
TUTORIAL 2

Composing metamodels using GME 3

Composing metamodels

First, we shall build the metamodel for a signal flow paradigm. Then you will need the metamodel of the finite state machine

paradigm created in Tutorial 1 (FSM-Meta.mga). Using these two metamodels we shall compose a metamodel specifying a new

modeling paradigm.

Prepare the component metamodels

Recall the steps of creating the metamodel of the finite state machine paradigm (See Tutorial 1). These

steps will not be discussed afresh. We shall only explain the metamodel creation of the signal flow paradigm.

Create the metamodel of the signal flow paradigm

The simplest part of our signal flow metamodel is the signal itself. Signals could be input or output signals

but most of their properties are the same. The common method to capture this perception in our metamodel is

to derive both the input and the output signal atoms from a base signal atom. We use the “Inheritance”

operator () for this.1 You may want to specify your Signal atom as an “Abstract” class (right click the Signal

atom and check the “Abstract ?” attribute), since you only want to create input signals and/or output signals.

We only needed the Signal atom as common base class. You can see the result in Figure 1.

Figure 1: Inheritance

1 Note: It isn’t the same how you create the connections between the inheritance operator and the related objects. The best

way to avoid mistakes is to keep a top-down direction: (1) first, connect the base class to the inheritance operator, (2) then

connect the inheritance operator to one of the objects to be derived. Repeat the second step until you connected each

derived object as desired.

 1

Signals can be connected to form the signal flow. We need a connection object (Dataflow) and a

connector to describe the relationship of these objects. Both input signals and output signals can be connected

together, so it is convenient to make this relationship at the base signal object (See Figure 2).

Figure 2: Dataflow

The signal atom and dataflow connection are both parts of a processing environment. Furthermore, Signal

atom will act as a port of the Processing model. In our model, we have primitive processes and compound

processes. Primitive processes are the leaf nodes in the signal flow hierarchy that implement elementary

computations in the graph. Compound processes can contain signals, primitives and/or other compound

processes. While assigning the signal atom and dataflow connection to models, we should keep these rules in

mind. Again, Processing model will be an abstract model, since we only want to instantiate Primitive and

Compound processes in our signal flow model.

Figure 3: Class diagram of signal flow model

To make Signal atoms appear as GME ports in Processing models left click on the containment

connection between the Signal atom and the Processing model and make the “Object is a port?” attribute

in the Attribute Panel “true”. Make sure the Attribute Panel shows the attribute settings for the containment

you meant to. We did not give a special name to this connection, so you should see the default name

“Containment” in the Attribute Panel indicating the active object with the revealed settings.

 2

Set the “In root folder?” attribute for the Compound model. See Figure 3 for our final metamodel of the

signal flow paradigm.

We need to define an attribute of the Primitive class. Following the steps in Tutorial 1, switch to Attribute

aspect and add a field attribute to the Primitive class. We can name it “CScript”. In the signal flow models

this attribute will contain the C function that implements the functionality of the given Primitive.

Interpret the signal flow metamodel

This goes just like in Tutorial 1. Do not forget to specify an aspect for your metamodel. This time you need

to assign it to the Processing model so that you have all your objects in it. Defining it to any other model

objects of your metamodel will cause a warning signal interpreting your metamodel indicating that not all of

your objects are assigned to an aspect. Save your metamodel as SF-Meta.mga.

Export metamodels to XML format

GME 3 provides a bi-directional XML access for both model and metamodel information. You can

generate XML format of your metamodel by invoking File/Export XML. Please, export both your finite state

machine and signal flow metamodels to XML format.

Composition of two existing metamodels

In this section, we shall use the two exported metamodels to create a metamodel of a more complex signal

flow paradigm.

Load the existing metamodels

First, following the steps in Tutorial 1, create a new project in GME 3. Invoke File/Import XML and select

your XML file for the finite state machine. Press Open. Do the same steps to import your exported signal flow

metamodel !

Create the composite metamodel

We would like to have a new kind of signal flow process that can contain a finite state machine specifying

its implementation as opposed to the current Primitive that has the “CScript” attribute specifying its

implementation. However, we do not want a regular state machine (i.e. State) to be able to contain this new

kind of model. In other words, we cannot use the State model as a base class of this new model using regular

inheritance.

In GME 3 new inheritance operators were also introduced to provide finer control over inheritance. When

the new class needs to be able to play the role of the base class, but its internals need not to be inherited, we

use interface inheritance. In this case, all associations and those compositions where the base class plays the

role of the contained object are inherited. On the other hand, when only the internals of a class are needed by a

 3

subclass, we use implementation inheritance. In this case, all the attributes and those compositions where the

base class plays the role of the container are inherited. Notice that the union of these two new operators is the

standard UML inheritance.

Following the steps in Tutorial 1, insert a new paradigm sheet into the root folder. In this case we need to

define a new class (FSMNode) that inherits from both Primitive and State. Inheriting from State through

standard UML inheritance would mean that a State could contain this new type of node violating one of our

objectives. Instead, we use implementation inheritance, which means, FSMNode can contain whatever a State

can, but it cannot act as a State. Hence, it cannot be inserted into a State. Neither can FSMNodes be connected

together by Transitions.

Let’s create the class diagram! For Primitive and State we can use proxies, i.e. references pointing to classes

defined elsewhere in our metamodel. To define a proxy, drop a proxy class onto your sheet. Note that we need

model proxies for Primitive and State. At this point these references (i.e. the proxies) do not refer to anything. To

make them refer to a specific class, open the proper paradigm sheet you imported and drag and drop one of

the above-mentioned classes onto your proxy. Even if you have created the reference properly, you will not see

any actions confirming your steps, but if you right click on your proxy object and select the Properties option

you will see in the Refers list box the reference you have created. (Or you can use the tooltip feature: move

your mouse over the proxy and wait until a yellow label pops up.)

You can see this part of the class diagram in Figure 4.

Figure 4: Implementation inheritance in FSMNode

Next, we want to make the input signals and output signals of the FSMNode process to be mapped to

certain States it contains using connections. To achieve this, we introduce a new type of connection

(SignalMap) connecting States and Signals together. This connection will be contained in the new

FSMNode class only. To make this connection bi-directional – as desired – clear the default rolename (“src”

and “dst” respectively) in the Attributes window of both connections drawn to the connector object.

For the Signal we can use an atom proxy. An alternative way of creating a proxy (reference) in GME 3 is

dragging your class from its definition window and dropping it onto your new paradigm sheet while holding

down the CTRL and the SHIFT keys.

 4

Figure 5. shows the final composed metamodel with new SignalMap connection.

Figure 5: Class diagram of the composed metamodel

Define the aspects for your composite metamodel

Switch to the Visualization aspect of your metamodel. You can define an aspect to the new metamodel by

using the aspects of the imported paradigms. You need to create a new aspect and two aspect proxies referring

to the aspects of the imported paradigms. The equivalence operator can define the relationship of these

aspects. Drag two SameAspect objects onto your sheet. Place one between the two aspect proxies and one

between the new aspect and an aspect proxy. To make sure that the new aspect is called Composite, name the

SameAspect object between the SignalFlow aspect proxy and the FSM aspect proxy “Composite”. Your

aspect definition is shown in Figure 6. You can find more about aspect equivalence in GME 3 User’s Manual.

Figure 6: Aspect of the composite metamodel

Switch to Set Mode and right click the new Composite aspect. The only class you have to assign to this

aspect by left clicking on it is the SignalMap connection.

To be able to use a composite signal flow paradigm, create it first by interpreting your metamodel. After

you have it successfully interpreted, register your new paradigm.

Use the composite paradigm to create domain-specific models

We demonstrate how to apply the created paradigm through a simplified model of a washing machine.

Following the steps in Tutorial 1, close your previous project and create a new one based on the new hybrid

signal flow – finite state machine paradigm. In the Browser window, right click to insert a Compound model into

your root folder.

Now you can create a composite signal flow. A simplified model describing a washing machine is shown in

Figure 7. The white colored Control System is an FSMNode , the light green (light gray) Logics are Primitives,

 5

and the whole system is in a Compound process. The Control System is described by a state machine. (See

Figure 8.) The dark green (dark gray) colored boxes stand for States.

Figure 7: Laundry model

Figure 8: State machine in compound process

You can define your own icon files for objects by setting the Icon name and Port icon name attributes

of the classes in the Attributes window. It makes sense to define your own icon path by invoking

 6

File/Settings…in the target environment and giving only the file name and its extension in the Attributes

window in the metamodels. The difference between Primitive models, Compound process models and

FSMNode models can simply be indicated by defining different colors for different model classes, too. You can

change the color of the model boxes in the Preferences window by setting the Color property.

 7

	Composing metamodels
	Prepare the component metamodels
	Create the metamodel of the signal flow paradigm
	Interpret the signal flow metamodel
	Export metamodels to XML format

	Composition of two existing metamodels
	Load the existing metamodels
	Create the composite metamodel
	Define the aspects for your composite metamodel

	Use the composite paradigm to create domain-specific models

