V710OHOLOW @

L "'A9Y
a/AN1ZandIN
jenuel s,49sn J3duI] zanoN

==3U] ‘40}ONPUOIIWDS I|LeIS33i4

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MCUEZLNK/D
Rev. 1

MCUez Linker

User’'s Manual

@ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User’s Manual

Important Notice to Users

While every effort has been made to ensure the accuracy of all information
in this document, Motorola assumes no liability to any party for any loss or
damage caused by errors or omissions or by statements of any kind in this
document, its updates, supplements, or special editions, whether such errors
are omissions or statements resulting from negligence, accident, or any other
cause. Motorola further assumes no liability arising out of the application or
use of any information, product, or system described herein; nor any liability
for incidental or consequential damages arising from the use of this
document. Motorola disclaims all warranties regarding the information
contained herein, whether expressed, implied, or statuteryding implied
warranties of merchantability or fitness for a particular purposotorola
makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do
the descriptions contained herein imply the granting or license to make, use
or sell equipment constructed in accordance with this description.

The computer program contains material copyrighted by Motorola, Inc., first
published in 1997, and may be used only under a license such as the License
For Computer Programs (Article 14) contained in Motorola’s Terms and
Conditions of Sale, Rev. 1/79.

Trademarks

This document includes these trademarks:
MCUez is a trademark of Motorola, Inc.
Microsoft Windows is a registered trademark of Microsoft Corporation.

WinEdit is a trademark of Wilson WindowWare.

© Motorola, Inc., and HIWARE AG., 1999; All Rights Reserved

User’'s Manual

MCUez HC12 Linker

4

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

List of Sections

Section 1. General Information 19
Section 2. Graphical User Interface (GUI)............ 23
Section3.Files 37
Section 4. Operating Procedures 41
Section 5. Environment Variables 89
Section 6. LinkerMessages. 103
INdeX. 179
MCUez Linker User's Manual
MOTOROLA List of Sections 5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

List of Sections

User’'s Manual MCUez Linker

6 List of Sections MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

Table of Contents

Section 1. General Information

1.1 CoNteNtS
1.2 INtroduction.
1.3 Functional Description i
1.4 Features.
1.5 Typographic Stylesin ThisManual

Section 2. Graphical User Interface (GUI)

2.1 CONtENtS . .
2.2 Introduction.
2.3 Linker Graphical UseriInterface...........................
231 Toolbar.
2.3.2 Content Area
2.3.3 Status Bar.
2.3.4 Menu Bar
234.1 FileMenu
2.3.4.2 LinkerMenu
2.3.4.3 VIieWMeNU
2.3.4.4 Help Menu. e
2.3.5 Specifying the InputFile
2.3.5.1 Usingthe Command Line...........................
2.3.5.2 Using the Menu Entry File | Link
2.3.5.3 UsingDragand Drop i,
2.3.6 Error Feedback.
Section 3. Files
3.1 CoNteNtS . ..
3.2 Introduction.
3.3 Parameter Files: Input.
3.4 Absolute Files: OQutput
3.5 MotorolaSFiles:Output
3.6 Map Files
MCUez Linker User’s Manual
MOTOROLA Table of Contents 7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Section 4. Operating Procedures

4.1 CONtENtS . . 41
4.2 INtroducCtion. 42
4.3 ParameterFile. 42
43.1 Syntax of the ParameterFile 42
4.3.2 Mandatory Parameter File Linker Commands. 44
4.4 Linker Commands. 45
44.1 ENTRIES: List of Objects to Link with Application. 45
4.4.2 INIT: Specify Application Entry Point 47
4.4.3 LINK: Specify Name of Output File a7
4.4.4 MAIN: Specify Root Function. 49
445 MAPFILE: Configure Map File. 49
4.4.6 NAMES: ListFiles. e e 52
4.4.7 SEGMENTS: Define MemoryMap 53
4.4.7.1 Segment Qualifier 55
4.4.7.2 Segment Alignment. 56
4.4.7.3 SegmentFill Pattern 59
4.4.8 PLACEMENT: Place Sections into Segments. 61
4.48.1 Specifyinga Listof Sections. 63
4.4.8.2 Specifying aListof Segments. 64
4.4.8.3 Predefined Sections. 65
4484 Allocating User-Defined Sections. 67
4.4.9 STACKSIZE: Define Stack Size 68
4410 STACKTOP: Define Stack Pointer Initial Value 69
4411 VECTOR: Initialize Vector Table 70
44.11.1 Initializing Vector Table in Linker Parameter File. 72
4.4.11.2 Initializing Vector Table in Assembly Source

File Using a Relocatable Section..................... 74
44.11.3 Initializing Vector Table in Assembly Source

File Using an Absolute Section 76
45 SmartLinking. 79
45.1 Mandatory Linking froman Object 79
45.2 Mandatory Linking from All Objects Definedina File 80
45.3 Switching Off Smart Linking for the Application............. 80
45.4 Linking an Assembly Application......................... 80
455 Warning Messageso o vttt 81
4.6 Program Startup 84
4.6.1 Startup DescCriptor 84
4.6.2 User-Defined Startup Structure. 87
4.6.3 User-Defined Startup Routines 88

User’s Manual MCUez Linker
8 Table of Contents MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MCUez Linker

Freescale Semiconductor, Inc.

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.34
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.4
5.4.1
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

Table of Contents

Section 5. Environment Variables

CONtENtS . . 89
INtroducCtion. 90
Linker Options 90
B 91
SHo 91
A 92
M 92
N 92
SO 93
s T 93
Y 94
A7 94
AT 72 94
SNVMSOBXS 95
SWmsgRb[vim] . .. 95
SWmsgFRi[vim] .. 95
SWMsSgNe . 96
SWMSGNI . 96
SWMSONW L 96
Setting Environment Variables in MCUez Shell 97
Path Variables 97
Variable Descriptions 97
GENPATH. . . 98
OBJIPATH . .. 99
LIBPATH. .. 99
ABSPATH . .. 100
TEXTPATH. . . e 100
SRECORD 101
ERRORFILE e 102

Section 6. Linker Messages

CONtENES . . . 103

INntroduction. 108

Linker Messages Reference 108
L1: Unknown Message Occurred 109
L2: Message Overflow, Skipping <type> Messages.......... 109
L64: Line Continuation Occurred in <FileName>. 109
L1000: <Command Name>notFound 110
L1001: <Command Name> Multiply Defined. 111

User’'s Manual

MOTOROLA

Table of Contents 9

For More Information On This Product,

Go to: www.freescale.com

User’'s Manual

Freescale Semiconductor, Inc.

Table of Contents

6.3.6

6.3.7

6.3.8

6.3.9

6.3.10
6.3.11
6.3.12
6.3.13
6.3.14
6.3.15

6.3.16
6.3.17
6.3.18
6.3.19
6.3.20
6.3.21
6.3.22
6.3.23
6.3.24

6.3.25

6.3.26

6.3.27

6.3.28

6.3.29

6.3.30

6.3.31

6.3.32

6.3.33

6.3.34

L1002: Command <Command Name> Overwritten

by Option <OptionName>. 112
L1003: Only a Single SEGMENTS or SECTIONS

Blockis Allowed. 113
L1004: <Separator> Expected 113
L1005: Fill Pattern Will Be Truncated (>0xFF) 114
L1006: <Token>notAllowed 114
L1007: <Character> not Allowed in Filename (Restriction). ... 115
L1008: Only Single Object Allowed at Absolute Address 116
L1009: Segment Name <Segment Name> Unknown 117
L1010: Section Name <section name> Unknown............ 118

L1011: Incompatible Segment Qualifier: <Qualifierl> in
Previous Segment and <Qualifier2> in <Segment Name>. . . 119

L1012: Segment is not Aligned on a <bytes> Boundary 120
L1015: No Binary Input File Specified 120
L1016: File <Filename> Found Twice in NAMES Block. 121
L1037: ***** | inking of <parameter file> Failed ****. 121
L1038: Success. Executable File Written to <absfile> 121
L1039: Limited Version. Too Many Objects or Code Linked. . . 122
L1050: Running <versiontype>.c.couiiiun... 122
L1052: User Requested StOpo oo oo 122
L1100: Segments <Segmentl Name> and

<Segment2 Name>Overlap, 123
L1102: Out of Allocation Space in Segment <Segment Name>

at Address <First Address Free>. 124
L1103: <Section Name> not Specified

in PLACEMENT Block 125
L1104: Absolute Object <Object Name> Overlaps

with Segment <SegmentName>. 126

L1105: Absolute Object <object name> Overlaps
with Another Absolute Allocated Object or with a Vector. . . 127

L1106: <Object Name>notFound 128
L1107: <Object Name>notFound 129
L1109: <Segment Name> Appears Twice

in SEGMENTS Block. 130
L1110: <Segment Name> Appears Twice

in PLACEMENTBlock 131
L1111: <Section Name> Appears Twice

in PLACEMENTBlock 132
L1112: <Section name> Section Has Segment Type

<Segment Qualifier> (Illegal). 132

MCUez Linker

10

Table of Contents MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

6.3.35

6.3.36

6.3.37

6.3.38

6.3.39

6.3.40

6.3.41
6.3.42
6.3.43
6.3.44
6.3.45
6.3.46
6.3.47
6.3.48
6.3.49
6.3.50

6.3.51

6.3.52
6.3.53
6.3.54
6.3.55
6.3.56
6.3.57

MCUez Linker

Table of Contents

L1113: <Section name> Section Has Segment Type

<Segment Qualifier> (lllegal). 134
L1114: <Section Name> Section Has Segment Type

<Segment Qualifier> (Initialization Problem) 135
L1115: Function <Function Name>notFound 137

L1118: Vector Allocated at Absolute Address <Address>

Overlaps with Another Vector or an Absolute

Allocated Object. 138
L1119: Vector Allocated at Absolute Address <Address>

Overlaps with Sections Placed in Segment

<SegmentName> 139
L1120: Vector Allocated at Absolute Address <Address>

Placed in Segment <Segment Name>, Which Has No

READ_ONLY Qualifier. 140
L1121: Out of Allocation Space at Address <Address>
for.copy Section. i 140

L1122: Section .copy Must Be Last Section in Section List. ... 141
L1123: Invalid Range Defined for Segment
<Segment Name> — End Address Must

Be Bigger Than Start Address 142
L1124: '+ or '-' Should Directly Follow Filename. 143
L1125: In Small Memory Model, Code and Data

Must Be LocatedonBank O 144
L1127: Object Allocated Outside of Segment Bounds (HC12). . 145
L1200: Both STACKTOP and STACKSIZE Defined 146
L1201: No Stack Defined 147
L1202: Stack Cannot Be Allocated on More Than

One Segment. 148
L1203: STACKSIZE Command Defines a Size

of <Size> But .stack Specifies a Stacksize of <Size>. 149

L1204: STACKTOP Command Defines Initial Value
of <Stack Top> But .stack Specifies Initial Value

of <Initial Value> 151
L1205: STACKTOP Command Incompatible

with .stack Being Part of List of Sections. 152
L1206: Stack Overlaps with a Segment Which Appears

in PLACEMENT Block 153
L1207: STACKSIZE CommandisMissing 154
L1301: Cannot Open File <Filename> 155
L1302: File <Filename>notFound. 155
L1303: <Filename>isnota Valid ELF File 156

User’'s Manual

MOTOROLA

Table of Contents 11

For More Information On This Product,

Go to: www.freescale.com

User’'s Manual

Freescale Semiconductor, Inc.

Table of Contents

6.3.58
6.3.59

6.3.60
6.3.61

6.3.62

6.3.63
6.3.64

6.3.65

6.3.66

6.3.67

6.3.68

6.3.69
6.3.70
6.3.71
6.3.72
6.3.73
6.3.74
6.3.75
6.3.76
6.3.77
6.3.78
6.3.79
6.3.80
6.3.81
6.3.82
6.3.83
6.3.84
6.3.85
6.3.86

L1304: <Filename>is nota Valid Hex File 156
L1305: <Filename> is not an ELF Format Object File

(ELF Object File Expected) 156
L1309: CannotOpen<File> 157
L1400: Incompatible Processor: <Processor Name>

in Previous Files and <Processor Name> in Current File. . . . 157

L1401: Incompatible Memory Model:
<Memory Model Name> in Previous Files

and <Memory Model Name> in CurrentFile. 157
L1403: Unknown Processor <Processor Constant>. 158
L1404: Unknown Memory Model

<Memory Model Constant> 158

L1501: <Symbol Name> Cannot be Moved in Section

<Section Name> (Invalid Qualifier <Segment Qualifier>) .. 159
L1502: <Object Name> Cannot be Moved from Section

<Source Section Name> to Section

<Destination Section Name> 160
L1503: <Object Name> (from file <Filename>)

Cannot be Moved from Section <Source Section Name>

to Section <Destination Section Name>. 161
L1504: <Object Name> (from section <Section Name>)

Cannot be Moved from Section <Source Section Name>

to Section <Destination Section Name>. 162
L1600: Main Function Detected in ROM Library............ 163
L1601: Startup Function Detected in ROM Library 163
L1620: Bad Digit in Binary Number. 163
L1621: Bad Digitin Octal Number 163
L1622: Bad Digit in Decimal Number. 163
L1623: NumbertooBig. i 164
L1624: Ident too Long. Cut after 31 Characters 164
L1625: CommentnotClosed. 164
L1626: Unexpected Endof File. 164
L1627: PRESTART Command not Supported Yet. 165
L1628: HEXFILE Command not Supported Yet 165
L1629: START_DATA Command not Supported Yet........ 165
L1700: File <Filename> Should Contain DWARF Information. 165
L1701: Startup Data Structure isEmpty 166
L1800: Read Errorin<File> 166
L1803: Out of Memory in <Function Name> 166
L1804: No ELF Section Header Table Found in <Filename>. . . 166
L1806: ELF File <Filename> Appears to be Corrupted 167

MCUez Linker

12

Table of Contents MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

6.3.87

6.3.88

6.3.89

6.3.90

6.3.91

6.3.92

6.3.93

6.3.94

6.3.95
6.3.96

6.3.97
6.3.98
6.3.99
6.3.100
6.3.101
6.3.102

6.3.103
6.3.104

6.3.105
6.3.106
6.3.107
6.3.108
6.3.109

6.3.110

MCUez Linker

Table of Contents

L1808: String Overflow in <Function Name>,

ContactVendor. e 167
L1809: Section <Section Name> Located in a Segment
with Invalid Qualifier 167

L1811: Symbol <Symbol Number> - < Symbol Name>

Duplicated in <First Filename> and <Second Filename> . .. 167
L1818: Symbol <Symbol Number> - < Symbol Name>

Duplicated in <First Filename> and <Second Filename> ... 168
L1820: Weak Symbol <Symbol Name> Duplicated

in <First Filename> and <Second Filename>. 168
L1821: Symbol <id1> Conflicts with <id2> in File <File>

(Same Code)o 168
L1822: Symbol <Symbol Name> in File <Filename>

isUndefined 168
L1823: External Object <Symbol Name> in <Filename>

CreatedbyDefault 169
L1824: Invalid Mark Type for<ident> 169

L1826: Can't Read File. <Filename> is not an ELF
Library Containing ELF Objects (ELF Objects Expected). . . 169

L1902: <Cmd> Command not Supported 169
L1903: Unexpected Symbol in Link Parameter File. 170
L1905: Invalid Section Attribute for Program Header 170
L1906: Fixup Out of Buffer (<Obj> Referenced

at Offset <AAress>). i e 170
L1907: Fixup Overflow in <Object>, Type <objType>

at Offset <Address> i 170
L1908: Fixup Error in <Object>, Type <objType>

at Offset <Address> i 171
L1910: Invalid Section Attribute for Program Header 171
L1911: Program Header End is not Aligned on the End

ofaSection........ 171
L1912: Object <obj> Overlaps with Another

(last addr: <addr>, Object Address: <objadr> 171
L1913: Object Filler Overlaps with Something Else. 171
L1914: Invalid Object: <Object>. 172
L1915: Gap in <ldent> at <address>

before <Object>istooBig 172
L1916: Section Name <Section> is too Long.

Name is Cut to 90 Characters Length. 172
L1919: Duplicate Definition of <Object>

in Library File(s) <Filel> and/or <File2> Discarded. 172

User’'s Manual

MOTOROLA

Table of Contents 13

For More Information On This Product,

Go to: www.freescale.com

User’'s Manual

Freescale Semiconductor, Inc.

Table of Contents

6.3.111
6.3.112

6.3.113

6.3.114
6.3.115
6.3.116

6.3.117

6.3.118
6.3.119
6.3.120
6.3.121
6.3.122
6.3.123

6.3.124
6.3.125

6.3.126
6.3.127
6.3.128

6.3.129
6.3.130

L1921: Marking: Too Many Nested Procedure Calls 173
L1922: File <filename> Has DWARF Data of Different

Version, DWARF Data may not be Generated. 173
L1927: Fixups for DWARF Section <sectionname>

not Correctly Generated 173
L1928: Limitation: Code Size<num>..................... 173
L1929: Limitation: Too many Mections (<num>). 174
L1930: Unknown Fixup Type in <ident>, Type <type>,

at Offset<offset> 174
L1931: Program Header Begin is not Aligned on the

Beginningofa Section 174
L1932: Program Header Overflow in <name> at <index> 174
L1933: ELF: <details>Warning 174
L1934: ELF: <details> Error 175
L1936: ELF Output: <details> Error...................... 176
L1938: Type Clash in Segment (Corrupt Object: <name>). 177
L4000: Could not Open Object File (<objFile>)

INNAMES List. e 177
L4001: Link Parameter File <PRMFile> not Found 177
L4002: NAMES Section was not Found in Linker

Parameter File <PRM File> 177
L4004: Linking <PRM File> as ELF/DWARF Format

Link ParameterFile. 178
L4005: Illegal File Format of Object File (<objFile>)

INNAMES List.o e 178
L4006: Failed to Create Temporary File 178
L4007: Include File Nesting too Deep in Link Parameter File . . 178
L4008: Include File <includefile>notFound 178

Index
INdeX. . . 179

MCUez Linker

14

Table of Contents MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

MCUez Linker

List of Figures

Figure Title Page

2-1 MCUez Shell.
2-2 MCUez Linker Tip of the Day Window.
2-3 MCUez Linker Main Window
2-4 MCUez Linker Toolbar.
2-5 MCUez Linker StatusBar.
2-6 Configuration Dialog BoX.
2-7 Save Configuration DialogBox
2-8 Option Settings DialogBox
2-9 Message Settings DialogBox. i

3-1 Related Linker Filesand Location

5-1 Linker Command Line

User’'s Manual

MOTOROLA

List of Figures 15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

List of Figures

User’'s Manual MCUez Linker

16 List of Figures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

MCUez Linker

List of Tables

Table Title Page

2-1 MenU LISt . ..
2-2 OPtON GrOUPS. . . o ot
2-3 Message Group Definitions i
4-1 ENTRIES Block Supported
4-2 MapFile Sections
4-3 MapFile Options
4-4 Segment Qualifier Descriptions
4-5 Segment Alignment Rule Format
4-6 Segment Alignmentitems List.
4-7 VECTOR Command Syntax.t
4-8 Setting Startup Descriptor Flags. o

User’'s Manual

MOTOROLA

List of Tables 17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

List of Tables

User’'s Manual MCUez Linker

18 List of Tables MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

1.1 Contents

1.2 Introduction

Section 1. General Information

1.2 INtroducCtion. 19
1.3 Functional Description 19
1.4 Features. 20
1.5 Typographic Stylesin ThisManual 20

This manual describes Motorola’s MCUez linker. The linker merges the various
object files of an application into one file, an absolute fabg. The file is

termed an absolute file because it contains absolute code (not relocatable code)
that can be loaded into the target and burnt onto an EPROM (erasable
programmable read-only memory) using the MCUez debugger.

1.3 Functional Description

MCUez Linker

Linking is the process of assigning memory to all global objects (functions,
global data, strings, and initialization data) needed for a given application and
combining these objects into a format suitable for downloading into a target
system or an emulator.

The MCUez linker is a smart linker, only linking objects actually used by the
application. Various optimization capabilities ensure low memory requirements
for the linked program. Unused functions and variables will not occupy memory
in the target system. Also, initialization of global variables is stored in compact
form and memory is reserved only once for identical strings.

User’'s Manual

MOTOROLA

General Information 19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

General Information

1.4 Features

The most important features supported by the MCUez linker are:

Complete control over placement of objects in memory — It is possible
to allocate different groups of functions or variables to different memory
areas (segmentation).

Initialization of vectors

When linking high-level language modules (C, C++, etc.), the linker supports
these features:

User-defined startup — The application startup script is in a separate file
written in “inline assembly” and can be easily modified. The startup file
IS hamedstartup.cor startup.o This is a generic filename that needs to
be replaced by the real target startup file given inlth8ICOMPILER
directory. Usually, the filename sfart*.c or start*.o, where* is the

name or part of the MCU name and might also contain an abbreviation
of the memory model.

Mixed language linking — Modula-2, assembly, and C object files can
be mixed in the same application.

1.5 Typographic Styles in This Manual

These typographic conventions are used in this manual:

User’'s Manual

Bold facetype is used for literal strings that must be used exactly as
shown in the example and for the names of menus, windows, dialog
boxes, icons, and buttons.

Courier type face is used for all C-code program listings, command
lines, and directories..

Italics are used where the string is a place holder that may be substituted
for a string of the user’s own design.

Variable user inputs are Gourier italics.

Filenames are in italics with all lower case letters, for example,
proj.ext.

MCUez Linker

20

General Information MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

General Information
Typographic Styles in This Manual

These styles are used in this manual to define notational conventions:

* Numeric constants —Numeric constants are displayed in the C
language format. Constants that are in the Ox format are hexadecimal.
Constants that have no prefix are assumed to be decimal. The notation k,
unless to denote a frequency setting in kilohertz, defines a number
multiplied by 1024.

* Function prototypes — Structures and function call descriptions are
given in terms of the C language. This does not limit the implementation
of calling programs to C, but it is the calling routine’s responsibility to
provide the correct link to these routines.

MCUez Linker User’'s Manual

MOTOROLA General Information 21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

General Information

User’'s Manual MCUez Linker

22 General Information MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

2.1 Contents

2.2 Introduction

MCUez Linker

Section 2. Graphical User Interface (GUI)

2.2 Introduction. 23
2.3 Linker Graphical User Interface. 24
2.3.1 Toolbar. 25
2.3.2 Content Area 26
2.3.3 Status Bar. 27
2.3.4 MenuU Bar 27
234.1 File Menu 27
2.3.4.2 Linker Menu 31

2.3.4.3 View Menu 34

2344 Help Menu. 34
2.3.5 Specifying the lnputFile 34

2.3.5.1 Usingthe Command Line............................. 34
2.3.5.2 Using the Menu Entry File | Link 35

2.3.5.3 UsingDragand Dropc .. 35
2.3.6 Error Feedback. 35

The MCUez linker is a Microsoft Windo@scompatible application that uses

a standard graphical user interface (GUI). This section describes:

» The MCUez linker graphical user interface

 How to start the linker

User’'s Manual

MOTOROLA

Graphical User Interface (GUI)

For More Information On This Product,
Go to: www.freescale.com

23

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)

2.3 Linker Graphical User Interface

Click theezLink icon on theViCUez Shelltoolbar to run the linker
(seeFigure 2-1).

il % il |l

ASM| 0EBUG| LINK

mcu

Figure 2-1. MCUez Shell

When the linker is started, a stand&iig of the Day window (sed~igure 2-2)
containing features about the linker is displayed.

Tip of the Day |

@ Did you know...

'ou can alza link a file by gsimply dragging it from the file
manager of explarer bo the linker window,

¥ Show Tipg on Startlp

Figure 2-2. MCUez Linker Tip of the Day Window

Click Next Tip to view more information about the linker. Cli€doseto close
theTip of the Day dialog. To disable the tips window when the linker is started,
uncheckShow Tips on StartUp SelectHelp | Tip of the Day ...then check
Show Tips on StartUpto re-enable the tips window.

User’'s Manual MCUez Linker

24 Graphical User Interface (GUI) MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)
Linker Graphical User Interface

Figure 2-3is an example of the main linker window. The linker window
provides a menu bar, toolbar, content area, and status bar.

Linker D:\mcuez\DEMOYhc08\project.im *

File Linker “iew Help <4—— Menu Bar

D& 2% =l & #[=| =l rooiar

¢ Content
Area
Status
Ready 18:55:02 <— Bar

Figure 2-3. MCUez Linker Main Window

2.3.1 Toolbar
Figure 2-4illustrates the linker toolbar. Note that:
* TheNew, Load, andSavebuttons are linked to the corresponding entries
of theFile menu.
» The? andContext Help buttons correspond with entries in tHelp
menu.
» The command line is for entering linker commands or selecting
previously entered commands. Click thiek button to execute a
command.
* TheOptions button opens th®ptions dialog box.
* TheMessagebutton opens thBlessage Settingslialog box.
» TheClear button clears all information in the content area.
MCUez Linker User’s Manual
MOTOROLA Graphical User Interface (GUI) 25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)

Linker D:\‘motorolaprojectimcuezA\DEMOYhcO08\project.im =

File Linker “iew Help

D|=[E| 2]
1

'%L‘L@lﬁ

New Configuration

2.3.2 Content Area

User’'s Manual

Context Help
Displays Help File

Loads a Configuration

T Clear
Command Line Lists Commands

Executed Message
Setting

Options

Saves Current Configuration Dialog Box

Executes
Link Process

Figure 2-4. MCUez Linker Toolbar

The content area displays information about the link session. This information
consists of:

* The name of thgorm (parameter) file being linked
* The name (including full path) of the files building the application

» Alist of error, warning, and information messages

Additional information is available for all lines related to errors. Double click
on a line to open the related file in the project editor or select the line and click
the right mouse button to open a menu. If the menu conta@pan...entry

for the selected line, it will open the related file and highlight the line that has
an error. Se@.3.5 Specifying the Input File

MCUez Linker

26

Graphical User Interface (GUI) MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

2.3.3 Status Bar

2.3.4 Menu Bar

2.3.4.1 File Menu

MCUez Linker

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)
Linker Graphical User Interface

Figure 2-5shows the linker status bar.

Change Linker optionz 20:3812 2
T Status Bar T
Message Field Current Time

(Provides status info and brief description
of menu options and toolbar buttons)

Figure 2-5. MCUez Linker Status Bar

The menus listed imable 2-1are available on the menu bar. RefeFigure
2-3for an illustration of the menu bar.

Table 2-1. Menu List

Menu Entry Description
File Linker configuration file management
Linker Linker option settings
View Linker window settings
Help Standard windows help menu

TheFile menu provides options to manage project configuration files. Typical
linker settings in th@roject.inifile consist of:

» Settings specified in th®ptions Settingsdialog box

+ Editor associated with the linker

Linker configuration information is stored in theoject.inifile under the
[LINKER] and [EDITOR] sections.

User’'s Manual

MOTOROLA

Graphical User Interface (GUI) 27

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)

User’'s Manual

Project configuration files are ASCII files withiai extension. The user can
define as many of these files as needed for a project. Switch between different
configuration files by selectinile | Load Configuration andFile | Save
Configuration or by clicking the corresponding toolbar buttons.

Selectile | Linker to open a standai@pen Filedialog box that displays a list
of all .prmfiles in the project directory. Select the input file to be linked and
click OK.

SelectFile | New/Default Configurationto reset the linker settings to the
values contained in the currgbject.inifile.

SelectFile | Load Configuration to open théOpen Filedialog box and display
a list of all.ini files in the project directory. Select a configuration file to be
loaded.

SelectFile | Save Configurationto store the current settings in the project
configuration file displayed on the window title bar.

SelectFile | Save Configuration as ..to open a standashve Asdialog box
and display a list of alini files. Specify the name and location of the
configuration file to store the current settings. ClaK .

Selectrile | Configuration ... to specify an editor to be used for error feedback
and additional information to be saved in the configuration file. Gepkein
theSave Configurationtab to instantly save settings in the [EDITOR] section
of theproject.inifile. SeeFigure 2-6.

MCUez Linker

28

Graphical User Interface (GUI) MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)
Linker Graphical User Interface

Configuration E |

Editar Settings I S ave Configuration I

" Global Editar [Shared by all Tools and all Projects]

&' L ocal Editar [Shared by all Toolsk

™ Editor started with Command Line
™ Editor started with DDE

E ditar Mame IMntpad

Editor Executable II:: SCUEZSProghh otpad. EXE _l

Editor &rgurnents sz |

uze Zf far the hlename and %1 far the line number

k. I Cancel Help

Figure 2-6. Configuration Dialog Box

Some editors may contain modifiers. The %f modifier refers to the filename
(including path) where an error has been detected. The %Il modifier refers to the
line number in the file that contains an error.

Check theMiCUez Installation and Configuration User's Manuiotorola
document order number MCUEZINS/D, to define the command line used to
start an editor when an error occurs.

Error messages are listed in the linker window. To open the editor, double click
on a line that refers to the file that contains an error.

CAUTION: The%l modifier can be used only with an editor that can be started with a line
number as a parameter. Editors such as WirEdiersion 3.1 or lower and
Notepad do not allow this modifier.

MCUez Linker User’'s Manual

MOTOROLA Graphical User Interface (GUI) 29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)

User’'s Manual

Configuration

Editar Setings Save Configuration l

Items to Save
.................. Save
I Options
[v Editar Configuration Save As

[V Appearance [Position, Size, Font)

[Sawve on Exit

&l marked items are saved. Already contained, not
changed itemz remain walid

k. | Cancel Help

Figure 2-7 . Save Configuration Dialog Box

The Save Configurationtab of theConfiguration dialog is used to save all
user-defined settings to tipeoject.inifile. Underltems to Save check the
items to be saved and uncheck items to not be saved.

Options refers to settings specified in tBption Settingsdialog box. This
dialog is accessed by thenker | Options menu selection or the equivalent
toolbar button.

Editor Configuration refers to the settings specified in thditor Settings tab.

Appearance refers to the position and size of the linker window and the font
specified in th&/iew | Log | Change Fonimenu selection.

CheckSave on Exitto save settings when exiting the MCUez linker.

Click the Savebutton to instantly save the settings or clgdve Asto save
settings to a new project configuration file.

MCUez Linker

30

Graphical User Interface (GUI) MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)
Linker Graphical User Interface

2.3.4.2 Linker Menu

TheLinker menu allows the user to define file and message optibin&ér |
Options) and recategorize the class assigned to linker mesdagksr(|
Messageks

TheOption Settingsdialog box Figure 2-8) allows the user to set and reset
linker options. Available options are arranged in different grolgisle 2-2
describes the option groups.

T S ~

[Generate a map file
[1Specify the name of the output file
[15tnp spmbohc informations

] 4 I Cancel Help

Figure 2-8. Option Settings Dialog Box

Table 2-2. Option Groups

Option Group Description
Lists options related to generated output files (type of files to be
Output
generated)

Input Lists options related to input files

Messages Lists options that control generation of error messages
MCUez Linker User’s Manual
MOTOROLA Graphical User Interface (GUI) 31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)

User’'s Manual

NOTE:

When options requiring additional parameters are selected, an edit box or
subwindow appears in the dialog box.

Check options to be defined and enter additional information, if applicable to
that option. ClickOK to activate selected options. However, save settings to the
project.inifile by using theConfiguraton dialog as mentioned i23.4.1 File
Menu.

Figure 2-9 shows theviessage Settingslialog box.

This dialog box allows the user to map linker messages to a different message
class. For example, a linker message such as “L1404: Unknown memory model
<Model>" can be specified as a warning message instead of an error message.

Table 2-3identifies and defines each message class.

Meszage Settings

Disal:uleu:l] Infurmatiun] Warning Erar lFataI]

L1205: STACKTOP command incompatible with stack - | Move to:

L1206: .ztack overlapz with a seament which appear i Dizabled
L1207 STACKSIZE command iz mizzing I
L1307: Cannot open file <File: | |nfarmation
L1302 File <File: not found _ |
L1303 <File> iz not a valid ELF file Warning

L1304: <File: iz not a walid Hex file

L1305: <Filer iz not an ELF format object file [ELF obije
L1400: Incampatible processor <Processor: in previol
L1407 Incompatible memorny model: <kModel> in previo

L1403 Unknown processor <Processors Default
L1404 Unknown memory model < Model:

L1507: <Object: cannot be moved in section <Sectior

<] | 5 Resat Al

k. | Cancel | Help

Figure 2-9. Message Settings Dialog Box

MCUez Linker

32

Graphical User Interface (GUI) MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)
Linker Graphical User Interface

Table 2-3. Message Group Definitions

Message Group Description

Lists all disabled messages. Messages displayed in this list box

Disabled will not be generated by the linker.
. Lists all information messages. Information messages depict
Information : ;
action taken by the linker.
Lists all warning messages. When such a message is
Warning generated, linking continues and an absolute file is

generated.

Lists all error messages. When such a message is generated,
Error linking of the input application continues but no absolute file
will be generated.

Lists all fatal error messages. When such a message is

Fatal generated, linking stops immediately.

Each message has a character (L for linker message) followed by a 4- to 5-digit
number. This number allows the message to be easily searched in the manual or
online help.

The user can map messages to different classes by using the buttons located on
the right side of the dialog box. Each button refers to a message class. To change
the class associated with a message, select the message in the list box and click
the button associated with the class where the message is to be moved.

TheDefault button will reset selected messages to their default clasRR&bet
All button will reset all messages to their default class.

Example: To define the warning message “L1201: No stack defined” as an error message:

1. Click theWarning tab to display the list of all warning messages.

2. Click on the strindg-1201: No stack definedin the list box to select the
message.

3. Click theError button to define this message as an error message.

Click Yesto validate the change blo to retain the previous mapping.

MCUez Linker User’'s Manual

MOTOROLA Graphical User Interface (GUI) 33

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)

2.3.4.3 View Menu
This menu enables the user to customize the linker window:

* SelectView | Toolbar to display or hide the toolbar.
» SelectView | Status Barto display or hide the status bar.

» SelectView | Log ... | Change Fonto open a standafebnt Selection
dialog box. Options selected in this dialog are applied to information
displayed in the content area.

» SelectView | Log ... | Clear Logto clear the content area.

2.3.4.4 Help Menu
This menu consists of these selections:
SelectHelp | Tip of the Dayto display the tips dialog box.
SelectHelp | Help Topicsto open the help file.

SelectHelp | About to display version information and the current working
directory.

2.3.5 Specifying the Input File

The input file to be linked can be specified in several ways. During the link
session, the options will be set according to the configuration set by the user in
the Option Settingsdialog box. Before linking a file, ensure that a project
directory is associated with the linker.

2.3.5.1 Using the Command Line

Linking a new file — A new filename and additional linker options can be
entered on the command line. Click thiek or Enter buttons to link the
specified file.

Linking a file that has already been linked — Previously linked files can be
displayed by selecting the arrow button on the right side of the command line.
Select a file and click thieink button.

User’'s Manual MCUez Linker

34 Graphical User Interface (GUI) MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)
Linker Graphical User Interface

2.3.5.2 Using the Menu Entry File | Link ...

SelectFile | Link... to open a standafdpen File dialog box. Select an input
file and clickOK to link the selected file.

2.3.5.3 Using Drag and Drop

A filename can be dragged from another program (for example, File Manager)
and dropped into the linker window. The dropped file will be linked as soon as
the mouse button is released.

2.3.6 Error Feedback

After a parameter.frm) file has been linked, any error or warning messages
will have this format:

>> <FileName>, line <line number>, col <column number>,
pos <absolute position in file> <Portion of code generating the problem>
<message class> <message number>: <Message string>*

Example: >> in "placemen\tstpla8.prm”, line 23, col 0, pos 668
fpm_data_sec INTO MY_RAM2;

END

ERROR L1110: MY_RAM2 appears twice in PLACEMENT block

MCUez Linker User’'s Manual

MOTOROLA Graphical User Interface (GUI) 35

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Graphical User Interface (GUI)

User’'s Manual MCUez Linker

36 Graphical User Interface (GUI) MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

Section 3. Files

3.1 Contents

3.2 INtroducCtion. 37
3.3 Parameter Files: Input. 37
3.4 Absolute Files: Output 38
3.5 Motorola S Files: Output i 38
3.6 Map Files 38

3.2 Introduction

This section describes the files used and generated by the MCUez linker.

3.3 Parameter Files: Input

The linker parameter file is an ASCII text file that is required for each
application. It contains linker commands that define the linking process. No
special extension is required. However, it is suggested that parameter filenames
have the extensioprm. Parameter files are searched for in the project directory
and then in the GENPATH directories.

MCUez Linker User’'s Manual

MOTOROLA Files 37

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.4 Absolute Files: Output

After a successful link session, the linker generates an absolute file containing
the target code as well as some debugging information. This file is written to the
directory assigned to the environment varigh8SPATH. If the variable

contains more than one path, the absolute file is written to the first directory
specified. If this variable is not set, the absolute file is written to the directory
where the parameter file was found. Absolute files always get the extension
.abs

3.5 Motorola S Files: Output

After a successful link session, the linker generates a Motorola S-record file,
which can be burnt into an EPROM. This file contains information stored in all
READ_ONLY sections in the application. The extension for the generated
Motorola S-record file depends on the setting of the SRECORD variable.

« |f SRECORD = S1, the Motorola S-record file extensios1s
« |f SRECORD = S2, the extension.&2
 |f SRECORD = S3, the extension.&3

 |f SRECORD is not set, the Motorola S-record file extensiosxis

This file is written to the directory specified in the environment variable
ABSPATH. If the variable contains more than one path, the S-record file is
written to the first directory specified. If this variable is not set, the S-record file
is written to the directory where the parameter file was found.

3.6 Map Files

After a successful link session, the linker generates a map file containing
information about the link processigure 3-1). This file is written to the
directory specified in the environment variabEEXTPATH. If the variable
contains more than one path, the map file is written to the first directory
specified. If this variable is not set, the map file is written to the directory where
the parameter file was found. map files always get the extermsagm

User’'s Manual MCUez Linker

38 Files MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MCUez Linker

Freescale Semiconductor, Inc.

.abs

2. PROJECT DIR | -map

1. PROJECT DIR

.prm 2. GENPATH
LINKER
1. ABSPATH ¢

lib
.abs

1. TEXTPATH

Files
Map Files

1. PROJECT DIR
2. OBJPATH
3. GENPATH

ERRORFILE

2. PROJECT DIR

err.txt

Figure 3-1. Related Linker Files and Location

User’'s Manual

MOTOROLA

Files

For More Information On This Product,
Go to: www.freescale.com

39

Freescale Semiconductor, Inc.

User’'s Manual MCUez Linker

40 Files MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

4.1 Contents

MCUez Linker

Section 4. Operating Procedures

4.2 INtroducCtion. 42
4.3 Parameter File. 42
43.1 Syntax of the ParameterFile 42
4.3.2 Mandatory Parameter File Linker Commands. 44
4.4 Linker Commands. 45
44.1 ENTRIES: List of Objects to Link with Application. 45
4.4.2 INIT: Specify Application Entry Point a7
4.4.3 LINK: Specify Name of OutputFile 47
4.4.4 MAIN: Specify Root Function. 49
445 MAPFILE: Configure Map File. 49
4.4.6 NAMES: ListFiles. e 52
4.4.7 SEGMENTS: Define Memory Map 53
44.7.1 Segment Qualifier 55
4.4.7.2 Segment Alignment. 56
4.4.7.3 SegmentFill Pattern 59
4.4.8 PLACEMENT: Place Sections into Segments. 61
448.1 Specifying a Listof Sections. 63
4.4.8.2 Specifying aListof Segments. 64
4.4.8.3 Predefined Sections. 65
4484 Allocating User-Defined Sections. 67
4.4.9 STACKSIZE: Define Stack Size 68
4410 STACKTORP: Define Stack Pointer Initial Value 69
4411 VECTOR: Initialize Vector Table 70
44.11.1 Initializing Vector Table in Linker Parameter File. 72
44.11.2 Initializing Vector Table in Assembly Source File

Using a Relocatable Section. 74
4.4.11.3 Initializing Vector Table in Assembly Source File

Using an Absolute Section. 76

User’'s Manual

MOTOROLA

Operating Procedures 41

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

4.2 Introduction

4.3 Parameter File

45 SmartLinking. 79
45.1 Mandatory Linking froman Object 79
45.2 Mandatory Linking from All Objects Definedina File 80
4.5.3 Switching Off Smart Linking for the Application............. 80
45.4 Linking an Assembly Application. 80
455 Warning MesSageso oottt 81
4.6 Program Startup 84
4.6.1 Startup DescCriptoro 84
4.6.2 User-Defined Startup Structure. 87
4.6.3 User-Defined Startup Routines 88

This section provides operating procedures for the MCUez linker.

The linker parameter filegrm) is an ASCII text file that is required for each
application. It contains linker commands that define the linking process. This
section describes the parameter file in detail, giving examples that can be used
as templates. Also, refer to the example parameter files included during the
MCUez installation.

4.3.1 Syntax of the Parameter File

User’'s Manual

This is the EBNF (Extended Backus-Naur Form) syntax of the parameter file:

ParameterFile={Commandy}

Command= LINK NameOfABSFile

| NAMES ObjFile {ObjFile} END

| SEGMENTS {SegmentDef} END

| PLACEMENT {Placement} END

| (STACKTOP | STACKSIZE) exp

| MAPFILE MapSecSpecList

| ENTRIES EntrySpec {EntrySpec } END
| VECTOR (InitByAddr | InitByNumber)

MCUez Linker

42

Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MCUez Linker

Freescale Semiconductor, Inc.

Operating Procedures
Parameter File

| INIT FuncName

| MAIN FuncName

NameOfABSFile= FileName

ObjFile= FileName ['+]

ObjName= Ident

Quallden = FileName “.” Ident

FuncName= ObjName | Qualldent

MapSecSpecList= MapSecSpec “,” { MapSecSpec }

EntrySpec= [FileName""] (* | ObjName)

MapSecSpec= ALL | NONE | TARGET | FILE | STARTUP | SEC_ALLOC |
OBJ_ALLOC | OBJ_DEP | OBJ_UNUSED | COPYDOWN | STATISTIC

SegmentDef= SegmentName “=" SegmentSpec *;"

SegmentName= Ident

SegmentSpec= StorageDevice Range [Alignment] [FILL CharacterList]

StorageDevice= READ_ONLY | READ_WRITE | PAGED | NO_INIT

Range=exp (TO | SIZE) exp

Alignment= ALIGN [exp] {T'ObjSizeRange"” exp’}

ObjSizeRange= Number | Number TO Number | CompareOp Number

CompareOp= (<" | “>="| “>"| “>=")

CharacterList= HexByte { HexByte}

Placement= SectionList INTO SegmentList “;”

SectionList= SectionName {*,” SectionName}

SectionName=Ildent

SegmentList= Segment {*,” Segment}

Segment= SegmentName | SegmentSpec

InitByAddr= ADDRESS Address Vector

InitByNumber= VectorNumber Vector

Address= Number

VectorNumber= Number

Vector= (FuncName [OFFSET exp] | exp) [,” exp]

Ident= <any C style identifier>

FileName= <any file name>

exp= Number

Number= DecimalNumber | HexNumber | OctalNumber

HexNumber= OxHexDigit{HexDigit}

DecimalNumber= DecimalDigit{DecimalDigit}

HexByte= HexDigit HexDigit

User’'s Manual

MOTOROLA

Operating Procedures 43

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

HexDigit=0]1|2|3|4|5|6|7|8|9]
A|B|C|D|E|F|alblc|d]|e]|f
DecimalDigit=0]1|2|3]4|5|6|7|8 |9|

Comments may appear anywhere in a parameter file, except where filenames
are expected. Use either C-style comments (/* */) or C++(//) style comments.

Filenames should not contain paths. This keeps sources portable. Otherwise, the
sources are copied to another directory and the linker might not find all files
needed. The linker uses the paths in the environment var@GBNBATH,
OBJPATH,LIBPATH, TEXTPATH, and ABSPATH taletermine where to look

for files and write output files.

Default predefined sections are nandada , .text , .stack ,.copy ,
rodatal , .rodata , .startData and.init

NOTE: The order of commands in the parameter file does not matter. However, ensure
that the SEGMENTS block is specified before the PLACEMENT block.

4.3.2 Mandatory Parameter File Linker Commands

A linker parameter file always contains at leastlinK , NAMESand
PLACEMENTommands. All other commands are optional. This example shows
the minimal parameter file:

LINK mini.abs /* Name of resulting ABS file */

NAMES

mini.o startup.o /* Files to link */
END
STACKSIZE 0x20 [* in bytes */
PLACEMENT

.text INTO READ_ONLY 0xAO00 TO OxBFF;
.data INTO READ_WRITE 0x800 TO Ox8FF;
END

The first placement statement

1extINTO READ_ONLY 0xAO0O0 TO OxBFF;

reserves the address range ft@A00 to OxBFF for allocation of read-only
objects (hence the qualifiREAD_ONLY The.text sectionincludes all linked

User’'s Manual MCUez Linker

44 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

functions, constant variables, string constants, and initialization parts of
variables copied to RAM at startup.

The second placement statement

.data INTO READ_WRITE 0x800 TO Ox8FF;

reserves the address range ftax@800 to Ox8FF for allocation of variables.

4.4 Linker Commands

This section describes all linker commands.

4.4.1 ENTRIES: List of Objects to Link with Application
Syntax: ENTRIES [Filename:] (*|objName)

Description: The ENTRIES block is optional in a parameter (PRM) file.

Use the ENTRIES block to list objects (referenced or not) that are always linked
with the application. All objects referenced within these objects will also be
linked with the application.

If a filename specified in the ENTRIES block is not present in the NAMES
block, the filename will be inserted in the list of binary files building the
application. The file specified in the ENTRIES block also may be present in the
NAMES block. Names of absolute, ROM library, or library files are not allowed
in the ENTRIES block.

Table 4-1identifies the syntax supported in the ENTRIES block.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 45

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Table 4-1. ENTRIES Block Supported

Syntax Meaning

The specified global object will be linked with the

<Object Name> o
application.

The local object defined in the binary file will be
linked with the application. This notation is only
valid when referring to a symbol defined in a
high-level language (ANSI C or C++) module.

<File Name>:<Object Name>

All objects defined within the specified file will be

<File Name>: linked with the application.

All objects will be linked with the application. This
switches off smart linking for the application.

Symbols defined in an assembly module, which are used as additional entry

points, must be published (specified in XDEF directive).

Example: NAMES
startup.o
END

ENTRIES
fibo.o:*
END

In the previous example, the application is built from the fileso and
startup.o

Example: NAMES
fibo.o startup.o
END

ENTRIES
fibo.o:*
END

In the previous example, the application is built from the fileso and

startup.o . Thefilefibo.o specified inthe NAMES block is the same as the

one specified in the ENTRIES block.

User’'s Manual MCUez Linker

46 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

NOTE:

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

It is strongly recommended to avoid switching smart linking off when the ANSI
library is linked with the application. The ANSI library contains the
implementation of all run time and standard functions. This generates a large
amount of code, which is not required by the application.

4.4.2 INIT: Specify Application Entry Point

Syntax:

Description:

Example:

INIT FuncName

TheNIT command is recommended for an assembly application and can only
be specified once in the PRM file. This command defines the entry point for the
application. WhenNIT is not specified in the PRM file, the linker looks for a
function named Startup and uses it as the application entry point. If an
INIT command is specified in the PRM file, the linker uses the specified
function as the application entry point.

Specify any static or global function as an entry point.

INIT MyGlobStart /* Specify a global variable as
application entry point.*/
INIT myFile.o:myLocStart /* Specify a local
variable as application entry point.*/

Local symbols defined in an assembly module cannot be specified as an entry
point for an application.

4.4.3 LINK: Specify Name of Output File

Syntax:

Description:

MCUez Linker

LINK <NameOfABSFile>

TheLINK command defines the file to be generated by the link session. This
command is mandatory and can be specified only once in a PRM file.

After a successful link session, the output file is created. If the environment
variableABSPATH isdefined, the absolute file is generated in the first directory
assigned to the variable. Otherwise, it is written to the directory where the
parameter file was found. If a file with this name already exists, it is overwritten.

User’'s Manual

MOTOROLA

Operating Procedures 47

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Example:

User’'s Manual

A successful link session also creates a map file with the same base name as the
absolute filevith extensionmap If the environment variabl[EEXTPATH is

defined, the map file is generated in the first directory assigned to the variable.
Otherwise, it is written to the directory where the parameter file was found. If a
file with this name already exists, it is overwritten.

A successful link session also creates an S-record file with the same base name
as the absolute filwith extensionSx If the environment variabl@BSPATH is
defined, the S-record file is generated in the first directory assigned to the
variable. Otherwise, it is written to the directory where the parameter file was
found.

If a file with this name already exists, it is overwritten.

LINK fibo.abs

NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x1000 TO Ox18FF;
MY_ROM = READ_ONLY 0x8000 TO Ox8FFF;
MY_STK = READ_WRITE 0x1900 TO Ox1FFF;
PLACEMENT
DEFAULT_ROM INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;
SSTACK INTO MY_STK;
END
VECTOR ADDRESS OxFFFE _Startup /*set reset vector*/

The filesfibo.abs fibo.sx andfibo.mapare generated after a successful link
session.

MCUez Linker

48

Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.4 MAIN: Specify Root Function

Syntax: MAIN FuncName

Description: TheMAIN command is optional. If this command is specified iprenfile, it
defines the root function for an ANSI C or C++ application (function invoked
at the end of startup function). WhéhAIN is not specified in theprmfile, the
linker looks for a function named MAIN and uses it as root. The user can
specify any static or global function as the application root function.

Assembly applications do not require a MAIN function.

Example: MAIN MyGlobMain /* Specify a global variable as
application root */
MAIN myFile.o:myLocMain /* Specify a local
variable as application root */

Local symbols defined in an assembly module cannot be specified as the root
function.

4.4.5 MAPFILE: Configure Map File

Syntax: MAPFILE (ALL | NONE | TARGET | FILE |
STARTUP_STRUCT | SEC_ALLOC | OBJ_ALLOC | OBJ_DEP |
OBJ_UNUSED | COPYDOWN | STATISTIC)

Description: A protocol of the link process is written to a list file, referred to as the map file.
The name of the map file is the same asdbsfile, but with extensionmap
The map file is written to the directory given by the environment variable
TEXTPATH. The map file consists of up to nine sectiorable 4-2lists and
defines each section.

The MAPFILE command is optional and controls generation of the map file.
MAPFILE ALL is the default. Thé\LL option creates a map file that contains
all sections, which provide link time informatiomable 4-3lists all command
options and information generated by each one.

NOTE: Amap fileis not created if objects are not found in an object file and the linking
process fails.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 49

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Table 4-2. Map File Sections

Section Description

TARGET This section names the target processor and memory model.

This section lists the names of all files from which objects were used or referenced
FILE during the link process. In most cases, these are the same names listed in the
linker parameter file between the keywords NAMES and END.

This section lists the prestart code and the values used to initialize the startup
STARTUP descriptor _startupData. The startup descriptor is listed member by member with
the initialization data at the right hand side of the member name.

This section lists segments, in which at least one object was allocated. At the right
SEGMENT ALLOCATION hand side of the segment name is a pair of numbers, which gives the address
range the objects belonging to the segment were allocated.

VECTOR ALLOCATION This section provides the address and initial value and function for the vector.

This section contains the names of all allocated objects and their addresses. The
objects are grouped by module. If an address of an object is followed by the @
sign, the object comes from a ROM library. In this case, the absolute file contains
no code for the object (if it is a function), but the object’'s address was used for
linking. If an address of a string object is followed by a dash (-), the string is a
suffix of some other string. As an example, if the strings abc and bc are present in
the same program, the string bc is not allocated and its address is the address of

OBJECT ALLOCATION

abc plus 1.
UNUSED OBJECTS This section lists all objects found in the object files that were not linked.
COPYDOWN This section lists all blocks copied from ROM to RAM at program startup.

OBJECT DEPENDENCY | This section lists the names of global objects used by functions and variables.

STATISTICS This section generates information about the size of the code generated.
User’s Manual MCUez Linker
50 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

Table 4-3. Map File Options

Option Meaning
ALL A map file will be generated containing all information available.
Information about the initialization value for objects allocated in RAM will be written to
COPYDOWN the map file (COPYDOWN section). This section is only relevant for high-level
language (ANSI C or C++) applications.
FILE Information about application source files will be inserted in the map file.
NONE No map file will be generated.
Information about allocated objects will be inserted in the map file (OBJECT
OBJ_ALLOC ALLOCATION section).
OBJ_UNUSED List of _all unused objects will be inserted in the map file (UNUSED OBJECTS
section).
OBJ DEP Dependencies between objects in the application will be inserted in the map file
- (OBJECT DEPENDENCY section).
SEC_ALLOC Information about sections used in the application will be inserted in the map file

(SECTION ALLOCATION section).

STARTUP_STRUCT

Information about the startup structure will be inserted in the map file (STARTUP
section). This section is only relevant for high-level language (ANSI C or C++)
applications.

STATISTIC

Statistic information about the link session will be inserted in the map file
(STATISTICS section).

TARGET

Information about the target processor and memory model will be inserted in the map
file (TARGET section).

MCUez Linker

User’'s Manual

MOTOROLA

Operating Procedures 51

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

4.4.6 NAMES: List Files

Syntax:

Description:

Example:

User’'s Manual

NAMES <FileName>[+] <FileName>[+] END

The NAMES block contains the list of all binary files building the application.
This is the only place absolute, library, or object library files can be specified.
This block is mandatory and can be specified only oncepmrafile. The linker
reads all files given betwe®&AMESNdEND The files are searched for in the
project directory, then in the directories specified in the environment variables
OBJPATH, LIBPATH, and GENPATH. The files may be either object files,
absolute files, or libraries.

Since the linker is a smart linker, only referenced objects (variables and
functions) are linked to the application.

A plus sign after a filenamgfor example FileName+) switches off smart
linking for the specified file. No blank space is allowed between the filename
and the plus sign. All objects defined in this file will be linked with the
application, regardless of whether they are used or not. This is equivalent to
specifying the filename followed by a * (FileName:*) in the ENTRIES block.

LINK fibo.abs

NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x1000 TO O0x18FF;
MY_ROM = READ_ONLY 0x8000 TO Ox8FFF;
MY _ STK = READ_WRITE 0x1900 TO Ox1FFF;
PLACEMENT
DEFAULT_ROM INTO MY_ROM,;
DEFAULT_RAM INTO MY_RAM;
SSTACK INTO MY_STK;
END
VECTOR ADDRESS OxFFFE _Startup /*set reset vector*/

In this example, thébo.absapplication is built from the filefibo.oand
startup.o

MCUez Linker

52

Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.7 SEGMENTS: Define Memory Map

Syntax: SEGMENTS {(READ_ONLY | READ_WRITE |[NO_INIT |[PAGED)
<startAddr> (TO <endAddr> | SIZE <size>)
[ALIGN <alignmentRule>] [FILL <fillPattern>]}
END

Description: The SEGMENTS block is optional in a PRM file. BEEGMENT8ommand
allows the user to assign meaningful names to address ranges on the target
board. These names can then be used in subsequent PLACEMENT statements,
thus increasing the readability of the parameter file.

Each address range defined is associated with:

» A qualifier
* A start and end address or a start address and a size
* An optional alignment rule

* An optional fill pattern

Segments are closely related to hardware memory areas. For example, there
may be one READ_ONLY segment for each bank of the target board ROM area
and another one covering the RAM area.

Example: Usingthe small memory model, the user can define a segment for the RAM area
and another one for the ROM area.

LINK test.abs

NAMES test.o startup.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00000 TO Ox07FFF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;

END
PLACEMENT
.data INTO RAM_AREA;
text INTO ROM_AREA,;
END

STACKSIZE 0x50

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 53

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Example: Using the banked memory model, a segment can be defined for the RAM area,
another for the non-banked ROM area, and one for each target processor bank.

LINK test.abs

NAMES test.o startup.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00000 TO OxO7FFF;
NON_BANKED_AREA = READ_ONLY 0x0C000 TO OxOFFFF;
BANKO_AREA = READ_ONLY 0x08000 TO OxOBFFF;
BANK1_AREA = READ_ONLY 0x18000 TO Ox1BFFF;
BANK2_AREA = READ_ONLY 0x28000 TO Ox2BFFF;

END
PLACEMENT
.data INTO RAM_AREA;
.init, .startData,
.rodatal,
NON_BANKED, .copy INTO NON_BANKED_AREA;
text INTO BANKO_AREA, BANK1 AREA,
BANK2_ AREA;
END

STACKSIZE 0x50

A physical segment may be split into several virtual segments, allowing a better
structuring of object allocation and taking advantage of processor properties.

Example: In the small memory model, the user can define a segment for the direct page
area, another for the rest of the RAM area, and another one for the ROM area.

LINK test.abs
NAMES test.o startup.o END

SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;

END

PLACEMENT
myRegister INTO DIRECT_RAM,;
.data INTO RAM_AREA;
text INTO ROM_AREA,;

END

STACKSIZE 0x50

User’'s Manual MCUez Linker

54 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.7.1 Segment Qualifier

Different qualifiers are available for segmeniable 4-4identifies and defines
all available qualifiers.

Table 4-4. Segment Qualifier Descriptions

Qualifier Meaning

Qualifies a segment, where read-only access is allowed. Objects

READ_ONLY within such a segment are initialized at application loading time.
Qualifies a segment, where read and write accesses are allowed.
READ_WRITE Objects within such a segment are initialized at application

startup. This is only the case when linking a high-level language
(ANSI C or C++) application.

Qualifies a segment, where read and write accesses are allowed.
Obijects within such a segment remain unchanged during
application startup. This qualifier may be used for segments

NO_INIT referring to a battery backed RAM. Sections placed in a

NO_INIT segment should not contain an initialized variable

(variable defined as int ¢ = 8). This is only the case when linking

a high-level language (ANSI C or C++) application.

Qualifies a segment, where read and write accesses are allowed.
Objects within such a segment remain unchanged during
application startup. Additionally, objects located in two PAGED
segments may overlap. This qualifier is used for memory areas,

PAGED where some user-defined page switching mechanism is

required. Sections placed in a NO_INIT segment should not

contain an initialized variable (variable defined as int ¢ = 8). This
is only the case when linking a high-level language (ANSI C or

C++) application.

Example: SEGMENTS
ROM =READ_ONLY 0x1000 SIZE 0x2000;
CLOCK =NO_INIT OxFFO0 TO OXFFFF;
RAM = READ_WRITE 0x3000 TO Ox3EFF;
Page0 = PAGED 0x4000 TO Ox4FFF;
Pagel = PAGED 0x4000 TO Ox4FFF;
END

In the previous example:

+ SegmenROMs a READ_ONLY memory area. It starts at address
0x1000 and is 0x2000 bytes from address 0x1000 to Ox2FFF.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 55

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

* SegmenfRAMs a READ_WRITE memory area. It starts at address
0x3000 and ends at Ox3FFF (size = 0x1000 bytes).

* SegmentCLOCKis a READ_WRITE memory area. It starts at address
OxFFO00 and ends at OxFFFF (size = 256 bytes).

» Segment®age0 andPagel are READ_ WRITE memory areas. These
are overlapping segments. It is the user’s responsibility to select the
correct page before accessing data from these segments.

4.4.7.2 Segment Alignment

User’'s Manual

The HC12, HCO08, and HCO5 processors do not require alignment for code or
data objects. Users can choose to define their own alignment rule for a segment.

An alignment rule can be associated with each segment in the application. This
may be useful when specific alignment rules are expected on a certain memory
range due to hardware restrictions.

The alignment rule has this format:

[defaultAlignment] [ObjSizeRange:alignment]

Table 4-5. Segment Alignment Rule Format

Item Description

The alignment value for all objects that do not match the

defaultAlignment conditions of a defined range

Defines a certain condition. The condition has the form:

size : rule applies to objects, where size is equal to size

< size : rule applies to objects, where size is smaller than size

> size: rule applies to objects, where size is bigger than size

<= size: rule applies to objects, where size is smaller or equal to
size

>= size: rule applies to objects, where size is bigger or equal to
size

From sizel to size2: the rule applies to objects where size is
greater or equal to sizel and smaller or equal to size2

ObjSizeRange

Defines the alignment value for objects matching the condition
alignment defined in the current alignment block (enclosed in square
brackets).

MCUez Linker

56

Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

Example: LINK test.abs
NAMES test.o startup.o END

SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
ALIGN 2 [< 2: 1];
RAM_AREA =READ_WRITE 0x00100 TO 0xO07FFF
ALIGN [1:1] [2..3:2] [>=4:4];
ROM_AREA =READ_ONLY 0x08000 TO OxOFFFF;

END

PLACEMENT
myRegister INTO DIRECT_RAM,;
.data INTO RAM_AREA;
text INTO ROM_AREA,;

END

STACKSIZE 0x50
In the previous example:

* In DIRECT_RAMsegment, objects (whose size is one byte) are aligned
on byte boundary; all other objects are aligned on 2-byte boundary.

* In RAM_AREAegment, 1-byte objects are aligned on byte boundary,
objects equal to two or three bytes are aligned on 2-byte boundary, and
all other objects are aligned on 4-byte boundary.

» Default alignment rule applies to tROM_AREAsegment.
An alignment rule can be specified as follows:

ALIGN [<defaultAlignment>] [{‘['(<Number>| <Number> ‘TO’
<Number>| (‘<' |'>" |'<=" | ">=")<Number>)"]:'<alignment>}]

defaultAlignment is used to specify the alignment factor for objects that are
not specified by a condition in the alignment listiable 4-6. If no alignment

list is specified, the default alignment factor applies to all objects allocated in
the segment. The default alignment factor is optional.

The specified alignment applies to each object inside the segment.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 57

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Table 4-6. Segment Alignment Items List

Notation

Meaning

[<size>:<align.>]

Size is equal to <size>.

[<sz1> to <sz2>:<align.>]

Size is bigger or equal to <sz1>
and smaller or equal to <sz2>.

[<<size>:<align.>]

Size is smaller than <size>.

[<=<size>:<align.>]

Size is smaller or equal to <size>.

[><size>:<align.>]

Size is bigger than <size>.

[>=<size>:<align.>]

Size is bigger or equal to <size>.

Example: SEGMENTS

RAM_1 = READ_WRITE 0x800 TO Ox8FF

ALIGN 2 [1:1];

RAM_2 = READ_WRITE 0x900 TO Ox9FF
ALIGN [2 TO 3:2] [>= 4:4];
RAM_3 = READ_WRITE 0xA00 TO OxAFF

ALIGN 1 [>=2:2];

END

In the previous example:

* Inside segmerRRAM _ 1 all objects with size equal to one byte are aligned
on a 1-byte boundary and all other objects are aligned on a 2-byte

boundary.

* Inside of segmerlRAM _2 all objects with size equal to two or three
bytes are aligned on a 2-byte boundary and all objects bigger or equal to
four are aligned on a 4-byte boundary. One-byte objects follow the

default processor alignment rule.

* Inside segmeriRAM_3 all objects bigger or equal to two bytes are
aligned on a 2-byte boundary and all other objects are aligned on a 1-byte

boundary.

User’'s Manual

MCUez Linker

58 Operating Procedures

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.7.3 Segment Fill Pattern

A fill pattern can be associated with each segment in the application. This may
be useful to automatically initialize uninitialized variables in the segments with

a predefined pattern. For assembly applications, the fill pattern can be used only
in READ_ONLYegments.

The default fill pattern for code and data segments is the null character. Users
can define their own fill pattern for a segment. The fill pattern definition in the
segment block overrides the default fill pattern. A fill pattern can be defined for
the READ_WRITE memory area only when linking a high-level language
(ANSI C, C++) application.

A fill pattern can be specified like this:

Syntax: FILL <HexByte> {<HexByte>}
Example: SEGMENTS
ROM_1 = READ_ONLY 0x800 TO Ox8FF
FILL OxXAA 0x55;
END
In the previous example, fill bytes are initialized with the pattern OXAA5S.
If the size of an object to be initialized is higher than the size of the specified
pattern, the pattern is repeated as many times as required to fill the objects. In
the previous example, an object of four bytes will be initialized with
OXAAS55AAS5.
If the size of an object to be initialized is smaller than the size of the specified
pattern, the pattern is truncated to match the size of the object. In the previous
example, an object of one byte will be initialized with OxAA.
When the value specified in an element of a fill pattern does not fit in a byte, it
is truncated to a byte value.
Example: SEGMENTS
ROM_1 = READ_ONLY 0x800 TO Ox8FF
FILL OXAA55;
END
MCUez Linker User’s Manual
MOTOROLA Operating Procedures 59

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

In the previous example, fill bytes are initialized with the pattern Ox55. The
specified fill pattern is truncated to a 1-byte value. Fill patterns provide aninitial
value to the padding bytes inserted between two objects during object
allocation. This marks the unused position with a specific marker and can be
detected inside the application. For example, an unused position inside a code
section can be initialized with the hexadecimal code for the NOP instruction.

High-level language LINK test.abs
(C, C++) Example: NAMES test.o startup.o END
SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO OxO00FF
FILL OxAA;
RAM_AREA =READ_WRITE 0x00100 TO OxO7FFF
FILL 0x22;
ROM_AREA =READ_ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
myRegister INTO DIRECT_RAM;
.data INTO RAM_AREA,;
text INTO ROM_AREA;
END

STACKSIZE 0x50
In the previous example:

* In DIRECT_RAMalignment bytes between objects are initialized with
OxAA.

* In RAM_AREAalignment bytes are initialized with 0x22.
* In ROM_AREAalignment bytes are initialized with 0x00.

User’'s Manual MCUez Linker

60 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.8 PLACEMENT: Place Sections into Segments

The PLACEMENT block allows the user to physically place each section in a
specific memory area (segment). The sections specified in a PLACEMENT
block may be linker-predefined sections or user sections specified in one of the
source files used to build the application.

A section is a named group of global objects declared in the source file, such as
functions and global variables. A segment is not necessarily a contiguous
memory range. In the linker parameter file, each section is associated with a
segment so the linker knows where to allocate objects belonging to a section.

A programmer may decide to organize data into sections:

* To enhance application structure
* To ensure that common purpose data is grouped together
» To take advantage of target processor specific addressing mode

Syntax: PLACEMENT
SectionName{,sectionName} INTO SegSpec{,SegSpec};
{SectionName{,sectionName} INTO SegSpec{,SegSpec};}
END

Description: The PLACEMENT block is mandatory imamfile. Each placement statement
between the PLACEMENT and END defines a relation between logical
sections and physical memory ranges called segments.

Example: SEGMENTS
MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
ROM_1 =READ ONLY 0x8000 TO Ox8FFF;
END
PLACEMENT
.text, .rodata INTO ROM_1;
END

In the previous example, objects from sectient are allocated first and
then objects from sectiarodata are allocated into segmdROM_1

Starting with the first section, objects are allocated in the first memory range in
the list. If a segment is full, allocation continues in the next segment.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 61

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Example: SEGMENTS

MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
ROM_1 =READ_ONLY 0x8000 TO Ox8FFF;
ROM_2 = READ_ONLY 0xA000 TO OxAFFF;

END

PLACEMENT
text INTO ROM_1, ROM_2:

END

In the previous example, objects from sectient are allocated first in
segmenROM _land continue in sectidROM_2 A statement inside the
PLACEMENT block can be split over several lines and terminated with a
semicolon. The SEGMENTS block must always be defined before the
PLACEMENT block because segments referenced in the PLACEMENT block
must be defined previously in the SEGMENTS block.

Some restrictions apply to commands specified in the PLACEMENT block:

* The.copy section should be the last section in the section list to be
specified in the PLACEMENT block.

* Whenthestack sectionis specified inthe PLACEMENT block along
with other sections, an addition@TACKSIZE command is required in
the PRM file.

* Predefined sectiontext and.data must always be specified in the
PLACEMENT block. They are used to retrieve the default placement for
code or variable sections. All code or constant sections, which do not
appear inthe PLACEMENT block, are allocated in the same segment list
as thetext section. All variable sections, which do not appear in the
PLACEMENT block, are allocated in the same segment list as the
.data section.

User’'s Manual MCUez Linker

62 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.8.1 Specifying a List of Sections

When several sections are specified in a PLACEMENT block, the sections are
allocated in the sequence where they are listed.

Example: LINK test.abs
NAMES test.o startup.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;

STK_AREA = READ_WRITE 0x00300 TO Ox003FF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
.data, dataSec1l,
dataSec2 INTO RAM_AREA;
text, myCode INTO ROM_AREA;
.stack INTO STK_AREA;
END

In the previous example:

* Inside segmeriRAM_AREAthe objects defined in thdata section
are allocated first, then objects defined in sedtiataSecl, and
finally objects defined in sectiahataSec2 .

* Inside segmermROM_ARE/objects defined in theéext section are
allocated, then objects are defined in seayCode.

NOTE: Thelinker is case sensitive. Section names specified in the PLACEMENT block
must be valid predefined or user-defined sections. SediiatssSec1 and

dataSecl are different sections.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 63

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

4.4.8.2 Specifying a List of Segments

When several segments are specified in a PLACEMENT block, the segments
are used in the sequence where they are listed. Allocation is performed for the
first segment in the list, until this segment is full. Then allocation continues for
the next segment in the list, and so on until all objects are allocated.

Example:

LINK test.abs
NAMES test.o startup.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
STK_AREA = READ_WRITE 0x00300 TO Ox003FF;

NON_BANKED_AREA = READ_ONLY 0x0C000 TO OxOFFFF;
BANKO_AREA = READ_ONLY 0x08000 TO OxOBFFF;
BANK1_AREA = READ_ONLY 0x18000 TO Ox1BFFF;
BANK2_AREA = READ_ONLY 0x28000 TO Ox2BFFF;

END
PLACEMENT
.data INTO RAM_AREA;
.stack INTO STK_AREA;
.init, .startData,
.rodatal,
NON_BANKED, .copy INTO NON_BANKED_AREA;
text INTO BANKO_AREA, BANK1 AREA,
BANK2_ AREA;
END

In the previous example:

* Functions implemented in secticiext are allocated first in segment
BANKO_AREAWhen memory for this segment is filled, allocation
continues in segmeBANK_1 AREAthen inBANK2_AREA

NOTE: Segment names specified in the PLACEMENT block must be valid segment
names defined in the SEGMENTS block. The linker is case sensitive. Segments
Ram_Area and RAM_AREAre different segments.

User’'s Manual MCUez Linker

64 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.8.3 Predefined Sections

NOTE:

.rodatal

.rodata

.copy

.stack

MCUez Linker

When linking a high-level language (ANSI C or C++) application, a couple of
predefined section names can be grouped into sections named by the run-time
routines.

For instance,

» Sections for things besides variables and functiondatal , .copy |,
stack

» Sections for grouping large sets of objedata , .text
» A section for placing objects initialized by the linkestartData

» A section to allocate read-only variablegsdata

The sectionsdata and.text provide default sections for allocating
objects.

All string literals (for example, “This is a string”) are allocated in section
rodatal . If this section is associated with a segment qualified as
READ_WRITEthe strings are copied from ROM to RAM at startup.

Any constant variable declared@mst in a C module or as DC in an
assembler module, which is not allocated in a user-defined section, is allocated
in sectionrodata . Usually, therodata section is associated with the
READ_ONLYegment.

Initialization data belongs to sectia@opy . If a source file contains the
declaration

intal] ={1, 2, 3},

the hex strindd00100020003 (six bytes), which is copied #olocation in
RAM at program startup, belongs to segmeopy .

If the rodatal or .rodata section is allocated toREAD_WRITEegment,
all strings or constants also belong to tbgpy section. Objects in this section
are copied at startup from ROM to RAM.

The runtime stack has its own segment narstadk . It should always be
allocated to &EAD_WRITEegment.

User’'s Manual

MOTOROLA

Operating Procedures 65

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

.data The.data section is the default for all objects normally allocated to RAM. It
is used for variables not belonging to any section or to a section not assigned a
segment in th€LACEMENT block. If the.bss or.stack sections are not
associated with a segment, they are included inda&@ memory area in the
following structure.

.data .bss .Sstack

text The.text sectionisisthe default section for all functions. If a function is not
assigned to a certain section in the source code or if its section is not associated
with a segment in the parameter file, it is automatically added ttexhe
section. If therodata, .rodatal, .startData, or.init sections are
not associated with a segment, they are included int¢éke memory area in
the following structure.

.nit .StartData text .rodata .rodatal

StartData The startup description data initialized by the linker and used by the startup
routine is allocated to segmestartData . This section must be allocated to
aREAD_ONLY¥egment.

init The application entry pointis stored in theit section. This section also has
to be associated withREAD_ONL¥egment.

NOTE: The.data and.text sections must always be associated with a segment.

User’'s Manual MCUez Linker

66 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

4.4.8.4 Allocating User-Defined Sections

Not all sections need to be listed in the PLACEMENT block. Segments in
which sections are allocated depend on the type of section.

For example:

» Sections containing data are allocated next toddt section.

» Sections containing code, constant variables, or string constants are
allocated next to th#ext section.

In the segment wherdata is placed, allocation is performed as follows:

* Objects from sectiordata are allocated.

» Objects from sectiorbss are allocated (ifbss is not specified in the
PLACEMENT block).

* Objects from the first user-defined data section (not specified in the
PLACEMENT block) are allocated.

* Objects from the next user-defined data section (not specified in the
PLACEMENT block) are allocated.

* This continues until all user-defined data sections are allocated.

» Ifthe sectionstack is not specified inthe PLACEMENT block and is
defined with sSTACKSIZE command, the stack is allocated.

user datal user data user datal

.data PSS | ection 1| section 2 section n

.Stack

Allocation in the segment wherext is placed is performed as follows:

* Objects from sectiorinit are allocated (ifinit is not specified in
the PLACEMENT block).

* Objects from sectiorstartData are allocated (ifstartData is
not specified in the PLACEMENT block).

* Objects from sectiortext are allocated.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 67

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

* Objects from sectiorodata are allocated (ifrodata is not
specified in the PLACEMENT block).

* Objects from sectiorrodatal are allocated (ifrodatal is not
specified in the PLACEMENT block).

* Objects from the first user-defined code section (not specified in
PLACEMENT block) are allocated.

* Objects from the next user-defined code section (not specified in the
PLACEMENT block) are allocated.

* This continues until all user-defined code sections are allocated.

* Objects from sectiorcopy are allocated (ifcopy is not specified in
the PLACEMENT block).

init SEIS text rodata | rodatal USEr Varer Bl

Data section 1 section n -copy

4.4.9 STACKSIZE: Define Stack Size
Syntax: STACKSIZE Number

Description: TheéSTACKSIZE command is optional in a PRM file. Additionally, both
STACKTORINASTACKSIZE commands cannot be specified in a PRM file.
TheSTACKSIZEcommand defines the stack size. Use this command if it does
not matter where the stack is allocated but only how large it is. When the stack
is defined by &TACKSIZE command alone, the stack is placed next to the
.data section.

Example: SEGMENTS
MY_RAM = READ_WRITE 0xA00 TO OxAFF;
MY_ROM = READ_ONLY 0x800 TO Ox9FF;
END
PLACEMENT
dext IN MY_ROM,;
.data IN MY_RAM;
END
STACKSIZE 0x60

User’'s Manual MCUez Linker

68 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Example:

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

In the previous example, if the sectiatata is four bytes wide (from address
0xAOQO0 to 0xA03), the sectiostack is allocated next to it from address
0xA63 down to address 0xAO4. The stack initial value is set to OXAG2.

When the stack is defined by&8 ACKSIZE command associated with the
placement of thestack section, the stack should start at the segment start
address. Itis incremented by the specified value and defined to the start address
of the segment, whetstack has been placed.

SEGMENTS
MY_STK = NO_INIT 0xB00 TO OxBFF;
MY_RAM = READ_ WRITE 0xA00 TO OxAFF;
MY_ROM = READ_ONLY 0x800 TO Ox9FF;
END
PLACEMENT
text IN MY_ROM,;
.data IN MY_RAM;
.stack IN MY_STK;
END
STACKSIZE 0x60

In the previous example, the sectistack is allocated from address OxB5F
down to address 0xB0O. The stack initial value is set to OxB5E.

In an assembly application, the stack pointer must be initialized in the source
code. Defining the stack in thermfile only ensures no overlap between the
stack and the code or data sections in the application.

4.4.10 STACKTOP: Define Stack Pointer Initial Value

Syntax:

Description:

Example:

MCUez Linker

STACKTOP Number

TheSTACKTORommand is optional in a PRM file. Additionally, the user
cannot specify botBTACKTORINASTACKSIZE commands in a PRM file.
The STACKTORommand defines the initial value for the stack pointer.

IISTACKTORSs defined aSTACKTOP 0xBFF, the stack pointer will be
initialized with OXBFF at application startup.

User’'s Manual

MOTOROLA

Operating Procedures 69

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Example:

When the stack is defined byS8 ACKTORommand alone, a default size is
assigned to the stack. This size depends on the processor and is big enough to
store the target processor PC. When the stack is define@ bx@KTOP

command associated with the placement ofdtaek section, the stack

should start at the specified address. Itis defined down to the start address of the
segment, wherestack has been placed.

SEGMENTS
MY _STK =NO_INIT 0xB0O TO OxBFF;
MY_RAM = READ_WRITE 0xA00 TO OxAFF;
MY_ROM = READ_ONLY 0x800 TO Ox9FF;
END
PLACEMENT
dext IN MY_ROM,;
.data IN MY_RAM;
.stack IN MY_STK;
END
STACKTOP 0xB7E

In the previous example, the stack pointer will be defined from address OxB7E
down to address 0xBO0O.

In an assembly application, the stack pointer must be initialized in the source
code. Defining the stack in thermfile only ensures no overlap between the
stack and the code or data sections in the application.

4.4.11 VECTOR: Initialize Vector Table

Syntax:

Description:

User’'s Manual

VECTOR (InitByAddr | InitByNumber)

The/ECTORommand initializes the vector table. The vector table can be
initialized in the assembly source file or in the linker parameter file, although
initialization in the.prmfile is recommended.

A vector is a small amount of memory about the size of a function address. This
command allows the user to initialize the processor vectors while downloading
the absolute file. AECTORommand consists of a vector location (containing
vector location) and a vector target (containing the value to store in the vector).

MCUez Linker

70

Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MCUez Linker

Example:

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

The syntax VECTOR <Number> is only valid when the vector table starts at
address 0x0000. The address where the vector is allocated is evaluated as
<Number> * <Size of a Function Pointer>.

The syntax VECTOR ADDRESS is valid in any case. The size of entries in the
vector table depends on the target processor.

The vector target can be specified:
* As a function name
* As an absolute address
Different syntaxes are available for f ECTOR.ommand.

Table 4-7. VECTOR Command Syntax

Command Meaning

VECTOR ADDRESS Indicates that the value 0x1000 must be stored at address
OxFFFE 0x1000 OxFFFE

VECTOR ADDRESS Indicates that the address of the function name (FName)

OXFFFE FName must be stored at address OXFFFE
Indicates that the address of the function (FName)
VECTOR ADDRESS incremented by 2 must be stored at address OXFFFE.
OxFFFE FName + 2 This syntax may be useful when working with a

common interrupt service routine.

VECTOR ADDRESS OxFFFE _Startup
VECTOR ADDRESS OxFFFC 0xAQ00
VECTOR 0 _Startup

VECTOR 1 0xA00

In the previous example, if the size of a function pointer is coded on two bytes:

* The vector located at address OxFFFE is initialized with the address of
the function_Startup

* The vector located at address OxFFFC is initialized with the absolute
address 0xAQ00.

» Vector number O (located at address 0x000) is initialized with the address
of the function_Startup

* Vector number 1 (located at address 0x002) is initialized with the
absolute address 0xAQO.

User’'s Manual

MOTOROLA

Operating Procedures 71

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Example:

The user can specify an additional offset when the vector target is a function
name. In this case, the vector will be initialized with the address of the object
plus the specified offset.

VECTOR ADDRESS OxFFFE CommonISR + 0x10

In the previous example, the vector located at address OXFFE is initialized with
the address of the functidommonISRplus 0x10 bytes. IEommonISRstarts

at address 0x800, the vector will be initialized with 0x810. This notation is
useful for the common interrupt handler. All objects specifiediiE&@TOR
command are entry points in the application. They are always linked with the
application, as well as the objects they refer to.

4.4.11.1 Initializing Vector Table in Linker Parameter File

Example:

User’'s Manual

Initializing the vector table from the parameter file allows initialization of
single entries in the table (shown in next example). The user can initialize all
entries in the vector table. The labels or functions must be inserted in the vector
table and implemented in the assembly source file. All labels must be published;
otherwise, they cannot be addressed in the linker parameter file.

XDEF
IRQFunc, XIRQFunc, SWIFunc, OpCodeFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5
; Each interrupt increments another table element
CodeSec: SECTION
; Implementation of the interrupt functions
IRQFunNc:
LDAB #0
BRA int
XIRQFunc:
LDAB #2
BRA int
SWIFunc:
LDAB #4
BRA int
OpCodeFunc:
LDAB #6
BRA int

MCUez Linker

72

Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

ResetFunc:
LDAB #8
BRA entry

int:
LDX #Data ;Load address of symbol Data in X
ABX ;X, address of element in table
INC 0, X ;The table element is incremented
RTI

entry:
LDS #3$AFE

loop: BRA loop

NOTE: The functions IRQFunc, XIRQFunc, SWIFunc, OpCodeFunc, and ResetFunc
are published. This is required because they are referenced in the PRM file.

Since the HC12 processor automatically pushes all registers on the stack when
an interrupt occurs, the interrupt function does not need to save and restore the
registers it is using. All interrupt functions must be terminated with an RTI
(return from interrupt) instruction.

The vector table is initialized using the linker comm&iitCTOR ADDRESS

Example: LINK test.abs
NAMES
test.o
END
SEGMENTS
MY_ROM = READ_ONLY 0x0800 TO Ox0O8FF;
MY_RAM = READ_WRITE 0x0B00 TO 0xOCFF;
END
PLACEMENT
.data INTO MY_RAM;
text INTO MY_ROM;
END
INIT ResetFunc
VECTOR ADDRESS OxFFF2 IRQFunc
VECTOR ADDRESS 0xFFF4 XIRQFunc
VECTOR ADDRESS OxFFF6 SWIFunc
VECTOR ADDRESS 0xFFF8 OpCodeFunc
VECTOR ADDRESS OxFFFE ResetFunc

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 73

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

NOTE:

The statemenNIT ResetFunc defines the application entry point. Usually,
this entry point is initialized with the same address as the reset vector. The
statemenVECTOR ADDRESS OxFFF2 IRQFurgpecifies that the address
of function/RQFunc should be written at address OXFFF2.

4.4.11.2 Initializing Vector Table in Assembly Source File Using a Relocatable Section

Example for HC12:

User’'s Manual

Initializing the vector table in the assembly source file requires that all entries
in the table be initialized. Unused interrupts must be associated with a standard
handler.

The labels or functions, inserted in the vector table, must be implemented in one
of the assembler source files. The vector table can be defined in an assembly
source file in an additional section containing constant variables.

XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ;Each interrupt increments element
CodeSec: SECTION;Implementation of the interrupt functions

IRQFunNc:
LDAB #0
BRA int

XIRQFunc:
LDAB #2
BRA int

SWIFunc:
LDAB #4
BRA int

OpCodeFunc:
LDAB #6
BRA int

ResetFunc:
LDAB #8
BRA entry

DummyFunc:
RTI

MCUez Linker

74

Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Linker Commands

int:
LDX #Data
ABX
INC 0, X
RTI

entry:
LDS #$AFE

loop: BRA loop

VectorTable:SECTION;Definition of vector table

IRQInt: DC.W IRQFunc
XIRQInt: DC.W XIRQFunc
SWiint: DC.W SWIFunc

OpCodelnt: DC.W OpCodeFunc
COPResetint: DC.W DummyFunc ;No function
;attached to COP Reset
CIMonResInt: DC.W DummyFunc ;No function
;attached to Clock
;MonitorReset
Resetint: DC.W ResetFunc

NOTE: Each constantin the sectidrectorTable s defined as a word (2-byte
constant) because entries in the HC12 vector table are 16 bits wide. In the
previous example, the constdRQ/nt s initialized with the address of the
label IRQFunc . The constanX/RQInt is initialized with the address of the
label XIRQFunc. All labels specified as an initialization value must be defined,
published (using XDEF), or imported (using XREF) before the vector table
section. Forward referencing is not allowed in the DC directive.

When developing a banked application, ensure that interrupt functions are
located in the non-banked memory area.

The section should now be placed at the expected address. This is performed in
the linker parameter file, shown in the next example.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 75

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Example: LINK test.abs
NAMES test.o END

SEGMENTS

MY_ROM = READ_ONLY 0x0800 TO 0x08FF;

MY_RAM = READ_WRITE 0x0A00 TO Ox0BFF;
/* Define memory range for vector table */

Vector = READ_ONLY OxFFF2 TO OXFFFF;
END
PLACEMENT

.data INTO MY_RAM,;

text INTO MY_ROM,;

VectorTable INTO Vector;

END

INIT ResetFunc
ENTRIES
*

END

NOTE: The statemen¥ector = READ ONLY OxFFF2 TO OxFFFF defines the
memory range for the vector table. The statenWaatorTable INTO
Vector specifies that the vector table should be loaded in the read-only
memory area vector. The constaRQ/nt will be allocated at address
OxFFF2, the constanX/RQInt will be allocated at address 0xFFF4, and so
on. The constarResetint will be allocated at address OXFFFE. The
statemenENTRIES * END switches smart linking OFF. If this statement is
missing from the PRM file, the vector table will not be linked with the
application because it is never referenced. The smart linker only links objects
referenced in the absolute file.

4.4.11.3 Initializing Vector Table in Assembly Source File Using an Absolute Section

Initializing the vector table in the assembly source file requires that all entries
in the table be initialized. Unused interrupts must be associated with a standard
handler. Labels or functions inserted in the vector table must be implemented in
one of the assembly source files. The vector table can be defined in an assembly
source file in an additional section containing constant variables, shown in the
next example.

User’'s Manual MCUez Linker

76 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Example for HC12:

MCUez Linker

Freescale Semiconductor, Inc.

XDEF ResetFunc

DataSec:
Data:

CodeSec:

IRQFunc:

XIRQFunc:

SWIFunc:

OpCodeFunc:

ResetFunc:

DummyFunc:

int;

entry:

loop:

IRQInt
XIRQInt
SWiint
OpCodelnt
COPResetint

CIMonResInt

Resetint

SECTION
DS.W 5

SECTION

Operating Procedures
Linker Commands

;Each interrupt increments
:element of table
;Implementation of the

;interrupt functions

LDAB #0
BRA int

LDAB #2
BRA int

LDAB #4
BRA int

LDAB #6
BRA int

LDAB #8
BRA entry

RTI

LDX #Data
ABX

INC O, X
RTI

LDS #$AFE

BRA loop

ORG $FFF2

:Definition of vector table

:in absolute section
;starting at address $FFF2

:DC.W IRQFunc
:DC.W XIRQFunc
:DC.W SWIFunc

:DC.W OpCodeFunc

:DC.W DummyFunc ;No function attached
;to COP Reset
:DC.W DummyFunc :No function attached

:to Clock MonitorReset

:DC.W ResetFunc

User’'s Manual

MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Operating Procedures

77

Freescale Semiconductor, Inc.

Operating Procedures

NOTE: Each constant in the sectidtectorTable s defined as a word (2-byte
constant) because the entry in the HC12 vector table is 16 bits wide. In the
previous example, the constdRQI/nt is initialized with the address of the
label IRQFunc . In the previous example, the constafiRQInt is initialized
with the address of the lab&IRQFunc. All labels specified as an initialization
value must be defined, published (using XDEF), or imported (using XREF)
before the vector table section. Forward referencing is not allowed in the DC
directive. The stateme@RG $FFFZpecifies that the following section must
start at address $FFF2.

When developing a banked application, ensure that interrupt functions are
located in the non-banked memory area.

The section should now be placed at the expected address. This is performed in
the linker parameter file, shown in the next example.

Example: LINK test.abs
NAMES
test.o
END
SEGMENTS
MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
MY_RAM = READ_WRITE 0x0A00 TO OxOBFF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_ROM,;
END
INIT ResetFunc
ENTRIES

*

END

NOTE: The statemenENTRY * END switches smart linking off. If this statement is
missing in the .prm file, the vector table will not be linked with the application
because itis never referenced. The smart linker only links referenced objects in
the absolute file.

User’'s Manual MCUez Linker

78 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Smart Linking

4.5 Smart Linking

Smart linking links referenced objects with the application. Application entry
points are:

* The applicationnit function

» Thefunctions or constants located in an absolute section (section defined
with ORG in the assembly source file)

* The function specified in ¥ECTOR.ommand.

All previously listed entry points and the objects they referenced are
automatically linked with the application. The user can specify additional entry
points using th&NTRIES command in the PRM file.

4.5.1 Mandatory Linking from an Object

The user can choose to link non-referenced objects in an application. This may
be useful to ensure that a software version number is linked with the application

and stored in the final product EPROM. This may also be useful to ensure that

a vector table, which has been defined as a constant table of function pointers
or as a constant section, is linked with the application.

Example : ENTRIES

myVarl myVar2 myProcl myProc2
END

In this example, the variablesyVarl andmyVar2 and functionsmyProcl
andmyProc2 are specified to be additional entry points in the application.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 79

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

4.5.2 Mandatory Linking from All Objects Defined in a File

The user can choose to link all objects defined in a specified object file.

Example: ENTRIES
myFilel.0:* myFile2.0:*
END

In this example, all objects (functions, variables, constant variables, or string
constants) defined imyFilel. o andmyFile2.o are specified as additional
entry points in the application.

4.5.3 Switching Off Smart Linking for the Application

Switch smart linking off to link all objects in the application.

Example: ENTRIES

*

END

In this example, smart linking is switched off for the whole application. All
objects, defined in one of the binary files that builds the application, are linked
with the application.

4.5.4 Linking an Assembly Application
The example shows how to link an application.

When an application consists only of assembly files, the linker PRM file can be
simplified. For instance:

* No startup structure is required.

* No stack initialization is required because the stack is directly initialized
in the source file.

* No main function is required.
* An entry point in the application is required.

» All symbols referenced in thermfile must be published (specified in
an XDEF directive). No local symbol is defined in the assembler.

User’'s Manual MCUez Linker

80 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Smart Linking

Example: LINK test.abs
NAMES test.o test2.0 END
SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO 0Ox000FF;
RAM_AREA = READ_WRITE 0x00300 TO Ox07FFF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;

END

PLACEMENT
myRegister INTO DIRECT_RAM;
.data INTO RAM_AREA,;
text INTO ROM_AREA,

END

INIT Start ; Application entry point
VECTOR ADDRESS 0OxFFFE Start;Initialize Reset Vector

In the previous example:

» All data sections defined in the assembly input files are allocated in the
segmenRAM_AREA

» All code and constant sections defined in the assembly input files are
allocated in the segmeROM_AREA

* The START function defines an application entry point and a reset
vector. START must be a global symbol defined in one of the assembly
modules.

4.5.5 Warning Messages

An assembly application does not need a startup structure or root function.

Ignore these two warnings:

‘WARNING: _startupData not found'

and
‘WARNING: Function main not found'

Smart Linking — When an assembly application is linked, smatrt linking is
performed on section level instead of object level. Sections containing
referenced objects are linked with the application.

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 81

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

Examples for HC12: Assembly source file

XDEF entry
dataSecl: SECTION
datal: DSW1
dataSec2: SECTION
data2: DS.W 2
codeSec: SECTION
entry:

NOP

NOP

LDX #datal

LDD #5645

STD 0, X
loop: BRA loop

Linker .prmfile

LINK test.abs
NAMES test.o END

SEGMENTS
RAM_AREA =READ_WRITE 0x00300 TO 0x07FFF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;
END

PLACEMENT
.data INTO RAM_AREA;
text INTO ROM_AREA,;
END
INIT entry

VECTOR ADDRESS OxFFE entry

In the previous examples:

User’'s Manual

The ENTRY function is defined as an application entry point and also

specified as a reset vector.

The data sectiodataSecl defined in the assembly input file is
allocated in the segmeRAM_AREAat address 0x300. This section is
linked with the application because the labatal is referenced in the

functionentry

82

Operating Procedures

For More Information On This Product,

Go to: www.freescale.com

MCUez Linker

MOTOROLA

Freescale Semiconductor, Inc.

Operating Procedures
Smart Linking

The code sectiooodeSec defined in the assembly input file is
allocated in the segmeRIOM_AREAt address 0x8000. It is linked with
the application becausatry is the application entry point.

The data sectiodataSec2 defined in the assembly input file is not
linked with the application because the symieth?2 is never
referenced.

The user can choose to switch smart linking off, so that assembly code and
objects will be linked with the application.

For the previous example, the parameter file used to switch smart linking off
will look like this:

LINK test.abs
NAMES test.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00300 TO Ox07FFF;
ROM_AREA =READ_ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
.data INTO RAM_AREA;
text INTO ROM_AREA,;
END
INIT entry
VECTOR ADDRESS OxFFE entry
ENTRIES * END

In the previous example:

MCUez Linker

The ENTRY function is defined as an application entry point and also
specified as a reset vector.

The data sectiodataSecl defined in the assembly input file is
allocated in the segmeRAM_AREAat address 0x300.

The data sectiodataSec2 defined in the assembly input file is
allocated next to the sectioiataSecl at address 0x302.

The code sectionodeSec defined in the assembly input file is
allocated in the segmeROM_AREAt address 0x8000.

User’'s Manual

MOTOROLA

Operating Procedures 83

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

4.6 Program Startup

This section deals with advanced material and is relevant only for high-level
language (ANSI C or C++) applications. First-time users of MCUez may skip
this section. Standard startup modules are delivered with the MCUez programs
and examples. Include startup modules to link the parameter file. For more
information about startup modules, see thedfitetup.txtin the LIB

subdirectory.

Prior to calling root functionnain):

* Initialize the processor registers.
e Zero out memory.

» Copy initialization data from ROM to RAM.

Depending on the processor and application, different startup routines may be
necessary. In MCUez, there are standard startup routines for every processor
and memory model. Startup routines are based on a startup descriptor
containing all information.

4.6.1 Startup Descriptor
The linker startup descriptor is declared as:

typedef struct{
unsigned char *far beg;int size;

} _Range;
typedef struct{

int size; unsigned char * far dest;
} _Copy;
typedef void (*_PFunc)(void);
typedef struct{

_PFunc *startup; /* address of startup desc */
} _LiblInit;
typedef struct{

_PFunc *initFunc; /*address of init function*/

}_Cpp;

User’'s Manual MCUez Linker

84 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

MCUez Linker

Freescale Semiconductor, Inc.

Operating Procedures
Program Startup

extern struct _tagStartup {
unsigned short flags;
_PFunc main;
unsigned short stackOffset;
unsigned short nofZeroOuts;
_Range *pZeroOut;
_Copy *toCopyDownBeg;
unsigned short nofLiblinits;
_LiblInit *liblnits;
unsigned short nofinitBodies;
_PFunc *initBodies;

} _startupData;

The linker expects thestartupData variable to be declared somewhere in
the application.

struct _tagStartup _startupData;

Fields of thisstruct are initialized by the linker argfruct is allocated in
ROM in the.startData section. If this variable is not declared, the linker
does not create a startup descriptor. In this case, there.tepp section and
the stack is not initialized.

The fields have the following semantics:

flags Contains flags to detect special conditions at startup.
Currently, two bits are used.

Table 4-8. Setting Startup Descriptor Flags

Bit Number SetIf ...
0 The application has been linked as a ROM
library.
1 There is no stack specification.

This flag is tested in the startup code, to determine if the
stack pointer should be initialized.

User’'s Manual

MOTOROLA

Operating Procedures 85

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

main A function pointer set to the application’s root function. In
a C program, this is usually functiomain unless avIAIN
entry in the parameter file specifies another function as
root. In a ROM library, this field is zeroed out. The
standard startup code jumps to this address once
initialization completes.

stackOffset Valid only if flags=0 . This field contains the initial value
of the stack pointer.

nofZeroOuts The number oREAD_WRITEegments to fill with zero
bytes at startup. This field is not required if there is no
RAM memory area that should be initialized at startup.

NOTE: Be careful because if theofZeroOuts field is not present in the startup
structure, the fielgpZeroOut must not be present either.

pZeroOut A pointer to a vector with elements of typdRange. It has
exactlynofZeroOuts elements, each describing a
memory area to be cleared. This field is not required if
there is no RAM memory area that should be initialized at
startup. If this field is not present, the figldfZeroOuts
must not be present.

toCopyDownBeg Contains the address of the first item to be copied from
ROM to RAM at runtime. All data to be copied is stored in
a contiguous piece of ROM memory and has this format:

CopyData = {Sizg) TargetAddr {Byte}Size} 0x0po)

The size is a binary number whose most significant byte is
stored first. This field is not required. No RAM memory
area should be initialized at startup.

nofLiblnits The number of ROM libraries linked with the application
that must be initialized at startup. This field is not required
if no ROM libraries are linked with the application.

NOTE: Be careful because if thfLiblnits field is not present in the startup
structure, the fieldiblnits must not be present.

User’'s Manual MCUez Linker

86 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures
Program Startup

liblnits A vector of pointers to thestartupData records of all
ROM libraries in the application. It has exactly
nofLiblnits elements. These addresses are needed to
initialize the ROM libraries. This field is not required if no
ROM libraries are linked with the application.

NOTE: Be careful because if tHilnits field is not present, the field
nofLiblnits must not be present.

nofinitBodies The number of C++ global constructors that must be
executed prior to invoking the application root function.
This field is not required if the application does not contain
C++ modules. If this field is not present in the startup
structure, the fielthitBodies must not be present.

initBodies A pointer to a vector of function pointers containing
addresses of the global C++ constructors. They are sorted
in the order they need to be called. It has exactly
nofinitBodies elements. If an application does not
contain any C++ modules, the vector is empty. This field is
not required if the application does not contain C++
modules. If this field is not present in the startup structure,
the fieldnofinitBodies must not be present.

4.6.2 User-Defined Startup Structure

The user can define a startup structure. If the startup structure is changed, adapt
the startup function to match the modifications.

Example: If there is no RAM area to initialize at startup and no ROM libraries and C++
modules, the user can define the startup structure as follows:

extern struct _tagStartup {
unsigned short flags;
_PFunc main;
unsigned short stackOffset;
} _startupData,;

MCUez Linker User’'s Manual

MOTOROLA Operating Procedures 87

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Operating Procedures

The startup code must be adapted accordingly:

extern void near _Startup(void) {
/* purpose: 1) initialize the stack
2) call main;
parameters: NONE */
do { /* forever; initialize program;
call root-procedure */
asm{
LDD _startupData.flags
BNE Initialize
LDS _startupData.stackOffset
Initialize:
}
/* Here user defined code could be inserted,
the stack can be used */
/* call main() */
(*_startupData.main)();
} while(1); /* end loop forever */

}

NOTE: Field names in the startup structure should not be changed. Fields inside the
structure can be removed, but do not change names of the different fields.

4.6.3 User-Defined Startup Routines
Two ways to replace the standard startup routine with a user-defined routine:

1. Provide a startup module containing a function nanstaltup and
link it with the application.

2. Implement a personal function and define it as an entry point for the
application using the commaihdIT .

INIT function_name

User’'s Manual MCUez Linker

88 Operating Procedures MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

5.1 Contents

MCUez Linker

Section 5. Environment Variables

5.2 INtroducCtion. 90
5.3 Linker Optionso 90
5.3.1 O 91
5.3.2 e 91
5.3.3 A 92
534 M 92
5.3.5 N 92
5.3.6 SO 93
5.3.7 S T 93
5.3.8 Y 94
5.3.9 A7 2 94
5.3.10 W2, 94
5.3.11 -WMSOBX3 . o oo 95
5.3.12 -WmsgFb[vim]. 95
5.3.13 -WmsgFi[vim]o 95

5.3.14 -WMSONE 96
5.3.15 -WMSONI . ..o 96
5316 -WMSONW . ..o 96
5.4 Setting Environment Variables in MCUez Shell 97

54.1 Path Variables 97
5.5 Variable Descriptions 97
55.1 GENPATH. . . 98

5.5.2 OBJIPATH .. 99
5.5.3 LIBPATH. ... 99

55.4 ABSPATH . .. 100

555 TEXTPATH. . . e 100

5.5.6 SRECORD. ... 101
5.5.7 ERRORFILE e 102

User’'s Manual

MOTOROLA

Environment Variables 89

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables

5.2 Introduction

This section describes environment variables used by the MCUez linker.
Environment variables are set in tAaths or Additionatab of theMCUez Shell
New Configuratioror Current Configuratiordialog box. Refer to thiICUez
Installation and Configuration User’'s ManyaWlotorola document order
number MCUEZINS/D. Environment variables that define paths (such as
GENPATH, OBJPATH, ABSPATH, etc.) are used by the linker and other
MCUez applications.

5.3 Linker Options

The MCUez linker offers a number of options to control linker operation.
Options are composed of a hyphen (-) followed by one or more letters or digits,
no spaces. Anything not starting with a hyphen is assumed to be the name of a
parameter file to be linked.

All linker options (except -V and -H) can be defined in the li®ption
Settingsdialog box. Refer t&igure 2-8for an illustration of th®ption
Settingsdialog box.

All options, including -V and -H, can be specified on the command line in the
linker. Specify the parameter file followed by a space then the linker option. See
Figure 5-1

Linker C:AMCUEZADEMOAHCOB\project.im =

File Linker Yiew Help

0 | ﬁl Hl ? | .f?l fibo. prrn =-E entry

2| L= =

Figure 5-1. Linker Command Line

Options set in th@©ption Settingsdialog box remain indefinitely for all linking
sessions, until changed again by the user. Options specified on the command
line are temporary and apply to the current linking session.

User’'s Manual MCUez Linker

90 Environment Variables MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables
Linker Options

Options are not case sensitive. For example:

fibo.prm —otest.abs

is the same asIBO.PRM —OTEST.ABS

Options are listed in alphabetical order in the next subsections.

53.1 -E
-E: Define application entry point.
Syntax: <parameter file> <option>=<function>
Arguments: <function>: Name of function that represents entry point in
the application
Default: None
Description: This option specifies the application entry point. When the
entry point is located in an assembly object file, the corre-
sponding symbol must be a global symbol (specified in an
XDEF directive).
Example: fibo.prm -E=entry
Similarly, the commandNIT entry can be put in the
Jprmfile.
See also: 4.4.2 INIT: Specify Application Entry Point
5.3.2 -H
-H: Help
Syntax: <option>
Arguments: None
Default: None
Description: Displays the list of linker options and a brief description
Example: -H
See also: None
MCUez Linker User’s Manual
MOTOROLA Environment Variables 91

For More Information On This Product,

Go to: www.freescale.com

533 -L

5.34 -M

5.3.5 -N

User’'s Manual

Freescale Semiconductor, Inc.

-L:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-M:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-N:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

Environment Variables

Add path to search path.
<parameter file> <option><path>
<path> Complete directory path
None

Add another path to be searched.
test.prm =-LC:\MCUez\misc

None

Generate map file.
<parameter file> <option>

None

None

This option causes a map file to be generated.
test.prm -M
4.4.5 MAPFILE: Configure Map File

Show notification box in case of errors.
<parameter file> <option>

None

None

This option enables an error dialog box to be displayed.
test.prm -N

None

MCUez Linker

92

Environment Variables

MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

5.3.6 -O

5.3.7 -S

MCUez Linker

NOTE:

Freescale Semiconductor, Inc.

-O:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-S:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

Environment Variables
Linker Options

Define absolute filename.
<parameter file> <option><FileName>

<FileName>: Name of absolute file

None

This option defines the name of thiesfile to be generated.
test.prm -Otest.abs

Similarly, the user can use the commaniK test.abs
in the.prmfile.

4.4.3 LINK: Specify Name of Output File

Do not generatBWARFinformation.
<parameter file> <option>

None

None

This option excludé&3WARFsections from being generated
in the absolute file. This will reduce the amount of memory
used on the PC.

test.prm -S

None

If the absolute file does not contain DWARF information, the file cannot be

debugged.

User’'s Manual

MOTOROLA

Environment Variables 93

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables

5.3.8 -V
-V Prints the linker version
Syntax: <option>
Arguments: None
Default: None
Description: Prints the linker version and project directory
Example: -V
See also: None
5.3.9 -w1
-W1: Don’t print information messages.
Syntax: <parameter file> <option>
Arguments: None
Default: None
Description: Suppresses all information messages. Warning and error
messages are printed.
Example: test.prm -W1
See also: None
5.3.10 -W2
-W2: Don't print information and warning messages.
Syntax: <parameter file> <option>
Arguments: None
Default: None
Description: Suppresses all information and warning messages. Only
errors are printed.
Example: test.prm -W2
See also: None
User’s Manual MCUez Linker
94 Environment Variables MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

5.3.11 -Wmsg8x3

5.3.12 -WmsgFb[v|m]

5.3.13 -WmsgFi[v|m]

MCUez Linker

Freescale Semiconductor, Inc.

-Wmsg8x3:
Syntax:
Arguments:
Default:
Description:
Example:

See also:

-WmsgFb[v|m]:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

-WmsgFi[v|m]:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

Environment Variables
Linker Options

Convert filenames to DOS 8.3 format.
<parameter file> <option>

None

None

Reduces long filenames to eight characters plus extension
test.prm -Wmsg8x3

None

Sets message file format for batch mode
<parameter file> <option>

[vIm]

M

Sets the message file format to verbose mode or Microsoft
format. Verbose mode displays more information than the
Microsoft format.

test.prm -WmsgFbv

None

Sets message format for interactive mode
<parameter file> <option>

[vIm]

\Y

Sets the message file format to verbose mode or Microsoft
format. Verbose mode displays more information than the
Microsoft format.

test.prm -WmsgFim

None

User’'s Manual

MOTOROLA

Environment Variables

95

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables

5.3.14 -WmsgNe

-WmsgNe: Sets maximum number of error messages

Syntax: <parameter file> <option><value>

Arguments: None

Default: None

Description: Sets the maximum number of error messages to be gener-
ated before the process is halted. Enter a value between
0 and 100.

Example: test.prm -WmsgNe1l0

See also: None

5.3.15 -WmsgNi

-WmsgNi: Sets maximum number of information messages

Syntax: <parameter file> <option><value>

Arguments: None

Default: None

Description: Sets the maximum number of information messages to be
generated. Enter a value between 0 and 100.

Example: test.prm -WmsgNil10

See also: None

5.3.16 -WmsgNw

-WmsgNw: Sets maximum number of warning messages

Syntax: <parameter file> <option><value>

Arguments: None

Default: None

Description: Sets the maximum number of warning messages to be gen-
erated. Enter a value between 0 and 100.

Example: test.prm -WmsgNw10

See also: None

User’'s Manual

MCUez Linker

96

Environment Variables

MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables
Setting Environment Variables in MCUez Shell

5.4 Setting Environment Variables in MCUez Shell

The syntax for environment variables set in the shell is:
Variable=Definition

NOTE: No spaces are allowed in the definition of an environment variable.

Example: GENPATH=C:\INSTALL\LIB;

5.4.1 Path Variables

Environment variables that contain paths indicate where to look for files. A path
list is a list of directory names separated by semicolons or a directory name
preceded by an asterick. If a directory name is preceded by an asterithe
programs recursively search the whole directory tree for a file, not just the given
directory. Directories are searched in the order they appear in the path list.

Syntax: DirSpec;DirSpec;DirSpec
*DirectoryName

Example: GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;
LIBPATH=*C\INSTALL\LIB

5.5 Variable Descriptions

This section describes these variables:

« GENPATH
« OBJPATH
 LIBPATH

« ABSPATH
« TEXTPATH
« SRECORD

» ERRORFILE

MCUez Linker User’'s Manual

MOTOROLA Environment Variables 97

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables

5.5.1 GENPATH

User’'s Manual

NOTE:

Syntax: GENPATH=<path>
Arguments: <path> : Path separated by semicolons, without spaces
Description: The linker will look for theprmfile in the project directory,

then in the directories listed in the environment variable
GENPATH. The object and library files specified in the
linker .prmfile are searched for in the project directory, then
in directories listed in the environment variables OBJPATH
and LIBPATH, and finally in directories specified in

GENPATH.

If a directory specification starts with an asterigk,(the directory tree is
searched recursively. Within one level in the tree, the search order of the
subdirectories is indeterminate.

Example: GENPATH=\0bj;..\..\lib;

MCUez Shell: Click the Change... button to open the Current
Configuration dialog box.

Select théPathstab.
In the Configure selection box, sele&eneral Path

Enter directories in the list box (one directory on each line).

MCUez Linker

98

Environment Variables MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

5.5.2 OBJPATH

5.5.3 LIBPATH

MCUez Linker

Freescale Semiconductor, Inc.

Syntax:
Arguments:

Description:

Example:

MCUez Shell:

Syntax:
Arguments:

Description:

Example:

MCUez Shell:

Environment Variables
Variable Descriptions

OBJPATH=<path>
<path> : Paths separated by semicolons, without spaces

The linker searches the project directory for the object files
specified in the linkemprmfile. The linker then searches the
directories specified in the environment variables OBJPATH
and GENPATH.

OBJPATH=\sources\bin;..\..\headers)

Select Change... button to open the Current
Configuration dialog box.

Select théPathstab.
In theConfigure selection box, sele@bject.

Enter directories in the list box (one directory on each line).

LIBPATH=<path>
<path> : Paths separated by semicolons, without spaces

The linker searches the project directory for the library files
specified in the linkerprmfile. The linker then searches the
directories specified in the environment variables OBJPATH
and GENPATH.

LIBPATH=\sources\bin;..\.\lib)

Select Change... button to open the Current
Configuration dialog box.

Select théPathstab.
In theConfigure selection box, seletibrary .

Enter directories in the list box (one directory on each line).

User’'s Manual

MOTOROLA

Environment Variables 99

For More Information On This Product,
Go to: www.freescale.com

5.5.4 ABSPATH

5.5.5 TEXTPATH

User’'s Manual

Freescale Semiconductor, Inc.

Environment Variables

Syntax:
Arguments:

Description:

Example:

MCUez Shell:

Syntax:
Arguments:

Description:

Example:

MCUez Shell:

ABSPATH=<path>
<path> : Paths separated by semicolons, without spaces

Set this environment variable to store the absolute files
created by the linker in the first directory specified. If
ABSPATH is not set, the generated absolute files will be
stored in the directory where the parameter file was found.

ABSPATH=\sources\bin;..\.\headers;

Click the Change... button to open the Current
Configuration dialog box.

Select théPathstab.
In theConfigure selection box, seleébsolute.

Enter directories in the list box (one directory on each line).

TEXTPATH=<path>
<path> : Paths separated by semicolons, without spaces

Set this environment variable to store the map file created
by the linker in the first directory specified. If TEXTPATH

is not set, the generated map file will be stored in the
directory where thgrm file is located.

TEXTPATH=\sources;\usr\local\txt;

Click the Change... button to open the Current
Configuration dialog box.

Select théPathstab.
In theConfigure box, seleciext.

Enter directories in the list box (one directory on each line).

MCUez Linker

100

Environment Variables MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables
Variable Descriptions

5.5.6 SRECORD

Syntax: SRECORD=<RecordType>

Arguments: <Record Type> : Specify the type of Motorola S record
that must be generated. The value can be S1, S2, or S3.

Description: When this environment variable is defined, the linker will
generate a Motorola S file containing records for the
specified type (S1 records when S1 is specified, S2 records
when S2 is specified, and S3 records when S3 is specified).

NOTE: If SRECORD is set, the user is responsible for specifying the appropriate S
record type. If S1 is specified while the code is loaded above OxFFFF, the
Motorola S file generated will not be correct, since the addresses will be
truncated to 2-byte values.

If this variable is not set, the type of S record generated will depend on the size
of the address loaded. If the address can be coded on two bytes, an S1 record is
generated. If the address is coded on three bytes, an S2 record is generated.
Otherwise, an S3 record is generated.

Example: SRECORD=S2

MCUez Shell: Click the Change... button to open the Current
Configuration dialog box.

Select theAdditional tab.

Enter the environment variable in the list box.

MCUez Linker User’'s Manual

MOTOROLA Environment Variables 101

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Environment Variables

5.5.7 ERRORFILE

Syntax:
Arguments:

Description:

Example:

MCUez Shell:

User’'s Manual

ERRORFILE<filename>
<filename> : Filename with format specifiers
ERRORFILE specifies the error file used by the linker.

Possible format specifiers are:
%n: Substitute with the filename, without the path.
%p: Substitute with the path of the source file.
%f: Substitute with the full path and filename

ERRORFILE=MyErrors.err

Writes all errors to the fileMyErrors.err in the project
directory.

ERRORFILE=\tmp\errors
Writes all errors to the filerrorsin the directorytmp.
ERRORFILE=%f.err

Writes all errors to a file with the same name as the source
file, but with extensionerr. The error file is placed in the
same directory as the source file. For example, if the file
\sources\test.prns linked, an error list filasources\test.err
will be generated.

ERRORFILE=\dir1\%n.err

For a source fildest.prm an error list file\dirl\test.erris
generated.
ERRORFILE=%p\errors.txt

For a source file\dirl\dir2\test.prm an error list file
\dirl\dir2\errors.txtwill be generated.

If ERRORFILE is not set, errors are written to the default
error file. The default error file is determined by how the
assembler is configured and started. If a filename is
provided on the assembler command line, errors are written
to theEDOUT file in the project directory. If no filename is
provided, errors are written to teer.txt file.

Open th€urrent Configuration dialog box.
Select theAdditional tab.

Enter the environment variable definition in the list box.

MCUez Linker

102

Environment Variables MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

6.1 Contents

MCUez Linker

6.2

6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

6.3.7

6.3.8

6.3.9

6.3.10
6.3.11
6.3.12
6.3.13
6.3.14
6.3.15

6.3.16
6.3.17
6.3.18
6.3.19
6.3.20
6.3.21
6.3.22
6.3.23
6.3.24

Section 6. Linker Messages

INtroduction. 108
Linker Messages Reference 108
L1: Unknown Message Occurredcuuu... 109
L2: Message Overflow, Skipping <type> Messages.......... 109
L64: Line Continuation Occurred in <FileName>. 109
L1000: <Command Name>notFound 110
L1001: <Command Name> Multiply Defined. 111
L1002: Command <Command Name> Overwritten
by Option <OptionName>. 112
L1003: Only a Single SEGMENTS or SECTIONS
Blockis Allowed. 113
L1004: <Separator>Expected 113
L1005: Fill Pattern Will Be Truncated (>0xFF) 114
L1006: <Token>notAllowed 114
L1007: <Character> not Allowed in Filename (Restriction). . . . 115
L1008: Only Single Object Allowed at Absolute Address 116
L1009: Segment Name <Segment Name> Unknown 117
L1010: Section Name <section name> Unknown............ 118

L1011: Incompatible Segment Qualifier: <Qualifierl>
in Previous Segment and <Qualifier2>

in<SegmentName>c0 i 119
L1012: Segment is not Aligned on a <bytes> Boundary 120
L1015: No Binary Input File Specified 120
L1016: File <Filename> Found Twice in NAMES Block. 121
L1037: ***** | inking of <parameter file> Failed ****. 121
L1038: Success. Executable File Written to <absfile> 121
L1039: Limited Version. Too Many Objects or Code Linked. . . 122
L1050: Running <versiontype>...............c.couiiiun... 122
L1052: User Requested Stop oo oo oo 122
L1100: Segments <Segmentl Name>

and <Segment2 Name>Overlap. 123

User’'s Manual

MOTOROLA

Linker Messages 103

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.25

6.3.26

6.3.27

6.3.28

6.3.29

6.3.30

6.3.31

6.3.32

6.3.33

6.3.34

6.3.35

6.3.36

6.3.37

6.3.38

6.3.39

6.3.40

6.3.41

6.3.42

6.3.43

6.3.44

User’'s Manual

L1102: Out of Allocation Space in Segment <Segment Name>

at Address <First Address Free>. 124
L1103: <Section Name> not Specified

in PLACEMENT Block, 125
L1104: Absolute Object <Object Name> Overlaps

with Segment <SegmentName>. 126

L1105: Absolute Object <object name> Overlaps
with Another Absolute Allocated Object

orwithaVector......... 127
L1106: <Object Name>notFound 128
L1107: <Object Name>notFound 129
L1109: <Segment Name> Appears Twice

in SEGMENTS Block. 130
L1110: <Segment Name> Appears Twice

in PLACEMENTBlock 131
L1111: <Section Name> Appears Twice

in PLACEMENTBlock 132
L1112: <Section name> Section Has Segment Type

<Segment Qualifier> (Illegal). 132
L1113: <Section name> Section Has Segment Type

<Segment Qualifier> (Illegal). 134
L1114: <Section Name> Section Has Segment Type

<Segment Qualifier> (Initialization Problem) 135
L1115: Function <Function Name>not Found 137

L1118: Vector Allocated at Absolute Address <Address>

Overlaps with Another Vector or an Absolute

Allocated Objecto 138
L1119: Vector Allocated at Absolute Address <Address>

Overlaps with Sections Placed in Segment

<SegmentName> i 139
L1120: Vector Allocated at Absolute Address <Address>

Placed in Segment <Segment Name>,

Which Has No READ_ONLY Qualifier 140
L1121: Out of Allocation Space at Address <Address>
for.copy Section. 140

L1122: Section .copy Must Be Last Section in Section List. ... 141
L1123: Invalid Range Defined for Segment

<Segment Name> — End Address Must

Be Bigger Than Start Address 142
L1124:'+' or '-' Should Directly Follow Filename. 143

MCUez Linker

104

Linker Messages MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

MCUez Linker

Freescale Semiconductor, Inc.

6.3.45
6.3.46
6.3.47
6.3.48
6.3.49
6.3.50

6.3.51

6.3.52
6.3.53
6.3.54
6.3.55
6.3.56
6.3.57
6.3.58
6.3.59

6.3.60
6.3.61

6.3.62

6.3.63

6.3.64

6.3.65

6.3.66

6.3.67

Linker Messages

Contents

L1125: In Small Memory Model, Code and Data

Must Be LocatedonBank O 144
L1127: Object Allocated Outside of Segment Bounds (HC12). . 145
L1200: Both STACKTOP and STACKSIZE Defined 146
L1201: No Stack Defined 147
L1202: Stack Cannot Be Allocated

on More Than One Segment. 148
L1203: STACKSIZE Command Defines a Size

of <Size> But .stack Specifies a Stacksize of <Size>. 149
L1204: STACKTOP Command Defines Initial Value

of <Stack Top> But .stack Specifies Initial Value

of<lnitial Value> 151
L1205: STACKTOP Command Incompatible

with .stack Being Part of List of Sections. 152
L1206: Stack Overlaps with a Segment Which Appears

in PLACEMENT Block, 153
L1207: STACKSIZE CommandisMissing 154
L1301: Cannot Open File <Filename> 155
L1302: File <Filename>notFound. 155
L1303: <Filename>isnota Vald ELF File 156
L1304: <Filename>is nota Valid Hex File 156
L1305: <Filename> is not an ELF Format Object File

(ELF Object File Expected) 156
L1309: CannotOpen<File> 157
L1400: Incompatible Processor: <Processor Name>

in Previous Files and <Processor Name> in Current File. . . . 157
L1401: Incompatible Memory Model:

<Memory Model Name> in Previous Files

and <Memory Model Name> in CurrentFile. 157
L1403: Unknown Processor <Processor Constant>. 158
L1404: Unknown Memory Model

<Memory Model Constant> 158

L1501: <Symbol Name> Cannot be Moved

in Section <Section Name> (Invalid Qualifier

<SegmentQualifier>) 159
L1502: <Object Name> Cannot be Moved from Section

<Source Section Name> to Section

<Destination Section Name> 160
L1503: <Object Name> (from file <Filename>)

Cannot be Moved from Section <Source Section Name>

to Section <Destination Section Name>. 161

User’'s Manual

MOTOROLA

Linker Messages 105

For More Information On This Product,

Go to: www.freescale.com

User’'s Manual

Freescale Semiconductor, Inc.

Linker Messages

6.3.68

6.3.69
6.3.70
6.3.71
6.3.72
6.3.73
6.3.74
6.3.75
6.3.76
6.3.77
6.3.78
6.3.79
6.3.80
6.3.81

6.3.82
6.3.83
6.3.84
6.3.85
6.3.86
6.3.87
6.3.88
6.3.89
6.3.90
6.3.91
6.3.92
6.3.93
6.3.94

6.3.95
6.3.96

L1504: <Object Name> (from section <Section Name>)
Cannot be Moved from Section <Source Section Name>

to Section <Destination Section Name>. 162
L1600: Main Function Detected in ROM Library............ 163
L1601: Startup Function Detected in ROM Library 163
L1620: Bad Digit in Binary Number. 163
L1621: Bad Digitin Octal Number 163
L1622: Bad Digit in Decimal Number. 163
L1623: NumbertooBig. i 164
L1624: Ident too Long. Cut after 31 Characters 164
L1625: CommentnotClosed. 164
L1626: Unexpected Endof File. 164
L1627: PRESTART Command not Supported Yet. 165
L1628: HEXFILE Command not Supported Yet 165
L1629: START_DATA Command not Supported Yet........ 165
L1700: File <Filename> Should Contain

DWARF Information 165
L1701: Startup Data Structure isEmpty 166
L1800: Read Errorin<File> 166
L1803: Out of Memory in <Function Name> 166
L1804: No ELF Section Header Table Found in <Filename>. . . 166
L1806: ELF File <Filename> Appears to be Corrupted 167
L1808: String Overflow in <Function Name>,

Contact Vendor. ... 167
L1809: Section <Section Name> Located in a Segment

with Invalid Qualifier 167

L1811: Symbol <Symbol Number> - < Symbol Name>

Duplicated in <First Filename> and <Second Filename> . .. 167
L1818: Symbol <Symbol Number> - < Symbol Name>

Duplicated in <First Filename> and <Second Filename> . .. 168
L1820: Weak Symbol <Symbol Name> Duplicated

in <First Filename> and <Second Filename>. 168
L1821: Symbol <id1> Conflicts with <id2>

in File <File> (Same Code). 168
L1822: Symbol <Symbol Name> in File <Filename>

isUndefined 168
L1823: External Object <Symbol Name> in <Filename>

CreatedbyDefault 169
L1824: Invalid Mark Type for<ident>.................... 169
L1826: Can't Read File. <Filename> is not an ELF Library

Containing ELF Objects (ELF Objects Expected) 169

MCUez Linker

106

Linker Messages MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

MCUez Linker

Freescale Semiconductor, Inc.

6.3.97
6.3.98
6.3.99
6.3.100

6.3.101

6.3.102

6.3.103
6.3.104

6.3.105

6.3.106
6.3.107
6.3.108
6.3.109

6.3.110

6.3.111
6.3.112

6.3.113

6.3.114
6.3.115
6.3.116

6.3.117

6.3.118
6.3.119
6.3.120
6.3.121
6.3.122
6.3.123

6.3.124

Linker Messages

Contents

L1902: <Cmd> Command not Supported 169
L1903: Unexpected Symbol in Link Parameter File 170
L1905: Invalid Section Attribute for Program Header 170
L1906: Fixup Out of Buffer (<Obj> Referenced

at Offset <AdAress>). 170
L1907: Fixup Overflow in <Object>, Type <objType>

at Offset <Address> 170
L1908: Fixup Error in <Object>, Type <objType>

at Offset <Address> i, 171
L1910: Invalid Section Attribute for Program Header 171
L1911: Program Header End is not Aligned

onthe EndofaSection.......... 171
L1912: Object <obj> Overlaps with Another

(last addr: <addr>, Object Address: <objadr> 171
L1913: Object Filler Overlaps with Something Else. 171
L1914: Invalid Object: <Object>. 172

L1915: Gap in <ldent> at <address> before <Object> is too Big 172
L1916: Section Name <Section> is too Long.

Name is Cut to 90 Characters Length. 172
L1919: Duplicate Definition of <Object> in Library File(s)

<Filel> and/or <File2>Discarded 172
L1921: Marking: Too Many Nested Procedure Calls 173

L1922: File <filename> Has DWARF Data
of Different Version, DWARF Data

may notbe Generated 173
L1927: Fixups for DWARF Section <sectionname>

not Correctly Generated 173
L1928: Limitation: Code Size<num>..................... 173
L1929: Limitation: Too many Mections (<num>). 174
L1930: Unknown Fixup Type in <ident>, Type <type>,

at Offset<offset> 174
L1931: Program Header Begin is not Aligned

on the Beginningofa Section. 174
L1932: Program Header Overflow in <name> at <index> 174
L1933: ELF: <details>Warning 174
L1934: ELF: <details> Error 175
L1936: ELF Output: <details> Error...................... 176
L1938: Type Clash in Segment (Corrupt Object: <name>). 177
L4000: Could not Open Object File (<objFile>)

INNAMES List. e 177
L4001: Link Parameter File <PRMFile> not Found 177

User’'s Manual

MOTOROLA

Linker Messages 107

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.2 Introduction

6.3.125 L4002: NAMES Section was not Found in Linker

Parameter File <PRM File> 177
6.3.126 L4004: Linking <PRM File> as ELF/DWARF Format

Link Parameter File., 178
6.3.127 L4005: lllegal File Format of Object File (<objFile>)

INNAMES List. e 178
6.3.128 L4006: Failed to Create Temporary File 178
6.3.129 L4007: Include File Nesting too Deep

inLink ParameterFile. 178
6.3.130 L4008: Include File <includefile> notFound 178

This chapter lists and defines all messages generated by the MCUez linker.

6.3 Linker Messages Reference

User’'s Manual

Four types of messages are generated by the linker.

1. Information — A message is displayed and linking continues.
Information messages do not interrupt linking and provide programming
related information.

2. Warning — A message is displayed and linking continues. Warning
messages indicate possible programming errors.

3. Error — A message is displayed and linking stops. Error messages
indicate illegal syntax in the parametear(n) file.

4. Fatd— A message is displayed and linking is aborted. A fatal message
indicates a severe error.

Linker messages are identified by a message code (L for linker) and a 4- to
5-digit number. Messages are documented in increasing order. Each message is
described by its type, a description, an example (if available), and tips to fix a
problem.

MCUez Linker

108

Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference
6.3.1 L1: Unknown Message Occurred

Type: Fatal

Description: The linker tried to emit an undefined message. This is an internal error.

Tip: None

6.3.2 L2: Message Overflow, Skipping <type> Messages

Type: Information

Description: The maximum number of messages of a specific type have been displayed. The
number of messages to display is controlled by the -WmsgNi, -WmsgNw, and
-WmsgNe options.

Tip: Increase maximum setting in tMessagetab of theOption Settingsdialog
box.

6.3.3 L64: Line Continuation Occurred in <FileName>

Type: Information

Description: In a parameter file, the back slash character (\) at the end of a path is interpreted
as a line continuation function. The MS-DOS path separation character is also
a slash.

Example:
LIBPATH=c:\mcuez\lib\
OBJPATH=c:\mcuez\work

Is interpreted by the compiler as:

LIBPATH=c\mcuez\libOBIPATH=c\mcuez\work

Tip: Enter a period (.) after paths that end with a slash or remove the trailing slash.

LIBPATH=c:\mcuez\lib\.
OBJPATH=c:\mcuez\work

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 109

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.4 L1000: <Command Name> not Found

Type: Error

Description: This message is generated when a mandatory linker command is missing from
the parameter file. Mandatory commands are:

* LINK — Contains the name of the absolute file to generate. If the option
-0 is specified on the command line and thBK command is missing
from the parameter file, this message is not generated.

» NAMES— Lists the files building the application

« PLACEMENT- Associates at least the predefined sectiterd and
.data with a memory range

If LINK command is missing, the messagklNK not found .
If NAMESommand is missing, the messagRAMES not found.
If PLACEMENTommand is missing, messag®IsSACEMENT not found .

Example: NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Insert missing command in the PRM file.

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F,;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

User’'s Manual MCUez Linker

110 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.5 L1001: <Command Name> Multiply Defined

Type: Error
Description: This message is generated when a linker command is detected more than once
in the parameter file.

These linker commands cannot be specified more than once in a parameter file.
* LINK — Contains the name of the absolute file to generate
* NAMES— Lists files building the application
» SEGMENTS- Associates a hame with a memory area
* PLACEMENT- Sections are assigned to a memory range
« ENTRIES — Lists objects linked with the application
* MAPFILE — Specifies information to be stored in the map file
* MAIN — Defines the application main function
* INIT —Defines the application entry point
» STACKSIZE — Defines the stack size
* STACKTOR— Defines the stack pointer initial value

When theLINK command is detected more than once, the message will be:
LINK multiple defined

Example: LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;
END
LINK fibo.abs
[* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 111

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

Tip: Remove one of the duplicated commands.

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
dext INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

6.3.6 L1002: Command <Command Name> Overwritten by Option <Option Name>
Type: Warning
Description: This message is generated when a command line option overrides a command
in the parameter file.
<command name>: Name of the command in pine file
<option name>: Linker command line option
Commands that may be overridden by a command line option are:
* LINK — Overridden by the option —O; defines the output filename
* MAPFILE — Overridden by the option —M; enables generation of the
map file
* INIT — Overridden by the option —E; defines the application entry
point

When theLINK command is detected in the parameter file and the option -O is
specified on the command line, this message is generated:

Command LINK overwritten by option -O

User’'s Manual MCUez Linker

112 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.7 L1003: Only a Single SEGMENTS or SECTIONS Block is Allowed

Type: Error

Description: This error occurs when the parameter file contains both a SECTIONS and a
SEGMENTS block. The SECTIONS block is a synonym for the SEGMENTS
block. It is supported for compatibility with an older version of the parameter
file.

Example: LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O TO OxBFF;
END
SECTIONS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O TO OxBFF;
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Remove either the SEGMENTS or SECTIONS block.

6.3.8 L1004: <Separator> Expected

Type: Error

Description: This message is generated when the specified <separator> is missing from an
expected position:

<separator>: character or expression

Example: SEGMENTS
MY_RAM =READ_WRITE 0x800 TO Ox8FF
ALIGN [2TO 4, 4]
N

ERROR: : expected.

Tip: Insert the specified separator at the expected position.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 113

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.9 L1005: Fill Pattern Will Be Truncated (>0xFF)

Type:

Description:

Example:

Tip:

Example:

Warning

This message is generated when the constant specified as a fill pattern cannot
be coded on a byte. The constant truncated to a byte value will be used as the
fill pattern.

SEGMENTS
MY_RAM = READ_WRITE 0x0800 TO Ox8FF FILL OxA34;
END

To avoid this message, split the constant into 2-byte constants.

SEGMENTS
MY_RAM = READ_WRITE 0x0800 TO Ox8FF FILL OxA 0x34;
END

6.3.10 L1006: <Token> not Allowed

Type:

Description:

Example:

Tip:

Example:

User’'s Manual

Error

This message is generated when a filename followed by an asterick (*) is
specified in an OBJECT_ALLOCATION or LAYOUT block. This is not
possible, because a section is either a read-only or a read/write section. When
all objects defined in a file are moved to a section, the destination section will
contain both code and variables. This is logically not possible.

OBJECT_ALLOCATION
fibo.o:* INTO mySec;
N

ERROR: * not allowed
END

Move either all functions, variables, or constants to the destination section.
OBJECT_ALLOCATION

fibo.0:CODE[*] INTO mySec;
END

MCUez Linker

114

Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.11 L1007: <Character> not Allowed in Filename (Restriction)

Type:

Description:

Example:

Tip:

MCUez Linker

Error

A filename specified in the parameter file contains an illegal character.

These specific characters are not allowed in a filename:

or

Colon () — Used as separator to specify a local object (function or
variable) in a parameter file

Semi-colon (;) — Used as delimiter for a command line in a LAYOUT
or OBJECT_ALLOCATION block

Greater than symbol (>) — Used as a separator to refer to an object
located in a section inside a LAYOUT or OBJECT_ALLOCATION
block

Plus and minus (+ and —) — This may cause a problem when used as a
filename suffix in the NAMES block.

NAMES
file:1.0;
N
ERROR: "' or ">' not allowed in filename (restric-
tion)
END

NAMES
filel.o file>2.lib;
N
ERROR: "' or >' not allowed in filename (restric-
tion)
END

Change the filename and avoid the illegal characters.

User’'s Manual

MOTOROLA

Linker Messages 115

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.12 L1008: Only Single Object Allowed at Absolute Address

Type: Error

Description: Multiple objects are placed at an absolute address in an
OBJECT_ALLOCATION block. Only single objects are allowed there.

Example: OBJECT_ALLOCATION
varl var2 AT 0x0800:;

AN

ERROR: Only single object allowed at absolute address
END

or
OBJECT_ALLOCATION
file.o:DATA[*] AT 0x900;
N

ERROR: Only single object allowed at absolute address
END

Tip: Specify the objects on separate lines.

Example: OBJECT_ALLOCATION
varl AT 0x0800;
var2 AT 0x0802;

END

User’'s Manual MCUez Linker

116 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.13 L1009: Segment Name <Segment Name> Unknown

Type:

Description:

Example:

Tip:

Example:

MCUez Linker

Error

Segment specified iPAACEMENBr LAYOUTcommand line was not

previously defined in the SEGMENTS block.
<segment name>: name of unknown segment

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO ROM_AREA;
N
ERROR: Segment Name ROM_AREA unknown
.data INTO MY_RAM;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Define the segment names in the SEGMENTS block.

LINK fibo.abs
NAMES fibo.o startl2s.o0 ansis.lib END
SEGMENTS
RAM_AREA = READ_WRITE 0x800 TO 0x80F;
ROM_AREA = READ_ONLY 0x810 TO OxAFF;
STK_AREA = READ_WRITE 0xB00 TO O0xBFF;
END
PLACEMENT
text INTO ROM_AREA;
.data INTO RAM_AREA,;
.stack INTO STK_AREA;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MOTOROLA

Linker Messages

For More Information On This Product,
Go to: www.freescale.com

User’'s Manual

Freescale Semiconductor, Inc.

Linker Messages

6.3.14 L1010: Section Name <section name> Unknown

Type: Error

Description: The section name specified in a command in the OBJECT_ALLOCATION
block was not previously specified in the PLACEMENT block.

<section name>: name of unknown section

Example: LINK fibo.abs
NAMES fibo.o startl2s.0 ansis.lib END
SEGMENTS
MY_ RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;
END
OBJECT_ALLOCATION
fibo.0:DATA[*] IN dataSec;
N

ERROR: Section Name dataSec unknown
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Specify the section in the PLACEMENT block.

Example: LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data, dataSec INTO MY_RAM,;
.stack INTO MY_STK;

END

OBJECT_ALLOCATION
fibo.0:DATA[*] IN dataSec;

END

[* Set reset vector on _Startup */

VECTOR ADDRESS O0xFFFE _Startup

User’'s Manual MCUez Linker

118 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.15 L1011: Incompatible Segment Qualifier: <Qualifierl> in Previous Segment
and <Qualifier2> in <Segment Name>

Type:
Description:

Example:

Tip:

Example:

MCUez Linker

Error

Two segments specified in the same statement in the PLACEMENT block are
not defined with the same qualifier.

<qualifierl>: Segment qualifier associated with the previous segmentin the list.
This qualifier may be READ_ONLY, READ_WRITE, NO_INIT, or PAGED.

<qualifier2> Segment qualifier associated with the current segment in the list.
This qualifier may be READ_ONLY, READ_WRITE, NO_INIT, or PAGED.

<segment name >: Name of the current segment in the list

LINK fibo.abs
NAMES fibo.o startl2s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
SEC_RAM= READ_WRITE 0x020 TO 0x02F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_ROM, SEC_RAM;
N

ERROR: Incompatible segment qualifier: READ_ONLY in
previous segment and READ_WRITE in SEC_RAM
stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Modify the qualifier associated with the specified segment.

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
SEC_ROM= READ_ONLY 0x020 TO 0x02F;
MY ROM = READ_ONLY 0x810 TO OxAFF;
MY _STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_ROM, SEC_ROM,;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

User’'s Manual

MOTOROLA

Linker Messages 119

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.16 L1012: Segment is not Aligned on a <bytes> Boundary
Type: Warning
Description: Some targets (M*CORE) require aligned access for some objects.

Example (MsCORE): All 4-byte accesses must be aligned to four. According to the EABI, 8-byte
doubles must be aligned to eight. But if an 8-byte structure only contains chars,
then alignment is not needed.

Tip: Check whether the section contains objects that must be aligned.

6.3.17 L1015: No Binary Input File Specified

Type: Error

Description: No filenames specified in the NAMES block

Example: LINK fibo.abs

NAMES END

SEGMENTS
MY _RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O TO OxBFF;

END

PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup

Tip: Specify at least one filename in the NAMES block.

User’'s Manual MCUez Linker

120 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.18 L1016: File <Filename> Found Twice in NAMES Block

Type: Error

Description: A filename is detected twice in the NAMES block.
<filename >: Name of file detected twice in the NAMES block.

Example: LINK fibo.abs
NAMES fibo.o startup.o fibo.o END

AN

ERROR: File fibo.o found twice in the NAMES block
SEGMENTS
MY _ RAM = READ_WRITE 0x800 TO 0x80F;
MY ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Remove the second occurrence of the specified file.

6.3.19 L1037: ***** | inking of <parameter file> Failed ****

Type: Error

Description: An error occurred in the linking process. Linking is interrupted and no output is
written. The destination absolute file and the map file are not created.

Tip: Ensure that parameter file is valid and can be located.

6.3.20 L1038: Success. Executable File Written to <absfile>

Type: Information

Description: No error occurred during the linking process. The destination absolute file and
map file have been created by the linker.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 121

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.21 L1039: Limited Version. Too Many Objects or Code Linked

Type: Error

Description: This message indicates that the user is running a demo version. The limits for
demo versions are:

* 1024 bytes of code

* Maximum of 32 global objects linked

6.3.22 L1050: Running <versiontype>

Type: Information

Description: This message indicates that the user is running a special version of the linker,
for example, a time limited version.

6.3.23 L1052: User Requested Stop

Type: Error

Description: The user has clicked tBéop button in the toolbar. The linker stops execution
as soon as possible.

User’'s Manual MCUez Linker

122 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.24 L1100: Segments <Segmentl Name> and <Segment2 Name> Overlap

Type: Error

Description: Two segments defined in the PRM file overlap each other:
* <segmentl name >: Name of the first overlapping segment

* <segment2 name >: Name of the second overlapping segment

Example: N
Segments MY_RAM and MY_ROM overlap
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_ RAM = READ_WRITE 0x800 TO 0x80F;
MY ROM = READ_ONLY 0x805 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Modify the segment definition to remove the overlap.

Example: LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

/* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 123

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.25 L1102: Out of Allocation Space in Segment <Segment Name>
at Address <First Address Free>

Type: Error

Description: The specified segment is not big enough to contain all objects from sections
placed in it.

* <segment name> : Name of the undersized segment

» <first address free>: First address free in this segment (for instance,
address following the last address used)

Example: In the following example, assume the sectlata contains a character
variable and a structure of five bytes.

AN

Out of allocation space in segment MY_RAM at address
0x801
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x803;
MY_ROM = READ_ONLY 0x805 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
dext INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Set the end address of the specified segment to a higher value.

User’'s Manual MCUez Linker

124 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.26 L1103: <Section Name> not Specified in PLACEMENT Block

Type:

Description:

Example:

Tip:

NOTE:

MCUez Linker

Error

Indicates that a mandatory section is not specified in the PLACEMENT block.
Sections always specified in the PLACEMENT block.&s& and.data .

AN

ERROR: .text not specified in the PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
.init, rodata INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Insert the missing section in the PLACEMENT block.

The section DEFAULT_RAMis asynonym.idata and DEFAULT_ROMis
a synonym fortext . These two section names have been defined for
compatibility with previous versions of the linker.

User’'s Manual

MOTOROLA

Linker Messages 125

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.27 L1104: Absolute Object <Object Name> Overlaps with Segment <Segment Name>

Type:

Description:

Example:

Tip:

Example:

NOTE:

User’'s Manual

AN

An absolute object overlaps with a segment. This is not allowed because this
may cause multiple objects to be allocated at the same address.

ERROR: Absolute object globint overlaps with segment

MY_RAM
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY _RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
END
PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;
END
OBJECT_ALLOCATION
fiboCount AT 0x802;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Move the object to a free address.

LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
dext INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
OBJECT_ALLOCATION
fiboCount AT 0xCO0O:;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

An absolute object can also be placed in a segment where no sections are
assigned.

MCUez Linker

126

Linker Messages

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

Example: LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
ABS_MEM= READ_WRITE 0xC00 TO 0xCOF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
OBJECT_ALLOCATION
fiboCount AT 0xCOO;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

6.3.28 L1105: Absolute Object <object name> Overlaps with Another Absolute Allocated
Object or with a Vector

Type: Error

Description: An absolute object overlaps with another absolute object or with a vector.

Example: n
ERROR: Absolute object globChar overlaps with another
absolute allocated object or with a vector
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY _ RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
OBJECT_ALLOCATION
fiboCount AT 0xC02;
counter AT 0xCO03;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Move the object to a free position.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 127

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.29 L1106: <Object Name> not Found

Type: Error | Warning

Description: Anobjectreferenced in the parameter file or in the application is not found. This
message is generated when:

* An object specified in ¥ECTORr VECTOR ADDRES8ommand is
not found (error).

» No startup structure is detected in the application (warning).

* Anobject (function or variable) referenced in another object is not found
in the application (error).

* An object (function or variable) specified in the ENTRIES block is not
found (error).

Example: A
ERROR: globint not found
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
END
PLACEMENT
text, .rodata INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;
END

ENTRIES
globint;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips: * The missing object must be implemented in one of the modules building
the application.

* Ensure that the definitions of OBJPATH and GENPATH are correct and
the linker uses the latest version of object files.

* Check the NAMES block to ensure all binary files building the
application are listed.

User’'s Manual MCUez Linker

128 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.30 L1107: <Object Name> not Found

Type: Error | Warning

Description: An object referenced in the parameter file or in the application is not found
anywhere in the application. This message is generated in the following cases:

* An object moved to another section in the OBJECT_ALLOCATION
block is not found anywhere in the application (warning).

* Anobjectplaced at an absolute address inthe OBJECT_ALLOCATION
block is not found anywhere in the application (error).

* An object specified in ¥ECTORr VECTOR ADDRESSommand is
not found in the application (error).

* No startup structure detected in the application (warning).

* Anobject (function or variable) referenced in another object is not found
in the application (error).

* An object (function or variable) specified in the ENTRIES block is not
found in the application (error).

Example: A
ERROR: globint not found
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_ WRITE 0x800 TO 0x80F;
MY _ROM = READ _ONLY 0x810 TO OXAFF;
MY _STK = READ_ WRITE 0xB00O TO 0xBFF;
END
PLACEMENT
text, .rodata INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;
END

OBJECT_ALLOCATION
globint AT OxCO02;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 129

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

Tips:

The missing object must be implemented in one of the modules building the
application.

Ensure that path definitions are correct for OBJPATH and GENPATH and that
the linker uses the last version of the object files.

Ensure that all binary files building the application are listed in the NAMES
block.

6.3.31 L1109: <Segment Name> Appears Twice in SEGMENTS Block

Description:

User’'s Manual

Type:

Example:

Tip:

Error

A segment name is specified twice in a parameter file. This is not allowed.
When this segment name is referenced in the PLACEMENT block, the linker
cannot detect which memory area is referenced.

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
MY_RAM = READ_WRITE 0xC00 TO OxCFF;
N
ERROR: MY_RAM appears twice in SEGMENTS block
END
PLACEMENT
text, .rodata INTO MY_ROM;
.data INTO MY_RAM,;
.Sstack INTO MY_STK;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Change one of the segment names to generate unique segment names. If the
same memory area is defined twice, remove one of the definitions.

MCUez Linker

130

Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.32 L1110: <Segment Name> Appears Twice in PLACEMENT Block

Type: Error

Description: The specified segment appears twice in a PLACEMENT block, and one of the
PLACEMENT lines is part of a segment list. A segment name may appear in
several lines in the PLACEMENT block, if it is the only segment specified in
the segment list. Sections specified in both PLACEMENT lines are merged into
one list of sections, which are allocated in the specified segment.

Example: LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
text, .rodata INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;

codeSecl, codeSec2 INTO ROM_2, MY_ROM;

N

ERROR: MY_ROM appears twice in PLACEMENT block
END

[* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup

Tip: Remove one instance of the segment from the PLACEMENT block.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 131

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.33 L1111: <Section Name> Appears Twice in PLACEMENT Block

Type: Error

Description: The specified section appears multiple times in a PLACEMENT block.

Example: LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
text, .rodata INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
text INTO ROM_2;

N

ERROR: .text appears twice in PLACEMENT block
END

/* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup

Tip: Remove one occurrence of the specified section from the PLACEMENT block.

6.3.34 L1112: <Section name> Section Has Segment Type <Segment Qualifier> (lllegal)

Type: Error

Description: A section is placed in a segment defined with an incompatible qualifier. This
message is generated when:

* The sectionstack is placed in a READ_ONLY segment.
» The sectionbss is placed in a READ_ONLY segment.

e The sectionstartData is placed in a READ_WRITE, NO_INIT, or
PAGED segment.

* Thesectioninit isplacedina READ_WRITE, NO_INIT, or PAGED

segment.
» The sectioncopy isplacedina READ WRITE, NO_INIT, or PAGED
segment.
User's Manual MCUez Linker
132 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

» Thesectiontext isplacedinaREAD_WRITE, NO_INIT, or PAGED
segment.

* The sectiondata is placed in a READ_ONLY segment.
» A data section is placed in a READ_ONLY segment.
* A code section is placed in a READ_WRITE segment.

Example: N
ERROR: The .data section has segment type READ_ONLY
(illegal)
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO ROM_2;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Place the specified section in a segment that has been defined with an
appropriate qualifier.

Example: LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY _STK = READ_WRITE 0xB00O TO OxBFF;
ROM_2 =READ_ONLY 0x500 TO Ox7FF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.Stack INTO MY_STK;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 133

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.35 L1113: <Section name> Section Has Segment Type <Segment Qualifier> (lllegal)
Type: Warning

Description: A section is placed in a segment, which has been defined with an incompatible
qualifier. This message is generated in the following cases:

* The sectionstack is placed in a READ_ONLY segment.
* The sectionbss is placed in a READ_ONLY segment.

e The sectionstartData is placed ina READ_WRITE, NO_INIT, or
PAGED segment.

* Thesectioninit isplacedinaREAD_WRITE, NO_INIT, or PAGED
segment.

* Thesectioncopy isplacedinaREAD WRITE, NO_INIT, or PAGED
segment.

* Thesectiontext isplacedinaREAD_WRITE, NO_INIT, or PAGED
segment.

* The sectiondata is placed in a READ_ONLY segment.

Example: A
ERROR: The .data section has segment type READ_ONLY
(illegal)
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F,;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
text, .rodata INTO MY_ROM;
.data INTO ROM_2;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

User’'s Manual MCUez Linker

134 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

Tip: Place the specified section in a segment that has been defined with an
appropriate qualifier.

Example: LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

6.3.36 L1114: <Section Name> Section Has Segment Type <Segment Qualifier>
(Initialization Problem)
Type: Warning

Description: The specified section is loaded in a segment that has been defined with the
qualifier NO_INIT or PAGED. This may generate a problem because the
section contains some initialized constants, which will not be initialized at

application startup. This message is generated when:
* The sectionrodata is placed in a NO_INIT or PAGED segment.
* The sectionrodatal is placed in a NO_INIT or PAGED segment.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 135

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

Example: A
WARNING: The .rodata section has segment type NO_INIT
(initialization problem)
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
RAM_2 = NO_INIT 0x500 TO Ox7FF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;
.rodata INTO RAM_2;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Place the specified section in a segment defined with the READ_ONLY or
READ_WRITE qualifier.

Example: LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY _RAM = READ_ WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00O TO OxBFF;
RAM_2 = NO_INIT 0x500 TO Ox7FF;
END
PLACEMENT
dext INTO MY_ROM;
.data INTO MY_RAM;
.Sstack INTO MY_STK;
rodata INTO MY_ROM;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

User’'s Manual MCUez Linker

136 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.37 L1115: Function <Function Name> not Found

Description:

MCUez Linker

Type: Error | Warning

The specified function is not found in the application. This message is generated

when:

No main function is available in the application. This function is not
required for an assembly application. For ANSI C applications, if no
main function is available, the programmer must ensure that application
startup is performed correctly. Usually, the main function is called
main , but a personal main function can be defined using the linker
commandJAIN.

No init function is available. The init function defines the entry point in
the application. This function is required for ANSI C and assembly
applications. Usually, the init function is calle8tartup , but a
personal init function can be defined using the linker comniidhid .

Tip: Provide application with the requested function.

User’'s Manual

MOTOROLA

Linker Messages 137

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.38 L1118: Vector Allocated at Absolute Address <Address> Overlaps with Another
Vector or an Absolute Allocated Object

Type: Error

Description: A vector overlaps with an absolute object or another vector.

Example: n
ERROR: Vector allocated at absolute address OxFFFE
overlaps with another vector or an absolute allocated
object
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_ WRITE 0x800 TO 0x80F;
MY _ROM = READ _ONLY 0x810 TO OxAFF;
MY _STK = READ_ WRITE 0xB00O TO OxBFF;
END
PLACEMENT
text, .rodata INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;
END

[* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup
VECTOR ADDRESS OxFFFF 0x000A

Tip: Move the object or vector to a free position.

User’'s Manual MCUez Linker

138 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.39 L1119: Vector Allocated at Absolute Address <Address> Overlaps with Sections
Placed in Segment <Segment Name>

Type: Error

Description: The specified vector is allocated inside a segment specified in the
PLACEMENT block. This is not allowed because the vector may overlap with
objects defined in the sections.

A vector may be allocated inside a segment that does not appear in the
PLACEMENT block.

Example: ERROR: Vector allocated at absolute address OxFFFE
overlaps with sections placed in segment ROM_2
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
ROM_2 =READ_ONLY O0xFFOO0 TO OxFFFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
.rodata INTO ROM_2;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Define the specified segment outside the vector table.

Example: LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O TO OxBFF;
ROM_2 = READ_ONLY 0xCO00 TO OxCFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
.rodata INTO ROM_2;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 139

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.40 L1120: Vector Allocated at Absolute Address <Address> Placed in Segment
<Segment Name>, Which Has No READ_ONLY Qualifier

Type: Error

Description: The specified vector is defined inside a segment not defined with the qualifier
READ_ONLY. The vector table should be initialized at application load time
during the debug phase. It should be burned into the EPROM when application
development is terminated. For this reason, the vector table must always be
located in a READ_ONLY memory area.

Example: N
ERROR: Vector allocated at absolute address OxFFFE
placed in segment RAM_2 which has not READ_ONLY qual-
ifier
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xBOO TO OxBFF;
RAM_2 = READ_WRITE OxFFOO TO OxFFFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Define the specified segment with the READ_ONLY qualifier.

6.3.41 L1121: Out of Allocation Space at Address <Address> for .copy Section

Type: Error

Description: Insufficient memory to store information for initialized variables in¢hpy
section

Tip: Specify a higher end address for the segment, whereoine section is
allocated.

User’'s Manual MCUez Linker

140 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.42 L1122: Section .copy Must Be Last Section in Section List

Type: Error

Description: Thecopy section is not specified at the end of a section list in the
PLACEMENT block. Since the size of this section cannot be evaluated before
all initialization values are written, theopy section must be the last section
in a section list.

Example: A
ERROR: Section .copy must be the last section in the
section list
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xBOO TO OxBFF;

END

PLACEMENT
.copy, .text INTO MY_ROM;
.data INTO MY_RAM,;
.Stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Move the sectiorcopy to the last position in the section list or define it on a
separate PLACEMENT line in a separate segment.

Example: LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO Ox80F;
MY_ROM = READ_ONLY 0x810 TO OXAFF;
MY_STK = READ_WRITE 0xB00 TO OXxBFF;
ROM_2 = READ ONLY 0xCO00 TO OXDFF;

END

PLACEMENT

text INTO MY_ROM:;
.data INTO MY_RAM:;
.stack INTO MY_STK;
.copy INTO ROM_2;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 141

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.43 L1123: Invalid Range Defined for Segment <Segment Name> — End Address Must

Be Bigger Than Start Address

Type:

Description:

User’'s Manual

Example:

Tip:

The memory range specified in the segment definition is not valid. The segment
end address is smaller than the segment start address.

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS

MY_RAM = READ_WRITE 0x800 TO Ox7FF;

N

ERROR: Invalid range defined for segment MY_RAM. End
address must be bigger than start address

MY_ROM = READ_ONLY 0x810 TO OxAFF;

MY_STK = READ_WRITE 0xBOO TO OxBFF;
END

PLACEMENT
ext INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK,;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Change the segment start or end address to define a valid memory range.

MCUez Linker

142

Linker Messages MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.44 L1124: '+ or'-' Should Directly Follow Filename

Type: Error

Description: The + or - suffix specified after a filename in the NAMES block does not
directly follow the filename. A space probably exists between the filename and
suffix.

Example: LINK fibo.abs
NAMES fibo.o + startup.o END
N

ERROR: '+ or '-' should directly follow the filename
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xBOO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;

END

/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Remove the extra space after the filename.

Example: LINK fibo.abs
NAMES fibo.o+ startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 143

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.45 L1125: In Small Memory Model, Code and Data Must Be Located on Bank 0O

Type: Error

Description: The application has been assembled or compiled in a small memory model and
the memory area specified for a segment is not located on the first 64 Kbytes
(0x0000 to OXFFFF).

Example: ERROR: In small memory model, code and data must be

located on bank O

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x10810 TO O0x10AFF;
MY_STK = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: If memory higher than OXFFFF is required for the application, the application
must be assembled or compiled using the banked memory model. If no memory
above OXFFFF is required, modify the memory range and place it on the first
64 Kbytes of memory.

User’'s Manual MCUez Linker

144 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.46 L1127: Object Allocated Outside of Segment Bounds (HC12)

Type:

Description:

Example:

Tip:

MCUez Linker

Warning

The application has been assembled or compiled in the small memory model
and the memory area specified for a segment is not located on the first
64 Kbytes (0x0000 to OXFFFF).

N

ERROR: In small memory model, code and data must be
located on bank 0
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x10810 TO O0x10AFF;
MY_STK = READ_WRITE 0xBOO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

If memory above OXFFFF is required for the application, the application must
be assembled or compiled using the medium memory model. If not, modify the
memory range and place it on the first 64 Kbytes of memory.

User’'s Manual

MOTOROLA

Linker Messages 145

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.47 L1200: Both STACKTOP and STACKSIZE Defined

Type: Error

Description: TheéSTACKTORINASTACKSIZE commands are specified in thmfile.
This is not allowed because it generates ambiguity in defining the stack.

Example: n
ERROR: Both STACKTOP and STACKSIZE defined
LINK fibo.abs
NAMES fibo.o startup.o END

STACKTOP OxBFE

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;

END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
END

STACKSIZE 0x60
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Remove either thETACKTORIr STACKSIZE command from thegprmfile.

User’'s Manual MCUez Linker

146 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.48 L1201: No Stack Defined
Type: Warning

Description: The parameter file does not contain a stack definition. In that case, it is the
programmer’s responsibility to initialize the stack pointer inside the application
code. The stack can be defined in the parameter file in one of three ways:

1. Through th6sTACKTORommand
2. Through the&sTACKSIZE command

3. Through specification of thetack section in the placement block

Example: A
WARNING: No stack defined
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;

END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Define the stack in one of the three ways specified.

NOTE: If the programmer initializes the stack pointer inside the source code,
initialization from the linker will be overridden.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 147

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.49 L1202: Stack Cannot Be Allocated on More Than One Segment

User’'s Manual

Type:

Description:

Example:

Tip:

The sectiostack

N

is specified on a PLACEMENT line where several
segments are listed. This is not allowed because the memory area reserved for
the stack must be contiguous and cannot be split over different memory ranges.

ERROR: stack cannot be allocated on more than one seg-

ment

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB00O TO OxBFF;
STK_2 = READ_WRITE 0xD00O TO OxDFF;

END

PLACEMENT
text INTO MY_ROM:
.data INTO MY_RAM;
stack INTO STK_1, STK_2;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Define a single segment with the READ_WRITE or NO_INIT qualifier to
allocate the stack.

MCUez Linker

148

Linker Messages

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.50 L1203: STACKSIZE Command Defines a Size of <Size> But .stack Specifies
a Stacksize of <Size>

Type: Error

Description: The stack is defined through bo®TRACKSIZE command and placement of
the.stack section in a READ_WRITE or NO_INIT segment. However, the
size specified in th8 TACKSIZE command is bigger than the size of the
segment where the stack is allocated.

Example: ERROR: STACKSIZE command defines a size of 0x120 but
.stack specifies a stacksize of 0x100
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0O TO OxBFF;

END

PLACEMENT
ext INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO STK_1;

END

STACKSIZE 0x120

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: * Toavoid this message, either adapt the size specified BTRCKSIZE
command to fit into the segment whestack is allocated or simply
remove the commar8TACKSIZE

* Ifthe comman&TACKSIZEis removed from the previous example, the
linker will initialize a stack from 0x100 bytes. The stack pointer initial
value will be set to OXBFE.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 149

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

Example: LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY _STK = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

If the size specified in 8TACKSIZE command is smaller than the size of the
segment where the sectiatack is allocated, the stack pointer initial value
will be evaluated as follows:

<segment start address> + <size in STACKSIZE> -
<Additional Byte Required by the processor>

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;

END

STACKSIZE 0x60
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

In the previous example, the initial value for the stack pointer is evaluated as:
0xB00 + 0x60s —2 = OxB5E

User’'s Manual MCUez Linker

150 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.51 L1204: STACKTOP Command Defines Initial Value of <Stack Top> But .stack
Specifies Initial Value of <Initial Value>

Type: Error

Description The stack is defined through botABACKTORommand and placement of the
.stack sectionina READ_WRITE or NO_INIT segment. However, the value
specified in thesTACKTORommand is bigger than the end address of the
segment where the stack is allocated.

Example: n
ERROR: STACKTOP command defines an initial value of

OxCFE but .stack specifies an initial value of OxBFF
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxXAFF;
STK_1 = READ_WRITE 0xB0O TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO STK_1;

END

STACKTOP O0xCFE
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips: * To avoid this message, either adapt the address specified in the
STACKTORommand to fit into the segment wheseack is allocated
or simply remove the comma8TACKTOP

* Ifthe commandTACKTORs removed from the previous example, the
stack pointer initial value will be set to OXBFE.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 151

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

Example: LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY _STK = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

6.3.52 L1205: STACKTOP Command Incompatible with .stack Being Part of List
of Sections

Type: Error

Description: The stack is defined through botABACKTORommand and placement of the
.stack section in a READ_WRITE or NO_INIT segment. Thiack
section is specified in a list of sections in the PLACEMENT block.

Example: N
ERROR: STACKTOP command incompatible with .stack be-
ing part of a list of sections
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0O TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;
.data, .stack INTO STK_1;
END

STACKTOP OxBFE
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Specify thestack section in a placement line, where the stack alone is
specified.

User’'s Manual MCUez Linker

152 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.53 L1206: Stack Overlaps with a Segment Which Appears in PLACEMENT Block

Type: Error

Description: The stack is defined through the comnBRACKTORaNd the initial value is
inside a segment, which is used in the PLACEMENT block. This is not allowed
because the stack may overlap with allocated objects.

Example: ERROR: .stack overlaps with a segment which appears
in the PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY _RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0OO TO OxBFF;

END
PLACEMENT
text INTO MY_ROM;
.data INTO STK_1,
END

STACKTOP OxBFE
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Define the stack initial value outside all segments specified in the
PLACEMENT block.

Example: LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xBOO TO OxBFF;

END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
END

STACKTOP OxBFE
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 153

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.54 L1207: STACKSIZE Command is Missing

Type: Error

Description: The stack is defined by placing #tack section in a READ_WRITE or
NO_INIT segment, although thetack section is not alone in the section list.
In this case, 8 TACKSIZE command is required to specify the stack size.

Example: A
ERROR: STACKSIZE command is missing
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY _RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0OO TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;
.data, .stack INTO STK_1;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Specify the stack size in@Ir ACKSIZE command.

User’'s Manual MCUez Linker

154 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.55 L1301: Cannot Open File <Filename>

Type: Error

Description: The linker is unable to open the application map file, absolute file, or one of the
binary files used to build the application.

Tips: » If the.absfile or mapfile cannot be found, ensure that memory is
available for the directory to store the file and the directory has read/write
access.

» Ifthe environmentvariable TEXTPATH is defined, the map file is stored
in the first directory specified; otherwise, it is created in the directory
where the source file is detected.

» If the environment variable ABSPATH is defined, the absolute file is
stored in the first directory specified; otherwise, it is created in the
directory where the parameter file is detected.

» If a binary file cannot be found, make sure the file exists and is spelled
correctly. Check if paths are defined correctly. The binary files must be
located in one of the paths listed in the environment variables OBJPATH
or GENPATH or in the working directory.

6.3.56 L1302: File <Filename> not Found

Type: Error

Description: A file required during the link session cannot be found. This message is
generated when the parameter file specified on the command line cannot be
found.

Tips: » Make sure the file exists and is spelled correctly.

» Check if paths are defined correctly. The parameter file must be located
in one of the paths listed in the environment variable GENPATH or in
the project directory.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 155

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.57 L1303: <Filename> is not a Valid ELF File

Type: Error
Description: The specified file is not a valid ELF binary file. The linker is only able to link
ELF binary files.
Tips: » Check that the specified file has been compiled or assembled with the

correct option to generate an ELF binary file.

» Check if paths are defined correctly. The binary files must be located in
one of the paths listed in the environment variables OBJPATH or

GENPATH or in the project directory.

6.3.58 L1304: <Filename> is not a Valid Hex File

Type: Error

Description: The file specified iInHEXFILE command is not a valid hex file.

Tips: Ensure that the file was generated correctly.

Ensure that paths are defined correctly. The hex files must be located in one of
the paths listed in the environment variable OBJPATH or GENPATH or in the

working directory.

6.3.59 L1305: <Filename> is not an ELF Format Object File (ELF Object File Expected)

Type: Error
Description: The specified file is not an ELF binary file. The linker is only able to link ELF
binary files.

Ensure that the specified file has been compiled or assembled with the
correct option to generate an ELF binary file.

Ensure that paths are defined correctly. The binary files must be located
in one of the paths listed in the environment variables OBJPATH or
GENPATH or in the working directory.

Tips: .

User’'s Manual MCUez Linker

Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

156

Freescale Semiconductor, Inc.
Linker Messages

Linker Messages Reference

6.3.60 L1309: Cannot Open <File>

Type: Error

Description: An input file is missing or the linker cannot open it.

Tip: Ensure that paths are defined correctly.

6.3.61 L1400: Incompatible Processor: <Processor Name> in Previous Files
and <Processor Name> in Current File

Type: Error
The binary files building the application have been generated for a different

Description:
target processor. In this case, the linked code cannot be compatible.

Tips: » Make sure all sources are compiled and assembled for the same

processor.
Check if paths are defined correctly. The binary files must be located in
one of the paths listed in the environment variables OBJPATH or

GENPATH or in the project directory.

6.3.62 L1401: Incompatible Memory Model: <Memory Model Name> in Previous Files
and <Memory Model Name> in Current File

Type: Error
The binary files building the application have been generated for a different

Description:
memory model. In this case, the linked code cannot be compatible.

Tips: * Make sure all sources are compiled and assembled in the same memory
model.

Check if paths are defined correctly. The binary files must be located in
one of the paths listed in the environment variables OBJPATH or

GENPATH or in the project directory.

MCUez Linker User’'s Manual

Linker Messages 157

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Linker Messages

6.3.63 L1403: Unknown Processor <Processor Constant>
Type: Error
Description: The processor encoded in the binary object file is not a valid processor constant.

Tip: Check if paths are defined correctly. The binary files must be located in one of
the paths listed in the environment variables OBJPATH or GENPATH or in the
project directory.

6.3.64 L1404: Unknown Memory Model <Memory Model Constant>

Type: Error

Description: The memory model encoded in the binary object file is not valid for the target
processor.

Tip: Check if paths are defined correctly. The binary files must be located in one of
the paths listed in the environment variables OBJPATH or GENPATH or in the
project directory.

User’'s Manual MCUez Linker

158 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.65 L1501: <Symbol Name> Cannot be Moved in Section <Section Name>
(Invalid Qualifier <Segment Qualifier>)

Type: Error

Description: An invalid move operation has been detected from an object inside a section,

which appears only in the parameter file. In that case, the first object moved in
a section determines the attribute associated with the section.

» If the object is a function, the section should be a code section.

» If the object is a constant, the section should be a constant section.
» Otherwise, it should be a data section.
This message is generated:

* When a variable is moved in a section, which is placed in a
READ_ONLY segment

* When a function is moved in a section, which is placed in a
READ_WRITE, NO_INIT, or PAGED segment

Example: ERROR: counter cannot be moved in section sec2 (in-

valid qualifier READ_ONLY)

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text, sec2 INTO MY_ROM;
.data INTO MY_RAM,;
.Stack INTO STK_1;

END

OBJECT_ALLOCATION
counter IN sec?;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Move the section in a segment with the required qualifier or remove the move
operation.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 159

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.66 L1502: <Object Name> Cannot be Moved from Section <Source Section Name>
to Section <Destination Section Name>

Type: Error

Description: An invalid move operation has been detected from an object inside a section,
which also appears in a binary file.

This message is generated when a variable is moved in a code or constant
section or a function is moved in a data or constant section.

Example: A
ERROR: counter cannot be moved from section .data to
section .text
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ WRITE 0x800 TO 0x80F;
MY _ROM = READ ONLY 0x810 TO OxAFF;
STK 1 = READ_WRITE 0xB0O0 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.Stack INTO STK _1;

END

OBJECT_ALLOCATION
counter IN .text;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Move the object into a section with the required attribute or remove the move
operation.

User’'s Manual MCUez Linker

160 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.67 L1503: <Object Name> (from file <Filename>) Cannot be Moved from
Section <Source Section Name> to Section <Destination Section Name>

Type: Error

Description: Aninvalid move operation has been detected for objects defined in a binary file
inside a section.

This message is generated when a variable is moved in a code or constant
section or a function is moved in a data or constant section.

Example: A
ERROR: counter (from file fibo.0) cannot be moved

from section .data to section .text

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO STK_1;

END

OBJECT_ALLOCATION
fibo.0:[DATA] IN .text;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Move the specified object into a section with the required attribute or remove
the move operation.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 161

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.68 L1504: <Object Name> (from section <Section Name>) Cannot be Moved from
Section <Source Section Name> to Section <Destination Section Name>

Type: Error

Description: An invalid move operation has been detected for objects defined in a section
inside of another section.

This message is generated when a variable is moved in a code or constant
section or a function is moved in a data or constant section.

Example: N
ERROR: counter (from section .data) cannot be moved
from section .data to section .text
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO STK_1;

END

OBJECT_ALLOCATION
.data>[*] IN .text;
END
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tip: Move the specified object into a section with the required attribute or remove
the move operation.

User’'s Manual MCUez Linker

162 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.69 L1600: Main Function Detected in ROM Library
Type: Warning

Description: A main function has been detected in a ROM library. A main function is not
required in a ROM library since they are not self-executable applications.

Tips: * Remove thtMAIN command from the parameter file.

» If the application contains the functiomain , rename it.

6.3.70 L1601: Startup Function Detected in ROM Library
Type: Warning

Description: An application entry point has been detected in a ROM library. An application
entry point is not required in a ROM library.

Tips: Remove théNIT command from the parameter file.

» If the application contains aStartup function, rename it.

6.3.71 L1620: Bad Digit in Binary Number

Type: Error

Description: Syntax error — lllegal character in a binary number

6.3.72 L1621: Bad Digit in Octal Number

Type: Error

Description: Syntax error — lllegal character in an octal number

6.3.73 L1622: Bad Digit in Decimal Number

Type: Error
Description: Syntax error — lllegal character in a decimal number
MCUez Linker User’s Manual
MOTOROLA Linker Messages 163

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.74 L1623: Number too Big

Type: Error

Description: Syntax error — An identifier in the linker parameter file is limited to a length
of 31 characters.

Tip: Reduce the length of the identifier.

6.3.75 L1624: Ident too Long. Cut after 31 Characters

Type: Error

Description: Syntax error — An identifier in the linker parameter file is limited to a length
of 31 characters. The identifier string is truncated after 31 characters.

Tip: Reduce the length of the identifier.

6.3.76 L1625: Comment not Closed

Type: Error

Description: An ANSI C comment (/* */) was opened, but not closed.

Tip: Close the comment.

6.3.77 L1626: Unexpected End of File

Type: Error

Description The end of file was encountered and the scanner was involved in the inner scope
of an expression or structure nesting. This is illegal.

Tip: Check the syntax of the linker parameter file.

User’'s Manual MCUez Linker

164 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.78 L1627: PRESTART Command not Supported Yet
Type: Error

Description: ThéPRESTARTcommand is recognized by the parser, but is not yet
implemented.

Tip: Contact a Motorola representative for features of the next release.

6.3.79 L1628: HEXFILE Command not Supported Yet
Type: Error

Description: TheHEXFILE command is recognized by the parser, but is not implemented
yet.

Tip: Contact a Motorola representative for features of the next release.

6.3.80 L1629: START_DATA Command not Supported Yet
Type: Error

Description: TheéSTART_DATAcommand is recognized by the parser, but is not
implemented yet.

Tip: Contact a Motorola representative for features of the next release.

6.3.81 L1700: File <Filename> Should Contain DWARF Information
Type: Error

Description: The binary file that defines the startup structure does not contain DWARF
information. This is required because the type of startup structure is not fixed

by the linker and depends on the field and field position inside the user-defined
structure.

Tip: Insert DWAREF information and recompile the ANSI C file containing the
startup structure definition.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 165

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.82 L1701: Startup Data Structure is Empty

Type: Error
Description: The size of the user-defined startup structure is 0 bytes.
Tip: Check if a startup structure is needed. If a startup structure is available, ensure

that the correct field name is listed.

6.3.83 L1800: Read Error in <File>

Type: Error
Description: An error occurred while reading one of the ELF input object files. The object
file is corrupt.
Tip: Recompile sources. Contact a Motorola representative, if the error appears

again.

6.3.84 L1803: Out of Memory in <Function Name>

Type: Error

Description: Insufficient memory to allocate the internal structure required by the linker

6.3.85 L1804: No ELF Section Header Table Found in <Filename>

Type: Error
Description: Section header table not detected in the binary file
Tips: » Ensure that the correct binary file is used.

Check if paths are defined correctly. The binary files must be located in
one of the paths listed in the environment variables OBJPATH or

GENPATH or in the project directory.

User’'s Manual MCUez Linker

Linker Messages MOTOROLA

166
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Linker Messages
Linker Messages Reference

6.3.86 L1806: ELF File <Filename> Appears to be Corrupted

Type: Error

Description: The specified binary file is not a valid ELF binary file.

Tips: * Ensure that the correct binary file is used.

» Check if paths are defined correctly. The binary files must be located in
one of the paths listed in the environment variables OBJPATH or

GENPATH or in the project directory.

6.3.87 L1808: String Overflow in <Function Name>, Contact Vendor

Type: Error

Description: A section name detected in a section table is longer than 100 characters.

Tip: Ensure all section names are smaller than 100 characters.

6.3.88 L1809: Section <Section Name> Located in a Segment with Invalid Qualifier

Type: Error

Attributes associated with a section and used in several binary files are not
compatible. In one file, the section contains variables; in the other, it contains

constants, variables, or code.

Description:

Tip: Check usage of the different sections in all binary files. A specific section
should contain the same type of information throughout the project.

6.3.89 L1811: Symbol <Symbol Number> - < Symbol Name> Duplicated
in <First Filename> and <Second Filename>

Type: Error

Description: The specified global symbol is defined in two different binary files.

Tip: Rename the symbol defined in one of the specified files.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 167

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Linker Messages

6.3.90 L1818: Symbol <Symbol Number> - < Symbol Name> Duplicated
in <First Filename> and <Second Filename>

Type: Error

Description: The specified global symbol is defined in two different binary files.

Tip: Rename the symbol defined in one of the specified files.

6.3.91 L1820: Weak Symbol <Symbol Name> Duplicated in <First Filename>
and <Second Filename>

Type: Warning

Description: The specified weak symbol is defined in two different binary files.

Tip: Rename the symbol defined in one of the specified files.

6.3.92 L1821: Symbol <id1> Conflicts with <id2> in File <File> (Same Code)

Type: Error

Description: A static symbol is defined twice in the same module.

Tip: Rename one of the symbols in the module.

6.3.93 L1822: Symbol <Symbol Name> in File <Filename> is Undefined

Type: Error
Description: The specified symbol is referenced in the file, but not defined anywhere in the
application.
Tips: » Checkif an object file is missing in the NAMES block and if the correct

binary file is used.

» Check if paths are defined correctly. The binary files must be located in
one of the paths listed in the environment variables OBJPATH or
GENPATH or in the project directory.

User’'s Manual MCUez Linker

168 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.94 L1823: External Object <Symbol Name> in <Filename> Created by Default

Type: Warning

Description: The specified symbol is referenced in the file, but not defined in the application.
However, an external declaration for this object is available in at least one of the
binary files. The object should be defined in the first binary file where it is
externally defined.

This is only valid for ANSI C applications.
In this case, an external definition for a variabbby is: extern int var;

The definition of the corresponding variableirg:var;

Tip: Define the specified symbol in one of the files building the application.

6.3.95 L1824: Invalid Mark Type for <Ident>
Type: Error
Description: Internal error. The object file is corrupt.

Tip: Recompile sources and contact a Motorola representative if error occurs again.

6.3.96 L1826: Can't Read File. <Filename> is not an ELF Library Containing ELF Objects
(ELF Objects Expected)

Type: Error

Description: The specified file is not a valid library. The linker is only able to link uniform
binary files together.

Tip: Recompile the source file to ELF object file format.

6.3.97 L1902: <Cmd> Command not Supported

Type: Error

Description: There are command keywords in the linker parameter file that are not yet
implemented.

Tip: Only use commands specified in the linker manual.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 169

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.98 L1903: Unexpected Symbol in Link Parameter File

Type:

Description:

Tip:

Error

Syntax error in linker parameter file. An illegal character appeared.

Ensure that the linker parameter file is specified as the file argument on the
command line and not an executable file.

If the file is a link parameter file, edit it and replace the invalid character or
symbol.

6.3.99 L1905: Invalid Section Attribute for Program Header

Type:

Description:

Tip:

Error
lllegal object file

Recompile source files. Contact a Motorola representative if error continues to
appear.

6.3.100 L1906: Fixup Out of Buffer (<Obj> Referenced at Offset <Address>)

Description:

Type:

Tip:

Error
An illegal relocation of an object is detected in the object file <Object> at
address <Address>.

Check the relocation at that address. The offset may be out of range for this
relocation type. If not, it may be caused by a corrupt object file.

6.3.101 L1907: Fixup Overflow in <Object>, Type <objType> at Offset <Address>

Description:

User’'s Manual

Type:

Tip:

Error

An illegal relocation of an object is detected in the object file <Object> at
address <Address>. The type of object is given in <objType>.

Check the relocation at that address. The offset may be out of range for this
relocation type. If not it may be caused by a corrupt object file.

MCUez Linker

170

Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.102 L1908: Fixup Error in <Object>, Type <objType> at Offset <Address>
Type: Error

Description: An illegal relocation of an object is detected in the object file <Object> at
address <Address>. The type of object is given in <objType>.

Tip: Check the relocation at that address. The offset may be out of range for this
relocation type. If not, it may be caused by a corrupt object file.

6.3.103 L1910: Invalid Section Attribute for Program Header
Type: Error
Description: A program header needs specific section attributes that should not be changed.

Tip: This is an internal error and may be caused by a corrupt object file.

6.3.104 L1911: Program Header End is not Aligned on the End of a Section
Type: Warning

Description: The program has to be aligned with the end of a section.

6.3.105 L1912: Object <obj> Overlaps with Another (last addr: <addr>,
Object Address: <objadr>

Description: The object <obj> overlaps with another object at address <addr>. The address
of the object is given in <objadr>.

Tip: Place one of the objects somewhere else.

6.3.106 L1913: Object Filler Overlaps with Something Else
Type: Error

Description: An object filler overlaps with another object. This is not allowed.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 171

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.107 L1914: Invalid Object: <Object>

Type: Error

Description: An object of unknown type is detected in an object file. This is an internal error
and may be caused by a corrupt object file or incompatible object formats.

Tip: Recompile sources and try to link again. Contact a Motorola representative if
this error continues to appear.

6.3.108 L1915: Gap in <ldent> at <address> before <Object> is too Big
Type: Error

Description: Gaps more than 32 bytes are not allowed between succeeding objects in a
section. Only gaps caused by alignment are allowed.

Tip: This is an internal error. Contact a Motorola representative if this error
continues to appear.

6.3.109 L1916: Section Name <Section> is too Long. Name is Cut to 90 Characters Length
Type: Warning
Description: The length of a name is limited to 90 characters.

Tip: Rename the section and recompile.

6.3.110 L1919: Duplicate Definition of <Object> in Library File(s)
<File1> and/or <File2> Discarded

Type: Warning
Description: An object definition is duplicated in a library.

Tip: Rename one of the objects and recompile.

User’'s Manual MCUez Linker

172 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.111 L1921: Marking: Too Many Nested Procedure Calls

Type: Error

Description: The object file is corrupt.

Tip: Recompile and try to link again.

6.3.112 L1922: File <filename> Has DWARF Data of Different Version, DWARF Data
may not be Generated

Type: Warning

Description: The linked files have different versions of debug information sections
(ELF/DWARF. When linking object files from different vendors, this message
might occur if the linker does not recognize the debug info in all object files.

This message may also appear if some object files do not have debug
information. The generated absolute file may have some correct debug
information, but probably not for all modules.

Tip: Recompile with one version for output.

6.3.113 L1927: Fixups for DWARF Section <sectionname> not Correctly Generated

Type: Error

Description: The linker has problems in generating fixups for a spé&xifiéd Réebug
section.

Tip: The problem may occur when linking object files from different vendors. The
debug information may be better than no debug.

6.3.114 L1928: Limitation: Code Size <num>

Type: Error

Description: This message appears in the demo version of the MCUez linker. The size of
linked code is limited to 1 Kbyte.

Tip: Contact a Motorola representative.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 173

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.115 L1929: Limitation: Too many Mections (<num>)
Type: Error

Description: This message appears in the demo version of the MCUez linker. The number of
sections is limited.

Tip: Contact a Motorola representative.

6.3.116 L1930: Unknown Fixup Type in <ident>, Type <type>, at Offset <offset>

Type: Error

Description: The object file is corrupt or linker version does not support compiler
instructions.

Tip: Recompile sources and link again.

6.3.117 L1931: Program Header Begin is not Aligned on the Beginning of a Section
Type: Warning

Description: The program has to be aligned with the start of a section.

6.3.118 L1932: Program Header Overflow in <name> at <index>
Type: Error

Description: Overflow of the internal data structures. This may be caused by corrupt input

files. The limit is defined for allimaginable cases and raised constantly with the
amount of resources available on a modern PC.

Tip: Recompile sources. If this occurs again, then too many sections have been
defined.

6.3.119 L1933: ELF: <details> Warning
Type: Warning

Description: Data in the file is not complete or consistent. The <details> specify the cause of
the warning. Possible causes are listed in message L1934.

User’'s Manual MCUez Linker

174 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference

6.3.120 L1934: ELF: <details> Error

Type: Error

Description: Error while reading &fLF object file. The <details> specify the cause of the
error. Possible causes are:

MCUez Linker

Cannot open <File> — s&e3.60 L1309 : Cannot Open <File>
Read error in <File>

Out of memory in <File> — se®3.84 L1803: Out of Memory in
<Function Name>

No ELF Section Header Table found in <File> — $28.851.1804: No
ELF Section Header Table Found in <Filename>

ELF file <File> is corrupted — se®3.86 L1806: ELF File
<Filename> Appears to be Corrupted

String in <File> is too long — se&&3.87 L1808: String Overflow in
<Function Name>, Contact Vendor

Section <File> located in a segment with invalid qualifier — 66288
L1809: Section <Section Name> Located in a Segment with Invalid
Qualifier

Programming language incompatible

Incompatible memory model: <m1> in previous files and <m2> in
current file — se®.3.62 L1401: Incompatible Memory Model:
<Memory Model Name> in Previous Files and <Memory Model
Name> in Current File.

Incompatible processor: <cpul> in previous files and <cpu2> in current
file — see6.3.61 L1400: Incompatible Processor: <Processor Name>
in Previous Files and <Processor Name> in Current File

String buffer overrun in <File>

<File> is not a valicELF file — see6.3.57 L1303: <Filename> is not
a Valid ELF File

<File>is a not arELF object file — see5.3.59 L1305: <Filename> is
not an ELF Format Object File (ELF Object File Expected)

File <File> not found — se®3.56 L1302: File <Filename> not
Found

User’'s Manual

MOTOROLA

Linker Messages 175

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

Requested section not found
Program header not found

Currently no file open

Request is not valid

Object <name> has an unknown type
Fixup error: <cause>

File is not a valid library file

File is not a valicELF library file

ELF file corrupted

DWARFfixup incorrect: <cause>

Internal

6.3.121 L1936: ELF Output: <details> Error

Type: Error

Description: The <details> specify the cause of the error. Possible causes are:

User’'s Manual

Cannot open <File> — sé&e3.60 L1309 : Cannot Open <File>

Out of memory in <File> — se&3.84 L1803: Out of Memory in

<Function Name>
Wrong file type for <action>

Write error in <File>

No ELF Section Header defined in <File>

String buffer overrun in <File>
Wrong section type

Internal buffer overflow in <Function>

All local symbols before the first global one

Currently no file open
Request is not valid

Internal

MCUez Linker

176

Linker Messages

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Linker Messages
Linker Messages Reference
6.3.122 L1938: Type Clash in Segment (Corrupt Object: <name>)

Type: Error

Description: The object file is corrupt.

Tip: Recompile sources and link again. Contact a Motorola representative if the error
continues.

6.3.123 L4000: Could not Open Object File (<objFile>) in NAMES List

Type: Error

Description: The linker could not open any object file in the NAMES list. This message
prints out the name of the last file found in the NAMES list (<objFile>).

Tip: Ensure that path settings are correct. Object files are searched for in the current
directory and in the list of paths specified in the environment variables
OBJPATH and GENPATH.

6.3.124 L4001: Link Parameter File <PRMFile> not Found

Type: Error

Description: The specified source file does not exist or the search paths are not correctly set.

Tip: Ensure that path settings are correct. Linker parameter files are searched for in
the current directory and in the list of paths specified with the environment
variable GENPATH.

6.3.125 L4002: NAMES Section was not Found in Linker Parameter File <PRM File>

Type: Error

Description: The NAMES section was not found in the linker parameter file.

Tip: Ensure that a correct parameter file is passed to the linker.

MCUez Linker User’'s Manual

MOTOROLA Linker Messages 177

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Linker Messages

6.3.126 L4004: Linking <PRM File> as ELF/DWARF Format Link Parameter File
Type: Information

Description: If the first file in the NAMES section is BhF/DWARFobject file, this
message is issued and tHeF/DWARFobject file format is started.

6.3.127 L4005: lllegal File Format of Object File (<objFile>) in NAMES List
Type: Error

Description: No object file in the NAMES list contains a known file format. This message

prints out the name of the last file in the NAMES list that was opened
(<objFile>).

Tip: Ensure that path settings are correct.

6.3.128 L4006: Failed to Create Temporary File
Type: Error

Description: The linker creates atemporary file in the current directory when prescanning the
linker parameter file. If this fails, the linker cannot continue.

Tip: Enable read access to linker files in the current directory.

6.3.129 L4007: Include File Nesting too Deep in Link Parameter File
Type: Error

Description: Include files can only be nested six deep.

6.3.130 L4008: Include File <includefile> not Found

Type: Error

Description: The include file <includefile> was not found.

User’'s Manual MCUez Linker

178 Linker Messages MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User's Manual — MCUez Linker

Index
Symbols
ADS L 19,38
00} 0) 65, 85
data. 65, 66
A, . 38....
0] 110 37. ...
Fodata 65....
rodatal 65....
S 38.
S 38.
S e e 38.
StaCK . . . 65
startData. e 65, 85.
S i e e e e e e 38.
Xt e e e e 65
A
Absolute File. 19, 38, 47,52
ABSPATH ... 38.44
Application
Startup (alsosee Startup) 84....
Assembly
Application 47,80
Smart LinKing 81...
C
Command
ENTRIES 457980
INIT . . 47,91
LINK . L 47,93
MAIN . 49. ..
MAPFILE 49, 92
NAMES. 44,52
PLACEMENT. e 44,.61, 66
SEGMENTS 44.53
MCUez Linker User’s Manual
MOTOROLA Index 179

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Index

STACKSIZE. . .. 68. ..
STACKTOP . .. e 69. ..
VECTOR. . . . 70. ..
D
Drag and Drop.o 35....
E
SEoption . .. o1 ...
ENTRIES 45,79, 80
Environment Variable
ABSPATH 38.44, 47,100
ERRORFILE. e 102. .
GENPATH 37,44,52, 98,99
LINKPTIONS. . . 0. ..
OBJIPATH. . . 44,52, 99
SRECORD 38.101
TEXTPATH 38, 44, 48, 100
Errorfeedback. 35....
F
File
Absolute 19, 38, 47,52
Library. . .. 52...
MAP . . 38, 48, 49
Motorola S 38...
ObjeCt . .. 52 ...
Parameter 37....
Parameter (Linker) 37,42
File MenuU 27. . ..
G
GENPATH . .. 44,52
INIT . 47,91
INPUL . . 31 ...
Input File. 34 ...
User’s Manual MCUez Linker
180 Index MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Index
L
Library File 52...
LINK . 47,93
LinKer MenU e e 31...
M
M OPtON . . Q2. ..
MAIN . 49. ..
MAP File. 38, 48, 49
COPYDOWN . . 50...
FILE . . 50...
OBJECT ALLOCATION.o e 50..
OBJECT DEPENDENCY e 50 ..
SEGMENT ALLOCATION.o e 50. .
STARTUP. .. 50...
STATISTICS .. e e 50. ..
TARGET . . . 50...
UNUSED OBJECTS e e 50. ..
MAPFILE e 49,92
MenuU Bar 27. ...
MESSAGE 31 ...
Message
ERROR. ... 108 ..
FAT AL .. 108. .
WARNING . . . e 108. .
Motorola S File. 38...
N
NAMES. . . 44,52
NO INIT. . e e e 55...
@)
SO OPLION oo 93 ...
ObjectFile. 52 ...
OBIPATH. ..o 44,72
Option
S 9l
M 92 .
SO a3 .
s 7 93.
MCUez Linker User’s Manual
MOTOROLA Index 181

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Index

Ve 91,94
WL 94 ..
W 94, 95, 96
OUIPUL . . o o 31....
P
PAGED 55. .
Parameter
File (LinKer) 37,42
Parameter File. 37..
Path List 97. ...
PLACEMENT. 44,61, 66
Program Startup (alsosee Startup) i 84..
Q
Qualifier e 53,55
NO INIT. . e e 55.
PAGED 55.
READ ONLY. ... e e e 55. .
READ _WRITE. . .. e 55.
R
READ _ONLY. .. e 55.
READ WRITE. e e e 55.
S
S OPHON. . 93..
Section
(030} 0) 65, 85
data. .. G5, 66.
(00 7= 1 7= 65. .
StaCK . . . 65. .
StartData. e G5, 85.
deXt . e 65 ..
Segment
Alignment. 53,56
Ffill pattern 53.
Fill Pattern. e 59.
Qualifier 53,55
SEGMENTS 44,73
Smart LinKing 19.79
STACKSIZE. 68.
User’s Manual MCUez Linker
182 Index MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Index
STACKTOP . .. 69...
Startup
Application 84...
Startup Function 88....
UserDefined. e 88 ...
Startup StruCture 84....
flagS. . 85
INIBOAIES 87
bINItS . .. 86, 87
107 11 T 86.
noflnitBodies. 87...
NOfLIbINIES. o 86, 87
NOfZEroOULS 86 ...
PZEroOUL. 86 ...
stackOffset 86 ...
toCopyDownBeg. 86. ..
UserDefined. e 87 ...
Startup. TXT . &4 ...
StatuUS Bar 27. ...
T
TEXTPATH .. 38, 44
Toolbar ... e 25. ...
V
SV OPtON . 91,94
VECTOR. .. e 70. ..
VO O . .. 20. ...
VIEW MeBNU . ..o e 34
W
WL OPLiON ..o e 94
SW2 0PtON . . 94, 95, 96
WINAOW. . . .o 25
MCUez Linker User’s Manual
MOTOROLA Index 183

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Index

User’'s Manual MCUez Linker

184 Index MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Need to know more? That’s ez, too.

Technical support for MCUez development tools is available through your regional
Motorola office or by contacting:

Motorola, Inc.

6501 William Cannon Drive West
MD:0E17

Austin, Texas 78735

Phone (800) 521-6274

Fax (602) 437-1858
CRC@CRC.email.sps.mot.com

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any prod-
uct or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which
may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unin-
tended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death as-
sociated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the
part. Motorola and ®) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or 1-303-675-2140.
Customer Focus Center: 1-800-521-6274

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1, Nishi-Gotanda, Shinagawa—ku, Tokyo, Japan, 03-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dal King Street, Tai Po Industrial Estate, Tai Po, New Territories,
Hong Kong, 852-26668334

Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/; TOUCHTONE, 1-602-244-860!
US & Canada ONLY, 1-800-774-1848

HOME PAGE: http://motorola.com/sps/

Mfax

a trademark of Motorola, Inc.

@ MOTOROLA

Semiconductor Products Sector

==3U] “10}ONPUOIIWIS I|edsd3l]

	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. General Information
	1.1 Contents
	1.2 Introduction
	1.3 Functional Description
	1.4 Features
	1.5 Typographic Styles in This Manual

	Section 2. Graphical User Interface (GUI)
	2.1 Contents
	2.2 Introduction
	2.3 Linker Graphical User Interface
	2.3.1 Toolbar
	2.3.2 Content Area
	2.3.3 Status Bar
	2.3.4 Menu Bar
	2.3.4.1 File Menu
	2.3.4.2 Linker Menu
	2.3.4.3 View Menu
	2.3.4.4 Help Menu

	2.3.5 Specifying the Input File
	2.3.5.1 Using the Command Line
	2.3.5.2 Using the Menu Entry File | Link ...
	2.3.5.3 Using Drag and Drop

	2.3.6 Error Feedback

	Section 3. Files
	3.1 Contents
	3.2 Introduction
	3.3 Parameter Files: Input
	3.4 Absolute Files: Output
	3.5 Motorola S Files: Output
	3.6 Map Files

	Section 4. Operating Procedures
	4.1 Contents
	4.2 Introduction
	4.3 Parameter File
	4.3.1 Syntax of the Parameter File
	4.3.2 Mandatory Parameter File Linker Commands

	4.4 Linker Commands
	4.4.1 ENTRIES: List of Objects to Link with Application
	4.4.2 INIT: Specify Application Entry Point
	4.4.3 LINK: Specify Name of Output File
	4.4.4 MAIN: Specify Root Function
	4.4.5 MAPFILE: Configure Map File
	4.4.6 NAMES: List Files
	4.4.7 SEGMENTS: Define Memory Map
	4.4.7.1 Segment Qualifier
	4.4.7.2 Segment Alignment
	4.4.7.3 Segment Fill Pattern

	4.4.8 PLACEMENT: Place Sections into Segments
	4.4.8.1 Specifying a List of Sections
	4.4.8.2 Specifying a List of Segments
	4.4.8.3 Predefined Sections
	4.4.8.4 Allocating User-Defined Sections

	4.4.9 STACKSIZE: Define Stack Size
	4.4.10 STACKTOP: Define Stack Pointer Initial Value
	4.4.11 VECTOR: Initialize Vector Table
	4.4.11.1 Initializing Vector Table in Linker Parameter File
	4.4.11.2 Initializing Vector Table in Assembly Source File Using a Relocatable Section
	4.4.11.3 Initializing Vector Table in Assembly Source File Using an Absolute Section

	4.5 Smart Linking
	4.5.1 Mandatory Linking from an Object
	4.5.2 Mandatory Linking from All Objects Defined in a File
	4.5.3 Switching Off Smart Linking for the Application
	4.5.4 Linking an Assembly Application
	4.5.5 Warning Messages

	4.6 Program Startup
	4.6.1 Startup Descriptor
	4.6.2 User-Defined Startup Structure
	4.6.3 User-Defined Startup Routines

	Section 5. Environment Variables
	5.1 Contents
	5.2 Introduction
	5.3 Linker Options
	5.3.1 -E
	5.3.2 -H
	5.3.3 -L
	5.3.4 -M
	5.3.5 -N
	5.3.6 -O
	5.3.7 -S
	5.3.8 -V
	5.3.9 -W1
	5.3.10 -W2
	5.3.11 -Wmsg8x3
	5.3.12 -WmsgFb[v|m]
	5.3.13 -WmsgFi[v|m]
	5.3.14 -WmsgNe
	5.3.15 -WmsgNi
	5.3.16 -WmsgNw

	5.4 Setting Environment Variables in MCUez Shell
	5.4.1 Path Variables

	5.5 Variable Descriptions
	5.5.1 GENPATH
	5.5.2 OBJPATH
	5.5.3 LIBPATH
	5.5.4 ABSPATH
	5.5.5 TEXTPATH
	5.5.6 SRECORD
	5.5.7 ERRORFILE

	Section 6. Linker Messages
	6.1 Contents
	6.2 Introduction
	6.3 Linker Messages Reference
	6.3.1 L1: Unknown Message Occurred
	6.3.2 L2: Message Overflow, Skipping <type> Messages
	6.3.3 L64: Line Continuation Occurred in <FileName>
	6.3.4 L1000: <Command Name> not Found
	6.3.5 L1001: <Command Name> Multiply Defined
	6.3.6 L1002: Command <Command Name> Overwritten by Option <Option Name>
	6.3.7 L1003: Only a Single SEGMENTS or SECTIONS Block is Allowed
	6.3.8 L1004: <Separator> Expected
	6.3.9 L1005: Fill Pattern Will Be Truncated (>0xFF)
	6.3.10 L1006: <Token> not Allowed
	6.3.11 L1007: <Character> not Allowed in Filename (Restriction)
	6.3.12 L1008: Only Single Object Allowed at Absolute Address
	6.3.13 L1009: Segment Name <Segment Name> Unknown
	6.3.14 L1010: Section Name <section name> Unknown
	6.3.15 L1011: Incompatible Segment Qualifier: <Qualifier1> in Previous Segment and <Qualifier2> i...
	6.3.16 L1012: Segment is not Aligned on a <bytes> Boundary
	6.3.17 L1015: No Binary Input File Specified
	6.3.18 L1016: File <Filename> Found Twice in NAMES Block
	6.3.19 L1037: ***** Linking of <parameter file> Failed ****
	6.3.20 L1038: Success. Executable File Written to <absfile>
	6.3.21 L1039: Limited Version. Too Many Objects or Code Linked
	6.3.22 L1050: Running <versiontype>
	6.3.23 L1052 : User Requested Stop
	6.3.24 L1100: Segments <Segment1 Name> and <Segment2 Name> Overlap
	6.3.25 L1102: Out of Allocation Space in Segment <Segment Name> at Address <First Address Free>
	6.3.26 L1103: <Section Name> not Specified in PLACEMENT Block
	6.3.27 L1104: Absolute Object <Object Name> Overlaps with Segment <Segment Name>
	6.3.28 L1105: Absolute Object <object name> Overlaps with Another Absolute Allocated Object or wi...
	6.3.29 L1106: <Object Name> not Found
	6.3.30 L1107: <Object Name> not Found
	6.3.31 L1109: <Segment Name> Appears Twice in SEGMENTS Block
	6.3.32 L1110: <Segment Name> Appears Twice in PLACEMENT Block
	6.3.33 L1111: <Section Name> Appears Twice in PLACEMENT Block
	6.3.34 L1112: <Section name> Section Has Segment Type <Segment Qualifier> (Illegal)
	6.3.35 L1113: <Section name> Section Has Segment Type <Segment Qualifier> (Illegal)
	6.3.36 L1114: <Section Name> Section Has Segment Type <Segment Qualifier> (Initialization Problem)
	6.3.37 L1115: Function <Function Name> not Found
	6.3.38 L1118: Vector Allocated at Absolute Address <Address> Overlaps with Another Vector or an A...
	6.3.39 L1119: Vector Allocated at Absolute Address <Address> Overlaps with Sections Placed in Seg...
	6.3.40 L1120: Vector Allocated at Absolute Address <Address> Placed in Segment <Segment Name>, Wh...
	6.3.41 L1121: Out of Allocation Space at Address <Address> for .copy Section
	6.3.42 L1122: Section .copy Must Be Last Section in Section List
	6.3.43 L1123: Invalid Range Defined for Segment <Segment Name> — End Address Must Be Bigger Than ...
	6.3.44 L1124: '+' or '-' Should Directly Follow Filename
	6.3.45 L1125: In Small Memory Model, Code and Data Must Be Located on Bank 0
	6.3.46 L1127: Object Allocated Outside of Segment Bounds (HC12)
	6.3.47 L1200: Both STACKTOP and STACKSIZE Defined
	6.3.48 L1201: No Stack Defined
	6.3.49 L1202: Stack Cannot Be Allocated on More Than One Segment
	6.3.50 L1203: STACKSIZE Command Defines a Size of <Size> But .stack Specifies a Stacksize of <Size>
	6.3.51 L1204: STACKTOP Command Defines Initial Value of <Stack Top> But .stack Specifies Initial ...
	6.3.52 L1205: STACKTOP Command Incompatible with .stack Being Part of List of Sections
	6.3.53 L1206: Stack Overlaps with a Segment Which Appears in PLACEMENT Block
	6.3.54 L1207: STACKSIZE Command is Missing
	6.3.55 L1301: Cannot Open File <Filename>
	6.3.56 L1302: File <Filename> not Found
	6.3.57 L1303: <Filename> is not a Valid ELF File
	6.3.58 L1304 : <Filename> is not a Valid Hex File
	6.3.59 L1305: <Filename> is not an ELF Format Object File (ELF Object File Expected)
	6.3.60 L1309 : Cannot Open <File>
	6.3.61 L1400: Incompatible Processor: <Processor Name> in Previous Files and <Processor Name> in ...
	6.3.62 L1401: Incompatible Memory Model: <Memory Model Name> in Previous Files and <Memory Model ...
	6.3.63 L1403: Unknown Processor <Processor Constant>
	6.3.64 L1404: Unknown Memory Model <Memory Model Constant>
	6.3.65 L1501: <Symbol Name> Cannot be Moved in Section <Section Name> (Invalid Qualifier <Segment...
	6.3.66 L1502: <Object Name> Cannot be Moved from Section <Source Section Name> to Section <Destin...
	6.3.67 L1503: <Object Name> (from file <Filename>) Cannot be Moved from Section <Source Section N...
	6.3.68 L1504: <Object Name> (from section <Section Name>) Cannot be Moved from Section <Source Se...
	6.3.69 L1600: Main Function Detected in ROM Library
	6.3.70 L1601: Startup Function Detected in ROM Library
	6.3.71 L1620: Bad Digit in Binary Number
	6.3.72 L1621: Bad Digit in Octal Number
	6.3.73 L1622: Bad Digit in Decimal Number
	6.3.74 L1623: Number too Big
	6.3.75 L1624: Ident too Long. Cut after 31 Characters
	6.3.76 L1625: Comment not Closed
	6.3.77 L1626: Unexpected End of File
	6.3.78 L1627: PRESTART Command not Supported Yet
	6.3.79 L1628: HEXFILE Command not Supported Yet
	6.3.80 L1629: START_DATA Command not Supported Yet
	6.3.81 L1700: File <Filename> Should Contain DWARF Information
	6.3.82 L1701: Startup Data Structure is Empty
	6.3.83 L1800: Read Error in <File>
	6.3.84 L1803: Out of Memory in <Function Name>
	6.3.85 L1804: No ELF Section Header Table Found in <Filename>
	6.3.86 L1806: ELF File <Filename> Appears to be Corrupted
	6.3.87 L1808: String Overflow in <Function Name>, Contact Vendor
	6.3.88 L1809: Section <Section Name> Located in a Segment with Invalid Qualifier
	6.3.89 L1811: Symbol <Symbol Number> - < Symbol Name> Duplicated in <First Filename> and <Second ...
	6.3.90 L1818 : Symbol <Symbol Number> - < Symbol Name> Duplicated in <First Filename> and <Second...
	6.3.91 L1820: Weak Symbol <Symbol Name> Duplicated in <First Filename> and <Second Filename>
	6.3.92 L1821: Symbol <id1> Conflicts with <id2> in File <File> (Same Code)
	6.3.93 L1822: Symbol <Symbol Name> in File <Filename> is Undefined
	6.3.94 L1823: External Object <Symbol Name> in <Filename> Created by Default
	6.3.95 L1824: Invalid Mark Type for <Ident>
	6.3.96 L1826: Can't Read File. <Filename> is not an ELF Library Containing ELF Objects (ELF Objec...
	6.3.97 L1902: <Cmd> Command not Supported
	6.3.98 L1903: Unexpected Symbol in Link Parameter File
	6.3.99 L1905: Invalid Section Attribute for Program Header
	6.3.100 L1906: Fixup Out of Buffer (<Obj> Referenced at Offset <Address>)
	6.3.101 L1907: Fixup Overflow in <Object>, Type <objType> at Offset <Address>
	6.3.102 L1908: Fixup Error in <Object>, Type <objType> at Offset <Address>
	6.3.103 L1910: Invalid Section Attribute for Program Header
	6.3.104 L1911: Program Header End is not Aligned on the End of a Section
	6.3.105 L1912: Object <obj> Overlaps with Another (last addr: <addr>, Object Address: <objadr>
	6.3.106 L1913: Object Filler Overlaps with Something Else
	6.3.107 L1914: Invalid Object: <Object>
	6.3.108 L1915: Gap in <Ident> at <address> before <Object> is too Big
	6.3.109 L1916: Section Name <Section> is too Long. Name is Cut to 90 Characters Length
	6.3.110 L1919: Duplicate Definition of <Object> in Library File(s) <File1> and/or <File2> Discarded
	6.3.111 L1921: Marking: Too Many Nested Procedure Calls
	6.3.112 L1922: File <filename> Has DWARF Data of Different Version, DWARF Data may not be Generated
	6.3.113 L1927: Fixups for DWARF Section <sectionname> not Correctly Generated
	6.3.114 L1928: Limitation: Code Size <num>
	6.3.115 L1929: Limitation: Too many Mections (<num>)
	6.3.116 L1930: Unknown Fixup Type in <ident>, Type <type>, at Offset <offset>
	6.3.117 L1931: Program Header Begin is not Aligned on the Beginning of a Section
	6.3.118 L1932: Program Header Overflow in <name> at <index>
	6.3.119 L1933: ELF: <details> Warning
	6.3.120 L1934: ELF: <details> Error
	6.3.121 L1936: ELF Output: <details> Error
	6.3.122 L1938: Type Clash in Segment (Corrupt Object: <name>)
	6.3.123 L4000: Could not Open Object File (<objFile>) in NAMES List
	6.3.124 L4001: Link Parameter File <PRMFile> not Found
	6.3.125 L4002: NAMES Section was not Found in Linker Parameter File <PRM File>
	6.3.126 L4004: Linking <PRM File> as ELF/DWARF Format Link Parameter File
	6.3.127 L4005: Illegal File Format of Object File (<objFile>) in NAMES List
	6.3.128 L4006: Failed to Create Temporary File
	6.3.129 L4007: Include File Nesting too Deep in Link Parameter File
	6.3.130 L4008: Include File <includefile> not Found

	Index

