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It’s strange. The gulls who scorn per-

fection for the sake of travel go nowhere,

slowly. Those who put aside travel for the

sake of perfection go anywhere, instantly.

Chiang

To my parents and my beloved Nonno Aldo
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RESUMEN

Consultar una base de datos inconsistente es una situación peligrosa, es-
pecialmente si consideramos que, desde un punto de vista lógico, podemos concluir
cualquier cosa de un conjunto de fórmulas inconsistente. Es por ello que la manera
usual de enfrentar bases de datos inconsistentes sea repararla, es decir, llevarla de
vuelta a un estado consistente para aśı poder obtener información significativa (con-
sistente) a partir de ella. Esto, sin embargo, tiene un gran inconveniente: general-
mente incluye descartar los datos inconsistentes, y por lo tanto se pierde información
potencialmente útil.

Para evitar este derroche, se presenta el algoritmo QUECA, el cual, dada
una consulta de primer orden Q, genera una nueva consulta QUECA(Q) tal que, al
consultar la base de datos, sus respuestas corresponden sólo a las respuestas consis-
tentes de Q. El algoritmo fue probado correcto, de terminación finita y completo
para una clase de restricciones de integridad que incluye a la mayoŕıa de las restric-
ciones encontradas en sistemas de bases de datos relacionales. La complejidad del
algoritmo también fue abordada.

Por último, la implementación del algoritmo en XSB es presentada. Se
aprovechó la funcionalidad de XSB como un lenguage de programación lógico con
capacidad de ‘tabling’, además de la posibilidad de conectarlo a bases de datos
relacionales, para crear aśı una aplicación de consulta interactiva.

ix



ABSTRACT

Querying an inconsistent database is a dangerous situation, specially if
we consider that, from a logical point of view, we can conclude anything from an
inconsistent set of formulas. Thus, when facing an inconsistent database the usual
approach is to repair it, i.e. take it back to a consistent state to be able to retrieve
meaningful (consistent) data. This, however, has one serious drawback: it generally
involves discarding inconsistent data, hence losing potentially useful information.

To avoid this discarding, we present algorithm QUECA which, given a
first order query Q, generates a new query QUECA(Q) such that, when posed to
a database, its answers correspond to the consistent answers of Q. The algorithm
is proven to be sound, terminating and complete for a class of integrity constraints
that includes most of the constraints found in traditional relational database systems.
Complexity issues are also addressed.

Finally, the implementation in XSB of the algorithm is described. We
take advantage of the functionalities of XSB, as a logic programming language with
tabling capabilities, and the possibility of coupling it to a relational database system,
to create an interactive application.

x
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I. INTRODUCTION

It is usually assumed that data stored in a database is consistent; and

not having this consistency is considered a dangerous situation. However, it often

happens that this is not the case and the database reaches an inconsistent state in the

sense that the database instance does not satisfy a given set of integrity constraints

IC. This situation may arise due to several reasons. The initial problem was due to

poor design of the database schema itself or a malfunctioning application that made

the system reach the inconsistent state after an update was performed.

Nowadays, other sources of inconsistencies have appeared. For example,

in a datawarehouse context (Chaudhuri and Dayal, 1997) inconsistencies may appear,

among other reasons, to integration of different data sources, in particular, in the

presence of duplicate information; and to delayed updates of the datawarehouse

views.

Either case, having a consistent database or not, the information stored

in it remains relevant to the user and is potentially useful, as long as the distinction

between consistent and inconsistent data can be made, and they can be separated

when answering queries.

The common solution for the problem of facing inconsistent data is to

repair the database and take it back to a consistent state, by deleting or inserting

tuples, before posing a query to it. However, this approach is very expensive in

terms of computing power, complexity and, because restoring consistency involves

discarding information (i.e. making choices between information), in some cases, we

might lose potentially relevant data. In addition, a particular user, without control

on the database administration, might want to impose his/her particular, soft or

hard constraints on the database (or some views). In this case, the database cannot

be repaired.



2

Example 1 Consider the inclusion dependency stating that a purchase must have a

corresponding client: ∀(u, v), (Purchase(u, v)⇒ Client(u)). The following database

instance r violates the IC:

Purchase Client

c e1 c

d e2

d e1

When repairing the database we might be tempted to remove all the purchases done

by client d, which provide us with useful information about a client’s behavior, no

matter whether he is a valid client or not. �

A promising alternative to restoring consistency is to keep the inconsistent

data in the database and modify the queries in order to retrieve only consistent

information. By using this kind of approach one can still use the inconsistent data

for analysis (purchases of customer d in Example 1). This is often acceptable in a

belief base domain because agents may have contradictory beliefs (Cholvy, 1990),

but is not common from the classical database point of view.

In (Arenas et al., 1999) a semantic notion of consistent answer to a query

was given. In essence, a tuple answer t̄ is a consistent answer to a query Q(x̄)

if Q(t̄) becomes true in every repair of the inconsistent database instance r that

can be obtained from r by a minimal set of changes. Of course, the idea is not to

construct all possible minimal repairs and then query them; this would impossible

or too complex. It is necessary to search for an alternative mechanism.

Example 2 Consider the alternative of computing all possible repairs and a func-

tional dependency stating that every client’s second attribute is uniquely determined

by the first one, that is: ∀u, v, w, Client(u, v)∧Client(u,w)⇒ v = w. The following

database instance violates the IC:
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Client

1 0

1 1

2 0

2 1
...

...

n 0

n 1

In this case we have 2n possible repairs, making the alternative of computing all

possible repairs and then querying them unpractical. �

In this context, an operator Tω was presented in (Arenas et al., 1999)

which does not repair the database, but that, given the query Q(x̄), computes a

modified query Tω(Q)(x̄) to be posed to the original database instance r, in such a

way that its answers are consistent in the semantic sense, that is they belong to all

possible repairs. The operator was proven to be sound, complete and terminating for

interesting syntactic classes of queries and constraints (Arenas et al., 1999). However,

this operator has some drawbacks: it is hard to implement due to its recursive nature

and semantic termination condition.

Here we address the problem of designing and implementing an alterna-

tive operator inspired by Tω. The new operator corresponds to an algorithm called

QUECA, for “QUEry for Consistent Answers”(Celle and Bertossi, 2000). This algo-

rithm, given a first order query1 Q, again generates a new query QUECA(Q), whose

answers in r are consistent with IC, but as opposed to Tω, it guarantees termination,

soundness and completeness for a larger set of integrity constraints.

The implementation is done in XSB (Sagonas et al., 1994), a powerful

logic programming system, which is provided with useful functionalities for the right

implementation and operation of the consistent query answering algorithm.

1Aggregate queries are being treated in (Arenas et al., 2001).
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A number of possible applications motivate the development of such an

implementation. These include:

Data warehousing (Data Cleaning). A data warehouse contains data com-

ing from many different sources. Some of them, or the integration of them, may not

satisfy the given integrity constraints. The usual approach is thus to clean the data

by removing inconsistencies before the data is stored in the warehouse (Chaudhuri

and Dayal, 1997). Our results make it possible to determine which data is in fact

clean. Moreover, a different scenario becomes possible, in which the inconsistencies

are not removed but rather query answers are marked as “consistent”or “inconsis-

tent”. In this way, information loss due to data cleaning may be prevented.

Database integration. Often many different databases are integrated to-

gether to provide a single unified view for the users. Database integration is difficult,

however, because it requires the resolution of many different kinds of discrepancies

of the integrated databases. One possible discrepancy is due to different sets of in-

tegrity constraints. Moreover, even if every integrated database locally satisfies the

same set of integrity constraints, the same constraints may be globally violated. For

example, different databases may assign different names to the same student number.

Such conflicts may fail to be resolved at all. Therefore, it is important to be able

to find out, given a set of local integrity constraints, which query answers returned

from the integrated database are consistent with the constraints and which are not.

Data Mining. Often data mining tools are used at the initial stage of the

process of building applications on top of an unknown database schema. In these

cases relationships between tables (i.e. foreign keys) must be established by intuition.

If we consider that this involves joining tables in all possible ways, selecting that

that delivers best results (i.e. more tuples), we may think of a tremendous amount

of work, not to mention the computational complexity of seeking every possible

combination. Even more, if the database were in an inconsistent state, we might be

tempted to remove the inconsistent data, not always knowing which tuple(s) is(are)

the inconsistent one(s). With our approach the user can rebuild the DB schema

incrementally. This process can be done on a trial–and–error fashion, without fear

of losing data due to the definition of wrong relationships because inconsistent data

is never discarded.
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Legacy Data. When dealing with legacy data it is often desirable to

impose semantic constraints on it. This usually involves low–level coding, making

it a lengthy task which prevents “toying around”with such conditions. With our

approach, these constraints may be modified easily at the application level, thus

facilitating the experimenting with legacy data.

The rest of this thesis continues as follows. In Chapter 2 we show the

most relevant characteristics of the operator Tω and what makes it difficult to imple-

ment. We also give a description of what we will understand by a database repair,

query, integrity constraint and consistent answer. Next, in Chapter 3, we present

the algorithms which generate a query QUECA(Q) for a given first order query Q.

Then in Chapter 4, the properties of these algorithms are analyzed, namely: run-

time complexity, termination, soundness and completeness. Also, the set of integrity

constraints and queries covered by the solution are characterized. In Chapter 5 we

describe issues regarding the implementation done in XSB. Finally, in Chapter 6 we

draw some concluding remarks and propose future directions of research.
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II. PRELIMINARIES

2.1 Basic Notions

We start from a finite fixed set, IC, of integrity constraints associated to

fixed relational database schema. A database instance r is consistent if it satisfies

IC, that is, r � IC. Otherwise, we say that r is inconsistent. We assume that IC is

consistent in the sense that there is DB r that satisfies IC.

If r is inconsistent, its repairs are database instances (wrt the same

schema) that, each of them, satisfy IC and differ from r by a minimal set of in-

serted or deleted tuples. A tuple t̄ is a consistent answer to a query Q(x̄) wrt IC

and we denote this with r �c Q(t̄), if for every repair r′ of r, r′ � Q(t̄) (Arenas et

al., 1999).

Example 3 Consider a product database. Product(u, v) and RetailStore(u, v) mean

that product u has code v in the master product table and the retail store table

respectively. The following ICs state that products must be present in both tables

at the same time and that a product may not have more than one code.

∀u, v. (Product(u, v)⇒ RetailStore(u, v)) ,

∀u, v. (RetailStore(u, v)⇒ Product(u, v)) ,

∀u, v, z. (Product(u, v) ∧ Product(u, z)⇒ v = z) .

The following database instance r, which violates IC,

Product RetailStore

a 1 a 1

a 2 a 2

b 2 b 2

has two repairs:
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r′ : Product RetailStore r′′ : Product RetailStore

a 1 a 1 a 2 a 2

b 2 b 2 b 2 b 2

Here, the only consistent answer to the query Product(u, v)? in the database instance

r is (b, 2): r �c Product(b, 2). �

2.2 The Tω operator

The Tω operator (Arenas et al., 1999) is defined based on a previous

residue calculation stage which generates the necessary rules to feed the operator.

Intuitively, residues show the interaction between an integrity constraint and a given

literal2. Generally speaking, it is defined for a query Q, as a sequence of queries

Tω := {T0(Q),T1(Q),T2(Q) . . .}. If Tn(Q) ⇒ Ti(Q) for all i ≥ n, we say that n

is the finiteness point and computation is stopped. We illustrate the application of

this operator by means of an example.

Example 4 With the set of integrity constraints of Example 3, we will show a

computation of Tω(P (u, v)), letting P stand for Product and R for RetailStore.

T0(P (u, v)) =P (u, v) .

T1(P (u, v)) =P (u, v) ∧ (R(u, v) ∧ (¬P (u, z) ∨ v = z)) .

T2(P (u, v)) =P (u, v) ∧ ((R(u, v) ∧ P (u, v)) ∧ ((¬P (u, z) ∧ ¬R(u, z)) ∨ v = z)).

T3(P (u, v)) =P (u, v) ∧ ((R(u, v) ∧ P (u, v) ∧ (R(u, v) ∧ (¬P (u,w) ∨ v = w)))∧

((¬P (u, z) ∧ ¬R(u, z) ∧ ¬P (u, z)) ∨ v = z)) .

It seems as if T3 is very different from T2, however, if we rewrite them by hand we

have

2See Sections 3 and 3.1 for a description of what residues are and how to obtain them.
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T2(P (u, v)) =P (u, v) ∧ (R(u, v) ∧ P (u, v) ∧ ((¬P (u, z) ∨ v = z)∧

(¬R(u, z) ∨ v = z))) .

T3(P (u, v)) =P (u, v) ∧ (R(u, v) ∧ P (u, v) ∧ ((R(u, v) ∨ ¬P (u,w))∧

(R(u, v) ∨ v = w) ∧ (¬P (u, z) ∨ v = z) ∧ (¬R(u, z) ∨ v = z)∧

(¬P (u, z) ∨ v = z))) .

Where we can easily see that T2(P (u, v)) ≡ T3(P (u, v)), therefore the finiteness

point is 2 and the modified query is T0(P (u, v)) ∧ T1(P (u, v)) ∧ T2(P (u, v)) This

query is to be posed to the original database, and its answers should be consistent

answers to the original query, P (u, v). �

Although operator Tω is sound and complete for non fact-oriented binary

integrity constraints, that is, ICs which have at most two database literals plus

built-ins and do not generate explicit knowledge, termination is only assured for

uniform ICs (Arenas et al., 1999). Needless to say that, when thinking of a possible

implementation, the termination issue is critical. Detecting the finiteness point in

operator Tω can be very difficult, even in simple examples like the one above (or

may be an undecidable problem). An initial approach consisted in using Otter

(McCune, 1994) to detect this semantical termination point, but it turned out to be

cumbersome and sometimes it did not deliver the expected results. For instance, it

was not able to solve the previous example. Furthermore, even if it does work, the

offline nature of such process makes it unsuitable for a real world implementation

where a user should interact directly with the query answering system.

Thus, we need to modify the previous approach to improve the results

regarding termination, and possibly extending completeness as well. In consequence,

we face the problem of modifying Tω, providing a new, more practical mechanism,

but preserving the nice properties Tω has in terms of soundness and completeness.

We need to add a stronger termination property which makes the new mechanism

more likely for implementation. The basic approach involves identifying a stronger

syntactical condition to achieve semantically correct results.
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2.3 Integrity Constraints

Traditionally, relational databases may be defined as a collection of facts

(EDB) and integrity constraints (IC ). Our interest in this thesis is for static integrity

constraints, which account for most of the ICs found in relational databases. In

particular, we will deal with static non-aggregate constraints.

2.3.1 Semantics

Static integrity constraints are closed first order formulas (Lloyd, 1987).

We will assume the set of integrity constraints of a given database, IC, is consistent,

that is, there is at least one database instance that makes IC true. When argu-

ing what ICs represent, although we adopted the logical entailment approach when

defining consistency of a database instance r as r � IC (Reiter, 1984), this does not

fully capture our intuition in the sense that ICs should only serve to validate trans-

actions (query answers). Furthermore, because we are dealing with logic formulas,

we could be tempted to treat them as rules to generate data. This, however, again

violates our convention as is discussed in (Godfrey et al., 1998):

ICs are meant as knowledge about the domain of the database and are

not intended to generate data as do the rules in the IDB
3, nor do they

represent specific data, as do the facts in the EDB.

For example, if IC has an integrity constraint as

bakery(Name,Address, Phone,Owner, CloseT ime)⇒

store(Name,Address, Phone). (2.1)

it is assumed that both store and bakery relations are obtained separately and that

the integrity constraint only establishes the necessary relationship between them.

Thus, ICs are used to check the soundness of the answer to a query and not to gen-

3Set of rules defined in a deductive database.
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erate the answer itself, although they do contribute to construct indirectly inferred

answers by eliminating invalid models.

2.3.2 Representation

As in (Arenas et al., 1999), we will only consider universal constraints

that can be transformed into a standard format

Definition 2.1. An integrity constraint is in standard format if it has the form

∀(
m∨

i=1

Pi(x̄i)∨
n∨

i=1

¬Qi(ȳi)∨ψ) ,

where ∀ represents the universal closure of the formula, x̄i, ȳi are tuples of variables,

the Pi’s and Qi’s are atomic formulas based on the schema predicates that do not

contain constants, and ψ is a formula that mentions only built–in predicates. �

Notice that in these ICs, if constants are needed, they can be pushed into

ψ. Notice, as well, that equality is allowed in ψ.

Because of implementational issues we shall negate the ICs in standard

format, representing ICs as denials, that is range restricted (Nicolas, 1982) goals of

the form

⇐ l1∧ · · ·∧ ln , (2.2)

where each li is a literal and variables are assumed to be universally quantified over

the whole formula. We must emphasize the fact that this is just notation and from

now on we shall speak of ICs assuming they are in denial form in the sense of classical

logic and not that of logic programming.

We shall note, however, that not all integrity constraints may be trans-

formed into standard format, and therefore they are not considered. For example,

we leave aside ICs with existential quantifiers like referential ICs as

∀x̄∃y. (P (x̄)→ Q(x̄, y)) . (2.3)
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III. QUERY GENERATION FOR CONSISTENT ANSWERS

The whole process of query generation for consistent answers relies on

the concept of residues developed in the context of semantic query optimization

(Chakravarthy et al., 1990). Residues, simply put, show the interaction between

an integrity constraint and a literal name.4 Thus, a literal name which does not

appear in any constraint does not have any (non–maximal (Chakravarthy et al.,

1990)) residues associated to it, i.e. there are no restrictions applied to that literal.

Similarly, a literal that appears more than once in an IC or set of ICs, may have

several residues, which may or may not be redundant. For example, consider the

integrity constraint (2.1) and, as a query, the literal bakery(x , y , z , u, v). The residue

supplied by the mentioned integrity constraint for this literal is store(x , y , z ), stating

that when retrieving a bakery as answer, there must also exist a related store. In

consequence, to make sure we retrieve consistent answers wrt to this integrity con-

straint, we must consider the residue store(x , y , z ) as appended via a conjunction to

the query bakery(x , y , z , u, v), emulating a join operation between the two tables.

To calculate the residues in a database schema, we will introduce Al-

gorithm 1, which shows how to systematically obtain residues for a given literal

name. Because only literal names appearing in an integrity constraint generate

(non–maximal) residues, the algorithm will only be applied to them, and not to

every relation in r.

Once we have calculated all the residues associated to a literal name

appearing in IC, we shall present a second algorithm, QUECA, that will generate the

queries for consistent answers based on the residues that have been already computed.

We will also show how this algorithm differs from the operator Tω presented in

(Arenas et al., 1999), not only in the delivered results in terms of termination, but

in the operation itself and the necessary conditions for sound execution.

4Literal names denote relations, so different literals may have the same literal name, e.g. P (u)
and P (v) have the same literal name P . Literal names may be negative, e.g. ¬P , where P is a
predicate name; and have an associated arity that further differentiates them (Prolog convention),
so from now on, when talking about a literal, say P (u, v), we are really talking about its literal
name, P/2.
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3.1 Residue calculation

The first step in the residue calculation determines for whom they are

to be calculated. In our case, it is for every literal name appearing in an integrity

constraint. Because of this we must first build a list of ICs and a list of the distinct

literal names LP appearing in IC. This list of integrity constraints LIC will only

include the bodies of the ICs (represented in the form (2.2)). That is, given the set

of integrity constraints IC, we build LIC = {[l1 ∧ . . . ∧ ln] | ∀(← l1 ∧ . . . ∧ ln) ∈ IC}.
It should be noted that when negating a member of LIC we obtain a clause.

Example 5 Let IC be the following set of integrity constraints taken from Example 3

expressed in the form (2.2).

← P (u, v) ∧ ¬R(u, v) .

← ¬P (u, v) ∧R(u, v) .

← P (u, v) ∧ P (u, z) ∧ y 6= z .

From this we would generate LIC = {[P (u, v) ∧ ¬R(u, v)], [¬P (u, v) ∧R(u, v)],

[P (u, v) ∧ P (u, z) ∧ y 6= z]} and LP = {P (u, v), R(u, v),¬P (u, v),¬R(u, v)}. We

should recall that in LP we have the following literal names: P/2, R/2, ¬P/2 and

¬R/2. �

Next, to calculate the residues coming from l ∈ LP , and ic ∈ LIC , we

use the subsumption algorithm presented in (Chakravarthy et al., 1990). However,

because we are dealing with an implementation, we need a systematical procedure

to obtain residues. The method utilized is formalized as Algorithm 1.
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Algorithm 1 Compute residues(l)

Require: Set of integrity constraints in denial form IC.

Ensure: residues(l) is a formula in CNF that contains all the residues associated to

a literal l.

1: Create list LIC of integrity constraint bodies and a list LP of distinct literal

names in LIC .

2: for all l ∈ LP do

3: i = 1

4: for all ic ∈ LIC do

5: for each occurrence of l in ic do

6: delete l from ic 7→ ıc

7: negate ıc {Now ıc is in clausal form}
8: residue i(l) := ıc

9: i := i+ 1

10: end for

11: end for

12: n(l) := i {the number of residues associated to l}
13: end for

14: for all l ∈ LP do

15: residues(l) := ∅
16: for all i := 1 to n(l) do

17: if residue i(l) is not redundant then

18: residues(l) := residues(l) ∧ residue i(l)

19: end if

20: end for

21: end for

Example 6 (example 5 continued) Applying Algorithm 1 up to line 13, to l =

P (u, v) and every member of LIC , we would obtain one residue for each occurrence

of P/2: residue1(P (u, v)) := R(u, v), residue2(P (u, v)) := ¬P (u, z) ∨ v = z and

residue3(P (u, v)) := ¬P (u,w) ∨ w = v. �
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Finally, a conjunction of all the residues associated to a given l ∈ LP

is created and denoted by residues(l). In this process, we take care of eliminating

redundant residues as we build the conjunction (steps 14–21 in Algorithm 1) in order

to reduce complexity in the following phase (QUECA). The notion of redundant

residues is formalized below.

Definition 3.1 (Residue Redundancy). Let R ∧ ϕ be a conjunction of residues

associated to a literal l, where R is a clause and ϕ a conjunction of clauses. We

will say R is redundant in R ∧ ϕ if there exists a clause R′ ∈ ϕ and a substitution

σ : (V ar(R′)5 r V ar(l))→ (V ar(R) r V ar(l)), such that R′σ ≡ R. �

Note that, in the definition above, if R is redundant in R ∧ ϕ, then

R∧ϕ is logically equivalent to ϕ. The elimination of redundant residues is based on

unification and is done in steps 14–21 of Algorithm 1.

Example 7 (example 6 continued) By Definition 3.1, we have that residue3(P (u, v))

is a redundant residue, because there exists a substitution σ : z 7→ w, such

that residue2(P (u, v))σ = residue3(P (u, v)). Thus, we have residues(P (u, v)) =

[R(u, v)] ∧ [¬P (u, z) ∨ v = z]. �

Note that the definition does not state that it detects all redundancies,

but only those subject to the sufficient condition presented. For example, if we

consider the following residues for R(x): residue1(R(x)) = P (x) ∨ x > 100 and

residue2(R(x)) = P (x) ∨ x > 50. Clearly residue1 includes the information in

residue2, so residue2 would be redundant. However, Definition 3.1 does not de-

tect it. This occurs mainly when ICs are redundant, which can easily be avoided for

cases like these. As shown in Example 7, functional dependencies are a common case

of ICs which generate redundant residues according to Definition 3.1. The reason

why residue redundancy is not treated further is due to the complexity of implemen-

tation, which could be far higher than the performance improvement we could get

in the next stage (QUECA). Besides, residue redundancy can become such a large

subject that it would deviate the central point of attention of this work, which is to

build the queries for consistent answers.

5V ar(E) is the set of all (quantified or unquantified) variables in the expression E.
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Example 8 Finally, by applying Algorithm 1 to the set IC presented in Example 5,

we would obtain:

residues(P (u, v)) =(R(u, v)) ∧ (¬P (u, z) ∨ v = z) ,

residues(¬P (u, v)) =(¬R(u, v)) ,

residues(R(u, v)) =P (u, v) ,

residues(¬R(u, v)) =¬P (u, v) .

�

3.2 Query generation (QUECA)

Once all the residues have been computed, and given a query Q, we

can generate the query, QUECA(Q), which will deliver consistent answers from a

consistent or inconsistent database. This query only differs from Q when Q has

residues, so QUECA(Q) should be only executed for literal names appearing in IC.

Initially the query QUECA(Q) is equal toQ, plus a list of pending residues

which are the residues associated to Q calculated by Algorithm 1.6 These residues

are not yet part of the query, they form a list of pending clauses that must be resolved

via some condition if they should belong to the query. This condition is, informally,

if they add new information to it or not. If they do not, they are discarded; but if

they do, they must be added to the query and their residues appended at the end of

the residue list. This procedure is iterated until no residues are left to resolve, i.e.

either we run out of residues or they have all been discarded. We will see later that

the procedure does not always terminate.

Example 9 Consider the following hypothetical pairs of queries and residues:

Query : 1. S(u) Residues : S(u) ,

2. M(u) N(u) ,

3. P (u, v) ∀z (P (u, v) ∨ ¬Q(u, z)) .

6The residues are in CNF, we will treat every clause as an element of a list.
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Clearly in the first case the residue can be discarded because it adds no new infor-

mation to the query. However, in the second and third cases the residues must be

added to the corresponding query and their residues to the Pending Residue List.

So we would have:

Query : 1. S(u) Residues : ∅ ,

2. M(u) ∧N(u) residues(N(u)) ,

3. P (u, v) ∧ ∀z (P (u, v) ∨ ¬Q(u, z)) residues(P (u, v) ∨ ¬Q(u, z)) .

The residues that were added to the respective Pending Residue Lists are only men-

tioned (e.g. residues(N (u))) to avoid cluttering the example. �

This method works fine when only conjunctions are involved (case 2 in

Example 9), because determining if a residue should be part of the query or not is

easy. However, most of the residues are clauses (case 3 in Example 9), so we must

somehow deal with disjunction.

The way to solve this problem is by keeping conjunctions together, i.e.

working in Disjunctive Normal Form (DNF). To do so, when a clausal residue adds

new information to a query, we make as many copies of the query as literals in the

residue we are adding, and append to each of them exactly one of the literals in the

residue. The pending residue list of each of these new copies must then be the existing

list, minus the resolved residue (the one being considered), plus the residues coming

from the newly appended literal. We shall informally call this a split operation.

These copies with the added residues, connected together by disjunctions, would

constitute the final query QUECA(Q).

Example 10 (example 9 continued) In the third case of the previous example we

would then have

Query : Residues :

3. E1 : P (u, v) ∧ P (u, v) R1 : residues(P (u, v)) ,

E2 : P (u, v) ∧ ¬Q(u, z) R2 : residues(¬Q(u, z)) .

where each Ei simply denotes a copy of the original query after a split operation.

So we have QUECA(Q) = ∀zE1 ∨ E2 where each Ei is a disjunctionless formula.
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Also, after the split operation, new pending residue lists Ri are generated. They are

associated to their respective conjunctive formulas Ei. �

We must, somehow, keep track of the correspondence between the men-

tioned copies (Ei’s in Example 10) and their associated Pending Residue List (Ri’s in

Example 10). Recall that each Ei will, in the end, form the final query QUECA(Q)

by connecting them via disjunctions, once all the pending residues have been resolved

(more about this later).

To maintain the correspondence, we need a new notation that will enable

us to keep track of the residues involved in building each Ei. Furthermore, this

notation should not only include the literals in Ei and its associated Pending Residue

List Ri, but it should also “remember” the last residue that provoked one of these

split operations, in order to avoid inserting a residue whose information was already

inserted earlier. For these purposes we define a Temporary Query Unit (TQU).

Definition 3.2. A temporary query unit (TQU), D : E • R, consists of a set of

clauses D, a conjunction of literals E and a conjunction of residues R. A disjunction

of temporary query units shall be written as TQUs (note that the final ‘s’differentiates

it from a single TQU). �

Both symbols in an arbitrary TQU, ‘:’ and ‘•’ in D : E •R, are only used

to separate D, E and R from each other. D represents the last residues involved in

building E (those that must be “remembered”) and R is the conjunction of residues

φ1 ∧ · · · ∧ φn yet to be resolved, associated to that particular E. We shall note that

all variables coming from a residue appear universally quantified in D and E . Also,

both symbols have higher precedence that any other connective. In the following

example, we illustrate how a TQU is formed, the composition of TQUs and what

will constitute the final query QUECA(Q).
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Example 11 (example 10 continued) Using the new notation for the third case of

Example 10, we would have:

TQUs =

D1︷ ︸︸ ︷
P (u, v) ∨ ¬Q(u, z) :

E1︷ ︸︸ ︷
P (u, v) ∧ P (u, v) •

R1︷ ︸︸ ︷
residues(P (u, v))

∨
P (u, v) ∨ ¬Q(u, z)︸ ︷︷ ︸

D2

: P (u, v) ∧ ∀z¬Q(u, z)︸ ︷︷ ︸
E2

• residues(¬Q(u, z))︸ ︷︷ ︸
R2

,

which can be rewritten as TQUs = D1 : E1 •R1 ∨ D2 : E2 •R2, and/or, equivalently,

TQUs = TQU 1 ∨ TQU 2. The final query should eventually be formed by the Ei’s,

i.e. QUECA(Q) =
∨

iEi, once all the residues have been resolved. �

As may be expected, the remaining Pending Residue Lists, R1 and R2 in

Example 11 (and Ri’s in general), must again be resolved against their corresponding

Ei’s and Di’s in an iterative fashion. This iteration will stop when we run out of

pending residues, that is, Ri = ∅ for every i. The naive way to detect this is by

observing when the • symbol reaches the right end of a given TQU, that is, all its

pending residues have been resolved.

The critical step is then, determining when a residue should be added to

the query and when its information is already in it, i.e. it should be discarded. It

is easy to see that when E � φ1
7 or D � φ1, then φ1 can be discarded. If either

condition is not satisfied, the residue must be included in the query.8 In Example 11,

we have that D1 � residues(P (u)) (see the residues for the third case in Example 9),

thus they can be discarded and the iteration would have ended for TQU 1. This

is the semantic result we want to obtain via syntactical means. The usual way to

attain this is by unification.

In our case we will define a sort of one way unification in which only cer-

tain types of variables will be involved: New Variables in a TQU and Free Variables

in a Residue.

7The sufficient condition is that every term in φ1 belongs to E .
8We will see that sometimes only part of the residue must be included.
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Definition 3.3. Given a TQU = D : E •R and a query Q, the set of New Variables

in the TQU , denoted by newVar(TQU ), is defined as the set of universally quantified

variables in Var(E) r Var(Q). �

Definition 3.4. Given a TQU = D : E • R and a residue φ ∈ R, the set of Free

Variables in the Residue, denoted by freeVar(φ), is defined as the set of universally

quantified variables in Var(φ) r Var(E). �

Because D in a TQU consists of a recently resolved residue, it also be-

haves as one and has Free Variables in the sense of Definition 3.4. For instance, in

Example 11, we have newVar(TQU 2) = {z} and freeVar(D1) = {z}. From these

definitions it is clear that we can substitute a freeVar for any other variable because

they occur no where else than in that residue.

Having identified the variables that we will use in the unification process,

we can now formally define the meaning of the information of a residue already in

a TQU . This notion will enable us to determine when a residue must me discarded

or not.

Definition 3.5. We will say the information of a residue φ = l1∨· · ·∨ln is already in

a TQU = D : E • R, and will write φ ∈̃ D : E, whenever there exists a substitution

σ : freeVar(φ) → newVar(TQU ) ∪ freeVar(D), such that φσ ∈ D or, for all i,

liσ ∈ E. Otherwise we will write φ /̃∈ D : E. However, in case only some liσ ∈ E,

we will say the information of a residue is already partially in a TQU, and we will

write φ P ∈̃σ D : E �

Example 12 Let us recall the third case of Example 9, in which we had:

Query : 3. P (u, v) Residues : ∀z (P (u, v) ∨ ¬Q(u, z)) .

This way we build TQUs as

TQUs = ∅ : P (u, v) • ∀z (P (u, v) ∨ ¬Q(u, z)) .
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Suppose, as well, that we have that residues(¬Q(x, y)) = P (x, y). Now,

we must check if the first (clausal) residue’s information is already in [∅ : P (u, v)]9

or not. Clearly we have that ∀z (P (u, v) ∨ ¬Q(u, z)) /̃∈ [∅ : P (u, v)]. However, we

do have that ∀z (P (u, v) ∨ ¬Q(u, z)) P ∈̃σ [∅ : P (u, v)] for σ = ε (the identity, i.e.

P (u, v)σ ∈ P (u, v)). Thus, the literal P (u, v) in the residue can be discarded, and

we must keep an instance of P (u, v). The other member of the residue, ∀¬Q(u, z),

is appended to a copy of P (u, v), and its residues appended to the Pending Residue

List. So we have:

TQUs = P (u, v) ∨ ¬Q(u, z) : P (u, v) •∅
∨

P (u, v) ∨ ¬Q(u, z) : P (u, v) ∧ ∀z¬Q(u, z) • P (u, z) .

We can see how the iteration has reached an end for the first member of TQUs . On

the other hand, iterations must continue for the second member of the disjunction.

We have that P (u, z) /̃∈ [P (u, v) ∨ ¬Q(u, z) : P (u, v) ∧ ∀z¬Q(u, z)], so the residue

must be added to P (u, v)∧∀z¬Q(u, z), and its residues to the Pending Residue List.

We then have:

TQUs = P (u, v) ∨ ¬Q(u, z) : P (u, v) •∅
∨

P (u, z) : P (u, v) ∧ ∀z¬Q(u, z) ∧ P (u, z) • ∀w(P (u, z) ∨ ¬Q(u,w)) .

Now we have that ∀w(P (u, z)∨¬Q(u,w)) ∈̃ [P (u, z) : P (u, v)∧∀z¬Q(u, z)∧P (u, z)]

for σ : w → z. Thus the residue is discarded and iteration terminates with:

TQUs = P (u, v) ∨ ¬Q(u, z) : P (u, v) •∅
∨

P (u, z) : P (u, v) ∧ ∀z¬Q(u, z) ∧ P (u, z) •∅ .

At this point, all the residues have been resolved and we have that the final query

for consistent answers is QUECA = P (u, v) ∨ (P (u, v) ∧ ∀z(¬Q(u, z) ∧ P (u, z)) �

9The square brackets are only used for clarity reasons.
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We can summarize the general procedure illustrated in Example 12 as

follows. When verifying whether to add a residue φ = l1 ∨ · · · ∨ lm to a query, if

φ ∈̃ D : E, then φ is discarded. Otherwise, it must be added to E and one of the

mentioned split operations must take place. However, if φ P ∈̃θ D : E, then we must

keep a copy of D : E • R adding φ to D; and for all the cases in which liθ /∈ E, liθ

must be appended to a copy Ei of E, its residues must be added at the end of a copy

Ri of R and Di must be replaced by φ. The procedure just described is formalized

as Algorithm 2.
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Algorithm 2 Generate a QUEry for Consistent Answers for a literal l: QUECA(l)

Require: Algorithm 1 has been executed.

Ensure: QUECA(l) contains the expected results.

1: QUECA(l) := ∅
2: TQUs := ∅ : l • residues(l)

3: while TQUs 6= ∅ do

4: select(extract) first TQU from TQUs 7→ (D : E •R)

5: if R = ∅ then

6: QUECA(l) := QUECA(l) ∨ E
7: else

8: select(extract) first residue(clause) from R 7→ φ {φ = l1 ∨ · · · ∨ lm }
9: if φ ∈̃ D : E then

10: TQUs = D : E •R ∨ TQUs

11: else

12: if φ P ∈̃θ D : E then

13: append(D,φ) 7→ D0

14: E0 := E

15: R0 := R

16: else

17: θ = ε (identity)

18: end if

19: for all i ∈ [1,m] do

20: if liθ /∈ E then

21: Di := φ

22: Ei := E ∧ liθ
23: Ri := R ∧ residues(liθ)

24: else

25: Do nothing

26: end if

27: end for

28: TQUs :=
∨m

i=0(Di : Ei •Ri) ∨ TQUs

29: end if

30: end if

31: end while
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Example 13 (example 4 continued) We will show how Algorithm 2 computes

QUECA(P (u, v)), which is equivalent to T2(P (u, v)), being 2 the finiteness point.

To do so, we will show the state of variables QUECA and TQUs at the beginning of

every iteration of the while loop in Algorithm 2.

1 st iteration

QUECA(P (u, v)) = ∅
TQUs = ∅ : P (u, v) • (R(u, v)) ∧ (¬P (u, z) ∨ v = z) ,

2 nd iteration

QUECA(P (u, v)) = ∅
TQUs = R(u, v) : P (u, v) ∧R(u, v) • (¬P (u, z) ∨ v = z) ∧ (P (u, v)) ,

3 rd iteration

QUECA(P (u, v)) = ∅
TQUs = [(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ ¬P (u, z)•

(P (u, v)) ∧ (¬R(u, z))]∨
[(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ v = z • (P (u, v))] ,

4 th iteration

QUECA(P (u, v)) = ∅
TQUs = [(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ ¬P (u, z)•

(¬R(u, z))]∨
[(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ v = z • (P (u, v))] ,

5 th iteration

QUECA(P (u, v)) = ∅
TQUs = [¬R(u, z) : P (u, v) ∧R(u, v) ∧ ¬P (u, z) ∧ ¬R(u, z)•

(¬P (u, z))]∨
[(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ v = z • (P (u, v))] ,

6 th iteration

QUECA(P (u, v)) = ∅
TQUs = [¬R(u, z) : P (u, v) ∧R(u, v) ∧ ¬P (u, z) ∧ ¬R(u, z)•]∨

[(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ v = z • (P (u, v))] ,
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7 th iteration

QUECA(P (u, v)) = [P (u, v) ∧R(u, v) ∧ ¬P (u, z) ∧ ¬R(u, z)]

TQUs = [(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ v = z • (P (u, v))] ,

8 th iteration

QUECA(P (u, v)) = [P (u, v) ∧R(u, v) ∧ ¬P (u, z) ∧ ¬R(u, z)]

TQUs = [(¬P (u, z) ∨ v = z) : P (u, v) ∧R(u, v) ∧ v = z•] ,

9 th iteration

QUECA(P (u, v)) = ∀z [[P (u, v) ∧R(u, v) ∧ ¬P (u, z) ∧ ¬R(u, z)]∨
[P (u, v) ∧R(u, v) ∧ v = z]] .

By rearranging the result by hand, we obtain

QUECA(P(u, v)) =P (u, v) ∧R(u, v) ∧ ∀z [(¬P (u, z) ∧ ¬R(u, z)) ∨ v = z] ,

QUECA(P (u, v)) =P (u, v) ∧R(u, v) ∧ ∀z [(¬P (u, z) ∨ v = z)∧

(¬R(u, z) ∨ v = z)] .

Notice, how the constraints are propagated towards the related literals according to

the nature of IC. In this case the functional dependency of the second argument of

P/2 has generated a functional dependency for the second argument of R/2. This

example was shown to be non terminating for Tω, but is now solved by QUECA. �

In the previous example we can also see how the • symbol works as a

separator between the residues that have been included in the final query and those

that are to be resolved. It graphically shows when a TQU is ready to be included

in QUECA, this is when the • reaches the end of R, put in other words, when no

residues are left to be resolved.
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IV. SOLUTION ANALYSIS

This section describes the properties of QUECA. We will begin by re-

stricting the ICs covered by the solution to a set that happens to be larger than

that covered by operator T (Arenas et al., 1999). Then we will analyze the runtime

complexity of both algorithms presented in this thesis, and we will prove that ter-

mination is guaranteed for the restricted class of ICs. Next, we will prove that the

soundness and completeness results of T can be extended to QUECA. Finally, we

will show the class of queries for which QUECA is intended to be applied.

4.1 Restriction on Integrity Constraints

As was informally stated in Section 2.3.1, ICs should not generate data

nor do they represent specific data. Thus, they are not fact-oriented in the sense of

Definition 4.1.

Definition 4.1 (Fact-Oriented Constraints). A set of integrity constraints, IC,

is fact-oriented if there is a tuple ā and a literal name L, such that IC � L(ā). �

Usually ICs are not fact-oriented. Having set them aside, the following

definition describes the class of ICs for which QUECA behaves properly.

Definition 4.2 (Binary Integrity Constraint - BIC). A binary integrity con-

straint (BIC) is a range restricted (Nicolas, 1982) denial of the form (2.2), that is,

∀ (← l1(x̄1) ∧ l2(x̄2) ∧ ψ(x̄)), where ∀ represents the universal closure of the for-

mula, l1 and l2 are database literals and ψ is a formula that only contains built-in

predicates. �

BICs account for most of the integrity constraints found in relational

databases. In this class we find functional dependencies, inclusion dependencies and

symmetry constraints. Furthermore, as a particular case of BICs, we obtain unary

integrity constraints (UICs), which have just one database literal and possibly a

formula with built-in predicates. UICs include domain and range constraints. In
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consequence, by considering BICs (and UICs), we are covering most of the static

integrity constraints found in traditional relational databases, excluding (existential)

referential ICs, transitivity constraints, and possibly other constraints that might be

better expressed as rules or views at the application layer.

4.2 Algorithm Runtime Complexity

Theorem 4.1. The runtime complexity for the worst case of Algorithm 1, which

computes residues for literal-names in a set of integrity constraints, is O(n2), where

n represents the number of ICs.

Proof. The numbers on the left represent the corresponding line numbers in the

algorithm.

1–1: F1(n) = (c1 − c3)n+ c2n
2 .

Read the ICs and insert them into a list LIC : c1n. Next we must build a

list of distinct literal names appearing in the integrity constraints LP . Because

we accept only BICs, the maximum literal names per constraint is 2, so in the

worst case (when they are all different) we have 2n literal names. The number of

comparisons performed is
∑2n

i=1(i−1) = c2n
2−c3n. So F1(n) = c1n+c2n

2−c3n =

(c1 − c3)n+ c2n
2.

2–13: F2(n) = c4kn
2 .

By considering that |LP | is bound by 2n, we have that the loop executed be-

tween lines 5–10 is repeated a maximum of 2n2 times. The maximum number of

comparisons performed in line 5 is k, where k is the maximum number of terms

allowed per integrity constraint, so F3(n) = c4kn
2.

14–21: F3(n) = c5(k − 1)2n2 − c6(k − 1)2n .

If all literal names are different we have 1 residue for each, and if they are all

equal we have 2n residues for that single one. So, either case, the redundancy

elimination process must be executed 2n times. This process involves checking

that every literal belongs to a single residue already in the final list for a given

substitution and if it succeeds, the reversal must be performed. Now the worst



27

case would be that no two residues are redundant and the checking process

fails in the last step, that is, the last term of the reversal process , so all the

possible checks must be made. So for a residue of (k − 1) terms we would

have to do (k − 1)2 checks to determine if it is redundant or not with another

residue of (k − 1) terms. This can be formulated as
∑2n

i=1(c(i − 1)(k − 1)2). So

F3(n) = c5(k − 1)2n2 − c6(k − 1)2n.

The resulting runtime complexity of Algorithm 1 is F (n) = F1(n) +

F2(n)+F3(n). That is, F (n) = (c1− c3)n+ c2n
2 + c4kn

2 + c5(k−1)2n2− c6(k−1)2n.

Grouping and rearranging terms we have:

F (n) =
(
c5(k − 1)2 + c4k + c2

)
n2−

(
c6(k − 1)2 + c3 − c1

)
n .

Because we are dealing with real world databases, the maximum number of terms in

an arbitrary integrity constraint, k, is bounded by a sufficiently large constant (i.e.

because we only consider BICs it would usually be 3). This way we have that the

runtime complexity for the residue calculations is quadratic, that is:

F (n) = O(n2) .

�

Before analysing the runtime complexity of Algorithm 2 we must define

a new notion related to the critical decision point in the algorithm’s execution. This

is what will be called a failure.

Definition 4.3 (Failure). A failure in Algorithm 2 occurs when the condition in

line 9 fails and the one in line 20 succeeds at least once. Otherwise it is called a

success. �

Consequently, a failure increases the number of terms in TQUs by a

maximum of k − 1, being k the number of terms per integrity constraint. On the

other hand, a success decreases the number of terms in TQUs by 1. The maximum

number of failures to occur must now be bounded to be able to calculate the runtime

complexity of Algorithm 2.
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Lemma 4.1. Restricting IC to BICs with maximum of k terms each, and being

|IC| = n, the maximum number of failures in Algorithm 2 is upper bounded by
k4n+1−1

k−1
.

Proof. Algorithm QUECA(Q)’s execution can be represented as a tree in which Q is

the root and the literals from the first residue are its sons, the literals from the second

its grandsons and so forth. Following this interpretation, what delivers children is a

failure, so the number of inner nodes of the tree indicates how many failures have

occurred.

We know that by restricting IC to BICs we have a maximum of 2n dif-

ferent literal names each having a maximum of 1 literal name per residue. Because

of the condition in line 24 and the fact that ICs are range restricted denials (2.2),

we can have a maximum of 2n predicates or negated predicates in any path from

root to leaf, the rest are built-ins. These built-ins are either part of the path or will

be when the pending residues are resolved. Only literal names generate residues,

so there is a maximum of (2n)2 residues that will supply built-ins (2n residues per

each of the 2n literal names). However, because of the condition in line 13, once

the first 2n built-ins have been added, all the residues are stored in D, so no more

failures will occur. Thus we have that the maximum depth of the tree would then

be 4n. An consequently the number of failures (inner nodes) is upper bound by∑4n
j=0 k

j = k4n+1−1
k−1

. �

Having an upper bound for failures it is possible to calculate the runtime

complexity of Algorithm 2.

Theorem 4.2. Restricting IC to BICs with a maximum of k terms each, the runtime

complexity for the worst case of Algorithm 2, which computes QUECAs for literal-

names in a set of integrity constraints, is O(nk8n), where n represents the number

of ICs.

Proof. Before starting this calculation we must introduce a new useful quantity:

the maximum number of residues associated to any literal r. It is easy to see that

0 6 r 6 2 · n. Again, the numbers on the left represent the corresponding line

numbers in the algorithm.
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1–2: F1(n) = c1 + c2r .

The runtime complexity of line 2 is clearly linear wrt the number of residues

associated to the literal.

3–31: F
(f)
2 (n) = c3(k − 2)(r − 1)f 2 + c3k(r − 1)f + r .

Clearly the availability of terms in TQUs determines how many executions of the

while loop will take place. Furthermore, the number of executions is really bound

by the number of pending residues at the right of • in every term appearing in

TQUs. The upper bound of this number will be given by the maximum number

of terms in TQUs times the maximum number of residues one of them has at

a given moment. So, once the algorithm is initialized a first check takes place

in line 5. We will assume the worst case, which is that this condition is never

met and so the algorithm never stops. Next, if the residue checks succeed in

line 9, no new residues are added and the number of residues of the first term

of TQUs is reduced by one, so whatever the upper bound we picked it still

remains as such. On the other hand if a failure occurs the upper bound must

be modified to include at most (k− 2) new terms, and only one of them adds at

most r−1 new residues (because we are dealing with BICs the rest of the residue

are only built-ins which do not add residues so now they have one residue less).

Now we are ready to calculate these upper bounds. In the beginning we have

TQUs = ∅ : l • residues(l), that is, only one term in TQUs (|TQUs| = 1) and

a maximum of r residues yet to be resolved in that term.

F
(0)
2 (n) = 1 · r .

Next, a failure occurred, so now the maximum number of terms is 1 + (k− 2) =

(k − 1), with the first term having a maximum of r + (r − 1) = 2r − 1 residues.
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This procedure can be iterated to obtain

F
(1)
2 (n) =(2r − 1) + (k − 2)(r − 1) .

F
(2)
2 (n) =1·(2r − 1 + r − 1) + (k − 2)(2r − 2) + (k − 2)(r − 1) .

=(3r − 2) + (k − 2)(2r − 2) + (k − 2)(r − 1) .

F
(3)
2 (n) =1·(3r − 2 + r − 1) + (k − 2)(3r − 3) + (k − 2)(2r − 2)+

(k − 2)(r − 1) .

=(4r − 3) + (k − 2)(3r − 3) + (k − 2)(2r − 2) + (k − 2)(r − 1) .

F
(4)
2 (n) =...

This way we arrive to the following equation:

F
(f)
2 (n) = (f+1)r−f+(k−2)(r−1)

f∑
i=1

i ,

for f > 0. By eliminating the sum and rearranging terms we have F
(f)
2 (n) =

(r − 1)f + r + 1/2(k − 2)(r − 1)f 2 + 1/2(k − 2)(r − 1)f , which is then

F
(f)
2 (n) = c3(k−2)(r−1)f 2+c3k(r−1)f+r .

In this equation f represents the maximum number of failures of the algorithm

until completion, k is the maximum number of literals per integrity constraint

and r 6 k · n is the maximum number of residues a literal may have for a given

set of n ICs. In this case constants were disposed because they are not relevant

and only clutter the calculation.

The resulting runtime complexity of Algorithm 2 is F (n) = F1(n) +

F
(f)
2 (n). That is,

F (n) = c1+c2r+c3(k−2)(r−1)f 2+c3k(r−1)f+r ,

which clearly depends on k, r and f . Because r is upper bound by k ·n we have that

it now depends on k, n and f . Next, by using the same argument presented in the
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runtime complexity calculation of residues(l) (k is upper bound by a constant) we

can discard k and this way the runtime complexity of QUECA(l) for one literal is

F (n) = O(nf2) ,

where f represents the maximum number of failures of the algorithm until completion

and n is the number of integrity constraints in IC. But from Lemma 4.1 we know that

the number of failures is bound by O(k4n) so the runtime complexity for QUECA(l)

is

F (n) = O(nk8n) .

�

Despite this complexity result, we will see in Chapter 5 (see its introduc-

tion and Section 5.3.2) that the process of computing QUECAs (and residues) is

done beforehand (i.e. offline), so it should not affect the performance from a user’s

point of view. This means, that once the QUECAs have been computed for a given

set of integrity constraints IC (associated to some database), the user can pose the

new queries (QUECAs) directly to the database, regardless of whether the database

contents have changed or not. Of course, we rely on the fact that integrity constraints

do not change often.

4.3 Termination

Recall from Section 2.1 that the set of integrity constraints IC is finite.

Thus, termination is guaranteed for Algorithm 1. For Algorithm 2 we have the

following:

Theorem 4.3 (Termination). Given a finite set of non fact-oriented BICs, Algo-

rithm 2, which computes QUECAs for literal names in a set of integrity constraints,

terminates in a finite number of steps.

Proof. From Lemma 4.1 �
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The termination property is based on the fact that by restricting execu-

tion to BICs only, residues contain one literal name at most, which in the worst case

generates an infinite sequence of single literals. The infiniteness of this sequence is

then limited by the condition in line 12 of Algorithm 2 and the fact that we only

consider range–restricted ICs of the form (2.2), conditions which ensure that at a

given point, pending residues add no new information to the resulting query, thus

being discarded. Notice that this result extends the termination results presented

in (Arenas et al., 1999), where semantic termination was only ensured for uniform

binary constraints.

4.4 Soundness and Completeness

It is possible to prove that the QUECA algorithm’s execution can be put

in correspondence with the iterative application of operator T until the point where

QUECA stops (see Examples 4 and 13). At that point we obtain a corresponding

semantical termination point for T. The main difference is that, while T would

perform split operations and add residues to the pending list (for the whole set of

residues) whenever at least one of the residues adds new information to the resulting

query, QUECA does this on a per-residue basis. This eliminates residues one by one,

thus obtaining a much more efficient query (see the difference between T3(P (u, v))

in Example 4 and QUECA(P (u, v)) in Example 13). Having mapped QUECA’s

execution to that of T, we may take advantage of soundness and completeness results

for T.

In order to achieve soundness in the execution of QUECA, it must first

be proved that the notion presented in Definition 3.5 implies logical consequence.

Lemma 4.2. Given a TQU D : E • R. Let φ = l1 ∨ · · · ∨ ln ∈ R be a residue. If

φ ∈̃ D : E then either E � φ or
∨
Ei � φ for all i such that Di ∈ D.
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Proof. For a substitution σ as in Definition 3.5 we have two cases, when for all i,

liσ ∈ E and when φσ ∈ D.

a) for all i, liσ ∈ E. Since σ substitutes variables occurring nowhere else but in φ

for variables which are universally quantified in E, and because we know that

l1 ∧ l2 � l1 ∨ l2 we have that E � φ.

b) φσ ∈ D. We know that D contains the last residue that generated a split

operation plus all those residues ϕ, if any, such that ϕ P ∈̃θ D : E for the case

that no literal is added to its E (line 13). We also know that all the elements

from TQUs whose D share elements have been involved in a split operation, so

they have a common stem e and are just differentiated by the last portion of

E. This way
∨
Ei for all i such that Di ∈ D can be rewritten as e ∧D. Since

σ substitutes variables occurring nowhere else but in φ for variables which are

universally quantified in D we have that φσ ∈ D ⇒ D � φ. Consequently

e ∧D � φ, which implies that
∨
Ei � φ for all i such that Di ∈ D.

�

Now it is possible to prove the soundness of Algorithm 2. To do so, the

execution of QUECA will be mapped to that of T in order to take advantage of T’s

soundness and completeness results.

Definition 4.4. Residues can be classified into generations according to the following

inductive definition:

– Given a query Q, residues(Q) are first generation residues.

– Residues of nth generation residues are (n+ 1)th generation residues.

�

Lemma 4.3. Restricting IC to BICs , the execution of Algorithm 2 for a query Q

delivers QUECA(Q), such that QUECA(Q) ≡ Tn(Q), being n is the finiteness point

as defined in (Arenas et al., 1999).
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Proof. The execution of Algorithm 2 follows a DFS strategy in the sense that it

systematically selects the first element from TQUs to resolve its first pending residue.

However, this is not essential for sound execution because all branches of the tree

must be followed and completely evaluated. This way the elements of TQUs can be

selected in any order without compromising soundness.

Having said this, and taking into account the residue generations pre-

sented in Definition 4.4, the elements of TQUs can be selected so all the elements

having first generation residues are selected in first place. Then, when no first gen-

eration residues are left in any element belonging to TQUs , elements having second

generation residues are selected. This choosing scheme continues until complete ex-

ecution. As auxiliary notation, when all k generation residues have been resolved, it

will be be written as QUECA(·)k, being QUECA formed by the disjunction of all the

E’s present at that moment in TQUs . This way we can map QUECA’s execution to

that of operator T, presented in (Arenas et al., 1999), in the following way:

T0(Q) = Q ≡ QUECA(Q)0 ,

T1(Q) = Q ∧ residues(Q) ≡ QUECA(Q)1 ,

· · ·

Tn(Q) = . . . ≡ QUECA(Q)n = QUECA(Q) for some n .

Because only BICs are being considered, stopping is guaranteed at some

step, say n (see Theorem 4.3). Due to the equivalence shown above, the main

difference between operator T and QUECA would be that QUECA is guaranteed to

stop for a greater set of ICs.

Although not all residues are added to QUECA, Lemma 4.2 states that

the information that the residues that were discarded before reaching step n repre-

sent, is already included in QUECA; thus is irrelevant. This information discarding

is what makes the algorithm stop. However, this stopping condition (i.e. lines 9–18,

20 and 24–26) can be stripped off the algorithm, and the resulting formula at step n

will be logically equivalent to the original one; it will also be equivalent to Tn. Even

more, the execution of QUECA could then be taken one step further, to when all

n+ 1 generation residues are resolved. This step is not reached originally (with the
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stopping conditions in place) because all the information added in it is redundant,

that is QUECA(Q)n ≡ QUECA(Q)n+1 ≡ QUECA(Q) (see Lemma 4.2).

Consequently, by transitivity and the invariant described earlier, it is

proved that Tn(Q) ≡ QUECA(Q) and Tn(Q) ≡ Tn+1(Q), so n is the finiteness point

as defined in (Arenas et al., 1999). �

Having mapped the execution of QUECA to that of operator T, it is now

possible to take advantage of the soundness and completeness results for Tpresented

in (Arenas et al., 1999).

Theorem 4.4 (Soundness). Let r be a database instance, IC a set of binary in-

tegrity constraints and Q(x̄) a literal query, such that r � QUECA(Q)(t̄). If Q is

universal or non-universal, but domain independent, then t̄ is a consistent answer to

Q in r, that is, r �c Q(t̄).

Proof. From Lemma 4.3 and Theorem 2 in (Arenas et al., 1999). �

Theorem 4.5 (Completeness). Let r be a database instance and IC a set of non

fact-oriented binary integrity constraints, then for every ground literal l(t̄), if r �c

l(t̄), then r � QUECA(l)(t̄).

Proof. From Lemma 4.3 and Theorem 4 in (Arenas et al., 1999). �

As will be shown in Section 4.5, the queries covered by these results are

literals and conjunctions of literals free of existential quantifiers.

4.5 Restrictions on Queries

We will now illustrate the need to restrict the class of queries supported

by the algorithms presented in this thesis. Initially, given a query Q, we want to

compute a first order query QUECA(Q), which will deliver consistent answers only.

The query Q must then follow a simple rule: qualify to be the seed of Algorithms 1

and 2. Because both algorithms operate on integrity constraints that are written in
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terms of predicates (tables), queries must also be based on database predicates, so

they should be literals of the form P (t1, . . . , tn) or ¬P (t1, . . . , tn), where P represents

a table name and each ti an attribute of P .

QUECA can also handle conjunctive queries by distributing over the con-

junction. That is:

QUECA(l1 ∧ . . . ∧ ln) ≡ QUECA(l1) ∧ . . . ∧QUECA(ln) .

In case a given li involves a built-in predicate, QUECA does not operate on it and sim-

ply has no effect (e.g. QUECA(x ≥ 7) ≡ x ≥ 7). This distribution property makes it

possible to apply QUECA to (partially) ground queries as well. A (partially) ground

query such as P (t1, . . . , c, . . . , tn), is really treated as P (t1, . . . , ti, . . . , tn) ∧ ti = c.

So QUECA(P (t1, . . . , c, . . . , tn)) would really become QUECA(P (t1, . . . , ti, . . . , tn))∧
ti = c. All this process is invisible to the user, making the program friendlier and

easier to use.

It is easy to see that a ground query Q will generate a QUECA(Q) whose

answer is true, i.e. the tuple belongs to every repair, or false, i.e. the tuple does not

belong to every repair.10 On the other hand, if at least one of the ti’s is not ground,

then a set of consistent values for the non-ground ti’s, if any, shall be returned as

answer. If no values satisfy the query, an empty set is returned.

Example 14 Consider the set of integrity constraints (IC) presented in Example 5:

⇐ P (u, v) ∧ ¬R(u, v) ,

⇐ ¬P (u, v) ∧R(u, v) ,

⇐ P (u, v) ∧ P (u, z) ∧ y 6= z .

The following database instance r, which violates IC,

10In the implementation we will use the traditional Prolog values yes and no.
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P R

a 1 a 1

b 2 a 2

c 8 b 2

d 9 c 8

has four repairs:

r′ : P R r′′ : P R

a 1 a 1 a 2 a 2

b 2 b 2 b 2 b 2

c 8 c 8 c 8 c 8

r′′′ : P R r′′′′ : P R

a 1 a 1 a 2 a 2

b 2 b 2 b 2 b 2

c 8 c 8 c 8 c 8

d 9 d 9 d 9 d 9

Using the QUECAs calculated in Example 13, we may pose the queries:

Query Answer

QUECA(P(x , y)) [b, 2] ; [c, 8]

QUECA(P(x , 2 )) [b]

QUECA(P(a, 1 )) false

QUECA(P(x , y) ∧ y > 7 ) [c]

QUECA(P(b, 2 ) ∧ R(c, 8 )) true

�

All the results shown previously (e.g. termination, soundness, etc.) are

applicable to queries that are conjunctions of literals without existential quantifiers.

Therefore, we may perform join operations between two QUECAs by simply querying

the database with the conjunction of their QUECAs, taking care to use the proper

variable names where we want the join to be performed.
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Other types of queries, specifically those involving disjunction and exis-

tential quantifiers, may not be covered by this solution. We will now show that in

general, completeness is not obtained for queries that are not conjunctions of literals.

Example 15 (Existential query) Consider the query ∃xP (a, x). The database in-

stance r of Example 14 has true as a consistent answer because in every repair exists a

tuple with a as its first argument. However, it is easy to see that QUECA(∃xP(a, x ))

is logically equivalent to ∃x(P (u, x)∧R(u, x)∧∀z [(¬P (u, z)∨x = z)∧(¬R(u, z)∨x =

z)]). Thus, we have that r 2 QUECA(∃xP(a, x )), and the consistent answer true is

not captured by QUECA. �

Example 16 (Disjunctive query) Consider the query P (a, 1)∨P (a, 2). When posed

to the database instance r of Example 14, it should return true as a consistent

answer because in every repair it succeeds. However, the query QUECA(P(a, 1 )) ∨
QUECA(P(a, 2 )) returns false. �

This last example shows that the QUECA of a disjunction is not logically

equivalent to the disjunction of the QUECAs. In (Arenas et al., 2000) a methodology

to retrieve consistent answers has been proposed that can be applied to existential

and disjunctive queries.
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V. IMPLEMENTATION

To achieve the goal of generating queries whose answers correspond to the

consistent information stored in a database, we need a common framework for data,

rules, queries and integrity constraints to be able to perform operations on them

and elaborate the mentioned queries. Logic programming languages provide this

framework and XSB (Sagonas et al., 1994) seems an adequate candidate. Generally

speaking we prefer a LP language because the algorithms described in this thesis

need the ability to perform unifications, substitutions and detecting subsumption.

Some of the main characteristics that make XSB suitable for this appli-

cation are:

Tabling. Dramatically improves performance by being able to store intermediate

results efficiently and thus avoid redundant subcomputation. If queries are

to be posed directly from the XSB interpreter, tables can be also used as a

cache for the calculated queries which would have been generated at compile

time. These queries correspond to those which deliver consistent answers only,

according to what was presented in Section 2.1.

Relational DBMS interface. XSB comes with an a general ODBC interface which

allows data stored in the databases to be accessed from XSB’s environment as

thought they existed as facts. For more details on features and operation see

(Sagonas et al., 1999).

Foreign language interface. XSB may be accessed from different languages, in-

cluding C and Visual Basic, which enables building powerful applications which

would use XSB as a subroutine processor, or to run as a complete initialization

module.

Multiplatform. XSB currently supports a number of different platforms which

makes it specially convenient when working from different locations. For more

details see (Sagonas et al., 1994).
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Perhaps what makes XSB a better candidate that any other LP language

is its tabling capabilities that improve its efficiency over other systems that would, for

example, have to recalculate the residues every time they are needed by Algorithm 2.

Without this tabling ability, whenever the user posed a query to the database, its

corresponding QUECA should be calculated on the fly. This would diminish per-

formance notoriously because of its complexity (see Theorem 4.2). Consequently,

when querying a database, the high runtime complexity of the algorithm does not

affect the performance of the system as an interactive database querying system. To

achieve complete persistency of the computed QUECAs we should use XSB’s I/O

facilities to write the results to a file, so they (QUECAs) could be used even when

the database contents have been updated.

5.1 Program Overview

Because the set of integrity constraints, IC, seldom changes for a given

database, we can compute the QUECAs beforehand (i.e. offline). Therefore, when

a user poses a query Q to a database, all the system does is, fetch QUECA(Q),

pose it to the database instance and return its answers, which correspond to the

consistent answers of Q. Notice that the database contents may be updated and the

QUECAs still serve their purpose. This way we avoid possible performance problems

derived from the complexity results obtained for Algorithm 2. The reason why the

computation may be done offline is that, as could be noted in Chapter 3, the only

input for the algorithms presented in this thesis is IC. Therefore, IC must be defined

in an appropriate manner and somewhere the system is able to find it.

Next, when evaluating an expression (i.e. posing a query to a database),

we would like to take advantage of XSB’s ODBC interface and access the data stored

in the database directly. To be able to do so we must take care to adjust the database

schema to a certain framework that will allow the system to operate properly. These

two issues are described next.
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5.1.1 Integrity Constraints

Integrity constraints are to be defined in a file named ics in conformity

with the syntax of (2.2), that is:

<- [ ... denials ... ]. (5.1)

The left arrow ‘<-’ and square brackets ‘[ ]’ are necessary for correct parsing into the

program. Also, each constraint must be ended with a period ‘.’ and on a separate line.

Inside the brackets, as in traditional Prolog lists, terms must be separated by commas

which represent conjunctions (see Example 17). The built-in operators allowed in

an integrity constraint and their syntactical form are described in Table 5.1.

Table 5.1 Built-in operators allowed in Integrity Constraints

System’s Built-in Represents

~F ¬F
T1 == T2 T1 = T2

~(T1 == T2) T1 6= T2

T1 < T2 T1 < T2

T1 =< T2 T1 ≤ T2

T1 > T2 T1 > T2

T1 >= T2 T1 ≥ T2

Terms must be written according to the standard Prolog convention of

capitalizing variables and leaving object constants in lower case.
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Example 17 The ICs in Example 5 would be represented as:

<- [p(U,V),∼r(U,V)].

<- [∼p(U,V),r(U,V)].

<- [p(U,V),p(U,Z),∼(V==Z)].

Other examples of ICs:

<- [m(X,Y),X=<10].

<- [m(X,Y),∼n(Y)].

<- [q(X),X==apple].

<- [q(X),X==orange].

<- [t(X),s(Y),X>Y].

�

This file must reside in the same directory as XSB’s binary executable

for the system to find it.

5.1.2 Data Objects

By taking advantage of XSB’s RDBMS interface11 the program avoids

the need to transform the data into a suitable format for processing. Consequently,

having an adequate ODBC driver for the database in which the data is stored, lets us

access it directly from the program. Some considerations must be taken into account

for a proper execution:

11See Section 5.4.2 for some considerations regarding XSB 2.1 and ODBC.
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– Table names must begin with a lower case letter. This is necessary because

otherwise the system, as in traditional Prolog environments, will treat the table

names as variables and not as predicates. Also, column names must begin with

c1 and be numerated consecutively (e.g. c1, c2, etc.). A table should then be

defined as:

CREATE TABLE "p"(c1 varchar(1),c2 varchar(1));

Watch for the pair of double quotes (" "), which force the table name’s case

to hold (SQL standard).

– A Dummy table must be present in the database, and it must contain a single

column and a single element ‘X’. It should be defined as follows (watch for

lower case ‘dummy’):

CREATE TABLE "dummy"(c1 (varchar(1)));

INSERT INTO "dummy"VALUES (’X’);

This table is used for complex queries, and makes it possible to use the system

in any known database without having to rely on proprietary system tables

(i.e. Oracle’s DUAL or IBM’s DB2 sysibm.sysdummy1).

– The database must have an ODBC alias with its corresponding user name and

password. These three parameters must be set in the file main.P as follows:

database(’mydatabase’).

username(’myself’).

password(’mypassword’).

No other part of the file main.P must be modified.
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5.2 Modules

The implementation presented in this thesis comprises 4 modules. A brief

description of each follows.

5.2.1 Main Module (main)

As the name says, this is the main module in the system. It must be

loaded into XSB’s interpreter with ‘[main].’ . It provides the predicates install/0,

init/0, end/0, query/2, list_all/2 and neg_query/2. No other file must be

loaded into the system by the user. Also in this file, the parameters mentioned in

Section 5.1.2 (i.e. database ODBC alias, username and password) must be set.

5.2.2 Queca Generation Module (queca)

This is the heart of of the implementation. It contains the implementa-

tion of the QUECA algorithm and several other useful routines. It provides three

predicates which are imported into ‘main’ and are visible to the user: residues/2,

queca/2 and qca2sql/2.

5.2.3 Query Transformation Module (qca2fol)

It defines the directive qca2fol/4. This predicate is not visible by the

user but we consider it is important to know its location for reference purposes.

5.2.4 SQL Generation Module (fol2sql)

This module is part of (Bertossi et al., 1996 1998), and after some minor

modifications was included in this system. It provides the predicate fol2sql/2 which

is imported into ‘main’.
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5.3 Using the Program

In this section we will describe how to use the application. We will begin

by defining the syntax of the queries to be posed to the system. Next, we will show

how to retrieve consistent information from the database. Some other useful pred-

icates will be presented before analyzing some particular issues regarding a system

module of XSB and the ‘allowedness’of queries.

5.3.1 Queries

The queries supported by the system are those described in Section 4.5.

However, the syntax must be changed to the standard Prolog convention of capi-

talizing variables and keeping object constants in lower case. When dealing with

conjunctive queries, we write them as a list of terms.

Example 18 Some valid queries would then be:

p(X,Y).

p(a,Y).

[p(X,Y),Y>7].

[p(X,Y),t(X,Y)].

As long as tables p and t are defined in the database. �

In the case of (partially) ground queries, the program uninstantiates them

to fetch the corresponding non-ground QUECAs , and then re-instantiates them (the

QUECAs) with the original constants. This is hand coded and is invisible to the

user. However, future versions of XSB (probably 2.3 onwards) will support a special

feature that allows, for a given table call, return as answer that of a more general

call. This way we would avoid the overhead of the procedure just described.
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5.3.2 Program Initialization

To correctly initialize the system, the user must do following:

a) Integrity Constraints must be defined in the file ics. They must obey the

syntactical form (5.1), and built-in predicates (when needed) must be entered

according to Table 5.1.

b) Database, username and password parameters must be modified in file main.P

to meet the needs of a particular user. These parameters are those described

in Section 5.1.2.

c) The XSB interpreter must be started and | ?- [main]. must be executed to

consult the main module of the program.

d) | ?- install. must be executed. This instruction compiles the rest of the

modules.

e) | ?- init. must be executed. This predicate consults the rest of the modules

and then connects to the database according to the parameters set in step b).

During this process, when module queca.P is consulted the whole QUECA

calculation routine is executed:

i) File ics is read and its ICs are incorporated into a list. A list LP of

distinct predicates appearing in IC is also created.

ii) Residues are calculated for every member of LP (residues/2) and are

written into file results.

iii) QUECA’s are generated for every member of LP using predicate queca/2.

iv) qca2fol is executed for every QUECA generated. This predicate trans-

forms a list of list (representing DNF) into a First Order Logic formula.

This is done using the predicates defined in Table 5.2.
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Table 5.2 Predicates and their meaning

Predicates Formula

no(F ) ¬F
and(F1, F2) F1 ∧ F2

or(F1, F2) F1 ∨ F2

equal(T1, T2) T1 = T2

T1 =< T2 T1 ≤ T2

T1 < T2 T1 < T2

T1 >= T2 T1 ≥ T2

T1 > T2 T1 > T2

all(X,F ) (∀x) F

Thus, when asking for a given QUECA the user will obtain a first order

formula in prefix form. It is in this format that the QUECAs are written

into file results.

v) Using predicate qca2sql, an SQL string is generated for every QUECA

already computed. These SQL strings are also written into file results.

It is important to mention that because predicates residues/2, queca/2 and

qca2sql/2 are declared tabled, their results are kept in memory and file

results does not have to be consulted. This file is kept for reference pur-

poses only.

After all computations have been performed, the connection to the database is

established and its tables are mapped to XSB predicate names. This is done

so they can be used by predicates query/2 and list_all/2.

Once the initialization procedure is completed, the QUECAs and their equiv-

alent SQL queries are stored in XSB’s tables, and are also available in the file

results for further reference.

f) Initialization is complete and the system is ready to be used.
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5.3.3 Retrieving Consistent Information

Having successfully completed initialization procedure the user may exe-

cute:

– | ?- query(Q,R). Given a query Q, it returns in R a consistent tuple. It

consults the database directly using the corresponding QUECA for Q. We may

obtain all the consistent tuples, using findall(G,query(Q,R),L), as a list of

tuples L or via backtracking.

5.3.4 Other Useful Predicates

Other predicates available to the user after initialization are:

– | ?- residues(Q,R). Given a query Q, its residues are returned in R as a list

in CNF (i.e. a inner list represents a clause and the list of lists is a conjunction

of them).

– | ?- queca(Q,R). Given a query Q, its calculated QUECA(Q) is returned in

R as a first order formula, according to the notation defined in Table 5.2.

– | ?- qca2sql(Q,R). In case the formula calculated by queca(Q,R) is allowed

(see Section 5.4.1), it returns in R the SQL query equivalent to the QUECA(Q)

already computed. Otherwise, it returns the string Formula not allowed (see

Section 5.4.1).

– | ?- list_all(Q,R). As the name implies, given a query Q, it returns in R a

tuple belonging to Q, no matter wether consistent or not. Again all the tuples

may be obtained as a list of tuples L using findall(G,list_all(Q,R),L)

or via backtracking. This predicate comes handy when posing more complex

queries to the database.

– | ?- neg_query(Q,R). Given a query Q, it returns in R an inconsistent tuple.

It is not very efficient as it is defined as :-list_all(Q,R),\+ query(Q,R).
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5.3.5 Ending the Application

To terminate the application the following predicates are included:

– | ?- end. Disconnects from the database.

– | ?- halt. Exits XSB.
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Example 19 Assuming we have modified the file ics to contain the integrity

constraints defined in Example 17, we would obtain the following results:

| ?- [main].

yes

| ?- install.

yes

| ?- init.

yes

| ?- queca(p(X,Y),Q).

Q = and(p(id1,id2),all(u1,and(r(id1,id2),or(and(no(p(id1,u1)),

no(r(id1,u1))),equal(id2,u1)))))

yes

| ?- qca2sql(p(X,Y),Q).

Q = SELECT a0.c1,a0.c2 FROM "p" a0 WHERE NOT EXISTS

(SELECT ’*’ FROM "r" a3 WHERE a0.c2<>a3.c2 AND a3.c1=a0.c1)

AND NOT EXISTS

(SELECT ’*’ FROM "p" a2 WHERE a0.c2<>a2.c2 AND a2.c1=a0.c1)

AND NOT EXISTS

(SELECT ’*’ FROM "dummy" WHERE NOT EXISTS

(SELECT ’*’ FROM "r" a1 WHERE a1.c1=a0.c1 AND a1.c2=a0.c2))

yes

| ?- end.

yes

To get the consistent tuples of P (x, y) we would use query(p(X,Y),Q). For an explanation

of what table dummy represents see Section 5.1.2. �
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5.4 Special Considerations

5.4.1 On Domain Independence

Given a query Q (see Section 5.3.1), queca(Q,R) delivers a first order

formula in R, that, when posed as a query to a database, delivers consistent informa-

tion only. However, due to the greater expressive power of first order logic (against

traditional query languages as SQL), only some formulas can be used as queries in or-

dinary databases. This subset contains the so-called domain independent (Abiteboul

et al., 1995, Ullman, 1988) formulas. As the name implies, the outcome of domain

independent formulas does not depend on the domain over which variables range.

For example, the formula x > 1950 is not domain independent because its answer

set depends on the domain over which x ranges. For instance, if x is to range over

Z, its result set is infinite, on the other hand, if it ranges over [0, 3000] it now has a

finite answer set. If we pose the query Year(x) ∧ x > 1950, we now have a domain

independent query because we have restricted x to the domain of valid years. So, no

matter what is the domain of Year , only tuples stored in it (which are supposedly

finite) shall be returned as answers.

Example 20 (taken from (Topor and Sonenberg, 1988)) Some more examples of

domain independent formulas:

P (x); ∃x∃y(P (x) ∨Q(y)); ∃x∃y(P (y)→ Q(x, y))

On the other hand, the following formulas are not domain independent:

¬P (x); P (x) ∨Q(y); ∀y(P (y)→ Q(x, y)); ∃xP (x) ∧ ∃x¬P (x)

�

Domain independent formulas were, however, shown to be equivalent to

the class of definite formulas defined in (Nicolas and Demolombe, 1982), which were

proved to be recursively unsolvable in (DiPaola, 1969) and in (Vardi, 1981). Because

of this, decidable subclasses of domain independent formulas were proposed. Perhaps
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the most common of these classes is range restricted formulas (Nicolas, 1982), which

is equivalent to the notion of allowed formulas defined in (Topor and Sonenberg,

1988). For a deeper discussion on other decidable subclasses of domain independent

formulas see (Abiteboul et al., 1995, Böhlen, 1994, Van Gelder and Topor, 1991).

To translate FOL formulas into SQL queries, we will take advantage of a

module coded for SCDBR (Bertossi et al., 1998), an automated reasoner on speci-

fication of database updates. This way we avoid coding a translator between FOL

and SQL from scratch. The condition used here to ensure domain independence is

that of allowed queries (Böhlen, 1994, Burse, 1992). This notion of allowedness is

slightly different from the one in (Topor and Sonenberg, 1988), in the sense that it

is based on a procedural reading of formulas from left to right. The main advantage

of this notion (the one described in (Böhlen, 1994, Burse, 1992)) is that recognizing

an allowed formula and then translating it into relational algebra is fairly simple.

Although in (Van Gelder and Topor, 1991) it is argued that evaluable

formulas (Demolombe, 1982) are the largest decidable subset of domain independent

formulas (in fact, allowed formulas are a proper subset of them), its implementation

is extremely complicated and the gain is not too big (specially for program-generated

queries).

In consequence, due to the syntactic nature of the algorithm that de-

termines whether a formula is domain independent or not, some of the computed

QUECAs will not generate a SQL statement, even though, in some cases, they should.
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5.4.2 XSB and ODBC

Although XSB 2.1 is supposed to connect easily to databases via ODBC,

a bug prevented this from becoming true. To solve this problem, the system must

be rebuilt using a special patch (see Appendix B) and some files must be modified.

The modifications are as follows:

– In file lib/odbc_call.P, the line

:- dynamic attribute/4.

must be added at the beginning of the file, and line

attribute(1,‘FLIGHT’,‘FLIGHT NO’,string).

must be eliminated. This modification forms part of the whole set of alterations

needed for the ODBC connection to work properly.

– In file lib/odbc_call.H the following lines must be added:

:- export odbc open/3.

:- export odbc close/0.

:- export odbc attach/2.

:- export odbc sql select/2.

:- export odbc get schema/2.

This modification is done specifically for this implementation to allow the mod-

ule main.P to import such predicates.
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VI. CONCLUSIONS AND FURTHER WORK

In this thesis we faced the problem getting meaningful answers when

querying an inconsistent database. In particular, we provided an algorithm that,

given a first order query Q, computes a query QUECA(Q), such that its answers

correspond to the consistent answers of Q.

We established the method to be sound, complete and terminating for an

interesting set of integrity constraints (BICs). The algorithm’s complexity was also

analyzed, obtaining satisfactory results.

Finally, the procedure was implemented in XSB, using standard LP tech-

niques, and coupled into an ODBC compliant database to conform an interactive

querying system.

To our knowledge, this is the first implemented system for retrieving

consistent information out of a possibly inconsistent database. It should serve as

a basis for a more powerful application in which some of the following extensions

should be included:

a) Optimize the resulting queries, both syntactically and semantically. Because

all the semantically relevant information associated to the query Q is already

included in QUECA(Q), it is possible that by just performing syntactical op-

timization we perform both optimizations at once. For this purpose there are

plenty of commercial systems available that might be coupled to our system.

b) Incorporating existential (and/or) disjunctive queries. The difficulty of han-

dling these queries was shown in Section 4.5. In the case of existential queries,

the problem involves propagating the existential quantifier accordingly through

the residues. In some cases it is possible to obtain correct results, but getting

a general method seems quite difficult. Regarding disjunctive queries, we have

not dealt with it yet.

c) Incorporating existential constraints into the solution, namely referential in-

tegrity constraints. This is closely related to existential queries. In essence,
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they both involve propagation of existential quantifiers through a universally

quantified query. The only difference, we note, is that in this case (referential

ICs) the original query is built directly with existential quantifiers, so we have

to take care of unifications and (in some way) modify the notion of information

already in a TQU to be able to deal with existential quantifiers. Once that

is done, the problem might be equivalent to that of existential queries. An-

other approach, which might prove to be easier, is to deal with a special case

in which we exclude functional dependencies, as we believe they are the most

problematic ICs regarding the interaction with existential quantifiers.

d) Eliminating residue redundancy completely. This problem has been barely

treated, just to cope with redundant residues coming from functional depen-

dencies. Other redundant residues must still be characterized, and furthermore,

redundant ICs should be detected and eliminated using a special purpose pack-

age.

e) Testing the system on a real (large) database. We consider it should only

be done once we have a fully operational system that is able to cope with

referential integrity constraints. At that point we would have a really useful tool

for querying databases, integrating data sources, etc. However, this involves

one critical issue: most of the generated queries are domain dependent. This

enforces the implementation to deal with restricting the domain of the queries

in order to properly benchmark the system.

f) Developing the applications suggested in the introduction, e.g. data cleaning,

datawarehousing, data integration, data mining, etc.
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A. SOURCE CODE

A.1 Module main

A.1.1 main.H

%####################################

%

% module : main

%

% author : Alexander Celle T.

% date : Autumn-2000

%####################################

:- export init/0, install/0, end/0.

:- export query/2, list_all/2, neg_query/2.

:- import qca2sql/2 from queca.

:- import make_id/2 from queca.

:- import variables/2 from queca.

:- import fol2sql/2 from fol2sql.

:- import odbc_open/3 from odbc_call.

:- import odbc_close/0 from odbc_call.

:- import odbc_attach/2 from odbc_call.

:- import odbc_sql_select/2 from odbc_call.

:- import odbc_get_schema/2 from odbc_call.

A.1.2 main.P

%####################################

%

% module : main

%

% author : Alexander Celle T.

% date : Autumn-2000

%

% This file should be loaded into

% the interpreter with [main].

%

% Next, install/0 must be called

% followed by init/0.

%####################################

%Database ODBC alias

database(’tesis’).

%Username with access to the database

username(’acelle’).
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%Password

password(’db2admin’).

%###############################

% DO NOT MODIFY BELOW THIS LINE

%###############################

%####################################################

% Query(+Q,-R):-

% given a query Q it returns in R only

% the consistent answers to Q. Q must be

% a database table with its arguments (i.e.

% p(X,Y)). It may be non-ground, ground or

% partially ground. In case it’s ground it

% returns yes or no.

%####################################################

query(Q,R):-

qca2sql(Q,Sql),

odbc_sql_select(Sql,R).

%####################################################

% list_all(+Q,-R):-

% given a query Q it returns in R all the

% tuples in Q, consistent or not. If it is

% ground it returns yes or no.

%####################################################

list_all(Q,R):-

(is_list(Q) ->

variables(Q,Vq);

variables([Q],Vq)),

make_id(Vq,0),

make_and(Q,Q1), %convert to fol (only and)

fol2sql(Q1,Str),

name(Sql,Str),

odbc_sql_select(Sql,R).

make_and([Q|[]],Q):- !.

make_and([Q|Qs],and(Q,Rest)):- !,

make_and(Qs,Rest).

make_and(Q,Q).

%####################################################

% neg_query(+Q,-R):-

% given a query Q it returns in R only

% the inconsistent answers to Q. Q must be

% a database table with its arguments (i.e.

% p(X,Y)). It may be non-ground, ground or

% partially ground. In case it’s ground it

% returns yes or no.

%####################################################

neg_query(Q,R):-

list_all(Q,R),

\+ query(Q,R).

%####################################################

% install:-

% compiles all the modules in the system.

%####################################################

install :-

compile(queca),
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compile(qca2fol),

compile(fol2sql).

%####################################################

% init:-

% consults the modules, initializes the system

% (when it consults queca) and connects to

% the database.

%####################################################

init:-

consult(qca2fol),

consult(fol2sql),

consult(queca),

connect.

%####################################################

% end:-

% disonnects from the database.

%####################################################

end:-

odbc_close.

%####################################################

% connect:-

% connects to the database and maps the

% table names to XSB predicates.

%####################################################

connect:-

database(Name),

username(User),

password(Pwd),

odbc_open(Name,User,Pwd),

map_tables.

%####################################################

% map_tables:-

% maps the user tables in the database (lower

% case) to XSB predicates.

%####################################################

map_tables:-

odbc_get_schema(user,L),

map_tables(L).

map_tables([]).

map_tables([L|Ls]):-

(usertable(L)->

odbc_attach(L, table(L));

true),

map_tables(Ls).

usertable(T):-

atom_chars(T,[L|_]),

a@=<L,

L@=<z.

A.2 Module queca

A.2.1 queca.H
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%####################################

%

% module : queca

%

% author : Alexander Celle T.

% date : Autumn-2000

%####################################

:- export residues/2.

:- export queca/2.

:- export qca2sql/2.

:- export make_id/2.

:- export variables/2.

:- export difference/3.

:- import absmember/2 from listutil.

:- import delete_ith/4 from listutil.

:- import setof/3 from setof.

:- import append/3 from basics.

:- import member/2 from basics.

:- import select/3 from basics.

:- import memberchk/2 from basics.

:- import length/2 from basics.

:- import subsumes_chk/2 from subsumes.

:- import numbervars/1 from num_vars.

:- import abolish_all_tables/0 from tables.

:- import abolish_table_pred/1 from tables.

:- import table_state/2 from tables.

:- import qca2fol/4 from qca2fol.

:- import fol2sql/2 from fol2sql.

A.2.2 queca.P

%####################################

%

% module : queca

%

% author : Alexander Celle T.

% date : Autumn-2000

%####################################

%#######################

% TABLED PREDICATES

%#######################

:- table ic_pred_list/2.

:- table residues/2.

:- table queca/2.

:- table qca2sql/2.

%#################

% New symbols

%#################

:- op(700,fx,<-). % for denials in file ’ics’

:- op(500,fx,~). % symbol for negation

%###############################################

% ic__pred_list(-L,-P):-

% Reads the integrity constraints stored
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% in the file ’ics’ and creates a list of them

% and the distinct literals in them.

%###############################################

ic_pred_list(L,P):-

see(ics),

get_constraints([],L,[],Pr),

eliminate_variants(Pr,[],P),

seen.

get_constraints(Aux,L,Paux,Pr):-

read(<- Term) ->

(add_to_list(Aux,[Term],NewAux),

add_to_list(Paux,Term,NewPaux),

get_constraints(NewAux,L,NewPaux,Pr));

(L=Aux,

Pr=Paux).

%####################################################

% eliminate_variants(+InList,[],-OutList):-

% given a list it eliminates duplicates and

% variants. Important to avoid repetition of

% residues for a given predicate.

% Without this there would be one residuelist

% for each individual appearance of a single

% predicate

% It also eliminates predicates which involve

% built-in operators.

%####################################################

eliminate_variants([],Aux,Aux).

eliminate_variants([X|Xs],Aux,List_wodups):-

((\+member(X,Aux),not_builtin(X) )->

append(Aux,[X],Newaux);

Newaux = Aux),

eliminate_variants(Xs,Newaux,List_wodups).

not_builtin(~X):- !,X=..[F|_],checklist(F).

not_builtin(X):- X=..[F|_],checklist(F).

checklist(F):-

builtins(Bins),

\+ member(F,Bins).

%###############################################

% Built-in predicates

%###############################################

builtins([==,>,<,=<,>=,<>]).

%###############################################

% add_to_list(X,Y,Z) :-

% adds element Y to list X and returns Z;

% X MUST be a list and list Z is FLAT!!

%###############################################

add_to_list(X,Y,Z):-

is_list(X),

is_list(Y) ->

append(X,Y,Z);

append(X,[Y],Z).

%###############################################

% qsort:-

% Sorts a list of lists in ascending

% order of length of each sublist.

%###############################################

qsort([X|T],R) :-

part(X,T,U1,U2),
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qsort(U1,V1),

qsort(U2,V2),

append(V1,[X|V2],R).

qsort([],[]).

part(M,[E1|T],[E1|U1],U2) :-

length(M,Ml),

length(E1,El),

El =< Ml,

part(M,T,U1,U2).

part(M,[E1|T],U1,[E1|U2]) :-

length(M,Ml),

length(E1,El),

El > Ml,

part(M,T,U1,U2).

part(_,[],[],[]).

%####################################################

% assert_relevant_ics:-

% walks through the set of IC and asserts

% relevant(Element,IC) for each pair where

% Element belongs to IC.

%####################################################

assert_relevant_ics:-

ic_pred_list(_,Plist),

assert_relevant_ics(Plist).

assert_relevant_ics([]). %this is to here to make it succeed

assert_relevant_ics([X|Xs]):-

assert_ics(X),

assert_relevant_ics(Xs).

assert_ics(Element):-

ic_pred_list(Clist,_),

assert_ics(Element,Clist).

assert_ics(_,[]).

assert_ics(Element,[Ic|IcRest]):-

(memberchk(Element,Ic)->

(copy_term(Ic,NewIc), %refreshes variables

assert(relevant(Element,NewIc)),

assert_ics(Element,IcRest));

assert_ics(Element,IcRest)).

%####################################################

% make_selections:-

% selects all possible combinations of

% residues from an IC. It also forces out

% the second residue of a FD for a given

% predicate, thus excluding redundancy

% according to Lemma 1.

%####################################################

make_selections:-

clause(relevant(E,List),true), %CRUCIAL STEP

select(E,List,NewList), %selects all possible

negate_list(NewList,NegList), %combinations of residues

assert(relevant_selected(E,NegList)).

%####################################################

% negate_list(+List,-Neglist):-

% given a list it negates its elements

% and returns a new negated list

%####################################################

negate_list([],[]).

negate_list([X|Xs],[Y|Ys]):-
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negate(X,Y),

negate_list(Xs,Ys).

%####################################################

% negate(+X,-Xneg):-

% given a literal X it returns its negation

%####################################################

negate(X,Xneg):-

(X = ~L ->

Xneg = L;

Xneg = ~X).

%####################################################

% residues(+Element,-Residuelist):-

% given literal (Element) it returns the

% associated residues according to the existing

% Integrity Constraints, already in DNF.

%####################################################

residues(Element,Residuelist):-

% copy_term(Element,E2),

((Element = ~E3) ->

(functor(E3,Pred,L),

functor(Q2,Pred,L),

Q= ~Q2);

(functor(Element,Pred,L),

functor(Q,Pred,L))),

setof(List,clause(relevant_selected(Q,List),true),Rlistcnf),

Q=Element,

append([[Element]],Rlistcnf,Original),

copy_term(Original,Copy),

delete_ith(1,Original,_,RestOriginal),

delete_ith(1,Copy,CopyElement,RestCopy),

numbervars(CopyElement),

write(’PREDICATE : ’),

writeln(Element),

write(’ RESIDUES with redundancy : ’),

writeln(Rlistcnf),

clean(RestCopy,RestOriginal,[],[],Residuelist1),

qsort(Residuelist1,Residuelist),

write(’ RESIDUES : ’),

writeln(Residuelist).

/*

residues(Element,Residuelist):-

setof(List,clause(relevant_selected(Element,List),true),Rlistcnf),

append([[Element]],Rlistcnf,Original),

copy_term(Original,Copy),

delete_ith(1,Original,_,RestOriginal),

delete_ith(1,Copy,CopyElement,RestCopy),

numbervars(CopyElement),

write(’PREDICATE : ’),

writeln(Element),

write(’ RESIDUES with redundancy : ’),

writeln(Rlistcnf),

clean(RestCopy,RestOriginal,[],[],Residuelist1),

qsort(Residuelist1,Residuelist),

write(’ RESIDUES : ’),

writeln(Residuelist).

*/

%####################################################

% clean(+Groundlist,+Originallist,[],-CleanAux,-Cleanlist):-

% returns in Cleanlist, the Originallist without
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% the redundant residues. REQUIRES ORDER

% p(X,Y) -> p(a,b) only for variant checking.

%####################################################

clean([],[],_,Aux,Aux).

clean([X|Xs],[Y|Ys],Aux,CleanAux,Cleanlist):-

(redundant(X,Aux)->

(clean(Xs,Ys,Aux,CleanAux,Cleanlist));

(add_to_list(Aux,[X],NewAux),

add_to_list(CleanAux,[Y],NewCleanAux),

clean(Xs,Ys,NewAux,NewCleanAux,Cleanlist))).

%##############################################

% redundant(+X,+L):-

% checks for residue redundancy of X in

% the list of residues L. One feature

% it has is it permutates a residue to

% check for different order of appearance

% of literals.

%##############################################

redundant(_,[]):-

fail.

redundant(X,[Y|Ys]):-

setof(Perms,perm(X,Perms),Permlist),

check_each_perm(Permlist,Y) ->

true;

redundant(X,Ys).

check_each_perm([],_):-

fail.

check_each_perm([X|Xs],Y):-

my_variant(X,Y) ->

true;

check_each_perm(Xs,Y).

%####################################################

% perm:-

% given a list it generates all possible

% permutations of the elements in that list by

% backtracking. It may be partly instantiated.

%####################################################

perm([],[]).

perm(L,[X|Xs]):-

select(X,L,L1),

perm(L1,Xs).

%###################################################

% my_variant(+Term1,+Term2):-

% this is just a redefinition of variant/2

% in order to correctly check for variants like

% X==a and a==Y.

%###################################################

my_variant(Term1,Term2):-

my_subsumes_chk(Term1,Term2),

my_subsumes_chk(Term2,Term1).

my_subsumes_chk([],[]).

my_subsumes_chk([X|Xs],[Y|Ys]):-

(X = (A==B) ->

(subsumes_chk(A==B,Y);subsumes_chk(B==A,Y));

(X = ~(A==B)->

(subsumes_chk(~(A==B),Y);subsumes_chk(~(B==A),Y));

subsumes_chk(X,Y))),

my_subsumes_chk(Xs,Ys).

%###################################################
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% generate_residues, generate_quecas & generate_sql

% These three procedures work in the same way.

% They walk through the whole Predicatelist

% without variants or duplicates or X==Y’s

% and generate the residues, queca or sqlstring

% associated to each predicate respectively.

%###################################################

generate_sql:-

ic_pred_list(_,Plist),

generate_sql(Plist).

generate_sql([]).

generate_sql([X|Xs]):-

qca2sql(X,Sql),

write(’PREDICATE : ’),

writeln(X),

write(’ SQL : ’),

writeln(Sql),

generate_sql(Xs).

generate_residues:-

ic_pred_list(_,Plist),

generate_residues(Plist).

generate_residues([]).

generate_residues([X|Xs]):-

residues(X,_),

generate_residues(Xs).

generate_quecas:-

ic_pred_list(_,Plist),

generate_quecas(Plist).

generate_quecas([]).

generate_quecas([X|Xs]):-

queca(X,Queca),

write(’PREDICATE : ’),

writeln(X),

write(’ QUERY : ’),

writeln(Queca),

generate_quecas(Xs).

%####################################################

% queca(+Q,-Quecafol):-

% given a query Q it returns the corresponding

% queca in Quecafol as a First Order Formula.

% Query Q can be a list of terms (conjunction).

%####################################################

queca([Q|[]],Quecafol):-!,

copy_term(Q,Q1), %refresh variables

((Q1 = ~Q2) ->

(functor(Q2,Pred,L),

functor(E2,Pred,L),

E= ~E2);

(functor(Q1,Pred,L),

functor(E,Pred,L))),

(residues(E,R)->

(make_tqu([],[E],R,T),

tqus([T],Querylist,[]));

(Querylist=[[E]])),

E=Q1, %for use with ground queries

variables([E],Ve),

variables_list(Querylist,Vl),

make_id(Ve,0),

difference(Vl,Ve,Uvars),

make_u(Uvars,0),
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sel_exists(Querylist,Evars),

qca2fol(Querylist,Uvars,Evars,Quecafol).

queca([Q|Qs],and(Quecafol,Restfol)):-!,

copy_term([Q|Qs],[Q1|Qs1]), %refresh variables

((Q1 = ~Q2) ->

(functor(Q2,Pred,L),

functor(E2,Pred,L),

E= ~E2);

(functor(Q1,Pred,L),

functor(E,Pred,L))),

(residues(E,R)->

(make_tqu([],[E],R,T),

tqus([T],Querylist,[]));

(Querylist=[[E]])),

E=Q1, %for use with ground queries

variables([E],Ve),

variables_list(Querylist,Vl),

make_id(Ve,0),

difference(Vl,Ve,Uvars),

make_u(Uvars,0),

sel_exists(Querylist,Evars),

qca2fol(Querylist,Uvars,Evars,Quecafol),

queca(Qs1,Restfol).

queca(Q,Quecafol):-

copy_term(Q,Q1), %refresh variables

((Q1 = ~Q2) ->

(functor(Q2,Pred,L),

functor(E2,Pred,L),

E= ~E2);

(functor(Q1,Pred,L),

functor(E,Pred,L))),

(residues(E,R)->

(make_tqu([],[E],R,T),

tqus([T],Querylist,[]));

(Querylist=[[E]])),

E=Q1, %for use with ground queries

variables([E],Ve),

variables_list(Querylist,Vl),

make_id(Ve,0),

difference(Vl,Ve,Uvars),

make_u(Uvars,0),

sel_exists(Querylist,Evars),

qca2fol(Querylist,Uvars,Evars,Quecafol).

%####################################################

% qca2sql(+Q,-Sql):-

% given a query Q it returns the corresponding

% SQL string in Sql.

%####################################################

qca2sql(Q,Sql):-

queca(Q,T),

qca2sql0(T,Sql).

qca2sql0(or(Q,_),Sql):-!,

qca2sql0(Q,Sql).

qca2sql0(Q,Sql):-

fol2sql(Q,L),

name(Sql,L).

%#######################################

% make_id(+Vars,0) and make_u(+Vars,0)

% grounds variables to id1, id2,

% etc. so they can be evaluated.
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% (u1, u2 for universally quants)

%#######################################

make_id([],_).

make_id([V|Vs],Counter):-

Newcounter is Counter + 1,

name(Newcounter,N),

append([105,100],N,M),

name(V,M),

make_id(Vs,Newcounter).

make_u([],_).

make_u([V|Vs],Counter):-

Newcounter is Counter + 1,

name(Newcounter,N),

append([117],N,M),

name(V,M),

make_u(Vs,Newcounter).

%####################################################

% tqus(+[tqu(D,E,R)|Ts],-Querylist,[]):-

% given a list of tqus it executes the

% while loop in Algorithm 2 until completion.

% This is the heart of the implementation,

% here is where the list of lists is generated

% and the stopping conditions are evaluated.

%####################################################

tqus([],Aux,Aux).

tqus([tqu(_,E,[])|Ts],Querylist,Aux):-

add_to_list(Aux,[E],Newaux),

tqus(Ts,Querylist,Newaux).

tqus([tqu(D,E,[R|Rs])|Ts],Querylist,Aux):-

information_in(tqu(D,E,[R|Rs]))->

(tqus([tqu(D,E,Rs)|Ts],Querylist,Aux));

(info_p_in(tqu(D,E,[R|Rs]))->

(d_split(tqu(D,E,R),Rs,Newtqu),

append(Newtqu,Ts,Newtqus),

tqus(Newtqus,Querylist,Aux));

(split(tqu(D,E,R),R,Rs,[],Newtqu),

append(Newtqu,Ts,Newtqus),

tqus(Newtqus,Querylist,Aux))).

%###################################################

% best_in

% Basically chooses the substitution that

% produces most information in E from the

% residues in R. Use setof to keep the same

% unification is CRUCIAL. The criteria used

% is that of shortest list.

%###################################################

best_in(tqu(D,E,R),NewR):-

setof(Goal,partially_in(tqu(D,E,R),Goal),Goallist),!,

shortest(Goallist,R,NewR).

%####################################################

% patially_in(+tqu(D,E,R),-NewR):-

% given that a residue is part of E, that

% is, R is partially in R, then we choose

% the best unification to minimize the

% remaining residues in NewR. We must take

% care to consider only the free vars in R and

% the new vars in E. (That is why grounding

% is performed).

%####################################################
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partially_in(tqu(D,E,R),NewR):-

copy_term(tqu(D,E,[R|_]),tqu(Dc,Ec,[Rc|Rsc])),

Ec=[Q|_],

numbervars(Q), %grounds vars in Q

freeVar(tqu(Dc,Ec,[Rc|Rsc]),Fvar),

variables(Rc,VarsRc),

difference(VarsRc,Fvar,Groundvars),

numbervars(Groundvars),%ground vars in residue except freeVars.

trim_residues(Ec,Rc,R,[],NewR).

%####################################################

% trim_residues(+E,+Rescopy,+Resreal,[],-NewR):-

% given an E, and residues, we only add to

% NewR those residues that do not unify with

% a term in R.

%####################################################

trim_residues(_,[],[],Aux,Aux).

trim_residues(E,[Rc|Rcs],[R|Rs],Aux,NewR):-

(my_absmember(Rc,E)->

Newaux=Aux;

add_to_list(Aux,R,Newaux)),

trim_residues(E,Rcs,Rs,Newaux,NewR).

%####################################################

% shortest(+L,+Max,-NewR):-

% given a list of lists L, and a maximum length

% Max, it returns the shortes list in NewR.

%####################################################

shortest([],Aux,Aux).

shortest([L|Ls],Aux,NewR):-

length(L,Ll),

length(Aux,Laux),

((Ll @< Laux)->

Newaux=L;

Newaux=Aux),

shortest(Ls,Newaux,NewR).

%####################################################

% d_split(+tqu(D,E,R),+Rs,-Newtqu):-

% given a TQU it selects the best unification

% for the partially belonging residues in R

% and then splits the TQU, using te remaining

% residues in Rs, to produce a new set of

% TQUs in Newtqu.

%####################################################

d_split(tqu(D,E,R),Rs,Newtqu):-

best_in(tqu(D,E,R),NewR),

difference(R,NewR,Rest),

split(tqu(D,E,NewR),NewR,Rs,[],Newtqu1),

dummy_split(tqu(D,E,Rest),Rest,Rs,[],Newtqu2),

append(Newtqu1,Newtqu2,Newtqu).

dummy_split(tqu(_,_,[]),_,_,Aux,Aux).

dummy_split(tqu(D,E,[R1|R2]),R,Rs,Aux,Newtqu):-

(is_list(E)->

add_to_list(E,R1,Temp);

Temp=[E,R1]),

add_to_list(D,R,NewD),

make_tqu(NewD,Temp,Rs,T),

add_to_list(Aux,T,Newaux),

dummy_split(tqu(D,E,R2),R,Rs,Newaux,Newtqu).

%####################################################
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% split(+tqu(D,E,R),+Rs,-Newtqu):-

% performs the split operation. That is,

% it generates copies of E and Rs, puts R in D,

% puts one member of R in each copy of E and

% adds the residue of each member of R to

% the corresponding copy of Rs.

%####################################################

split(tqu(_,_,[]),_,_,Aux,Aux).

split(tqu(D,E,[R1|R2]),R,Rs,Aux,Newtqu):-

(is_list(E)->

add_to_list(E,R1,Temp);

Temp=[E,R1]),

% copy_term(R1,Rd),

( R1 = ~Rd ->

(functor(Rd,Pred,L),

functor(Rd2,Pred,L),

NewR= ~Rd2);

(functor(R1,Pred,L),

functor(NewR,Pred,L))),

(residues(NewR,R1s)->

(NewR = R1,

add_to_list(Rs,R1s,Rr));

Rr=Rs),

make_tqu(R,Temp,Rr,T),

add_to_list(Aux,T,Newaux),

split(tqu(D,E,R2),R,Rs,Newaux,Newtqu).

%##########################

% TQU constructor

%##########################

make_tqu(D,E,R,tqu(D,E,R)).

%################################################

% information_in(+tqu(D,E,[R|Rs]):-

% verifies whether the information of

% residue R is already in E, according

% to Definition 3.4. This means that

% the whole residue is contained in E.

%################################################

information_in(tqu(D,E,[R|Rs])):-

copy_term(tqu(D,E,[R|Rs]),tqu(Dc,Ec,[Rc|Rsc])),

Ec=[Q|_],

numbervars(Q), %grounds vars in Q

freeVar(tqu(Dc,Ec,[Rc|Rsc]),Fvar),

variables(Rc,VarsRc),

difference(VarsRc,Fvar,Groundvars),

numbervars(Groundvars),%ground vars in residue except freeVars.

(in_E(Ec,Rc) ->

true;

(in_D(Dc,Rc) ->

true;

fail)).

%##################################################

% info_p_in(+tqu(D,E,[R|Rs]):-

% verifies whether the information of

% residue R is partially in E, according

% to Definition 3.4. This means that

% the part of the residue is contained in E.

%##################################################

info_p_in(tqu(D,E,[R|Rs])):-
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copy_term(tqu(D,E,[R|Rs]),tqu(Dc,Ec,[Rc|Rsc])),

Ec=[Q|_],

numbervars(Q), %grounds vars in Q

freeVar(tqu(Dc,Ec,[Rc|Rsc]),Fvar),

variables(Rc,VarsRc),

difference(VarsRc,Fvar,Groundvars),

numbervars(Groundvars),%ground vars in residue except freeVars.

(in_E2(Ec,Rc) ->

true;

fail).

%######################################

% in_E, in_D, in_E2, in_D2

% verify if a residue, or

% part of it is in E or D

% E2 checks for part of it only.

%######################################

in_E(_,[]).

in_E(E,[R|Rs]):-

my_absmember(R,E),

in_E(E,Rs).

in_D([],_):-

fail.

in_D([D|Ds],R):-

in_D2(D,R)->

true;

in_D(Ds,R).

in_D2(_,[]).

in_D2(E,[R|Rs]):-

member(R,E),

in_E(E,Rs).

in_E2(_,[]):-

fail.

in_E2(E,[R|Rs]):-

my_absmember(R,E)->

true;

in_E2(E,Rs).

%############################

% New var in a TQU

% According to Def. 3.2

% not used.

%############################

/*newVar(tqu(D,[Q|E],_),Nvar):-

variables([Q],Vq),

variables(E,Ve),

difference(Ve,Vq,Nvar).

*/

%############################

% Free var in a residue

% According to Def. 3.3

%############################

freeVar(tqu(_,E,[R|_]),Fvar):-

variables(R,Vr),

variables(E,Ve),

difference(Vr,Ve,Fvar).

%############################
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% Free var in D

% According to Def. 3.3

% not used.

%############################

/*freeVarD(tqu(D,E,_),Fvar):-

variables(D,Vd),

variables(E,Ve),

difference(Vd,Ve,Fvar).

*/

%#######################################

% variables(+Terms,-Varlist):-

%

% Given a list of terms it builds

% a list of distinct variables.

%#######################################

variables(Terms,Varlist):-

variables(Terms,[],Arglist),

onlyvars(Arglist,[],Varlist).

variables([],Aux,Aux).

variables([T|Ts],Aux,Arglist):-

(T= ~A->

A=.. Temp;

T=.. Temp),

append(Aux,Temp,Newaux),

variables(Ts,Newaux,Arglist).

onlyvars([],Aux,Aux).

onlyvars([A|As],Aux,Varlist):-

((var(A), \+ absmember(A,Aux))->

add_to_list(Aux,A,Newaux);

Newaux=Aux),

onlyvars(As,Newaux,Varlist).

%#######################################

% variables_list(+Lists,-Varlist):-

%

% Given a list of lists of terms

% it builds a list of distinct

% variables.

%#######################################

variables_list(Lists,Varlist):-

variables_list(Lists,[],Arglist),

onlyvars(Arglist,[],Varlist).

variables_list([],Aux,Aux).

variables_list([L|Ls],Aux,Arglist):-

variables(L,Vl),

append(Aux,Vl,Newaux),

variables_list(Ls,Newaux,Arglist).

sel_exists(Lists,Elist):-

sel_exists(Lists,[],All),

only_exists(All,[],Elist).

only_exists([],Aux,Aux).

only_exists([A|As],Aux,Varlist):-

((is_exists(A), \+ absmember(A,Aux))->

add_to_list(Aux,A,Newaux);

Newaux=Aux),

only_exists(As,Newaux,Varlist).

sel_exists([],Aux,Aux).

sel_exists([L|Ls],Aux,Elist):-

s_exists(L,El),
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append(Aux,El,Newaux),

sel_exists(Ls,Newaux,Elist).

s_exists(L,El):-

s_exists(L,[],El).

s_exists([],Aux,Aux).

s_exists([L|Ls],Aux,El):-

(L= ~A->

A=.. Temp;

L=.. Temp),

append(Aux,Temp,Newaux),

s_exists(Ls,Newaux,El).

is_exists(V):-

atom(V)->

(atom_chars(V,LV),

append(TVL,LY,LV),

number_chars(NY,LY),

NY>0,

atom_chars(TV,TVL),

member(TV,[exists]));

(fail).

%##############################

% difference(+X,+Y,-Dif):-

%

% Given two sets X and Y it

% returns Dif = X - Y using

% absmember (i.e. ==/2).

%##############################

difference([],_,[]).

difference([X|Xs],Y,Dif):-

absmember(X,Y),!,

difference(Xs,Y,Dif).

difference([X|Xs],Y,[X|Dif]):-

difference(Xs,Y,Dif).

%#####################################################

% my_absmember(+X,+L):-

%

% Takes into account that X==Y <=> Y==X. It

% alse ensures that substitutions only consider

% variables (i.e. are variants).

%#####################################################

my_absmember(X,L):-

variables(L,Vl),

(X = (A==B)->

(status(A,Sa),status(B,Sb),

(member(A==B,L);member(B==A,L)),

status(A,Sa),status(B,Sb),

still_vars(Vl));

(X = ~(A==B) ->

(status(A,Sa),status(B,Sb),

(member(~(A==B),L);member(~(B==A),L)),

status(A,Sa),status(B,Sb),

still_vars(Vl));

(variables([X],V),member(X,L),

still_vars(V),still_vars(Vl)))).

still_vars([]).

still_vars([L|Ls]):-

var(L),
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still_vars(Ls).

status(Var,Status):-

var(Var)->

Status=’var’;

Status=’nonvar’.

%##########################################

% INITIALIZATION

%##########################################

:- abolish_all_tables.

:- ic_pred_list(L,P),fail.

:- tell(’results’).

:- writeln(’------------------------------------’),

writeln(’ Residues’),

writeln(’------------------------------------’).

:- !,assert_relevant_ics,fail. %complete table

:- make_selections,fail. %CRUCIAL step

:- !,generate_residues,fail. %complete table

:- abolish(relevant/2),abolish(relevant_selected/2). %freespace

:- writeln(’------------------------------------’),

writeln(’ Quecas’),

writeln(’------------------------------------’).

:- !,generate_quecas,fail.

:- writeln(’------------------------------------’),

writeln(’ SQL’),

writeln(’------------------------------------’).

:- !,generate_sql,fail.

:- table_state(ic_pred_list(X,Y),complete)->

abolish_table_pred(ic_pred_list(X,Y)).

:- told.

%##########################################

% END

%

% What is left:

% 1.- tables with residues

% 2.- tables with quecas

% 3.- tables with SQL strings

% 3.- File results with results

%##########################################

A.3 Module qca2fol

A.3.1 qca2fol.H

%####################################

%

% module : qca2fol

%

% author : Alexander Celle T.

% date : Autumn-2000

%####################################

:- export qca2fol/4.
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:- import append/3, select/3 from basics.

A.3.2 qca2fol.P

%####################################

%

% module : qca2fol

%

% author : Alexander Celle T.

% date : Autumn-2000

%

% IMPORTANT - DO NOT MODIFY THIS FILE

%####################################

:- op(500,fx,~). % symbol for negation

%###################################################

% qca2fol(+QUECA,+Uvars,-FOL):-

% Given a QUECA as described above (DNF) and

% a list of universally quantified variables

% it generates in FOL a formula in FOL in

% prefix notation. It factorizes common terms.

%

% This prefix notation includes

%

% all(x,F)

% and(F1,F2)

% or(F1,F2)

% no(F)

% equal(T1,T2)

%

% Other built-in operators are used normally

% T1=<T2

% T1>=T2

% T1>T2

% T1<T2

% T1<>T2

%

% QUECA is [ [...] [...] [...] ... [...] ] etc, a list

% of lists. Each inner list is a conjunction of terms

% and the bigger list is a disjunction of inner lists.

% Thus it represents a formula in DNF.

%###########################################################

qca2fol([[E|Es]|Ls],_,_,E2):- %No more elements in the query

tuple(E,E2),

eliminateE([[E|Es]|Ls],[],[[]]),!.

qca2fol([[E|Es]|Ls],G,X,and(E2,R)):-

tuple(E,E2),

eliminateE([[E|Es]|Ls],[],L),

qca2fol0(L,G,X,R).

%###################################################

% eliminateE(+L,[],-Final):-

% eliminates the first element of every

% sublist. This is done because the

% algorithm is supposed to put E at the

% beggining of every branch.

%###################################################
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eliminateE([],Aux,Aux).

eliminateE([[_|G2]|Gs],Aux,Final):-

append(Aux,[G2],Newaux),

eliminateE(Gs,Newaux,Final).

eliminateE([[_|G2]],Aux,Final):-

append(Aux,[G2],Newaux),

eliminateE([],Newaux,Final).

%###################################################

% qca2fol0(+L,+Uvars,-R):-

% continues the process of qca2fol/3.

% Essentially it adds universal quantification

% after the already factorized E. Then it

% calls for further factorization.

%###################################################

qca2fol0(L,[],X,R):-

qca2fol0(L,X,R).

qca2fol0(L,[G|Gs],X,all(G,R)):-

qca2fol0(L,Gs,X,R).

qca2fol0(L,[],R):-

factqueca(L,R).

qca2fol0(L,[G|Gs],some(G,R)):-

qca2fol0(L,Gs,R).

%###################################################

% factqueca(+Listoflists,-R):-

% factorizes common terms out of the list

% of lists which represents DNF.

%###################################################

% Case 1: [[A],[A],[A]]

factqueca(Listoflists,E2):- fact(Listoflists,E,[],[]),!,

tuple(E,E2).

% Case 2: [[A,B],[A,C],[A,D]]

factqueca(Listoflists,and(E2,R2)):- fact(Listoflists,E,R,[]),!,

tuple(E,E2),

factqueca(R,R2).

% Case 3: [[A],[B],[C]]

factqueca(Listoflists,or(E2,Rs2)):- fact(Listoflists,E,[],Rs),!,

tuple(E,E2),

factqueca(Rs,Rs2).

% Case 4: [[A,_],[A,_],[B,_]]

factqueca(Listoflists,or(and(E2,R2),Rs2)):- fact(Listoflists,E,R,Rs),!,

tuple(E,E2),

factqueca(R,R2),

factqueca(Rs,Rs2).

%###################################################

% tuple and convert

% transforms ~ into no and == into equal.

% The rest of the predicates remain the same.

%###################################################

tuple(~N,no(N2)):- !,tuple(N,N2).

tuple(N,N2):- !,convert(N,N2).

convert(N,N2):- N=..[==|Ls],!,N2=..[equal|Ls].

convert(N,N).

%###################################################

% fact(+L,-Element,-Innerlist,-Outerlist):-

% Given a list of lists L it factorizes out

% the common term Element. The values of

% Innerlist and Outerlist depend on if
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% such factorization exists and to what

% extent. See the 4 cases above.

%###################################################

fact(L,[],[],L2):-

select([],L,L2),!.

fact([L|Ls],E,R,Rs):-

L= [E|Es],

(Es = [] ->

Temp=[];

Temp=[Es]),

fact(Ls,E,Temp,R,Rs).

fact([],_,Aux,Aux,[]).

fact([L2|L2s],E,Aux,R,Rs):-

L2= [E2|E2s],

(E2==E ->

(append(Aux,[E2s],Newaux),

fact(L2s,E,Newaux,R,Rs));

(R=Aux,

Rs=[L2|L2s])).

A.4 Module fol2sql

A.4.1 fol2sql.H

%####################################

%

% module : main

%

% author : Mauricio Strello

% Small modifications done

% by Alexander Celle T.

% date : Autumn-2000

%####################################

:- export fol2sql/2.

:- import append/3,member/2 from basics.

:- import difference/3 from queca.

A.4.2 fol2sql.P

% Mapeando formulas en FOL a consultas en SQL.

% Mauricio Strello.

% Oto~no de 1997.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:- op(700,xfx,[<>]).

:- op(700,xfx,[<=]).

is_atom(F) :- functor(F,N,_), \+current_op(_,_,N).
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% Normalizacion de formulas en FOL.

% La utilizacion de "==>" es solo "sintactic sugar".

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:- op(950,xfx,’==>’).

implies(F1,F2) ==> or(no(F1),F2).

all(VL,F) ==> no(some(VL,no(F))).

no(and(A,B)) ==> or(no(A),no(B)).

no(or(A,B)) ==> and(no(A),no(B)).

no(no(F)) ==> F.

no(equal(T1,T2)) ==> T1<>T2.

no(T1<T2) ==> T1>=T2.

no(T1>T2) ==> T1=<T2.

no(T1=<T2) ==> T1>T2.

no(T1>=T2) ==> T1<T2.

no(T1<>T2) ==> equal(T1,T2).

and(F1,or(F2,F3)) ==> or(and(F1,F2),and(F1,F3)).

and(or(F1,F2),F3) ==> or(and(F1,F3),and(F2,F3)).

some(VL,or(F1,F2)) ==> or(some(VL,F1),some(VL,F2)).

%% repeated(+Var,+VarList,-VarNr)

repeated(X,[[X,N]|_],N) :- !.

repeated(X,[_|L],N) :- repeated(X,L,N).

%% try(+Form,+VarNr,+VarList,-Form,-VarNr,-VarList)

try(X,N,VL,var(N1),N1,VL1) :- variable(X),( repeated(X,VL,N1) -> VL1=VL ;

N1 is N+1,append([[X,N1]],VL,VL1) ).

try(X,N,VL,Y,N,VL) :- X==>Y.

%try(X,N,VL,Z,N1,VL1) :- X==>Y,try(Y,N,VL,Z,N1,VL1).

try(X,N,VL,Y,N1,VL1) :-

X=..[F|Args], try_list(Args,N,VL,NArgs,N1,VL1), Y=..[F|NArgs].

%% try_list(+FormList,+VarNr,+VarList,-FormList,-VarNr,-VarList)

try_list([X|T],N,VL,[Z|T],N1,VL1) :- try(X,N,VL,Z,N1,VL1).

try_list([X|T],N,VL,[X|T1],N1,VL1) :- try_list(T,N,VL,T1,N1,VL1).

%% normalize(+Form,+VarNr,+VarList,-Form,-VarNr,-VarList)

normalize(X,N,VL,Y,N2,VL2) :-

try(X,N,VL,Z,N1,VL1), !, normalize(Z,N1,VL1,Y,N2,VL2).

normalize(X,_,_,X,_,_).

% "Allowedness" de formulas en FOL.

% Remitirse a la tesis de Bohlen.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% vars(+Formula,+VarList,?VarList)

vars(var(N),V,V1) :- !, (member(var(N),V) -> V1=V; V1=[var(N)|V]).

vars(some(VL,A),V,V1) :- !, vars(A,V,V2), difference(V2,[VL],V1).

vars([H|T],V,V1) :- !, vars(H,V,V2), vars(T,V2,V1).

vars([],V,V1) :- !, V=V1.

vars(A,V,V1) :- A=..[_|L], vars(L,V,V1).

%% alwd(+Formula,+SafeVarList)

% Alexander Celle T.

% Checks for allowedness of formulas according to Boehlen.

% Has one basic syntactic problem: and(a,and(b,c)) may be

% allowed, while and(and(a,b),c) may not.

% NO TRANSITIVITY !!

%
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alwd(and(A,B),V) :- !, alwd(A,V), vars(A,V,V1), alwd(B,V1).

alwd(or(A,B),_) :- !, alwd(A,[]), alwd(B,[]), vars(A,[],V), vars(B,[],V).

alwd(no(A),V) :- !, alwd(A,V), vars(A,V,V).

alwd(some(VL,A),V) :- !, difference(V,[VL],V1), alwd(A,V1).

alwd(T1<T2,V) :- !, vars(T1,V,V), vars(T2,V,V).

alwd(T1>T2,V) :- !, vars(T1,V,V), vars(T2,V,V).

alwd(T1=<T2,V) :- !, vars(T1,V,V), vars(T2,V,V).

alwd(T1>=T2,V) :- !, vars(T1,V,V), vars(T2,V,V).

alwd(T1<>T2,V) :- !, vars(T1,V,V), vars(T2,V,V).

alwd(equal(T1,T2),V) :- !, (vars(T1,V,V); vars(T2,V,V)).

alwd(A,_) :- is_atom(A), !.

% Traduccion de FOL a SQL.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

or_free_part(or(A,B), OFP) :- !, (or_free_part(A, OFP) ; or_free_part(B, OFP)).

or_free_part(OFP, OFP).

simplify(Q,Q1) :- simplify1(Q,Qx), !, simplify(Qx,Q1).

simplify(Q,Q).

simplify1(sel(S,F,W),sel(S,F1,W)) :-

simplify2(F,F1).

simplify2([R-A|T],[R1-A|T]) :- simplify1(R,R1).

simplify2([R-A|T],[R-A|T1]) :- simplify2(T,T1).

remove(_,[],[]).

remove(QV,[Var-_|S1],S2) :- member(Var,QV), !, remove(QV,S1,S2).

remove(QV,[Var-V|S1],[Var-V|S2]) :- remove(QV,S1,S2).

unify(_-V,_-V,W,W) :- !.

unify(_-V1,_-V2,W,[V2=V1|W]).

trans_expr(var(N),S,var(N)-V,S) :- member(var(N)-V,S), !.

trans_expr(var(N),S,var(N)-V,[var(N)-V|S]) :- !.

trans_expr(E,S,_-E,S).

trans_args([],_,_,S,W,S,W).

trans_args([Arg|T],N,A,S,W,S2,W2) :-

N1 is N+1,

trans_args(T,N1,A,S,W,S1,W1),

trans_expr(Arg,S1,VV,S2),

Dummy=A-N, %ACELLE, avoid syntax error

unify(VV,_-Dummy,W1,W2).

%% add_sel(+Select,+Alias,+ColNumber,+Select,+Where,-Select,-Where)

% Alexander Celle T. not used.

/*add_sel([],_,_,S,W,S,W).

add_sel([Var-_|T],A,N,S,W,S2,W2) :-

trans_expr(Var,S,VV,S1),

Dummy=A-N, %ACELLE, avoid syntax error

unify(VV,_-Dummy,W,W1),

N1 is N+1,

add_sel(T,A,N1,S1,W1,S2,W2).

*/

%% trans_form(+Formula,+AliasSelectStmt,-AliasSelectStmt)

%% Se supone que +Formula ya ha sido normalizada anteriormente

% Formulas del tipo A and B

trans_form(and(A,B),I,O) :- !,

trans_form(A,I,H),
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trans_form(B,H,O).

% Formulas del tipo no E

trans_form(no(E),A-sel(S,F,W),

A1-sel(S1,F,[no(sel([*],F1,W1))|W])) :- !,

trans_form(E,A-sel(S,[],[]),A1-sel(S1,F1,W1)).

% Formulas del tipo exists QV: E

trans_form(some(QV,E),A-sel(S1,F1,W1),A1-sel(S2,F2,W2)) :- !,

trans_form(E,A-sel(S1,F1,W1),A1-sel(S3,F2,W2)),

remove([QV],S3,S2).

% Formulas del tipo E1 == E2

trans_form(equal(E1,E2),A-sel(S,F,W),A-sel(S2,F,W1)) :- !,

trans_expr(E1,S,VV1,S1),

trans_expr(E2,S1,VV2,S2),

unify(VV1,VV2,W,W1).

% Formulas del tipo E1 < E2

trans_form(E1<E2,A-sel(S,F,W),A-sel(S2,F,[V1<V2|W])) :- !,

trans_expr(E1,S,_-V1,S1),

trans_expr(E2,S1,_-V2,S2).

% Formulas del tipo E1 > E2

trans_form(E1>E2,A-sel(S,F,W),A-sel(S2,F,[V1>V2|W])) :- !,

trans_expr(E1,S,_-V1,S1),

trans_expr(E2,S1,_-V2,S2).

% Formulas del tipo E1 <> E2

trans_form(E1<>E2,A-sel(S,F,W),A-sel(S2,F,[V1<>V2|W])) :- !,

trans_expr(E1,S,_-V1,S1),

trans_expr(E2,S1,_-V2,S2).

% Formulas del tipo E1 =< E2

%ACELLE Modified =< to <= (SQL syntax)

trans_form(E1=<E2,A-sel(S,F,W),A-sel(S2,F,[V1<=V2|W])) :- !,

trans_expr(E1,S,_-V1,S1),

trans_expr(E2,S1,_-V2,S2).

% Formulas del tipo E1 >= E2

trans_form(E1>=E2,A-sel(S,F,W),A-sel(S2,F,[V1>=V2|W])) :- !,

trans_expr(E1,S,_-V1,S1),

trans_expr(E2,S1,_-V2,S2).

% Formulas atomicas

trans_form(P,A-sel(S,F,W),A1-sel(S1,[Func-A|F],W1)) :-

P=..[Func|Args],

A1 is A+1,

trans_args(Args,1,A,S,W,S1,W1).

trans_query(Form,A,union(SQLList),A1) :-

% encuentra todas las partes libres de "or"

findall(OFF, or_free_part(Form,OFF), FL),

trans_query2(FL,A,SQLList,A1).

trans_query2([],A,[],A).

trans_query2([OFF|OFFList],A,[SQL1|SQLList],A1) :-

trans_form(OFF,A-sel([],[],[]),A2-SQL),

simplify(SQL,SQL1),

trans_query2(OFFList,A2,SQLList,A1).

% Construccion de la consulta SQL (se devuelve un string)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% g_selstat(+TERM): ("generate_select_statement" o genera

% una sentencia SELECT): recibe un termino que representa

% la consulta y genera un string con la traduccion en SQL.

g_selstat(union(L)) --> g_unions(L).

g_selstat(sel(S,F,W)) --> "SELECT ", g_exprlist(S),
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" FROM ", g_from(F),

g_where(W).

g_unions([A]) --> !, g_selstat(A).

g_unions([A|B]) --> g_selstat(A), " UNION ", g_unions(B).

g_expr(var(_)-A) --> !, g_expr(A).

g_expr(A-C) --> !, "a", g_atom(A), ".c", g_atom(C).

%################################################

% Alexander Celle T.

%g_expr(X) --> !, g_atom(X).

g_expr(X) --> !, "’",g_atom(X),"’".

% This is needed for the RDBMS to interpret a

% ground term as a constant and not a variable.

% At least in MS Access :)

%################################################

%#################################

% Alexander Celle T.

%g_exprlist([]) --> "1".

g_exprlist([]) --> "1".

% It might need a *, not sure

%#################################

g_exprlist([E]) --> !, g_expr(E).

g_exprlist([E|L]) --> g_expr(E), !, ",", g_exprlist(L).

g_exprlist([_|L]) --> g_exprlist(L).

%################################################################

%g_from([]) --> "DUAL".

g_from([]) --> " ""dummy"" ".

%

% Alexander Celle T.

% DUAL is exclusive for Oracle. To make it portable to

% all DB’s you must do the following in the database.

% CREATE TABLE "dummy"(c1 (varchar(1));

% INSERT INTO "dummy" VALUES (’X’);

%

% On the other hand, tables must be created with lower case names

% such as the following statement

%

% CREATE TABLE "p"(c1 varchar(1),c2 varchar(1))

%

% This is to be able to use lower case names with XSB

% so the extra " """ and """ " where entered beside the

% table name

g_from([R-A]) --> !," """, g_atom(R),""" ", " ", g_alias(A).

g_from([R-A|T]) --> " """,g_atom(R),""" ", " ", g_alias(A), ",", g_from(T).

%################################################################

g_where(CL) --> " WHERE ", g_condlist(CL), !.

g_where(_) --> "".

g_condlist([X]) --> g_cond(X), !.

g_condlist([H|T]) --> g_cond(H), " AND ", g_condlist(T), !.

g_cond(no(sel(S,F,W))) --> "NOT EXISTS (", g_selstat(sel(S,F,W)), ")".

g_cond(Cmp) --> {Cmp=..[R,X,Y]}, g_expr(X), g_atom(R), g_expr(Y).

g_alias(A) --> "a", g_atom(A).

g_atom(N) --> {name(N,Str)}, Str.
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%####################################################

% Main predicate

%

% Alexander Celle T.

% little modifications, it now

% returns a list of ascii code ’Formula not Allowed’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fol2sql(+Query,-SQLString)

fol2sql(Query,SQLString) :-

normalize(Query,0,[],NQuery,_,_),

(alwd(NQuery,[]) -> %ACELLE V por []

(trans_query(NQuery,0,SQLTerm,_),

g_selstat(SQLTerm,SQLString,[]));

(SQLString = [70,111,114,109,117,108,97,32,110,111,116,32,97,108,108,111,119,101,100])).

%##################################################

% Alexander Celle T.

%

% Predicates originally in other modules put here

% for convenience (other modules are not used).

%

% Some predicates have been stripped of

% unused parts. Also, atom_chars in XSB aborts

% when failing so it had to be bypassed with atom/1.

%##################################################

variable(V):-

type_variable(V,TV),

term_types(TVs),

member(TV,TVs).

type_variable(V,TV):- \+ number(V),once(type_variable_1(V,TV)).

type_variable_1(V,TV):-

atom(V)->

(atom_chars(V,LV),

append(TVL,LY,LV),

number_chars(NY,LY),

NY>0,

atom_chars(TV,TVL),

term_types(TVs),

member(TV,TVs));

(fail).

%######################

% Alexander Celle T.

%

% Allowed terms:

% id: free variables

% u: universal vars

%######################

term_types([id,u,exists]).
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B. ODBC PATCH

Thanks to Baoqiu Cui for his advice and supplying the following patch,

which is a new version of file XSB/emu/odbc_xsb.c:

/* File: odbc_xsb.c

** Author(s): Lily Dong

** Contact: xsb-contact@cs.sunysb.edu

**

** Copyright (C) The Research Foundation of SUNY, 1986, 1993-1998

**

** XSB is free software; you can redistribute it and/or modify it under the

** terms of the GNU Library General Public License as published by the Free

** Software Foundation; either version 2 of the License, or (at your option)

** any later version.

**

** XSB is distributed in the hope that it will be useful, but WITHOUT ANY

** WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

** FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for

** more details.

**

** You should have received a copy of the GNU Library General Public License

** along with XSB; if not, write to the Free Software Foundation,

** Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

**

** $Id: odbc_xsb.c,v 1.4 1999/12/30 06:21:13 cbaoqiu Exp $

**

*/

#include "configs/config.h"

#ifdef WIN_NT

#include <windows.h>

#include <SQL.H>

#include <SQLEXT.H>

#include <odbcinst.h>

#endif

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <assert.h>

#include "cinterf.h"

#include "cell_xsb.h"

#include "error_xsb.h"

#include "export.h"

#define MAXCURSORNUM 20

#define MAXCOLS 100

#define MAXNUMPRECISION 15

#define MAXNUMSTRINGSIZE (MAXNUMPRECISION + 5)

#define MAXCHARLEN 100

#define MAXBINDVALLEN 100

#define MAXI(a,b) ((a)>(b)?(a):(b))

static char *str[4] = {"NULL","string","integer", "number"};
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static int serverConnected = 0;

HENV henv;

HDBC hdbc;

HSTMT hstmt;

UCHAR uid[128];

struct Cursor {

int Status; // status of the cursor

int StmtNum; // the number of the sql statement

UCHAR *Sql; // pointer to the sql statement

HSTMT hstmt; // the statement handler

int VarListNum; // distinct bind variable number

UCHAR **VarList; // pointer to array of pointers to the actual bind vars

int *VarTypes; // types of the distinct bind vars

int VarCurNum; // Current Bind Var Number in the distinct Bind var list

int BListNum; // number of total bind vars in the sql statement

UCHAR **BList; // pointer to array of pointers to the bind vars

int *BTypes; // and pointer to their types

int BCurNum; // Current Bind Var Number in the total Bind var list

SWORD ColNum; // number of columns selected

SWORD *ColTypes; // pointer to array of column types

UDWORD *ColLen; // pointer to array of column lengths

UDWORD *OutLen; // pointer to array of actual column lenghts

UCHAR **Data; // pointer to array of pointers to data

SWORD ColCurNum; // the cloumn number that’s already fetched by xsb

};

// global cursor table

struct Cursor CursorTable[MAXCURSORNUM];

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// PrintErrorMsg()

// PARAMETERS:

// int i - index into the global cursor table

// NOTES:

// PrintErrorMsg() prints out the error message that associates

// with the statement handler of cursor i. if i is less than 0,

//-----------------------------------------------------------------------------

int PrintErrorMsg(int i)

{

UCHAR FAR *szsqlstate;

SDWORD FAR *pfnativeerror;

UCHAR FAR *szerrormsg;

SWORD cberrormsgmax;

SWORD FAR *pcberrormsg;

RETCODE rc;

szsqlstate=(UCHAR FAR *)malloc(sizeof(UCHAR FAR)*10);

pfnativeerror=(SDWORD FAR *)malloc(sizeof(SDWORD FAR));

szerrormsg=(UCHAR FAR *)malloc(sizeof(UCHAR FAR)*SQL_MAX_MESSAGE_LENGTH);

pcberrormsg=(SWORD FAR *)malloc(sizeof(SWORD FAR));

cberrormsgmax=SQL_MAX_MESSAGE_LENGTH-1;

if (i >= 0)

rc = SQLError(SQL_NULL_HENV, hdbc, CursorTable[i].hstmt, szsqlstate,

pfnativeerror, szerrormsg,cberrormsgmax,pcberrormsg);

else

rc = SQLError(SQL_NULL_HENV, hdbc, hstmt, szsqlstate,

pfnativeerror, szerrormsg,cberrormsgmax,pcberrormsg);

if ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO)) {

printf("ODBC SYSCALL ERROR:\n");

printf(" ODBC Error Code: %s\n", szsqlstate);
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printf(" ODBC Error Message: %s\n", szerrormsg);

}

free(szsqlstate);

free(pfnativeerror);

free(szerrormsg);

free(pcberrormsg);

return 1;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// SetCursorClose()

// PARAMETER:

// int i - index into the global cursor table

// NOTES:

// free all the memory resource allocated for cursor i

//-----------------------------------------------------------------------------

void SetCursorClose(int i)

{

int j;

SQLFreeStmt(CursorTable[i].hstmt, SQL_CLOSE); // free statement handler

if (CursorTable[i].VarListNum) { // free bind variable list

for (j = 0; j < CursorTable[i].VarListNum; j++)

free((void *)CursorTable[i].VarList[j]);

free(CursorTable[i].BList);

free(CursorTable[i].VarList);

free(CursorTable[i].BTypes);

free(CursorTable[i].VarTypes);

}

if (CursorTable[i].ColNum) { // free the resulting row set

for (j = 0; j < CursorTable[i].ColNum; j++)

free(CursorTable[i].Data[j]);

free(CursorTable[i].ColTypes);

free(CursorTable[i].ColLen);

free(CursorTable[i].OutLen);

free(CursorTable[i].Data);

}

// free memory for the sql statement associated w/ this cursor

if (CursorTable[i].Sql) free(CursorTable[i].Sql);

// initialize the variables. set them to the right value

CursorTable[i].Sql = 0;

CursorTable[i].ColNum =

CursorTable[i].Status =

CursorTable[i].VarListNum = 0;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// ODBCConnect()

// NOTES:

// This function is called when a user wants to start a db session,

// assuming that she doesn’t have one open. It initializes system

// resources for the new session, including allocations of various things:

// environment handler, connection handler, statement handlers and then

// try to connect to the database indicated by the second parameter prolog

// passes us using the third one as user id and fourth one as passward.

// If any of these allocations or connection fails, function returns a

// failure code 1. Otherwise 0.

//-----------------------------------------------------------------------------
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void ODBCConnect()

{

int i;

UCHAR *server;

UCHAR *pwd;

RETCODE rc;

// if we already have a session open, then ...

if (serverConnected) {

xsb_error("A session is already open");

ctop_int(5, 1);

return;

}

// allocated environment handler

rc = SQLAllocEnv(&henv);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {

xsb_error("Environment allocation failed");

ctop_int(5, 1);

return;

}

// allocated connection handler

rc = SQLAllocConnect(henv, &hdbc);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {

SQLFreeEnv(henv);

xsb_error("Connection Resources Allocation Failed");

ctop_int(5, 1);

return;

}

// get server name, user id and passward

server = (UCHAR *)ptoc_string(2);

strcpy(uid, (UCHAR *)ptoc_string(3));

pwd = (UCHAR *)ptoc_string(4);

// connect to database

rc = SQLConnect(hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

if (rc != SQL_SUCCESS && rc != SQL_SUCCESS_WITH_INFO) {

SQLFreeConnect(hdbc);

SQLFreeEnv(henv);

xsb_error("Connection to server %s failed", server);

ctop_int(5, 1);

return;

}

if (!((rc=SQLAllocStmt(hdbc,&hstmt))==SQL_SUCCESS) ||

(rc==SQL_SUCCESS_WITH_INFO)) {

SQLDisconnect(hdbc);

SQLFreeConnect(hdbc);

SQLFreeEnv(henv);

ctop_int(5, 1);

return;

}

// initialize cursor table. it includes statement handler initialization

memset(CursorTable, 0, sizeof(struct Cursor) * MAXCURSORNUM);

for (i = 0; i < MAXCURSORNUM; i++) {

if (!(((rc=SQLAllocStmt(hdbc,&(CursorTable[i].hstmt)))==SQL_SUCCESS) ||

(rc==SQL_SUCCESS_WITH_INFO))) {

int j;

for (j = 0; j < i; j++)

SQLFreeStmt(CursorTable[j].hstmt,SQL_DROP);
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SQLDisconnect(hdbc);

SQLFreeConnect(hdbc);

SQLFreeStmt(hstmt, SQL_DROP);

SQLFreeEnv(henv);

ctop_int(5, 1);

return;

}

}

serverConnected = 1;

ctop_int(5, 0);

return;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// ODBCDisconnect()

// NOTES:

// Disconnect us from the server and free all the system resources we

// allocated for the session - statement handlers, connection handler,

// environment handler and memory space.

//-----------------------------------------------------------------------------

void ODBCDisconnect()

{

int i;

if (!serverConnected) return;

for (i = 0; i < MAXCURSORNUM; i++) {

if (CursorTable[i].Status)

SetCursorClose(i);

SQLFreeStmt(CursorTable[i].hstmt,SQL_DROP);

}

SQLFreeStmt(hstmt, SQL_DROP);

SQLDisconnect(hdbc);

SQLFreeConnect(hdbc);

SQLFreeEnv(henv);

serverConnected = 0;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// FindFreeCursor()

// NOTES:

// Find a free statement handler and return its index number into the

// global cursor table. It gives priority to a closed cursor with same

// stantement number over ordinary closed cursors. If there is no handler

// left, function returns -1. possible cursor status values are

// 0 - never been used - no resource associated w/ the cursor

// 1 - used before but having been closed-the cursor has all the resource

// 2 - reusing a used cursor w/ the same statement number, no resource

// needs to be allocated

// 3 - using a cursor that has no resource - it needs to be allocated

//------------------------------------------------------------------------------

void FindFreeCursor()

{

int i, j = -1, k = -1;

int StmtNum = ptoc_int(2);

// search

for (i = 0; i < MAXCURSORNUM; i++) {

if (!CursorTable[i].Status) j = i; // a cursor never being used
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else {

if (CursorTable[i].Status == 1) { // a closed cursor

// and it had the same statement number as this one. so grab it

if (CursorTable[i].StmtNum == StmtNum) {

if (StmtNum < 2) {

SetCursorClose(i);

CursorTable[i].Status = 3;

} else

CursorTable[i].Status = 2;

ctop_int(3, i);

return;

} else k = i; // otherwise just record it

}

}

}

// done w/ the search and we didn’t find a reusable one

if ((j < 0) && (k < 0)) // no cursor left

i = -1;

else {

// we give the cursor that has never been used the priority

if ((i = j) < 0) SetCursorClose(i = k);

CursorTable[i].StmtNum = StmtNum;

CursorTable[i].Status = 3;

}

ctop_int(3, i);

return;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// SetBindVarNum()

// NOTES:

// set the number of different bind variables and their total number of

// occurrances in the sql statement to VarListNum and BListMum

// respectively and allocate memory for furture use, i.e. for holding the

// bind variables’ types and array of pointers to their value. note that

// the memory to store their values is not allocated here since we don’t

// know their type:

// no information on how much memory is needed. if we’re reusing an old

// statement handler we don’t have to worry about these things. all we

// need to do is to make sure that the statement is in deed the same

// statement w/ the same bind variable number.

//-----------------------------------------------------------------------------

void SetBindVarNum()

{

int i = ptoc_int(2);

if (CursorTable[i].Status == 2) {

if (CursorTable[i].VarListNum != ptoc_int(3))

xsb_exit("In SetBindVarNum: CursorTable[i].VarListNum != ptoc_int(3)");

if (CursorTable[i].BListNum != ptoc_int(4))

xsb_exit("In SetBindVarNum: CursorTable[i].BListNum != ptoc_int(4)");

return;

}

CursorTable[i].VarListNum = ptoc_int(3);

CursorTable[i].VarList = malloc(sizeof(UCHAR *) * CursorTable[i].VarListNum);

if (!CursorTable[i].VarList)

xsb_exit("Not enough memory for CursorTable[i].VarList!");

CursorTable[i].VarTypes = malloc(sizeof(int) * CursorTable[i].VarListNum);

if (!CursorTable[i].VarTypes)

xsb_exit("Not enough memory for CursorTable[i].VarTypes!");
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CursorTable[i].BListNum = ptoc_int(4);

CursorTable[i].BList = malloc(sizeof(UCHAR *) * CursorTable[i].BListNum);

if (!CursorTable[i].BList)

xsb_exit("Not enough memory for CursorTable[i].BList!");

CursorTable[i].BTypes = malloc(sizeof(int) * CursorTable[i].BListNum);

if (!CursorTable[i].BTypes)

xsb_exit("Not enough memory for CursorTable[i].BTypes!");

CursorTable[i].BCurNum = 0;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// SetVar()

// NOTES:

// set the bind variables’ values.

// allocate memory if it is needed(status == 3)

//-----------------------------------------------------------------------------

void SetVar()

{

int i = ptoc_int(2);

int j = atoi(ptoc_string(3)+4);

if (!((j > 0) && (j <= CursorTable[i].VarListNum)))

xsb_exit("Abnormal argument in SetVar!");

// if we’re reusing an opened cursor w/ the statement number

if (CursorTable[i].Status == 2) {

if (CursorTable[i].VarTypes[j-1] != ptoc_int(5))

xsb_exit("CursorTable VarTypes error!");

switch (CursorTable[i].VarTypes[j-1]) {

case 0:

*((int *)CursorTable[i].VarList[j-1]) = ptoc_int(4);

break;

case 1:

*((float *)CursorTable[i].VarList[j-1]) = (float)ptoc_float(4);

break;

case 2:

strncpy(CursorTable[i].VarList[j-1], ptoc_string(4), MAXBINDVALLEN);

(CursorTable[i].VarList[j-1])[MAXBINDVALLEN - 1] = 0;

break;

default:

xsb_exit("Unknown bind variable type, %d", CursorTable[i].VarTypes[j-1]);

}

return;

}

// otherwise, memory needs to be allocated in this case

switch (CursorTable[i].VarTypes[j-1] = ptoc_int(5)) {

case 0:

CursorTable[i].VarList[j-1] = (UCHAR *)malloc(sizeof(int));

if (!CursorTable[i].VarList[j-1])

xsb_exit("Not enough memory for an int in SetVar!");

*((int *)CursorTable[i].VarList[j-1]) = ptoc_int(4);

break;

case 1:

CursorTable[i].VarList[j-1] = (UCHAR *)malloc(sizeof(float));

if (!CursorTable[i].VarList[j-1])

xsb_exit("Not enough memory for a float in SetVar!");

*((float *)CursorTable[i].VarList[j-1]) = (float)ptoc_float(4);

break;

case 2:

CursorTable[i].VarList[j-1] = (UCHAR *)malloc(sizeof(char) * MAXBINDVALLEN);

if (!CursorTable[i].VarList[j-1])
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xsb_exit("Not enough memory for MAXBINDVALLEN chars in SetVar!");

strncpy(CursorTable[i].VarList[j-1], ptoc_string(4), MAXBINDVALLEN);

CursorTable[i].VarList[j-1][MAXBINDVALLEN - 1] = 0;

break;

default:

xsb_exit("Unknown bind variable type, %d", CursorTable[i].VarTypes[j-1]);

}

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// SetBind()

// NOTES:

// set the bind variables’ values for each occurrance of the bind

// variables in the sql statement.

//-----------------------------------------------------------------------------

void SetBind()

{

int i = ptoc_int(2);

int j = atoi(ptoc_string(3)+4);

if (!((j > 0) && (j <= CursorTable[i].VarListNum)))

xsb_exit("Abnormal argument in SetBind!");

if (CursorTable[i].Status == 2) return; // did this already

CursorTable[i].BList[CursorTable[i].BCurNum] = CursorTable[i].VarList[--j];

CursorTable[i].BTypes[(CursorTable[i].BCurNum)++] = CursorTable[i].VarTypes[j];

}

int DescribeSelectList(int);

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// Parse()

// NOTES:

// parse the sql statement and submit it to DBMS to execute. if all these

// succeed, then prepare for resulting row fetching. this includes

// determination of column number in the resulting rowset and the length

// of each column and memory allocation which is used to store each row.

// Note indices -3 and -2 are reserved for transaction control(rollback

// and commit) and index -1 is for those sql statements that don’t need

// cursor, i.e. they can be executed directly.

//-----------------------------------------------------------------------------

void Parse()

{

int j;

int i = ptoc_int(2);

RETCODE rc;

UWORD TablePrivilegeExists;

if (!((i >= -3) && ( i < MAXCURSORNUM)))

xsb_exit("Abnormal argument in Parse!");

switch (i) {

case (-3): // index = -3; special case for rollback

if (((rc=SQLTransact(henv,hdbc,SQL_ROLLBACK)) == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO)) {

for (i = 0; i < MAXCURSORNUM; i++) {

if (CursorTable[i].Status)

SetCursorClose(i);

}

ctop_int(4,0);
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} else

ctop_int(4, PrintErrorMsg(-1));

return;

case (-2): // index = -2; special case for commit

if (((rc=SQLTransact(henv,hdbc,SQL_COMMIT)) == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO)) {

for (i = 0; i < MAXCURSORNUM; i++) {

if (CursorTable[i].Status)

SetCursorClose(i);

}

ctop_int(4,0);

} else

ctop_int(4,PrintErrorMsg(-1));

return;

case (-1): // index = -1; special case for odbc_sql; no return rows

if (((rc=SQLExecDirect(hstmt,ptoc_string(3),SQL_NTS)) == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO))

ctop_int(4,0);

else

ctop_int(4,PrintErrorMsg(-1));

return;

default: ;

}

switch (CursorTable[i].StmtNum) {

case (0): // column information retrieval

if (((rc=SQLColumns(CursorTable[i].hstmt,

NULL, 0,

NULL, 0,

ptoc_string(3), SQL_NTS,

NULL,0)) == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO)) {

ctop_int(4,DescribeSelectList(i));

} else {

ctop_int(4,PrintErrorMsg(i));

SetCursorClose(i);

}

return;

case (-1): // all the table names in this database

if (((rc=SQLTables(CursorTable[i].hstmt,

NULL, 0,

NULL, 0,

NULL, 0,

NULL, 0)) == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO))

ctop_int(4,DescribeSelectList(i));

else {

ctop_int(4,PrintErrorMsg(i));

SetCursorClose(i);

}

return;

case (-2): // user accessable table names,

// since some ODBC drivers don’t implement the function SQLTablePrivileges

// we check it first

SQLGetFunctions(hdbc, SQL_API_SQLTABLEPRIVILEGES, &TablePrivilegeExists);

if (!TablePrivilegeExists) {

printf("Privilege concept does not exist in this DVMS: you probably can access any

of the existing tables\n");

ctop_int(4, 2);

return;

}

if (((rc=SQLTablePrivileges(CursorTable[i].hstmt,

NULL, 0,

NULL, 0,
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NULL, 0)) == SQL_SUCCESS) ||

(rc == SQL_SUCCESS_WITH_INFO))

ctop_int(4,DescribeSelectList(i));

else {

ctop_int(4,PrintErrorMsg(i));

SetCursorClose(i);

}

return;

default: ;

}

if (CursorTable[i].Status == 2) {

rc = SQLCancel(CursorTable[i].hstmt);

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO)) {

ctop_int(4, PrintErrorMsg(i));

SetCursorClose(i);

return;

}

} else {

CursorTable[i].Sql = (UCHAR *)strdup(ptoc_string(3));

if (!CursorTable[i].Sql)

xsb_exit("Not enough memory for strdup in Parse!");

if (SQLPrepare(CursorTable[i].hstmt, CursorTable[i].Sql, SQL_NTS)

!= SQL_SUCCESS) {

ctop_int(4,PrintErrorMsg(i));

SetCursorClose(i);

return;

}

// set the bind variables

for (j = 0; j < CursorTable[i].BListNum; j++) {

if (CursorTable[i].BTypes[j] == 2)

// we’re sloppy here. it’s ok for us to use the default values

rc = SQLSetParam(CursorTable[i].hstmt, (short)(j+1), SQL_C_CHAR, SQL_CHAR,

MAXCHARLEN, 0,(char *) CursorTable[i].BList[j], NULL);

else if (CursorTable[i].BTypes[j] == 1)

rc = SQLSetParam(CursorTable[i].hstmt, (short)(j+1), SQL_C_FLOAT, SQL_FLOAT,

0, 0, (float *)(CursorTable[i].BList[j]), NULL);

else

rc = SQLSetParam(CursorTable[i].hstmt, (short)(j+1), SQL_C_SLONG, SQL_INTEGER,

0, 0, (int *)(CursorTable[i].BList[j]), NULL);

if (rc != SQL_SUCCESS) {

ctop_int(4,PrintErrorMsg(i));

SetCursorClose(i);

return;

}

}

}

// submit it for execution

if (SQLExecute(CursorTable[i].hstmt) != SQL_SUCCESS) {

ctop_int(4,PrintErrorMsg(i));

SetCursorClose(i);

return;

}

ctop_int(4,DescribeSelectList(i));

return;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// DisplayColSize()

// PARAMETERS:

// SWORD coltype - column type which is a single word.
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// UDWORD collen - column length which is returned by SQLDescribeCol

// UCHAR *colname - pointer to column name string

// RETURN VALUE:

// column length - the size of memory that is needed to store the column

// value for supported column types

// 0 - otherwise

//-----------------------------------------------------------------------------

UDWORD DisplayColSize(SWORD coltype, UDWORD collen, UCHAR *colname)

{

switch (coltype) {

case SQL_CHAR:

case SQL_VARCHAR:

return(MAXI(collen, strlen((char *) colname)));

case SQL_SMALLINT:

return(MAXI(6, strlen((char *)colname)));

case SQL_INTEGER:

return(MAXI(11, strlen((char *)colname)));

case SQL_DECIMAL:

case SQL_NUMERIC:

case SQL_REAL:

case SQL_FLOAT:

case SQL_DOUBLE:

return(MAXI(MAXNUMSTRINGSIZE, strlen((char *)colname)));

case SQL_DATE:

case SQL_TIME:

case SQL_TIMESTAMP: return 32;

default: ;

}

return 0;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// DescribeSelectList()

// PARAMETERS:

// int i - cursor number, the index into the global cursor table

// RETURN VALUES:

// 0 - the result row has at least one column and

// 1 - something goes wrong, we can’t retrieve column information, memory

// allocation fails (if this happens program stops).

// 2 - no column is affected

// NOTES:

// memory is also allocated for future data storage

//-----------------------------------------------------------------------------

int DescribeSelectList(int i)

{

int j;

UCHAR colname[50];

SWORD colnamelen;

SWORD scale;

SWORD nullable;

UDWORD collen;

CursorTable[i].ColCurNum = 0;

SQLNumResultCols(CursorTable[i].hstmt, &(CursorTable[i].ColNum));

if (!(CursorTable[i].ColNum)) return 2; // no columns are affected

// if we aren’t reusing a closed statement hand, we need to get

// resulting rowset info and allocate memory for it

if (CursorTable[i].Status != 2) {

CursorTable[i].ColTypes =

(SWORD *)malloc(sizeof(SWORD) * CursorTable[i].ColNum);
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if (!CursorTable[i].ColTypes)

xsb_exit("Not enough memory for ColTypes!");

CursorTable[i].Data =

(UCHAR **)malloc(sizeof(char *) * CursorTable[i].ColNum);

if (!CursorTable[i].Data)

xsb_exit("Not enough memory for Data!");

CursorTable[i].OutLen =

(UDWORD *)malloc(sizeof(UDWORD) * CursorTable[i].ColNum);

if (!CursorTable[i].OutLen)

xsb_exit("Not enough memory for OutLen!");

CursorTable[i].ColLen =

(UDWORD *)malloc(sizeof(UDWORD) * CursorTable[i].ColNum);

if (!CursorTable[i].ColLen)

xsb_exit("Not enough memory for ColLen!");

for (j = 0; j < CursorTable[i].ColNum; j++) {

SQLDescribeCol(CursorTable[i].hstmt, (short)(j+1), (UCHAR FAR*)colname,

sizeof(colname), &colnamelen,

&CursorTable[i].ColTypes[j],

&collen, &scale, &nullable);

colnamelen = (colnamelen > 49) ? 49 : colnamelen;

colname[colnamelen] = ’\0’;

if (!((CursorTable[i]).ColLen[j] =

DisplayColSize(CursorTable[i].ColTypes[j],collen,colname))) {

CursorTable[i].ColNum = j;

// let SetCursorClose function correctly free all the memory allocated

// for Data storage: CursorTable[i].Data[j]’s

SetCursorClose(i);

return(1);

}

CursorTable[i].Data[j] =

(UCHAR *) malloc(((unsigned) CursorTable[i].ColLen[j]+1)*sizeof(UCHAR));

if (!CursorTable[i].Data[j])

xsb_exit("Not enough memory for Data[j]!");

}

}

// bind them

for (j = 0; j < CursorTable[i].ColNum; j++)

SQLBindCol(CursorTable[i].hstmt, (short)(j+1), SQL_C_CHAR, CursorTable[i].Data[j],

CursorTable[i].ColLen[j], (SDWORD FAR *)(&(CursorTable[i].OutLen[j])));

return 0;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// FetchNextCol()

// NOTES:

// fetch next result rowset. if we’re retrieving user accessable table

// names, we fetch until we get next user accessable table name

//-----------------------------------------------------------------------------

void FetchNextCol()

{

int i = ptoc_int(2);

RETCODE rc = SQLFetch(CursorTable[i].hstmt);

// get user accessable table name

if ((CursorTable[i].StmtNum == (-2))) {

while (((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO))

&& (CursorTable[i].OutLen[1] != SQL_NULL_DATA)

&& (strncmp(CursorTable[i].Data[1], uid, strlen(uid))
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|| (CursorTable[i].OutLen[1] != strlen(uid)))

&& (strncmp(CursorTable[i].Data[4], uid, strlen(uid))

|| (CursorTable[i].OutLen[4] != strlen(uid))))

rc = SQLFetch(CursorTable[i].hstmt);

}

if ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO))

ctop_int(3,0);

else if (rc == SQL_NO_DATA_FOUND){

CursorTable[i].Status = 1; // done w/fetching. set cursor status to unused

ctop_int(3,1);

}

else {

SetCursorClose(i); // error occured in fetching

ctop_int(3,2);

}

return;

}

//-----------------------------------------------------------------------------

// FUNCTION NAME:

// GetColumn()

// NOTES:

// get the next column. special care is taken if table information is

// needed(statement number -2, -1 and 0) since we actually fetch more than

// what we need. unfortunately it’s inevitable. we discard unwanted

// columns. for column info of a table, we need the fourth and fifth

// columns(statement no 0). for table names in the database and user

// accessable table names, we only need the third column(statement -1 and

// -2).

//-----------------------------------------------------------------------------

void GetColumn()

{

int i = ptoc_int(2);

int ColCurNum;

UDWORD len;

// if table information is retrieved, special care has to be paid

// we set the ColCurNum to some appropriate value to get the columns we need

// and discard unwanted

switch (CursorTable[i].StmtNum) {

case (0):

if (CursorTable[i].ColCurNum <= 3)

CursorTable[i].ColCurNum = 3;

else {

if (CursorTable[i].ColCurNum > 4)

CursorTable[i].ColCurNum = CursorTable[i].ColNum;

}

break;

case (-1):

case (-2):

if (CursorTable[i].ColCurNum <= 2)

CursorTable[i].ColCurNum = 2;

else

CursorTable[i].ColCurNum = CursorTable[i].ColNum;

break;

default: ;

}

if (CursorTable[i].ColCurNum == CursorTable[i].ColNum) {

// no more columns in the result row

CursorTable[i].ColCurNum = 0;

ctop_int(4,1);

return;



98

}

// get the data

ColCurNum = CursorTable[i].ColCurNum;

if (CursorTable[i].OutLen[ColCurNum] == SQL_NULL_DATA) {

// column value is NULL

CursorTable[i].ColCurNum++;

ctop_string(3,string_find(str[0],1));

ctop_int(4,0);

return;

}

// convert the column string to a C string

len = ((CursorTable[i].ColLen[ColCurNum] < CursorTable[i].OutLen[ColCurNum])?

CursorTable[i].ColLen[ColCurNum]:CursorTable[i].OutLen[ColCurNum]);

*(CursorTable[i].Data[ColCurNum]+len) = ’\0’;

// pass the result to Prolog if statement is 0, the column type of a table

// is actually an integer, convert it to to corresponding string

if ((!CursorTable[i].StmtNum) && (ColCurNum == 4)) {

switch (atoi(CursorTable[i].Data[ColCurNum])) {

case SQL_DATE:

case SQL_TIME:

case SQL_TIMESTAMP:

case SQL_CHAR:

case SQL_VARCHAR:

ctop_string(3, string_find(str[1],1));

break;

case SQL_SMALLINT:

case SQL_INTEGER:

ctop_string(3, string_find(str[2],1));

break;

case SQL_DECIMAL:

case SQL_NUMERIC:

case SQL_REAL:

case SQL_FLOAT:

case SQL_DOUBLE:

ctop_string(3,string_find(str[3],1));

}

CursorTable[i].ColCurNum++;

ctop_int(4,0);

return;

}

// otherwise convert the string to either integer, float or string

// according to the column type and pass it back to Prolog

switch (CursorTable[i].ColTypes[ColCurNum]) {

case SQL_DATE:

case SQL_TIME:

case SQL_TIMESTAMP:

case SQL_CHAR:

case SQL_VARCHAR:

ctop_string(3, string_find(CursorTable[i].Data[ColCurNum],1));

break;

case SQL_SMALLINT:

case SQL_INTEGER:

ctop_int(3,atoi(CursorTable[i].Data[ColCurNum]));

break;

case SQL_DECIMAL:

case SQL_NUMERIC:

case SQL_REAL:

case SQL_FLOAT:

case SQL_DOUBLE:

ctop_float(3,atof(CursorTable[i].Data[ColCurNum]));
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}

CursorTable[i].ColCurNum++;

ctop_int(4,0);

return;

}


