

User manual

Ax58x CB CC-CB, CC-CB-C

Chapters

- 1 Safety summary
- 2 Identification
- 3 Quick reference
- 4 Electrical connections
- 5 CANopen® interface
- 6 Setup

1 - Safety summary

Safety

- observe the professional safety and accident prevention regulations applicable to your country during device installation and operation;
- installation has to be carried out by qualified personnel only, without power supply and stationary shaft;
- the encoder must be used only for the purpose appropriate to its design;
- high current, voltage and rotating parts can cause serious or fatal injury.

Electrical safety

- switch OFF the voltage before connecting the device;
- connect according to the chapter 4: "Electrical connections";
- according to the 89/336/CEE norm on electromagnetic compatibility, following precautions must be taken:
- before handling and installing, discharge electrical charge from your body and tools which may come in touch with the device;
- power supply must be stable without noise, install EMC filters on device power supply if needed;
- always use shielded and twisted cables if possible;
- avoid cables runs longer than necessary;
- avoid running the signal cable near high voltage power cables;
- mount the device as far as possible from any capacitive or inductive noise source, shield the device from noise source if needed;
- minimize noise by connecting shield or connector housing to ground (GND). Make sure that ground (GND) is not affected by noise. The shield connection point to ground can be situated both on the device side and on user's side. The best solution to minimize the interference must be carried out by the user.

Mechanical safety

- solid shaft: use a flexible coupling to connect encoder to motor shaft respecting the coupling misalignment tolerances;
- do not disassemble the encoder;
- do not tool the encoder or its shaft;
- do not subject the encoder and the shaft to knocks or shocks;
- respect the environmental characteristics of the product.

2 - Identification

The device can be identified by the label's data (ordering code, serial number). This information is listed in the delivery document. For technical features of the product, refer to the technical catalogue.

3 - Quick reference

3.1 Hardware resolution

ATTENTION:

Make sure the physical resolution corresponds to the resolution set in parameters.

There may be different resolutions set if encoder and connection cap have been ordered/ supplied separately.

Examples:

ASx58x 12/CB-xx	steps/rev. = 4096,	n° rev. = 1.
ASx58x 13/CB-xx	steps/rev. = 8192,	n° rev. = 1.
AMx58x 12/4096CB-xx	steps/rev. = 4096,	n° rev. = 4096.
AMx58x 13/4096CB-xx	steps/rev. = 8192,	n° rev. = 4096.

Hardware counts per revolution is in object 6501 hex.

Hardware number of turns is in object 6502 hex.

If hardware resolution doesn't match ordering code (see encoder label) the **procedure to set hardware resolution** must be do (how to read hardware resolution see chapter 3.2).

It's important to observe that the parameters 6001 hex and 6002 hex are related to the scaling function, but the correct working is guaranteed only if the hardware resolution is set correctly.

Procedure to set hardware resolution

ID = node identifier.

Step 1 - Access to the configuration (ogg. 3002h)

Note: to avoid unintentional access, this object is not on EDS file.

Master → Encoder

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	1
600+ID	23	02	30	00	41	4B	49	4C

Encoder → Master

=::::::::::::::::::::::::::::::::::::::								
COB-ID	Cmd	lno	ndex Sub Process data				1	
580+ID	60	02	30	00	00	00	00	00

Step 2 - Set object 6501h: Hardware counts per revolution

See resolution table for B0, B1, B2, B3 values.

Master → Encoder

COB-ID	Cmd			Sub		Proces	s data	1
600+ID	23	01	65	00	ВО	В1	B2	В3

Encoder → Master

COB-ID	Cmd	Inc	lex	Sub	I	Proces	s data	1
580+ID	60	01	65	00	00	00	00	00

Step 3 - Set object 6502h: Hardware number of turns

See resolution table for B4, B5, B6, B7 values.

Master → Encoder

COB-ID	Cmd	Index		Sub		Process data		
600+ID	23	02	65	00	B4	B5	В6	В7

Encoder → Master

COB-ID	Cmd	Ind	dex	Sub		Proces	s data	1
580+ID	60	02	65	00	00	00	00	00

Step 4 - Send a "Reset node"

Master → Encoder

COB-ID	Cmd	Slave ID
000	81	ID

Step 5 - Store parameters (ogg. 1010h)

Master → Encoder

COB-ID	Cmd	Inc	dex	Sub		Process data				
600+ID	23	10	10	01	73	61	76	65		

Encoder → Master

COB-ID	Cmd	Index		Sub		Proces	s data	1
580+ID	60	10	10	01	00	00	00	00

Resolution table:

Engodor typo		steps	s/rev.	ı	n° rev.				
Encoder type	ВО	B1	B2	В3	B4	B5	B6	B7	
ASx58x 12/CB-xx	00	10	00	00	01	00	00	00	
ASx58x 13/CB-xx	00	20	00	00	01	00	00	00	
AMx58x 12/4096CB-xx	00	10	00	00	00	10	00	00	
AMx58x 13/4096CB-xx	00	20	00	00	00	10	00	00	

3.2 Using encoder with default values.

The device position can be read immediately using the default settings of the manufacturer.

Follow the instructions below:

- read device resolution;
- set "operational" mode;
- read position (cyclic mode and/or sync mode).

Default Baud rate and Node-ID are:

Baud rate = 500 Kbit/s

Node-ID = 1

Read resolution per revolution (each turn)

Master → Encoder

COB-ID	Cmd	Index		Sub	I	Proces	s data)
601	40	01	65	00	-	-	-	-

Encoder → Master

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	ì
581	43	01	65	01	A0	A1	A2	АЗ

steps/rev. = ((A3<<24) | (A2<<16) | (A1<<8) | A0)

Read number of revolutions (turns)

Master → Encoder

COB-ID	Cmd	lno	lex	Sub		Proces	s data	1
601	40	02	65	00	-	-	-	-

Encoder → Master

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	1
581	43	02	65	01	ВО	B1	B2	В3

N. rev. = (B3 < <24) | (B2 < 16) | (B1 < <8) | B0)

Set Operational mode

Master → Encoder

COB-ID	Cmd	Node
000	01	01

Read position every 100ms

Encoder → Master

COB-ID	Byte 0	Byte 1	Byte 2	Byte 3
181	Low			High

4 - Electrical connections

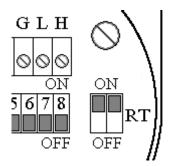
ATTENTION: do not remove or mount the connection cap with power supply switched ON. Damage may be caused to internal components. Make sure that the encoder body and connection cap are at the same potential.

Minimize noise by connecting shield or connector housing to ground (GND). Make sure that ground (GND) is not affected by noise. It's recommended to provide the ground connection as close as possible to the encoder.

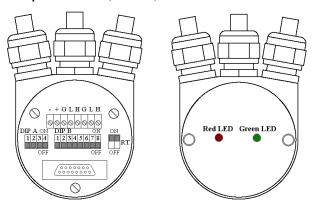
4.1 LED diagnostics

Two LEDs on the rear of the connection cap show the status of the CANopen® interface.

GREEN LED	Description
ON	Encoder is in Operational state
Single flash	Encoder is in Stopped state
Blinking	Encoder is in Pre-Operational state
RED LED	Description
ON	The CAN controller is switched off
Double flash	Node guarding error
Single flash	Max. number of warnings error
Blinking	Generic error or flash memory error
OFF	No error


During initialization the device carries out a hardware test to check LED function.

4.2 Bus termination


A bus termination resistance is provided in the connection cap. This has to be activated as line termination on the last device.

Use RT Switch to activate or deactivate bus termination.

RT	Description
1 = 2 = 0N	Activated: if the encoder is the last device
1 = 2 = OFF	Deactivated: if the encoder is not the last device

4.3 Connection cap with PGs (CC-CB)

The CC-CB connection cap has 3 cable glands PG9 for bus-IN, bus-OUT and supply voltage connections. The bus cables can be connected directly to the clamps in front of each cable gland. It's recommended to use CANbus certificated cables. Core diameter should not exceed Ø1,5mm (0.06inch).

Clamp	Description
-	0 Vdc Supply voltage
+	+10Vdc +30Vdc Supply voltage
G	CAN GND ¹
L	CAN Low
Н	CAN High
PG	CAN Shield ²

^{1:} CAN GND is the 0V reference of CAN signals, it is not connected to 0Vdc supply voltage.

4.4 Conn. cap with M12 connectors (CC-CB-C)

The CC-CB-C connection cap has two M12 connectors with pin-out according to the CANopen® standard. Users can directly connect CAN cables for commerce.

M12 connector A coding (frontal side)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 3 \\ 0 \\ 0 \end{array} $
	male	female
	(BUS IN)	(RUS OUT)

M12	Description	
1	CAN Shield	
2	+10Vdc +30Vdc Supply voltage	
3	0 Vdc Supply voltage	
4	CAN High	
5	CAN Low	

²: connected cable shield to cable gland.

4.5 Baud rate: DIP A

The transmission rate can be set both by hardware or by software.

If **DIP** A bit 4 = "OFF" the bit rate is defined by object 3000h of the Object Dictionary and can be modified using SDO messages.

If **DIP** A bit 4 = "ON" the bit rate is defined by DIP A.

DIP A:

Set binary value of transmission rate considering: ON=1, OFF=0. The device must be switched off!

bit	1 LSB	2	3 MSB	4
	2°	2 ¹	2 ²	ON/OFF

Baud rate value table:

Decimal value	Binary value	Baud rate
0	000	20 Kbit/s
1	001	50 Kbit/s
2	010	100 Kbit/s
3	011	125 Kbit/s
4	100	250 Kbit/s
5	101	500 Kbit/s
6	110	800 Kbit/s
7	111	1000 Kbit/s

Example:

Set 250Kbit/s:

 $4_{10} = 100_2$ (binary value, see previous table)

bit	1	2	3	4
	2°	2 ¹	2 ²	2 ³
	OFF	OFF	ON	ON

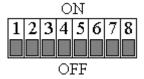
Set 500Kbit/s:

 $5_{10} = 101_2$ (binary value, see previous table)

bit	1	2	3	4
	20	2 ¹	2 ²	2^3
	ON	OFF	ON	ON

4.6 Node number: DIP B

The node number can be set both by hardware or by software.


Node numbers can be between 1 and 127.

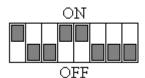
Power supply must be switched off if setting via hardware.

If all bits of **DIP B** are "OFF" the node number is defined by the object 3001h of the Object Dictionary and can be modified using SDO messages.

If at least one bit of **DIP B** is set "ON" the node number is defined by DIP B.

DIP B:

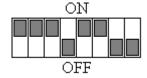
Set the node number in binary value: ON=1, OFF=0


bit	1	2	3	4	5	6	7	8
	LSB						MSB	not
	2°	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	used

Example:

Set node number = 25:

 $25_{10} = 0001 \ 1001_2$ (binary value)


bit	1	2	3	4	5	6	7	8
	2°	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	
	ON	OFF	OFF	ON	ON	OFF	OFF	OFF

Set node number = 55:

 $55_{10} = 0011 \ 0111_2$ (binary value)

bit	1	2	3	4	5	6	7	8
	2°	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	
	ON	ON	ON	OFF	ON	ON	OFF	OFF

ATTENTION:

If baud rate and node number are set via software, the master device has to detect the baud rate of the slave (scanning of baud rate). Once communication has been established a different baud rate and a node number can be set (objects 3000h and 3001h).

After setting transmit a "reset node" command and store parameters.

To avoid conflict between Slaves, this operation should be carried out only with one device connected to the network.

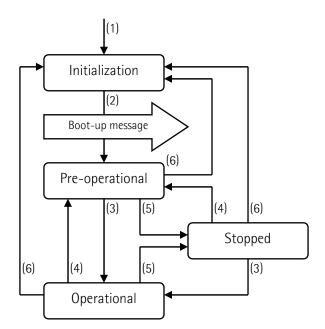
5 - CANopen® interface

Lika encoders are always slave devices according to the "Device profile for encoders", Class 2.

For every omitted specification, user should refer to the documents "CiA Draft Standard 301" and "CiA Draft Standard 406" available on www.can-cia.org.

5.1 EDS file

CANopen® encoders are supplied with a EDS file **Lika_AxxCB_DS406_V3.eds** (see enclosed support or **www.lika.biz** > **PRODUCTS** > **ROTACOD** > **Ax58x EasyCAN**).


The EDS file has to be installed on the CANopen® master device.

Lika_AMxCB_DS406_V3.eds: for multiturn encoder.

Lika_ASxCB_DS406_V3.eds: for singleturn encoder.

5.2 States of operation

CANopen® devices allow operation using different states. A device may be switched to a different state sending a specific NMT message. (see figure below)

(1)	Power on
(2)	State initialization finished, the boot-up message is
(2)	sent automatically
(3)	NMT message: "Start remote node"
(4)	NMT message: "Enter pre-operational"
(5)	NMT message: "Stop remote node"
(6)	NMT message: "Reset node" or "Reset comm."

5.2.1 Initialization

This is the first state the CANopen® device enters after power-on or hardware reset. After finishing the basic CANopen® device initialization the device reads the parameters stored in EPROM, sends a boot-up message and then enters automatically into the "Pre-operational" state.

5.2.2 Pre-operational state

In this state communication is possible using SDOs. Communication using PDOs is not possible in this status.

Configuration of PDOs and parameters may be performed using a configuration software.

The device can be switched into the Operational state directly by sending a "Start remote node" message.

5.2.3 Operational state

In this state all communication objects are active. The manufacturer uses the parameters as described in the object dictionary and may sent process data using PDO.

Object dictionary can be accessed using SDOs.

The device can be switched into the Pre-operational state directly by sending a "Enter pre-operational" message.

5.2.4 Stopped state

In this state the device is forced to stop communication with the Master (except node guarding, if active).

Communication by PDO and SDO is not possible.

The device can be switched into the Operational state or Pre-operational state directly by sending the specific NMT message.

5.3 Communication objects

CANopen® has the following 4 types of communication messages:

- Network management NMT: the NMT master controls the NMT state of the NMT Slaves.
- Process Data Objects PDO: used to transfer process data in real-time.
- Service Data Objects SDO: used to provide direct access to entries of a CANopen® device object dictionary.
- Special Function Objects:
 - SYNC: synchronization message used by the Master to enable Slaves to transmit process data (encoder position and velocity).
 - Emergency: error message transmitted at each error event.
 - Nodequard: used to request the status of the Slave.

Relation between device states and communication objects:

	Initial.	Pre-oper.	Operat.	Stopped
NMT		Χ	Χ	X
PD0			Χ	
SD0		Χ	Χ	
SYNC			Χ	
EMCY		Χ	Χ	
Boot-up	X			
Nodeg.		Χ	Χ	X

5.3.1 Pre-defined connection set

Master → Slave broadcast				
type of COB (Object)	Function code (binary)	COB-ID (hex)		
NMT	0000	000		
SYNC	0001	080		

pear-to-pear transmission					
EMERGENCY	0001	081 - 0FF			
PDO 1 (tx)	0011	181 - 1FF			
PDO 2 (tx)	0101	281 - 2FF			
PDO 3 (tx)	0111	381 - 3FF			
SDO (tx)	1011	581 - 5FF			
SDO (rx)	1100	601 - 67F			
Nodeguard	1110	701 - 77F			
Boot-up	1110	701 - 77F			

The type of COB (tx or rx) is seen from the slave device point of view.

5.4 NMT objects

NMT structure:

COB-ID (11 bit)		2 CAN Data Bytes		
Func.code	Node ID	Command	Slave ID	
0000	0	NMT Func.	Slave ID	

if Slave ID = 00h, the NMT message is directed to all network node.

NMT Function:

Command	NMT Function	Status node
01 hex	Start remote node	Operational
02 hex	Stop remote node	Stopped
80 hex	Enter pre-operational	Pre-operational
81 hex	Reset node	Pre-operational
82 hex	Reset communication	Pre-operational

5.5 Boot-up objects

Boot-up message structure:

COB-ID(hex)	1 CAN Data Bytes
700+Node ID	00

5.6 PDO objects

PDO (tx) messages are always composed by 4 CAN Data Bytes and are used by the encoder to transmit the position value.

PDO structure:

IDENTIFIER					
COB-ID(hex)					
F.C. Node-ID					
	•				

4 CAN Data Bytes							
Byte 0	Byte 1	Byte 2	Byte 3				
Low			High				
position value							

PDO1 Cyclic mode: cyclic transmission

The encoder uses the PDO1 to transmit the position value periodically and independently from the Master.

The cycle time is defined by the parameter "Cyclic Time" (object 6200h).

To activate (or deactivate) cyclic mode it's necessary to set to 0 (or 1) the most significant bit of COB-ID used by the PDO1 (object 1800h, sub 1).

PD02 and **PD03** SYNC mode: synchronous transmission.

The transmission is managed by the Master by sending a SYNC message.

The SYNC is a high-priority COB transmitted by the Master to request the position value of encoder.

If several nodes (encoders) are connected to a network, the Master receives the position values in order of Node nr.

The encoder can programmed to reply after a number "n" of SYNC messages by setting a counter.

The PDO will be transmitted after having received "n" SYNC messages.

For PDO2 the value "n" of counter must be specified in object 1801h, sub 2.

For PD03 refer to object 1802h, sub 2.

The transmission SYNC can be enabled (or disabled) setting to "0" (or "1") the most significant bit (MSB) of COB-IB used by PDO (object 1801h / 1802h, sub1).

NOTE:

More than one transmission mode can be active at the same time.

5.7 SDO objects

SDOs messages are used to read or modify encoder parameters. These parameters are described in the "Object dictionary".

Max 4 bytes are used for CAN data, other 4 bytes are used for Command, Index and Sub-index fields. SDOs are always followed by confirmation.

When the Master sends a SDO to a Slave, it always replies (with Warning in case of error).

SDO structure:

IDENTIFIER				
COB-	-ID(hex)			
F.C.	Node-ID			

from 4 to 8 CAN data bytes								
0	1	2	3	4	5	6	7	
Com	Index		Sub	Data				
1 byte	LSB	MSB	1 byte	LSB			MSB	

ComcommandIndexparameter indexSubparameter sub-indexDataparameter value

5.7.1 Command

The command byte contains the type of telegram transmitted on the CAN network.

Three types of telegram are available:

- Set: to send configuration parameters to a device;
- Reg: used by Master to read data from a device;
- Warnings: used by Slave to send error messages to the Master (e.g. index does not exist, ...).

Command	СОВ	COB type	Data length
22h	Set	M → S request	not spec.
23h	Set	M → S request	4 byte
2Bh	Set	M → S request	2 byte
2Fh	Set	M → S request	1 byte
60h	Set	S → M confirmation	0 byte
40h	Req	M → S request	0 byte
42h	Req	S → M reply	not spec.
43h	Req	S → M reply	4 byte
4Bh	Req	S → M reply	2 byte
4Fh	Req	S → M reply	1 byte
41h	Req	$S \rightarrow M$ reply segmen	ted SDO
80h	Warning	$S \rightarrow M$ reply	4 byte

5.8 Object dictionary

Each implemented object is listed as follows:

Index-subindex Object name [data types, attribute]

- Index and subindex are in hexadecimal values.
- Attribute:

ro = read only access

rw = read and write access

Unsigned16 data type:

Process data bytes				
byte 4	byte 5			
LSByte	MSByte			

Unsigned32 data type:

Process data bytes						
byte 4	byte 5	byte 6	byte 7			
LSByte			MSByte			

5.8.1 Standard objects (DS 301)

1000-00 Device type [Unsigned32, ro]

Default = 0001 0196h = single turn encoder, DS 406 0002 0196h = multi turn encoder, DS 406

1001–00 Error register [Unsigned8, ro]

In case of error bit 0 of this object is set to "1".

Default = 00h

1003 Pre-defined error field

This object contains the last 4 errors which have generated an emergency message.

- **00** Number of actual errors [Unsigned8, rw] (write 00h to delete the error history)
- **01** Last error occurred [Unsigned32, ro]
- **02-04** Previous errors occurred[Unsigned32, ro]

1005-00 COB_ID SYNC message [Unsigned32, rw] Default = 0000 0080h

1008–00 Name of device manufacturer [String, ro] Contains the name of device manufacturer. Default = "Lika"

1009–00 Hardware version [String, ro] Contains the hardware version of device.

100A-00 Software version [String, ro] Contains the software version of device.

100C-00 Guard time [Unsigned16, rw]
Contains the Guard time expressed in msec (milliseconds)
Default = 03E8h

100D-00 Life time factor [Unsigned8, rw] Default = 05h

"Guard time" and "Life time factor" objects are used in "Node guarding protocol" controlled by Master. For more details see chapter 5.11.

1010-01 Store parameters [Unsigned32, rw] Use this object to save all parameters in non-volatile memory. Write "save" in the data bytes:

Master → Encoder

COB-ID	Cmd	Inc	Index		Data bytes			
600+ID	23	10	10	01	73	61	76	65

Encoder → Master (confirmation)

COB-ID	Cmd	Inc	Index		Data bytes			
580+ID	60	10	10	01	00	00	00	00

1011-01 Restore default parameters [Unsig32, rw]

With this object all parameters are restored to default values.

Write "load" in the data bytes and perform a "Reset node" command:

Master → Encoder

COB-ID	Cmd	Inc	Index		Data bytes			
600+ID	23	11	10	01	6C	6F	61	64

Encoder → Master (confirmation)

COB-ID	Cmd	Inc	Index		Data bytes			
580+ID	60	11	10	01	00	00	00	00

Master → Encoder (reset node)

COB-ID	Cmd	Slave ID
000	81	ID

Encoder → Master (Boot-up)

COB-ID	Cmd
700+ID	00

NOTE:

Save default values with the "Store parameters" function (see object 1010h).

1014-00 COB-ID EMCY [Unsigned32, rw]

This object defines the COB-ID used for emergency messages (EMCY). Default = 80h+NodeID

1015-00 Inhibit time EMCY [Unsigned16, rw]

Inhibit time of emergency messages (EMCY) expressed in multiples of 100 μ s. Default = 32h

1018 Identification object

- **01** Vendor number [Unsigned32, ro]
- **02** Product number [Unsigned32, ro]
- **03** Revision number [Unsigned32, ro]

1800 PDO1 parameters

PDO1 is used by default for cyclic transmission of the position value. See object 6200h for setting of cyclic timer.

- O1 COB-ID of PDO1 [Unsigned32, rw]
 Default = 4000 0180h+NodeID (no RTR, COB-ID)
- **02** Transmission type [Unsigned8, rw] Default = FEh (cyclic transmission)

1801 PDO2 parameters

PDO2 is used by default for synchronous transmission of the position value.

- 01 COB-ID of the PDO2 [Unsigned32, rw]
 Default = 4000 0280h+NodeID (no RTR, COB-ID)
- **02** Transmission type [Unsigned8, rw]

 Default = 01h(synchr. transmission each SYNC)

 Position value is transmitted after a number of "n" SYNC commands.

 Value of "n" must be set in object 1801h, sub 2.

1802 PD03 parameters

PD03 is used by default for synchronous transmission of the position value.

- 01 COB-ID of the PDO3 [Unsigned32, rw]
 Default = C000 0380h+NodeID (disable, no RTR)
- O2 Transmission type [Unsigned8, rw]
 Default = 01h (synchr. transmission each SYNC).
 Position value is transmitted after a number of "n" SYNC commands.
 Value of "n" must be set in object 1802h, sub 2.

NOTE:

- The transmission of PDO1, PDO2 and PDO3 can be enabled (or disabled) setting to "0" (or "1") the most significant bit (MSB) used by PDO (object 180xh, sub1).
- Cyclic transmission or synchronous transmission can be modified setting the object 180xh sub 2:

01h: synchronous transmission each SYNC;02h: synchronous transmission after 2 SYNC;

. . .

FEh: cyclic transmission.

1A00-01 PD01 mapping parameter [Unsig32, rw]

This object contains the mapped position value of the encoder according to the DS406 device profile.

Default = 6004 0020h

1A01–01 PDO2 mapping parameter [Unsig32, rw] See object 1A00h, sub1.

1A02-01 PD03 mapping parameter [Unsig32, rw] See object 1A00h, sub1.

5.8.2 Manufacturer specific objects

2104-00 Limit switch min [Unsigned32, rw]

This object can be used to set a software limit switch min. (-).

If the encoder position is below the value set in this object, bit 12 of object 6500h will be set to "1".

To enable this function set bit 12 of object 6000h to "1".

Default = $0000 \ 0010h$

2105-00 Limit switch max [Unsigned32, rw]

This object can be used to set a software limit switch max. (+).

If the encoder position is higher than the value set in this object, bit 13 of obj. 6500h will be set to "1".

To enable this function set bit 13 of object 6000h to "1".

Default = 003F FFF0h

3000-00 Baud rate [Unsigned8, rw]

This object can be used to set the baud rate (transmission rate) according to the following table:

Data byte	Baud rate
00h	20 Kbit/s
01h	50 Kbit/s
02h	100 Kbit/s
03h	125 Kbit/s
04h	250 Kbit/s
05h	(default) 500 Kbit/s
06h	800 Kbit/s
07h	1000 Kbit/s

The correct procedure to change the baud rate is:

- set object 3000h
- send a "reset node" (or "reset communication"),
- store parameter.

Master → Encoder

COB-ID	Cmd	Inc	lex	Sub	Data byte
600+ID	2F	00	30	00	see table

Encoder → Master (confirmation)

COB-ID	Cmd	Inc	dex	Sub	Data byte
580+ID	60	00	30	00	00

Master → Encoder (reset node)

COB-ID	Cmd	Slave ID
000	81	ID

Set the Master device to the new baud rate:

Encoder → Master (Boot-up with new baud rate)

COB-ID	Cmd
700+ID	00

NOTE:

Store parameters (see object 1010h), to save the new baud rate value.

3001-00 Node-ID [Unsigned8, rw]

This object defines the node identifier of the device.

The correct procedure to change the Node-ID is:

- set object 3001h
- send a "reset node"
- store parameter.

Default = 01h

Master → Encoder

COB-ID	Cmd	Inc	lex	Sub	Data byte
600+ID	2F	01	30	00	new Node-ID

Encoder → Master (confirmation)

COB-ID	Cmd	Inc	lex	Sub	Data byte
580+ID	60	01	30	00	00

Master → Encoder (reset node)

COB-ID	Cmd	Slave ID
000	81	old ID

Encoder → Master (Boot-up with new Node-ID)

COB-ID	Cmd
700+ID	00

NOTE:

Store parameters (see object 1010h) to save the new Node-ID value.

5.8.3 Device profile objects (DS 406)

6000–00 Operating parameters [Unsigned16, rw]

Bit	Function	bit = 0	bit = 1
0	Code sequence	cw (clockwise)	ccw (counter clockwise)
1	not used		
2	Scaling function	disable	enable
311	not used		
12	Limit switch min	disable	enable
13	Limit switch max	disable	enable
1415	not used		

Default = 0000h

- The code sequence defines whether increasing or decreasing position values are output when the encoder shaft rotates clockwise (CW) or counterclockwise (CCW) as seen from the shaft side.
- Scaling function: if disabled the device uses the physical resolution (see objects 6501h and 6502h), if enabled it uses the resolution set in objects 6001h and 6002h with the following relationship:

$$posTx = \frac{obj_6001}{obj_6501} \cdot Re alPos \le obj_6002$$

6001-00 Counts per revolution [Unsig32, rw]

This object sets the number of distinguishable steps per revolution. Enabled if bit 2 of object 6000h = "1".

To avoid counting errors, check that $\frac{\text{obj}_6501}{\text{obj}_6001}$ is an integer value.

Only values equal or less than "hardware resolution per revolution" are possible (see encoder label).

6002–00 Total resolution [Unsigned32, rw]

This object sets the number of distinguishable steps over the total measuring range.

Enabled if bit 2 of object 6000h = "1".

Only values equal or less than "total hardware resolution" are possible (see encoder label).

Example:

Multiturn encoder AM5812/4096CB-6 with connection cap "CC-CB-C".

Resolution is:

Hardware counts per revolution: "obj_6501" = 4096 (2^12)
 Hardware number of turns: "obj_6502" = 4096 (2^12)
 Hardware total resolution: = 16777216 (2^24)

2048 counts/rev. * 1024 turns are required:

• Enable scaling function: "obj_6000", bit 2 = "1"

• Counts per revolution: "obj_6001" = 2048 (0000 0800h)

• Total resolution: "obj 6002" = 2048*1024 = 2097152 (0020 0000h)

NOTE:

It's recommended to set values which are power of 2 (2ⁿ) in objects 6001h and 6002h to avoid counting errors (2, 4, ..., 2048, 4096, 8192,...).

If "Counts per revolution" and/or "Total resolution" are changed, the Preset value should be adapted to the new resolution. A new setting to the Preset value is also required.

6003-00 Preset value [Unsigned32, rw]

This object allows to set the encoder position to a Preset value.

NOTE:

- If "Scaling function" is disabled (see obj_6000), "Preset value" must be smaller than "Hardware total resolution".
- If "Scaling function" is enabled (see obj_6000), "Preset value" must be smaller than "Total resolution" (object 6002).

6004-00 Position value [Unsigned32, ro]

This object contains the position value. The value is transmitted according to the settings in objects 1800h, 1801h and 1802h.

6200–00 Cyclic time [Unsigned16, rw]

Cyclic timer is used to set a time between two following PDO transmissions during cyclic transmission.

Default = 0064h (100ms)

6500-00 Operating status [Unsigned16, ro]

Bit	Function	bit = 0	bit = 1
0	Code sequence	Clockwise	CCM
1	not used		
2	Scaling function	Disable	Enable
311	not used		
12	12 Limit switch min		posit. <
12	LITTIC SWILCH HIIII	obj_2104	obj_2104
13	Limit switch max	posit. <	posit. >
13	LITTIL SWILCH IIIAX	obj_2105	obj_2105
14	not used		
15	Actual operating status	Stop/ Pre-oper.	Operat.
	Actual operating status	Pre-oper.	Operat.

• Code sequence:

increasing counting direction seen from the shaft end.

• Limit switch min/max:

to use these functions, bits 12 and 13 of object 6000 must be set to "1".

• Actual operating status:

use this function to know the actual operating status (see chapter 5.2):

bit 15 = 0: "Stopped" or "Pre-operational" state;

bit 15 = 1: "Operational" state.

6501–00 Hardware counts per revolution [Unsigned32, ro]

This object defines the number of distinguishable steps each turn given by the hardware.

To set a different resolution see object 6001h.

6502-00 Hardware number of turns [Unsig16, ro]

This object defines the number of distinguishable turns given by the hardware.

"Hardware total resolution"="obj_6501"*"obj_6502".

To set a different nr. of turns see objects 6001h and 6002h.

6504-00 Supported alarms [Unsigned16, ro]

Default = 0000h (no supported alarms)

6506-00 Supported warnings [Unsigned16, ro]

Default = 0000h (no supported warnings)

6507-00 Profile and software version [Unsig32, ro] Contains the profile and software version. Profile version for encoders = 3.1 Software version = 1.1 Default = 0301 0101h

6508–00 Operating time [Unsigned32, ro] Default = FFFF FFFFh (not used)

6509-00 Offset value [Integer32, ro]

This object contains the Offset value. This value is the shift (difference) between physical position of the encoder and position relative to the Preset value.

650A-01 Manufacturer offset value [Integer32, ro]

This object contains the manufacturer offset value. This is the shift (difference) between physical zero position of the encoder and a zero position set by the manufacturer.

650B-00 Serial number [Unsigned32, ro] Default = FFFF FFFFh (not used)

NOTE:

Save new values with the "Store parameters" function (see object 1010h) otherwise they will be lost in case of commands like "Reset node", "Reset communication" or power off.

5.9 Warning objects

In order to know the meaning of a warning message please refer to the official document "CiA Draft Standard 301" in chapter "SDO abort codes" available on www.can-cia.org.

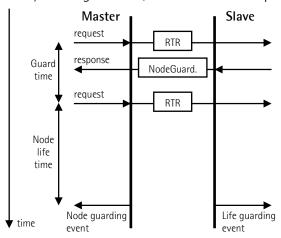
5.10 Emergency objects

Emergency (EMCY) objects are transmitted by the device when an internal error occurs.

EMCY structure:

IDENTIFIER
COB-ID(hex)
see object 1014h
,

		CAN Data Byte	
0	1	2	37
Error	code	Sub of Error register	Specific code
LSB	MSB	01	0000


Defined error codes:

1000h = Node guarding error

5530h = Flash memory error

5.11 Node guarding protocol

On start up the "Node guarding protocol" is disabled, the Master device can enable the protocol by sending an RTR (remote transmit request).

Guard time: time between 2 RTR.

Node life time: max encoder response time.

If the Slave is not guarded within the "Node life time", it warns with a "Life Guarding Event".

The red LED indicates the Node guarding error, objects 1001h and 1003h are updated and error message is sent.

To remove the error send a "Reset node" command.

[&]quot;Node life time" = "Obj_100C" * "Obj_100D"

[&]quot;Node quarding" is enabled if "Node life time" $\neq 0$.

6 - Setup

The following pages show examples of transmission between a Master and a Slave device.

A generic value "ID" is used to indicate the encoder address. All values are hexadecimal.

Set Operational, Pre-operational status

NMT message Master → Slave

COB-IDCmdNodeOperational:00001IDPre-operational:00080ID

Set resolution per revolution (2¹⁶=0001 0000h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub	Process data)
600+ID	23	01	60	00	00	00	01	00

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub	Process data)
580+ID	60	01	60	00	00	00	00	00

Set total resolution (2²⁸=1000 0000h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub	Process data		1	
600+ID	23	02	60	00	00	00	00	10

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub	I	Proces	s data	1
580+ID	60	02	60	00	00	00	00	00

Set Operating parameter

(Code sequence: CW, scaling function: enable, limit switch: disable)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub		Proces	s data	1
600+ID	2B	00	60	00	04	00	-	-

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub		Proces	3	
580+ID	60	00	60	00	00	00	-	-

Set Preset value (preset = 1000 = 03E8h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub	Process data			3
600+ID	23	03	60	00	E8	03	00	00

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub	Process data			1
580+ID	60	03	60	00	00	00	00	00

Set Sync counter (n = 5 = 05h)

Master → Encoder (Set request)

COB-ID	Cmd	Inc	lex	Sub		Proces	3	
600+ID	2F	01	18	02	05	-	-	-

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub		Process data		
580+ID	60	01	18	02	00	-	-	-

Disable Sync mode

Read COB-ID used by PDO2:

Master → Encoder (Req request)

ĺ	COB-ID	 Cmd		<u> </u>	Sub		240000	c dota	
	COD-ID	Cina	Inc	iex	3 00	l	roces	s data	1
	600+ID	40	01	18	01	_	1	-	_

Encoder → Master (Reg reply)

COB-ID	Cmd	lno	Index		Process data)
580+ID	43	01	18	01	ВО	B1	B2	В3

COB-ID used by PDO2 = ((B3<<24) \mid (B2<<16) \mid (B1<<8) \mid B0) set to 1 the most significant bit:

B3 |= 0x80;

Set new COB-ID used by PDO2:

Master → Encoder (Set request)

COB-ID	Cmd	Inc	Index		Process data			1
600+ID	23	01	18	01	ВО	B1	B2	В3

Encoder → Master (Set confirmation)

COB-ID	Cmd	Ind	Index		Process data			1
580+ID	60	01	18	01	00	00	00	00

Enable Cyclic mode

Set cyclic time (100ms = 64h)

Master → Encoder (Set request)

COB-ID	Cmd	nd Ind		lex Sub		Process data			
600+ID	2B	00	62	00	64	00	-	ı	

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	Index			Proces	s data	1
580+ID	60	00	62	00	00	00	-	-

Read COB-ID used by PDO1:

Master → Encoder (Reg request)

COB-ID	Cmd	Inc	lex	Sub	Process data)
600+ID	40	00	18	01	-	-	-	-

Encoder → Master (Reg reply)

COB-ID	Cmd	Inc	lex	Sub	Process data			3
580+ID	43	00	18	01	ВО	B1	B2	В3

COB-ID used by PDO1 = ($(B3<<24) \mid (B2<<16) \mid (B1<<8) \mid B0$) set to 0 the most significant bit: B3 &= 0x7F;

Set new COB-ID used by PDO1:

Master → Encoder (Set request)

COB-ID	C	md	Index		Sub	Process data			1
600+ID		23	00	18	01	ВО	В1	B2	В3

Encoder → Master (Set confirmation)

COB-ID	Cmd	Inc	lex	Sub	Process data)
580+ID	60	00	18	01	00	00	00	00

NOTE:

Save new values with the "Store parameters" function (see object 1010h) otherwise they will be lost in case of commands like "Reset node", "Reset communication" or power off.

Man.Vers.	Description
1.0	1st issue
	Manual update
1.3	Manual update
2.0	SW and HW CANopen® interface update, manual update
2.1	Add cable output (chapter 4)
2.2	Add DIP A and DIP B dip-switch
2.2	Add bit 15 function on object 6500h
2.3	objects 100C and 100D update
2.4	Add M12 electrical connections
2.5	Manual update
2.6	Add chapter 3.1
2.7	Chapter 4 update

- B	This device is to be supplied by a Class 2 Circuit or Low-
	Voltage Limited Energy or Energy Source not exceeding 30 Vdc. Refer to the product datasheet for supply voltage rate.
r = 102	Vdc. Refer to the product datasheet for supply voltage rate.

LIKA Electronic

Via S. Lorenzo, 25 - 36010 Carrè (VI) - Italy

Tel. +39 0445 382814 Fax +39 0445 382797

Italy: eMail info@lika.it - www.lika.it World: eMail info@lika.biz - www.lika.biz