
 pbsSoftLogic User Manual 2014 

 

 

pbsSoftLogic 
User Manual 

Linux/WinCE/Win32  
Target 

 

Version: 1.7.0  

Author: Kamjoo Bayat – kamjoo.bayat@pbscontrol.com  

Date: Q2  2014 
  

 
 
 

 
w w w . p b s c o n t r o l . c o m  

 
Page 1  

mailto:kamjoo.bayat@pbscontrol.com


 pbsSoftLogic User Manual 2014 

1 – Introduction  

2 – PbsSoftLogic Installation  

3 – Basic concepts 

4 – Function Block programming Language  

5 – Quick Startup 

6 – Modbus Master Configuration and integration with remote I/O 
Modules 

7- Modbus Slave Configuration  

8 – DNP3 Slave Configuration  

9 – IEC870-5 Slave (101-104) Configuration  

10 - User defined function block  

11 – Runtime Kernel for Linux/WinCE  and transferring License to 
Controller  

12 – Project Settings facilities   

13 – ECU-1911 Local I/O Definition 

14 – OPC Client Driver Configuration for Win32 Target.  
 

 
w w w . p b s c o n t r o l . c o m  

 
Page 2  



 pbsSoftLogic User Manual 2014 

1 – Introduction  
 

pbsSoftLogic is open RTU/PLC Programming Environment from pbsControl.  pbsSoftlogic is developed by 
Dot Net technology . Its development version is running on Windows operating system.  

pbsSoftLogic has following  specifications :  

- Standard Function Block programming Environment  
- Lua (scripting Language  ) is supported for user defined Function Blocks development 
- Developed application can be run  on Embedded Windows   , WinCE and  Embedded linux OS  
- Offline simulation of developed application on windows  
- More than 100 Ready and tested Function block for easy programming.  

 
For update version of pbsSoftLogic please visit www.pbscontrol.com  
Current Version: 1.7.0  
Date: July 2014 
 
 
 
 
 
 

 
w w w . p b s c o n t r o l . c o m  

 
Page 3  

http://www.pbscontrol.com/


 pbsSoftLogic User Manual 2014 

 
Supported and tested Hardware:  
1- ECU-1911    with WinCE5.0 
2- UNO1019 with WinCE5.0 
3- IA240 with embedded Linux  
4- UC7112 –Plus with embedded Linux  
5- W406 with embedded Linux  
6- APAX5522LX with embedded Linux /WinCE 
7- UNO-1110 with windows CE 6.0 
8- Any PC based controller with windows 32 OS.  

2 – pbsSoftLogic installation  
 

pbsSoftLogic – Eng is running on following Operating systems :  

WindowsXP , Windows Vista , windows7 , Windows Server 2008 and windows Server 2010 .  

You need to install Dot Net Frame 3.5 on your machine for proper operation of pbsSoftLogic .  

You can download pbsSoftLogic  from http://www.pbscontrol.com/download.html  

Simply unzip PSLE.rar file and run VSFBEditor.exe .  

pbssoftLogic files and directories :  

- FBCSEditor.exe   User defined Function block editor for Windows and simulation Target  
- OPCExplorer.exe  OPC Configuration file for connecting to OPC servers  with Windows Target  
- pbsLogicSimulator.exe  Logic Simulator .  
- VSFBEditor.exe  Main Application for developing Function block projects .  
- VSOPCClient.exe  OPC configuration runtime for windpws Target . Please refer to user manual of 

pbsSoftlogic with Windows Target .  
- pbsOPCSimu.exe OPC server simulator .  
- VSLE.exe  Runtime engine of pbsSoftLogic for windows Target . 
- VSStartup.exe  Startup application for windows Target . This application is running all required 

OPC Clients and servers based on a predetermined sequence  at startup of  Windows Controller .  
- pbsLMP.dll Logic Monitoring Protocol . will use for  Logic monitoring  in Linux Controller  .  
- options.xml  basic options of pbsSoftlogic .  
- cfg Directory : basic definition of Function blocks , OPC simulator and startup sequence .  
- doc  Directory :  user manual of pbsSoftlogic  
- OPC Directory :  saved OPC Configuration files by OPCExplorer.exe application  
- LuaSrc Directory  : Source code of  Lua Function blocks  
- CSrc Directory  : Source code of C  Function blocks  

 
w w w . p b s c o n t r o l . c o m  

 
Page 4  

http://www.pbscontrol.com/download.html


 pbsSoftLogic User Manual 2014 

- Timezone  Directory: Time Zone file for Linux controller  
- VSLE  Directory: default developed   application with pbsSoftLogic  . you can put application and 

its deriver at any location  
- VSLELib Directory :  inside Function blocks implementation by C# language .(Compiled source 

code )  
- VSLESrc  Directory : Source code of Function block implementation by C# Language .  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 5  



 pbsSoftLogic User Manual 2014 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 6  



 pbsSoftLogic User Manual 2014 

3 – Basic concepts  
 

Writing logic for industrial automation plants and SCADA systems is a critical task. It is not 
recommended to use low level   language like c/c++  and C# for such  projects  because of  following 
reasons :  

1- Not reusable  
2- Difficult to transfer project to others and train other engineers for continuing  project  
3- High risk in application runtime for stability  and error free  
4- Not future proof  
5- Getting Long time for project  development  

 

Function Block language is a language for control engineers. They can focus on process logic without  

Worry about software part. FB is full graphical language with many tested and ready functions inside.  

Using function block language has following benefits:  

1 – 100% reusable. There are many tested and ready functions that can be used in different projects 
with complete document.  

2 – It is very easy to train Control and process engineers   for using and programming.  

3 – pbsSoftLogic is used in many projects and sites in last few years , so there aren’t  error in the runtime 
and development environment . 

4- You can use pbsSoftLogic and Function block language as framework for whole your Automation 
Projects. Life time of pbsSoftLogic will be 15 years minimum.  

5 – Very easy and shortly you can develop process logic, Simulate and load to controllers.  

 

pbssoftLogic is an IDE for developing  Function Blocks programs , Simulate , and downloading to Linux 
/WinCE based controllers . You can use Lua Scripting language for developing new FB . 

All FB source code of pbsSoftLogic  are open source .  

 

 

  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 7  



 pbsSoftLogic User Manual 2014 

4 – Function Block Programming Language  
 

Main element of a Function Block program is FB (Function Block).  In Following you can see a few simple 
examples.  

Example1:  

 

In this logic, two signals PMP1_STS_RUN and PMP2_STS_RUN are   input to OR FB and Output will write 
to PUMPING Signal.  

Example 2:  

 

In Example 2 , PM1_ActivePower is multiply by 100 , PMP2_Activepower is multiply by 100 and both 
results will add together and  will write to Power_Instance Signals . (Write on two different sources)  

 
w w w . p b s c o n t r o l . c o m  

 
Page 8  



 pbsSoftLogic User Manual 2014 

 Example 3: 

 

 

Main Element of a Function Block Program:  

 

1 – Input /Output Signals: Normally links to Communication Drivers and Local I/O  

2 – FB: Ready Function Blocks.  

3 – Interconnection between I/O Signals, FBs and between FBs.   

4 – Constant signals: different type of Constant Signals: Integer (I), Float (F), Boolean (B), Time (T)  

Constant Signal Format: Type # Value.  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 9  



 pbsSoftLogic User Manual 2014 

5-Internal Link Tags: unlimited internal link tag is possible in logic, but each instance should have 
different name. Links with same name has same value in logic.  

 

You can see list of all Link Tags in Debug Menu, Link List Item.  

 

By double click on each link item; Logic will focus on Link Signal. So you can easily browse and check all 
link signals.  

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 10  



 pbsSoftLogic User Manual 2014 

6 – Comments: you can put comment everywhere in logic. Drag a Comment element from FBList and  

 Drop it in the logic. Then click on Comment and change its content. Comment is like a dynamic size 
yellow text box.  

 

By selecting comments items from Debug menu, you can see list of all Comments in the logic.  

By Double click on any comment, logic will focus there and you can easily browse all logic by comments. 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 11  



 pbsSoftLogic User Manual 2014 

Function Block Programming Rules:  

1 – FB Inputs (Left side) always connect to one source. You can connect one source (I/O Signal, Internal 
Link Tag, and Constant) to different FB Inputs; But Multiple Source to One FB Input is not valid.  

2 – FB Outputs (Right Side) can be connecting to different Signals. (Not Constant Signals)  

3 – There is no limitation on number of FB interconnections level. 

4 – Logic execution: each FB has an Execution number. Click on FB and press F4 , you can see FB 
properties  window . Scroll properties to find ExeSeq . 

 

When you start to develop logic , FBEditor will  increase ExeSeq number for each FB that you use 
automatically . but you can change its sequence and by this way , you can control execution sequence of 
logic . We advise to set all ExeSq numbers manually , because when you copy  paste  some part of  logic , 
FBEditor will  put same  values for pasted elements . FBEditor will sort all Fbs by ExeSeq number and 
compile and make output file by  ExeSeq order .  

5 – Logic FB Instance name : each FB has FBName and instance name . these two properties are equal by 
default . but you can change Instance name to any unique name in your logic . Suppose you are 
controlling a Pump by Drive1V2 FB . By changing FB Instancename to “Pump1Mng” , Compiler will use 
Pump1Mng as identification of FB  at compile time . By default it is using PartID property which is always 
unique in the logic.  

 
w w w . p b s c o n t r o l . c o m  

 
Page 12  



 pbsSoftLogic User Manual 2014 

 

You can browse logic by FB Instance name from Debug menu, FB Instance List item. By Double clicking 
on Instance name, Logic will focus on that part.  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 13  



 pbsSoftLogic User Manual 2014 

5 – Quick Startup 
In this segment, you will write a simple logic with PSLE and Simulate and run on Linux controller. 

Step1: Make a new Application with PSLE. Run VSFBEditor.exe   . In File Menu, Select New.  

 

In left panel, you can see different ready FB, and in right panel Function Block application area.  

Open Timers Group and select PulseGen . Drag and Drop it to program area .  

 

PulseGen is generating continues pulse, with same time duration (Low and High). 

 
w w w . p b s c o n t r o l . c o m  

 
Page 14  



 pbsSoftLogic User Manual 2014 

When Trg input is changing from low to high (0 to 1), Pulse train will start at Q output with Low and High 
Duration equal to Time input.   

In FB list panel, drag and drop Inputsignal and connect it to Trg Input. Then Drag and drop OutputSignal 
and link it to Q output. Leave Time input without any connection.  

 

When an Input Port is not connecting to any signal, it will take default value that is preset for each FB 
(you can change FB Input Default values). 

Click on InputSignal which is connected to Trg Input of PulseGen FB . Click on OPC name and change it to 
CNT (Constant).  

Click on SignalName and write B#True.  

 

Click on OutputSignal that is connected to Q Output of PulseGen FB .  

 
w w w . p b s c o n t r o l . c o m  

 
Page 15  



 pbsSoftLogic User Manual 2014 

Change OPC name to LNK(Link)  . Click on SignalName and Write any name you want. Like “QPulse”.  

LNK is like internal tag in Logic and you can have any number of   internal Tags.  

  

Save you logic. Click on save Button at top.  

Make a new Directory in C:\PSLETest\APP1 and save your logic with app1 name inside APP directory .  

At bottom part of Editor you can see full path and name of your logic .  

 

Step2: simulate your logic.  

 
w w w . p b s c o n t r o l . c o m  

 
Page 16  



 pbsSoftLogic User Manual 2014 

From Project menu, select Simulation. You will see following page: 

 

In the left panel you can see Logic signals and in right side, you can see your application.  

Note: for proper running of Simulator you need to set following parameters in c:\psle\options.xml file.  

    <Node> 

          <Name>ResourcePath</Name> 

          <Desc>Resource Directory Path</Desc> 

          <Value>e:\Resource</Value> 

     </Node> 

     <Node> 

          <Name>TempPath</Name> 

          <Desc>Temp Directory Path</Desc> 

          <Value>e:\Temp</Value> 

     </Node> 

We advise to install RAM Disk Driver on your PC , because Simulator and Windows Runtime Engine will 
write all Function block static data  to TempPath .  

You can download very professional and free RAM Disk Driver from 
http://memory.dataram.com/products-and-services/software/ramdisk Web Site. We tested Data ram 
disk in many projects and it is 100% compatible with pbsSoftLogic .  

After you install Data RamDisk change TempPath and ResourcePath to RAMDisk Drive. 

Step3: Edit Project Settings   

 
w w w . p b s c o n t r o l . c o m  

 
Page 17  

http://memory.dataram.com/products-and-services/software/ramdisk


 pbsSoftLogic User Manual 2014 

Open Project menu and select settings. Select Controller type and type IP address of controller.  

 

 

You can do following tasks with Project Settings:  

1 – Changing Time Zone and current Time of Controller (Linux Kernel)  

2 – Changing LAN Configuration of Controller (Linux Kernel) 

3 – See status of controller. (Linux Kernel) 

4 – Defining Communication protocols for logic.  

5 – Setting Controller scan time, IP address, controller Type and Watch dog parameters.  

6 – Deleting Controller Logic and Configuration  

7 – Reset Controller  

8 – Shutdown Controller Kernel (Linux Kernel) 

9 – Set Startup parameter in Controller. (Linux Kernel) 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 18  



 pbsSoftLogic User Manual 2014 

Step4: Compile Logic 

From project menu, Select Compile.  It will show error list of your logic if there are errors in logic.  

 

Compiled logic is an XML file with the same name of Logic but with extension c11 . So your compiled file 
for APP1 Logic is APP1.c11 .  

Step5: Transfer Logic and configuration to Controller.  

Logic and Configuration files are transferred by FTP to controller, so no need to be connected to 
controller for transferring logic and configuration.  

From Project menu, select Transfer Logic. It will transfer your compiled Logic to Controller. 

From Project Menu, Select Transfer Configuration. It will transfer App1.lx file to controller. 

When Configuration is transferred completely, it will show “Configuration Transferred” Message box.  

Reset Controller from Setting Page.  

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 19  



 pbsSoftLogic User Manual 2014 

Step6: Monitor your logic at Controller  

From project menu, Select Connect to controller. If your controller is connected to your development PC 
and runtime kernel of PSLE is installed on Linux/WinCE Controller, It will connect and your logic page 
color will change to green.  

 

From Project Menu, Select Connect to controller, Then Select Monitoring On.  

 

Small LED at top will start to blink and it shows that logic is in monitoring state. 

Step7: Force signals  

Right Click on CNT:B#True input Signal and select force . 

 
w w w . p b s c o n t r o l . c o m  

 
Page 20  



 pbsSoftLogic User Manual 2014 

 

In Tag Force Window, Click on Lock Button. The link between InputSignal and PulseGen/Trg input will be 
change to red.  

 

Change Value of Signal to 0 and click on Force. PulseGen/Q output will stop. Again change signal value to 
1 and click on force button. Again PulseGen/Q output starts to change its value between 1 and 0.  

Click on Release button and link color will change to black.  

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 21  



 pbsSoftLogic User Manual 2014 

Note:  

1 – In Linux/WinCE Kernel runtime, all signals type is double. So you will see value 0 and 1 for Boolean 
(Digital) Signals, not true/ false.  

2 – When you Force a tag, it will force just input signal of FB not tag. It means if you use TAG1 in 
different location in logic, and when you force it in a FB, it will force only for that FB not whole Logic.  

3 – Only FB inputs can be force.  

Step8: Disconnect from Logic.  

In project Menu, Select Disconnect From Controller. Logic page color will come back to smoke white and 
all logic monitoring values will hide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 22  



 pbsSoftLogic User Manual 2014 

6 – Modbus Master Configuration and integration with remote I/O 
Modules 
PbsSoftLogic supports Modbus Master Driver for communication with I/O Modules and other Modbus 
Slave Devices. You can set modbus master driver communication parameter from project setting page. 

In project setting page, you can see list of configured drivers for your logic. 

Right click on driver list, you can add a new driver or explore defined driver. 

 

For defining a new Modbus Master Driver, right click on Driver list and select New Driver.  

 

In new driver page, select communication protocol, Type Driver Name and select Driver instance. 

Driver : pbsSoftLogic supports ModbusMaster , ModbusSlave , DNP3Slave and IEC870-5 Slave protocols . 
Select ModbusMaster for Modbus Master protocol.  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 23  



 pbsSoftLogic User Manual 2014 

Name: Unique Driver Name.  

Instance = Instance number for each type of Driver. If you have two Modbus Master Network in project , 
then you need to define two ModbusMaster Driver with Different name and different instance number. 
Look at following example, IA240 should connect to I/O Modules and Power monitor network by two 
different Modbus Master networks.  

 

Configuration for Modbus Master Driver for I/O Modules:  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 24  



 pbsSoftLogic User Manual 2014 

Configuration for Modbus Master Driver for Power Monitor Devices: 

 

Click on Make Driver button. pbsSoftlogic will make separate directories with same name of Driver at 
logic path .  

 

Following items are adding to Driver list in setting page:  

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 25  



 pbsSoftLogic User Manual 2014 

Right click on IO_Drv and select explorer. pbsSoftLogic will open IO_Drv directory  .  

Three files are generated by pbsSoftlogic at this directory.  

Options.xml :  communication parameter . Like Serial Port, Baud rate …  

ModbusBlocks.xml : Modbus Block Definitions 

ModbusTags.xml : Modbus Tags Definitions  

Edit options.xml file. You can set following parameters for ModbusMaster Driver. Each XML node has a 
name (Don’t change it), Desc (Don’t change it) and Value (Set based on Description)  

     <Node> 

          <Name>PhysicalLayer</Name> 

          <Desc>RS232 , RS485 , RS424 , TCP</Desc> 

          <Value>RS232</Value> 

     </Node> 

PhysicalLayer : For Modbus RTU Select one of RS232 , RS485 and RS422 . For ModbusTCP select TCP  

     <Node> 

          <Name>COMPort</Name> 

          <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc> 

          <Value>1</Value> 

     </Node> 

COMPort :will be used for ModbusRTU protocol .  

     <Node> 

          <Name>BaudRate</Name> 

          <Desc>9600,19200,36400,52700,115200</Desc> 

          <Value>9600</Value> 

     </Node> 

BaudRate :will be used for ModbusRTU protocol .  

     <Node> 

          <Name>DataBit</Name> 

          <Desc>7,8</Desc> 

          <Value>8</Value> 

     </Node> 

 
w w w . p b s c o n t r o l . c o m  

 
Page 26  



 pbsSoftLogic User Manual 2014 

DataBit :will be used for ModbusRTU protocol .  

     <Node> 

          <Name>StopBit</Name> 

          <Desc>1,2</Desc> 

          <Value>1</Value> 

     </Node> 

StopBit :will be used for ModbusRTU protocol .  

 

     <Node> 

          <Name>Parity</Name> 

          <Desc>None,Even,Odd</Desc> 

          <Value>None</Value> 

     </Node> 

Parity :will be used for ModbusRTU protocol .  

 

     <Node> 

          <Name>Instance</Name> 

          <Desc>Instance</Desc> 

          <Value>1</Value> 

     </Node> 

Instance: Driver Instance Number.   

 

     <Node> 

          <Name>TCPPort</Name> 

          <Desc>TCPPort</Desc> 

          <Value>502</Value> 

     </Node> 

TCPPort: ModbsuTCP Port number. Default Value 502  

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 27  



 pbsSoftLogic User Manual 2014 

 

 ModbusBlocks.xml : pbsSoftlogic Modbus modeling is based on Block Concept.  

We start with a simple example to show concepts of Block. Suppose we want to configure Modbus 
network for following system:  

 

ModbusBlocks.xml for above configuration:  

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 28  



 pbsSoftLogic User Manual 2014 

 

Block Name = Unique name if Block.  

Type: Block Type  

 BI = DI: Digital Input = Modbus Input status  

 BO= DO: Digital Output = Modbus Coil 

 BOS=DOS: Digital Output Status  = Modbus Coils Status  

 AI: Analog Input = Modbus input Register  

 AO: Analog Output = Modbus Holding Register  

 AOS: Analog Output Status = Modbus Holding Register status  

 SYS: Internal for pbsSoftLogic .  Can be used for reading status of communication.  

SlaveID = ID of Slave Device.  

IP = IP address of Slave Device. Will use for ModbusTCP network.  

StartAddress = Start Address of  Modbus Block . For Digital (Bit) and for analog (Word)  

Count = Channel Count  

Wait = Time for driver to wait for getting answer from Slave Device.  

Enable = It is Enable or Not. If it is not enable, it is not polling by driver.  

 

For SYS Block type, Start Address is dummy and it is not use by driver. So always put it 100.  If you have 
another block with same start address, it is not making any conflict.  

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 29  



 pbsSoftLogic User Manual 2014 

ModbusBlocks.xml file for ModbusTCP :  

 

ModbusBlocks.xml file for above configuration:  

 

Modbus Master Driver is polling Devices based on Modbus Block File. (For ModbusRTU and ModbusTCP) 

For Above ModbusBlocks.xml file , Modbus Driver will  do following sequence :  

1- Send DI1 Block , Update Diag1 Send Counter  
2- Wait for 200 msec  
3- Get Answer and update Modbus Tags  , Update Diag1 Rec Counter  , Diag1.ErrorCounter = 0  , 

Diag1.Online = 1  

 
w w w . p b s c o n t r o l . c o m  

 
Page 30  



 pbsSoftLogic User Manual 2014 

4- If There is no answer from Device Increase Diag1.ErrorCounter , if it Is more than 3  , Make 
Device offline  Diag1.Online = 0  

5- Check Write Queue for   Writing on DO or AO Blocks  , If there is any item in Write Queue , Write 
it to Device otherwise send Request for Next Block  

6- Send AI1 Block , Update Diag1.SendNum  
7- Wait for 200 Msec  
8- Get Answer and update Modbus Tags  , Update Diag1 Rec Counter  , Diag1.ErrorCounter = 0  , 

Diag1.Online = 1  
9- If There is no answer from Device Increase Diag1.ErrorCounter , if it Is more than 3  , Make 

Device offline  Diag1.Online = 0  
10- Check Write Queue for   Writing on DO or AO Blocks  , If there is any item in Write Queue , Write 

it to Device otherwise send Request for Next Block  
11- Repeat Steps 1 to 10 for Device 2.  
12- Repeat Steps 1 to 10 for Device 3.  

Scan Time Calculation: for above configuration Scan time for whole signals will be calculate as 
following:  

200(DI1)+50+200(AI1)+50+ 

200(DI2)+50+200(AI2)+50+ 

200(DI3)+50+200(AI3)+50 = 3000 msec = 3 sec . (if there is no write command )  

If you want to reduce scan time, you can increase BaudRate and reduce Block Wait time.  

Or you can separate Modbus Network to two or three separate network.  

 

ModbusTags.xml :  All Modbus Tags will define in this file . FEEditor  used this file for  accessing tags .  

Modbus Tag has following format In ModbusTags,xml file :  

     <Tag SlaveID="1" BlockName="DI1" Address="1" Name="DITag1" /> 
     <Tag SlaveID="1" BlockName="DI1" Address="2" Name="DITag2" /> 
     <Tag SlaveID="1" BlockName="DI1" Address="3" Name="DITag3" /> 
     <Tag SlaveID="1" BlockName="DI1" Address="4" Name="DITag4" /> 
     <Tag SlaveID="1" BlockName="DI1" Address="5" Name="DITag5" /> 
     <Tag SlaveID="1" BlockName="DI1" Address="6" Name="DITag6" /> 
     <Tag SlaveID="1" BlockName="DI1" Address="7" Name="DITag7" /> 
     <Tag SlaveID="1" BlockName="DI1" Address="8" Name="DITag8" /> 

SlaveID : Slave ID . You need to put it SlaveID here for faster access of FbEditor .  

Blockname : Same Block name in ModbusBlocks.xml  

 
w w w . p b s c o n t r o l . c o m  

 
Page 31  



 pbsSoftLogic User Manual 2014 

Address = Modbus Tag Address. Start from 0. No need to Write like Modbus Format (like 10001 ) . Just 
write address of Tag .  

Name =  Modbus  Tag Name . SlaveID+ Tag Name should be unique for Modbus Master Driver.  

For All other salve drivers ( Modbus, DNP3 and IEC8705) Tag Name should be unique .  

 

For Diag Block you need to define following tags :  

   <Tag SlaveID="1" BlockName="Diag" Address="100" Name="OnLine" /> 

     <Tag SlaveID="1" BlockName="Diag" Address="101" Name="sendNum" /> 

     <Tag SlaveID="1" BlockName="Diag" Address="102" Name="RecNum" /> 

First tag is Online . If device is answer to Driver request its value is 1 otherwise it is 0.  

sendNum : Number of Send Request by driver .  Maximum value is 10,000  

RecNum : Number of received Answer to driver . Maximum value is 10,000  

You can use above tags like normal Modbus Tag in your logic. 

 

Number of Modbus Master Driver for each controller : 8 Instance  

Number of Modbus tags for each Instance: 1024  

Number of Modbus Blocks for each instance: 64  

Number of Modbus Devcices for each instance: 32  

 
w w w . p b s c o n t r o l . c o m  

 
Page 32  



 pbsSoftLogic User Manual 2014 

7- Modbus Slave Configuration  
 

pbssoftLogic supports Modbus slave Driver for communication with HMI Devices or any other Modbus 
Master  systems .  

You can run Modbus master and salve on the same Controller in the same time but they should have 
separate resource. For example COM Port 1 can be Modbus Master and COM Port 2 Modbus Slave.  

There is Software limitation for  number of Instances for any protocol in pbsSoftLogic (maximum 8) . You 
can run 8 instances of Modbus Slave on the same Controller and connect to different modbus master in 
the same time.  

For each instance of Modbus slave Driver we have following tables:  

Digital inputs Tags: 1024  

Digital Output Tags: 1024  

Analog input Tags: 1024  

Analog Output Tags: 1024  

For Adding Modbus Slave Driver to an Application, open Project settings and right click on Driver list .  

Select ModbusSlave Driver and fill other fields.  

 

Click on make Driver Button. pbsSoftlogic will make basic files for Modbus Slave Communication .  

Close this page, Modbus Slave Driver is added to Driver list. 

 
w w w . p b s c o n t r o l . c o m  

 
Page 33  



 pbsSoftLogic User Manual 2014 

Right click on Modbus Slave Driver and select explorer. You can see two files in HMI_Drv directory.   

 

Options.xml : communication basic parameter  

ModbusTags.xml  : Modbus Slave Tags  

 

     <Node> 

          <Name>PhysicalLayer</Name> 

          <Desc>RS232 , RS485 , RS422 ,TCP</Desc> 

          <Value>RS232</Value> 

     </Node> 

PhysicalLayer : Physical layer . for Modbus RTU select one of RS232, RS485 or RS422 for ModbusTCP Select TCP  

     <Node> 

          <Name>Protocol</Name> 

          <Desc>RTU,ASCII</Desc> 

          <Value>RTU</Value> 

     </Node> 

Protocol : Modbus RTU or ASCII . This version supports RTU Only.  

     <Node> 

          <Name>COMPort</Name> 

          <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc> 

          <Value>1</Value> 

 
w w w . p b s c o n t r o l . c o m  

 
Page 34  



 pbsSoftLogic User Manual 2014 

     </Node> 

COMPort : Serial Com Port for ModbsuRTU  

     <Node> 

          <Name>BaudRate</Name> 

          <Desc>9600,19200,36400,52700,115200</Desc> 

          <Value>9600</Value> 

     </Node> 

BaudRate : Modbus RTU Baudate for communication .  

     <Node> 

          <Name>DataBit</Name> 

          <Desc>7,8</Desc> 

          <Value>8</Value> 

     </Node> 

DataBit : ModbusRTU Data Bits . 7 or 8  

     <Node> 

          <Name>StopBit</Name> 

          <Desc>1,2</Desc> 

          <Value>1</Value> 

     </Node> 

StopBit : ModbusRTU Stop Bit .  

     <Node> 

          <Name>Parity</Name> 

          <Desc>None,Even,Odd</Desc> 

          <Value>None</Value> 

     </Node> 

Parity : Modbus RTU  Parity Communication  

     <Node> 

          <Name>SlaveAddress</Name> 

          <Desc>SlaveAddress</Desc> 

          <Value>3</Value> 

     </Node> 

 
w w w . p b s c o n t r o l . c o m  

 
Page 35  



 pbsSoftLogic User Manual 2014 

SlaveAddress: Modbus RTU/TCP slave ID  

 

     <Node> 

          <Name>FlowControl</Name> 

          <Desc>NO_FLOW_CONTROL,HW_FLOW_CONTROL,SW_FLOW_CONTROL</Desc> 

          <Value>NO_FLOW_CONTROL</Value> 

     </Node> 

FlowControl: Flow Control for ModbusRTU  

     <Node> 

          <Name>PhysicalLayerScanTime</Name> 

          <Desc>PhysicalLayerScanTime</Desc> 

          <Value>100</Value> 

     </Node> 

PhysicalLayerScanTime : Modbus Slave Driver will read Serial or TCP port every  PhysicalLayerScanTime msec . if master request is  large ( 
like Writing many Modbus Signals  , it is better to increase this value . 100 msec is optimized for  may applications .  

     <Node> 

          <Name>Instance</Name> 

          <Desc>Instance</Desc> 

          <Value>1</Value> 

     </Node> 

Instance : If you have many ModbusSlave Driver on a controller , each one must has unique Instance number .( maximum 8 )  

     <Node> 

          <Name>TCPPort</Name> 

          <Desc>TCPPort</Desc> 

          <Value>502</Value> 

     </Node> 

TCPPort : ModbusTCP  Communication port . Default value is 502  

     <Node> 

          <Name>ShiftAddress</Name> 

          <Desc>ShiftAddress</Desc> 

          <Value>0</Value> 

 
w w w . p b s c o n t r o l . c o m  

 
Page 36  



 pbsSoftLogic User Manual 2014 

     </Node> 

Shift Address :  this value with add to all Modbus Slave Address that is request from master .  

Modbustags.xml file: in following figure you can see typical Modbus Slave Tags that is generate by 
pbsSoftLogic when you make a new Modbus Slave Driver.  

 

Each Modbus Tag has following properties:  

Name: Unique Modbus Tag Name. pbsSoftLogic will read this names and you can use Tags name in your 
logic . 

Type: Tag Type (all Input Types must be writing in logic and all Output types must read in logic)  

Input Types :  

DI: Digital input.   

AI : Analog input  

FI : Floating point Input . In AI Space , will take 2 Address (Register) 

INTI : Long input . In AI Space , will take 2 Address (Register) 

INTUI : unsigned long . In AI Space , will take 2 Address (Register) 

 
w w w . p b s c o n t r o l . c o m  

 
Page 37  



 pbsSoftLogic User Manual 2014 

SFI : Swap  Floating point Input . In AI Space , will take 2 Address (Register) 

SINTI : Swap  Long input . In AI Space , will take 2 Address (Register) 

SINTUI : Swap   unsigned long . In AI Space , will take 2 Address (Register) 

 

Output Types : 

DO: Digital Output.   

AO : Analog Output  

FO : Floating point Output. In AO Space , will take 2 Address (Register) 

INTO : Long Output. In AO Space , will take 2 Address (Register) 

INTUO : unsigned long . In AO Space , will take 2 Address (Register) 

SFO : Swap  Floating point Output. In AO Space , will take 2 Address (Register) 

SINTO : Swap  Long Output. In AO Space , will take 2 Address (Register) 

SINTUO : Swap   unsigned long . In AO Space , will take 2 Address (Register) 

Init: init value of Modbus Slave Tag  

Address:  Modbus Slave Tag Address.  

Log : If Log value is 1 , Driver will always used latest value of  Modbus tag not Init Value . Suppose you 
define a set point with init value of 10 . If Modbus Master change this value to 12.0 and you restart 
controller, Modbus Slave Driver will use 12 as init value of Tag .   

Note 1 :This facility is just works for AO , DO  and FO Tags . ( Modbus Slave Output tgs) 

Note 2 : Runtime kernel in Controller will check every min for Modbus Slave changes and will  copy 
changes to internal flash memory . so if you change  set points by Modbus master  and  restart controller 
before one min pass , then controller is not keeping last value of set points .  

Modbus Slave Driver operation:  

1-Modbus master is reading all Input Tags (DI, AI, FI,…) by polling.  

You should write on all  Modbus Slave Input Signal  on your logic . (Connect to FB output ports) 

2 - Modbus master is writing all output signals (DO, AO, FO, .. )  .  

You should read output tags in your logic. (Connect to FB input ports) 

 
w w w . p b s c o n t r o l . c o m  

 
Page 38  



 pbsSoftLogic User Manual 2014 

 
In above sample logic mslave:DOTag1 is an output signal from Modbus master ( Linked to FB input port) 
and mslave:AiTag1 is an input signal to modbus master (Linked to FB output ports) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 39  



 pbsSoftLogic User Manual 2014 

8 – DNP3 Slave Configuration  
pbsSoftlogic supports DNP3 slave driver for Linux/WinCE controllers . Please refer to www.dnp.org web 
site for detail information about DNP3 protocol.  

You can define up to 4 dnp3 slave instances for a controller.  Each DNP3 slave instance can be connected 
to separate DNP3 master SCADA.  

At each instance you can define 1024 DNP tags . 

As physical layer you can select RS232 and TCP/IP.  

Defining new DNP3 slave driver: 

- Open project setting  
- Right click on driver list  
- Select  New Driver  
- Select DNP3Slave as Driver type  
- Type a unique name for Driver name  
- Select unique Instance for  driver  

 
- Click on  make driver button .  

pbsSoftLogic will make  option file and DNP3 Slave tags files and will make a new directory with the 
same name of Driver  name in  logic path .  

- Options.xml    define communication parameters 
- DNP3Tags.xml define dnp3 tags  

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 40  

http://www.dnp.org/


 pbsSoftLogic User Manual 2014 

Options.xml parameters: 

    <Node> 

          <Name>PhysicalLayer</Name> 

          <Desc>RS232 , TCP</Desc> 

          <Value>TCP</Value> 

     </Node> 

 You can select physical layer between RS232 and TCP.  

     <Node> 

          <Name>COMPort</Name> 

          <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc> 

          <Value>2</Value> 

     </Node> 

Controller Serial port for RS232 Communication.  

     <Node> 

          <Name>BaudRate</Name> 

          <Desc>9600,19200,36400,52700,115200</Desc> 

          <Value>19200</Value> 

     </Node> 

Communication baud rate  

     <Node> 

          <Name>SlaveAddress</Name> 

          <Desc>SlaveAddress</Desc> 

          <Value>3</Value> 

     </Node> 

RTU DNP3 Address  

 
w w w . p b s c o n t r o l . c o m  

 
Page 41  



 pbsSoftLogic User Manual 2014 

     <Node> 

          <Name>MasterIPAddress</Name> 

          <Desc>MasterIPAddress</Desc> 

          <Value>10.0.0.11</Value> 

     </Node> 

DNP3 master SCADA IP address  

     <Node> 

          <Name>TCPIPPort</Name> 

          <Desc>TCPIPPort</Desc> 

          <Value>20000</Value> 

     </Node> 

TCP Port for using in TCP Connection , by default it is 20000  

     <Node> 

          <Name>MasterAddress</Name> 

          <Desc>MasterAddress</Desc> 

          <Value>1</Value> 

     </Node> 

DNP3 Master SCADA Address  

     <Node> 

          <Name>LocalIPAddress</Name> 

          <Desc>LocalIPAddress</Desc> 

          <Value>10.0.0.10</Value> 

     </Node> 

Controller  LAN Port for communication with master SCADA  

      

 
w w w . p b s c o n t r o l . c o m  

 
Page 42  



 pbsSoftLogic User Manual 2014 

<Node> 

          <Name>PhysicalLayerScanTime</Name> 

          <Desc>PhysicalLayerScanTime</Desc> 

          <Value>100</Value> 

     </Node> 

 

     <Node> 

          <Name>Instance</Name> 

          <Desc>Instance</Desc> 

          <Value>1</Value> 

     </Node> 

Driver instance number 1 ,2,3,4  

     <Node> 

          <Name>TCPIPMode</Name> 

          <Desc>0 = TCP Listening End Point ,  1= UDP endpoint ,  2 = TCP Dual End Point</Desc> 

          <Value>0</Value> 

     </Node> 

     <Node> 

          <Name>AppFrameSize</Name> 

          <Desc>AppFrameSize</Desc> 

          <Value>2000</Value> 

     </Node> 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 43  



 pbsSoftLogic User Manual 2014 

 

     <Node> 

          <Name>SBOTimeOut</Name> 

          <Desc>SBOTimeOut(Sec)</Desc> 

          <Value>10</Value> 

     </Node> 

Select before Operate delay  

     <Node> 

          <Name>NoCommTimeout</Name> 

          <Desc>NoCommTimeout(Sec)</Desc> 

          <Value>0</Value> 

     </Node> 

Time that RTU is checking communication, if there is no any communication in this period, RTU will close 
connection in TCP Mode. 0 means communication checking is disabling. Unit is in second.  

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 44  



 pbsSoftLogic User Manual 2014 

DNP3Tags.xml  

When you make a new driver, pbsSoftLogic will make a default DNP3 Tags file. You can edit this file and 
add or remove tags.  

Name: Tag Name. It should be unique in your Logic.  

Type: DNP3 Tag Type. We support following types:  

- DI : Digital input Read By Master with different variations  , DNP Group1 , 2  
- AI : Analog input Read By Master with different variations , DNP Group 30,31,32,33 
- CNT : Counter  Read By Master with different variations DNP Group 20,21,22,23 
- FI : Float Input  : DNP Group 100  
- DOB : Digital Output Block Write by master with different mode  DNP Group 12 ,13 
- AOB : Analog Output Block Write by master with different mode  , DNP Group 41  
- DO : DO Status Read By Master with different variations , DNP Group 10,11  
- AO : AO Status Read By Master with different variations , DNP Group 40  
- DPI : Double Bit Binary  Read By Master with different variations , DNP Group 3,4 

Class : Based on DNP3 Standard we have class 0 ,1,2,3,4 

Class 0 means current value of tags without event buffering . So if you put class 0 for a tag, RTU is not 
buffering   tag changes and every time master read tag , RTU will send current value .  

Class 1,2,3,4 there is no different or priority between different classes. So if you put class 1,2,3 or 4 for a 
tag RTU will buffer all tag changes with time and will report to Master SCADA .  

There is a cyclic buffer with 10,000 events for each DNP Type in RTU.  

Address: DNP3 tag address. AI and FI are using same address range.  

Log : When set to 1 for DOB and AOB Tags , RTU will keep last value of Set Point in internal memory flash 
and if you restart RTU , it will use latest set points from Master SCADA . RTU will check AOB and DOB 
changes every min and if it detect changes, it will save them on internal flash memory.  

Init : Init Value of a tag .  

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 45  



 pbsSoftLogic User Manual 2014 

DNP3 Slave driver Operation:  

1 - Master SCADA will read all Input Signals ( DI , AI , FI , DO , AO , DPI)  

- You need to write all Input Signals in your logic.(Link  to FB right ports )  

2 – Master SCADA will write Output Signals (DOB , AOB)  

- You need to read all Output Tags in your logic ( Link to FB left Ports )  

 

In above logic we have following DNPs signals:  

- Dnps: DOBTag1 is a DOB signal which is written by DNP Master.  
- dnps:DITag1 is a Di  signal which is read by DNP Master  
- dnps:AOBTag1 : AOB signal ( Analog Output) which is written by DNP  Master  
- dnps:AITag1 : AI ( Analog input ) Signal which is read by DNP Master  

 

DNP3 function codes which are implemented:  

- Read class 0,1,2,3,4  
- Integrity command  
- Read Event by exception ( RBE) 
- Time synchronization 
- Enable /Disable unsolicited communications  ( Transfer  data from RTU to Master SCADA )  
- Dynamic Class assign  
- Freezing counters  
- Write  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 46  



 pbsSoftLogic User Manual 2014 

9 – IEC870-5 Slave (101-104) Configuration  
pbsSoftLogic supports IEC870-5-101/104   protocols for communication with master SCADA .  

You can setup maximum four IEC slave instance for each RTU. It means you can connect to 4 Separate 
SCADA master in the same time.  

IEC870-5-101 is communicating over RS232 and IEC870-5-104 is communicating over TCP. 

For each IEC Driver instance you can define 1024 IEC Tags.  

Defining new IEC Driver:  

Open project setting and right click on driver list. Select new driver and   then select IEC8705Slave .  

Type Deriver name and select instance as following figure.  

 

pbsSoftlogic will make a default configuration and IEC tags in a  directory located at logic path . Directory 
name is name of driver.  

IEC870-5 driver files:  

- Options.xml  define communication parameters  
- IECSTags.xml  define IEC slave tags  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 47  



 pbsSoftLogic User Manual 2014 

 Communication parameters :  optione.xml file content : 

   <Node> 

          <Name>PhysicalLayer</Name> 

          <Desc>RS232 , TCP</Desc> 

          <Value>RS232</Value> 

     </Node> 

     <Node> 

          <Name>COMPort</Name> 

          <Desc>Serial Port for Communication 1,2,3,4,5,...</Desc> 

          <Value>1</Value> 

     </Node> 

     <Node> 

          <Name>BaudRate</Name> 

          <Desc>9600,19200,36400,52700,115200</Desc> 

          <Value>19200</Value> 

     </Node> 

     <Node> 

          <Name>SlaveAddress</Name> 

          <Desc>SlaveAddress</Desc> 

          <Value>3</Value> 

     </Node> 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 48  



 pbsSoftLogic User Manual 2014 

     <Node> 

          <Name>MasterIPAddress</Name> 

          <Desc>MasterIPAddress</Desc> 

          <Value>127.0.0.1</Value> 

     </Node> 

     <Node> 

          <Name>TCPIPPort</Name> 

          <Desc>TCPIPPort</Desc> 

          <Value>2404</Value> 

     </Node> 

     <Node> 

          <Name>MasterAddress</Name> 

          <Desc>MasterAddress</Desc> 

          <Value>1</Value> 

     </Node> 

     <Node> 

          <Name>LocalIPAddress</Name> 

          <Desc>LocalIPAddress</Desc> 

          <Value>127.0.0.1</Value> 

     </Node> 

     <Node> 

          <Name>PhysicalLayerScanTime</Name> 

          <Desc>PhysicalLayerScanTime</Desc> 

          <Value>100</Value> 

     </Node> 

 
w w w . p b s c o n t r o l . c o m  

 
Page 49  



 pbsSoftLogic User Manual 2014 

     <Node> 

          <Name>Instance</Name> 

          <Desc>Instance</Desc> 

          <Value>1</Value> 

     </Node> 

     <Node> 

          <Name>COTZ</Name> 

          <Desc>Cause of Transmition Size 1,2 </Desc> 

          <Value>1</Value> 

     </Node> 

     <Node> 

          <Name>CAOAZ</Name> 

          <Desc>Common Address of ASDU Size 1,2 </Desc> 

          <Value>1</Value> 

     </Node> 

     <Node> 

          <Name>IOZ</Name> 

          <Desc>Information Object Size Size 1,2,3</Desc> 

          <Value>1</Value> 

     </Node> 

     <Node> 

          <Name>MODE</Name> 

          <Desc>Communication Mode Balance(B) , Unbalan(U)  </Desc> 

          <Value>B</Value> 

     </Node> 

 
w w w . p b s c o n t r o l . c o m  

 
Page 50  



 pbsSoftLogic User Manual 2014 

     <Node> 

          <Name>KParam</Name> 

          <Desc>KParameter  1~ 32767 max difference recive sequence number to send state 
variable</Desc> 

          <Value>12</Value> 

     </Node> 

     <Node> 

          <Name>WParam</Name> 

          <Desc>WParameter  1~ 32767 Latest ACK after reciving W I-format APDUs</Desc> 

          <Value>8</Value> 

     </Node> 

     <Node> 

          <Name>T0Param</Name> 

          <Desc>T0Parameter  Timeout of Connection establishment(sec)</Desc> 

          <Value>30</Value> 

     </Node> 

     <Node> 

          <Name>T1Param</Name> 

          <Desc>T1Parameter  Timeout of Send test APDU(sec)</Desc> 

          <Value>15</Value> 

     </Node> 

     <Node> 

          <Name>T2Param</Name> 

          <Desc>T2Parameter  Timeout for ACK in case of no data message  (sec)</Desc> 

          <Value>10</Value> 

     </Node> 

 
w w w . p b s c o n t r o l . c o m  

 
Page 51  



 pbsSoftLogic User Manual 2014 

     <Node> 

          <Name>T3Param</Name> 

          <Desc>T3Parameter  Timeout for sending test frames in case of a long idle state  (sec)</Desc> 

          <Value>20</Value> 

     </Node> 

 

IEC Slave Tag file: IECSTags.xml  

Name: Tag Name. Should be unique in your logic  

Type: IEC Tags type. Following type is supported:  

- DI ( Digital input ) IEC Tag  Type 1 ,30, M_SP_NA_1   
- AI ( Analog Input) IEC Tag Type 9,34,M_ME_NA_1 ,M_ME_TD_1 
- FI( Float Input) IEC Tag Type 13 ,36 M_ME_NC_1 ,M_ME_TF_1 
- CNT ( Counter) IEC Tag Type 15 , 37  M_IT_NA_1,M_IT_TB_1 
- DPI ( Double Point Information) IEC Tag Type 3,4  ,M_DP_NA_1,M_DP_TA_1  
- DO  ( Digital Output ) IEC Tag Type 45 , C_SC_NA_1 
- AO (Analog Output) IEC Tag Type 48 , C_SE_NA_1     
- FO ( Float Output ) IEC Tag Type 50 ,C_SE_NC_1 
- DPO( Double command) IEC Tag Type 46 , C_DC_NA_1 

 

- Process information in monitor direction 
- <1> := Single-point information (M_SP_NA_1) 
- <3> := double-point information (M_DP_NA_1) 
- <4> := double-point information with time tag (M_DP_TA_1) 
- <9> := Measured value, normalized value (M_ME_NA_1) 
- <13> := Measured value, short floating point value  (M_ME_NC_1) 
- <15> := Integrated totals (M_IT_NA_1) 
- <21> := Measured value, normalized value without quality descriptor (M_ME_ND_1) 
- <30> := Single-point information with time tag CP56Time2a (M_SP_TB_1) 
- <34> := Measured value, normalized value with time tag CP56Time2a(M_ME_TD_1) 
- <36> := Measured value, short floating point value with time tag CP56Time2a (M_ME_TF_1) 
- <37> := Integrated totals with time tag CP56Time2a (M_IT_TB_1) 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 52  



 pbsSoftLogic User Manual 2014 

Process information in control direction 

 

<45> := Single command (C_SC_NA_1) 

<46> := double command (C_DC_NA_1) 

<48> := Set point command, normalized value (C_SE_NA_1) 

<50> := Set point command, short floating point value (C_SE_NC_1) 

 

System information in monitor direction 

<70> := End of initialization (M_EI_NA_1) 

 

System information in control direction 

<100>:= Interrogation command (C_IC_NA_1) 

<101>:= Counter interrogation command (C_CI_NA_1) 

<103>:= Clock synchronization command (C_CS_NA_1) 

 

 Basic application functions 

Station initialization 

Cyclic data transmission 

Spontaneous transmission 

Global Station interrogation  

Clock synchronization 

Command transmission 

- Direct command transmission 
- Direct set point command transmission 
- Select and execute command 
- Select and execute set point command 
- Transmission of integrated totals 
- Mode B: Local freeze with counter interrogation 
- Counter read 
- Counter freeze without reset 
- Counter freeze with reset 
- Counter reset 
- General request counter 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 53  



 pbsSoftLogic User Manual 2014 

Class : IEC Supported two  classes   , Class1 and Class2 .  

From IEC870-5-101 standard:  

The polling procedure is supported by the link layer which requests user data of classes 1 
and 2. In general, ASDUs containing the causes of transmission periodic/cyclic are assigned to 
be transmitted with the link layer data class 2 and all time tagged or spontaneously transmitted 
ASDUs are assigned to be transmitted with the link layer data class 1. Other ASDUs with other 
causes of transmission of low priority such as background scan may also be assigned to data 
class 2 and must be listed in the interoperability document. 
In this case, it has to be considered that the link request of class 1 occurs at a different point of 
time (to or from) the link request of class 2, which may influence the correct sequence of the 
ASDUs delivered to the application layer of the controlling station. 
In response to a class 2 poll, a controlled station may respond with class 1 data when there is 
no class 2 data available. 

Init : IEC Tag Init Value  

Address : IEC Tag Address  

: Log : When set to 1 for DO , AO ,FO and DPO Tags , RTU will keep last value of Set Point in internal 
memory flash and if you restart RTU , it will use latest set points from Master SCADA . RTU will check AO 
, DO , FO and DPO  changes every min and if it detect changes, it will save them on internal flash 
memory.  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 54  



 pbsSoftLogic User Manual 2014 

IEC 870-5 Slave driver Operation:  

1 - Master SCADA will read all Input Signals ( DI , AI , FI , DPI ,CNT)  

- You need to write all Input Signals in your logic.(Link  to FB right ports )  

2 – Master SCADA will write Output Signals (DO , AO,FO ,DPO)  

- You need to read all Output Tags in your logic ( Link to FB left Ports )  

 

In above logic master will write to iec_drv:DOTag1 and will read iec_drv:DITag1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 55  



 pbsSoftLogic User Manual 2014 

10 - User defined function block 
pbsSoftLogic has open structure for adding new Function block by user to platform .  

User defined FB (UDF) has the same performance as internal FB in pbsSoftLogic.  

There are two ways for adding new FB to pbsSoftLogic: 

1 – Using C# for simulator and Windows Runtime and GCC Cross compiler for embedded linux  

2 – Using Lua scripting language.  

In this section, we will describe both solutions.  

First solution is difficult and you need to develop C# and C code for your FBand compile it by GCC under 
Linux OS.  

Second solution is very simple and effective and no need to do any cross compiling for Linux kernel.  

Lua – www.Lua.org- is one the most famous scripting language in the market and it is used in many 
projects and applications world wised. 

pbsSoftLogic  Linux  runtime engine  supports Lua Ver 5.2.2   which is latest version .  

For learning Lua language , please refer to www.lua.org web site .  

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 56  

http://www.lua.org-/
http://www.lua.org/


 pbsSoftLogic User Manual 2014 

10 – 1 C# and C UDF  development  
Three steps are required for adding UDF to pbsSoftLogic:  

1- Defining FB Input / Output   structure  
2- Writing C# code for simulator and Windows Kernel  
3- Writing C Code for Linux Kernel and  Cross compiling for  embedded linux . 

C# and C Source code of all internal FB are included in pbsSoftLogic. You can use these source codes to 
make new FB and expand platform.  

For Editing and compiling C# Codes, pbsSofLogic has integrated professional C# editor and compiler, so 
you don’t need to use   other IDE or compiler for Writing C# code.  

For editing and compiling C Codes, you need to use linux Operating system, MOXA Cross compilers for 
different Controllers and Eclipse IDE. 

In this section, we will describe details of above steps with implementation of a simple UDF.  

UDF is not related to a specific project, but it will include to platform.  

You can find C# Source code of all internal FB at \PSLE\VSLESrc Directory.  

For defining new UDF, you need to define new FB Group. FB Group includes many FBs. 

Suppose we want to define a new FB Groups for IEC1131-3 standard and add two Function Block for RS 
and SR Flip Flop. In following figure you can see the definition of RS and SR flip flop from IEC1131-3 
standard.  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 57  



 pbsSoftLogic User Manual 2014 

Step1: Define FB body. Edit FBDefh.xml file in \PSLE\cfg directory.  

Run Windows FB Editor Utility from Tools menu in pbsSoftLogic Editor. FB editor can be use for defining 
new FB body and CSharp implementation for Simulator and Windows Runtime Kernel.  

Open FB header file from File menu and select “open FB Header”. It will open FBDefh.xml file.  

 

FBDefh.xml file contains all pbsSoftLogic FB header   (internal and UDF).  

For each FB group, there is a Group Tag in FBDefh.xml file with following format: 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 58  



 pbsSoftLogic User Manual 2014 

Above Group definition is for Counters Group. FBList tag contains all FB for this group. For each FB, there 
is an FBDef Tag with Name and DetailName elements.  

Copy and paste counters Group Tag and change its tags as following:  

 

Save FBDefh.xml file. You can define any number of FB header definition in FBList tag .  

DetailName value is relative path of FB body definition XML file. Name value is Name of FB that is shown 
in FBeditor . 

As a naming standard we will use following format for FB body definition file:  

{groupName}_{FBName}.xml and all FB Body files are locate at \FBD\ directory .  

  

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 59  



 pbsSoftLogic User Manual 2014 

Open \FBD\ directory and copy and paste one of existing FB Body files, change its name to 
IEC11313_RS.xml .change its content as following: 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 60  



 pbsSoftLogic User Manual 2014 

Open \FBD\ directory and copy and paste one of existing FB Body files, change its name to 
IEC11313_SR.xml .change its content as following: 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 61  



 pbsSoftLogic User Manual 2014 

In this stage you can use IEC11313 group in SoftLogic Editor. Close FBEditor and run it again.  

You can see a new IEC11313 group is added to FBEditor and it has two Function Blocks. 

 

Drag and drop RS and SR Flip flops in a new application. RS and SR Flip Flops are ready to use in any 
Function block application.  

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 62  



 pbsSoftLogic User Manual 2014 

Making C# Implementation of RS and SR Flip Flops: 

Step1: make a new directory in VSLESrc named: IEC11313. It should be the same name of Group. 

Step2: Copy and paste one of existing FB group source code to IEC11313 directory. You can use Timers 
directory class1.cs code. Copy class1.cs file to IEC11313 directory. Do not change Calss1.cs to any other 
name.  

Step3: By Windows FB Editor Utility, open \VSLESrc\IEC11313\class1.cs code  

 

Change Source code of IEC11313 groups as following: 

 

namespace name should be name of group.(IEC11313) 

Class name should be Class1.Donot remove MarshalByRefObject from code. 

 
w w w . p b s c o n t r o l . c o m  

 
Page 63  



 pbsSoftLogic User Manual 2014 

Any FB Function has following format: 

Public static void [name of FB] (List<object> Obji , ref List<object> Objo) 

Change name of FB and do not change any other variables.  

List<object> Obji : list of objects that is passed to FB  

List<object> Objo : list of output Objects that is return  from Function .  

All pbssoftLogic FB Source code has following format: 

 

Obji[0] : First item in Input Object List is always pbsSoftLogic Temporary path for reading and writing 
Static data of FBs. 

Obji[1]:second item in Input Object List is always Unique Identifier for FB. Each FB instance has a unique 
identifier in logic.  

Open FB properties window and find PartID. PartID has always unique value for each FB in logic by 
pbsSoftLgic automatically.   

 

Open FB properties window and find InstanceName and FBName. By Default InstanceName and 
FBName has same value , but if you change InstanceName to any unique name in logic  ,pbsSoftLogic 

 
w w w . p b s c o n t r o l . c o m  

 
Page 64  



 pbsSoftLogic User Manual 2014 

will use InstanceName as unique Identifier  and  InstanceNane  will pass as second item in Input Object 
list. 

Obji[2]:third  item in Input Object List is always Logic name .  

 

pbsSoftLogic will pass FB  Input values from Obji[3] . For example for RS Flip Flop value of S input is 
passed to Obji[3] and value of R1 is passed to Obji[4] . 

You can have maximum 32 Input and 32 output port for each FB.  

This is your responsibilities to change type of Inputs inside FB, pbsSoftlogic is passing all values as object 
to FB.  

Because we need to detect Rising edge of S and R1 signals, so we must define two more variables: S_Old 
and R_Old .  

Q1 is FB Output signal. All Output Signals should be static.  

 
w w w . p b s c o n t r o l . c o m  

 
Page 65  



 pbsSoftLogic User Manual 2014 

Read Static data: 

 

Any FB has one code but separate static data for each FB instance. When runtime kernel of pbsSoftLogic 
is calling a FB, inside FB Code, it will find Static data file by combination of FB Name, Unique Identifier 
(PID) and Logic name.  

string mPath = TmpPath + "\\RS_" + PID + "_" + VSLEName; 

Static data is any data that you want to keep its value when you return from function.  

In RS FB sample, Output signal Q1, old value of S and old value of R1 are static data. 

Runtime kernel of pbsSoftLogic is using RamDisk and XML files for modeling static data file.  

So any instance of a FB has one XML file in RAM Disk which all Static data will keep there.  

 

  

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 66  



 pbsSoftLogic User Manual 2014 

 

Solve Logic:  

 

For RS FB, when Raising Edge detect for S, Q1 value will set to true and if Raising edge detect for R1 , Q1 
value will reset to false . Because R1 raising edge detection is after s, if both of them happened, Q1 will 
be rest to false. 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 67  



 pbsSoftLogic User Manual 2014 

Map Old data: 

 

S_Old and R1_Old should map to S and R1. So S_Old and R1_Old has  value of S and R1 but for one cycle 
before.  

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 68  



 pbsSoftLogic User Manual 2014 

Write Static data: 

 

And end of FB, you need to save value of Static data on XML file for using in next cycle. 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 69  



 pbsSoftLogic User Manual 2014 

Write Outputs: 

 

And at the end, value of all output signals should be writing on Objo list.  

 

 

 

 

 

 

  

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 70  



 pbsSoftLogic User Manual 2014 

SR FB Implementation: 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 71  



 pbsSoftLogic User Manual 2014 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 72  



 pbsSoftLogic User Manual 2014 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 73  



 pbsSoftLogic User Manual 2014 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 74  



 pbsSoftLogic User Manual 2014 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 75  



 pbsSoftLogic User Manual 2014 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 76  



 pbsSoftLogic User Manual 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 77  



 pbsSoftLogic User Manual 2014 

In this stage, you can compile IEC11313 group. Select “Make FB” from Compile Menu.  

FB compiler will make IEC11313.dll file at \PSLE\VSLELib Directory.  

 

 

For testing RS and SR function blocks, you can write a simple logic as following: 

 

In above logic OPC tags S1 , R , S and R1 are dummy tags  but LNK SR_Q1 and LNK RS_Q1 are internal 
tags in logic .  

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 78  



 pbsSoftLogic User Manual 2014 

You can simulate above logic by Simulator utility.  

 

This logic is not running on real pbsSoftLogic Windows Kernel because you need to have real OPC tags 
but it works under Simulator.  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 79  



 pbsSoftLogic User Manual 2014 

 

Open ram disk drive and open temp directory, you can see two XML files: 

 

These are static data files for RS and SR Function blocks. Open Static data file for RS function block you 
can see following items: 

 

This is the same XMl file that you save in RS C# code.  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 80  



 pbsSoftLogic User Manual 2014 

 Writing C code for Linux and cross compiling of UDF  

We developed an UDF with C# and compile it for simulator and windows runtime. If you want to run 
your UDF on linux controller like W406 , IA240 , UC7112 you must  write UDF by C and compile it for 
embedded linux .  

For cross compiling for embedded linux you need to have following software’s: 

1 – Ubuntu Linux distribution. You can download from http://www.ubuntu.com/download/desktop  

2 – Install ubuntu on a Virtual Machine like VMWare  , or install it on a PC .  

3 – Download eclipse IDE from http://www.eclipse.org/downloads/ and download Eclipse IDE for C/C++ 
Developer for linux 32 or 64 bit   .  

4 – MOXA has different cross compiler for different linux based controller.  Based on your controller 
download cross compiler from following links:  

1 - Tool-Chain for Linux Kernel 2.6.x for IA24X, W3XX-LX Series, UC-7112-LX Plus, IA3341   

http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=121&type_id=6 

2 - Tool-chain for W406, IA26X-LX and EM2260-LX 

http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=34&type_id=6 

3 - Tool-chain for UC-8400-LX Series  

http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=443&type_id=6 

4 - Linux Tool-Chain for ioPAC 8500-C Series 

http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=939&type_id=6 

5 - Linux Tool-Chain for ioLogik W5348-HSDPA-C and ioPAC 8020-C series 

http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=605&type_id=6 

5 – Install  cross compiler for your hardware on ubuntu  by sh command as following : 

sudo sh { path and name of  tool chain}  

you should runsh command with sudo command as linux supervisor .  

ubuntu will ask your supervisor password and start to install cross compiler at  usr/local/arm-linux 
directory . 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 81  

http://www.eclipse.org/downloads/
http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=121&type_id=6
http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=34&type_id=6
http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=443&type_id=6
http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=939&type_id=6
http://www.moxa.com/support/sarch_result.aspx?type=soft&prod_id=605&type_id=6


 pbsSoftLogic User Manual 2014 

 NOTE : if you  installed other cross compilers in ubuntu rename them before installing new cross 
compiler . You can rename arm-linux directory with following command: 

sudo nautilus  

This will open a file explorer with supervisor right, so you have access to rename arm-linux directory.  

In following figure you can see my ubuntu usr/local directory with different cross compilers.  

 

Active cross compiler has arm-linux directory name. In above figure active cross compiler is W406 series. 
If you want to compile for ioPAC8020 , rename arm-linux to arm-linux-w406 then rename arm-linux-
8020 to arm-linux .  

You can find source code of all pbsSoftLogic at c:\PSLE\CSrc directory.  

Open eclipse IDE and make a new C Project. Project name should be exactly same name of UDF group, 
for our example “IEC11313”  

 

Project Type:  Share Library  

 
w w w . p b s c o n t r o l . c o m  

 
Page 82  



 pbsSoftLogic User Manual 2014 

Toolchain : Cross GCC  

Click on Next.  

 

Set Cross Compiler prefixes and cross compiler path as above figure.  

Click on finish button.  

Copy paste one of existing source code from CSrc directory to new project directory .  

Suppose you will copy counter source file ( MainCounters.c) to IEC11313 directory .  Rename 
MainCounters.c to  MainIEC11313.c  . 

Select IEC11313  project in eclipse and refresh project to include MainIEC11313.c file to  project . 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 83  



 pbsSoftLogic User Manual 2014 

There is include directory in CSrc folder that need to be included to  IEC11313 project . open project 
properties in eclipse and add Include directory path to project .  

 

Select release mode as active mode in manage configuration.  Add include directory for Debug and 
release configuration. 

If you use GCC mathematical library  in  UDF , you need to add  m library to project .  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 84  



 pbsSoftLogic User Manual 2014 

In project settings /Miscellaneous  enable Position Independent Code –PIC .  

 

 

Open MainIEC11313.c source code in eclipse. Change name of UpCounter functions to RS and 
DownCounter function to SR. 

Any C FB has following format: 

void RS(pbsObject *  Obji, pbsObject  * Objo) 

Don’t change function format and just change name of function to SR and RS.  

obji is list of all inputs to function .  

objo is list of all FB outputs . 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 85  



 pbsSoftLogic User Manual 2014 

In Linux kernel first FB  input is passed by index 5 of obji . int S = Obji[5].dvalue; 
 
 
void RS(pbsObject *  Obji, pbsObject  * Objo) 
{ 
 char  TmpPath[64] ; 
 char PID[32]; 
 char ProgName[32]; 
 char  TmpSRamPath[64] ; 
 char TmpSDPath[64]; 
 
 
 
 int S = Obji[5].dvalue; 
 int R1 = Obji[6].dvalue; 

 
Index 0 to 4 is used for passing system data for reading /writing static data.  

 strcpy(TmpPath , Obji[0].strvalue); 
 strcpy(PID , Obji[1].strvalue); 
 strcpy(ProgName , Obji[2].strvalue); 
 
 strcpy(TmpSRamPath , Obji[3].strvalue); 
 strcpy(TmpSDPath ,Obji[4].strvalue); 
 
 // Read Static data 
 
 FILE * m_db ; 
 DBStruct db_elem; 
 char TmpStaticDataPath[128]; 
 strcpy(TmpStaticDataPath,TmpPath); 
 strcat(TmpStaticDataPath,"/RS_"); 
 strcat(TmpStaticDataPath,ProgName); 
 strcat(TmpStaticDataPath,"_"); 
 strcat(TmpStaticDataPath,PID); 
 strcat(TmpStaticDataPath,".dat"); 
 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 86  



 pbsSoftLogic User Manual 2014 

Reading Static data: 

 m_db = fopen(TmpStaticDataPath, "rb"); 
 if(m_db==NULL) 
 { 
  // first time generate this file . User default value for static  data 
 
 } 
 else 
 { 
  // Read Value of static data 
  while (feof(m_db)==0) 
  { 
   fread(&db_elem, sizeof(db_elem), 1, m_db); 
   if(strcmp(db_elem.name ,"SOld")==0) 
   { 
    SOld = atoi(db_elem.value); 
 
   } 
   if(strcmp(db_elem.name ,"R1Old")==0) 
   { 
    R1Old = atoi(db_elem.value); 
 
   } 
 
   if(strcmp(db_elem.name ,"Q1")==0) 
   { 
    Q1 = atoi(db_elem.value); 
   } 
 
 
  } 
  fclose(m_db); 
 } 
 

In RS FB, old status of S, R 1 and Q1 value should be static.  

You need to make all outputs in FB with static data as static tags.  

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 87  



 pbsSoftLogic User Manual 2014 

Solve logic , map old values and write outputs : 

 if((S==1)&&(SOld==0)) 
 { 
  Q1 = 1; 
 } 
 
 if((R1==1)&&(R1Old==0)) 
 { 
  Q1 = 0; 
 } 
 
 
 Objo[0].dvalue = Q1; 
 
 // Map New Static data to old one 
 SOld = S; 
 R1Old = R1; 

 

Write static data : 

// Save Static data 
 m_db = fopen(TmpStaticDataPath, "wb"); 
 
 
 
 
 strcpy(db_elem.name,"SOld"); 
 sprintf(db_elem.value,"%d",SOld); 
 fwrite(&db_elem, sizeof(db_elem), 1, m_db); 
 
 
 strcpy(db_elem.name,"R1Old"); 
 sprintf(db_elem.value,"%d",R1Old); 
 fwrite(&db_elem, sizeof(db_elem), 1, m_db); 
 
 
 strcpy(db_elem.name,"Q1"); 
 sprintf(db_elem.value,"%d",Q1); 
 fwrite(&db_elem, sizeof(db_elem), 1, m_db); 
 
 
 fclose(m_db); 
 

In this stage you can compile FB. Eclipse will make libIEC11313.so file at release directory.  

You should copy this file to controller. /home/pbsLX/fblib directory . 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 88  



 pbsSoftLogic User Manual 2014 

You can use filezilla for transferring libIEC11313.so file to controller.  

Please notice that transfer mode must be Binary in Filzilla .  

 

    
   

   

   

   

   

   

   

   

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 89  



 pbsSoftLogic User Manual 2014 

 

10 – 2 Lua UDF Development  
 

Lua scripting language is developed at 1993 by Roberto Ierusalimschy , Walder Celes and Luiz Henrique 
at university of  PUC-Rio Brazil .( http://www.lua.org/authors.html) . For detail information about Lua , 
please refer to www.lua.org . 

For quick Lua introduction, please visit http://www.inf.puc-rio.br/~roberto/talks/ppl-2012.pdf  

In last 20 years Lua is used in many projects and devices: 

TVs (Samsung), routers (Cisco), keyboards (Logitech), printers (Olivetti), set-top boxes 

(Verizon), M2M devices (Sierra Wireless),calculators (TI-Nspire),Wireshark, Snort, Nmap, VLC 

Media Player, LuaTeX 
 

 

Adobe Lightroom One million lines of Lua code 
 

Slashdot: News for nerds, Feb 1, 2012: 

“Wikipedia Chooses Lua as its new template language “ 
 

Lua is used in many game development environments as programming framework:  

 

Corona SDK - http://www.coronalabs.com/products/corona-sdk/ 
Gideros Studio - http://www.giderosmobile.com/ 
Moai – http://www.getmoai.com/   
Love -https://love2d.org/ 
Codea -  http://twolivesleft.com/ 
 
Lua is fast, small and very reliable. Lua is an active project and worldwide accepted as scripting language. 
So we selected Lua instead of ST as pbsSoftLogic scripting language for developing user defined Function 
blocks. 
Lua Virtual machine is integrated to pbssoftlogic Linux Runtime kernel Version 1.5 and logic simulator. 
We didn’t include Lua in pbsSoftLogic windows Runtime because you can develop UDF by C# and no 
need for Lua . We will use Lua for developing UDF for Linux based controllers and logic simulator. 
  
 
 
 
 
 

 
w w w . p b s c o n t r o l . c o m  

 
Page 90  

http://www.lua.org/authors.html
http://www.lua.org/
http://www.inf.puc-rio.br/%7Eroberto/talks/ppl-2012.pdf
http://www.coronalabs.com/products/corona-sdk/
http://www.giderosmobile.com/
http://www.getmoai.com/
https://love2d.org/
http://twolivesleft.com/


 pbsSoftLogic User Manual 2014 

 
 
 
When you use Lua for developing UDF, you don’t need to use Linux cross compiler. 
For developing Lua UDF you need to do following steps:  

1 - Defining FB Input / Output   structure – define UDF body. This step is same as C# /C UDF 
development.  
2 – Write UDF script by pbsSoftLogic Lua Editor.  
3 – Compile Lua source code for checking programming errors.  
4 – Test Lua UDF by Logic simulator.  
5 – Transfer Lua source code to controller.  

 

We will compile Lua source code just for checking programming errors. We do not transfer compiler 
code to linux controller. When you transfer Lua UDF to controller, it will transfer Lua UDF source code.  

pbsSoftLogic Linux controller ,  compiles Lua UDF source code when it load UDF. 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 91  



 pbsSoftLogic User Manual 2014 

10 – 2 Lua Language basics  
Lua is dynamically typed language. There are eight basic type in Lua :  

- Nil – no value , default value of a variable before initialization  
- Boolean : has value false and true  
- Number :double precision floating point 
- String: sequence of characters. like “pbsSoftlogic” 
- userdata ( not  used  in pbsSoftlogic) 
- thread ( not  used  in pbsSoftlogic) 
- table ( will use for passing FB input outputs to Lua )   

Tables are the main data structure in Lua . Look at following samples: 

a = {} -- create a table and store its reference in 'a' 
k = "x" 
a[k] = 10 -- new entry, with key="x" and value=10 
a[20] = "great" -- new entry, with key=20 and value="great" 
print(a["x"]) --> 10 
k = 20 
print(a[k]) --> "great" 
a["x"] = a["x"] + 1 -- increments entry "x" 

In pbsSoftLogic we pass FB input output values by Table. In following figure you can see very simple  
pbsSoftLogic Lua function . You should follow same structure for your UDF:  

  

 
w w w . p b s c o n t r o l . c o m  

 
Page 92  



 pbsSoftLogic User Manual 2014 

Obji = input table to FB. It contains all FB inputs. The first fifth element is used by pbsSoftlogic Linux 
kernel to pass following data to any UDF:  

Obji[“1”]  = path of RAMDisk Drive in Linux Controller for saving static data  . for example it is like 
“/mnt/ramdisk/”  it include “/” .  

Obji[“2”]  =unique Identifier  of UDF .  

Obji[“3”]  = name of program. In Linux Kernel it is always “logic” 

Obji[“4”] = SRAM address in controller . It is RAM with battery backup. It include “/” 

Obji[“5”] =SD address . It is External flash SD card address for data logging. It include “/” 

Points:  

- UDF inputs start from key “6”.  
- All key value should be as string number: “1” ,”2” ,”3”,…  
- All inputs are pass as string to Lua . So you should change its type to number by tonumber 

function.    Example in1 = tonumber(obji[“6”])  . This is value of first UDF input.  

objo is return table from Lua.  

Points: 

- objo key start from”1”. 
- objo[“1”]  = first UDF output   
- objo[“2”]  = second UDF output   
- objo[“n”]  = n’th  UDF output   n<32 
- All values will return to pbsSoftlogic linux kernel by string format by tostring function .  
- objo[“1”] = tostring(out1)  
- Last statement in Lua should be return objo . 

pbsSoftLogic included Lua editor . Open Lus editor from tools menu.  

 
w w w . p b s c o n t r o l . c o m  

 
Page 93  



 pbsSoftLogic User Manual 2014 

 

Run Lua FB editor. You can see following environment:  

 

- Source code of Lua UDF is at \PSLE\LuaSrc directory.  

You can define Lua functions and Lua Function Blocks in pbsSoftLogic .  

Lua Function: Function Without static data.  

Lua Function Block: Function With Static data.  

 
w w w . p b s c o n t r o l . c o m  

 
Page 94  



 pbsSoftLogic User Manual 2014 

In Lua FB Editor ,  execute “New Lua Function”  from File menu . It will make NewLuaFun.Lua file  at 
\PSLE\LuaSrc directory .  

Lua FB Editor will make NewLua_Fun function as template for Lua Functions:  

 

There is no memory in Lua Functions. Input signals will pass to function and output values will calculate 
based on current value of inputs.  

At following figure, we calculate (x^2 + Y^2)^0.5  

 

In Lua FB Editor, execute “New Lua Function Block” from File menu. It will make NewLuaFB.Lua file at 
\PSLE\LuaSrc directory.  

Lua FB Editor will make NewLua_FB function as template for Lua Function block: 

 
w w w . p b s c o n t r o l . c o m  

 
Page 95  



 pbsSoftLogic User Manual 2014 

 

In this Lua FB sample, we consider following variables:  

- Two output signal – ou1 , out2  
- Three static signal – state , dt , input1old   

o State shows current state of FB.  
o dt is date time signal . In Lua os.time() function returns seconds from 1/1/1970 . When 

you compare current time with dt , it shows seconds passed from dt .  
o input1old is used for detecting rising edge of input1 signal .  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 96  



 pbsSoftLogic User Manual 2014 

In pbsSoftlogic static data is simulated by a data file In Controller ram disk.  

If Logic scan time is set to 500 msec , then  every second , whole logic will  execute for two times .  

For each function block we have one static data file which is located on ram disk.  

Because static data files are located on ram disk, so continues read /write of static data files will not 
make damage on controller and we will not lose system performance. 

Static data file name is generated from function Block name, function block unique ID and logic name. 

Function Block Unique ID – TmpPID -  and Logic name – TmpLogic -  are  passed by pbsSoftLogic Linux 
kernel to function block.  In Static data file name, you need to change function block name to your UDF 
name. For above FB, Static data file is as following figure: 

 

We read   static data file, line by line and find value of static signals and initialize static data tags at 
beginning of FB.  

Always   consider output signals as static and save their values in static data file. Normally output signals 
are not calculated in function block at each cycle, so you need to use old value of output signals in 
current cycle.  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 97  



 pbsSoftLogic User Manual 2014 

After reading input signals and static tags, you need to solve your logic.  

Always remember that your logic is executing many times in a second.  

For detecting rising edge or falling edge of a signal, you need to compare current value of signal with 
value of signal at last cycle.  

 

Input1 is current value of signal and input1Old is last value of signal. 

 At end of function block, always you need to map current value of signal to old value.  

 

Normally function block is in a specific state at each cycle. So you need to define state static tag and set 
its value by input signal changes or internally in the function block. In above example when there is 
rising edge at Input1 signal, we will set state to 1 and will save time by os.time() function . os.time() 
returns current time from 1/1/1970  in seconds .  

In following code, when Inut1 signal has falling edge, FB will go to state zero.  

 

In following code, when FB is in state one, it will map Input2 to out2 and sets out1 to 1 for 10 seconds. If 
before 10 seconds, falling edge detecting for Input1 signal, FB goes to state 0.  

 

For calculating elapsed time always use above technique.  

After solving your logic, you need to save static data and write output signals.  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 98  



 pbsSoftLogic User Manual 2014 

Lua expression from programming in Lua 3ed  written by Roberto ierusalimschy : 

Lua supports the usual arithmetic operators: the binary ‘+’ (addition), ‘-’ (subtraction),‘*’ (multiplication), ‘/’ 
(division), ‘^’ (exponentiation), ‘%’ (modulo), and the unary ‘-’ (negation). All of them operate on real 
numbers. For instance, x^0.5 computes the square root of x, while x^(-1/3) computes the inverse of its 
cubic root. 
The following rule defines the modulo operator: 
a % b == a - math.floor(a/b)*b For integer operands, it has the usual meaning, with the result always 
having the same sign as the second argument. For real operands, it has some extra uses. For instance, 
x%1 is the fractional part of x, and so x-x%1 is its integer part. Similarly, x-x%0.01 is x with exactly two 
decimal digits:  
x = math.pi 
print(x - x%0.01) --> 3.14 

 

Lua provides the following relational operators: 
< > <= >= == ~= 
All these operators always produce a boolean value. 

The == operator tests for equality; the ~= operator is the negation of equality. We can apply both 
operators to any two values. If the values have different types, Lua considers them not equal. Otherwise, 
Lua compares them according to their types. Specifically, nil is equal only to itself. 
 

The logical operators are and, or, and not. Like control structures, all logical operators consider both the 
boolean false and nil as false, and anything else as true. The and operator returns its first argument if it is 
false; otherwise, it returns its second argument. The or operator returns its first argument if it is not false; 
otherwise, it returns its second argument: 
 
print(4 and 5) --> 5 
print(nil and 13) --> nil 
print(false and 13) --> false 
print(4 or 5) --> 4 
print(false or 5) --> 5 

Both and and or use short-cut evaluation, that is, they evaluate their second operand only when 
necessary. Short-cut evaluation ensures that expressions like (type(v)=="table"and v.tag=="h1") do not 
cause run-time errors: Lua will not try to evaluate v.tag when v is not a table. 
 
A useful Lua idiom is x=x or v, which is equivalent to if not x then x = v end That is, it sets x to a default 
value v when x is not set (provided that x is not set to false). 
 
Another useful idiom is (a and b)or c, or simply a and b or c, because and has a higher precedence than 
or. It is equivalent to the C expression a?b:c, provided that b is not false. For instance, we can select the 
maximum of two numbers x and y with a statement like max = (x > y) and x or y When x>y, the first 
expression of the and is true, so the and results in its second expression (x), which is always true 
(because it is a number), and then the or expression results in the value of its first expression, x. When 
x>y is false, the and expression is false and so the or results in its second expression, y. 
The not operator always returns a boolean value: 
print(not nil) --> true 
print(not false) --> true 
print(not 0) --> false 
print(not not 1) --> true 
print(not not nil) --> false 

 
w w w . p b s c o n t r o l . c o m  

 
Page 99  



 pbsSoftLogic User Manual 2014 

Lua denotes the string concatenation operator by .. (two dots). If any operand is a number, Lua converts 
this number to a string. 
 
Operator precedence in Lua follows the table below, from the higher to the lower 
priority: 
^ 
not # - (unary) 
* / % 
+ - 
.. 
< > <= >= ~= == 
and 
or 
 
All binary operators are left associative, except for ‘^’ (exponentiation) and ‘..’ 
(concatenation), which are right associative. Therefore, the following expressions 
on the left are equivalent to those on the right: 
a+i < b/2+1 <--> (a+i) < ((b/2)+1) 
5+x^2*8 <--> 5+((x^2)*8) 
a < y and y <= z <--> (a < y) and (y <= z) 
-x^2 <--> -(x^2) 
x^y^z <--> x^(y^z) 
 
 
Assignment is the basic means of changing the value of a variable or a table 
field: 
a = "hello" .. "world" 
t.n = t.n + 1 
 
Lua allows multiple assignment, which assigns a list of values to a list of 
variables in one step. Both lists have their elements separated by commas. For 
instance, in the assignment 
a, b = 10, 2*x 
 
 
if then else 
An if statement tests its condition and executes its then-part or its else-part 
accordingly. The else-part is optional. 
if a < 0 then a = 0 end 
if a < b then return a else return b end 
if line > MAXLINES then 
   showpage() 
   line = 0 
end 
 
 
while 
As the name implies, a while loop repeats its body while a condition is true. As 
usual, Lua first tests the while condition; if the condition is false, then the loop 
ends; otherwise, Lua executes the body of the loop and repeats the process. 
local i = 1 
while a[i] do 
  print(a[i]) 
  i = i + 1 
end 

 
w w w . p b s c o n t r o l . c o m  

 
Page 100  



 pbsSoftLogic User Manual 2014 

Numeric for 
The for statement has two variants: the numeric for and the generic for. 
A numeric for has the following syntax: 
for var = exp1, exp2, exp3 do 

<something> 
end 
 
This loop will execute something for each value of var from exp1 to exp2, using 
exp3 as the step to increment var. This third expression is optional; when 
absent, Lua assumes 1 as the step value. As typical examples of such loops, 
we have 
 
for i = 1, f(x) do print(i) end 
 
for i = 10, 1, -1 do print(i) end 
If you want a loop without an upper limit, you can use the constant math.huge: 
 
for i = 1, math.huge do 

if (0.3*i^3 - 20*i^2 - 500 >= 0) then 
print(i) 
break 

end 
end 
 
  
  
  
 
  
 
 
  
 
  
 
  
 
 
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 

 
w w w . p b s c o n t r o l . c o m  

 
Page 101  



 pbsSoftLogic User Manual 2014 

11 – Runtime Kernel for Linux and transferring License to Controller 
 

pbsSoftLogic has two parts :  

1 - Engineering station. Running on windows Operating system  

2 – Runtime Engine. Running on Embedded Linux 2.6.x on controllers (IA240, UC7112Plus, W406 
…)  and runtime version for WinCE controllers( ECU-1911 ,UNO-1019 and UC-7122) 

In this section we will talk about Linux Runtime engine.  

You can download latest Linux runtime engine for different MOXA controllers from 
http://www.pbscontrol.com/download.html page.  

pbsSoftLogic Runtime Engine for Linux has following format :  

- It locates at /home/pbsLX directory  
- /home/pbsLX/pbsSLKLX file is main runtime module. It is an executable Linux file.  
- /home/pbsLX/lmp/libpbsLMP.so logic monitoring protocol implementation for  linux .  
- /home/pbsLX/fblib/libCounters.so , libLogic.so , libMath.so , libProcess.so , libTimers.so linux 

implementation  of pbsSoftlogic  internal Function blocks . For each FB group there is one  linux 
dynamic library .  

- /home/pbsLX/drvlib/mmix/libpbsModbusMLx.so pbsSoftLogic Modbus Master(RTU/TCP)  
implementation  for linux .  

- /home/pbsLX/drvlib/msix/libpbsModbusSLX.so pbsSoftLogic Modbus Slave implementation   for 
linux .  

uc7112.rar : Runtime kernel  for IA240-IA241-W341-W321-UC7112Plus-IA3341  

w406.rar : Runtime  kernel for IA260-IA261-IA262-EM2260  

 

When you unzip uc7112.rar and w406.rar you can see following directories: 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 102  

http://www.pbscontrol.com/download.html


 pbsSoftLogic User Manual 2014 

For transferring  pbsLX directory to controller do following tasks :  

1 – Open project setting page and click on kernel Tab. To be sure that Controller IP address is correct on 
General Tab. 

2 – Click on Browse Button and select pbsLX Directory that you want to transfer to controller. To be sure 
that you select correct runtime Kernel for your controller.  

 

3 – If controller has old Runtime Kernel, first Shutdown RTU Kernel. 

4 – Click on Transfer To Controller Button. It will transfer all files and directories to controller but not 
changing logic and configuration.  

5 – If it is new controller without any kernel, in General Tab click on Set Startup Button to put all 
necessary modules in controller startup path.  

 

6 – From general tab Restart Controller.  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 103  



 pbsSoftLogic User Manual 2014 

 

For each controller, you need to have license file for life time operation. Without License, it will work for 
30 Min and you need to restart Controller.  

We have following license for controller runtime: 

- RTU/PLC functionality and Modbus Master/Slave protocol. This is basic license for each 
controller.  

- DNP3 Slave License.  
- IEC870-5-101/104 Slave License  
- BACNET License  

You need to purchase each license separately from your supplier or directly through 
www.pbscontrol.com web site. You can purchase basic license and purchase other license for your 
controller. But your license key is same for each controller.  

When you purchase pbsSoftLogic License, you will receive a license key. For activating license do 
following steps:  

1 – Open project setting page and select License Tab.  

 

2 – To be sure that your PC is connected to Internet and Controller In the same time.  

3 – Copy and Paste   Controller license Key to License key text Box .  

4 – Write some description about your project, Project name, country,  

5 – Click on get License from Web Site It will connect to pbscontrol web site and get all purchase licenses  

6 – Modbus , DNP3 , IEC and BACNet check boxs will be checked based on your purchase  

 
w w w . p b s c o n t r o l . c o m  

 
Page 104  

http://www.pbscontrol.com/


 pbsSoftLogic User Manual 2014 

7 – Click on Copy License to Controller. It will move license file to controller.  

8 – From General tab, restart Controller.  

 

If you have a controller and want to check its license, click on Read License from Controller.  

 

 

12 – Project Settings facilities   
 

There are many facilities in setting page in pbsSoftLogic Editor.  

Open Setting Page you can see following tabs: 

 

- General  
- Time Setting  
- LAN Setting  
- Stats  
- License  
- Kernel 

General Tab:  In This page you can set following parameters: 

- Logic Scan time ( Msec)  
- Controller Type  

 
w w w . p b s c o n t r o l . c o m  

 
Page 105  



 pbsSoftLogic User Manual 2014 

- Watch Dog Value  in sec , if Value is 0 , DWT is disabled  
- Controller IP address  
- Communication Drivers  
- Restart Controller  
- Delete Logic  
- Delete Configuration  
- Set Startup: will set all necessary modules in Startup path of controller. For a new controller 

before running any Commands in setting page, you need to set Startup and restart controller 
manually.  

-  

 

Time Setting: 

 

Set Controller Time Zone: Select your location from list box, and click on Change TimeZone .  

Read Controller Time : Will read current Date time and time Zone  of controller .  

Set Time : will set Controleller time from NTP Server , it can be a computer on the network or any Time  
web site . But controller should connect to Internet.  

Set Controller Time with PC : It will set Controller time from PC that is running pbsSoftLogic .  

LAN Settings: 

 
w w w . p b s c o n t r o l . c o m  

 
Page 106  



 pbsSoftLogic User Manual 2014 

  

Read LAN Setting: It will read current LAN Setting from Controller. 

Write LAN Settings: it will Write LAN settings to controller  

Read LAN Configuration: it will read current ALN configuration fro controller. 

For changing controller IP address:  

1 – Read LAN Settings  

2 – Change IP address for each LAN port and other settings  

3 – Write New Settings to Controller. 

Controller Stat tab: 

Read CPU Information: It will Read Hardware Information from controller  

 
w w w . p b s c o n t r o l . c o m  

 
Page 107  



 pbsSoftLogic User Manual 2014 

 

Read memory information: shows detail of memory  usage of controller  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 108  



 pbsSoftLogic User Manual 2014 

Read Version: Read Controller Linux Version, GCC compiler version  

 

Read Flash Information: 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 109  



 pbsSoftLogic User Manual 2014 

Read Free Memory: 

 

Usage:  this is equal to top command in linux .  

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 110  



 pbsSoftLogic User Manual 2014 

13 – ECU-1911 Local I/O Definition 
ECU-1911 is one of our main controllers for SCADA projects. ECU-1911 has following specifications:  

General 
 Power Consumption: <10 W (Typical) 

 Power Requirements: 24 VDC (Typical) (10 Min ~ 30 Max VDC) 

 OS Support: Windows CE 5.0 
System Hardware 
 CPU: Xscale @ PXA-270 520MHz 

 Memory: Onboard 64 MB SDRAM/ 32 MB Flash 

 Storage: 1 x type I/II Compact Flash slot (Support FAT16 and UP TO 2 GB) 
Digital Input 
 Channels: 32 

 I/O Type: Sink 

 Wet Contact: 
– Logic 0: 0 ~ 10 V 
– Logic 1: 19 ~ 30 V 
 Isolation: 3000 VDC 

 Connector: Terminal Block (#14 ~ 22 AWG) 
Digital Output 
 Channels: 32 

 I/O Type: Power Relay Form A 

 Contact Rating: 
– AC: 5A @ 250 V; 
– DC: 5 A @ 30 V (Resistive Load) 
 Isolation: 500 VDC 

 Connector: Terminal Block (#14 ~ 22 AWG) 
Analog Input 
 Channels: 8 differential 

 Resolution: 16 bits 

 Sampling rate: 10 Hz/sec (total) 

 Input Impedance: Voltage: 20 MΩ Current: 120 Ω (Build-in 120 Ω. for Current) 

 Input Range: 0 ~ 150 mV, 0 ~ 500 mV, 0 ~ 1 V, 0 ~ 5 V, 0 ~ 10 V, 0 ~ 15 V, ±150 
mV, ±500 mV, ±1 V, ±5 V, ±10 V, ±15 V, ±20 mA, 4 ~ 20 mA 
Environment 
 Humidity: 5 ~ 95% @ 40°C (non-condensing) 

 Operating Temperature: -20 ~ 70°C (-4 ~158°F) @ 5 ~ 85% RH 

 Storage Temperature: -40 ~ 80°C (-40 ~176°F) 

 
w w w . p b s c o n t r o l . c o m  

 
Page 111  



 pbsSoftLogic User Manual 2014 

I/O Interface 
 Serial Ports: 1 x RS-232 with DB9 (RTS,CTS,TX,RX); 3 x RS-485 with Terminal 
Block connector, Automatic RS-485 data flow 
 LAN: 2 x 10/100Base-T RJ-45 ports 

 USB Port: 1 x USB, OpenHCI, Rev. 1.1 compliant 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 112  



 pbsSoftLogic User Manual 2014 

ECU-1911 Field wiring  

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 113  



 pbsSoftLogic User Manual 2014 

Defining ECU-1911 Local I/O in pbsSoftLogic  

1 – At project setting select ECU-1911 as controller type.  

 

2 – Right click at driver list and select new Driver  

 

3 – Select New Driver and select LOCAL_IO from list. Write a Unique name for Driver. Click on Make 
Driver. 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 114  



 pbsSoftLogic User Manual 2014 

4 – New Local I/O driver is adding to list of drivers.  

 

5 – Click on LOCAL_IO driver and right click on it.  

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 115  



 pbsSoftLogic User Manual 2014 

6 – Select explorer. Edit Local_IO.xml file. You can see a xml file for all ECU-1911 I/Os. You can change 
Tag Name based on your logic and project. 

Digital Signal Definition:  

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 116  



 pbsSoftLogic User Manual 2014 

Analog Input Signal definition : 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 117  



 pbsSoftLogic User Manual 2014 

Digital Output Tag Definition : 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 118  



 pbsSoftLogic User Manual 2014 

7 – Use Local I/O in your logic by opening driver list and select signals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 119  



 pbsSoftLogic User Manual 2014 

14 – OPC Client Driver Configuration for Win32 Target.  
pbsSoftlogic Version 1.7  supports Windows 32 Target the same way as Linux and wince target .  

There are two windows32 runtime kernels for pbsSofLogic:  

- Runtime kernel that is based on OPC standard. (VSLE.exe) we named this kernel PCWIN32 in 
project setting. This is pure Dot Net Kernel and is developed by C# .VSLE .exe is mostly used for 
Subsystem integration based on OPC technology.  
 

- Runtime kernel that is compiled from Linux and wince kernel c source code for win32. This is 
high performance kernel and can be used as   PLC/RTU applications on embedded Win32 
controller. We named this kernel WIN32 in project setting. This part is talking about Win32 
runtime and how we can use it.  Win32 Kernel is just based on driver concepts and it has 
following drivers built in :  
 

o Modbus RTU/TCP master /Slave  
o DNP3 Master/Slave  
o IEC870-5-101/104 Master/Slave  
o IEC870-5-103 master  
o OPC client Driver  
o OPC server Driver  
o Open API Driver for C interfacing with runtime kernel.  

 
Download latest Win32 target from www.pbscontrol.com .  Unzip it on any drive in your controller.  
Suppose we unzipped kernel on C:\PSLERT Directory.  

 
 

 
w w w . p b s c o n t r o l . c o m  

 
Page 120  

http://www.pbscontrol.com/


 pbsSoftLogic User Manual 2014 

- psleWin32RT.exe is main application for kernel. It should be in Windows Auto start routine. 
- Logic.c11 compiled pbsSoftLogic Logic file. Transferred by pbsSoftlogic Eng  
- Logic.cfg compiled pbsSoftlogic Configuration file. Transferred by pbsSoftlogic Eng  
- License.lic license file that is linked to MACID of Controller.  psleWin32RT.exe will works for 30 

min without License file .  
- GetMacID.exe utility program for making license file. You need to run getMacID.exe and send 

MacID to supplier for getting permanent license file.  
- Drvlib : communication driver library  
- Fblib : Function block implementation library ( c and Lua) 
- Lmp : Logic monitoring protocol  library  
- WtClient.dll main dll file for OPC DA2.0 client driver.  

 
pbsSoftlogic is using FTP for transferring logic and configuration file to Controller . So you need 
to install FTP server on target controller with Windows32 OS. Install FileZilla server or use 
internal windows FTP Server services and define “root” user with “root” password.  
Set C:\PSLERT as default path of FTP server for “root” user. "root” user should has write/read 
access to c:\PSLERT directory.  
 
Make a new project and set project setting as following:  

 
Controller Type is Win32.  
Logic Scan time (ms):  period for reading all inputs, running logic and writing all outputs. We 
name this time logic scan time.  When you connect and monitor logic you can see real value for 
logic scan time. 
Logic Scan Time in settings = Real Logic Scan Time + sleep Time  
Suppose you set Logic Scan time in Setting page to 50 ms, but real logic scan time is 20 ms . So 
kernel will sleep for 30 ms at each cycle.    

 
w w w . p b s c o n t r o l . c o m  

 
Page 121  



 pbsSoftLogic User Manual 2014 

 

 

You can see real logic scan time at bottom side of logic monitoring page. In above sample, real logic scan 
time is 6 ms.  

When you are using drivers like modbus  , you need to add  Modbus  scan time to  logic scan time  to 
calculate real scan time of whole IO and logic .  

Controller RAM Driver (Temp) Path: pbsSoftLogic runtime kernel is using files for keeping static data of 
Function blocks. Because at each scan runtime kernel is open, read and write static data to files, so it is 
too much better to use ram drive for saving static data files. 

You can download very professional and free RAM Disk Driver from 
http://memory.dataram.com/products-and-services/software/ramdisk Web Site. We tested Data ram 
disk in many projects and it is 100% compatible with pbsSoftLogic .  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 122  

http://memory.dataram.com/products-and-services/software/ramdisk


 pbsSoftLogic User Manual 2014 

Controller IP: you can use PC based controllers like UNO-1150 , UNO-1170 and use separate laptop for 
programming . Then you need to set PC Based controller IP here. When programming PC and controller 
PC are same, then you can use 127.0.0.1 as Controller IP. 

  

In above sample, we used two UNO-1170 as controllers and one station as programming station.  

You need to make two separate project for each UNO-1170.  

If you need to pass data between controllers, then you can define modbas-TCP master on one controller 
and Modbus-TCP slave on another controller. You can also use DNP3 over TCP and IEC870-5-104 for 
communicating between two controllers.  

 

 

 

 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 123  



 pbsSoftLogic User Manual 2014 

Defining OPC client Driver 

Open project setting page and right click on Driver list, then select OPCClient Driver. 

 

Select a unique name for driver and select driver instance. You can connect to 8 OPC server on each 
controller in the same time. Each OPC server connection should have unique Instace ID. 

 

Click on “Make Driver” Button. pbsSoftLogic will make basic definition in your project . 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 124  



 pbsSoftLogic User Manual 2014 

OPC client Driver : pbsSoftLogic runtime kernel will connect to other OPC servers DA2.0  

OPC Server Driver : pbsSoftLogic runtime kernel will  act as OPC Server and other client can connect to it. 

In this part, we will talk about OPC Client Driver.  

 

 

pbsSoftLogic will make a new  folder in project directory with same driver name .  

 

  

 
w w w . p b s c o n t r o l . c o m  

 
Page 125  



 pbsSoftLogic User Manual 2014 

 Inside S7_OPC directory , you can see OPCTags.xml file . we will keep all parameters and tags inside 
OPCTags.xml file .  

For making OPCTags.xml you should use pbsSoftlogic OPC configurator utility at Tools menu . 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 126  



 pbsSoftLogic User Manual 2014 

 

Defined OPC configuration files: At Top left panel you can see all defined OPC configuration files. These 
files are located at \PSLE\OPC folder.  

Installed OPC Servers:  At Bottom left panel you can see all installed OPC servers on this machine or 
remote PC.  For browsing  OPC servers on remote machine you need to  do all setting for OPC on 
network  for  both PC . OPC network operation is dependent too much on Operating systems and it is 
out of scope for this document. 

For connecting to remote PC ,  at Edit menu select “Set remote Server”   then type Server Name of IP 
address for getting all installed OPC servers on that Machine .  

 

For changing to local Machine ,  from Edit menu select “Set Local Server”. 

 

  

 
w w w . p b s c o n t r o l . c o m  

 
Page 127  



 pbsSoftLogic User Manual 2014 

For defining new OPC Configuration file , right click on “Defined OPC Configuration” panel . 

And select “new” menu. 

  

OPC explorer   will look at \psle\OPC directory and find all files with OPCXMLn.xml name format and will 
make a new file with OPCXML{n+1}.xml name when n is max number in the OPC directory . 

You can rename OPC configuration file by running Explorer menu and rename file by windows utilities.  

By running refresh Menu, Defined OPC configuration file panel will be refreshed with new names. 

After you make a new OPC configuration file, select OPC server at Installed OPC server panel and 
connect to OPC server by right click menu.  

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 128  



 pbsSoftLogic User Manual 2014 

 From OPC server tags Panel, select all tags that you want to add in configuration. You can use Filter at 
right side to find OPC tags. You can press and hold Ctrl Key and select multiple items by left click. 

Right click on selected Tags and run “Select” Menu. 

 

String and date data types are not supported in pbsSoftLogic for OPC client Driver. 

Following Data Types are supported: 

  VT_I2                 2 byte signed int 
  VT_I4                 4 byte signed int 
  VT_R4                 4 byte real 
  VT_R8                 8 byte real 
  VT_BOOL               True=1, False=0 
  VT_I1                 signed char 
  VT_UI1                unsigned char 
  VT_UI2                unsigned short 
  VT_UI4                unsigned long 
  VT_I8                 signed 64-bit int 
  VT_UI8                unsigned 64-bit int 
  VT_INT                signed machine int 
  VT_UINT               unsigned machine int 
 

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 129  



 pbsSoftLogic User Manual 2014 

 At right Panel you can see OPC tag properties: 

 

Tag Access   :  

OPC server tag has Read Access by client = 1 

OPC server tag has write Access by client = 2  

OPC server tag has Read/write Access by client = 3 

 

VT_BOOL has different definition in OPC:  

 VT_BOOL               True=-1, False=0 

But in pbsSoftLogic Runtime kernel, it is mapped as following:  

VT_BOOL               True=1, False=0 

  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 130  



 pbsSoftLogic User Manual 2014 

After selecting OPC tags, click on “Selected Tags” Tab. you can see list of selected tags and at right side 
Tag properties with Tag Value.  

 

When you click on each tag, Tag properties will be update at right panel. 

 Click on “Parameters” tab. you can see OPC connection parameter page. 

  

OPC driver uses following parameters: 

- OPC Server Group refresh Time  
- OPC Server Group percent Dead band 
- Instance  

Other parameters are for PCWIN32 target and not used in Win32 Target. 

  

 
w w w . p b s c o n t r o l . c o m  

 
Page 131  



 pbsSoftLogic User Manual 2014 

OPC Server Group percent Dead band definition from OPC standard:  

The percent change in an item value that will cause a subscription callback for that value to a client. This parameter  
only applies to items in the group that have Analog signals.  
 
 
 
 
OPC Server Group refresh Time definition from OPC standard:  

The fastest rate at which data changes may be sent to client for items in this group. 
 
 
 
Instance: 
Instance number is same as driver instance number.  
  
 
  
 

For saving configuration , click on configuration name and save it by right click menu .  

 
  
OPC configuration file will be saved at \psle\OPC directory. This file is same file that is used in OPC client 
driver configuration. 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 132  



 pbsSoftLogic User Manual 2014 

For saving OPC configuration as OPC driver configuration, at “file” menu, select “Save as Driver File” 

 

 

Save and close configuration file then run “Save as Driver File…” menu and select Driver path. 

You should select same folder that is made by pbssoftlogic when you define OPC Client driver in project 
setting page. 

 

It will copy OPC configuration file at driver folder with OPCTags.xml name. 

  

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 133  



 pbsSoftLogic User Manual 2014 

 Using OPC Tags in your logic : 

- use InputSignal or Outputsignal Elements  in your logic  
- Right click on Inputsignal or Outputsignal elements  
- Select “DRV Signals” 
- Select OPC signal from Driver list signals.  

 

- After finish logic , compile logic from “project/compile” menu. 
- Transfer configuration file to Controller by “Project/Transfer Configuration” menu. 
- Transfer Logic file to controller by “Project/Transfer Logic” menu. 
- Restart runtime kernel. ( psleWin32RT.exe)  

When you transfer Logic and configuration to controller, pbssoftLogic will use following files and change 
their names as following: (suppose project name is win32) 

Win32.lx  : it is compiled configuration file  will copy to controller and its name changed to logic.cfg  

Win32.c11 : it is compiled logic file  will copy to controller and its name changed to logic.c11  

 

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 134  



 pbsSoftLogic User Manual 2014 

OPC client Driver runtime specifications: 

- Remote Server name: 128 characters 

- OPC server name: 256 characters 

- OPC Item name: 128 characters  

- OPC Server DA 2.0  

- Selected OPC Items will read one time and Driver start time, after that OPC server should write 
Changes by call back to OPC client Driver. 

- Maximum Number of OPC Tags for each instance: 1024  

- Maximum Number of OPC instance: 8  

 

 

 

  

 

 

 

 
w w w . p b s c o n t r o l . c o m  

 
Page 135  


	Version: 1.7.0
	Author: Kamjoo Bayat – kamjoo.bayat@pbscontrol.com
	Date: Q2  2014
	1 – Introduction
	2 – PbsSoftLogic Installation
	3 – Basic concepts
	4 – Function Block programming Language
	5 – Quick Startup
	6 – Modbus Master Configuration and integration with remote I/O Modules
	7- Modbus Slave Configuration
	8 – DNP3 Slave Configuration
	9 – IEC870-5 Slave (101-104) Configuration
	10 - User defined function block
	11 – Runtime Kernel for Linux/WinCE  and transferring License to Controller
	12 – Project Settings facilities
	13 – ECU-1911 Local I/O Definition
	14 – OPC Client Driver Configuration for Win32 Target.
	1 – Introduction
	2 – pbsSoftLogic installation
	3 – Basic concepts
	4 – Function Block Programming Language
	5 – Quick Startup
	6 – Modbus Master Configuration and integration with remote I/O Modules
	7- Modbus Slave Configuration
	/
	8 – DNP3 Slave Configuration
	9 – IEC870-5 Slave (101-104) Configuration
	10 - User defined function block
	10 – 1 C# and C UDF  development
	10 – 2 Lua UDF Development
	“Wikipedia Chooses Lua as its new template language “
	10 – 2 Lua Language basics
	11 – Runtime Kernel for Linux and transferring License to Controller
	12 – Project Settings facilities
	13 – ECU-1911 Local I/O Definition
	/
	14 – OPC Client Driver Configuration for Win32 Target.

