
REFERENCE MANUAL
Version 1.1.0

manual_12 14.04.2004 13:58 Uhr Page 1

hallo

manual_12 14.04.2004 13:58 Uhr Page 2

REFERENCE MANUAL
Version 1.1.0

written by Jens Halm

manual_12 14.04.2004 13:58 Uhr Page 3

Oregano Multiuser Server Reference Manual

©2003-2004 Jens Halm

4

manual_12 14.04.2004 14:52 Uhr Page 4

Table of Contents

1. Feature Overview . 9

2. Installation . 11
Installing the Java Runtime Environment 11
Installing the JDBC driver . 12
Installing Oregano Server . 12
Creating the Oregano tables . 12
Editing config.xml . 13
Editing the start script . 14
Booting Oregano Server . 14

3. Example Application . 16
Installing and running the application 16
Examining the objects . 17

Login . 17
Room . 18
Avatar . 20
Chat . 21

4. Configuration . 22
config.xml - the main configuration file 22

<login> . 22
<ports> . 23
<extensions> . 23
<admin> . 24

Table of Contents 5

manual_10 09.07.2003 17:20 Uhr Seite 5

<serverConfig> . 25
<server> . 26
<database> . 27
<typeMap> . 28
<statistics> . 28
<services> . 29
<permissions> . 30
<groupConfig> . 30
<loginGroup> . 31
<startup> . 32
<properties> . 32
<globalProperties> . 33
<groupProp> . 33
<userProp> . 35
<tableDefinition> . 36
<column> . 37
<log> . 37

dbCore.xml - SQL used by Oregano Server 38
dbCustom.xml - custom SQL statements 38

5. Client API . 40
Overview . 40
Event Model . 41
Exchanging data . 42
The org.omus namespace . 43
Reference . 44

Buddies . 44
Class . 46
DbReader . 47
DbResult . 48
DbTransaction . 48
DbWriter . 51

6 Table of Contents

manual_10 09.07.2003 17:20 Uhr Seite 6

Error . 52
Group . 53
Info . 56
Locks . 58
Log . 61
Mail . 63
Mailbox . 67
Message . 70
MessageFilter . 71
Messenger . 72
PropertyLoader . 75
PropertySet . 77
Session . 81
Table . 83
TableDefinition . 87
User . 88

Error codes . 92

6. Server API . 95
Writing server-side extensions . 95
Package overview . 96
Package org.omus.ext . 96

GroupExtension . 96
KeyGenerator . 99
LoginExtension . 100
LogoutExtension . 101
PasswordDecoder . 102

Package org.omus.core . 102
AuthenticationData . 102
Command . 103
Group . 104
GroupCreationData . 106

Table of Contents 7

manual_12 14.04.2004 14:52 Uhr Page 7

LogManager . 107
MessagingManager . 112
PropertySet . 113
PropertyUpdate . 116
RegistrationData . 116
Services . 117
TaskManager . 118
User . 119

Package org.omus.data . 122
BooleanField . 122
CounterField . 123
DataField . 124
DataList . 125
DataList.Comparator . 128
DataRow . 128
DataTable . 130
DataTable.Comparator . 132
DateField . 133
DoubleField . 133
FieldListener . 134
FieldVisitor . 135
IntField . 135
LongField . 136
Message . 137
StringField . 138
TableDefinition . 139

Package org.omus.db . 141
DbException . 141
DbReader . 141
DbResult . 142
DbTransaction . 143
DbTransactionPart . 145
DbWriter . 146

8 Table of Contents

manual_10 09.07.2003 17:20 Uhr Seite 8

CHAPTER 1

Feature Overview

Oregano Server is a Multiuser Server for Flash clients. It is free and released as Open
Source under the GNU Lesser General Public License (LGPL). Since it is written in pure
Java it runs on many operating systems including Linux, Windows or Mac OS X.

It is useful for client-server applications that require low latency such as real-time chat
systems or shared whiteboard applications that would be difficult to develop with tra-
ditional HTTP-based solutions.

Groups and User Management
Oregano Server comes with database driven user management and a versatile mecha-
nism for creating and configuring groups. All the interaction takes place in groups. You
can create an unlimited number of groups and extend their built-in functionality with
server extensions written in Java. Built-in features include messaging or synchronization
of the properties of all members of a group. Simple multiuser applications like chat sys-
tems can be written with a few lines of ActionScript and without the need to develop
server-side extensions.

Real-time Messaging and Serialization
Easily exchange data between clients or push data from the server to the client. Or use
persistent messages, so that a user, who is currently offline, receives the message the next
time she logs in. The content of messages is not restricted to strings, you can exchange
many different ActionScript datatypes and objects, including Date, Array or the gener-
ic Object, which will be serialized and converted to their corresponding Java datatypes
automatically. No more cumbersome and error-prone parsing of strings.

Synchronization
Properties associated with a user or a group can be modified and synchronized easily
with client-side or server-side methods. Synchronization and persistence settings can be
configured separately for each property associated with a group or a user. A property
can be configured to be synchronized with every client, to be loaded into the server-side
cache only or to be read from the database each time it is accessed. Furthermore it can
be configured to be persistent or transient. All the typical requirements for synchro-
nization and persistence will be handled automatically, so you can concentrate on the
application logic.

Feature Overview 9

Feature
Overview

manual_10 14.07.2003 12:31 Uhr Page 9

Database Connectivity
Oregano Server uses JDBC for database access, so every database that comes with a
JDBC driver can be integrated. All SQL statements the server uses are included in an
external XML configuration file, so you can easily make adjustments if you want to use
proprietary syntax of the database you use. In addition you can create your own tables
and custom SQL statements. Simply include them in the XML configuration file and use
them from within the ActionScript database objects of the Oregano Client without writ-
ing a single line of server-side code!

Logging and Statistics
The server comes with an extensive logging system, which is divided into several cate-
gories whose log-level can be adjusted separately in the configuration file. Statistical
recordings include the number of logins per day, the maximum number of concurrent
connections per day and the average login time per user per day.

Clustering
When the server load gets too high you can distribute Oregano Server to more than one
machine. An unlimited number of secondary servers can be integrated. Adding a few
lines to configuration files is all you have to do to build a cluster.

Extensibility
You can easily extend Oregano Server through the built-in extension interface. You can
extend the functionality of a single group or all the groups in the server, and you can
write custom code to be executed before a user is logged in, so you are able to authen-
ticate her with legacy systems. The extensions are plain Java classes that implement one
of the five interfaces that serve as a hook into the server.

Documentation
Oregano Server comes with a 150-page user manual. It contains a description of each
method of the Client API and Server API, and each attribute of each node of the XML
configuration files, as well as example code for a simple chat application that you can
use as a starting point for your own application.

10 Feature Overview

manual_12 14.04.2004 14:52 Uhr Page 10

CHAPTER 2

Installation

Installing the Java Runtime Environment
To run Oregano Server, you need the JRE 1.4.0 or later. If you are not sure which ver-
sion is installed on your machine open a shell window and execute the command
java -version.

You can download the latest JRE from java.sun.com. Simply follow the installation
instructions on the download page. After you are done installing the JRE you must add
the bin directory inside the installation directory to the PATH environment variable. The
procedure differs for each platform:

Linux (bash)

Add a line such as the following to the end of your ~/.bashrc:

export PATH=/path-to-jre/bin:$PATH

Linux (C shell)

Add a line such as the following to the end of your ~/.cshrc:

set path=(/path-to-jre/bin $path)

Windows XP/2000/NT 4

Start the control panel, select System, then Environment. Add the bin directory to the
User Variable named PATH, using a semicolon to separate the new entry, like this:

c:\path-to-jre/bin;other stuff

Windows 98/ME

Add a line such as the following to the end of your AUTOEXEC.BAT:

SET PATH=c:\path-to-jre\bin;%PATH%

To test whether you did it right, execute the command java -version again.

Installation 11

Installation

manual_10 09.07.2003 17:20 Uhr Seite 11

Installing the JDBC driver
Assuming that your database engine is installed and running, you need to install a JDBC
driver for that database. For MySQL you can download the driver from www.mysql.com.
Move the driver to the jre/lib/ext directory inside your JRE installation directory. If
booting Oregano Server fails with a message like this

error initializing connection pool
server boot aborted. see bootlog.txt for details

and bootlog.txt contains lines like this

creating ConnectionPool
error initializing connection pool
java.lang.ClassNotFoundException: org.gjt.mm.mysql.Driver

at java.net.URLClassLoader$1.run(URLClassLoader.java:200)
...

then the JDBC driver is not properly installed.

Another common cause for errors is that MySQL is configured with the skip-networking
option. If you cannot connect to MySQL with Oregano although the driver is loaded
correctly check that this option is commented out in my.cfg.

Installing Oregano Server
Two archives in the download section at www.oregano-server.org are mandatory for
developing Flash multiuser applications: The Oregano Server Runtime and the Oregano
Client. All other pieces are optional. Download the Oregano Server Runtime archive to
your server machine and simply unzip it. Before you can boot Oregano Server, you must
create the required tables in your database and edit the start script and configuration
file, which will be explained in the next three sections.

The Oregano Client archive contains the ActionScript files required to be included with
your Flash movies. Unzip the archive and copy the whole oregano_as directory to the
directory of your Flash files. Read the introductory sections in the Client API chapter
for further instructions.

The documentation for Oregano Server includes the User Manual you are reading right
now and javadoc generated documentation in HTML format. The latter contains the
same information as the Reference section of the Server API chapter in this manual.

The optional archives in the download section include the Java source code, the simple
example application which is described in Chapter 3 and a small Flash admin client.

Creating the Oregano tables
Before you boot Oregano Server for the first time, the required tables must be created
from the SQL batch file oregano.sql in your Oregano server runtime directory. For
MySQL the following steps are required:

12 Installation

manual_12 14.04.2004 14:52 Uhr Page 12

Start the mysql command line tool.

Create a new database with

CREATE DATABASE anyName

Tell MySQL to use that new database

USE anyName

Execute the SQL batch file with the command

SOURCE /path-to-oregano/oregano.sql

If you want to use the Flash Admin Client, you have to insert at least one administra-
tor into the admin table. You can do this with the following SQL statement:

INSERT INTO admins VALUES (1,'userID','password','mail@home.com',
9,NOW(),NOW(),1);

Editing config.xml
This is the main configuration file for the Oregano Server. It is included in the config
directory inside the server runtime directory. You can leave most of the settings
unchanged, as the default values provided in the downloaded file will be sufficient to
boot the server. You can edit them later when you start developing your first applica-
tion.

There are only a few entries that you have to edit before you can successfully boot the
server:

Edit the address attribute of the server node inside the serverConfig node. The
address can be an IP address or the human-readable name (ie, www.myserver.com).

Edit the following four attributes in the database node:

url

The URL of the database. The format of the URL is specific to the JDBC implementa-
tion of your database. For MySQL it looks like this:

jdbc:mysql://localhost/anyName?auto-reconnect=true

This URL says to use the mysql driver to connect to the database anyName on local-
host. For MySQL make sure to include the auto-reconnect flag so that the Oregano
connection pool does not have to cope with closed connections. You should find the
URL format for your driver in the documentation that comes with it.

driver

The fully classified class name of your driver (e.g. org.gjt.mm.mysql.Driver). Make
sure that the Driver is located in the lib/ext directory of your JRE.

userID

The user ID that should be used to connect to the database.

Installation 13

Installation

manual_12 14.04.2004 14:52 Uhr Page 13

password

The password that should be used to connect to the database.

Editing the start script
If you run Oregano Server on Linux you have to edit start.sh. For Windows the start
script is named start.bat. Both are included in the Oregano server runtime directory. On
Linux you have to set the file permissions to make it executable:

chmod 770 start.sh

Open the script in a text editor and add values for the six variables:

SERVER_ADDRESS

The address of the server. Must match the address attribute of the corresponding
server node in config.xml.

SERVER_TYPE

Can take one of the following values:

Standalone The server runs on a single machine.

Primary This server is the primary server of a cluster. Only one machine can act as

the primary server.

Secondary This server is one of an unlimited number of secondary servers in a cluster.

If you want to use the config.xml that was included in the Oregano download, the value
must be Standalone.

PRIMARY_ADDRESS

The address of the primary server. This variable is only required in the start script of a
secondary server, because these machines must register with the primary server during
startup. On a Primary or Standalone server leave this entry empty.

RMI_PORT

A port number between 1024 and 65535, corresponding to the rmi attribute of the
ports node in config.xml. This value is only required in the start script of a secondary
server, because these machines must register with the primary server during startup. On
a Primary or Standalone server leave this entry empty.

MEMORY_INIT

The initial heap size. Default is 64M.

MEMORY_MAX

The maximum heap size. Default is 128M.

14 Installation

manual_12 14.04.2004 14:52 Uhr Page 14

Booting Oregano Server
Open a shell window. Change into the Oregano Server runtime directory. Run
start.sh (on Linux) or start.bat (on Windows). On Linux the output is redirected
to nohup.out, so you have to peek into that file to know if the server has booted suc-
cessfully (the best way is to execute tail -f nohup.out). When you see the line server
running... Oregano Server has finished booting and is accepting connections. You can
now try the example application that you can download from www.oregano-server.org.
See Chapter 3 for a description of that application. When the output includes the line

server boot aborted. See bootLog.txt for details

open that file in the log directory to see what went wrong.

Installation 15

Installation

manual_10 09.07.2003 17:20 Uhr Seite 15

CHAPTER 3

Example Application

If you skip through this manual you might be overwhelmed with all the configuration
options and the number of objects in the API. The small example application that you
can download from www.oregano-server.org might serve as an easy to grasp starting
point for your own applications.

Installing and running the application
1. Download the example application from www.oregano-server.org and unzip it.

2. Move config.xml from the config directory of the server runtime directory to a safe
place, so that you can put it back later.

3. Open config.xml included with the example application download. This configu-
ration file is prepared for use with the example. You only need to add the infor-
mation that is specific to your machine.

4. Set the address attribute of the server node inside the serverConfig node. The
address can be an IP address or the human-readable name (ie, www.myserver.com).

5. Edit the following four attributes in the database node: url, driver, userID,
password. If you are not sure how to do this, see the Configuration chapter for
details.

6. Save the file and copy it to the config directory of your server runtime directory.

7. Reboot Oregano Server.

8. Open login.as in the example_as directory and edit the first line. Set the second
parameter of the init method to the server address that you specified in
config.xml (or to localhost if client and server run on the same machine).

9. Open example.fla and start it with "Test Movie" from the Control menu.

10. Click on "new user", choose an avatar and on the next screen choose a nick name
and a password and click "OK".

11. Enter one of the four "rooms" by clicking on the small map in the upper right cor-
ner.

12. You can try out one of the three features of this application:
- enter text into the field at the bottom and press return to send the message.
- move your avatar to a new position by clicking on the stage.
- change into another room by clicking on the small map in the upper right cor-

ner.

16 Example Application

manual_10 09.07.2003 17:20 Uhr Seite 16

This is all you can do with this application. You might want to start a second client to
see how it works with multiple connected users. Please note that this is a very simple
application that was developed to show how the core pieces of the Client API can be
used to build a simple graphical chat application. It does not, for example, handle any
kind of depth sorting for the avatars in the rooms, because these kind of features are
not related to the Oregano API.

Examining the objects
You can have a look at the source code of the example application in the include files
in the example_as directory. The most important parts will be explained in the next sec-
tion:

Login
The login object with methods for login and registration is included in login.as.

The first line initializes the Session object which is one of the singletons that are creat-
ed automatically in the org.omus namespace:

org.omus.session.init("example","localhost",1655);

The login object registers itself with the Session object in its constructor:

org.omus.session.addListener(this);

The login object handles all four events that the Session object can generate. The
onLogin and onRegister event handlers both call the init method where a bunch of
listeners are registered with the corresponding objects, because many of the objects
available in the org.omus namespace will not be created until the user has successfully
logged in:

LoginObj.prototype.init = function () {
org.omus.group.addListener(_root.room);
org.omus.info.addListener(_root.room);
org.omus.messenger.addListener(_root.chat);
org.omus.info.loadGroupList();
popup.hide();
_root.gotoAndStop(4);

}

In addition the onRegister event sets the avatar property to the string identifier for the
avatar that the user had chosen:

LoginObj.prototype.onRegister = function (extraData) {
this.init();
var ps = org.omus.user.getProperties();
ps.setValue("avatar",this.chosenAv);
ps.synchronize();

}

Example Application 17

Exam
ple

Application

manual_10 09.07.2003 17:20 Uhr Seite 17

The configuration for the avatar property in config.xml looks like this:

<userProp
name="avatar"
type="string"
persistence="writeOnChange"
cacheLevel="synchronizeGroup"

/>

Since the attribute persistence is set to writeOnChange, the new value is automatically
stored in the database through the command ps.synchronize(). The attribute
cacheLevel is set to synchronizeGroup, so that the value is loaded into all the clients
of the current group automatically, because the other clients need to know the value to
show the corresponding avatar on the stage.

The actual connect function is quite simple. In case of a registered user it calls:

org.omus.session.login(username,password);

For a new user the following method is called:

org.omus.session.register(username,password,"");

Since this application does not require that an email address is specified, the third
parameter is an empty string.

The onLogout and onError event handlers do only create the appropiate popup mes-
sage.

Room
The Room object with methods for changing groups and moving avatars is included in
room.as. When you click on the map in the upper right corner of the stage, the avatar
will move into another room.

Since the room object was registered as a listener with the org.omus.group object (in
the init method of the login object) it contains methods that handle the events that the
group object can generate.

The onChange event handler is invoked when the user has joined another group:

RoomObj.prototype.onChange = function (extraData) {
// remove users of the old room
for (each in this.users) {

this.users[each].remove();
}
// create all users of the new room
this.users = new Object();
var ar = org.omus.group.getAllUserProperties();
for (var i = 0; i < ar.length; i++) {

var propSet = ar[i];
var av = new _root.AvatarObj(propSet,this.depth++);
this.users[propSet.getOwner()] = av

}

18 Example Application

manual_10 09.07.2003 17:20 Uhr Seite 18

// show graphics for the new room
_root.main.gotoAndStop(org.omus.group.getName());
// reload the group list to refresh the numbers on the map
org.omus.info.loadGroupList();

}

It removes all the avatars of the old group, and creates a new avatar object for each
PropertySet object in the array returned by the getAllUserProperties method of the
group object (each user of the group is represented through her corresponding
PropertySet object). The movie clips to display the avatars will be attached in the con-
structor for the avatar object (see the section on avatar.as for details).

If a new user enters the room (i.e. a user controlled by a different client), the
onUserJoined event handler will be called:

RoomObj.prototype.onUserJoined = function (propSet) {
var av = new _root.AvatarObj(propSet,this.depth++);
this.users[propSet.getOwner()] = av
org.omus.info.loadGroupList();

}

It creates a new avatar object the same way the onChange event handler does. The
onUserLeft event handler removes the corresponding avatar from the screen.

The onClick handler is called when a user clicks on the map in the upper right corner
or when she clicks on the main stage. In the latter case the position property of the user
is changed and synchronized, so that all other clients get notified. If the main stage was
clicked, a random start position for the new room is calculated and then the change
method of org.omus.group is called:

RoomObj.prototype.onClick = function (instName) {
if (instName == "main") {

// click on main stage -> move avatar
if (org.omus.group.getName() == "login") return;
var x = _root.main._xmouse;
var y = _root.main._ymouse;
x = Math.max(x,41);
x = Math.min(x,375);
y = Math.max(y,155);
y = Math.min(y,315);
var ps = org.omus.user.getProperties();
ps.setValue("position",{x:x,y:y});
ps.synchronize();

} else {
// click on map -> change into new room
if (instName == org.omus.group.getName()) return;
var x = parseInt(Math.random()*this.xRange + 41);
var y = parseInt(Math.random()*this.yRange + 155);
var ps = org.omus.user.getProperties();
ps.setValue("position",{x:x,y:y});
org.omus.group.change(instName,null,true);

}
}

Example Application 19

Exam
ple

Application

manual_10 09.07.2003 17:20 Uhr Seite 19

And finally, when the group list was loaded into the client, the corresponding event
handler updates the four numbers in the map in the upper right corner:

RoomObj.prototype.onLoadGroupList = function (groups) {
var l = groups.size();
for (var i = 0; i < l; i++) {

var row = groups.getRow(i);
var cnt = row.userCount;
if (row.name != "login") map["num_" + row.name] = cnt;

}
}

This event handler gets called because the room object was registered as a listener with
the org.omus.info object in the init method of the login object.

Avatar
The Avatar object is included in avatar.as. It has two properties: A reference to its avatar
MovieClip and the PropertySet object that belongs to the user. This is the constructor:

AvatarObj = function (propSet,dp) {
this.propSet = propSet;
this.propSet.addListener(this);
var username = propSet.getOwner();
_root.main.attachMovie("Avatar",username,dp);
this.mc = _root.main[username];
this.mc.gotoAndStop(propSet.getValue("avatar"));
this.changePos();

}

The avatar clip is attached to the main clip in _root. After that the new clip is sent to
the frame that contains the avatar graphics the user had chosen and finally
this.changePos() is called to move the clip to the right position.

In the second line of the constructor the object registers itself as a listener with the
PropertySet object. It handles the onSynchronize event that occurs when a property
value has changed. Since there are only two properties and the avatar property is never
changed, it looks for a property named "position" and moves the avatar to the corre-
sponding position:

AvatarObj.prototype.onSynchronize = function (propSet) {
if (propSet.contains("position")) this.changePos();

}

AvatarObj.prototype.changePos = function () {
var pos = this.propSet.getValue("position");
this.mc._x = pos.x;
this.mc._y = pos.y;

}

20 Example Application

manual_10 09.07.2003 17:20 Uhr Seite 20

Chat
The chat object is included in chat.as. It is really simple. It was registered as a listener
with the messenger object in the init method of the login object. It listens for incom-
ing messages that have the subject "chat message". It adds the incoming messages to
the chat array and updates the field on the stage:

ChatObj.prototype.onMessage = function (msg) {
if (msg.getSubject() == "chat message") {

if (this.txt.length >= 5) this.txt.shift();
var attach = msg.getAttachment();
this.txt.push(msg.getSender() + ": " + attach.txt);
var str = "";
for (var i = 0; i < this.txt.length; i++) {

str += this.txt[i] + "\n";
}
_root.chatClip.chatText = str;

}
}

When the user hits the return key, the sendMsg method is called:

ChatObj.prototype.sendMsg = function () {
if (Key.getCode() == Key.ENTER) {

var txt = _root.chatClip.input;
var msg = new org.omus.Message("chat message");
msg.getAttachment().txt = txt;
org.omus.messenger.sendToGroup(msg);
_root.chatClip.input = "";

}
}

The chat object uses Message objects to exchange data whereas the room object uses
properties to exchange the avatar position coordinates between clients. See the
Exchanging Data section in the Client API chapter for a thorough discussion on when
to use which approach.

Example Application 21

Exam
ple

Application

manual_10 09.07.2003 17:20 Uhr Seite 21

CHAPTER 4

Configuration

config.xml - the main configuration file
The main configuration file is included in the config directory of your Oregano server run-
time directory. This chapter describes each attribute of each node in the file, optional
attributes are marked with an *.

If you build a cluster, you only have to edit the configuration file on the Primary Server,
all the other servers will load the file from that location.

<login>
Contains three required attributes and no child nodes.

Example:

<login
mode="public"
versionID="tr-%$4s"
emailUnique="true"

/>

mode

This attribute accepts one of the following two values:

public every registered user who is not banned is permitted to login

debug only administrators (users with a permission value set to 9 or 10) are permit-
ted to login

versionID

An arbitrary string. The versionID must be passed to the init method of the client-side
Session object. If the versionID of a client does not match the value of this attribute,
login will be prevented. This way you can make sure that only clients with the current
version of your application can log in.

emailUnique

Boolean value. If set to true the server prevents that two users with the same email
address are registered with the server.

22 <login>

manual_10 09.07.2003 17:20 Uhr Seite 22

<ports>
Contains one required attribute, three optional attributes and no child nodes.

Example:

<ports
login="1442"
reconnect="1443"
admin="1705"
rmi="1099"

/>

login

The login port. A number between 1024 and 65535. This port number must be passed
to the init method of the client-side Session object.

reconnect *

The reconnect port. A number between 1024 and 65535. This attribute is optional. It
must be specified if the Oregano Server runs on more than one machine. This port num-
ber must be passed to the init method of the client-side Session object.

admin *

The admin port. A number between 1024 and 65535. This attribute is optional. It must
be specified if you enable the admin client - see the section on the admin node for
details. The port number must be entered on the login screen in the Flash admin client.

rmi *

The RMI port. A number between 1024 and 65535. This attribute is optional. It must
be specified if the Oregano Server runs on more than one machine. Note that this port
does not have to be open to the public. It will only be used to exchange data between
server machines.

<extensions>
Contains four optional attributes and no child nodes. Oregano Server is fully functional
without any extensions, so if the built-in functionality is sufficient for your application,
you do not need to develop server-side extensions.

Example:

<extensions
keyGenerator="MyGenerator"
passwordDecoder="MyDecoder"
loginExtension="Validator"
logoutExtension="Stats"

/>

<extensions> 23

Configuration

manual_10 09.07.2003 17:20 Uhr Seite 23

keyGenerator *

The name of the class to be used to generate keys for password encryption. This attri-
bute is optional. The specified class must implement org.omus.ext.KeyGenerator and
must always be used in conjunction with a password decoder. See the section on
KeyGenerator in the Server API chapter.

passwordDecoder *

The name of the class to be used to decode passwords. This attribute is optional. The
specified class must implement org.omus.ext.PasswordDecoder and must always be
used in conjunction with a key generator. See the section on PasswordDecoder in the
Server API chapter.

loginExtension *

The name of the class to be used to extend the login functionality. This attribute is
optional. The specified class must implement org.omus.ext.LoginExtension. See the
section on LoginExtension in the Server API chapter.

logoutExtension *

The name of the class to be used to extend the logout functionality. This attribute is
optional. The specified class must implement org.omus.ext.LogoutExtension. See the
section on LoginExtension in the Server API chapter.

<admin>
Contains one required attribute, three optional attributes and no child nodes. If you do
not want to use the Flash admin client for security concerns, set enableClient to false
and omit the remaining attributes. Note that in Version 1.0.0 there is no alternative. If
you want to logout a user or shutdown the server without loss of data, you have to use
the Flash admin client. Later versions will come with a command line tool that has the
same functionality and can be executed on the server.

Example:

<admin
enableClient="true"
versionID="myx5§2b"
keyGenerator="AdminKey"
passwordDecoder="AdminDecoder"

/>

enableClient

Boolean value. Set this attribute to true if you want to use the Flash admin client to
logout users or shutdown the server.

24 <admin>

manual_10 09.07.2003 17:20 Uhr Seite 24

versionID *

An arbitrary string. The versionID must be entered on the login screen in the Flash
admin client. If the versionID of a client does not match the value of this attribute, login
will be prevented. This attribute is optional. It must be specified if enableClient is set
to true.

keyGenerator *

The name of the class to be used to generate keys for password encoding. This attribute
is optional. The specified class must implement org.omus.ext.KeyGenerator and must
always be used in conjunction with a password decoder. See the section on
KeyGenerator in the Server API chapter.

passwordDecoder *

The name of the class to be used to decode passwords. This attribute is optional. The
specified class must implement org.omus.ext.PasswordDecoder and must always be
used in conjunction with a key generator. See the section on PasswordDecoder in the
Server API chapter.

Note that you must implement the corresponding encoder function in the client. Create
a new empty Flash file and on the first frame define a function called encode:

function encode (password, serverKey) {
var str = ... // encode the password using the serverKey
return str;

}

Export that movie with the name encode.swf and move that file to the directory of
your Oregano Admin Client.

Before you login with the Admin Client make sure to check "use external password
encoder" on the first screen.

<serverConfig>
Contains no attributes and one or more server child nodes. Each machine in use must
be configured with a corresponding server node. In most cases Oregano Server will run
on one machine, but you can easily build scalable server clusters. See the Installation
chapter for more details.

Example:

<serverConfig>
<server

id="serv1"
address="www1.myserver.com"
userLimit="200"
dynamicGroups="true"

/>

<serverConfig> 25

Configuration

manual_10 09.07.2003 17:20 Uhr Seite 25

<server
id="serv2"
address="www2.myserver.com"
userLimit="200"
dynamicGroups="true"

/>
</serverConfig>

<server>
Contains four required attributes and no child nodes.

Example:

<server
id="serv1"
address="www.myserver.com"
userLimit="200"
dynamicGroups="true"

/>

id

The id of the server. An arbitrary string that can be used in the groupConfig node,
where you must specify the server for each group that you want to be created during
startup.

address

The address of the server. Must match the name that you specified in the start script.
See the Installation chapter for more details.

userLimit

The maximum number of connections permitted for this server. If Oregano Server runs
on more than one machine, each can have its own user limit.

dynamicGroups

Boolean value. If this attribute is set to true this machine will be included in the built-
in server load balancing, that always chooses the server with the highest difference
between the user limit and the number of currently connected users to dynamically cre-
ate a new group. If this attribute is set to false, no groups other than those that were
created during startup can be created on this server.

26 <server>

manual_10 09.07.2003 17:20 Uhr Seite 26

<database>
Contains six required attributes and one child node.

Example:

<database
url="jdbc:mysql://localhost/oregano_db"
driver="org.gjt.mm.mysql.Driver"
userID="herbert"
password="flyn4/re"
connectionLimit="25"
transactions="false"
>
<typeMap>

<!-- see typeMap section -->
</typeMap>

/>

url

The URL of the database. The format of the URL is specific to the JDBC implementa-
tion of your database. For MySQL it looks like this:

jdbc:mysql://localhost/omus10

This URL says to use the mysql driver to connect to the database omus10 on localhost.
You should find the URL format for your driver in the documentation that comes with
it.

driver

The fully classified class name of your driver (e.g. org.gjt.mm.mysql.Driver). Make
sure that the Driver is included in the jre/lib/ext directory of your JRE installation.

userID

The user ID that should be used to connect to the database.

password

The password that should be used to connect to the database.

connectionLimit

The maximum number of concurrent connections to the database.

transactions

Boolean value. Should be set to true unless you use a database that is not capable of
handling transactions like the MyISAM default table type of MySQL.

<database> 27

Configuration

manual_10 09.07.2003 17:20 Uhr Seite 27

<typeMap>
Contains no attributes and seven child nodes. Each database may have its own mapping
of JDBC datatypes to their internal datatypes. For MySQL the typeMap node looks as
follows:

<tinyint dbType="TINYINT"/>
<integer dbType="INTEGER"/>
<bigint dbType="BIGINT"/>
<double dbType="DOUBLE"/>
<timestamp dbType="DATETIME"/>
<varchar dbType="VARCHAR(255)"/>
<longvarchar dbType="TEXT"/>

The names of the nodes are the seven JDBC datatypes used by the Oregano Server. The
dbType attribute specifies the corresponding MySQL datatype that will be used in
CREATE TABLE statements. The datatype mappings will be verified when the server
boots. If a mismatch is detected, an error description will be written to bootLog.txt
and the booting will be aborted. If you manage to create a working type map for other
databases than MySQL feel free to send it to info@oregano-server.org.

<statistics>
Contains one required attribute and no child nodes.

Example:

<statistics periodStart="00:00" />

periodStart

The time when the server should switch to the next date for all the statistical recordings
it creates. The time must be specified in the format hh:mm. "00:00" is the most obvi-
ous value, but we tend to use "04:00" in our projects because at 4:00 most people are
asleep. This way a login at 23:00 will be added to the same record as a login at 01:00,
which we felt is the best way to detect nights with many visitors.

The statistical recordings that Oregano Server creates include the number of logins per
day, the number of new registrations per day, the maximum number of concurrent con-
nections per day and the average login time per user per day. It will be written to the
statistics table in the database.

In addition the same time specified in this attribute will be used for the executeDaily,
executeWeekly and executeMonthly methods of the server-side TaskManager class.

28 <statistics>

manual_10 09.07.2003 17:20 Uhr Seite 28

<services>
Contains six required attributes and no child nodes.

Example:

<services
mailboxLimit="200"
buddyLimit="100"
blacklistLimit="100"
groupListCache="30"
groupListInterval="60"
userListCache="30"
userListInterval="60"

/>

mailboxLimit

The maximum number of mails in the in-box for each user.

buddyLimit

The maximum number of buddies each user can put into his buddylist.

blacklistLimit

The maximum number of users each user can put into his blacklist.

groupListCache

The number of seconds the list of groups will be cached. You can load the list with the
loadGroupList method in the Info object of the client. If you enable caching, the server
will cache the message containing the list of groups for subsequent requests until the
specified number of seconds elapsed. To disable caching set the value to 0.

groupListInterval

The length of the interval in seconds. The server sends the list of groups to all clients at
regular intervals. It will be passed to the onLoadGroupList event handler of the Info
object in the client. Set the value to 0 if you want to disable this feature and load the
list of groups by hand with the loadGroupList method of the Info object.

userListCache

The number of seconds the list of users will be cached. You can load the list with the
loadUserList method in the Info object of the client. If you enable caching, the server
will cache the message containing the list of users for subsequent requests until the spec-
ified number of seconds elapsed. To disable caching set the value to 0.

userListInterval

The length of the interval in seconds. The server sends the list of users to all clients at
regular intervals. It will be passed to the onLoadUserList event handler of the Info
object in the client. Set the value to 0 if you want to disable this feature and load the
list of users by hand with the loadUserList method of the Info object.

<services> 29

Configuration

manual_12 14.04.2004 14:52 Uhr Page 29

<permissions>
Contains three required attributes and no child nodes.

Example:

<permissions
changeEmail="true"
changePassword="true"
changePermissions="false"

/>

changeEmail

Boolean value. If set to true a client is permitted to change the email address with the
setEmail method of the User object.

changePassword

Boolean value. If set to true a client is permitted to change the password with the
setPassword method of the User object.

changePermissions

Boolean value. If set to true a client is permitted to change the permissions with the
setPermissions method of the User object.

<groupConfig>
Contains one optional attribute, one loginGroup child node and an unlimited number
of optional group nodes

Example:

<groupConfig defaultExtension="DefaultGroup">
<loginGroup>

<!-- see loginGroup section -->
</loginGroup>
<group>

<!-- see group section -->
</group>
<group>

<!-- see group section -->
</group>

</groupConfig>

defaultExtension *

The name of the class to be used to extend the functionality of all groups. This attribute
is optional. The specified class must implement org.omus.ext.GroupExtension. See
the section on GroupExtension in the Server API chapter.

30 <groupConfig>

manual_10 09.07.2003 17:20 Uhr Seite 30

<loginGroup>
Contains one optional attribute and no child nodes. The login group is a special group
that serves as an "entrance hall". Each user is member of this group after she logged in.
The login group is different from normal groups in that you cannot close this group,
cannot specify a user limit and cannot rejoin this group once you changed into another
group. Another important difference is that you are "alone" as a member of the login
group. You do not receive onUserJoined events in the client if another user logs in and
you do not have access to the properties of other users in the login group. All these lim-
itations were implemented to avoid bottlenecks in the login process. The actual inter-
action should take place in one of the other groups.

Example:

<loginGroup extension="LoginExt">
<properties>

<!-- see properties section -->
</properties>

</loginGroup>

extension *

The name of the class to be used to extend the functionality of the login group. This attri-
bute is optional. The specified class must implement org.omus.ext.GroupExtension.
See the section on GroupExtension in the Server API chapter.

<group>
Contains two required attributes, one optional attribute, an unlimited number of
optional startup child nodes and an optional properties child node.

Example:

<group
configID="publicRoom"
userLimit="25"
extension="PublicExt"
>
<startup server="serv1" name="room_1" />
<startup server="serv1" name="room_2" />
<startup server="serv1" name="room_3" />
<properties>

<!-- see properties section -->
</properties>

</group>

configID

An arbitrary string. The configID can be passed to the change method of the Group
object in the client to specify which configuration to use to create the new group.

<group> 31

Configuration

manual_12 14.04.2004 14:52 Uhr Page 31

userLimit

The maximum number of users permitted to join the group.

extension *

The name of the class to be used to extend the functionality of all groups that were cre-
ated with the id specified in the configID attribute. This attribute is optional. The spec-
ified class must implement org.omus.ext.GroupExtension. See the section on
GroupExtension in the Server API chapter.

<startup>
Contains two required attributes and no child nodes. Each group node can contain an
unlimited number of startup nodes. With each startup node you define a group that will
be created when the server boots.

Example:

<startup server="serv1" name="room_1" />

server

The ID of the server that this group should be created on. Refers to an ID that you spec-
ified in the corresponding server node.

name

The name of the group. You can create an unlimited number of groups with the same
configID but different names, but you cannot create two groups with the same name.

<properties>
Contains no attributes and an unlimited number of optional groupProp child nodes.
Each group node can contain a properties node to define properties for groups creat-
ed with a particular configID. In addition there is a top level globalProperties node
in config.xml to define properties for all groups and for users.

Example:

<properties
<groupProp>

<!-- see groupProp section -->
</groupProp>
<groupProp>

<!-- see groupProp section -->
</groupProp>

</properties>

32 <properties>

manual_10 09.07.2003 17:20 Uhr Seite 32

<globalProperties>
Contains no attributes and an unlimited number of optional groupProp or userProp
child nodes. The group properties you define inside this node will be created for all
groups. If you want to add group properties for a particular set of groups, define them
in the properties node within the correspomding group node.

Example:

<globalProperties
<userProp>

<!-- see userProp section -->
</userProp>
<groupProp>

<!-- see groupProp section -->
</groupProp>

</globalProperties>

<groupProp>
Contains four required attributes, two optional attributes and no child nodes.

Example:

<groupProp
name="itemList"
type="largeTable"
persistence="writeOnChange"
cacheLevel="serverCache"
definitionID="itemL"

/>

name

The name of the property

definitionID *

Applies to properties with a type attribute set to table or largeTable only. Refers to
the id attribute of the corresponding tableDefinition node. For each table property
you must define the name and datatype for each column in the tableDefinition node.

default *

The default value of this property. This attribute will be ignored for the container types
(array, object, table) because they are always empty by default. If you specify the
default value for a date property it must be the number of milliseconds from the epoch
(midnight GMT, January 1st, 1970). If you are not in the mood for calculating the
value, you can use the getTime method of a java.util.Date or the getTime method
of an ActionScript Date object.

<groupProp> 33

Configuration

manual_10 09.07.2003 17:20 Uhr Seite 33

type

The datatype of the property. Must be one of the following values:

attribute value ActionScript datatype Java datatype
boolean boolean BooleanField

int number IntField

long number LongField

float number DoubleField

counter number CounterField

string 1) String StringField

largeString 2) String StringField

array 3) Array DataList

largeArray 2) Array DataList

object 3) Object DataRow

largeObject 2) Object DataRow

table 3) org.omus.Table DataTable

largeTable 2) org.omus.Table DataTable

1) max 255 characters

2) limit depends on the internal datatype of your database that maps to JDBCs longvarchar

3) max 255 characters for the marshalled value

For a description of the special Java datatypes used to map the corresponding
ActionScript types see the section on package org.omus.data in the Server API chap-
ter.

persistence

Must be one of the following values:

off The value will not be stored in the database. Each time the group is created, the

value of this property will be reset to the default value.

writeOnRemoval The value will be stored in the database. Any modifications will be written to

the database when the group is removed. (Dynamically created groups will be

removed automatically when the last user leaves the group, groups created at

startup will be removed when the server shuts down)

writeOnChange The value will be stored in the database. Each modification will be written to

the database immediately.

The fields required to store the properties will be created automatically in the tables
userprops or groupprops respectively. On the other hand, if you remove a property
from the configuration file, the corresponding column will not be removed in the data-
base, thus, you do not risk losing data, if you boot Oregano Server with the wrong con-
figuration file by mistake. The logging table will include an entry with a list of all
columns that are obsolete, so that you can delete them manually.

34 <groupProp>

manual_10 09.07.2003 17:20 Uhr Seite 34

cacheLevel

Must be one of the following values:

off The value will not be cached in the clients nor in the server. It has to be read

from the database each time it is accessed from client-side or server-side code

with the load methods of the PropertySet object.

serverCache The value will be loaded into the PropertySet object of the corresponding

Group object in the server. This way you have quick access to the value if you

write a server extension that reads or modifies the value frequently. The value

will not be loaded into any client, thus the client-side PropertySet objects must

load the value from the server-side object explicitly if they need to access it.

synchronizeGroup The value will be loaded into the PropertySet object of the Group object in the

server. Furthermore it will be loaded automatically into all the clients of the

group. With this setting you have quick access to the value in server extensions

and in all clients. Of course any changes will be reflected in all clients immedi-

ately.

<userProp>
Contains four required attributes, two optional attributes and no child nodes.

Example:

<userProp
name="age"
type="int"
persistence="writeOnChange"
cacheLevel="off"
default="99"

/>

name

The name of the property

type

The datatype of the property. See the type attribute of the groupProp node for a list of
valid values.

persistence

Must be one of the following values:

off The value will not be stored in the database. Each time the user logs in, the

value of this property will be reset to the default value.

writeOnLogout The value will be stored in the database. Any modifications will be written to

the database when the user logs out. Useful for values that change frequent-

ly.

writeOnChange The value will be stored in the database. Each modification will be written to

the database immediately.

<userProp> 35

Configuration

manual_12 14.04.2004 14:52 Uhr Page 35

The fields required to store the properties will be created automatically in the tables
userprops or groupprops respectively. On the other hand, if you remove a property
from the configuration file, the corresponding column will not be removed in the data-
base, thus, you do not risk losing data, if you boot Oregano Server with the wrong con-
figuration file by mistake. The logging table will include an entry with a list of all
columns that are obsolete, so that you can delete them manually.

cacheLevel

Must be one of the following values:

off The value will not be cached in the clients nor in the server. It has to be read

from the database each time it is accessed from client-side or server-side code

with the load methods of the PropertySet object.

serverCache The value will be loaded into the PropertySet object of the corresponding User

object in the server. This way you have quick access to the value if you write a

server extension that reads or modifies the value frequently. The value will not

be loaded into any client, thus the client-side PropertySet objects must load the

value from the server-side object if they need to access it.

synchronizeClient The value will be loaded into the PropertySet object of the corresponding User

object in the server. Furthermore it will be loaded automatically into the client

that the property is associated with. With this setting you have quick access to

the value in server extensions and in the client that owns this property. Other

clients in the group still have to explicitly load the value.

synchronizeGroup The value will be loaded into the PropertySet object of the corresponding User

object in the server. Furthermore it will be loaded automatically into all the

clients of the group. With this setting you have quick access to the value in

server extensions and in all clients.

definitionID *

Applies to properties with a type attribute set to table or largeTable only. Refers to
the id attribute of the corresponding tableDefinition node. For each table property
you must define the name and datatype for each column in the tableDefinition node.

default *

The default value of this property. This attribute will be ignored for the container types
(array, object, table) because they are always empty by default. If you specify the
default value for a date property it must be the number of milliseconds from the epoch
(midnight GMT, January 1st, 1970). If you are not in the mood for calculating the
value, you can use the getTime method of a java.util.Date or the getTime method
of an ActionScript Date object.

<tableDefinition>
Contains one required attribute and one or more column child nodes. Needed if you
configured one or more properties of type table. Each table definition can be used for
more than one table property.

36 <tableDefinition>

manual_12 14.04.2004 14:52 Uhr Page 36

Example:

<tableDefinition id="playerList">
<column name="name" type="string" />
<column name="age" type="int" />
<column name="score" type="int" />
<column name="repository" type="array" />

</tableDefinition>

id

The ID of this table definition. Can be referred to in the definitionID attribute in a
userProp or groupProp node.

<column>
Contains one required attribute and one or more column child nodes.

Example:
<column name="age" type="int"

name

The name of the column.

type

The datatype of the property. See the type attribute of the groupProp node for a list of
valid values.

The only restriction is that you can not use the counter type in a table definition.

<log>
Contains one required attribute and 12 child nodes.

Example:

<log output="database">
<login level="warn" />
<logout level="warn" />
<database level="warn" />
<messaging level="error" />
<groups level="warn" />
<changeGroups level="warn" />
<services level="warn" />
<admin level="info" />
<rmi level="warn" />
<client_omus level="info" />
<client_dev level="warn" />
<extensions level="warn" />

</log>

<log> 37

Configuration

manual_12 14.04.2004 14:52 Uhr Page 37

output

One of the following two values:

database all log entries are written to the logging table in the database

file all log entries are written to log.txt. Most useful for debugging.

You can set a log-level for each of the 12 categories. Valid values for the level attribute
in each node are debug, info, warn and error. The debug and info levels are useful for
debugging but way to verbose if many users are logged in. In this case the most appropi-
ate setting for each category is warn.

For 10 of these 12 categories log entries will be written by the server automatically. The
only exceptions are client_dev and extensions. The former is the category that con-
tains all log entries that you sent from a client using one of the methods of the Log
object in the Client API. The latter contains all log entries that you created through call-
ing one of the methods of the LogManager in the Server API. See the corresponding
chapters for more details on logging.

dbCore.xml - SQL used by Oregano Server
This configuration file contains all SQL statements that are used by the Oregano Server.
It has been tested with MySQL. If you use another database it may be possible that you
have to adjust some of the SQL statements. Especially the JOIN syntax may differ in
other database systems. Please do not modify any other nodes than the statement nodes.
If you managed to adjust this configuration file for a different database feel free to send
it to info@oregano-server.org.

dbCustom.xml - custom SQL statements
All the SQL statements that you want to use either with the ActionScript DbTransaction
object of the Client API or the DbTransaction class of the Server API have to be con-
figured in this file. There are two types of top-level nodes: dbReader and dbWriter. The
former is intended for SELECT statements, the latter for UPDATE, INSERT or DELETE state-
ments.

Attributes:

configID

The ID that will be used as a first parameter in every constructor for DbReader or
DbWriter objects (client-side and server-side).

rollbackOnError

Boolean value. Set this attribute to true if you want the transaction to be rolled back
when this statement caused an error. The transaction will simply be aborted, if your
database does not support transactions.

38 dbCustom.xml

manual_10 09.07.2003 17:20 Uhr Seite 38

minRows *

Integer value. This is an optional attribute. For dbWriter nodes it is the required mini-
mum number of affected rows of the corresponding DELETE, INSERT or UPDATE state-
ment, for dbReader nodes it is the required minimum number of rows in the result set.
If the actual number of rows is lower than specified, the transaction will be rolled back
(or aborted, if your database does not support transactions).

Child nodes:

statement

Contains the SQL statement. Oregano Server uses Prepared Statements so all the
parameters are replaced by a ?.

in

The in nodes specify all the parameters that will be passed to the statement. Note that
the order of the in nodes must correspond to the order of question marks in your state-
ment

out

Can only be included in dbReader nodes. Useful if the specified value is required as an
in-value in a subsequent statement.

The name attribute of an out node must correspond to one of the field names read by
the statement.

See the section on the DbTransaction object in the Client API or Server API chapter for
example code.

<dbWriter configID="updateCat" rollbackOnError="true" minRows="1">
<in name="color" />
<in name="catID" />
<statement>

UPDATE cats SET color = ? WHERE catID = ?
</statement>

</dbWriter>

<dbReader configID="loadCat" rollbackOnError="true">
<in name="catID" />
<statement>

SELECT * FROM cats WHERE catID = ?
</statement>

</dbReader>

dbCustom.xml 39

Configuration

manual_12 14.04.2004 14:52 Uhr Page 39

CHAPTER 5

Client API

Overview
The Client API is fully object-oriented. Each method and each event handler of each
object is explained in the Reference section of this chapter.

To use the Client API you must include it in your Flash Movie. Copy the oregano_as
directory of your Oregano Client download into the directory of your Flash file. Then
add the line

#include "oregano_as/init.as"

to your movie. Right after the include statement it is advisable to initialize the Session
object with a line like this:

org.omus.session.init("vers_2_12","www.myserver.com",1655);

For more details see the section on the Session object in the Reference part of this chap-
ter; org.omus is the namespace for all Oregano objects.

To give you an overview of the Client API, here is a full list of all objects:

Session
Handles the connection to the server. Use this object to log in and log out a user.

Group
Represents the current group. Contains methods to close a group, to change into
another group or to obtain the PropertySet objects of the group or a user currently in
the group.

User
Represents the user that was logged in with this client. Other users of the current group
are represented through their PropertySet objects.

Messenger, Message, MessageFilter
Use these object to easily exchange data between clients or between a client and the
server.

PropertySet, PropertyLoader
These objects manage the properties associated with a group or a user. The PropertySet
object handles all the persistence and synchronization requirements according to the
configuration in config.xml.

40 Overview

manual_10 09.07.2003 17:20 Uhr Seite 40

Table, TableDefinition, Class
Table is an additional datatype that can be used as a property. Useful if you want to
manage and synchronize large amounts of data, since it can be partially synchronized.
Use the Class object to register your own custom ActionScript objects, so that they can
be used in Properties or Messages.

Mailbox, Mail, Buddies, Info, Locks
Utility classes. Integrate email functionality into your application, easily manage the
user’s buddy list, or use the Info object to load a list of all users currently online or a
list of all groups that were created. Or use the Locks object to lock objects in the cur-
rent group in a synchronied way.

DbTransaction, DbWriter, DbReader, DbResult
Use these objects to read or write data to or from the database without the need to write
server-side code.

Log, Error
A logging facility and an object that gets passed to each onError event handler.

Event Model
With Flash MX a new event model was introduced. If you are already familiar with that
new model, you will quickly get used to the way the objects in the Oregano Client work.
Most of those objects generate events, usually when they receive data or an error mes-
sage from the server. To get notified of the event, a listener has to be registered with that
object. The listener must contain methods for one or more of the events it is interested
in. It can simply be a generic ActionScript object with an event handler method attached
to it, or it can be one of your own custom classes.

The Messenger object for example generates an onMessage event each time it receives a
message sent from the server. To handle incoming messages, you can write code like
this.

var lis = new Object();
lis.onMessage = function (msg) {

trace("received a message");
trace("the subject is " + msg.getSubject());

};
org.omus.messenger.addListener(lis);

Now each time a message is received in the client, two lines will be added to the output
window. You will find more examples of listeners in the Reference section of this chap-
ter.

In addition to the regular events almost every object generates onError events passing
an org.omus.Error object as an argument. You can use the methods of that error
object to obtain the error code, an description of the error or the name of the method
that caused the error.

EventModel 41

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 41

Exchanging data
Building multiuser applications implies that data has to be exchanged between clients
and the server. There are two approaches to accomplish this in Oregano Server: Using
properties or using messages. To give you an impression on the difference of these two
approaches, let’s look at a small example:

In a visual chat application with an avatar representing each user, you want to visual-
ize the movement of the avatars and exchange chat messages. The former is best done
using a property, the latter is a typical job of a Message object.

Message objects are transient. They can send data from one client to all the other
clients, to one particular client or to the server. The other clients receive those messages
in their onMessage event handler of the messenger object. After the message was
received, the client and the server forget about it. This suits well for the task of sending
chat messages because they are only needed at the moment they are received. If a new
user enters the room later, she might not be interested in reading all the stuff that was
said hours ago.

The position of an avatar, on the other hand, must be sent to each other client includ-
ing those who join later. This can be accomplished with a property. The server keeps
track of changes and if a new user enters a group, the server sends the current values
for all properties of the group and all properties of the other users in the group to the
client. (Well, there are exceptions, depending on the configuration of the properties, but
let’s keep this example simple) Properties handle all the persistence and synchronization
stuff for you. The only extra work that you have to do is to define each property you
want to use in config.xml.

Let’s add some code. To send the chat message to other clients, you write code like this:

sendChatMsg = function (chatMsg) {
var msg = new org.omus.Message("chat message");
var attach = msg.getAttachment();
attach.chatText = chatMsg;
org.omus.messenger.sendToGroup(msg);

};

The other clients receive this message in the onMessage event handler of the Messenger
object. You must add a listener to handle the message:

var lis = new Object();
lis.onMessage = function (msg) {

if (msg.getSubject() == "chat message") {
var chatMsg = msg.getAttachment().chatText;
var sender = msg.getSender();
// display chatMsg

}
};
org.omus.messenger.addListener(lis);

42 Exchanging data

manual_10 09.07.2003 17:20 Uhr Seite 42

When an avatar changed its position you must modify the value of the corresponding
property:

changePosition = function (username, xpos, ypos) {
var propSet = org.omus.group.getUserProperties(username);
propSet.setValue("position",{x:xpos,y:ypos});
propSet.synchronize();

};

For the other clients to be notified they must have a listener for onSynchronize events
registered with the PropertySet object:

var lis = new Object();
lis.onSynchronize = function (newProps, clientRequest) {

if (newProps.contains("position")) {
var pos = newProps.getValue("position");
var newXpos = pos.x
var newYpos = pos.y
// move avatar to new position

}
};
// add this listener to the PropertySet object of each user!!

Before you can use the position property, you must define it in config.xml:

<globalProperties>
<userProp

name="position"
type="object"
persistence="off"
cacheLevel="synchronizeGroup"

/>
<!-- other properties -->

</globalProperties>

The persistence setting is "off" because if the user logs out nobody is interested in
remembering her last position. The cacheLevel is set to "synchronizeGroup" so that the
value is synchronized in all clients of the group automatically.

The org.omus namespace
The namespace org.omus is used for all the objects that are created automatically. It is
attached to the _global object in Flash 6 players and to MovieScript.prototype in
Flash 5 players. This way it can be referenced the same way in both players. The Session
object for example is one of these singletons and thus can be referenced with
org.omus.session. Three objects will be created immediately when you include init.as:

org.omus.session

org.omus.clazz

org.omus.log

The session object is used to connect to the server and the class object is used to regis-
ter your own custom ActionScript classes, so that they can be exchanged between

The org.omus namespace 43

ClientAPI

manual_12 14.04.2004 14:52 Uhr Page 43

clients. After the user has logged in, four more objects are created in the org.omus
namespace:

org.omus.group

org.omus.user

org.omus.messenger

org.omus.info

All the other objects must be either created by hand or must be obtained through a
method of another object. If you create a client side Oregano object, that has a public
constructor, you must also use the namespace for the constructor as follows:

var pl = new org.omus.PropertyLoader();

Reference
The reference contains only the public methods of each object. If you look into the
ActionScript include files, you will find many methods and classes that are not men-
tioned in the reference. Using one of those methods in your application might lead to
unexpected results. Unfortunately ActionScript methods do not have access modifiers
like Java methods, so it was impossible to declare them as private. But as long as you
use only the documented methods you are on the safe side.

Each section in the reference describes one object. It first gives you an overview of all
the methods and event handlers available in that object and then describes each method
in detail. The notation of each method entry looks as follows:

getUserProperties
PropertySet getUserProperties (String username)

This may seem a bit unfamiliar for ActionScript programmers. It includes the datatype of
the return value and the datatypes of all arguments. Of course ActionScript is a loosely
typed language, but the Oregano Client API is not! When you pass an invalid datatype
to a method of one of the objects in the Oregano Client, an error will be generated and
sent to the server as a log entry. There are very few exceptions, for example the
getValue method of the PropertySet object which can return any kind of datatype. In
these cases the return type is any. If the method does not return anything the return type
is void. For arguments and return values of type Array, the datatype for the elements
of that array is indicated as follows: Array[String]. This example specifies an array
that can only contain elements of type String.

Buddies
This object manages a list of buddies. Each user can have his own buddy list which will
be stored in the database. You obtain a reference to the Buddies object with
org.omus.user.getBuddies().

44 Buddies

manual_12 14.04.2004 14:52 Uhr Page 44

Method Summary

void addListener (Object listener)

void insert (String username)

void load ()

void remove (String username)

void removeAll ()

void removeListener (Object listener)

Event Summary

onError (Error error)

onInsert (String username)

onLoad (Array[String] usernames)

onRemove (String username)

onRemoveAll ()

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the Buddies object can generate.

insert
void insert (String username)

Inserts a new user into the buddy list.

load
void load ()

Loads the buddy list into the client.

remove
void remove (String username)

Removes a buddy from the list

removeAll
void removeAll ()

Removes all buddies from the list.

Buddies 45

ClientAPI

manual_12 14.04.2004 14:52 Uhr Page 45

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by one of the methods
of the Buddies object.

onInsert
onInsert (String username)

Event handler; invoked when a buddy was inserted.

onLoad
onLoad (Array[String] usernames)

Event handler; invoked when the buddy list was loaded.

onRemove
onRemove (String username)

Event handler; invoked when a buddy was removed.

onRemoveAll
onRemoveAll ()

Event handler; invoked when all buddies were removed.

Class
The class object contains methods to register your custom ActionScript classes so that
objects of that class can be exchanged between clients. After you registered one of your
custom classes, you can use objects of that class as a value of a user or group property
or as part of an attachment of a Mail or Message object. It ensures that your objects
will be unmarshalled in other clients with all their properties and methods. Please note
that only methods that you added to the prototype object of the constructor can be
attached to the unmarshalled object.

The Class object is a singleton that will be created automatically. You can reference it
with org.omus.clazz.

46 Class

manual_12 14.04.2004 14:52 Uhr Page 46

Method Summary

Function getConstructor (String name)

void register (String name, Function constructor)

getConstructor
Function getConstructor (String name)

Returns the constructor that was registered with the specified name.

register
void register (String name, Function constructor)

Registers the specified constructor with an arbitrary name.

DbReader
This object represents a SELECT statement to be executed on the server.

Constructor Summary

new DbReader (String configID [, String resultID])

Method Summary

void setParam (String name, any value)

DbReader
new org.omus.DbReader (String configID [, String resultID])

Creates a new DbReader object. The specified configID must match a configID attribute
in a <dbReader> node in dbCustom.xml. The optional resultID must be specified if you
want to read values from the DbResult object. The same resultID must then be passed to
the getField or getTable methods of the DbResult object. The resultID is necessary
because you can include an unlimited number of DbReader objects in a single
DbtTransaction object.

setParam
void setParam (String name, any value)

Sets the parameter with the specified name to the specified value. The name of the
parameter must match the name attribute of one of the <in> nodes you specified in the
dbCustom.xml file. The value can be one of the following datatypes: boolean, number,
string, Date, Array, Object, org.omus.Table.

DbReader 47

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 47

DbResult
This object represents the result of a transaction. It will be passed to the onResult event
handler of the DbTransaction object.

Method Summary

int getAffectedRows (String resultID)

Table getTable (String resultID)

getAffectedRows
int getAffectedRows (String resultID)

Returns the number of affected rows of the statement with the specified resultID. The
resultID must match the ID that you passed as the second argument to the constructor
of the corresponding DbWriter object.

getTable
org.omus.Table getTable (String resultID)

Returns a reference to a table object. The resultID must match the ID that you passed
as the second argument to the constructor of the corresponding DbReader object.

DbTransaction
This object can be used to read and write to and from the database. Note that persistent
properties will be written to the database automatically. You only need this object if you
created additional tables in the database.

This object is useful if you want to execute custom SQL statements. For security rea-
sons you cannot construct those statements in the client. Instead you must configure
them in the dbCustom.xml file on the server. This approach may seem a bit cumber-
some at first sight. But it is very versatile once you get used to it.

The following example illustrates how you can use the DbTransaction object to read a
user ID from one table and use that ID to change a value in another table without con-
tacting the server twice.

The corresponding entries in dbCustom.xml might look as follows (see the
Configuration chapter for more details):

48 DbTransaction

manual_10 09.07.2003 17:20 Uhr Seite 48

<dbReader configID="readUserID" rollbackOnError="true" minRows="1">
<in name="username" />
<out name="userID" />
<statement>

SELECT userID FROM reginfo WHERE username = ?
</statement>

</dbReader>

<dbWriter configID="updateAddress" rollbackOnError="true">
<in name="street" />
<in name="city" />
<in name="phone" />
<in name="userID" />
<statement>

UPDATE address SET street = ?, city = ?, phone = ? WHERE userID = ?
</statement>

</dbWriter>

The ActionScript code to execute those statements looks as follows:

var ta = new org.omus.DbTransaction();
ta.addPart(new org.omus.DbReader("readUserID"));
ta.addPart(new org.omus.DbWriter("updateAddress","address"));
ta.setParam("username","Thomas");
ta.setParam("street","217 Mulholland Drive");
ta.setParam("city","Los Angeles");
ta.setParam("phone","27 27 55 55");

var lis = new Object();
lis.onResult = function (result) {

trace("affected rows = " + result.getAffectedRows("address"));
};
lis.onError = function (error) {

trace ("ERROR: " + error.getDescription());
};
ta.addListener(lis);
ta.execute();

Please note that the second statement has 4 <in> nodes. Three of them (street, city and
phone) will be set by your ActionScript code. The last one (userID) will be set auto-
matically because it is configured as an <out>-value in the first statement which will be
available to all subsequent statements. The attribute minRows is set to "1" in the first
statement so that execution of the transaction will be aborted if the result is empty,
because the second statement would fail anyway, if no user with the specified name
exists.

DbTransaction 49

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 49

Constructor Summary

new DbTransaction ()

Method Summary

void addListener (Object listener)

void addPart (DbReader|DbWriter part)

void execute ()

void removeListener (Object listener)

void setParam (String name, any value)

Event Summary

onResult (DbResult result)

onError (Error error)

DbTransaction
new org.omus.DbTransaction ()

Creates a new DbTransaction object.

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the DbTransaction object can
generate.

setParam
void setParam (String name, any value)

Sets the parameter with the specified name to the specified value. The name of the
parameter must match the name attribute of one of the <in> nodes you specified in the
dbCustom file. The value can be one of the following datatypes: boolean, number,
string, Date, Array, Object, org.omus.Table. If you set a parameter in the
DbTransaction object it is available to all the DbWriter or DbReader parts you add to
this transaction. If you want to set parameters that can only be read by one particular
DbWriter or DbReader object, you must use the setParam method of those objects.

addPart
void addPart (DbReader|DbWriter part)

Adds a DbReader or DbWriter object to this transaction.

50 DbTransaction

manual_10 09.07.2003 17:20 Uhr Seite 50

execute
void execute ()

Executes this transaction. The result will be passed to the onResult event.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by the execute method
of this object.

onResult
onResult (DbResult result)

Event handler; invoked when the result of the transaction has been received.

DbWriter
This object represents a DELETE, INSERT or UPDATE statement to be executed on the
server.

Constructor Summary

new DbWriter (String configID [, String resultID])

Method Summary

void setParam (String name, any value)

DbWriter
new org.omus.DbWriter (String configID [, String resultID])

Creates a new DbWriter object. The specified configID must match a configID attribute
in a <dbWriter> node in dbCustom.xml. The optional resultID must be specified if you
want to check the number of affected rows in the DbResult object.

DbWriter 51

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 51

setParam
void setParam (String name, any value)

Sets the parameter with the specified name to the specified value. The name of the
parameter must match the name attribute of one of the <in> nodes you specified in the
dbCustom file. The value can be one of the following datatypes: boolean, number,
string, Date, Array, Object, org.omus.Table.

Error
An error object gets passed to all the onError event handlers. You can use it to retrieve
detailed information about the error.

Method Summary

Array getArguments ()

String getCode ()

String getDescription ()

String getMethodName ()

getArguments
Array getArguments ()

Returns an array of all the arguments that were passed to the method that caused the
error. May return null if the error was caused by the server.

getCode
String getCode ()

Returns the error code of that object.

getDescription
String getDescription ()

Returns a description of the error that occured.

getMethodName
String getMethodName ()

Returns the name of the method that caused the error. May return null if the error was
caused by the server.

52 Error

manual_10 09.07.2003 17:20 Uhr Seite 52

Group
The group object represents the group that the client is currently member of. Each client
can only be member of one group at any point in time. The methods of the group object
can be used to obtain information about the current group and to retrieve the
PropertySet object of the group or of any user currently in this group. Note that all
groups must be configured in the groupConfig node in config.xml on the server. See the
Configuration chapter for details.

The Group object is a singleton that will be created automatically when a user logs in.
It can be referenced with org.omus.group.

Method Summary

void addListener (Object listener)

void change (String groupName, String configID, boolean syncProps)

void close ()

boolean containsUser (String username)

Array[PropertySet] getAllUserProperties ()
String getConfigID ()

String getName ()

PropertySet getProperties ()

int getUserCount ()

int getUserLimit ()

PropertySet getUserProperties (String username)

boolean isClosed ()

boolean isFull ()

void open ()

void removeListener (Object listener)

Event Summary

onChange (Object data)

onClose ()

onError (Error error)

onOpen ()

onUserJoined (PropertySet userProps)

onUserLeft (PropertySet userProps)

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the Group object can generate.

Group 53

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 53

change
void change (String groupName, String configID, boolean syncProps)

Attempts to leave the current group and change into another group; configID must cor-
respond to an id that you used in a <group> node in config.xml on the server. You can
pass null as the configID, but then the change only succeeds if a group with the speci-
fied name already exists. If you pass a valid configID the group will be created auto-
matically on the server if it does not exist yet. Note that you can dynamically create an
unlimited number of groups with the same configID. We get a lot of feedback from
users who think that you cannot create groups dynamically because you have to con-
figure them on the server. But each configID corresponds to one configuration that will
be shared by an unlimited number of groups with arbitrary names.

The third parameter can be useful if you want to set some initial values for properties
of this user which would make only sense if the change into the new group succeeds.
Just change the values of the corresponding properties but do not call
PropertySet.synchronize. Instead pass true as the third parameter to this method. If
the change succeeds the new values will be accepted and the
PropertySet.onSynchronize event handler will be invoked in addition to the
Group.onChange event handler. If the attempt to change groups fails, all affected prop-
erties will be reset.

close
void close ()

Closes the group so that no other users can join.

containsUser
boolean containsUser (String username)

Returns true if the user with the specified name is a member of this group.

getAllUserProperties
Array[PropertySet] getAllUserProperties ()

Returns an array containing the PropertySet objects for each user that is currently mem-
ber of the group. The array is sorted alphabetically by user names.

getConfigID
String getConfigID ()

Returns the configID of the group. It identifies the corresponding <group>-node in con-
fig.xml that was used to configure this group. You can create an unlimited number of
groups with the same configID but different names. See the Configuration chapter for
more details.

54 Group

manual_12 14.04.2004 14:52 Uhr Page 54

getName
String getName ()

Returns the name of the group.

getProperties
PropertySet getProperties ()

Returns the PropertySet object associated with this group.

getUserCount
int getUserCount ()

Returns the number of users who are currently member of this group.

getUserLimit
int getUserLimit ()

Returns the maximum number of users permitted for this group.

getUserProperties
PropertySet getUserProperties (String username)

Returns the PropertySet object associated with a user who is currently member of this
group. Returns null if no user with the specified name exists in this group.

isClosed
boolean isClosed ()

Returns true if the group is closed so that no other users can join.

isFull
boolean isFull ()

Returns true if the maximum number of users has been reached.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

open
void open ()

Opens the group for other users to join.

Group 55

ClientAPI

manual_12 14.04.2004 14:52 Uhr Page 55

onClose
onClose ()

Event handler; invoked when the group was closed so that no other user can join.

onChange
onChange (Object data)

Event handler; invoked when the attempt to change groups succeeded. When this event
handler is invoked the group object already represents the new group. The argument is
an empty object unless you wrote a GroupExtension as a server side plugin which can
be used to send additional data to the client.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by one of the following
methods of the Group object: change, open, close.

onUserJoined
onUserJoined (PropertySet userProps)

Event handler; invoked when a user joined this group. The argument is the PropertySet
object that represents the new user.

onUserLeft
onUserLeft (PropertySet userProps)

Event handler; invoked when a user left this group. The argument is the PropertySet
object that represents the user that has left the group.

onOpen
onOpen ()

Event handler; invoked when the group was opened so that other users can join.

Info
Basically a small collection of methods to retrieve information that did not fit into any
other object.

The Info object is a singleton that will be created automatically when a user logs in. It
can be referenced with org.omus.info.

56 Info

manual_10 09.07.2003 17:20 Uhr Seite 56

Method Summary

void addListener (Object listener)

void findUser (String username)

void loadGroupList ()

void loadUserList ()

void removeListener (Object listener)

Event Summary

onError (Error error)

onFindUser (String username, String groupName)

onLoadGroupList (Table groups)

onLoadUserList (Array[String] usernames)

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the Info object can generate.

findUser
void findUser (String username)

Locates the user with the specified name. The onFindUser event handler will return the
name of the group, that the user with the specified name is currently member of or null
if the user is offline.

loadGroupList
void loadGroupList ()

Loads a table containing all the groups that were created on the server. If you need the
list of groups in regular intervals you can set groupListInterval in the <services>
node in the server configuration to the number of seconds between updates. In this case
you do not need to call this method, the onLoadGroupList event handler will be called
automatically.

loadUserList
void loadUserList ()

Loads an array of the names of all users that are currently logged in. If you need the list
of users in regular intervals you can set userListInterval in the <services> node in
the server configuration to the number of seconds between updates. In this case you do
not need to call this method, the onLoadUserList event handler will be called auto-
matically.

Info 57

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 57

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by one of the methods
of the info object.

onFindUser
onFindUser (String username, String groupName)

Event handler; invoked when a user was located; groupName may be null if the user
is currently offline or does not exist.

onLoadGroupList
onLoadGroupList (Table groups)

Event handler; invoked when the group list was loaded either due to a call to
loadGroupList or due to a regular update sent by the server. Each row in the table con-
tains information about a single group currently active on the server. The columns are:
name (String), userCount (number), userLimit (number) and closed (boolean).

onLoadUserList
onLoadUserList (Array[String] usernames)

Event handler; invoked when the user list was loaded either due to a call to
loadUserList or due to a regular update sent by the server.

Locks
The Locks object can be used to restrict access to certain items within a group. The
locks are valid within one group only, if a user leaves a group, all locks that he previ-
ously aqcuired will be released automatically. You obtain a reference to the Locks object
with org.omus.user.getLocks(). The names of the locks are arbitrary strings.

An example is a whiteboard application with some draggable objects on the screen. To
prevent that two users start a drag operation concurrently, you can use a lock for each
draggable item on the screen. Example code to set up a listener for the locks object
might look as follows:

var locks = org.omus.user.getLocks();
var lis = new Object();

58 Locks

manual_10 09.07.2003 17:20 Uhr Seite 58

lis.onAcquire = function (lockName, success) {
if (success) {

if (lockName == "draggableCircle") {
// start drag operation for circle

} else if (lockName == "draggableSquare") {
// start drag operation for square

}
} else {

// show error message or play sound...
}

};
locks.addListener(lis);

Method Summary

void acquire (String lockName)

void addListener (Object listener)

Array[String] getAllAcquired ()

boolean isAcquired (String lockName)

void release (String lockName)

void releaseAll ()

void removeListener (Object listener)

Event Summary

onAcquire (String lockName, boolean success)

onError (Error error)

onRelease (String lockName)

onReleaseAll ()

acquire
void acquire (String lockName)

Tries to acquire the lock with the specified name.

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the Locks object can generate.

getAllAcquired
Array[String] getAllAcquired ()

Returns a list of all locks currently held by this client.

Locks 59

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 59

isAcquired
boolean isAcquired (String lockName)

Returns true if a lock with the specified name is currently held by this client.

release
void release (String lockName)

Releases the lock with the specified name.

releaseAll
void releaseAll ()

Releases all locks.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

onAcquire
onAcquire (String lockName, boolean success)

Event handler; invoked when the acquisition of a lock was accepted or rejected, depend-
ing on the value of the second argument. The lock can only be acquired if no other user
currently holds the same lock.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by one of the methods
of the Locks object.

onRelease
onRelease (String lockName)

Event handler; invoked when a lock was released.

onReleaseAll
onReleaseAll ()

Event handler; invoked when all locks were released.

60 Locks

manual_10 09.07.2003 17:20 Uhr Seite 60

Log
The log object contains methods to create custom log entries in the logging table on the
server. The object uses four different log-levels: DEBUG, INFO, WARN and ERROR. A log-
level is an indication of the importance of a message. Depending on the mininum log-
level you specified for the <oregano-dev>-node in the logging section in config.xml a
log entry might be ignored or sent to server.

If the configuration looks like this

<client_dev level="warn" />

all log entries of level WARN or higher will be sent to the server. Accordingly calling
org.omus.log.debug() or org.omus.log.info() will be ignored in this case.

The Log object is a singleton that will be created automatically when a user logs in. It
can be referenced with org.omus.log.

Method Summary

void addListener (Object listener)

void debug (String errorCode, String info)

boolean debugEnabled ()

void error (String errorCode, String info)

boolean errorEnabled ()

void info (String errorCode, String info)

boolean infoEnabled ()

void removeListener (Object listener)

void warn (String errorCode, String info)

boolean warnEnabled ()

Event Summary

onLog (String log)

addListener
void addListener (Object listener)

Adds the specified object as a listener for the onLog event.

debug
void debug (String errorCode, String info)

Creates a log entry with the specified error code and info string if the log object is con-
figured to process messages of level DEBUG or higher. The error code will be automati-
cally prefixed with "cld-" to avoid confusion with built-in error codes.

Log 61

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 61

debugEnabled
boolean debugEnabled ()

Returns true if the log object is configured to sent log entries of level DEBUG or higher
to the server.

error
void error (String errorCode, String info)

Creates a log entry with the specified error code and info string if the log object is con-
figured to process messages of level ERROR. The error code will be automatically pre-
fixed with "cld-" to avoid confusion with built-in error codes.

errorEnabled
boolean errorEnabled ()

Returns true if the log object is configured to sent log entries of level ERROR to the server.

info
void info (String errorCode, String info)

Creates a log entry with the specified error code and info string if the log object is con-
figured to process messages of level INFO or higher. The error code will be automatical-
ly prefixed with "cld-" to avoid confusion with built-in error codes.

infoEnabled
boolean infoEnabled ()

Returns true if the log object is configured to sent log entries of level INFO or higher to
the server.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

warn
void warn (String errorCode, String info)

Creates a log entry with the specified error code and info string if the log object is con-
figured to process messages of level WARN or higher. The error code will be automatical-
ly prefixed with "cld-" to avoid confusion with built-in error codes.

62 Log

manual_10 09.07.2003 17:20 Uhr Seite 62

warnEnabled
boolean warnEnabled ()

Returns true if the log object is configured to sent log entries of level WARN or higher to
the server.

onLog
onLog (String log)

Event handler; invoked when logging information will be displayed in the output win-
dow. The parameter contains the whole formatted string that will be sent to the output
window in your Flash authoring environment. If you test your Flash movies inside a
browser you can use this event handler to send the logging information to a popup win-
dow or display it in your Flash movie.

Mail
Each Mail object represents a single mail. It has a subject, a sender and a recipient like
normal internet email has too. But it does not have a body so all the text that you want
to transmit with your mail has to be put into the attachment. But the attachment is not
restricted to string objects. It is a normal ActionScript object and can contain any of the
following datatypes: boolean, number, string, Date, Object, Array, org.omus.Table.
You can write code to construct and send a mail as follows:

var mail = new org.omus.Mail("personal information");
var attach = mail.getAttachment();
attach.name = "Brian";
attach.age = 37;
attach.married = false;
attach.children = ["Jenny","Maria","Ben"];
var listener = new Object();
listener.onSend = function (mail) {

trace("mail has been sent");
};
listener.onError = function (mail, error) {

trace("sending mail failed: " + error.getDescription());
};
mail.addListener(listener);
mail.send("Jennifer");

Constructor Summary

new org.omus.Mail (String subject)

Method Summary

void addListener (Object listener)

Object getAttachment ()

Mail 63

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 63

Date getDate ()

Mailbox getMailbox ()

String getRecipient ()

String getSender ()

String getSubject ()

boolean isLoaded ()

boolean isUnread ()

void loadAttachment ()

void mark (boolean asRead)

void remove ()

void removeListener (Object listener)

void send (String recipient)

Event Summary

onError (Mail mail, Error error)

onLoadAttachment (Mail mail)

onMark (Mail mail)

onRemove (Mail mail)

onSend (Mail mail)

new
new org.omus.Mail (String subject)

Constructs a new Mail object with the specified subject.

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the Mail object can generate.

getAttachment
Object getAttachment ()

Returns the attachment of this mail object or null if the attachment has not been
loaded into the client yet. It is a plain ActionScript object that is empty in a newly cre-
ated Mail object. You can add properties with one of the following datatypes: boolean,
number, String, Date, Array, Object, org.omus.Table.

getDate
Date getDate ()

Returns an ActionScript Date object representing the time this Mail object was sent.

64 Mail

manual_10 09.07.2003 17:20 Uhr Seite 64

getMailbox
org.omus.Mailbox getMailbox ()

Returns one of the two Mailbox objects that this mail belongs to.

getRecipient
String getRecipient ()

Returns the recipient of this Mail object. May return null if it is a new Mail object that
has not been sent yet.

getSender
String getSender ()

Returns the sender of this Mail object.

getSubject
String getSubject ()

Returns the subject of this Mail object.

isLoaded
boolean isLoaded ()

Returns true if the attachment of this mail has been loaded.

isUnread
boolean isUnread ()

Returns true if this mail is unread.

loadAttachment
void loadAttachment ()

Loads the attachment for this Mail object.

mark
void mark (boolean asRead)

Marks this Mail object as read or as unread.

Mail 65

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 65

remove
void remove ()

Removes this Mail object from its containing Mailbox object.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

send
void send (String recipient)

Sends this Mail object to the specified recipient. You can send the same Mail object to
more than one user. Each time you send a mail, a copy of this Mail object will be placed
into the out box object.

onError
onError (Mail mail, Error error)

Event handler; invoked when an error occured that was caused by one of the following
methods of the Mail object: send, loadAttachment, mark, remove.

onLoadAttachment
onLoadAttachment (Mail mail)

Event handler; invoked when the attachment has been loaded into this Mail object.

onMark
onMark (Mail mail)

Event handler; invoked when this Mail object has been marked as read or as unread.

onRemove
onRemove (Mail mail)

Event handler; invoked when this Mail object has been removed from its containing
Mailbox object.

onSend
onSend (Mail mail)

Event handler; invoked when a Mail object has been sent successfully. Note that the
argument is a copy of the original Mail object (the one you invoked the send method

66 Mailbox

manual_10 09.07.2003 17:20 Uhr Seite 66

on). This copy was put into the out box, because the original Mail object could have
been sent to multiple recipients.

Mailbox
The Mailbox object stores Mail objects which are different from Message objects in that
they are persistent. If you send a Mail object to a user who is currently offline, the Mail
object will be delivered automatically the next time the recipient logs in. Each client has
two Mailbox objects, one for the out box and one for the in box. Use the methods of
the User object to obtain a reference to a Mailbox object.

This object is intended to implement some kind of email functionality in your multiuser
application. If you need to send messages to exchange data between clients or between
a client and the server as a requirement of your application logic, use Message objects
which are similar to Mail objects. They differ in that they are not persistent and that
they can be sent not only to a user, but also to a group, to all users currently online or
to a server extension.

Method Summary

void addListener (Object listener)

void load ()

int getLoaded ()

Mail getMail (int index)

int getTotal ()

String getType ()

int getUnread ()

void removeAll ()

void removeListener (Object listener)

void sortByDate (boolean ascending)

void sortBySender (boolean ascending)

void sortBySubject (boolean ascending)

Event Summary

onError (Error error)

onLoad (Mailbox box)

onNewMail (Mailbox box)

onRemoveAll (Mailbox box)

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the Mailbox object can gener-
ate.

Mailbox 67

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 67

load
void load ()

Loads all Mail objects (without their attachments) that have not been loaded yet.

getLoaded
int getLoaded ()

Returns the number of loaded Mail objects in this mailbox.

getMail
Mail getMail (int index)

Returns the Mail object at the specified index. The mails are sorted by date per default;
in this case the latest mail will be at index position 0. But you can change the order with
one of the sort methods.

getTotal
int getTotal ()

Returns the total number of Mail objects in this mailbox.

getType
String getType ()

Returns either "inBox" or "outBox"

getUnread
int getUnread ()

Returns the number of unread Mail objects in this mailbox.

removeAll
void removeAll ()

Removes all Mail objects from this mailbox.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

68 Mailbox

manual_10 09.07.2003 17:20 Uhr Seite 68

sortByDate
void sortByDate (boolean ascending)

Sorts all Mail objects by date.

sortBySender
void sortBySender (boolean ascending)

Sorts all Mail objects by sender.

sortBySubject
void sortBySubject (boolean ascending)

Sorts all Mail objects by subject.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by one of the following
methods of the Mailbox object: load, removeAll.

onLoad
onLoad (Mailbox box)

Event handler; invoked when all Mail objects have been loaded into the Mailbox object.

onNewMail
onNewMail (Mailbox box)

Event handler; invoked when a new mail was received by the server. The corresponding
Mail object will not be loaded automatically, thus getLoaded and getTotal will return
different numbers after this event handler was invoked. You can use the load method
at any time to load all new Mail objects into the client.

onRemoveAll
onRemoveAll (Mailbox box)

Event handler; invoked when all Mail objects have been removed from the Mailbox
object.

Mailbox 69

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 69

Message
The Message object has only a small subset of the methods of the Mail object. Message
objects are different from Mail objects in that they are not persistent. They can be sent
using one of the methods of org.omus.messenger. The attachment is a normal
ActionScript object and can carry any of the following datatypes: boolean, number,
String, Date, Object, Array, org.omus.Table. You can write code to construct and
send a message as follows:

var msg = new org.omus.Message("chat message");
var attach = msg.getAttachment();
attach.chatText = _root.getInputFieldContentSomehow();
org.omus.messenger.sendToGroup(msg);

Cunstructor Summary

new org.omus.Message (String subject)

Method Summary

Object getAttachment ()

String getSender ()

String getSubject ()

new
new org.omus.Message (String subject)

Constructs a new Message object with the specified subject.

getAttachment
Object getAttachment ()

Returns the attachment of this Message object. It is a plain ActionScript object that is
empty in a newly created Message object. You can add properties with one of the fol-
lowing datatypes: boolean, number, String, Date, Array, Object, org.omus.Table.

getSender
String getSender ()

Returns the sender of this Message object.

getSubject
String getSubject ()

Returns the subject of this Message object.

70 Message

manual_10 09.07.2003 17:20 Uhr Seite 70

MessageFilter
If you want fine grained control of which objects handle which kind of incoming mes-
sages, you can register a MessageFilter object with the messenger object. You can add
an unlimited number of subjects and an unlimited number of listeners to each
MessageFilter. When a message is received that has a subject that was added to a
MessageFilter object, all the registered listeners in that MessageFilter receive an
onMessage event.

In this example a filter is created that handles all messages with the subject "start
game" or "stop game":

var obj = new Object();
obj.onMessage = function (msg) {

var at = msg.getAttachment();
trace(at.newScore);

};
var filter = new org.omus.MessageFilter();
filter.addSubject("start game");
filter.addSubject("stop game");
filter.addListener(obj);
org.omus.messenger.addFilter(filter);

If you combine MessageFilter objects with the publish/subscribe mechanism in the
Messenger object, you get precise control over the way messages are distributed and
processed.

Constructor Summary

new org.omus.MessageFilter ()

Method Summary

void addListener (Object listener)

void addSubject (String subject)

void removeListener (Object listener)

void removeSubject (String subject)

new
new org.omus.MessageFilter ()

Constructs a new MessageFilter object with the specified subject.

addListener
void addListener (Object listener)

Adds the specified object as a listener to this MessageFilter. The listener object will
receive an onMessage event for all incoming messages, that have a subject that was
added to this filter with the addSubject method.

MessageFilter 71

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 71

addSubject
void addSubject (String subject)

Adds the specified subject to this MessageFilter.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

removeSubject
void removeSubject (String subject)

Removes the specified subject from this MessageFilter.

Messenger
The Messenger object handles receiving, sending and filtering of Message objects which
are different from Mail objects in that they are not persistent. If the recipient is offline
the message will be discarded. There is a publish/subscribe mechanism which you can
use to easily control the distribution of messages.

The Messenger object is a singleton that will be created automatically when a user logs
in. It can be referenced with org.omus.messenger.

Method Summary

void addListener (Object listener)

void addFilter (MessageFilter filter)

Array[String] getSubscriptions ()

boolean isSubscribed (String subject)

void publish (Message msg)

void removeListener (Object listener)

void removeFilter (MessageFilter filter)

void sendToAll (Message msg)

void sendToGroup (Message msg [, String groupName])
void sendToServer (Message msg)

void sendToUser (Message msg, String username, boolean sameGroup)

void subscribe (String subject)

void unsubscribe (String subject)

void unsubscribeAll ()

Event Summary

onError (Error error)

onMessage (Message msg)

onSubscribe (String subject)

onUnsubscribe (String subject)

onUnsubscribeAll ()

72 Messenger

manual_10 09.07.2003 17:20 Uhr Seite 72

addListener
void addListener (Object listener)

Adds the specified object as a listener for all events the Messenger object can generate.

addFilter
void addFilter (MessageFilter filter)

Adds a filter to the messenger object. Filtering may be convenient if you want fine
grained control of which objects handle which kind of messages. Without filtering all
incoming messages will be passed to the onMessage event handler of the Messenger
object. In a large application this approach may be inappropiate. See the section on the
MessageFilter object for details. You can register an unlimited number of filters.

getSubscriptions
Array[String] getSubscriptions ()

Returns an array of all the subjects that this client has subscribed to.

isSubscribed
boolean isSubscribed (String subject)

Returns true if this client has subscribed to messages with the specified subject.

publish
void publish (Message msg)

Sends a message to all users that have subscribed to the subject of this message.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

removeFilter
void removeFilter (MessageFilter filter)

Removes the specified filter.

sendToAll
void sendToAll (Message msg)

Sends a message to all users who are currently logged into the server.

Messenger 73

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 73

sendToGroup
void sendToGroup (Message msg [, String groupName])

Sends a message to all the members of a particular group. If you omit the optional sec-
ond parameter the message will be sent to the current group.

sendToServer
void sendToServer (Message msg)

Sends a message to the server. You must write a server side GroupExtension plugin that
handles this message. Unlike all the other send methods, this one does not deliver the
message to another client.

sendToUser
void sendToUser (Message msg, String username, boolean sameGroup)

Sends a message to one user. If the third parameter is true the message will only be deliv-
ered if the recipient is currently member of the same group.

subscribe
void subscribe (String subject)

Subscribes to all messages with the specified subject.

unsubscribe
void unsubscribe (String subject)

Unsubscribes from all messages with the specified subject.

unsubscribeAll
void unsubscribeAll ()

Unsubscribes from all messages.

onError
onError (Error error)

Event handler; invoked when an error occured.

onMessage
onMessage (Message msg)

Event handler; invoked when a message is received that has no filter applied to.

74 Messenger

manual_10 09.07.2003 17:20 Uhr Seite 74

onSubscribe
onSubscribe (String subject)

Event handler; invoked when messages with the specified subject have been subscribed.

onUnsubscribe
onUnsubscribe (String subject)

Event handler; invoked when messages with the specified subject have been unsub-
scribed.

onUnsubscribeAll
onUnsubscribeAll ()

Event handler; invoked when all messages have been unsubscribed.

PropertyLoader
The PropertyLoader object is only needed for properties of users who are not member
of the current group or for properties of groups other than the current group. It can
even be used for properties of users who are offline.

Example code to load two properties of a user might look as follows:

var pl = new omus.PropertyLoader();
var lis = new Object();
lis.onLoadUser = function (username,props) {

trace("properties of user " + username + " were loaded");
trace("age = " + props.age);
trace("married = " + props.married);

};
lis.onError = function (error) {

var name = error.getArguments()[0];
trace("properties of user " + name + " could not be loaded");
trace("error = " + error.getDescription());

};
pl.addListener(lis);
pl.loadUser("Jenny",["age","married"]);

Constructor Summary

new org.omus.PropertyLoader ()

Method Summary

void addListener (Object listener)

void loadGroup (String groupName, Array[String] propNames)

void loadUser (String username, Array[String] propNames)

void removeListener (Object listener)

PropertyLoader 75

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 75

Event Summary

onError (Error error)

onLoadGroup (String groupName, Object props)

onLoadUser (String username, Object props)

new
new org.omus.PropertyLoader ()

Creates a new PropertyLoader.

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the PropertyLoader object can
generate.

loadGroup
void loadGroup (String groupName, Array[String] propNames)

Loads properties of a group.

loadUser
void loadUser (String username, Array[String] propNames)

Loads properties of a user.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by one of the methods
of the PropertyLoader object.

onLoadGroup
onLoadGroup (String groupName, Object props)

Event handler; invoked when properties of a group were loaded. The properties are
included in a plain ActionScript object, not in a PropertySet object, because they can-
not be modified or synchronized like those of the current group.

76 PropertyLoader

manual_10 09.07.2003 17:20 Uhr Seite 76

onLoadUser
onLoadUser (String username, Object props)

Event handler; invoked when properties of a user were loaded. The properties are
included in a plain ActionScript object, not in a PropertySet object, because they can-
not be modified or synchronized like those of users in the current group.

PropertySet
Each group and each user have a set of properties associated with them. The datatype
as well as persistence and synchronization settings for each property must be defined in
the XML configuration file on the server. See the Configuration chapter for details. The
PropertySet object can be used to read or modify the values of individual properties, to
load properties into the client or to synchronize them. You can obtain references to
PropertySet objects with one of the following methods:

Properties of the current group org.omus.group.getProperties()

Properties of the current user org.omus.user.getProperties()

Properties of another user in the current group org.omus.group.getUserProperties("username")

Properties of other groups or users who are not members of the current group are not
loaded into the client automatically. Use the PropertyLoader object to read the values
of these properties. Note that modified values will not be written to the database and
not be reflected in other clients before you commit all changes with a call to
PropertySet.synchronize. Example code to change three properties of a user named
"Billy" and synchronize them might look as follows:

var propSet = org.omus.group.getUserProperties("Billy");
propSet.setValue("age",27);
propSet.setValue("married",false);
propSet.setValue("children",["Jenny","Carmel","Larry"]);
propSet.synchronize();

Method Summary

void addListener (Object listener)

boolean contains (String propName)

String|Group getOwner ()

ProperySet getParent ()

int getPrimaryKey ()

String getType (String propName)

any getValue (String propName)

boolean isLoaded (String propName)

boolean isModified (String propName)

boolean isSynchronized ()

boolean isValid ()

void load (Array[String] propNames)

void loadAll ()

void removeListener (Object listener)

void setValue (String propName, any newValue)

int size ()

void synchronize ()

PropertySet 77

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 77

Event Summary

onError (PropertySet subset, Error error)

onLoad (PropertySet subset)

onSynchronize (PropertySet subset, boolean clientRequest)

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the PropertySet object can gen-
erate.

contains
boolean contains (String propName)

Returns true if this PropertySet object contains a property with the specified name.

getOwner
String|Group getOwner ()

Returns the owner of this PropertySet object. If this object is associated with a user, the
name of the user will be returned as a string. If it is associated with a group, a reference
to the group object will be returned.

getParent
ProperySet getParent ()

Returns the parent object of this PropertySet or null if there is no parent. The
PropertySet objects that get passed to the onSynchronize or onLoad event handlers are
only subsets of the original PropertySet objects, containing only those properties that
were affected by the synchronize or load operation. In these cases you can use this
method to obtain the parent object which contains all properties.

getPrimaryKey
int getPrimaryKey ()

Returns the primary key for this PropertySet object, corresponding to the usrID and
grpID fields in the userprops and groupprops tables in the database.

getType
String getType (String propName)

Returns the datatype of the property with the specified name.

78 PropertySet

manual_10 09.07.2003 17:20 Uhr Seite 78

getValue
any getValue (String propName)

Returns the value of the property with the specified name or null if the property was
not loaded yet.

isLoaded
boolean isLoaded (String propName)

Returns true if the value of the property with the specified name has been loaded into
the client.

isModified
boolean isModified (String propName)

Returns true if the property with the specified name was modified since the last
onSynchronize event.

isSynchronized
boolean isSynchronized ()

Returns true if no property was modified since the last onSynchronize event.

isValid
boolean isValid ()

Returns true if this PropertySet object is associated with the current group or a user in
the current group. If you store a reference to a PropertySet object in a variable and the
user that owns this PropertySet left the group, the values of all properties in this set
become stale because they will no longer be synchronized automatically.

load
void load (Array[String] propNames)

Loads all values of the properties with the specified names into the client. Please note
that the values of some properties will be loaded into the client automatically depend-
ing on their configuration.

loadAll
void loadAll ()

Loads the values of all properties that are not loaded automatically.

PropertySet 79

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 79

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

setValue
void setValue (String propName, any newValue)

Sets the value of the property with the specified name to the specified new value. The
type of the new value must match the type you specified for this property in config.xml.
Please note that the new values will not be written to the database and not be reflected
in other clients before you commit all changes with a call to PropertySet.synchronize.

size
int size ()

Returns the number of properties in this set.

synchronize
void synchronize ()

Synchronizes all modified properties in this set according to the synchronization settings
in the XML configuration file on the server. This may include writing the new values to
the database or updating them in other clients of the current group depending on the
configuration.

onError
onError (PropertySet subset, Error error)

Event handler; invoked when an error occured. The first argument is a PropertySet
object that contains only the affected properties that could not be loaded or synchro-
nized depending on the method that caused the error.

onLoad
onLoad (PropertySet subset)

Event handler; invoked when one or more properties were loaded. The argument is a
PropertySet object that contains only the affected properties.

onSynchronize
onSynchronize (PropertySet subset, boolean clientRequest)

Event handler; invoked when one or more properties were synchronized. The first
argument is a PropertySet object that contains only the affected properties. The second

80 PropertySet

manual_10 09.07.2003 17:20 Uhr Seite 80

argument is true if the onSynchronize event is the result of a call to
PropertySet.synchronize in this client. It is false if the event was caused by another
client or by the server.

Session
This object is used to connect to the server. The Session object is a singleton that will be
created automatically. It can be referenced with org.omus.session.

Method Summary

void addListener (Object listener)

void init (String versionID, String address, int loginPort [, int reconnectPort])
boolean isConnected ()

void login (String username, String password)

void logout ()

void register (String username, String password, String email)

void removeListener (Object listener)

boolean setPasswordEncoder (Function encoder)

Event Summary

onError (Error error)

onLogin (Object data)

onLogout (Error error)

onRegister (Object data)

addListener
void addListener (Object listener)

Adds the specified object as a listener for all events the Session object can generate.

init
void init (String versionID, String address, int loginPort [, int reconnectPort])

This method must be called before any attempt to login or register a user. It is best
placed right after the #include "oregano_as/init.as" statement. versionID is an
arbitrary string that must match the versionID attribute of the login node in config.xml
on the server. It can be used to prevent that someone uses a deprecated version of your
client application. address is either the human-readable name of your server (like
"www.myServer.com") or the IP address. If Oregano Server runs on more than one
machine, only the address of the Primary Server must be specified in the init method,
the other servers will be found automatically. loginPort and reconnectPort must be
1024 or higher. reconnectPort is optional, it is only required if your server runs on
more than one machine.

Session 81

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 81

isConnected
boolean isConnected ()

Returns true if it is possible to send a command to the server. Returns false if the user
is not logged in, if she is already logged out or the connection is broken. Furthermore
it returns false if changing groups is in progress. You cannot send messages to the
server before the connection to the new group has been fully established.

login
void login (String username, String password)

Used to login a user who is already registered with the server. All possible errors like
invalid passwords are passed to the onError event.

logout
void logout ()

Closes the connection to the server.

register
void register (String username, String password, String email)

Used to register a new user with the server. All possible errors like duplicate user names
are passed to the onError event.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

setPasswordEncoder
boolean setPasswordEncoder (Function encoder)

Optionally a function can be specified that encodes the password used in the login and
register methods. It requires two arguments. The first argument is the password, the sec-
ond is a string key send by the server that you can use to encode the password. The
server then uses the same key for decoding. The function must return the encoded pass-
word. You have to write the corresponding server side decoder as a Java extension. See
the section about the org.omus.ext package in the Server API chapter. A very simple
example function might look as follows:

pwdEncoder = function (password, serverKey) {
var offset = parseInt(serverKey);
var encoded = "";
for (var i = 0; i < password.length; i++) {

var num = password.charCodeAt(i) + offset;

82 Session

manual_10 09.07.2003 17:20 Uhr Seite 82

encoded += num + "-";
}
return encoded;

}
org.omus.session.setPasswordEncoder(pwdEncoder);

onError
onError (Error error)

Event handler; invoked when an error occured. The error might be caused by a call to
the login or register methods which might have failed. In addition the session object
handles all the unknown errors which might be send by the server. In this case
error.getMethod() returns null.

onLogin
onLogin (Object data)

Event handler; invoked when an attempt to login succeeded. The argument is an empty
object unless you wrote a LoginExtension as a server side plugin which can be used to
send additional data to the client.

onLogout
onLogout (Error error)

Event handler; invoked when the user has been logged out. You can use the specified
error object to find out about the cause of the logout. See the section on error codes at
the end of this chapter for a list of possible codes.

onRegister
onRegister (Object data)

Event handler; invoked when an attempt to register a user succeeded. The argument is
an empty object unless you wrote a LoginExtension as a server side plugin which can
be used to send additional data to the client.

Table
Table objects are the only datatype used for user and group properties that are not built-
in ActionScript objects.

The rows of the table are plain ActionScript objects with their property names match-
ing the column names of the table.

Note that the event handlers of the table object will only be invoked if the table is a
value of a synchronized property. If the property is not synchronized or the table is

Table 83

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 83

nested in another structured value in a property or you created a new table object by
hand, the event handlers will not be invoked.

Table objects are especially useful, if you have large amounts of data in a user or group
property, since the table object will only be partially synchronized. Only the modified,
added or removed rows will be exchanged between clients, so you can save a lot of
bandwith. Properties of type Array or Object, on the other hand, will always be fully
synchronized.

Constructor Summary

new org.omus.Table (TableDefinition def)

Method Summary

void addAllRows (Table source)

void addListener (Object listener)

void addRow (Object row)

TableDefinition getDefinition ()

Object getRow (int index)

void removeAllRows ()

void removeListener (Object listener)

Object removeRow (int index)

int size ()

void sort (Function sortFunc)

void sortBy (String column, boolean ascending)

void updateRow (int index, Object row)

Event Summary

onAddRow (Table table, Object row, boolean clientRequest)

onRemoveAllRows (Table table, boolean clientRequest)

onRemoveRow (Table table, Object row, boolean clientRequest)

onUpdateRow (Table table, Object row, boolean clientRequest)

new
new org.omus.Table (TableDefinition def)

Creates a new table with the specified table definition. The TableDefinition object can-
not be modified after it was used to create a table, but it can be used to create more
than one table with the same definition.

addAllRows
void addAllRows (Table source)

Adds all rows of the specified table to this table. This method will only succeed if both
tables have the same table definition.

84 Table

manual_10 09.07.2003 17:20 Uhr Seite 84

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the Table object can generate.

addRow
void addRow (Object row)

Appends a single row to this table. This method will only succeed if the specified row
object matches the table definition. See the entry for TableDefinition.match for
details.

getDefinition
TableDefinition getDefinition ()

Returns the TableDefinition object for this table.

getRow
Object getRow (int index)

Returns the row at the specified index position.

removeAllRows
void removeAllRows ()

Removes all rows from this table object.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

removeRow
Object removeRow (int index)

Removes and returns the row at the specified index position.

size
int size ()

Returns the number of rows of this table.

Table 85

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 85

sort
void sort (Function sortFunc)

Sorts the table using the specified comparison function. Given two arguments row1 and
row2, the function should return the following values:

-1 if row1 should appear before row2

0 if row1 == row2

1 if row1 should appear after row2

sortBy
void sortBy (String column, boolean ascending)

Sorts the table by the column with the specified name.

updateRow
void updateRow (int index, Object row)

Updates the row at the specified index position. This method will only succeed if the
specified row object matches the table definition. See the entry for
TableDefinition.match for details.

onAddRow
onAddRow (Table table, Object row, boolean clientRequest)

Event handler; invoked when a new row was added to a synchronized table property.
The second argument is the new row. The third argument is true if the onAddRow event
is the result of a call to Table.addRow in this client. It is false if the event was caused
by another client or by the server.

onRemoveAllRows
onRemoveAllRows (Table table, boolean clientRequest)

Event handler; invoked when all rows of a synchronized table property were removed.
The second argument is true if the onRemoveAllRows event is the result of a call to
Table.removeAllRows in this client. It is false if the event was caused by another
client or by the server.

onRemoveRow
onRemoveRow (Table table, Object row, boolean clientRequest)

Event handler; invoked when a row of a synchronized table property was removed. The
second argument is the row that was removed. The third argument is true if the
onRemoveRow event is the result of a call to Table.removeRow in this client. It is false
if the event was caused by another client or by the server.

86 Table

manual_10 09.07.2003 17:20 Uhr Seite 86

onUpdateRow
onUpdateRow (Table table, Object row, boolean clientRequest)

Event handler; invoked when a row of a synchronized table property was updated. The
second argument is the updated row. The third argument is true if the onUpdateRow
event is the result of a call to Table.updateRow in this client. It is false if the event was
caused by another client or by the server.

TableDefinition
TableDefinition objects are used to define the names and datatypes of the columns of a
Table object.

Constructor Summary

new org.omus.TableDefinition ()

Method Summary

void addColumn (String name, String type)

int getColumnCount ()

String getColumnName (int index)

Array[String] getColumnNames ()

String getColumnType (int index)

boolean matches (Object row)

TableDefinition
new org.omus.TableDefinition ()

Creates a new empty TableDefinition object.

addColumn
void addColumn (String name, String type)

Adds a new column to this table definition. This method will fail if this TableDefinition
object was already used to construct a new org.omus.Table object. The second argu-
ment must be one of the following strings: boolean, int, long, float, string, date,
array, object, table.

getColumnCount
int getColumnCount ()

Returns the number of columns in this table definition.

TableDefinition 87

ClientAPI

manual_10 09.07.2003 17:20 Uhr Seite 87

getColumnName
String getColumnName (int index)

Returns the name of the column at the specified index position.

getColumnNames
Array[String] getColumnNames ()

Returns an array of all column names in the order they were added to this
TableDefinition.

getColumnType
String getColumnType (int index)

Returns the datatype of the column at the specified index position.

matches
boolean matches (Object row)

Returns true if the specified object matches this table definition. The number of prop-
erties of the specified object must match the number of columns in this definition object
and each property of the specified object must have a matching name and datatype in
this definition object.

User
The user object represents the user that was logged in with this client. All other users
who are currently member of the group are represented by their PropertySet objects
instead.

The User object is a singleton that will be created automatically when a user logs in. It
can be referenced with org.omus.user.

Method Summary

void addListener (Object listener)

Buddies getBlacklist ()

Buddies getBuddies ()

String getEmail ()

Mailbox getInBox ()

Locks getLocks ()

String getName ()

Mailbox getOutBox ()

String getPassword ()

int getPermissions ()

PropertySet getProperties ()

88 User

manual_12 14.04.2004 14:52 Uhr Page 88

void removeListener (Object listener)

void setEmail (String newEmail)

void setPassword (String newPassword)

void setPermissions (int newPermissions)

Event Summary

onError (Error error)

onSetEmail ()

onSetPassword ()

onSetPermissions ()

addListener
void addListener (Object listener)

Adds the specified object as a listener for all the events the User object can generate.

getBlacklist
Buddies getBlacklist ()

Returns the Buddies object that represents the "blacklist" for this user. This method is
new in Oregano 1.1.0. If a user adds another user to his blacklist he will not receive any
Mail objects sent by that user. The blacklist returned by this method is an instance of
the Buddies object, because it shares the same interface with the buddylist. See the sec-
tion on the Buddies object for details.

getBuddies
Buddies getBuddies ()

Returns the Buddies object for this user. See the section on the Buddies object for details.

getEmail
String getEmail ()

Returns the email address of the user.

getInBox
Mailbox getInBox ()

Returns the Mailbox object representing the in box. See the section on the Mailbox
object for details.

getLocks
Locks getLocks ()

Returns the Locks object for this user. See the section on the Locks object for details.

User 89

ClientAPI

manual_12 14.04.2004 14:52 Uhr Page 89

getName
String getName ()

Returns the name of the user.

getOutBox
Mailbox getOutBox ()

Returns the Mailbox object representing the out box. See the section on the Mailbox
object for details.

getPassword
String getPassword ()

Returns the password of the user.

getPermissions
int getPermissions ()

Returns the permissions of the user, a number between 0 and 10:

0 user has been deleted

1 user has been banned

2-8 user has normal status

9-10 user has administrator status

The values between 2 and 8 make no difference to the Oregano Server. You can use
them for your application logic. A newly registered user has a permission value set to
3.

A user who has administrator status will not be logged out if you switch the server to
debug mode using the Flash Admin Client.

getProperties
PropertySet getProperties ()

Returns the PropertySet object associated with this user.

removeListener
void removeListener (Object listener)

Removes the specified listener from this object.

90 User

manual_12 14.04.2004 14:52 Uhr Page 90

setEmail
void setEmail (String newEmail)

Sets the email address for this user. You must set the permissions for this method in con-
fig.xml on the server. See the Configuration chapter for details. This method may fail if
the server is configured with emailUnique="true" and a user with the same email
address is already registered.

setPassword
void setPassword (String newPassword)

Sets the password for this user. You must set the permissions for this method in con-
fig.xml on the server. See the Configuration chapter for details.

setPermissions
void setPermissions (int newPermissions)

Sets the password for this user. You must set the permissions for this method in con-
fig.xml on the server. See the Configuration chapter for details.

onError
onError (Error error)

Event handler; invoked when an error occured that was caused by one of the following
methods of the user object: setEmail, setPassword, setPermissions.

onSetEmail
onSetEmail ()

Event handler; invoked when the email address was modified and written to the data-
base.

onSetPassword
onSetPassword ()

Event handler; invoked when the password was modified and written to the database.

onSetPermissions
onSetPermissions ()

Event handler; invoked when the permission value was modified and written to the
database.

User 91

ClientAPI

manual_12 14.04.2004 14:52 Uhr Page 91

Error Codes
Error descriptions:

ses-001 internal server error

ses-002 maximum number of connections exceeded

ses-003 login denied by custom server extension

ses-004 wrong client versionID

ses-005 server in debug mode or preparing for shutdown

ses-006 user already logged in

ses-007 user with given nick name already exists

ses-008 user is banned

ses-009 user with given email address already exists

ses-010 user with given email address is banned

ses-011 incorrect login

ses-012 no connection to server

msg-001 unknown message type

msg-002 error parsing message

msg-003 missing server extension for handling outgoing message

dbe-001 unable to connect to database

dbe-002 database error

dbe-003 SQL error

dbe-004 less than the required minimum of rows in the result set

dbe-005 less than the required minimum of affected rows

dbe-006 user is banned

dbe-007 user does not exist

dbe-008 group does not exist

dbe-009 missing <in>-parameter

dbe-010 missing <out>-parameter

dbe-011 type of transaction part does not match configuration

dbe-012 cannot handle fields set to SQL NULL

dbe-013 DbTransaction object was empty

dbe-014 execution of one or more statements denied

cgr-001 group does not exist

cgr-002 group cannot be created

cgr-003 group is closed

cgr-004 user limit of group reached

cgr-005 joining this group not permitted

grp-001 login group cannot be opened or closed

grp-003 client not owner of this lock

usr-001 changing email address not permitted

usr-002 changing password not permitted

usr-003 changing permissions not permitted

usr-004 illegal value for setting user permissions

mbx-001 mailbox limit exceeded

mbx.002 mail in out box cannot be marked as read

mbx.003 mail rejected: blacklist of recipient contains sender

92 Error codes

manual_12 14.04.2004 14:52 Uhr Page 92

bud-001 buddy list already contains this user

bud-002 buddy list did not contain this user

bud-003 limit of buddy list exceeded

prp-001 one or more properties do not exist

prp-002 datatype of one or more properties does not match configuration

prp-003 synchronization rejected by custom server extension

prp-004 PropertySet no longer valid

prp-005 changing groups failed

lgt-001 logout requested by client

lgt-002 logout requested by custom server extension

lgt-003 logout forced by administrator

lgt-004 user was banned

lgt-005 server switched to debug mode

lgt-006 server shutdown

lgt-007 connection broken

List of methods that can cause an onError event:

Method Possible error codes

Buddies.insert dbe-001, dbe-002, dbe-006, dbe-007, bud-001, bud-003

Buddies.load dbe-001, dbe-002

Buddies.remove dbe-001, dbe-002, bud-002

Buddies.removeAll dbe-001, dbe-002

DbTransaction.execute dbe-001, dbe-002, dbe-003, dbe-004, dbe-005, dbe-009, dbe-010,

dbe-011, dbe-012, dbe-013, dbe-014

Group.change dbe-001, dbe-002, cgr-001, cgr-002, cgr-003, cgr-004, cgr-005

Group.close grp-001

Group.open grp-001

Locks.release grp-003

Mail.loadAttachment dbe-001, dbe-002

Mail.mark dbe-001, dbe-002, mbx-002

Mail.remove dbe-001, dbe-002

Mail.send dbe-001, dbe-002, dbe-006, dbe-007, mbx-001

Mailbox.load dbe-001, dbe-002

Mailbox.removeAll dbe-001, dbe-002

Messenger.sendToServer msg-003

parsing incoming messages: msg-001, msg-002

PropertyLoader.loadGroup dbe-001, dbe-002, dbe-008, prp-001

PropertyLoader.loadUser dbe-001, dbe-002, dbe-007, prp-001

PropertySet.load dbe-001, dbe-002, prp-001, prp-004

PropertySet.loadAll dbe-001, dbe-002, prp-004

PropertySet.synchronize dbe-001,dbe-002, prp-002, prp-003, prp-004

Error codes 93

ClientAPI

manual_12 14.04.2004 14:52 Uhr Page 93

Session.login dbe-001, dbe-002, ses-002, ses-003, ses-004, ses-005, ses-006,

ses-008, ses-011, ses-012

Session.register dbe-001, dbe-002, ses-002, ses-003, ses-004, ses-005, ses-007,

ses-008, ses-009, ses-010, ses-012

User.setEmail dbe-001, dbe-002, usr-001

User.setPassword dbe-001, dbe-002, usr-002

User.setPermissions dbe-001, dbe-002, usr-003, usr-004

In addition each onError event can contain the error code ses-001.

94 Error codes

manual_10 09.07.2003 17:20 Uhr Seite 94

CHAPTER 6

Server API

Writing server-side extensions
The extensive Client API enables you to develop a complex multiuser application with-
out a single line of server-side code. But sometimes you need to move parts of your
application logic to the server, especially if you add features that need to be synchro-
nized within a group. Oregano Server comes with a set of interfaces that can be used to
develop extensions in Java. The most important interface is GroupExtension which can
be used to extend the functionality of a group.

There are four steps required to add an extension to the server:

1. Write a class that implements one of the five interfaces in package org.omus.ext
(omus is the acronym for Oregano Multiuser Server)

2. Compile the class and move the .class file into the extensions directory inside the
server runtime directory of Oregano Server.

3. Include the name of that class in config.xml. There are many places in this file where
you can specify an extension class. It depends on the type of extension you wrote and
on the way it is going to be used. See the Configuration chapter for details. If you
wrote a class that implements GroupExtension you can specify it to be the default
extension for all groups or to be used within a particular subset of groups only. In
the latter case the entry in config.xml might look as follows:

<group
configID="groundFloor"
userLimit="50"
extension="MyExtension"
/>
<startup server="s1" name="kitchen" />
<startup server="s1" name="bathroom" />
<startup server="s1" name="entranceHall" />

</group>

Now three groups named "kitchen", "bathroom" and "entranceHall" will be created
when the server boots. All three groups will load and use the Java class MyExtension.
Furthermore, all new groups created dynamically due to a client calling the change
method of the Group object in the client API and specifying "groundFloor" as the
configID, will use that class too.

4. Reboot Oregano Server.

Writing server-side extensions 95

Server API

manual_10 09.07.2003 17:20 Uhr Seite 95

Package Overview
org.omus.ext

Contains five interfaces that you can use to develop extensions for the Oregano Server.
Each extension must implement one of these five interfaces and the corresponding class
name must be specified in config.xml so that the server can load the extension.
GroupExtension is the main interface of that package that can be used to extend the
functionality of one or more groups.

org.omus.core

Contains the core classes. Group, User and PropertySet are classes that are very simi-
lar to their client-side twins of the same name. Use these objects to read and modify
properties and to send messages to clients.

Furthermore this package contains a lot of additional utility classes.

org.omus.data

Contains the wrapper classes for the datatypes that can be exchanged with Flash
Clients. Each property and each Message object contains data wrapped in one of the
subclasses of the abstract superclass DataField.

The Message object used to send data to clients is included in this package too.

org.omus.db

Contains classes to read and write to and from the database. They are very similar to
the corresponding objects in the Client API. Note that persistent properties will be writ-
ten to the database automatically. You only need these classes if you created additional
tables in the database.

Package org.omus.ext
Contains five interfaces that you can use to develop extensions for the Oregano Server.
Each extension must implement one of these five interfaces and the corresponding class
name must be specified in config.xml so that the server can load the extension.

GroupExtension
Interface

This is the main interface of the org.omus.ext package, you can use it to build custom
groups (or "rooms"). It contains a set of methods that get invoked when a special event
occured. All groups in the Oregano Server are single-threaded, so you do not need to
care about synchronization issues. There is no need to create your own threads or Timer
instances. If there is a time consuming task you can delegate it to a pool of worker
threads with one of the methods of the TaskManager.

96 GroupExtension

manual_10 09.07.2003 17:20 Uhr Seite 96

There are two places in config.xml where a GroupExtension can be specified. The
defaultExtension attribute of the enclosing <groupConfig>-node and the extension
attribute of each particular <group>-node. The former is useful if you want to add fea-
tures to every group that will be created on the server, the latter is used if you write a
"local" extension, only intended for groups created with a particular configID. If you
combine both approaches, make sure that your local extension is a subclass of your
defaultExtension, otherwise the functionality of your defaultExtension would be wiped
out by the methods in your local one.

Let’s assume you develop a default extension with the following class body:

class MyGlobalExtension implements org.omus.ext.GroupExtension { ... }

In this case the groupConfig node in config.xml should look as follows:

<groupConfig defaultExtension="MyGlobalExtension" ...

If you want to add special behaviour to a particular set of groups, you can define a sub-
class:

class MySpecialExtension extends MyGlobalExtension { ... }

Each method in this subclass should call the method in the superclass that it overrides
if you want to combine the functionality of your local and global extensions.

The node for the groups that are supposed to load this extension might look as follows:

<group
configID="spec"
userLimit="50"
extension="MySpecialExtension"
>
<startup server="serv1" name="spec_A" />
<startup server="serv1" name="spec_B" />

</group>

When the server boots, two groups named "spec_A" and "spec_B" will be created and
both will load the extension class MySpecialExtension which in turn is a subclass of
MyGlobalExtension. Furthermore each group that will be created dynamically due to a
client calling org.omus.group.change("anyName","spec",false) will load the same
extension too.

Method Summary

void finishGroupCreation (Group group)

void groupRemoved ()

void messageFromClient (Message msg, User sender)

boolean messageToGroup (Message msg)

boolean messageToUser (Message msg, User recipient)

boolean prepareGroupCreation (GroupCreationData gcd)

boolean syncGroupProperties (PropertyUpdate newValues, User sender)

boolean syncUserProperties (PropertyUpdate newValues, User sender, User owner)

void userJoined (User user, DataRow extraData)

void userLeft (User user)

GroupExtension 97

org.om
us.ext

manual_12 14.04.2004 14:52 Uhr Page 97

finishGroupCreation
void finishGroupCreation (Group group)

Invoked after the group has been created. Each class that implements this interface
should keep a reference to the group object in a field.

groupRemoved
void groupRemoved ()

Invoked after the group has been removed. You can still modify the properties of this
group which will be written to the database after this method finished executing.

messageFromClient
void messageFromClient (Message msg, User sender)

Invoked after a message from the specified sender has been received. This event origi-
nates from a client calling sendToServer in org.omus.messenger.

messageToGroup
boolean messageToGroup (Message msg)

Invoked before a message is sent to all the clients who are currently member of this
group. This event may originate from a client calling sendToGroup in org.omus.mes-
senger or from any server extension calling sendToGroup in the MessagingManager.
Return true if you want the message to proceed on its way to the clients.

messageToUser
boolean messageToUser (Message msg, User recipient)

Invoked before a message is sent to the specified user. This event may originate from a
client calling sendToUser or sendToAll in org.omus.messenger or from any server
extension calling sendToGroup or sendToAll in the MessagingManager. Return true if
you want the message to proceed on its way to the client.

prepareGroupCreation
boolean prepareGroupCreation (GroupCreationData gcd)

Invoked before the group will be created. The GroupCreationData object contains
methods to read the name and the configID of the group that is supposed to be creat-
ed. If this method returns false, the creation of this group will be aborted. This way you
can implement some kind of error checking on the server or load some additional data
before the group is created. You can use the setErrorCode method of the
GroupCreationData object to send customized error codes to the clients in case you
want to prevent the creation of that group. Otherwise a default error code will be sent.

98 GroupExtension

manual_12 14.04.2004 14:52 Uhr Page 98

syncGroupProperties
boolean syncGroupProperties (PropertyUpdate newValues, User sender)

Invoked before the properties of this group will be synchronized. The sender represents
the client that modified the properties. PropertyUpdate is a subclass of PropertySet. This
object does not contain all the properties that are associated with this group, but only
the modified ones. You can implement some kind of error checking and only return true
if you want the new values to be accepted and synchronized. If you return false to reset
all affected properties to their old value, you can use the setErrorCode method of the
PropertyUpdate object to send customized error codes to the client who attempted to
change the value. Otherwise a default error code will be sent.

syncUserProperties
boolean syncUserProperties (PropertyUpdate newValues, User sender, User owner)

Invoked before the properties of the specified owner will be synchronized. The sender
represents the client that modified the properties. PropertyUpdate is a subclass of
PropertySet. This object does not contain all the properties that are associated with the
owner, but only the modified ones. You can implement some kind of error checking and
only return true if you want the new values to be accepted and synchronized. If you
return false to reset all affected properties to their old value, you can use the
setErrorCode method of the PropertyUpdate object to send customized error codes to
the client who attempted to change the value. Otherwise a default error code will be sent.

userJoined
void userJoined (User user, DataRow extraData)

Invoked after a user has joined the group. You can use the DataRow object, which is
empty initially, to send additional data to the client which will be received in the param-
eter of the onChange event handler of the group object in the client. (if you develop an
extension to the login group, the additional data will be receceived in the onLogin or
onRegister events.

userLeft
void userLeft (User user)

Invoked after a user has left the group. You can still change the properties of the user.
This method gets invoked before the userJoined method of the new group will be
invoked.

KeyGenerator
Interface

A key generated by a class that implements this interface can be used to encode pass-
words on the client. This extension must be used together with a PasswordDecoder
extension. Furthermore the corresponding encoding function must be written in

KeyGenerator 99

org.om
us.ext

manual_12 14.04.2004 14:52 Uhr Page 99

ActionScript and set with the setPasswordEncoder method in org.omus.session in
the client. The generated key will be passed to the encoding method in the client and to
the decoding method on the server.

You must specify the name of the class that implements this interface in the <exten-
sions>-node in config.xml.

Method Summary

String generateKey ()

generateKey
String generateKey ()

Invoked before a client will be requested to send the username and password; this
method must return a key that will be passed to the encoding method in the client and
to the decoding method on the server.

LoginExtension
Interface

This interface is useful if you want to modify the way users are registered or logged in.
You must specify the name of the class that implements this interface in the <exten-
sions>-node in config.xml.

Method Summary

void finishLogin (User user)

void finishRegister (User user)

boolean prepareLogin (AuthenticationData data)

boolean prepareRegister (RegistrationData data)

finishLogin
void finishLogin (User user)

Invoked after the user has been logged in.

finishRegister
void finishRegister (User user)

Invoked after the user has been registered. If the password for the new user was gener-
ated by this LoginExtension, this is the right place to send an email to the new user con-
taining a registration confirmation and her password.

100 LoginExtension

manual_10 09.07.2003 17:20 Uhr Seite 100

prepareLogin
boolean prepareLogin (AuthenticationData data, InetAddess clientAddress,

int clientPort)

Invoked before a registered user is logged in. The AuthenticationData object contains
methods to read or set the name and password of the user. If this method returns false,
the login will be aborted. This way you can implement some kind of error checking on
the server or load some additional data before the user will be logged in. You can even
use this method to authenticate the user with a different server application if Oregano
Server is tied to a legacy system. You can use the setErrorCode method of the
AuthenticationData object to send customized error codes to the clients. Otherwise a
default error code will be sent.

prepareRegister
boolean prepareRegister (RegistrationData data, InetAddess clientAddress,

int clientPort)

Invoked before a new user is registered. The RegistrationData object contains methods
to read or set the name, password or email address of the user. If this method returns
false, the registration will be aborted. This way you can implement some kind of error
checking on the server or load some additional data before the user will be registered.
It is a good idea to generate the password on the server and not to use the one sent from
the client. You can use the finishRegister method of this extension to send the gen-
erated password in an email to the new user and thus verify the email address that she
entered. To send customized error codes to the clients, you can use the setErrorCode
method of the AuthenticationData object. Otherwise a default error code will be sent.

LogoutExtension
Interface

A logout extension can be written to modify the properties of the user before they are
written to the database. You must specify the name of the class that implements this
interface in the <extensions>-node in config.xml.

Method Summary

void prepareLogout (User user)

prepareLogout
void prepareLogout (User user)

Invoked when the specified user will be logged out. You can still modify the properties
of this user which will be written to the database after this method executed.

LogoutExtension 101

org.om
us.ext

manual_10 09.07.2003 17:20 Uhr Seite 101

PasswordDecoder
Interface

Provides a method to decode an encrypted password. This extension must be used
together with a KeyGenerator extension. You must specify the name of the class that
implements this interface in the <extensions>-node in config.xml.

Method Summary

String decode (String password, String secretKey)

decode
String decode (String password, String secretKey)

Invoked when a user will be logged in, the specified password was encoded by the
client; this method must return the decoded password using the specified key which is
the same that was used by the client to encode the password.

Package org.omus.core
Contains the core classes of the Oregano Server. Group, User and PropertySet are class-
es that are very similar to their client-side twins of the same name. Use these objects to
read and modify properties and to send messages to clients.

Furthermore this package contains a lot of additional utility classes.

AuthenticationData
Contains authentication data of a user. Gets passed to the prepareLogin method in
org.omus.ext.LoginExtension.

Method Summary

String getErrorCode ()

String getPassword ()

String getUsername ()

void setErrorCode (String newCode)

void setPassword (String newPassword)

void setUsername (String newName)

getErrorCode
String getErrorCode ()

Returns the error code or null if none was specified yet.

102 AuthenticationData

manual_12 14.04.2004 14:52 Uhr Page 102

getPassword
String getPassword ()

Returns the password of the user.

getUsername
String getUsername ()

Returns the name of the user.

setErrorCode
void setErrorCode (String newCode)

Sets the error code to the specified string. The code will be prefixed with "cld-" auto-
matically to avoid confusion with built-in error codes. It will be sent to the client if the
prepareLogin method in org.omus.ext.LoginExtension returns false so that the
login will be aborted.

setPassword
void setPassword (String newPassword)

Sets the password of the user to the specified string.

setUsername
void setUsername (String newName)

Sets the name of the user to the specified string.

Command
Interface

An interface for commands that will be passed to one of the methods in TaskManager,
to addCommand in Group or to setUndeliveredCommand in Message.

Method Summary

void execute ()

execute
void execute ()

Executes the command.

Command 103

org.om
us.ext

manual_10 09.07.2003 17:20 Uhr Seite 103

Group
Represents a group of users. For each group that will be created due to an entry in con-
fig.xml or dynamically by a client, an instance of Group will be created. The only way
to obtain a reference to a Group instance is the groupCreated method in
org.omus.ext.GroupExtension. The Java Group class is similar to the ActionScript
Group object in the Client API.

Method Summary

boolean addCommand (Command com)

void close ()

Iterator getAllUsers ()

String getConfigID ()

String getName ()

PropertySet getProperties ()

User getUser (String name)

int getUserCount ()

int getUserLimit ()

boolean isClosed ()

boolean isFull ()

void open ()

void sendToClients (Message msg)

void sendToClients (Message msg, User exclude)

addCommand
boolean addCommand (Command com)

Adds the specified command to the queue of this group for later execution. You will
rarely need this method because all of the methods that are invoked in your
GroupExtension get executed in the group queue anyway. All groups in the Oregano
Server are single-threaded. Many methods of the Group, User, and PropertySet classes
are protected against access from other threads because they are not synchronized. If
there is a time consuming task that you delegated to a worker thread with one of the
methods of the TaskManager, you cannot call these methods from within that task. So
if you use the TaskManager to read from the database, for example, and want to use
the values that you read to modify the properties of a user, you have to write a com-
mand that performs this task and put it into the group queue. Example code migth look
like this:

final String result = null;
Command com1 = new Command () {

public void execute () {
result = aTimeConsumingCalculation();
Command com2 = new Command () {

public void execute () {
PropertySet ps = group.getProperties();
StringField st = (StringField)ps.getValue("foo");
st.setString(result);

104 Group

manual_10 09.07.2003 17:20 Uhr Seite 104

}
};
group.addCommand(com2);

}
};
Services.getTaskManager.executeNow(com1);

With this approach you avoid to slow down the group queue with your time consum-
ing calculation, but are still able to pass its result to one of the protected methods.

close
void close ()

Closes the group so that no other users can join.

getAllUsers
Iterator getAllUsers ()

Returns an Iterator over all the User instances of this group.

getConfigID
String getConfigID ()

Returns the configID of the group. It identifies the corresponding <group>-node in con-
fig.xml that was used to configure this group. You can create an unlimited number of
groups with the same configID but different names. See the Configuration chapter for
more details.

getName
String getName ()

Returns the name of the group.

getProperties
PropertySet getProperties ()

Returns the PropertySet object associated with this group.

getUser
User getUser (String name)

Returns the User object identified by the specified user name.

Group 105

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 105

getUserCount
int getUserCount ()

Returns the number of users who are currently member of this group.

getUserLimit
int getUserLimit ()

Returns the maximum number of users permitted for this group.

isClosed
boolean isClosed ()

Returns true if the group is closed so that no other users can join.

isFull
boolean isFull ()

Returns true if the maximum number of users has been reached.

open
void open ()

Opens the group for other users to join.

sendToClients
void sendToClients (Message msg)

Sends the specified Message to all the clients in this group. The message will be received
in the onMessage event handler in the client side Messenger object.

sendToClients
void sendToClients (Message msg, User exclude)

Sends the specified Message to all the clients in this group except for the specified user.
The message will be received in the onMessage event handler in the client side
Messenger object.

GroupCreationData
Contains information about a group that is going to be created. Gets passed to the
prepareGroupCreation method in org.omus.ext.GroupExtension.

106 GroupCreationData

manual_10 09.07.2003 17:20 Uhr Seite 106

Method Summary

String getConfigID ()

String getErrorCode ()

String getName ()

void setErrorCode (String newCode)

getConfigID
String getConfigID ()

Returns the configID of the group. It identifies the <group>-node in config.xml that was
used to configure this group. You can have an unlimited number of groups with the
same configID but different names. See the Configuration chapter for more details.

getErrorCode
String getErrorCode ()

Returns the error code or null if none was specified yet.

getName
String getName ()

Returns the name of the group.

setErrorCode
void setErrorCode (String newCode)

Sets the error code to the specified string. The code will be prefixed with "cld-" auto-
matically to avoid confusion with built-in error codes. It will be sent to the client if the
prepareGroupCreation method in org.omus.ext.GroupExtension returns false so
that the creation of the group will be aborted.

LogManager
Contains methods to create custom log entries in the logging table on the server. The
object uses four different log-levels: DEBUG, INFO, WARN and ERROR. A log-level is an indi-
cation of the importance of a message. Depending on the mininum log-level you speci-
fied for the <extensions>-node in the logging section in config.xml a log entry might
be ignored or written to the database.

If the configuration looks like this

<extensions level="warn" />

LogManager 107

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 107

all log entries of level WARN or higher will be written to the database (or to a file, depend-
ing on the configuration). Accordingly calling one of the debug or info methods in
LogManager will be ignored in this case.

Method Summary

void debug (String errorCode)

void debug (String errorCode, String info)

void debug (String errorCode, Exception e)

void debug (String errorCode, Exception e, String info)

boolean debugEnabled ()

void error (String errorCode)

void error (String errorCode, String info)

void error (String errorCode, Exception e)

void error (String errorCode, Exception e, String info)

boolean errorEnabled ()

void info (String errorCode)

void info (String errorCode, String info)

void info (String errorCode, Exception e)

void info (String errorCode, Exception e, String info)

boolean infoEnabled ()

void warn (String errorCode)

void warn (String errorCode, String info)

void warn (String errorCode, Exception e)

void warn (String errorCode, Exception e, String info)

boolean warnEnabled ()

debug
void debug (String errorCode)

Creates a log entry with the specified error code if the LogManager is configured to
process messages of level DEBUG or higher. The error code will be automatically prefixed
with "ext-" to avoid confusion with built-in error codes.

debug
void debug (String errorCode, String info)

Creates a log entry with the specified error code and info string if the LogManager is
configured to process messages of level DEBUG or higher. The error code will be auto-
matically prefixed with "ext-" to avoid confusion with built-in error codes.

debug
void debug (String errorCode, Exception e)

Creates a log entry with the specified error code and the stackTrace of the specified
Exception if the LogManager is configured to process messages of level DEBUG or higher.

108 LogManager

manual_10 09.07.2003 17:20 Uhr Seite 108

The error code will be automatically prefixed with "ext-" to avoid confusion with built-
in error codes.

debug
void debug (String errorCode, Exception e, String info)

Creates a log entry with the specified error code, info string and the stackTrace of the
specified Exception, if the LogManager is configured to process messages of level DEBUG
or higher. The error code will be automatically prefixed with "ext-" to avoid confusion
with built-in error codes.

debugEnabled
boolean debugEnabled ()

Returns true if the LogManager is configured to process log entries of level DEBUG or
higher.

error
void error (String errorCode)

Creates a log entry with the specified error code if the LogManager is configured to
process messages of level ERROR. The error code will be automatically prefixed with
"ext-" to avoid confusion with built-in error codes.

error
void error (String errorCode, String info)

Creates a log entry with the specified error code and info string if the LogManager is
configured to process messages of level ERROR. The error code will be automatically pre-
fixed with "ext-" to avoid confusion with built-in error codes.

error
void error (String errorCode, Exception e)

Creates a log entry with the specified error code and the stackTrace of the specified
Exception, if the LogManager is configured to process messages of level ERROR. The
error code will be automatically prefixed with "ext-" to avoid confusion with built-in
error codes.

error
void error (String errorCode, Exception e, String info)

Creates a log entry with the specified error code, info string and the stackTrace of the
specified Exception, if the LogManager is configured to process messages of level

LogManager 109

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 109

ERROR. The error code will be automatically prefixed with "ext-" to avoid confusion
with built-in error codes.

errorEnabled
boolean errorEnabled ()

Returns true if the LogManager is configured to process log entries of level ERROR or
higher.

info
void info (String errorCode)

Creates a log entry with the specified error code if the LogManager is configured to
process messages of level INFO or higher. The error code will be automatically prefixed
with "ext-" to avoid confusion with built-in error codes.

info
void info (String errorCode, String info)

Creates a log entry with the specified error code and info string if the LogManager is
configured to process messages of level INFO or higher. The error code will be auto-
matically prefixed with "ext-" to avoid confusion with built-in error codes.

info
void info (String errorCode, Exception e)

Creates a log entry with the specified error code and the stackTrace of the specified
Exception, if the LogManager is configured to process messages of level INFO or high-
er. The error code will be automatically prefixed with "ext-" to avoid confusion with
built-in error codes.

info
void info (String errorCode, Exception e, String info)

Creates a log entry with the specified error code, info string and the stackTrace of the
specified Exception, if the LogManager is configured to process messages of level INFO
or higher. The error code will be automatically prefixed with "ext-" to avoid confusion
with built-in error codes.

infoEnabled
boolean infoEnabled ()

Returns true if the LogManager is configured to process log entries of level INFO or
higher.

110 LogManager

manual_10 09.07.2003 17:20 Uhr Seite 110

warn
void warn (String errorCode)

Creates a log entry with the specified error code if the LogManager is configured to
process messages of level WARN or higher. The error code will be automatically prefixed
with "ext-" to avoid confusion with built-in error codes.

warn
void warn (String errorCode, String info)

Creates a log entry with the specified error code and info string if the LogManager is
configured to process messages of level WARN or higher. The error code will be auto-
matically prefixed with "ext-" to avoid confusion with built-in error codes.

warn
void warn (String errorCode, Exception e)

Creates a log entry with the specified error code and the stackTrace of the specified
Exception, if the LogManager is configured to process messages of level WARN or higher.
The error code will be automatically prefixed with "ext-" to avoid confusion with built-
in error codes.

warn
void warn (String errorCode, Exception e, String info)

Creates a log entry with the specified error code, info string and the stackTrace of the
specified Exception, if the LogManager is configured to process messages of level WARN
or higher. The error code will be automatically prefixed with "ext-" to avoid confusion
with built-in error codes.

warnEnabled
boolean warnEnabled ()

Returns true if the LogManager is configured to process log entries of level WARN or
higher.

LogManager 111

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 111

MessagingManager
Handles the delivery of messages. The MessagingManager is intended for messages
aimed at targets outside the current group. For messages that you want to send to
clients within the current group use sentToClients in Group or sendToClient in User
instead. The MessagingManager is similar to the ActionScript Messenger object in the
Client API.

Method Summary

void publish (Message msg)

void sendToAll (Message msg)

void sendToGroup (Message msg, String groupName)

void sendToUser (Message msg, String recipient)

void subscribe (User user, String subject)

void unsubscribe (User user, String subject)

void unsubscribeAll (User user)

publish
void publish (Message msg)

Sends a message to all users that have subscribed to the subject of this message. It will
be passed to the messageToUser method in org.omus.ext.GroupExtension for all the
recipients and then forwarded to the clients and received in the onMessage event hand-
ler in the client side Messenger object.

sendToAll
void sendToAll (Message msg)

Sends a message to all users who are currently logged into the server. It will be passed
to the messageToUser method in org.omus.ext.GroupExtension for all the recipients
and then forwarded to the clients and received in the onMessage event handler in the
client side Messenger object.

sendToGroup
void sendToGroup (Message msg, String groupName)

Sends a message to all the members of a particular group. It will be passed to the
messageToGroup method in org.omus.ext.GroupExtension in the target group and
then forwarded to the client and received in the onMessage event handler in the client
side Messenger object.

112 MessagingManager

manual_10 09.07.2003 17:20 Uhr Seite 112

sendToUser
void sendToUser (Message msg, String recipient)

Sends a message to one user. It will be passed to the messageToUser method in
org.omus.ext.GroupExtension in the group that the user is currently member of and
then forwarded to the client and received in the onMessage event handler in the client
side Messenger object.

subscribe
void subscribe (User user, String subject)

Subscribes the specified user to all messages with the specified subject.

unsubscribe
void unsubscribe (User user, String subject)

Unsubscribes the specified user from all messages with the specified subject.

unsubscribeAll
void unsubscribeAll (User user)

Unsubscribes the specified user from all messages.

PropertySet
implements Serializable

Represents a collection of properties. The PropertySet class is similar to the ActionScript
PropertySet object in the Client API. Each group and each user have a set of properties
associated with them. The datatype as well as persistence and synchronization settings
for each property must be defined in the XML configuration file on the server. See the
Configuration chapter for details. The PropertySet object can be used to read individ-
ual property values, to load properties from the database or to synchronize them. The
actual modification of the value of a property is carried out through methods of the
DataField instance that represents the property. Please note that modified values will
not be written to the database and not be reflected in the clients before you commit all
changes with a call to synchronize. Example code to change some properties of a user
and synchronize them might look as follows:

PropertySet ps = group.getProperties();
IntField age = (IntField)ps.getValue("age");
age.setInt(27);
BooleanField married = (BooleanField)ps.getValue("married");
married.setBoolean(false);
try {

ps.synchronize();
} catch (org.omus.db.DbException dbe) {

System.out.println("ERROR: " + dbe);
}

PropertySet 113

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 113

Method Summary

boolean contains (String name)

Object getOwner ()
IntField getPrimaryKey ()

Class getType (String name)

DataField getValue (String name)

boolean isLoaded (String name)

boolean isModified (String name)

void load (String[] propNames)

void loadAll ()

int size ()

void synchronize ()

contains
boolean contains (String name)

Returns true if this PropertySet object contains a property with the specified name.

getOwner
Object getOwner ()

Returns the owner of this PropertySet object. The returned object is either an instance
of Group or an instance of User.

getPrimaryKey
IntField getPrimaryKey ()

Returns the primary key for this PropertySet object corresponding to the usrID and
grpID fields in the userprops and groupprops tables in the database.

getType
Class getType (String name)

Returns the type of the property with the specified name.

getValue
DataField getValue (String name)

Returns the value of the property with the specified name or null if the property was
not loaded yet. To modify the value use one of the methods of the returned DataField.

114 PropertySet

manual_10 09.07.2003 17:20 Uhr Seite 114

isLoaded
boolean isLoaded (String name)

Returns true if the value of the property with the specified name has been loaded from
the database.

isModified
boolean isModified (String name)

Returns true if the property with the specified name was modified since the last syn-
chronization.

load
void load (String[] propNames)

Loads all values of the properties with the specified names into the client. Note that the
values of all properties except for those with a cacheLevel attribute set to "off" will be
loaded into the server-side PropertySet object automatically. See the Configuration
chapter for more details.

loadAll
void loadAll ()

Loads the values of all properties that are not loaded automatically.

size
int size ()

Returns the number of properties in this set.

synchronize
void synchronize ()

Synchronizes all modified properties in this set according to the synchronization settings
in the XML configuration file on the server. This may include writing the new values to
the database or updating them in one or all clients of the current group depending on
the configuration.

PropertySet 115

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 115

PropertyUpdate
extends PropertySet

implements Serializable

A subset of a PropertySet instance that gets passed to the syncUserProperties and
syncGroupProperties methods in org.omus.ext.GroupExtension. It contains only
the properties that were modified. It inherits all the methods of PropertySet and adds
three additional methods to read and set an additional error code or to obtain a refer-
ence to the parent ProprtySet.

Method Summary

String getErrorCode ()

ProperySet getParent ()

void setErrorCode (String err)

getErrorCode
String getErrorCode ()

Returns the error code of this instance or null if none was specified yet.

getParent
ProperySet getParent ()

Returns the parent object of this PropertyUpdate. The PropertyUpdate instances that
get passed to the syncUserProperties or syncGroupProperties methods in the
GroupExtension class are only subsets of the original PropertySet objects, containing
only those properties that were modified. In these cases you can use this method to
obtain the parent object which contains all properties.

setErrorCode
void setErrorCode (String err)

Sets the error code of this instance to the specified string. Useful if you want to abort a
synchronization from within the syncUserProperties and syncGroupProperties
methods in org.omus.ext.GroupExtension and send a customized error code to the
client. Otherwise a default error code would be sent.

RegistrationData
extends AuthenticationData

Contains registration data of a user. Gets passed to the prepareRegister method in
org.omus.ext.LoginExtension. It inherits all the methods of Authentication data. It
adds two methods to handle the email address of the user.

116 RegistrationData

manual_10 09.07.2003 17:20 Uhr Seite 116

Method Summary

String getEmail ()

void setEmail (String newMail)

getEmail
String getEmail ()

Returns the email address of the user.

setEmail
void setEmail (String newMail)

Sets the email address of the user to the specified string.

Services
A static utility class to retrieve instances of one of the Manager classes.

Method Summary

static LogManager getLogManager ()

static MessagingManager getMessagingManager ()

static TaskManager getTaskManager ()

getMessagingManager
static MessagingManager getMessagingManager ()

Returns the MessagingManager.

getTaskManager
static TaskManager getTaskManager ()

Returns the TaskManager.

getLogManager
static LogManager getLogManager ()

Returns the LogManager.

Services 117

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 117

TaskManager
A facility to schedule tasks for future execution in a background thread. Tasks may be
scheduled for one-time execution, or for repeated execution at regular intervals. Some
of the methods of TaskManager simply delegate the specified TimerTask to the encap-
sulated Timer instance. Others require a Command object to be specified and are an
extension to the functionality found in java.util.Timer.

You should avoid to create your own threads or Timer instances, it may prevent the cor-
rect shutdown of the Oregano Server.

Method Summary

void cancel (Command com)

void executeDaily (Command com)

void executeMonthly (Command com, int dayInMonth)

void executeNow (Command com)

void executeWeekly (Command com, int dayInWeek)

void schedule (TimerTask task, Date time)

void schedule (TimerTask task, Date firstTime, long period)

void schedule (TimerTask task, long delay)

void schedule (TimerTask task, long delay, long period)

void scheduleAtFixedRate (TimerTask task, Date firstTime, long period)

void scheduleAtFixedRate (TimerTask task, long delay, long period)

cancel
void cancel (Command com)

Cancels regular execution of the specified Command.

executeDaily
void executeDaily (Command com)

Executes the specified Command every day at the time specified in the <statistics>-
node in config.xml.

executeMonthly
void executeMonthly (Command com, int dayInMonth)

Executes the specified Command each month on the specified day at the time specified
in the <statistics>-node in config.xml. Valid values for dayInMonth range from 1 to
31 - obviously.

118 TaskManager

manual_10 09.07.2003 17:20 Uhr Seite 118

executeNow
void executeNow (Command com)

Delegates the execution of the specified Command to one of the worker threads in the
Oregano Thread pool.

executeWeekly
void executeWeekly (Command com, int dayInWeek)

Executes the specified Command once a week on the specified day at the time specified
in the <statistics>-node in config.xml. Valid values for dayInWeek range from 1
(Sunday) to 7 (Saturday).

schedule
void schedule (TimerTask task, Date time)

Schedules the specified task for execution at the specified time.

schedule
void schedule (TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-delay execution, beginning at the speci-
fied time. For details see the documentation for the corresponding method in
java.util.Timer.

schedule
void schedule (TimerTask task, long delay)

Schedules the specified task for execution after the specified delay.

schedule
void schedule (TimerTask task, long delay, long period)

Schedules the specified task for repeated fixed-delay execution, beginning after the spec-
ified delay. For details see the documentation for the corresponding method in
java.util.Timer.

scheduleAtFixedRate
void scheduleAtFixedRate (TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-rate execution, beginning at the specified
time. For details see the documentation for the corresponding method in java.util.Timer.

TaskManager 119

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 119

scheduleAtFixedRate
void scheduleAtFixedRate (TimerTask task, long delay, long period)

Schedules the specified task for repeated fixed-rate execution, beginning after the spec-
ified delay. For details see the documentation for the corresponding method in
java.util.Timer.

User
Represents a single user.

Method Summary

String getEmail ()

String getName ()

String getPassword ()

int getPermissions ()

PropertySet getProperties ()

void logout (String errorCode)

void sendToClient (Message msg)

getEmail
String getEmail ()

Returns the email address of the user.

getName
String getName ()

Returns the name of the user.

getPassword
String getPassword ()

Returns the password of the user.

getPermissions
int getPermissions ()

Returns the permissions of the user, a number between 0 and 10.

0 user has been deleted

1 user has been banned

2-8 user has normal status

9-10 user has administrator status

120 User

manual_10 09.07.2003 17:20 Uhr Seite 120

The values between 2 and 8 make no difference to the Oregano Server. You can use
them for your application logic. A user who has administrator status will not be logged
out if you switch the server to debug mode using the admin client.

getProperties
PropertySet getProperties ()

Returns the PropertySet object associated with this user.

logout
void logout (String errorCode)

Logs out the user, passing the specified error code to the client before closing the con-
nection.

sendToClient
void sendToClient (Message msg)

Sends the specified Message to the Flash client of this user. The message will be received
in the onMessage event handler in the client side Messenger object.

User 121

org.om
us.core

manual_10 09.07.2003 17:20 Uhr Seite 121

Package org.omus.data
Contains classes that represent ActionScript datatypes that can be passed to the server
and written to the database. All the conversion steps are done automatically.
ActionScript datatypes will be marshalled, sent to the server, converted to their corre-
sponding Java types and - if they are part of a persistent property or mail attachment -
written to a field in the database with a matching SQL type, according to the following
conversion table:

ActionScript datatype Java datatype SQL type
boolean BooleanField TINYINT

number CounterField INTEGER

number IntField INTEGER

number LongField BIGINT

number DoubleField DOUBLE

Date DateField TIMESTAMP

String StringField VARCHAR/LONGVARCHAR

Array DataList VARCHAR/LONGVARCHAR

Object DataRow VARCHAR/LONGVARCHAR

org.omus.Table DataTable VARCHAR/LONGVARCHAR

All classes in the Java column are subclasses of DataField. At first glance you might
think that working with those Oregano Wrapper types like IntField is cumbersome
compared to working with Java primitive datatypes or classes like ArrayList or
HashMap. But the DataField family is efficient for two reasons:

First they keep track of all changes. Each DataField type generates fieldChange events
and you can register listener objects to handle this event. In the case of complex
datatypes like DataList, the event bubbles up in the container hierarchy until it reaches
the outermost container. The PropertySet objects make use of this mechanism to syn-
chronize only the properties that were modified.

The second advantage is, that each DataField object caches its marshalled data, that gets
send to Flash clients. Thus, if two clients want to load the same property and it has not
been modified between these two requests, the cached value will be sent to the second
client, so that there is no performance penalty for remarshalling the value.

BooleanField
extends DataField

implements Cloneable, Serializable

The class corresponding to the boolean datatype in ActionScript.

Constructor Summary

BooleanField (String name, boolean value)

122 BooleanField

manual_10 09.07.2003 17:20 Uhr Seite 122

Method Summary

boolean getBoolean ()

void setBoolean (boolean newValue)

BooleanField
BooleanField (String name, boolean value)

Creates a new BooleanField with the specified name and value.

getBoolean
boolean getBoolean ()

Returns the value of this BooleanField object as a boolean primitive.

setBoolean
void setBoolean (boolean newValue)

Sets the value of this BooleanField to the specified boolean primitive.

CounterField
extends DataField

implements Cloneable, Serializable

A special class for synchronizing int values. This is the only subclass of DataField that
is not just a Java class corresponding to an ActionScript datatype. It makes it possible
to modify int values relative to their current value and thus avoid any synchronization
issues that might occur if different clients modify the int value of a group property con-
currently.

An example: Let’s assume you created a Flash client that shows a basket and each user
in the group can put any amount of apples into the basket and take any amount out of
it. If two users put an apple into that basket concurrrently and both clients add 1 to the
current number of apples and then send the new total value to the server, only one of
the two apples gets added to the group property on the server side. If a property is con-
figured to be a counter, the setValue method of the client side PropertySet object
changes the value relative to the current value. This way the server receives two "add 1
apple" commands and thus both apples are added to the basket. In other words: If
"foo" is the name of a property configured as a counter, then setValue("foo",-4)
called in PropertySet in the client means: "subtract 4 from the current value" and only
the relative change is submitted to the server.

Constructor Summary

CounterField (String name, int initialValue)

CounterField 123

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 123

Method Summary

void add (int dif)

int get ()

void reset ()

void set (int newValue)

CounterField
CounterField (String name, int initialValue)

Creates a new CounterField with the specified name and initial value.

add
void add (int dif)

Adds the specified value to the int value of this CounterField. Negative values are per-
mitted.

get
int get ()

Returns the current value of this CounterField.

reset
void reset ()

Resets the value of this CounterField to the initial value.

set
void set (int newValue)

Sets the value of this CounterField to the specified value.

DataField
implements Cloneable, Serializable

The abstract superclass of all DataFields.

Method Summary

void accept (FieldVisitor fv)

void addListener (FieldListener fl)

Object clone ()

124 DataField

manual_10 09.07.2003 17:20 Uhr Seite 124

String getName ()

void removeListener (FieldListener fl)

accept
void accept (FieldVisitor fv)

Accepts a visitor. The visitor pattern is useful if you want to extend the functionality of
all DataFields without modifying their API.

addListener
void addListener (FieldListener fl)

Adds a listener to this DataField that gets notified when the value of this object was
modified.

clone
Object clone ()

Returns a clone of this DataField

getName
String getName ()

Returns the name of this DataField.

removeListener
void removeListener (FieldListener fl)

Removes the specified listener from this DataField.

DataList
extends DataField

implements Cloneable, Serializable

The class corresponding to the Array object in ActionScript. When an array is sent to
to the server, it will be converted to a DataList instance and each element of the array
is converted to the corresponding DataField.

Constructor Summary

DataList (String name)

DataList (String name, DataList source)

DataList 125

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 125

Method Summary

void add (DataField df)

void add (int index, DataField df)

void addAll (DataList list)

void addAll (int index, DataList list)

Object clone ()

DataField get (int index)

Iterator iterator ()

DataField remove (int index)

void removeAll ()

int size ()

void sort (DataList.Comparator listComp)

DataList
DataList (String name)

Creates a new DataList with the specified name.

DataList
DataList (String name, DataList dl)

Creates a new DataList with the specified name and the same DataFields as the speci-
fied DataList.

add
void add (DataField df)

Appends the specified DataField to the end of this list.

add
void add (int index, DataField df)

Inserts the specified DataField at the specified position in this list.

addAll
void addAll (DataList list)

Appends all the DataFields of the specified DataList to the end of this list. The order of
the elements of the sprecified DataList will be preserved.

126 DataList

manual_10 09.07.2003 17:20 Uhr Seite 126

addAll
void addAll (int index, DataList list)

Inserts all the DataFields of the specified DataList at the specified position in this list.
The order of the elements of the sprecified DataList will be preserved.

clone
Object clone ()

Returns a deep copy of this DataList.

get
DataField get (int index)

Returns the element at the specified position in this list.

iterator
Iterator iterator ()

Returns an iterator over the elements in this list.

remove
DataField remove (int index)

Removes and returns the DataField at the specified index position.

removeAll
void removeAll ()

Removes all elements from this list.

size
int size ()

Returns the number of DataFields of this DataList.

sort
void sort (DataList.Comparator listComp)

Sorts the list according to the order induced by the specified comparator.

DataList 127

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 127

DataList.Comparator
Inerface

DataList.Comparators can be passed to the sort method of DataList to allow precise
control over the sort order.

Method Summary

int compare (DataField f1, DataField f2)

compare
int compare (DataField f1, DataField f2)

Compares its two arguments for order. Returns a negative integer, zero, or a positive
integer as the first argument is less than, equal to, or greater than the second.

DataRow
extends DataField

implements Cloneable, Serializable

The class corresponding to the generic Object in ActionScript. When an object is sent
to the server, it will be converted to a DataRow instance and each property of the
ActionScript object is converted to the corresponding DataField and put into the
DataRow instance. DataRow is similar to java.util.Map, but the keys are limited to
Strings and the values are limited to DataFields. If you want to map a server-side
DataRow to a custom client-side ActionScript class, you can use the setASClass
method in DataRow. In addition this class must be registered with the same name with
the register method in the client-side org.omus.Class object.

Constructor Summary

DataRow (String name)

DataRow (String name, DataRow dr)

Method Summary

Object clone ()

boolean contains (String name)

DataField get (String name)

String getASClass ()

Iterator iterator ()

void put (DataField df)

void putAll (DataRow dr)

DataField remove (String name)

void removeAll ()

void setASClass (String className)

int size ()

128 DataRow

manual_10 09.07.2003 17:20 Uhr Seite 128

DataRow
DataRow (String name)

Creates a new DataRow with the specified name.

DataRow
DataRow (String name, DataRow dr)

Creates a new DataRow with the specified name and the same DataFields as the speci-
fied DataRow.

clone
Object clone ()

Returns a deep copy of this DataRow.

contains
boolean contains (String name)

Returns true if this DataRow contains a DataField with the specified name.

get
DataField get (String name)

Returns the DataField with the specified name or null if no such DataField exists.

getASClass
String getASClass ()

Returns the registered name of an ActionScript class or null if none has been set.

iterator
Iterator iterator ()

Returns an iterator over the DataFields in this DataRow.

put
void put (DataField df)

Adds the specified DataField to this DataRow.

DataRow 129

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 129

putAll
void putAll (DataRow dr)

Adds all DataFields of the specified DataRow to this DataRow.

remove
DataField remove (String name)

Removes and returns the DataField with the specified name. Returns null if no such
DataField exists.

removeAll
void removeAll ()

Removes all DataFields from this DataRow.

setASClass
void setASClass (String className)

Sets the name of the ActionScript class for this DataRow to the specified string. The
objects can only be sent to the client and converted to the corresponding custom
ActionScript objects, if a constructor with a corresponding name was registered with
the client. See the section about the Class object in the Client API.

size
int size ()

Returns the number of DataFields of this DataRow.

DataTable
extends DataField

implements Cloneable, Serializable

The class corresponding to org.omus.Table in the Client API. It does not have an
updateRow method like the client-side Table object, because all modified rows will be
updated automatically, since all DataField objects keep track of changes.

Constructor Summary

DataTable (String name, TableDefinition td)

DataTable (String name, DataTable dt)

130 DataTable

manual_10 09.07.2003 17:20 Uhr Seite 130

Method Summary

void addAllRows (DataTable source)

void addRow (DataRow row)

Object clone ()

TableDefinition getDefinition ()

DataRow getRow (int index)

Iterator iterator ()

void removeAllRows ()

DataRow removeRow (int index)

int size ()

void sort (DataTable.Comparator tableComp)

DataTable
DataTable (String name, TableDefinition td)

Creates a new DataTable with the specified name and table definition.

DataTable
DataTable (String name, DataTable dt)

Creates a new DataTable with the specified name and the same rows as the specified
table.

addAllRows
void addAllRows (DataTable source)

Adds all rows of the specified table to this table. This method will only succeed if both
tables have matching table definitions.

addRow
void addRow (DataRow row)

Adds a single row to this table. This method will only succeed if the specified DataRow
object matches the table definition. See the entry for the match method in
TableDefinition for details.

clone
Object clone ()

Returns a deep clone of the table.

getDefinition
TableDefinition getDefinition ()

Returns the TableDefinition object used in this table.

DataTable 131

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 131

getRow
DataRow getRow (int index)

Returns the row at the specified position.

iterator
Iterator iterator ()

Returns an iterator over the rows of this table.

removeAllRows
void removeAllRows ()

Removes all rows from this table.

removeRow
DataRow removeRow (int index)

Removes and returns the row at the specified index.

size
int size ()

Returns the number of rows of this table.

sort
void sort (DataTable.Comparator tableComp)

Sorts the table according to the order induced by the specified comparator.

DataTable.Comparator
Interface

DataTable.Comparators can be passed to the sort method of DataTable to allow pre-
cise control over the sort order.

Method Summary

int compare (DataRow r1, DataRow r2)

132 DataTable.Comparator

manual_10 09.07.2003 17:20 Uhr Seite 132

compare
int compare (DataRow r1, DataRow r2)

Compares its two arguments for order. Returns a negative integer, zero, or a positive
integer as the first argument is less than, equal to, or greater than the second.

DateField
extends DataField

implements Cloneable, Serializable

The class corresponding to Date objects in ActionScript.

Constructor Summary

DateField (String name, Date value)

Method Summary

Date getDate ()

void setDate (Date newValue)

DateField
DateField (String name, Date value)

Creates a new DateField with the specified name and value.

getDate
Date getDate ()

Returns the value of this DateField.

setDate
void setDate (Date newValue)

Sets the value of this DateField to the specified Date.

DoubleField
extends DataField

implements Cloneable, Serializable

The class corresponding to the number datatype in ActionScript.

DoubleField 133

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 133

Constructor Summary

DoubleField (String name, double value)

Method Summary

double getDouble ()

void setDouble (double newValue)

DoubleField
DoubleField (String name, double value)

Creates a new DoubleField with the specified name and value.

getDouble
double getDouble ()

Returns the value of this DoubleField as a double.

setDouble
void setDouble (double newValue)

Sets the value of this DoubleField to the specified double.

FieldListener
Interface

A listener that gets notified when the value of a DataField changes. Can be registered
with any DataField through its addListener method.

Method Summary

void fieldChange (DataField field)

fieldChange
void fieldChange (DataField field)

Invoked when the value of the specified DataField was modified.

134 FieldListener

manual_10 09.07.2003 17:20 Uhr Seite 134

FieldVisitor
Interface

A visitor that can be used to extend the functionality of all DataFields without modify-
ing their API. Can be passed to every DataField through its accept method.

Method Summary

void visit (BooleanField bf)

void visit (CounterField cf)

void visit (DataList dl)

void visit (DataRow dr)

void visit (DataTable dt)

void visit (DateField df)

void visit (DoubleField df)

void visit (IntField inf)

void visit (LongField lf)

void visit (StringField sf)

Method details are omitted; each method visits the specified field.

IntField
extends DataField

implements Cloneable, Serializable

A class for properties or table columns configured as an int, corresponding to the num-
ber datatype in ActionScript. This type of DataField will only be created if a property
or column in a table is explicitly configured as an int. All other ActionScript numbers
that are converted automatically will be converted to DoubleFields.

Constructor Summary

IntField (String name, int value)

Method Summary

int getInt ()

void setInt (int newValue)

IntField
IntField (String name, int value)

Creates a new IntField with the specified name and value.

IntField 135

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 135

getInt
int getInt ()

Returns the value of this IntField as an int.

setInt
void setInt (int newValue)

Sets the value of this IntField to the specified int.

LongField
extends DataField

implements Cloneable, Serializable

A class for properties or table columns configured as a long, corresponding to the num-
ber datatype in ActionScript. This type of DataField will only be created if a property
or column in a table is explicitly configured as a long. All other ActionScript numbers
that are converted automatically will be converted to DoubleFields.

Constructor Summary

LongField (String name, long value)

Method Summary

long getLong ()

void setLong (long newValue)

LongField
LongField (String name, long value)

Creates a new LongField with the specified name and value.

getLong
long getLong ()

Returns the value of this LongField as a long.

setLong
void setLong (long newValue)

Sets the value of this LongField to the specified long.

136 LongField

manual_10 09.07.2003 17:20 Uhr Seite 136

Message
implements Cloneable, Serializable

A message that can be sent to Flash clients or to other users and groups on the server.
It corresponds to the client side Message object. The attachment is a DataRow which
will be converted to a generic ActionScript object in the client and thus can carry any
of the ActionScript datatypes that correspond to one of the server side DataField
objects.

Constructor Summary

Message (String subject)

Message (String subject, User sender)

Method Summary

Object clone ()

DataRow getAttachment ()

String getSender ()

String getSubject ()

Command getUndeliveredCommand ()

void setUndeliveredCommand (Command com)

Message
Message (String subject)

Creates a new message with the specified subject.

Message
Message (String subject, User sender)

Creates a new message with the specified subject and the specified user set as the sender.

clone
Object clone ()

Returns a clone of this message containing a deep copy of its attachment.

getAttachment
DataRow getAttachment ()

Returns the attachment of this message. Initially it is an empty DataRow, but you can
put any DataField into it and all the values will be converted to their corresponding
ActionScript datatypes, if you send the message to a client.

Message 137

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 137

getSender
String getSender ()

Returns the name of the sender.

getSubject
String getSubject ()

Returns the subject of this message.

getUndeliveredCommand
Command getUndeliveredCommand ()

Returns the command that gets executed if the message can not be delivered to the
recipient or null if none has been specified yet.

setUndeliveredCommand
void setUndeliveredCommand (Command com)

Sets the command that gets executed if the message can not be delivered to the recipi-
ent. This is intended for messages that have a target on the server side. Note that the
Command must be serializable if the Oregano Server runs on more than one machine.

StringField
extends DataField

implements Cloneable, Serializable

The class corresponding to String objects in ActionScript.

Constructor Summary

StringField (String name, String value)

Method Summary

String getString ()

void setString (String newValue)

StringField
StringField (String name, String value)

Creates a new StringField with the specified name and value.

138 StringField

manual_10 09.07.2003 17:20 Uhr Seite 138

getString
String getString ()

Returns the value of this StringField.

setString
void setString (String newValue)

Sets the value of this StringField to the specified string.

TableDefinition
implements Cloneable, Serializable

TableDefinition objects are used to define the names and datatypes of the columns of a
DataTable object.

Constructor Summary

TableDefinition ()

Method Summary

void addColumn (String name, Class type)

Object clone ()

boolean equals (Object o)

int getColumnCount ()

String getColumnName (int index)

String[] getColumnNames ()

Class getColumnType (int index)

boolean matches (DataRow row)

TableDefinition
TableDefinition ()

Creates a new table definition.

addColumn
void addColumn (String name, Class type)

Adds a new column to this table definition. This method will fail if this TableDefinition
object was already used to construct a new DataTable object, since it is unmodifiable
after that. The second argument must be one of the 10 subclasses of DataField.

TableDefinition 139

org.om
us.data

manual_10 09.07.2003 17:20 Uhr Seite 139

clone
Object clone ()

Returns a clone of this table definition.

equals
boolean equals (Object o)

Returns true if the specified object is a table definition with the same sequence of
columns.

getColumnCount
int getColumnCount ()

Returns the number of columns in this table definition.

getColumnName
String getColumnName (int index)

Returns the name of the column at the specified index position.

getColumnNames
String[] getColumnNames ()

Returns an array of all column names in the order they were added to this
TableDefinition.

getColumnType
Class getColumnType (int index)

Returns the type of the column at the specified index position.

matches
boolean matches (DataRow row)

Returns true if the specified DataRow matches this table definition. The number of
DataFields contained in the specified DataRow must match the number of columns in
this definition object and each DataField of the specified DataRow must have a match-
ing name and datatype in this definition object.

140 TableDefinition

manual_10 09.07.2003 17:20 Uhr Seite 140

Package org.omus.db
Contains classes for database connectivity. Can be used for reading and writing
DataField objects from and to the database.

DbException
implements Serializable

Thrown when an error occurs during execution of a transaction. You will rarely create
a DbException object yourself, but many methods in the Oregano Server API throw this
Exception, which you have to catch in your extensions. You can use the getMessage
method inherited from Throwable to obtain the client-side error code of this Exception.
See the section on error codes at the end of the Client API chapter for a list of possible
error codes.

Constructor Summary

DbException (String errorCode)

DbException
DbException (String errorCode)

Creates a new DbException with the specified error code.

DbReader
extends DbTransactionPart

implements Serializable

Represents a SELECT statement to be executed on the server.

Constructor Summary

DbReader (String configID)

DbReader (String configID, String resultID)

DbReader
DbReader (String configID)

Creates a new DbReader object. The specified configID must match a configID attri-
bute in a <dbReader> node in dbCustom.xml.

DbReader 141

org.om
us.db

manual_10 09.07.2003 17:20 Uhr Seite 141

DbReader
DbReader (String configID, String resultID)

Creates a new DbReader object. The specified configID must match a configID attri-
bute in a <dbReader> node in dbCustom.xml. The specified resultID can be used to read
values from the DbResult object.

DbResult
implements Serializable

Represents the result of a transaction.

Method Summary

int getAffectedRows (String resultID)

Message getMessage (String subject)

DataTable getTable (String resultID)

getAffectedRows
int getAffectedRows (String resultID)

Returns the number of affected rows of the statement with the specified resultID. The
resultID must match the ID that you passed as the second argument to the constructor
of the corresponding DbWriter object.

getMessage
Message getMessage (String subject)

Returns a message with the specified subject and the content of this DbResult object as
an attachment. A convenient short cut if you want to send the values that you read from
the database to a client.

getTable
DataTable getTable (String resultID)

Returns a table object read from the database. The resultID must match the ID that you
passed as the second argument to the constructor of the corresponding DbReader
object.

142 DbResult

manual_10 09.07.2003 17:20 Uhr Seite 142

DbTransaction
implements Serializable

Represents a transaction; contains one or more DbWriter or DbReader objects to exe-
cute custom SQL statements. The statements must be configured in the dbCustom.xml
file on the server. This approach may seem a bit cumbersome at first sight. But it is very
versatile once you get used to it.

The following example illustrates how you can use the DbTransaction object to read a
user ID from one table and use that ID to change a value in another table. By the way:
It is the same example used to illustrate the use of the client-side DbTransaction object.
Most of the classes in org.omus.db have their twins in the Client API.

The corresponding entries in dbCustom.xml might look as follows (see the
Configuration chapter for more details):

<dbReader configID="readUserID" rollbackOnError="true" minRows="1">
<in name="username" />
<out name="userID" />
<statement>

SELECT userID FROM reginfo WHERE username = ?
</statement>

</dbReader>

<dbWriter configID="updateAddress" rollbackOnError="true">
<in name="street" />
<in name="city" />
<in name="phone" />
<in name="userID" />
<statement>

UPDATE address SET street = ?, city = ?, phone = ?
WHERE userID = ?

</statement>
</dbWriter>

You can write Java code to execute those statements as follows:

DbTransaction ta = new org.omus.DbTransaction();
ta.add(new org.omus.DbReader("readUserID"));
ta.add(new org.omus.DbWriter("updateAddress","address"));
ta.setParam(new StringField("username","Thomas"));
ta.setParam(new StringField("street","217 Mulholland Drive"));
ta.setParam(new StringField("city","Los Angeles"));
ta.setParam(new StringField("phone","27 27 55 55"));
DbResult res = null;
try {

res = ta.execute();
int afRows = res.getAffectedRows("address");
// should be 1

} catch (DbException dbe) {
// handle Exception

}

DbTransaction 143

org.om
us.db

manual_10 09.07.2003 17:20 Uhr Seite 143

Please note that the second statement has 4 <in> nodes. Three of them (street, city and
phone) will be set by your Java code. The last one (userID) will be set automatically
because it is configured as an <out>-value in the first statement which will be available
to all subsequent statements. The attribute minRows is set to "1" in the first statement
so that execution of the transaction will be aborted if the result is empty, because the
second statement would fail anyway, if no user with the specified name exists.

Constructor Summary

DbTransaction ()

Method Summary

void add (DbTransactionPart tap)

DbResult execute () throws DbException

void setAllParams (DataRow dr)

void setParam (DataField df)

int size ()

DbTransaction
DbTransaction ()

Creates a new DbTransaction object.

add
void add (DbTransactionPart tap)

Adds a DbWriter or DbReader object to this transaction.

execute
DbResult execute () throws DbException

Executes this transaction and returns the result.

setAllParams
void setAllParams (DataRow dr)

Adds all DataFields contained in the specified DataRow as a parameter to this
DbTransaction. The name of each DataField must have a matching name attribute in
one of the <in> nodes you specified in the dbCustom.xml file. If you set parameters in
the DbTransaction object, they are available to all the DbWriter or DbReader parts you
add to this transaction. If you want to set parameters that can only be read by one par-
ticular DbWriter or DbReader object, you must use the setParam method of those
objects.

144 DbTransaction

manual_10 09.07.2003 17:20 Uhr Seite 144

setParam
void setParam (DataField df)

Adds the specified DataField as a parameter to this DbTransaction. The name of the
DataField must match the name attribute of one of the <in> nodes you specified in the
dbCustom.xml file. If you set a parameter in the DbTransaction object it is available to
all the DbWriter or DbReader parts you add to this transaction. If you want to set
parameters that can only be read by one particular DbWriter or DbReader object, you
must use the setParam method of those objects.

size
int size ()

Returns the number of DbWriter and DbReader objects that have been added to this
transaction.

DbTransactionPart
implements Serializable

Abstract superclass of DbWriter and DbReader.

Method Summary

void setAllParams (DataRow dr)

void setParam (DataField df)

setAllParams
void setAllParams (DataRow dr)

Adds all DataFields contained in the specified DataRow as a parameter to this
DbTransactionPart. The name of each DataField must have a matching name attribute
in one of the <in> nodes you specified in the dbCustom.xml file.

setParam
void setParam (DataField df)

Adds the specified DataField as a parameter to this DbTransactionPart. The name of the
DataField must match the name attribute of one of the <in> nodes you specified in the
dbCustom.xml file.

DbTransactionPart 145

org.om
us.db

manual_10 09.07.2003 17:20 Uhr Seite 145

DbWriter
extends DbTransactionPart

implements Serializable

Represents a DELETE, UPDATE or INSERT statement to be executed on the server.

Constructor Summary

DbWriter (String configID)

DbWriter (String configID, String resultID)

DbWriter
DbWriter (String configID)

Creates a new DbWriter object. The specified configID must match a configID attri-
bute in a <dbWriter> node in dbCustom.xml.

DbWriter
DbWriter (String configID, String resultID)

Creates a new DbWriter object. The specified configID must match a configID attri-
bute in a <dbWriter> node in dbCustom.xml. The specified resultID can be used to
check the number of affected rows in the DbResult object.

146 DbWriter

manual_10 09.07.2003 17:20 Uhr Seite 146

147

manual_10 09.07.2003 17:20 Uhr Seite 147

148

manual_10 09.07.2003 17:20 Uhr Seite 148

	Table of Contents
	Feature Overview
	Installation
	Installing the Java Runtime Environment
	Installing the JDBC driver
	Installing Oregano Server
	Creating the Oregano tables
	Editing config.xml
	Editing the start script
	Booting Oregano Server

	Example Application
	Installing and running the application
	Examining the objects
	Login
	Room
	Avatar
	Chat

	Configuration
	config.xml - the main configuration file
	<login>
	<ports>
	<extensions>
	<admin>
	<serverConfig>
	<server>
	<database>
	<typeMap>
	<statistics>
	<services>
	<permissions>
	<groupConfig>
	<loginGroup>
	<group>
	<startup>
	<properties>
	<globalProperties>
	<groupProp>
	<userProp>
	<tableDefinition>
	<column>
	<log>

	dbCore.xml - SQL used by Oregano Server
	dbCustom.xml - custom SQL statements

	Client API
	Overview
	Event Model
	Exchanging data
	The org.omus namespace
	Reference
	Buddies
	Class
	DbReader
	DbResult
	DbTransaction
	DbWriter
	Error
	Group
	Info
	Locks
	Log
	Mail
	Mailbox
	Message
	MessageFilter
	Messenger
	PropertyLoader
	PropertySet
	Session
	Table
	TableDefinition
	User

	Error Codes

	Server API
	Writing server-side extensions
	Package Overview
	Package org.omus.ext
	GroupExtension
	KeyGenerator
	LoginExtension
	LogoutExtension
	PasswordDecoder

	Package org.omus.core
	AuthenticationData
	Command
	Group
	GroupCreationData
	LogManager
	MessagingManager
	PropertySet
	PropertyUpdate
	RegistrationData
	Services
	TaskManager
	User

	Package org.omus.data
	BooleanField
	CounterField
	DataField
	DataList
	DataList.Comparator
	DataRow
	DataTable
	DataTable.Comparator
	DateField
	DoubleField
	FieldListener
	FieldVisitor
	IntField
	LongField
	Message
	StringField
	TableDefinition

	Package org.omus.db
	DbException
	DbReader
	DbResult
	DbTransaction
	DbTransactionPart
	DbWriter

