

Bachelor's thesis (UAS)

Information Technology

2011

Pablo Molina Martínez

SECURITY ALERTS
COLLECTING SYSTEM
(SYRAS)

– Sistema Recoletor de Alertas de Seguridad

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Degree Programme in Information Technology

Completion of the thesis: June 2011| Total number of pages: 154

Instructor: Patric Granholm

Author: Pablo Molina Martínez

TURUN AMMATTIKORKEAKOULU THESIS

Nowadays, maintaining the integrity of the systems used for information technology is becoming
increasingly important, but at the same time, the task becomes more and more complex due to
the great number of factors involved.

One of the most important measures to maintain secured our systems is to apply available
security updates and patches. Such updates, free and given by software vendors, serve to fix
vulnerabilities in their programs. Keeping updated all the used software we avoid the risk that
our systems are damaged by attackers attempting to exploit known vulnerabilities.

Every new vulnerability or security update published is usually enclosed by a small security alert
or report (called security advisory), which typically includes: the affected products, a brief
description of the problem and the download links to a security patch or newer version which
solve the vulnerability. The security advisories can be received from three different ways
depending on its origin: email alerts, websites that post security alerts, or RSS newsfeeds.

Depending on the source, it will be necessary to implement a type of module for the collection of
such alerts. Therefore, the part responsible for harvesting the advisories will consist of three
modules: E-mail, Web and RSS. Those three modules represent the core of the SyRAS system.

The main idea of the project is to build a centralized system that is able to collect multiple
security advisories from different sources, parse them and save them in a database with a
standard structure. Later on the new advisory, called entry in the database, can be linked to the
product affected by the vulnerability. And in case that product is in an adminstrator’s list of
managed systems, the administrator will have all the information needed to compose and send
a new security advisory in a few minutes.

KEYWORDS:

IT security, security advisory, security alert, collecting system, Python

FOREWORD

I would like to use this page thank a lot of people who have helped me along this way:

to my mum, dad and sister for supporting me all the time,

to the rest of my family and specially my grandparents for being an example for me,

to my teachers for doing a great job,

to all my friends because I won’t be who I am without them,

and finally, to little A for loving me so much despite the distance.

CONTENTS

1 INTRODUCTION 1

1.1 Objectives 3

1.2 Required configuration 6

1.3 Thesis summary 6

2 COMPUTER SECURITY 9

2.1 Definition 9

2.2 Computer vulnerabilities 11

2.3 Managing IT risks 12

3 SECURITY ADVISORIES 15

3.1 Definition 15

3.2 Sources 18

4 THE SYRAS PLATFORM 27

4.1 Definition 27

4.2 Python programming language 27

4.3 Eclipse 29

4.4 Subversion 32

4.5 SQLite 33

4.6 Ubuntu 35

5 ANALYSIS 37

5.1 General overview 37

5.2 Objectives of the system 39

5.3 System requirements catalogue 39

2.1.1 Information security 9

3.2.1 By Origen 19

3.2.2 By Type 25

4.2.1 Python applications 28

4.3.1 Eclipse architecture 30

4.3.2 Pydev 31

4.3.3 Subclipse 32

4.5.1 Features of SQLite 33

4.5.2 SQLite Manager 34

5.4 Static and dynamic model of the system 41

6 DESIGN AND IMPLEMENTATION 45

6.1 General overview 45

6.2 The DB component and the SyRAS database 46

6.3 The Users class 51

6.4 The Products class 53

6.5 The Sources class 56

6.6 The Entries class 66

6.7 The Console class 70

6.8 The syras.py and syrasloop.py modules 73

7 INSTALLATION, TESTING AND USER MANUAL 75

7.1 Installation 75

7.2 SyRAS testing and user manual 77

8 CONCLUSIONS AND FUTURE WORK 85

8.1 Conclusions 85

8.2 Future work 86

5.3.1 Information requirements 39

5.3.2 User level requirements 40

5.3.3 Functional requirements 40

5.3.4 Non-functional requirements 41

5.4.1 Use case diagrams 42

5.4.2 Use case descriptions 42

5.4.3 Static and dynamic diagrams 43

6.2.1 The SyRAS sqlite database 46

6.2.2 The DB class 49

6.5.1 The Email_Sources class 60

6.5.2 The Html_Sources class 62

6.5.3 The Rss_Sources class 64

6.8.1 The syras.py 73

6.8.2 The syrasloop.py 74

7.2.1 Starting SyRAS 77

7.2.2 Using SyRAS 78

REFERENCES 89

APPENDIX 1: DIAGRAMS AND REQUIREMENTS 93

APPENDIX 2: CODE 119

APPENDIX 3: SECURITY ADVISORIES 151

8.2.1 Addition of new sources 86

8.2.2 User alerts 87

8.2.3 New body scripts 87

8.2.4 Web interface 87

FIGURES

Figure 1: Security vulnerabilities 12
Figure 2: FreeBSD Security Advisory 16
Figure 3: Red Hat Errata RSS feed 22
Figure 4: Secunia website (www.secunia.com) 25
Figure 5: SyRAS basic scheme 38
Figure 6: Simple static model for SyRAS 43
Figure 7: General class diagram 45
Figure 8: Users table in SyRAS database 47
Figure 9: Products table in SyRAS database 47
Figure 10: Entries table in SyRAS database 48
Figure 11: Sources table in SyRAS database 49
Figure 12: DB class diagram 50
Figure 13: Users class diagram 51
Figure 14: Products class diagram 54
Figure 15: Simple Sources class diagram showing inheritance 56
Figure 16: Sources class diagram 57
Figure 17: Email_Sources class diagram 60
Figure 18: Html_Sources class diagram 63
Figure 19: Rss_Source class diagram 65
Figure 20: Entries class diagram 67
Figure 21: Console class diagram 70
Figure 22: SyRAS files and source code 76
Figure 23: SyRAS filesystem, execution and help command 78
Figure 24: SyRAS login command 79
Figure 25: SyRAS browse command 79
Figure 26: Browse command result 80
Figure 27: SyRAS collect command 80
Figure 28: SyRAS delete command 81
Figure 29: SyRAS list command 81
Figure 30: SyRAS logout command 81
Figure 31: SyRAS priority command 82
Figure 32: SyRAS save command 82
Figure 33: SyRAS save command result 82
Figure 34: SyRAS show command 83
Figure 35: SyRAS exit command 83

LIST OF ABBREVIATIONS (OR) SYMBOLS

API Application Programming Interface

DB Database

CGI Common Gateway Interface

CLI Command Line Interface

CVE Common Vulnerabilities and Exposures

GNU General Public License

GUI Graphical User Interface

HTML HyperText Markup Language

IDE Integrated Development Environment

LGPL Lesser General Public License

LOPD Ley Orgánica de Protección de Datos de Carácter Personal

OS Operative System

RSS Really Simple Syndication

SDK Software Development Kit

SQL Structured Query Language

SVN Subversion

UML Unified Modeling Language

UNIX Trademarked operative system

XML Extensive Markup Language

1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

1 INTRODUCTION

Nowadays, maintaining the integrity of the systems used for information

technology is becoming increasingly important, but at the same time, the task

becomes more and more complex due to the great number of factors involved.

The term computer system security means the collective processes and

mechanisms by which sensitive and valuable information and services are

protected from publication, tampering or collapse by unauthorized activities or

untrustworthy individuals and unplanned events, respectively.

The objective of computer security [1] includes protection of information and

property from theft, corruption, or natural disaster, while allowing the information

and property to remain accessible and productive to its intended users. For a

system to be defined as secure, it should have several basic characteristics,

such as: confidentiality, integrity, availability, accountability and assurance.

 In practice, new security flaws or vulnerabilities [2] are published every day in

critical software used by thousands of people, hence the need to manage the

security of our information systems in an efficient manner.

In corporate environments the need to keep computer systems secure is even

greater. If an attacker gained access to systems getting sensitive information

such as future projects, customer data, this could pose serious problems for the

company: loss of large amounts of money, poor corporate image towards clients

and possible legal consequences in case personal information is exposed. In

2

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

that case, it would inflict the Spanish Data Protection Act (LOPD - Ley Orgánica

de Protección de Datos de Carácter Personal) [3] [4].

One of the most important measures to maintain our systems secured is to

apply available security updates and patches. Such updates, free and given by

software vendors, serve to fix vulnerabilities in their programs. By keeping

updated all the used software, we avoid the risk that our systems are damaged

by attackers attempting to exploit known vulnerabilities.

Every new vulnerability or security update published usually encloses a small

security alert or report (called security advisory [5]), which typically includes: the

affected products, a brief description of the problem and the download links to a

security patch or newer version which solve the vulnerability.

The problem here is that keeping systems up to date is not an easy task.

System administrators should be aware of new security updates for products

used and apply the updates as soon as possible to minimize risk.

To facilitate this task, some manufacturers have decided to publish security

bulletins regularly. An example can be Oracle, Cisco or Microsoft [6].

Unfortunately the vast majority of manufacturers does not use this policy.

There are programs with self-updaters, but to make this more complicated,

there is another type of software that does not give us any clue about security

problems or updates, and only discloses them via its security bulletins,

sometimes published on websites and others via RSS or mailing lists.

3

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Ultimately, there are specialized channels where researchers disclose

vulnerabilities before manufacturer reports on them or make available a

countermeasure. This case is especially sensitive, since these channels can get

to publish proof-of-concept (or exploits) that could be used to attack a failure in

our systems before there is a solution.

1.1 Objectives

Given the need to implement security updates as soon as possible, and how

difficult it is to get all the information and security alerts, the main objective of

this project is to build a centralized system to collect all the advisories. A

Security alerts-collecting system which will be referred to as “SyRAS”

from now on.

As was mentioned above, there is a variety of sources from which security

advisories can be collected. Then a classification has been carried out in

response to two different criteria, by origin and type.

Criteria 1: Origin: The sources of the security advisories can be received from

three different ways depending on their origin: email alerts, websites that post

security alerts, or RSS newsfeeds.

Email: It would require implementing an email account to receive all security

alerts that come from various mailing lists.

Ex: Vupen mailing list [7], Gentoo mailing list [8]

4

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Website: We need an automated system to visit the web pages, download, and

parse the HTML code.

Ex: Secunia website [9], SecurityTracker website [10]

RSS: System for collecting news feeds (RSS). It can be done by visiting the

website directly or in a separate module for RSS. The second option will be the

one used in this work.

Ex: Debian [11], Ubuntu [12], Gentoo [13], Securityfocus [14], OSVDB [15].

Criteria 2: Type: This refers to sources that affect different products, or just one

product.

A- General Sources: They are global sources that can contain security alerts

for different kind of products.

Ex: Vupen mailing list, Secunia website, Securitytracker website, Securityfocus

RSS, OSVDB RSS.

B- Specific Sources: They are the ones which are concerned only with a

product or manufacturer.

Ex: Gentoo mailing list, Debian RSS, Ubuntu RSS, Gentoo RSS.

Depending on the source, it will be necessary to implement a type of module for

the collection of such alerts. Therefore, the part responsible for harvesting the

advisories will consist of three modules: E-mail, Web and RSS. Those three

modules represent the core of the SyRAS system.

5

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Once the security alerts are collected, they will be converted to a single prefixed

format for greater convenience when it comes to using them, and they will be

inserted into the databases.

From there, the system will attempt to associate the alert to a particular product.

Different techniques can be applied, although it was initially carried out by

search strings or making use of Regular Expressions (Regex).

Once various security alerts have been collected, it is possible to do a series of

transformations on them to get the title, the body of the alert, permalink, etc. In

addition, scripts can be applied to obtain the additional identifier CVE [16], or to

modify the body of the alert.

As a final part, a command line interface has been developed, including a login

system for users. The interface can collect, show, save and modify all the new

alerts and also show the different tables for users, products, and sources.

The main idea of the project is to build a centralized system that is able to

collect multiple security advisories from different sources, parse them, and save

them in a database with a standard structure. Later on the new advisory, called

entry in the database, can be linked to the product affected by the vulnerability.

And in case that product is in the list of managed systems, it will make available

all the information needed to compose and send a new security advisory in a

few minutes.

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

1.2 Required configuration

The following systems set up have been used in this project:

- Ubuntu 10.10 Maverick Merkaat as Operative System.

- Eclipse 3.5.2 Galileo as Software Development Kit.

- SQLite 3.7.3 as Database.

- Python 2.6.5 as Programming Language.

- Mozilla Firefox 3.6.12 + SQLite Manager 0.6.5 as Database Manager.

- Several standard and non-standard Python libraries have been used.

They will be referred to in the following chapters.

1.3 Thesis summary

The thesis is organized in eight chapters. After this introduction chapter, the

next chapters have been structured in the following way:

 Chapter 2: Computer Security

This chapter introduces computer and information security. It defines

several concepts that will be used in the following chapters, such as IT

security, computer vulnerabilities, etc. It reviews the current situation and

gives some tips about security management systems.

 Chapter 3: Security Advisories

Every new vulnerability or security update published is usually enclosed

by a small security alert or report (called security advisory or security

bulletin), which typically includes: affected products, a brief description

of the problem, and the download links to a security patch, or newer

version which solve the vulnerability. This chapter defines what a security

advisory is and the different sources to look for them.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Chapter 4: The SyRAS platform

This chapter provides a small introduction to the different software and

platforms used in the SyRAS project. It will give an overview of the

Python programming language, the Eclipse Software Development Kit,

the SQLite database and the Ubuntu Operative System. Programming

language, SDK, DB and OS are the tools used for building the SyRAS

software.

 Chapter 5: Analysis

In this chapter we will see the analysis phase of the application

developed for the SyRAS project. We will study the requirements that the

application must meet to complete the objectives of the project. Based on

these requirements, we will extract the use cases from the application

and obtain a static view of system and dynamic view using sequence

diagrams.

 Chapter 6: Design and implementation

In this chapter we will revise the static models defined in the analysis

section, but with more detail and including the entity-relationship model.

This chapter will also explain the implementation of the most important

parts of the system.

 Chapter 7: Installation, testing and user manual

This chapter shows the steps to be followed for installation, configuration

and testing of the SyRAS system.

 Chapter 8: Conclusions and future work

This is the last chapter of the thesis memory; it embodies reflections on

the project addressed, and possible improvements and future work that

could be carried out related to the SyRAS project.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

2 COMPUTER SECURITY

2.1 Definition

This chapter introduces computer and information security. It defines several

concepts that will be used in the following chapters, such as IT security,

computer vulnerabilities, etc. It reviews the current situation and gives some tips

about security management systems.

Computer security is a branch of computer technology known as information

security as applied to computers and networks. The objective of computer

security includes protection of information and property from theft, corruption, or

natural disaster, while allowing the information and property to remain

accessible and productive to its intended users. The strategies and

methodologies of computer security often differ from most other computer

technologies because of its somewhat elusive objective of preventing unwanted

computer behavior instead of enabling wanted computer behavior.

2.1.1 Information security

Information security means protecting information and information systems

from unauthorized access, use, disclosure, disruption, modification, perusal,

inspection, recording, or destruction. [17]

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The key concepts for Information security are:

 Confidentiality is the term used to prevent the disclosure of information

to unauthorized individuals or systems.

 Integrity means that data cannot be modified undetectably.

 Availability: The information must be available always when it is

needed.

 Authenticity ensures that the data, transactions, communications or

documents are genuine, and also that both parties involved are who they

claim they are.

 Non-repudiation implies that one party of a transaction cannot deny

having received a transaction nor can the other party deny having sent a

transaction.

The terms information security, computer security and information

assurance are frequently used interchangeably. These fields are interrelated

often and share the goals of protecting the confidentiality, integrity and

availability of information; however, there are some differences between them.

These differences lie primarily in the approach to the subject, the methodologies

used, and the areas of concentration. Information security is concerned with the

confidentiality, integrity, and availability of data regardless of the form the data

may take: electronic, print, or other forms. Computer security can focus on

ensuring the availability and correct operation of a computer system without

concern for the information stored or processed by the computer.

Governments, military, corporations, financial institutions, hospitals, and private

businesses handle a great amount of confidential information about their

employees, customers, products, research, and financial status. If it falls into

the hands of a competitor, such a breach of security could lead to lost business,

law suits or even bankruptcy of the business.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Protecting confidential information is a business requirement, and in many

cases also an ethical and legal requirement, as seen in the Spanish LOPD. [3]

[4]

The field of information security has evolved significantly in recent years. It has

many areas for specialization including: securing networks and allied

infrastructure, securing applications and databases, security testing, information

systems auditing, business continuity planning and digital forensics science,

etc.

2.2 Computer vulnerabilities

In computer security, vulnerability is a weakness which allows an attacker to

reduce a system's information assurance. Vulnerability is the intersection of

three elements: a system susceptibility or flaw, attacker access to the flaw, and

attacker capability to exploit the flaw. To be vulnerable, an attacker must have

at least one applicable tool or technique that can connect to a system

weakness. [2]

According to Microsoft: ―A security vulnerability is a flaw in a product that

makes it infeasible – even when using the product properly - to prevent an

attacker from usurping privileges on the user's system, regulating its operation,

compromising data on it, or assuming ungranted trust.(…) These are the types

of issues we generally address via security bulletins.” [18]

A resource (physical or logical) can have one or more vulnerabilities that can be

exploited by an agent in a threat action, as shown in Figure 1. The result can

compromise the confidentiality, integrity or availability properties of resources

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

(potentially different that the vulnerable one) of the organization and others

involved parties (customers, suppliers).

The attack can be active when it attempts to alter system resources or affect

their operation: so it compromises integrity or availability. A "passive attack"

attempts to learn or make use of information from the system but does not

affect system resources, so it compromises confidentiality.

Figure 1. Security vulnerabilities

2.3 Managing IT risks

The impact of a security breach can be very high. The fact that IT managers, or

upper management, can know that IT systems and applications have

vulnerabilities and do not perform any action to manage the IT risk is seen as

misconduct in most legislations. Privacy law forces managers to act to reduce

the impact or likelihood of security risk.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The only way to reduce the chance of a vulnerability being used against a

system is through constant vigilance, including careful system maintenance

(e.g., applying software patches), best practices in deployment and auditing. As

mentioned before, one of the most important measures that IT managers have

to do is to apply available security updates and patches. Such updates, free and

given by software vendors, serve to fix vulnerabilities in their programs.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

3 SECURITY ADVISORIES

3.1 Definition

Every new vulnerability or security update published is usually enclosed by a

small security alert or report (called security advisory or security bulletin),

which typically includes: affected products, a brief description of the problem,

and the download links to a security patch or newer version which solve the

vulnerability. This chapter defines what a security advisory is and the different

sources to look for them.

For a better understanding the author will use the description, shown in Figure

2, of a security advisory made by FreeBSD (an advanced operating system for

modern server, desktop, and embedded computer platform based on BSD

UNIX). [5]

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 2. FreeBSD Security Advisory

1. The Topic field indicates exactly what the problem is. It is basically an

introduction to the current security advisory and notes the utility with the

vulnerability.

2. The Category refers to the affected part of the system which may be

one of core, contrib, or ports. The core category means that the

vulnerability affects a core component of the FreeBSD operating system.

The contrib category means that the vulnerability affects software

contributed to the FreeBSD Project, such as sendmail. Finally

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

the ports category indicates that the vulnerability affects add-on

software available as part of the Ports Collection.

3. The Module field refers to the component location, for instance sys. In

this example, we see that the module, sys, is affected; therefore, this

vulnerability affects a component used within the kernel.

4. The Announced field reflects the date the security advisory was

published, or announced to the world. This means that the security team

has verified that the problem does exist and that a patch has been

committed to the FreeBSD source code repository.

5. The Credits field gives credit to the individual or organization who

noticed the vulnerability and reported it.

6. The Affects field explains which releases of FreeBSD are affected by

this vulnerability. For the kernel, a quick look over the output

from ident on the affected files will help in determining the revision. For

ports, the version number is listed after the port name in /var/db/pkg.

If the system does not sync with the FreeBSDCVS repository and rebuild

daily, chances are that it is affected.

7. The Corrected field indicates the date, time, time offset, and release

that was corrected.

8. Reserved for the identification information is used to look up

vulnerabilities in the Common Vulnerabilities Database system.

9. The Background field gives information on exactly what the affected

utility is. Most of the time this is why the utility exists in FreeBSD, what it

is used for, and a bit of information on how the utility came to be.

10. The Problem Description field explains the security hole in depth.

This can include information on flawed code, or even how the utility could

be maliciously used to open a security hole.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

11. The Impact field describes what type of impact the problem could have

on a system. For example, this could be anything from a denial of service

attack, to extra privileges available to users, or even giving the attacker

superuser access.

12. The Workaround field offers a feasible workaround to system

administrators who may be incapable of upgrading the system. This may

be due to time constraints, network availability, or a slew of other

reasons. Regardless, security should not be taken lightly, and an

affected system should either be patched or the security hole

workaround should be implemented.

13. The Solution field offers instructions on patching the affected system.

This is a step-by-step tested and verified method for getting a system

patched and working securely.

14. The Correction Details field displays the CVS branch or release

name with the periods changed to underscore characters. It also shows

the revision number of the affected files within each branch.

15. The References field usually offers sources of other information. This

can include web URLs, books, mailing lists, and newsgroups.

3.2 Sources

As mentioned before, there are a variety of sources from which security

advisories can be collected. Having in mind the need to keep the systems

updated at anytime, we should collect the information from as many of them as

possible. Then, depending on the reliability of every one of them, we can

contrast the information coming from different sources to have a good overall

picture of the vulnerabilities, problems and risks that can affect our managed

systems.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Then a classification has been carried out in response to two different criteria,

by origin and type.

3.2.1 By Origen

The security advisories can be received from three different ways depending on

the origin of its sources: email alerts, websites that post security alerts, or RSS

newsfeed.

The SyRAS software implements three different modules to perform the

collection of security advisories coming for the different sources. The modules

will be explained in the following sections.

1. E-mail

It is very common to subscribe to security mailing lists managed by software

vendors, which allow receiving new security alerts in an email inbox. Of course,

this option would require having an email account to receive all security alerts

that come from various mailing lists. The account syrasfeed@gmail.com is the

one used for this purpose.

The following is a clear example of this policy and it is taken as-is from the

―Notifications and Advisories‖ website by Red Hat Linux [19]:

Get notified about new security advisories

A number of public mailing lists send notifications about new security

advisories for Red Hat products:

mailto:syrasfeed@gmail.com

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Subscribe to rhsa-announce if you want advisories for every Red Hat

product and service.

 Subscribe to enterprise-watch-list if you want advisories only for Red Hat

Enterprise products.

 Subscribe to jboss-watch-list if you want advisories only for JBoss

Enterprise Middleware products.

 Subscribe to rhev-watch-list if you want advisories only for Red Hat

Enterprise Virtualization products.

There are lots of mailing lists similar to the given example that provide

information about a product or vendor, but there are other vendor independent

lists worth mentioning. As an example the author would like to point out the

most popular of them called Full-Disclosure, an unmoderated high-traffic forum

for disclosure of security information that has been working since 2002. [20]

Here there are some of the most important vendor dependent mailing lists,

including its permalinks:

 Apache - Apache Week, includes Apache security alerts.

 Debian: Security Announcements - Security announce mailing list for

Debian Linux.

 Gentoo Linux - List of security announcements and information on how to

sign up to security mailing list.

 Microsoft - How to subscribe to the (free) e-mail notification service that

Microsoft uses to send information about security of Microsoft products.

 NetBSD - Security mailing list subscription.

 OpenBSD - All OpenBSD mailing lists, including security alerts.

 Oracle - Oracle security mailing list requiring registration.

 Red Hat Linux - Notifications and advisories. Security mailing list

subscription is on this page.

 SuSE Linux - All SuSE Linux mailing lists, including security alerts.

http://www.redhat.com/mailman/listinfo/rhsa-announce
http://www.redhat.com/mailman/listinfo/enterprise-watch-list
http://www.redhat.com/mailman/listinfo/jboss-watch-list
http://www.redhat.com/mailman/listinfo/rhev-watch-list
http://www.apacheweek.com/aw/email
http://lists.debian.org/debian-security-announce/
http://www.gentoo.org/security/en/index.xml
http://www.microsoft.com/technet/security/bulletin/notify.mspx
http://www.netbsd.org/cgi-bin/subscribe_list.pl?list=tech-security
http://www.openbsd.org/mail.html
http://www.oracle.com/technology/deploy/security/securityemail.html
http://www.redhat.com/security/updates/advisory/
http://www.suse.com/en/private/support/online_help/mailinglists/index.html

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Sun Security Information - It ncludes subscription instructions for the Sun

security-alert mailing list. Subscribe to this list to be alerted when security

patches are released. Very low volume.

The mailing lists used in the SyRAS working demo are the following:

Vupen mailing list [7], Gentoo mailing list [8].

2. RSS

RSS (most commonly expanded as Really Simple Syndication) is a family of

web feed formats used to publish frequently updated works in a standardized

format. This format is widely used and helps to be updated with the latest news

published in several IT security websites.

The following lines could be a good example and are also taken as-is from the

―Notifications and Advisories‖ website by Red Hat Linux: [19]:

An RSS feed for Red Hat advisories is also available. To take advantage of this

service, point your favorite RSS client to the Red Hat advisory RSS feed.

And the result of the RSS feed is shown in Figure 3:

http://sunsolve.sun.com/pub-cgi/show.pl?target=security/sec
https://rhn.redhat.com/rpc/recent-errata.pxt

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 3. Red Hat Errata RSS feed

This option would require implementing an RSS client to receive all security

alerts that come from various RSS feeds.

The RSS feeds used in the SyRAS working demo are the following:

Ex: Debian [11], Ubuntu [12], Gentoo [13], Securityfocus [14] and OSVDB [15].

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

3. Website

As expected, websites are the most common source for finding security

advisories and IT security information. There are many websites related to the

topic, coming from vendors, researchers and IT security companies.

Here there are some of the most important among them:

 CERIAS - Center for Education and Research in Information Assurance

and Security. University center for multidisciplinary research and

education in areas of information security.

 US-CERT - Established in 2003 to protect the nation's Internet

infrastructure, US-CERT coordinates defense against and responses to

cyber attacks across the nation.

 Apache HTTP Server Vulnerability Lists - Lists of security problems fixed

in released versions of the Apache HTTP Server.

 AusCERT - Australian Computer Emergency Response Team.

Advisories and tools.

 Bugtraq - Independent source for security vulnerabilities, alerts, and

threats.

 CERT Coordination Center - studies Internet security vulnerabilities,

provides incident response services to sites that have been the victims of

attack.

 ISS X-Force - Security alerts, advisories, and alert summaries from ISS.

 Linux Security Group - Security Advisories, Anti Hackers, programming

books and related links.

 New Zealand Computer Emergency Readiness Team - Charitable trust

established to improve the general information security posture of New

Zealand society. Provides news, alerts, trends and statistics.

 Open Source Vulnerability Database - Searchable database of

vulnerabilities. It offers data for download in XML format as well as via

website.

http://www.cerias.purdue.edu/
http://www.us-cert.gov/
http://httpd.apache.org/security_report.html
http://www.auscert.org.au/
http://www.securityfocus.com/archive/1
http://www.cert.org/
http://xforce.iss.net/xforce/alerts
http://www.linux-security.us/
http://www.nzcert.org.nz/
http://www.osvdb.org/

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Oracle Security Center - Tips, tools, and technologies to keep Oracle

products safe, secure, and patched.

 Patch Management Forum - Mailing list facilitates networking and

information exchange related to patch management: announcements,

testing, verification, operations processes, and vulnerabilities.

 PatchAdvisor - Fee based patch alert service.

 PatchManagement.org - Mailing list dedicated to the discussion of patch

management.

 SANS Internet Storm Center - Cooperative cyber threat monitor and alert

system.

 Secunia – It provides security advisories information about patches,

software and vulnerability management.

 Symantec DeepSight Threat Management System – Fee-based security

alert service that provides early warning of active attacks.

 VUPEN Security – It provides security advisories and real-time

information about vulnerabilities, exploits, and threats. It also provides

vulnerability management and pentesting solutions.

Figure 4 shows an example of one of the most famous and reliable sources, the

website of the Danish IT security company Secunia.

http://www.oracle.com/technology/deploy/security/index.html
http://groups.yahoo.com/group/patchmgmt/
http://www.patchadvisor.com/
http://www.patchmanagement.org/
http://isc.sans.org/
http://secunia.com/
http://www.symantec.com/Products/enterprise?c=prodinfo&refId=988
http://www.vupen.com/english/

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 4. Secunia website (www.secunia.com)

Another module of SyRAS is an automated system that visits web pages,

downloads their content and parses the HTML code, extracting the important

parts to compose the security advisories.

The websites used in the SyRAS working demo are the following:

Secunia website [9], SecurityTracker website [10].

3.2.2 By Type

The SyRAS software is able to collect security advisories from two different

sources according to its type. There are general sources that can publish

information for any kind of software, and specific sources that publish

advisories affecting just one product or vendor.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The sources of the security advisories can be E-mail, RSS or Website

depending on its origin, and general or specific depending on its type.

1. General sources

Global sources may contain security alerts for different kind of products. They

publish advisories from multiple products and are vendor-independent. Usually,

these sites belong to some public organization, research center or IT security

company.

All the examples, except for the Oracle source, shown in the previous section

(3.2.1 - Website) are general sources.

The general sources used in the SyRAS working demo are the following:

Vupen mailing list [7], Secunia website [9], Securitytracker website [10],

Securityfocus RSS [14] and OSVDB RSS [15].

2. Specific sources

They are the ones which are concerned only with a product or manufacturer.

Usually, belong to a company or vendor and are essential to provide updated

information about the latest bugs and patches that affect a concrete system or

software.

All the examples, except Vupen, shown in the previous section (3.2.1 – E-mail)

are specific sources.

The specific sources used in the SyRAS working demo are the following:

Ex: Gentoo mailing list [8], Debian RSS [11], Ubuntu RSS [12], Gentoo RSS

[13].

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

4 THE SYRAS PLATFORM

4.1 Definition

This chapter provides a small introduction to the different software and

platforms used in the SyRAS project. It will give an overview of the Python

programming language, the Eclipse Software Development Kit, the SQLite

database and the Ubuntu Operative System. Programming language, SDK, DB

and OS are the tools used for building the SyRAS software.

4.2 Python programming language

Python is an interpreted, general-purpose high-level programming language

whose design philosophy emphasizes code readability. Python aims to combine

"remarkable power with very clear syntax", and its standard library is large and

comprehensive. Its use of indentation for block delimiters is unusual among

popular programming languages. [21]

Python supports multiple programming paradigms, primarily but is not limited to

object-oriented, imperative and, to a lesser extent, functional programming

styles. It features a fully dynamic type system and automatic memory

management, similar to that of Scheme, Ruby, Perl, and Tcl. Like other dynamic

languages, Python is often used as a scripting language, but is also used in a

wide range of non-scripting contexts.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The reference implementation of Python (CPython) is free and open source

software and has a community-based development model, as do all or nearly all

of its alternative implementations. CPython is managed by the non-profit Python

Software Foundation.

Python interpreters are available for many operating systems, and Python

programs can be compiled into stand-alone executable code for those systems,

using tools included with the interpreter installation package. The Python

interpreter used for the SyRAS software is: Python 2.6.6 (r266:84292, Sep 15

2010, 15:52:39). [GCC 4.4.5] on linux2

4.2.1 Python applications

Python offers a wide range of choices for developers, including the following:

[22]

 For web and internet:

o Writing basic CGI scripts.

o Frameworks such as Django and TurboGears.

o High-end solutions such as Zope.

o Advanced content management systems such as Plone.

o Extensive support for HTML and XML.

o E-mail processing.

o Processing RSS feeds.

o Support for many other Internet protocols.

 For database access:

o Custom and ODBC interfaces to MySQL, Oracle, MS SQL Server,

PostgreSQL, SybODBC, and others are available for free download.

o Standard Database API.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o Object databases such as ZODB and Durus.

 For desktop GUIs:

o The Tk GUI development library is included with most binary

distributions for Python.

o wxWidgets

o GTK+

o Qt via pyqt or pyside

o Microsoft Foundation Classes through the win32 extensions

o Delphi

And many others applications used for networking, game developing,

education, scientific and numeric computing, 3D graphics and so on.

4.3 Eclipse

Eclipse is a multi-language software development environment comprising of an

Integrated Development Environment (IDE) and an extensible plug-in system. It

is written mostly in Java and can be used to develop applications in Java and,

by means of various plug-ins, other programming languages including Ada, C,

C++, COBOL, Perl, PHP, Python, Ruby (including Ruby on Rails framework),

Scala, and Scheme. [23]

Users can extend its abilities by installing plug-ins written for the Eclipse

software framework, such as development toolkits for other programming

languages, and can write and contribute their own plug-in modules.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Eclipse is released under the terms of the Eclipse Public License and it is free

and open source software. The Eclipse SDK used for programming the SyRAS

software is: Eclipse SDK Version: 3.5.2 (codename Galileo). Build id:

M20100211-1343

4.3.1 Eclipse architecture

Eclipse employs plug-ins in order to provide all of its functionality on top of (and

including) the runtime system, in contrast to some other applications where

functionality is typically hard coded. The runtime system of Eclipse is based on

Equinox, an OSGi standard compliant implementation.

This plug-in mechanism is a lightweight software componentry framework. In

addition to allowing Eclipse to be extended using other programming languages

such as Python, the plug-in framework allows Eclipse to work with typesetting

languages like LaTeX, networking applications such as telnet and database

management systems. The plug-in architecture supports writing any desired

extension to the environment, such as for configuration management. The

Subversion support is provided by third-party plug-ins. With the exception of a

small run-time kernel, everything in Eclipse is a plug-in. [24]

The IDE also makes use of a workspace, in this case a set of metadata over a

flat filespace allowing external file modifications as long as the corresponding

workspace "resource" is refreshed afterwards.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

4.3.2 Pydev

Pydev (Python Development Environment) is a third-party plug-in for Eclipse. It

is an Integrated Development Environment (IDE) used for programming in

Python. It uses advanced type inference techniques to provide features such

code completion and code analysis, while still providing many others such as a

debugger, interactive console, refactoring, etc: [25] [26]

Below are some of its highlighted features CPython, Jython and IronPython

support:

o Django integration

o Code completion

o Code completion with auto import

o Syntax highlighting

o Code analysis

o Go to definition

o Refactoring

o Mark occurrences

o Debugger

o Remote debugger

o Tokens browser

o Interactive console

o Unittest integration

The Pydev IDE used for programming the SyRAS software is: Pydev - Python

Development Environment 1.6.3.2010100513.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

4.3.3 Subclipse

Subclipse is an Eclipse Team Provider plug-in providing support for Subversion

within the Eclipse IDE. Developed and maintained by Subversion core

committers, Subclipse is always in synchronisation with the latest Subversion

features and releases. [27]

Subclipse includes a powerful revision graph feature that is built with Eclipse

GEF/Draw2D. This allows to visualize commits and merges across Subversion

branches. The Subclipse plug-in used for synchronizing the different versions of

the SyRAS software is: Subclipse – SVN Client Adapter 1.6.12

4.4 Subversion

Apache Subversion (often abbreviated SVN) is a software versioning and a

revision control system founded in 2000. Developers use Subversion to

maintain current and historical versions of files such as source code, web

pages, and documentation. [24]

It is a mostly-compatible successor to the widely used Concurrent Versions

System (CVS) and uses the Apache License, making it free software and open

source.

The Subclipse plug-in is the one used as SVN client for synchronizing the

different versions of the SyRAS: Subclipse – SVN Client Adapter 1.6.12

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

4.5 SQLite

SQLite is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. SQLite is the most widely

deployed SQL database engine in the world. The source code for SQLite is in

the public domain. [28]

Unlike the client–server database management systems, the SQLite engine has

no standalone processes with which the application program communicates.

Instead, the SQLite library is linked in and thus becomes an integral part of the

application program. The library can also be called dynamically. The application

program uses SQLite functionality through simple function calls, which reduce

latency in database access - function calls within a single process are more

efficient than inter-process communication. SQLite stores the entire database

(definitions, tables, indices, and the data itself) as a single cross-platform file on

a host machine. It implements this simple design by locking the entire database

file during writing.

The SQLite database is used for storing all the information collected by the

SyRAS software is: SQLite 3.7.1.

4.5.1 Features of SQLite

The most important features of SQLite are the following: [29]

o Atomic, consistent, isolated, and durable (ACID) transactions even

after system crashes and power failures.

o Zero-configuration - no setup or administration needed.

o It implements most of SQL92.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o A complete database is stored in a single cross-platform disk file.

o It supports terabyte-sized databases and gigabyte-sized strings and

blobs.

o It has small code footprint: less than 325KiB fully configured

o It is faster than popular client/server database engines for most

common operations.

o It has simple, easy to use API.

o Written in ANSI-C. TCL bindings included. Bindings for dozens of

other languages available separately.

o Well-commented source code with 100% branch test coverage.

o Available as a single ANSI-C source-code file that you can easily

drop into another project.

o Self-contained: no external dependencies.

o Cross-platform: Unix (Linux and Mac OS X), OS/2, and Windows

(Win32 and WinCE) are supported out of the box.

o Sources are in the public domain. Use for any purpose.

o Comes with a standalone command-line interface (CLI) client that can

be used to administer SQLite databases.

4.5.2 SQLite Manager

SQLite Manager is a SQLite database manager provided as a Firefox

extension. By providing the software as a Firefox extension, SQLite Manager is

available on many different platforms and trivially easy to install. It is also

available for a few other environments. [30]

It allows the user to:

o View the contents of one or more SQLite databases.

o Manage tables, indexes, views and triggers.

o View and manage the records.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o Build an SQL query and execute it.

o Export data to CSV or XML.

The SQLite Manager used for handling the SyRAS database information is:

SQLite 3.7.1.

4.6 Ubuntu

Ubuntu is a computer operating system based on the Debian GNU/Linux

distribution and distributed as free and open source software. Ubuntu is a fork

of the Debian project's codebase and focuses on usability, security and stability.

[31]

Ubuntu is composed of many software packages, the vast majority of which are

distributed under a free software license, making an exception only for some

proprietary hardware drivers. The main license used is the GNU General Public

License (GNU GPL) which, along with the GNU Lesser General Public License

(GNU LGPL), explicitly declares that users are free to run, copy, distribute,

study, change, develop, and improve the software. On the other hand, there is

also proprietary software available that can run on Ubuntu. [32] [33]

The Ubuntu OS used for hosting the SyRAS system is: Ubuntu 10.10 - Maverick

Meerkat.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

5 ANALYSIS

5.1 General overview

In this chapter we will analyse the application developed for the SyRAS project.

We will study the requirements that the application must meet to complete the

objectives of the project. We will extract the use cases from the application and

obtain a static view of system and dynamic view using sequence diagrams.

Given the need to implement security updates as soon as possible, and how

difficult it is to get all the information and security alerts, the goal of this project

is to build a centralized system to collect all the advisories. A Security alerts-

collecting system (SyRAS).

As was mentioned before, there is a variety of sources from which security

advisories can be collected. Therefore, the part responsible for harvesting the

advisories will consist of three modules: E-mail, Web and RSS, as shown in

Figure 5.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 5. SyRAS basic scheme

Once the security alerts are collected, they will be converted to a single prefixed

format for greater convenience when it comes to using them, and they will be

inserted into a database, where all the information will be stored.

From there, the system will attempt to associate the alert to a particular product.

Different techniques can be applied, although it is initially carried out by string

search or using Regular Expressions (Regex).

Once we have collected the various security alerts, it is possible to do a series

of transformations on them to get the title, the body of the alert, permalink, etc.

In addition, scripts can be applied to obtain the additional identifier CVE or to

modify the body of the alert.

As a final part, a command line interface has been developed, including a login

system for users. The interface can collect, show, save, and modify all the new

alerts and also show the different tables for users, products and sources.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

5.2 Objectives of the system

The objectives to reach by the SyRAS system, widely explained in the Appendix

1, are the following:

1- Collect security advisories and

2- Manage and show the collected information,

5.3 System requirements catalogue

Here are the requirements the system must meet to achieve the objectives. The

requirements will be of three different types: information and restrictions,

functional and non-functional. All the requirements can be checked in Appendix

1.

5.3.1 Information requirements

The information requirements the SyRAS system, widely explained in the

Appendix 1, are the following:

1- Information about SyRAS users

2- Information about SyRAS sources

3- Information about SyRAS products

4- Information about SyRAS entries (advisories)

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

5.3.2 User level requirements

This section will describe the three different user levels that can be used to

manage the SyRAS software.

 Guest: It is the default user and does not need to log in.

o It only has access to the following options:

 Login

 Help (general and specific)

 Exit

 User: It is the regular user to interact with the SyRAS software. It needs to

login using username and password.

o It has access to all the options but the delete option.

 Administrator: It is the supervisor user to interact with the SyRAS software.

It needs to login using username and password.

o It has access to all the options including the delete option to erase an

entry, product, source or user from the database.

5.3.3 Functional requirements

This section will list the SyRAS system functional requirements. All the details

can be seen in Appendix 1.

1- Login a user

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

2- Collect new entries

3- List data

4- Query a specific database entry

5- Browse a specific source or advisory entry

6- Change priority

7- Delete a specific database entry

8- Command history

9- Command auto complete

10- Collecting loop

5.3.4 Non-functional requirements

This section will list the SyRAS system non-functional requirements. All the

details can be seen in Appendix 1.

1- PC requirements

2- Application name

3- Portablility

4- Future improvements

5.4 Static and dynamic model of the system

The next section shows the analysis of the requirements obtained and the

diagrams produced showing the static and dynamic behavior of the system.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The SyRAS application allows the user to interact with the system, so an

analysis will be made through use cases and sequence diagrams. The static

model of the system will also be displayed. The full information can be seen in

Appendix 1.

We can start by defining the system's stakeholders. As explained before, there

are three different users that can interact with the SyRAS system:

1- SyRAS guest

2- SyRAS user

3- SyRAS administrator

5.4.1 Use case diagrams

The use case diagrams for the different actors: guest, user and administrator,

are also included in Appendix 1.

5.4.2 Use case descriptions

The next step is make a description of the use cases previously specified, all of

them are specified in Appendix 1.

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

5.4.3 Static and dynamic diagrams

After defining the use cases and taking into account the requirements, the next

step is to define a very simple static model that will help us to show the

interaction between the different components. The simple static model of the

system is as shown in Figure 6.

Figure 6: Simple static model for SyRAS

The Command Line Interface is used by the user (or actor) to interact with the

system. The Data Layer is used to store and collect data from the database.

The External Data Sources are used to collect new information from the

sources that will be stored as new entries in the database. Finally, the External

Interface will be used to show some information from the Data Layer in an

interface different from the Command Line.

Having defined the static model of the system, the next step is to define the

system dynamic model using sequence diagrams. There is a diagram for each

use case where the exchange of messages between the various system objects

can be appreciated. All the diagrams are in Appendix 1.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

6 DESIGN AND IMPLEMENTATION

6.1 General overview

The following class diagram gives a general overview of all the components

included in the SyRAS system, specifying the way they are related with each

other to interact inside the system.

Figure 7: General class diagram

As it can be seen in Figure 7, there are two main components interacting with

the others:

 The first one is the Console component (named Command Line Interface in

the simple static model explained previously). This component is used to get

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

the orders from the system user and it is connected with the different source

components (Email_Sources, Html_Sources, Rss_Sources), with User,

Entries, Products and also with DB, the other core component.

 The second is the DB component (named Data Layer in simple static model

explained previously, but with fewer functionalities in this case). This

component interacts with the SyRAS database (syras.sqlite file) to store

data, select, modify or delete them according to the actions requested by the

other components: User, Entries, Products, or Sources.

All the components will be explained in more detail in next sections.

6.2 The DB component and the SyRAS database

The DB component is a wrapper class for sqlite database management and it is

included in the file mod_db.py of the SyRAS system. It is used for managing the

SyRAS sqlite database.

6.2.1 The SyRAS sqlite database

As the DB component manages the database, the SyRAS database and its

structure will be explained in the following sections.

The database is located in a single file in the SyRAS directory (syras.sqlite) and

its entity-relationship model, along with the data types are shown in the

following figures.

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 USERS

Figure 8. Users table in SyRAS database

As shown in Figure 8, the database stores the information of all the users with

permissions in the SyRAS system. For security reasons, passwords are

encrypted when stored.

 PRODUCTS

Figure 9. Products table in SyRAS database

As shown in Figure 9, the database stores all the information of the products

used in the SyRAS system.

48

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 ENTRIES

Figure 10. Entries table in SyRAS database

As shown in Figure 10, the database stores all the information of the entries

used in the SyRAS system.

There is an additional field called ―md5‖ that stores the md5 hash of the

permalink. It is used for improving the performance when checking if a new

entry already exists.

 The field ―linked_source‖ is a foreign key that points to the primary

key ―id‖ of the table SOURCES.

 The field ―linked_product‖ is a foreign key that points to the primary

key ―id‖ of the table PRODUCTS.

 The field ―by_user‖ is a foreign key that points to the primary key ―id‖

of the table USERS.

49

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 SOURCES

Figure 11. Sources table in SyRAS database

As shown in Figure 11, the database stores all the information of the different

sources used in the SyRAS system to collect the information.

 The field ―linked_product‖ is a foreign key that points to the primary

key ―id‖ of the table PRODUCTS.

6.2.2 The DB class

DB is a wrapper class for sqlite database management. This class is used by

the rest of the classes every time they have to interact with the database. The

DB class is contained in the module mod_db.py and its class diagram is shown

in Figure 12.

50

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 12. DB class diagram

Code samples and comments (after the symbol # or between ―‖‖ and ―‖‖) from

the module mod_db.py (in Appendix 2) describe the different attributes and

methods explained in the following lines:

 The first thing to point out is the import statement in the first line; the

module sqlite3 is imported because it is needed for interacting with

sqlite databases as it can be seen in the connect method. [35]

 The second thing to point out is the constructor __init__. It uses a

default path and name for the database, but a different database file

can be taken as an argument if needed.

 The class attributes are: db (representing the database), curs

(representing its cursor) and con (representing its connection).

Next are the methods used for performing the most common operations when

handling databases:

51

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 The methods are: connect, disconnect, select, insert, delete, update,

commit and rollback.

 Note that exception handling is used in most of the methods for

treating properly the errors that can happen when performing

operations with the database.

The DB is a very simple class that does not need further explanation.

6.3 The Users class

The Users class is contained in the module mod_uses.py and it is the one used

for handling users. This class performs all the actions related with users and the

user table in the SyRAS database. Its class diagram is as shown in Figure 13.

Figure 13. Users class diagram

52

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Code samples and comments from the module mod_ users.py (in Appendix 2)

describe the different attributes and methods explained in the following

sections:

 The first things to point out are the import statements in the first two

lines. The module sys is imported because it is needed for changing

the standard output to a file when saving data in the save method. On

the other hand, the module base64 is used for encrypting and

decrypting data stored in the database. [36] [37]

 The second thing to point out is the constructor __init__. It uses an

instance of the database as an argument when called.

 The class attributes are equal to fields in the database table USERS:

o id (representing the user id)

o date (representing the user date of creation)

o name (representing the user name)

o password (representing the user password for gaining access

to the system)

o email (representing the user email to send alerts if configured)

o warnings (representing the user warning level).

Next are the methods used for performing operations with users. They are

related with the operations that can be performed from the Command Line

Interface and also with the operations for managing users in the database.

 The methods are:

o get_one: Gets one user with known id

o get_all: Gets all users from the SyRAS database.

o exists: Returns the user with known user and password if

exists.

o insert: Insert ―self‖ user checking if it exists already.

53

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o delete: Delete ―self‖ user if it exists.

o modify: Update the user with self values.

o show: Show ―self‖ user attributes on the command line

interface.

o save: Save ―self‖ user attributes on a text file.

 Note that exception handling is used in most of the methods for

treating properly the errors that can happen when performing the

actions.

The User class implements methods very similar to the ones used in other

classes explained in next sections.

6.4 The Products class

The Products class is contained in the module mod_product.py and it is the one

used for handling products. This class performs all the actions related with

products and the products table in the SyRAS database. Its class diagram is as

shown in Figure 14.

54

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 14. Products class diagram

Code samples and comments from the module mod_ products.py (in Appendix

2) describe the different attributes and methods are explained in the following

sections:

 The first thing to point out is the import statement in the first line. The

module sys is imported because it is needed for changing the

standard output to a file when saving data in the save method.

 The second thing to point out is the constructor __init__. It uses an

instance of the database as an argument when called.

 The class attributes are equal to the fields in the database table

PRODUCTS:

o id (representing the product id)

55

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o date (representing the product date of creation)

o brand (representing the product brand name)

o name (representing the product name)

o version (representing the product version)

o general_search (representing the product search string when

looking for it in entries coming from a general type source)

o specific_search (representing the product search string when

looking for it in entries coming from a specific type source)

o importance (representing how relevant the product is).

Next are the methods used for performing operations with products. They are

related with the operations that can be performed from the Command Line

Interface and also with the operations for managing products in the database.

 The methods are:

o get_one: Gets one product with known id

o get_all: Gets all products from the SyRAS database.

o get_branded: Get the id of all products with same given brand

from the database.

o insert: Insert ―self‖ product checking if it exists already.

o delete: Delete ―self‖ product if it exists.

o modify: Update the product with self values.

o show: Show ―self‖ product attributes on the command line

interface.

o save: Save ―self‖ product attributes on a text file.

 Note that exception handling is used in most of the methods for

treating properly the errors that can happen when performing

operations.

56

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The Products class is not very complicated and it implements methods very

similarly to the ones used in the class Users explained previously.

6.5 The Sources class

The Sources class (full class diagram in Figure 16) is contained in the module

mod_sources.py and it is the one used for handling sources. This class performs

general actions related with products and the products table in the SyRAS

database. This class represents the parent class used by Html_Sources,

Email_Sources and Rss_Sources as it can be seen in the reduced class

diagram showed in Figure 15:

Figure 15. Simple Sources class diagram showing inheritance

57

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 16. Sources class diagram

Code samples and comments from the module mod_ sources.py (in Appendix 2)

describe the different attributes and methods explained next:

 The first thing to point out is the import statement in the first line. The

module sys is imported because it is needed for changing the

standard output to a file when saving data in the save method.

58

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 The second thing to point out is the constructor __init__. It uses an

instance of the database as an argument when called.

 The class attributes are equal to the fields in the database table

SOURCES:

o id (representing the product id)

o date (representing the product date of creation)

o name (representing the source name)

o source_type (representing the source_type of the source: email,

html or rss)

o type (representing the type of the source: general or specific)

o subscription (representing the URL to subscript for this source

alerts)

o linked_product (if the source is specific and it could be

associated to just one product, gets the product id, otherwise is

0)

o search_brand (If its and specific source, it specifies the brand of

products to search for association).

o url_start (This attribute is only used in sources_type HTML and

it gives the URL to start looking for new entries).

o pattern (If source_type=2, this attribute gives the Regex used

for searching new entries from this source).

o last_checked (It represents the timestamp when the source was

checked for new entries for the last time).

Next are the methods used for performing operations with Sources. They are

related with the operations that can be performed from the Command Line

Interface and also with the operations for managing Sources in the database.

Most of the methods are generic and used by the subclasses Html_Sources,

Rss_Sources and Email_sources.

59

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 The methods are:

o get_one: Gets one source with known id

o get_all_email: Gets all email sources from the SyRAS database

o get_all_html: Gets all HTML sources from the SyRAS database

o get_all_rss: Gets all RSS sources from the SyRAS database

o get_all: Gets all sources from the SyRAS database

o insert: Inserts ―self‖ source checking if it exists already.

o delete: Deletes ―self‖ source if it exists.

o modify: Updates the source with self values.

o set_time: Updates the last_checked field of the source to

current time.

o show: Shows ―self‖ source attributes on the command line

interface.

o save: Saves ―self‖ source attributes on a text file.

 Note that exception handling is used in most of the methods for

treating properly the errors that can happen when performing the

operations.

The Sources class is very important because is the superclass used by

Html_Sources, Email_Sources and Rss_Sources to perform the most common

actions. These three classes are representing the core of the SyRAS system

because they perform the actions to collect the new entries and insert them in

the database, main functionality of the system.

The next step is to explain the subclasses of the Sources parent class.

60

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

6.5.1 The Email_Sources class

The Email_Sources class is contained in the module mod_email.py and it is the

one used for handling sources collected via email (source_type=1). This class

inherits from the Sources class and implements other methods needed for

collecting e-mail alerts.

The class diagram of Email_Sources is as shown in Figure 17.

Figure 17 Email_Sources class diagram

Code samples and comments from the module mod_ email.py (in Appendix 2)

describe the different attributes and methods explained in the following:

 It is important to explain the import statements in the first lines:

o Import Sources class: due to it will be used as superclass by

Email_Sources inheriting methods and attributes.

o Import Entries class; it is needed for saving the new entries

collected.

61

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o Import feedparser: a module for parsing the atom entries. In

this case, it is used for accessing the new entries because the

gmail inbox is accessed and parsed as rss. [38]

o Import urllib :a module for handling and accessing URLs. [39]

o Import imaplib: a module for handling IMAP protocol that

allows handling email requests. [40]

 GMAIL_ATOM_URL is a constant that stores the URL to access gmail

accounts as atom RSS.

 As it can be seen in the class definition (class

Email_Sources(Sources):) Email_Sources inherits from Sources.

 gmail_user and gmail_pass are the username and password for the

gmail account. In this case they are embedded in the code in plain

text because the email does not store any personal information,

although it would be more correct to cipher and store them in a safer

place.

 The second thing to point out is the constructor __init__.

o It uses an instance of the database as an argument when

called.

o It uses the superclass creator.

 The class attributes are inherited from the parent class Sources,

adding a new one: feed (representing the inbox parsed as RSS

newsfeed using the module feedparser).

Next are the new methods introduced by the class and used for performing

operations with the email sources. The main objective of this class and its

methods is to collect new entries coming from mailing lists.

 The first thing to point out is that we are using FancyURLopener, that

subclasses URLopener providing default handling for 401 response

codes (authentication required), performing basic HTTP

authentication. The prompt_user_passwd() method was overridden

62

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

using a lambda function to provide the authentication required

(username and password) to access the gmail account. [41][42]

 The methods are:

o parse_feed: It parses the email source using feedparser and

stores it in the attribute feed.

o mark_as_read: It is used to mark as read all the email entries in

the inbox once they are introduced into the database using the

following method.

o check_new_entries: It collects all new entries coming from e-

mail and introduces them into the SyRAS database as new

entries, checking previously if they already exist in the

database.

 Note that exception handling is used in most of the methods for

treating properly the errors that can happen when performing the

operations.

As explained before, the class Email_Sources inherits from the Sources class

and it introduces in the database all new entries collected via e-mail.

6.5.2 The Html_Sources class

The Html_Sources class is contained in the module mod_html.py and it is the

one used for handling sources collected visiting websites (source_type=2). This

class inherits from the Sources class and implements other methods needed for

collecting html alerts straight from websites.

The class diagram of Html_Sources is as shown in Figure 18.

63

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 18. Html_Sources class diagram

Code samples and comments from the module mod_html.py (Appendix 2)

describe the different attributes and methods explained below:

 It is important to explain the import statements in the first lines:

o Import Sources class, because it will be used as superclass by

Html_Sources inheriting methods and attributes.

o Import Entries class, it is needed for saving the new entries

collected.

o Import BeautifulSoup, a module for parsing HTML websites. In

this case, it is used for accessing the html sources and it

parses them in a given way that enables extracting the new

security alerts. [43]

o Import re, a module for using regular expressions. [44]

o Import urllib2, a module for handling and accessing URLs a bit

more complete than urllib. [45]

 As it can be seen in the class definition (class Html_Sources(Sources):)

Html_Sources inherits from Sources.

 The second thing to point out is the constructor __init__.

o It uses an instance of the database as an argument when

called.

o It uses the superclass creator.

 The class attributes are inherited from the parent class Sources,

adding two new ones:

64

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o page (representing the downloaded html code of the webpage).

o soup (representing the website parsed using the module

BeautifulSoup).

Next are the new methods introduced by the class and used for performing

operations with the HTML sources. The main objective of this class and its

methods is to collect new entries coming from the source websites.

 The methods are:

o parse_page: It parses the web source using BeautifulSoup and

stores it in the attribute soup.

o check_new_entries: It collects all new entries coming from a

website and introduces them into the SyRAS database as new

entries, checking previously if they already exist in the

database.

 Note that exception handling is used in most of the methods for

treating properly the errors that can happen when performing the

operations.

As explained before, the class Html_Sources inherits from the Sources class

and it introduces in the database all new entries collected from website sources.

6.5.3 The Rss_Sources class

The Rss_Sources class (Figure 19) is contained in the module mod_rss.py and it

is the one used for handling sources collected via RSS (source_type=3). This

65

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

class inherits from the Sources class and implements other methods needed for

collecting email alerts.

Figure 19. Rss_Source class diagram

Code samples and comments from the module mod_rss.py (Appendix 2)

describe the different attributes and methods explained below:

 It is important to explain the import statements in the first lines:

o Import Sources class, it will be used as superclass by

Rss_Sources inheriting methods and attributes.

o Import Entries class, it is needed for saving the new entries

collected.

o Import feedparser, a module for parsing the RSS entries from

newsfeeds. Import urllib, a module for handling and accessing

URLs.

 As it can be seen in the class definition (class Rss_Sources(Sources):)

Rss_Sources inherits from Sources.

 The second thing to point out is the constructor __init__.

o It uses an instance of the database as an argument when

called.

o It uses the superclass creator.

 The class attributes are inherited from the parent class Sources,

adding a new one: feed (representing the RSS newsfeed parsed

using the module feedparser).

66

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Next are the new methods introduced by the class and used for performing

operations with RSS sources. The main objective of this class and its methods

is to collect new entries coming from RSS newsfeeds.

 The methods are:

o parse_feed: It parses the email source using feedparser and

stores it in the attribute feed.

o check_new_entries: It collects all new entries coming from RSS

and introduces them into the SyRAS database as new entries,

checking previously if they already exist in the database. This

method also checks every RSS source last update timestamp

to avoid operating again entries already processed.

 Note that exception handling is used in the last method for treating

properly the errors that can happen when performing the operations.

As explained before, the class Rss_Sources inherits from the Sources class

and it introduces in the database all new entries collected via RSS.

6.6 The Entries class

The Entries class is contained in the module mod_entries.py and it is the one

used for handling products. This class performs all the actions related with

entries and the entries table in the SyRAS database. Its class diagram is as

shown in Figure 20.

67

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 20. Entries class diagram

Code samples and comments from the module mod_entries.py (Appendix 2)

describe the different attributes and methods explained below:

 The first things to point out are the import statements in the first lines.

o The module hashlib is imported because it is needed for using

the md5 hash in one of the attributes. [46]

68

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

o The module sys is imported because it is needed for changing

the standard output to a file when saving data in the save

method.

o The classes Sources and Products are also imported because

an instance of them will be used in some of the methods of this

class.

 The second thing to point out is the constructor __init__. It uses an

instance of the database as an argument when called.

 The class attributes are equal to the fields in the database table

ENTRIES:

o id (representing the entry id)

o date (representing the entry date of creation)

o permalink (representing the entry permanent link brand name)

o linked_source (representing the source id where the entry

comes from)

o subject (representing the subject or title of the entry)

o body (representing the body text of the entry)

o matched_string (representing the string that matched if the

entry is associated to a product)

o linked_product (representing the id of the associated product if

any).

o automatic_cat (representing the entry importance level

assigned automatically)

o assigned_cat (representing how relevant the entry is in a level

assigned by the user).

o by_user (representing the user that introduced of last modified

the entry)

o md5 (representing the md5 has of the entry’s permalink).

69

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Next are the methods used for performing operations with entries. They are

related with the operations that can be performed from the Command Line

Interface and also with the operations for managing entries in the database.

Note that most parts of the code have been omitted because these methods

work in very similar way to the ones described in previous sections.

 The methods are:

o get_one: Gets one product with known id

o get_all: Gets all products from the SyRAS database.

o md5_exist: Checks if a given entry exists in the database.

o md5_get: Gets the md5 hash of the permalink of an entry.

o set_integrity: Sets to 0 some values in the ―self‖ entry to avoid

operation problems.

o link_to_product: This is one of the most important methods. It

tries to link the new entry to an existing product using different

operations depending on the source type (general or specific)

and also depending if it can be associated to one or several

products.

*For more detailed information review the code comments.

o insert: Insert ―self‖ entry checking if it exists already.

o delete: Delete ―self‖ entry if it exists.

o modify: Update the entry with self values.

o show: Show ―self‖ entry attributes on the command line

interface.

o save: Save ―self‖ entry attributes on a text file.

 Note that exception handling is used in most of the methods for

treating properly the errors that can happen when performing

operations.

70

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The Entries class is not very complicated and it implements methods very

similarly to the ones used other classes explained previously. The most

important modification is the addition of the field md5 for checking if an entry is

already in the system and the method link_to_product that tries to link the new

entry to product in the database using search strings.

6.7 The Console class

The Console class is contained in the module mod_syras.py and it is the one

used by the user for interacting with the SyRAS system, it is the class that

creates the command line interface. Its class diagram is as shown in Figure 21.

Figure 21. Console class diagram

71

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Code samples and comments from the module mod_syras.py (Appendix 2)

describe the different attributes and methods explained below:

 The first things to point out are the import statements in the first lines:

o The module sys is imported because it is needed for closing

the SyRAS system.

o The module cmd is imported because it is needed for creating

the console (Command Line Interface). [47]

o The module webbrowser is imported because it is needed for

opening permalinks (URLs) in the default web browser. [48]

o The module getpass is needed for getting the passwords from

the console in a safe way. [49]

o The rest of the imported classes have been explained before

and they will be used inside the methods of the console class.

 The console class inherits most part of its behavior from the class

Cmd included in cmd, as it can be seen because it is used in its

creator. cmd.Cmd.__init__(self).

 The class attributes are:

o prompt (representing the prompt used in the console. It

changes to represent the user logged in)

o intro (representing the SyRAS welcome message).

Next are the methods used for performing operations with console. They are

related with the operations that can be performed by the user from the

Command Line Interface to interact with the SyRAS system.

 First of all it is important to note that all methods start with do_ with

means that are methods that can be called from the console.

72

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Another important thing to point out is that the description of the

methods located right after the name is the one shown when using

the help command and the name of the method.

 The methods are:

o do_login: Used for login a user requesting for username and

password.

o do_logout: Logs out the current user.

o do_collect: Collects entries from different sources: RSS, HTML

or email.

o do_list: Lists all entries, products, sources or users from the

database.

o do_show: Shows in the console all the information of one entry,

product, source or user with given id.

o do_save: Saves in a text file all the information of one entry,

product, source, or user with given id.

o do_browse: Opens one entry or source permalink in the web

browser.

o do_priority: Changes to important the priority of a given entry

or product.

o do_delete: Deletes one entry, product, source or user from the

database. The admin is the only user allowed to perform this

operation.

o do_eof / do_exit: Closes the SyRAS system.

The Console class implements methods needed by the user to interact with the

SyRAS system. The Console class has some properties inherited from its

superclass cmd, such as auto completion of commands and command history,

apart from the already mentioned help command.

73

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

6.8 The syras.py and syrasloop.py modules

The syras.py and the syrasloop.py modules are both runnable programs

because they contain a main function. They are the ones used for starting the

SyRAS system but they work in two different ways, explained in the following

sections.

6.8.1 The syras.py

In addition to the console class, the syras.py file or module also hosts a main

function that is used to start the SyRAS system using the command line

interface.

Code samples and comments from the module syras.py (Appendix 2) describe

the different attributes and methods explained below:

 The first line is: if __name__ == '__main__': which means that the

syras.py module can be called as an executable script and then it will

start the execution from the main function.

 The next line is the initialization of the database and the rest of the

class instances that will be used along the module.

 The last line is the creation of the console so the user can interact

with the system. The console will be running in a loop (con.cmdloop())

until the user exits or uses the keyboard interrupt (CTRL + C)

command.

 Finally, it is important to remember that all the needed imports were

made at the beginning of the module. They were explained in

previous sections when the console class was described.

74

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

To sum up, the syras.py module has the main function used to launch the

SyRAS system with the regular behavior explained previously.

6.8.2 The syrasloop.py

The syrasloop.py is another module that can be used as an executable to start

the SyRAS system, but with reduced functionality. When executed from

syrasloop.py, SyRAS will work as a ―deamon‖ running in the background. Its

only task will be to check for new entries and collect them, then the system will

be inactive for a time lapse and it will wake up and check for new entries again.

This process will be repeated in an infinite loop until the user stops it.

Code samples and comments from the module syrasloop.py (Appendix 2)

describe the different attributes and methods explained below:

 The first lines are the needed imports, time is the only new import.

[50]

 Then the main function and the initializations have been explained in

the previous section.

 First of all, the system asks the user to log in.

 Once the login is confirmed the loop start checking for new entries

from email, HTML and RSS sources. Any new entry is inserted into

the SyRAS database after trying the association with the existing

products.

 Then the system sleeps for a given time and start checking again in

an infinite loop until the user stops the system.

As explained before, syrasloop.py is used by a logged user only for

collecting new entries, but it cannot be used to interact with the system.

75

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

7 INSTALLATION, TESTING AND USER MANUAL

7.1 Installation

The installation of the SyRAS system is very easy, once we have a computer

with Ubuntu 9.x or greater, because we just have to copy the source python

source code and the database file, and add couple of modules needed for the

proper functioning of the SyRAS system.

As explained previously in the section ―Non-functional requirements‖, the

SyRAS system must be executed in a PC with the operative system Ubuntu

9.04 or greater, with Python interpreter 2.5 or greater and with database SQLite

3.6 or greater. The system must also have Internet access.

Once the host computer follows the requirements, we need to copy the SyRAS

source code (included in the ―src‖ folder) and database files in the host, as

shown in Figure 22.

76

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 22. SyRAS files and source code

There are a few Python modules needed for the proper functioning of the

SyRAS system:

 Feedparser (Universal Feed Parser): Used for parsing RSS feeds.

o Version: feedparser 4.1

o Installation:

 Download and unzip the file feedparser-4.1.zip

 Go to the unzipped folder and run the command:

$ sudo python setup.py install

 Now feedparser is installed and ready to use.

 BeautifulSoup: Python HTML/XML parser

o Version: Beautiful Soup 3.1.0.1

o Installation:

 Download the file BeautifulSoup-3.1.0.tar.gz

 Unzip the file and include both files (BeautifulSoup.py in the

SyRAS ―src‖ folder)

 Now BeautifulSoup is installed and ready to use.

77

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

No additional components are needed, so the SyRAS system is now ready to

be executed.

7.2 SyRAS testing and user manual

Once installed, the next step is to test the whole system to make sure it works

properly. The user manual will be explained at the same time, using the help

commands included in the command line interface. Several screenshots will be

used for that purpose.

7.2.1 Starting SyRAS

The screenshot in Figure 23 shows the SyRAS folder, the starting command

and the general help option for SyRAS.

78

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 23. SyRAS file system, execution and help command

The way to start the syrasloop.py (the module for collecting new entries in an

infinite loop) is similar to t starting syras.py described previously. The command

would be: $ python syrasloop.py.

7.2.2 Using SyRAS

The following screenshots, in Figures 24-39 show how to invoke the different

commands of the SyRAS system using the command line interface.

 User login instruction and documentation, Figure 24:

79

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 24. SyRAS login command

 Browse instruction and documentation, Figure 25:

Figure 25- SyRAS browse command

And the result of the browse command is shown in Figure 26.

80

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 26. Browse command result

 Collect instruction and documentation, Figure 27:

Figure 27. SyRAS collect command

 Delete instruction and documentation, Figure 28:

81

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 28. SyRAS delete command

 List instruction and documentation, Figure 29:

Figure 29. SyRAS list command

 Logout instruction and documentation, Figure 30:

Figure 30. SyRAS logout command

 Priority instruction and documentation, Figure 31:

82

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Figure 31. SyRAS priority command

 Save instruction and documentation, Figure 32:

Figure 32. SyRAS save command

and the result of the save command is shown in Figure 33.

Figure 33.SyRAS save command result

83

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Show instruction and documentation, Figure 34:

Figure 34. SyRAS show command

 Exit instruction and documentation, Figure 35:

Figure 35. SyRAS exit command

84

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

85

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

8 CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

As explained previously, the main goal of the project was to build a centralized

system able to collect multiple security advisories from different sources, parse

them, save them (in a database with a standard structure) and link them to the

product affected by the vulnerability. All those tasks have been completed along

the implementation of the project giving a fully functional system that collects

and provides all the information needed to compose and send a new security

advisory, and most importantly, everything is in one place and updated

automatically with the new advisories collected from the sources.

The part responsible for harvesting the advisories consisted of three modules:

E-mail, Web and RSS. Those three modules represent the core of the SyRAS

system.

The chapters of this thesis showed the development of the SyRAS application

from scratch, using Python, a database, web technologies and a command line

interface. The Python programming language was suitable and helpful for this

thesis purpose, because it is complemented with lots of extra modules that were

used during the coding, saving a lot of time and effort. The rest of the

technologies used served as a good complement for building the application

and they were easy to work with because they are standard and widely used.

86

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

To combine and integrate the different modules used in SyRAS was not an

easy task, but the result was a robust and handy application, easy to use and

with several options to be improved in future works.

From the personal point of view, I could say that I have learned a lot while

working on the different stages of the project: I have learned a new

programming language, database handling and also many different tools useful

for developing a software application. I have learned about the software

analysis and design process and how to write a good project review in English.

Writing this thesis has been a long and hard work, but also a very valuable

experience.

8.2 Future work

Throughout the development of the project, I figured out many improvements

and possible extensions that could be carried out. The following are the most

important:

8.2.1 Addition of new sources

The SyRAS database includes some real sources that have been used for

testing the system. These could be taken as an example to add new sources of

the different types the system is ready to handle (Email, HTML and RSS) or to

implement a new module (inheriting from Sources) able to add other sources,

such as Twitter accounts, for example.

87

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

The addition of sources should be complemented with the addition of other

products affected by the new alerts.

8.2.2 User alerts

Another way to improve the system in the future is to add an alerts system. This

could send an e-mail, or even a SMS, to a given address when the system

collects a new entry that is especially relevant.

The database already stores the email of the SyRAS users, so this

improvement will not be difficult to code.

8.2.3 New body scripts

Nowadays the system only collects the new entries and tries to link them to an

existing product. The next step could be to code some specific scripts able to do

a series of transformations on them to get the body of the alert in a specific

format. In addition, scripts can be applied to obtain the additional identifier CVE

or some other relevant information.

8.2.4 Web interface

As a major improvement, the system could be migrated to a web platform based

in LAMP (Linux, Apache, MySQL and PHP) technologies. In this way the

system would become more professional and able to handle considerably more

information in an efficient way.

88

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

89

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

REFERENCES

[1] Kinkus, Jane F. Fall 2002. Computer Security. Purdue University, [www-document]

consulted on 07.01.2011. Available at:

http://www.library.ucsb.edu/istl/02-fall/internet.html

[2] Shirey, R. May 2000. Internet Security Glossary. Internet Engineering Task Force RFC

2828. The Internet Society. [www-document] consulted on 08.01.2011. Available at:

http://tools.ietf.org/html/rfc2828

[3] Ley Orgánica 15/1999, de 13 de diciembre, de Protección de Datos de Carácter

Personal

[4] Real Decreto 1720/2007, de 21 de diciembre, por el que se aprueba el Reglamento de

desarrollo de la Ley Orgánica 15/1999, de 13 de diciembre, de protección de datos de

carácter personal

[5] FreeBSD Security Advisories. 1995-2011. FreeBSD Handbook. The FreeBSD

Documentation Project.[www-document] consulted on 08.01.2011. Available at:

http://www.freebsd.org/doc/en/books/handbook/security-advisories.html

[6] Microsoft Security Bulletin Search. [www-document] consulted on 17.01.2011. Available

at: http://www.microsoft.com/technet/security/Current.aspx

[7] VUPEN security. [www-document] consulted on 09.01.2011. Available at:

http://www.vupen.com

[8] Gentoo Linux Security Announcements (GLSAs). Gentoo Linux Security. [www-

document] consulted on 14.01.2011. Available at:

http://www.gentoo.org/security/en/#doc_chap2

[9] Secunia. Secunia ApS. [www-document] consulted on 14.01.2011. Available at:

http://secunia.com/

[10] SecurityTracker. SecurityGlobal.net LLC. [www-document] consulted on 16.01.2011.

Available at: http://securitytracker.com/

[11] Debian Security Advisories [RSS-subscription] consulted on 17.01.2011. Available at:

http://www.debian.org/security/dsa

[12] Ubuntu Security Notice [RSS-subscription] consulted on 17.01.2011. Available at:

http://www.ubuntu.com/usn/rss.xml

[13] Gentoo Linux Security Advisories [RSS-subscription] consulted on 17.01.2011.

Available at: http://www.gentoo.org/rdf/en/glsa-index.rdf?num=20

http://www.library.ucsb.edu/istl/02-fall/internet.html
http://tools.ietf.org/html/rfc2828
http://www.freebsd.org/doc/en/books/handbook/security-advisories.html
http://www.microsoft.com/technet/security/Current.aspx
http://www.vupen.com/
http://www.gentoo.org/security/en/#doc_chap2
http://secunia.com/
http://securitytracker.com/
http://www.debian.org/security/dsa
http://www.ubuntu.com/usn/rss.xml
http://www.gentoo.org/rdf/en/glsa-index.rdf?num=20

90

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

[14] Securityfocus Vulnerabilities [RSS-subscription] consulted on 17.01.2011. Available at:

http://www.securityfocus.com/rss/vulnerabilities.xml

[15] The Open Source Vulnerability Database (OSVDB) [RSS subscription] consulted on

17.01.2011. Available at: http://osvdb.org/feed/vulnerabilities/latest.rss

[16] Common Vulnerabilities and Exposures (CVE). The MITRE Corporation. [www-

document] consulted on 19.01.2011. Available at:

http://cve.mitre.org/

[17] Dhillon, G. 2007. Principles of Information Systems Security: text and cases. John

Wiley & Sons.

[18] Microsoft TechNet: Definition of a Security Vulnerability [www-document] consulted on

20.01.2011. Available at:

http://technet.microsoft.com/es-es/library/cc751383(en-us).aspx

[19] Notifications and Advisories. Red Hat Networks. Red Hat Inc. [www-document]

consulted on 21.01.2011. Available at:

https://access.redhat.com/security/updates/advisory/

[20] Full-Disclosure, An unmoderated mailing list for the discussion of security issues.

[www-document] consulted on 27.01.2011. Available at:

https://lists.grok.org.uk/mailman/listinfo/full-disclosure

[21] Python programming language. Python Software Foundation [www-document]

consulted on 27.01.2011. Available at: http://www.python.org/

[22] Python Application Domains. Python Software Foundation. [www-document] consulted

on 27.01.2011. Available at: http://www.python.org/about/apps/

[23] The Eclipse Foundation – Open source community website [www-document] consulted

on 27.01.2011. Available at: http://www.eclipse.org/

[24] Apache Subversion. Apache Software Foundation. [www-document] consulted on

29.01.2011. Available at: http://subversion.apache.org/

[25] Pydev, Python IDE for Eclipse. Appcelerator, Inc. [www-document] consulted on

27.01.2011. Available at: http://pydev.org

[26] Pydev Features. Appcelerator, Inc. [www-document] consulted on 02.02.2011.

Available at: http://pydev.org/manual_adv_features.html

[27] Subclipse. Tigris.org. Colabnet, Inc. [www-document] consulted on 04.02.2011.

Available at: http://subclipse.tigris.org/

[28] SQLite [www-document] consulted on 09.02.2011. Available at: http://www.sqlite.org/

[29] SQLite. List of features. [www-document] consulted on 07.01.2011. Available at:

http://www.sqlite.org/features.html

[30] SQLite Manager. [www-document] consulted on 17.02.2011. Available at:

http://www.securityfocus.com/rss/vulnerabilities.xml
http://osvdb.org/feed/vulnerabilities/latest.rss
http://cve.mitre.org/
http://technet.microsoft.com/es-es/library/cc751383(en-us).aspx
https://access.redhat.com/security/updates/advisory/
https://lists.grok.org.uk/mailman/listinfo/full-disclosure
http://www.python.org/
http://www.python.org/about/apps/
http://www.eclipse.org/
http://subversion.apache.org/
http://pydev.org/
http://pydev.org/manual_adv_features.html
http://subclipse.tigris.org/
http://www.sqlite.org/
http://www.sqlite.org/features.html

91

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

http://code.google.com/p/sqlite-manager/

[31] Ubuntu. Canonical Ltd. [www-document] consulted on 07.02.2011. Available at:

http://www.ubuntu.com/

[32] GNU General Public License. Version 3, 29 June 2007. Free Software Foundation, Inc.

[33] GNU Lesser General Public License. Version 3, 29 June 2007. Free Software

Foundation, Inc.

[34] UML, Unified Modeling Language. Object Management Group, Inc. [www-document]

consulted on 17.01.2011. Available at: http://www.uml.org/

[35] sqlite3 - DB-API 2.0 interface for SQLite databases [www-document] consulted on

27.02.2011. Available at: http://docs.python.org/library/sqlite3.html

[36] sys – System-specific parameters and functions [www-document] consulted on

17.02.2011. Available at: http://docs.python.org/library/sys.html

[37] base64 - RFC 3548: Base16, Base32, Base64 Data Encodings [www-document]

consulted on 27.02.2011. Available at: http://docs.python.org/library/base64.html

[38] feedparser: Universal Feed Parser 4.1. Pilgrim, M. 2006 [www-document] consulted on

19.02.2011. Available at : http://www.feedparser.org/

[39] urllib – Open arbitrary resources by URL [www-document] consulted on 28.02.2011.

Available at: http://docs.python.org/library/urllib.html

[40] imaplib – IMAP4 protocol client [www-document] consulted on 03.03.2011. Available at:

http://docs.python.org/library/imaplib.html

[41] Fancy URL opener. Python [www-document] consulted on 05.03.2011. Available at:

http://docs.python.org/library/urllib.html#urllib.FancyURLopener

[42] Lambdas. Python [www-document] consulted on 05.01.2011. Available at:

http://docs.python.org/reference/expressions.html?highlight=lambda#lambda

[43] Beautiful Soup 3.0. Richardson, L. [www-document] consulted on 07.01.2011. Available

at: http://www.crummy.com/software/BeautifulSoup/documentation.html

[44] re – Regular expression operations [www-document] consulted on 27.01.2011.

Available at: http://docs.python.org/library/re.html

[45] urllib2 - Extensible library for opening URLs [www-document] consulted on 19.02.2011.

Available at: http://docs.python.org/library/urllib2.html

[46] hashlib – Secure hashes and message digests [www-document] consulted on

20.02.2011. Available at: http://docs.python.org/library/hashlib.html

http://code.google.com/p/sqlite-manager/
http://www.ubuntu.com/
http://www.uml.org/
http://docs.python.org/library/sqlite3.html
http://docs.python.org/library/sys.html
http://docs.python.org/library/base64.html
http://www.feedparser.org/
http://docs.python.org/library/urllib.html
http://docs.python.org/library/imaplib.html
http://docs.python.org/library/urllib.html#urllib.FancyURLopener
http://docs.python.org/reference/expressions.html?highlight=lambda#lambda
http://www.crummy.com/software/BeautifulSoup/documentation.html
http://docs.python.org/library/re.html
http://docs.python.org/library/urllib2.html
http://docs.python.org/library/hashlib.html

92

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

[47] cmd — Support for line-oriented command interpreters [www-document] consulted on

07.03.2011. Available at: http://docs.python.org/library/cmd.html

[48] webbrowser — Convenient Web-browser controller. [www-document] consulted on

07.01.2011. Available at: http://docs.python.org/library/webbrowser.html

[49] getpass — Portable password input. [www-document] consulted on 11.01.2011.

Available at: http://docs.python.org/library/getpass.html

[50] time — Time access and conversions [www-document] consulted on 07.03.2011.

Available at: http://docs.python.org/library/time.html

[51] Hetland, M.L.2005. Beginning Python: From novice to professional. Apress.

http://docs.python.org/library/cmd.html
http://docs.python.org/library/webbrowser.html
http://docs.python.org/library/getpass.html
http://docs.python.org/library/time.html

93

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

APPENDIX 1: DIAGRAMS AND REQUIREMENTS

Note: All diagrams are implemented following the UML notation. [34]

SyRAS objectives

OBJ1-01 Collect security advisories

Description The system must collect the security advisories coming from the

chosen sources, link them to the proper product and store them in

the SyRAS database.

OBJ-02 Manage and show the collected information

Description The system must insert, delete or query the information stored in the

SyRAS database: Users, Sources, Products and Entries (advisories)

via Command Line Interface.

Information requirements

IRQ2-01 Information about SyRAS users

Description The system must store in the SyRAS database the information about

the system users. Specifically:

Specific data Unique ID of the user.

 Date and time of creation of the user.

 Name of the user.

 Password of the user.

 Email of the user.

 Warning level of the user.

Comments For security, a hash version of the password will be the one stored in

the database.

The warning level can be 1 if the user must be alerted by email or 0 if

not.

1
 Objective

2 Information Requirement

94

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

CRQ3-01 Unique user name and password

Description The information stored in the database must satisfy the following

restriction: There cannot be two users stored in the system with the

same name and password.

IRQ-02 Information about SyRAS sources

Description The system must store in the SyRAS database the information about

the system sources. Specifically:

Specific data Unique ID of the source.

 Date and time of creation of the source.

 Name of the source.

 Source Type of the source.

 Type of the source.

 URL subscription of the source. URL to access to the source.

 Linked Product of the source.

 Search Brand of the source.

 URL Start of the source.

 Pattern to Search of the source.

 Date of Last Check of the source.

Comments The Source Type can be 1 if email, 2 if html or 3 if RSS.

The Type can be 1 if general or 2 if specific.

The Linked Product can be 0 if the source is not liked to any.

The Search Brand is used only if the Type of the source is 2

(specific). It associates a source with a brand of products.

The URL Start is used only if the Source Type of the source is 2

(html). It is used for searching new entries in the HTML code of the

website using Regex.

The Pattern to Search is used only if the Source Type of the source

is 2 (html). It is used for searching new entries in the HTML code of

the website using Regex.

3 Constraint Requirement

95

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

CRQ-02 Unique user name, source type and subscription

Description The information stored in the database must satisfy the following

restriction: There cannot be two sources stored in the system with

the same name, source type and subscription.

IRQ-03 Information about SyRAS products

Description The system must store in the SyRAS database the information about

the system products. Specifically:

Specific data Unique ID of the product.

 Date and time of creation of the product.

 Brand of the product.

 Name of the product.

 Version of the product.

 General Search String of the product.

 Specific Search String of the product.

 Importance level of the product.

Comments The Importance level goes from 0 (less important) to 2 (very

important).

CRQ-03 Unique product brand, name and version

Description The information stored in the database must satisfy the following

restriction: There cannot be two products stored in the system with

the same brand, name and version.

IRQ-04 Information about SyRAS entries (advisories)

Description The system must store in the SyRAS database the information about

the system entries. Specifically:

Specific data Unique ID of the entry.

 Date and time of creation of the entry.

 Permalink of the entry.

 Linked Source of the entry.

 Subject of the entry.

96

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Body of the entry.

 Product matched string of the entry.

 Linked Product of the entry.

 Importance Category automatically assigned to the entry.

 Category assigned of the entry.

 ID of the user that inserted or made the last modification in

the entry.

 MD5 Hash of the entry’s permalink.

Comments The Importance Category automatically assigned goes from 1 (less

important) to 5 (critical).

The Category assigned can be: 0 if not revised, 1 if discarded, 2 if

important or 3 if processed.

CRQ-04 Unique entry MD5

Description The information stored in the database must satisfy the following

restriction: There cannot be two entries stored in the system with the

same MD5 hash of the permalink (and with same permalink for

instance).

Functional requirements

FRQ4-01 Login a user

Description The system must prompt a login dialog that allows a user to login

using his username and password.

It should also allow a user to logout.

Comments Once the user logs in, the prompt will change from SyRAS:_> to

user@SyRAS:_>

FRQ-04 Collect new entries

Description The system must allow the user to collect the new entries coming

from the different sources: email, RSS or web. It is possible to collect

4 Functional Requeriment

97

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

from a single source type or collect from all at once.

A message with for the new entries will be shown in the Command

Line Interface when inserted.

Comments Every time the system finds a new entry, it checks if it already exists

in the database before inserting it.

FRQ-05 List data

Description The system must allow the user to query data from the database,

showing it in a table. It lists information about users, products,

sources and entries.

Comments For security reasons, the system won’t show the passwords when

querying the user table.

FRQ-06 Query a specific database entry

Description The system must allow the user to search for a specific database

entry, such as: user, product, source or advisory entry. The

information will be shown in the CLI and it can also be saved directly

in a txt file.

Comments For security reasons, the system won’t show or save in the file any

user password.

FRQ-07 Browse a specific source or advisory entry

Description The system must allow the user to search for a specific source or

advisory entry and open its permalink in the web browser.

Comments An instance of the default browser in a new window will be opened

showing the information.

FRQ-08 Change priority

Description The system must allow the user to change to important the priority of

one entry or product.

A message informing about the modification will be shown in the

Command Line Interface when performed.

98

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

FRQ-9 Delete a specific database entry

Description The system must allow the administrator to delete a specific

database entry, such as: user, product, source or advisory entry.

A message informing about the deletion will be shown in the

Command Line Interface when performed.

Comments Only the administrator user has the right to perform this action.

FRQ-10 Command history

Description The system must store a history with the commands that have been

used recently, allowing a quick access to them.

The history can be accessed using the arrow buttons.

FRQ-11 Command auto complete

Description The command line interface of the system must allow auto complete

the commands included in SyRAS.

The auto complete can be accessed using the tab button.

FRQ-12 Collecting loop

Description The system must have an independent application running in

background that checks for new entries every time period configured

by the user.

The independent application must run in an infinite loop and it will

insert the new entries in the database when found.

Non-functional requirements

NFR5-01 PC requirements

Description The SyRAS system must be executed in a PC with the operative

system Ubuntu 9.04 or greater, with Python interpreter 2.5 or greater

5 Non-Functional Requirement

99

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

and with database SQLite 3.6 or greater.

The system must also have internet access.

Comments The internet access is needed to collect new entries.

NFR-02 Application name

Description The complete system will be called SyRAS (Security Alerts Collecting

System).

The application including the Command Line Interface will be called

syras.py and the one including the collecting loop will be called

syrasloop.py.

The SQLite database will be called syras.sqlite.

All SyRAS components must be placed in the same folder under the

Operative System.

NFR-03 Portablility

Description The complete SyRAS system must be easy to port to other devices

as soon as they match the requirements included in NFR-01.

NFR-04 Future improvements

Description The complete system SyRAS must allow improvements, such as new

web based interface, to be introduced easily.

Static and dynamic model of the system

ACT6-01 SyRAS guest

Description This actor represents a user that uses the application SyRAS

installed in the PC.

ACT-02 SyRAS user

Description This actor represents a user that uses the application SyRAS

6 Actor

100

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

installed in the PC. It needs to log in and can perform actions

according to its privileges.

ACT-03 SyRAS administrator

Description This actor represents a user that uses the application SyRAS

installed in the PC. It needs to log in and can perform all actions.

Use case diagrams

Use cases diagram for SyRAS ―guest‖

101

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Use cases diagram for SyRAS "user"

102

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Use cases diagram for SyRAS "administrator"

Use case descriptions

UC7-01 Login a user

Description The system must behave as is described in the following use case

when a user wants to log in SyRAS.

Precondition None.

Normal

sequence

Step Action

 1 The user asks the system to log in introducing his/her

username.

 2 The system asks for the password.

 3 The user types the password and presses Enter.

 4 If the user and password match, the user logs in the system.

The prompt changes to show that the user is logged in.

7 Use Case

103

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

From now on the user can perform actions that require to be

logged in.

The system goes back to the main Command Line Interface.

Postcondition The user is logged in the SyRAS system.

Exceptions Step Action

 1 If there is a user currently logged in, the system shows a

message asking to log out before login in with a different user.

Then this use case doesn’t take effect.

 1 If the username inserted is empty, the system shows a

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

 3 If the user and password combination do not match, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

UC-02 Browse a source or entry

Description The system must behave as is described in the following use case

when the user asks the system to browse a source or entry

introducing its ID number.

Precondition The user must be logged in.

Normal

sequence

Step Action

 1 The user asks the system to browse a source or entry

introducing the keyword ―source‖ or ―entry‖ and the ID number

to browse.

 2 If the source or entry with the given ID exists, the system

shows a message saying that its permalink will be opened in

the web browser.

The default web browser will show the web page with the

permalink of the source or entry given.

The system goes back to the main Command Line Interface.

104

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Postcondition None.

Exceptions Step Action

 1 If there is no user currently logged in, the system shows a

message asking to log in before performing this action. Then

this use case doesn’t take effect.

 1 If the keywords inserted are not right the system shows a

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

 1 If the given ID doesn’t exist, the system shows a message

reporting the error. Then this use case doesn’t take effect.

UC-03 Collect entries from different sources

Description The system must behave as is described in the following use case

when the user asks the system to collect new entries from one

source (email, html, rss) or from all of them.

Precondition The user must be logged in.

Normal

sequence

Step Action

 1 The user asks the system to collect new entries from one

source type (email, html, rss) or from all of them introducing

the keyword ―email‖, ―html‖, ―rss‖ or ―all‖.

 2 The system retrieves information from the sources and inserts

new entries in the database, and also tries to associate them

to any product stored in the system.

The system shows a message for every new entry inserted,

and also if it was associated to any product.

The system shows a message for every source type collected

and source updated.

The field ―last_checked‖ of the sources collected is updated in

the database.

The system shows a message for every new entry inserted,

105

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

and also if it was associated to any product.

The system goes back to the main Command Line Interface.

Postcondition None.

Exceptions Step Action

 1 If there is no user currently logged in, the system shows a

message asking to log in before performing this action. Then

this use case doesn’t take effect.

 1 If the keywords inserted are not right the system shows a

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

UC-04 Delete an entry, product, source or user

Description The system must behave as is described in the following use case

when the user asks the system to delete an entry, product, source or

user introducing its ID number.

Precondition The user logged in must be ―admin‖.

Normal

sequence

Step Action

 1 The user asks the system to browse a source or entry

introducing the keyword ―entry‖, ―product‖, ―source‖ or ―user‖

and the ID number to delete.

 2 If the entry, product, source or user with the given ID exists,

the system shows a message saying that it will be deleted.

The system deletes it from the database.

The system goes back to the main Command Line Interface.

Postcondition The deleted ID cannot be used any longer.

Exceptions Step Action

 1 If the user logged is not ―admin‖, the system shows a

message asking the admin to log in before performing this

action. Then this use case doesn’t take effect.

 1 If the keywords inserted are not right the system shows a

106

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

 1 If the given ID doesn’t exist, the system shows a message

reporting the error. Then this use case doesn’t take effect.

UC-05 List all entries, products, sources or users

Description The system must behave as is described in the following use case

when the user asks the system to list all entries, products, sources or

users

Precondition The user must be logged in.

Normal

sequence

Step Action

 1 The user asks the system to list all entries, products, sources

or users introducing the keyword ―entries‖, ―products‖,

―sources‖ or ―users‖.

 2 The system shows a message saying that it will list the

requested information and shows it.

The system doesn’t show user passwords.

The system goes back to the main Command Line Interface.

Postcondition None.

Exceptions Step Action

 1 If there is no user currently logged in, the system shows a

message asking to log in before performing this action. Then

this use case doesn’t take effect.

 1 If the keywords inserted are not right the system shows a

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

107

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

UC-06 Log out current logged user

Description The system must behave as is described in the following use case

when the user asks to log out from SyRAS.

Precondition The user must be logged in.

Normal

sequence

Step Action

 1 The user asks the system to log out.

 2 The prompt changes to show that the user is not logged in.

The system goes back to the main Command Line Interface.

Postcondition From now on the user cannot perform actions that require to be

logged in.

Exceptions Step Action

 1 If there is no user currently logged in, the system shows a

message informing about it. Then this use case doesn’t take

effect.

UC-07 Change the priority of an entry or product

Description The system must behave as is described in the following use case

when the user asks the system to change to important the priority of

one entry or product.

Precondition The user must be logged in.

Normal

sequence

Step Action

 1 The user asks the system to change to important the priority

of an entry or product introducing the keyword ―entry‖ or

―product‖ and the ID number to change priority.

 2 If the entry or product with the given ID exists, the system

shows a message saying that it will change its priority to

important.

The system changes the priority of the given entry or product

to important in the database.

The system goes back to the main Command Line Interface.

108

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Postcondition None.

Exceptions Step Action

 1 If there is no user currently logged in, the system shows a

message asking to log in before performing this action. Then

this use case doesn’t take effect.

 1 If the keywords inserted are not right the system shows a

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

 1 If the given ID doesn’t exist, the system shows a message

reporting the error. Then this use case doesn’t take effect.

UC-08 Save an entry, product, source or user

Description The system must behave as is described in the following use case

when the user asks the system to save an entry, product, source or

user introducing its ID number.

Precondition The user must be logged in.

Normal

sequence

Step Action

 1 The user asks the system to save all the information of an

entry, product, source or user introducing the keyword ―entry‖,

―product‖, ―source‖ or ―user‖ and the ID number to save.

 2 If the entry, product, source or user with the given ID exists,

the system shows a message saying that it will save its

content in a text file.

The system will store the information of the given ID in a file

with the name: keyword+ID.txt. (ex: user3.txt.). The system

goes back to the main Command Line Interface.

The system will not show user passwords for security

reasons.

Postcondition None.

Exceptions Step Action

109

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 1 If there is no user currently logged in, the system shows a

message asking to log in before performing this action. Then

this use case doesn’t take effect.

 1 If the keywords inserted are not right the system shows a

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

 1 If the given ID doesn’t exist, the system shows a message

reporting the error. Then this use case doesn’t take effect.

UC-09 Show an entry, product, source or user

Description The system must behave as is described in the following use case

when the user asks the system to show an entry, product, source or

user introducing its ID number.

Precondition The user must be logged in.

Normal

sequence

Step Action

 1 The user asks the system to show all the information of an

entry, product, source or user introducing the keyword ―entry‖,

―product‖, ―source‖ or ―user‖ and the ID number to save.

 2 If the entry, product, source or user with the given ID exists,

the system shows a message saying that it will show its

content in a text file.

The system will show on the screen all the information of the

given ID. The system goes back to the main Command Line

Interface.

The system will not show user passwords for security

reasons.

Postcondition None.

Exceptions Step Action

 1 If there is no user currently logged in, the system shows a

message asking to log in before performing this action. Then

110

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

this use case doesn’t take effect.

 1 If the keywords inserted are not right the system shows a

message reporting the error. Then this use case doesn’t take

effect.

 1 If the amount of parameters introduced is not the required, the

system shows a message reporting the error. Then this use

case doesn’t take effect.

 1 If the given ID doesn’t exist, the system shows a message

reporting the error. Then this use case doesn’t take effect.

UC-10 Show general help

Description The system must behave as is described in the following use case

when the user asks the system to show the general help.

Precondition None

Normal

sequence

Step Action

 1 The user asks the system to show the general help.

 2 The system shows a message with the general help of the

SyRAS software, including useful commands.

The default web browser will show the web page with the

permalink of the source or entry given.

The system goes back to the main Command Line Interface.

Postcondition None.

Exceptions Step Action

 None.

UC-11 Show specific help

Description The system must behave as is described in the following use case

when the user asks the system to show the specific help of a useful

command.

Precondition None

Normal

sequence

Step Action

111

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 1 The user asks the system to show the specific help of a useful

command introducing help + its name.

 2 The system shows a message with the specific help

information for the command if it’s included in SyRAS. The

system goes back to the main Command Line Interface.

Postcondition None.

Exceptions Step Action

 1 If the given command doesn’t exist, the system shows a

message reporting the error. Then this use case doesn’t take

effect.

UC-12 Exit the system

Description The system must behave as is described in the following use case

when the user asks the system to exit.

Precondition None

Normal

sequence

Step Action

 1 The user asks the system to exit.

 2 The system exits the SyRAS application.

Postcondition No actions can be taken after this command.

Exceptions Step Action

 None.

Static diagram

112

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Dynamic diagrams: Sequence diagrams

UC-01: Login a user

UC-02: Browse a source or entry

113

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

UC-03: Collect entries from different sources

UC-04: Delete an entry, product, source or user

114

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

UC-05: List all entries, products, sources or users

UC-06: Log out current logged user

115

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

UC-07: Change the priority of an entry or product

UC-08: Save an entry, product, source or user

.

116

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

UC-09: Show an entry, product, source or user

UC-10: Show general help

UC-11: Show specific help

117

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

UC-12: Exit the system

118

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

119

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

APPENDIX 2: CODE

This appendix shows parts of the code implemented for the SyRAS application.

Note that parts of the code have been omitted, keeping only the important ones

and the descriptions of the methods.

mod_db.py

import sqlite3

class DB:

 """

 Handling class for sqlite statements

 """

 def __init__(self,database='../syras.sqlite'):

 """

 Starts the database

 Parameter must be a string ('/path/syras.sqlite')

 """

 self.db = database

 self.con = None

 self.curs = None

 def connect(self):

 """

 Logging to the working database

 """

 connection = sqlite3.connect(self.db)

 self.con = connection

 self.curs = connection.cursor()

 def disconnect(self):

120

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 """

 Closing connection and cursor, logging out from the working database

 """

 self.curs.close()

 self.con.close()

 def select(self, sql):

 """

 Perfoms a custom query

 Returns a list of rows with the results

 """

 self.curs.execute(sql)

 return self.curs.fetchall()

 def insert(self, sql):

 """

 Performs insert statements

 Returns 1 if ok or 0 if failed

 """

 try:

 self.curs.execute(sql)

 except:

 print "Insert ERROR: "

 def delete(self, sql):

 """

 Performs delete statements

 Returns 1 if ok or 0 if failed

 """

 def update(self, sql):

 """

 Performs update statements

 Returns 1 if ok or 0 if failed

 """

121

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 def commit(self):

 """

 Commits last changes to the database

 """

 self.con.commit()

 def rollback(self):

 """

 Discards changes since last commit

 """

 self.con.rollback()

mod_users.py

import sys # for changing the standard output

import base64 #for encoding the password

"This module contains the class for handling Users"

class Users:

 "Generic class for handling users"

 def __init__(self, dbinstance):

 "Set the user values to None"

 self.database = dbinstance

 self.id = None

 self.date = None

 self.name = None

 self.password = None #User's password

 self.email = None #User's email to send warnings

 self.warnings = None #Warning options 1=email, 2=sms

 def get_one(self, id):

 "Get the user with known id"

 try:

122

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 sql = "select * from users where id = %d" % id

 querylist = self.database.select(sql)

 # querylist is a list of tuples

 # We use the first tuple if querylist it's not empty

 if querylist:

 query = querylist[0]

 self.id = id

 self.date = query[1]

 self.name = query[2]

 self.password = query[3]

 self.email = query[4]

 self.warnings = query[5]

 else:

 print "ERROR: Trying to get_one empty user id %d" %id

 self.id = 0

 except:

 print "ERROR: trying to get_one empty user id"

 def get_all(self):

 """

 Get all users from the database

 Returns object "all_users" to iterate over it

 """

 try:

 sql = "select id, date, name, email, warnings from users"

 all_users = self.database.select(sql)

 return all_users

 def exists(self, user, password):

 "Get the user with known user and password"

 try:

 encoded = base64.b64encode(password)

 sql = """select id from users where name = '%s' and password = '%s' """ % (user, encoded)

123

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 querylist = self.database.select(sql)

 if querylist: return querylist[0][0]

 def insert(self):

 """

 Insert 'self' user checking if it exists already

 To check if exists it compares the name

 """

 try:

 sql = "select * from users where name = '%s'" % (self.name)

 querydic = self.database.select(sql)

 if querydic:

 print "New user NOT INSERTED"

 else:

 sql = """INSERT INTO Users (date, name, password, email, warnings)

 VALUES (CURRENT_TIMESTAMP, '%s','%s','%s',%d)

 """ %(self.name, self.password, self.email, self.warnings)

 ok = self.database.insert(sql)

 if ok:

 print "New user '%s' INSERTED" % self.name

 self.database.commit()

 def delete(self):

 "Delete self user"

 try:

 sql = "delete from Users where id = %d" % self.id

 ok = self.database.delete(sql)

 if ok:

 print "User %d '%s' DELETED" % (self.id, self.name)

 self.database.commit()

 def modify(self):

 """

 Modify the user with self values

 """

124

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 try:

 sql = """UPDATE Users SET name ='%s', password = '%s',

 email = '%s', warnings = %d

 WHERE id = %d

 """ %(self.name, self.password,

 self.email, self.warnings,

 self.id)

 ok = self.database.update(sql)

 if ok:

 print "User %d '%s' MODIFIED" % (self.id, self.name)

 self.database.commit()

 def show(self):

 """

 Show the self user on screen

 """

 try:

 print "USER id: ",self.id

 print "Date of creation: ",self.date

 print "Name: ",self.name

 print "Password: 'encrypted'"

 print "Email: ",self.email

 print "Warning level (1=email, 2=sms): ",self.warnings

 def save(self):

 """

 Save the self user on a file user<id>.txt

 """

 try:

 filename = 'user' + str(self.id) + '.txt'

 file = open(filename, 'w')

 sys.stdout = file #change standard output to file

 self.show()

 file.close()

 sys.stdout=sys.__stdout__ #change back standard output

125

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 print "User %d saved in file %s" %(self.id, filename)

mod_products.py

import sys # for changing the standard output

"This module contains the class for handling Products"

class Products:

 "Generic class for handling products"

 def __init__(self, dbinstance):

 "Set the product values to None"

 self.database = dbinstance

 self.id = None

 self.date = None

 self.brand = None #Product's brand E.g: brand = Microsoft

 self.name = None #Product's name name = Office

 self.version = None #Product's version version = 2007

 self.general_search = None #General search string (used if source.type=1 -general-)

 self.specific_search = None #Specific search string (used if source.type=2 -specific-)

 self.importance = None #0=Unknown, 1= Not important, 2=Important, 3=Client

 def get_one(self, id):

 "Get the product with known id"

 def get_all(self):

 """

 Get all products from the database

 Returns object "all_products" to iterate over it

 """

def get_branded(self, selected_brand):

 """

 Get the id of all products with same brand from the database

 Returns object "selected_brand_products" to iterate over it

 """

126

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 try:

 sql = "select * from products where brand = '%s'" % selected_brand

 selected_brand_products = self.database.select(sql)

 return selected_brand_products

 except:

 print "ERROR: trying to get_branded"

 def insert(self):

 """

 Insert 'self' product checking if it exists already

 To check if exists it compares brand, name and version

 """

 def delete(self):

 "Delete self product"

 def modify(self):

 """

 Modify the product with self values

 """

 def show(self):

 """

 Show the self product on screen

 """

 def save(self):

 """

 Save the self product on a file product<id>.txt

 """

127

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

mod_sources.py

import sys # for changing the standard output

"This module contains the class for handling Sources”

class Sources:

 "Generic class for handling sources"

 def __init__(self, dbinstance):

 "Set the source values to None"

 self.database = dbinstance

 self.id = None

 self.date = None

 self.name = None

 self.source_type = None #1=email, 2=html, 3=rss

 self.type = None #1=general, 2=specific

 self.subscription = None #URL to connect to the source

 self.linked_product = None #If type=2 and is directly associated. 0 If could be associated to several

self.search_brand = None #If type=2. Specifies the brand of products to search for association. self.url_start =
None #If source_type=2 Url to append

 self.pattern = None #If source_type=2 RE for searching new entries

 self.last_checked = None #Update with current timestamp every time the source is checked

def get_one(self, id):

 "Get the source with known id"

 def get_all_email(self):

 """

 Get all email sources from the database

 Returns object "all_email_sources" to iterate over it

 """

 try:

 sql = "select * from sources where source_type = 1"

 all_sources = self.database.select(sql)

 return all_sources

 except:

128

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 print "ERROR: trying to get_all_email sources"

 def get_all_html(self):

 """

 Get all html sources from the database

 Returns object "all_html_sources" to iterate over it

 """

 def get_all_rss(self):

 """

 Get all rss sources from the database

 Returns object "all_rss_sources" to iterate over it

 """

 def get_all(self):

 """

 Get all sources from the database

 Returns object "all_sources" to iterate over it

 def insert(self):

 """

 Insert 'self' source checking if it exists already

 To check if it exists it compares source_type and subscription

 """

 def delete(self):

 "Delete self source"

 def modify(self):

 """

 Modify the source with self values

 """

 def set_time(self):

 """

129

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Update self.last_checked to CURRENT_TIMESTAMP

 """

 try:

 sql = r"""UPDATE sources SET last_checked = (SELECT datetime(strftime('%s','now'), 'unixepoch', 'localtime'))

 """ + """ WHERE id = %d

 """ % self.id

 #sql = """UPDATE sources SET last_checked = CURRENT_TIMESTAMP

 #WHERE id = %d

 #""" % self.id

 ok = self.database.update(sql)

 if ok:

 self.database.commit()

 print "Source '%s' updated" % self.name

 #print "Source '%s' updated at: " % self.name , self.last_checked

 except:

 print "ERROR: trying to set_time id: ", self.id

 def show(self):

 """

 Show the self source on screen

 """

 def save(self):

 """

 Save the self source on a file source<id>.txt

mod_email.py

#Imports

from mod_sources import Sources

from mod_entries import Entries

import feedparser # For parsing the gmail atom feeds

import urllib # For downloading the webpages

import imaplib # For connecting to gmail and mark emails as read

130

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

"Module that contains class for email management"

GMAIL_ATOM_URL = "https://mail.google.com/gmail/feed/atom"

class Email_Sources(Sources):

 """

 Class for handling Email sources

 Inherits from class Sources

 Adds new function check_new_entries and attribute feed

 Uses gmail as rss to get entries from inbox and then mark as read

 """

 gmail_user = 'syrasfeed'

 gmail_pass = 'securitypw'

 def __init__(self, dbinstance):

 "Rss_Source object, like Source object but with new atributes: feed = parsed rss_source"

 Sources.__init__(self, dbinstance)

 self.feed = None #Parsed rss_source

 #SOURCE: http://docs.python.org/library/urllib.html#urllib.FancyURLopener

 #Provides the gmail account user and pw

 urllib.FancyURLopener.prompt_user_passwd = lambda self, host, realm: ('syrasfeed','securitypw')

 def parse_feed(self):

 "Parse the email source in self.feed"

 #Uses the promt_user_passwd for providing user and pw for the email account

 opener = urllib.FancyURLopener()

 f = opener.open(self.subscription)

 self.feed = feedparser.parse(f.read())

 def mark_as_read(self):

 "Mark as read all emails from the gmail inbox"

131

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 #SOURCE: http://noandwhere.com/archive/archive-your-gmail-inbox-from-python

 M = imaplib.IMAP4_SSL('imap.gmail.com')

 M.login('syrasfeed','securitypw')

 M.select()

 typ, data = M.search(None, 'ALL')

 for num in data[0].split():

 #Remove the message from the inbox, but don't actually delete them

 M.store(num, '+FLAGS', '\\Seen')

 M.expunge()

 def check_new_entries(self):

 "Check one rss source to get the new entries"

 try:

 #Create a new entry object and fill in the fields

 for possible_entry in self.feed["items"]: #For each possible new entry

 new_entry = Entries(self.database)

 new_entry.permalink = possible_entry["link"]

 new_entry.md5_get()

 if not new_entry.md5_exist():

 new_entry.linked_source = self.id

 new_entry.subject = possible_entry["title"]

 new_entry.body = possible_entry["summary"]

 new_entry.insert()

 new_entry.link_to_product()

 self.mark_as_read() #Empty the inbox

 self.set_time()

 except:

 print "ERROR: trying to check_new_entries in Rss_sources"

132

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

mod_html.py

#Imports

from mod_sources import Sources

from mod_entries import Entries

#SOURCE: http://www.crummy.com/software/BeautifulSoup/documentation.html

from BeautifulSoup import BeautifulSoup # For parsing the HTML

import re # For regular expressions

import urllib2 # For downloading the webpages

"Module that contains class for html management"

class Html_Sources(Sources):

 """

 Class for handling HTML sources

 Inherits from class Sources

 Adds new function check_new_entries and attributes page and soup

 """

 def __init__(self, dbinstance):

 "Html_Source object, like Source object but with new atributes: page and soup"

 Sources.__init__(self, dbinstance)

 self.page = None

 self.soup = None

 def parse_page(self):

 "Parse the html source in self.page and self.soup"

 self.page = urllib2.urlopen(self.subscription) #downloaded html_source

 self.soup = BeautifulSoup(self.page) #parsed the downloaded html_source

 def check_new_entries(self):

 "Check one html source to get all the new entries"

 try:

 # Search for the <a> tags that match the RE pattern

 all_entries = self.soup.findAll('a', href=re.compile(self.pattern))

133

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 for possible_entry in all_entries:

 new_entry = Entries(self.database)

 new_entry.permalink = self.url_start + possible_entry["href"] # To compose the permalink

 new_entry.md5_get()

 if new_entry.md5_exist():pass

 else:

 new_entry.linked_source = self.id

 new_entry.subject = possible_entry.string

 new_entry.body = “empty body”

 new_entry.insert()

 new_entry.link_to_product()

 self.set_time()

 except:

 print "ERROR: trying to check_new_entries in HTML_sources"

mod_rss.py

#Imports

from mod_sources import Sources

from mod_entries import Entries

from datetime import datetime

#SOURCE:http://www.feedparser.org/

import feedparser # For parsing the RSSfeed

"Module that contains class for rss management"

class Rss_Sources(Sources):

 """

 Class for handling RSS sources

 Inherits from class Sources

 Adds new function check_new_entries and attribute feed

 """

 def __init__(self, dbinstance):

 "Rss_Source object, like Source object but with new attributes: feed = parsed rss_source"

134

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 Sources.__init__(self, dbinstance)

 self.feed = None #parsed rss_source

def parse_feed(self):

 "Parse the RSS source in self.feed"

 self.feed = feedparser.parse(self.subscription)

 def check_new_entries(self):

 "Check one RSS source to get the new entries"

 try:

 #Create a new entry object and fill in the fields

 temp = datetime.strptime(self.last_checked , "%Y-%m-%d %H:%M:%S")

 last_checked_tuple = temp.timetuple()

 for possible_entry in self.feed["items"]: #For each possible new entry

 try:

 if last_checked_tuple > possible_entry["updated_parsed"]: break

 except:

 new_entry = Entries(self.database)

 new_entry.permalink = possible_entry["link"]

 new_entry.md5_get()

 if not new_entry.md5_exist():

 new_entry.linked_source = self.id

 new_entry.subject = possible_entry["title"]

 new_entry.body = “empty body”

 new_entry.insert()

 new_entry.link_to_product()

 self.set_time()

 except:

 print "ERROR: trying to check_new_entries in Rss_sources"

135

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

mod_entries.py

Imports

import hashlib # Module for md5

import sys # for changing the standard output

from mod_sources import Sources # My sources module

from mod_products import Products # My products module

"This module contains the class for handling Entries"

class Entries:

 "Generic class for handling entries"

 def __init__(self, dbinstance):

 "Set the entry values to None"

 self.database = dbinstance

 self.id = None

 self.date = None

 self.permalink = None #Permalink to the entry

 self.linked_source = None #Source of the new entry

 self.subject = None #Title of the new entry

 self.body = None #To get when assigned_cat=3 (processed)

 self.matched_string = None #String matched if assigned to any product (linked_product !=0)

 self.linked_product = None #Id of the liked_product (0 if Not matched)

 self.automatic_cat = None #Importance (from 1 to 5 -max-) asigned automatically

 self.assigned_cat = None #Assigned by user (0=Not revised, 1=Discarded, 2=Important, 3=Processed)

 self.by_user = None #Id of the user that assigned category (by_user=0 if automatic)

 self.md5 = None #md5 of the permalink

def get_one(self, id):

 "Get the entry with known id"

 def get_all(self):

 """

 Get the last 20 entries from the database

 Returns object "all_sources" to iterate over it

 """

136

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 def md5_exist(self):

 "Check if the entry (self.md5) is already in the database"

 try:

 sql = "select * from entries where md5 = '%s'" % (self.md5)

 query = self.database.select(sql)

 if query: return 1 #The entry with this md5 exists already

 else: return 0 #The entry with this md5 does NOT exist yet

 except:

 print "ERROR: trying to get the md5 of the entry"

 def md5_get(self):

 "Get the self.md5 from the self.permalink"

 try:

 self.md5 = hashlib.md5(self.permalink).hexdigest()

 except:

 print "ERROR: trying to md5_get entry %d" % self.id

 def set_integrity(self):

 "Set to 0 int values that are 'None'"

 if not self.linked_source: self.linked_source = 0

 if not self.linked_product: self.linked_product = 0

 if not self.automatic_cat: self.automatic_cat = 0

 if not self.assigned_cat: self.assigned_cat = 0

 if not self.by_user: self.by_user = 0

 def link_to_product(self):

 """

 Try to link the new entry to a product

 """

 try:

 associated = 0

 lowsubject = self.subject.lower()

 #Current source is the source of the entry in progress

 current_source = Sources(self.database)

137

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 current_source.get_one(self.linked_source)

 current_product = Products(self.database)

 if current_source.type is 1: # General source, look for 'general_search' y all products

 possible_linked_products = current_product.get_all() #Returns the id of all products

 for possible_product in possible_linked_products : #Try to link to every possible_linked_product

 #Search the general search string in the subject of the entry

 found = lowsubject.find(possible_product[5].lower())# + self.body.find(possible_product[5])

 if found>=0: #String found, associate 'self' entry to possible_product id

 self.linked_product = possible_product[0]

 self.matched_string = possible_product[5]

 self.automatic_cat = 3 #3rd highest category level

 associated = 1

 break

 elif current_source.type is 2: # Specific source, look for 'specific_search' in one or more products

 if current_source.linked_product is 0: # The source can be associated to several products

 possible_linked_products = current_product.get_branded(current_source.search_brand)

 for possible_product in possible_linked_products:

 #Search the specific string in the subject of the entry

 found = lowsubject.find(possible_product[6].lower())

 if found>=0: #String found, associate 'self' entry to possible_product id

 self.linked_product = possible_product[0]

 self.matched_string = possible_product[6]

 self.automatic_cat = 4 #2nd highest category level

 associated = 1

 break

 else: # The source can be associated just to 1 product

 self.linked_product = current_source.linked_product #Straight association

 current_product.get_one(current_source.linked_product)

 self.matched_string = current_product.specific_search

 associated = 1

 self.automatic_cat = 5 #Highest category level

 else:

 print "An error occurred while linking the entry %d to a product" % self.id

138

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 if associated:

 print "Entry %d ASSOCIATED to %d with string '%s'" % (self.id, self.linked_product, self.matched_string)

 self.modify()

 else:

 print "Entry %d not associated to any product" % self.id

 except:

 print "ERROR: trying to link_to_product entry %d" % self.id

 def insert(self):

 """

 Insert 'self' entry checking if it exists already using md5_exist

 """

 def delete(self):

"""

 Delete self entry

"""

 def modify(self):

 """

 Modify the entry with self values

 """

 def show(self):

 """

 Show the entry on screen

 """

 def save(self):

 """

 Save the self user on a file entry<id>.txt

 """

139

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

mod_syras.py

import sys # For system exit

import cmd # For command line interface

import webbrowser # For opening a link with the browser

import getpass # For getting secure password

from mod_db import DB # My database module

from mod_sources import Sources # My module for handling sources

from mod_products import Products # My module for handling products

from mod_users import Users # My module for handling users

from mod_email import Email_Sources # My module for handling email sources

from mod_html import Html_Sources # My module for handling html sources

from mod_rss import Rss_Sources # My module for handling rss sources

from mod_entries import Entries # My module for handling entries

class Console(cmd.Cmd):

 "Simple command line processor"

 #http://wiki.python.org/moin/CmdModule

 def __init__ (self):

 "Constructor for the Console class"

 cmd.Cmd.__init__(self)

 self.prompt = "SyRAS:_> "

 self.intro = """Welcome to SyRAS command line interface

 Please login or type 'help' for command guide of 'exit' to quit"""

def do_login(self, line):

 """ User and password identification

 login <user>

 e.g: 'login user1'"""

 cad = line.split()

 if len(cad)!=1:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt != "SyRAS:_> "):

140

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 print "There is a user logged, please logout first before changing the user"

 return

 else:

 pw = getpass.getpass('Your password please: ')

 id = user.exists(cad[0], pw)

 if id:

 current_user.get_one(id)

 print "Welcome to SyRAS",cad[0]

 self.prompt = cad[0] + "@SyRAS:_> "

 else: print "Invalid user or password"

 def do_logout(self,line):

 """ Logs out current user if any"""

 if self.prompt == "SyRAS:_> " :

 print 'There are none users logged'

 else:

 current_user.get_one(0)

 print 'User %s logged out' % self.prompt[:-10]

 self.prompt = "SyRAS:_> "

 def do_collect(self, line):

 """ Collect entries from different sources

 collect email|html|rss|all

 e.g: 'collect rss'"""

 cad = line.split()

 if len(cad)!=1:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt == "SyRAS:_> "): print "You must be logged in to access this option"

 else:

 completed = 0

 if cad[0]=='email' or cad[0]=='all':

 print 'Collecting email'

 all_email = email.get_all_email()

 email.get_one(all_email[0][0])

141

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 email.parse_feed()

 email.check_new_entries()

 completed = 1

 print 'All email sources collected'

 if cad[0]=='html'or cad[0]=='all':

 print 'Collecting html'

 all_html=html.get_all_html()

 for id in all_html:

 html.get_one(id[0])

 html.parse_page()

 html.check_new_entries()

 completed = 1

 print 'All html sources collected'

 if cad[0]=='rss'or cad[0]=='all':

 print 'Collecting rss'

 all_rss = rss.get_all_rss()

 for id in all_rss:

 rss.get_one(id[0])

 rss.parse_feed()

 rss.check_new_entries()

 completed = 1

 print 'All rss sources collected'

 if completed == 0: print "Unknown source: '%s'" % cad[0]

 def do_list(self, line):

 """ List all entries, products, sources or users

 list entries|products|sources|users

 e.g: 'list products'"""

 cad = line.split()

 if len(cad)!=1:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt == "SyRAS:_> "): print "You must be logged in to access this option"

 else:

 if cad[0]=='entries':

142

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 print 'Printing ENTRIES (showing last 20): '

 print """(id, date, permalink, linked source, subject, body, matched string, linked product, importance, catergory, by
user, md5) \n"""

 entries = entry.get_all()

 for item in entries:

 print item

 elif cad[0]=='products':

 print 'Printing PRODUCTS: '

 print """(id, date, brand, name, version, general search string, specific search string, importance) \n"""

 products = product.get_all()

 for item in products:

 print item

 elif cad[0]=='sources':

 print 'Printing SOURCES: '

 print """(id, date, name, source type, type, subscription, linked product, search brand, url start, search pattern, last
check) \n"""

 sources = source.get_all()

 for item in sources:

 print item

 elif cad[0]=='users':

 print 'Printing USERS: '

 print "(id, date, name, (password ommited), email, warning level) \n"

 users = user.get_all()

 for item in users:

 print item

 else: print "Unknown source: '%s'" % cad[0]

 def do_show(self, line):

 """ Show one entry, product, source or user

 show entry|product|source|user <id>

 e.g: 'show user 3'"""

 cad = line.split()

 if len(cad)!=2:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt == "SyRAS:_> "): print "You must be logged in to access this option"

143

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 elif cad[1].isdigit():

 id = int(cad[1])

 if cad[0]=='entry':

 entry.get_one(id)

 if entry.id!=0: entry.show()

 elif cad[0]=='product':

 product.get_one(id)

 if product.id!=0:product.show()

 elif cad[0]=='source':

 source.get_one(id)

 if source.id!=0:source.show()

 elif cad[0]=='user':

 user.get_one(id)

 if user.id!=0:user.show()

 else: print "Unknown parameter: '%s'" % cad[0]

 else: print "Unknown parameter: '%s'" % line

 def do_save(self, line):

 """ Save one entry, product, source or user in a txt file

 save entry|product|source|user <id>

 e.g: 'save user 3' will save it in 'user3.txt' file"""

 cad = line.split()

 if len(cad)!=2:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt == "SyRAS:_> "): print "You must be logged in to access this option"

 elif cad[1].isdigit():

 id = int(cad[1])

 if cad[0]=='entry':

 entry.get_one(id)

 if entry.id!=0:

 entry.assigned_cat=3

 entry.by_user=current_user.id

 entry.modify()

 entry.save()

144

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 elif cad[0]=='product':

 product.get_one(id)

 if product.id!=0:product.save()

 elif cad[0]=='source':

 source.get_one(id)

 if source.id!=0:source.save()

 elif cad[0]=='user':

 user.get_one(id)

 if user.id!=0:user.save()

 else: print "Unknown parameter: '%s'" % cad[0]

 else: print "Unknown parameter: '%s'" % line

 def do_browse(self, line):

 """ Open one entry or source permalink in the web browser

 browse entry|source <id>

 e.g: 'browser entry 100' will open it's permalink in the web browser"""

 cad = line.split()

 if len(cad)!=2:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt == "SyRAS:_> "): print "You must be logged in to access this option"

 elif cad[1].isdigit():

 id = int(cad[1])

 if cad[0]=='entry':

 entry.get_one(id)

 if entry.id!=0:

 entry.assigned_cat=2

 entry.by_user=current_user.id

 entry.modify()

 webbrowser.open(entry.permalink)

 print "ENTRY %d opened in the web browser" % entry.id

 elif cad[0]=='source':

 source.get_one(id)

 if source.id!=0:

 webbrowser.open(source.subscription)

145

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 print "SOURCE %d opened in the web browser" % source.id

 else: print "Unknown parameter: '%s'" % cad[0]

 else: print "Unknown parameter: '%s'" % line

 def do_priority(self, line):

 """ Changes to important the priority of one entry or product

 priority entry|product <id>

 e.g: 'priority product 10' will change it's priority to important"""

 cad = line.split()

 if len(cad)!=2:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt == "SyRAS:_> "): print "You must be logged in to access this option"

 elif cad[1].isdigit():

 id = int(cad[1])

 if cad[0]=='entry':

 entry.get_one(id)

 if entry.id!=0:

 if (entry.assigned_cat!=3):

 entry.assigned_cat=2

 entry.by_user=current_user.id

 entry.modify()

 print "ENTRY %d changed to Important" % entry.id

 elif cad[0]=='product':

 product.get_one(id)

 if product.id!=0:

 product.importance=2

 product.modify()

 print "PRODUCT %d changed to Important" % product.id

 else: print "Unknown parameter: '%s'" % cad[0]

 else: print "Unknown parameter: '%s'" % line

 def do_delete(self, line):

 """ Delete one entry, product, source or user from the database (only admin)

 delete entry|product|source|user <id>

146

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 e.g: 'delete user 3' will delete it from the database"""

 cad = line.split()

 if len(cad)!=2:

 print "ERROR: Invalid number of arguments"

 return

 elif (self.prompt != "admin@SyRAS:_> "): print "You must be administrator to access this option"

 elif cad[1].isdigit():

 id = int(cad[1])

 if cad[0]=='entry':

 entry.get_one(id)

 if entry.id!=0: entry.delete()

 elif cad[0]=='product':

 product.get_one(id)

 if product.id!=0:product.delete()

 elif cad[0]=='source':

 source.get_one(id)

 if source.id!=0:source.delete()

 elif cad[0]=='user':

 user.get_one(id)

 if user.id!=0:user.delete()

 else: print "Unknown parameter: '%s'" % cad[0]

 else: print "Unknown parameter: '%s'" % line

 def do_EOF(self, line):

 print "SyRAS closed!"

 return True

 do_exit=do_EOF

syras.py

if __name__ == '__main__':

 #Initiation of database

 database = DB()

147

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 database.connect()

 #Initiation of user, product and entry

 entry = Entries(database)

 product = Products(database)

 user = Users(database)

 current_user = Users(database)

 current_user.get_one(0)

 #Initiation of sources

 email = Email_Sources(database)

 html = Html_Sources(database)

 rss = Rss_Sources(database)

 #Initiation of console

 con = Console()

 try:

 con.cmdloop()

 except KeyboardInterrupt:

 con.do_EOF(None)

 finally:

 database.disconnect()

 sys.exit()

syrasloop.py

 # Imports

import time # For waiting a time interval

import sys # For system exit

import getpass # For getting secure password

from mod_db import DB # My database module

148

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

from mod_sources import Sources # My module for handling sources

from mod_products import Products # My module for handling products

from mod_users import Users # My module for handling users

from mod_email import Email_Sources # My module for handling email sources

from mod_html import Html_Sources # My module for handling html sources

from mod_rss import Rss_Sources # My module for handling rss sources

from mod_entries import Entries

if __name__ == '__main__':

 #Initiation of database

 database = DB()

 database.connect()

 #Initiation of user, product and entry

 entry = Entries(database)

 product = Products(database)

 source = Sources(database)

 user = Users(database)

 #Initiation of sources

 email = Email_Sources(database)

 html = Html_Sources(database)

 rss = Rss_Sources(database)

 #Waiting time in seconds between loops

 wait_time = 300

 logged = 0

 print “Welcome to SyRAS loop, please log in”

 while logged == 0 :

 us = raw_input(‘Your user: ‘)

 pw = getpass.getpass(‘Your password: ‘)

 id = user.exists(us, pw)

149

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 if id:

 user.get_one(id)

 print “Welcome to SyRAS”,us

 logged = 1

 else: print “Invalid user or password, please try again”

 # Check all sources for new entries every “wait_time” seconds

 try:

 while True:

 print ‘\nStarting the collecting proccess’

 print ‘--------------------------------‘

 print ‘1- Collecting Email feeds’

 all_email = email.get_all_email()

 email.get_one(all_email[0][0])

 email.parse_feed()

 email.check_new_entries()

 print ‘\n2- Collecting HTML feeds’

 all_html=html.get_all_html()

 for id in all_html:

 html.get_one(id[0])

 html.parse_page()

 html.check_new_entries()

 print ‘\n3- Collecting RSS feeds’

 all_rss = rss.get_all_rss()

 for id in all_rss:

 rss.get_one(id[0])

 rss.parse_feed()

 rss.check_new_entries()

 print ‘\nWaiting for %d seconds and starting again’ % wait_time

 time.sleep(wait_time)

 except KeyboardInterrupt:

150

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

 print “SyRAS loop stopped by user”

 except:

 print “Error while checking new entries”

 finally:

 database.disconnect()

 sys.exit()

151

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

APPENDIX 3: SECURITY ADVISORIES

This appendix shows several examples of real security advisories published by

vendors or researchers (as they could be collected by the SyRAS system) and

the final version of the security notice written by the author of this thesis and

published in Spanish by the IT security company Hispasec Sistemas.

Security Advisory 1: Broad, Elazar. 10th March 2008. ‖Real Networks

RealPlayer ActiveX Control Heap Corruption‖. Full-disclosure

Link: http://archives.neohapsis.com/archives/fulldisclosure/2008-03/0157.html

Text:

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA1

Who:

Real Networks

http://www.real.com

What:

Real Networks Real Player is a popular media player.

How:

Real Player utilizes an ActiveX control to play content within the

users browser.

rmoc3260.dll version 6.0.10.45

{2F542A2E-EDC9-4BF7-8CB1-87C9919F7F93}

{CFCDAA03-8BE4-11CF-B84B-0020AFBBCCFA}

It is possible to modify heap blocks after they are freed and

overwrite certain registers, possibly allowing code execution. Like

so:

- ------------

var buf = '';

while (buf.length < 1005) buf = buf + 'A';

m = obj.Console;

obj.Console = buf;

http://archives.neohapsis.com/archives/fulldisclosure/2008-03/0157.html

152

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

obj.Console = m

//repeat

m = obj.Console;

obj.Console = buf;

obj.Console = m --> Should crash here

- -------------

Workaround:

Set the killbit for this control. See

http://support.microsoft.com/kb/240797

Fix:

No official fix known

Exploit:

Working on it

Elazar

-----BEGIN PGP SIGNATURE-----

Security Notice 1: Molina, Pablo. 11th March 2008. ‖Ejecución de código a

través de un ActiveX de RealPlayer‖. Una-al-día - Hispasec Sistemas S.L.

Link: http://www.hispasec.com/unaaldia/3426

Text:

Se ha descubierto una vulnerabilidad en RealPlayer que podría ser aprovechada por un atacante remoto

para causar una denegación de servicio y posiblemente, ejecutar código arbitrario en un sistema

vulnerable.

RealPlayer es empleado por millones de usuarios de Internet para reproducir archivos multimedia tanto

de audio como de vídeo. El fallo ha sido destapado por Elazar Broad, investigador especializado en

descubrir fallos en los controles ActiveX de algunas de las aplicaciones más extendidas.

Según Broad, el problema está causado por un desbordamiento en el componente ActiveX

RealAudioObjects.RealAudio (rmoc3260.dll) versión 6.0.10.45, que podría permitir a un atacante

sobrescribir en bloques de memoria de la pila basada en heap y modificar así ciertos registros. Esto

podría ser aprovechado para hacer que, si se visita con Internet Explorer una página web especialmente

manipulada, se ejecutase código arbitrario.

http://www.hispasec.com/unaaldia/3426

153

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

El problema podría afectar a todas las versiones de RealPlayer y su descubridor dice estar trabajando en

una demo, así que es posible que en pocos días esté disponible un expoit público que haga uso de la

vulnerabilidad para ejecutar código arbitrario de forma remota.

No existe parche disponible y como contramedida, se recomienda activar el kill bit del control ActiveX

para evitar que sea llamado por Internet Explorer. Es posible hacerlo guardando este archivo con

extensión .reg y ejecutarlo como administrador:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\

ActiveX Compatibility\{2F542A2E-EDC9-4BF7-8CB1-87C9919F7F93}]

"Compatibility Flags"=dword:00000400

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\

ActiveX Compatibility\{CFCDAA03-8BE4-11CF-B84B-0020AFBBCCFA}]

"Compatibility Flags"=dword:00000400

También existe la posibilidad de deshabilitar la ejecución automática de ActiveX en el navegador en

páginas no confiables.

Según nuestros registros en el servicio de alertas SANA, desde el pasado mes de octubre se han

encontrado hasta cinco vulnerabilidades de gravedad alta en RealPlayer relacionadas con controles

ActiveX.

Security Advisory 2: Security Bulletin. 24th February 2009. ‖Flash Player

update available to address security vulnerabilities‖. Adobe Systems

Incorporated.

Link: http://www.adobe.com/support/security/bulletins/apsb09-01.html

http://www.adobe.com/support/security/bulletins/apsb09-01.html

154

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Pablo Molina Martínez

Security Notice 2: Molina, Pablo. 25th February 2009. ‖Actualización por

vulnerabilidades de ejecución de código en Adobe Flash Player‖. Una-al-día -

Hispasec Sistemas S.L.

Link: http://www.hispasec.com/unaaldia/3777

Security Advisory 3: Microsoft Technet. 23th October 2008. ‖Microsoft

Security Bulletin MS08-067 – Critical. Vulnerability in Server Service Could

Allow Remote Code Execution (958644)‖. Microsoft Corporation.

Link: http://www.microsoft.com/technet/security/bulletin/MS08-067.mspx

Security Notice 3: Molina, Pablo. 23th October 2008. ‖Microsoft publica una

actualización crítica fuera de ciclo‖. Una-al-día - Hispasec Sistemas S.L.

Link: http://www.hispasec.com/unaaldia/3652/

http://www.hispasec.com/unaaldia/3777
http://www.microsoft.com/technet/security/bulletin/MS08-067.mspx
http://www.hispasec.com/unaaldia/3652/microsoft-publica-una-actualizacion-critica-fuera-ciclo

