
Screenshot and
Movie Capture
Functionality in

iNSpect

by
Matt Gimlin, Neal

Erickson, and Charlie
Drolshagen

0. Project Abstract

The Toilers research group is an on-
campus organization working primarily
in the field of ad-hoc wireless networks.
Many of their studies are done using a
wireless network simulator called NS-2.
They have developed a tool called iNSpect
(interactive NS-2 protocol and
environment confirmation tool) to help
them visualize simulations. iNSpect reads
from a mobility file (generated after a
simulation is run) and then creates a
visual display of the simulation during its
entire run. This graphical output is done
using the OpenGL libraries. Nodes are
color-coded according to their current
state (routing, transmitting, etc), and the
visualization can be navigated via time
controls that allow the user to go
anywhere within the duration of the
simulation. These features allow a
researcher to verify the accuracy of node
topology, validate new versions of NS-2
itself, and analyze the resultant trace
files. However, iNSpect has no capability
to record its visual output for
demonstration and comparison. Thus, our
goal is to add both an image capture and
a movie recording capability to iNSpect,
while introducing the least amount of
additional dependencies.

1. Introduction

iNSpect, the interactive NS-2
protocol and environment confirmation
tool, written by the Toilers research group,
is a tool used to create visualizations of
wireless networking simulation data. The
iNSpect program provides an easy,
flexible way to view a visual
representation of a simulation in real-time.
The program has become popular at over

forty of the universities that it has been
shared with, and so the creators are
constantly looking for ways to make
iNSpect more useful.

iNSpect runs on a variety of
platforms, but it is easiest to get it
working on Linux. A user who wants to
give a presentation about their wireless
network simulation in Keynote or
Powerpoint using iNSpect, then, is faced
with several choices:

1) Port iNSpect to Windows/Mac
2) Use Linux's screen capture function to

get crude screenshots, crop them in
another image editor, and perhaps
encode them to movies with a third
program.

3) Bring two computers to the
presentation.

None of these options are desirable.
Porting the software to another platform is
time-consuming and requires advanced
knowledge that all users may not have.
Option 2, using Linux's built-in screen
capture, is clunky and inconvenient. The
user is required to take a picture of the full
screen, crop the area he wishes to keep,
and re-save the image – this can involve
multiple other programs besides iNSpect.
For obvious reasons, option 3 is not
desirable either.

The goal of this project was to add
a fourth option to our hypothetical
situation above:

4) Take screenshots and generate movies
directly from within iNSpect.

So, our task was to add code to iNSpect
that would allow the user to create images
and movies of the simulation visuals,
keeping the images and movies as cross-

platform and web-ready as possible, and
maximizing image and movie quality
while minimizing size.

2. Project Requirements

The technical requirements of the
project were as follows:

1) Functional Requirements:

a) New tab menus must be added to the
 iNSpect control window for taking
 screenshots and movie generation.

b) Within each menu, the user must be
 allowed to choose the simulation time
 to take the screenshot or the interval to
 generate the movie from. The user
 must also be allowed to specify the
 number of frames that will comprise
 the movie.

c) iNSpect's code must have new methods
written for generating movies and
taking screenshots. The methods will
either create a screen capture or
generate a movie based on the user's
selections within iNSpect.

d) New documentation for iNSpect in the
form of a user manual and a
programmer's manual must be written.
The programmer's manual should be
essentially an API for iNSpect, while
the user's manual should include
detailed instructions for installing,
running, and operating the program.

e) The image and movie formats chosen
 must be common, accessible formats
 that are readable across all platforms.

2) Non-Functional Requirements:

a) The functional requirements must be
 implemented before the conclusion of
 field session 2005.

b) The code written must build upon the
 existing standards of efficiency and
 documentation set by the Toilers team.

c) The code must be stable and complete.

3. Design Approach

iNSpect is organized into a distinct
hierarchy of classes. The classes that have
been modified during this project are
toolkitWindow and vizProperties. This
project as a whole is an extension of an
existing program, and thus the framework
of the program is already in place, making
our choices as to the design of the
program rather limited (see fig. 1 for a
class hierarchy).

The class toolkitWindow is
entirely devoted to creation and
maintenance of the GUI, using the
functionality of GTK+. Within it are the
functions to create the “widgets” (graphic
objects) that comprise the UI, and the
functions to connect actions of the user to
responses within the code itself. Since
much of the new code was written to
expand the interface, the majority of
coding was within this class. As the code
we added was simply extending the
functionality of the interface, it was
simply appended to the appropriate area of
the class.

VizProperties, on the other hand, is
a large and complex class, used for several
functions. It contains information about
the simulation as it runs, keeps track of
options from a configuration file, and

controls aspects of the visualization. We
chose to add the image and movie
recording functionality here – it allowed
us to easily access crucial functions for
setting up image capture. It also seemed
appropriate, as the class that controls the
image properties should also be the class
that records the images.

Having the coding split between
these two classes was also convenient, as
it allowed us to work separately, making
sure that the interface between our classes
was carefully maintained. As much of the
code was independent, this easily done.

4. Implementation Details

The final method by which we
chose to implement screen capture and
movie generation for iNSpect is largely
similar to our original design, though not
completely identical. Instead of adding an
additional library to accomplish image
conversion, we have instead used the
built-in functionality of GTK+, the library
used to create the interface, to save
screenshots in formats other than .ppm.
This has diminished our goals for adding
functionality to the program, in that we
are now significantly more limited in our
choices of image formats and options for
manipulating those formats, but as our
goal initially was merely to implement .
png image capturing, and we have, our
project is not suffering from unmet
requirements.

Another change we were forced to
make is to implement movie capture via
an external encoder, called from within
the program. The process of learning a
video editing library in C++ was too
complex a task to complete within the
time we were given, and our clients told
us to accomplish video creation by an

alternate method. Therefore, we are
bundling mencoder, a free video encoding
program, with iNSpect and calling it from
within the program using fork() and execv
().

The biggest changes we have made
to the program are immediately visible.
iNSpect now has three tabs in its control
window: simulation control, image
capture, and movie generation. The image
capture tab allows the user to select a
format for image capture with a drop-
down menu, move the simulation to any
point via a slider bar, and capture an
image by simply pressing a button. The
image name is automatically generated
using the system date and the precise
simulation time, so duplicate image names
are a virtual impossibility, and the user
need not worry about typing in the image
name each time they wish to save.

Each button, slider bar, combo
box, toggle button, etc. in the program is a
“widget” created by the GTK library. A
widget is a graphic object that is designed
to perform a specific function. Buttons are
clickable, notebooks hold notebook pages,
notebook pages, hold buttons, and so on.

The functionality of the widgets is
decided by signals and callback functions.
Whenever a widget in GTK is modified in
some way (e.g., by pressing a button or by
sliding a slider bar), the program generates
a signal, which can be thought of as an
“event”, in object-oriented programming
terms. If this signal is linked to a callback
function, then the program executes the
callback function. If not, the signal is
ignored. For example, because the “Save
Image” button's “clicked” signal is linked
to the screenCap function in our program,
the screenCap function is called whenever
that button is pressed. Signals and
callbacks are at the very core of the

functionality we added to iNSpect, and are
undoubtedly one of the most fundamental
tools for development under GTK.

The image capture function that is
called when the button in the program’s
control window is pressed does several
things. First, it calculates the total size of
an array needed to store all of the image
information. Then, it assigns an array of
unsigned chars to hold the pixel data. The
function calls glReadPixels, an OpenGL
function which takes all of the pixel data
from the OpenGL buffer and stores it in
the array. glReadPixels goes line-by-line,
from the lower-left corner of the
simulation window to the upper-right (the
bounds are calculated automatically each
time the function is called), and stores the
pixel data it reads into the array specified.
The image capture function then writes
the data in the array to disk, after first
writing the header file for the .ppm image
format. If the user has selected .ppm as the
format they wish to save the image in, the
function stops at this point. If the user
selects .png, the program loads the .ppm
image from disk in the GTK+ gdkPixBuf
class, and then re-saves it as a .png of the
correct name before deleting the .ppm file
that must be created as an intermediate.
On a related note, writing our own .png
saving routine would not have been viable
- .png is a complicated image format that
uses sophisticated lossless compression.
Not only would learning how to use this
compression have taken longer than the
time we had available to us, but using the
built-in functionality that was already
included in one of the libraries iNSpect
uses is a superior solution for obvious
reasons.

The movie creation tab in iNSpect
has three slider bars and a button to
activate movie creation, as well as a check

box. The check box allows the user to
specify whether or not they would like to
save the intermediate .png images that are
created prior to movie generation. The
slider bars control the movie’s start and
end points, as well as the current
simulation time.

When the user clicks the movie
creation button, the function that is called,
again, does several things. First, it
positions the current simulation time at
the beginning of the selected movie
creation interval. The screen capture
function is called a certain number of
times each unit of simulation time, based
on the user's selection in the movie
capture tab. After the simulation reaches
the end of the selected simulation interval,
the program stops capturing images and
encodes the movie. The way this is done
is by a platform-independent process
spawn. The process spawned is mencoder,
a free movie encoding program. The file
that is encoded is, by default, a 25-fps
MJPEG encoded file. This is not the only
format that mencoder can create by any
means, but it is the most reasonable
default until other options are available to
the user - and they will be added later.

This implementation is not what
the programming team or the client had
originally envisioned. The reality is,
however, that as we actually researched
the problem at hand and decided on a
method of implementation, we realized
that in six weeks there was no good way
to implement the solution exactly as the
client requested it. He realized this as
well, and the design of the program was
modified accordingly. The abstract goals
of the project - to implement movie and
image creation in iNSpect – have been
accomplished. The technical details of
those goals are not as was originally

planned, but are nonetheless sufficient for
both the client and the programmers.

The final implementation leaves
the team with many ideas for future
improvement of iNSpect. The current
limited image formats could be expanded
greatly, and the user interface should
probably be upgraded to allow the
programmer greater control over the
format, frames per second, and quality of
the movie that is generated. A change that
is planned for the next large iteration of
iNSpect development is to add movie
creation functionality to iNSpect itself so
that spawning a new process for movie
creation is no longer required. In addition,
the Toilers group would like to see things
such as zoom control and configuration
file manipulation within iNSpect as well.

5. Conclusion

The project was an excellent
experience for each member of the field
session team. Not only did we gain a large
amount of coding experience, but we
gained valuable knowledge of how our
future workplaces will probably operate.

The project started with some
design ideas that were revised as the work
session went on due to time constraints
and out-of-scope problems. Initially the
idea was that all of the movie generation
would be done “in-house” by the iNSpect
program, without the spawning of any
additional processes. Unfortunately, all
movie generation libraries available to the
team are extremely complicated and
poorly documented. Eventually it was
decided that adding one of them to the
program was too much to accomplish
during field session, and so the decision
was made to go with an external encoding

program.
Also, the choice of image formats

available to the user had to be scaled
down significantly from what the coding
team originally wanted to offer. The
reason for this is that we made the switch
from an image editing library, DevIL, to
using the built-in GTK image
saving/loading functions. GTK doesn't
save correctly to any image formats other
than .png and .jpg as it stands, so we were
forced to scale back the options available
to the user.

In the future, iNSpect should
probably be modified to allow more image
formats to be saved so that a greater range
of potential audiences can be reached. In
addition, most people familiar with the
project would like movie creation to be
done by the iNSpect program itself, so this
will probably be added at some time in the
future as well. iNSpect is a project that
has come a long way already, and there is
a great deal more that can be done with it.

fig. 1 – iNSpect class hierarchy

fig. 2 – Modified UI

