
International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

FLAIR: A POWERFUL BUT USER FRIENDLY GRAPHICAL INTERFACE
FOR FLUKA

Vlachoudis V

CERN
Dep. EN, Geneva-23
CH-1211 Switzerland

Vasilis.Vlachoudis@cern.ch

ABSTRACT

FLAIR is an advanced user graphical interface for FLUKA, to enable the user to start and control
FLUKA jobs completely from a GUI environment without the need for command-line
interactions. It is written entirely with python and Tkinter allowing easier portability across
various operating systems and great programming flexibility with focus to be used as an
Application Programming Interface (API) for FLUKA. FLAIR is an integrated development
environment (IDE) for FLUKA, it does not only provide means for the post processing of the
output but a big emphasis has been set on the creation and checking of error free input files. It
contains a fully featured editor for editing the input files in a human readable way with syntax
highlighting, without hiding the inner functionality of FLUKA from the users. It provides also
means for building the executable, debugging the geometry, running the code, monitoring the
status of one or many runs, inspection of the output files, post processing of the binary files (data
merging) and interface to plotting utilities like gnuplot and PovRay for high quality plots or photo-
realistic images. The program includes also a database of selected properties of all known nuclides
and their known isotopic composition as well a reference database of ~300 predefined materials
together with their Sterheimer parameters.

Key Words: Graphical User Interface, Simulation, FLUKA

1 INTRODUCTION

FLUKA [1,2,3] is a multipurpose transport Monte Carlo code, for calculations of particle
transport and interactions with matter, covering an extended range of applications spanning from
proton and electron accelerator shielding to target design, calorimetry, activation, dosimetry,
detector design, Accelerator Driven Systems, cosmic rays, neutrino physics, radiotherapy etc..
FLUKA is able to transport 60 different elementary particles and whichever heavy ion, and can
perform hadron-hadron, hadron-nucleus, neutrino, electromagnetic, and  interactions from
1 keV for charged particles or thermal for neutrons up to 10000 TeV/n. It features a
combinatorial geometry which was recently enhanced with the use of parenthesis expansions and
geometrical optimizations. Although being an excellent tool for particle simulations problems,
the default package offers limited number of auxiliary programs and tools for building the input
and post processing the output of the code. It is a common practice that users are in need of
creating ad hoc processing programs to exploit the features of FLUKA, which is often a source
of errors especially for beginners.

Vasilis Vlachoudis

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

2/11

The objective of the FLUKA Advanced Interface (FLAIR) [4] development was to inspect and
overcome problems with input syntax and logical errors and in general facilitate the work of the
user. FLAIR is trying to address all the above problems and more by providing an Integrated
Development Environment (IDE) for all stages from building the input file and post processing
the result. Emphasis has been set on the creation and checking of error free input files by
flagging incorrect entries so that the user will be able to prevent the resulting logical error.
Moreover it contains a fully featured editor for editing the input files in a human readable way
with syntax highlighting and error checking, without hiding the inner functionality of FLUKA
from the users. It provides means for building the executable, debugging the geometry, running
the code, monitoring the status of one or many runs, inspecting the output files, post processing
of the binary files (data merging) and interface to plotting utilities like gnuplot [5] and PovRay
[6] for high quality plots or photo-realistic images. The program includes also a database of
selected properties of all known nuclides and their known isotope properties as well a reference
database of ~300 predefined materials together with their Sterheimer parameters [7]. Last but not
least FLAIR is an open source project, featuring an Application Programming Interface (API) for
manipulating FLUKA input files, as well all individual components of FLAIR can run as
standalone applications, greatly enhancing productivity for expert users and supplying means for
organizing everything as batch jobs. To ensure a high quality program and improve reliability
FLAIR has passed all the software testing, verification phases and methods [8,9,10].

2 IMPLEMENTATION

User Interface (UI) is what allows the end users to interact with an application. A good UI will
make an application intuitive and easy to use. Excellent applications without good UI could be
less popular than inferior ones with a good UI. This is the case of FLUKA an excellent
simulation tool but with no interface that renders its learning curve steep for beginners. FLAIR is
trying to address the above problem, therefore during the creation of FLAIR we tried to respect
the following concepts:

 Simple: even though it is meant as a user interface for a complex program like FLUKA,

simplicity was a key factor. This was achieved by organizing in a step-by-step approach the
various sub-tasks that the user will perform;

 Intuitive: everything is labeled and self explained. The interface is organized in a way that
the user is not in a constant need of the manual. Pop up tip-dialogs show a message on what
is expected from the user;

 Respect the commonly accepted conventions: There are several conventions that the greatest
fraction of the new programs are using e.g. Keyboard conventions like Ctrl-C for copy etc.,
or tool bars for easier accessing of commands, right-clicking will pop up a sub menu with the
most important commands at each stage;

 Visually organized: common functions and information are grouped together in a visually
organized manner for easier accessing;

 Native look: follows the look and semantics of most modern applications;
 Easy installation procedure: through standard installation programs like rpm [11], and

minimum dependence on external software;

FLAIR: FLUKA ADVANCED GRAPHICAL INTERFACE`

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

3/11

 Extensible / Programmable: The use of iterative design, parallel development, and high
modularity all enhance maintainability, ease of verification, and code reusability. The source
code is written in an organized way following Object Oriented technologies. The full source
code as well the auxiliary programs are supplied with the package and the user can use them
for programmatically modify or create FLUKA input files and the related post processing;

 Not hiding the inner functionality of FLUKA: The user using the program has full control of
all options/formats in FLUKA.

2.1 Programming Choices
FLAIR is build entirely using python [12] as programming language and Tkinter [13] for the
graphical interface. Python is a well established interpreted interactive object-oriented language
and portable almost on all operating systems. Python combines remarkable power with very clear
syntax. It has modules, classes, exceptions, very high level dynamic data types, and dynamic
typing. Python is very rich in libraries for data processing and offers interfaces to the system,
network, as well as to various windowing platforms (X11, Motif, Tk, Mac, MFC, wxWidgets).
When executing FLAIR through python, the program is initially compiled and optimized in a
pseudo-code assembly language and a virtual machine is interpreting this pseudo-code.

Among the various window interfaces the choice for FLAIR was to use Tkinter which is the
default graphical user interface widget set for Python. Tkinter has limited possibilities in
comparison with other graphical toolkits, nevertheless it was selected because of its availability
on all operating systems, and it is distributed together with python, without the need for
installing additional packages.

For the plot generation, the wide spread package Gnuplot was used. Gnuplot is a command-line
driven, interactive function plotting program specially suited for scientific data representation.
Since version 4.0 gnuplot can be used to plot functions and data points in both two and three
dimensions and in many different formats. A special interface class has been developed to allow
a two way communication through piping between FLAIR and gnuplot.

2.2 Concepts
FLAIR is operating with the concept of the "FLUKA projects". A FLAIR FLUKA project is a
structure containing the following information:
 general project information like title, notes, override formatting options for the input file;
 links to the filenames for the default input, optional geometry files and executable;
 maintain a list of geometry debugging regions;
 links to auxiliary Fortran files and libraries for compiling a user FLUKA executable if

necessary;
 list of runs. A project can contain multiple runs based on the same input file by overriding the

default preprocessor defines, title, random seed, number of start particles, run cycles and
executable file;

 list of output files and rules for merging the output of scoring cards;
 list of user defined plots, for Geometry, all USRxxx cards, RESNUCLEi and visualization of

the input file information.
All the above information is stored in a text file with the extension .FLAIR, and is “editable”
with the FLAIR program.

Vasilis Vlachoudis

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

4/11

FLAIR is able to read and write all formats recognized by FLUKA, but internally it works
always in the name-based format, and treats the input as a list of extended cards. The default
format for saving is always fixed with names for the input and free with names for the geometry.
The user can override the default exporting format by using the appropriate FLUKA cards like
FREE, FIXED, GLOBAL, GEOBEGIN. Moreover there is the possibility to export to other Monte
Carlo simulations programs like MCNP/X [14,15], MARS [16] and various plotting formats.

FLAIR takes care to reorganize the input file before saving to disk by moving all the “special”
cards in the appropriate position in order to have a correct FLUKA input file. The reorganization
of the input file taking into account all the preprocessor cards that might alter the flow of the
input file in case they are displaced. Therefore FLAIR will try to move or clone the preprocessor
cards in order to create a logically correct input file.

All FLUKA cards in FLAIR, are described by the extended input card to have a uniform
treatment. Each extended card is composed by:
 comment lines, the ones preceding the card definition, as well the in-line comments;
 a tag, which corresponds to the FLUKA card name. With a few additions: regions are defined

with the REGION card. All preprocessor cards have tag names like #define, #undef,
#if ...

 a variable number of whats. Starting from what(0) which corresponds to the sdum,
what(1)..what(6) are the same with the FLUKA whats, what(7)-what(12) correspond to the
what(1)-what(6) of the first continuation line etc.

 Some cards carry additional information which is accessible as what(-1). It is used also to
store long strings or multi-line information used by some cards, like TITLE, GEOBEGIN,
PLOTGEOM or REGION

 state of the card can be either enabled or disabled. Since cards cannot be commented-out with
FLAIR, the only way of excluding them from the input without deleting them is to disable.
by inserting around the card an #if 0..#endif block. On the contrary all commented
cards present in the input file, (with no space between the * and the card tag) will be
converted to disabled cards.

All obsolete cards present in the input will be converted to the closest match if any, otherwise
will be treated as errors. All unknown cards will be converted to the card error and be
disabled.

FLUKA cards in FLAIR are grouped into categories for easier accessing and more flexible
editing of the input file. Table I describes the category classification scheme used.

FLAIR: FLUKA ADVANCED GRAPHICAL INTERFACE`

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

5/11

Table I. Card grouping

Category Description
General Cards of general purpose (like TITLE, DEFAULTS, GLOBAL, etc..)
Primary Cards dealing with the definition of the primary starting particles
Geometry Cards related to the definition of the geometry bodies/regions/lattices plotting

and rotations/translations
Media Cards for the definition of materials
Physics Cards defining physics properties for the simulation
Transport Cards that modify the way particles are transported in FLUKA
Biasing Cards for importance biasing definition
Scoring Cards related to scoring
Developers Cards reserved by the developers
Preprocessor Preprocessor definitions for creating conditional input files

3 INTERFACE

FLAIR provides an all-in-one user friendly graphical Interface, with minimum requirements on
additional software. When the application starts the main FLAIR window appears (Figure 1),
which features the standard tools like menu bar, toolbar, status bar and navigation tree the main
frame is a wrapper window that encapsulates all the project frames used for editing the
information stored in the project file. The program is written in such way that all process frames
could run as independent applications, even outside the main window of FLAIR. it reduces the
development time, plus it allows the program to be modular for future enhancements, and also
allow users to work in a batch mode. In the following sections you will find a short description
of the main parts of the FLAIR program.

3.1 Input Editor
The input editor allows the user to create and edit a FLUKA input file. For this purpose it
contains a fully featured editor like any other text editor, providing copy & paste, drag & drop,
unlimited undo/redo functionality, error checking of the input provided by the user as well as
more advanced features like geometrical optimizations and transformations. FLUKA is driven by
input cards, and FLAIR is respecting this convention by displaying mini-dialogs (Figure 2) for
each card. Each mini-dialog is a dynamically generated panel via the use of an internal database
of all FLUKA cards. It displays the contents of each card in an interpreted human readable way.
A lot of effort during the creation of the program was focused on the presentation of these mini-
dialogs in order to provide a coherent and easy interface.

During editing of the input file FLAIR performs error checking and checks the card against
logical errors that the user might introduce. The error items are highlighted with red and a popup
dialog provides an explanation on the error. For the moment only logical errors on each value of
a card are checked, while there is work going on to introduce error checking on correlated
information among the cards.

Vasilis Vlachoudis

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

6/11

Figure 1: FLAIR main application window

The input editor provides also means of filtering the cards in order to reduce the number of
visible cards in the display or to group cards that are related by a specific property. By selecting
the appropriate category or manually creating filters, FLAIR displays only the relevant cards and
hides all the unwanted ones. One important feature of FLAIR is the filtering of linked cards, by a
single click of the mouse the user can display only the cards that are linked by a specific property
e.g. the same material name, or region etc. Higher level filters can be created by a specialized
dialog permitting the user to create a filter based on a combination of rules and allowable ranges
for various types.

During the setting up of a simulation calculation the user will spend most time on building the
geometry. For this reason FLAIR provides several tools to facilitate this task, like automatic
completion of the body names, optimization of the geometry by parenthesis expansion, removal
of void terms, and geometrical transformation of bodies. By creating a series of body
transformations (translation, rotation, scaling, mirroring) a specific portion of the geometry could
be transformed in a single click.

Figure 2: Example of a card mini-dialog during input editing

FLAIR: FLUKA ADVANCED GRAPHICAL INTERFACE`

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

7/11

3.2 Isotope and Material Database
To facilitating the input editing FLAIR contains a version of the Nuclear Wallet Cards [17]
(Figure 3) with the nuclear properties of all isotopes. It includes also a database of about 500
predefined materials with 300 of them with the Sternheimer [7] parameters and Displacement
Per Atom (DPA) threshold energy. The user has the possibility to include any of the materials in
the FLUKA input file and select which extra properties he will add. The program gives the
ability to the user to edit and create his own database.

Figure 3: Nuclear Wallet Cards embedded in FLAIR

3.3 Compilation of the Executable
Under the interface titled “Compile” the user has the possibility to compile and create a FLUKA
executable. FLAIR is checking the input file for cards that refer to user routines and gives the
possibility to the user to include a copy of the prototype of these routines inside the project. By
clicking the button “Build” FLAIR will try to compile all necessary modules in the same way
like the Unix make program is doing, based on the dependency rules on the existence of a file
and its time-stamp.

3.4 Geometry Debugging
FLAIR provides two possibilities of debugging the geometry of a FLUKA input file. One is the
traditional way by activating the debugging with the special option of the GEOEND card, and
another via the use of a specialized interface. In the Geometry debugging frame the user can
define multiple regions to be debugged outside the input file. By activating the debugging
FLAIR is creating temporary input file with the appropriate GEOEND card and submits a
FLUKA job for each region to be debugged.

Vasilis Vlachoudis

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

8/11

3.5 Running the Simulation
With the Run Frame the user has the ability to run the simulation or create several runs by
overriding some parameters. Each run is identified by a unique input name and is based on the
same input file. The parameters that can be changed are the title of the run, random number seed,
starting particles, and to activate or deactivate preprocessor define cards. To increase the
statistics or to benefit of a multi-core or cluster architecture, the user can submit many runs based
on the same input by changing the random number history.

FLAIR is monitoring the progress on the run by inspecting the information on the files created
by FLUKA, rather than using the process information. FLAIR performs a series of complicated
tests based on the time elapsed, the information that is written by FLUKA. The method is quite
reliable but not at 100% level, especially in very long simulations or in case that the simulation
for some error situation is looping. However this method provides portability across various
platforms and is working when the run is taking place on distrusted systems like Linux clusters,
where any other method based on the CPU process information would have failed.

3.6 Inspecting the Files
FLAIR contains a file explorer that lists the files generated by FLUKA, grouped per FLUKA
run, cycle and special ones like temporary files during the run. This frame gives the possibility to
the user to inspect the output files even during the run and also to perform a clean up of the
directory without losing the important files.

3.7 Data processing
To assist the user, FLAIR automatically detects all output files generated by FLUKA and their
type from the input file definition and creates automatic rules for post processing these data. The
user, simply by pressing a button starts the process and the data from all cycles are “merged”
using the standard FLUKA post-processing routines. These rules can be fully customized by the
user if required.

3.8 Plot Generation
FLAIR offers the possibility to the user to visualize in a graphical way the output of FLUKA
(Figure 4). Currently with FLAIR one can plot the following:
 Geometry: 2D cross sections of the geometry either as boundary lines or color plots

superimposed with materials, regions, lattices or magnetic field maps;
 Single differential quantities: through a common interface all single differential tallies like

track length estimators, boundary crossing, collision or yield estimators. FLAIR allows to
super impose many data on the same plot and even external files like experimental data for
comparison;

 Double differential quantities: represented as a surface or color plots from estimators like
boundary crossing or residual nuclei information;

 3D mesh data: as two dimensional cross sections of 3D binning data, superimposed with the
geometry, or as projection on a single axis;

 3D photo realistic: the geometry can be exported to a ray tracer format, and photo realistic
images can be generated with the use of Povray;

All plotted information could be normalized either by a fixed value or a user defined expression
of the result. FLAIR is providing an interface to the user to define the desired plotting parameters

FLAIR: FLUKA ADVANCED GRAPHICAL INTERFACE`

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

9/11

which are sent to gnuplot to perform the actual plot. There are several text widgets for every plot
frame that allow the user to send commands directly to the plotting program in order to allow to
exploit the full power of gnuplot. To assist the user FLAIR provides also an automatic tool that
scans the input file and proposes default plots for every scored quantity.

(a)

(b)
Figure 4: Examples of the plotting capabilities of FLAIR, (a) plot of USRBIN output on
deposited energy density; (b) USRBIN output surface mapped on a 3D ray traced model

3.9 Help
A very useful feature of FLAIR is the hypertext FLUKA manual browser. With the press of F1
FLAIR displays the appropriate section of the FLUKA manual to the user. The first time FLAIR
parses the complete ASCII version of the FLUKA manual and creates a python structure for
faster accessing and searching.

4 EVOLUTION AND FUTURE

All FLUKA graphical interfaces before the appearance of FLAIR were made to perform precise
tasks. Most of them were focused on the post processing of the USRBIN binning output,
geometry, and just a couple of them were trying to address the problem of creating input files.
There was not a single interface that was addressing all development stages during a simulation
as well the post processing of the results in a unique package.

During the FLUKA course in the University of Houston, Texas in 2005, we had several users
with quite different background and most of them with limited or almost no knowledge of Linux
and text editing programs. A great fraction of the course time was spent in correcting syntactic
errors, formatting problems as well basic text editing. With the increasing FLUKA community it
was obvious that we needed to address the above problems to help the learning and use of the
code. We needed an interface that allows the users to stay focused on their specific problem and
the FLUKA implementation rather than wasting time in technicalities.

After investigating various concepts of such an interface, FLAIR was born in May 2006. During
the first year it had a rapid development counting 50000 lines of code. It was introduced
experimentally for the first time in the FLUKA course at Houston in 2007 and it was very well

Vasilis Vlachoudis

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

10/11

accepted by the FLUKA users. Since then it became the standard tool for teaching FLUKA in all
courses and very quickly it became quite popular in the FLUKA community. The popularity can
be seen by the number of downloads amounting to 300 every time a new version is released
(Figure 5), and also the expressed interest of users via private communications with the author.
The number of downloads has to be compared with the 3000 registered users of FLUKA over the
past 10 years.

FLAIR has greatly evolved during the last two years and many new features have been
introduced. There are several features to be added in the code, where the most important are:

i) a macro language for preprocessing, that will permit the user to create dynamic input files
ii) many more plotting features, like visual representation of the input file, plots of the

USRDUMP and DETECT cards etc.;
iii) User databases for storing geometrical models;

During the last year, most of the effort was concentrated to make it more reliable. With the
introduction in FLAIR of an automatic mechanism to record and transmit possible error
messages and stack traces to the author via the web, many bugs have been fixed and now the
code is quite stable and robust.

Switzerland
17%

China
11%

France
10%

USA
10%

Italy
12%

Germany
8%

India
3%

Iran
5%

Canada
2%

Rest
19%

U.K.
3%

Figure 5: Country of origin of downloads

5 CONCLUSIONS

FLAIR is a user friendly graphical interface for FLUKA that offers both front-end and back-end
interface to the user. The program is versatile, easy to use and provides in a single package all the
necessary tools to the user to work with FLUKA. The program had a rapid development and
quickly became very popular. FLAIR proved to be very robust and stable under the heavy test
from beginners. It was successfully introduced as the default working environment in all FLUKA
courses, after the positive and encouraging comments from the users. The experience in the
FLUKA courses, showed that it greatly increased the learning curve of the new-users, since when
using the interface they are focused on the problem they want to solve and not on practicalities.

FLAIR: FLUKA ADVANCED GRAPHICAL INTERFACE`

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

11/11

6 ACKNOWLEDGMENTS

The author would like to thank Sylvestre Catin, Toni Empl, Adonai Herrera-Martinez, Marco
Mauri, Lucia Sarchiapone, David Sinuela for their contribution to the FLAIR project. Alfredo
Ferrari, Paola Sala, Markus Brugger, Francesco Cerutti, Stefan Roesler for their comments and
the fruitful discussions. Also to thank the FLUKA collaboration for their support, and the users
of the program for their comments and suggestions.

7 REFERENCES

1. A. Ferrari, P.R. Sala, A. Fassò, and J. Ranft, "FLUKA: a multi-particle transport code",

CERN 2005-10 (2005), INFN/TC_05/11, SLAC-R-773
2. A. Fassò, A. Ferrari, J. Ranft, and P.R. Sala, "FLUKA: a multi-particle transport code",

CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.
3. A. Ferrari, and P.R. Sala, “The Physics of High Energy Reactions”, in Proceedings of

Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety,
A. Gandini, G. Reffo eds., Trieste, Italy, April 1996, 2, 424 (1998).

4. V.Vlachoudis “FLUKA Advanced Graphical Interface”, http://www.fluka.org/FLAIR
5. T. Williams, C. Kelley “GNUplot: an interactive plotting program” Version 3.5.
6. POV Team, “Persistency of Vision Ray Tracer (POV-Ray)”, Version 3.0. Technical report.

http://www.porray.org. 1998
7. R.M. Sternheimer, M.J. Berger, S.M. Seltzer “Density effect for the ionization loss of

charged particles in various substances” At. Data Nucl. Data Tab. 30, 261-271 (1984)
8. R. Black, “Managing the Testing Process” (second ed), Wiley, New York (2002).
9. C. Kaner, J. Falk and H.Q. Nguyen, “Testing Computer Software” (second ed), Wiley, New

York (1993).
10. C. Kaner, J. Bach and B. Pettichord, “Lessons Learned in Software Testing. A Context-

Driven Approach”, Wiley, New York (2001).
11. RedHat Inc. “RedHat Package Manager”, http://www.rpm.org
12. M. Lutz, “Programming Python”, O"Reilly & Associates, Sebastopol, Calif., 1996.
13. Fredrik Lundh. 1999. “An introduction to Tkinter”.

http://www.pythonware.com/library/tkinter/introduction/index.htm
14. Briesmeister, J. F., “MCNP - A general Monte Carlo N-particle transport code version 4A”,

LA-12625-M, 693 pp., Los Alamos Natl. Lab., Los Alamos, N.M., 1993.
15. L.S. Waters (Ed.), Los Alamos National Laboratory Report LA-UR 99-6058, Los Alamos,

NM, USA, http://mcnpx.lanl.gov/, “MCNPX User's Manual”, 1999.
16. N. V. Mokhov, “The MARS Code System User’s Guide”, version 13(95), Fermilab-FN-628

(1995).
17. Tuli, J. K., 1995, “Nuclear Wallet Cards”, U.S. Nuclear Data Center.

