is statlcly un-

Known, this gives rise to two execution paths

[6] and [8] :
I

[6) {male} I {female} { n u l l }
i

[7] {male} [{female} {male}

[8) {male} {female} { n u l l }

9] {male} {female} {female}

10] The two execution paths are joined together:

i ' {male}u{male} female}u{female}i{male} u {Female}

= {mole} = {female} = {mole, female}

Note that at line [10] it is clear that "senior"

may have tag values "male" or "female". However, we

don't appreciate the qact that :

senior.sex = if paul.age ~ mary.age then male

else female {i

but neither do ALGOL 68 nor EUCLIO. With these lan-

guages it is evident that in some cases the program-

mer knows perfectly well which alternative of a

union type is used, but is unable to exploit this

Knowledge, since he must use a discriminating case

statement. This same limitation arises with our

static treatment of programs, more powerful schemes

exist [Sintzoff[1975]].

Finally, in the static treatment of programs

useful information will be gathered from case sta-

tements, and if statements, used as ALGOL 68 confor-

mity tests.

Example :

{Paul = {male} ; Mary = {Female} ; Senior = {Male,

if Senior.Sex = Paul.sex then

. . . [I) . . .

else

... [2) ...

fi

Female}}

83

The abstract interpretation of a test (A = B) in a

context where A and B are variables which may as-

sume set of values S A and S B delivers a context

where A and B may assume the set of values S An S B

on the true path. (Thus in {I) we get Paul = Senior

= (Male} n {Male, Female} = {Male}).The context De-

livered for the false path is :

A = i__f (ISA nSBI = 1) and not (SAc S 8) then S A - S B

else S A f i

(Thus in (2] we get Paul : {male} and Senior = {Fe-

male}).

When this abstract interpretation of programs

is terminated we can recognize secure programs by

the following facts :

There are no assignments to tag fields, other

than for initialization(which is recognized

by the fact that the tag value is changed from

null to some value). We can also authorize use-

less tag assignments, i.e. those which assign

to a tag without changing its value.

The unsafe de-uniting coercions must be checked.

This cannot occur when a record variable is as-

signed to another, since all record variables

are considered to be of union types. (Note that

such an assignment may indirectly modify a

tag value, but this is safe). Oe-uniting coer-

cions only occur when accessing a field in a

record. This is safe only if the tag has been

staticly established to be of correct value.

Otherwise, a warning is reported to the ueer,

and a run-time check inserted in the program.

3.4 Flexibility Versus Security

This compiler aoproach has the advantage of fle-

xibility over the secure language approach. It

is clear that all EUCLIO orograms translated in-

to PASCAL will be recognized to be safe by this

technique.

Following Wirth[1975] there appear to be three

different motivations behind the desire for variants

of record structures :

I. The need for heterogeneous structures, in two

main cases :

1.1 Static variants to describe classes of data

which are different but yet closely related.

For examole, Men and Women may be described

as Persons depending on their sex, thus

EUCLIO authorizes :

type Person (Sex = {Male, Female)) = ...

type Man = Person(Male)

type Woman = Person(Female)

In PASCAL however, variables of abstract

type Man and Woman may be staticly recogni-

zed when their tag values never change.

1.2 Dynamic variants, to describe objects whose

components depend on a possibly changing

state. For example a car may be moving or

stopped, thus EUCLID authorizes :

type Car {State : {moving, stopped, des-

troyed)) = ...

vat mycar : Car{an__~)

Since the actual oarameter supolied for the

tag is any, the variable can be changed from

one variant to another during execution, by

assigning values of different variants to

the variable. However, no refinement is al-

lowed, and no proper subset of the possible

tag values can be used :

vat mycar : Car({moving, stopped})

This fact may be discovered by a static ana-

lysis of the program, and might be useful

in memory allocation.

2. Storage Sharing (Overlays). This implies the use

of the same storage area (expressed in the lan-

guage as "the same actual variable") for diffe-

rent purposes i.e. for representing different

abstract variables whose lifetimes are disjoint

{block structure is not incorporated in PASCAL).

This is a typical case of free union, where no

tag will be carried along to indicate the cur-

rently valid variant. This tag may be staticly

simulated, provided that one ensures an appro-

priate setting of the tag upon assignment to

fields of the variant. Unsafe assignments will

be identified and therefore the mutation from

one abstract variable to another may be reported

to the user.

84

3. Realization of implicit type transfer functions.

EUCLID in recognition of the Tact that control-

led breaches of the type system are sometimes

necessary, provides unchecked type conversions,

by means oT type converters :

i := unsigned-int <<= character['H')

assigns to i the internal code of the character

'H'. We have seen how a PASCAL comoiler might

reoort this fact to the user.

Finally, it is clear that PASCAL provides fle-

xibility at the expense of security. We have shown

that a compiler may report to the user which cons-

tructs have been used in either secure or insecure

ways. The results of this static treatment of pro-

zrams might also be useful in code generation. Thus

we get a sophisticated compiler for a simple lan-

guage. It is obvious then, that the programs will

not be very readable, since the programmer has no

preestablished constructs for expressing his inten-

tions. However some simple intentions of the program-

mer which can be simoly caught by comoilers may ne-

cessitate rich and not necessa~lyeasy to understand

language constructs. This is the case in our next

examole concerning dynamic allocation of records.

4. Disjoint Collections of Linked Records

4.1 Collections in EUCLID

Suppose in PASCAL we have to reoresent two sets

of records [of type R], we can use two arrays :

vat $I, $2 = arrayE1..n] of R;

With such a declaration, the PASCAL comoiler knows

that the sets $1 and $2 are disjoint, that is to

say any modification of $1 has no side effect on $2

and vice-versa. Suppose that n, the maximal cardina-

lity of the two sets is not known, we will use dy-

namically linked linear lists :

tyDe list = + elem;

elem = record

next : list;

val : R;

end;

vat $I, $2 : list;

This tffme, the readers of the orogram (e.g. PASCAL

compilers] have to supoose that the sets $I and $2

may s h a r e e l e m e n t s and i t i s now n e c e s s a r y t o scan

all the orozram to state the contrary.

In LIS[1974] one can specify that two pointers

never refer to the same record ; the declarations

0SI : domain of elem;

0S2 : domain of elem;

soecify that DS1 and OS2 will be sets of disjoint

dynamic variables, Now, i£ $I and $2 are pointers

into different domains :

$1 : + DSI~

$2 : + OS2;

they oeint to different records of the same type.

Unfortunately the confusion between a pointer to

the first element of the linked structure, and the

list is valid only in the programmer's intellect.

$I and $2 ooint to different records of type elem,

which themselves may point to the same record. Thus

the idea of domains has to be recursively applied

in order to soecify that elements of domain 0SI

ooint only to elements of 0S1 :

0SI : domain of eleml;

tyoe eleml = record

next : + 0SI;

val : R ;

end;

and that elements of 0S2 can ooint only to elements

of DS2 :

0S2 : domain of elem2 ;

tyoe elem2 = record

next : t OS2;

val : R

end;

Since we want to guarantee that two pointers into

different domains can never refer to the same va-

riable we have to consider that +DSI and +DS2 are

different tyoes of Dointers. The trouble is now that

eleml and elem2 are different types, so that we have

to write twice the alzorithms (insertion, search,

deletion ...) which handle the two similar lists $I

and $2.

EUCLIDE1978] is more flexible and authorizes

tyoes to be oarameterized. Thus we will describe

the tyoes of lists $I and $2 once, as deoending on

the domain (called collection in EUCLIO] to which

85

they Delong.

The type elem is parameterized by the name C of the

collection to which elements of type elem point.

This collection C is a collection of records [o ~

type elem] pointing to C :

type elem(C : collection of elem(C)] =

record

vat next : +C

vat val : R

end record

vat 0SI : collection of elem[OS1]

vat $1 : + 0SI

var OS2 : collection of elem(OS2]

vat $2 : + 0S2

Now the operations on lists $I and $2 can be des-

cribed once, it just suffices to pass the name of

the collection 0SI or OS2 to which they refer as

a parameter :

insert[OS1, $1, r)

will insert the record r in list $I which belongs

to collection 0SI. Now we have to declare the type

of the formal parameter OS corresoondin Z to the

possible actual parameters 0SI and 0S2 :

procedure insert[OS : collection of elem[OS],

vat S : OS, val : R]

It is clear that OS, 0SI, 0S2 are just formal [or

actual but different] collections of the same type.

To make conspicuous that different collections will

have the same type, we now want to give the name

"listsupport" to the type o£ the collections sum-

porting linked linear lists :

type listsupport = collection of elem(?]

Since the type of a collection such as 0SI de-

pends on its name 0SI, the type of the collec-

tion must be parameterized by that name :

type listsupoort[OS : ?] = collection o_~

elem(OS]

A declaration such as :

vat 0SI = listsupport[OS1]

means that 0SI is a collection of elements pointing

to 0S1. However the above declaration of listsup-

port is incomplete since OS is a collection of type

"listsupport" :

type listsupport(OS : listsupport[?]] =

collection of elem(OS)

Since we have entered a reeursive question (each use

of listsuoport in the definition of listsuoport must

be provided by an actual parameter] we have to sol-

ve it by some lanzuaze convention :

type listsuooort(OS : listsuoport[perameter]) =

collection of elem(OS]

The keyword parameter indicates that a shorthand

has been used, the actual parameter will be pro-

vided later.

Since we succeeded in defining whet is the type of

collection supporting lists we now want to replace

the definitions of this type by the name of that

type, in particular in the de£inition of type elem,

to indicate that records of type elem point to col-

lections of type listsuoport. We get :

type listsuooort (OS : listsupport(parameter]]

= forward

type elem CO : listsupport(oarameter]] =

record

vat next : +C

vat val : R

end record

type listsuooort = collection of elem(OS]

vat 0S1 : listsupport(OS1]; $I : + 0SI

var 0S2 : listsupoort[OS2]; $2 : + 0S2

which is precise but somewhat overcomplicated when

compared with the PASCAL declarations :

type list = + elem;

elem = record

next : list;

va l : R

end;

var $I, $2 : list ;

{$I and $2 are disjoint linked linear lists}.

Apart from the difficulty of copeing with a new lin-

guistic notion, the EUCLIO approach has the advan-

tage of the precision. Since the comniler Knows that

$I and $2 are disjoint lists, it can produce better

code especially for register allocation.

Moreover the combination of collections and

restricted variants in records may yield efficient

memory allocation strategies. Suppose we have a re-

cord type R with two variants Ra, Rb of different

86

memory sizes say 1 and 3 words :

Type Rtyoe = (Re, Rb]

Type R (tag : Rtype] = record

case tag i n

Ra = . . . end Ra

Rb ~ , . . end Rb

end ease; end r e c o r d

We have the following alternatives for memory allo-

cation of collections of R :

0 1 : c o l l e c t i o n o f R[Ra] I I I I I I I I I v a t

v a t C2 : collection of R[Rb] I 1 t

v e t C3 : c o l l e c t i o n o f R { u n k n o w n } l l I I I

[t h e t y p e o f r e c o r d s o f c o l l e c t i o n C3 i s unknown

(it may be R[Ra] or R[Rb]].The type of a record

will not change once allocated).

vat C4 : collection of R[any] I I ---I I I---1

(The records of collection C4 can change from one

variant to another during execution, by assigning

values of different variants to the records).

The main defect of collections is that the num-

ber of collections is determined at compile time.

Thus we cannot declare an array o~ disjoint linear

lists :

T I l l

T [2]

C1

TEn]

It has not been recognized that a globally declared

collection is in fact the union of smaller collec-

tions which are valid at various program ooints

[which would be useful to the compiler). A similar

criticism is that the concept of collection cannot

be used recursively, that is to say one cannot par-

tition a collection into disjoint sub-collections.

Although of quite limited expressive cower the no-

tion of collection in EUCLIO may appear somewhat

difficult to understand. However its usefulness to

compilers seems undeniable and we may in PASCAL let

the compiler discover the collections.

4.2 Compiler Discovery of Disjoint Collections

We will represent a collection by the set of

pointer variables which point within that collec-

tion.

Examole :

X Y Z

C1 ~ C2

Collection 01 will be denoted (V;W], collection C2

will be denoted [×, Y, Z]. We will try to partition

the pointer variables of a program into disjoint

collections. However in ooposition to EUCLID, we

will not try to rind global collections but local

ones• Thus the local invariants we will try to com-

mute at each program 9oint will be restricted to

be of the form :

[V, W are pointers to the same collection]

and

[X, Y, Z are oointers to the same collection]

which we will denote :

{V, W / X , Y , Z }

We now have to define the conjunction ~ of such pre-

dicates (i.e. the union of sets of collections) for

example :

{A ,B ,C / D,E} ~ {F ,A ,G / H} = { A , B , C , F , G / D,E / H}

I £ on one hand A may p o i n t to a r e c o r d r e f e r e n c e d

by B and C, o r , on the o t h e r hand A may p o i n t t o a

r e c o r d r e f e r e n c e d by F and G, i t i s c l e a r t h a t A, B,

C, F and G may p o i n t on the same r e c o r d .

The i n s t r u c t i o n s o f the p rogram p r o v i d e u s e f u l i n -

formation• After the instructions :

87

X : = nil ;

X := Y; {where Y i s known to be nil}

if X = nil then ...

new [X]

it is Known that X will point to no record at all,

or will be the only pointer to the newly allocated

record. Thus we have isolated a collection (empty

or consisting of a single record). With an input

predicate

P1 = { X i , X 2 X X n / Yi Yn }

the above instructions lead to an output predicate:

P2 = extract(X, PI)

{X / X 1 X / Y Y }
n i" "''" n

More generally, with an input predicate P,I, a poin-

ter assignement such as :

X+.next ... +,next := Y+.next ... +.next

o p t i o n a l o p t i o n a l

may cause X and Y t o i n d i r e c t l y p o i n t t o a common

r e c o r d . Hence t h e y a r e p u t i n t h e same c o l l e c t i o n .

The output predicate will be P2 = P1 u {X,Y}.

A sensible remark is that the value delivered by

the right-hand side of the assignment may be nil,

in which case this may cause a collection to be

broken into two disjoint sub-collections. For sim-

plicity, we ignore this fact, other than in the

obvious case :

{ P 1 } X := Y + . n e x t . . . + . n e x t { P 2 } ;

optional

which will cause X to be disconnected from its

collection and be connected to a record of the

collection of Y. When X end Y are not the same

variable, the output assertion P2 will be rela-

ted to the inout assertion PI by :

P2 = e x t r a c t (X , P1) ~ {X , Y}

Now, we will give an example. We have cho-

sen the copying of a linked linear list :

The following PASCAL procedure is supposed to do

the job :

procedure copy ($1 : list; vat $2 : list];

var CI, C2, L : list;

bezin

{P0}

C1 :: $1~ $2 :: nil; L := nil:

~P1}
w h i l e Cl <> n i l do

b e g i n

{ P 2 }

new(C2)~ C2+.val := Cl+.val~ C2+.next := nil;

{ P 3 }

i f L = n i l ' t h e n

{ P 4 }

$2 := C2

{PS}

e l s e

{ P 8 }

L + . n e x t := C2 { P 7 } ;

{ P 6 }

L := C2; C1 := C l . n e x t ;

{ P 9 }

e nd

{ P l O }

end~

According to our abstract interpretation o£

the basic constructs of the lenzuage we can now

establish the following system of equations :

[I] P1 = extract[L,extract[S2,extract(C1,PO)

U { C 1 , $ 1 })]

[2] P2 = P1 u P9

(S i n c e t h e t e s t [C1 <> n i l) g i v e s us no i n f o r -

m a t i o n on c o l l e c t i o n s when t r u e]

(3) P3 = e x t r a c t [C 2 , P 2]

(The a s s i g n m e n t o f n o n - o o i n t e r v a l u e s and a

deed m o d i f i c a t i o n i n t h e s t r u c t u r e p o i n t e d t o

by C2 a r e i g n o r e d)

[4] P4 = e x t r a e t (L , P 3]

(5] P5 = e x t r a c t [S 2 , P4) ~ { $ 2 , C2}

(6] P6 = P3

(s i n c e we i g n o r e t h e £ a c t t h a t L <> n i l)

[7) P7 = P6 ~ { L , C 2 }

(8) P8 = P5 ~ P7

88

[9] P9 = extract(L,PB] u {L,C2}

[The statement Cl :: Cl.next leaves C1 in the

same collection)

[I0] PIO = extract[CI,P1 ~ P9]

Since the theoretical conditions which ensure

that the above system of equations has a solution

are verified [Cousot[1076]) we can compute the least

fixpoint using a #inite Kleene's sequence.

We start with the most disadvantageous initial ore-

dicate PO, where on the one hand the parameters

($1,$2] and on the other hand the local variables

[CI,C2,L] are supposed to be in the same collection:

* PO = {$I,S2 / CI,C2,L} Pi = ±, ¥i { [1,10]

[I) => P1 = extract[L,extract(S2,extract[O1,PO]

{ c l , s l }) l

: extract[L,extract(S2,{SI,S2/C1/C2,L}

u { C l , S l }))

= e x t r a c t [L , e x t r a c t (S 2 , { S 1 , S 2 , C l / C 2 , L }]]

= e x t r a c t [L , { S l , C l / S 2 / C . 2 , L }]

* P1 = {S1,C1/$2/02/L}

[2] => P2 = P1 u P9 = P1 u ± = P1

[3] => P3 = e x t r a c t (C 2 , P 2] = {SI,G1/S2/G2/L}

(4] => P4 = e x t r a c t (L , P 3] = {$1,C1/$2/C2/L}

(5) => P5 = extract[S2,P4] u {$2,C2}

{$I,CI/$2/C2/L} u {$2,C2}

* P5 = { $ I , C 1 / $ 2 , C 2 / L }

(6 => P8 = P3 = { $ 1 , 0 1 / $ 2 / C 2 / L }

(7 => P7 = P6 u { L . C 2 }

{$1 ,C1 /$2 /C2 /L} u { L , C 2 }

{ $ I , C 1 / $ 2 / C 2 , L}

(8 => P8 = P5 u P7

= { $ 1 , C 1 / $ 2 , C 2 / L } u { $ 1 , C 1 / $ 2 / C 2 , L }

= { $ 1 , C 1 / $ 2 , C 2 , L }

[g] => P9 = e x t r a c t (L , P S] u { L , C 2 }

* P9 : {$1,01/$2,C2,L}

We go on c y c l i n g i n t h e w h i l e - l o o p u n t i l t h e i n -

variant PO PIO have stabilized :

[2] => P2 = PI u P9

: { S 1 , C l / $ 2 / C 2 / L } ~ { $ 1 , C l / S 2 , C 2 , L }

* P2 = {$1,01/$2,C2,L}

* (3) => P3 = e x t r a c t (C 2 , P 2] = { $ 1 , C 1 / $ 2 , L / C 2 }

* [4] => P4 = e x t r a c t [L , P 3) = {$1,CI/$2/L/C2}

We come back f o r P4 w i t h t he v a l u e o f t h e p r e v i o u s

pass , so we s t o p on t h a t p a t h .

*[8] => P6 = P3 = { $ 1 , C I / $ 2 , L / 0 2 }

(7] => P7 = P6 ~ {L,C2}

* P7 = { $ 1 , C 1 / $ 2 , L , 0 2 }

(8] => P8 = P5 u P7

{ $ 1 , C I / $ 2 , C 2 / L } ~ { $ 1 , C 1 / $ 2 , L , 0 2 }

* P8 = { $ 1 , C 1 / $ 2 , L , C 2 }

Same v a l u e as above , s t o p on t h a t p a t h . I t r e m a i n s

only the path out o£ the loop :

(10]=> PIO = extract[el, P1 ~ P9)

: extract(C1, {$1,CI/$2/C2/L}

{ $ 1 , C l / $ 2 , C 2 , L }]

: e x t r a c t [e l , { $ 1 , C 1 / $ 2 , C 2 , L }]

* PIO = { 0 1 / $ 1 / $ 2 , C 2 , L }

The £inal results are marked by a star [*]. The

main result is that although $I and $2 may share

records on entry of the procedure "copy" :

PO = {$1,$2/C1,C2,L}

it is guaranteed that this is not the case on exit

of the orocedure :

PIO = { C 1 / $ 1 / $ 2 , C 2 , L } .

4.3 Remarks

a. This abstract interpretation of programs may be

refined as in EUCLIO : when records have variants

one can associate with each collection the set

of tags of all records in the collection. This

in fact will be the main application o£ our de-

velopments of oaragraph 3, We will be more #le-

xib]e than the "one oT" or "any" of EUCLID, and

authorize collections with say two variants

{A,B} amon Z three possibilities {A,8,C}. Other-

wise stated we reason on the following type hie-

rarchy :

{ A , B , E } = T

{ A , B } { A , C } { B , C }

{A} {B} {C}.

{}=±

89

whereas EUCLID uses a simplified type inclusion

scheme :

{ A , B , C } = T

/ \
(A } (B } {C }

\ l /
{ } : a

b. Besides and in opposition with EUCLID the collec-

tions are defined as local invariants, Very pree

cise and detailed information can beJgathered

whereas the EUCLID programmer would have to

globally specify the union of such information.

This localization of collections may have impor-

tant c o n s e q u e n c e s :

- An optimizing compiler will be able to limit

the number of objects which are supmosed to

have been modified by side-effects when assi-

gning to objects designated by pointers, [use-

ful in register allocation],

- Run-time tests may be inserted before a sta-

tement :

dispose[X}~

to verify that no variable in the collection

of X may access the record which X points to,

- The garbage collector may be called when all

variables in a collection are "dead" [i.e.

are not used before being assigned to),

- e t c . . .

The s i m p l e a b s t r a c t i n t e r p r e t a t i o n o f p r o g r a m s

we i l l u s t r a t e d h e r e may be f u r t h e r i n v e s t i g a t e d

t o r e c o g n i z e t h a t d a t a s t r u c t u r e s a r e used i n

s t y l i z e d ways . B o o m [1 9 7 4] , K e r r [1 9 7 5] .

c . I t i s f a i r h o w e v e r t o say t h a t EUCLID c o m p i l e r s

may use t h e same t e c h n i q u e s t o l o c a l l y r e f i n e

t h e c o l l e c t i o n s p r o v i d e d by t h e p r o g r a m m e r . The

advantage of EUCLID i~ then thatwhen the programmer

has declared his intentions (or better part of

intentions since the expressive power of col-

lections is limited), he is forced to conform

to his declarations. For example he will not

be able to use the same pointer variable to

traverse two lists which are built in diffe-

rent collections. On the contrary this may con-

fuse the automatic discovery of collections. The

advantage however must be counterbalanced by the

fact that parameterized collections (which are

necessary with recursive data structures) may

become inflexible and difficult to use.

We now come t o an e x a m p l e where a c o o p e r a t i o n

b e t w e e n t he p r o g r a m m e r and t h e c o m p i l e r i s a b s o l u -

t e l y n e c e s s a r y f o r s e c u r e and cheap use o f t y p e

u n i o n s , t h a t i s t o say a case when t h e c o m p i l e r

has d e f i n i t e d i s a d v a n t a g e s o v e r t h e p r o g r a m m e r .

5. Integer 8ubrange Type

A subrange type such as :

type index = 0..9

is used to specify that variables of type index

will possess the properties of variables of the

base integer type, under the restriction that its

value remains within the specified range. [Wirth

[19751). In Cousot[19751, we developed a techni-

que to have the compiler discover the subrange of

integer variables. Let us take an obvious example :

i i= I;

{P1}
w h i l e i _< 1000 do

{ P 2 }

i := i+1 { P 3 } ;

{ P4}

L e t us d e n o t e by [a , b] t h e p r e d i c a t e a _< i _< b .

The s y s t e m o f e q u a t i o n s c o r r e s p o n d i n g t o o u r exam-

p l e i s :

(1) P1 = [1 , 1 1

[2] P2 = [P1 u P3) n [-oo, 1 0 0 0]

[3] P3 = P2 + [1 , 1]

(4] P4 = (P1 u P 3] n [1 0 0 1 , +oo1

w h e r e + i s d e f i n e d by [a , b] + [c , d] = [a + c , b + d] ,

and u and n a r e u n i o n and i n t e r s e c t i o n o f i n t e r -

v a l s . Suppose we knew t h e s o l u t i o n t o t h a t s y s t e m ,

i i e .

P1 = [1 , 1] , P2 = [1 , 10001 , P3 = [2 , 1 0 0 1 1 ,

P4 = [1 0 0 1 , 10011

I t i s o b g i o u s t o l e t t h e c o m p i l e r v e r i f y t h a t

t h i s s o l u t i o n i s a - F i x p o i n t o-F t h e s y s t e m :

90

[1] -~-> P1 = [1 , 1]

(2] ~ > P2 = (P1 u P3] n [-oo, 10001

([1 , 1] u [2 , 1 0 0 1]) n [- o o I 0 0 0]

[[1 , 1 0 0 1] n [-oo, 1 0 0 0]]

= [1 , 1 0 0 0]

[3] ~ > P3 = P2 + [1 , 1]

: [1 , 1 0 0 0] + [1 , 1]

[1 + 1, 1000 + 1]

: [2, 1001]

(4] ~ > P4 = (P1 U P3] n [1 0 0 1 , +~1

[[1 , 1] u [2 , 1 0 0 1]] n [1 0 0 1 , +~1

[I, 1 0 0 1] n [1 0 0 1 , +~]

: [1 0 0 1 , 1 0 0 1]

If on the contrary we want the compiler to dis-

cover this fixpoint, we may try to solve the equa-

tions by algebraic manipulations [Cheatham and

TownleyE1g761] which may be quite inextricable. The

other way is to use Kleene's sequence, but the trou-

ble is that our abstract data space is an infinite

lattice, and we may have infinite sequences. Since

compilers must work even for programs which may

turn out to loop, the only way to cope with the

undecidable problem is to accept approximative ans-

wers. For example in the program :

for i := I to 100 do

begin

n := i;

w h i l e n <> 1 do

if even(n] then n := n/2

else n := 3 * n + I;

write (i]

end;

Cousot[1975] will discover an approximate range

for n which will be [1, +~].However, if the actual

range of n were known by the programmer and if the

programmer could tell this to the compiler, then

a verification would be simpler [in most cases but

not on this difficult example].

We can now state our main objection against sub-

range types in PASCAL : the fact that range asser-

tions must be given globally in the declaration pre-

vent the programmer from giving the solution of the

system of equations to the compiler.

The programmer can only give an approximation of

the solution, which is usually insufficient for the

compiler to discover local subranges. To make it

clear, instead of P1, Pi, PI, P4 the programmer is

only able to declare vat i : 1 ..1001 that is to

say that PJ u P2 o P3 u P4 E [I, 10011 which adds

an inequation to tiTe system o£ equations but does

not provide its solution. We then consider integer

suorange types as union types since the global de ~

claration must be the union of all local subranges.

Thus, if we declare :

var i : 0..2;

we really want to say that the type of i at each

program point is one of the following alternatives:

0..2

. 2, 0 .0

]t

.2

We t h e n u n d e r s t a n d a criticism by H a b e r m a n n [1 9 7 3 1

that sLbranges ere not types, since a global sub-

range type definition does not determine the set

of operators that are applicable to variablesof

that type.

For example, let f be a {unction with one formal

parameter o# type 2..I0 and i a variable globally

declared of type d.,5. The variable i may be used

at program point p in the expression f[i] provided

that i may be united to the subrange 2..10. Oyna-

mically the local type of i at program point p is

i..i, wnich is simply derived from the value T of

the variable i. in the expression f[i], i must be

coerced from the type i..i to the type 2..10. This

is safe when 2 ~ i and i s 10. Staticly this signi-

fies that the subrange of i at program point p must

be a subrange of 2..5. This subrange of 2..5 cannot

be locally specified in PASCAL.

This understanding of subranges leads us to the con-

clusion that integer subranges should be specified

locally. Moreover, and in opposition with our pre-

vious examples we cannot exbeet the compiler to be

9]

able to discover these local subrange properties.

It is then essential that orogrammers provide them,

by means of assertions or as previously by means of

conformity clauses so that we would write in the

spirit of ALGOL 88 (MeertensL1975]) :

i := 1;

while case i in

[I..I000)o:(i := O + I; true),

out :false

c o P e

do skip od;

These constructs give the solution of the system of

equations which the compiler has to solve for

strong type checking. The redundancies [equations

identically verified) can be eliminated. Moreov!~r

the PASCAL restriction that the bounds of ranges

must be manifest eonston~is o definite advantoge

since this verification will involve no symbolic

formula manipulations. Run-time tests will remain

necessary in difficult cases, but their number will

be decreased.

6. Conclusion

We illustrated the Tact that unsecure data

types [which do not guarantee all operations on

values of that type to be meaningful] can be con-

sidered as the union of secure (sub) types. Exam-

oSes of these were pointers, varionts in records,

records in collections, integer subranges.

A type-saTe programming system must staticly de-

termine which sate subtyDe of the union is used when

checking correct use of operations on union typed

objects. The language designer may achieve this

goal by one of the followin Z alternatives:

- Incorporate rules and constructs in the

language so that any operation of the langua-

ge can be staticly shown to be operatin Z on

correctly typed arguments.

- Design a compiler in order to verify that

the security rules have not been transgres-

sed, although not enforced by the language.

I t was a r g u e d t h a t i n b o t h c a s e s , t h e same

c o m p i l i n g t e c h n i q u e s mus t be u s e d , and c o m p a r a b l e

results will be obtained by type checking or type

discovery as long as finite type systems are consi-

dered. The main difference between these approaches

is the one between security (at the expense of fle-

xibility) or simplicity [at the expense of preci-

sion, and of the possibility that compiler warnings

be ignored).

However when the type union system is infinite [in-

teger subrenge type), it has been shown that static

type checking necessitates language constructs which

eilow subtypes to be locally derived.

The argument was based upon the observation

that type verification consists in establishing

a solution to e system of type equations. Global

tyae declarations give an approximation of the so-

lutions to that system. The discovery of o particu-

lar solution from that approximation may involve

infinite computations. On the contrary, if the lan-

guage is designed to directly provide a solution

to the compiler, type checking consists in a

straightforward verification.

This reasoning might turn out to be useful

to language designers who until now could not lo-

gically prove the validity of their design of lan-

guage constructs. Moreover this reasoning may ser-

ve as a basis to define type safety in languages

and prove particular languages to be type reliable.

7. Acknowledgements

P. Cousot benefitted from discussions on this topic

with colleagues in IFIP Working Group 2.q [Machine-

oriented hi,her-level languages). The organization

with J. Horning and K. Correllof a debate on EUCLIO

was especially helpful.

We were v e r y l u c k y t o hove F. B l a n c do t h e t y p i n g

f o r us.

92

8. Bibliography

ALGOL 6011963]. Naur P. [Ed .]

"Rev ised Reoor t on the A l g o r i t h m i c Language AL-

GOL 60", CACM, 6, [Jan. 1983] , Do. 1-17.

ALGOL 6811875]. Van Wijngaarden A. et al. (E d s .] .

"Revised Repor t on the A l g o r i t h m i c Language AL-

GOL 68", Aeta Informatica 5 [1975], pp. 1-236.

90om[1974].

"Optimization Analysis of Programs in Languages

with Pointer Variables".

Ph.D. Thesis, Dept. Appl. Anal. and Camp. Scien-

ce. University oT Waterloo, Ontario [June].

Cheatham and Townley[1976],

"Symbolic Evaluation of Programs : a look at lo-

DO analysis". Proceedings of the 1876 ACM Sym-

posium on Symbolic and Algebraic Comeutation.

August 1976.

Cousot[1975J.

"Static Determination of Dynamic Properties of

Programs". U,S.FI.G., RR 25, Nov. 1975, to apoear

in the proceedings of "Colloque International

sot la orogrammation", Parls 13-15 April 1978,

Ounod.

Couset[1976]

"Abstract Interpretation : a unified lattice

model for static analysis of programs by cons-

truction or approximation of fixooints".

Fourth ACM Symposium on Principles of Program-

ming Languages. Los Angeles, January 1977.

Oembinski and Schwartz[1878].

"(he pointer type in programming languages :

a new approach", to appear in the proceedings

of "Colloque International sur la Programma-

tion", Paris, 13-15 April 1976, Ounod.

Oijkstra[1975].

"Guarded commands, non determinacy and formal

derivation of programs", CACM, 18, [1875),

pp. 453-457.

EUCLID[1976]. Lamoson B.W., Homing O.J., London R.L.,

Mitchell J.G., Popek G.J.

"Report on the Programming Language EUCLID",

MOL-Bulletin [P. Cousot ed.], Nb 5, Sept. 1976,

DO. 91-172.

HabermannL 1973].

"Critical Comments on the Programming Language

Pascal", Acta Informa~ica 3, 47-57 [1973), Sprin-

ger-Verlag .

Hoare and Wirth[1973].

"An Axiomatic Definition of the Programming Lan-

guage PASCAL", Acta Informatiea, 2, 1973,

op. 335-355.

Karr[1975].

"Gathering Information About Programs", Mass.

Come. Associates Inc. CA-7507-1411, July 1974.

K i l d a l l [1 9 7 3] .

"A Unified Aooroach to Global Program Ootimiza-

tion", Conf. Record of ACM Symposium on Princi-

ples of Programming Languages, Boston, Mass.,

pp. 194-2U8, October 1973.

Kleene[1952].

"introduction to Metamathematics", North-Holland

Publishing Co, Amsterdam.

LIS[1974]. Ichbiah J.O., Rissen J.P., Heliard J.C.,

Cousot P.

"The System Implemen<ation Language LIS"Reference

Manual , CII Technical Report 4549 EI/EN, Oecem-

ber 1974, Revised January 1976.

Meertens[1975].

"~Iode and Meaning", in "New Oirections in Algo-

rithmic Languages 1875" [S. Sehuman, ed.]

pc. 125-138, IRIA, Paris.

Pascal[1974]. Jensen K., Wirth N.

"PASCAL, User Manual and Report", Lecture Notes

in Comouter Science, Nb.18, Springer-Verla Z, 1974.

SIMULA[1974]. 8irtwistle, Dahl, Myhrhaug, Nygaard.

"SINULA Begin",Student]itteratur, Lund, 1874.

Sintzoff[1972]

"Calculating Properties of Programs by Valuations

on Soecific Models", SIGPLAN Notices, Vol. ~ Nb.1,

Jan. 1972, DO. 203-207.

93

Sintzoff[1975].

"Verifications d'assertions oour les fomc~ions

utilisables comme valeurs et affectant des va-

riables ext6rieures", in "Proving and Improving

programs", ed. G. Huet and G. Kahn, IRiA.

Tarski[1955].

"A lattice-theoretical F±xooint Theorem and

its Apo]ications", Pacific Journal'of Mathe-

matics, 5 11955), pp. 235-30B.

We~breit[1975].

"Property Extraction in Well-FoundeO Property

Sets", i.E.E.E. Trans. on Software Engineering,

Vol. SE-I, nb. 3, pp. 270-285.

WirthE1975].

"An Assessment of the Programming Language PAS-

CAL", SIGPLAN Notices, Vol. 10, nb. 6, June 1975,

pp. 23-30.

94

