SLAC-R-447

SLAC-447
CONF-9405161--
UC-405

(M)

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

May 1-3, 1994
Boston, Massachusetts

Convened by
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94309

Program Committee

Cathie Dager of SLAC, Convener
Forrest Garnett of IBM
Pat Ryall

Prepared for the Department of Energy
under Contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

- TABLE OF CONTENTS -

A. Summary
B. Presentations

Tom Brawn

Tom Brawn
Anders Christensen

Ian Collier

Mike Cowlishaw
James Crosskey
Hal German

Klaus Hansjakob
Mark Hessling
Lee Krystek

Luc Lafrance
Linda Littleton
Alan P. Matthews

Patrick J. Mueller
Patrick Mueller
Simon Nash

Edmond Pruul

David Shriver
Timothy Sipples

Hobart Spitz

C. Attendees

IBM AIX REXX/6000 and

IBM REXX for NetWare

Object REXX—What’s New?
Techniques for Performance Tuning REXX
Interpreters—A Case Study of Regina
REXX/imc: A REXX Interpreter for UNIX
Interesting Corners of REXX

IBM Views on REXX

Choosing a Command Language—
An Application-Centric Approach
News From the REXX Compiler
Using REXX as a Database Tool
Using REXX in a UNIX Environment
to Manage Network Operations

REXX at Simware

REXX Resources on the Internet
Using REXX and Notrix for Lotus
Notes Data Manipulation

Adventures in Object-Oriented
Programming in REXX
ROX—REXX Object eXtensions

The Object REXX Class Hierarchy
Portable REXX Applications

and Reusable Design

REXX for CICS/ESA

Working (and Playing!) with REXX
and OS/2 Multimedia

Converting MVS/JCL to REXX/TSO

24
33
41
64

74
78
95

109
125
138

142
166
188
211

223
231

246
250

265

Summary

—— The fifth annual REXX Symposium for Developers and Users convened in Boston,
Massachusetts, May 2-4. The fifty-seven attendees_came from Australia, Austria,
England, Norway, Canada and many US states. B

This conference has become the premier event for exchanging REXX technical
information, and people were impressed with how much REXX has spread since the last
Symposium. This year we welcomed implementations for new platforms and continued
growth in numbers of users and in importance of uses.

One of the most popular sessions was “Object-Oriented Extensions,” given by Simon
Nash of IBM. Also IBM gave the first public demonstration of their Object REXX for
Windows. And the attendees continued the Symposium tradition of contributing software
and making diskettes available for all.

The Symposium served as a springboard for the REXX Language Association (RexxLA)
which will help promote the use of the language. RexxLA held its first public meeting in
conjunction with this year’s REXX Symposium.

Next year the Symposium will be held at the Stanford Linear Accelerator Center.

1994 Steering Committee:

Cathie Burke Dager
Forrest Garnett
Pat Ryall

IBM AIX REXX/6000 and
IBM REXX for NetWare

Tom Brawn
IBM

IBM AIX REXX/6000
&
IBM REXX for NetWare

Thomas J. Brawn
Object REXX Development

IBM Endicott, NY |
Internet id: tombrawn@vnet ibm.com

v

IBM AIX REXX/6000

= Available 12/93
= Program number 5764-057
—~ REXX/6000 Reference guide SC24-5708

- comments on reference guide can be sent to

ST NSN/T T I T I T LN

pubrcf@gdlvme.vnet. /bm.com
Supports A IX release 3.2 and up

VUI Ld 7 VAN | NIV VAN \J o in A

= "AS-IS" release
- In use internally at over 100 IBM Iocatlons,fcr over 2
years .

REXX/6000

Additional details...

» Port of IBM's OS/2 REXX kernel to the AIX platform
- SAA Level 2

» //O functions (charin, charout, stream, etc)
» Systern exits

- Default command environment
» address ksh 'Is -Fc’

— Access to AIX environment variables
> value('PATH',, ENVIRONMENT)

REXX/6000

v -

Additional Functions

= Directory
— Works just like OS/2 cmd
= RexxRegisterFunction/RexxRegisterFunctionPkg

~ For registering functions from an application or functions
from a function package

easy access to API functions

= SysCreatePipe
— Creates an "unnamed pipe" for commgﬁication between

two processes
REXX/6000

.................................. ‘,"‘w.......4\.._...__HM\._,"M‘_.m._\.ﬂ__\qu_‘w
More functions...

= SysFork()
- Interface to fork command
= SysGetpid()
- Returns process ID
= SysWait()
— Waits on child process to end

P

|

REXX/6000

S

= "AS-IS" release

v

IBM REXX for NetWare

= = Available 3/94

Program number 5764-075
- IBM REXX for NetWare Reference Guide SH24-5286

- comments on reference auide can be sent to

TRSINST T I T INIT TN ST T T NJINVT /T I g AT 1

pubrcf@gdlvme.vnet.ibm.com
Supports NetWare release 3.11,

UHH T LW TN /LT Y LAL NV iAWV

for NetWare

v

Additional details

= Port of IBM's OS/2 REXX kernel to Novell's NetWare
- platform

- SAA Level 2
> //O functions (charin, charout, stream, elc)
» System exits

- Default command environment
» Address netware 'load monitor’

REXX
for NetWare

v o

REXX API's

= RexxRegisterSubcomNLM
- registers a subcommand handler from a NetWare
loadable module
= RexxRegisterSubcomAdr
- registers a subcommand handler from within an
application routine
= Similar APl's for registering external functlons an
handlers

sy
RO
=
.:;::.e t
f

REXX
for NetWare

01

NetWare specific utilities

= RxConsolePrint
- Display a line of text on the system console
= RxDosCopy
- Copies a file from the DOS partition to the NetWare
partition
= RxDosPresent
- Queries whether DOS is in memory
= RxGetNumberOfVolumes
— Queries the number of volumes on the Iocal server
= RxGetVolumeName
- Given a volume number, get the volume nam
= RxQueryNLM ﬁEXX
-~ Return NLM handle if the NLM is IGaded for NetWare

>

i

v ' n

Industry excitement

= Tritus & IBM REXX/6000
- Use REXX/6000 to extend the Tritus SPF editor
= Knozall & IBM REXX for NetWare

- Use the REXX for NetWare scripting language module to
extend and tailor the functionality of Knozall's NLMAuto
Professional and NLMerlin products.

Z
i

SR

4!

Trademarks ;. |

IBM, 0S/2, AIX, REXX/6000, IBM REXX for NetWare,are registered trademarks of International Business
Machines Corporation.

NetWare is a trademark of Novell, Inc.

Tritus SPF is a trademark of Tritus Corporation.

NLMAuto Professional and NLMerlin are trademarks of Knozall Systems, Inc.

Object REXX—What’s New?

Tom Brawn
IBM

7

A
e \.\\\‘\“\\\\
\\

%

Tom Brawn
t REXX Development

IBM End

jec

Ob

, NY

Icott

bm

tombrawn@vnet

Internet

3

v

Backg'round

= Work began in 1988

» Prototyped since 1989

= Complete rewrite of interpreter
= Language architecture "in progress" and subject to change
= Significant enhancements over the past 18 months

= Limited beta on OS/2 and Windows 4/94

1

91

\ 4

Why Object REXX?

= Remove limitations of current REXX language
= Bring the power of OO programming to REXX
= Bring the usability of REXX to OO programming
= Extend REXX usage
- windowing,

L1

A 4

= Objects

- Everything in Object REXX is an object
= Methods

- Everything that happens in Object REXX is a method
= Messages

- Everything that happens in Object REXX is caused by

S
message o

81

New REXX chan

- - - W A ~ E EwaE W

= Expressions in stems

= Parse enhancements

= Countstr/Changestr functions
= Extended Do syntax

= Date conversions

a
A

(2]

wWarEan

a1

v

@ &

Expressions in stem references

= Allow expressions on right side of stem .'s
= Use [] to contain stem expressions
= Example:

Before...
tom =index + 1

chris = index + 2
if employee.tom.chris ... &

Is written... $

if employee.[index+1].[index+2] ... ~ / Ibo(

iré

A 4

® &

Parse enhancements

= parse caseless...
- Parse template match without regard to case
- Example:

parse caseless value 'Out To Lunch' with first ' to ' last
say first ==>Out J—

SRS
@\\\\\\\“‘

say last ==>Lunch -
o
@‘@@%
= parse lower... V4
- Translate to lower case, then parse 7
- Example: &

&
N
*

parse lower value 'Out To Lunch’ W|th first "to"
say first==>out bject
say last==>lunch

| 4

A 4

&

countstr/changestr

= countstr(needle, haystack)
- Returns count of needle in haystack
- Example:

countstr('is','This is a test of counstr') ==> 2

= changestr(needle,haystack,new) e
- Returns copy of haystack in which new replacs@ all
occurences of needle §
- Example: V4

changestr('1',101100",X) == 'xoxxo®

(44

v

2 ®

Extended DO

= Adds ability to iterate over stems
= Example:

fred.1="Tom';fred.2="Chris';fred.3="Alex’;
do tail over fred.

say fred.tail J—
end e
. S
—=>Alex | /
==>Chris &
==>Tom /

14

&

Date Conversions
= Convert date to standard formats
= Example:

say date('usa',19931225,'standard')
==>12/25/93
say date('european’
==>25/12/93

,19931225,’

Techniques for Performance Tuning
REXX Interpreters—A Case Study of Regina

Anders Christensen
Sintef Runit

24

Techniques for Performance Tuning Rexx
Interpreters—A Case Study of Regina

Anders Christensen
<anders.christensen@runit.sintef.no>

The Rexx Symposium for Developers and Users
Boston, May 1-4, 1994

Abstract

This article describes some of the techniques and methods used for optimizing the Regina
interpreter, a REXX interpreter written in C, originally for Unix systems. The methods
described first may be regarded as optimalization techniques in isolation, but they are also
prerequisites for the last technique described here: the creation and maintenence of shortcut
pointers from the parse tree to the variable structure.

1 Introduction

When tuning a program like a REXX interpreter for improved speed, a number of general tech-
niques are used. Some of these are interesting in themselves, but not very specific to REXX
interpreters. The scope of this text is to present some of the techniques that are closely related to
the datastructures and operations of REXX interpreters.

2 Datatyping Variables

The fact that REXX is a typeless language is often described as one of its major advantages. Thus,
it might be a great surprise to learn that one of the techniques boosting the performance the most,
was introducing typed variables. Another technique was introducing typed expressions, which is
described in the next section. .

Internally, a Regina variable can hold either a string value, a numeric value, or both. When
setting a variable, either a string or numeric value is set, depending on the context. Whenever
the value of a variable is retrieved, it can be retrieved as either a string or a number. If a string
value is retrieved for a variable currently holding only a numeric value, that value is converted so
the variable holds both data type formats and then the string value is returned.

To understand the difference between these two formats, it might be instructive to look at
their definitions in Regina.

length 12 3 456 7889 n-1 n
String | T * i T :
format |)1 ’ l ' l I I [| . !
Numeric | iD[}ii“:l ,
format | ! L Lol .

Length Sign Exponent 1 2 3 4 5 n

Figure 1: Storage formats for variables in Regina

25

For the string format, the values “2”, “ 2 ”, and “2EQ” are different, but for the numeric
format, these are identical. The string is simply a sequence of characters, having a specific length.
The numeric format is a sequence of decimal digits, to which there are connected three pieces of
______ information: the length (number of digits), the sign, and the exponent (a native integer).
Consider the REXX statements:

[| REXX statement [Numeric | String |
1] foo = 1+1 2 N/A
2 | bar = foo || *.° 2 2
3| foo = (foo * 3) Il * N/A '3
4 | say foo*3 3 3

o After the first line, foo contains the numeric value 2, while its string value is not set. Note
that it is not undefined, it can easily be converted from the numeric format, if necessary.

o In the second line, the string value of foo is retrieved, which means that the numeric value
is converted. After the second line, both a numeric and a string value are stored for the foo
variable.

o In the third line the numeric value of foo is retrieved and used in an expression which results
in a string value. At the end of that statement, the foo variable is set to a new string value,
and the numeric value becomes unset.

e In the fourth line the numeric value of foo is retrieved. However, at that point the foo
variable have only a string value, so when retriving the value, the current string value is
expanded to a numeric value. After the fourth line both a string and a numeric value are
set.

Why maintain this double accounting? It turns out that variables set to a string value are very
rarely used in numeric expressions . And vice versa, when a variable is set to a numeric value, it
is seldom used in a string context; except for output statements, which tend to be slow anyway.

Based on these two observations, it makes sense to have two parallel, highly optimized sets of
functionality for operating variables: one for numeric values and one for string values. Since the
conversion between them are rather rare, the more time-consuming code for conversion between
the two formats does not significantly increase the total execution time.

As a future extension, the scheme may be expanded to handle boolean variables too. However,
it may turn out that the increased complexity this requires (six conversion types as opposed to
only two above) may not justify the increase in speed. The use of boolean variables are much
less widespread than string and numeric variables; and besides, boolean variables can be emulated
through numeric variables.

In addition, the native floating point numbers could be used. It beats REXX numbers in speed,
but it is difficult to avoid loosing accuracy wrt the definition of REXX arithmetics.

3 Construction of a Parse Tree

In order to explain what comes next, we need to know the format in which Regina stores a parsed
REXX program. As an example, consider the following REXX code:

if (’xxx’/=bar) & (bar*foo>1000) then
exit

Regina converts this sequence of tokens to a parse tree, the expression in the if-clause is shown
in figure 2. The conversion between a sequence of tokens and a parse tree is described in most
text books on compiler construction. As an aside note: parse trees are often considered to be
incompatible with the customary way REXX programs are stored internally—a list of tokens.
However, a static tree can easily be converted to a list of tokens. The difference lays in generating

26

‘gn} (Istn
- Rt)
{ foo ! bar ; A 100
/ \\
\’\‘bar’> (foo "

\

N,

Figure 2: A parse tree built by Regina

a parse tree, which requires a more thorough analysis than a simple conversion of the source code
to a list of tokens.

The most obvious approach for executing the code represented by the parse tree would be to
traverse the parse tree, and for each binary operator (“=/", “&”, “*", etc) first traverse the left
subtree, then the right subtree, and in the end apply the operations to the two strings obtained
from the traversals.

It is possible to add some optimalizations here:

bar =/ ’foo’
We know that this must always be a non-numeric comparison, this there is no need to try
anything but a normal string comparison straight away.

2xbar
In this expression, we are only concerned with the numeric value of bar, so we retrieve its
value in numeric “mode”, as described in section 2.

(a>b)&(c<d)
Here, each of the two pairs of parentheses can result in either “1” or “0”. Thus, we use the
native integer format of the computer to signify the values, rather than using the Regina
string or numeric format.

4 Datatyping Expressions

Using these techniques, the dataformat of the data transmitted from a subtree to its parent node
depends on the context. For instance, consider the parse tree shown in figure 2. After adding the
datatypes, the new parse tree is shown in figure 3.

5 Hash Tables to Store Variables

Regina uses hash tables to store the variables defined at any given point during the execution of
a REXX script. This technique can make the retrieval of a variable a constant-time operation, if
given a well balanced hash table. However, once the hash table becomes full, the efficiency drops.

One of the key points with hash tables is to choose the correct size. If the size is too small, the
handling of overflow adds a large overhead. If the table is too big, the extra work of initialization
and deallocation adds unnecessary overhead. One solution is to have only one huge hash table for
the whole interpreter, in which case the work of initialization and deallocation of the hashtable is
done only once. However, this requires some extra overhead for insertion and deletion of variables.

27

bool — boot
— L])
Str, str num// num
{x0x ! bar | (") (1000}
num 4 \\\ num
o N
(bar> (oo)

Figure 3: Parse tree with datatypes of transmitted results

Among other things, it makes the operations of deleting all tails of a particular stem a bit more
complicated.

Another solution is to use dynamic hashing, where a small hash table is used initially, and the
table is expanded when it is filled. The advantage of this technique is illustrated by the fact that
the interpreter has no way of predicting the number of tails used by a routine at the entry of the
routine. (Except that it may cache the number of tails used at earlier calls.)

Figure 4 shows how Regina stores its variables. There is one hash table for each subroutine
having a PROCEDURE clause, and within each such hash table, there is another hash table for each
stem in use.

6 Shortcut Pointers from Parse Tree

A well-known technique for optimizing computer code is to cache any value for which you may
have need later. Regina makes use of this several places. For instance, whenever Regina executes
a CALL clause or a function call for the first time, it must determine which routine to call. If the
destination routine is an internal or built-in function, it is cached by setting to pointer in the parse
tree to point to it.

7 Shortcut Pointers to the Variable Strﬁcture

Whenever a REXX clause refers to a variable name, the value of that variable must be retrieved from

the variable structure. This involves some navigating, which can be time-consuming. However, it

often turns out that multiple invocations of the same variable reference in a clause navigate through

the variable structure only to end up at the same variable box. Thus, it may be advantageous to

cache the result of the most recent navigation for each variable reference of the program. This

means storing a pointer in the parse tree, pointing into the hash table of the variable structure.
Consider the following trivial code:

foo = 1

do 1000
foo = foo + 1
end

If we restrict the analysis to the contents of the loop, the variable foo is set 1000 times and its
value is retrived 1000 times. Le., navigating the variable structure 2000 times.

Then we add functionality for caching the result of each navigation. Neither retrieving nor
changing the value of a variable are operations which change the identity of the box in the variable

28

Entry point for
variable structure

/
main prog |

hashtable for 1st sub R

TS HITHHRI I

\r U —
i 2nd sub

" Boxes

Vi " belonging
to same
g 3rdsub bin
|
Hashtable forthe -

A. compound var ./

WL?’,JIH!HFHI'IHHW

! N
| A42 | Abcd |
5
* A.Bar !
;

Figure 4: The structure of variables in Regina

structure where the variable is stored. Thus, if we can cache a pointer to the variable, the number
of walks through the hash table structure drops from 2000 to 2.

On the other hand, the cost of this is caching the pointer after each navigating walk, unless it
was already cached. And the cost of verifying that the shortcut pointer is still valid. In particular
the latter of these introduces a number of subtle points. Consider the following code:

/* first example */
call foo
exit

foo: do i=1 to 2
say i
if i=1 then do
procedure
i=1
end
end

In this example (which is only allowed for TRL1-—not TRL2) the variable i in the SAY clause
refers to different variables during the first and the second iterations of the loop. This is due to
the execution of the PROCEDURE clause during the loop, which changes the scope of the i variable.
Thus, the shortcut pointers cached during the first iteration must be tested during the second
iteration, and the fact that they are invalid must be detected.

This is achieved using a generation number, which is identical to the number of currently
nested functions having executed the PROCEDURE clause. Whenever a new PROCEDURE clause is
executed, the genération number is incremented, and whenever a RETURN clause is executed for a

28

routine which have—during its course—executed a PROCEDURE clause, the generation number is
decremented.

To verify the validity of a shortcut pointer, the current generation number is recorded in the
box pointed to by the pointer. Whenever a recorded pointer is to be validated, it is considered
invalid if the current generation number is greater than the number recorded in the box pointed
to by the shortcut pointer (i.e. a PROCEDURE clause has been executed sirice this pointer was made,
invalidating the pointer). In this case, the recorded shortcut pointer is attempted deallocated, and
the variable is located using the standard procedure—the new location is of course cached if the
current generation number is greater than the recorded number.

The next example shows a function.

/* second example */
say bar(3)
exit

bar: procedure
parse arg i
if i=1 then
return 1
else
return bar(i-1)x*i

Here, the last clause in the routine is executed twice, as a result of the recursion. However,
due to the rules for evaluation of REXX expressions, the retrieval of the i variable at the end of
the last clause is executed twice: first at end of the second invocation of bar, and then at the end
of the first invocation of bar. (Note: i is referred to after the recursion itself.)

According to the rules outlined above, the shortcut pointer is cached at the end of the second
call to bar (the first recursive call). Thus at the end of the first call to bar, this cached value is
picked up, but the generation number does not match (the recorded generation number is greater
than the current generation number), so the shortcut pointer is discarded and the variable is
located using the standard procedure (i.e. since the pointer was made, the routines in which it
was made has been terminated).

There is another, less subtle point here, too. All variables local to the second (recursive) call
to bar are discarded when that routine returns. Thus the shortcut pointers appear to point to
undefined memory! This is easily fixed by maintaining a counter with each variable box. Whenever
a shortcut pointer is set to point to that box, the counter is incremented; and whenever a shortcut
pointer is removed from pointing to a variable box, the counter is decremented. As soon as this
counter mechanism is in place, a variable box can be marked for deletion, and retained until all
shortcut pointers to it have been killed.

/* third example */

do i=1 to 2
call bar
end

exit

bar: procedure expose i

if i=1 then
foo =

say foo

return

Here, the second invocation of bar finds the cached pointer in the SAY clause, but the pointer is
invalid, even though the generation number is correct. To handle this case, variables discarded
during the execution of the RETURN clause are not immediately discarded if there are any shortcut

30

pointers pointing to it (as recorded by the shortcut counter field). Instead, it is suspended until
all shortcut pointers point elsewhere, at which time the box is deallocated. In the meantime a flag
is set for the variable box, so that the interpreter can discover that the box is invalid if it tries to
dereference the shortcut pointer.

/* fourth example */
do i=1 to 4
if i=2 then do
drop i
i=2
end
end

The code of the fourth example, as shown above, illustrates why the delete flag is necessary.
The variable box created at the start of the loop is dropped during the loop, so a mechanism is
necessary to detect that the box is invalid at the start of the next iteration.

8 Algorithms

The two algorithms shown are the the central for the correct operation of the shortcut pointers in
Regina. The first algorithm is shown in figure 5, and describes how to access (retrieve or update)
the value of a variable. To be effective, it requires that the code has been executed at least once
before, so that shortcut pointers have been created.

foo is a variable reference to access
if exists a shortcut pointer for var then
if points to a variable not deleted then
if the generation number is correct then
retrieve/set the value
return
else
decrement counter
remove shortcut pointer
else
decrement counter
remove shortcut pointer
if counter=0 then
delete/deallocate variable boz
access variable ‘‘the hard way”
cache the found boz in the shortcut pointer in the parse tree
increment counter
return

Figure 5: Retrieving/setting value of variable reference in the parse tree

The second algorithm is used to delete variables during the execution of the RETURN clause
from a routine which had its own “private” PROCEDURE clause. It will always detach the variable
boxes, but it will only deallocate the space if there are no shortcut pointers pointing to the box
(as recorded by the counter in the box).

3

Jor each local variable
disconnect it from variable system
if counter is greater than 0 then
mark variable box as deleted
else : o
deallocate variable boz

Figure 6: Deleting local variables at return from routine

9 Why So Complicated?

Most computer languages keep track of their variables in much easier ways, so why introduce
this complexity for REXX? Because of the enormous degree of freedom in REXX. REXX does
not have compile-time routines, it has “only” run-time routine entry and exit points! Therefore,
it is virtually impossible to bind a given clause to a particular “routine” at parse time. The
possibilities of “SIGNAL ON” and “INTERPRET” ensure that control can pass from virtually any
clause to virtually any label in a REXX program.

Thus, the techniques used for most compilers and some interpreters, which allow them to bind
the variable references in the source code to specific locations at compile- or parse-time do not
work for REXX, and more elaborate systems, like the one described above, are called for.

32

REXX/imc
A REXX Interpreter for UNIX

Ian Collier
Oxford University

33

Work in progress I

REXX/in&

A Rexx interpreter
for Unix

Ian Collier

available from rexx.uwaterloo.ca

in /pub/freerexx/imc

1 REXX/imc Rexx Symposium 1994

Al i .4
ADSLracu

Since 1989 I have been working on a Rexx interpreter
for Unix in my spare time (what little I get). It was
first released to the public in August 1992 and has had
many improvements since then. In my presentation I
will demonstrate the most recent enhancements and some
of the language extensions that I have added to the
interpreter, a few of which are connected with the work
of the X3.J18 standardisation committee. I hope to
show some of the ways in which REXX/imc can interface
with its environment; this will include the use of Unix-
specific built-in functions, the writing of external function
libraries, and the application interface with programs
such as THE (an editor based on KEDIT written by Mark
Hessling). If time allows, I will take a brief look at the
internals of the interpreter, showing the basic blocks of
which it is built, and giving a short explanation of how
it performs a task such as evaluating a Rexx expression.

Unfortunately, since my ‘real’ job is to write a D. Phil.
thesis, I have not been able to enhance REXX/imec as
much as I would have liked for this presentation. How-
ever, work is still in progress to turn REXX/imc into an
efficient and fully integrated programming language on
Unix.

Notes REXX/imc 2

History

e May 1989: Work begins!

e Jan 1991: Interpreter has most language constructs
except the stack, but no I/O functions.

e May 1992: REXX/imc is not ready in time for the
Symposium.

e Aug 1992: REXX/imc release 1.2 released.
e Sep 1992: Release 1.3
o May 1993: Release 1.4 announced at the Symposium.

e Jun 1993: Release 1.5, the first level 4.00 release of
REXX/imc.

e Sep 1993: Release 1.5a, with some bug fixes.

e May 1994: Release 1.6 is presented at the Boston
Symposium.
e 1994-: 7

3 REXX/imc Rexx Symposium 1994

Because REXX/imc is a spare-time project, work on it
has been characterised by bursts of activity and long pe-
riods of slow development. Even though the interpreter
was functional in 1991, it was not released until Au-
gust 1992. In fact it is interesting to note that REXX/imc
was already capable of running a program to calculate #
to many decimal places by October 1989, although it had
no functions.

The period between the 1992 Symposium and the initial
release of REXX/imc was spent in implementing the file
I/0 functions and in documenting the source—even the
few comments that are dotted around now were almost
entirely absent before this period!

Many of the changes between versions of REXX/imc
have been bug fixes—thanks to Anders Christensen who
spent time running his trip tests on REXX/imc, and to
everyone who reported a bug.

The main changes in release 1.5 were the addition of
language level 4.00 features (SIGNAL ON with the NAME
keyword, CALL ON, CONDITION(), STREAM() and so on),
the command line flags, and the OPTIONS options.

The main changes in release 1.6 are the addition of an
API and the improvement of function handling.

Things planned for the future include, but are not limited
to, the following (not in any particular order): imple-
menting speedups (in at least three areas: improving the
variable table, improving the arithmetic and implement-
ing a pre-parsing process), improving tracing, adding a
Unix system call library, adding OPTIONS to control the
language extensions and to move towards the language
standard, adding extensions as proposed by the Rexx Ex-
tensions committee, adding a ‘stems’ library, completing
the API, adding an API which can be called by other
processes even after Rexx has started, and anything else
which people suggest. ..

Notes REXX/imec 4

Files

The file 1ibrexx.so.1.6 is the main library file which
contains all the routines necessary for an application to
use the SAA API of REXX/imc. On the SunOS system,
this is a dynamically loaded shared library, which means
that an application which uses the library does not need
to include a copy of the library within its object code,
thus saving disk space. This can be seen from the fact
that the program rexx, which is the interpreter itself,
is only a 6K file! This program is merely an interface
between the command line and the API library, and is
compiled from the source file main.c.

The programs rxque and rxstack are for the Rexx stack,
which will be discussed later.

The file rxmathfn.rx1ib is a function dictionary for the
REXX/imc mathematical functions, which are imple-
mented in Rexx as rxmathfn.exec and in C as the object
file rxmathfn.rxfn.

As shown opposite, REXX /imc comes with about 430K
of source. \

The four major documentation files shown opposite are
rexx.info, which is my attempt at a tutorial for Rexx,
rexx.ref, which is a complete reference on the language
features of REXX/imc, rexx.summary, which is a ‘ref-
erence card’ on REXX/imc, and rexx.tech, which gives
details to the application programmer or any programmer
who is interested in the internals of REXX/imc. There
are also several minor documentation files, not shown
here, which give details about the current release, the
change history, the installation instructions, etc.

Notes REXX/ime 6

librexx.so.1.6 204800
rexx 5712
rxmathfn.exec 6743
rxmathfn.rxfn 57344
rxmathfn.rxlib 57
rxque 8016
rxstack 6600
const.h 16140
functions.h 16423
globals.h 6165
rexxsaa.h 5678
calc.c 49157
globals.c 8683
interface.c 37875
main.c 4896
rexx.c 97258
rxfn.c 77118
rxmathfn.c 8061
rxque.c 8610
rxstack.c 6051
shell.c 8228
util.c 80214
rexx.info 33568
rexx.ref 156257
rexx.summary 12627
rexx.tech 33320
5 REXX/ime Rexx Symposium 1994
Invocation

rexx [options] [program] [arguments]

where options are:

~-<option>

-v — print version;

~ any option from ‘OPTIONS’;

~s <string> - execute the string as a program,;

-t <trace> - turn tracing on;
-i — enter interactive trace mode;
-x — run a Unix-executable Rexx program.
.
7 REXX/imc Rexx Symposium 1994

s The OPTIONS instruction’s most useful option for us-
ing on the command line is the tracefile=f option,
which redirects tracing output to a file.

e The -t option can be followed by any Rexx trace
setting, which allows you to trace a program without
altering it.

e The -v option can be used alone (in which case the
interpreter does nothing except print its version) or
with other options (in which case it prints its version
and then runs a program).

e The -x option is usually used for programs which
invoke themselves on Unix by having a ‘¢!’ or a shell
instruction on the first line. REXX/imc will treat the
first line of the program as a comment, and will not
append anything to the program name.

¢ If no program name is given, or if the program name is
‘=’, then the program will be read from the standard
input.

Notes REXX/imc 8

Added Features

stem. (expression)
stem. “string”
SELECT expression
WHEN value THEN instruction

END [SELECT]

PROCEDURE HIDE

PARSE VALUE x,y,z WITH p1,p2,p3

Any non-zero number is true

OPTIONS “SETRC- for setting RC after I/O operations
* % trace prefix for continued lines

Extra tracing for SIGNAL ON x when x is an undefined
label

Features from CMS

-- PARSE NUMERIC
— JUSTIFY()
~ LINESIZE(Q)

REXX/imc Rexx Symposium 1994

Of these enhancements, one, namely the *,* trace prefix,
is as a result of a decision of the X3.J18 standardisation
committee, and one other, namely the compound variable
with an expression as part of its tail, has been provision-
ally accepted by the extensions committee. More sub-
stantial enhancements based on meetings of these com-
mittees (such as date/time conversion functions) were
planned but have been delayed.

The PROCEDURE HIDE instruction really means ‘procedure
expose everything-except-the-following’, and its use is not
strongly reccommended at present.

The OPTIONS “SETRC” instruction makes all I/O (includ-
ing SAY and PARSE PULL set the variable RC to indicate the
success or otherwise of the operation, in order to allow
this to be checked without calling STREAM. It also causes
a SIGNAL ON ERROR if that is appropriate. This option
was added in order to preserve backward compatibility
with a previous version of REXX/imc which had neither
STREAM nor SIGNAL ON NOTREADY.

The ‘extra tracing’ extension prints out a traceback in-
cluding the SIGNAL ON instruction and the cause of the
error whenever the target label for the trap is not found.
For example, the program:

signal on novalue
call test

exit

test: say xyz

produces this traceback:

+++ No-value error on XYZ
1 +++ signal on novalue
4 +++ say xyz
2 +++ call test
Error 16 running test.exec, line 1: Label
not found

Notes REXX/ime 10

Features for Unix

The TRL I/0O functions
Pre-defined streams: stdin stdout stderr

The STREAM commands: close fdopen fileno flush
ftell open pclose popen

Functions: CHDIR GETCWD SYSTEM USERID

Access to the Unix environment via the VALUE built-in
function

Access to Unix error messages via the ERRORTEXT
built-in function

Subcommand environments UNIX and COMMAND
The stack daemon

The function interface

11

REXX/imc Rexx Symposium 1994

o REXX/imc offers a variety of file access functions via
the function call STREAM(stream, °C*,command) . The
open command allows any file to be attached to a
stream in either read or read/write mode. The popen
command starts a Unix command and attaches it to
the named stream for reading or writing. The fdopen
command allows Rexx to access any Unix file number
as a stream. The file number of any Rexx stream is
given by the fileno command. The ftell command
gives the file pointer which was set by the last access
on the named stream.

o The SYSTEM function runs a shell command and re-
turns its output as a string.

¢ Environment variables may be examined and/or set
using the VALUE function with a third argument of
"ENVIRONMENT*. Note, however, that changes made
to the environment will be lost when the Rexx inter-
preter finishes.

e The function call ERRORTEXT(n+100) gives the nth
Unix error message, such as ‘No such file or directory’,
which is message number 2.

The subcommand environment UNIX passes each com-
mand to a Bourne shell. The COMMAND environment
passes each command to a small built-in shell which
tokenises and executes the command directly, which
is usually much faster than invoking a shell for each
command.

Notes REXX/ime 12

36

The REXX /imc Stack

e rxque is the stack daemon

— it runs as a separate process

— it is created and destroyed automatically by the
interpreter

— it may be run as a server for a whole session

e rxstack is a stack client

rxstack [-fifo{-1ifo] copies standard input to
the stack

— rxstack ~-string x stacks one entry

~— rxstack -print copies stack contents to standard
output

— rxstack -pop copies one entry to standard output

— rxstack -num prints the number of stacked entries
o REXX/imc is also a stack client

— queue x stacks an entry in FIFO order

— push x stacks an entry in LIFO order

queued() tells the number of stacked lines

On SunOS8, REXX/imc can transfer stack con-
tents to the keyboard buffer.

!

13 REXX/imc Rexx Symposium 1994

The program rxque forks off a stack daemon and prints
out its process number and socket name in the form of
two environment variables. The format of the output is
as either a Bourne shell command or {with the flag -csh)
a c-shell command. rxque may be given the name of
a socket to create, in which case the output is just the
process number.

The stack daemon is usually started by REXX/imc and
killed with signal 15 when the Rexx program finishes.
REXX /imc checks for the presence of a stack daemon by
looking for environment variable RXSTACK. If a stack
exists, then it uses that instead of creating one. Queued
entries may then persist between programs:

% eval “rxque -csh®
% 1ls -al | rxstack
% rexx -s "say queued()"

45
% rexx -s "pull .; parse pull a; say a"
drux------ 5 imc 1024 May 2 16:00 .

% kill $RXSTACKPROC

On some systems, REXX/imc can be compiled with the
preprocessor symbol STUFF_STACK defined. REXX/imc
can then pretend to cause persistent changes to the en-
vironment:

% rexx -s “"queue ‘cd /tmp“"
cd /tmp

% % pwd

/tmp

Notes REXX/ime 14

Application Programming
Interface ‘

The following SAA API functions are implemented:

¢ RexxStart

e RexxVariablePool (except requests RXSHV_EXIT
and RXSHV_PRIV)

e RexxRegisterSubcomExe
e RexxDeregisterSubcom
¢ RexxQuerySubcom

s RexxRegsiterExitExe

with exits: RXCMDHST RXSIODTR RXSIOSAY
RXSIOTRC RXSIOTRD RXINIEXT RXTEREXT

o RexxDeregisterExit

o RexxQueryExit

¢ RexxRegisterFunctionExe
o RexxDeregisterFunction

¢ RexxQueryFunction

More will be added later.

15 REXX/imc Rexx Symposium 1994

Release 1.6 of REXX /imc is the first to have an API. The
functions have been modelled on those of OS/2. It should
be possible to compile a Rexx-aware application—such as
Mark Hessling’s editor ‘THE'—with REXX/imc without
altering it (as long as it uses only the functions which are
currently supported).

In order to use the API, an application includes the
C header file rexxsaa.h supplied with REXX/imc, which
will declare the functions opposite and the associated
constants and datatypes. When the application is com-
piled, it is linked with the library file which is created
when REXX/imc is compiled. This file will be either
librexx.a, in which case the code from REXX/imc will
be included in the application’s object file (static link-
age), or librexx.so.1.6, in which case only a reference
to the library file will be included in the application’s
object file (dynamic linkage).

If linkage is dynamic, it will be possible to upgrade to
a later release of REXX/imc without recompiling the
application, just by copying the new library into the same
directory as the old one.

Notes REXX/imc 16

37

External Functions

External functions or libraries for REXX/imc can be
written

e in Rexx

e using the SAA API

¢ using REXX/imc hooks

e as a Unix program

17 REXX/imc Rexx Symposium 1994

Writing an external function in Rexx or with the SAA
API is the same as for any other interpreter.

A function may be compiled and linked as a dynamically
loaded object called *.rxfn with the * replaced by the
function’s name (by which it will be called by a Rexx
program). When REXX/imc searches for external func-
tions, it searches for such a file first. If the file is found, it
is linked in and called as if it were built-in. The function
must retrieve its arguments from the REXX/imc calcu-
lator stack and place the result (if any) there.

A *.rxfn file may contain several functions, all of which
will be registered when the file is first loaded.

A function library using the SAA API may be compiled
as a *.rxfn file in order to make a library which is
portable but which can be called by an already-running
program. To do this, the library is augmented by an
initialisation function which takes no parameters and
returns no result, but which uses the SAA API to register
all the other functions in the library. Before calling any
of the functions, the Rexx programmer must call the
initialisation function.

If a function cannot be found, then a Unix program
having the same name as the function is searched for.
The program can be in any language supported by Unix,
such as C, perl or shell script. It will be ‘exec’ed with the
arguments in argv(] and the function name in argv[0],
and it should print out the result (if any) on its standard
output followed by a newline character.

Many functions can be aliased to one function library
by supplying a text file called *.rx1ib (where # is the
basename of the function library) which lists the names
of all the functions in the library. The library can be a
*.rxfn file, a Rexx file or a Unix program. If it is Rexx,
then it can find out which function is being called using
parse source.

Notes "~ REXX/imc 18

Interpreting a program

. Read command line parameters (main())
Load program from disk (load())

. Tokenise program (tokenise())

O

. Enter main loop (interpreter())

(a) Fetch the next token.

(b) If NOP then do nothing

(c) If SAY then print an expression

(d) If RETURN then return an expression

(e) If IF then read and test an expression

(f) If program has ended then return, else go to (a).

5. Clean up and finish.

19 REXX/ime Rexx Symposium 1994

Tokenising a program means (in the case of REXX /imc):

o rejecting invalid characters and unmatched quotes

e removing comments, null clauses and excess blanks
¢ Concatenating lines which are continued with a *,’
e translating un-quoted text to upper case

. recognisix;g keywords (like NOP, SAY, IF and so on)

e organising the program as a list of clauses (each end-
of-line, ‘;’, or THEN starts a new clause. In addition,
labels, THEN, ELSE and OTHERWISE are clauses by them-
selves)

e making a label table

Keywords are recognised based on what has appeared
since the start of the current clause. For example, THEN
is only allowed when the current clause started with IF.
Keywords are stored as negative character codes (defined
in const.h). This makes them easy to recognise: during
the main loop, instead of asking, “Are the next three
characters ‘say’?” we can ask, “Is the next character
equal to the constant SAY (which is —128)?” It also makes
it clearer for the expression evaluator when to stop; the
code WHILE (—88) is obviously not part of an expression,
whereas the word while could be a variable name.

The tokenised list of clauses is stored in an array prog[],
which also gives other information such as the line num-
ber and address of the clause within the source.

The main loop is relatively trivial; it is executing the
individual instructions such as DO and evaluating the
expressions which is the difficult part. ..

Notes REXX/imc 20

Internal data structures

e the source (source)

e the tokenised program (prog)

e the label table (1abelptr)

o the calculator stack (cstackptr)

~1-

o
A sLaln

& the program s k
o the signal stack (sgstack)
e the variable table (vartab) and pointer list (varstk)

o the work space (workptr)

21 REXX/imc Rexx Symposium 1994

e The source and tokenised program are each kept in a
linear stretch of memory, pointers to which are held
in the arrays source and prog respectively. The label
table is stored in a linear stretch of memory which is
organised as a kind of linked list.

e The calculator stack is a space to store a list of
intermediate values during calculations.

e The program stack records information about the
control structures that are currently open (such as
DO groups and function calls). It stores the variable
name, step and limit and/or the FOR counter of a DO
instruction, and it stores all the saved state which
must be restored on return from a function call.

¢ The signal stack holds information about which con-
ditions are currently trapped or delayed, and it also
holds the data for the CONDITION function. It has one
entry for each INTERPRET or function call currently
active.

e The variable table is a linear stretch of memory which
is divided into sections by varstk. Each section con-
tains the variables for an active PROCEDURE or external
function call (apart from the workspace, this is the
only one of the above structures which persists across
external function calls). Within each section the vari-
ables are stored in a tree structure. Exposed variables
contain a pointer to another section where the ‘real’
copy of the variable is to be found.

e The work space is a temporary area for all sorts
of calculations. It is cleared after interpreting each
instruction.

Notes REXX/imc 22

Example: DO

1. Store the current clause number on the stack.

2. Fetch next token. If clause has ended then finish.
3. Flag the stack entry as ‘repetitive’.

4. If the token is FOREVER, skip past it.

5. Otherwise, try and fetch a symbol and ‘='. If found
then:

(a) Store the symbol name on the stack.
(b) Fetch an expression and assign it to the symbol.

(c) Search for TO, BY and FOR expressions and store
them on the stack.

(d) If the limit is already passed then LEAVE.

6. If that failed, try to evaluate an expression and store
it on the stack.

7. Store the pointer to any WHILE or UNTIL on the stack.

8. If WHILE is found and the following expression is false
then LEAVE.

23 REXX/imc Rexx Symposium 1994

DO and END have been chosen to illustrate how the pro-
gram stack works.

Most of the work of DO is to find out what sort of DO
clause this is and to set up an entry in the program stack
which describes the DO clause. The information needed
is:

e where to come back to

o whether there is a symbol and if so, what are its name,
and its step and limit values

o whether there is a counter or FOR value, and if so, how
many iterations are left

e where the WHILE or UNTIL can be found, if any

DO also has to check to make sure the loop is to be
executed at least once.

Notes REXX/imce 24

39

Example: END

1. Fetch the top stack entry. If none exists, complain.
2. If the entry is not from DO or SELECT, complain.
3. If the entry is not flagged ‘repetitive’ then

(a) Delete the top stack entry
(b) finish.

4. Fetch the pointer to any WHILE or UNTIL. If UNTIL
is found and the expression following it is true, go
to 3(a).

5. If a symbol name is stored, add the step to it and
compare with the limit. If the limit is passed, go
to 3(a).

6. Decrement any FOR counter. If it is zero, go to 3(a).

7. Fetch the pointer to any WHILE or UNTIL. If WHILE
is found and the expression following it is false, go
to 3(a).

8. Fetch the stored clause number and jump to the
following clause.

25 REXX/imc Rexx Symposium 1994

Even though the END instruction contains no informa-
tion (although it might contain a symbol name, details
of which have been skipped here), it can be interpreted
because the information is all on the program stack. In-

g mdlzaalee odoao !

PREEQUIT S-S NN 1.1 s o o) - PRI EPWY SR |
tt:rpretuxg tllC StaCkeu u’at'a 15 1relavively surmgntlorwaru.

Notes REXX/ime 26

Example: expressions

There is a stack of values and a stack of operations.

1. Stack an ‘end marker’ operation with priority 0.
2. Search for a value:
— If the next token is a unary operation, stack it
and repeat 2.

— If it is ‘C’ then evaluate the expression inside,
check for ‘)’ and go to 3.

— If it is a quote, collect a string.
— Collect a symbol name.

— If the token after the string or symbol is ‘(’ then
call a function, otherwise stack its value.

3. Search for the ‘current’ operator:
— If the next token is a keyword, ‘)’ *,’ or the end
of the clause then the operator is an end marker.
— Otherwise, if it is not a binary operator then the
operator is an implicit concatenation.
4. Perform operations:
— If the top stacked operator and the current oper-
ator are both end markers, then finish.

— If not, and the top stacked operator has a priority
no less than that of the current operator, perform
the stacked operator and go to 4.

— Otherwise stack the current operator and go to 2.

27 REXX/imc Rexx Symposium 1994

The function which performs the above algorithm is called
scanning.

This is a variant of a well-known algorithm to turn an
expression in infix notation into one in reverse polish
notation (sometimes described by analogy with a railway
track with a siding, the siding being the operation stack).
REXX/imc evaluates the reverse polish expression as it
is created. The calculator stack is the stack which reverse
polish notation requires.

The unary operations each operate on the top value on
the calculator stack, replacing it with the result. The
binary operations each operate on the top two values,
replacing them with the result: It is clear that at step 4
of the above algorithm it is always true that the number
of values on the calculator stack is one more than the
number of stacked binary operations. Since each stacked
binary operation reduces the size of the calculator stack
by one item, this means that when the stacked operations
have all been performed there is precisely one element left
on the calculator stack. This is the result.

Arguments to functions and expressions within parenthe-
ses are evaluated by calling scanning recursively.

Notes REXX/imc 28

Interesting Corners of REXX

Mike Cowlishaw
IBM

41

w

Interesting Corners of REXX
REXX Symposium ‘

Mike Cowlishaw

IBM UK Laboratories
| Hursley

Outline

4 Instructions

4 Built-in Functions
4 Miscellaneous

4 Questions?

May 1994 Mike Cowlishaw

Multi-way CALL

var="'FRED"'

call jumper var, firstarg

jumper: procedure

signal value arg(l)

fred: /* do whatever =x/

return /* to the CALL x/

May 1994 Mike Cowlishaw

134

DO FOREVER—can be clearer

do forever
|

|
1f something then leave

end /* forever loop =*/

May 1994

Mike Cowlishaw

o

DROP—exira state for a variable

drop var

do 1=1 to howmany

1f whatever then var=somevalue

end 1

1f symbol('var‘)\z'LIT' then say 'Found!'

)

May 1994 Mike Cowlishaw

Ly

S

NUMERIC FORM and FUZZ

With NUMERIC FORM ENGINEERING:

var=1234
say varxlel0 varxlell varxlel?2

o

12.34E+12 123 .4E+12 1.234E+15

... and don’t forget NUMERIC FUZZ for fuzzy
comparisons. ‘

May 1994 Mike Cowlishaw

PARSE

Most implementations have variable column patterns:

namecol=pos ('Name', header)

do i=1 to entries
parse var entry.i =(namecol) name.1l
end 1

Use “.” placeholder to strip blanks:

line="'modemspeed - 9600

parse var line key . '=' value

May 1994 Mike Cowlishaw

14

More PARSE

Use relative patterns to include strings in results:
parse var line pre 'START' 'SLIP' +0 post

1f pre='"' & post='SLIP' then do
/* found 'start ... slip' =*/
end
or...
parse var line pre 'WAIT' +0 key num post
if pre='' & key='WAIT' & post='"' then do

/* found 'wait [num]' =*/ 1
end

May 1994 Mike Cowlishaw

0s

Parsing field-oriented data

/* Set up templa

1
/* (perhaps read from a file).
template="'socsecnum + 9',

matchi

(D

'name - +40 -40"',
' last +20"',
' first +20"',
'balance + 4

record=charin(myfile, 80) |
interpret 'parse var record' template
balance=c2d(balance, 4)

May 1994 Mike Cowlishaw

1$

Using PARSE for POS/SUBSTR

/* Change all "old" to "new" in string =x/
/* If "old" is null, "new" is prefixed =*/
Change: procedure
parse arg string, old, new
if old=='' then return newl |string
out=""
do while pos(old, string) \=0
parse var string prefix (old) string
out=out | |prefix| |new '
end

return out| |string

|

May 1994 Mike Cowlishaw

[4Y

PROCEDURE EXPOSE lists

Lists can be very useful with PROCEDURE EXPOSE:

errors='sigl rc CleanupFlag'

shared="'masterlist. CurName CurCount'

subfunction:

procedure expose (errors) (shared)

return 1

May 1994 Mike Cowlishaw

139

TRACE
Don’t forget:

trace Labels
... lets you check the flow in a program

and...

trace Intermediates
-... lets you check expression evaluation in detail.

Note: The TRACE instruction is completly ignored
during interactive tracing—but the TRACE() built-in
function is not.

May 1994 Mike Cowlishaw

Function names in quotes

System-dependent function names can be useful:
say ‘'e:\tools\testit.cmd' () |

or...
say 'EXEC PROFILE' ()

... and they work with CALL, too.

May 1994 Mike Cowlishaw

Built-in Functions

ABBREYV allows default match to null string:

say abbrev('PRINT', 'PRINT')
say abbrev('PRINT', 'PRI')
say abbrev('PRINT', ')
... all say 1

CENTER can be spelled properly, too:
say centre('goal kick', 25)

May 1994

Mike Cowlishaw

9¢

More Built-in Functions

COMPARE is often overlooked:

alpha='abcdefghijklmnopgrstuvwxyz" |
say compare (alpha, 'abcdefghijklmnogp')

.. says 16

DATE lets you find the day-of-the week as a number
say date('Base')//7 |

.. says 0 for Monday, 1 for Tuesday, efc.

May 1994 Mike Cowlishaw

LS

INSERT and OVERLAY

Powerful, when you need them:

say 1lnsert ('needle'’',

and...
say overlay('12:30"',

... says “ltis 12:30”

May 1994

'haystack', 3)

'Tt 1s hh:mm',

7)

Mike Cowlishaw

%S

Removing character(s) from a string

Use SPACE (with a little help from TRANSLATE):
string="'Hoppy floppy' |

string=translate(string, 'p', ' p')
string=space(string, 0)
string=translate(string, 'p', ' p')

... sets STRING to “Hoy floy”

For multiple characters, use (for example):

string=translate(string, 'a', ' aeiou')
string=space(string, 0)
string=translate(string, 'a‘', ' a')

May 1994 Mike Cowlishaw

6%

Testing for parity

Use SPACE — with a little help from X2B,
TRANSLATE, and LENGTH:

bits=x2b('C7') /+* 11000111 =*/
ones=translate(bits, ' '0"')

I

ones=length (space(ones, 0))
parity=ones//2

... sets PARITY to “1”

May 1994

Mike Cowlishaw

SUBSTR, LEFT, and RIGHT

SUBSTR or LEFT can take a pad character:
say substr('Fred', 1, 8, '?')
say left('Fred', 8, '?')

... both say “Fred????”

RIGHT can pad on the left, or return rightmost
characters:

say right (12, 6, 0)
say right('e:\extra.cmd', 3)

... says “000012” and “cmd”

May 1994

Mike Cowlishaw

19

TRANSLATE

As well as character substitution, TRANSLATE can be
used to reformat (lay out) strings:

in="abcdefgh'
pattern='gh.ef.abcd’
say translate(pattern, '19940827', in)

.. says “27.08.1994”

May 1994 Mike Cowlishaw

9

VERIFY

VERIFY can look for “the odd one in”, as well as “the
odd one out”:

say verify ('123.456', '0123456789"')

.. says “4”

but...

say verify ("It's 1994", '13579', 'Match')

.. says “6”

May 1994 Mike Cowlishaw

£9

And finally...

/* Shuffle the numbers in range l->max */
shuffle: procedure |
signal off novalue
max=arg (1)
out=""
do 1=1 to max
sub=random (1, max)
out=out substr (ar.sub,4)
1f sub=1 then iterate
ar.sub=ar.1
end
return out

May 1994 Mike Cowlishaw

IBM Views on REXX

James Crosskey
IBM

IBM Views on REXX .

James Crosskey
REXX Development
IBM Endicott, NY

Internet id: crosskey@gdlvmz.vnet.fbm.com

v ,,,,,,,,,,

REXX Excitement!

= Customer support of REXX:
- SHARE, GUIDE, COMMON, SEAS

- REXX Symposium, OS/2 Technical Interchange, OS/2
Technical Conference
- REXX Language Association
= REXX books
- 40+ REXX books and manuals o~
— 9 written in last year alone
- Most recent include:
» REXX Reference Summary Handbook by D.Goran
» Mastering OS5/2 REXX by G. Garg/u/o

» Application Development US/ng 08/2 REXX by A.Rudd

v _________

More REXX Excitement!

= Trade Press articles
- 10+ articies in 1st quarter '94
- Publications include:
» PC Week, Dr.Dobb's Journal, OS/2 Computing, OS/2

Professional, PC Magazine, Byte, OS/2 /\/lonth/y,...
= [ndustry enth usiasm for REXX

= Visual programming with REXX
| » VX REXX, VisProREXX, GpofREXX,... s
= ANSI Committee close to a REXX standard
= Enthusiastic response to IBM Object REXX beta program

Plan

1993-94 1994-95

»

1988 1990-92

1983

68

v

IBM REXX on AIX and NetWare

g = |[BM AIX REXX/6000 = [BM REXX for NetWare
(5764-057) (5764-075)
— Available 12/93 - Available 3/94
- Port of IBM's OS/2 - Port of IBM's OS/2
REXX kernel to the AIX REXX kernel to Novell's
platform (3.2.5 release NetWare platform (3.11,,....-
and up) 3.12, or 4.0 releases)

- "AS-IS" release - "AS-IS" releasé

v

IBM CICS and VSE REXX
= IBM REXX for CICS/ESA = IBM REXX/VSE

(5655-086 Development (5686-058)

System, 5655-087 Runtime - Available 9/93

Facility) — Port of IBM's TSO/E

- Available 4/94 REXX kernel to

- Port of IBM's TSO/E VSE/ESA
REXX kernel to
CICS/ESA (3.2.1 or 3.3 and lnterpreted REXX

releases) programs
- Development System:

» Editor, File System,
Panel interface

1L

v ___

REXX Future Directions

= Wide range of platforms

= Apply new technology:
» Object Oriented programming (SOM, DSOM, etc)
» Visual Programming tools
» OpenDoc

— Communications, MultMedia, Database, ..
= Encourage use of REXX as the "appllcatlon extender"
= Improve documentation -

» Primer/on-line tutorial

» Books, books and more books
= Expand user base

» Students, non-"glass house" and OS/2 users

>

e
- Coming to

.......... 7

a system

near you!

€L

Trademarks

IBM, 0S/2, AIX, 0S/400, REXX/6000, IBM REXX for NetWare, REXX for CICS/ESA, REXX/VSE,
CICS/ESA, VSE/ESA are registered trademarks of internationai Business Machines Corporation.
UNIX is a trademark of X/Open Company, Ltd.

NetWare is a trademark of Novell, Inc.

Windows is a trademark of Microsoft Corporation.

VX REXX is a product of WATCOM International Corporation.

VisPro/REXX is a product of HockWare, Inc.

GpfRexx is a product of Gpf Systems, Inc.

Choosing a Command Language—
An Application-Centric Approach

Hal German
GTE

14

Choosing a Command Language -- An Application-Centric
Approach

Hallett German

GTE Laboratories, Incorporated.

An Introduction to this paper

For over four years, the author has
discussed a means for beginning and
intermediate command language users to
quickly choose the essential elements of
their application without using a single piece
of code. This paper is the first time the
approach has been presented to the movers
and shakers of the REXX world. It
supplements the presentation by covering
the following:

Why use such an approach?
Concepts behind the approach.
The approach itself
Conclusions

References

aopOD=

The presentation at the REXX Symposium
will provide an overview of the approach, as
well as an example of how to use, and
include other factors to consider. Handouts
can be obtained by contacting the author.

Why use such an approach?

In "the old days" it was easy. You used a
mainframe host that had one command
language and one editor (that usually had
ties to the command language). Then PCs
and UNIX systems snuck in from
somewhere and the issues became more
complex. There were more than one
command language and editor to choose
from. Programs could run on more than one
operating system (and simultaneously if
needed). Unfortunately, the theories and
software practices for command languages
were not enhanced to match the new
realities. The approach listed below is a
modest attempt to provide command
language developers a strategy to deal with
the new realities so they don't have to say
*What do | do next?"

Concepts behind the approach
1. What is a command language?

Unfortunately, we only can briefly look at
this area. My definition of a command
language is the following:

A programming language consisting of a
series of high-level English-like
commands entered interactively (e.g., a
keyboard, mouse, or other input device)
or non-interactively (that is created with
an editors, saved in a file, and executed
in foreground or background). An
interpreter or compiler for the command
language then determines which user-
specified operating system tasks to
perform and processes them using
corresponding task values.

Whew! A real mouthful. So what does it
mean?

* Command languages are almost always
interpreted languages. (REXX is one of
the exceptions to this.)

* Command languages are usually
executed in foreground. (Again, REXX
is one of the exceptions.)

* Command languages are comprised of
English-like verbs describing the task to
perform. REXX is typical with instruc-
tion keywords like SAY and PULL.

* Command language provides a mean to
directly or indirectly access the
operating system. REXX shines in this
area with the ADDRESS instruction and
the environment model.

* Command languages offer user and
third-party extensions. For REXX this
includes functions, sub procedures, and
interfaces to external environments.

2.

Identifying the types of command
language applications

In their CLIST manual, IBM talked about
three types of command language
applications. My eight years of working
with various command languages have
verified that this typology is a good
match for the type of applications found
in the real world.

These types are the following:

Front-end -- Also called "housekeeping"
applications. In this case, the command
language sets up the proper
environment for an application to
execute. This could be allocating files,
creating files, or creating environment
variables. They also can receive output
from or send input to the application. |
view the startup or login programs as a
special example of a front-end
application.

Systemn and Utility -- This is like front-
end command language application.
However, the emphasis is on doing
system tasks (such as backing up files)
and utility operations (Such as being a
function/sub procedure that performs a
date operation.)

Self-contained -- The other two types
are “blue-collar” applications. The
"white-collar" application type is the self-
contained application. It provides a
dialog with the user (usually full-screen)
while maintaining strict control over the
process.

3. The Command Language Component

The last and most important piece of the
puzzle is the command language
component. All command languages that
have examined to date have the following
components:

* Input/Output (File operations, Stack
operations, Output to the screen, Input
from the keyboard)

* Flow Control (Conditional, Loop,

Exception handling, Exit and return
codes, Array operations)

76

* General Features (Debugging,
Symbolic Substitution, Labels, Global
Options, Numeric format, Interpreter
Version)

* Interfaces (Internal functions, interface
to operating system and external en-
vironmerts)

* Built-in (Functions, and System
variables)

What the approach does is combine all
three of the above elements. First
determine your type of application, once
you know that, you know the command
language components that are usually
used by that application type.Finally look
up the commands corresponding to that
command language component. And not
a single piece of code has been yet
been written.

The approach is application-centric
because it encourages you to know your
application requirements and data as
much as possible before starting to code.

The approach

The following are the steps of the approach:

1. What type of application do | have?

The three types were discussed above.

2. Which command language should | use?

This is discussed in the presentation.
This includes a look at the following:

* Type of data

* File type

* benchmarks

* Ease of use vs. power
* features

3. Which command language components
should | use?

The components were listed above.

4. Which command | h
components?

This is the crucial step. Table 1 lists a
summary of the components.

5. Which command language components
match these commands?

Space does not permit listing this step.
However, tables with this information can
be found in the references section.

6._Where can | find more about these
commands?

There are many places you can learn
about a command language command.
These include: user guides, books, on-
line references, summary references,
electronic information servers, electronic
mailing lists, user groups, and
colleagues.

7. Do | need third-party extensions?

Third-party extensions should be used in
the following situations:

* When portability is not a concern.

* When the third-party extension performs
an operation not found in the command
language such as network and
database operations.

* When you can afford the run-time
license costs for distributing the
extension.

* When the extension greatly enhances
the look and feel of the application.
Such as any of the "Visual REXXes."

Conclusions

| hope that this will be of use to you the next
time that you are considering developing a
command language application. | encourage
others to look into this area.

Getting in touch with me

Hallett German

GTE Laboratories Inc
40 Sylvan Road
Waltham, Ma 02254
617-466-2290
hhg1@.gte.com

i

References

German, Hallett Command Language
Cookbook, VNR 1992

[The approach is covered in detail.
Looks at many different type of REXX
implementations.]

German, Hallett 0S/2 2.1 REXX
Handbook, VNR 1994

[A Rexx tutorial and the approach with
some enhancements.)

Table 1 Command Language Components
by Application Type

Front-end

- Operating System Commands

- External Interfaces

- Input/Qutput: File operations & Command
Line operations.

- Built-In Functions

- Flow Control: Conditional

System/Utility '

- Operating System Commands

- External Commands

- Internal Commands

- Input/Output: File/Screen Operations
- Command line input

- Built-in Functions: String Operations
- Flow Control: Loops

- General: Batch Operations, Arrays

Self-contained

- External Commands

- Functions/Sub-procedures

- Input/Output: Command Line operations,
user validation

- Flow control: Multiple conditions

- Built-in Functions: Text Case & string.

- General (Interactive operations, arrays)

News From the REXX Compiler

Klaus Hansjakob
IBM

rgn

IBM Vienna Software Development Labaoratory

Dr. Klaus Hansjakob | .icsracce

A-1020 Vienna, Austria
Europe

HANSJAKO@VABVM1.VNETIBM.COM
ATIBMCXP at IBMMAIL (+431) 21145-4243

The information contained in this document has not been submitted to any formal IBM test and is
distributed on an "As Is" basis without any warranty either expressed or implied. The use of this
information or the implementation of any of these techniques is a customer responsibility and depends on
the customer's ability to evaluate and integrate them into the customer's operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques
to their own environments do so at their own risk.

In this document, any references made to an |BM licensed program are not intended to state or imply that
only IBM’s licensed program may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a confrolled environment, and
therefore the results which may be obtained in other operating environments may vary significantly.
Users of this document should verify the applicable data for their specific environment.

Itis possible that this material may contain references to, or information about IBM products (machines
and programs), programming or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming or services in your country.

79

Agenda
Q)\lews from the REXX Compiler
= Packaging an application
- General considerations
- DLINK
- Function packages

Compiler
IBM Compiler and Library for SAA

REXX/370
Release 2

5695-013 5695-014

Available for CMS and MVS
Library is part of REXX/VSE

80

Alternate Library PTFs

Compiler

Introduction of Copyright, Alternate Library

Copyright

* This program welcomes you ... %/

*%COPYRIGHT This program copyrighted for */
*%COPYRIGHT MY Company, Vienna, Austria */

' say ‘heiflo world'

HELLO a 00000001

4 @EXECPROCEAGRTPRC Compiled REXX 2.0 15 Mar 1994 100000002

3:46:29 CMS REXXC370 3.48 28 May 1993 PTF UN51503 ¢00000003

U°)} -1%%&% §j "~ 4 & & 3 %4 &p - A0&; 0 i0 00000004

Yy & 210& 4)}&2 '] 24 &Q &6 i &h- 410{ 4\0 00000005
\ & aa & & q) d This program cop00000006
yrighted for MY Company, Vienna, Austria 800000007

& b ° E a + { a E - 00000008
h ~* 3 @ h m p * é E A A -~ + 00000009
{ / a a A ~ a £ 0 Jge ¢ A ¢ a ~00000010
8 + ad a £ = £ & ~ J a 00000011
~: % H @& AR J 1% £ z | N 1 { & 0 100000012

¢ ~{ Jo a~ 0 0 j J%*j - £ e 1 - -0 °00000013
u 1 4: A é' ~ H Rpu EO}E K;°E &G °N &E j@ E: 00000014
Q az I / &U k ;°R &X C 7 . 8 2 \M y 1 °500000015
Ek;°8 I T ©F °C ¥ &0 *{0 A2 *12*¢ k ;é. }00000016

<. S °G &8 L BH ~ Be \ ¥a é&* 8C k ¥% K> 2 00000017
é & &1 é1 k: ¥@ K= 2 b 4 éf éh k« ¥i 4 0 2m 1400000018

% bl }) © ~ bR 8 /Z By } J A&~ °& BY &R (00000019
0 u té -/ ¢ j v/ &I 6 / M L j- =R &3 00000020
~.H | z /é&a ~ B n 00000021
1569501301 010094074 00000022

81

Alternate Library
= Compile program
- with ALTERNATE and SOURCELINE
e use CONDENSE to hide source
o DLINK does not work
= Distribute Alternate Library
- without royalties, without paperwork
= Alternate Library
- is installed on systems without Library

- invokes interpreter when compiled program
is run

Distributing REXX

Library optional required optional
Source exposed not exposed hidden (CONDENSE)
Maintenance problems no problems no problems

Packaging few options all options some options

82

What's missing
= TRACE support

= REXX I/O for CMS

= INCLUDE facility

= MARGINS

“Agenda

= News from the REXX Compiler

(-J’ackaging an application

- General considerations
- DLINK
- Function packages

83

Performance

Performance (MVS)

OUTER EXEC (SYSPROC)
CEXEC (SYSPROC)
MODULE (STEPLIB)

MODULE (DLINKed)

1

) " i 1 A L A
0 50 100 150 200

A Interpreted
NNER/CALLER

Compiled
INNER/CALLER

L L
250

300

Performance (CMS)

INNER =56

OUTER EXEC

CEXEC

MODULE

EXEC (execloaded)
CEXEC (execloaded)
RXOUTER MODULE |
RXOUTER (nucxloaded)
OUTER (DLINKed)

0 0.5 1 1.5 2 2.5 3 3.5

. %N?F{?gALLER k

Intep reted
INNER/CALLER

Applications

85

Internal - External

Internal

Performance
Maintenance v
Distributed development [%,
Pieces

Search order /

Variable sharing /

Programming, ”
DLINK, |
“Function packages,/

; DLINK, 5,
% Function packages /

Include ;,
y(not yet available) /

DLINKed Applications

86

DLINK

= Search overhead zero
= Requires Compiler
= Does not work with Alternate Library

Function Packages

= Commonly used functions
= Early in the search order

= Functions must understand REXX
function invocation

87

Search Order (CMS)

IRXEXTFENC]

lcontinue search

Applications with Function
Packages

Function packages

88

Function Packages

= First in search order

= Compiler allows to write functions in
REXX

= Works with Alternate Library

= May require explicit loading/unloading
on CMS

= DLINK may be used when Alternate
Library is not used

CMS Function Package Example

= Two files
- RXUSERFN is function package loader
- USERFN is function package glue code

= "Glue" code for a function package
- Use without royalties

- Allows free naming of function package
e Requires renaming of files

e Explicit loading of package and all functions with
- "RXmyname LOAD"

e Explained in RXUSERFN header

89

Necessary Modifications

RXUSERFN ASSEMBLE

&PACKAGE SETC ‘'USERFN’ Name of the package to load

&RXPACK SETC 'RX&PACKAGE' Name of this program

&CR(1) SETC ‘' i i Copyright notice

&CR(2) SETC Copyright notice continued

USERFN ASSEMBLE

&PACKAGE SETC °‘'USERFN’ Name of the package

&CR(1) SETC ™ it Copyright notice

&CR(2) SETC ° Copyright notice continued

&FUN(1) SETC ° Name of function

&FUN(2) SETC ‘'USER2 Name of function

&FUN(3) SETC ‘'USERY Name of function
Obtain the Source Code

= Email - write a note to
- hansjako@vabvm1.vnet.ibm.com
- ATIBMCXP at IBMMAIL
= Disk - get one
— as long as supply lasts
- if you can't use email
—if you have a way to upload code
= Supplement
- type in

90

Agenda
= News from the REXX Compiler
-~ Copyright
— Alternate Library
= Packaging an application
- General considerations
- DLINK
- Function packages
- Function package example

91

f N (
Function Packages i
TITLE "RXUSERFN * REXX function Pacnge Loading Stub’ 068010060
ansanAsARRE 06016186
. » 6091602680
* Describe your function package here * 66018368
* " 06018468
86016580
* 06616669
s - SPACKAGE SETC - *USERFN' Mame of the package to load 009016708
;RXPAC(SETC ‘RXZPACKAGE L f th ggglegeg
H ' ' ame 0 is program 1690
News from the REXX Compiler - e .- pred 29611000
gca(t) sewc v Copyright notice 00611168
supplement . ¥rs 86011200
EJECT 06011300
s+aagtart of Specifications 80620686
. * 09610066
s This code is provided on an as-is basis. * 86640000
- 86956600
£8060086
* vt e Soaseps
. * Module name: RXUSERFN 8
Klaus Hansjakob * 90096666
* Descriptive name: REXX function package oader 681866068
* 60116088
* Function: ggl§gggg
. - 1
IBM Vienna Software Development Lab * NUCXLOAD module USERFN as RXUSERFN; when invoked with a 10AD 89140000
Wien 2, Lassaliestrasse 1 * request invoke USERFN with sawe PLIST as on entry. 98158669
* 80160600
: * To generate: 60176960
c/o IBM Austria . FASH RXUSERFN] 88188060
* LOAD RXUSERFN (ORIGIN TRANS 68198608
Obere Donaus(ra§se 85 * GENM RXUSERFN 662008608
A-1020 Austria . 96716008
EUROPE * Note: RXUSERFN is interrogated as part of the REXX search 86216018
* order for external functions. The functions ere loaded 86216020
* automatically when invoked. You can also create a function 86216038
HANSJAKO@VABVM1{ VNET.IBM.COM * pacxage with a different name (e.g. RXMYPKG): 66216046
- Rename this file to RXMYPKG, 06210859
. Change the macro variable PACKAGE in the header of this 60210068
{(+431) 21145-4243 . file from USERFN to MYPKG., 86216676
* Rename the file containing the functions to MYPKG. 868216680
* Change the macro variable PACKAGE in the header of the 88216699
* fife containing the functions to MYPKG 00210160
* When the function package is not \nterro?led as part of 06218119
May/95 * the REXX search order you must load the Tunctions in the 08216120
* ?uknge explicitely {"RXMYPKG LOAD RXaasaaa’' where assaaa 86210130
* ¢ the name of the function) or globally ('RXMYPKG LOAD') 00216148
* before you can invoke them. 86210158
* To drop all functions of a package issue a NUCXOROP command 862190168
* for the package {'NUCXDROP RXMYPKG'). 80216179
* 06220809
05/94 KH News from the REXX Compiler - Supplement P
. /
r N [-

Function Packages ... LA Function Packages ... ool
* Entry/exit conditions: 88236660 -CRLOOP ANOP 008688568
» 060240060 AIF (31 GT &MAX).CRLOOPE 00680668
- NOTE: The MODULE is generated as a transient module. 96258600 oc C lC (1) 06680768
" 80260668 &1 SETA &I+1 080680866
* Entry: 086270800 AGO .CRLOOP 668688960
* Standard SVC conventions. 98280000 .CRLOOPE ANOP 66681066
* At points to & tokenized PLIST (SVC 282 linkage). 06290800 - 86681166
* . 86366000 STARTCOD DS 6F 66681266
* Exit: 86316000 tR RlO Rl4 Save return address 80696006
- RIS = 8 USERFN successfully loaded end returned with 8 863260080 SR Assume instali only 66766600
* Ri5-= @ - Return code from unsuccesful NUCXLDAD USERFN 80316800 CiLt ARGI(RI) X'FF* Any avgurents ? 68710000
* - Return code passed back from USERFN after 00346600 BE GOLOAD 8r not - go install 86720069
* invocation with original PLIST 96356008 414 ARGI(B R1),=CL8' LOAD' ls this explicit load? 006730668
- - 4 to indicate bad PLIST 080368808 BNE BAD Br if not - go complain 80746600
* 09376008 iR R2, Rl Keep invocation PLIST 69756800
* Exit: 006108608 * 088768060
* Return to caller. 00196006 * NUCXLOAD USERFN as RXUSERFN. 80770860
* 00466008 * 09789060
* Operation: 00410006 COLOAD €Qu * 08798800
* When invoked without argument NUCXLOAD USERFN as RXUSERFN, 06420060 LA R1,NUCXLO0AD Address NUCXLOAD Plist 6860009
* and pass back the return code obtained from NUCXLOAD. 09430008 sve 262 gesle6e9
* When invoked with 'L0AD’ &s the first argument then NUCXLOAD 88446868 oc ALA(1) Return even if error 66620600
* USERFN as RXUSERFN, invoke RXUSERFX with the seme PLIST as 008450006 R15,R15 0id foad work? 66830886
* opbtained on entry, pass back the return code given back hy 00460000 BNZR R}6 No, pass back rc 86046000
* USEREN. 99470666 * . 66856960
* Otherwise display message and return with return code 4. 88480060 * If explicit load requested pass through invocation PLIST 088866660
. 80490609 * 66876008
* Maclibs: 86560000 LTR R1,R2 explicit load? 00886006
N CMSLIG or OMSGP] 86516600 BIR R18 No, return 0e8g600e
* 60526008 Sve 262 Invoke nucleus extension 808960066
* Macros and control blocks: £6510600 ot AL4(1) 68910860
* REGEQU 608540090 8R Rig Return, pass through rc 00920000
. 96556000 * 60930060
* Change Activity: 80566000 b Errar handling routines. 09940860
* 91-11-21 KH Cleanup and comments 66570868 * Note that in order to avoid the gereration of relocstable 00956660
* 93-86-28 KH Make function package name & wacre veriable, add 66570816 * address constants, the TYPLIN PLIST is "hand-built" rather 6889606608
" copyright as macro verisble. 865708028 * than using WRTERM. 869760060
i 09560060 * 90986686
#**rfnd of Specifications ep5s0800 BADPL [U Something's wrong with PLIST 86996008
* 9866688660 LA Rt MSC1 Get message address 81006008
ERXPACK RMODE 24 Must be loaded below 16M8! 06616668 LA R2,L'M561 Get wessage length 81010608
SRXPACK AMODE 24 Expects SVC 282 linkage 96620608 STCM Ri,B'6111° ,TYPBUFF Set it in PLIST 816266668
. 86630000 STH R2,TYPLEN Set it in PLIST 61036609
SRXPACK CSECT , 86640068 0l TYPLIN+13,X" 48" RAequest error message edit 01846088
* 6650000 A Ri,TYPLIN Point at PLIST 91650668
* Make sure this is a LOAD 86660800 SvC 202 Give it to CMS 01860060
hd 80670660 ot At4(1) Ignore errors 81676668

USING *,R12 Establish addresssbility 06686006 LA Ri5,4 Set non—zero return code 91680688
8 STARTCOD Branch eround header 06606196 8R R10 Return 61096886
oc CL8’BRXPACK' Pacxeage 1D 86606268 OROP RI12 01100000
Max SETA N'&CR 00696308 * 61116800
&1 SETA 80660488 TYPLIN OC CLB" TYPLIN' ,X'81",AL3(B),C'8",X" 89" ,AL2(B) 611268666
05/94 KH News from the REXX Compiler - Supplement 2 05/84 KH News from the REXX Compiler - Supplement
. S/

92

4 N N
Function Packages ... BOC Function Packages ... a8
TITLE 'USERFN REXX Function Package Glue Code ' 00816066
LELC BPACKAGE,&CR(1),&FUN(1) 00020060
an 00630008
* ~ 00640906
* Oescribe your function pacxage here - 0085008¢
. - 08860000
ARARARKAARARRARRNR
J‘v:agrr Egu }v:tiu«?.a m:geee . - E :g:{,:ggg
YPLEN YPLIN+14,2 e11460868 ' '
MSGl DC C'DMSRUFOJOE Invalid parameter’ 91156960 8PACKAGE SETC "USERFN Nome of the package HATHHS
- 61166660 < e -] H
NUCKLOAD gé gna et :l”“gg £CR(l) SETC Copyright natice gg}lzgggg
L8 NUCXLOAD® 11808 LFUN(1) SETC ‘USERY’ Kame of function 8138868
BC CLEBRXPACK' Nawe to Joad as 61196800 LFUN(2) SETC ‘USER2* Kame of function 46140668
D CL8'BPACKAGE kume of wodule to load 61206868 LFUN(3) SETC ‘USER3’ Nome of fumction 96158000
oc cle(81216060 K 66166006
gg Elg‘SV;ﬂN' gystel anrlh:(e 01220880 EJECT 00176688
L8 SERVICE' ervice attribute e123eee0 waan ifi i
oc CL8' PUSH’ Push down existing extension 981240868 - Start of Specifications - :g}ggggg
o BXUEF 91258000 - This code is provided on an ss-is basis. = 00200600
o0RG 01268000 " N 892100809
- 81276608 AANKAARRAMRRARARAR #6226800
LTORG Literal pool :};ggegg " 08238608
" 9 N .
Aol .0 First argument 61360080 Module nace: USERFX RN
) 61310660 " ipti . i
END 1320880 M Bescriptive name: Glue code for REXX function package ::g?:ggg
* Function: ee2688008
* 88290060
* The following code resides in free storage and is cepable 66300000
* of replying to LOAD and RESET. 06310668
* A L0AD cell results in mentlfylng the function (vhnse nane 86320650
* ls pnssed as parameter foliowing LOAD) as entry point. 86336880
* LOAD cal) without function specified will identify all 96336816
- functlnns in the function package as entry points. 86338826
* A RESET call from NUCXOROP will turn the functions off. 86346660
* A PURGE service call is ignored. 66356000
- 90366008
* To generate 68376609
* HASM USERFN 09886668
* L0AD USERFN 08390006
* GENM USERFN { NOMAP 06466060
- 66410086
* Note: To get a MODULE which cen execute on CMS relesase 5 and 80420080
* later —> generate the module on a (MS release > 5. 80438666
" Note: When user functions are compiled REXX with the DLINK 6884408660
" compiler option, then you must explicitely specify 06450068
* the functions to be DLYNKM explicitely on the 10AD 088466868
L comwand, and you must use the RLDSAVE option for the 080476668
. L0AD connand. 0048688608
* Examp 06496000
* USERI. USER2, and USER3 are functions in the package. 08586688
05/84 KH News from the REXX Compiler - Supplement 4 05/94 KH News from the REXX Compiler - Supplement St
S J
e p)
Function Packages ... Function Packages ... REssC
. USERY contains & call to USERI and a call to USERX. 80510000 3 SETA 1 80986090
* ~ compile USER] wWith the DLINK compiler option 86526860 JCRLOOP ANOP 68996068
» ~ LOAD USERFN USERX (RLDSAVE 6530600 AIF (81 T &MAX).CRLOOPE 01680008
. — GENM USERFN (NOMAP 08540600 oc C'&CR{&1)" 01010686
- If you do this on CMS rel > 5 you will get a module 60550860 &1 SETA &i¢1 010266066
- runnable on CMS rel § and lster, which will reside 606560800 AGD .CRLOOP €1630080
" above the 16 M8 line if possible. 80578660 .CRLOOPE ANOP 81646008
- USER1, USER?, and USERI are the known functions, 00560060 » 916506060
" Calls in USEAl to USERI and USERX will use DLINK. 86596068 * List of functions included in this pack, with their offsets 61660080
* 060606660 * 01670088
* Entry/exit conditions: 666100600 FUNLNAME EQU 4,8 0ffset & length of name 916080608
* 66620006 FUNOFFS EQU 6,4 0ffset to the routine 81690860
" Standard SVC conventions. 86630008 LENTRY EQU 12 Length of a single entry 81156000
- Rl points to a tokenized PLIST. 66640000 FUNLIST DS oF List of functions 61116686
- This code can run with AMODE 24 or AMODE 31 06650068 &MAX SETA N'EBFUN 01126600
- 00666068 af SETA 1 611300086
» Exits 066760066 .FULOOP ANQP 01140068
. R15 = 8 - Function successfully loaded or exists 60660808 AIF (81 GT &MAX) F\IlOOPE 81156808
» — functions unloaded 00698600 EXTRN §FUN of cozpiled ?rugru 61166808
" ~ Service call, Endcmd call, ... 607868666 oc A(IFUN(H) &PACKAGE) foset of compiled prog 91176868
- RS-+ 8 — Return code hon unsuccesful NUCEXI LOAD 986710689 oc 2 RX Name prefix 01186088
- = 1 LOAD or RESET, but no second argument 86720600 0c CLE BFUN(RI)’ Name 91190080
- or function not in package 86730966 18 SETA &I+41 91260060
- - 4 no first argument 867400606 AGO .FULOOP @1210600
- 86750068 FULOOPE ANOP 91226668
* Maclibs: 00766660 EFUNLIST OC A(*-*) End fence 01238000
* DMSSP or DMSGPI 06778069 * 81246000
. 60780066 * 612560600
* Macros and control blocks: 08796898 STARTCOD EQU * 61266800
* GEQU 06860868 (R R18, RM Save return address 81276000
* CMSLEVEL 88816060 LR Ril Save return address once more 01275000
* NUCON 86820060 {ic ARGl(B R1),=CL8' LOAD' Is this a load? 61260008
* 66036080 BE CHX4ARGS Yes, check for any arg's 01296068
* Change Activity: 0868468800 CLe MGl(E R1),=CL8'RESET* Reset? 01388008
* 81~-11-21 KA Added AMOOE 31 capability 66856860 BE 000! Yes, turn off functions 01110088
* 93-86-22 KH Added wissing branch for service call with 6668568186 SR RIS ﬂ 5 In case of service call 91320068
. AMODE 24 (thanks to Roderic A. Davis for pointing 06850020 L RZ.KX'FFBOWN‘ Set HOB of register 81338060
" out the problem and providing the solution). 90850038 LA R2,08(,R2) tA will clear HOB in AMOOE 24 61348660
* 9)-06-26 KH load &l} functions in response to a LOAD request 86850048 LTR 2, R2 Br if AMODE 24 81356608
d without function nume specified. 06856058 82 PL2621 81355666
" 66866068 Ctl 96(R13) X'FE* took at Call Type (XA) 01360668
2xaxEnd Of SPEcifiCations masaARARA ARRARARARARANAARRRRKRRARRRARKARNS 00870860 B CONTA! 81378008
SPACE | 06886660 PL28z] CM Rl 8 1988‘ X'FE' Look at Call Type 813800688
&PACKAGE RMODE ANY 9008960680 CONTAYL EQU £1396660
&PACKAGE AMODE 31 06960060 BHLR RH Return Service, Endcmd, ... 91498068
SPACE | 86910068 1A R15,4 Bad Plist, set error code 61410068
&PACKAGE CSECT , 869260008 BR R14 .. and return 81426006
USING NUCON,8 Establish Addressahility 66930006 CHK4ARCS EQU * 81430000
USING *,R12 Establish Addressability 86940000 LA RIS,1 Set possible return code 61440869
B STARTCCD Branch around header ge9s6006 CLl ARG2(R1) ,X'FF* Any arguments passed? 81450660
oc CL8'&PACKAGE* Package 1D 0960000 BE ALLLOAD %o, load all functions 614660060
SHAX SETA N'8CR 60978006 . 81470688
05/94 KH News from the REXX Compiler - Supplement B) 05/94 KH News from the REXX Compiler - Supplement 7
S

2 News from the REXX Compiler - Supplement

93

94

e N
Function Packages ... T=oo Function Packages ... o
* tOAD request. Check function name against FUNLIST, 91480008 St R6,0NLADDR Add to startup PSW 218390000
* Only turn on the requested function, 01496606 i R15,+X'08668080" tok Plist, COPY/FENCE flags 01040966
* 81568088 SVC 204 61650008
PUSH USING Save USING status eislesee B8R Ri® Return 01660806
USING DHUCX A3 Use save area for PLIST 81520060 * 61879660
AUTOLOAD EQU 81530000 * See if function is already & nucleus extension, meke it 81686060
| Ve DNllS‘l(lNLlSl) NLIST Move skeleton to work area 01549660 - * & nucleus extension if not (CMS rel) 61890060
R R3,R Save old plist pointer 01556086 " 01906660
LA R4, lElﬂRV Length of FUNLIST entry 81560600 Sv2021 SvC 262 61910609
{A RS.EFUNLIST fnd of function table 01576680 - 0C AL4()) - “Fall through if error 01920008
LA R?,FUNUSI Start of function table 81580009 LTR RIS,RIS Exists? 61930600
1A Rls,l Set error return code 81596608 BIR RI6 Yes, immediate return ©1948860
CHECKL QU 61656908 [R6,FUNOFFS(,R2) toad address offset 819560608
cLe ARGZ(RJ) fuNlNN’((RZ) Check against name 81616008 (A R6,8(R6,R12 True start address 61960000
BE Found - turn function on 01626060 ST R6,ONLADDR Add to startup PSW 819768000
BXLE RZ N CHECK\ Loop for another check 01636006 SvC 202 81988000
8R Return with RC = 1 91640000 nc ALe(1) Ignore errors 91996006
* el16461606 BR Rig Return 82066008
* LOAD request without function name, load a!l functions in 81640200 POP USING Restove USING status 626106068
* package. Return with RC 8. 61640380 * 62020668
. 01646468 * RESET request: switch off functions 626300666
ALLLOAR EQU * 81640500 * 62040066
LR R3,R1 Save old plist pointer 01640608 DOOFF fQU 62650088
1A R4, LENTRY Length of FUNLIST entry 91648700 PUSH USING Save USING status 82068060
LA RS, EFUNLIST End of function table 61646809 USING DNUCX,R13 Use save area for PLIST 62670868
SR RS, Ra Last entry in function table 81648988 MVe DNUSI([NUS!) NLIST Move skeleton to work area 2086660
LA RZ,FUNLIS! Start of function table o1641¢08 1A RS, FUNLIST > to lis 82096660
NEXTFL EQU 81641188 A R1,ONLISY => PLIST 62100600
MV Dlllsl(lﬂlls‘i) NLIST Move skeleton to work area 81641200 cil CHSPROG.VHSPS Are we on CMS release § g2110688
BAL R16,TURNON Turn on the function 01641300 BNH SV2022 Br if yes, use SVC 282 62126868
8XLE R2,R4,NEXTF} Loop for snother function) 641400 §V2042 EQU * 82136600
SR ms.ms Set ok return code 81641500 L R15,FUNOFFS(RS) Any more to cancel? $21468608
B8R R11 Return 01641660 LTR RI5,R15 821508606
* 01650060 BIR Rl@ = all done ... Get out 62166006
TURNON EQU 91660600 MVC DNLNAME (B), FUNU(”((RS) Copy stertup nawe 62170008
MYC DNL“M LFUNLNAME (R2) Cnpy startup name 81670606 [} R15,=X’ !0088900' tok Plist, COPY/FENCE flags 62186008
A RIONUST > PLIST 81680608 SVC 204 €219¢008
" 81690090 * (we ignore errors e.g.: function already cencelled} £2260008
* See if function is already a nucleus extension, make it 61760600 LA RS, LENTRY(,R5) -> next item in FUNLIST 82218800
* @ nucleus extension if not (CMS rel > 5) e1716608 B Sviee2 €2220069
. 81720006 * 82236688
1A RIS, 1 017296600 svze22 EQU * 62246080
(NR R15,R1S -1 81730008 L RIS, FUNOFFS(RS) Any wore to cancel? 62256600
ST R15,0NLADDR Query form of NUCEXT plist 81746060 LTR RIS,RIS 022608600
(18] (:MSPROG VMSPS Are we on CMS releuse H 01758000 B8R Ri8 @ = all done ... Get out 62276000
BNH SY2021 Brif yes, use 282 01760606 MVC DNLNAME(8) ,FUNLNAME (RS) Copy starlup name €2286669
i R15,:=X'00668668" tok Plist, COPY/FEHCE flags 01778606 Sve 202 92290666
SVC 264 81786088 oc ALa(1) Ignore errors 62100800
LTR R1S,R1S Exists? 81796608 * {we ignore errors e.g.: function already cance!led) ©21316006
BIR R1® Yes, immediate return 91880008 LA RS, LENTAY(,RS) ~> next item in FUNLIST 82320880
i R6,FUNOFFS{,R2) Load address offset 91816088 8 SVZBZ 62330600
LA R6,8(R6,R1Z True start address 0182eqa0e POP USING Restore USING status €23468000
L2
05/94 KH News from the REXX Compiler - Supplement 8 05/84 KH News from the REXX Compiler - Supplement
(. S/
e ™
Function Packages ... s
EJECT 082350060
* 02360080
* Eguates 92370660
* 62180089
ARG1 £ 8,8 First argument $2390060
ARG2 EQU 16,8 Second argument 82408008
REGEQU 82410668
CMSLEVEL g2420660
* 062430000
* PLIST for invoking ‘NUCEXT' (setup as CANCEL PLIST) 082440060
. 92450060
NLIST 0s (1] NUCEXT Plist 82460600
0o CLB'NUCEXT" Neme 82476600
NiNAME OC CLBEPACKAGE" function name 824986600
o X'FF* Syster mask enabied 82496608
NLKEY ¢ X4 System key gz508000
NLFLAG DC AL {SYSTEM) NUCEXT Flag 02516008
¢ x'ee’ Spare flags 825268068
RLADDR OC () Entry point address 92530080
C ALa(*-*) private 02540090
NLSTARY DC A(0) Stert eddress 92550608
MLLEN oc fF'e Length 62560600
ANLIST EQU *-NLIST tength of list 92576608
- 92586800
* NUCEXT PLIST Flags: 82596068
* 02600008
SYSTEM EQu X'86° 92616008
. 02620009
* DSECT for NUCEXT plist 02630069
* 82648060
DNUCX DSECT Based on register 13 02650000
DNLIST DS CL@ *NUCEXT' Name 92660600
DNLNAME DS CLB *BPACKACGE® Function name 82670008
ONLMASK DS X 'FF' Ma 62600680
ONLKEY DS X ‘0 System Xey 082696060
ONLFLAG DS ALl {SYSTEM) NUCEXT flag 02700600
0s X 06’ Spare flags 82716980
ONLACDR 0S A Entry point address (8=cancel) 02128960
0s ALL (*-*) privete 82730089
OLSTARY OS Start address 02746880
DLNLLEN DS AL4 (FREELEN) Length 92758008
NUCON 02760000
END 82176000
05/94 KH News from the REXX Compiler - Suppliement 10
_/

Using REXX as a Database Tool

Mark Hessling
Griffith University

95

Using REXX as a Database Tool

Mark Hessling

Griffith University
Brisbane, Australia

Introduction

Having been involved in Database Administration for the last 5 years, and having a long
relationship with REXX (over 10 years) it was inevitable that the two should come together
eventually.

GUROO History

During 1993, | found | needed a scripting tool to manipulate some data in Oracle tables as
part of my Grad. Dip. course. | decided that it would be quicker to write an interface from
REXX to an Oracle database, and then write the programs | required in REXX than it was
to write the same programs in the tools supplied by Oracle. GUROO (Griffith University Rexx
Oracle Overseer) was the result.

As | already had the basic framework, courtesy of the SAA REXX API in Regina, and the
interface to Regina in THE, filling in the remainder of the tool was relatively simple.

The prime design consideration in GUROO was simplicity. | had a rough idea of the
interface to existing REXX-SQL tools like the Database Manager in OS/2 Extended Edition.
These interfaces seem too complicated. Compare the same program written using the
REXX interface to Database Manager and the GUROO example. See Examples 1 and 2.

96

L6

Example 1

/* Display the names of all tables owned by the default user.
/* DBM version.

J/* Load the DBM dynamic link libraries...

If rxfuncquery(’SQLDBS’) \= 0 Then

rcy = rxfuncadd(’SQLDBS’,’SQLAR’,’SQLDBS’);
If rxfuncquery(’SQLEXEC’) \= 0 Then

rcy = rxfuncadd (’ SQLEXEC’, ' SQLAR’,’SQLEXEC’);

/* Connect to the SAMPLE database...

Call sglexec 'CONNECT TO sample IN SHARE MODE’;
If (SQLCA.SQLCODE \= 0) Then
Do
Say ‘CONNECT TO Error: SQLCODE =' SQLCA.SQLCODE;
Exit
End

/* Prepare and declare the cursor for the SQL statement...

st = "SELECT name FROM sysibm.systables WHERE name <> ?";
Call sqlexec ‘PREPARE sl FROM :st’;
Call sqlexec ’'DECLARE cl CURSOR FOR sl’;
If (SQLCA.SQLCODE \= 0) Then

Say ‘Error preparing statement: SQLCODE =’ SQLCA.SQLCODE;
Else
/*

/* Open the cursor associated with the SQL statement...
/*

Do
parm_var = "STAFF";
Call sqlexec ’'OPEN cl USING :parm var’;

/* Fetch and display each row selected...

Do While (SQLCA.SQLCODE = 0)
Call sglexec 'FETCH cl INTO :table name’;
If (SQLCA.SQLCODE = 0) Then
Say ’Table = ' table_name;
End

/*

/* Close the cursor and end the transaction...

Call sqglexec 'CLOSE cl’;
Call sqlexec ’'COMMIT’;
End
/*

/* Disconnect from the database...
/%= _—

Call sqlexec ’'CONNECT RESET’;
Return

*/
*/

*/
*/

*/
*/

*/

*/

x/

*/

*/
x/

Example 2

Display the names of all tables owned by the default user.
GUROO version.

Connect to the SAMPLE database...

/*

8ql_connect (' sample’) < 0 Then
Do

Say sql_error_ text()
Exit
End

/*
/*

Execute the select statement and return data...

st
par
if

= "SELECT name FROM sysibm.systables WHERE name <> 2"
m _var = ‘STAFF’
sql_command(ql, st,parm var) < 0 Then
Do
Say sgql_error text()
Exit
End

/*
/*
*

/

Display each row selected...

Do

End
/*

i =1 To ql.name.0
Say ’Table = ’ gl.name.i

/*
/*

End the transaction...

if

8ql_command (ql, "COMMIT") < 0 Then
Do

Say sql_error_text()

Exit
End

Disconnect from the database...

Ret

sql_disconnect() < 0 Then
Do
Say sql_error_text()
Exit
End
urn

*/

*/
*

*/
*/

*/
*/

*/

*/

*/
*/

What is GUROO

In its current original form, GUROO is a standalone program, written using Oracle’s Pro*C
and linked with Regina. GUROO is really 7 external functions:

. sql_connect()
connect to an Oracle database
. sql_disconnect()
disconnect from an Oracle database
. sql_command()
execute an SQL command (select, update etc)
. sql_open_cursor()
open a cursor
. sql_close_cursor
close a cursor
. sql_fetch_row()
fetch a row from a cursor
. sql_error_text()
return the text of the last GUROO or Oracle error

For more details on the syntax of these functions, see the attachment.

Current Status

GUROOQO is currently in use solely as an internal tool within the Information Systems section
of Griffith University. Many of the DBA tools are written using GUROO and the programming
staff have also begun to use GUROO in situations where the Oracle supplied tools are
inappropriate. In one instance, GUROO has replaced one function which was originally
written using various combinations of C shell, awk, SQL*ReportWriter, SQL*Plus and
SQL*Loader. The GUROO program is quicker, smaller and much easier to understand.

Despite being interpreted, the performance of GUROO programs is on par with other Oracle
tools.

Currently, GUROO is not available for distribution outside of the Information Systems section
of Griffith University.

98

Future Directions

As a result of Griffith University’s reluctance to allow distribution of GUROO, | and a
colleague of mine have begun an independent development of a similar tool; REXX/SQL.
The structure and operation of REXX/SQL will be fundamentally the same as GUROO, but
will also include most of the low-level functions like PARSE and EXECUTE that exists in
current tools. This will give users the option of a simple interface or one which they are more
familiar (for users of RXSQL, DB2 etc).

REXX/SQL will have the ability to make multiple connections to the same or different
databases from the same vendor or different vendors. The ultimate goal for REXX/SQL will
be to allow a programmer to access data from any combination of SQL databases as though
all data were stored in the one database.

This can really only be achieved by writing each database access functions as dynamically
linked libraries that can be loaded at run-time. Example 3 illustrates this goal.

99

Example 3

/* *x/
/* Display the name and payment details for all employees. *x/
/* Employee information is stored in a DB2 database, */
/* financial information stored in an Oracle database. */
/* REXX/SQL multi-database example. *x/
/* */
/* *x/
/* Load the Oracle and DB2 external function libraries... */
/* *x/

Call rxfuncadd ’LoadOracleFuncs’,’REXXSQL’,’LoadOracleFuncs’
Call LoadOracleFuncs

Call rxfuncadd ‘LoadDB2Funcs’,!REXXSQL’, ' LoadDB2Funcs’

Call LoadDB2Funcs

/* */
/* Connect to local Oracle database... */
/* -*/
If oracle_connect(’'/’) < 0 Then
Do
Say oracle_error_ text ()
Exit
End
JAEEES */
/* Connect to local DB2 database PERSONNEL.. */
* ‘k/
If DB2_connect (' PERSONNEL’) < 0 Then
Do
Say DB2_error_text ()
Exit
End
/* --- *x/
/* Declare queries to be performed... */
/* */
queryl = ‘select name,empno, from emp order by name’
query2 = ’select amt,paydate from gl_trans where accno = :ACCNO’
/* */
/* Execute the first gquery on the DB2 database and return all*/
/* rows ... */
ettt *x/
if DB2 command(ql, queryl) < 0 Then
Do
Say DB2_error_text ()
Exit
End
/* */
/* For each employee record, obtain the payment details from */
/* the Oracle database and display them... x/
7% -=*/

Do i = 1 To gl.name.O
if oracle_command (q2, query2,’'ACCNO’,ql.empno.1) < 0 Then
Do .
Say oracle_error_text ()
Exit
End
say s
Say Right (ql.empno.i,8) Left (gl.name.i,35)
Do j§ =1 To g2.amt.0
dSay Copies(’ ’,15) Left(g2.paydate.j,12) Right(g2.amt.j,12)
En

End
/* ——/
/* Disconnect from the Oracle database... *x/
/* *x/
If oracle_disconnect() < 0 Then
Do
Say oracle_error_text()
Exit
End
/* */
/* Disconnect from the DB2 database... */
/* *x/
If DB2_disconnect() < O Then
Do
Say DB2_error_text ()
Exit
End
Return

100

Synopsis
sqgl_connect(username/password[,remote_database_string])
Description

This function connects you to an oracle database. You supply the function with the username/password
and optionally the remote database connect string.

username/password - username/password
remote_database_string - connect string for remote database

Return Values

0 - successful connection
Negative number - Oracle error number
Example

To connect as your OPS$ Oracle login you would use the following call:
rcode = sql connect (/')

To connect to the Oracle account SCOTT with TIGER as password:
rcode = sgl_connect (’scott/tiger’)

To connect to the Oracle account SCOTT with TIGER as password on the remote host overthere;
Oracle SID of X, using SQL*Net TCP/IP:

rcode = sql_connect (‘scott/tiger’,’T:overthere:X')

101

Synopsis
sql_disconnect()
Descrliption

This function disconnects you from an oracle database and commits any outstanding transaction. By
default, whenever the GUROO program exits, you are disconnected from the database.

Arguments
None

Return Values

0 - successtul connection
Negative number - Oracle error number
Example

rcode = sql_disconnect ()

17

Synopsis
sql_command(statement_name,sql_command[,bind_variable_name,bind_variable_value...})
Description

This function enables you to execute any Oracle SQL*Plus command including DML and DDL
statements. Typically you would execute commands like select or update using this function. Note that
the command does not end in a semi-colon. If you do append a semi-colon to the end of the command,
GUROO will remove it.

When the SQL command issued is a select statement, GUROO retums all column values in arrays. The
stem variable name is composed of the statement name followed by a period followed by the column
name specified in the select statement. As with all REXX arrays the number of elements in the array
is stored in the variable with an index of 0. When the value of a column is NULL, an extra REXX
variable is created. This variable has the same structure as the REXX variable containing the column
value, but with 'NULL' before the index value. For example; the REXX variable created for a select
statement containing the column 'COL_NAME' and a statement name of 'Q1’ will be Q1.COL_NAME.1
(for the first row). If the value of that column is NULL, the REXX variable created is
Q1.COL_NAME.NULL.1. To determine if a column is NULL, use the following test:

If gl.col name.null.i = *NULL’ Then ... (column is NULL)

Because the contents of all columns for all rows are returned from a ’select’ statement, the select
command may return many rows and exhaust memory. Therefore the use of sql_command() should be
restricted to queries that will return a small number of rows. For larger queries use a combination of
sqgl_open_cursor() and multiple sql_fetch_row() calls.

A

When bind variables are used, a pair of arguments is used for each unique bind variable name. The
first argument is the name of the bind variable as specified in the SQL statement, the second is the
value that bind variable is to take.

Arguments
statement_name - a string of up to 30 characters to identify the SQL command. This is
used as the first part of the stem variable name containing column
values.
sgl_command - any valid SQL*Plus command.
bind_variable - optional bind variables values as specified in the SQL command.
Return Values
Positive number - successful operation; the number of rows affected by the SQL
command.
Negative number - Oracle error number

103

Example
To select the names of all tables owned by the current user, issue the following call:

rcode = sql_command(’Ql’,’select table name from user tables’)

Assuming the user owns the tables EMP, DEPT, and CUSTOMER rcode will be set to 3 and the
following REXX variables will be set:

Q1.TABLE_NAME.O = 3
Q1.TABLE_NAME.1 = EMP
Q1.TABLE_NAME.2 = DEPT
Q1.TABLE_NAME.3 = CUSTOMER

To select the names of all tables and the tablespace in which they reside owned by the user, SCOTT,
and use a bind variable, issue the following call:

query.l = ‘select table_name,tablespace_name’
query.2 = ‘from all_tables where owner = :OWNER’
query = query.l query.2

rcode = sql_command(’Ql’,query, ' OWNER'’,’SCOTT’)

Assuming that user SCOTT owns the tables:

EMP in TEMP_SPACE tablespace
DEPT in USER_SPACE tablespace
CUSTOMER in TEMP_SPACE tablespace
PRICE in USER_SPACE tablespace

rcode will be set to 4 and the following REXX variables will be set:

Q1.TABLE_NAME.O = 4 Q1.TABLESPACE_NAME.O = 4

Q1.TABLE_NAME.1 = EMP Q1.TABLESPACE_NAME.1 = TEMP_SPACE
Q1.TABLE_NAME.2 = DEPT Q1.TABLESPACE_NAME.2 = USER_SPACE
Q1.TABLE_NAME.3 = CUSTOMER Q1.TABLESPACE_NAME.3 = TEMP_SPACE
Q1.TABLE_NAME .4 = PRICE . Q1.TABLESPACE_NAME.4 = USER_SPACE

To delete rows from the EMP table where DEPTNO = 10, issue the following call:
rcode = sql_command(’Ql’,’delete from emp where deptno = 107)

Assuming there were 5 rows in EMP for DEPTNO 10,rcode will be set to 5.

To delete rows from the EMP table where DEPTNO = 10, issue the following call:
rcode = sql_command(’Ql’,’delete from emp where deptno = 107)

Assuming there is no table called EMP, then rcode is set to -947; the Oracle error number.

104

Synopsis
sql_open_cursor(statement_name,sql_command],bind_variable_name,bind_variable_value...})
Description
This function passes a select statement to be parsed, prepared and executed. The rows that the SQL
command retrieves are then made ready for repeated calls by sql_fetch_row(). An explicit cursor is

associated with the statement name passed.

This function takes the same arguments as sql_command().

Arguments
statement_name - a string of up to 30 characters to identify the SQL command. This is used
as the first part of the stem variable name containing column values and as
the argument to sql_fetch_row() so it knows from which cursor to fetch rows.
sql_command - any valid SQL*Plus select command.
bind_variable - optional bind variables values as specified in the SQL command.

Return Values

0 - successful connection
Negative number - Oracle error number
Example

To prepare for returning the names of tables owned by the current user:
rcode = sql_open_cursor (‘Qlf,’select table name from user tables’)
Assuming the user has select permission on the user_tables object, rcode is set to 0.

See sql_fetch_row() for further examples.

105

Synopsis
sql_fetch_row(statement_name)
Description

This function retrieves the next row in the previously opened cursor and sets REXX variables for each
column specified in the sql_command passed to the sql_open_cursor() function.

The format of the REXX variables set is statement_name followed by a period followed by the column
name. If the value of a column is NULL, an extra REXX variable is created. See the format and usage
in the description for sql_command.
Arguments
statement_name - a string of up to 30 characters to identify the SQL command. This is used
as the first part of the stem variable name containing columns values and as
the argument to sql_open_cursor().

Return Values

0 - successful connection
Negative number - end of cursor
Example

To return the names of tables owned by the current user using an explicit cursor:

rcode = sql_open_cursor(’Ql’,’select table_name from user_tables’)
If rcode < 0 Then
Do
Say sgl_error_text ()
Exit 1
End
Do Forever
rcode = sql_fetch_row(’Ql’)
If rcode < 0 Then Leave
Say ql.table_name
End
rcode = sql close_cursor(’Ql’)

Assuming the user owns the tables, EMP, DEPT, and CUSTOMER the output from this code will be:
EMP
DEPT
CUSTOMER

i06

Synopsis
sql_close_cursor(statement_name)
Description

This function closes the cursor associated with statement_name and frees up resources held by that
Cursor.

Arguments
statement_name - a string of up to 30 characters used to identify which cursor is to be closed.

Return Values

0 - successful connection
Negative number - Oracle error number
Example

To close an already opened cursor:
rcode = sql_close_cursor(’Ql’)

See sql_fetch_row() for a further example.

107

Synopsis
sql_error_text()
Description

This function returns the text of the last error encountered from the most recent GUROO external
function. The error may relate to an Oracle error or to an error within GUROO itself.

If the most recent GUROO external function was successful, then the value returned is "Last operation
successful’.

Arguments

None
Return Values

Text of the result of the most recent GUROO external function.
Example

To display the text of the result of the most recent operation:

Say sql_error_ text()

See sql_fetch_row() for a further example.

108

Using REXX in a UNIX Environment
to Manage Network Operations

Lee Krystek
Boole and Babbage

109

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1. Using REXX in a Unix Environment to Manage Network Operations:

Lee Krystek - Software Manager
Boole and Babbage Network Services

Abstract: When designing our network management and control product, we
needed to provide a way for users to construct scripts to control any foreign system
they might need to interface with via that foreign system’s console.” We selected
REXX as this tool. Before we could use it, we had to augment the language to
give it the capability to be started automatically, connect to those foreign systems,
and manipulate our relational database.

1.1. The COMMAND/Post Product:

Several years ago Boole and Babbage recognized the need for a product that
would be a focal point for network and systems management operations. This
product would monitor and control network equipment, computer systems,
and even application programs. Of special interest were non-SNA and
non-SMNP systems which did not support any network management protocol.

COMMAND/Post runs on a UNIX workstations. Initially the SUN SPARC
series of processors was used, however, porting to other UNIX systems is
underway. A typical COMMAND/Post system consists of one or more
(perhaps even as many as 50 at a large site) workstations with color monitors
running a GUI such as Open Windows or Motif. The system is composed of
modules written in Smalltalk (an object oriented language) for the user
interface and "C" for the more intensive processing tasks. Sybase, a relational
database provides the data storage.

COMMAND/Post will typically connect to a network system, such as a
modem monitor or T1-monitor or a computer, through the system’s printer
port and console. (These type of systems are typically referred to as "Element
Managers" or EMs because they control one class of element in the whole
network.)

An EM’s printer port will often produce interesting information such as the
failure of a modem or communication line. COMMAND/Post has a tool,
called ALFE (ALERT LOGIC FILTER EDITOR), that implementers use
through user friendly dialog screens, to construct an alert "filter." (Figure 1)
The filter searches the message stream from the EM’s printer port and
recognizes important messages. The filter parses those messages and then
creates an "alert" in the COMMAND/Post system using data obtained from
the message. The filter assigns the alert a priority and an classification based
on the OSI standard for network management. COMMAND/Post records the
actions of supervisors and operators and tracks how the alert is handled and
resolved.

CONMMAND /Post operators use terminal emulations windows to access the

EMs from their workstations. This allows operators to work on problems that
might involve a dozen EM’s without leaving their seat. (Figure 2

110

JHaving selected an alert, you probably want to charactetize

its parts. Do this by selecting words of the alert, adding token
and rule names, and selecting Alett analysis pane options. _

New Copy Delete Modify Help

7§ RuleQl
Rule01Thrul0Restore

I
g

o | errcode
i| exdractionName
} filename
il filter
l{ hostid
joil hours ..
= noise
nrFiles
TRETEEBR Ry . O - nrPaths
LRI oo e PR B | R Processes
i ik nvClass
; nvType
p : optionalToken
= path
pathname
KezWord I pct
petful
pcigrowth =
Open Save Select Retrieve Help) Set Help
KSR I556 TIown o BN N Trap: none ‘-
i Filter: Mhomesu/NetC
| mmnd/AlfeBFilter1.tr
ToolType: AlfeBTypel
il Delim: \sQ)
il Separ: %
fi Engine? yes
Escape Characters
il \s space Vv retun
\n newline \ tab
3|~ esc 1
An ALFE Screen - Figure 1.
Modem
Monitor (e)
Serial C —
. eria omm.
T 1-Monitor
Main frame
. . LAN
pplication \
' Terminal
Element Server Command/Post
Managers Workstations

Emulation Connections - Figure 2.

111

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1.2

1.3.

The Auto Operations Requirement

It became apparent after the initial release of COMMAND)/Post that our
prospective customers wanted to have the system support automated
operations. That is, to have COMMAND/Post not only detect alerts and
display them, but to also automatically take actions based on an alerts or alerts
received from a single EM, or on a combination of alerts from several EMs.

COMMAND/Post already had the ability to connect with the system consoles
for the various EMs. Therefore it seemed logical that if an automated
operations facility could be built we could send commands to the appropriate
EM, through the emulations, to get an EM to take the desired action.

The automated operations facility needed two parts. First, some kind of
detection mechanism that would allow the triggering alert, or combination of
alerts, to be recognized. Second, another mechanism that could have a
conversion with an EM’s console, as if it were a human operator, in order to
enter the commands necessary to get the EM to carry out the desired action.

A simple example of an automated operation, though no longer a problem on
most networks, is automatic restart of polling on a communication line. A
Front End Processor (FEP) is polling several control units at remote sites
across a single wide area network line. One of the controllers goes off line for
a period of time and the FEP automatically droYs that controller from the
polling list. When the controller came back on line an operator would
command the FEP to add that controller back into the polling list. Under
COMMAND/Post automated operations, an EM monitoring that
communications line would report the failure of the control unit.
COMMAND/Post filters would detect this as an alert, and would then trigger
an automatic operation to send a command to the FEP to add the controller
back to the list. If the controller failed to respond over a specified period of
time, a high-priority alert could be generated to inform the operator that a
situation had occurred that could not be remedied through auto operations.

(Figure 3) :

The design of the alert detection and trigger mechanism took advantage of
COMMAND/Post’s relational database mechanisms for storing and accessing
data. A graphic window display (known as a selector) already existed to select
alerts. The implementer uses the selector and the mouse to click on certain
rules that describe the alert(s) to be shown on an alert display window. This
idea was extended to allow groups of alerts to be detected. When a specified
combination of alerts is detected instead of having the alert(s) appear in a
window a "trigger" would fire and the auto-operation would start. (Figure 4)

Once the detection facility was decided, the mechanism to allow the system to

carry on a conversation with an EM console was next. An augmented version
of REXX was chosen for that mechanism.

Why REXX?

‘ The decision to use REXX was based on several factors. The actual REXX

112

1 Cu shutdown-FEP stops polling

Main FEP
Frame

Control
_Unit

- - == — - = =

4

Command sent
to console for
restart

I
l.
|
1 2 EMlog
EM montor messages note

— CU not on polling T1st

Trigger

3
<_@ataba9<_ ALERT o] Filter

COMMAND/Post

Restarting a Controller by Auto-Operation - Figure 3.

Lopyright (c) 1993 Boole & Babbage, Inc. All Rights Reserved. Version 3.1.a

SendMail AO Trigger selector

Select Group Display | File Ok. Help |

ELECTION CRITERIA

ManualAlerts[- -any--]

Add Delete | alents.currentoperator.
ManualAlerts alerts state:
NetCmmnd L active

| alerts imeReceived:
value since today 0:10:00

A Selector - Figure 4.

113

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

product chosen was uni-REXX from the Workstation Group.

1.3.1.

1.3.2.

1.3.3.

1.3.4.

1.3.5.

REXX was already an established language for auto-operations on Boole’s
mainframe products.

In addition to COMMAND/Post, Boole already had some main frame
products that incorporated auto-operations. They used REXX "
extensively. It was decided there would be an advantage to keep the
auto-operations language consistent between the products.

Using REXX also allowed us to draw upon the experience of our main
frame programmers, and some of the extensions to the REXX language to
support database operations were based on insights provided by the
mainframe REXX group.

Some of the auto-operations scripts would be written by customers and a
language already familiar to IBM type main frame operators was desired.

Although COMMAND/Post is a Unix-based product, many of the

audience for it have their roots in the IBM culture where REXX is widely |

used. By choosing a familiar language it was hoped there would be less
fear and resistance by customers to writing their own REXX scripts.

REXX’s ability to parse data strings would make analysis of messages coming
from the EM’s easier.

It was expected that much of the function of the scripts would be to
respond to messages coming from the EM systems. The REXX "parse”
facility allows most of these messages to be handled without a lot of
programming. The "parse” statement is usually easy for even a novice
programmer to understand. :

REXX’s ability to pass commands to underlying environments makes it easy
to address COMMAND /Post’s database.

The extensions to the database were critical if we were to be able to write
easy to read scripts. The ADDRESS instruction allowed us pass SQL
command directly to the database. Also important was the ability of
REXX to create new variables of any type "on the fly" as data was
returned from the database. This eliminated the need for a rigid,
complicated structure (as used in "C" when getting data back from the
DB).

Use of a "light," interpretive language makes debugging easier for
non-professional users.

Though interpretive languages execute more slowly than compiled
languages they are often easier for the novice to debug since there is no

i14

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

compilation wait involved. Also unless the compiled language has a
sophisticated debugger, the source line is not displayed in association with
a run-time error. In addition, REXX has a built in trace feature which is
easily used.

The use of a "light" language that didn’t need extensive variable
declarations, etc. was also an advantage. While such languages become
increasingly difficult to maintain as a single program grows larger and
more structure is needed, because of the anticipated size of the scripts
(500 lines or less), that was not a concern.

1.4. External Access

The first change we made to REXX was to give it the capability to connect
with the EM’s. This was more complicated than simply opening a new file
descriptor to a new tty port. Connection to EM’s for filtering and emulation
are managed as resources by COMMAND/Post. A connection to a EM’s
system console might be used for a period of time by an operator via an
emulation, and later reassigned by the system for use by auto-operation via a
REXX program.

Connections were made from a program to a physical port using the UNIX *
socket/stream facility. The actual physical ports might be a tty, or, more likely

a port on a terminal server connected remotely, via LAN or WAN, from the
workstation where the REXX was actually executing. The resource
management system was designed to make the details of the actual connection
transparent to the connecting program. This means the REXX program need
only know a single name to invoke the connection.

In order to allow the REXX to connect through COMMAND /Post’s resource
management system several functions were added to the language by inserting
additional code into the REXX interpreter so it could use UNIX sockets and
streams: :

<fd> = ao_targetConnect (<name>)

ao targetClose (<fd>)

ao_targetComm(<fd>,<function>,<data>,<length>,<pos>)
The first function, ao_targetConnect, requests the opening of a connection to a
named port. The name implies more than simply a physical port. It also
implies a pathway to get there and, in some cases, a terminal emulation
appropriate to the external target system on the other side of the port. These
are defined externally to REXX by COMMAND/Post’s system management
faciiity.

A file descriptor, or more appropriately a "handle" is returned by
ao_targetConnect to identify the path for future communications calls.

115

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

The ao_targetClose function simply reverses the connect function closing
down the path. The handle from ao_targetConnect is the single argument to
ao_targetClose.

The third function, ao_targetComm, actually carries out the transfer of data
between the REXX program and the target system.

1.4.1. Application Program Interface

When it came to actually talking to the target system we were faced with
an additional problem. Usually the device a REXX EXEC needs to talk
to is a system console. That means the program would be responding to
the commands we sent it with data (including our own full duplex echo) as
well as occasionally sending out, from our point of view, random lines of
data as the result of activity on the system. How could we develop an
interface for REXX that would allow us to send data at will and handle
messages from the target when they came in at any time? Turning to an
interrupt model, where we would sit in a wait state until an incoming
message would trigger a designated REXX function seemed to be too
complicated for easy use by most of our customers, especially when more
than one target system might be involved in a single REXX program.

Instead we decided to use an Application Programming Interface (API) to
interact with the target. The API we developed was similar to that
defined by IBM as the "IBM PC 3270 Emulation Program, Entry Level,
High-Level Language Application Program Interface” or EEHLLAPI
Where the IBM was targeted to a 3270 terminal interface, our API widens
the definition to cover terminals that do not use field positioning.

The API operates much like a person sitting at the terminal console. A
pseudo-screen is created (which does not display on the
COMMAND/Post workstation monitor), and the REXX program uses
functions defined in the API to interact with this screen. Some functions
allow the entire screen to be captured as an array and transferred back
into a REXX variable for processing. Other functions allow a portion of a
screen to be captured, or in the case of a terminal supporting fields, a field
to be captured. Other functions allow data to be sent to the screen as if
was coming from the keyboard. There are a number functions dedicated
to positioning the cursor and searching the screen, or fields, for text. A
few give status information, including the height and width of the screen.

The API also allows for an interrupt driven capabil%g for situations where
a simpler set of calls cannot handle the exchange. The REXX program
waits until new data arrives on the pseudo-screen and then is released so it
can make additional calls to observe how the screen has changed.

All calls to the API interface are made through the ao targetComm
function described above. The "fd" argument contains the handle for the
particular target system involved, and the "function" argument contains the
number of the API function that will be used. The "data", "length", and
"pos" arguments definitions vary based on the function call. In general,
"data" is data being read or written to the pseudo screen. "Length" is the

116

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

length of that data string. And "pos" is the position involved when data is
written or read. The API views the screen as an array of characters (row
one, followed by row two, etc.) and the position is a value pointing to that
array. '

Using the API model to connect with the target system has a number of
advantages. First, as noted above, it removes the need for an interrupt
type interface when only simple communications are involved. "When only
a single thread of communication is involved it is relatively easy to create
a loop in REXX to read the screen, write to it, read the screen again,
identify what has changed and then act on the new data.

Another advantage is the interface allows some measure of emulation
independence. That is, a REXX script can be designed that will operate
with either a EM running a VT-320 interface or a IBM3151. Then the
only change needed between the two would be in the definition of the
pathway during the configuration step external to REXX. The user would
define the path as using a VT-100 API interface instead of an IBM3151.

Despite the interface, there are some restrictions on how transparently a
REXX program can be written. Some terminals support the use of

"fields." A REXX program that made use of the API field related

functions to interact with a Tandem 6539 would not work with a VT-100, =
because it does not support fields.

1.5. Parameters

The REXX interpreter was also augmented to accept command line
arguments that could be passed in the the REXX programs as parameters.
The command line to the left of a "--" remained the standard uni-REXX
command line. The part to the right represented parameters passed to the
REXX program. Argument flags (items starting with a "-") became variable
names in the program filled with the values that followed them. The following
command line:

ncrx -- —-customerName "Fred"
would cause the REXX program to start execution with a variable called
“customerName" initialized to the value of "Fred". This allowed the triggers to
pass useful information to a REXX program. Standard information passed

included the number of alerts that caused the trigger to fire and the
identification numbers of those alerts.

1.6. Database Interface
We aiso wanted the REXX auto-operations programs to be able to access the
COMMAND/Post database so they could create, query, update, and delete
the alerts the system maintained.

. COMMAND/Post uses a relational database that is divided over two

117

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

dataserver programs using the Sybase "open server" model. The primary
database is accessed through the standard Sybase dataserver. Temporary high
activity tables are assigned to the "Event Handler" server: a memory resident
server of our own design.

Access to either server is via REXX’s ADDRESS instruction. Addressing
NCDB connects the REXX program to the primary sybase dataserver, using
"ALERTS" connects it to the Event Handler. To interact with eithér the
programmer need only code an SQL command, or use a stored procedure (a
Sybase term for SQL routines maintained in the dataserver) in the address
command. The success of the command can be evaluated by looking at the
special REXX variable "sqlCode".

While, for the most part, addressing the dataservers via this command is
straight-forward, a few SQL commands represent a problem. For example,
"SELECT *" command may return row after row of data from the table, each
row with many individual data items. Each item can be of a variety of data
types. Here’s where REXX’s ability to create variables on the fly and have
variables types change make it an excellent choice of our application. As a
data item 1s returned, let say the time field for particular alert, a REXX
variable named "TIME" is created, if it does already exist. It is filled with the
text representation of the time. The same thing for integers or for character
strings (which the database can store in several varieties) The programmer .
need not immediately be concerned with making sure the variable type
matches what’s coming back from the database.

Multiple rows are handled by returning one row at a time and having a special
"fetch" command. The program can use to indicate that it is finished with the
current row and is ready to receive the next. Values for the new row are
written over and into the same variables used by the last row. If all rows are
exhausted the "sqlCode" variable returns an error value (non-zero). If there is
no need for additional pending row a special "cancel" command can be used to
drop them.

A typical code fragment to print the item "alertId" from the "ActiveAlert" table
might be:

address NCDB "select alertId from activeAlerts"
if(sqlCode = 0)then
do forever
address NCDB "fetch"
if(sqglCode <> 0) then
leave
else
say alertId
end
end

One limitation created by this architecture is that all values returned by a
“select" statement must have some associated name for creation of the
variable. This means that an SQL statement that used some function (like

. SUM) to create a value that would not have a name associated with it must be

118

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

written in such a way that it is forced into a variable name. For example:
select total = sum(occurrences) from activeAlerts

instead of

select sum(occurrences) from activeAlerts

- To make common operations, like creating an alert, (which would normally
require multiple table inserts) easier, a number of stored procedure are
included in the database. This means that typically only a single "address"
clause is needed for even a fairly complex database operation.

1.7. Other Uses of REXX in the Product.

One of the bonuses of implementing REXX as our auto-operations language
was that we could use it for general programming. We have a large library of
scripts (mostly written in Bourne or C shell) used for installation and
maintenance of the product. When these scripts interacted with the database
they had to first create a second file that would act as input to the Sybase’s
Interactive SQL program (ISQL). Then they had to start ISQL directing the
second file to the standard input, and finally monitor the standard output for
errors. This convoluted approach made the script hard to read. It also made
isolating a particular SQL statement that failed difficult since the script was
not feeding the commands to ISQL one by one.

A

Our REXX, with the ability to address the server through the ADDRESS
instruction has simplified this problem. Since the REXX can address the
database directly it is easier to write and test the script/program. Errors are
also easier to detect and handle.

1.8. Results

Over 100 sites now use COMMAND /Post with the automated operations
facility. A majority of the customers involved have decided to write their own
custom auto-operations scripts which lessens the load on our support staff.
We are pleased with our decision to use REXX for auto-operations.

119

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network
1.9. Bibliography
COMMAND/Post How to Guide, Release 3.0, Boole and Babbage Network

Systems, San Jose California, 1993.

Programmers Guide: High Level Language Application Program Interface,
IBM Corporation, Austin Texas, 1987. o

* A REXX CookBook for COMMAND /Post, Boole and Babbage Network
Systems, Mt. Laurel New Jersey, 1993.

uni-REXX Reference Manual, The Workstation Group, Rosemont Illinois,
1991.

120

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1.10. Glossary

ALFE - Alert Logic Filter Editor - The facility in COMMAND/Post used to
construct a "filter".

API - Application Program Interface - The interface that allows REXX and C
based programs to interact with COMMAND/Post emulations.

Dataserver - A process that manages and provides access to a database.

EM - Element Managers - Network Control and Monitoring systems that
manage a domain of network elements like modems, communication lines, etc.

Event Handler - COMMAND/Post primary memory resident dataserver.

EXEC - A REXX program for COMMAND/Post that is part of the
auto-operations subsystem.

IBM 3151 - IBM async terminal.

IBM 3270 - IBM sync terminal.

Filter - A program in COMMAND/Post which parses a stream of data, usually .
from some external source, looking for messages. When a message is found

the filter created an alert for the COMMAND/Post database.

Open Server - A database design that allows dataservers from multiple
vendors to operate together.

RDBS - Relational Database System - A database designed to adhere to
relational principles.

Shell - A Unix command interpreter.

Shell Script - A program that is interpreted by a Unix C or Bourne shell.
SQL - A 3rd generation database manipulation language.

Sybase - A RDBS product.

Tandem 6539 - Tandem async terminal

Unix - Operating System on which COMMAND/Post runs.

VT-100 - VT-320 - DEC async terminals

121

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1.11. APPENDIX: Sample COMMAND/Post REXX program.

#1 fusr/nc/bin/nerx -s

/**********ii*t*i******ﬁ***iitt***t*******t*t*t****i*******
* REXX program to perform simple paging. The OSI Severity
* of the first triggering alert will be sent to the pager.
*

This program does the following:

[

>Connects to a tool called “pagerModem" which is
assumed to be an “AT" mode modem

>Initializes the modem for word responses.

>Sends touchtone dial sequence which leaves the modem
in command mode

>Sends “PIN" followed by “#

>Looks at the first underlying alert passed in and gets
the OSISeverity value from the data base.

>Sends OSISeverity followed by "#" out to the pager.

>Waits 5 seconds for repeat

>Sends final "#" to force posting of message

>Does a “hangup"

>Disconnects from modem.

The following variables should be passed in from the trigger:
pagerModem - Access path of the modem.
PIN - Users pin number.
underlyingAlerts (optional)
alertCount (option)

1f no alertCount or underLying alerts are available the value
19999 will be sent to the pager.

Note: Triggering Alerts must be forwarded to the database so
that the Severity can be obtained. -

* % % * % % % % % * * * ¥ % % % * * % * % % X % % * % *

***************i***i***i***ii******t******i*********t*t***/

/* Get the 0OS! severity from the database */

if alertCount <> WALERTCOUNT" then do
cnt = 1
alertld = underlyingAlerts.cnt
address NCDB "select OSISeverity from alerts where ¥,
alertld" = alertid"
if(sqlCode <> 0)then do
say “"Could not get Severity from database" -
exit
end
address NCDB “fetch"
message = DOSISeverity
end
else

.

122

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

message = “990Qu
/* Connect to the modem */
nl = “0a"X
path = ao_targetConnect(pagerModem)
if rc \= AON_noError then do
say “failed to make connection to" pager
" exit

end

/* Get the dimensions of the emulation screen and
calculate the Presentation Space size */

string = "A"

r = ao_targetComm(path, 22, string, 1, 0)
columns = delstr(delstr(string, 16), 0, 13)
rows = delstr(delstr(string, 14), 0, 11)
PSsize = columns * rows

/* Start the conversation with the modem */

if modemSend(path, “ATVi"nl,"0K") = 1 then
exit

/* Dial the service */

if modemSend(path, “ATDT9, 18007597243a;"nl, “CONNECT") = 1 then
exit

/* Send the PIN */

if modemSend(path, YATDTWPIN"#;"nl, "OK") = 1 then
exit

/* Send the message (OSI Severity) */

if modemSend(path, “ATDT"message"#;"nl, "OK") = 1 then
exit

address UNIX "sleep 5%
/* Clean up */

if modemSend(path, "ATDT#;nl%, "0K") = 1 then
exit

if modemSend(path, YATH"nl, “OK") = 1 then
exit =

/* Disconnect from the path */

r = ao_targetClose(path)

123

Fri, April 29, 1994

exit

/***********i**t******i*i***ﬁ*

* modemSend

*

* sends the contents of str

Using REXX in a Unix Environment to Manage Network

KAFARERRRANNARAAAETRERA R TR RI R R ATk dbdhdd

ing to modem and checks that the

* response from the modem contains the contents of pattern

*

Q*****ﬁ****i*t**t*t**i*tﬁ**i*t*******t*t*t**t***itt****i*********t**/

modemSend:
arg path, string, pattern

len = length(string)

/* Find the cursors current location on the screen */

r = ao_targetComm(path, 7,

0, cursor, 0)

if rc \= AON_noError then do
say "Can't find cursor: rc =" rc¢

return 1
end

/* Send the command to the modem */

r = ao_targetComm(path, 15

, string, ten, 0)

if rc \= AON_noError then do
say “Send failed: rc = Yrc

return 1
end

/* Loop ten times waiting each time 2 seconds for a response. */

do 10
address UNIX “sleep 2"

/* Look for response following cursor position */

r = ao_targetComm(path, 8, string, (PSsize - cursor), cursor)

if rc \= AON_noError then

do

say "Send failed on check: rc =% rc

return 1
end

/* Search for a the expected pattern */

if pos(pattern, string) \= 0 then do

return 0
end "
end

say “did not find" pattern
* return 1%

124

REXX at Simware

Luc Lafrance
Simware

125

REXX at Simware
by

[Luc Lafrance
Software Developer

LTl

Multiple Scripting Uses

2 products
A2B, REXXWARE

3 platforms
Windows, Macintosh, NetWare

presentation, automation, reports:

8Z1

A2B BIFs

terminal emulation
type, press, waitfor, checkfor, whenever

views (presentation)
openview, closeview
addelement, additem
getelement, getitem
setelement, selectelement
readelement, writeelement

6ZI

REXXWARE BIFs

140 calls into the CLIB interface
GetObjectID, GetVolumelnformation,
LoginObject, NWQAttachServer

RCCs and client job scheduler

utility functions

currentpath, listfile, readscreen

History of Development

e 18 months to develop a 4.0 kernel

e grammar defined with LEX/YACC

e written in 'C'

Microsoft C, M.

W C, WATCOM C/386

Multiple Personalities
e ported to the Macintosh in days
e ported to NetWare in weeks

e abstraction of OS interfaces to
file system and memory

(4321

Adapting REXX to an O/S

Windows and Macintosh
hard issues to ADDRESS

NetWare

a console and a prompt

multi-threading
the infernal data queue

tel

The Way to an Easy Port

e SIMWARE.h
typedef signed short SHORT
typedef SHORT FAR *gpSHORT

e SIMSTRA .
#define strupr(a,b) AnsiUpper(a,b)
#define memcpy(a,b,c) fmemcpy(a,b,c)

pel

-,

The Way to an Easy Port

SIMFILE.c

thOsOpen, thOsClose
10sRead, 10sWrite, 10sSeek...

SIMMEM.c
OsGPtrAlloc, OsGPtrFree

#1fdef Hungarian notation

Sel

YACC... What Is This?

RX CALL symbol opt_blank parm_list
{ if (fInterpret == TRUE)

GenExternal(P_ CL_OUT SYM, $2, $4);
else if (wLabel = wlsInternal($2))
Genlnternal(P_CL _INTERNAL, --wLabel, $4);

else if (wRoutine = wisBuiltIn($2))
GenBuiltin(P_CL_BUILTIN, wRoutine, $4);

else
GenExternal(P. CL_ EXTERNAL, $2, $4);

OsUPtrFree($2);
}

output is portable 'C' code

9¢l

Simware Conventions

pointers in REXX

passing a symbol as a literal

call GetObjectID "Luc", "OT_USER", "objectID"

arrays in REXX

passing the name of a stem

call listcreen "array." /* array.0 holds count */

LEl

REXX at Simware

b dib o dib 4

- substantial development investment
- ANSI committee nomination
- big push at Novell

future directions :
- integration of products / third parties

REXX Resources on the Internet

Linda Littleton
Pennsylvania State University

138

REXX Resources on the

Linda Littleton

Internet

Irl@psu.edu

Center for Academic Computing
Pennsylvania State University

214 Computer Building

University Park, PA 16802

REXX Symposium - Boston

May, 1994

Rexx Resources on the
wInt‘erget

« Discussions via Listserv
« Programs available via Listserv
« Info available via FTP

« Info available via Gopher

Listserv lists

List Name

REXXLIST

PC-REXX
REXXCOMP
TSO-REXX
VM-REXX

ANSIREXX

List Location

uga.uga.edu

vm.gmd.de
nic.surfnet.nl
vm.ucs.ualberta.ca
ucflvm.cc.ucf.edu

bitnic.educom.edun
bitnic.educom.edu
bitnic.educom.edu
vm.marist.edu

psuvm.psu.edu

Discusses

General Rexx
discussion

Personal REXX
REXX Compiler
TSO REXX
VM/CMS Rexx

ANSI Documents

How to subscribe to a
Listserv list

« Send mail to listserv@list-location

o The Subject can be anything or can be
omitted.

» The body of the mail should be:

SUBSCRIBE list-name your-full-name

Example:

SUBSCRIBE rexxlist Linda Littleton

Notes: Be sure to send the mail to LISTSERY, not to the list.

139

How to Send a
Message
o Write to list-name@list-location

» Whatever you write is forwarded to
everyone on the list.

Other Useful
~_Listserv.commands

SIGNOFTF list-name

“unsubscribe” from the list

REVIEW list-name
get a list of people subscribed

LIST GLOBAL

get a list of all Listserv lists

HELP

Rexx programs
available via Listserv

Library Location

* rexxlib psuvm.psu.edu
psutools psuvm.psu.edu
vm-util vin.gmd.de

ubvm.cc.buffalo.edu
vm.marist.edu

How to get programs
from a Listserv

Send commands, one per line, in the body
of the mail to:

LISTSERV@Ilocation

To get a list of packages:
GET <library> FILELIST

To get the files in a particular package:
GET <package-name> PACKAGE

To get a list of files in a package:
GET <package-name> $PACKAGE

To get a specific file:
GET <filename> <filetype>

140

__To Submit a Program
to Rexxlib

Send it to
rexxlib@psuvm.psu.edu

» Source code only
* No fees

* Must be well documented & readable

- Rexx Info via FTP

Locations to try:

rexx.uwaterloo.ca -- /pub

» general Rexx info

* Rexx FAQ

» Free interpreters for Unix and DOS

flipper.pvv.unit.no -- /pub/rexx
» Regina code
¢ Archive of comp.lang.rexx

ftp-0s2.cdrom.com

ftp.luth.se -- /pub/os2
+ OS/2 archives

wuarchive.wustl.edu -- /pub/aminet
* Amiga archive

How to get files via
FTP

* FTP rexx.uwaterloo.ca

* You will be asked to identify yourself
" Type: anonymous

* You will be asked for your password
Type: your-userid@your-domain

 Useful commands:
dir list directory
cd change directory
get copy a file to your machine
help get help
quit exit FTP

Rexx Info on Gopher

Gopher site bigblue.pvv.unit.no

» Rexx FAQ

¢ Comp.lang.rexx archives

* CMS Rexx manual

» Documentation for Rexx/imc and Regina
» Papers on Rexx

» ANSI committee documents

141

Using REXX and Notrix for Lotus
Notes Data Manipulation

Alan P. Matthews
Percussion Software

142

Using REXX and Notrix for Lotus Notes Data
Manipulation '

Technical Director,.P;;ousslon oftware
5th Annuat-REXX*Symposium

Agenda

o Lotus Notes -
. A review

T Issues
aNotrix ..
o A Core Technology

Q Notrlx Composer
o A Notrix Application

Q Percussigw Software, Inc.

143

Agenda

a Lotus Notes
o Client com_ponents

- lssues

User Interface Components

1 Workspace Desktop -
.. Folders
1 Database Icons
. Mail
..... ~:Name & Add’ ess

144

Databases

a Views
~Main & Response Docun
a Forms

1 Searching ™"
Full-text;wlinggr

o Macros ..

Replication

aReplica D

1 Selective Replication .

2 Architecture
.. Serial b

o Conflicts-

145

Typical Notes Applicatio

= Workflow applic
L Centralized

Lotus Notes Database
Architecture

o Documeht Architectufé.

_Filter notes .

Help, ACL etc

146

Mail

2 Replication
2 Mail router-
o Add-in processes

147

Network

1 SPX
a Vines
a NetBios

Lotus Notes Security~

o Access Control List

148

a Certificate
o Domains
0 Mail Gateways
a Monitoring —

-1 Logs, Statistic
a Internatiol

Inside Track

_ Relational.Capabilities
elds, No relational link
- Macro Language

.. APl - Complexity

149

Product Issues(Front'End)

oo oR s

o Data Importing-&- Expo
o No Notes Programmi
a Version Control ™

150

Enterprise Issues ——

a Unstructured »'datau»v

Q Workflowwlntegratlon
aN&A Synchronlzatlon

Certlflcate types

2 Notes is good at:
- Anecdotal information §"t'brllﬁg‘
- Reference mformatlon
..Customer service .

2 Notes is not good at

Transactldﬁél data
2 Structured éta

Relatlonal data

151

o Why does it exist-2-
o What is it ?

2 Complexity.
0 Triggers & Event Notification

P

152

=: REXX Program-Documefit

- Program Log ol
a Other Notrix-Features s>

- Event Manager

. Trigger Mewgl:ly i
a REXX Programming

~: Standard REXX Language
1 Present Environment

oSy

Notrix - Interface Variables

. server, database, notelDs
afield_stem.—

153

a FindNote()
Q ReadNote()

Notrix - Functions 2

7 NotesFieldList()
""" NotesEvaIuateFormuIa(),.
a File Attachment Support()

2 NotesSetStatus()

154

Notrix - Internals- —

funcnons
. Commumcations-.

155

Agenda

2 Notrix Composer—

R D12 1o A [0) § 1o T m—

- Forms e mmen— SRS

= Internals-

PRRWIRY:

Notrix Composer

2 Notrix Application - .
2 Notes Import/Export Manager
2 Accesses over 50 datasources

2 Utilizes Standard Notes Form-
requiring no programming

156

o Composer Progran
a Runs on server

Importing External Data Sources
to Notes |

157

»

Composer Data Flow =~

158

o Complete access-th
Interface

Notrix Composer J"o'b*Fo‘rm |

2 Column/Field Deflmtlons |

2 Record Selec_tlon
2 Calculated Fit Ids
2 Scheduline

159

Notrix Composer Features and
Benefits '

Current Development

21 Notrix -
.. Available on OS/2

160

Percussion Software™

a Focus on SOftwarewDevelopment to
help customers'acce

and manipulate information

a Lotus Notes Development and
Business Partner

o Headquarters: Boston,
Massachusetts

- Audrey. Augun [617] 267-6700

el T

161

)

PRODUCT NAME: Notrix Version 1.0

Notrix is a programming tool that lets
you do complex manipulation of Lotus
Notes data WITHOUT Lotus Notes API
or 'C' programming. Lotus Notes
database administrators or designers,
can quickly develop applications that
easily manipulate Lotus Notes database
documents and their fields. Within
Lotus Notes, you can compose a REXX
program document, store it in a Notes
database, and schedule it to run
automatically on the Lotus Notes server
via the Lotus Notes Name and Address
Book. The program accesses Lotus
documents by searching views and
manipulates fields by reading/writing
documents in a Lotus Notes database.
Notrix runs on the Lotus Notes server
and uses the Lotus Notes front-end.

Notrix implements REXX, IBM's
powerful command processing language
that possesses a rich set of built-in
functions. REXX is supplied with 0S5/2
and its advantages include readability,
available source code, and easy source-
level debugging. Notrix extends the
REXX language to work within Lotus
Notes, also adding functions that make
it simple to manipulate Lotus Notes
databases.

KEY FEATURES/BENEFITS:

o Notrix is completely 'Notes-centric’
and takes advantage of Lotus Notes
replication and security features; giving
you a distributed code base and a
secure development environment.

o Notrix does not require knowledge of
the Lotus Notes API or complex "C"
programrming so that the project
development cycle is reduced by 80%,
saving hundreds of hours and
thousands of dollars in outside
consulting and technical support time.

o Notrix eases the implementation of
large Lotus Notes data manipulation
projects since it utilizes standard REXX
Dynamic Link Libraries (DLLs) to
minimize programming time and
provides sample programs to enhance
ease-of-use and supply instant
productivity.

o With the Notrix Event Manager, you
can build Notrix applications that
automatically trigger when documents
in Lotus Notes databases are opened,
updated, or deleted. Also, a job log can
provide an audit trail for system
management tracking purposes.

o Notrix is server-based and no
additional software is required on the
Lotus Notes client so that any Lotus
Notes client (Windows, OS/2,
Macintosh, etc.) can be used -- on a
LAN or dial-up.

0 Notrix includes a Notrix Discussion
Database for users who wish to
exchange information with Percussion
Software around topics such as feature
wishlist items, bug reporting, and
application examples built with Notrix.
To receive updates to this database, a
user needs only to replicate with
Percussion’s Lotus Notes server.

0 An Online Help Database is included
with each copy of Notrix to streamline
the development process.

162

SOFTWARE REQUIREMENTS AND
PACKAGING:

Notrix requires OS/2 Version 2.1 or
later, OS/2 REXX, Lotus Notes Version
3.0 or later.

Notrix is supplied on 1 3.5-inch PC-
formatted diskette containing the Notrix
database (Notrix.NSF), DLLs and the
Help Database. A user manual
describing Notrix use and the
installation process is also included.

PRICING AND AVAILABILITY:

Notrix is priced at $3,500 and will be
available in May, 1994.

Percussion Software, headquartered in
Boston, Massachusetts, develops
software products to help customers
access, integrate, and manipulate
information they need in their day-to-
day business operations. Percussion is
both a Lotus Notes Business Partner
and a member of the Lotus Professional
Developer’s Program. Percussion offers
programs for Lotus Notes VARs and
consultants who wish to use our
products in their solutions for a
price/performance advantage.

163

FOR MORE INFORMATION, PLEASE
CALL:

Percussion Software
222 Berkeley Street, Suite 1620
Boston, Massachusetts 02116

Phone: (617) 267-6700
Fax: (617)266-2810

Note to Editors: All products and product names
mentioned in the publication are trademarks or
registered trademarks of their respective
companies.

Percussion believes the information in this
publication is accurate as of its publication date;
such information is subject to change without
notice. Percussion is not responsible for any
inadvertent errors.

PRODUCT NAME: Notrix Composer for
EDA/SQL Version 1.0

OVERVIEW:

Notrix Composer for EDA/SQL is a
non-programming tool that lets you
define bulk data movement between
enterprise databases and Lotus Notes.
Using a standard Lotus Notes form, you
pull data from external sources into
Notes by specifying the source database
and target Lotus Notes database. You
can map fields, select records, calculate
new fields and determine job frequency,
all without programming. Also
provided is a Lotus Notes database that
acts as a repository and log for all
Notrix Composer activities.

Notrix Composer consists of a set of
program libraries and a Lotus Notes
database that lets you call functions
that interface with the Information
Builder's EDA/SQL Server. The Lotus
Notes database provided with
Notrix/Composer contains a server
program that runs on the Lotus Notes

164

server and fulfills requests for
EDA/SQL data. Requests are issued by
clicking on one of the buttons of the
supplied Lotus Notes Form. Buttons
are provided to Catalog Jobs, Schedule
Jobs for later execution, and Run Jobs
for immediate processing.

KEY FEATURES/BENEFITS:

o Notrix Composer lets you bring
information from external data sources
into Notes with no programming. You
can now access information from your
company's databases and bring them
right into your Lotus Notes documents
through an easy-to-use Notes Forms
Interface that is supplied with Notrix
Composer.

o Notrix/Composer contains a Lotus
Notes Forms Interface that lets you
specify the tables to access within the
enterprise database, the Notes server
and the target database name. You can
also design how the original fields map
to Lotus Notes fields and apply
selection criteria to extract only the
data you want.

o Notrix Composer works with
Information Builder's EDA/SQL Server
to provide access to over 50 different
relational, hierarchical and native file
systems. Data throughout your
corporate information systems, such as
customer profiles, financial results or
marketing information is now available
for your Lotus Notes users and can be
distributed across the enterprise using
the facilities of Notes database
replication.

o Familiar Notes facilities are used
throughout Notrix Composer and all
Notrix/Composer functions are
integrated with the Lotus Notes
environment. You can enter your
information request into a Lotus Notes
Form and defer processing to a
schedule of your choosing.

o Notrix Composer is server-based and
no additional software is required on

the Lotus Notes client so that any Lotus
Notes client (Windows, 0S/2,
Macintosh, etc.) can be used -- on a
LAN or dial-up.

0 Notrix Composer runs on 0S/2
today; future releases will add NT, NLM
and UNIX platforms for cross platform
coverage.

o Notrix Composer includes a Notrix
Composer Discussion Database for
users who wish to exchange
information with Percussion Software
around topics such as feature wishlist
items, bug reporting, and application
examples built with Notrix Composer.
To receive updates to this database, a
user needs only to replicate with
Percussion’s Lotus Notes server.

o An Online Help Database is included
with each copy of Notrix Composer to
streamline the development process.

SOFTWARE REQUIREMENTS AND
PACKAGING:

Software Requirements: Notrix
Composer requires OS/2 Version 2.1 or
later, 0OS/2 REXX, Lotus Notes Version
3.0 or later.

Notrix Composer is supplied on 1 3.5-
inch PC-formatted diskette containing
the EDA job definition database
(NXEDA.NSF). DLLs, and the Notrix-
EDA/Link interface library.

PRICING AND AVAILABILITY

Notrix Composer is priced at $5,000
and will be available in May, 1994,

Percussion Software, headquartered in
Boston, Massachusetts, develops
software products to help customers
access, integrate, and manipulate
information they need in their day-to-
day business operations. Percussion is
both a Lotus Notes Business Partner
and a member of the Lotus Professional

165

Developer's Program. Percussion offers
programs for Lotus Notes VARs and
consultants who wish to use our
products in their solutions for a
price/performance advantage.

FOR MORE INFORMATION, PLEASE
CALL:

Percussion Software
222 Berkeley Street, Suite 1620
Boston, Massachusetts 02116

Phone: (617) 267-6700
Fax: (617) 266-2810

Note to Editors: All products and product names
mentioned in the publication are trademarks or
registered trademarks of their respective
companies.

Percussion believes the information in this
publication is accurate as of its publication date;
such information is subject to change without
notice. Percussion is not responsible for any
inadvertent errors.

Adventures in Object-Oriented
Programming in REXX

Patrick J. Mueller
IBM

166

Adventures in
Object Oriented
Programmlng

(REXX Object eXtensions)
Patrick J. Mueller

pmuellr@vnet.ibm.com
May 1994, for the 1994 REXX Symposium

Copyright 1BM Corp. 1994. All rights reserved.

167

* IBM is a trademark of International
Business Machines Corporation.

e OS/2 is a trademark of International
Business Machines Corporation.

Adventures in OO Programming with ROX Copyright IBM Comp. 1994

168

* What ROX is:
> A REXX function package for OS/2

°> Provides object oriented capabilities
for REXX

o An experiment
* What ROX isn't:

> An interface to existing OO
systems (C++, Smalltalk, SOM)

° A new language

o An IBM product

Adventures in OO Programming with ROX Copyright IBM Comp. 1994

169

e Classes define:

o Methods, implemented in REXX
o Variables, accessible to methods

e Class inheritance

o (Classes obtain methods and
variables of inherited classes

o Multiple inheritance
* Modelled on Smalltalk, but:
o Classes not 1st class objects

> No garbage collection

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

170

e it animal class ----------
class animal
svars name sound

:method init
name = arg(l); sound = arg(2)

cmethod name
return name

:method sound
return sound

:method init
name = arg(l)
rc = animal.init(self,name,"Bark")

Adventures in OO Programming with ROX Copyright IBM Com. 1994

171

/* sample.cmd */

/* load the ROX file animal.rox */
rc¢ = RoxLoad("animal.rox")

/* create a dog named Jackson */
dog = RoxCreate("dog", "Jackson")

/* -> ’Jackson says Bark’ */
say .name(dog) "says" .sound(dog)

/* destroy dog */
rc = RoxDestroy(dog)

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

172

* C programming interface allowing
methods to be implemented in C

* Auto-loaded DLLs to allow complete
class definitions to be implemented
inC

* Multithreaded support

* Execution profiling

Adventures in OO Programming with ROX Copyright IBM Comp. 1994

173

* Objects created with RoxCreate()
o arg(1) is the class name

o arg(2) ... are initialization
parameters

o The ’init’ method of the class
invoked automatically, if present

o |nitialization parameters passed
to init method

* Objects destroyed with RoxDestroy()

o The ’deinit’ method of the class
invoked automatically, if present

Adventures in OO Programming with ROX Copyright IBM Cormp. 1994

174

RoxCreate() returns a string that is
a reference to an object

Object reference passed as first parameter
to all methods, and RoxDestroy()

Object references are plain old REXX
strings - can be kept in a blank delimited
string as in:

Obj s nmn
do 1 1 to 10
objs = objs RoxCreate("dog")

- end

Special variables ’self and 'super’
available to methods which represent
the receiver of the method

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

175

Message sends are just REXX function
invocations

Object reference is always the first
parameter

Function name is method name, prefixed
by ".II

Object and method name used to resolve
the class that implements the method

- The two move methods invoked below
are probably implemented in different
classes:

XX .add (aNumber, 100)
XX .add(aList,alListItem)

Adventures in OO Programming with ROX Copyright IBM Cormp. 1994

176

Objects have as their instance
variables all variables defined
by their class, and its inherited
classes.

All instance variables apply only
to a particular object - they are
not shared between objects.

All instance variables are ’exposed’
when a method is invoked.

Per-instance variables may be

- created with RoxAddVar(). This
provides support for stemmed
variables.

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

177

RoxLoad utility allows classes to
be packaged into their own files

Multiple classes may be in one file
Format is:

:include <a ROX file>
:class <class name>
:inherits <class name> ...
:vars <variable name> .;.

cmethod <method name>
<method code>

cmethod <method name>
<method code>

Adventures in OO Programming with ROX Copyright IBM Comp. 1994

178

RoxAddClass()
create a class

RoxClassAddinherit()
add an inherited class to a
class definition

RoxClassAddMethod()
add a method to a class definition

RoxClassAddMethodDiIl()
add a method (in a DLL) to a
class definition

RoxClassAddVar()
add an instance variable to a
class definition

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

179

RoxCreate()
creates a new object

RoxDestroy()
destroys an object

RoxSend()
send a message to an object

RoxSendThread()
send a message to an object
on another thread

 RoxClass()
returns class of object

RoxAddVar()
add a per-instance variable
to an object - used for stems

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

180

* RoxLoad.cmd

Calls the ’builtin’ ROX functions
to load a 'ROX’ format file

* RoxInfo.cmd

Prints class information for
a given ROX file

* RoxProf.cmd

Collects and analyzes output
generated from RoxStats()
function to generate timing
information

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

181

list.rox

wordlist.rox

set.rox

collect.rox
various collection classes;
collect.rox is an abstract class

Sessions.rox
illustrates multiple inheritance

spinner.rox
sample threaded class that displays
an in-process spinner for activity

cmdline.rox
implements a function to read a line
from input with history, editing, etc

socket.rox
usability enhancements for the
rxSock function package

Adventures in OO Programming with ROX Copyright IBM Comp. 1994

1182

e Performance
0.05-second overhead for
message sends on 25/50 Mz 486
machine.

That’s pretty good, but still
only 20 messages / second.

* Filei/o
Each invocation of a method opens a
new file handle for a named file.
Unpredictable because of buffering.

Example: file "a.file’ opened twice

:method foo
rc = lineout("a.file","x 1")

.foo(something)
.foo(something)

"
i

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

183

Uses REXX external function interface
for message sends

Internally, uses

o RexxStart()

o variable pool

o init/term System exits

Can be used by any REXX-macro-aware
program

Possible conflicts with programs that
~ usurp REXX external function exit and
depend on period prefixed functions

Adventures in OO Programming with ROX Copyright IBM Comp. 1994

184

* Experimenting with OO and REXX
* Whet your appetite for Object REXX

* A way to reuse large-ish chunks of
REXX code, with shared variables

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

185

e Currently at version 1.8

e Available via:
o anonymous ftp to ftp.cdrom.com

In /pub/os2/program/rexx as
rox.zip

o Peter Norloff's 0S/2 BBS

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

186

‘¢ Currently at version 1.8

e Available via:

° anonymous ftp to ftp.cdrom.com
In /pub/os2/program/rexx as
rox.zip

o Peter Norloff's OS/2 BBS

Adventures in OO Programming with ROX Copyright IBM Corp. 1994

187

ROX - REXX Object eXtensions

Patrick Mueller
IBM Software Solutions Division
Cary, North Carolina
pmuellr@unet.tbm.com

(c¢) Copyright IBM Corporation 1994.
All Rights Reserved.

April 27, 1994

188

Contents

1 Imntroduction
11 WhatisROX? o e
1.2 What ROXisnt o
1.3 Objectcreation 0....
1.4 Method invocation
1.5 Variables
1.6 ClassInheritance

1.7 selfandsuper
2 Installation and Removal

3 Function Reference
3.1 Function Package Functions
3.2 Class Definition Functions
3.3 Object Lifecycle Functions

4 Format of .rox Files

5 C Programming Interface

6 Utilities Provided

7 Classes and Testers Provided
8 History

A Sample .rox file

B Sample ROX class usage

C Output of previous samples

189

10

11

13

14

16

18

21

23

1 Introduction

1.1 What is ROX?

ROX is a function package for REXX that allows for object oriented (OO)
programming in REXX. You should have some basic familiarity with OO pro-
gramming before diving into ROX.

ROX allows classes to be defined. The classes have a number of features.

o they may inherit from other classes

¢ they specify variables that will be maintained for each object created of
the given class

e they specify methods written as REXX code

Classes are defined in files with an extension of .rox. See Format of .roz Files
on page 10 for the format of the .rox files.

1.2 What ROX isn’t

ROX is not a new language - it is simply a function package that can be used
from the OS/2 ! REXX language providing some OO capabilities.

ROX provides NO facilities for interacting with other object oriented systems
such as SOM or Smalltalk.

ROX has no distributed (cross-process, or cross-platform) capabilities.

1.3 Object creation

Objects are created and destroyed with the RoxCreate() and RoxDestroy() func-
tions, described in Object Lifecycle Functions on page 9. The RoxCreate() func-
tion takes the name of the class to create the object from, and any number of
additional parameters to initialize the object. The RoxCreate() function returns
an object reference. This object reference is a regular REXX string, with a par-
ticular value which the ROX functions can use to dereference the object. This
object reference is used as the first parameter for method invocation.

When an object is created, the init method for the class is invoked. Likewise,
when an object is destroyed, the deinit method for the class is invoked. If the

10S/2 is a trademark of International Business Machines Corporation.

190

1 INTRODUCTION

init or deinit methods are not defined in the class, they will be searched for in
inherited classes.

1.4 Method invocation

Once an object is created, you can send messages to it. This is also commonly
referred to as invoking a method. The message is the name of the method,
along with parameters that the method should be passed. To invoke a method,
use REXX function call invocation. The name of the function is the name of
the method, prefixed by ”.”. The first parameter to the function is an object
reference, and any other method specific parameters can be passed as well.

It’s time for a short example. In this example, we create an object of class dog,
passing an additional parameter on the RoxCreate() function which is the name
of the dog. The inif method of the dog class will be invoked, passing the name
as the first parameter. Next, the dark method of the dog class is invoked, in
both function invocation formats available in REXX. Both invocations do the
same thing.

jackson = RoxCreate("dog","Jackson")
call .bark jackson
g = .bark(jackson)

As noted before, during object creation, the init message is sent to the object.
In order to allow an object’s inherited classes to initialize themselves, the init
and deinit methods may be invoked as functions whose names are a class name
and the method name, concatenated together, with a”.” in between them. For
example, assuming the dog class inherits from the animal class, the dog init

method can call the animal init method by invoking the function animal.init.

1.5 Variables

Classes specify both the methods that can be used on an object and the state
variables associated with the object. The variables are plain old REXX vari-
ables, whose values are available to methods of the classes. The variables are
non-stem variables, such as name, size, etc,. Stem variables are handled via
per-instance variables (see below). Any number of variables may be associated
with a class (and thus an object).

Per-instance variables are variables that can be added to an object in an ad
hoc manner. For instance, one object of class X might have object variables
7.0, z.1, z.2, where another object of class might have object variables z.0, z.1.

191

1.6 Class Inheritance

Per-instance variables are added to an object with the function RoxAddVar().
Per-instance variables are the only way to store stem variables with an object -
stem variables can NOT be defined with a class.

When a method is invoked, the variables of the object will be available to the
REXX code of the method. If the value of a variable changes in the method,
the changed value will be saved with the object.

It’s time for another example. In this example, we’ll describe a simple class in
the format acceptable for .rox files. The class is dog, and it has two variables -
name and breed. They will be used to hold the name of the dog, and the dog’s
breed. We also define three methods - name, breed and describe. The name and
breed functions either set or return the current value of the variable, depending
on whether any parameters are passed to them. The describe method prints a
line describing the dog.

:class dog
:vars name breed
:method name
it (arg() = 1) then
name = arg(1)
return name
:method breed
it (arg() = 1) then
breed = arg(1)
return breed
:method describe
say "The dog’s name is" name". It is a" breed"."
return ""

Below is some REXX code that uses the class dog. The result of the method
describe invocation is that the line ”The dog’s name is Jackson. It is a Chocolate
Labrador Retriever.” will be printed on the screen.

Jackson = RoxCreate("dog")

x = .name(Jackson,"Jackson")
x = .breed(Jackson,"Chocolate Labrador Retriever")
x = ,describe(Jackson)

1.6 Class Inheritance

Classes can inherit other classes in their definitions. This technique expands
the variables and methods available to the class to the set of variables and

192

3 FUNCTION REFERENCE

methods defined in any inherited classes. A class can inherit from more than
one class. ROX has no scoping facility, so if classes are inherited that have the
same method, the method will be available in the derived class (the one that
inherits the other classes), but the actual method invoked is undefined. One of
the methods will be invoked, but it’s not possible to determine which one.

1.7 self and super

Two special variables are available to all methods. They are self and super. self
refers to the receiver of the method (the object which the methods was invoked
on). super also refers to the receiver of the method, however, if super is used as
the receiver of a method, the method to be invoked will be searched for starting
at the inherited classes of the class of the method currently running. self and
super are similiar to the self and super variables in Smalltalk.

2 Installation and Removal

The ROX REXX function package is contained in the file rox.dll. This file
needs to be placed in a directory along your LIBPATH. To get access to the
functions in the ROX function package, execute the following REXX code:

RxFuncAdd("RoxLoadFuncs",'"rox","RoxLoadFuncs")
RoxLoadFuncs()

Irc
Ic

To unload the DLL, you should first call the RoxDropFuncs() function, then
exit all CMD.EXE shells. After exiting all the command shells, the DLL will
be dropped by OS/2 and can be deleted or replaced.

3 Function Reference

The functions provided by the ROX function package fall into the following
categories:

o function package functions
o class definition functions

¢ object lifecycle functions

193

3.1 Function Package Functions

3.1 Function Package Functions

The following functions load, drop and query the version number of the ROX
function package.

RoxLoadFuncs() - load the ROX function package
rc = RoxLoadFuncs()

Loads all the functions in the ROX package.

If ANY parameters are passed to this function, it will bypass the program, au-
thor, and copyright information normally displayed. All parameters are ignored
(except to determine whether or not to bypass displaying the information).

RoxDropFuncs() - drop the ROX function package
rc = RoxDropFuncs()

Drops all the functions in the ROX package.

RoxVersion() - returns version number of the ROX function package
vers = RoxVersion()

Returns the current version number of the ROX package.

RoxStats() - generates execution profile info

rc = RoxStats(<parm>)

This function can be used to generate profile information on stderr. A parameter
should be passed to start profile information, no parameter should be passed to

stop profile information. For example:

Irc
IcC

RoxStats("") /# start profiling */
RoxStats{() /* end profiling %/

The profile information can be analyzed with the RoxProf.cmd utility.

Returns ””.

194

3 FUNCTION REFERENCE

3.2 Class Definition Functions
The following functions are used to add class definitions to the system. Generally

you will only need to use RoxLoad() and RoxQueryClassLoaded(). The other
functions are used by RoxLoad() to to load .rox files.

RoxLoad() - load class definitions in a .rox file

rc = RoxLoad(roxFileName)

This function loads the named file as a class definition. See the section of .rox
file definitions for the layout of the file.

This function is implemented as a REXX .cmd file.
RoxQueryClassLoaded() - query whether class is loaded

bool = RoxQueryClassLoaded(className)

Returns 1 if the class named className is available in the system. Returns 0
otherwise.

RoxAddClass() - add a class

rc = RoxAddClass(className)

This function adds the named class to the system.

RoxClassAddInherit() - add an inherited class to a class definition
rc = RoxClassAddInherit(className,inheritedClassName)

This function specifies that the class named className should inherit from the
class named inheritedClassName.

RoxClassAddMethod() - add a method to a class definition

rc = RoxClassAddMethod(classHame,methodName,methodCode)

This function adds the named method, with the REXX code for the method to
the named class.

195

3.3 Object Lifecycle Functions

RoxClassAddMethodDII() - add a method (in a DLL) to a class defi-

nition
rc = RoxClassAddMethod(className,methodName,dl1lName, entryPoint)

This function loads the dll, gets the address of the function given with the name
entryPoint, and adds this to the named class.

RoxClassAddVar() - add an instance variable to a class definition
rc = RoxClassAddVar(className,varName)

This function adds the named instance variable to the named class.

3.3 Object Lifecycle Functions
RoxCreate() - create an object

object = RoxCreate(className<,pi<,p2< . . . >>>)

This function creates an object of the class named className. Any number of
parameters, specific to the class, can be passed.

RoxDestroy() - destroy an object

rc = RoxDestroy(object)

This function destroys an object.

RoxSend() - send a message to an object

result = RoxSend(messageName,object,<,pi<,p2<. . . >>>)

This function sends the named message to the object specified. Any number of
parameters, specific to the message and class, can be passed.

196

4 FORMAT OF .ROX FILES

RoxSendThread() - send a message to an object

result = RoxSendThread(messageName,object,<,pi<,p2<. . . >>>)

Same as RoxSend(), but starts a new thread to process the message. No useful
return value is returned.

RoxClass() - return class of given object

class = RoxClass(object)

This function returns the name of the class of the object.

RoxAddVar() - add a variable to an object

result = RoxAddVar(object,varName)

This function will the named variable to the set of instance variables associated
with the object. Be careful not to add extra blanks to varName when passing it

»»

in. The characters in the variable name, up to the first ”.”, will be uppercased,
to conform with REXX variable conventions. The remainder of the variable
name is left as is.

4 Format of .rox Files

Classes are defined in files with an extension of .rox. A .rox file may contain
one or more class definitions.

Classes defined in .rox files may be loaded by using the RoxLoad function (see
Utilities Provided on 13).

The format of .rox files is a tagged file. The character *:” in column one indicates
a tag. The rest of the line after the ’:’ indicates the type of tag.

The characters *:*’, when located in column one, indicate a comment.
The following tags may be used in a .rox file:
:include <file>

This tag indicates that the file specified in the tag should be loaded as a .rox
file. Useful for including inherited class definitions from separate files.

197

:class

This tag indicates the start of a new class definitions. Any :inherits, :vars,
and :method tags following this tag, up to the end of the current .rox file, are
associated with this class.

:inherits <class> <class> ...

This tag indicates the classes that should be inherited from. More than one
class may be specified. This tag may be used more than once within a class
definition.

:vars <var> <var> ...

This tag indicates the variables associated with the class. More than one variable
may be specified. This tag may be used more than once within a class definition.
Note stem variables may NOT be used. Use RoxAddVar() to add stem variables
to an object.

:method <methodName>

This tag indicates that the code for the method named <methodName> follows.

The code for the method ends at the next tag (including :* comment), or end
of file.

5 C Programming Interface

ROX methods can be implemented in compiled languages, such as C, via a
DLL. The function RoxClassAddMethodDIll() adds a method to a class that
points to a function in a DLL. The function in the DLL must have the following
signature: :

/*
* typedef for function that handles method invocation
* */
typedef ULONG APIENTRY RoxMethodHandlerType(
void *object,
PUCHAR name,
ULORG argc,

PRXSTRING argv,
PRXSTRING retString
);

The parameters passed to the method are:

198

5 C PROGRAMMING INTERFACE

object a pointer to the ROX object receiver

name the name of the method

argce the number of arguments passed to the method
argv array of RXSTRINGs that make up the parameters

retString pointer to the return value

Most of these parameters will be familiar to those of you who have written
external functions for REXX in C. The only new one is the object parameter.
It can be used in the following functions:

ULONG RoxVariableGet(
void *object,
PRXSTRIEG name,
PRXSTRING value
);

ULONG RoxVariableSet(
void *object,
PRXSTRING name,
PRXSTRING value
)3

The functions above are used to query and set variables for an object. The
functions return 0 when successful, !0 when not successful. The data pointed to
by the value parameter returned from RoxVariableGet() must not be modified.

A sample of a compiled class is provided in roxsem.c.

A DLL can provide a self-loading function named RoxDIllEntryPoint, with the
following function signature.

ULONG APIENTRY RoxD11lEntryPoint(
ULORG init
)

Currently the init parameter is ignored.

This function gets called when the REXX function RoxLoadDLL() is invoked.
This function takes the name of the DLL (usually sans ”.DLL”, although you
may specify an absolute path, including the ”.DLL” suffix) and calls the Rox-
DlEntryPoint function.

199

This function in the DLL can call any of the functions defined in the ROX
function package through their C bindings. The call is made as if the call was
being made to a REXX external function. For example, to call RoxAddClass(),
you invoke it in C as:

RXSTRING parm, result;

parm.strptr = "myClassName";
parm.strlength = strlen(parm.strptr);

RoxAddClass(NULL,1,&parm,NULL,&result);
Note that the function name and queue name (first and fourth parameters) may

be passed as NULL.

Be careful how the return value is freed. See the sample roxsem.c code for
examples.

Two plaiform independent functions are provided to allocate and free memory.
The functions are:

void APIENTRY *osMalloc(
int size
)i

void APIERTRY osFree(
void #*ptr

);

The include file "roxapi.h” prototypes these functions, and the library ”rox.lib”
contains them.

6 Utilities Provided

The following utilities are provided with ROX:

RoxLoad.cmd

This program can only be used as a REXX function. It can not be called from
the OS/2 command line. One parameter must be passed to the function - the
name of a .rox file to load. The file will be searched for in the current directory,
and then the directories specified in the ROXPATH environment variable.

200

7 CLASSES AND TESTERS PROVIDED

RoxInfo.cmd

Prints a short reference of the class definitions in .rox files. Multiple .rox files
may be passed as parameters, and wildcards may be specified. For every class
in the .rox file, the following information will be provided:

o Classes inherited by the class. These classes will be listed in an indentation
style which indicates the tree of class inheritance.

e Variables defined and inherited by the class. Inherited variables are
marked with a prefix of ”*”.

e Methods defined and inherited by the class. Inherited methods are marked

with a prefix of ”*”.

RoxProf.cmd

Analyzes the profile information generated by RoxStats(). Use ” RoxProf ?” for
help.

7 Classes and Testers Provided

list.rox

Implements a simple list class. The program testcoll.cmd tests this class, by
passing it a parameter of "list”. The list class inherits the collection class in
collect.rox.

wordlist.rox

Implements a simple list class, similiar to the list class. The difference is that
the list class can contain arbitrary strings, whereas the wordlist class can only
contain strings with no blanks in them. The program testcoll.cmd tests this
class, by passing it a parameter of "wordlist”. The wordlist class inherits the
collection class in collect.rox.

201

set.rox

Implements a simple set class. The program testcoll.crnd tests this class, by
passing it a parameter of "set”. The set class inherits the collection class in
collect.rox.

collect.rox

Implements a simple collection class, that can be inherited by other, more spe-
cific collection classes, and will provide additional capabilities.

sessions.rox

This file implements some of the classes from Roger Sessions’ book on OO with
C and C++ (reference included in the .rox file). The program sessions.cmd tests
the classes.

spinner.rox

This class implements a character spinner, which can be used as a progress
indicator. Also uses roxsem.dll. This class is tested with testspin.cmd. The
demo shows code testing a collection along with a spinner running independently
in another thread.

testthrd.cmd

This program tests the thread capabilities of ROX.

cmdline.cmd

This program uses cmdline.rox as a command line reader with history. Use the
up and down arrows to cycle through previous lines entered.

roxsocks.cmd & roxsockc.cmd

These programs demonstrate tcp/ip server and client programs X socket class
(in socket.rox).

202

8 HISTORY

8 History

04/14/94 - version 1.8

o fixed problem with super calls

e removed RoxVarSynch()

added RoxAddVar() and per-instance variables

cut execution time in half with new memory management scheme

added RoxStats() and RoxProf.cmd

01/06/94 - version 1.7

¢ minor documentation cleanup

e cleanup of internal structure of ROX - no external changes - most notably,
no performance changes

10/22/93 - version 1.6
¢ fixed infinite loop when no variables set in an init method - ObjectSaveS-

tate/RoxStemSynch ping-ponged. Reported by Zvi Weiss as a problem
when a syntax error occurred in an init method.

o changed compiled classes/methods stuff to have just one type of class, and
either compiled or REXX macros. Complled macros added with RoxClas-
sAddMethodCompiled().

09/14/93 - version 1.5

e more thread reentrancy fixes

o added compiled class capability

08/31/93 - version 1.4
¢ added RoxSendThread() function

o first attempt at making everything thread reentrant (still some more to
80).

203

08/27/93 - version 1.3

print error when invalid object reference is passed to a method

o added exception handling, to try to catch method invocation on objects

which are no longer alive

08/24/93 - version 1.2

fixed problems with re-adding and re-registering classes and methods

08/22/93 - version 1.1

fixed super behaviour
added multiple inheritance capability
added class-specific init and deinit methods

added RoxStemSynch() - requires user notify the system when stem vari-
ables are added or dropped as instance variables

added RoxInfo.cmd utility

documentation turned into .inf file and enhanced

08/18/93 - version 1.0

initial release

204

A SAMPLE .ROX FILE

A Sample .rox file

Below is a the ‘sessions.rox’ file, which contains class defintions inspired by
Roger Sessions’ book on class development.

e e
* B n R

REXX Object eXtensions :
classes described in Roger Sessions’ book "Class Construction in
C and C++", Prentice-Hall, ISBN 0-13-630104-5.

»

:class performer
:vars minSalary

:method setMinimumSalary
minSalary = arg(1)

if (0 = datatype(minSalary,"¥")) then
minSalary = 1000

return self

:method bargain
say " I get" minSalary * 2 "dollars a performance."

return self

:class animal

:vars name sound soundTimes

smethod init

name = arg(1)
soundTimes = arg(2)
sound = arg(3)

if (name = "") then
name = "unnamed"

if (0 = datatype(soundTimes,"W")) then
soundTimes = 1

205

if (sound = "") then
sound = ", ,."

return

:method says
say name "says:"

do i = 1 to soundTimes
say " '"sound

end

return self

:class dog
:inherits animal performer

:method init
rc = animal.init(self,arg(1),arg(2),arg(3))
return

:method scratch
say " QOoooh... what an itch."
return self

:class littleDog
:inherits dog

:method init
rc = dog.init(self,arg(1),arg(2),arg(3))
return

:method trick
say " Watch my trick: I can roll over."
return self

:class bigDog

206

A SAMPLE .ROX FILE

:inherits dog

:method init
rc = dog.init(self,arg(1),arg(2),arg(3))
return

:method trick
say " Watch my trick: I can fetch the letter carrier."
return self

:class usedCarDealer

tinherits animal

:method init
rc = animal.init(eelf,arg(1),arg(2),arg(3))
return

:method makeSale

say " «.. and only $500 more if you want the wheels."
return self

207

B Sample ROX class usage

Below is a the ‘sessions.cmd’ file, which uses the classes defined in the ‘ses-
sions.rox’ file.

~N

* * 2 2 »

sessions.cad :

08-21-93 originally by Patrick J. Mueller

say "testing the Sessions classes"

if RxFuncQuery("RoxLoadFuncs") then
do
rc = RxFuncAdd("RoxLoadFuncs”,"Rox","RoxLoadFuncs')
rc¢ = RoxLoadFuncs()
end

rc = time("r")

rc = RoxLoad("sessions.rox")

Frenchie = RoxCreate("animal", "Frenchie", 1, "Grrrrrr")

Rover = RoxCreate("dog", "Rover", 1, "Woof")

Fifi = RoxCreate("littleDog", "Fifi", 2, "bow wow")

Rex = RoxCreate("bigDog", "Rex", 4, “BOW wWOW“)

HonestBob = RoxCreate("usedCarDealer", "HonestBob", 1, "Buy this deal of a car!")

.setMinimumSalary(Rex, 30)
g = .setMinimumSalary(Fifi,20)

(]
"

g = .says(Frenchie)
g = .says(Rover)

g = .says(Fifi)

g = .scratch(Fifi)
g = .trick(Fifi)
g = .bargain(Fifi)
8

»
-

.says(Rex)
.scratch(Rex)
.trick(Rex)

03 09 0Q
I]

208

B SAMPLE ROX CLASS USAGE

g = .bargain(Rex)
say

g = .says(HonestBob)
g = .makeSale(HonestBob)

209

C Output of previous samples
Below is a the output of running the ‘sessions.cmd’ file

testing the Sessions classes
Frenchie says:
Grrrrrr

Rover says:
Woof

Fifi sayse:
bow wow
bow wow
Doooh... what an itch.
Watch my trick: I can roll over.
I get 40 dollars a performance.

Rex says:
BOW WOW
BOW WOW
BOW WOW
BOW WOW
Qoooh... what an itch.
Watch my trick: I can fetch the letter carrier.
I get 60 dollars a performance.

HonestBob says:

Buy this deal of a car!
. and only $500 more if you want the wheels.

210

¢p

The Object REXX Class Hierarchy

Simon Nash
IBM

211

The Object REXX Class Hierarchy

Simon C. Nash

IBM UK Laboratories Ltd, Hursley Park,
Winchester, Hants SO21 2JN, England

- Internet: nash@vnet.ibm.com -

Abstract

Object REXX, an object-oriented extension of the popular REXX language, includes a class
hierarchy. The design of this hierarchy poscd some interesting challenges in providing
mechanisms that would serve the needs of the base hierarchy together with probable user
extensions to it. This paper presents the chosen design in the form of a tutorial introduction
to the concepts and mechanisms involved, including abstract classes, mixins, and multiple
inheritance. It also gives examples of how the mechanisms provided by REXX might be used
by class users and implementers.

Objects and Classes

REXX objects are grouped into classes. For example, all character strings (whatcver their
content) belong to the String class, all dircctorics belong to the Dircctory class, and so on.
The class of an object indicates what “kind” of object it is — that is, what mcthods it provides
to respond to messages sent to it. For examplc, string objects provide string-related methods
such as POS and SUBSTR, and directory objects provide methods for collections such as
ITEMS and SUPPLIER. You can look at the descriptions of the String and Dircctory classes
to find out what mcthods are available on string and dircctory objects.

In REXX, everything is an object, so classcs are objects too. Class objects are used in a
number of ways, the most important of which is their role in creating other objects. They
support this by providing NEW and ENIHANCED mcthods which create objects of the kind
defined by the class. TFor example, the Directory class object returns a new directory object in
response to the message '

.directory~new

Classes and Instances

The objects created by a class are known as its instances. They are given methods that match
the specification defincd by the class for its instances. IFor example, a Rectangle class might
define methods AREA and PERIMETER using the directives

::class Rectangle

: :method area

expose width height
return width*height

: :method perimeter
expose width height
return (width+height)*2

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

212

Then, when rectangle objects (instances of the Rectangle class) are created by sending NEW
messages to the Rectangle class object, they will have methods AREA and PERIMETER with
the REXX code shown above.

Object and Instance Methods

There’s an important difference between the AREA and PERIMETER Tnethods of a rectangle
object and the AREA and PERIMETER method definitions in the Rectangle class. A
rectangle object can respond to AREA and PERIMETER messages by running the methods
shown above, and we say that it has these as object methods. The Rectangle class cannot
respond to AREA and PERIMETER messages itself, but its instances can, and we say that it
has AREA and PERIMETER as instance methods. The Rectangle class responds to other
(class-related) messages, such as the NEW message that creates a rectangle object, so it has
object methods (like NEW) as well as its instance mcthods.

Since only classes have instance methods, there’s no nced to distinguish between object
methods and instance methods when talking about other kinds of objects, such as strings or
rectangles. We usually just say plain “methods” when talking about the object methods of
these objects. '

Subclasses, Superclasses, and Inheritance

Every class in the system could be defined indcpendently, with a complete set of instance
methods. However, many classes have a lot in common. An example of this may be Student
and Graduate classes — a graduatc object has the samc information as a student object (name,
ID, course, etc.) and also some additional information (graduation details). We’d prefer not
to repeat most of the instance methods of the Student class in the definition of the Graduate
class, and we can avoid this (and express the close relationship between these two kinds of
objects) by making the Graduate class a subclass of the Student class. This gives the
Graduate class all the instance methods of the Student class, and the Graduate class can then
add or override any necessary instance methods.

If Graduate is a subclass of Student, we call Student a superclass of Graduate. The
subclass-superclass relationship is also called inheritance, so we say that Graduate inherits the
NAME method from Student.

The inheritance relationship can be used to arrange the classes into a class hierarchy — a
diagram in which superclasses are drawn above subclasses, with lines connecting them. The
class at the top of this hicrarchy is the Object class. Its instance mcthods (COPY, “=",
STRING, etc.) are inherited (directly or indirectly) by all other classes and so become object
methods of all objects. Most objects have additional object methods — for example, the
Supplier class is a subclass of the Object class and has instance methods AVAILABLE,
INDEX, ITEM, and NEXT, so all supplicr objects have these object methods as well as

COPY, “=" STRING, etc.

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

213

You can create a subclass by specifying the name of the superclass on the SUBCLASS option
of the ::CLASS directive (which is equivalent to sending a SUBCLASS message to a class
object). For example, to make Graduate a subclass of Student, you would write

::class Graduate subclass Student

.. If Student were itself a subclass of Person (inheriting some Person methods), this makes

Grasuate a subclass of Person too (through the intermediate class Student). We sometimes
use the terms direct and indirect superclasses (or subclasses) to distinguish these. If you don’t
specify the SUBCLASS option, your class becomes a subclass of the Object class.

When talking about a class’s instance mecthods, which ones do we mean — just the ones it
defines itself, or those and the ones it inherits from its superclasses? It's usually more
convenient to take this as meaning the methods defined by the class itself, and we will follow
this convention from now on. However, it’s important to remember that when the class
creates instances, the object methods of the instances include not only the instance methods of
the class itself, but also those of all the superclasses from which it inherits.

Abstract Classes and Object Classes

Some classes have a close inheritance relationship, like Graduate and Student. Others are
related in a slightly more distant way — more like siblings than parents and children. You can
appreciate why the term “inhcritance” is used to describe the class family! For cxample, array
and list objects sharc a number of methods: FIRST, LAST, NEXT, PREVIOUS, SECTION,
and SUPPLIER. Even so, neither is a subclass of the other — arrays have a DIMENSION
method, but lists don’t, and lists have a FIRSTITEM mecthod, but arrays don’t. So how can
we express the common nature of arrays and lists?

The answer is an abstract class. Abstract classes are special classes that don’t create instances
(unlike “normal” classes, like Student and Graduatce). Instead, they provide a set of instance
method definitions that can be shared by a number of other classes. It’s helpful if abstract
classes defline meaningful properties, with a collection of methods that relate to that property.
For example, the property shared between arrays and lists is that of having some internal
sequence which can be used to step through the items of the array or list — the idea of a
“first” item, “next” item and so on. This leads naturally to the idea of a Sequenced class —
but it’s not a “normal” class, since it isn’t meaningful to think about making instances of the
Sequenced class. That’s because the Sequenced class doesn’t provide enough capability for a
functional standalone “sequenced” object. Array and List inherit from Scequenced and add the
missing pieces that Sequenced doesn’t have,

We need a name for “normal” classes (that can creatc instances) to distinguish them from
abstract classes. We call them object classes because these are the classes whose members
(instances) are real live objects. Thcir names arc usually nouns, such as Array, List, and
Rectangle. In contrast, abstract classes definc propertics (or abstractions) that describe
objects — they have no instances, and their names arc usually adjectives like Sequenced.

Because of the way abstract classes factor out the common methods from their subclasses,
you’d expect them to always have more than one subclass. This is true for all the abstract
classes that REXX provides except the Condition and Supplicr classes. These aren’t object

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

214

classes because they don’t provide NEW or ENITANCED methods for creating instances —
REXX provides other ways to creatc condition objccts and supplier objects. They’re a very
special case (since no user-creatcd classes would be able to work like this), and it’s convenient
to use abstract classes for them.

To create an abstract class, use thc ABSTRACT option on a ::CLASS directive. For example,
to create an abstract class Visual which is a subclass of the Object class, you would write

::class Visual abstract

Multiple Inheritance

As well as sharing some methods with arrays, lists also share some methods with queues:
MAKEARRAY, PEEK, PULL, PUSII and QUEUE. Again, it makes sense to create an
abstract class for these. We call it Qucuclike, since its instance methods apply to all objects
that function as queues. So we need the List class to inherit from both the Sequenced and
Queuelike abstract classes. This is called multiple inhcritance, and although it may look quite
simple (at least in this case), it is very powerful. It also raiscs some rather complicated issucs
— see More on Multiple Inheritance below.

You can use multiple inheritance by specifying the INHIEERIT option on a ::CLASS directive
(which is equivalent to sending one or morc INIHERIT messages to a class object). For
example, to create a class Window which is a subclass of Visual and also inherits from
Movable and Sizeable, you would write

::class Window subclass Visual inherit Movable Sizeable

There’s no limit to the number of classes you can inherit from in this way.

Class Methods

We've seen that class objccts have both instance methods and object methods. How are their
object methods (like NEW) defined? The CLASS option on a :METHOD dircctive indicates
that the method being defined is a class method, not an instance method. For an object class,
this means that the class will have that mcthod as one of its object methods. For example, the
Array class defines OF as a class mcthod, and this allows OIF mcssages to be sent to the Array
class object to create array objects whose contents are specified by the arguments to OF.

What about abstract classes — can they have class methods too? They can, but their class
methods work slightly differently than those of object classes. They arc defined in the same
way, with the CLASS option on a ::METHOD directive, but they don’t become object
methods of the abstract class itself. Instead, they bccome object methods of any object classes
that inherit (directly or indirectly) from the abstract class in which they arc defined. For
example, the Sequenced class also has an OI" class mcthod, but OFF mcssages can’t be sent to
the Sequenced class to create “sequenced” objects (becausc the Sequenced class is abstract and
so can’t create objects). Instead, OF becomes an object mcthod of any objcct classes that
inherit from the Sequenced class, such as the List class. The List class docsn’t have to do
anything (except inherit from the Sequcnced class) to make this happen.

© Copyright IBM Corporation 1994 The Object REXX Class Ilierarchy

215

So what object methods do abstract classes have? They all have the same ones: DEFINE,
DELETE, ID, INHERIT, INITA, METIIOD, METHODS, SUBCLASS, SUBCLASSES,
SUPERCLASSES, and UNINHERIT. Of course, like all objects, their object methods include
the instance methods of the Object class: COPY, “=", STRING, etc. Object classes have two
additional object methods: NEW and ENHANCED, the methods that create objects.

Class methods are inherited in exactly the same way as instance methods. For example, the

List class inherits the OT class method from the Sequenced class, just as it inherits the FIRST,
LAST, MAKEARRAY, NEXT, PREVIOUS, SECTION, and SUPPLIER instance methods.

The Class Hierarchy

We've mentioned a number of REXX classes and the inheritance relationships between them.
Let’s take a look at the complete hierarchy for the classes provided and used by REXX.

Object

Closs
Alarm \\\
Object Class
Message Collection Mixin /
Method Condition Queuelike Object Mixin

Stream Supplier Indexed \
/ \ Sequenced Closs

String Setlike Sequenced \ Queue \

Toble/ / \ \ Array Class

/ IndexOnly Manyltem List

Directory / \ / \

et Bog Relotion

That looks a bit daunting, but the REXX uscr doesn’t have to be concerned with many of
these classes. A number of them (Collection, Indexed, IndexOnly, Manyltem, Queuclike,
Sequenced, and Setlike) are abstract classes used only for internal factoring out of common
methods. In addition, the metaclass section of the hicrarchy (Class, Mixin, Object Mixin,
Object Class, Sequenced Class, and Array Class) is shown for completeness but isn’t for
general use (see the section on Metaclasses below). That leaves us with the classes that
represent other objects: Alarm, Array, Bag, Condition, Directory, List, Message, Method,
Object, Queue, Relation, Set, Stream, String, Supplicr, and Table.

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

PATE

More on Multiple Inheritance

We used the List class to introduce multiple inheritance. The List class inherits {rom the
Sequenced and Qucuclike abstract classes, which mcans that lists have both the Sequenced
and Queuclike properties (collections of mecthods). Another way of saying this is that a list

~can be used whenever either a queuclike or sequenced object is expected, and it will work

correctly.

Multiple inheritance can be very useful if used properly, but it can cause a lot of problems
when it’s used incorrectly. This has made it quite controversial in object-oriented circles! A
common mistake is to think of it as a “magic” way to combine two different objects into one
— such as a hybrid of the Rectangle and List classes. That probably sounds rather ridiculous,
but other examples can scem more plausible. For example, if I have classes Directory (which
keeps names and some information for cach name) and Phone (which dials a number passed
to it), can’t I create a Phone Directory class (which keeps names and phone numbers, and
dials the number when given a name) simply by inheriting from Directory and Phone?

Unfortunately, it’s not usually that simplc. The reason is that Directory and Phone were each
designed to do a specific job, with a set of methods appropriate to that job, but neither was
designed (probably) to “mix in” with the other. For example, the DIAL mecthod of Phone was
designed to be given a number to dial, and multiple inhcritance won’t make it smart enough to
change its behaviour to take a name instead and look it up in the directory. (By the way, the
right way to do this is called aggregation, which means crcating a new object that contains
Directory and Phone and provides the right conncctions between them.)

So when is multiple inheritance useful? Actually, the answer’s in the paragraph above. It's
useful for classes that have been specially designed to “mix in” with other classes — like the
Sequenced and Qucuelike classes, which were specially designed to mix in with each other.
However, these classes were not designed to mix more gencrally with other classes. You can
try mixing them with other classes (REXX won't stop you), but it’s unlikely that anything
useful will result. For more general “mix in” classes, we’ll have to look elsewhere in the
hierarchy.

Mixins

A class that is designed to bc mixed in with other classes in a general fashion is called a mixin.
For example, the Manyltem mixin can be inherited by any sctlike class to allow multiple items
to have the same index, and is uscd by the Bag and Relation classcs.

It’s important to understand the difference between mixins and abstract classcs. Both can be
used with multiplc inheritance, but their purposes arc very different. Abstract classes are for
the convenience of a class hierarchy implementer, to prevent the same mcthods being
duplicated among more than one object class. They are of little use in themselves, but enable
the construction of object classes below them in the hicrarchy. They are not part of the public
interface of the class hierarchy for inhcritance.

A mixin, in the other hand, allows some class (and all the classes below it in the hicrarchy) to
be enhanced in some way. For example, if Persistent is a mixin to the Object class, all classcs

© Copyright IBM Corporation 1994 The Object REXX Class IHierarchy

in the hierarchy may exist in persistent and non-persistent versions. The persistent versions
inherit the Persistent mixin, but the non-persistent versions don’t. FFor example, to make a
persistent directory class, you would writc

::class PersistentDirectory subclass Directory inherit Persistent

~_which tells REXX that the PersistentDirectory class inherits {rom the Persistent mixin as well

as the Directory class. Any number of mixins may be inherited, and.a combination of
inherited mixins and other inherited classes may be specificd.

Since Persistent is a mixin to the Object class, it applics to all subclasses of the Object class —
that is, all classes. Some mixins are more specialized — for example, the Manyltem mixin is a
subclass of the Setlike class and so only applies to classes that inherit from the Sctlike class.
No other class (for example, a subclass of the Stream class) is allowed to inherit the
Manyltem mixin. This is because the Manyltem mixin has been designed specifically to
enhance the Setlike class (it’s “tailor made” to fit this class only) and won't fit any other class.
The Setlike class is called the base class of the Manyltem mixin, and we say that Manyltem is
a mixin to the Setlike class.

So mixins, like object classes but unlike abstract classes, are intended {or uscrs of the class
hierarchy and are part of its public interface for inheritance. They provide enhancing options
for the object classes in the hierarchy, to be included or excluded at the user’s discretion.

Some mixins provide a complete set of methods for some property, so that a class can acquire
that property just by inheriting from the mixin. Other mixins define a property, and provide
some of the methods required, but depend on subclasscs to provide other necessary methods.
For example, a Persistent mixin may provide mecthods that take care of saving object data to
stable storage and restoring it when needed, but not the methods that actually extract the
object’s essential data (when saving) and recreate its statc from saved data (when restoring).
Those methods may be left as placeholders in the Persistent mixin, nceding to be filled in by
classes that inherit the persistent property from it, since only they know the intimate details of
how they are constructed.

To create a mixin, use the MIXIN option on a ::CLASS directive. For example, to crecate a
mixin OrderedSet which has a basc class of Sct, you would write

::class OrderedSet mixin subclass Set

The Class Search Order for Methods

In a single-inheritance hierarchy, classes inherit methods (rom their ancestors in the hicrarchy.
Since every class has exactly one superclass (except the root class Object, which has none),
there is a simple line of inheritance from each class up to the root class Object, through any
intermediate ancestor classes. This line of inheritance defines a search order for methods (the
class search order). The order is important because morc than one ancestor class may have an
instance method with the same name — like PRINT. When a PRINT mecssage arrives at an
instance of the class, it’s important to know which PRINT mecthod will be run. The scarch
order starts with the lowest class in the hierarchy (the class to which the instance that received
the PRINT message belongs) and proceeds upwards to its superclass, then its superclass’s

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

218

superclass, and so on up to the root class Objcct. The first PRINT method found is the one
that gets run.

With multiple inheritance, the situation is quitc a bit more complicated. Classes may have
many superclasses (direct and indirect), and there may not be an obvious “right” order of

-searching them for a method. The rules REXX uscs arc:

1. A subclass is always searched before its superclasscs.
2. Mixins are searched immediately before their base class.

3. Where multiple classes appear on the INHERIT option of the ::CLASS directive, the
classes are searched in the order they appear (leftmost first).

If there is no search order that satisfies all thesc rules, or if a mixin is inherited without its
base class already in the search order, the inheritance is in error.

What about multiple inheritance from object classes? It’s this sort of thing that gave multiple
inheritance a bad name. There arc very few cascs (if any) when it would be appropriate, but
REXX doesn’t prevent it — it doesn’t seem right to limit the powers of object classes
(compared with abstract classes) by making a special restriction herc. Beware, though! Before
doing this, you should sce if your hierarchy can be restructured to make one of the
superclasses an abstract class or a mixin, or consider whether aggregation (combining two
objects into a composite object, as in the Phone Directory example) isn’t a more appropriate
way to accomplish what you want. It usually will be.

Metaclasses

For most uscrs of Object REXX, the concepts and mechanisms presented so far will be all
they need to create instances, subclasscs, abstract classes, and mixins — making full usc of the
facilities that REXX provides for using and extending the class hicrarchy. This section and
the next one complete the picture for those who are curious to know morc about how all this
works, or need to understand or reprogram the underlying mechanisms of the class hicrarchy.

Are class objects instances of some class? For completeness and consistency, it would be nice
if they were. We call these special classes metaclasses. Their instances are classes, like the
Supplier class and the Sequenced class. ITow many mctaclasses arc there? There could be one
for each class (as in Smalltalk), but it’s not nccessary to go this far. However, we do need a
mctaclass for each class that has a difTerent collection of class methods. To see why this is,
let’s look more closely at how class mecthods work.

The class methods of the Object class are NEW and ENITANCED. This mcans that they will
be object methods of the Object class and every other object class that inherits from the
Object class (that is, all object classes). A mectaclass is needed to create these classes, and this
metaclass needs NEW and ENHANCED instance methods so that its instances (the object
classes) will have NEW and ENHANCED object methods. Let’s call this class the Object
Class metaclass.

Suppose we create a subclass of the Object class with another class method — for example, a
Database class with a RESTORE class method to restore the previously saved state of an

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

object. There will have to be a new metaclass to crcate this class, since the Object Class
metaclass doesn’t have our RESTORE method. Let’s call this new metaclass (with a
RESTORE instance mcthod) the Database Class metaclass. The Database class is an instance
of the Database Class metaclass, and the RESTORE instance method of the Database Class
metaclass becomes the RESTORE object method of the Database class.

How do these metaclasses fit into the hierarchy? As well as their speciatized instance methods
that correspond to the class methods of their instance classes, they have instance methods for
all the standard object methods of classes: DEFINE, DELETE, 1D, INHERIT, INITA,
METHOD, METHODS, SUBCLASS, SUBCLASSLES, SUPERCLASSES, and UNINHERIT.
We need a class with these as its instance methods (they necd to be instance methods
somewhere) and we call this class the Class class. It’s natural to make the Object Class
metaclass and Database Class metaclass subciasses of the Class class, since they can then
inherit all its instance methods listed above.

Which class is the metaclass for abstract classes? Their object methods are the ones that are
shared by all classes: DEFINE, DELETE, etc. Since these are the instance methods of the
Class class, the Class class is the metaclass for all abstract classes.

What about metaclasses for mixins? Mixins are very similar to classes, only diflering in their
inheritance rules, so we make the Mixin class (the class whose instance methods are object
methods of all mixins) a subclass of the Class class. Is the Mixin class the metaclass for all
mixins? It isn’t, for the same reason that the Class class isn’t the metaclass for all classes —
just as different classes have diflferent object methods, mixins do too.

Let’s take an example to see why different mixins have differcnt object methods. If we create
a Relational mixin to our Database class, with instance methods but no class methods, what
object methods does the Relational mixin have? They includc all the standard mixin object
methods (the instance methods of the Mixin class) as well as the inherited class methods:
NEW, ENHANCED, and RESTORL. We want these as object methods because we want the
Relational mixin (as a mixin to an objcct class, or an object mixin) to be able to create
instances in its own right. If it couldn’t, we'd have to crcate another objecct class (inheriting
from Database and Relational) which could crcate these instances — adding an unnecessary
class to the hierarchy.

1t looks as though we might need a Relational Mixin metaclass to create the Relational mixin.
In theory, we do; in practice, we don’t. By making metaclasscs mixins (with a base class of
the Class class), they can also be inherited by subclasses of the Mixin class (since Mixin is a
subclass of Class). So the Database Class metaclass becomes the Database Class mixin, and
REXX can construct the Relational Mixin mectaclass simply by inheriting from the Mixin class
and the Database Class mixin. That’s what mixins are all about!

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

220

&

Classes and Metaclasses

The earlier hierarchy diagram showed the superclass-subclass relationship of the REXX
classes. It didn’t show the class-instance relationships. Of course, these connections will be
quite different, so it could be confusing to try to show both on the same diagram. We'll use a

“separate diagram here to show the class-instance relationships of these classes.

Object e
Alarm RS

_>, Object Class
Messoge CO”eCtiont.«' Mixin | 77 :

Lo : . ; : : &,

" - ’ ; ; E LT
:,, Method | Condition.” . -Queuelike! { /Object Mixin <. ™.

%Streom Subplier ;’tlndexedz"a_m]
R Sequenced Class

String Setlike Sequenééd Queue i

Table Array Class’
. o lndexO_nIy Monyltem i .

Bog Relation "

The classes are shown in the same positions as before, but the inheritance connections have
been replaced by arrows which point {from each class to its metaclass (from instance to class).
There’s an interesting circularity between the Object Class mixin and the Object Mixin class —
each class is an instance of the other. This is a bit of a mindbender, and reminds me of the
chicken and the egg question — how did thesc classcs get created? Let’s just say that someone
had to do a little bit of cheating here.

Last Words

Don’t worry if multiple inheritance, abstract classes, or mixins seem difficult or unnecessary.
The simplest classes are the object classes. They create objects that do a particular job which
is well-defined by their class definition. They are the place to start in familiarizing yourself
with object-oriented programming, and in creating your own classes. Start by subclassing
object classes, with single inheritance. Override a few methods and get a feel for how
subclasses can be different from, yet similar to their superclasses. Then try multiple
inheritance with a mixin, getting a feel for how that works. When you have developed a few
obiject classes, you may start to notice relationships between them that don’t match the

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

221

hierarchy — similar or identical methods cropping up in diffcrent places. That's the time to
think about making use of abstract classes — to bring the relationships between your object
classes into clearer focus.

This ongoing refinement of the class hierarchy is a hallmark of good object-oriented

- programming — seeing new relationships between yeur classes, and finding better ways to

structure the hierarchy to express those relationships. Don’t try to start-out by designing a sct
of 20 abstract classes, 50 object classes, 15 mixins and all the relationships between them.

You won't get it right at the first attempt! Far better to develop your hierarchy gradually,
refining it as you acquire a feel through hands-on experience of how the classes relate to each
other.

Summary

We have seen how object methods, instance methods, and class methods are used in Object
REXX. The need for object classes, abstract classes, and mixins has been explained, together
with guidelines for when they should be used and how they relate to single and multiple
inheritance. The use of all the above [acilities of the REXX language has been illustrated with
examples from the class hicrarchy provided by REXX. Tinally, the role of metaclasses in
completing the picture has been shown.

Acknowledgements

The main structure of the REXX class hierarchy was developed in a meeting of the REXX
Architecture Review Board, with contributions from Jim Babka, Mike Cowlishaw, Brian
Marks, Rick McGuire, and the other board members. The details took shape over several
design iterations, with vital contributions and encouragement to continue from Jim Babka,
Brian Marks, and Dave Renshaw.

© Copyright IBM Corporation 1994 The Object REXX Class Hierarchy

Portable REXX Applications
and Reusable Design

Edmond Pruul

223

“Portable Rexx Applications and Reusable Design"

Edmond A. Pruul

RD 1 Box 632

Afton NY 13730

USA

Electronic Mail: p00146 @ psilink.com
Voice Mail: 1-607-693-1030

ABSTRACT

The application owner and developer want to port their applications to new operating
system environments. The Rexx language offers inherent advantages: readability, an
active Standards organization, available source code, good input-parsing functions,
easy source-level debugging; but no practical breakthrus have been identified in the
Rexx community. The same problems that plague application portability in general
apply to Rexx programs also: unwieldy code for several operating system
environments; ownership conundrums; interface confoundment; and many other
problems, old and new. Using Rexx as an example of a language whose applications
should port easily, reveals the intractability of the portability problem. Reusable Code is
problematic in startlingly similar ways. Reusable Design is a promising paradigm for a
general attack on the Reusable Code problem. A Rexx application, being readable
(accessible) by the average programmer is a possible stage to experiment, in a

_ practical way, with Reusable Design. The Reusable Design paradigm is based on the
classic principles of modularity in Computer Science. It can include object based or
object oriented methods but the prime principle is semantic as well as syntactic
readability -- the actions of the Reusable function are clear and concise to programmer.
Readability allows early planning by potential reusers -- customers for a reusable
function. As the Rexx Application developers rely more on reusable components,
market forces could encourage the proliferation of popular reusable components to
popular operating systems.

224

PREFACE
The thoughts and experience herein are those of an operating system-coder and
designer from 1968 to 1992 and do not pretend to be current in this year 1994.

PORTABLE Rexx APPLICATIONS AND REUSABLE DESIGN
Outline.

Porting Applications: motivation.
Measuring Success: when to stop?
Code Reuse: promise and problems
It is the Design, stupid.

Why Rexx?

oM b

PORTING APPLICATIONS: WHY BOTHER?

Definitions and 'ground rules' help address a problem. 'To port' means to change a
product such that it works in two or more environments. An example of a portable
product is a 'Walkman' -- a personal tape player. A Walkman ports very easily around
the world; the tape player's motor runs on DC batteries so the local power system's
voltage and frequency are irrelevant to the Walkman. An ;application' is a complete --
not a partial -- product. We focus on customer-related computer products. A complete
operating system is an application. Rexx is an application. A PS/2 is not since it is

. bare metal -- it is not complete. A pre-loaded PS/2 is an application. Note the definition
is broad. A ground rule in problem solving is to ask whose eyes to use. One could say
we must know the scope of the problem or perhaps its environment. Our scope is
strictly a business viewpoint -- a marketplace. We shall examine moving computer
related products to another marketplace.

225

.
mpare your notions of 'Why Bother?' with these.

_ Increase Marketplace Share. One would think making that increased profits result
from increasing market-share. What metric will predict our success? Will the cost of
development and maintenance exceed revenues? That is the question.

Promote brand name recognition: "We have it alll" Or Foot-in-the-Door Syndrome:
"Some day we will have it all on your computer."

_ Protect the product owner's other products in target. Spread development costs
when one market would not profit the product owner. When American engineers
looked at designing a small personal tape player they may have thought.

"We can not make a profit in the '60 hertz, 110 volt' marketplace. The cost of a port
would be too high. Light weight batteries would not be powerful enough. We must
package a different motor. We have no idea how to write diagnostic messages in Kanji
or Cyrillic. (Add your own problems here)."

_ Clone a nifty application for my computer! Is cloning market related? Maybe.
Examine the cloning of applications. What are our real motives? Are we violating
patents or depriving someone of their copyrights?

MEASURING SUCCESS

Quality is the obvious metric and we know that surveys measure quality reasonably
well but customer surveys are not predictive. What exactly does quality mean? Does
quality mean delivering on time; or delivering a product that works as well as we can
make it; or delivering what the customer wants? They all are good goals that any
product should meet if possible. Assuming we could measure our product using these

_ three quality goals how do we weigh the three against each other. We know that one of
the definitions eventually must take priority. The developer can not decide if a port will
be successful until we know which definition of quality the target marketplace demands.

226

Consider these metrics vis-a-vis porting applications.

~_ "Product makes a proflt Sadly profit is not a timely metric.

Maintenance cost: we can predict simple costs such as help Imes change teams,
continuous market research, advertising, code control systems, legal fees. Often
measuring failure is possible while measuring success eludes us.

_ The product looks and feels the same in both envnronments

CODE REUSE: WHY IS IT PROBLEMATIC?

Does the Walkman have reusable components? What happens when the batteries run
down? The engineers decide to put a DC plug in the Walkman so that anyone can buy
a Reusable Component called an AC/DC Converter. The problem is there is no
common voltage for battery powered appliances. Every engineer picked a different
voltage -- 9.65, 13.1 and other peculiar voltages. Good try, engineers. Perhaps a
variable voltage converter would be a better Reusable Component.

Think of examples of good reusable code: string.h in classic C libraries, Rexx functions
such as STRIP or WATCOM's VXRexx, a 'visual editor' for Rexx on OS/2. Intuitively
reusable components will be clearly useful if there is a big gain. The mass attribute
could be due to many potential reusers or big functions replacing large amounts of new
code. Consider the Rexx interpreter. It is an excellent example of a reusable 'scripting'
component. Why? The Rexx reuser gets much more than originally specified, or
serendipity. Rexx is massive since it replaces large amounts of code, Rexx is mature;
Rexx is used by millions? of amateur programmers Rexx is robust; it does not break.
Another good example is IBM's XEDIT used as an application base; the reuser's
customers gain strong editing and searching function gratis.

The most gain for Reuse components is from serendipity and mass. Maturity and
robustness are problematic.

Good designers know how to design things when they are expert. In practice the
problems of general-purpose code-reuse by an average programmer are overwhelming.
Consider these problems. '

_Maintenance: who maintains components; how to compensate the maintainer; how

to control many versions2; lose of intellectual control as time passes and persons pass
on to new jobs and the next life; delivery of new function and service including
preventive service.

_ Disappearing customer base: First, our reuse candidate loses a prospective
customer. So development stops. Next month a new customer surfaces, the project
restarts only to disappear again.

How to measure reliability or quality of a reusable code component. How does
customer convince management to trust reusable code? What would be the service
cost projection?

_ Publicity: how, where, and issues of truth in advertising touch on personal
sensitivities.

Packaging: When would we bind reusable components to the reuser's program? |t
could bind when compiled, at product build, at installation of the product, when the
application loads or at run-time.

Myopic design and semantic provincialism: a coworker needed a subroutine to test,
in a secure way, if a person is a "SFS Administrator." The words mislead. In fact, the
programmer wrote a routine to test if a process-id is acceptable by a named resource
manager for a certain specific authority. The word "SFS"is superfluous. The word
"administrator" implies a permanent attribution of a human being. Worse, this label
implies the reusable component has some power to enforce or guarantee its response
for some un-stated period of time. False, the answer is advisory only. The power of
authorization remains with the resource manager's authorization mechanism.

- REUSABLE DESIGN: CAN WE HAVE SERENDIPITY AND MASS?

Reusable design could mean "good external design." Good syntax is a given: simple,
targeted for performance,3 no surprises and no side effects. Semantic clarity is the rub.
Cultural tunnel vision is problematic by definition. The cure is an accessible and
readable design. Early disclosure and serious attention to criticism are good;
continuous disclosure is better. Rexx Library functions are outstanding example of
reusable components; the required attributes are present: one responsible person,
expert in the field, serious helpful customers.

What can we do?
_ Study and understand today's and tomorrow's methodologies: Temporal Logic;
Gries' Axiomatic technique; SMALLTALK; Finite State Machines; Data Flow Analysis;
and Event Analysis amongst many others.
Buy and read books.
Take all the design courses available; retake them a few years later.
Practice off the job.
Volunteer for inspections. The more design and code we study the wiser we are.
Join the local Reuse Advisory Board, evaluate reuse code candidates.
Read code and designs.
Join or get advice from the local Wisemen Council.

WHY Rexx?

_ Standards Group is in-place and active. Rexx semantics as well as syntax are
consistent.

_ Slivers are easy to implement.

A sliver is the slimmest possible layer between a portable application and the
complete computer system it would run on. Syntax errors will occur in the sliver.
Semantic errors are harder find and harder to isolate. "The final" semantic error may be
impossible to find; An application can not port to environments that are semantically
incomprehensible to the original environment.

_ Universality: Rexx will run on all new operating systems4.

Readability or accessibility: Rexx is justly famous for first run successes. Problems
in Rexx code are rare. Errors are most likely when calling system commands. The
author's first Rexx program worked perfectly on its first test; in Rexx circles this
experience is not a surprise.

_ Debuggability: Rexx has implicit symbolic debugging; Rexx programs can be
__distributed as human readable code. There is an optional compiler but normally Rexx

programs are interpreted from the source code. Anyone could read the program to
solve a problem and test a fix.

1 This number seems too large but the author extrapolated it from an estimate by Bill
Fischofer in 1991. He calculated the number of VM users to be 30 million.

2 Need strong code control systems.

3 A Rexx example is LEFT and SUBSTR, the former being a special case of the
latter.

4 Author's opinion.

230

REXX for CICS/ESA

David Shriver
IBM

231

REXX for CICS/ESA

David Shriver

May 4, 1994

(C) Copyright IBM Corporation 1993, 1994

232

Contents REXX/CICS

Disclaimer 0ttt toeessnenssnssorassanssssossssssnanssssansssssaa 1
What is "REXX for CICS/ESA”ttt vtisnssanssssssasssssnssssssssssnassssnssanss 2
Backgroundciietternaannantnatsasasenseasacsnaaaanesaasann e 3
Projecthistory it iinnnteettsencnnannns e rsesessaraaesaasearas 4
Backgroundciiettnentrnanssansesnsaastsansassaasanaasnnnnnsns 5
OVeIVieWttt it ninesennesssanassosnsossssssansssnssnssnonsannassss 6--
Neediiiiitvneersasnsnennsnsssassnanasan e e s e ee s e s e e e n e 7
BasicEnvironmentcciiitatuettrertossnosssaasesssensasssanssasaansas 8
REXX File System (RFS)ciiitiieienitesnannsasornsserssssnseasnssasan 9
SUMMANYttt ittt ennasnaansassnssanssnsansasssasssssnssssasssssssssss 10
QUeStioNsc.i ittt ittt sert st aa e s taec e na e s a e 11
May 4, 1994 (C) Copyright IBM Corporation 1993, 1994

233

Disclaimer REXX/CICS

e Disclaimer

This discussion is about REXX for CICS/ESA, a set of
products that IBM has announced an early customer
program for, but has not announced for general availability.

e Copyright .

(C) Copyright IBM Corporation 1993, 1994

o Trademarks

The following terms used in this paper, are trademarks or
service marks of IBM Corporation in the United States or
other countries:

CICS/ESA, IBM, MVS/ESA, OfficeVision, 0S/2

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994

34

What is "REXX for CICS/ESA” REXX/CICS

e Two products

* REXX language support for CICS/ESA

— Native CICS application environment

— Run-time facility

e And More

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
233

Background REXX/CICS

What were design goals for REXX/CICS

* Focus on Productivity
e Common REXX (across CICS platforms)

* Production REXX (suitable for use in a production
environment)

* Distributed REXX (Client/Server enabled)

* CICS REXX (REXX language under CICS with CICS
interfaces)

* Integration Platform (REXX is natural application integration
platform)

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
236

Project history REXX/CICS

e REXX prototype to IBM PP

A

— From Assembler & REXX to PL/X & REXX for portability

e FROM TSO/E REXX base to direct use of REXX kernel

£

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
237

Background REXX/CICS

Why Now

e Growing popularity of REXX

e Growing emphasis on productivity

e Additional REXX implementations
 Product requirements

¢ Need for Application Integration platform
e Need for Common, Production REXX

e Need for high-level Client/Server support

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
: 238

Overview REXX/CICS

Highlights

Full REXX 3.48 language support under CICS

Dynamic EXEC CICS command level support

REXX interface to CEDA, CEMT

DB2 Interface (SQL statements & DB2 commands)
CICS native text editor for REXX execs and data
High-level VSAM-based REXX file system (RFS)

Execs may also be run from MVS Partitioned Datasets
High-level Panel 1/0O facility

Support for REXX Subcommands written in REXX
Pseudo-conversational support

System and user profile exec support

Shared execs in storage (via EXECLOAD & EXECDROP)

High-level Client/Server interfaces

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
239

P RPN

Need REXX/CICS

Need for REXX/CICS

» As a tool to streamline support staff activities
— CICS Systems Programers and Administrators
— DB2 Analysts
— CICS and DB2 testers, other support staff

e More productive CICS application development
— Native CICS development (simpler)
— Enjoy the strengths of REXX under CICS)

e More flexible, powerful product customization & extension
(macros)

 Quick prototyping and procedural language functions
e Preserve REXX investments in migrations
e Needed for products with REXX requirements

e As a script language to automate/streamline development
sequences

e Help enable enterprise-wide Client/Server computing
e Better enable CICS end-user computing

e CICS Application Integration

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
, AL

Basic Environment REXX/CICS

REXX/CICS Basic Environment Support

¢ Invoking REXX execs

e Where execs run

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994

4

REXX File System (RFS) REXX/CICS

REXX File System (RFS) Features

-+ Hierarchical Directory structure (like 0S/2, AIX)

e VSAM RRDS based

* No need to register most new users

* No need to register individual EXECs .
* Import/Export to MVS Partitioned Datasets

e Management functions for members (COPY, DELETE,
RENAME)

 FLST file directory interface utility

e An EXECIO-like 1/0 utility (RFS)

e Maximum records per member is approx. 2**32 minus 2
e Maximum VSAM datasets in a RFS filepool is 511

* Number of filepools is only limited by DASD

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
242

Summary REXX/CICS

REXX/CICS Summary

o REXX/CICS is more than just support for another language
e REXX/CICS introduces significant new capability

e REXX/CICS provides new approaches to CICS computing*
« REXX is a good integration platform

e REXX is useful for serious programming

e REXX is a natural for Client/Server computing

e REXX is in step with current trends

e REXX + CICS = Greater Productivity

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994 10
243

Questions REXX/CICS

May 4, 1994 (C) Copyright IBM Corporation 1993, 1994
244

Foils 5.3 3 REXSYM94 - 11 foils - 0 notes
Apr 17/92 Apr 29, 94 - 17:12
Fonts MIX
Format Foils
Options Pitch 610 -Bind 7 7
Tags ...
DCF Release 4.0.0

245

Working (and Playing!) with REXX
and OS/2 Multimedia

Timothy Sipples
IBM

246

Working (and Playing!) with REXX and OS/2 Multimedia
Timothy F. Sipples
____1BM Personal Software Products . :
Chicago, Illinois . - .-
(312) 245-4003
(312) 245-7624 fax
Internet: usib58cS@ibmmail.com

What is Multimedia?

¢ Combining still images (bitmaps), animation, software motion video, text, and/or audio to
present information

¢ Principle technologies: CD-ROM, laserdisc, digital audio, MIDI, high resolution displays with
more colors

¢ Principle file formats;: WAV, MID, and AVI

¢ Multimedia NOT invented by Comptons

...We like to call it ULTIMEDIA

Why use Multimedia?

¢ "It's the market, stupid.”

¢ Triggers: to "describe” events

¢ Education/training

¢ Kiosks (point-of-sale)

¢ Presentations and demos

¢ Better human interfaces generally
¢ Entertainment and games

Requirements for 0S/2 Multimedia

0S/2 2.1 with Multimedia Presentation Manager/2 (included)
Standard OS/2 hardware requirements

Some additional RAM (to 12 MB) recommended

CD-ROM drive

Audio adapter (Creative Labs, MediaVision, IBM, etc.)
Display with at least 256 colors recommended

Video capture adapter (optional)

Laserdisc player with computer control (optional)

® ¢ 6 060 0 0o

Major Features in MMPM/2 1.1

¢ Multimedia folder
¢ Sound setup object (for system sounds)
¢ Applets

247

*
*

—

*
*

Volume control
Drivers

‘Sample files

Lotus 1-2-3 and Excel audio macros
External function library for REXX and help file

Principle File Formats

* ¢ 6 00

*

Generally a superset of Windows file formats

WAV: Digital audio (pulse code modulation, and variants)

MID: Standard MIDI file format (for instrumental music)

AVI: Audio-video interleaved (IBM Ultimotion and Intel Indeo)

Conversion applet for some additional file formats included (AVC, VOC, DIB, DMP,
ADPCM, M-Motion)

High degree of modularity permits addition of more file formats (e.g. FLVFLC)

Principle REXX Features

L K B B

2

Multimedia with REXX help file

PLAY.CMD

RECORD.CMD

Entire MCI (media control interface) command set available, not just subset described in online
help

External function library (MCIAPL.DLL) provides access to MCI command set

Key Limitations

L

*
*

REXX is unable to deal with loss of device (meaning ACQUIRE EXCLUSIVE must be used)
REXX program should not hold device exclusive forlong .

Unless using PMREXX (or one of the visual REXX builders), MCI commands which require
Presentation Manager (such as Ultimotion playback) will fail

REXX does not receive PM messages (to easily monitor the status of playback and devices)
MCT's implicit opens are assumed shareable (and not necessarily desired with REXX)

Sample REXX Script

/*

Load and initialize Multimedia REXX support */ -

call RXFUNCADD 'mciRxInit', 'MCIAPI', 'mciRxInit'’
call mciRxInit

/*

rc
/*
if
do

Open default digital audio device, exclusive use */
= mciRxSendString('open waveaudio alias wave wait', 'RetStr’,'0','0")

Check error, call function to return error string */
rc <> 0 then

248

MacRC = mciRxGetErrorString(rc, 'ErrStVar')
say 'rc =' rc ', ErrStVar =' ErrStVar
———®&nd

/* Load a digital audio file */
rc¢ = mciRxSendString('load wave sample.wav wait', 'RetStr','0','0"')

/* Obtain ID for device context that was just opened */
DevIiD = mciRxGetDevicelD(wave)

say 'DevID =' DevID

/* Set the time format to milliseconds */
call mciRxSendString 'set wave time format ms', 'RetStr','0','0’

/* Determine whether the microphone connection enable */
call mciRxSendString 'connector wave query type microphone
wait', 'Retstr','0','0"

say 'connector query microphone: RetStr =' RetStr

/* Query length of the opened file, value in ms */
call mciRxSendString 'status wave length wait', 'RetStr','0','0’

say 'status wave length: RetStr =' RetStr

/* Play the multimedia file, wait for completion */
call mciRxSendString 'play wave wait', 'RetStr','0','0’

/* "Rewind" to the beginning of the file */
call mciRxSendString 'seek wave to start wait','RetStr','0','0’

/* Close the device context */
call mciRxSendString 'close wave', 'RetStr','0','0"

/* Ensure proper termination of Multimedia REXX */
call mciRxExit

exit(0)
Live Demos

PLAY.CMD

FOR..DO

Ultimotion

RECORD.CMD

Modifications to the sample .CMD files
Dial 1.1 by Helge Hafting

TR EE X

249

Converting MVS/JCL to REXX/TSO

Hobart Spitz
MTA New York City Transit

250

Converting MVS/JCL to REXX/TSO

Presented at REXX Symposium

Hobart Spitz

MTA New York City Transit
718-694-3112
5520808 @ MCIMail.com

May '94
F/7CEXEC) /= REXX =/
7 “ALLOC "
/77 “ALLOC
/7 DD “ALLOC
l7 pD ALLOC *

ADDRESS ISPEXEC “"SELECT *)
hms 04/2554 jci2rexi .doc A638

251

Converting MVS/JCL to REXX/TSO

Abstract;

The speaker will discuss his experiences in using REXX/TSO in
place of MVS/JCL. The advantages of REXX over JCL will be
covered, as will a step-by-step methodology for converting existing
JCL to REXX for batch and/or interactive use. JCL to REXX/TSO
equivalents will be spelled out in detail. Guidelines and techniques for
portability positioning to VM, OS/2, etc. will be reviewed.

Speaker:
Hobart Spitz (SBW)
MTA New York City Transit
130 Livingston St. 5041 A
Brooklyn NY 11202

Phone: 718-694-3112
Alternate Voice Mail: 718-694-1719
Fax: 718-694-4309

E-mail (internet): 5520808 @MCIMail.com

hms 04/25/94 jcl2rex!|.doc A638

252

Application Backgrounds

NYNEX Computer Services - Billing Service Bureau -
Multiple Clients

. DB?2 with 3rd party host command interface
. CICS Transaction Processing

« TSO Scheduler Access

. Limited TSO User Access

. Original Batch Design:
JCL, COBOL IL

. Final Application:
REXX, JCL, COBOL 1L

New York City Transit Authority - Change Control
Managment System '

. Data stored in VSAM file and ISPF tables
« Entirely TSO Based user access

. Original Batch Design:
ISPF Skels, JCL, COBOL.

. Final Application:
REXX, ISPF Skels, JCL, COBOL.

hnws 04725/84 jcl2rex| .doc A638

253

"The Great Wall of MVS Batch"

100 Char PARM
Return
Code ? /l/ P
// / Program:
LT o
T T T T T r— I
JCL: | Allocations | pd / | Input/Output |
: | |
: Symbolics : ?/)/ | Computations |
. | |
| SPOOL Fies % Loge |
_______ J
Limitations of MVS/JCL

« Rigid isolation between JCL level (allocation, SPOOL
datasets, symbolics, and return codes) and program level
(I/0, computation, and logic).

« No interaction between application data and application
control.

« Limit of 100 characters in PARM=,

« Minimal logical operators, even with new MVS features.
« Heavy manual intervention r¢quirements in most cases.

« Single level PROC invocation, until recently.

hms 0472504 jcl2rex| .coc A638

254

Advantages and Benefits of REXX/TSO Over JCL

Automation

Simplification

Readability, Write-ability, and Maintainability

Modularity

Environment dependant code can be isolated. Portability
and Reusability is feasible between Foreground TSO, Batch,

VM, MS-DOS, 0S/2, Windows, and, maybe someday, CICS.

Flexibility/Control ~ Structures - Looping, General
Conditionals, Expressions, PARSEing

Controlled Recovery and Restart

Up-front Validation and Handling of Clerical Errors
Addresses Batch Window Criticality

Reduced Programming Requirements

Almost Unlimited Procedure Invocations Levels, Including
Recursion

Application data and control can interact
Avoids MVS Steps per JOB limit.

In short, every // costs you time and your installation money.

hms 0472584 jci2rex! .doc A638

255 e e e e e

. Conversion Steps

. Extract each JCL step to REXX EXEC by PGM= and PROC
name.

. Change DDs to equivalent "TALLOCATE . . .":

. KEYWORD=VALUE becomes KEYWORD(VALUE).
. Subparameter, KEYWORD=(SUBPARM=VALUE),
becomes parameter, SUBPARM(VALUE).

Add quotes around permanent dataset names.
. Move each // EXEC PGM= to end of its step.

. After EXEC PGM= effect normal disposition:
IF RC = 0 THEN "FREE DD(SYSUT?2...) CATALOG"

. Change EXECs to equivalents.
. Drop IEFBR 14 DELETE/ALLOCATE; use SYSDSN().

. Create JOB stream to invoke converted REXX module.

hms 04725894 jcl2rex|.doc A638

oLt

e — T 1 . S e R T+ s o+ e e

EXEC Equivalents

JCL ' ' REXX/TSO Allocate Parameters

/l EXEC PGM=ppp,[PARM=xxx] ADDRESS ISPEXEC
"SELECT PGM(ppp) [PARM(xxx)]"

/l EXEC [PROC=Jmmm,kwd=val ADDRESS ISPEXEC
"SELECT CMD(%mmm kwd=val .. .)"

or ADDRESS TSO
"%mmm kwd=val ..."

or CALL mmm kwd=val. ..
(mmm has also been converted to

REXX/TSO.)

// PROC kwd=val ARG "kwd="kwd .
if kwd = "" then kwd = "val"

or ARG kwdl kwd2 kwd3
/l EXEC ... ,COND=(0,NE) IF RC =0 THEN.. .. after commands.
IF RESULT =0 THEN ... after REXX
CALL.

Save RC/RESULT for complex or
deferred tests.

hms 04725894 jcl2rex!.doc A638

257

DD Dataset Parameter Equivalents

DCB=(model.dsn,BLKSIZE=bbb,
LRECL=lII,RECFM=abc)

VOL=SER=(vvvvvy,volcount)

LABEL=(n,ILEXPDT=yyddd)

UNIT=(uuuu,n)

SPACE=(CYL,(pp,ss,dd),RLSE)
SPACE=(800,(pp,ss),,ROUND)

hms 04725/94 jel2rex!.doc

258

REXX/TSO Allocate Parameters

DSNAME(q1.q2.93")

2.
@
4]
o
W
2
<
%
tm
\O
W
S
(%)
=
N

IF RC = 0 THEN "FREE DDNAMEC(...)

KEEP"

LIKE('model.dsn’) BLKSIZE(bbb)
LRECL(11l) RECFM(a b ¢)

VOLUME(vvvvvv) MAXVOL(volcount)

POSITION(n) LABEL(1l) EXPTD(yyddd)
(ddd = 0 not valid; IBM future direction.)

UNIT(uuuu) UCOUNT(n)

CYL SPACE(pp ss) DIR(dd) RELEASE
BLOCK(800) SPACE(pp ss) ROUND

A

ICL
Label on DD
Concatenated DD

Repeated DD across
steps

DD *

or
DD DATA

SYSOUT=c
SYSOUT=*

DEST=rmt
HOLD=YES/NO
COPiES=n
FORMS=ltrh
OUTPUT=opnam
DUMMY

JOBLIB, STEPLIB,

ISPLLIB // OUTPUT,

SUBSYS=

hms 042594 jel 2rex] .doc

Other DD Equivalents

REXX/TSO Allocate Parameters
DDNAME(...)
DSN('ql.q2.93' 'q4.95.96")
REUSE required in absense of FREE.
"ALLOC DD(dddd) UNIT(VIO)",
"TRACK SPACE(1 1)",
"RECFM(F B) LRECL(80) BLKSIZE(4000)"
QUEUE "information"
QUEUE "more information"
QUEUE Hi
"EXECIO * DISKW dddd (FINI"

SYSOUT(c), c = *.
DSN(*) (output goes to SYSTSPRT)

DEST(rmt)
HOLD/NOHOLD
COPIES(n)
FORMS(ltrh)
OﬁTDES(opnam)
DUMMY

retain - no direct eqvuivalents.

A63E

259

//SHARE81C
//*
/ /TAP2DSK
// EXEC
/ /XXX DD
//
//
//
/1>
/Y EXEC
//SYSUT1
//
//
//
//
//
//SYSUT2
//
/7
//

Example - Original JCL

JOB (o))

PROC MEM=
PGM=IEFBR14

DISP=(MOD, DELETE),
UNIT=SYSDA,
SPACE=(TRK, 1),
DSN=NCSCB40.0OUTPUT.TEXT

PGM=IEBGENER

DD DISP=0LD,
VOL=SER=C12345,UNIT=TAPE,
LABEL= (3, BLP, EXPTD=98000) ,
DCB= (RECFM=FB, LRECL=82, BLKSIZE=8200,
OPTCD=Q) ,
DSN=TAPE. INPUT

bD DISP=(,CATLG, DELETE) ,UNIT=SYSDA,
SPACE=(CYL, (2,5,10),RLSE),
DCB= (RECFM=VB, LRECL=100, BLKSIZE=10000),
DSN=NCSCB40.0UTPUT. TEXT (&MEM)

//SYSPRINT DD SYSOUT=*

//SYSIN DD
// PEND
/¥

DUMMY

// EXEC TAP2DSK,MEM=D930722

hms 0472504 jcl2rex) doc

AGI8

Example - REXX Equivalent

——77SHARE81C JOB (...)...

// EXEC TDCMUTR1,CMD='$%$TAPTODSK' - (batch "logon" proc)
TAPTODSK
/* REXX */
IF SYSDSN("'NCSCB40.QUTPUT.TEXT'") = "OK" THEN DO
"DELETE OUTPUT.TEXT"
END

SIGNAL ON ERROR

"ALLOCATE REUSE DDNAME (SYSUT1) OLD UNIT(TAPE)",

"VOL (C12345) POSITION(3) LABEL(BLP) EXPDT(98001)",
"RECFM(F B) LRECL(82) BLKSIZE(8200) OPTCD(Q)",
"DSN('TAPE.INPUT')"

"ALLOCATE REUSE DDNAME (SYSUT2) NEW DELETE",
"UNIT(SYSDA) CYL SPACE(2,5) DIR(10) RELEASE",
"RECFM(V B) LRECL(100) BLKSIZE(10000)",

"DSN ('NCSCB40.0UTPUT.TEXT (D"RIGHT (DATE("S"),6)""'))"

SIGNAL OFF ERROR

"GENER"
RETURN RC

GENER
/* REXX */

/* IEBGENER DRIVER */

SIGNAL ON ERROR

"ALLOCATE REUSE DDNAME (SYSPRINT) DSN(*)"
"ALLOCATE REUSE DDNAME (SYSIN) DUMMY "
SIGNAL OFF ERROR

ADDRESS ISPEXEC "SELECT PGM(IEBGENER)"
CONDCODE = RC

IF RC = 0 THEN "FREE DDNAME (SYSUTZ2) CATALOG"
RETURN CONDCODE

hms 04/25/94 jcl2rex].doc A638

261 v e et o e

Code Volume Perspective

JOB

PROC

PGM:{

LOAD MOD

Classic

Converted System:
« Fewer JOB Streams

« Near Elimination of JCL
« Reduction of Compiled Language Application Code

+ Increased Modularity

“The wall'
L

JOB

PROC
PGMHIKJEFTO1

REXX

ommon

LOAD MOD

REXX

« Facilitates isolation of host dependant code and creates portability.

Analysis of Actual Batch System

NYCTA's CCM Release 2.1 had one PROCLIB consisting of 51 members
containing 191 steps, calling 19 programs. Using 1:1 as an approximate ratio for
JCL statement to REXX host command ratio, these 191 steps should be replaceable
by 70 (51+19) REXX EXECs of approximately the same length, one for each //
EXEC. In practice, the results were much better as most of the 51 JCL PROCs
were replaced by a few REXX main modules plus about 10 driver modules to call
language processors (LKED, COBOL, COBOL 11, CICS, etc.).

hms 0472594 jel2rext.doc

AG38

x 7

——— - Conversion is Ideal for Initial Usage of REXX

- Nearly all JCL has direct REXX or TSO equivalents.

. Low exposure.

o
-
@)
b
o
Q
n

« Process can be automated.
« High benefit.
- Probability of success is high.

- Required software is already in-house in most shops.

bms 0472584 jel2rex| .doc AG38

263

Batch Comparison

ISPF Skeletons ISPF Skeletons

JOB JOB

JCL PROC JCL PROC

PGMs/Utilities REXX
PGM
Edit Macros
TSO Commands
ISPF Services
Utilities
CLISTs

Batch REXX:

Allows Integration of Software: Allocation, Utilities, Application.
Supports Multiple Levels of Invocation and Common Modules.
Removes Most Requirements for Manual Intervention: Overrides,
Control Cards, etc.

Summary

Brings Batch into '90s - Portably and Productively

Provides Real Programming Constructs

Enables Application Based Scheduling, Recovery, etc.

Keeps Pace with PCs and Minis

Breaks Down "Wall" Between Control and Software Functions
Opens Exciting New Possibilities for Batch Processing

hms 0472594 jcldrex) .doc AG38

264

Araceli Adriano

IBM, 40-D1-02

1 East Kirkwood Blvd
Roanoke, TX 76299-0015

Steve Bacher

Draper Laboratory MS 33
555 Technology Square
Cambridge, MA 02139
seb@draper.com

Doug Benson

Lotus

1000 Abernathy Road
Suite 1700

Atlanta, GA 30328

Eric M. Bitterman
Teachers Insurance (TIAA)
67-85 223rd. P1

Bayside, NY 11364
212-916-6157

Fax: 212-867-9075

Tom Brawn

IBM Corporation, Dept. G79

1701 North St.

Endicott, NY 13760
607-752-5166
tombrawn@vnet.ibm.com

Alex Brodsky

S/SE

154 Hillcroft Way
Netwown, PA 18940
215-579-2537
brodsky@netaxs.com

Shu Chen
246 W. 102nd St., Ste. 4B
New York, NY 10025

Ina Chien

Putnam Investments
859 Willard St.
Quincy, MA 02169

Participants

265

Anders Christensen
Sintef Runit
N-7034 Trondheim
Norway)

Ian Collier

The Queen's College
High Street, Oxford
0X1 4AW, England
+44-865-727940
imc@prg.ox.ac.uk

Mike Cowlishaw
IBM

Hursley Park
Winchester, S021 2JN
England
mfc@vnet.ibm.com

James Crosskey

IBM Corporation, Dept. G79
1701 North St.

Endicott, NY 13760
crosskey@gdlvm7.vnet.ibm.com

Cathie Burke Dager

Stanford Linear Accelerator Center
P.O. Box 4349

Stanford, CA 94309
415-926-2904

Fax: 415-926-3329
cathie@slac.stanford.edu

Charles Daney

Quercus Systems

P.O. Box 2157

Saratoga, CA 95070
408-867-7399 (-REXX)
75300.2450@compuserve.com

Chip Davis

7254 Pommel Dr.
Sykesville, MD 21784-5931
410-549-3596
chip@clark.net

Rafael Fessel
Ammonoosuc Tech
131 Ridge Rd.
Franconia, NH 03580
603-823-8461

Forrest Garnett

2500 Huston Court
Morgan Hill, CA 95037
408-284-0295
garnett@vnet.ibm.com

Hal German

GTE Labs

40 Sylvan Road
Waltham, Ma 02254
617-466-2290

Fax: 617-890-9320
hhgl@gte.com

Eric Giguere
WATCOM

415 Phillip St.
Waterloo, Ontario
Canada
519-886-3700

Fax: 519-747-4971

Klaus Hansjakob

IBM Austria, VSDL
Lassallestrasse 1

A-1020 Vienna

Austria

+43-1-21145-4243

Fax: +43-1-21145-4490
hansjako@vabvm1.vnet.ibm.com

David Hergert

Textron Defense Systems
201 Lowell St, Rm 3124
Wilmington, MA 01887
508-657-2953

Fax: 508-657-2776

Mark Hessling
Griffith University

ITS, Division of Information Services

Nathan QLD 4111 Australia
M.Hessling@gu.edu.au

266

Marc Irvin

100-01 Hope St.
Stamford, CT 06906-2500
203-852-3584

Fax: 203-852-3570

Kevin Kearney-

Mansfield Software Group
P.O. Box 532

Storrs, CT 06268
203-429-8402

Fax: 203-487-1185

Lee Krystek

Boole & Babbage Inc.
8000 Commerce Pky
Mt. Laurel, NJ 08054
609-778-7000
lee(@boole.com

Luc Lafrance

Simware

2 Gurdwara Rd

Ottawa, Ontario, Canada K2E 1A2
613-727-1779
lafrance@simware.com

Bill Langlais

Percussion Software

222 Berkeley, St. Ste 1620
Boston, MA 02116

Linda Littleton

Pennsylvania State University
214 Computer Building
University Park, PA 16802

John Lynn

Rohm and Haas
Independence Mall West
Philadelphia, PA 19105
215-592-3000

Ray Mansell

IBM

H4-A06

30 Saw Mill River Road
Hawthorne, NY 10532
914-945-3000

Fax: 914-784-6201

Alan Matthews
Percussion Software

222 Berkeley, St. Ste 1620
Boston, MA 02116
617-267-6700

Fax: 617-266-2810

Rohan Menezes
515 W. 59th St., No. 19B
New York, NY 10019

Patrick Mueller

IBM, MS 4B-G

11000 Regency Parkway
Cary, NC 27512
919-469-7242

Fax: 919-469-6948

Donna Murphy
Putnam Investments
859 Willard St.
Quincy, MA 02169

Simon Nash

IBM UK Laboratories Ltd
Hursley Park

Winchester

Hants S021 2JN

England
nash@vnet.ibm.com

Matthew Plager
CTPS

10 Park Plaza

Suite 2150

Boston, MA 02116
617-973-7075

Fax: 617-973-8855

Joe Player

IBM

12200 Dancrest Dr.
Clarksberg, MD 20871
301-564-2022

Fax: 301-564-2580

Edmond Pruul
R.D. 1, Box 632
Afton, NY 13730

267

Peter Ricciardiello
Carrier Corporation
Building TRS

Carrie Parkway
Syracuse, NY 13221
315-433-4014

Sara Rogers

Mansfield Software Group
P.O. Box 532

Storrs, CT 06268
203-429-8402

Fax: 203-487-1185

Roger Root

2963 Tillinghest Trail

Raleigh, North Carolina 27653
919-846-7101
70353.2753@compuserve.com

Pat Ryall

1124 Amur Creek Ct.
San Jose, CA 95120
408-974-7354
ryall@aol.com

Jonathan Schulman

John Hancock Mutual Life
John Hancock Place

P.O. Box 111

Boston MA 02117
usjhcpu6@IBMMAIL.com
617-572-8410

David Shriver

IBM, 40-D1-02

1 East Kirkwood Blvd
Roanoke, TX 76299-0015

Timothy Sipples

IBM Corp.

One IBM Plaza (07/SS4)
Chicago, 111 60611
312-245-4003 ‘
usib58cS@ibmmail.com

Hobart Spitz

MTA New York City Transit
130 Livingston St, Rm 5041 A
Brooklyn, NY 11201
5520808@mcimail.com

Stan Stocker

IBM Canada

1150 Eglinton Ave East
Toronto Ont. M3C 1H7
416-448-4197

Fax: 416-448-4414
stocker(@torolab2.vnet.ibm.com

David Sutter

IBM Corp

4912 Green Rd

Raleigh, North Carolina 27604
919-301-2196

Fax: 916-301-2052

Peter Szabaga

1 Madison Ave. Area 6-F
New York, NY 10010
212-578-2691

Fax: 212-578-7198

Pam Taylor

The Workstation Group
6300 N. River Road
Rosemont, IL 60018
708-696-4450

Fax: 708-696-2277

pjt@wrkgrp.com

Chuck Turco

Monsanto

800 No. Lindbergh 02J
St. Louis, MO 63167
314-694-4227

Fax: 314-694-7545

LD

Melinda Varian

Princeton University CIT

87 Prospect Ave.

Princeton, NJ 08544
609-258-6016
melinda@pucc.princeton.edu

Heather Wassel
524-101 Benner Road
Allentown, PA 18104
215-653-8067

Tom Wassel

524-101 Benner Road
Allentown, PA 18104
215-653-8067

Robert Wilcox

New World Technologies
85 Jones Hollow Rd
Marlborough, CT 06447
203-295-0680

	slac-r-447-Frontmatter
	rexx94-001
	rexx94-002
	rexx94-003
	rexx94-004
	rexx94-005
	rexx94-006
	rexx94-007
	rexx94-008
	rexx94-009
	rexx94-010
	rexx94-011
	rexx94-012
	rexx94-013
	rexx94-014
	rexx94-015
	rexx94-016
	rexx94-017
	rexx94-018
	rexx94-019
	rexx94-020
	rexx94-021

