
SLAG447
CONF-9405161--
UC-405
PO
_ -

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

May l-3,1994
Boston, Massachusetts

Convened by
STANF~RDLINEARACCELERATORCENTER

STANF~RDUNIVERSI~,STANFORD,CALIFORNIA 94309

Program Committee

Cathie Dager of SLAC, Convener
Forrest Garnett of IBM

Pat Ryall

Prepared for the Department of Energy
under Contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

SLAC-R-447

A. Summary

B. Presentations

Tom Brawn

Tom Brawn
Anders Christensen

Ian Collier
Mike Cowlishaw
James Crosskey
Hal German

Klaus Hansjakob
Mark Hessling
Lee Krystek

Luc Lafrance
Linda Littleton
Alan P. Matthews

Patrick J. Mueller

Patrick Mueller
Simon Nash
Edmond Pruul

David Shriver
Timothy Sipples

Hobart Spitz

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

TABLE OF CONTENTS - -

IBM AIX REXX/6000 and
IBM REXX for NetWare
Object REXX-What’s New?
Techniques for Performance Tuning REXX
Interpreters-A Case Study of Regina
REXX/imc: A REXX Interpreter for UNIX
Interesting Corners of REXX
IBM Views on REXX
Choosing a Command Language-
An Application-Centric Approach
News From the REXX Compiler
Using REXX as a Database Tool
Using REXX in a UNIX Environment
to Manage Network Operations
REXX at Simware
REXX Resources on the Internet
Using REXX and Notrix for Lotus
Notes Data Manipulation
Adventures in Object-Oriented
Programming in REXX
ROX-REXX Object extensions
The Object REXX Class Hierarchy
Portable REXX Applications
and Reusable Design
REXX for CICS/ESA
Working (and Playing!) with REXX
and OS/2 Multimedia
Converting MVS/JCL to REXX/TSO

ii

1
13

24
33
41
64

74
78
95

109
125
138

142

166
188
211

223
231

246
250

C. Attendees 265

Summary

--- The fifth annual REXX Symposium for Developers and Users convened in Boston,
Massachusetts, May 2-4. The. fifty-seven attendees -came from Australia, Austria,
England, Norway, Canada and many US states.

This conference has become the premier event for exchanging REXX technical
information, and people were impressed with how much REXX has spread since the last
Symposium. This year we welcomed implementations for new platforms and continued
growth in numbers of users and in importance of uses.

One of the most popular sessions was “Object-Oriented Extensions,” given by Simon
Nash of IBM. Also IBM gave the first public demonstration of their Object REXX for
Windows. And the attendees continued the Symposium tradition of contributing software
and making diskettes available for all.

The Symposium served as a springboard for the REXX Language Association (RexxLA)
which will help promote the use of the language. RexxLA held its first public meeting in
conjunction with this year’s REXX Symposium.

Next year the Symposium will be held at the Stanford Linear Accelerator Center.

1994 Steering Committee:

Cathie Burke Dager
Forrest Gamett
Pat Ryall

ii

I

IBM AIX REXX/6000 and
IBM REXX for NetWare

Tom Brawn
IBM

IBM AIX REXX/6000
&

IBM REXX for NetWare

Thomas J. Brawn
Object REXX Development /

IBM Endicott, NY 1
Internet id: tombrawn@vnet.ibmi.com x

IBM AIX REXX16000
n Available 12/93
n Program number 5764-057

- REXX/6000 Reference guide SC24-5708
- comments on reference guide can be sent to

pubrcf@gdlvme. vnet. ibm. corn
n Supports AIX release 3.2 and up ...‘.‘..‘~>:.yww~ <~~.&~,~~~$$~x:!:” . %- .,<..jg$$k.!.~. ..:.:::q$w .,.:s$::.:.“’ ..;.::g:>:.
n “AS-IS” release

_: buys’ ..;<y::. ,,:Qy.:. ,,&+‘” ..p;y
- In use internally at over 100 IBM locations fb:~ve~ 2

,.::$y ..y::.’ ,&.’
years ,.$.’ ..::::!’ .:::::> ..::::.. ,.::;:;z ..::::.

.::::::
.:: p

..::: ?
,::)i”

,,>i’
::;y I

.::::::’
.:::::.

.:::::.
..:p

.$$y

.
.::::.
..v

PZ~

,,:
,.; / REXX16000

Additiotial details...
n Port of IBM’s OS/2 REXX kernel to the AIX platform

- SAA Level 2
w I/O functions (charin, charout, stream, etc)
b System exits

- Default command environment
w address ksh ‘Is -Fc’ . .,.. ,... :.>:<&$$g* .*.r:cli~~~~~.,....... ” ~ .,,,.: g$#y.x.“. ..,, ,,:#+‘.’ +,:.:p;::.:.‘.’

- Access to AIX environment variables
,++..’ ,.,,::$p .’ ..,<,<<v . ..<.::y ,::gv ,.$(y ,.:x::.

b value(‘PA TH ‘,; ‘ENVIRONlENT’)
..;<:::.* ..::::y &X” .‘$$. ..::::y ..:’ ,<gg::. ,&.’ ..::::.. ..::::;’ ;:;:r:.. 1: :.’ ,:::::: ..::::v ,::.:p ..:::P .i:::Y :.<:p .::::;:’ .:g ..:.:c ,,y:::. I ..::p .:::::

,:’ ! *:
[REXX,6000

/ ;; ;’

v I
I.

Additional Functions
n Directory

- Works just like OS/2 cmd
.A.. A...... ! > <.:<<.: .,...) 2:A.... . . ., ..A . g:..s&gy&$<.+ ~~~~~~~~

n RexxRegisterFunctiotVRexxRegisterFunctionPkg
9.+:.x::<:,.<. * ,,,&. r $$g$g$$$~~:;&;> ~:~~: .A.. ::::.f+,.< ,........ <..<,.$. - For registering functions from an application or functions “,q::.)&:$.y~<$&a ~~:~~~~ $<::.:.:.::::#z::::::::::::::::. Y!.~i..:)m:~.~ :wx.:::::::~:::::.:;:~:::$~:.:~ aa:::::i::ii:‘:.::i:::::::::::~: from a function package Ln ~~~~~~iiiai:i:i~~~~~ ::::::::::::::::::::::::::+:::.:$, ::::::::.:.:.:.:.:.:.:.::::::: :.::: I:,:: :~::::~:~:~:~:~:~.~::::::~: :.:,: ::; ,.... <<.~$$#p.ysA “‘0:. ,.A., .,. ,......., .,:.:.:+:., ~::i:~.~~~~iiiiii~~~~~~~ ::::::::+:.:.:.:::::x:: :.:.:.:.:,:, i..........>>: ‘.‘....,.....,:.‘.:.:,: - Similar API’s for Subcom handlers and Exit handle~~~~~~~~. ‘.‘.““:‘:‘.“‘t,~:.:.:.:,~ .:.:.:.:, :::::;::.:.:x:.:.:.:.:.l: :.:.:.:.:.: iQ’1Sli:::):::i:i:i:~~:::.::::::.: .i ..:. .._. .i.>..:.:,:.: .,... :.:.:.:.:.:.;.:.,.:. :::::;.:.:,:.:: .j,:::::::j::::::::j $I’:i$:ii3’.:.i:~:~:~:~:~:~:~:~ ,.:, ,: : ..) :.;. .:.: :::,:::::j: - SysAddFuncPkg, SysAddCmdPkg, etc. functi~~~~~~~ilow ..::::i. {$;::;:.;;: .: :...’ .:::.:::::::::::I . . ,.$$:. : :.: ::::.,: y:.. ,,p;:;:;:::;:;: ::::::.:.y--.’ ,..........:,: easy access to API functions ,.;,y$... ..:::::s ::::::::.;:i. :.:,j::: ... ,.:.y.:.:: ,&...” ..:, ,... ,.:$gp .: ., ‘,., .,::::$.’ :,. &$.’

.:. n SysCreatePipe
,<:$y &y .,.:.:.. ,...:a ;::::p ,.:.p

- Creates an “unnamed pipe” for comm~ff&tion between
a:;:

two processes
.::::;. .::g ..: :p .:#

;! ,:
j/r RExx,6000

;;

More functions...
n SysFork()

- Interface to fork command
n SysGetpid()

- Returns process ID
I SysWait()

- Waits on child process to end

REXXl6000

x

IBM REXX for NetWare
n Available 3/94
n Program number 5764-075

- IBM REXX for NetWare Reference Guide SH24-5286
- comments on reference guide can be sent to

pubrcf@gdlvme. vnet. ibm. corn
n Supports NetWare release 3.11, 3.12, or 4.0
n “AS-IS” release

REXX
for NetWare

x

-
v I ----------I-.-----------

Additional details
n Port of IBM’s OS/2 REXX kernel to Novell’s NetWare

platform
- SAA Level 2

b I,,0 functions (charin, charout, stream, etc)
b System exits

- Default command environment ,.... y .:.,w#$$q ,,~~::~~~~~~~~:!..~~...’ . ” ,.<>~>:$$y+~~’
b Address netware ‘load monitor’

,.~,,:,:#p+ ,&.<<::::r:’ ,,,~$pF ..::@P ,... *:p. .+.:. :::.. ,.::y .::.:::.” .,:$!:’ /:!p ,,::::.\:::::::.. ..::::p ,.::::::. ..:::y ,++’ ..::y ,.::: y ::::::. ,.:: :::c ,.p ,J$.. .<::y:::: ::g3:” ,<:;:y ,,:gy ,.:::;. :::>y I :::::: .::;::.:jp ;:::::, ,.g ,:.:. Pt ;: REXX : : ,;’ j ;! for NetWare
!

I

2. I

I

;!

j for NetWare

n RexxRegisterSubcomNLM
- registers a subcommand handler from a NetWare

loadable module
n RexxRegisterSubcomAdr

- registers a subcdmmand handler from within an
application routine . c A..A.. ~.:.:~~~~~~~~~~.:.:.:.(”

I Similar AP,‘s for registering external functions a~~d~~~~’
,.:.:Zp

handlers ,.,.::::+ ,..::y . ..q.::> ,.:::::x ..::y ..:@ ’ .,::::::. ,.$$$. ..:: j:, ,.;:py J::” ..::p ,.:p ,*.. ..::$,,x:::. ..:::;:: .:<y .:g .:$? .::::.. ..<:y I .:: j:.. .::I’ .::: ::’

x

1

I
j

NetWare specific utilities
n RxConsolePrint

- Display a line of text on the system console
n RxDosCopy

- Copies a file from the DOS partition to the NetWare
partition

m RxDospresent ,.,*:.&$.yqy~>$gs!v: ,... <.:q:#+:+* ,.,. .*.+$@::::.:.” :2<+:.,y h. . ,.$$y::‘:“. L...................,..~.......... .a..~......1............ ..A ..,.,...... ‘.‘.‘...‘.‘.‘.‘...:.:.:. ,&gz+.~. :::;~.::::::‘::..:::i:I:::I::::~: ,~>~:;:~:.:.. E:.:l:aa:;~ilii,:~~~:~~~~~~~~ ,,.p.v ;:~:~:]:::::::::‘::::~:~:$;:~ ;,,.>;,::.:.: .._.,..(..... ::::::.:.:.:.:.:.:.:.:..;:~:+.:.:.: ,,:*$y* :y,:.:::::....‘:. . .., ,... >;. - Queries whether DOS is in memory ,.:,$?’ .,.,.,.,.,. .:‘,::)::.:(: .::.>: .,.,.,.,.,.,.,.,. . . ,.; :.>: :,.,e :.:.:.:.:.::...:.;.:.j:.:.:.: pi I RxGetNumberOfVolumes ,::$Y .::::y .,::p .<:::y ,.,.. ‘/. - Queries the number of volumes on the 1~~~1 server
;:::i’ .<:p

n RxGetVoIumeName
,;p j:;:: .;:g: .::>t .::;$y I

- Given a volume number, get the volu;he namhExx j$
n RxQueryNLM

:“.r ..! ,,c .!
- Return NLM handle if the NLM is loaded for NetWare

x i

- 2
.- L
l- I

.-.._
-.-.
. .._.____

‘i
-----...___

---_.___

R

Trademarks

IBM, 092, AIX, REXX/6000, IBM REXX for NetWare,are registered trademarks of International Business
Machines Corporation.
NetWare is a trademark of Novell, Inc.
Tritus SPF is a trademark of Tritus Corporation.
NLMAuto Professional and NLMerlin are trademarks of Knozall Systems, Inc.

Object REXX-What’s New?

Tom Brawn
IBM

r-
Tom Brawn

: : : :
Object REXX Development i

IBM Endicott, NY /
Internet id: tombrawn@vnet.ibm.&om

-

$ ______..................................... :’ +

Background

W o rk began in 1988
Prototyped since 1989
Complete rewrite of interpreter
Language architecture “in progress” and subject to change
Significant enhancements over the past 18 months
L imited beta on OS/2 and W indows 4/94

‘ &+
*@@@

g@* &-+ &j
I $ $ $.& / : : i : i : r !

-.-- -- - --.-- -.--...-- --.-.- --- -.-...- --..- . . . ---___...................................~...........~~~~~~~~.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..~~~~~~~~~~~~~.~~~.~.~~~~~~~~~~~~ +

Why Object REXX?

Remove limitations of current REXX language
Bring the power of 00 programming to REXX
Bring the usability of REXX to 00 programming
Extend REXX usage
-windowing,

‘

@ .___________________... +

What’s New in Object REXX?

n Objects
- Everything in Object REXX is an object

n Methods
- Everything that happens in Object REXX is a method

n Messages

- Everything that happens in Object REXX is caused b
message

:::::::::~::::::::::j:;:;:;:;:;:;; L .:.:.:.:.)>>:.:.:.: ‘.:.:.:.):.: :::::::::::::::::::::::::::::::::: ::::::::::::::::::::::~~:~:~.~:;:~\.,..L . . ,....., .:. .A....... .,.,. ,.,.,.,,,.,. iij,:-:.i::iii:i:i:i ;i::;:.:i: ,... .‘.:.: :.:...: ..,. :..:.. . :. .::. ,; :., .:,. .:.:

New REXX changes...

Expressions in stems
Parse enhancements
CountsttYChangestr functions
Extended Do syntax
Date conversions

E a zi t .- s s 8

3

E 0 nl + 3 z .- II
cn

.- LB

. .
(I;

.- L

0 a,
E a

w-
.-

R

Parse enhancements
n parse caseless...

- Parse template match without regard to case
- Example:

parse caseless \ialue ‘Out To Lunch’ with first ’ to ’ last
say first ==>Out 5. i-...iLC..l..iL7.. ::::::::::::::::::::::::::::::::::; se--/.,A VP..i..._....... .,.,., .,.,. ., .,.,... .._.....,.,. say last ==>Lunch -+SS* .,. ,A.,.,.. ,........, .,...,...,. f:si:!iiiii::i::illi~~~~~~~~~~ :i:;:j:;::::::: .::.:..:::::::::::: .,.,...,.. I;I;‘:~..A:.:‘:.:.;.:.:.:.:...:.~ ;~;~~$: i_zi.; i;:yj;;:;: ts@ @ @ @ @ . . . :>:,: .Y:‘;: .: ,::,:>. .::,..::;: @ :.:. ., :.. :.:..: :. ,:::: z ,. ;: .,:j:::.; : :;, :‘,:::.:.: n parse lower... . &$s@ @ +

- Translate to lower case, then parse @ ’ &
- Example: /

@ ,a
parse lower value ‘Out To Lunch’ with/first ’ to ’
say first==>out : ! ; ;’ @ bl + ec
say last==>lunch , ; ,

I

Y

countstrkhangestr
countstr(needle, haystack)
- Returns count of needle in haystack
- Example:

countstr(‘is’,‘This is a test of counstr’) ==> 2

e- changestr(needle,haystack,new) *e a@
*s$@ @ @ - Returns copy of haystack in which new replac@&all

occurences of needle /
- Example:

&+ -e @ e .$ &
changestr(‘l ‘,‘l 011 OO’,‘X) ==>

-

. Extended DO
n Adds ability to iterate over stems
n Example:

fred.1 =‘Tom’;fred.2=‘Chris’;fred.3=‘Alex’;
do tail over fred.

say fred.tail
end

==>Alex
==Shris
==>Tom

. Date Conversions
Convert date to standard formats
Example:

say date(‘usa’,l9931225,‘standard’)
==>12/25/93

say date(‘european’,l9931225,‘standard’)
==>25/12/93

-

Techniques for Performance Tuning
REXX Interpreters-A Case Study of Regina

Anders Christensen
Sintef Runit

Techniques for Performance Tuning Rexx
Interpreters -A Case Study of Regina

Anders Christensen
<anders.christensen@runit.sintef.no>

The Rexx Symposium for Developers and Users
Boston, May 1-4, 1994

Abstract

This article describes some of the techniques and methods used for optimizing the Regina
interpreter, a REXX interpreter written in C, originally for Unix systems. The methods
described first may be regarded as optimalization techniques in isolation, but they are also
prerequisites for the last technique described here: the creation and maintenence of shortcut
pointers from the parse tree to the variable structure.

1 Introduction
R

When tuning a program like a REXX interpreter for improved speed, a number of general tech-
niques are used. Some of these are interesting in themselves, but not very specific to REXX
interpreters. The scope of this text is to present some of the techniques that are closely related to
the datastructures and operations of REXX interpreters.

2 Datatyping Variables
The fact that REXX is a typeless language is often described as one of its major advantages. Thus,
it might be a great surprise to learn that one of the techniques boosting the performance the most,
was introducing typed variables. Another technique was introducing typed expressions, which is
described in the next section.

Internally, a Regina variable can hold either a string value, a numeric value, or both. When
setting a variable, either a string or numeric value is set, depending on the context. Whenever
the value of a variable is retrieved, it can be retrieved as either a string or a number. If a string
value is retrieved for a variable currently holding only a numeric value, that value is converted so
the variable holds both data type formats and then the string value is returned.

To understand the difference between these two formats, it might be instructive to look at
their definitions in Regina.

Length 123456769 n-l n ---~__
: j

Numeric
format

Length Sign Exponent 1 2 3 4 5 n

Figure 1: Storage formats for variables in Regina

For the string format, the values “2”, “ 2 “, and “2EO” are different, but for the numeric
format, these are identical. The string is simply a sequence of characters, having a specific length.
The numeric format is a sequence of decimal digits, to which there are connected three pieces of
information: the length (number of digits), the sign, and the exponent (a native integer). -- -

Consider the REXX statements: -
REXX statement Numeric String

1 foo = I+1 2 N/A
2 bar = foo Ii ‘.’ 2 ‘2’
3 foo = (foe * 3) I I ’ ’ N/A ‘3 ’
4 say foo*3 3 ‘3 ’

l After the first line, foo contains the numeric value 2, while its string value is not set. Note
that it is not undefined, it can easily be converted from the numeric format, if necessary.

l In the second line, the string value of f oo is retrieved, which means that the numeric value
is converted. After the second line, both a numeric and a string value are stored for the f oo
variable.

l In the third line the numeric value of f oo is retrieved and used in an expression which results
in a string value. At the end of that statement, the f oo variable is set to a new string value,
and the numeric value becomes unset.

l In the fourth line the numeric value of foo is retrieved. However, at that point the f oo
variable have only a string value, so when retriving the value, the current string value is
expanded to a numeric value. After the fourth line both a string and a numeric value are
set.

Why maintain this double accounting? It turns out that variables set to a string value are very
rarely used in numeric expressions . And vice versa, when a variable is set to a numeric value, it
is seldom used in a string context; except for output statements, which tend to be slow anyway.

Based on these two observations, it makes sense to have two parallel, highly optimized sets of
functionality for operating variables: one for numeric values and one for string values. Since the
conversion between them are rather rare, the more time-consuming code for conversion between
the two formats does not significantly increase the total execution time.

As a future extension, the scheme may be expanded to handle boolean variables too. However,
it may turn out that the increased complexity this requires (six conversion types as opposed to
only two above) may not justify the increase in speed. The use of boolean variables are much
less widespread than string and numeric variables; and besides, boolean variables can be emulated
through numeric variables.

In addition, the native floating point numbers could be used. It beats REXX numbers in speed,
but it is difficult to avoid loosing accuracy wrt the definition of REXX arithmetics.

3 Construction of a Parse Tree
In order to explain what comes next, we need to know the format in which Regina stores a parsed
REXX program. As an example, consider the following REXX code:

if (‘xxx J /=bar) & (bar*f oo>lOOO) then
exit

Regina converts this sequence of tokens to a parse tree, the expression in the if-clause is shown
in figure 2. The conversion between a sequence of tokens and a parse tree is described in most
text books on compiler construction. As an aside note: parse trees are often considered to be
incompatible with the customary way REXX programs are stored internally-a list of tokens.
However, a static tree can easily be converted to a list of tokens. The difference lays in generating

26

i, and)

- -
8, grtn ; (lstn

‘- ! -
‘1 XL -

bar 1

(bar) \ -

Figure 2: A parse tree built by Regina

a parse tree, which requires a more thorough analysis than a simple conversion of the source code
to a list of tokens.

The most obvious approach for executing the code represented by the parse tree would be to
traverse the parse tree, and for each binary operator (“=/“, “&“, “*‘I, etc) first traverse the left
subtree, then the right subtree, and in the end apply the operations to the two strings obtained
from the traversals.

It is possible to add some optimalizations here:

bar =/ ‘foo’
We know that this must always be a non-numeric comparison, this there is no need to try
anything but a normal string comparison straight away.

2*bar
In this expression, we are only concerned with the numeric value of bar, so we retrieve its
value in numeric “mode”, as described in section 2.

(a>b)&(c<d)
Here, each of the two pairs of parentheses can result in either “1” or “0”. Thus, we use the
native integer format of the computer to signify the values, rather than using the Regina
string or numeric format.

4 Datatyping Expressions

Using these techniques, the dataformat of the data transmitted from a subtree to its parent node
depends on the context. For instance, consider the parse tree shown in figure 2. After adding the
datatypes, the new parse tree is shown in figure 3.

5 Hash Tables to S tore Variables
Regina uses hash tables to store the variables defined at any given point during the execution of
a REXX script. This technique can make the retrieval of a variable a constant-time operation. if
given a well balanced hash table. However, once the hash table becomes full, the efficiency drops.

One of the key points with hash tables is to choose the correct size. If the size is too small, the
handling of overflow adds a large overhead. If the table is too big, the extra work of initialization
and deallocation adds unnecessary overhead. One solution is to have only one huge hash table for
the whole interpreter, in which case the work of initialization and deallocation of the hashtable is
done only once. However, this requires some extra overhead for insertion and deletion of variables.

-
[and 1

bool .- bool

---_
(, I= 1

..-
str i “,s, str

-(>)
--’ -

num,f’ ’ ,num ~--

-
j ‘xxx’ : bar j

-.
(“j

-\ -
num ’ ‘,i, num

Figure 3: Parse tree with datatypes of transmitted results

Among other things, it makes the operations of deleting all tails of a particular stem a bit more
complicated.

Another solution is to use dynamic hashing, where a small hash table is used initially, and the
table is expanded when it is filled. The advantage of this technique is illustrated by the fact that
the interpreter has no way of predicting the number of tails used by a routine at the entry of the
routine. (Except that it may cache the number of tails used at earlier calls.)

Figure 4 shows how Regina stores its variables. There is one hash table for each subroutine
having a PROCEDURE clause, and within each such hash table, there is another hash table for each
stem in use.

6 Shortcut Pointers from Parse ‘Tree

A well-known technique for optimizing computer code is to cache any value for which you may
have need later. Regina makes use of this several places. For instance, whenever Regina executes
a CALL clause or a function call for the first time, it must determine which routine to call. If the
destination routine is an internal or built-in function, it is cached by setting to pointer in the parse
tree to point to it.

7 Shortcut Pointers to the Variable Structure
Whenever a REXX clause refers to a variable name, the value of that variable must be retrieved from
the variable structure. This involves some navigating, which can be time-consuming. However, it
often turns out that multiple invocations of the same variable reference in a clause navigate through
the variable structure only to end up at the same variable box. Thus, it may be advantageous to
cache the result of the most recent navigation for each variable reference of the program. This
means storing a pointer in the parse tree, pointing into the hash table of the variable structure.

Consider the following trivial code:

foo = 1
do 1000

foo = foo + 1
end

If we restrict the analysis to the contents of the loop, the variable foo is set 1000 times and its
value is retrived 1000 times. I.e., navigating the variable structure 2000 times.

Then we add functionality for caching the result of each navigation. Neither retrieving nor
changing the value of a variable are operations which change the identity of the box in the variable

28

Entry point for
variable structure

/

- - I_

\
Hashtable for the 1”’ ‘U
A. compound var ,<i’

Figure 4: The structure of variables in Regina

structure where the variable is stored. Thus, if we can cache a pointer to the variable, the number
of walks through the hash table structure drops from 2000 to 2.

On the other hand, the cost of this is caching the pointer after each navigating walk, unless it
was already cached. And the cost of verifying that the shortcut pointer is still valid. In particular
the latter of these introduces a number of subtle points. Consider the following code:

/* first example */
call foo
exit

foo: do i=l to 2
say i
if i=i then do

procedure
i I I
end

end

In this example (which is only allowed for TRLl-not TRL2) the variable i in the SAY clause
refers to different variables during the first and the second iterations of the loop. This is due to
the execution of the PROCEDURE clause during the loop, which changes the scope of the i variable.
Thus, the shortcut pointers cached during the first iteration must be tested during the second
iteration, and the fact that they are invalid must be detected.

This is achieved using a generation number, which is identical to the number of currently
nested functions having executed the PROCEDURE clause. Whenever a new PROCEDURE clause is
executed, the generation number is incremented, and whenever a RETURN clause is executed for a

R

routine which have-during its course-executed a PROCEDURE clause, the generation number is
decremented.

To verify the validity of a shortcut pointer, the current generation number is recorded in the
-.--_ box pointed to by the pointer. Whenever a recorded pointer is to be validated, it is considered

invalid if the current generation number is greater than the nqmber recorded in the box pointed
to by the shortcut pointer (i.e. a PROCEDURE clause has been executed since this pointer was made,
invalidating the pointer). In this case, the recorded shortcut pointer is attempted deallocated, and
the variable is located using the standard procedure-the new location is of course cached if the
current generation number is greater than the recorded number.

The next example shows a function.

/* second example */
say bar(3)
exit

bar: procedure
parse arg i
if i=l then

return 1
else

return bar(i-l)*i

Here, the last clause in the routine is executed twice, as a result of the recursion. However,
due to the rules for evaluation of REXX expressions, the retrieval of the i variable at the end of
the last clause is executed twice: first at end of the second invocation of bar, and then at the end
of the first invocation of bar. (Note: i is referred to after the recursion itself.)

According to the rules outlined above, the shortcut pointer is cached at the end of the second
call to bar (the first recursive call). Thus at the end of the first call to bar, this cached value is
picked up, but the generation number does not match (the recorded generation number is greater
than the current generation number), so the shortcut pointer is discarded and the variable is
located using the standard procedure (i.e. since the pointer was made, the routines in which it
was made has been terminated).

There is another, less subtle point here, too. All variables local to the second (recursive) call
to bar are discarded when that routine returns. Thus the shortcut pointers appear to point to
undefined memory! This is easily fixed by maintaining a counter with each variable box. Whenever
a shortcut pointer is set to point to that box, the counter is incremented; and whenever a shortcut
pointer is removed from pointing to a variable box, the counter is decremented. As soon as this
counter mechanism is in place, a variable box can be marked for deletion, and retained until all
shortcut pointers to it have been killed.

/* third example */
do i=l to 2

call bar
end

exit

bar: procedure expose i
if i=l then

foo =)'
say foo
return

Here, the second invocation of bar finds the cached pointer in the SAY clause, but the pointer is
invalid, even though the generation number is correct. To handle this case, variables discarded
during the execution of the RETURN clause are not immediately discarded if there are any shortcut

30

pointers pointing to it (as recorded by the shortcut counter field). Instead, it is suspended until
all shortcut pointers point elsewhere, at which time the box is deallocated. In the meantime a flag
is set for the variable box, so that the interpreter can discover that the box is invalid if it tries to
dereference the shortcut pointer. -- ~~

/* fourth example */ -

do i=l to 4
if i=2 then do

drop i
1= 2
end

end

The code of the fourth example, as shown above, illustrates why the delete flag is necessary.
The variable box created at the start of the loop is dropped during the loop, so a mechanism is
necessary to detect that the box is invalid at the start of the next iteration.

8 Algorithms
The two algorithms shown are the the central for the correct operation of the shortcut pointers in
Regina. The first algorithm is shown in figure 5, and describes how to access (retrieve or update)
the value of a variable. To be effective, it requires that the code has been executed at least once
before, so that shortcut pointers have been created.

foo is a variable reference to access
if exists a shortcut pointer for var then

if points to a variable not deleted then
if the generation number is correct then

retrieve/set the value
return

else
decrement counter
remove shortcut pointer

else
decrement counter
remove shortcut pointer

if counter=0 then
delete/deallocate variable box

access variable “the hard way”
cache the found box in the shortcut pointer in the parse tree
increment counter
return

Figure 5: Retrieving/setting value of variable reference in the parse tree

The second algorithm is used to delete variables during the execution of the RETURN clause
from a routine which had its own “private” PROCEDURE clause. It will always detach the variable
boxes, but it will only deallocate the space if there are no shortcut pointers pointing to the box
(as recorded by the counter in the box).

32

for each local variable
disconnect it from variable system
if counter is greater than 0 then

__-_ mark variable box as deleted
else _ - .

deallocate variable box

Figure 6: Deleting local variables at return from routine

9 Why So Complicated?
Most computer languages keep track of their variables in much easier ways, so why introduce
this complexity for REXX? Because of the enormous degree of freedom in REXX. REXX does
not have compile-time routines, it has “only” run-time routine entry and exit points! Therefore,
it is virtually impossible to bind a given clause to a particular “routine” at parse time. The
possibilities of “SIGNAL ON" and “INTERPRET" ensure that control can pass from virtually any
clause to virtually any label in a REXX program.

Thus, the techniques used for most compilers and some interpreters, which allow them to bind
the variable references in the source code to specific locations at compile- or parse-time do not
work for REXX, and more elaborate systems, like the one described above, are called for.

R

32

REXX/imc
A REXX Interpreter for UNIX

Ian Collier
Oxford University

33

1 Work in progress 1

REXX/irr&

A Rexx interpreter
for Unix

Ian Collier

available from rexx .uuaterloo. ca

in /pub/freerexx/imc

1 REXXjimc Rexx Symposium 1994

History

l May 1989: Work begins!

l Jan 1991: Interpreter has most language constructs
except the stack, but no I/O functions.

l May 1992: REXX/imc is not ready in time for the
Symposium.

l Aug 1992: REXX/imc release 1.2 released.

l Sep 1992: Release 1.3

l May 1993: Release 1.4 announced at the Symposium.

l Jun 1993: Release 1.5, the first level 4.00 release of
REXX/imc.

l Sep 1993: Release l.Sa, with some bug fixes.

l May 1994: Release 1.6 is presented at the Boston
Symposium.

. 1994- : ?

3 REXX/imc Rexx Symposium 1994

Abstract
Since 1989 I have been working on a Rexx interpreter
for Unix in my spare time (what little I get). It was
first released to the public in August 1992 and has had
many improvements since then. In my presentation I
will demonstrate the most recent enhancements and some
of the language extensions that I have added to the
interpreter, a few of which are connected with the work
of the X3.Jl8 standardisation committee. I hope to
show some of the ways in which REXX/imc can interface
with its environment; this will include the use of Unix-
specific built-in functions, the writing of external function
libraries, and the application interface with programs
such as THE (an editor based on KEDIT written by Mark
Hessling). If time allows, I will take a brief look at the
internals of the interpreter, showing the basic blocks of
which it is built, and giving a short explanation of how
it performs a task such as evaluating a Rexx expression.

Unfortunately, since my ‘real’ job is to write a D. Phil.
thesis, I have not been able to enhance REXX/imc as
much as I would have liked for this presentation. How-
ever, work is still in progress to turn REXX/imc into an
efficient and fully integrated programming language on
Unix.

Notes REXX/imc 2

Because REXX/imc is a spare-time project, work on it
has been characterised by bursts of activity and long pe-
riods of slow development. Even though the interpreter
was functional in 1991, it was not released until Au-
gust 1992. In fact it is interesting to note that REXX/imc
was already capable of running a program to calculate R
to many decimal places by October 1989, although it had
no functions.
The period between the 1992 Symposium and the initial
release of REXX/imc was spent in implementing the file
I/O functions and in documenting the source-even the
few comments that are dotted around now were almost
entirely absent before this period!
Many of the changes between versions of REXX/imc
have been bug fixes-thanks to Anders Christensen who
spent time running his trip tests on REXX/imc, and to
everyone who reported a bug.
The main changes in release 1.5 were the addition of
language level 4.00 features (SIGNAL ON with the NAME
keyword, CALL ON, CONDITION(j, STREAM0 and so on),
the command line flags, and the OPTIONS options.
The main changes in release 1.6 are the addition of an
API and the improvement of function handling.
Things planned for the future include, but are not limited
to, the following (not in any particular order): imple-
menting speedups (in at least three areas: improving the
variable table, improving the arithmetic and implement-
ing a pre-parsing process), improving tracing, adding a
Unix system call library, adding OPTIONS to control the
language extensions and to move towards the language
standard, adding extensions as proposed by the Rexx Ex-
tensions committee, adding a ‘stems’ library, completing
the API, adding an API which can be called by other
processes even after Rexx has started, and anything else
which people suggest. . .
Notes REXXfimc 4

34

Files The file librexx. so. 1.6 is the main library file which
contains all the routines necessary for an application to

librexx.so.l.6 204800 use the SAA API of REXX/imc. On the SunOS system,
rexx 5712 this is a dynamically loaded shared library, which means
rxmathfn.exec 6743 that an application which uses the library does not need
rxmathfn.rxfn 57344 to include a copy of the library within its object code,
rxmathfn.rxlib 57 thus saving disk space. This can be seen from the fact
rxque 8016 that the program rexx, which is the interpreter itself,
rxstack 6600 is only a 6K file! This program is merely an interface

between the command line and the API library, and is
const .h 16140 compiled from the source file main. c.
functi0ns.h 16423 The programs rxque and rxstack are for the Rexx stack,
globals . h 6165 which will be discussed later.
rexxsaa. h 5678 The file rxmathfn.rxlib is a function dictionary for the
talc. c 49157
globals . c 8683

REXX/imc mathematical functions, which are imple-

interface.c 37875
mented in Rexx as rxmathfn.exec and in C as the object
file rxmathfn.rxfn.

main. c 4896
rexx. c 97258 As shown opposite, REXX/imc comes with about 430K

rxfn.c 77118 of source. 1

rwathfn.c 8061 The four major documentation files shown opposite are
rxque. c 8610 rexx. info, which is my attempt at a tutorial for Rexx,
rxstack. c 6051 rexx. ref, which is a complete reference on the language
shell. c 8228 features of REXX/imc, rexx.summary, which is a ‘ref-
uti1.c 80214 erence card’ on REXX/imc, and rexx. tech, which gives

details to the application programmer or any programmer
rexx.info 33568 who is interested in the internals of REXX/imc. There
rexx.ref 155257 are also several minor documentation files, not shown
rexx.summary 12627 here, which give details about the current release, the
rexx.tech 33320 change history, the installation instructions, etc.

5 REXX/imc Rexx Symposium 1994 Notes REXX/imc 6

l The OPTIONS instruction’s most useful option for us-
ing on the command line is the tracef ile=f option,

Invocation
which redirects tracing output to a file.

l The -t option can be followed by any Rexx trace
setting, which allows you to trace a program without

rexx [options1 Cprograml [arguments] altering it.

where options are: l The -v option can be used alone (in which case the

-<opt ion>
interpreter does nothing except print its version) or

- any option from ‘OPTIONS’; with other options (in which case it prints its version
-” - print version; and then runs a program).

-s <string> - execute the string as a program; l The -x option is usually used for programs which

-t <trace> - turn tracing on; invoke themselves on Unix by having a ‘6 ! ’ or a shell

-i
instruction on the first line. REXX/imc will treat the

- enter interactive trace mode; first line of the program as a comment, and will not
-x - run a Unix-executable Rexx program. append anything to the program name.

l If no program name is given, or if the program name is
I-‘, then the program will be read from the standard
input.

7 REXX/imc Rexx Symposium 1994 Notes REXX/imc I3

35

Added Features

0 stem.(expression)

0 stem. ‘string’

l SELECT expression

WHEN value THEN instruction

END [SELECT]
. PROCEDURE HIDE
. PARSE VALUE x,y,z WITH pl,p2,p3

s Any non-zero number is true

l OPTIONS 'SETRC' for setting RC after I/O operations

s * , * trace prefix for continued lines

l Extra tracing for SIGNAL ON x when x is an undefined
label

l Features from CMS

- PARSE NUMERIC
- JUSTIFY 0

- LINESIZEO

9 FlEXX/imc Rexx Symposium 1994

Of these enhancements, one, namely the *, * trace prefix,
is as a result of a decision of the X3.Jl8 standardisation
committee, and one other, namely the compound variable
with an expression as part of its tail, has been provision-
ally accepted by the extensions committee. More sub-
stantial enhancements based on meetings of these com-
mittees (such as date/time conversion functions) were
planned but have been delayed.
The PROCEDURE HIDE instruction really means ‘procedure
expose everything-except-the-following’, and its use is not
strongly reccommended at present.
The OPTIONS ‘SETRC’ instruction makes all I/O (includ-
ing SAY and PARSE PULL set the variable RC to indicate the
success or otherwise of the operation, in order to allow
this to be checked without calling STREAM. It also causes
a SIGNAL ON ERROR if that is appropriate. This option
was added in order to preserve backward compatibility
with a previous version of REXX/imc which had neither
STREAM nor SIGNAL ON NOTREADY.
The ‘extra tracing’ extension prints out a traceback in-
cluding the SIGNAL ON instruction and the cause of the
error whenever the target label for the trap is not found.
For example, the program:

signal on novalue
call test
exit
test: say xyz

produces this traceback:
+++ No-value error on XYZ

1 +++ signal on novalue
4 +++ say xyz
2 +++ call test

Error 16 running test.exec, line 1: Label
not found

Notes REXXfimc 10

Features for Unix

l The TRL I/O functions

l Pre-defined streams: stdin stdout stderr

l The STREAM commands: close fdopen fileno flush
ftell open pclose popen

a Functions: CHDIR CETCWD SYSTEM USERID

l Access to the Unix environment via the VALUE built-in
function

s Access to Unix error messages via the ERRORTEXT
built-in function

l Subcommand environments UNIX and COMMAND

l The stack daemon

l The function interface

11 REXX jimc Rexx Symposium 1994

l REXX/imc offers a variety of file access functions via
the function call STREAM(stream, ‘C’,command) The
open command allows any file to be attached to a
stream in either read or read/write mode. The popen
command starts a Unix command and attaches it to
the named stream for reading or writing. The fdopen
command allows Rexx to access any Unix file number
as a stream. The file number of any Rexx stream is
given by the fileno command. The ftell command
gives the file pointer which was set by the last access
on the named stream.

s The SYSTEM function runs a shell command and re-
turns its output as a string.

l Environment variables may be examined and/or set
using the VALUE function with a third argument of
-ENVIRONMENT'. Note, however, that changes made
to the environment will be lost when the Rexx inter-
preter finishes.

l The function call ERRORTEXT(n+lOO) gives the nth
Unix error message, such as ‘No such file or directory’,
which is message number 2.

l The subcommand environment UNIX passes each com-
mand to a Bourne shell. The COMMAND environment
passes each command to a small built-in shell which
tokenises and executes the command directly, which
is usually much faster than invoking a shell for each
command.

Notes REXX/imc 12

, I, I

36

The REXX/imc Stack

l rxque is the stack daemon

- it runs as a separate process

- it is created and destroyed automatically by the
interpreter

- it may be run as a server for a whole session

l rxstack is a stack client

- rxstack C-f if o l-lif o] copies standard input to
the stack

- rxstack -string x stacks one entry

- rxstack -print copies stack contents to standard
output

- rxstack -pop copies one entry to standard output
- rxstack -num prints the number of stacked entries

l REXX/imc is also a stack client

- queue x stacks an entry in FIFO order

- push x stacks an entry in LIFO order

- queued0 tells the number of stacked lines

- On SunOS, REXX/imc can transfer stack con-
tents to the keyboard buffer.

13 REXX/imc Rexx Symposium 1994

Application Programming
Interface
The following SAA API functions are implemented:

l RexxStart

l RexxVariablePool (except requests RXSHV-EXIT
and RXSHVPRIV)

l RexxRegisterSubcomExe

s RexxDeregisterSubcom

s RexxQuerySubcom

s RexxRegsiterExitExe

with exits: RXCMDHST RXSIODTR RXSIOSAY
RXSIOTRC RXSIOTRD RXINIEXT RXTEREXT

l RexxDeregisterExit

l RexxQueryExit

l RexxRegisterFunctionExe

l RexxDeregisterFunction

l RexxQueryFunction

More will be added later.

15 REXX/imc Rexx Symposium 1994

The program rxque forks off a stack daemon and prints
out its process number and socket name in the form of
two environment variables. The format of the output is
as either a Bourne shell command or (with the flag -csh)
a c-shell command. rxque may be given the name of
a socket to create, in which case the output is just the
process number.

The stack daemon is usually started by REXX/imc and
killed with signal 15 when the Rexx program finishes.
REXX/imc checks for the presence of a stack daemon by
looking for environment variable RXSTACK. If a stack
exists, then it uses that instead of creating one. Queued
entries may then persist between programs:

X eval ‘rxque -csh’
% 1s -al 1 rxstack
X rexx -s “say queued () ”
45
% rexx -s “pull .; parse pull a; say a”
drvx------ 5 imc 1024 May 2 16:OO .
Y. kill SRXSTACKPROC

On some systems, REXX/imc can be compiled with the
preprocessor symbol STUFF-STACK defined. REXX/imc
can then pretend to cause persistent changes to the en-
vironment:

X rexx -s “queue ‘cd /tmp’”
cd /tmp
% % pvd

/tmp

Notes REXX/imc 14

Release 1.6 of REXX/imc is the first to have an API. The
functions have been modelled on those of OS/2. It should
be possible to compile a Rexx-aware application-such as
Mark Hessling’s editor ‘THE’-with REXX/imc without
altering it (as long as it uses only the functions which are
currently supported).

In order to use the API, an application includes the
C header file rexxsaa.h supplied with REXX/imc, which
will declare the functions opposite and the associated
constants and datatypes. When the application is com-
piled, it is linked with the library file which is created
when REXX/imc is compiled. This file will be either
librexx.a, in which case the code from REXX/imc will
be included in the application’s object file (static link-
age), or librexx . so. 1.6, in which case only a reference
to the library file will be included in the application’s
object file (dynamic linkage).

If linkage is dynamic, it will be possible to upgrade to
a later release of REXX/imc without recompiling the
application, just by copying the new library into the same
directory as the old one.

Notes REXX/imc 16

I

37

Writing an external function in Rexx or with the SAA
API is the same as for any other interpreter.
A function may be compiled and linked as a dynamically
loaded object called *.rxfn with the * replaced by the
function’s name (by which it will be called by a Rexx
program). When REXX/imc searches for external func-
tions, it searches for such a file first. If the file is found, it
is linked in and called as if it were built-in. The function
must retrieve its arguments from the RBXX/imc calcu-
lator stack and place the result (if any) there.

External Functions
External functions or libraries for REXX/imc can be
written

l in Rexx

l using the SAA API

l using REXX/imc hooks

l as a Unix program

A *. rxfn file may contain several functions, all of which
will be registered when the file is first loaded.
A function library using the SAA API may be compiled
as a * .rxfn file in order to make a library which is
portable but which can be called by an already-running
program. To do this, the library is augmented by an
initialisation function which takes no parameters and
returns no result, but which uses the SAA API to register
all the other functions in the library. Before calling any
of the functions, the Rexx programmer must call the
initialisation function.
If a function cannot be found, then a Unix program
having the same name as the function is searched for.
The program can be in any language supported by Unix,
such as C, per1 or shell script. It will be ‘exec’ed with the
arguments in argvC1 and the function name in argvCO1,
and it should print out the result (if any) on its standard
output followed by a newline character.

17

Many functions can be aliased to one function library
by supplying a text file called *.rxlib (where * is the
basename of the function library) which lists the names
of all the functions in the library. The library can be a
* .rxfn file, a Rexx file or a Unix program. If it is Rexx,
then it can find out which function is being called using
parse source.

REXX/imc Rexx Symposium 1994 Notes REXX/imc 18

Tokenising a program means (in the case of REXX/imc):

Interpreting a program

1. Read command line parameters (main())

2. Load program from disk (load())

3. Tokenise program (tokeniseo)

4. Enter main loop (interpreter())

l rejecting invalid characters and unmatched quotes

l removing comments, null clauses and excess blanks

l Concatenating lines which are continued with a ‘,’

l translating unquoted text to upper case

l recognising keywords (like NOP, SAY, IF and so on)

l organising the program as a list of clauses (each end-
of-line, ‘;‘, or THEN starts a new clause. In addition,
labels, THEN, ELSE and OTHERWISE are clauses by them-
selves)

l making a label table

(a) Fetch the next token.

(b) If NOP then do nothing

(c) If SAY then print an expression

(d) If RETURN then return an expression

(e) If IF then read and test an expression

. . .

(f) If program has ended then return, else go to (a).

5. Clean up and finish.

Keywords are recognised based on what has appeared
since the start of the current clause. For example, THEN
is only allowed when the current clause started with IF.
Keywords are stored as negative- character codes (defined
in const .h). This makes them easy to recognise: during
the main loop, instead of asking, “Are the next three
characters ‘say’?” we can ask, “Is the next character
equal to the constant SAY (which is -128)?” It also makes
it clearer for the expression evaluator when to stop; the
code WHILE (-88) is obviously not part of an expression,
whereas the word while could be a variable name.

The tokenised list of clauses is stored in an array prog [] ,
which also gives other information such as the line num-
ber and address of the clause within the source.

19 REXX/imc Rexx Symposium 1994

The main loop is relatively trivial; it is executing the
individual instructions such as DO and evaluating the
expressions which is the difficult part..
Notes REXX/imc 20

I

38

Internal data structures

l the source (source)

l the tokenised program (prog)

l the label table (labelptr)

s the calculator stack (cstackptr)

s the program stack (pstackptr)

l the signal stack (sgstack)

l the variable table (vartab) and pointer list (varstk)

l the work space (vorkptr)

21 REXX/imc Rexx Symposium 1994

Example: DO

1. Store the current clause number on the stack.

2. Fetch next token. If clause has ended then finish.

3. Flag the stack entry as ‘repetitive’.

4. If the token is FOREVER, skip past it.

5. Otherwise, try and fetch a symbol and ‘=‘. If found
then:

(a) Store the symbol name on the stack.

(b) Fetch an expression and assign it to the symbol.

(c) Search for TO, BY and FOR expressions and store
them on the stack.

(d) If the limit is already passed then LEAVE.

6. If that failed, try to evaluate an expression and store
it on the stack.

i’. Store the pointer to any WHILE or UNTIL on the stack.

8. If WHILE is found and the following expression is false
then LEAVE.

.

23 REXXfimc Rexx Symposium 1994

s The source and tokenised program are each kept in a
linear stretch of memory, pointers to which are held
in the arrays source and prog respectively. The label
table is stored in a linear stretch of memory which is
organised as a kind of linked list.

s The calculator stack is a space to store a list of
intermediate values during calculations.

l The program stack records information about the
control structures that are currently open (such as
DO groups and function calls). It stores the variable
name, step and limit and/or the FOR counter of a DO
instruction, and it stores all the saved state which
must be restored on return from a function call.

l The signal stack holds information about which con-
ditions are currently trapped or delayed, and it also
holds the data for the CONDITION function. It has one
entry for each INTERPRET or function call currently
active.

l The variable table is a linear stretch of memory which
is divided into sections by varstk. Each section con-
tains the variables for an active PROCEDURE or external
function call (apart from the workspace, this is the
only one of the above structures which persists across
external function calls). Within each section the vari-
ables are stored in a tree structure. Exposed variables
contain a pointer to another section where the ‘real’
copy of the variable is to be found.

s The work space is a temporary area for all sorts
of calculations. It is cleared after interpreting each
instruction.

Notes REXX jimc 22

DO and END have been chosen to illustrate how the pro-
gram stack works.

Most of the work of DO is to find out what sort of DO
clause this is and to set up an entry in the program stack
which describes the DO clause. The information needed
is:

l where to come back to

l whether there is a symbol and if so, what are its name,
and its step and limit values

s whether there is a counter or FOR value, and if so, how
many iterations are left

l where the WHILE or UNTIL can be found, if any

DO also has to check to make sure the loop is to be
executed at least once.

Notes REXX/imc 24

39

Example: END

1. Fetch the top stack entry. If none exists, complain.

2. If the entry is not from DO or SELECT, complain.

3. If the entry is not flagged ‘repetitive’ then

(a) Delete the top stack entry

(b) finish.

4. Fetch the pointer to any WHILE or UNTIL. If UNTIL
is found and the expression following it is true, go
to 3(a).

5. If a symbol name is stored, add the step to it and
compare with the limit. If the limit is passed, go
to 3(a).

Even though the END instruction contains no informa-
tion (although it might contain a symbol name, details
of which have been skipped here), it can be interpreted
because the information is all on the program stack. In-
terpreting the stacked data is relatively straightforward.

6. Decrement any FOR counter. If it is zero, go to 3(a).

7. Fetch the pointer to any WHILE or UNTIL. If WHILE
is found and the expression following it is false, go
to 3(a).

8. Fetch the stored clause number and jump to the
following clause.

25 REXX/imc Rexx Symposium 1994 Notes REXX/imc 26

Example: expressions
There is a stack of values and a stack of operations.

1. Stack an ‘end marker’ operation with priority 0.

2. Search for a value:

- If the next token is a unary operation, stack it
and repeat 2.

- If it is ‘(’ then evaluate the expression inside,
check for ‘)’ and go to 3.

- If it is a quote, collect a string.

- Collect a symbol name.

- If the token after the string or symbol is ‘(’ then
call a function, otherwise stack its value.

3. Search for the ‘current’ operator:

- If the next token is a keyword, ‘I’, ‘,’ or the end
of the clause then the operator is an end marker.

- Otherwise, if it is not a binary operator then the
operator is an implicit concatenation.

4. Perform operations:

- If the top stacked operator and the current oper-
ator are both end markers, then finish.

- If not, and the top stacked operator has a priority
no less than that of the current operator, perform
the stackfd operator and go to 4.

- Otherwise stack the current operator and go to 2.

The function which performs the above algorithm is called
scanning.

This is a variant of a well-known algorithm to turn an
expression in infix notation into one in reverse polish
notation (sometimes described by analogy with a railway
track with a siding, the siding being the operation stack).
FI.EXX/imc evaluates the reverse polish expression as it
is created. The calculator stack is the stack which reverse
polish notation requires.

The unary operations each operate on the top value on
the calculator stack, replacing it with the result. The
binary operations each operate on the top two values,
replacing them with the result. It is clear that at step 4
of the above algorithm it is always true that the number
of values on the calculator stack is one more than the
number of stacked binary operations. Since each stacked
binary operation reduces the size of the calculator stack
by one item, this means that when the stacked operations
have all been performed there is precisely one element left
on the calculator stack. This is the result.

Arguments to functions and expressions within parenthe-
ses are evaluated by calling scanning recursively.

27 REXX/imc Rexx Symposium 1994 Notes REXX/imc 26

40

Interesting Corners of REXX

Mike Cowlishaw
IBM

41

.

Interesting Corners of REXX
REXX Symposium

Mike Cowlishaw
IBM UK Laboratories

Hursley

Outline

+ Instructions
+ Built-in Functions
+ Miscellaneous
+ Questions?

May 1994 Mike Cowlishaw

m

0

a W

> l&l
u 0 IA
0 n

k a,
3 a,
k 0

Ir
--

--

\ %

a 0 0
7l k a,
3 a,
k 0

II %

\

--
a

0
a

45

DROP-extra state for a variable

drop var
do i=l to howmany

I
if whatever then var=somevalue

f
end i

if symbol(lvarV)\=lLIT' then say 'Found!'

May 1994 Mike Cowlishaw

-

NUMERIC FORM and FUZZ

With NUMERIC FORM ENGINEERING:

var=1234
say var*lelO

12.343+12

. . . and don’t forget
comparisons.

May 1994

var*lell

123.43+12

var*le12

1.234E+15

NUMERIC FUZZ for fuzzy

Mike Cowlishaw

PARSE

#lumn patterns: Most implementations have variable co
namecol=pos('Name', header)
do i=l to entries

parse var entry.i =(namecol) name.i
end i

Use Y placeholder to strip blanks:
line=' modemspeed = 9600 '

1
parse var line key . '=I value .

Mike Cowlishaw

More PARSE

Use relative patterns to include strings in results:
parse var line pre 'START' 'SLIP' +0
if pre=" & post='SLIP' then do

/* found 'start . . . slip' */
end

or . . .
parse var line.pre 'WAIT' +0 key
if pre=" & key=*WAIT' & post="

/* found 'wait [num] I */
end

May 1994

num

post

post
then'do

Mike Cowlishaw

Parsing field-oriented data

/* Set up template matching structure */

/* (perhaps read from a file). */

template=*socsecnum
*name I
1 last
I first
'balance

record=charin(myfile,
interpret 'parse var
balance=c2d(balance,

May 1994

+20',
+20',
+ 4'

80)
record'
4)

template

Mike Cowlishaw

Using PARSE for POSISUBSTR

/* Change all **old** to **new** in string */

/* If **old** is null,**new** is prefixed */

Change: procedure
parse arg string, old, new
if old==* * then return new
out=’ ’

I (string

do while pos(old, string)\=0
parse var string prefix (old)
out=out/ lprefixl Inew
end

string

return out1 lstri w
May 1994 Mike Cowlishaw

PROCEDURE EXPOSE lists

Lists can be very usefu with PROCEDURE EXPOSE

errors=* sigl rc CleanupFlag'
shared=*masterlist. CurName CurCount'

subfunction:
procedure expose

return

May 1994

(errors) (shared)

Mike Cowlishaw

Don’t forget:

TRACE

trace Labels
. . . lets you check the flow in a program

and...
trace Intermediates

L. lets you check expression evaluation in detail.

Note: The TRACE instruction is completly ignored ’
during interactive tracing-but the TRACE0 built-in
function is not.

May 1994 Mike Cowlishaw

Function names in quotes

System-dependent function names can be useful:
say *e:\tools\testit.cmd*()

or . . .
say ‘EXEC PROFILE’ ()

. . . and they work with CALL, too.

May 1994 Mike Cowlishaw

Built-in Functions

ABBREVallows default match to null string:
say abbrev('PRINT', 'PRINT')
say abbrev('PRINT*, 'PRY)
say abbrev('PRINT', If)

. . . all say 1

CENTER can be spelled properly, too:
say centre('goa1 kick', 25)

May 1994 Mike Cowlishaw

More Built-in Functions

COMPARE is often overlooked:
alpha= labcdefghijklmnopqrstuvwxyzl
say compare(alpha, labcdefghijklmnoqp',)

. . . says 16

DATE lets you find the day-of-the week as a number:
say date('Basel)//7

. . . says 0 for Monday, 1 for Tuesday,

May 1994 Mike Cowlishaw

.

INSERT and OVERLAY

Powerful, when you need them:
say insert('needle*, ‘haystack', 3)

. . . says “hayneedlestack”

and...
say overlay(*l2:30*, *It is hh:m', 7)

. . . says “It is 12:30”

Mike Cowlishaw

^,

Removing character(s) from a string

Use SPACE (with a little help from TRANSLATE):
string=' HOPPY floppy'
string=translate(string,
string=space(string, 0)
string=translate(string,

. . . sets STRING to “Hoy floy”

For multiple characters, use (for
string=translate(string,
string=space (string, 0)
string=translate(string,

May 1994

I P I I
/

1 P I I
/

example):
'a', '

'a', '

I P)

I P)

aeiou 1')

Mike Cowlishaw

Testing for parity

Use SPACE - with a little help from X2f3,
TRANSLATE, and LENGTH:

bits=x2b(*C7*) /* 11000111 */
ones=translate(bits, I II '0')
ones=length(space(ones, 0))
parity=ones//2

. . . sets PARITY to “1”

Mike Cowlishaw

SUBSTR, LEFT, and RIGHT

SlJBSTR or LEFT can take a pad character:
say substr(Tred*, 1, 8, I?
say left(*Fredl, 8, *?I)

. . . both say “Fred????”

RIGHTcan pad on the left, or return
characters:
say right(12, 6, 0)
say right(*e:\extra.cmd*, 3

. . . says “000012” and “cmd”
May 1994

I
)

rightmost

>

Mike Cowlishaw

TRANSLATE

As well as character substitution, TRANSLATE can be
used to reformat (lay out) strings:
in= I abcdefgh'
pattern= 'gh.ef.abcd'
say translate(pattern, '19940827'

. . . says “27.08.1994”

May 1994

I in)

Mike Cowlishaw

I

VERIFY

VERIFY can look for “the odd one in”, as
odd one out”:

well as “the

say verify(*123.456', '0123456789')

. . . says “4”

but . . .

say verify(**It's IWP, *13579*, *Match*)

. . . says “6”

May 1994 Mike Cowlishaw

I

And finally...

/* Shuffle the numbers in range l->max */
shuffle: procedure

signal off novalue
max=arg(l)
out=' '
do i=l to max

sub=random(i,max)
out=out substr(ar.sub,4)
if sub=i then
ar.sub=ar.i
end

iterate

return out
May 1994 Mike Cowlishaw

IBM Views on REXX

James Crosskey
IBM

64

.

James Crosskey /
REXX Development /

IBM Endicott, NY 1
Internet id: crosskey@gdlvm7 vnet./bm.com ;

REXX Excitement!
n Customer support of REXX:

- SHARE, GUIDE, COMMON, SEAS
- REXX Symposium, OS/2 Technical Interchange, OS/2

Technical Conference
- REXX Language Association

n REXX books ;.:.:.:.::::::::::::$$$> ,...,.,...,.,_.n.A... ,... :.:.~.;.:.:.. .A. ...,~:~~~ii:~::::.:.‘.’ .i.:~~:.:.~.~
- 40+ REXX books and manuals

,.: ,::: ~$p~~ ,.:;.:$zy ,.>$p ,.::::;:: Z?” ,.:~:::“.’ ,,$$$.“. ..:.::::-
- 9 written in last.year alone

..::::p .;,::. ..::* ,,::::.’ ..::::. ..:.::::.’ ..+.
- Most recent include:

,.::y ..::y ..:::::’ .;w ,,:y .:::::: ,/:::. .::::)
REXX Reference Summary Handbo& by D.Goran’
Mastering OS/’ REo(by G, Gargi&

,,,f:i

Application Development Using OS/2 REXX by A. Rudd

More REXX Excitement!
j n Trade Press articles

- IO+ articles in 1 st quarter ‘94
- Publications include:

F PC Week, Dr. Dobb’s Journal, OS,,2 Computing, OS/2
Professional, PC Magazine, Byte, OS/2 Monthly, , . .

n Industry enthusiasm for REXX :.:.:..i.:.::::::::: _... ,:.:$$y.:.:. ,... 2:*$$+“’ ..,. &:::::.P
) PO+ imp/ementations of REX’on many p,a~~~~~~

..:“y’
n Visual programm,ing with REXX

,.::p. ,,:<:y ,,::::::.’ ,.::g.’ ..::p .J.;::. ..:.:.:
) VX RE(J(, VjsprORE)(X, Gp fRE)o(, , , , ,$;‘bl-”

I ANSI Committee close to a RE)()(stand&d ,$:’ ,.:.:_.
n Enthusiastic response to IBM Object R;I!XX beta program :“’

1983 1988
-

1993-94 1994-95
I Plan

IBM REXX on AIX and NetWare
n IBM AIX REXX/6000 n IBM REXX

(5764-057) (5764-075)
-

-

-

Available 12/93
Port of IBM’s OS/2
REXX kernel to the AIX
platform (3.2.5 release
and up)
“AS-IS” release

-
-

-

Available 3194

for NetWare

Port of IBM’s OS/2
REXX kernel to Novell’s
NetWare platform (3. 1 1 ,..,.... :,>...:..c.:.:...x ,,~:,:ti:~~:Bi:~~~~:.:~~.:.~~..~.:...’ : : Y’
3.12, or 4.0 rele,~~~~~

,.::::p’

IBM CICS and VSE REXX
n IBM REXX for CICS/ESA

(5655-086 Development
n IBM REXXNSE

(5686-058)
System, 5655-087 Runtime -
Facility) -

Available 4/94
Port of IBM’s TSO/E
REXX kernel to

- CICSIESA (3.2.1 or 3.3
releases)
Development System:
b Editor, File System,

Panel interface

Available 9/93
Port of IBM’s TSO/E
REXX kernel to
VSEIESA ~:.:.:.:.:.:?;::::::: ,,,,; ,:,: ;p~:.:.: A.......

,,,,$:~$$~ ‘. ,~~::r::~~~~
Supports both caLmplIed ,.::+...
and i nterpret~~~‘~“““REXX

,,:$i“
programs,,z,/

.::::::” ,.#” ,.:::::: ,.;:>.. .::p ,,p ,,$.. ,:x:> :::::: r:::: .::;::” ..:.:.. ;:;y .;, y ;:::::’ .:gs ,#
p’:’

REXX Future Directions
: n Wide range of platforms

n Apply new technology:
b Object Oriented programming (SOM, DSOM, etc)
b Visual Programming tools
N OpenDoc

_. ~.:.::::::~::::$$:$5z
I Develop REXX function pa&ages to expand presen,c~:~~““‘..‘.“..

- Communications, MultMedia, Database,. . . ,,::)18~~~r.L.-(lbi~”

m Encourage use of RE)()(as the flapplication z&‘~enderVI
.,#’

n Improve documentation
..::::” ,.$$.’ ,:::::: ,.::; $9 .Cp:. ,.::I’ :::::: ..:: y

b Primer/on-line tutorial
,.f;$<. ,;;:y :::::z A::;’ ..:::.. ,,$? ,::I:..

n Expand user base / ..i ;
w Students, non- “glass house ’ andi’OS/Z users

h
,

-

The Open Scripting Language

a system
near you!

Trademarks

IBM, 092, AIX, 09400, REXXI6000, IBM REXX for NetWare, REXX for CICS/ESA, REXX/VSE,
C!CS/ESA, VSE/ESA are registered trademarks of International Business Machines Corporation.
UNIX is a trademark of X/Open Company, Ltd.
NetWare is a trademark of Novell, Inc.
Windows is a trademark of Microsoft Corporation.
VX REXX is a product of WATCOM International Corporation.
VisPro/REXX is a product of HockWare, Inc.
GpfRexx is a product of Gpf Systems, Inc.

-

Choosing a Command Language-
An Application-Centric Approach

Hal German
GTE

‘14

Choosing a Command Language -- An Application-Centric
Approach

Hallett German

GTE Laboratories, Incorporated.

An Introduction to this paper

For over four years, the author has
discussed a means for beginning and
intermediate command language users to
quickly choose the essential elements of
their application without using a single piece
of code. This paper is the first time the
approach has been presented to the movers
and shakers of the REXX world. It
supplements the presentation by covering
the following:

1. Why use such an approach?
2. Concepts behind the approach.
3. The approach itself
4. Conclusions
5. References

The presentation at the REXX Symposium
will provide an overview of the approach, as
well as an example of how to use, and
include other factors to consider. Handouts
can be obtained by contacting the author.

Why use such an approach?

In “the old days” it was easy. You used a
mainframe host that had one command
language and one editor (that usually had
ties to the command language). Then PCs
and UNIX systems snuck in from
somewhere and the issues became more
complex. There were more than one
command language and editor to choose
from. Programs could run on more than one
operating system (and simultaneously if
needed). Unfortunately, the theories and
software practices for command languages
were not enhanced to match the new
realities. The approach listed below is a
modest attempt to provide command
language developers a strategy to deal with
the new realities so they don’t have to say
“What do I do next?”

1 What is a command language?

Concepts behind the approach

Unfortunately, we only can briefly look at
this area. My definition of a command
language is the following:

A programming language consisting of a
series of high-level English-like
commands entered interactively (e.g., a
keyboard, mouse, or other input device)
or non-interactively (that is created with
an editors, saved in a file, and executed
in foreground or background). An
interpreter or compiler for the command
language then determines which user-
specified operating system tasks to
perform and processes them using
corresponding task values.

Whew! A real mouthful. So what does it
mean?

l Command languages are almost always
interpreted languages. (REXX is one of
the exceptions to this.)

l Command languages are usually
executed in foreground. (Again, REXX
is one of the exceptions.)

* Command languages are comprised of
English-like verbs describing the task to
perform. REXX is typical with instruc-
tion keywords like SAY and PULL.

l Command language provides a mean to
directly or indirectly access the
operating system. REXX shines in this
area with the ADDRESS instruction and
the environment model.

l Command languages offer user and
third-party extensions. For REXX this
includes functions, sub procedures, and
interfaces to external environments.

R

75

2. Identifyina the tyDes of command
languaae a@ications

In their CLIST manual, IBM talked about
three types of command language
applications. My eight years of working
with various command languages have
verified that this typology is a good
match for the type of applications found
in the real world.

These types are the following:

Front-end -- Also called “housekeeping”
applications. In this case, the command
language sets up the proper
environment for an application to
execute. This could be allocating files,
creating files, or creating environment
variables. They also can receive output
from or send input to the application. I
view the startup or login programs as a
special example of a front-end
application.

System and Utihty -- This is like front-
end command language application.
However, the emphasis is on doing
system tasks (such as backing up files)
and utility operations (Such as being a
function/sub procedure that performs a
date operation.)

Se/f-contained -- The other two types
are “blue-collar” applications. The
“white-collar” application type is the self-
contained application. It provides a
dialog with the user (usually full-screen)
while maintaining strict control over the
process.

3. The Command Language Component

The last and most important piece of the
puzzle is the command language
component. All command languages that
have examined to date have the following
components:

* Input/Output (File operations, Stack
operations, Output to the screen, Input
from the keyboard)

* Flow Control (Conditional, Loop,
Exception handling, Exit and return
codes, Array operations)

* General Features (Debugging,
Symbolic Substitution, Labels, Global
Options, Numeric format, Interpreter
Version)

* Interfaces (Internal functions, interface
to operating system and external en-
vironments)

* Built-in (Functions, and System
variables)

What the approach does is combine all
three of the above elements. First
determine your type of application, once
you know that, you know the command
language components that are usually
used by that application type.Finally look
up the commands corresponding to that
command language component. And not
a single piece of code has been yet
been written.

The approach is application-centric
because it encourages you to know your
application requirements and data as
much as possible before starting to code.

The approach

The following are the steps of the approach:

1.

2.

3.

4.

What tvbe of abblication do I have?

The three types were discussed above.

Which command lanauaae should I use?

This is discussed in the presentation.
This includes a look at the following:

l Type of data
l File type
l benchmarks
* Ease of use vs. power
* features

Which command lanauaae components
should I use?

The components were listed above.

Which command lanauaae match these
components?

This is the crucial step. Table 1 lists a
summary of the components.

R

‘76

5. Which command lanauaae comoonents
match these commands?

Space does not permit listing this step.
However, tables with this information can
be found in the references section.

6. Where can I find more about these
commands?

7. Do I need third-oartv extensions?

There are many places you can learn
about a command language command.
These include: user guides, books, on-
line references, summary references,
electronic information servers, electronic
mailing lists, user groups, and
colleagues.

Third-party extensions should be used in
the following situations:

* When portability is not a concern.

* When the third-party extension performs
an operation not found in the command
language such as network and
database operations.

* When you can afford the run-time
license costs for distributing the
extension.

l When the extension greatly enhances
the look and feel of the application.
Such as any of the “Visual REXXes.”

Conclusions

I hope that this will be of use to you the next
time that you are considering developing a
command language application. I encourage
others to look into this area.

Getting in touch with me

Hallett German
GTE Laboratories Inc
40 Sylvan Road
Waltham, Ma 02254
617-466-2290
hhgl @ .gte.com

References

German, Hallett Command Language
Cookbook, VNR 1992
[The approach is covered in detail.
Looks at many different type of REXX
implementations.]

German, Hall& OS/2 2.1 REXX
Handbook, VNR 1994
[A Rexx tutorial and the approach with
some enhancements.]

Table 1 Command Language Components
by Application Type

Front-end
- Operating System Commands
- External Interfaces
- Input/Output: File operations & Command

Line operations.
- Built-In Functions
- Flow Control: Conditional

System/Utility
- Operating System Commands
- External Commands
- Internal Commands
- Input/Output: File/Screen Operations
- Command line input
- Built-in Functions: String Operations
- Flow Control: Loops
- General: Batch Operations, Arrays

Self-contained
- External Commands
- Functions/Sub-procedures
- Input/Output: Command Line operations,

user validation
- Flow control: Multiple conditions
- Built-in Functions: Text Case & string.
- General (Interactive operations, arrays)

‘77

---_
_ -

News From the REXX Compiler

Klaus Hansjakob
IBM

Dr. Klaus Hansjakob IBM Vienna Soltware Development Laboratory
Lassallestrasse 1

HAN!3JAKO@VABVMl.VNET.IBM.COM
ATIBMCXP at IBMMAIL

A-1020 Vienna, Austria
Europe

(+431) 211454243

The information contained in this document has not been submitted to any formal IBM test and is
distributed on an “As Is” basis without any warranty either expressed or implied. The use of this
information or the implementation of any of these techniques is a customer responsibility and depends on
the customer’s ability to evaluate and integrate them into the customer’s operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques
to their own environments do so at their own risk.

In this document, any references made to an IBM licensed program are not intended to state or imply that
only IBM’s licensed program may be used; any functionally equivalent program may be used instead.

Any performance data contained in this document was determined in a controlled environment, and
therefore the results which may be obtained in other operating environments may vary significantly.
Users of this document should verify the applicable data for their specific environment.

It is possible that this material may contain references to, or information about IBM products (machines
and programs), programming or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming or services in your country.

Agenda _ -
0 n ews from the REXX Compiler

n Packaging an application
- General considerations
- DLINK
- Function packages

Compiler.

IBM Compiler and Library for SAA
REXX/370
Release 2

5695-013 5695-O 14

Available for CMS and MVS
Library is part of REXX/VSE

Alternate Library PTFs
-

Introduction of Copyright, Alternate Library

Copyright
p This pogram welcomes you __. ‘/ I

‘%COPYRIGHT This program mpyrighted for 7

play ‘hello world’ 1

‘%COPYRIGHT MY Company, Vienna, Austria ‘/

:. :
:ESD HELLO d 00000001:
~TXT d BEXECPROCEAGRTPRC Compiled REXX 2.0 15 Mar 1994 100000002~
jTXT 3:46:29 CMS REXXC370 3.48 28 May 1993 PTF UN51503 ~00000003j
~TXT 510) -I^&% §j ^ d & &j 'd rip - 40&i 0 i0 00000004(
iTXT y 0 *LO& dl&2 'j 'd&Q&6 i dh- d10(6\0 00000005~
jTXT \ & dd& & q) d This program copOOOOOOO6~
;TXT yrighted for MY Company, Vienna, Austria 800000007~
iTXT & b 0 6 a - (a c - 00000008~
~TXT h -* a Bhmu* 6 6 A A - - 00000009i
~TXT (/ a a A - a f 0 J& c A6 -00000010~
~TXT 8 z a6 a f f f 6 - J aa 00000011~
~TXT -: % H & ARJ 1XE z 1 N 1 (d 0 ~00000012j
~TXT c "(10 aA 0 0
~TXT

i J%*j - -0 ~00000013~

::
16: AQ' .. H R p 60)E Kf"E &G :N :E-jO 8- 00000014~

~TXT
:TXT

az I / fcu k;OR&X C 7 8 2\M Y 1 ~900000015~

~TXT c
t63~k;~S I T OF OC Y 66 '(0 na l lZ+E k ;&.)00000016)

S OG &S L tiH - BB \ Ya P' BC k Y% K> 2
~TXT

00000017~
B B 91 61 k: ?y@ K= 2 b d @i @h ka Y1 d 0 2m 1600000018~

;TXT % j 1 o ,, b.U 8 /Z Bi) J d^ '& BP $3 (00000019i
jTXT 0 UE6 :i-/ *j !/dI6 / M LjT
~TXT

-A +a 0000002n~
-H I ~/@a - B n

LEND
00000@21~

1569501301 010094074 00000022f .

Alternate .Li brary

n Compile program
-with ALTERNATE and SOURCELINE

l use CONDENSE to hide source
l DLINK does not work

n Distribute Alternate Library
-without royalties, without paperwork

n Alternate Library
- is installed on systems without Library
- invokes interpreter when compiled program

is run

Distributing REXX

Library optional required
Source exposed not exposed
Maintenance problems no problems
Packaging few options all options

optional
hidden (CONDENSE)
no problems
some options

82

What’s missing

n TRACE support
= REXX I/O for CMS
n INCLUDE facility
n MARGINS

Agenda

m News from the REXX Compiler

CY ackaging an application
- General considerations
- DLINK
- Function packages

Performance
-

,:

P ,REX)-(Calfer’*j
:;, cvi=sy$v~r(‘SYSCPU~) ‘..

Do id to 1000, ,,
%all &er

. . End
cve=sysvar(‘SYSCPU’)
Say ‘CPU time’ eve-cvi
Exit

Performance (MVS)

OUTER EXEC (SYSPROC)

CEXEC (SYSPROC)

MODULE (STEPLIB)

MODULE (DLINKed)

0 50 100 150 200 250 300

Corn iled
e

Inter reted
INN R/CALLER INN R/CALLER f

Performance (CMS)

INNER

OUTER EXEC

CEXEC 2.77
2.74

MODULE

EXEC (execloaded)

CEXEC (execloaded)

RXOUTER MODULE

RXOUTER (nucxloaded)

OUTER (DLINKed)

0 0.5 1 1.5 2 2.5 3 3.5

Applications

Internal - External
I I Internal 1 -External 1
Performance

I Maintenance

DLINKed Applications

86

I

DLINK

n Search overhead zero
n Requires Compiler
n Does not work with Alternate Library

Function Packages

n Commonly used functions
n Early in the search order
n Functions must understand REXX

function invocation

8:

Search Order (CMS)

continue search

Applications with Function
Packages

Function Packages
. -

-- n First in search order
n Compiler allows to write functions in

REXX
n Works with Alternate Library
n May require explicit loading/unloading

on CMS
n DLINK may be used when Alternate

Library is not used

CMS Function Package Example

n Two files
- RXUSERFN is function package loader
- USERFN is function package glue code

n “Glue” code for a function package
- Use without royalties
-Allows free naming of function package

l Requires renaming of files
l Explicit loading of package and all functions with

“RXmyname LOAD”
l Explained in RXUSERFN header

89

Necessary Modifications
_ -

RXUSERFN ASSEMBLE

&PACKAGE SETC ‘USERFN’ Name of the package to load
&RXPACK SETC ‘RX&PACKAGE Name of this program
&CR(l) SETC ‘$& .j::::.::j:,:: :,: :G:;; j.;.i.’ Copyright notice
&M(2) SET0 *x,.~..~~: .,_ ..;;’ Copyright notice continued

USERFN ASSEMBLE

&PACKAGE SETC ‘USERFN’ Name of the package
&CR(l) SETC ‘;:.:;:.: .:.‘..~.:~..:.;~~::;;: j’ Copyright notice
&CR(2) SETC ‘,y:,;.::;.:.;,:...+ ii;;:;:.,:.’ Copyright notice continued
&FUN(l) SETC ‘USER1 ’ Name of function
&FUN(P) SETC ‘USEW Name of function
&FUN(3) SETC ‘USERS’ Name of function

Obtain the Source Code

n Email - write a note to
- hansjako@vabvml .vnet.ibm.com
- ATIBMCXP at IBMMAIL

n Disk - get one
- as long as supply lasts
- if you can’t use email
- if you have a way to upload code

n Supplement
- type in

Agenda
- .

n News from the REXX Compiler
- Copy right
- Alternate Library

n Packaging an application
- General considerations
- DLINK
- Function packages
- Function package example

91

--

Klaus Hansjakob

IBM Vienna Software Development Lab
Wien 2. Lassallestrasse 1

c/o IBM Austria
Obere Donaustrasse 95

A-1020 Austria
EUROPE

HANSJAKO@VABVMl.VNET.IBM.COM

(+431) 21145-4243

May/95

‘unction Packages . . .
l Entry/exit conditions:
: "OIL: Ihe WOUIE is generated as a transient mdule. .
. Entry: * Standard SVC conventions. . RI points to a totenized PLlSl (SVC 202 linkage). *
. fait: . RI5 - I USERfW succrssfully loaded and returned with e . RIS-= I - Return code from unsuccesful "UCXLOAQ "SERF" .
. - Return code passed back from "SW" after

invocation wth original PtlST . - 4 to indicate bad Pt,ST .
* hit: . Return to caller. .
* Operation: . When invsRrd without argurnt "UCXlOAO "SERF" "I RXUSERF". . and Pass back the return code obtained from "UCYLOAO. . When involrd with 'tOM' 8s the first srgwent then "UCXLOAO I
. USER!" II RXUSERF", inw.e RXUSERf" with the s?w Pt,Sf 8s
" ;tM;;;rd on entry. PC., Bach the return code given back by
* Othewise display message and return with return code 4. .
* Ilsclibs: . CHSLIB or WtPl f
l W.cros end control blocks: " REOEOU .
* Change activity: . 91-11-2, I” Clcanu~ and cements
. ¶36ti26 K" IW.c function p"ct(lge ML " macro rsrisblr. add f copyright as metro variable. .
*"**End of $p~~ific~ti~ns~~~l”.~~.~~.~~~..~~.~..~.~~~*..~.~..~~~~~~

.
‘RXPACK rwoOL 21 Mst be loaded below ,SWO,
ymCK mOOL 21 Expects SVC 2e2 linkage

mxPACK CSECT , .
" Mawe SYR this is a tOA0 .

“Sl”C ..“I2 Establish sddresssbillty

:C
STARTCOO "ranch srownd header
CIB'IAXPWK Pacmge 10

rw SETA "'*CR
‘I SEIL I

I5794 KH News from the REXX Compiler - Supplement 2

Function Packages
TITLE 'RXUSERf" l IXX function PacEage Lading Stab' *"..".......""......."...""."".~....~...~...."*,....*.,.~".*.~*",.. eee1eeee

86me*ee . " ee8le288 . f 8887ei8e . Describe yOur function package here
. welea ."*.f..l...~...."~.*""~~~"**~"~"*......~~~..."...~~..,...*,"~.*~... eeelesee

;PACKAGE SElC '"SERF"'
ewle6ee

"ar of the PacW.sge to load 88818780 . we,owe
!RXPACK SEIC '"LKPACKAOL' 11"~ of this Pvogro~ 888169e8 -
rot(I)

eeelleee
WC ' -- Copyright n.tiCI 88811188 . 88811286

EJECT 88611386 w-start Of ~prc,f~cat,ons".'l."..~.."~.*.*..*.."~......*..*..**.~ 88828686
:

* ee838086
This code Is provided on an as-is basis. . BBeaeeee . " e6058e88 ."""~"..**".t........."."".."~*...........*.*..."*"....***"~~~~"~~~ 8886WBB . 8ewe66e

l Icodule name: fWJSERf" ee88eee8 f eeeseeee
l Descriptive n"m: REXX function package loader meeeee " WI 1eese
l flmction: 86128888 . 881 mse f "UCYtO"O mdulr USERf" 8s RXUStB": vhen invared with a LO&O m46eee . rcwcst lnvole USLW" with sar PLIST 8s on entry. BB,SWW . w66eee " TO generate: 8817eeee " "Is74 RxUSERr" waeeee I LO"0 RXUSERF" (ORlO," ,"A"S 86196ee6 " SfW Fx"SfRfW ee286eee . 662,eese " Yotr: RX"SERf" is interrogated as Psrt of the REYY search sezleele . order for external fkmctions. Ihe functions WC loaded ee216eze
: automatically when invoked. TOY can also create " function 88218838
. psr*sge with a difrerent "ame (e.g. "niYPK0,: 682188W

Lnar this file to "xW?PKC. 6e2~885.3 . Ghan c the mttcro vsrishlr PICKAGE in the header of this
ri?, from OSERf" to WfPKO

~ezte868 .
. Rename the file containing ihe

eezl6e7e
functions to HIPKO. 86278688

l Chan e
fi7

the macro variable PICKAGE in the header of the ee21069e " c containing the functions to WPKC. 88218188 . h%"n the function package is not interro ated as part of
I

8821et10
the REXX stnreh order you mst ,o.d the unct,onr 1" the

; P

6ezlelzo
actsge wlicitely (5RnnPK0 t0AO "xa.waaa' Acre *""maa 88218t38
s the nane of the function) or globally ('RnnPIG LOAD') 88218148

before you can invoke them. 8821815e . TO drop all functions of a Pscagr issue e "UCYOROP connand 86218166 . for the Package ('wUcxonoP RxwPKC'). e6216i76 . 66226666

0!5/94 KH Na,m from the REXX Compiler. Supplement A 1

Function Packages .., !Yea
.CRLOOP AlOP

;:' (61 CT &MW.CRlOOPE
C'6CR(&Il'

‘I SETA ‘I+,
A60 .CRLOOP

;CRtOOPE ANOP

STARTCOO OS Of

::
RI8.RI4 Ssvc return sddress
“2,RZ Assum install only

2
~~.n~;l',x'ff' My ar-guwnts I.

:;: ~~::lS,"",=CtS'tO*O~r i(s%i; :"xpif::;'\oad?
Br if not - go conplain

LR "2.Rl Keep invocntnon Pt,Sl .
. "UCYLOM "SEWN as RXUSERF". .
0010A0 fou l

LA RI.“UCXtOAO rddrsss "UCXIOAO Plist
svc 262
oc AL1(Il Rrtwn even if ernv
LTR RIS.RIS Oid lo&d YORK?
BWZR foe lo. pass bacu rc .

* If explicit load requested Pass through invocation Pt,ST .
LlR RI."2 explicit load?
BIR RIB "0. rtt urn
svc 262 Invo*r nucleus extension

Et
~~~‘1’ 

Return. pass through rc . 
. Error hsndllng routines. . "ste thnt in order to avoid the generation of relocatable . address constants. the TIPt," Pt,ST is 'hsntbuilt' rather " than using MIEM. . 
BAOPL :r * 

RI .Mse, 
Sanething's wong with PtlST 
Get message address 

LA R2,l'MGI Get message length 
:;:" Rt.8'8111'.T*PB"ff set it i' PL,SI 

RZ.T”PLE” set It 8" PLlSl 
0, TIPt*Y.,3.x'48' 

:t, 
RI.T"PLI" 

Rewest  l rrov .errags edit 
Point at PLIST 

262 6lW it to cus 
oc ;;:cp lgmm errors 

kit RIB' 
Set non-zero return code 
Return 

OROP RI2 (I 
IYPLI" oc ctO~,1Pt~"~.x~e~~.~t3~e~.c~8~.x~Oe~.~t2~Ol 

OS/S4 KH New from the REXX Compiler. Supplement 3 

1 

92 



Function Packages .,. 

. _I”PB”FF EO” t”PLIY.e.3 tvttll E$” T”PLI”1I4.2 MSGI C’CHSRUFBME Invelid Qaremeter’ * 
““CXLOM OS 

2 
::8~““CXtOM’ 
cIn’ar!xP*cK’ “me to load as 

;: ,, f$t’“““” “a@ of wdule to load 

i: 
Cl*‘S”SltH’ System bttribute 
ctn’SER”tCE’ Service attribute 

:: 
CLB’PUSH’ Push dam existing extension 
BX’FF’ 

me , . 
trcm Literal pool I 

ARCI 
&“s*e 

first argument 

END 

05194 KH Newnfmmthe REXXCompiler- Supplement 4 
/ 

Function Packages ,.. 
” USER1 contains a call to USER1 and a cell to “SUU. eesleeee . - compile “SERl uith the OLIHI: coaQiler option w52eee6 ” - LOAD ustftw “SERX ( RLOSAYE ees3eeee ” - CEhY4 “SERF” ( “WP ees4eene . If you do this on CM rel ) I you will get e wdule eessoene ” runnable on CWS rel S  and later. which will reside eomee8 ” above the I6 P&3 line if Qossible. eesleeee . USERI. “SERZ. and USER3 are the r.noyn functions. 9esnee9e . Calls in “SLRl to USER3 and “SE&LX will use 01111. emwee f ee6eeeee 
A Entry/exit conditions: ee61eoee . 88628988 I Standard SVC conventions. ee639e9e . R1 points to e torenized PLIST. 88648888 * This code can run with MOOE 24 or AWOE 31 eesseeee . ee66eeee ” Exit: eeueeee I tm = e - Function successfully loaded or exists enmeeee I - functions unloaded eweew I - Service call. Cndced cell. . . . ee)eeeee ” RIS-* 0 - Return code fmm unsuccesful YUCEXT LOAO ne?1eeee I - I LOM or RESET. but no second argwent ee?2eee9 I or function not in peckage eeneeee . - 4 no first srgumnt ee74eeee . 9emeee 
* Meclibs: 88768888 * MSP or OHSOP, 88778888 . eemeeee 
” Macros and c~ntml blocks: emenee . RiCEP” eeeoeeee * 
. i%:“’ 

nweeee 
eeezeeee ” eee3eeee 

l Change Activity: eea4eeee * 91-11-21 m Added WOOE 31 capability eeeseeee . 9396-22 IN Mded missing brench for service call with 9eeseele I 88858828 I AWOE 24 (thanks to Roderic A. Osvis for pointing 
out the problem end providing the solution). ee*seue . eeesee4e . 9386-28 I(H toad ell functions in resQonse to a ~06.0 request 
without function name specified. ee*seese I 88868888 

****End of Specificrtionr.“..L..,.,,.,““.“.”,,,””~*””*”””*..~...~~. eeweeee 
SW&E 1 eeeeeeee 

DPACUGl PJioOL ANI eee9eeee 
‘PACKAGE LHOOE 3, ee9eem 

SPACE L eeaeeee 
IPACKACE cstct 

“SIN0 ituc0a.e 
eweeea 

Establish Addressability ee93eeee 

II”“” ‘.R12 
tsfablish Mdressability e994eeee 

STARICOO Brsnch around bender ewseeee 
OC CL*‘&PACUGE’ 88968888 

WRX SETA ““CR 
Pactcage 10 

eeweeee 

05194 KH News from the REXX Compiler _ Supplement 6 

Function Packages ,.. 
tlltf ‘“SERF” REXX function Peceege Clue Code a 99918888 
ICLC rPrt~O~.rCn(l).rf”“(I) 88828888 

. . . . . . ..~f~.l”~...~~~~~...~...~~.....................~....““....”.” 9ee3eeee . . eeeweee . Describe your function paceage here . neeseeee 
l .  eee6eeee 
~LL.“..~.l~.“~~“....*.....~~.....*.....~”*.~.”.*..~.*~.....”.,.~*~~ ewe888 
.  eeeeeeee 

‘PACKAOE W C  ‘“SERF”’ “me of the pe.crege eee9eeee 
” 
tmll 3ElC ’ ’ .. 

eeleeeee 
Cosright notice ee11eaee 

” eelzeeee 
‘FUN I SflC ‘USER1 YLI of function eeI3eeee 
‘F”” 2 

II 
SETC ‘“SERP’ Name of function eel4eeeo 

‘F”” , SETC ‘USER,’ Yeme of function eelseeee 
l 9ek6eeee 

EJECT ee* jeeee 
*m**S*ar* of Sp~cificstions.*,.““*..“..“.....,*...,,”””~..~.~.~“..~ eeweeee 
. . ee19eeee 
I This code Is provided on an as-is basis. . ee2eeeee 
. ” 88218888 
.~l*~“~.l*.“*““.~~“.~~...“.....,.......................““””.”~”~““~ (8228888 
I 88238888 
” HDdule name: “SERF” 88248808 
I ee25eeee 
* Oescriptive name: Clue code for REXX function pockage ee26eeee 
* sezleeee 
* function: ee2neeee 
” 98298888 
. the follouing code resides in free storege and is copabte ee3eaeee 
. of replyin 

9 
to LOM end RESET. 88318888 

* A LOAO ccl results in identifying the function (whose name ee32eeee 
. 
. is passed es pareneter follouing LOMI es entry point. 88338888 

*. LOM call wthout function specified will identify all eenee1e 
* functions in the function paceage es entry points. 88338828 
* A RESET call free WUCXOROP will turn the functions off. ee34eeee 
” A PURGf service cell is ignored. ee3seeee 
. 9meeee 
. to generate eeneeee 
* WSH “SfRFN eueeeee 
I IOAO “SCCW 9839eeee 
* crnn “SERF” ( Yww sueeeee 
I 89418888 
I Note: lo get a FOOD”Lf which can execute on CnS release 5 end 9e42eeee 
” 1.1.1. --a enerate the eodule on e CM3 releese a S. I vote: When user uacttons are cowiled PJXX with the OLIWI( 9 

88438868 
88448888 

” coprpiler option, then 
the functions to be OL I 

ou wst explicitely specify 88458888 
* wed explicitrly on the LOM 8046enee 
” co*uuand. and you ust use the RLOSAVE option for the ee4leeee 
” LOAO coamsad. ee4eeeee 
I fxawle: 884999ee 
I USERI. “SfP.2. end USER3 ere functions in the pacuge. 98588888 

OS/S4 KH Nom from the REXX Compiler - Supplement b 

Function Packages .,. 
&1 SETA , 
.CR,OOP ANOP 

$f (iI 61 LIUY).CRLOOPE 
c’scaw) 

LI SETA &I+1 
MO .CRLOOP 

.CRLOOPf Al iOP ” 
l List of functions included in this pacx. with their offsets . 
F”“LWrr EO” 4.e 
yw;s EO” $4 

Offset L length of “Me 
Offset to the routine 

EO” 
~UYLIST 0s ef 

Length of a single entry 
List of functions 

LW 2:;; yf”” 
*t 
.F”LOOP ANOP 

Alf @I 01 alwl.F”LOOPE 
EXTR” 8F”NUI) Yaw of coqiled 

is 
~~W4!fl)-IPACLAGE) Offset pf cow, .f 

rogrs. 

::: pref’x 

ed prog 

oc cL6~rF”“(nl)’ 
‘1 SETA ut, 

&CO .F”LOOP 
.F”LOOPf AWOP 
y”LlST DC A(.-.) End fence 
. 
S1AR1C00 f0” ” 

:: Ki: 
Save return address 
Save return address once mre 

::c m~~n~),=cte*LOAO’ Is this a load? 
“es. check for eny .rg’s 

::C .W~O,Rl’,*CtO’RESET’ Reset? 
Yes. turn off functions 

SR R,S.RIS In case of service call 

:A 
fl~.,‘I’~geeeee’ Set NOB of register 

LTR R2k2 
*A will clear no0 in m00C 2e 
Br if MOE 24 

::I 
Pt2e21 
96(Rl,).X’fE’ h-L at CIll type (XA) 

Pt2e2, 
CONTN 

f; %Yeee*.=x*rE~ too* *t cell rype * 
BNLR RI4 Return Service. Endcmd. . . . 

:: 
R15.4 Oed;;i::;,s;t error code 
RI4 . . 

CHK4ARCS EO” l 

:t, 
RIS.l  

y;w~;‘,X’FF’ 
Set Qossible return code 
hy arguwnts passed? 

Of No. load ell functions ” 

ee9neeee 
eeorleeee 
eteeeeee 
eleleeee 
8182ggBg 
umeee 
eleueee 
slesneee 
91868898 
eie7eeee 
cleseeee 
elegeeee 
01188888 
9Itleeee 
et*2enne 
91 I 38888 
et 148898 
e115888e 
81168888 
ellleeee 
91,*99ee 
mt9eeee 
912eeeee 
e1219eeE 
et22eeee 
et238888 
e124eeee 
9*2seem 
eIz6eeee 
el27eeee 
e1215eee 
ei2eeeee 
el29wee 
913eeeee 
et 3teeee 
slmeee 
tdneeee 
ei34eeee 
e135eeee 
n*xseee 
eixe~ee 
a378888 
e138eeee 
e*39eeee 
eI4eeeen 
olueeee 
e1428eee 

ei43eeee 

et44eeee 
81458888 
eL46eene 
e14reeee 

05194 KH News from the REXX Compiler - Supplement 7 

2 News from the REXX Compiler - Supplement 

93 



Function Packages . . . 
. LOM request. Check function name Against fUNLIST. ” Only turn on the requested function. 
l 

PUSH USiYG save US’“6 stilt”, 

USlllG ONUCX.RIJ  USC swc *rea flv PL,ST 
AuTGtoAu 2; ' 

:: 

cllt~~(tNtIsTl.NlIsT wave s*eIrpln to,wti arta 

R4:tWIRY 
Savs old plrst pounter 
tangth of rw,,Si entry 

:: 
R5.EWNtlST Cnd of function table 
R2,FU"tISI Start of function table 
R15.1 Set wror return code 

CHECXl &J ' 
;:C f~K&Q3).iUWt"AM0l21 ChecX winst "ye 

Found - turn functlan on 
:JtE r&R4.cNEcKl tow for mother check 

Return with RC - , . 
. LOM request without function nane. load 011 functions in . PKk”Te. netvrn with RC e. . 

ALLLow 2” ” In.“, Save old Mist pointer 
IA RI.tIYTnI Length of FUNtISl entry 

:: kx:uNL’sr 
fnd of function table 

RZ’FUNLISI 
Last entry in function table 

“WF, it” ’ * 
Start of function table 

mc o*llsrwftlsr).wtlsr Wore sxr1aton to wrt wea 
R,O.T”RNOW 

it, R*.R4.“tXT~, 
lurn on the function 
Loop for mother function 

RI5.RI5 Set oL: return code 
nn RI, &t"rn . 

rUR"oN 3: * e(ItY~,~UNtNLlf~Rz)~~o~~,;~artup name 
111 RI.DNLISl " 

. See If function is already a nucleus rxtenslon. rare it . I nucleus extension If not (CHS rel ) 51 ” 
IA RI5.1 
tlln R,S.R,5 -I 

::, 
RlS.ONtAOOR every forr of YUCEXT plist 
cMSPROC.wSP5 Are n on MS release 5 

ew S"2BPl 

:vc 

nr if yes. use Svc 282 
nIs.=reeweeee* tot. PI1S.t. CC,P”,rEI(CF f,“gs 
284 

ITR R,S.R,5 fxistst 
nm nIe Yes. imaediatc return 
I A6.WNOffS( WI 
LA R6.8Ul6.RIZI 

toad address offset 
True stsrt address 

OS/94 KH News from the REXX Compiler - Supplement a 

Function Packages . . . 

EJECT 8235eeee . B236BBBB ” Equates 8237eeoe . e23neeee ARGI CPU 8.8 First arguncnt 82398888 
ARC2 

:9:EOU'6~n 
Second arS"W"t 824eeeee 

8241eeee 
CMSlLVEt 82428888 . e2oeeee . PLIST for invo*ing '""CEM' (setup 11s CANCCL PLIST) e244eeee . 82458888 

"115, 
iz :kWCEXT~ 

YUCtXT Mist _ 82468888 
"me ezdreoee 

l lNM OC ClE'6PACKAGE' function "me ezweeee 

MICE" ;: 
X'FF' System UISL enabled 82698886 
Y'B,' 
8tW~~YSlE141 

system key ezseeeee 

NtftAG :: 
"UCEXT r,lg e25196B9 

82528888 
“‘A00R DC r(e) 

Spare fl CBTS 

AL.l(*-“) 
Entry point address 82538888 

OC private e254eeee 
“1STARi DC f’:’ Strrt sddrcss 82558888 
*ttcw DC ’ Length 82568888 
tY,Isf fPU ‘-“LIST Length of list e257wee . 825eeeee . HuttX, f’,,$, f,aTS: 0259eeee 
l exeeeee 

swtn mu roe’ 82618886 
.  62626669 . DSECr for ““CEXI pllst 0263eeee . 82648888 
DNUCX OSECT Based on regisler 13 8265eeee 

EL i: 
ctn ‘YUCEYT’ “me 82668888 
cte ‘eP*cKACE’ function name 82678888 

KE i: 
x ‘FF’ NaSL 82688888 
x ‘W’ System licy e2698eee 

oNtFtAc i: 
~t!n~~Ysrrt4, “UCEXT flag e2reeeee 

Spat-@ f’!TS 82neeee 
0IltAoon OS e2128eee 

OLSIART :: 
;t4 (‘-‘I 

EM;;tmt address (tl=canccl) 
82738888 

Start address ezneeee 
OtNLtfN US AI4 (mEELElo Length ezlseeee 

NUCO” e2xeeee 
fYO e217eeee 

OS/94 KH News from the REXX Compiler - Supplement IC 

\/ 

Jk 

\ 

I 
/ 

Function Packages . . . 
SI R6.ONLIDUR Add to st”rt”g PS” 

:vc 
ni5.weeeeneee~ to* rtist. COP”,rt”CL flrlgs 
2eb 

ml IlIe neturn 
. 
I Scr if function is slready 8 nucleus rrtmsion. w.*e it * a nuclws *rtenslon if not (CM5 rel 5) . 
;v2e2t 

EC 2e2 *t4r11 -T-a,, th,WTh if eTr0’ 
LTR RrS.ltl5 Exists? 
n2n nle Yes. immediate return 

:A 
M.FUNOFFS( R2) 
RE..em6.R121 

Land address offset 
True stat address 

II6 O"tMOR 
Zc 2eS 

Add to stvtw F’S” 

DC AM(I) ,g”Dlr l Pr0t-S 

::P r2"C : : : : I : ,  u* ,wc StntYs 
l 

.  ftESf1 request: switch off fwtions . 
;OOFF IOU l 

PUS” “S,“G *we USING st”t”s 

USING DNUCX,RI3  use *"Ye Oren for PLIST 
uvc onusr(lNtrsT).Nusr nD"P SLPIeton to wxr area 

n5.fUNLIST -> to list 
R1.0111157 -a P,,ST 

CLI cmPnoG.msP5 Are we en W release 5 
BNN svze22 er if yes. "se Svc 282 

SV2612 
:O" ' RI5.FUNO~FSm5) Any more to Cancel? 
LTR II5.R,5 
nzn RII 0 = a,’ done . . . bet out 

nk5.=x*eeeeeeee’ 
svc 20 . f”~~t~~~,.~;~~d~,c~~~~~~~d) 

. 
SVZE22 EOU ’ 

:m RII'RI5 
RI5 ruNoFFs Aay ear0 to Cl"IC.l? 

.m me' e = alI done . . Set out 
WC oNtN*m~e).ruNtNwr(ns~ c0py statalp mm 

:ic 
282 
At4(I) ,gnore errors . (we ignore errors e.g.: function already cnncelled) 

LA -) next iten tn fUNLIST 
n 
POP US,"6 nestore USl"C st?.tus 

elexeeee 
elemeee 
eleseeee 
81868888 
e,erewe 
eleeeeee 
elegeeee 
e19eeeee 
ei91eeee 
e192eeee 
81938888 
81948888 
81958888 
wsseeee 
eI9teeee 
ei 9eeeee 
e199eeee 
82888888 
ezeleeee 
82828888 
82838888 
e2ereeee 
62858888 
82868888 
82878888 
82888888 
82898888 
ezIee8ee 
e21188ee 
82128888 
82138888 
e2lweee 
wi5eeee 
ezlreeee 
821 leeee 
821neeoe 
ezlseeee 
ememe 
872,eeee 
en28888 
82238888 
62248888 
e225wee 
e226eeee 
82218888 
ezzeeeee 
82298888 
e23eeeee 
emeeee 
82328888 
emeeee 
62348888 

OS/94 KH News from the REXX Compiler. Supplement 9 

3 

94 



Using REXX as a Database Tool 

Mark Hessling 
Griffith University 



Using REXX as a Database Tool 
Mark Hessling 

Grifi ith University 
Brlsbane, Australia 

Introduction 

Having been involved in Database Administration for the last 5 years, and having a long 
relationship with REXX (over 10 years) it was inevitable that the two should come together 
eventually. 

GUROO History A 

During 1993, I found I needed a scripting tool to manipulate some data in Oracle tables as 
part of my Grad. Dip. course. I decided that it would be quicker to write an interface from 
REXX to an Oracle database, and then write the programs I required in REXX than it was 
to write the same programs in the tools supplied by Oracle. GUROO (Griffith University Rexx 
Oracle Overseer) was the result. 

As I already had the basic framework, courtesy of the SAA REXX API in Regina, and the 
interface to Regina in THE, filling in the remainder of the tool was relatively simple. 

The prime design consideration in GUROO was simplicity. I had a rough idea of the 
interface to existing REXX-SQL tools like the Database Manager in OS/2 Extended Edition. 
These interfaces seem too complicated. Compare the same program written using the 
REXX interface to Database Manager and the GUROO example. See Examples 1 and 2. 



Example 1 
,*-----------------------------------------------------------*, 
/* Display the names of all tables owned by the default user.*/ 
/* DBM version. 
,t-----------------------------------------------------------~~ 
,*-----------------------------------------------------------~, 

./* Load the DBM dynamic link libraries... 
,t-----------------------------------------------------------~~ 
If rxfuncquery('SQLDBS') \= 0 Then 

rcy = rxfuncadd('SQLDBS','SQLAR','SQLDBS'): 
If rxfuncquery('SQLEXEC') \= 0 Then 

rcy = rxfuncadd('SQLEXEC','SQLAR','SQLEXEC'); 
,*-----------------------------------------------------------~, 
/* Connect to the SAMPLE database... 
,*-----------------------------------------------------------~~ 
Call 8qlexec 'CONNECT TO sample IN SRARE UODE’; 
If ( SQLCA.SQLCODE \= 0) Then 

Do 
Say 'CONNECT TO Error: SQLCODE =' SQLCA.SQLCODE; 
Exit 

End 
,*-----------------------------------------------------------~, 
/* Prepare and declare the cursor for the SQL statement... 
,~-----------------------------------------------------------~~ 
st = "SELECT name FROM sysibm.systables WHERE name <> ?"; 
Call 8qlexec 'PREPARE 81 FROM :8t'; 
Call 8qlexec 'DECLARE cl CURSOR FOR 81'; 
If ( SQLCA.SQLCODE \= 0) Then 

Say 'Error preparing statement: SQLCODE =' SQLCA.SQLCODE; 
Else 
,*-----------------------------------------------------------~, 
/* Open the cursor associated with the SQL statement... 
,*-----------------------------------------------------------~~ 

Do 
parm-var = "STAFF"; 
Call 8qlexec 'OPEN cl USING :parm vat'; 

/*------------------------------------------------~----------*f 
/* Fetch and display each row selected... 
,~-----------------------------------------------------------~~ 

Do While ( SQLCA.SQLCODE = 0 ) 
Call 8qlexec 'FETCH cl INTO :tablenanm'; 
If (SQLCA.SQLC~DE = 0) Then 

Say 'Table = ' table name; - 
End 

,*-----------------------------------------------------------~, 
/* Close the cursor and end the transaction... 
,~-----------------------------------------------------------~~ 

Call l qlexec 'CLOSE cl'; 
Call 8qlexec 'COMMIT'; 

End 
,*-----------------------------------------------------------~, 
/* Disconnect from the database... 
,~-----------------------------------------------------------~~ 
Call sqlexec 'CONNECT RESET'; 
Return 

Example 2 
f*_________----_--_-------~----------------------------------*/ 
/* Display the names of all tables owned by the default user.*/ 
/* GDROO version. */ 
/*-----------------------------------------------------------*/ 
j*-----------------------------------------------------------*/ 
/* Connect to the SAMPLE database... */ 
/*-----------------------------------------------------------~f 
if 8ql~connect(‘mmple') < 0 Then 

Do 
Say 8ql-error-text0 
Exit 

End 
/*-----------------------------------------------------------~~ 
/* Execute the select statement and return data... 
/*-----------------------------------------------------------*/ 
st = "SELECT name FROM sysibm.systables WHERE name <> ?" 
parm var = 'STAFF' 
if 8~l-co~d(ql,~t,prrm_var) < 0 Then 

Do 
Say 8ql-error-text () 
Exit 

End 
/*-----------------------------------------------------------*/ 
/* Display each row selected... 
,*-----------------------------------------------------------~~ 
Do i = 1 To ql.name.O 

say 'Table = ' q1.name.i 
End 
/*-----------------------------------------------------------*1 
/* End the transaction... 
,*-----------------------------------------------------------~~ 
if 8ql~conmand(ql,"COMl4IT") < 0 Then 

Do 
Say 8ql_error_text() 
Exit 

End 
/*-----_-_---------_-------------------------------~---------~~ 
I* Disconnect from the database... 
/*-----------------------------------------------------------*/ 
if 8ql_di8conne&() < 0 Then 

Do 
Say 8ql-error-text0 
Exit 

End 
Return 

3 



What is GUROO 

In its current original form, GUROO is a standalone program, written using Oracle’s Pro*C 
and linked with Regina. GUROO is really 7 external functions: 

. sql-connect0 
connect to an Oracle database 

. sql-disconnect0 
disconnect from an Oracle database 

. sql-commando 
execute an SQL command (select, update etc) 

. sql-open-cursor0 
open a cursor 

. sql-close-cursor 
close a cursor 

. sql-fetch-row0 
fetch a row from a cursor 

. sql-error-text0 
return the text of the last GUROO or Oracle error 

For more details on the syntax of these functions, see the attachment. 

Current Status 

GUROO is currently in use solely as an internal tool within the Information Systems section 
of Griffith University. Many of the DBA tools are written using GUROO and the programming 
staff have also begun to use GUROO in situations where the Oracle supplied tools are 
inappropriate. In one instance, GUROO has replaced one function which was originally 
written using various combinations of C shell, awk, SQL*ReportWriter, SQL*PIus and 
SQL*Loader. The GUROO program is quicker, smaller and much easier to understand. 

Despite being interpreted, the performance of GUROO programs is on par with other Oracle 
tools. 

R 

Currently, GUROO is not available for distribution outside of the Information Systems section 
of Griffith University. 

98 



I 

Future Directions 

As a result of Griffith University’s reluctance to allow distribution of GUROO, I and a 
colleague of mine have begun an independent development of a similar tool; REXXSQL. 
The structure and operation of REXX/SQL will be fundamentally the same as GUROO, but 
will also include most of the low-level functions like PARSE and EXECUTE that exists in 
current tools. This will give users the option of a simple interface or one which they are more 
familiar (for users of RXSQL, DB2 etc). -. 

REXWSQL will have the ability to make multiple connections to the same or different 
databases from the same vendor or different vendors. The ultimate goal for REXX/SQL will 
be to allow a programmer to access data from any combination of SQL databases as though 
all data were stored in the one database. 

This can really only be achieved by writing each database access functions as dynamically 
linked libraries that can be loaded at run-time. Example 3 illustrates this goal. 

99 



I 

Example 3 

/*-----------------------------------------------------------~f 
/* Display the name and payment details for all employees. */ 
/* Employee information is stored in a DB2 database, */ 
/* financial information stored in an Oracle database. */ 
/* REXXfSQL multi-database example. */ 
/*-----------------------------------------------------------*, 
,'-----------------------------------------------------------~~ 
/* Load the Oracle and DE2 external function libraries... 
/*-------------------------- ---------------------------------*, 
Call rxfuncadd 'LoadOracleFuncs','REXXSQL','LoadOracleFuncs' 
Call LoadOracleFuncs 
Call rxfuncadd 'LoadDB2Funcsf,'REXXSQL','LoadDB2Funcs' 
Call LoadDB2Funcs 
f'-----------------------------------------------------------~~ 
/* Connect to local Oracle database... 
,*---------------------------- -------------------------------*/ 
If oracle-connect('/') < 0 Then 

Do 
Say oraale-error-text0 
Exit 

End 
f,___,___---_------------------------------------------------~~ 
/* Connect to local DB2 database PERSONNEL.. 
,*-----------------------------------------------------------~f 
If DBP-conneot('PERSONNEL') < 0 Then 

Do 
Say DB2_error_text() 
Exit 

End 
f*-----------------------------------------------------------~~ 
/* Declare queries to be performed... 
/*-----------------------------------------------------------~f 
query1 = 'select name,empno,from emp order by name‘ 
query2 = *select amt,paydate from gl trans where accno = :ACCNO' 
/*___-___--__---__------------------=------------------------*/ 
/* Execute the first query on the DB2 database and return all*/ 
/* rows . . . 
/*-----------------------------------------------------------~~ 
if DB2~conmand(ql,queryl) < 0 Then 

Do 
Say DBP-error-text0 
Exit 

End 
,*-----------------------------------------------------------~f 
/* For each employee record, obtain the payment details from */ 
/* the Oracle database and display them... */ 
/*-----------------------------------------------------------~, 
Do i = 1 To ql.name.O 

if oracle_command(q2,queryl, 'ACCNO',ql.eno.i) < 0 Then 
Do 

Say oracle-error-text0 
Exit 

End 
Say " 
Say Right(ql.empno.i,8) Left(ql.name.i.85) 
Do j = 1 To q2.amt.D 

Say Copies(' ',15) Left(q2.paydate.j.12) Right(qZ.amt.j,12) 
End 

End 
/*-----------------------------------------------------------~f 
/* Disconnect from the Oracle database... */ 
f*-----------------------------------------------------------~, 
If oracle_di8connect() < 0 Then 

Do 
Say oracle-error-text0 
Exit 

End 
/*-----------------------------------------------------------~f 
/* Disconnect from the DB2 database... 
f~-----------------------------------------------------------~~ 
If DBP-dieconnect() < 0 Then 

Do 
Say DB2_error_text() 
Exit 

End 
Return 

R 



ATTACHMENT A 

Synopsis 

sql_connect(username/password[,remote_datring]) 

Description 

This function connects you to an oracle database. You supply the function with the username/password 
and optionally the remote database connect string. 

- . 

Arguments 

username/password - username/password 
remote-database-string - connect string for remote database 

Return Values 

0 
Negative number 

- successful connection 
- Oracle error number 

Example 

To connect as your OPS$ Oracle login you would use the following call: 

rcode = sql-connect('/') 

To connect to the Oracle account SCOTT with TIGER as password: 

rcode = sql-connect('scott/tiger') 

To connect to the Oracle account SCOTT with TIGER as password on the remote host overthere; 
Oracle SID of X, using SQL*Net TCPAP: 

rcode = sql connect('scott/tiger','T:overthere:X') - 



Synopsis 

sql-disconnect0 

Description 

This function disconnects you from an oracle database and commits any outstanding transaction. By 
default, whenever the GUROO program exits, you are disconnected from the database. 

Arguments 

None 

Return Values 

0 - successful connection 
Negative number - Oracle error number 

Example 

rcode = sql_disconnectO 

. 



Synopsis 

Description 

This function enables you to execute any Oracle SQL’Plus command including DML and DDL 
statements. Typically you would execute commands like select or update using this function. Note that 
the command does not end in a semi-colon. if you do append a semi-colon to the end of the command, 
GUROO will remove it. -. 

When the SQL command issued is a select statement, GUROO returns all column values in arrays. The 
stem variable name is composed of the statement name followed by a period followed by the column 
name specified in the select statement. As with ail REXX arrays the number of elements in the array 
is stored in the variable with an index of 0. When the value of a column is NULL, an extra REXX 
variable is created. This variable has the same structure as the REXX variable containing the column 
value, but with ‘NULL’ before the index value. For example; the REXX variable created for a select 
statement containing the column ‘COL-NAME’ and a statement name of ‘Ql’ will be Ql .COL-NAME.1 
(for the first row). If the value of that column is NULL, the REXX variable created is 
Ql.COL-NAME.NULL.l. To determine if a column is NULL, use the following test: 

If ql.col-name.nul1.i = 'NULL' Then . . . (COkmn is NULL) 

Because the contents of all columns for ail rows are returned from a ‘select’ statement, the select 
command may return many rows and exhaust memory. Therefore the use of sql-commando should be R 
restricted to queries that will return a small number of rows. For larger queries use a combination of 
sql-open-cursor0 and multiple sql-fetch-row0 calls. 

When bind variables are used, a pair of arguments is used for each unique bind variable name. The 
first argument is the name of the bind variable as specified in the SQL statement, the second is the 
value that bind variable is to take. 

Arguments 

statement-name 

sql-command 
bind-variable 

- a string of up to 30 characters to identify the SQL command. This is 
used as the first part of the stem variable name containing column 
values. 
- any valid SQL’Plus command. 
- optional bind variables values as specified in the SQL command. 

Return Values 

Positive number 

Negative number 

- successful operation; the number of rows affected by the SQL 
command. 
- Oracle error number 



Example 

To select the names of ail tables owned by the current user, issue the following call: 

rcode = sql-command('Ql', 'select table-name from user-tables') 

Assuming the user owns the tables EMP, DEPT, and CUSTOMER rcode will be set to 3 and the 
following REXX variables will be set: 

Ql .TABLE-NAME.0 = 3 
Ql .TABLE-NAME.1 = EMP 
Ql .TABLE-NAME.2 = DEPT 
Ql .TABLE-NAME.3 = CUSTOMER 

To select the names of all tables and the tablespace in which they reside owned by the user, SCOTT, 
and use a bind variable, issue the following call: 

query.1 = 'select table name,tablespace name' 
query.2 = 'from all tabies where owner z :OWNER' 
query = query.1 query.2 
rcode = sql-command('Ql',query,'OWNER','SCOTT') 

Assuming that user SCOTT owns the tables: 

EMP in TEMP-SPACE tablespace 
DEPT in USER-SPACE tablespace 
CUSTOMER in TEMP-SPACE tablespace 
PRICE in USER-SPACE tablespace 

rcode will be set to 4 and the following REXX variables will be set: 

Ql .TABLE-NAME.0 = 4 Ql .TABLESPACE-NAME.0 = 4 
Ql .TABLE-NAME.1 = EMP Ql .TABLESPACE-NAME.1 = TEMP-SPACE 
Ql .TABLE-NAME.2 = DEPT Ql .TABLESPACE-NAME.2 = USER-SPACE 
Ql .TABLE-NAME.3 = CUSTOMER Ql .TABLESPACE-NAME.3 = TEMP-SPACE 
Ql .TABLE-NAME.4 = PRICE Ql .TABLESPACE-NAME.4 = USER-SPACE 

To delete rows from the EMP table where DEPTNO = 10, issue the following call: 

rcode = sql-command('Ql', 'delete from emp where deptno = 10') 

Assuming there were 5 rows in EMP for DEPTNO 10,rcode will be set to 5. 

To delete rows from the EMP table where DEPTNO = 10, issue the following call: 

rcode = sql-command('Ql', 'delete from emp where deptno = 10') 

Assuming there is no table called EMP, then mode is set to -947; the Oracle error number. 

R 

io4 



Synopsis 

Description 

This function passes a select statement to be parsed, prepared and executed. The rows that the SQL 
command retrieves are then made ready for repeated calls by sql-fetch-row(). An explicit cursor is 
associated with the statement name passed. -. 

This function takes the same arguments as sql-commando. 

Arguments 

statement-name 

sql-command 
bind-variable 

- a string of up to 30 characters to identify the SQL command. This is used 
as the first part of the stem variable name containing column values and as 
the argument to sql-fetch-row0 so it knows from which cursor to fetch rows. 
- any valid SQL*Plus select command. 
- optional bind variables values as specified in the SQL command. 

Return Values 

0 - successful connection 
Negative number - Oracle error number 

R 

Example 

To prepare for returning the names of tables owned by the current user: 

rcode = sql-open-cursor('Ql', 'select table name from user tables') - - 

Assuming the user has select permission on the user-tables object, rcode is set to 0. 

See sql-fetch-row0 for further examples. 



Synopsis 

sql-fetch-row(statement-name) 

Description 

This function retrieves the next row in the previously opened cursor and sets REXX variables for each 
column specified in the sql-command passed to the sq-open-cursor0 function. 

The format of the REXX variables set is statement-name followed by a period followed by the column 
name. If the value of a column is NULL, an extra REXX variable is created. See the format and usage 
in the description for sqi-command. 

Arguments 

statement-name - a string of up to 30 characters to identify the SQL command. This is used 
as the first part of the stem variable name containing columns values and as 
the argument to sql-open-cursor(). 

Return Values 

0 - successful connection 
Negative number - end of cursor 

Example 

To return the names of tables owned by the current user using an explicit cursor: 

rcode = sql open cursor('Ql', 
If rcode < 0 Then 

'select table-name from user-tables') 

Do 
Say sql-error-text0 
Exit 1 

End 
Do Forever 

rcode = sql fetch row('Q1') 
If rcode < G Then-Leave 
Say ql.table-name 

End 
rcode = sql-close-cursor('Q1') 

Assuming the user owns the tables, EMP, DEPT, and CUSTOMER the output from this code will be: 
EMP 
DEPT 
CUSTOMER 

R 

106 



Synopsis 

Description 

This function closes the cursor associated with statement-name and frees up resources held by that 
cursor. 

Arguments 

statement-name 

Return Values 

- a string of up to 30 characters used to identify which cursor is to be closed. 

0 - successful connection 
Negative number - Oracle error number 

Example 

To close an already opened cursor: 

rcode = sql-close-cursor('Q1') 

See sql-fetch-row0 for a further example. 



Synopsls 

sql-error-text0 

Description 

This function returns the text of the last error encountered from the most recent GUROO external 
function. The error may relate to an Oracle error or to an error within GUROO itself. 

If the most recent GUROO external function was successful, then the value returned is ‘Last operation 
successful’. 

Arguments 

None 

Return Values 

Text of the result of the most recent GUROO external function. 

Example 

To display the text of the result of the most recent operation: 

Say sql-error-text0 

See sql-fetch-row0 for a further example. 

108 



Using REXX in a UNIX Environment 
to Manage Network Operations 

Lee Krystek 
Boole and Babbage 

109 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

1. Using REXX in a Unix Environment to Manage Network Operations: 

Lee Krystek - Software Manager 
Boole and Babbage Network Services 

Abstract: When designin 
B 

our network management and control product, we 
needed to provide a way or users to construct scripts to control any foreign system 
they might need to interface with via that foreign s stem’s console. We selected 
REXX as this tool. Before we could use it, we ha B to augment the language to 
give it the capability to be started automatically, connect to those foreign systems, 
and manipulate our relational database. 

-. 

1.1. The COMMAND/Post Product: 

Several years ago Boole and Babbage recognized the need for a product that 
would be a focal point for network and systems management operations. This 
product would monitor and control network equipment, computer systems, 
and even application programs. Of special interest were non-SNA and 
non-SMNP systems which did not support any network management protocol. 

COMMAND/Post runs on a UNIX workstations. Initially the SUN SPARC 
series of processors was used, however, porting to other UNIX systems is R 
underway. A typical COMMAND/Post system consists of one or more 
(perhaps even as many as 50 at a large site) workstations with color monitors 
running a GUI such as Open Windows or Motif. The system is composed of 
modules written in Smalltalk (an object oriented language) for the user 
interface and “c” for the more intensive processing tasks. Sybase, a relational 
database provides the data storage. 

COMMAND/Post will typically connect to a network system, such as a 
modem monitor or Tl-monitor or a computer, through the system’s printer 
port and console. (These type of systems are typically referred to as “Element 
Managers” or EMS because they control one class of element in the whole 
network.) 

An EM’s printer port will often produce interesting information such as the 
failure of a modem or communication line. COMMAND/Post has a tool, 
called ALFE (ALERT LOGIC FILTER EDITOR), that implementers use 
through user friendly dialog screens, to construct an alert “filter.” (Figure 1) 
The filter searches the message stream from the EM’s printer port and 
recognizes important messages. The filter parses those messages and then 
creates an “alert” in the COMMAND/Post system using data obtained from 
the message. The filter assigns the alert a priority and an classification based 
on the OS1 standard for network management. COMMAND/Post records the 
actions of supervisors and operators and tracks how the alert is handled and 
resolved. 

COIviMAND/Post operators use terminal emulations windows to access the 
EMS from their workstations. This allows operators to work on roblems that 
might involve a dozen EM’s without leaving their seat. (Figure 2 P 

110 



ALFE 

KeuWord d 

An ALFE Screen - Figure 1. 

Token Help 1 
------------ 
amtRAM 
am!Swap 
endld 
errcode 
e&actlonName 
filename 
filter 
hostld 
hours 
noise 
nrFiles 
nrPaths 
nr?rocesses 
nvClass 
nvType 
OptionalToken 
Pa” 
pathname 
PC1 
pctfuil 
pctgrowlh . 

Set Help - 

Ihome/uMetC 
/AlfeBFilterl .fltr 

\n newline U tab 

T 1 -Monitor 
Serial Comm. 

Main frame 
Application 

LAN 

Command/Post 
Workstat ions 

Element 
Managers 

Emulation Connections - Figure 2. 

A 

111 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

1.2. The Auto Operations Requirement 

It became apparent after the initial release of COMMAND/Post that our 
prospective customers wanted to have the system support automated 
operations. That is, to have COMMAND/Post not only detect alerts and 
display them, but to also automatically take actions based on an alerts or alerts 
received from a single EM, or on a combination of alerts from several EMS. 

COMMAND/Post already had the ability to connect with the system consoles 
for the various EMS. Therefore it seemed logical that if an automated 
operations facility could be built we could send commands to the appropriate 
EM, through the emulations, to get an EM to take the desired action. 

The automated operations facility needed two parts. First, some kind of 
detection mechanism that would allow the triggering alert, or combination of 
alerts, to be recognized. Second, another mechanism that could have a 
conversion with an EM’s console, as if it were a human operator, in order to 
enter the commands necessary to get the EM to carry out the desired action. 

A simple example of an automated operation, though no longer a problem 
most networks, is automatic restart of polling on a communication line. A 
Front End Processor (FEP) is polling several control units at remote sites 
across a single wide area network line. One of the controllers goes off line 
a period of time and the FEP automatically dro 
polling list. When the controller came back on ine an operator would P 

s that controller from the 

command the FEP to add that controller back into the polling list. Under 
COMMAND/Post automated operations, an EM monitoring that 
communications line would report the failure of the control unit. 

on 

for R 

COMMAND/Post filters would detect this as an alert, and would then trigger 
an automatic operation to send a command to the FEP to add the controller 
back to the list. If the controller failed to respond over a specified period of 
time, a high-priority alert could be generated to inform the operator that a 
situation had occurred that could not be remedied through auto operations. 
(Figure 3) 

The design of the alert detection and trigger mechanism took advantage of 
COMMAND/Post’s relational database mechanisms for storing and accessing 
data. A graphic window display (known as a selector) already existed to select 
alerts. The implementer uses the selector and the mouse to click on certain 
rules that describe the alert(s) to be shown on an alert display window. This 
idea was extended to allow groups of alerts to be detected. When a specified 
combination of alerts is detected instead of having the alert(s) appear in a 
window a “trigger” would fire and the auto-operation would start. (Figure 4) 

Once the detection facility was decided, the mechanism to allow the system to 
carry on a conversation with an EM console was next. An augmented version 
of REXX was chosen for that mechanism. 

1.3. why REXX? 

The decision to use REXX was based on several factors. The actual REXX 

112 



I 

1 CU shutdown-FEP stoos Do1 1 ina 

:omma;d Sent 
to console for 

rest art 

Trigger 

3 

ALERT - Filter 

COMMAND/Post 

Restarting a Controller by Auto-Operation - Figure 3. 

I SendMail A0 Trigger selector 

Eopyright (c) 1993 Boole 8 Babbage, Inc. All Rights Reserved. Version 3.1 .a 

I Select Group Display 1 File Ok. Help 

I ------------ alerkalertld Ml $ELECTION CRITERIA 
----------------- 

I 

alerts.alertType: 

Add Delete 
ManualAlerts[- - any- -1 

J alerts.cunentOperator: 
------------ 
ManualAlerts 

alerktlmelieceived: 
value since today O:lO.OO 

- . 

A Selector - Figure 4 

113 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

product chosen was uni-REXX from the Workstation Group. 

1.3.1. REXX was already an established language for auto-operations on Boole’s 
mainframe products. 

In addition to COMMAND/Post, Boole already had some main frame 
products that incorporated auto-operations. They used REXX 
extensively. It was decided there would be an advantage to keep the 
auto-operations language consistent between the products. 

Using REXX also allowed us to draw upon the experience of our main 
frame programmers, and some of the extensions to the REXX language to 
support database operations were based on insights provided by the 
mamframe REXX group. 

1.3.2. Some of the auto-operations scripts would be written by customers and a 
language already familiar to IBM type main frame operators was desired. 

Although COMMAND/Post is a Unix-based product, many of the 
audience for it have their roots in the IBM culture where REXX is widely 
used. By choosing a familiar language it was hoped there would be less 

R 

fear and resistance by customers to writing their own REXX scripts. 

1.3.3. REXX’s ability to parse data strings would make analysis of messages coming 
from the EM’S easier. 

It was expected that much of the function of the scripts would be to 
respond to messages coming from the EM systems. The REXX “parse” 
factlity allows most of these messages to be handled without a lot of 
programming. The “parse” statement is usually easy for even a novice 
programmer to understand. 

1.3.4. REJTs ability to pass commands to underlying environments makes it eary 
to address COMMAND/Post’s database. 

The extensions to the database were critical if we were to be able to write 
easy to read scripts. The ADDRESS instruction allowed us pass SQL 
command directly to the database. Also important was the ability of 
REXX to create new variables of any type “on the fly” as data was 
returned from the database. This eliminated the need for a rigid, 
complicated structure (as used in “c” when getting data back from the 
DB). 

1.35 <;/Se of a “light, “interpretive language makes debugging easier for 
non-professional users. 

Though interpretive languages execute more slowly than compiled 
languages they are often easier for the novice to debug since there is no . 

114 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

compilation wait involved. Also unless the compiled language has a 
sophisticated debugger, the source line is not displayed in association with 
a run-time error. In addition, REXX has a built in trace feature which is 
easily used. 

The use of a “light” language that didn’t need extensive variable 
declarations, etc. was also an advantage. While such languages become 
increasingly difficult to maintain as a single program grows larger and 
more structure is needed, because of the anticipated size of the scripts 
(500 lines or less), that was not a concern. 

1.4. External Access 

The first change we made to REXX was to give it the capability to connect 
with the EM’s. This was more complicated than simply opening a new file 
descriptor to a new tty port. Connection to EM’s for filtering and emulation 
are managed as resources by COMMAND/Post. A connection to a EM’s 
system console might be used for a period of time by an operator via an 
emulation, and later reassigned by the system for use by auto-operation via a 
REXX program. 

Connections were made from a program to a physical port using the UNIX A 
socket/stream facility. The actual physical ports might be a tty, or, more likely 
a port on a terminal server connected remotely, via LAN or WAN, from the 
workstation where the REXX was actually executing. The resource 
management system was designed to make the details of the actual connection 
transparent to the connecting program. This means the REXX program need 
only know a single name to invoke the connection. 

In order to allow the REXX to connect through COMMAND/Post’s resource 
management system several functions were added to the language by inserting 
additional code into the REXX interpreter so it could use UNIX sockets and 
streams: 

<fd> = ao-targetConnect(<name>) 

ao-targetClose(<fd>) 

ao_targetComm(cfd>,cfunction>,<data>,<length>,<pos>) 

The first function, ao targetconnect, requests the opening of a connection to a 
named port. The name implies more than simply a physical port. It also 
implies a pathway to get there and, in some cases, a terminal emulation 
appropriate to the external target system on the other side of the port. These 
are defined externally to REXX by COMMAND/Post’s system management 
faciiity. 

A file descriptor, or more a propriatel a “handle” is returned by 
ao targetconnect to identi ff the path or future communications calls. f! 

115 



Fri, April 29,1994 Using REXX in a Unix Environment to Manage Network 

The ao targetclose function simply reverses the connect function closing 
down tlie path. The handle from ao_targetConnect is the single argument to 
80 targetclose. 

The third function, ao targetcomm, actually carries out the transfer of data 
between the REXX program and the target system. 

1.4.1. Application Program Interface 

When it came to actually talking to the target system we were faced with 
an additional problem. Usually the device a REXX EXEC needs to talk 
to is a system console. That means the program would be responding to 
the commands we sent it with data (including our own full duplex echo) as 
well as occasionally sending out, from our point of view, random lines of 
data as the result of activity on the system. How could we develop an 
interface for REXX that would allow us to send data at will and handle 
messages from the target when they came in at any time? Turning to an 
interrupt model, where we would sit in a wait state until an incommg 
message would trigger a designated REXX function seemed to be too 
complicated for easy use by most of our customers, especially when more 
than one target system might be involved in a single REXX program. R 
Instead we decided to use an Application Programming Interface (API) to 
interact with the tar et. 
defined by IBM as fl 

The API we developed was similar to that 
t e “IBM PC 3270 Emulation Program, Entry Level, 

High-Level Language Application Program Interface” or EEHLIAPI. 
Where the IBM was targeted to a 3270 terminal interface, our API widens 
the definition to cover terminals that do not use field positioning. 

The API operates much like a 
pseudo-screen is created (whit Ii 

erson sitting at the terminal console. A 
does not display on the 

COMMAND/Post workstation monitor), and the REXX program uses 
functions defined in the API to interact with this screen. Some functions 
allow the entire screen to be captured as an array and transferred back 
into a REXX variable for processing. Other functions allow a portion of a 
screen to be captured, or in the case of a terminal supporting fields, a field 
to be captured. Other functions allow data to be sent to the screen as if 
was coming from the keyboard. There are a number functions dedicated 
to positiomng the cursor and searching the screen, or fields, for text. A 
few give status information, including the height and width of the screen. 

The API also allows for an interrupt driven capabili for situations where 
a simpler set of calls cannot handle the exchange. TX e REXX program 
waits until new data arrives on the pseudo-screen and then is released so it 
can make additional calls to observe how the screen has changed. 

All calls to the API interface are made through the ao targetcomm 
ftinction described above. The “fd” argument containsThe handle for the 
particular target system involved, and the “function” argument contains the 
number of the API function that will be used. The “data”, “length”, and 
“pas” arguments definitions vary based on the function call. In general, 
“data” is data being read or written to the pseudo screen. “Length” is the 

116 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

length of that data string. And “pas” is the position involved when data is 
written or read. The API views the screen as an array of characters (row 
one, followed by row two, etc.) and the position is a value pointing to that 
array. 

Using the API model to connect with the target system has a number of 
advantages. First, as noted above, it removes the need for an interrupt 
type interface when only simple communications are involved. -When only 
a single thread of communication is involved it is relatively easy to create 
a loop in REXX to read the screen, write to it, read the screen again, 
identify what has changed and then act on the new data. 

Another advantage is the interface allows some measure of emulation 
independence. That is, a REXX script can be designed that will operate 
with either a EM running a VT-320 interface or a IBM3151. Then the 
only change needed between the two would be in the definition of the 
pathway during the configuration step external to REXX. The user would 
define the path as using a VT-100 API interface instead of an IBM3151. 

Despite the interface, there are some restrictions on how transparently a 
REXX program can be written. Some terminals support the use of 
“fields.” A REXX program that made use of the API field related 
functions to interact wrth a Tandem 6539 would not work with a VT-100, R 
because it does not support fields. 

1.5. Parameters 

The REXX interpreter was also augmented to accept command line 
arguments that could be passed in the the REXX programs as parameters. 
The command line to the left of a “--‘I remained the standard uni-REXX 
command line. The part to the right represented parameters passed to the 
REXX program. Argument flags (items starting with a “-‘I) became variable 
names in the program filled with the values that followed them. The following 
command line: 

ncrx -- -customerName "Fred" 

would cause the REXX program to start execution with a variable called 
“customerName” initialized to the value of “Fred”. This allowed the triggers to 
pass useful information to a REXX program. Standard information passed 
included the number of alerts that caused the trigger to fire and the 
identification numbers of those alerts. 

1.6. Database Interface 

We aiso wanted the REXX auto-operations programs to be able to access the 
COMMAND/Post database so they could create, query, update, and delete 
the alerts the system maintained. 

. COMMAND/Post uses a relational database that is divided over two 

117 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

dataserver programs using the Sybase “open server” model. The primary 
database 1s accessed through the standard Sybase dataserver. Temporary high 
activity tables are assigned to the “Event Handler” server: a memory resident 
server of our own design. 

Access to either server is via REXX’s ADDRESS instruction. Addressing 
NCDB connects the REXX program to the primary sybase dataserver, using 
“ALERTS” connects it to the Event Handler. To interact with either the 
programmer need only code an SQL command, or use a stored procedure (a 
Sybase term for SQL routines maintained in the dataserver) in the address 
command. The success of the command can be evaluated by looking at the 
special REXX variable “sqlCode”. 

While, for the most part, addressing the dataservers via this command is 
straight-forward, a few SQL commands represent a problem. For example, 
“SELECT *” command may return row after row of data from the table, each 
row with many individual data items. Each item can be of a variety of data 
types. Here’s where REXX’s ability to create variables on the fly and have 
variables types change make it an excellent choice of our application. As a 
data item is returned, let say the time field for particular alert, a REXX 
variable named “TIME’ is created, if it does already exist. It is filled with the 
text representation of the time. The same thing for inte ers or for character 
strings (which the database can store in several varieties ‘5 The programmer 
need not immediately be concerned with making sure the variable type 
matches what’s coming back from the database. 

Multiple rows are handled by returning one row at a time and havin 
“fetch” command. The program can use to indicate that it is finishe B 

a special 
with the 

current row and is ready to receive the next. Values for the new row are 
written over and into the same variables used by the last row. If all rows are 
exhausted the “sqlCode” variable returns an error value (non-zero). If there is 
no need for additional pending row a special “cancel” command can be used to 
drop them. 

A typical code fragment to print the item “alertId” from the “ActiveAlert” table 
might be: 

address NCDB "select alertId from activeAlertsV8 
if(sqlCode = 0)then 

do forever 
address NCDB *'fetch@' 
if(sqlCode <> 0) then 

leave 
else 

say alertId 
end 

end 

A 

One limitation created by this architecture is that all values returned by a 
“select” statement must have some associated name for creation of the 
variable. This means that an SQL statement that used some function (like 

. SUM) to create a value that would not have a name associated with it must be 

118 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

written in such a way that it is forced into a variable name. For example: 

select total = sum(occurrences) from activeAlerts 

instead of 

select sum(occurrences) from activeAlerts 

- To ?ake common o 
reqmre multiple tab P 

erations, like creating an alert, (which would normally 
e inserts) easier, a number of stored procedure are 

included in the database. This means that typically only a single “address” 
clause is needed for even a fairly complex database operation. 

- . 

1.7. Other Uses of REXX in the Product. 

One of the bonuses of implementing REXX as our auto-operations language 
was that we could use it for general programming. We have a large library of 
scripts (mostly written in Bourne or C shell) used for installation and 
maintenance of the product. When these scripts interacted with the database 
they had to first create a second file that would act as input to the Sybase’s 
Interactive SQL program (ISQL). Then they had to start ISQL directing the R 
second file to the standard input, and finally monitor the standard output for 
errors. This convoluted approach made the script hard to read. It also made 
isolating a particular SQL statement that failed difficult since the script was 
not feeding the commands to ISQL one by one. 

Our REXX, with the ability to address the server through the ADDRESS 
instruction has simplified this problem. Since the REXX can address the 
database directly it is easier to write and test the script/program. Errors are 
also easier to detect and handle. 

1.8. Results 

Over 100 sites now use COMMAND/Post with the automated operations 
facility. A majority of the customers involved have decided to write their own 
custom auto-operations scripts which lessens the load on our support staff. 
We are pleased with our decision to use REXX for auto-ooeratlons. 

119 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

1.9. Bibliography 

COMMAND/Post How to Guide, Release 3.0, Boole and Babbage Network 
Systems, San Jose California, 1993. 

Programmers Guide: High Level Language Application Program Interface, 
IBM Corporation, Austin Texas, 1987. 

_ - . 

A FUXX CookBook for COMMAND/Post, Boole and Babbage Network 
Systems, Mt. Laurel New Jersey, 1993. 

uni-REXX Reference Manual, The Workstation Group, Rosemont Illinois, 
1991. 

R 

126 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

1.10. Glossary 

ALFE - Alert Logic Filter Editor - The facility in COMMAND/Post used to 
construct a “filter”. 

API - Application Program Interface - The interface that allows REXX and C 
based programs to interact with COMMAND/Post emulations. _ -~ 
Dataserver - A process that manages and provides access to a database. 

EM - Element Managers - Network Control and Monitoring systems that 
manage a domain of network elements like modems, communication lines, etc. 

Event Handler - COMMAND/Post primary memory resident dataserver. 

EXEC - A REXX rogram for COMMAND/Post that is part of the 
auto-operations su E system. 

IBM 3151- IBM async terminal. 

IBM 3270 - IBM sync terminal. 

Filter - A program in COMMAND/Post which parses a stream of data, usually R 
from some external source, looking for messages. When a message is found 
the filter created an alert for the COMMAND/Post database. 

Open Server - A database design that allows dataservers from multiple 
vendors to operate together. 

RDBS - Relational Database System - A database designed to adhere to 
relational principles. 

Shell - A Unix command interpreter. 

Shell Script - A program that is interpreted by a Unix C or Bourne shell. 

SQL - A 3rd generation database manipulation language. 

Sybase - A RDBS product. 

Tandem 6539 - Tandem async terminal 

Unix - Operating System on which COMMAND/Post runs. 

VT-100 - VT-320 - DEC async terminals 

121 



I 
Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

1.11. APPENDIX: Sample COMMAND/Post REXX program. 

#!/usr/nc/bin/ncrx -s 
,****.*****.~,t**tt***.~~*~~~~..~~~~~~~~~~~~~~~~*~~~.~*~~~~~ 

* REXX program to perform sinple paging. The OS1 Severity 
* of the fi’rst triggering alert will be sent to the pager. 
t 

* 

t 

* 

* 

* 

* 

* 

c 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

t 

* 

* 

* 

* 

* 

* 

* 

* 

t 

This program does the follouing: 

>connects to a tool called 1pagerModem18 which is 
assused to be an “AT” mode modem 

>Tnitializes the modem for word responses. 
>Sends touchtone dial sequence uhich leaves the modem 

in comnand mode 
>Sends VINYL fol lowed by WI 
>Looks at the first underlying alert passed in and gets 

the OSISeverity value from the data base. 
>Sends OSTSeverity followed by W8 out to the pager. 
Waits 5 seconds for repeat 
>Sends final W1 to force posting of message 
>Does a 81hangup1’ 
>Disconnects from modem. 

The following variables should be passed in from the trigger: 
pagerModem - Access path of the modem. 
PIN - Users pin n&w. 
underlyingAlerts (optional) 
alertcount (option) 

Tf no alertcount or underLying alerts are available the value 
99!W uill be sent to the pager. 

Note: Triggering Alerts must be forwarded to the database so 
that the Severity can be obtained. 

/* Get the OS1 severity from the database */ 

if alertcount (> HALERTCCRJNTi~ then do 
cnt = 1 
alertId = underlyingAlerts.cnt 
address NCDg %elect OSlSeverity from alerts where ‘I, 
alertId’* = alertId*’ 
if(sqlCode ** When do 

say “Could not get Severity from database” 
exit 

end 

- . 

R 

address NCDg “fetchO’ 
message = OSlSeverity 

end 
else 

122 



Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network 

message E lloopgll 

/* Connect to the modem */ 

nl 5 lloallx 

path = ao~targetConnect(pagef%deis) 
if rc \= AON-noError then do 

say “failed to make cotmection to” pager 
exit 

end 

/* Get the dimensions of the wlation screen and 
calculate the Presentation Space size */ 

string = llA1l 
r = ao-targetCom(path, 22, string, 1, 0) 
colums = delstr(delstr(string, 161, 0, 13) 
row = delstr(delstr(string, 141, 0, 11) 
PSsize = colums l rows 

/* Start the conversation uith the modem */ 

A 

if modemSend(path, @BATVl%l “OK”) = 1 then , 
exit 

/* Dial the service */ 

if modemSend(path, ~~ATDT9,18007597243GI;~~n1, “CONNECT”) = 1 then 
exit 

/* Send the PIN l / 

if mcdemSend(path, 08ATDT81PINW;1%l, “OK”) = 1 then 
exit 

/* Send the message (OS1 Severity) */ 

if modemSend(path, ~~ATDT%essageW;%l, 810K”) = 1 then 
exit 

address UNIX “sleep 5” 

/* Clean up l / 

if modemSend(path, 80ATDT#;n11’, WK”) = 1 then 
exit 

if modemSend(path, uATHg~nl, %K”) = 1 then 
exit - 

/* Disconnect fran the path l / 

r F ao-targetClose(path1 

123 



Fri, April 29, 1994 

exit 

Using FUXX in a Unix Environment to Manage Network 

,****t*****t************t*********************************************** 

* modemSend 
* 
* sends the contents of string to modem and checks that the 
* response from the modem contains the contents of pattern 
* 

modemSend: 
arg path, string, pattern 

Len = tengthfstring) 

/* Find the cursors current location on the screen */ 

r = ao-targetComn(path, 7, 0, cursor, 0) 
if rc \= AON-noError then do 
say Van’t find cursor: rc =I’ rc 
return 1 

end 

/* Send the comand to the modem */ 

r = ao-targetcomfpath, 15, string, ten, 01 
if rc \= AON-noError then do 
say 14Send failed: rc = 3-c 
return 1 

end 

/* Loop ten times waiting each time 2 seconds for a response. */ 

do 10 
address UNIX “sleep 2” 

/* Lodk for response following cursor position */ 

r = ao-tsrgetComn(path, 8, string, (PSsize - cursor), cursor) 
if rc \= AON-noError then do 

say “Send failed on check: rc =(I rc 
return 1 

end 

/* Search for a the expected pattern */ 

if postpattern, string) \= 0 then do 
return 0 

end -- 
end 

A 

-. 

say “did not find” pattern 
4 return 1 

124 



REXX at Simware 

Luc Lafrance 
Simware 

125 



126 



Multiple Scripting Uses 

0 2 products 
A2B, REXXWARE 

3 platforms 
Windows, Macintosh, NetWare 

l presentation, automation, reports 1 



0 

z oc 

0 

A2B BIFs 

terminal emulation 
type, press, waitfor, checkfor, whenever 

views (presentation) 
openview, closeview 
addelement, additem 
getelement, getitem 
setelement, selectelement 
readelement, writeelement 

x 



0 

0 

REXXWARE BIFs 

140 calls into the CLIB interface 
GetObjectID, GetVolumeInformationi 
LoginObject, NWQAttachServer 

RCCs and client job scheduler 

utility functions 
currentpath, listfile, readscreen 

x 



, ..F 

History of Development 

18 months to develop a 4.0 kernel 

5 0 grammar defined with LEX/YACC 

0 written in C 
Microsoft C, MPW C, WATCOM C/386 

x 



1 

Multiple Personalities 

0 ported to the Macintosh in days 

a E w ported to NetWare in weeks 

’ 0 abstraction of OS interfaces to 
file system  and memory 1 

x 



Adapting REXX to an O/S 

Windows and Macintosh 
hard issues to ADDRESS 

NetWare 
a console and a prompt 

multi-threading 
the infernal data queue 



The Way to an Easy Port 

a S1MWARE.h 
typedef signed short SHORT 
typedef SHORT FAR *gpSHORT 

S1MSTR.h 
#define strupr(a,b) AnsiUpper(a,b) : 
##define memcpy(a,b,c) fmemcpy(a,b,c); 



- 

The Way to an Easy Port 

S IMF1LE.c 
fhOsOpen, fhOsClose 
IOsRead, IOsW rite, IOsSeek... 

S1M M E M .c 
OsGPtrA lloc, OsGPtrF ree 

#ifdef Hungarian notation 



call : 

YACC... What Is This? 
RX CALL symbol opt blank parm list 
{ if (ffnterpret == TRUE) - 

GenExtemal(P CL OUT SYM, $2, $4); 
else if (wLabe1 = w&Int%nal($2)) 

GenInternal(P CL INTERNAL, --wLabe1, $4); 
else if (wRoutine ;wIsBuiltIn( $2)) 

GenBuiltIn(P - CL BUILTIN, wRoutine, $4); - 
else 

GenExtemal(P CL EXTERNAL, $2, $4); 
OsUPtrFree($2); - - 

1 

0 output is portable ‘C’ code 



Simware Conventions 

l pointers in REXX 
passing a symbol as a literal 

call GetObj ectID “Luc”, “OT USER”, “objectID” - 

0 arrays in REXX 
passing the name of a stem I 

call listcreen “array.” /* array.0 holds count */ 



REXX at Simware 

commitment to REXX 
substantial development investment 
ANSI committee nomination 
big push at Novell 

fbture directions 
integration of products / third parties I 



REXX Resources on the Internet 

Linda Littleton 
Pennsylvania State University 

138 



REXX Resources on the 
Internet Rexx Resources on the --_ 

Internet . - . 

Linda Littleton 
l Discussions via Listserv 

Irl@psu.edu 
l Programs available via Listserv 

Center for Academic Computing 
Pennsylvania State University 

214 Computer Building 
University Park, PA 16802 

l Info available via FTP 

l Info available via Gopher 

REXX Symposium - Boston 
May, 1994 

Listserv lists How to subscribe to a 
List Name List Location 

REXXLIST usa.wa.~u 
vm.gmd.de 
nic.surfnet.nl 
vm.ucs.ualberta.ca 
ucflvm.cc.ucf.edu 

Discusses 

General Rexx 
discussion 

PC-REXX bitnic.educom.edu 
REXXCOMP bitnic.educom.edu 
TS()-REXX bitnic.educom.edu 
VM-REXX vm.marist.edu 

ANSIREXX psuvm.psu.~u 

Personal REXX 
REXX Compiler 
TSO REZX 
VM/CMS Rexx 

ANSI Documents 

Listserv list 
l Send mail to listserv@list-location 

l The Subject can be anything or can be 
omitted. 

l The body of the mail should be: 

SUBSCRIBE list-name your-full-name 

Example: 

SUBSCRIBE rexxlist Linda Littleton 

Notes: Be sure to send the mail to LISTSERV, not to the list, 

139 



How to Send a Other Useful --_ Message - Listserv-commands . 

l Write to list-name@list-location SIGNOFF list-name 
“unsubscribe” from the list 

l Whatever you write is forwarded to 
everyone on the list. REVIEW list-name 

get a list of people subscribed 

LIST GLOBAL 
get a list of aII Listserv lists 

HELP 

R 

Rexx programs 
available via Listserv 

How to get programs 
from a Listserv 

Library Location 

Send commands, one per line, in the body 
of the mail to: 

LISTSERV@location 

rexxlib 

psutools 

vm-util 

psuvm.psu.edu 

psuvm.psu.edu 

vm.gmd.de 
ubvm.cc.buffalo,edu 
vm.marist.edu 

To get a list of packages: 
GET <library> FILELIST 

To get the files in a particular package: 
GET <package-name> PACKAGE 

To get a list of files in a package: 
GET <package-name> $PACKAGE 

To get a specific file: 
GET <filename> <filetype> 

140 



LI’o Submit a Program 
to Rexxlib 

Send it to 
rexxlib@psuvm.psu.edu 

l Source code only 

l No fees 

. Must be well documented & readable 

How to get files via 
FTP 

l FTP rexx.uwaterloo.ca 

l You will be asked to identify yourself 
Type: anonymous 

l You will be asked for your password 
Type: your-userid@ your-domain 

l Useful commands: 
dir list directory 
cd change directory 
get copy a file to your machine 
help get help 
quit exit FTP 

Rexx Info via FTP 
Locations to try: 

rexx.uwaterloo.ca -- /pub 
l eneral Rexx info 
l w exx FAQ 

l Free interpreters for Unix and DOS 

flipper.pvv.unit.no -- /pub/rexx 
l Reginacode 
l Archive of comp.lang.rexx 

fip-os2.cdrom.com 

ftp.luth.se -- /pub/OS2 
l OS/2 archives 

wuarchive.wustl.edu -- /pub/aminet 
l Amiga archive A 

Rexx Info on Gopher 

Gopher site bigblue.pvv.unit.no 

l Rexx FAQ 

l Comp.lang.rexx archives 

9 CMS Rexx manual 

l Documentation for Rexx/imc and Regina 

l Papers on Rexx 

l ANSI committee documents 

. 

141 



Using REXX and Notrix for Lotus 
Notes Data Manipulation 

Alan P. Matthews 
Percussion Software 

142 



Using REXX and Notrix for Lo 
Manipulation 

Technical Dkector,J&wussion Software 

. . ..-May 2ndJ 99y 

A review 
..,, I,xI” I..?^. G+^“‘, ; . ,. 
,, I , ,, . , i “. 

-. 

x 

143 



Agenda .- 

o Lotus Notes- % 

A 

User Interface ComDonents 

;;;;i Workspace Desktop ‘. _ : 

3 Database Icons ‘, ,I .’ 

144 



I 

Databases 

Q Views 
:, Main & ‘Rhgons W___*^ 

2 Forms 
; Fields &..Eormulas W- 

Rer>lication iA’ I ’ 

,  ; I  -3 , ,  

,;;;i Replica ID I _ ,11 ,I I, I; ,, + : ‘. 
LI Selective Re’jdication ’ I 
3 Architecture ’ ” ’ ,” . II. , ‘, I_ 

Hub &Spoke ” 
Serial 

,,, ,,^ . 
_.” c _r: : 

3 Conflicts ,.- es, 

R 

145 



R 

Lotus Notes Database 

,.” , _I. 4”19r*, 

3 Document Architecture’ ” 
a Document (“Note”) Types 

Data notes ~ ~ ‘̂ ’ 
/ F ilter not& ’ 1’ ^: I 

Form notes“ _ ,.~ II”,. 01: 
..?, View notes :.>., 
, Icon, Polidyl’fie lp, ACL etc .XII”V<. ,, 

146 



,-: Connection .Documents 
~ server @$hents 

, , 
-d/d F ’ 7:: : , 

..,-,, ,*.,I:: ,*, ,; 

Server Components F; .1 : 
I rxn^xs%iP a~, i “.. :* , ‘, 

:;;i Database *,., I I 
3 Login 

,““, ~.S,, I_” 
x.,I pi’ 

;; Replication ” d *‘̂  1 “_- _ w,~., ;, ,, “, 

LI Mail router 1,11,^, j 
. ..--.a.,,,~ , ‘;“:c 

3 Add-in processes 
. ..-., .c...i ,’ ~y ‘.’ 

A 

147 



Lotus Notes Securim t.‘.‘,~:~:,:‘:, 

3 Authentication j 1.’ ,, I~ ,I ‘. * 

R 

148 



I 

Lotus Notes Administratili”fi 

Q Certificate 
9 Domains ]_I:: 
g Mail Gat 

::: Logs, Statistics 

R 

Inside Track ,,. ^ _, ” ‘1 *‘:: “.: “; 

, j _ * ,_ ._ 
:l;;i Good things’ -’ c 

Platforms (Wi.ndows,. OS/2, Mac, UNIX) 
_ Replication _- ‘,,‘ii. .,, 

~ Authenticatibn ” ’ ‘II.: ” 
0 Bad things I *‘_ ,;.‘,’ 

.,xx,li: i’ w 
%Xr Relational. .Capabilities 

-: No unique fields, No relational link ,, ,~ ( TV,:: ;L 
Macro Language he> 

_. API - Complexity 

149 



+, a ...” >tA- 

D Data 
D No Note 
a Version 

product Issues (API) :. ,*+“‘“Y‘:z. 

,” i II ’ 

:J Requires ‘C Programming 
2 Contains’o’~~~,2Ob ‘&I&. ’ 
2 Inconsistent interface’::,,; “’ .,XX”.,.\r 
o Specialist skills - $$$$$$$ ,, .I j~,L ~ i’ ‘,~ 

150 



3 Unstructur 

0 Workflow-tntegration .,,x,,,ssa*, .e-.w 
9 N & A Synchronization “/ ,. “.I 6: ‘2, z’ 
izi Production Control 
9 Infrastrud~~jGj Planning 

-., Certificate types 

Integration Issues I:” ,” y, ;I 
_, , ,, ‘,- ,: ; 

:J Notes is good at: : ‘. 
Anecdotal information storing 
Reference information ‘*: 

: Customer service 
a Notes is not good at: .> ;i 

/xI Transactional data 
L Structured &ha I, ̂, ,, ., ,,,, 

Relational data 

151 



I 

Notrix - Why does it exist? 
._ _,_.“I lli jl ~,,, ~ ;*.--, ; */ 

:;;;i Customer demands for data 
manipulation -a.,. 1 ; & ’ .’ : 

,; ,, II ̂, II j 
;l;;;i Scheduling of jobs, .c 2 ,.~ ^x.xIx**II 7, -: 
a Centralization I,11 I> 

I‘ 

i~1 C0mpiexit~i6fulfi AM 

o Triggers &-Event Notification .--*.+?,,a. 

- . 

152 



Notrix - Overview 

D The Notrix.... 
REXX ProgramDocum’i$ PI 

2 Program ‘L 

Q Other Notrix-Features 

Q REXX Programming 
I Standard “&6f Language .Ixrvi* ., ̂ I , ,. 

3 Present Environment 
OS/2 ..-*,‘c*s x ’ ^” x1 

Notrix - Interface-VariableS ‘. 

.;;i note-stem. 
server, database, notelDs : 

-i field-stem. .-A’ ii,< , :: ,” ;’ : T 
,,,, ,, *a, ,, ~ ,.* :- 

name, value, type, flags 

R 

153 



Notrix - Functions 

o FindView() 

Notrix I Functions 2 1A1 :: r: .s ,,:.x: ‘1’ 

~2 NotesFieldList() ,II I I i.Lj:_. .., ‘, 

ti NotesEvaIuziteForrd&()’ 
LI File Attac.hment S,uppoljt() -__. w,. ~. 

R 

154 



I 

Notrix - lnternat 

Q Notrix reads-programdocument 
LI Register$“‘f 

3 Uses System-fxitsfor l/O j “&S-y 
,, ,e”*$8:’ 

Notrix - Extensions ’ ” ‘I 

Q Many existing libraries of REXX 
functions -,-w* ,,.I(^ 

., ̂  ,I..jl 
-. Communications : 

j* ’ Report Writers A 
-, User IntGf~~e Systems 

A 

155 



2 Functions 

Notrix Composer .‘,I . ‘:.. 
I~. 

~ ~, , “< ,,-I > --‘i<i ‘.L1:. 1 

zj Notrix Application / :. ‘I 
‘;;;;i Notes Import/Expoh &n’ager 
Q Accesses over 50 dtifakiices II.. 
3 Utilizes Standard Notes Form- ,., , ,’ 

requirir@no programming 

A 

156 



Notrix CornDose 

a Composer.-,FrrogFa 

a Uses Event‘fWriQ BvQvma%d 

Importing External Data Sources 
to Notes Ix . :. l”‘. *:,.x 

A 

157 



* klotrix ComDoser-Funcripc,f% 

a EdaOpen(). 
2 EdaExe& 
g EDAExecRP 

9 EdaFieldlist(), .,:/ ,; ..~i~.il’l 
D TransferEDAZNotes() 

R 

ComDoser Data Flow I.: I 

158 



Q Complete- access=throu.gh8+Jotes 

3 Notrix ha,MJi+ requests in 
background :” I- .:z4$sB&k.‘,‘. 

Notrix Comr>oser Job Form 
, , . ,  

.x , ,x I  , ,  ‘ii, ‘, 

;;;;i Specify Source and Target DBs I I ” 
‘2 Catalog Retrieval 
:A Column/Field Defi,nitions 111-1.,, ~, 
2 Record Selection ., j 3* , 
LI Calculated Fields 
2 Scheduling^M~:~ 

,x. ti,,*y:;: .,,< 
,* ,e y% := 

:,“’ .-. 

R 

159 



Notrix Composer - Features and 
Benefits 

a Scheduled-Data4mpor;aing 
2 Producti 
2 Change 

D Single lrit 

Current Deve{oDment :;- :L:::: 

:;;;i Notrix _,, ,, 

Coming : Novell NLM,+licrosoft NT, 
“NIX variants _i”“, ,:I‘ “‘~~~~ 

., , :*.li , 
3 Notrix Composer 

.:~: Comincjj~B,i~hrectional SQL 

160 



__ .- 
P Focus on SoftwareQeuelopment to help custome;r~~~~~, 

-,-s+u.dYe&&& &&.A~*? 
and manipulateinfotmation 

Q Lotus N nt and 
Business Partner cil “eadquati~~;:;:~Boston, 

Massachusetts ..__^ ,‘;Y: rx,.c 
2 Audrey Augun [617] 267-6700 

.-+c,&&&T;d$ 

161 



PRODUCT NAME: Notrix Version 1 .O 

Notrix is a programming tool that lets 
you do complex manipulation of Lotus 
Notes data WITHOUT Lotus Notes API 
or ‘C’ programming. Lotus Notes 
database administrators or designers, 
can quickly develop applications that 
easily manipulate Lotus Notes database 
documents and their fields. Within 
Lotus Notes, you can compose a REXX 
program document, store it in a Notes 
database, and schedule it to run 
automatically on the Lotus Notes server 
via the Lotus Notes Name and Address 
Book. The program accesses Lotus 
documents by searching views and 
manipulates fields by reading/writing 
documents in a Lotus Notes database. 
Notrix runs on the Lotus Notes server 
and uses the Lotus Notes front-end. 

Notrix implements REJ#& IBM’s 
powerful command processing language 
#at possesses a rich set of built-in 
functions. REXX is supplied with OS/2 
and its advantages include readability, 
available source code, and easy source- 
level debugging. Notrix extends the 
REXX language to work within Lotus 
Notes, also adding functions that make 
it simple to manipulate Lotus Notes 
databases. 

KEY FEATURES/BENEFITS: 

o Notrix is completely ‘Notes-centric’ 
and takes advantage of Lotus Notes 
replication and security features; giving 
you a distributed code base and a 
secure development environment. 

o Notrix does not require knowledge of 
the Lotus Notes API or complex “C” 
programming so that the project 
development cycle is reduced by 80%, 
saving hundreds of hours and 
thousands of dollars in outside 
consulting and technical support time. 

o Notrix eases the implementation of 
large Lotus Notes data manipulation 
projects since it utilizes standard REXX 
Dynamic Link Libraries (DLLs) to 
minimize programming time and 
provides sample programs to enhance 
ease-of-use and supply instant 
productivity. 

o With the Notrix Event Manager, you 
can build Notrix applications that 
automatically trigger when documents 
in Lotus Notes databases are opened, 
updated, or deleted. Also, a job log can 
provide an audit trail for system 
management tracking purposes. 

o Notrix is server-based and no 
additional software is required on the 
Lotus Notes client so that any Lotus 
Notes client (Windows, OS/2, 
Macintosh, etc.) can be used -- on a 
LAN or dial-up. 

o Notrix includes a Notrix Discussion 
Database for users who wish to 
exchange information with Percussion 
Software around topics such as feature 
wishlist items, bug reporting, and 
application examples built with Notrix. 
To receive updates to this database, a 
user needs only to replicate with 
Percussion’s Lotus Notes server. 

o An Online Help Database is included 
with each copy of Notrix to streamline 
the development process. 

R 

162 



SOFTWARE REQUIREMENTS AND 
PACKAGING: 

Notrix requires OS/2 Version 2.1 or 
later, OS/2 FEXX. Lotus Notes Version 
3.0 or later. 

Notrix is supplied on 1 3.5-inch PC- 
formatted diskette containing the Notrix 
database (Notrix.NSF), DLLs and the 
Help Database. A user manual 
describing Notrix use and the 
installation process is also included. 

PRICING AND AVAILABILITY: 

Nob-ix is priced at $3.500 and will be 
available in May, 1994. 

Percussion Software, headquartered in 
Boston, Massachusetts, develops 
software products to help customers 
access, integrate, and manipulate 
information they need in their day-to- 
day business operations. Percussion is 
both a Lotus Notes Business Partner 
and a member of the Lotus Professional 
Developer’s Program. Percussion offers 
programs for Lotus Notes VARs and 
consultants who wish to use our 
products in their solutions for a 
pride/performance advantage. 

FOR MORE INFORMATION, PLEASE 
CALL: 

Percussion Software 
222 Berkeley Street, Suite 1620 
Boston, Massachusetts 02 116 

Phone: (6 17) 267-6700 
Fax: (617) 266-2810 

Note to Editors: All products and product names 
mentioned in the publication are trademarks or 
registered trademarks of their respecdve 
companies. 

Percussion believes the tnformatlon in this 
publication Is accurate as of its publication date: 
such lnformatfon Is subject to change without 
nouce. Percussion is not responsible for any 
inadvertent errors. 

163 



PRODUCT NAME: Notrix Composer for 
EDA/SQL Version 1 .O 

OVERVIEW: 

Notrix Composer for EDA/SQL is a 
non-programming tool that lets you 
deiine bulk data movement between 
enterprise databases and Lotus Notes. 
Using a standard Lotus Notes form, you 
pull data from external sources into 
Notes by specifying the source database 
and target Lotus Notes database. You 
can map fields. select records, calculate 
new fields and determine job frequency, 
all without programming. Also 
provided is a Lotus Notes database that 
acts as a repository and log for all 
Notrix Composer activities. 

Notrix Composer consists of a set of 
program libraries and a Lotus Notes 
database that lets you call functions 
that interface with the Information 
Builder’s EDA/SQL Server. The Lotus 
Notes database provided with 
Nottix/Composer contains a server 
program that runs on the Lotus Notes 

server and fulfills requests for 
EDA/SQL data. Requests are issued by 
clicking on one of the buttons of the 
supplied Lotus Notes Form. Buttons 
are provided to Catalog Jobs, Schedule 
Jobs for later execution, and Run Jobs 
for immediate processing. 

KEY FEATURES/BENEFITS: 

o Notrix Composer lets you bring 
information from external data sources 
into Notes with no programming. You 
can now access information from your 
company’s databases and bring them 
right into your Lotus Notes documents 
through an easy-to-use Notes Forms 
Interface that is supplied with Notrix 
Composer. 

o No&ix/Composer contains a Lotus 
Notes Forms Interface that lets you 
specify the tables to access within the 
enterprise database, the Notes server 
and the target database name. You can 
also design how the original fields map 
to Lotus Notes fields and apply 
selection criteria to extract only the 
data you want. 

o Notrix Composer works with 
Information Builder’s EDA/SQL Server 
to provide access to over 50 different 
relational, hierarchical and native file 
systems. Data throughout your 
corporate information systems, such as 
customer profiles. fmancial results or 
marketing information is now available 
for your Lotus Notes users and can be 
distributed across the enterprise using 
the facilities of Notes database 
replication. 

o Familiar Notes facilities are used 
throughout Notrix Composer and all 
Notrix/Composer functions are 
integrated with the Lotus Notes 
environment. You can enter your 
information request into a Lotus Notes 
Form and defer processing to a 
schedule of your choosing. 

o Notrix Composer is server-based and 
no additional software is required on 

R 

164 



the Lotus Notes client so that any Lotus 
Notes client (Windows, OS/2, 
Macintosh, etc.) can be used -- on a 
LAN or dial-up. 

o Notrix Composer runs on OS/2 
today: future releases will add NT, NLM 
and UNIX platforms for cross platform 
coverage. 

o Notrix Composer includes a No&ix 
Composer Discussion Database for 
users who wish to exchange 
information with Percussion Software 
around topics such as feature wishlist 
items, bug reporting, and application 
examples built with Notrix Composer. 
To receive updates to this database, a 
user needs only to replicate with 
Percussion’s Lotus Notes server. 

o An Online Help Database is included 
with each copy of Notrix Composer to 
streamline the development process. 

SOFTWARE REQUIREMENTS AND 
PACKAGING: 

Software Requirements: Notrix 
Composer requires OS/2 Version 2.1 or 
later, OS/2 REXX. Lotus Notes Version 
3.0 or later. 

Notrix Composer is supplied on 1 3.5- 
inch PC-formatted diskette containing 
the EDA job definition database 
(NXEDA.NSF), DLL-s. and the Notrix- 
EDA/Link interface library. 

PRICING AND AVAILABILITY 

Notrix Composer is priced at $5,000 
and will be available in May, 1994. 

Percussion Software, headquartered in 
Boston, Massachusetts, develops 
software products to help customers 
access, integrate, and manipulate 
information they need in their day-to- 
day business operations. Percussion is 
both a Lotus Notes Business Partner 
and a member of the Lotus Professional 

. 

Developer’s Program. Percussion offers 
programs for Lotus Notes VARs and 
consultants who wish to use our 
products in their solutions for a 
price/performance advantage. 

FOR MORE INFORMATION, PLEASE 
CALL: 

Percussion Software 
222 Berkeley Street, Suite 1620 
Boston, Massachusetts 02 116 

Phone: (617) 267-6700 
Fax: (617) 266-2810 

Note to Editors: All products and product names 
mentioned in the publicadon are trademarks or 
registered trademarks of their respectfve 
companies. 

Percussion believes the informatton in this 
publication is accurate as of its publication date: 
such in.formaUon is subject to change without 
nouce. Percussion is not responsible for any 
inadvertent errors. 

165 



Adventures in Object-Oriented 
Programming in REXX 

Patrick J. Mueller 
IBM 

166 



Adventures in 
- Object Oriented -’ 

Programming 
with 

(REXX Object extensions) 

Patrick J. Mueller 
pmuellr@vnet.ibm.com 
May 1994, for the 1994 REXX Symposium 
Copyright IBM Corp. 1994. All rights reserved. 

167 



- . 

l IBM is a trademark of International 
Business Machines Corporation. 

l OS/2 is a trademark of International 
Business Machines Corporation. R 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

168 



l What ROX is: 

0 

0 

0 

A REXX function package for OS/2 

Provides object oriented capabilities 
for REXX 

An experiment A 

l What ROX isn’t: 

0 

0 

0 

An interface to existing 00 
systems (C++, Smalltalk, SOM) 

A new language 

An IBM product 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

169 



l Classes define: 

0 Methods, implemented in REXX 

0 Variables, accessible to methods 

l Class inheritance 
A 

0 Classes obtain methods and 
variables of inherited classes 

0 Multiple inheritance 

i Modelled on Smalltalk, but: 

0 Classes not 1st class objects 

0 No garbage collection 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

170 



:* --------- animal class 1-11-111-1 
:class animal 
:vars name sound 

:method init 
name = arg(1); sound = arg(2) 

:method name 
return name 

:method sound 
return sound 

.* . --------- dog class -1-1-11-11 
:class dog 
:inherits animal 

:method init 
name = arg(l) 
rc = animal.init(self,name,"Bark") 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

171 



I 

/ 
* 

/ 
* 

rc 

/ * 

sample.cmd */ 

load the ROX file animal.rox */ 
= RoxLoad(wanimal.roxN) 

create a dog named Jackson */ 
dog = RoxCreate(wdogw,wJacksonM) 

/ * -> 'Jackson says Bark' */ 
say .name(dog) Vays" .sound(dog) 

/* destroy dog */ 
rc = RoxDestroy(dog) 

A 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

172 



l C programming interface allowing 
methods to be implemented in C 

l Auto-loaded DLLs to allow complete 
class definitions to be implemented 
in C 

l Multithreaded support 

l Execution profiling 

A 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

173 



l Objects created with RoxCreate() 

0 arg(1) is the class name 

0 arg(2) . . . are initialization 
parameters 

0 The ‘init’ method of the class 
invoked automatically, if present 

0 Initialization parameters passed 
to init method 

l Objects destroyed with RoxDestroy() 

0 The ‘deinit’ method of the class 
invoked automatically, if present 

. 

R 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

174 



0 RoxCreate() returns a string that is 
a reference to an object 

l Object reference passed as first parameter 
to all methods, and RoxDestroy() 

l Object references are plain old REXX 
strings - can be kept in a blank delimited 
string as in: 

ob j s = I1 I1 
do i = 1 to 10 

objs = objs RoxCreate( ndogn) 
end 

l Special variables ‘self’ and ‘super’ 
available to methods which represent 
the receiver of the method 

R 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

175 



l Message sends are just REXX function 
invocations 

l Object reference is always the first 
parameter 

l Function name is method name, prefixed 
by 

if ff . 

l Object and method name used to resolve 
the class that implements the method 

The two move methods invoked below 
are probably implemented in different 
classes: 
xx = .add(aNumber,lOO) 
xx = .add(aList,aListItem) 

R 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

176 



I 

l Objects have as their instance 
variables all variables defined 
by their class, and its inherited 
classes. 

l All instance variables apply only 
to a particular object - they are 
not shared between objects. 

l All instance variables are ‘exposed’ 
when a method is invoked. 

l Per-instance variables may be 
created with RoxAddVar(). This 
provides support for stemmed 
variables. 

A 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

177 



l RoxLoad utility allows classes to 
be packaged into their own files 

l Multiple classes may be in one file 

l Format is: 

:include <a ROX file> 

:class <class name> 

:inherits <class name> . . . 

:vars <variable name> aem 

:method <method name> 
<method code> 

:method <method name> 
<method code> 

- . 

R 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

178 



I I 

l RoxAddClass() 
create a class 

l RoxClassAddlnherit() 
add an inherited class to a 
class definition 

l RoxClassAddMethod() 
add a method to a class definition 

l RoxClassAddMethodDll() 
add a method (in a DLL) to a 
class definition 

l RoxClassAddVar() 
add an instance variable to a 
class definition 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

179 



I 

l RoxCreate() 
creates a new object 

l RoxDestroy() 
destroys an object 

l RoxSend() 
send a message to an object 

l RoxSendThread() 
send a message to an object 
on another thread 

i RoxClass() 
returns class of object 

l RoxAddVar() 
add a per-instance variable 
to an object - used for stems 

R 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

180 



I 

l RoxLoad.cmd 

Calls the ‘builtin’ ROX functions 
to load a ‘ROX’ format file 

l Roxlnfo.cmd 

Prints class information for 
a given ROX file 

l RoxProf .cmd 

Collects and analyzes output 
generated from RoxStats() 
function to generate timing 
information 

A 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

181 



l list.rox 
l wordIist.rox 

‘0 setrox 
l collect.rox 

various collection classes; 
collect.rox is an abstract class 

l sessionsrox 
illustrates multiple inheritance 

l spinner.rox 
sample threaded class that displays 
an in-process spinner for activity 

l cmdline.rox 
implements a function to read a line 
from input with history, editing, etc 

l socketrox 
usability enhancements for the 
rxSock function package 

R 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

182 



l Performance 
0.05second overhead for 
message sends on 25/50 Mz 486 
machine. 

That’s pretty good, but still 
only 20 messages / second. 

R 

l File i/o 
Each invocation of a method opens a 
new file handle for a named file. 
Unpredictable because of buffering. 

Example: file ‘a.file’ opened twice 

:method foo 
rc = lineout("a.file~yx 11') 

x = .foo(something) 
x= .foo(something) 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

183 



I 

l Uses REXX external function interface 
for message sends 

l Internally, uses 
0 RexxStart() 
0 variable pool 
0 init/term System exits 

l Can be used by any REXX-macro-aware 
program 

l Possible conflicts with programs that 
usurp REXX external function exit and 
depend on period prefixed functions 

. 

- . 

R 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

184 



- . 

‘0 Experimenting with 00 and REXX 

l Whet your appetite for Object REXX 

A 

l A way to reuse large-ish chunks of 
REXX code, with shared variables 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

185 



- . 

l Currently at version 1.8 

l Available via: 

0 anonymous ftp to ftp.cdrom.com 
in /pub/os2/program/rexx as 
rox.zip 

0 Peter Norloff’s OS/2 BBS, 

R 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

186 



‘0 Currently at version 1.8 

l Available via: 

0 anonymous ftp to ftp.cdrom.com 
in /pu b/os2/program/rexx as 
rox.zip 

0 Peter Norloff’s OS/2 BBS 

A 

. 

Adventures in 00 Programming with ROX Copyright IBM Corp. 1994 

187 



ROX - REXX Object extensions 

Patrick Mueller 
IBM Software Solutions Division 

Cary, North Carolina 
pmuellr@vnet.ibm.com 

(c) Copyright IBM Corporation 1994. 
All Rights Reserved. 

April 27, 1994 
A 

158 



Contents 

1 Introduction 

1.1 What is ROX? ............................ 

1.2 What ROX isn’t ........................... 

1.3 Object creation ............................ 

1.4 Method invocation .......................... 

1.5 Variables ............................... 

1.6 Class Inheritance ........................... 

1.7 self and super ............................. 

2 Installation and Removal 6 

3 Function Reference 

3.1 Function Package Functions . . . . . . . . . . . . . . . . . . . . . 

3.2 Class Definition Functions . . . 

3.3 Object Lifecycle Functions . . . . . . . . . . . . . . . . . . . . . 

4 Format of .rox Files 10 

5 C Programming Interface 11 

6 Utilities Provided 13 

7 Classes and Testers Provided 14 

8 History 16 

A Sample .rox file 18 

B Sample ROX class usage 21 

C Output of previous samples 23 

189 



1 Introduction 

1.1 What is ROX? 

ROX is a function package for REXX that allows for object oriented (00) 
programming in REXX. You should have some basic familiarity with 00 pro- 
gramming before diving into ROX. 

ROX allows classes to be defined. The classes have a number of features. 

l they may inherit from other classes 

l they specify variables that will be maintained for each object created of 
the given class 

l they specify methods written as REXX code 

Classes are defined in files with an extension of .rox. See Format of .rox Files 
on page 10 for the format of the .rox files. 

1.2 What ROX isn’t 

ROX is not a new language - it is simply a function package that can be used 
from the OS/2 i REXX language providing some 00 capabilities. 

ROX provides NO facilities for interacting with other object oriented systems 
such as SOM or Smalltalk. 

ROX has no distributed (cross-process, or cross-platform) capabilities. 

1.3 Object creation 

Objects are created and destroyed with the FtoxCreate( j and RoxDestroy() func- 
tions, described in Object Lifecycle Functions on page 9. The RoxCreate() func- 
tion takes the name of the class to create the object from, and any number of 
additional parameters to initialize the object. The RoxCreate() function returns 
an object reference. This object reference is a regular REXX string, with a par- 
ticular value which the ROX functions can use to dereference the object. This 
object reference is used as the first parameter for method invocation. 

When an object is created, the init method for the class is invoked. Likewise, 
when an object is destroyed, the deinit method for the class is invoked. If the 

‘OS/2 is a trademark of International Business Machines Corporation. 

190 



1 INTRODUCTION 

init or deinit methods are not defined in the class, they will be searched for in 
inherited classes. 

1.4 Method invocation 

Once an object is created, you can send messages to it. This is also commonly 
referred to as invoking a method. The message is the name of the method, 
along with parameters that the method should be passed. To invoke a method, 
use REXX function call invocation. The name of the function is the name of 
the method, prefixed by ” .“. The first parameter to the function is an object 
reference, and any other method specific parameters can be passed as well. 

It’s time for a short example. In this example, we create an object of class dog, 
passing an additional parameter on the RoxCreate() function which is the name 
of the dog. The init method of the dog class will be invoked, passing the name 
as the first parameter. Next, the bark method of the dog class is invoked, in 
both function invocation formats available in REXX. Both invocations do the 
same thing. 

j ackson = RoxCreate(“dog”,“Jackson”) 
call . bark jackson 
g= .bark(jackson) 

As noted before, during object creation, the init message is sent to the object. 
In order to allow an object’s inherited classes to initialize themselves, the init 
and deinit methods may be invoked as functions whose names are a class name 
and the method name, concatenated together, with a “.” in between them. For 
example, assuming the dog class inherits from the animal class, the dog init 
method can call the animal init method by invoking the function animal.init. 

1.5 Variables 

Classes specify both the methods that can be used on an object and the state 
variables associated with the object. The variables are plain old REXX vari- 
ables, whose values are available to methods of the classes. The variables are 
non-stem variables, such as name, size, etc,. Stem variables are handled via 
per-instance variables (see below). Any number of variables may be associated 
with a class (and thus an object). 

Per-instance variables are variables that can be added to an object in an ad 
hoc manner. For instance, one object of class X might have object variables 
t.0, x.1, x.2, where another object of class might have object variables x.U, x.1. 

191 



1.6 Class Inheritance 

Per-instance variables are added to an object with the function RoxAddVar(). 
Per-instance variables are the only way to store stem variables-with an object - 
stem variables can NOT be defined with a class. 

When a method is invoked, the variables of the object will be available to the 
REXX code of the method. If the value of a variable changes in the method, 
the changed value will be saved with the object. 

It’s time for another example. In this example, we’ll describe a simple class in 
the format acceptable for .rox files. The class is dog, and it has two variables - 
name and breed. They will be used to hold the name of the dog, and the dog’s 
breed. We also define three methods - name, breed and describe. The name and 
breed functions either set or return the current value of the variable, depending 
on whether any parameters are passed to them. The describe method prints a 
line describing the dog. 

:class dog 
:vars name breed 
: method name 

if (a.rgO = 1) then 
name = arg(l) 

return name 
:method breed 

if CargO = 1) then 
breed = arg(l) 

return breed 
:method describe 

say The dog’s name is” name”. It is art breed”.” 
return 1”’ 

Below is some REXX code that uses the class dog. The result of the method 
describe invocation is that the line “The dog’s name is Jackson. It is a Chocolate 
Labrador Retriever.” will be printed on the screen. 

Jackson = RoxCreat e (“dog”) 
x= .narse(Jackson,“Jackson”) 
x = . breed( Jackson, “Chocolate Labrador Retriever”) 
x = .describe(Jackson) 

1.6 Class Inheritance 

Classes can inherit other classes in their definitions. This technique expands 
the variables and methods available to the class to the set of variables and 

192 



3 FUNCTION REFERENCE 

methods defined in any inherited classes. A class can inherit from more than 
one class. ROX has no scoping facility, so if classes are inherited that have the 
same method, the method will be available in the derived class (the one that 
inherits the other classes), but the actual method invoked is undefined. One of 
the methods will be invoked, but it’s not possible to determine which one. 

1.7 self and super 

Two special variables are available to all methods. They are selfand super. self 
refers to the receiver of the method (the object which the methods was invoked 
on). super also refers to the receiver of the method, however, if super is used as 
the receiver of a method, the method to be invoked will be searched for starting 
at the inherited classes of the class of the method currently running. self and 
super are similiar to the self and super variables in Smalltalk. 

2 Installation and Removal 

The ROX REXX function package is contained in the file rox.dll. This file 
needs to be placed in a directory along your LIBPATH. To get access to the 
functions in the ROX function package, execute the following REXX code: 

rc = RxFuncAdd(“RoxLoadFuncs” ,“rox” ,“RoxLoadhlI1cs”) 
rc = RoxLoadFuncs (1 

To unload the DLL, you should first call the BoxDropF’uncs() function, then 
exit all CMD.EXE shells. After exiting all the command shells, the DLL will 
be dropped by OS/2 and can be deleted or replaced. 

3 Function Reference 

The functions provided by the ROX function package fall into the following 
categories: 

l function package functions 

l class definition functions 

l object lifecycle functions 

193 



3.1 Function Package Functions 

3.1 Function Package Functions 

The following functions load, drop and query the version number of the ROX 
function package. 

RoxLoadFuncs() - load the ROX function package 

rc = RoxLoadFuncs (> 

Loads all the functions in the ROX package. 

If ANY parameters are passed to this function, it will bypass the program, au- 
thor, and copyright information normally displayed. All parameters are ignored 
(except to determine whether or not to bypass displaying the information). 

RoxDropFuncs() - drop the ROX function package 

rc = RoxDropFuncs (> 

Drops all the functions in the ROX package. 

RoxVersion() - returns version number of the ROX function package 

vers = RoxVersionO 

Returns the current version number of the ROX package. 

RoxStats() - generates execution profile info 

rc = RoxStats(<parm>) 

This function can be used to generate profile information on stderr. A parameter 
should be passed to start profile information, no parameter should be passed to 
stop profile information. For example: 

rc = RoxStats(““) /* start profiling */ 
rc = RoxStatsO /* end profiling */ 

The profile information can be analyzed with the RoxProf.cmd utility. 

Returns “” . 

194 



3 FUNCTIONREFERENCE 

3.2 Class Definition Functions 

The following functions are used to add class definitions to the system. Generally 
you will only need to use FtoxLoad() and RoxQueryClassLoaded(). The other 
functions are used by RoxLoad() to to load .rox files. 

RoxLoad() - load class definitions in a .rox file 

rc = RoxLoad(roxFilelame) 

This function loads the named file as a class definition. See the section of .rox 
file definitions for the layout of the file. 

This function is implemented as a REXX .cmd file. 

RoxQueryClassLoaded() - query whether class is loaded 
R 

boo1 = RoxQueryClassLoaded(class8sme) 

Returns 1 if the class named className is available in the system. Returns 0 
otherwise. 

RoxAddClass() - add a class 

rc = RoxAddClass(classIfame) 

This function adds the named class to the system. 

RoxClassAddInherit() - add an inherited class to a class definition 

rc = RoxClassAddInherit(class8ame,inheritedClassRame~ 

This function specifies that the class named className should inherit from the 
class named inheritedClassName. 

RoxClassAddMethod() - add a method to a class definition 

rc = RoxClassAddMethod(classlOame,methodRame,methodCode) 

This function adds the named method, with the REXX code for the method to 
the named class. 

195 



3.3 Object Lifecycle Functions 

RoxClassAddMethodDll() - add a method (in a DLL) to a class defi- 
nition 

rc = RoxClassAddMethod(classlDame,metho~ame,dlllame,entryPoint) 

This function loads the dll, gets the address of the function given with the name 
entrypoint, and adds this to the named class. 

RoxClassAddVar() - add an instance variable to a class definition 

rc = RoxClassAddVar(classlame,var8eme) 

This function adds the named instance variable to the named class. 

3.3 Object Lifecycle Functions 

RoxCreate() - create an object 

object = RoxCreate(classkme<,plC,p2< . . . >>>) 

This function creates an object of the class named className. Any number of 
parameters, specific to the class, can be passed. 

RoxDestroy() - destroy an object 

rc = RoxDestroy(object) 

This function destroys an object. 

RoxSend() - send a message to an object 

result = RoxSend(messageBame,object,c,pic,p2<. . . >>>) 

R 

This function sends the named message to the object specified. Any number of 
parameters, specific to the message and class, can be passed. 

196 



4 FORMAT OF .ROX FILES 

RoxSendThread() - send a message to an object 

result = RoxSendThread(messagelPame,object,<,pl<,pZ<. . . >>>I 

Same as RoxSend(), but starts a new thread to process the message. No useful 
return value is returned. 

RoxClass() - return class of given object 

class = RoxClass(object) 

This function returns the name of the class of the object. 

RoxAddVar() - add a variable to an object 

result = RoxAddVar (ob j ect , varlPame) 

This function will the named variable to the set of instance variables associated 
with the object. Be careful not to add extra blanks to varName when passing it 
in. The characters in the variable name, up to the first ” .“, will be uppercased, 
to conform with REXX variable conventions. The remainder of the variable 
name is left as is. 

4 Format of .rox Files 

Classes are defined in files with an extension of .rbx. A .rox file may contain 
one or more class definitiona. 

Classes defined in .rox files may be loaded by using the RoxLoad function (see 
Utilities Provided on 13). 

The format of .rox files is a tagged file. The character ‘:’ in column one indicates 
a tag. The rest of the line after the ‘:’ indicates the type of tag. 

The characters ‘:*‘, when located in column one, indicate a comment. 

The following tags may be used in a .rox file: 

*include <file> . 

This tag indicates that the file specified in the tag should be loaded as a .rox 
file. Useful for including inherited class definitions from separate files. 

A 

197 



:class 

This tag indicates the start of a new class definitions. Any :inherits, :vars, 
and :method tags following this tag, up to the end of the current .rox file, are 
associated with this class, 

: inherits <class> <class> . . . 

This tag indicates the classes that should be inherited from. More than one 
class may be specified. This tag may be used more than once within a class 
definition. 

:vaJTs aKLr> <var> . . . 

This tag indicates the variables associated with the class. More than one variable 
may be specified. This tag may be used more than once within a class definition. 
Note stem variables may NOT be used. Use RoxAddVar() to add stem variables 
to an object. 

:method <methodName> 

This tag indicates that the code for the method named <methodName> follows. 
The code for the method ends at the next tag (including :* comment), or end 
of He. 

5 C Programming Interface 

ROX methods can be implemented in compiled languages, such as C, via a 
DLL. The function RoxClassAddMethodDll() adds a method to a class that 
points to a function in a DLL. The function in the DLL must have the following 
signature: 

/*---------------------------------------------------- 
* typedef ior function that handles method invocation 
*----------------------------------------------------~/ 

typedef ULOBG APIEBTRY RoxMethodHandlerType( 
void *object, 
PUCBAR name, 
ULOHG =gc, 
PRXSTRIBG argv, 
PRXSTRIBG retString 
1; 

A 

The parameters passed to the method are: 

. 

198 



5 CPROGRAMMINGINTERFACE 

object a pointer to the ROX object receiver 

name the name of the method 

argc the number of arguments passed to the method 

argv array of RXSTRINGs that make up the parameters 

retstring pointer to the return value 

Most of these parameters will be familiar to those of you who have written 
external functions for REXX in C. The only new one is the object parameter. 
It can be used in the following functions: 

ULOBG RoxVariableGet( 
void *object, 
PRXSTRIBG name, 
PRXSTRIlG value 
1; 

ULOBG RoxVa.riableSet( 
void *object, 
PRXSTRIlG name, 
PRXSTRIHG value 
); 

The functions above are used to query and set variables for an object. The 
functions return 0 when successful, !O when not successful. The data pointed to 
by the value parameter returned from RoxVariableGet() must not be modified. 

A sample of a compiled class is provided in roxsem.c. 

A DLL can provide a self-loading function named RoxDllEntryPoint, with the 
following function signature. 

ULOlG APIEBTRY RoxDllEntryPoint( 
ULOBG init 
1 

R 

Currently the init parameter is ignored. 

This function gets called when the REXX function RoxLoadDLL() is invoked. 
This function takes the name of the DLL (usually sans “.DLL”, although you 
may specify an absolute path, including the ” .DLL” s&ix) and calls the Rox- 
DllEntryPoint function. 

199 



This function in the DLL can call any of the functions defined in the ROX 
function package through their C bindings. The call is made as if the call was 
being made to a REXX external function. For example, to call RoxAddClaas(), 
you invoke it in C ss: 

RXSTRIBG panu, result; 

parm.strptr = "myClassBame"; 
parm.strlength = strlen(perm.etrptr); 

RoxAddClass(BULL,l,kparm,BULL,&result); 

Note that the function name and queue name (first and fourth parameters) may 
be passed as NULL. 

Be careful how the return value is freed. See the sample r0xsem.c code for 
examples. 

Two platform independent functions are provided to allocate and free memory. 
The functions are: 

void APIEITRY *osMalloc( 
int size 
1; 

void APIEBTRY osFree( 
void *ptr 
1; 

The include file “r0xapi.h” prototypes these functions, and the library “rox.lib” 
contains them. 

6 Utilities Provided 

The following utilities are provided with ROX: 

RoxLoad.cmd 

A 

This program can only be used as a REXX function. It can not be called from 
the OS/2 command line. One parameter must be passed to the function - the 
name of a .rox file to load. The file will be searched for in the current directory, 
and then the directories specified in the ROXPATH environment variable. 

200 



7 CLASSES AND TESTERS PROVIDED 

RoxInfo.cmd 

Prints a short reference of the class definitions in .rox files. Multiple .rox files 
may be passed as parameters, and wildcards may be specified. For every class 
in the .rox file, the following information will be provided: 

l Classes inherited by the class. These classes will be listed in an indentation 
style which indicates the tree of class inheritance. 

l Variables defined and inherited by the class. Inherited variables are 
marked with a prefix of “*“. 

l Methods defined and inherited by the class. Inherited methods are marked 
with a prefix of ” *“. 

A 

RoxProf.cmd 

Analyzes the profile information generated by RoxStats(). Use “RoxProf ?” for 
help. 

7 Classes and Testers Provided 

list .rox 

Implements a simple list class. The program testcoll.cmd tests this class, by 
passing it a parameter of “list”. The list class inherits the collection class in 
collect.rox. 

wordlist .rox 

Implements a simple list class, similiar to the list class. The difference is that 
the list class can contain arbitrary strings, whereas the wordlist class can only 
contain strings with no blanks in them. The program testcoll.cmd tests this 
class, by passing it a parameter of “wordlist”. The wordlist class inherits the 
collection class in collect.rox. 

201 



set.rox 

Implements a simple set class. The program testcoll.cmd tests this class, by 
passing it a parameter of “set”. The set class inherits the collection class in 
collect.rox. 

collect .rox 

Implements a simple collection class, that can be inherited by other, more spe- 
cific collection classes, and will provide additional capabilities. 

sessions.rox 

This file implements some of the classes from Roger Sessions’ book on 00 with 
C and C++ (reference included in the .rox file). The program sessions.cmd tests 
the classes. 

spinner.rox 

This class implements a character spinner, which can be used ss a progress 
indicator. Also uses roxsem.dll. This class is tested with testspin.cmd. The 
demo shows code testing a collection along with a spinner running independently 
in another thread. 

testthrd.cmd 

This program tests the thread capabilities of ROX. 

cmdline.cmd 

This program uses cmdline.rox as a command line reader with history. Use the 
up and down arrows to cycle through previous lines entered. 

roxsocks.cmd & roxsockc.cmd 

These programs demonstrate tcp/ip server and client programs X socket class 
(in socket.rox). 

202 



8 HISTORY 

8 History 

04/14/94 - version 1.8 

l fixed problem with super calls 

l removed RoxVarSynch() 

l added RoxAddVar() and per-instance variables 

l cut execution time in half with new memory management scheme 

l added RoxStats() and RoxProf.cmd 

01/06/94 - version 1.7 

l minor documentation cleanup 

l cleanup of internal structure of ROX - no external changes - most notably, 
no performance changes 

10/22/93 - version 1.6 

l fixed infinite loop when no variables set in an init method - ObjectSaveS- 
tate/RoxStemSynch ping-ponged. Reported by Zvi Weiss as a problem 
when a syntax error occurred in an init method. 

l changed compiled classes/methods stuff to have just one type of class, and 
either compiled or REXX macros. Compiled macros added with RoxClas- 
sAddMethodCompiled(). 

09/14/93 - version 1.5 

l more thread reentrancy fixes 

l added compiled class capability 

08/31/93 - version 1.4 

l added RoxSendThread() function 

l first attempt at making everything thread reentrant (still some more to 
go>. 

R 

203 



08/27/93 - version 1.3 

l print error when invalid object reference is passed to a method 

l added exception handling, to try to catch method invocation on objects 
which are no longer alive 

08/24/93 - version 1.2 

l fixed problems with m-adding and m-registering classes and methods 

08/22/93 - version 1.1 

l fixed super behaviour 

l added multiple inheritance capability 

l added class-specific init and deinit methods 

l added RoxStemSynch() - requires user notify the system when stem vari- 
ables are added or dropped as instance variables 

l added R,oxInfo.cmd utility 

l documentation turned into .inf file and enhanced 

08/18/93 - version 1.0 

x 

l initial release 

204 



A SAMPLE .ROX FILE 

A Sample .rox file 

Below is a the ‘sessions.rox’ file, which contains class defintions inspired by 
Roger Sessions’ book on class development. 

:*------------------------------------------------------------------- 
:* REXX Object extensions : 
:* classes described in Roger Seaaione’ book “Class Construction in 
:* C and C++“, Prentice-Hall, ISBN 0-13-630104-S. 
:e------------------------------------------------------------------- 

: class performer 

: vars minsalary 

:method setHinimumSalary 
minsalary = ax-g(l) 

if (0 = datatype(minSalary,‘W’)) then 
8inSalary = 1000 

return self 

:method bargain 
say ” I get” minSalary * 2 “dollars a performance.” 

return self 

: class animal 

:vars name sound soundTimee 

:rethod init 
name = a.rg(l) 
soundTimes = arg(2) 
sound = erg(J) 

if (name - ““1 then 
name = “unnamed” 

R 

if (0 = datatype(soundTimes,“Y”)) then 
soundTimes = 1 

. 

205 



if (sound = "") then 
sound = "..." 

return 

:method says 
aay name "says:" 

do i = 1 to soundTimes 
say '1 "sound 

end 

return self 

:class dog 

: inherits animal performer 

:method init 
rc = animal.init(self,arg(l),arg(2),arg(3)) 
return 

:method scratch 
say 'I Ooooh... what an itch." 
return self 

:class littleDog 

:inherits dog 

:method init 
rc = dog.init(self,arg(l),arg(L?),arg(3)) 
return 

:method trick 
eay " Watch my trick: I can roll over." 
return self 

A 

:class bigDog 

206 



I 

A SAMPLE .ROX FILE 

:inherits dog 

:method init 
rc = dog.init(self,arg(l),arg(2),arg(3)) 
return 

:method trick 
may " Watch my trick: I can fetch the letter carrier." 
return self 

: l %%%%%%%%- %PP%P%PP%P%%%%%P%P%%%%E%IpIppIp 

:class UsedCarDealer 

:inherits animal 

:method init 
rc = animal.init(self,arg(l),arg(2),arg(3)) 
return 

R 

:method makeSale 
say " . . . and only $500 more if you want the wheels." 
return self 

207 



B Sample ROX class usage 

Below is a the ‘seasions.cmd’ file, which uses the classes defined in the ‘ses- 
sions.rox’ file. 

/* ----------------------------------------------------------------- 
l sessions.cmd : 
*------------------------------------------------------------------ 
l 08-21-93 originally by Patrick J. Mueller 
+-----------------------------------------------------------------*/ 

say "testing the Sessions classes" 

if RxFuncGuery("RoxLoadFuncs") then 
do 
rc = RxFuncAdd("RoxLoadFuncs","Rox","RoxLoadFuncs") 
rc = RoxLoadbcsO 
end 

R 

rc = time("r") 

rc = RoxLoad("sessions.rox") 

Frenchie = RoxCreate("anima1" t "Frenchie", 1, "Grrrrrr") 
Rover = RoxCreate("dog". "Rover", 1, "Uoof") 
Fifi = RoxCreate("littleDog", "Fifi" 2, "bov vov") 
Rex = RoxCreate("bigDog", "Rex",' 4, "BOY WOW") 
HonestBob = RoxCreate("usedCarDealer", "HonestBob", 1, "Buy this deal of a car!") 

g- .setMinimumSalary(Rex,30) 
g- .setMinimumSalary(Pifi,20) 

8 = .says(Frenchie) 
say 

8’ . says (Rover) 
say 

g = .says(Fifi) 
g- .scratch(Fifi) 
8 = .trick(Fifi) 
g- .bargain(Fifi) 
say 

g- .says(Rex) 
g- .scratch(Rex) 
g- .trick(Rex) 

. 

208 



B SAMPLE ROX CLASS USAGE 

g- .bargain(Rex) 
say 

g = .says(HonestBob) 
g- .makeSale(HonestBob) 

209 



C Output of previous samples 

Below is a the output of running the ‘seasions.cmd’ file 

testing the Sessions classes 
Frenchie says: 

Grrrrrr 

Rover says : 
Yoof 

Fifi says: 
bov vov 
boil vov 
Ooooh.. . vhat an itch. 
Watch my trick: I can roll over. 
I get 40 dollars a performance. 

A 

Rex says: 
BOY YOU 
BOY WOW 
BOW YOU 
BOY YOU 
Ooooh... vhat an itch. 
Watch my trick: I can fetch the letter carrier. 
I get 60 dollars a performance. 

HonestBob says: 
Buy this deal of a car! 
. . . and only $500 more if you vant the vheels. 

210 



The Object REXX Class Hierarchy 

Simon Nash 
IBM 

211 



The Object REXX Class Hierarchy 
Simon C. Nash 

IBM UK Laboratories Ltd, Ilurslcy Park, 
Winchester, Hants SO21 2JN, England 

Internet: nash@vnet.ibm.com _ - . 

Abstract 

Object REXX, an object-oriented extension of the popular REXX language, includes a class 
hierarchy. The design of this hierarchy posed some interesting challenges in providing 
mechanisms that would serve the needs of the base hierarchy together with probable user 
extensions to it. This paper presents the chosen design in the form of a tutorial introduction 
to the concepts and mechanisms involved, including abstract classes, mixins, and multiple 
inheritance. It also gives examples of how the mechanisms provided by REXX might be used 
by class users and implementers. 

Objects and Classes 

REXX objects are grouped into classes. For example, all character strings (whatever their 
content) belong to the String class, all dircctorics belong to the Directory class, and so on. 
The class of an object indicates what “kind” of object it is - that is, what methods it provides 
to respond to messages sent to it. For example, string objects provide string-related methods 
such as POS and SUBSTR, and directory objects provide methods for collections such as 
ITEMS and SUPPLIER. You can look at the descriptions of the String and Directory classes 
to find out what methods are available on string and directory objects. 

In REXX, everything is an object, so classes arc ohjccts too. Class objects are used in a 
number of ways, the most important of which is their role in creating other objects. They 
support this by providing NEW and EN1 IANCEI> methods which crcatc objects of the kind 
defined by the class. For cxamplc, the Directory class object returns a new directory object in 
response to the message 

-directory-new 

Classes and Instances 

The objects created by a class arc known as its instances. They arc given methods that match 
the specification defined by the class for its instances. For example, a Rectangle class might 
define methods AREA and PERIMI?TER using the directives 

::class Rectangle 
::method area 
expose width height 
return width*height 
::method perimeter 
expose width height 
return (width+height)*2 

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy 

212 



Then, when rectangle objects (instances of the Rectangle class) are created by sending NEW 
messages to the Rectangle class object, they will have methods AREA and PERIMETER with 
the REXX code shown above. 

Object and Instance Methods 
___- -. 

There’s an important difference between the AREA arid PERIMETER%rcthods of a rectangle 
object and the AREA and PERIMETER method definitions in the Rectangle class. A 
rectangle object can respond to AREA and PERIMETER messages by running the methods 
shown above, and we say that it has these as objecf mefhods. The Rectangle class cannot 
respond to AREA and PERIMETER messages itself, but its instances can, and we say that it 
has AREA and PERIMETER as instance melhods. The Rectangle class responds to other 
(class-related) messages, such as the NEW message that creates a rectangle object, so it has 
object methods (like NEW) as well as its instance methods. 

Since only classes have instance methods, them’s no need to distinguish between object 
methods and instance methods when talking about other kinds of objects, such as strings or 
rectangles. We usually just say plain “methods” when talking about the object methods of 
these objects. 

Subclasses, Superclasses, and Inheritance 

Every class in the system could be dcfincd indcpcndcntly, with a complctc set of instance R 

methods. However, many classes have a lot in common. An example of this may bc Student 
and Graduate classes - a graduate object has the same information as a student object (name, 
ID, course, etc.) and also some additional information (graduation details). We’d prefer not . 
to repeat most of the instance methods of the Student class in the definition of the Graduate 
class, and we can avoid this (and express the close relationship bctwccn thcsc two kinds of 
objects) by making the Graduate class a subclass of the Student class. This gives the 
Graduate class all the instance methods of the Student class, and the Graduate class can then 
add or override any necessary instance methods. 

If Graduate is a subclass of Student, we call Student a sup&class of Graduate. The 
subclass-superclass relationship is also called inhcritancc, so WC say that Graduate inherits the 
NAME method from Student. 

The inheritance relationship can bc used to arrange the classes into a class hierarchy - a 
diagram in which superclasses arc drawn above subclasses, with lines connecting them. The 
class at the top of this hierarchy is the Object class. Its instance methods (COPY, “ = ‘0 
STRING, etc.) are inhcritcd (directly or indirectly) by all other classes and so become object 
methods of all objects. Most objects have additional object methods - for example, the 
Supplier class is a subclass of the Object class and has instance methods AVAILABLE, 
INDEX, ITEM, and NEXT, so all supplier objects have these object methods as well as 
COPY, “= “, STRING, etc. 

0 Copyright IBM Corporation 1994 The Object REXX Class Ilierarchy 

213 



_ _ I -  

Y o u  c a n  c re a te  a  s u b c l a s s  b y  s p e c i fy i n g  th e  n a tn e  o f th e  s u p e rc l a s s  o n  th e  S IJ B C L A S S  o p ti o n  
o f th e  ::C L A S S  d i re c ti v e  (w h i c h  i s  e q u i v a l e n t to  s e n d i n g  a  S U B C L A S S  m e s s a g e  to  a  c l a s s  
o b j e c t). F o r e x a m p l e , to  m a k e  G ra d u a te  a  s u b c l a s s  o f S tu d e n t, y o u  w o u l d  w ri te  

::c l a s s  G ra d u a te  s u b c l a s s  S tu d e n t 

If S tu d e n t w e re  i ts e l f a  s u b c l a s s  o f P e rs o n  (i n h e ri ti n g  s o m e  P e rs o n  m e th o d s ), th i s  m a k e s  
G ra s u a te  a  s u b c l a s s  o f P e rs o n  to o  (th ro u g h  th e  i n tc rm c d i a tc  c l a s s  S t~ u d e n t). W e  s o m e ti m e s  
u s e  th e  te rm s  d i re c t a n d  i n d i re c t s u p e rc l a s s e s  (o r s u b c l a s s e s ) td ‘d i s ti n g u i s h  th e s e . If y o u  d o n ’t 
s p e c i fy  th e  S U B C L A S S  o p ti o n , y o u r c l a s s  b e c o m e s  a  s u b c l a s s  o f th e  O b j e c t c l a s s . 

W h e n  ta l k i n g  a b o u t a  c l a s s ’s  i n s ta n c e  m e th o d s , w h i c h  o n e s  d o  w e  m e a n  - j u s t th e  o n e s  i t 
d e fi n e s  i ts e l f, o r th o s e  a n d  th e  o n e s  i t i n h e ri ts  fro m  i ts  s u p e rc l a s s e s ?  It’s  u s u a l l y  m o re  
c o n v e n i e n t to  ta k e  th i s  a s  m e a n i n g  th e  m e th o d s  d e l i n e d  b y  th e  c l a s s  i ts e l f, a n d  w e  w i l l  fo l l o w  
th i s  c o n v e n ti o n  fro m  n o w  o n . H o w e v e r, i t’s  i m p o rta n t to  re m e m b e r th a t w h e n  th e  c l a s s  
c re a te s  i n s ta n c e s , th e  o b j e c t m e th o d s  o f th e  i n s ta n c e s  i n c l u d e  n o t o n l y  th e  i n s ta n c e  m e th o d s  o f 
th e  c l a s s  i ts e l f, b u t a l s o  th o s e  o f a l l  th e  s u p e rc l a s s e s  fro m  w h i c h  i t i n h e ri ts . 

A b s tra c t C l a s s e s  a n d  O b j e c t C l a s s e s  

S o m e  c l a s s e s  h a v e  a  c l o s e  i n h e ri ta n c e  re l a ti o n s h i p , l i k e  G ra d u a te  a n d  S tu d e n t. O th e rs  a re  
re l a te d  i n  a  s l i g h tl y  m o re  d i s ta n t w a y  - m o re  l i k e  s i b l i n g s  th a n  p a re n ts  a n d  c h i l d re n . Y o u  c a n  
a p p re c i a te  w h y  th e  tc rtn  “i n h e ri ta n c e ” i s  u s e d  to  d e s c ri b e  th e  c l a s s  fa m i l y ! F o r e x a m p l e , a rra y  
a n d  l i s t o b j e c ts  s h a re  a  n u m b e r o f m e th o d s : F IR S T , L A S T , N E X T , P R E V IO U S , S E C T IO N , R  
a n d  S U P P L IE R . E v e n  s o , n e i th e r i s  a  s u b c l a s s  o f th e  o th e r - a rra y s  h a v e  a  D IM E N S IO N  
m e th o d , b u t l i s ts  d o n ’t, a n d  l i s ts  h a v e  a  F IR S T IT E M  m e th o d , b u t a rra y s  d o n ’t. S o  h o w  c a n  
w e  e x p re s s  th e  c o m m o n  n a tu re  o f a rra y s  a n d  l i s ts ?  

T h e  a n s w e r i s  a n  a b s tra c t c l a s s . A b s tra c t c l a s s e s  a rc  s p e c i a l  c l a s s e s  th a t d o n ’t c re a te  i n s ta n c e s  
(u n l i k e  “n o rm a l ” c l a s s e s , l i k e  S tu d e n t a n d  G ra d u a te ). In s te a d , th e y  p ro v i d e  a  s e t o f i n s ta n c e  
m e th o d  d e fi n i ti o n s  th a t c a n  b c  s h a re d  b y  a  n u m b e r o f o th e r c l a s s e s . It’s  h e l p fu l  i f a b s tra c t 
c l a s s e s  d e fi n e  m e a n i n g fu l  p ro p e rti c s , w i th  a  c o l l e c ti o n  o f m e th o d s  th a t re l a te  to  th a t p ro p e rty . 
F o r e x a m p l e , th e  p ro p e rty  s h a re d  b e tw e e n  a rra y s  a n d  l i s ts  i s  th a t o f h a v i n g  s o m e  i n te rn a l  
s e q u e n c e  w h i c h  c a n  b e  u s e d  to  s te p  th ro u g h  th e  i te m s  o f th e  a rra y  o r l i s t - th e  i d e a  o f a  
“fi rs t” i te m , “n e x t” i te m  a n d  s o  o n . T h i s  l c a d s  n a tu ra l l y  to  th e  i d e a  o f a  S c q u c n c e d  c l a s s  - 
b u t i t’s  n o t a  “n o rm a l ” c l a s s , s i n c e  i t i s n ’t m e a n i n g fu l  to  th i n k  a b o u t m a k i n g  i n s ta n c e s  o f th e  
S e q u e n c e d  c l a s s . T h a t’s  b e c a u s e  th e  S e q u e n c e d  c l a s s  d o e s n ’t p ro v i d e  e n o u g h  c a p a b i l i ty  fo r a  
fu n c ti o n a l  s ta n d a l o n e  “s e q u e n c e d ” o b j e c t. A rra y  a n d  L i s t i n h e ri t fro m  S c q u c n c e d  a n d  a d d  th e  
m i s s i n g  p i e c e s  th a t S e q u c n c c d  d o e s n ’t h a v e . 

W e  n e e d  a  n a m e  fo r “n o rm a l ” c l a s s e s  (th a t c a n  c rc a tc  i n s ta n c e s ) to  d i s ti n g u i s h  th e m  fro m  
a b s tra c t c l a s s e s . W e  c a l l  th e m  o b j e c t c l a s s e s  b e c a u s e  th c s c  a rc  th e  c l a s s e s  w h o s e  m e m b e rs  
(i n s ta n c e s ) a re  re a l  l i v e  o b j e c ts . T h e i r n a m e s  a rc  u s u a l l y  n o u n s , s u c h  a s  A rra y , L i s t, a n d  
R e c ta n g l e . In  c o n tra s t, a b s tra c t c l a s s e s  d c fm c  p ro p e rti c s  (o r a b s tra c ti o n s ) th a t d e s c ri b e  
o b j e c ts  - th e y  h a v e  n o  i n s ta n c e s , a n d  th e i r n a m e s  a rc  u s u a l l y  a d j e c ti v e s  l i k e  S e q u e n c e d . 

B e c a u s e  o f th e  w a y  a b s tra c t c l a s s e s  fa c to r o u t th e  c o m m o n  m e th o d s  fro m  th e i r s u b c l a s s e s , 
y o u ’d  e x p e c t th e m  to  a l w a y s  h a v e  m o re  th a n  o n e  s u b c l a s s . T h i s  i s  tru e  fo r a l l  th e  a b s tra c t 
c l a s s e s  th a t R E X X  p ro v i d e s  e x c e p t th e  C o n d i ti o n  a n d  S u p p l i e r c l a s s e s . T h e s e  a re n ’t o b j e c t 

0  C o p y ri g h t IB M  C o rp o ra ti o n  1 9 9 4  T h e  O b j e c t R E X X  C l a s s  H i e ra rc h y  

2 1 4  



classes because they don’t provide NEW or ENIIANCEI) methods for creating instances - 
REXX provides other ways to crcatc condition objects and supplier objects. They’re a very 
special case (since no user-created classes would bc able to work like this), and it’s convenient 
to use abstract classes for them. 

To create an abstract class, use the ABSTRACT option on a ::CLASS directive. For example, --- 
to create an abstract class Visual which is a subclass of the Object class,you would write 

::class Visual abstract 

Multiple Inheritance 

As well as sharing some methods with arrays, lists also share some methods with queues: 
MAKEARMY, PEEK, PULL, PUS11 and QUEUE. Again, it makes sense to create an 
abstract class for these. We call it Qucuclike, since its instance methods apply to all objects 
that function as queues. So we need the List class to inherit from both the Sequenced and 
Queuelike abstract classes. This is called multiple inheritance, and although it may look quite 
simple (at least in this case), it is very powerful. It also raises some rather complicated issues 
- see More on Multiple Inheritance below. 

- , 

You can use multiple inhcritancc by specifying the IN1 1131~11’ option on a ::CLASS directive 
(which is equivalent to sending one or mom INIII3RI’I’ messages to a class object). For 
example, to create a class Window which is a subclass of Visual and also inherits from 
Movable and Sizeablc, you would write A 

::class Window subclass Visual inherit Movable Sizeable 

There’s no limit to the number of classes you can inherit from in this way. 

Class Methods 

We’ve seen that class objects have both instance methods and object methods. Ilow arc their 
object methods (like NEW) dcfincd? The CLASS option on a ::METI IOD directive indicates 
that the method being dcfmcd is a class ntefho~, not an instance method. For an object class, 
this means that the class will have that method as one of its object methods. For example, the 
Array class delines OF as a class method, and this allows OF mcssagcs to be sent to the Array 
class object to create array objects whose contents arc spccifrcd by the arguments to OF. 

What about abstract classes - can they have class methods too? They can, but their class 
methods work slightly difTerently than those of object classes. They arc defined in the same 
way, with the CLASS option on a ::METI IOD directive, but they don’t bccomc object 
methods of the abstract class itself. Instead, they bccomc object methods of any object classes 
that inherit (directly or indirectly) from the abstract class in which they arc defined. For 
example, the Sequenced class also has an OF class method, but OF mcssagcs can’t be sent to 
the Sequenced class to create “sequenced” objects (bccausc the Sequenced class is abstract and 
so can’t create objects). Instead, OF becomes an object method of any object classes that 
inherit from the Sequenced class, such as the List class. The List class doesn’t have to do 
anything (except inherit from the Sequenced class) to make this happen. 

Q Copyright IBM Corporation 1994 The Object REXX Class Ilierarchy 

215 



I 
So what object methods do abstract classes have ? They all have the same ones: DEFINE, 
DELETE, ID, INHERIT, INITA, METIIOD, METIIODS, SUBCLASS, SUBCLASSES, 
SUPERCLASSES, and UNINI-IERIT. Or course, like all objects, their object methods include 
the instance methods of the Object class: COPY, “ = “, STRING, etc. Object classes have two 
additional object methods: NEW and ENHANCED, the methods that create objects. 

-- 
Class methods are inherited in exactly the same way as instance methods. For example, the 
List class inherits the OF class method from the Sequenced class, just as it inherits the FIRST, 
LAST, MAKEARRAY, NEXT, PREVIOIJS, SECTION, and SUPPLIER instance methods. 

The Class Hierarchy 

We’ve mentioned a number of REXX classes and the inheritance relationships between them. 
Let’s take a look at the complete hierarchy for the classes provided and used by REXX. 

Obiect 

Sequenced Closs 

Array Class 

That looks a bit daunting, but the REXX user doesn’t have to be concerned with many of 
these classes. A number of them (Collection, Indexed, IndexOnly, ManyItem, Qucuelike, 
Sequenced, and Setlike) are abstract classes used only for internal factoring out of common 
methods. In addition, the metaclass section of the hierarchy (Class, Mixin, Object Mixin, 
Object Class, Sequenced Class, and Array Class) is shown for complctencss but isn’t for 
general use (see the section on Metaclasscs below). That leaves us with the classes that 
represent other objects: Alarm, Array, Bag, Condition, Directory, List, Message, Method, 
Object, Queue, Relation, Set, Stream, String, Supplier, and Table. 

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy 



More on Multiple Inheritance 

We used the List class to introduce multiple inheritance. The List class inherits from the 
Sequenced and Queuelike abstract classes, which means that lists have both the Sequenced 
and Queuelike properties (collections of methods). Another way of saying this is that a list 

__I- -. can be used whenever either a qucuclikc or sequenced object is expected, and it will work 
correctly. _ - . . 

Multiple inheritance can be very useful if used properly, but it can cause a lot of problems 
when it’s used incorrectly. This has made it quite controversial in object-oriented circles! A 
common mistake is to think of it as a “magic” way to combine two different objects into one 
- such as a hybrid of the Rectangle and List classes. That probably sounds rather ridiculous, 
but other examples can seem more plausible. For example, if I have classes Directory (which 
keeps names and some information for each name) and Phone (which dials a number passed 
to it), can’t I create a Phone Directory class (which keeps names and phone numbers, and 
dials the number when given a name) simply by inheriting from Directory and Phone? 

Unfortunately, it’s not usually that simple. The reason is that Directory and Phone were each 
designed to do a specific job, with a set of methods appropriate to that job, but neither was 
designed (probably) to “mix in” with the other. For example, the DIAL method of Phone was 
designed to bc given a number to dial, and multiple inhcritancc won’t make it smart enough to 
change its behaviour to take a name instead and look it up in the directory. (By the way, the 
right way to do this is called aggregation, which means creating a new object that contains R 
Directory and Phone and provides the right connections between them.) 

So when is multiple inheritance useful? Actually, the answer’s in the paragraph above. It’s 
useful for classes that have been specially designed to “mix in” with other classes - like the 
Sequenced and Qucuelike classes, which were specially designed to mix in with each other. 
However, these classes were not designed to mix more gcncrally with other classes. You can 
try mixing them with other classes (REXX won’t stop you), but it’s unlikely that anything 
useful will result. For more gcncral “mix in” classes, we’ll have to look elsewhere in the 
hierarchy. 

Mixins 

A class that is designed to bc mixed in with other classes in a gcncral fashion is called a mixin. 
For example, the ManyItcm mixin can be inhcritcd by any sctlike class to allow multiple items 
to have the same index, and is used by the Bag and Relation classes. 

It’s important to understand the diflerencc between mixins and abstract classes. Both can be 
used with multiple inheritance, but their purposes arc very difhcrent. Abstract classes are for 
the convenience of a class hierarchy implcmcntcr, to prevent the same methods being 
duplicated among more than one object class. They are oflittlc use in thcmsclves, but enable 
the construction of object classes below them in the hierarchy. They are not part of the public 
interface of the class hierarchy for inheritance. 

A mixin, in the other hand, allows some class (and all the classes below it in the hierarchy) to 
be enhanced in some way. For example, if Pcrsistcnt is a mixin to the Object class, all classes 

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy 



in the hierarchy may exist in persistent and non-pcrsistcnt versions. The persistent versions 
inherit the Persistent mixin, but the non-persistent versions don’t. For example, to make a 
persistent directory class, you would write 

: : class PersistentDirectory subclass Directory inherit Persistent 

___- which tells REXX that the PersistentJIircctory classinherits from the Persistent mixin as well 
as the Directory class. Any number of mixins may bc inhcritcd, and-a combination of 

-. inherited mixins and other inherited classes may be spcciJicd. 

Since Persistent is a mixin to the Object class, it applies to all subclasses of the Object class - 
that is, all classes. Some mixins are more spccializcd - for example, the Manyltcm mixin is a 
subclass of the Setlike class and so only applies to classes that inherit from the Sctlike class. 
No other class (for example, a subclass of the Stream class) is allowed to inherit the 
Manyltem mixin. This is because the Manyltem mixin has been designed specifically to 
enhance the Setlike class (it’s “tailor made” to Jit this class only) and won’t Jit any other class. 
The Setlike class is called the base class of the Manyltcm mixin, and we say that Manyltem is 
a mixin to the Sctlike class. 

So mixins, like object classes but unlike abstract classes, are intcndcd for users of the class 
hierarchy and are part of its public interface for inheritance. They provide enhancing options 
for the object classes in the hierarchy, to bc included or cxcludcd at the user’s discretion. 

Some mixins provide a complete set of methods for some property, so that a class can acquire 
that property just by inheriting from the mixin. Other mixins dcJine a property, and provide 
some of the methods required, but depend on subclasses to provide other necessary methods. 
For example, a Persistent mixin may provide methods that take care of saving object data to 
stable storage and restoring it when needed, but not the methods that actually extract the 
object’s essential data (when saving) and rccrcate its state from saved data (when restoring). 
Those methods may be IcJI as placeholders in the Pcrsistcnt mixin, needing to be frllcd in by 
classes that inherit the persistent property from it, since only they know the intimate details of 
how they are constructed. 

To create a mixin, use the MJXJN option on a ::ClASS directive. For example, to create a 
mixin OrderedSet which has a base class of Set, you would write 

::class OrderedSet mixin subclass Set 

The Class Search Order for Methods 

In a single-inheritance hierarchy, classes inherit methods from their ancestors in the hierarchy. 
Since every class has exactly one superclass (cxccpt the root class Object, which has none), 
there is a simple line of inheritance from each class up to the root class Object, through any 
intermediate ancestor classes. This line of inheritance defmcs a search order for methods (the 
class search order). The order is important because more than one ancestor class may have an 
instance method with the same name - like PRINT. When a PRINT message arrives at an 
instance of the class, it’s important to know which l’J~lNT method will be run, The starch 
order starts with the lowest class in the hierarchy (the class to which the instance that received 
the PRINT message belongs) and proceeds upwards to its superclass, then its superclass’s 

A 

0 Copyright IBM Corporation 1994 The Object REXX Class Jlierarchy 

218 



superclass, and so on up to the root class Object. The first PRINT method found is the one 
that gets run. 

With multiple inheritance, the situation is quite a bit more complicated. Classes may have 
many superclasses (direct and indirect), and there may not be an obvious “right” order of 

___- -- searching them for a method. The rules REXX USC* arc: 

1. A subclass is always searched before its superclass&s. - - --. 

2. Mixins are searched immediately before their base class. 

3. Where multiple classes appear on the lNllERlT option of the ::CLASS directive, the 
classes are searched in the order they appear (leftmost first). 

If there is no search order that satisfies all thcsc rules, or if a mixin is inherited without its 
base class already in the search order, the inheritance is in error. 

What about multiple inheritance from object classes? It’s this sort of thing that gave multiple 
inheritance a bad name. There arc very few cases (if any) when it would be appropriate, but 
REXX doesn’t prevent it - it doesn’t seem right to limit the powers of object classes 
(compared with abstract classes) by making a special restriction here. Beware, though! Before 
doing this, you should see if your hierarchy can be restructured to make one of the 
superclasses an abstract class or a mixin, or consider whether aggregation (combining two 
objects into a composite object, as in the Phone Directory example) isn’t a more appropriate 
way to accomplish what you want. It usually will be. 

R 

Metaclasses 

For most users of Object REXX, the concepts and mechanisms presented so far will be all 
they need to create instances, subclasses, abstract classes, and mixins - making full USC of the 
facilities that REXX provides for using and extending the class hierarchy. This section and 
the next one complete the picture for those who arc curious to know more about how all this 
works, or need to understand or reprogram the underlying mechanisms of the class hierarchy. 

Are class objects instances of some class? For completeness and consistency, it would be nice 
if they were. We call these special classes mctaclasscs. l‘hcir instances arc classes, like the 
Supplier class and the Sequenced class. llow many mctaclasses arc thcrc? Thcrc could be one 
for each class (as in Smalltalk), but it’s not ncccssary to go this far. llowcver, we do need a 
mctaclass for each class that has a dircrent collection of class methods. To see why this is, 
let’s look more closely at how class methods work. 

The class methods of the Object class are NEW and ENJIANCCD. This means that they will 
be object methods of the Object class and every other object class that inherits from the 
Object class (that is, all object classes). A mctaclass is needed to create these classes, and this 
metaclass needs NEW and ENJIANCED instance methods so that its instances (the object 
classes) will have NEW and ENHANCED object methods. Let’s call this class the Object 
Class metaclass. 

Suppose we create a subclass of the Object class with another class method - for example, a 
Database class with a RESTORE class method to restore the previously saved state of an 

0 Copyright IBM Corporation 1994 The Object REXX Class llierarchy 

219 



object. There will have to be a new metaclass to create this class, since the Object Class 
metaclass doesn’t have our RESTORE method. Let’s call this new metaclass (with a 
RESTORE instance method) the Database Class metaclass. The Database class is an instance 
of the Database Class metaclass, and the RESTORE instance method of the Database Class 
metaclass becomes the RESTORE object method of the Database class. 

~- -. 
How do these metaclasscs fit into the hierarchy ? As well as their specialized instance methods 
that correspond to the class methods of their instance classes, they have instance methods for 
all the standard object methods of classes: DEFINE, DELETE, ID, JNJ-JERJT, INJTA, 
METHOD, METHODS, SUBCLASS, SUBCLASSES, SUPERCLASSES, and UNJNHERJT. 
We need a class with these as its instance methods (they need to be instance methods 
somewhere) and we call this class the Class class. It’s natural to make the Object Class 
metaclass and Database Class metaclass subclasses of the Class class, since they can then 
inherit all its instance methods listed above. 

Which class is the metaclass for abstract classes? Their object methods are the ones that are 
shared by all classes: DEFINE, DELETE, etc. Since these are the instance methods of the 
Class class, the Class class is the metaclass for all abstract classes. 

What about metaclasses for mixins? Mixins are very similar to classes, only difhering in their 
inheritance rules, so we make the Mixin class (the class whose instance methods arc object 
methods of all mixins) a subclass of the Class class. Is the Mixin class the mctaclass for all 
mixins? It isn’t, for the same reason that the Class class isn’t the mctaclass for all classes - R 
just as different classes have different object methods, mixins do too. 

Let’s take an example to see why different mixins have diffcrcnt object methods. If we create 
a Relational mixin to our Database class, with instance methods but no class methods, what 
object methods does the Relational mixin have ? ‘l‘hcy include all the standard mixin object 
methods (the instance methods of the Mixin class) as well as the inherited class methods: 
NEW, ENHANCED, and RESTORE. We want these as object methods bccausc we want the 
Relational mixin (as a mixin to an object class, or an oOjcct nrixin) to be able to create 
instances in its own right. If it couldn’t, we’d have to create another object class (inheriting 
from Database and Relational) which could create these instances - adding an unnecessary 
class to the hierarchy. 

It looks as though we might need a Relational Mixin mctaclass to create the Relational mixin. 
In theory, we do; in practice, we don’t. By making metaclasscs mixins (with a base class of 
the Class class), they can also be inherited by subclasses of the Mixin class (since Mixin is a 
subclass of Class). So the Database Class metaclass becomes the Database Class mixin, and 
REXX can construct the Relational Mixin mctaclass simply by inheriting from the Mixin class 
and the Database Class mixin. That’s what mixins are all about! 

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy 

220 



Classes and Metaclasses 

The earlier hierarchy diagram showed the superclass-subclass relationship of the REXX 
classes. It didn’t show the class-instance relationships. Of course, these connections will be 
quite different, so it could be confusing to try to show both on the same diagram. We’ll use a 

~- .-separate diagram here to show the class-instance relationships of these classes. _ - 

Object ,.....,.,."' 
,)_,,,............. ......., . . . . . .._ _._,,,,, 

-',h ..,_,,,,,_ 
..,. 

Alarm 

‘.A:..,,, \ ,. .’ 
. ..’ 

,.: 
. . :,, ..’ 

‘.... \ Table . . . .’ . ..” Array Class ’ 
“$..,,, ; IndexOnly 

‘( . . . 
ManyItem,,/ ,!A List 9 ..’ 

y ,:’ 
‘.. ,_.’ 

Directory “z.. 
. . . ,_ -::$ _?” / ., ,.... . ..’ ,..’ 

. . . . . 

‘i, ‘:,,Set Bog Relotid~,..~~.’ 
.,‘Array ,,. ,,_,,._,.,,,... .,,-“.“_” 

l., . . . . ‘.., “.. . . . . . . . . . ‘L, “. ..,. ,, ,, ..,.. ::..’ Tf’.. 
. . . . ‘..., I.., “‘. . . . . . ,,,,,... ..,.... ,T” 

. . . . . . . _.,.... g. ., ..3 

The classes are shown in the same positions as bcforc, but the inheritance connections have 
been replaced by arrows which point from each class to its ,metaclass (from instance to class). 
There’s an interesting circularity between the Object Class mixin and the Object Mixin class - 
each class is an instance of the other. This is a bit of a mindbender, and reminds me of the 
chicken and the egg question - how did these classes get crcatcd? Let’s just say that someone 
had to do a little bit of cheating here. 

Last Words 

Don’t worry if multiple inheritance, abstract classes, or mixins seem diflicult or unnecessary. 
The simplest classes are the object classes. They create objects that do a particular job which 
is well-defined by their class definition. They are the place to start in familiarizing yourself 
with object-oriented programming, and in creating your own classes. Start by subclassing 
object classes, with single inheritance. Override a few methods and get a feel for how 
subclasses can be different from, yet similar to their superclasses. Then try multiple 
inheritance with a mixin, getting a feel for how that works. When you have developed a few 
object classes, you may start to notice relationships between them that don’t match the 

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy 

221 



hierarchy - similar or identical methods cropping up in different places. That’s the time to 
think about making use of abstract classes - to bring the relationships between your object 
classes into clearer focus. 

This ongoing refinement of the class hierarchy is a hallmark of good object-oriented 
___- -. programming - seeing new relationships between your classes, and finding better ways to 

structure the hierarchy to express those relationships. Don’t try to start-out by designing a set 
of 20 abstract classes, 50 object classes, 15 mixins and all the relationships between them. 
You won’t get it right at the first attempt! Far better to develop your hierarchy gradually, 
refming it as you acquire a feel through hands-on experience of how the classes relate to each 
other. 

Summary 

We have seen how object methods, instance methods, and class methods are used in Object 
REXX. The need for object classes, abstract classes, and mixins has been explained, together 
with guidelines for when they should be used and how they relate to single and multiple 
inheritance. The use of all the above facilities of the RJ3XX language has been illustrated with 
examples from the class hierarchy provided by REXX. Finally, the role of mctaclasses in 
completing the picture has been shown. 

Acknowledgements 
R 

The main structure of the REXX class hierarchy was dcvelopcd in a meeting of the REXX 
Architecture Review Board, with contributions from Jim Babka, Mike Cowlishaw, Brian 
Marks, Rick McGuire, and the other board members. The details took shape over several 
design iterations, with vital contributions and encouragcmcnt to continue from Jim Babka, 
Brian Marks, and Dave Renshaw. 

0 Copyright IBM Corporation 1994 The Object REXX Class Hierarchy 



I 

--- 

Portable REXX Applications 
and Reusable Design 

Edmond Pruul 



“Portable Rexx Applications and Reusable Design” 

- I -  

Edmond A. Pruul 
_ - . 

RD 1 Box 632 
Afton NY 13730 
USA 
Electronic Mail: PO01 46 8 psilink.com 
Voice Mail: 1-607-693-l 030 

ABSTRACT 

The application owner and developer want to port their applications to new operating 
system environments. The Rexx language offers inherent advantages: readability, an A 

active Standards organization, available source code, good input-parsing functions, 
easy source-level debugging; but no practical breakthrus have been identified in the 
Rexx community. The same problems that plague application portability in general 
apply to Rexx programs also: unwieldy code for several operating system 
environments; ownership conundrums; interface confoundment; and many other 
problems, old and new. Using Rexx as an example of a language whose applications 
should port easily, reveals the intractability of the portability problem. Reusable Code is 
problematic in startlingly similar ways. Reusable Design is a promising paradigm for a 
general attack on the Reusable Code problem. A Rexx application, being readable 
(accessible) by the average programmer is a possible stage to experiment, in a 
practical way, with Reusable Design. The Reusable Design paradigm is based on the 
classic principles of modularity in Computer Science. It can include object based or 
object oriented methods but the prime principle is semantic as well as syntactic 
readability -- the actions of the Reusable function are clear and concise to programmer. 
Readability allows early planning by potential reusers -- customers for a reusable 
function. As the Rexx Application developers rely more on reusable components, 
market forces could encourage the proliferation of popular reusable components to 
popular operating systems. 

224 



PREFACE 

- I -  

The thoughts and experience herein are those of an operating-system-coder and 
designer from 1968 to 1992 and do not pretend to be current in this year 1994. 

PORTABLE Rexx APPLICATIONS AND REUSABLE DESIGN 

Outline. 

1. Porting Applications: motivation. 
2. Measuring Success: when to stop? 
3. Code Reuse: promise and problems 
4. It is the Design, stupid. 
5. Why Rexx? 

PORTING APPLICATIONS: WHY BOTHER? 

Definitions and ‘ground rules’ help address a problem. ‘To port’ means to change a 
product such that it works in two or more environments. An example of a portable 
product is a ‘Walkman’ -- a personal tape player. A Walkman ports very easily around 
the world; the tape player’s motor runs on DC batteries so the local power system’s 
voltage and frequency are irrelevant to the Walkman. An ‘application’ is a complete -- 
not a partial -- product. We focus on customer-related computer products. A complete 
operating system is an application. Rexx is an application. A PS/2 is not since it is 
bare metal -- it is not complete. A pre-loaded PS/2 is an application. Note the definition 
is broad. A ground rule in problem solving is to ask whose eyes to use. One could say 
we must know the scope of the problem or perhaps its environment. Our scope is 
strictly a business viewpoint -- a marketplace. We shall examine moving computer 

related products to another marketplace. 

225 



Compare your notions of ‘Why Bother?’ with these. 

___- -. 
- Increase Marketplace Share. One would think making that increased profits result 
from increasing market-share. What metric will predict our success? Will the cost of 
development and maintenance exceed revenues? That is the question. 

- Promote brand name recognition: “We have it all!” Or Foot-in-the-Door Syndrome: 
“Some day we will have it all on your computer.” 
_ Protect the product owner’s other products in target. Spread development costs 
when one market would not profit the product owner. When American engineers 
looked at designing a small personal tape player they may have thought. 

“We can not make a profit in the ‘60 hertz, 1 IO volt’ marketplace. The cost of a port 
would be too high. Light weight batteries would not be powerful enough. We must 
package a different motor. We have no idea how to write diagnostic messages in Kanji 
or Cyrillic. (Add your own problems here).” 

: 

- Clone a nifty application for my computer! Is cloning market related? Maybe. 
Examine the cloning of applications. What are our real motives? Are we violating 
patents or depriving someone of their copyrights? 

MEASURING SUCCESS 

Quality is the obvious metric and we know that surveys measure quality reasonably 
well but customer surveys are not predictive. What exactly does quality mean? Does 
quality mean delivering on time; or delivering a product that works as well as we can 
make it; or delivering what the customer wants? They all are good goals that any 
product should meet if possible. Assuming we could measure our product using these 
three quality goals how do we weigh the three against each other. We know that one of 
the definitions eventually must take priority. The developer can not decide if a port will 
be successful until we know which definition of quality the target marketplace demands. 

226 



Consider these metrics vis-a-vis porting applications. 

~- -.Product makes a profit. Sadly profit is not a timely metric. - 
- Maintenance cost: we can predict simple costs such as help lineschange teams, 
continuous market research, advertising, code control systems, legal fees. Often 
measuring failure is possible while measuring success eludes us. 

- The product looks and feels the same in both environments. 

- The product looks and feels like other applications in the new environment. 

CODE REUSE: WHY IS IT PROBLEMATIC? 

Does the Walkman have reusable components ? What happens when the batteries run 
down? The engineers decide to put a DC plug in the Walkman so that anyone can buy 
a Reusable Component called an AC/DC Converter. The problem is there is no 
common voltage for battery powered appliances. Every engineer picked a different R 
voltage -- 9.65, 13.1 and other peculiar voltages. Good try, engineers. Perhaps a 
variable voltage converter would be a better Reusable Component. 

Think of examples of good reusable code: string.h in classic C libraries, Rexx functions 
such as STRIP or WATCOM’s VXRexx, a ‘visual editor’ for Rexx on OS/2. Intuitively 
reusable components will be clearly useful if there is a big gain The mass attribute 
could be due to many potential reusers or big functions replacing large amounts of new 
code. Consider the Rexx interpreter. It is an excellent example of a reusable ‘scripting’ 
component. Why? The Rexx reuser gets much more than originally specified, or 
serendipity. Rexx is massive since it replaces large amounts of code, Rexx is mature; 
Rexx is used by millions1 of amateur programmers Rexx is robust; it does not break. 
Another good example is IBM’s XEDIT used as an application base; the reuser’s 
customers gain strong editing and searching function gratis. 

The most gain for Reuse components is from serendipity and mass. Maturity and 
robustness are problematic. 

Good designers know how to design things when they are expert. In practice the 
problems of general-purpose code-reuse by an average programmer are overwhelming. 
Consider these problems. 

F 

227 



__ Maintenance: who maintains components; how to compensate the maintainer; how 
to control many version&‘; lose of intellectual control as time passes and persons pass 
on to new jobs and the next life; delivery of new function and service including 
preventive service. 

- Disappearing customer base: First, our reuse candidate loses a prospective 
customer. So development stops. Next month a new customer surfaces, the project 
restarts only to disappear again. 

- How to measure reliability or quality of a reusable code component. How does 
customer convince management to trust reusable code? What would be the service 
cost projection? 

- Publicity: how, where, and issues of truth in advertising touch on personal 
sensitivities. 
_ Packaging: When would we bind reusable components to the reuser’s program? It 
could bind when compiled, at product build, at installation of the product, when the 
application loads or at run-time. A 

- Myopic design and semantic provincialism: a coworker needed a subroutine to test, 
in a secure way, if a person is a “SFS Administrator.” The words mislead. In fact, the 
programmer wrote a routine to test if a process-id is acceptable by a named resource 
manager for a certain specific authority. The word “SFS” is superfluous. The word 
“administrator” implies a permanent attribution of a human being. Worse, this label 
implies the reusable component has some power to enforce or guarantee its response 
for some unstated period of time. False, the answer is advisory only. The power of 
authorization remains with the resource manager’s authorization mechanism. 

REUSABLE DESIGN: CAN WE HAVE SERENDIPITY AND MASS? 

Reusable design could mean “good external design.” Good syntax is a given: simple, 
targeted for performance,3 no surprises and no side effects. Semantic clarity is the rub. 
Cultural tunnel vision is problematic by definition. The cure is an accessible and 
readable design. Early disclosure and serious attention to criticism are good; 
continuous disclosure is better. Rexx Library functions are outstanding example of 
reusable components; the required attributes are present: one responsible person, 
expert in the field, serious helpful customers. 



What can we do? 

-- 

- Study and understand today’s and tomorrow’s methodolo.gies:- Temporal Logic; 
Gries’ Axiomatic technique; SMALLTALK; Finite State Machines; Data Flow Analysis; 
and Event Analysis amongst many others. 
_ Buy and read books. 
_ Take all the design courses available; retake them a few years later. 

- Practice off the job. 

- Volunteer for inspections. The more design and code we study the wiser we are. 

- Join the local Reuse Advisory Board, evaluate reuse code candidates. 

- Read code and designs. 
_ Join or get advice from the local Wisemen Council. 

WHY Rexx? 

- Standards Group is in-place and active. Rexx semantics as well as syntax are 
consistent. 

- Slivers are easy to implement. 

A sliver is the slimmest possible layer between a portable application and the 
complete computer system it would run on. Syntax errors will occur in the sliver. 
Semantic errors are harder find and harder to isolate. “The final” semantic error may be 
impossible to find; An application can not port to environments that are semantically 

incomprehensible to the original environment. 

- Universality: Rexx will run on all new operating system& 

- Readability or accessibility: Rexx is justly famous for first run successes. Problems 
in Rexx code are rare. Errors are most likely when calling system commands. The 

author’s first Rexx program worked perfectly on its first test; in Rexx circles this 
experience is not a surprise. 



- Debuggability: Rexx has implicit symbolic debugging; Rexx programs can be 
distributed as human readable code. There is an optional compiler but normally Rexx --- .- 
programs are interpreted from the source code. Anyone coul.d read the program to 
solve a problem and test a fix. 

-~~~~--~~~~---~~ 

1 This number seems too large but the author extrapolated it from an estimate by Bill 
Fischofer in 1991. He calculated the number of VM users to be 30 million. 

2 Need strong code control systems. 

3 A Rexx example is LEFT and SUBSTR, the former being a special case of the 
latter. 

4 Author’s opinion. 

230 



REXX for CICWESA 

David Shriver 
IBM 



REXX for CICS/ESA 

David Shriver 

May 4,1994 

I 

A 

(C) Copyright IBM Corporation 1993,1994 

232 



P 

Contents REXXKICS 

Disclaimer ................................................................ 1 
What is “REXX for CICS/ESA” ................................................. 2 
Background ............................................................... 3 
Project history ............................................................. 4 
Background ............................................................... 5 
Overview ................................................................. 6- 
Need .................................................................... 7 
Basic Environment .......................................................... 6 
REXX File System (RFS) ..................................................... 9 
Summary ................................................................ IO 
Questions ............................................................... 11 

A 

. 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 
233 



I 

Disclaimer REXXKICS 

l Disclaimer 

This discussion is about REXX for CICWESA, a set of 
products that IBM has announced an early customer 
program for, but has not announced for general availability. 

0 Copyright R 

(C) Copyright IBM Corporation 1993, 1994 

0. Trademarks 

The following terms used in this paper, are trademarks or 
service marks of IBM Corporation in the United States or 
other countries: 

CICSIESA, IBM, MVWESA, OfficeVision, OS/2 
. 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 
!: JL;. 



What is “REXX for CICSIESA” REXXKICS 

0 Two products 

0 REXX language support for CICS/ESA 
R 

Native CICS application environment 

- Run-time facility 

0 And More 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 
233 



REXXKICS 

What were design goals for REXXKICS ( 

0 Focus on Productivity 

0 Common REXX (across CICS platforms) 

A 

0 Production REXX (suitable for use in a production 
environment) 

0 Distributed REXX (Client/Server enabled) 

0 CICS REXX (REXX language under CICS with CICS 
interfaces) 

0 Integration Platform (REXX is natural application integration 
platform) 

. 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 
236 



~ I 

Project history REXXKICS 

l REXX prototype to IBM PP 

R 

- From Assembler & REXX to PL/X & REXX for portability 

0 FROM TSO/E REXX base to direct use of REXX kernel 

. 
P 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 

237 



REXXKICS 

1 Why Now 1 

0 Growing popularity of REXX 

0 Growing emphasis on productivity 

l Additional REXX implementations 

0 Product requirements 

0 Need for Application Integration platform 

0 Need for Common, Production REXX 

0 Need for high-level Client/Server support 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 
238 



Overview REXXKICS 

Full REXX 3.48 language support under CICS 

Dynamic EXEC CICS command level support 

REXX interface to CEDA, CEMT 

DB2 Interface (SQL statements & DB2 commands) 

CICS native text editor for REXX execs and data 

High-level VSAM-based REXX file system (RFS) 

Execs may also be run from MVS Partitioned Datasets 

High-level Panel I/O facility 

Support for REXX Subcommands written in REXX 

Pseudo-conversational support 

System and user profile exec support 

Shared execs in storage (via EXECLOAD & EXECDROP) 

High-level Client/Server interfaces 

A 

May 4,1994 

__..,.~ .“. 

(C) Copyright IBM Corporation 1993,1994 
239 .I 



REXXKICS 

Need for REXXKICS 

As a tool to streamline support staff activities 
- CICS Systems Programers and Administrators 
- DB2 Analysts 
- CICS and DB2 testers, other support staff 

More productive CICS application development 
- Native CICS development (simpler) A 
- Enjoy the strengths of REXX under CICS 

More flexible, powerful product customization & extension 
(macros) 

Quick prototyping and procedural language functions 

Preserve REXX investments in migrations 

Needed for products with REXX requirements 

As a script language to automate/streamline development 
sequences 

Help enable enterprise-wide Client/Server computing 

Better enable CICS end-user computing 

CICS Application Integration 

. 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 
,.: at 



I 

Basic Environment REXXKICS 

I REXXKICS Basic Environment Support I 

A 

0 Invoking REXX execs 

0 Where execs run 

. 

May 4,1994 (C) Copyright IBM Cqporation 1993, 1994 
II CCI “ 



I I 

REXX File System (RFS) REXXKICS 

REXX File System (RFS)- Features 

Hierarchical Directory structure (like OS/2, AIX) 

VSAM RRDS based 

No need to register most new users 

No need to register individual EXECs 

Import/Export to MVS Partitioned Datasets 

Management functions for members (COPY, DELETE, 
RENAME) 

FLST file directory interface utility 

An EXECIO-like I/O utility (RFS) 

Maximum records per member is approx. 2!*32 minus 2 

Maximum VSAM datasets in a RFS filepool is 511 

Number of filepools is only limited by DASD 

. 

May 4,1994 (C) Copyright IBM Corporation 1993, 1994 
242 



Summary 

1 REXXKICS Summary 1 

a REXXKICS is more than just support for another language 

0 REXXKICS introduces significant new capability 

0 REXX/CICS provides new approaches to CICS computing* 

0 REXX is a good integration platform 

0 REXX is useful for serious programming 

l REXX is a natural for Client/Server computing 

0 REXX is in step with current trends 

0 REXX + CICS = Greater Productivity 

May 4,1994 (C) Copyright IBM Corporation 1993,1994 
243 

IO 



I 

Questions REXXKICS 

R 

0 ????? 

. 

May 4,1994 (C) Copyright IBM Corporation 1993, 1994 
14s 



I Foils 5.3 aE I REXSYM94 - 11 foils - 0 notes 

I Apr 17/92 I Apr 29, 94 - 17:12 

Fonts 
Format 

MIX 
Foils 1 

Options Pitch 6 10 - Bind 7 7 
Tags . . . 

I DCF I Release 4.0.0 

245 



Working (and Playing!) with REXX 
and OS/2 Multimedia 

Timothy Sipples 
IBM 

246 



Working (and Playing!) with REXX and OS/2 Multimedia 
Timothy F. Sipples 

-----IBM Personal Software Products 
Chicago, Illinois 
(3 12) 245-4003 
(3 12) 245-7624 fax 
Internet: usib58c5GJibmmail.com 

_ - . 

What is Multimedia? 

+ Combining still images (bitmaps), animation, software motion video, text, and/or audio to 
present information 

+ Principle technologies: CD-ROM, laserdisc, digital audio, MIDI, high resolution displays with 
more colors 

l Principle file formats: WAV, MID, and AVI 
+ Multimedia NOT invented by Comptons 

. ..We like to call it ULTIMEDIA 

Why use Multimedia? x 

l “It’s the market, stupid.” 
+ Triggers: to “describe” events 
+ Education/training 
+ Kiosks (point-of-sale) 
+ Presentations and demos 
l Better human interfaces generally 
l Entertainment and games 

Requirements for OS/2 Multimedia 

OS/2 2.1 with Multimedia Presentation Manager/2 (included) 
Standard OS/2 hardware requirements 
Some additional RAM (to 12 MB) recommended 
CD-ROM drive 
Audio adapter (Creative Labs, MediaVision, IBM, etc.) 
Display with at least 256 colors recommended 
Video capture adapter (optional) 
Laserdisc player with computer control (optional) 

Maior Features in MMPM/2 1.1 

l Multimedia folder 
l Sound setup object (for system sounds) 
+ Applets 



+ Volume control 
+ Drivers 

7 Sample files 
+ Lotus l-2-3 and Excel audio macros 
+ External function library for REXX and help file 

Principle File Formats 

+ Generally a superset of Windows file formats 
+ WAV: Digital audio (pulse code modulation, and variants) 
+ MID: Standard MIDI file format (for instrumental music) 
l AVI: Audio-video interleaved (IBM Ultimotion and Intel Indeo) 
+ Conversion applet for some additional file formats included (AVC, VOC, DIB, DMP, 

ADPCM, M-Motion) 
+ High degree of modularity permits addition of more file formats (e.g. FLI/FLC) 

Principle REXX Features 

l Multimedia with REmhelp file 
l PLAY .CMD a. 

l RECORD.CMD 
l Entire MCI (media control interface) command set available, not just subset described in online 

help 
l External function library (MCIAPI.DLL) provides access to MCI command set 

Key Limitations 

l REXX is unable to deal with loss of device (meaning ACQUIRE EXCLUSIVE must be used) 
+ REXX program should not hold device exclusive for long . 
l Unless using PMREXX (or one of the visual REXX builders), MCI commands which require 

Presentation Manager (such as Ultimotion playback) will fail 
l REXX does not receive PM messages (to easily monitor the status of playback and devices) 
l MCI’s implicit opens are assumed shareable (and not necessarily desired with REXX) 

Sample REXX Script 

/* Load and initialize Multimedia REXX support */ 
call RXFUNCADD 'mciRxInit','MCIAPI','mciRxInit' 
call mciRxInit 

/* Open default digital audio device, exclusive use */ 
rc = mciRxSendString('open waveaudio alias wave wait','RetStr','O','O') 

/* Check error, call function to return error string */ 
if rc <> 0 then 
do 

248 



MacRC = mciRxGetErrorString(rc,'ErrStVar') 
say 'rc =' rc ', ErrStVar =I ErrStVar 

-----end 
_ - . 

/* Load a digital audio file */ 
rc = mciRxSendString('load wave sample.wav wait','RetStr','O','O') 

/* Obtain ID for device context that was just opened */ 
DevID = mciRxGetDeviceID(wave) 

say 'DevID =I DevID 

/* Set the time format to milliseconds */ 
call mciRxSendString 'set wave time format ms','RetStr','O','O' 

/* Determine whether the microphone connection enable */ 
call mciRxSendString 'connector wave query type microphone 

wait', 'RetStr','O','O' 

say 'connector guery microphone: RetStr =' RetStr 

/* Query length of the opened file, value in ms */ 
call mciRxSendString 'status wave length wait','RetStr','O','O' 

say 'status wave length: RetStr =I RetStr 

/* Play the multimedia file, wait for completion */ 
call mciRxSendString 'play wave wait','RetStr','O','O' 

/* "Rewind" to the beginning of the file */ 
call mciRxSendString 'seek wave to start wait','RetStr','O','O' 

/* Close the device context */ 
call mciRxSendString 'close wave','RetStr','O','O' 

/* Ensure proper termination of Multimedia REXX */ 
call mciRxExit 

exit(O) 

Live Demos 

+ PLAY.CMD 
l FOR..DO 
+ Ultimotion 
+ REcoRD.cMD 
l Modifications to the sample .CMD files 
+ Dial 1.1 by Helge Hafting 

x 

249 



Converting MVS/JCL to REXX/TSO 

Hobart Spitz 
MTA New York City Transit 

250 



I 1 

. 

Converting MVS/JCL to REXX/T-SO 

Presented at REXX Symposium 

May ‘94 

Hobart Spitz 

MTA New York City Transit 

718-694-3112 

55208088MCIMail.com 

/= REXX */ 
“ALLOC ‘. 

// DD “ILLOC l * 

// DD “IILLOC .’ 
// DD “CILLOC .’ 

DDRESS ISPEXEC “SELECT l ’ 

A638 

251 
?. I.._.. _ ---_-- ---. B._c_--. 



Converting MVSIJCL td l$EXX/TSO _ - . 
Abstract: 

The speaker will discuss his experiences in using REXX/TSO in 
place of MVS/JCL. The advantages of REXX over JCL will be 
covered, as will a step-by-step methodology for converting existing 
JCL to REXX for batch and/or interactive use. JCL to REXX/TSO 
equivalents will be spelled out in detail. Guidelines and techniques for 
portability positioning to Vh4, OW, etc. will be reviewed. 

Speaker: 
Hobart Spitz (SBW) 
MTA New York City Transit 
130 Livingston St. SO4 1 A 
Brooklyn NY 11202 

Phone: 7 18-694-3 112 
Alternate Voice Mail: 7 18-694- 17 19 
Fax: 7 18-694-4309 
E-mail (internet): 5520808~MCIMail.cotn 



I . 

. 

___- 
Application Backgrounds 

NYNEX Commuter Services - Billing Service Bureau- 
Multinle Clients 

. DB2 with 3rd party host command interface 

. CICS Transaction Processing 

. TSO Scheduler Access 

. Limited TSO User Access 

l Original Batch Design: 
JCL, COBOL II. 

. Final Application: 
REXX, JCL, COBOL II. 

New York Citv Transit Authoritv - ChanQ Control -- 
Manatrment System 

. Data stored in VSAM file and ISPF tables 

. Entirely TSO Based user access 

l Original Batch Design: 
ISPF Skels, JCL, COBOL. 

l Final Application: 
REXX, ISPF Skels, JCL, COBOL. 

hna WEi jd3cx I .x!obc A638 



“The Great Wall of MVS Batch” . 

I Computations 

------- 

JCL: j Allocations 1 

1 Symbolics 1 
I I 
1 SPOOL Files 1 
L------J 

TO l Limitations of MVS/JCL 

l Rigid isolation between JCL level (allocation, SPOOL 
datasets, symbolics, and return codes) and program level 
(I/O, computation, and logic). 

l No interaction between application data and application 
control. 

l Limit of 100 characters in PARM=. 

l Minimal logical operators, even with new MVS features. 

l Heavy manual intervention requirements in most cases. 

l Single level PROC invocation, until recently. 

254 .- -- ---.. 



Advantages and Benefits of REXX/TSO Over JCL 
___- 

. Automation _ - . 

l Simplification 

. Readability, Write-ability, and Maintainability 

. Modularity 

. Environment dependant code can be isolated. Portability 
and Reusability is feasible between Foreground TSO, Batch, 
VM, MS-DOS, OS/2, Windows, and, maybe someday, CICS. 

. Flexibility/Control Structures - Looping, General 
Conditionals, Expressions, PARSEing 

. Controlled Recovery and Restart 

. Up-front Validation and Handling of Clerical Errors 

. Addresses Batch Window Criticality 

. Reduced Programming Requirements 

. Almost Unlimited Procedure Invocations Levels, Including 
Recursion 

. Application data and control can interact 

. Avoids MVS Steps per JOB limit. 

In short, every // costs you time and your installation money. 

255 -* -. L T*  -.--. v,-.-- _ *=- I .  - - 



_ _ I _  C o n v e rs i o n  S te p s  
_  -  . 

. E x tra c t e a c h  J C L  s te p  to  R E X X  E X E C  b y  P G M =  a n d  P R O C  
n a m e . 

. C h a n g e  D D s  to  e q u i v a l e n t “ A L L O C A T E  . . .‘I: 

. K E Y W O R D = V A L U E  b e c o m e s  K E Y W O R D ( V A L U E ). 

. S u b p a ra m e te r, K E Y W O R D = ( S U B P A R M = V A L U E ), 
b e c o m e s  p a ra m e te r, S U B P A R M ( V A L U E ). 

. A d d  q u o te s  a ro u n d  p e rm a n e n t d a ta s e t n a m e s . 

M o v e  e a c h  // E X E C  P G M =  to  e n d  o f i ts  s te p . x  . 

. A fte r E X E C  P G M =  e ffe c t n o rm a l  d i s p o s i ti o n : 
IF  R C  =  0  T H E N  “F R E E  D D ( S Y S U T 2 . . .) C A T A L O G “ 

. C h a n g e  E X E C s  to  e q u i v a l e n ts . 

. D ro p  IE F B R  1 4  D E L E T E /A L L O C A T E ; u s e  S Y S D S N (). 

. C re a te  J O B  s tre a m  to  i n v o k e  c o n v e rte d  R E X X  m o d u l e . 

h m  W S 9 4  j c l 2 r e x l  .d o c  A 6 3 8  

. 3 F , ’  

_ _  . _  .  . -  . - . , .m - .  - m - T . - .  _  .  --  



I . 

. EXEC Equivalents 

JCL 

N EXEC PGM=ppp,[PARM=xxx] 

// EXEC [PROC=]mmm,kwd=val 

or 

or 

A 

// PROC kwd=val 

or 

ARG “kwd=“kwd . 
if kwd = ‘I” then kwd = “val” 

ARG kwdl kwd2 kwd3 

/I EXEC . . . ,COND=(O,NE) IF RC = 0 THEN . . . after commands. 

bm W2994 jdhxl .doc A638 

REXX!T’SO Allocate-Parameters 

ADDRESS ISPEXEC 
“SELECT PGM(ppp) [PARM(xxx)]” 

ADDRESS ISPEXEC 
“SELECT CMD(%mmm kwd=val . . .)” 

ADDRESS TSO 
“%mmm kwd=val . . . ” 

CALL mmm kwd=val . . . 
(mmm has also been converted to 
REXX/TSO.) 

IF RESULT = 0 THEN . . . after REXX 
CALL. 
Save RWRESULT for complex or 
deferred tests. 



DD Dataset Parameter Equivalents 
--_ 

JCL 

DSNAME=q 1 .q2.q3 
DSN=q 1 .q2.q3 

DISP=(OLD,KEEP,DELETE) 

DCB=(model.dsn,BLKSlZE=bbb, 
LRECL=lll,RECFM=abc) 

VOL=SER=(vvvvvv,volcount) 

LABEL=(n,ll,EXPDT=yyddd) 

UNlT=(uuuu,n) 

SPACE=(CYL,(pp,ss,dd),RLSE) 
SPACE=@OO,(pp,ss),,ROUND) 

hna 04R.994 jrl?lcxl .dor 

REXX/TSO Allocate Parameters 

DSNAME(‘q1 .q2.q3’) 

OLD DELETE 
(no wait, see SOMVSE93039) 

;; kC = 0 THEN “FREE DDNAME(. ..) 
KEEP” 

LIKE(‘model.dsn’) BLKSIZE(bbb) 
LRECL(ll1) RECFM(a b c) 

VOLUME(vvvvvv) MAXVOL(volcount) x 

POSITION(n) LABEL(l1) EXPTD(yyddd) 
(ddd = 0 not valid; IBM future direction.) 

UNlT(uuuu) UCOUNT(n) 

CYL SPACE(pp ss) DIR(dd) RELEASE 
BLOCK(800) SPACE(pp ss) ROUND 

258 
_ _ _ ,_ . - _-. - - 



c 

~- 
JCL 

Label on DD 

Concatenated DD DSN(‘q 1 .q2.q3’ ‘q4.q5q6’) 

Repeated DD across 
steps 

DD” 
or 
DD DATA 

SYSOUT=c 
SYSOUT=” 

DEST=rmt 

HOLD=YES/NO 

COPIES=n 

FORMS=1 trh 

OUTPUT=opnam 

DUMMY 

JOBLIB, STEPLIB, 
ISPLLIB // OUTPUT, 
SUBSYS= 

Other DD Equivalents 

REXX/TSO Allocate Parameters - 

DDNAME(...) 

REUSE required in absense of FREE. 

“ALLOC DD(dddd) UNIT(VIO)“, 
“TRACK SPACE( 1 l)“, 
“RECFM(F B) LRECL(80) BLKSIZE(4000)” 

QUEUE “information” 
QUEUE “more information” 
QUEUE “” 
“EXECIO * DISKW dddd (FINI” 

SYSOUT(c), c A= *. 
DSN(*) (output goes to SYSTSPRT) 

DEST(rmt) 

HOLD/NOHOLD 

COPIES(n) 

FORMS(ltrh) 

OUTDES(opnam) 

DUMMY 

retain - no direct eqvuivalents. 

Ah38 

259 _ _ _ ._.-. ._-- .-- -- 



Example - Original JCL 

//SHARE81C 
//* 
//TAP2DSK 
// EXEC 
//xxx DD 
// 
// 
// 
//* 
// EXEC 
//SYSUTl 
// 
// 
// 
// 
// 
//SYSUT2 
// 
// 
// 

_ - 

JOB . ..).a. ( 

PROC MEM= 
PGM=IEFBR14 
DISP=(MOD,DELETE), 
UNIT=SYSDA, 
SPACE=(TRK,l), 
DSN=NCSCB40.0UTPUT.TEXT 

PGM=IEBGENER 
DD DISP=OLD, 

VOL=SER=C12345,UNIT=TAPE, 
LABEL=(3,BLP,EXPTD=98000), 
DCB=(RECFM=FB,LRECL=82,BLKSIZE=8200, 
OPTCD=Q), 
DSN=TAPE.INPUT 

DD DISP=(,CATLG,DELETE),UNIT=SYSDA, 
SPACE=(CYL,(2,5,10),RLSE), 
DCB=(RECFM=VB,LRECL=lOO,BLKSIZE=lOOOO), 
DSN=NCSCB40.0UTPUT.TEXT(&MEM) 

//SYSPRINT DD SYSOUT=* 
//SYSIN DD DUMMY 
// PEN-D 
//* 
// EXEC TAP2DSK,MEM=D930722 

260 
- -  . ._  -_.___- “- - .  - -  - - .  



I . 

Example - REXX Equivalent 

-------ijSHARE81C JOB (...)... 
// EXEC TDCMUTRl,CMD='%TAPTODSK' 

TAPTODSK 
/* REXX */ 
IF SYSDSN( "'NCSCB40.0UTPUT.TEXT"') = 

"DELETE OUTPUT.TEXT" 
END 

SIGNAL ON ERROR 

-. (b&h “logon” proc) 

"OK" THEN DO 

"ALLOCATE REUSE DDNAME(SYSUT1) OLD UNIT(TAPE)", 
"VOL(C12345) POSITION(3) LABEL(BLP) EXPDT(98001)", 
"RECFM(F B) LRECL(82) BLKSIZE(8200) OPTCD(Q)", 
"DSN('TAPE.INPUT')' 

"ALLOCATE REUSE DDNAME(SYSUT2) NEW DELETE", 
"UNIT(SYSDA) CYL SPACE(2,S) DIR(lO) RELEASE", 
"RECFM(V B) LRECL(lOO) BLKSIZE(lOOOO)", 
"DSN('NCSCB40.0UTPUT.TEXT(D"RIGHT(DATE(~S~),6)~'))~ 

SIGNAL OFF ERROR 
"GENER" 
RETURN RC 

GENER 
/* REXX */ 
/* IEBGENER DRIVER */ 
SIGNAL ON ERROR 
"ALLOCATE REUSE DDNAME(SYSPRINT) DSN(*)' 
"ALLOCATE REUSE DDNAME(SYSIN) DUMMY" 
SIGNAL OFF ERROR 
ADDRESS ISPEXEC "SELECT PGM(IEBGENER)' 
CONDCODE = *RC 
IF RC = 0 THEN "FREE DDNAME(SYSUT2) CATALOG" 
RETURN CONDCODE 

A638 

261 _. .-___.- -.. .,.-. .~. .I 



Code Volume Perspective 

JOB 

PROC 

“The 

LOAD MOD 

Classic REXX 

Wall” 

_ - 

JOB 

REXX 

ommon 

LOAD MOD 
, 

Converted System: 
l Fewer JOB Streams 
l Near Elimination of JCL 
l Reduction of Compiled Language Application Code 
l Increased Modularity . 
l Facilitates isolation of host dependant code and creates portability. 

Analysis of Actual Batch System 

NYCTA’s CCM Release 2.1 had one PROCLIB consisting of 51 members 
containing 191 steps, calling 19 programs. Using 1 :l as an approximate ratio for 
JCL statement to REXX host command ratio, these 191 steps should be replaceable 
by 70 (5 I+1 9) REXX EXECs of approximately the same length, one for each // 
EXEC. In practice, the results were much better as most of the 51 JCL PROCs 
were replaced by a few REXX main modules plus about 10 driver modules to call 
language processors (LKED, COBOL, COBOL II, CICS, etc.). 

* 



I 
. 

i 
~- Conversion is Ideal for Initial Usage of REXX _ - . 

l Nearly all JCL has direct REXX or TSO equivalents. 

l Low exposure. 

l Low cost. 

l Process can be automated. 

l High benefit, 

l Probability of success is high. 

l Required software is already in-house in most shops. 

263 



Batch Comparison 

ISPF Skeletons 
JOB 
JCL PROC 
PGMsNtilities 

ISPF Skeletons 
JOB I 
JCL PROC 

REXX 
PGM 
Edit Macros 
TSO Commands 
ISPF Services 
Utilities 
CLlSTs h 

Batch REXX: R 

. Allows Integration of Software: Allocation, Utilities, Application. 

. Supports Multiple Levels of Invocation and Common Modules. 

. Removes Most Requirements for Manual Intervention: Overrides, 
Control Cards, etc. 

Summary 

. Brings Batch into ’90s - Portably and Productively 

. Provides Real Programming Constructs 

. Enables Application Based Scheduling, Recovery, etc. 

. Keeps Pace with PCs and Minis 

. Breaks Down “Wall” Between Control and Software Functions 

. Opens Exciting New Possibilities for Batch Processing 

A638 

264 
- - -v.-.- p--Y-------- - 



Participants 

Araceli Adrian0 
IBM, 40-Dl-02 
1 East Kirkwood Blvd 
Roanoke, TX 76299-0015 

Steve Bather 
Draper Laboratory MS 33 
555 Technology Square 
Cambridge, MA 02139 
seb@draper.com 

Doug Benson 
Lotus 
1000 Abernathy Road 
Suite 1700 
Atlanta, GA 30328 

Eric M. Bitterman 
Teachers Insurance (TIAA) 
67-85 223rd. Pl 
Bayside, NY 11364 
212-916-6157 
Fax: 212-867-9075 

Tom Brawn 
IBM Corporation, Dept. G79 
1701 North St. 
Endicott, NY 13760 
607-752-5166 
tombrawn@vnet.ibm.com 

Alex Brodsky 
S/SE 
154 Hillcroft Way 
Netwown, PA 18940 
215-579-2537 
brodsky@netaxs.com 

Shu Chen 
246 W. 102nd St., Ste. 4B 
New York, NY 10025 

Ina Chien 
Putnam Investments 
859 Willard St. 
Quincy, MA 02169 

Anders Christensen 
Sintef Runit 
N-7034 Trondheim 
Norway 

Ian Collier 
The Queen’s College 
High Street, Oxford 
OX1 4AW, England 
+44-865-727940 
imc@prg.ox.ac.uk 

Mike Cowlishaw 
IBM 
Hursley Park 
Winchester, SO21 2JN 
England 
mfc@vnet.ibm.com 

James Crosskey 
IBM Corporation, Dept. G79 
1701 North St. 
Endicott, NY 13760 
crosskey@gdlvm7.vnet.ibm.com 

Cathie Burke Dager 
Stanford Linear Accelerator Center 
P.O. Box 4349 
Stanford, CA 94309 
415-926-2904 
Fax: 415-926-3329 
cathie@slac.stanford.edu 

Charles Daney 
Quercus Systems 
P.O. Box 2157 
Saratoga, CA 95070 
408-867-7399 (-REXX) 
75300.2450@compuserve.com 

Chip Davis 
7254 Pommel Dr. 
Sykesville, MD 21784-5931 
410-549-3596 
chip@clark.net 

265 



Rafael Fessel 
Ammonoosuc Tech 
131 Ridge Rd. 
Franconia, NH 03580 
603-823-8461 

Forrest Gamett 
2500 Huston Court 
Morgan Hill, CA 95037 
408-284-0295 
garnett@vnet.ibm.com 

Hal German 
GTE Labs 
40 Sylvan Road 
Waltham, Ma 02254 
617-466-2290 
Fax: 617-890-9320 
hhgl@gte.com 

Eric Giguere 
WATCOM 
415 Phillip St. 
Waterloo, Ontario 
Canada 
519-886-3700 
Fax: 519-747-4971 

Klaus Hansjakob 
IBM Austria, VSDL 
Lassallestrasse 1 
A-1020 Vienna 
Austria 
+43-l-21145-4243 
Fax: +43-l-21145-4490 
hansjako@vabvml.vnet.ibm.com 

David Hergert 
Textron Defense Systems 
201 Lowell St, Rm 3124 
Wilmington, MA 01887 
508-657-2953 
Fax: 508-657-2776 

Mark Hessling 
Griffith University 
ITS, Division of Information Services 
Nathan QLD 4111 Australia 
M.Hessling@gu.edu.au 

Marc Irvin 
100-01 Hope St. 
Stamford, CT 06906-2500 
203-852-3584 
Fax: 203-852-3570 

Kevin Keamey- 
Mansfield Software Group 
P.O. Box 532 
Storrs, CT 06268 
203-429-8402 
Fax: 203-487-1185 

Lee Krystek 
Boole & Babbage Inc. 
8000 Commerce Pky 
Mt. Laurel, NJ 08054 
609-778-7000 
lee@boole.com 

Luc Lafrance 
Simware 
2 Gurdwara Rd 
Ottawa, Ontario, Canada K2E lA2 
613-727-1779 
lafrance@simware.com 

Bill Langlais 
Percussion Software 
222 Berkeley, St. Ste 1620 
Boston, MA 02116 

Linda Littleton 
Pennsylvania State University 
214 Computer Building 
University Park, PA 16802 

John Lynn 
Rohm and Haas 
Independence Mall West 
Philadelphia, PA 19105 
215-592-3000 

Ray Manse11 
IBM 
H4-A06 
30 Saw Mill River Road 
Hawthorne, NY 10532 
914-945-3000 
Fax: 914-784-6201 

266 



Alan Matthews 
Percussion Software 
222 Berkeley, St. Ste 1620 
Boston, MA 02116 
617-267-6700 
Fax: 617-266-2810 

Rohan Menezes 
515 W. 59th St., No. 19B 
New York, NY 10019 

Patrick Mueller 
IBM, MS 4B-G 
11000 Regency Parkway 
Cary, NC 27512 
919-469-7242 
Fax: 919-469-6948 

Donna Murphy 
Putnam Investments 
859 Willard St. 
Quincy, MA 02169 

Simon Nash 
IBM UK Laboratories Ltd 
Hursley Park 
Winchester 
Hants SO21 2JN 
England 
nash@vnet.ibm.com 

Matthew Plager 
CTPS 
10 Park Plaza 
Suite 2150 
Boston, MA 02116 
617-973-7075 
Fax: 617-973-8855 

Joe Player 
IBM 
12200 Dancrest Dr. 
Clarksberg, MD 20871 
301-564-2022 
Fax: 301-564-2580 

Edmond Pruul 
R.D. 1, Box 632 
Afton, NY 13730 

Peter Ricciardiello 
Carrier Corporation 
Building TR5 
Carrie Parkway 
Syracuse, NY 13221 
315-433-4014 

Sara Rogers 
Mansfield Software Group 
P.O. Box 532 
Storrs, CT 06268 
203-429-8402 
Fax: 203-487-1185 

Roger Root 
2963 Tillinghest Trail 
Raleigh, North Carolina 27653 
919-846-7101 
70353.2753@compuserve.com 

Pat Ryall 
1124 Amur Creek Ct. 
San Jose, CA 95120 
408-974-7354 
ryall@aol.com 

Jonathan Schulman 
John Hancock Mutual Life 
John Hancock Place 
P.O. Box 111 
Boston MA 02117 
usjhcpu6@IBMMAIL.com 
617-572-8410 

David Shriver 
IBM, 40-Dl-02 
1 East Kirkwood Blvd 
Roanoke, TX 76299-0015 

Timothy Sipples 
IBM Corp. 
One IBM Plaza (07/SS4) 
Chicago, Ill 60611 
312-245-4003 
usib58c5@ibmmail.com 

Hobart Spitz 
MTA New York City Transit 
130 Livingston St, Rm 5041 A 
BrooMyn, NY 11201 
5520808@mcimail.com 

267 



Stan Stocker 
IBM Canada 
1150 Eglinton Ave East 
Toronto Ont. M3C lH7 
416-448-4197 
Fax: 416-448-4414 
stocker@torolab2.vnet.ibm.com 

David Sutter 
IBM Corp 
4912 Green Rd 
Raleigh, North Carolina 27604 
919-301-2196 
Fax: 916-301-2052 

Peter Szabaga 
1 Madison Ave. Area 6-F 
New York, NY 10010 
212-578-2691 
Fax: 212-578-7198 

Pam Taylor 
The Workstation Group 
6300 N. River Road 
Rosemont, IL 60018 
708-696-4450 
Fax: 708-696-2277 
pj t@wrkgrp.com 

Chuck Turco 
Monsanto 
800 No. Lindbergh 02J 
St. Louis, MO 63167 
3 14-694-4227 
Fax: 314-694-7545 

I 

Melinda Varian 
Princeton University CIT 
87 Prospect Ave. 
Princeton, NJ 08544 
609-258-6016 
melinda@pucc.princeton.edu 

Heather Wassel 
524-101 Benner Road 
Allentown, PA 18104 
215-653-8067 

Tom Wassel 
524-101 Benner Road 
Allentown, PA 18104 
215-653-8067 

Robert Wilcox 
New World Technologies 
85 Jones Hollow Rd 
Marlborough, CT 06447 
203-295-0680 


	slac-r-447-Frontmatter
	rexx94-001
	rexx94-002
	rexx94-003
	rexx94-004
	rexx94-005
	rexx94-006
	rexx94-007
	rexx94-008
	rexx94-009
	rexx94-010
	rexx94-011
	rexx94-012
	rexx94-013
	rexx94-014
	rexx94-015
	rexx94-016
	rexx94-017
	rexx94-018
	rexx94-019
	rexx94-020
	rexx94-021

