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Abstract

Qcdnum is a program which numerically evolves parton distributions using the Altarelli
Parisi QCD evolution equations in LO or in NLO in the MS scheme. From the evolved
distributions the structure functions F2, FL and xF3 can be calculated. The program
can handle flavor thresholds at fixed values of Q2 (light quark variable flavor number
scheme) or, alternatively, evolve the three light quarks only and calculate the charm and
bottom contributions to the structure functions from the photon-gluon fusion process
(heavy quark fixed flavor number scheme). To study the scale uncertainties it is possible
to independently vary the renormalization scale and the mass factorization scale. In this
report we describe in detail how to use Qcdnum in a QCD analysis of (unpolarized)
structure functions.

1



Contents

1 Introduction 4

2 The QCD analysis of structure functions 4

2.1 QCD evolution of αs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 QCD evolution of parton densities . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Structure function evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Renormalization and factorization scale dependence . . . . . . . . . . . . . . . . 9

2.5 Heavy flavor contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Numerical method 13

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Evaluation of convolution integrals . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Evolution in Q2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Qcdnum user guide 16

4.1 The Qcdnum program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 User program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Example program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Qcdnum variables and options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Definition of the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Weight calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 Disk dump/read of weight tables . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.9 Definition of parton distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.10 QCD evolution – parameters and options . . . . . . . . . . . . . . . . . . . . . . 32

4.11 QCD evolution of parton distributions . . . . . . . . . . . . . . . . . . . . . . . 34

4.12 Access to parton distributions and structure functions . . . . . . . . . . . . . . . 36

4.13 The renormalization and factorization scale . . . . . . . . . . . . . . . . . . . . . 37

4.14 Fast structure function calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.15 Structure functions from external parton distribution sets . . . . . . . . . . . . . 40

4.16 Access to more information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.17 Qcdnum error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Size, accuracy and speed 43

2



6 Qcdnum subroutine calls (reference section) 45

6.1 Description of subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Acknowledgments 53

A QCD splitting and coefficient functions 53

3



1 Introduction

Qcdnum is a fast QCD evolution program which provides:

• Calculation of the Q2 evolution of αs up to NLO.

• Q2 evolution of the gluon, singlet and non-singlet distributions up to NLO.

• Calculation of F2, FL and xF3 up to NLO.

• Calculation of the heavy quark contributions to F2 and FL up to NLO.

• Possibility to vary the mass factorization or renormalization scale.

In NLO the calculations are carried out in the MS scheme.

Qcdnum has a long history1. The program was originally developed by members of the BCDMS
collaboration [1] and was used, for instance, in the QCD analysis of SLAC/BCDMS F2 structure
functions [2]. Qcdnum was later on upgraded for use at low x by the NMC [3]. At this stage
the program could only run on vectorized machines like the CRAY. A complete revision for
the QCD analysis of ZEUS F2 data [4] led to fast devectorized code which can run on any
machine. During the 1995–1996 Hera workshop results from Qcdnum were compared to those
from several other NLO evolution codes and found to be in agreement to within 0.05% [5].

The present version of Qcdnum can be regarded as a ‘black box’ which performs numerical
calculations with reasonable speed and accuracy. A user interface allows to interact with the
program. A QCD analysis is therefore not performed by Qcdnum itself but by user code
instructing Qcdnum what actions to take.

This report is organized as follows: in section 2 we give a brief outline of the formalism un-
derlying a QCD analysis of structure functions. Section 3 is devoted to the numerical method
used by Qcdnum. Section 4 (user manual) describes how to use Qcdnum in a QCD analysis.
Some details on how to control accuracy and speed are given in section 5 whereas section 6
(reference section) contains a short description of all subroutine calls.

2 The QCD analysis of structure functions

2.1 QCD evolution of αs

The renormalization scale (µ2 ≡ µ2
R) dependence of the strong coupling constant αs is governed

by the renormalization group equation which reads in next-to-leading order (NLO):

∂as(µ
2)

∂ ln µ2
= −β0a

2
s(µ

2)− β1a
3
s(µ

2) (1)

where as ≡ αs/4π and the QCD beta functions are given by β0 = 11−2f/3 and β1 = 102−38f/3
with f the number of active quark flavors.

1The first entry in the Qcdnum history record dates from January 1987.
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The solution of eq. (1) can be written as

1

as(µ2)
+

β1

β0

ln

[
β1as(µ

2)

β0 + β1as(µ2)

]
= β0 ln

(
µ2

Λ2

)
(2)

where we have introduced the QCD scale parameter Λ which is defined here as the scale where
the left hand side of eq. (2) vanishes. There are however other definitions of Λ which are widely
used: we prefer to remove this ambiguous scale parameter by writing eq. (2) in terms of the
value of as at some input scale µ2

0:

1

as(µ2)
=

1

as(µ2
0)

+ β0 ln

(
µ2

µ2
0

)
− β1

β0

ln

{
as(µ

2)[β0 + β1as(µ
2
0)]

as(µ2
0)[β0 + β1as(µ2)]

}
. (3)

The beta functions depend on the number of flavors f = (3, 4, 5). The flavor thresholds
are usually set at µ2

c,b = m2
c,b. Thus evolving downwards from αs(M

2
Z) for instance, Qcdnum

calculates αs(m
2
b) from eq. (3) with f = 5 flavors. This value of αs is then taken as an input

Figure 1: (a) The evolution of αs in NLO in the MS scheme starting from αs(M2
Z) = (0.110, 0.120, 0.130)

with the quark mass thresholds taken to be mc,b = (1.5, 5) GeV. (b) The corresponding values of the QCD scale
parameter Λ.
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to evolve down to m2
c with f = 4 flavors and so on. In this way, αs is continuous at the flavor

thresholds but its derivative is not.

Fig. 1a shows the evolution of αs for three input values of αs(M
2
Z) = 0.110, 0.120 and 0.130.

The quark mass thresholds were set to mc (mb) = 1.5 (5) GeV. The values of the QCD scale
parameter Λ, as defined in eq. (2), are shown in fig. 1b. Notice that Λ is discontinuous at
the flavor thresholds. Notice also from eq. (2) that αs cannot be evolved to values of µ2 at or
below the scale Λ2, for instance not below µ2 = 0.44 GeV2 if αs(M

2
Z) = 0.130 and if the flavor

thresholds are taken to be those given above.

2.2 QCD evolution of parton densities

The Altarelli Parisi evolution equations [6] can be written as

∂hi(x, µ2)

∂ ln µ2
=

αs(µ
2)

2π

f∑
j=−f

∫ 1

x

dz

z
Pij

(
x

z

)
hj(z, µ

2). (4)

Here µ2 ≡ µ2
M is the mass factorization scale,2 hi(x, µ2) are the parton density distributions,

Pij(x) are the QCD splitting functions and f is the number of active flavors. When the index
i > 0, hi denotes the quark distribution qi(x, µ2) of flavor i = d, u, s,. . . ; for i < 0 it denotes the
corresponding anti-quark distribution q̄i(x, µ2) and for i = 0 it denotes the gluon distribution
g(x, µ2). In the quark parton model, and also in leading order (LO) perturbative QCD, the
parton density distributions are defined such that hi(x, µ2)dx is, at a given µ2, the number of
partons which carry a fraction of the nucleon momentum between x and x+dx. The distribution
xhi(x, µ2) is then the (fractional) momentum density. Beyond LO QCD no such intuitive
interpretation of parton distributions is possible: they become theoretical constructs and their
definition depends on the renormalization and factorization scheme in which the calculations
are carried out (MS in Qcdnum).

If the x dependences of the parton densities are known at some fixed value of µ2 = µ2
0, they can

be evolved to any value of µ2 using eq. (4) which consists of 2f + 1 coupled integro-differential
equations. Using symmetries in the splitting functions (see e.g. [7]) a much more simple set
of equations can be written for the evolution of the flavor singlet and flavor non-singlet quark
distributions. The singlet quark distribution is defined as the sum of all quark and anti-quark
densities3

Σ(x) =
f∑

i=1

[qi(x) + q̄i(x)] (5)

and obeys an evolution equation which is coupled to that of the gluon:

∂Σ(x)

∂ ln µ2
=

αs

2π

∫ 1

x

dz

z

{
PFF

(
x

z

)
Σ(z) + PFG

(
x

z

)
g(z)

}
(6)

dg(x)

d ln µ2
=

αs

2π

∫ 1

x

dz

z

{
PGF

(
x

z

)
Σ(z) + PGG

(
x

z

)
g(z)

}
.

There are two types of non-singlet distributions:

q−i (x) = qi(x)− q̄i(x) (valence distribution) (7)

2In this section we set the renormalization scale µ2
R (see section 2.1) equal to µ2

M .
3Here and in the following we will suppress the argument µ2 and write αs for αs(µ2), q(x) for q(x, µ2), etc.
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q+
i (x) = qi(x) + q̄i(x)− 1

f
Σ(x).

The evolution of these distributions does not depend on the gluon:

∂q±i (x)

∂ ln µ2
=

αs

2π

∫ 1

x

dz

z
P±

(
x

z

)
q±i (z). (8)

This equation is linear in the quark density so that any linear combination of the q+
i (q−i ) is

again a non-singlet distribution of the type q+ (q−) which obeys eq. (8); in the following we
denote by ∆ij the non-singlet combination

∆ij(x) = q+
i (x)− q+

j (x) = [qi(x) + q̄i(x)]− [qj(x) + q̄j(x)] . (9)

Notice that the sum of the q+ distributions vanishes:
∑

f q+
i = 0.

The splitting functions can be expanded in a perturbative series in αs which presently is cal-
culated up to next-to-leading order (NLO) [8, 9]:

P±(x) = P
(0)
FF (x) +

αs

2π
P

(1)
± (x) (10)

PAB(x) = P
(0)
AB(x) +

αs

2π
P

(1)
AB(x)

where AB stands for FF, FG, GF or GG. The expressions for the LO splitting functions
P (0) are given in appendix A. Those for the NLO splitting functions P (1) are complicated:
results calculated the MS renormalization scheme are given in refs. [8] (non-singlet case) and
[9] (singlet case).

Like for the beta functions introduced in section 2.1 the number of active flavors, f, enters
as a parameter in several LO and NLO splitting functions. The parton distributions hi(x, µ2)
are continuous functions of µ2 but the slope ∂hi(x, µ2)/∂ ln µ2 changes when crossing a flavor
threshold. This is also true for Σ, q− and ∆ but not for q+: this distribution is – per definition
– discontinuous, see eq. (7).

It is important to notice that Qcdnum can only evolve the singlet/gluon and non-singlet dis-
tributions. Only such distributions should therefore be passed as input to the program.4 Any
linear combination of quark and anti-quark distributions can be decomposed into a linear com-
bination of the singlet density Σ and one or more non-singlet densities:∑

f

(aiqi + biq̄i) =<c> Σ +
∑
f

ciq
+
i +

∑
f

diq
−
i (11)

with ci =
ai + bi

2
, di =

ai − bi

2
and <c>=

1

f

∑
f

ci.

As an example we take the proton distribution in charged lepton scattering which can be written
as

q`p(x) =
∑
f

e2
i [qi(x) + q̄i(x)] (12)

= <e2 > Σ(x) + qns
`p (x)

4To be more precise: one should pass the parton momentum densities xg, xΣ, xq+ etc. instead of the parton
number densities g, Σ, . . . used in this and the next sections.
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where ei is the quark charge of flavor (i) in units of the electron charge and <e2 >≡ (1/f)
∑

e2
i

is the average of the square of the quark charges: <e2 > = (4/18, 5/18, 11/45) for f = (3, 4,
5) flavors. The distribution qns

`p is a pure q+-type non-singlet:5

qns
`p (x) =

∑
f

e2
i q

+
i (x) (13)

Because q`p and Σ are continuous functions of µ2 it follows that the change in <e2 > must be
compensated for by a discontinuity in qns

`p when crossing a flavor threshold. We find

qns
`p (f = 4) = qns

`p (f = 3)− 1

18
Σ (14)

qns
`p (f = 5) = qns

`p (f = 4) +
1

30
Σ.

In this way the proton distribution for all µ2 can be obtained from a singlet/gluon evolution
together with that of only one q+-type non-singlet, provided the threshold discontinuities in
the latter are taken properly into account. See section 2.5 for further details on heavy flavor
thresholds.

Below we give another decomposition of the proton quark distribution:

q`p
f=3 =

4

18
Σ +

1

6
∆ud −

1

6
q+
s (15)

q`p
f=4 =

5

18
Σ +

1

6
∆ud −

1

6
q+
s +

1

6
q+
c (16)

q`p
f=5 =

11

45
Σ +

1

6
∆ud −

1

6
q+
s +

1

6
q+
c −

1

6
q+
b . (17)

Such a decomposition is not very economic since it requires up to four non-singlet evolutions.
It is given here only because it will be used in examples later on.

2.3 Structure function evaluation

In NLO (in the MS scheme) the relation between the singlet quark distribution and the structure
functions

F s
2 and F s

L ≡ F s
2 − 2xF s

1

is given by [7]:

F s
k (x, Q2) = δk2 xΣ(x, Q2) +

αs(Q
2)

2π
x
∫ 1

x

dz

z

{
C

(1)
k,q

(
x

z

)
Σ(z, Q2) + C

(1)
k,g

(
x

z

)
g(z, Q2)

}
(18)

with k = 2, L. Here we have introduced the ‘physical’ scale Q2 which in deep inelastic scattering
is the negative square of the four-momentum transferred from the initial lepton to the target.
In eq. (18) the renormalization scale µ2

R (see section 2.1), the mass factorization scale µ2
M (see

section 2.2) and Q2 are assumed to be equal: µ2
R = µ2

M = Q2.6

5We have ai = bi in eq. (11) so that the non-singlet valence distributions q−i do not contribute to q`p.
6See section 2.4 for when they are chosen to be unequal.
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For clarity we will drop the argument Q2 in the following and write for the non-singlet contri-
butions to Fk

F ns
k (x) = δk2 xqns(x) +

αs

2π
x
∫ 1

x

dz

z
C

(1)
k,q

(
x

z

)
qns(z) (19)

where qns is a shorthand notation for q+
i , q−i or any linear combination of these. These structure

functions do not depend on the gluon distribution. The first term on the r.h.s of eq. (18) and
(19) is the leading order contribution to F s

k and F ns
k respectively. From eqs. (18) and (19) the

structure function for any linear combination

qA =<c> Σ + qns

can be written as

FA
k (x) = δk2 xqA(x) +

αs

2π
x
∫ 1

x

dz

z

{
C

(1)
k,q

(
x

z

)
qA(z)+ <c> C

(1)
k,g

(
x

z

)
g(z)

}
. (20)

The structure function xF3 is a pure non-singlet:

xF3(x) = xqns(x) +
αs

2π
x
∫ 1

x

dz

z
C

(1)
3,q

(
x

z

)
qns(z). (21)

The coefficient functions C
(1)
k,q (x), C

(1)
k,g(x) and C

(1)
3,q (x) are calculated in the MS scheme in [7]

and are given in appendix A.

As an example we consider the proton F2,L structure functions in charged lepton scattering
which can be calculated from eq. (20) using the quark distributions given in eqs. (12) and (13)
in the previous section.7 The neutron distribution is obtained by assuming isospin symmetry:
qu and qd are interchanged in eq. (12). The deuteron quark density is usually defined as
qd ≡ (qp + qn)/2 so that

q`d(x) = q`p(x)− 1

6
∆ud(x). (22)

The distribution ∆ud is thus constrained by the difference of proton and deuteron F2 structure
functions. To calculate F d

2,L we need to evolve one more non-singlet distribution (∆ud) in
addition to qns

`p defined in eq. (13).

The structure functions in neutrino scattering are usually given as the sums and differences of
νN and ν̄N results on isoscalar targets. Here the relevant quark distribution is xΣ for F νN

2

and
xqv = x(u− ū) + x(d− d̄)

for xF νN
3 . To calculate the latter we need to evolve a third non-singlet parton distribution, xqv.

2.4 Renormalization and factorization scale dependence

In the previous section we have assumed that the renormalization scale (µ2
R) and the mass

factorization scale (µ2
M) are equal to Q2. Here we discuss two cases where these scales are

chosen to be different: (i) µ2
R = µ2

M 6= Q2 and (ii) µ2
R 6= µ2

M = Q2.

7We neglect here electroweak contributions from γ∗Z0 interference and Z0 exchange which become important
above Q2 ∼ 5000 GeV2. For a full description of charged and neutral current cross-sections and structure
functions in deep inelastic scattering see [10].
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Let us first vary the mass factorization scale with respect to Q2 for instance Q2/4 < µ2
M =

µ2
R < 4Q2. This variation affects the relation between the parton distributions and the structure

functions through a modification of the NLO coefficient functions. The µ2
M dependence of a

structure function Fk calculated at a given Q2 is defined as

F
(n)
k (Q2, µ2

M) = F
(n)
k (µ2

M) + ∆F
(n−1)
k (Q2, µ2

M) (23)

where F
(n)
k (µ2

M) is the structure function calculated up to order n at the scale µ2
M and ∆F

(n−1)
k

is the change in Fk when moving from µ2
M to Q2, this change being calculated at order n− 1.

Clearly if n is large enough so that ∆F
(n−1)
k ≈ ∆F

(n)
k we have

F
(n)
k (Q2, µ2

M) ≈ F
(n)
k (µ2

M) + ∆F
(n)
k (Q2, µ2

M) ≡ F
(n)
k (Q2)

so that the µ2
M dependence vanishes for large n.

From eq. (23) we obtain for the scale dependence of the structure functions in LO (see eqs.
(18)–(21))

F
(1)
2,3 (Q2, µ2

M) = F
(1)
2,3 (µ2

M) = xq(µ2
M). (24)

F
(1)
L (Q2, µ2

M) = 0.

Thus in LO one takes for the structure functions F2 and xF3 the corresponding quark distri-
bution at µ2

M instead of at Q2. For the scale dependence in NLO we get8

F
(2)
2,3 (Q2, µ2

M) = xq(µ2
M) +

αs(µ
2
M)

2π

[
C

(1)
k,q + P (0) ln

(
Q2

µ2
M

)]
⊗ xq(µ2

M) (25)

F
(2)
L (Q2, µ2

M) = F
(2)
L (µ2

M).

Notice that FL when calculated in NLO still has a large LO type scale uncertainty.

Next, we set µ2
M = Q2 and vary µ2

R. This leads to a change in the value of αs (being taken at
µ2

R instead of Q2) and to a modification of the NLO splitting functions:

∂q(Q2, µ2
R)

∂ ln Q2
=

αs(µ
2
R)

2π

{
P (0) +

αs(µ
2
R)

2π

[
P (1) +

β0

2
P (0) ln

(
µ2

R

Q2

)]}
⊗ q(Q2, µ2

R) (26)

The structure functions are calculated from the evolved parton distributions with

Fk(Q
2, µ2

R) = (1− δkL)xq(Q2, µ2
R) +

αs(µ
2
R)

2π
C

(1)
k,q ⊗ xq(Q2, µ2

R). (27)

The scale uncertainties are usually assigned to αs and the parton distributions. These uncer-
tainties are obtained by varying the scale and re-determining αs and the parton densities in a
fit where the structure functions are kept fixed. For determinations of the scale errors on αs

see [2], [11] and [12].

8To keep the notation simple we give in this section only the expressions for non-singlet structure functions
and quark densities. Convolution integrals are indicated by the symbol ‘⊗’.
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2.5 Heavy flavor contributions

In Qcdnum there are two ways in which heavy flavors can be taken into account:

1. Treat the heavy quarks (h = c, b) as light quarks but allow them to contribute only above
a given threshold in Q2. In the following we will denote these thresholds by Q2

c and Q2
b for

charmed and bottom quarks respectively. This prescription is known as the ‘light quark
variable flavor number scheme’.

2. Do not introduce any thresholds but consider only three light flavors: the parton distri-
butions are evolved with f = 3 and the structure functions F2 or FL are calculated from
eq. (20). The heavy quark contributions F h

2 or F h
L are calculated from the photon-gluon

fusion process, including NLO corrections (see below). This prescription is known as the
‘heavy quark fixed flavor number scheme’.

In the following we will describe both schemes in more detail and point out a few Qcdnum do’s
and dont’s.

To describe the first approach let us assume that we want to calculate the F2 structure function
in charged lepton–proton scattering from parton distributions given at an input scale Q2

0. We
choose for the singlet/non-singlet decomposition of the proton quark distribution those given
in section 2.2 eqs. (15, 16, 17) for f = (3, 4, 5) flavors. The range of the evolution and the
input scale Q2

0 are set such that

Q2
min < Q2

c < Q2
0 < Q2

b < Q2
max.

Input to the calculation are the parton distributions

g(x, Q2
0), Σ(x, Q2

0), ∆ud(x, Q2
0) and q+

s (x, Q2
0).

Furthermore since qc = 0 for Q2 ≤ Q2
c and qb = 0 for Q2 ≤ Q2

b we set the starting values of q+
c

and q+
b at

q+
c (x, Q2

c) = −1

4
Σ(x, Q2

c) and q+
b (x, Q2

b) = −1

5
Σ(x, Q2

b).

The analysis now proceeds as follows:

• Evolve the singlet/gluon distribution from Q2
0 down to Q2

min and up to Q2
max. In the

upward (downward) evolution the number of flavors changes from 4 to 5 (3) at Q2
b (Q2

c).
Qcdnum takes automatically care of this.

• Evolve ∆ud: here also Qcdnum takes care of the number of flavors.

• Evolve q+
s : this is more complicated because q+

s is discontinuous at the thresholds. We
therefore evolve from Q2

0 up to Q2
b , add (1/4 − 1/5)Σ(x, Q2

b) to q+
s (x, Q2

b) and continue
the evolution from Q2

b up to Q2
max. Likewise for downward evolution where we add

(1/4− 1/3)Σ(x, Q2
c) at the threshold Q2

c .

• Evolve q+
c : here we evolve from Q2

c upwards to Q2
max, taking into account the discontinuity

at Q2
b as described above. Downward evolution does not make sense because we have
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assumed that charm does not contribute below the threshold Q2
c .

9 Thus you should either
take care that q+

c below the charm threshold is not used in subsequent calculations or you
have to set it explicitly to

q+
c (x, Q2) = −1

3
Σ(x, Q2), Q2 < Q2

c .

• Evolve q+
b : similar to q+

c except that we evolve upwards starting from Q2
b .

• Calculate the F2 structure function (for any x and Q2 within the evolution limits). First
we have to assemble the proton quark distribution using eqs. (15), (16) and (17) for
the regions Q2 < Q2

c , Q2
c < Q2 < Q2

b and Q2
b < Q2 respectively. F2 is then calculated

from eq. (20). Qcdnum provides a mechanism to define objects like the ‘proton’ as linear
combinations of quark distributions for f = (3, 4, 5) flavors.10

The outline given above should be considered as an example to illustrate the handling of the
flavor thresholds: in practice it would be easier (and more efficient) to use the proton non-
singlet distribution defined in eq. (13) in section 2.2 instead of the ∆ud, q+

s , q+
c and q+

b used
above.

An alternative treatment of heavy flavor threshold effects in charged lepton scattering is based
on the calculation of the heavy flavor contributions to F2 or FL through, in NLO [13]:

F h
k (x, Q2) =

αs

2π

{
e2

h g ⊗ C(0)
k,g +

αs

2π

(
e2

h g ⊗ C(1)
k,g + e2

h Σ⊗ C(1)
k,q + q`p ⊗D(1)

k,q

)}
(28)

where eh is the charge of the heavy quark (in units of the electron charge) and q`p denotes the
proton quark distribution (for f = 3 light flavors, see for instance eq. (15) in section 2.2).

The first term in eq. (28) is the LO contribution from the photon-gluon fusion process γ∗g → hh̄.
The last three terms correspond to the NLO subprocess γ∗g → hh̄g and γ∗q → hh̄q.11

In eq. (28) we have introduced the shorthand notation

αs

2π
f ⊗ C =

αs(µ
2
M)

2π

∫ 1

ax

dz

z
zf(z, µ2

M) C(x/z, Q2, µ2
M , m2

h) (29)

where a = 1 + 4m2
h/Q

2 and µ2
M is the factorization (equals renormalization) scale which is

usually set to µ2
M = Q2 or µ2

M = Q2 + 4m2
h. The kinematic domain where the heavy quarks

contribute is restricted by the requirement that the square of the γ∗p center of mass energy
must be sufficient to produce the hh̄ pair: W 2 = M2 + Q2(1− x)/x ≥ M2 + 4m2

h i.e, the lower
integration limit ax ≤ 1 in eq. (29). For the heavy quark coefficient functions C and D in
eq. (28) we refer to [13].12

9Qcdnum however will continue to evolve q+
c as a non-singlet q+ distribution below the charm threshold if

you ask the program to do so.
10Notice that the proton distribution is continuous at the flavor thresholds although it is build up from

distributions some of which are discontinuous. In fact, a powerful check on the consistency of a Qcdnum based
analysis is provided by verifying that no discontinuities show up in distributions which should be continuous.

11In the LO and the first two NLO terms the virtual photon couples to the heavy quark, hence the factor e2
h

in eq. (28). The last NLO term describes the process where the virtual photon couples to a light quark which
subsequently branches into a hh̄ pair via an intermediate gluon: hence the appearance of the charge weighted
sum, q`p, of light quark distributions.

12Some of these coefficient functions are given as interpolation tables since they are too complex to be cast into
analytical form. All heavy quark coefficient functions in Qcdnum are taken from code provided by S. Riemersma.
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A QCD analysis of charged lepton structure functions now might proceed as follows: the
parton distributions, given at some scale Q2 = Q2

0, are evolved in Q2 with f = 3 flavors. The
light quark contribution (u, d, s) to the proton quark density is assembled from the evolved
distributions and the structure functions F2,L are calculated from eq. (20) (with f = 3 flavors).
To these are added the heavy flavor contributions F c

2,L and F b
2,L as calculated from eq. (28)

above. The resulting structure functions are then compared to data. Notice that such heavy
flavor corrections are process dependent: the method described above applies to charged lepton
deep inelastic scattering only.

Finally we remark that Qcdnum will calculate F h
k from any quark distribution (e.g. singlet,

non-singlet) but that the result only makes sense when obtained for the proton, deuteron or
neutron distributions as defined in section 2.3, for f = 3 flavors.

3 Numerical method

3.1 Overview

The Qcdnum program calculates the Q2 evolution of parton momentum densities (in LO or in
NLO in the MS scheme) on a user defined grid in x and Q2. The value of these parton densities
at fixed Q2 = Q2

0 has to be specified for each grid point in x. This implies that Qcdnum does not
use, nor cares about, parameterizations describing the x dependence of the input distributions.

The calculation of the logarithmic slopes in Q2 is based on the computation of convolution
integrals, see eqs. (6) and (8). These are calculated with the assumption that the parton
densities can be linearly interpolated (at all Q2) from one x-grid point to the next. With
this assumption, the convolution integrals can be evaluated as weighted sums. The weights,
which are essentially integrals of the QCD splitting functions, are calculated to high precision
at program initialization.

From the value of a given input parton distribution and the calculated slopes at Q2
0, the dis-

tribution can be evaluated at the next grid point Q2
1 > Q2

0 (or Q2
1 < Q2

0). This distribution
then serves as an input to calculate the slopes at Q2

1 and so on. In this way the evolution can
be continued over the whole x-Q2 grid. In Qcdnum, the evolution is based on a second order
spline interpolation in ln Q2. In earlier versions of the program [1] this quadratic interpolation
was achieved iteratively, starting from a linear evolution in ln Q2 from one Q2 grid point to the
next. In the present program this is achieved without iteration by solving linear equations at
each evolution step.

The number of grid points in x and Q2 has to be chosen with some care. A larger number of grid
points improves the numerical accuracy (the interpolations underlying the evolution algorithm
become better approximations) but cannot be taken too large because the CPU time increases
quadratically (linearly) with the number of points in x (Q2). In practice, good balance between
accuracy and speed has been achieved on a 100×40 x–Q2 grid covering a large kinematic range
down to x = 10−5 and 4 < Q2 < 10000 GeV2, see section 5.

It is important to notice that the Qcdnum program evolves parton momentum densities in
contrast to the formalism presented in the previous sections which is given in terms of parton
number densities. The user has thus to supply starting values for xg(x), xΣ(x), . . . instead of
g(x), Σ(x) etc.
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3.2 Evaluation of convolution integrals

When written in terms of the parton momentum density H(x) = xh(x) the convolution integrals
in eqs. (6), (8) and (18)–(21) take the following form:

I(x0) =
∫ 1

x0

x0dz

z2
P
(

x0

z

)
H(z) (30)

where P (x) is a QCD splitting or coefficient function. The distribution H(x) is sampled on a
grid

x0 < x1 < · · · < xn < xn+1 ≡ 1 with H(xn+1) = H(1) ≡ 0.

This distribution is linearly interpolated between grid points:

H(xi < x < xi+1) = (1− t)H(xi) + tH(xi+1) (31)

t = (x− xi)/(xi+1 − xi).

Inserting eq. (31) into eq. (30) the convolution integral can be written as a weighted sum:

I(x0) =
n∑

i=0

w(xi, x0)H(xi) (32)

with

w(x0, x0) = S1(s1, s0)

w(xi, x0) = S1(si+1, si)− S2(si, si−1) (33)

where si ≡ x0/xi and

S1(u, v) =
v

v − u

∫ v

u
(z − u)P (z)

dz

z
(34)

S2(u, v) =
u

v − u

∫ v

u
(z − v)P (z)

dz

z
.

In Qcdnum the weights are calculated at initialization from Gauss integration of eq. (34) for all
LO and NLO QCD splitting and light quark coefficient functions and are stored in 2-dimensional
tables. In addition tables based on analytical expressions for the LO weights are available: they
may serve as a check on the accuracy of the numerical integration.

Inserting eq. (32) into eqs. (6) and (8) the evolution equations for the parton momentum
densities can be written as weighted sums, e.g. for the the singlet quark momentum density we
have:

dx0Σ(x0)

d ln Q2
=

αs

2π

n∑
i=0

[ w
(0)
FF (xi, x0) +

αs

2π
w

(1)
FF (xi, x0) ] xiΣ(xi) +

[ w
(0)
FG(xi, x0) +

αs

2π
w

(1)
FG(xi, x0) ] xig(xi) (35)

Likewise the expressions for the structure functions F2, FL and xF3 in NLO (see eqs. (18)–(21))
can be written as weighted sums.

The weight tables for the heavy quark coefficient functions depend on Q2 which makes them
3-dimensional. Their size is however much reduced by calculating the heavy quark structure
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functions on an equidistant logarithmic grid in x (this grid is automatically maintained by
Qcdnum). For such a grid the weights depend only on the difference (xi − x0) thus saving a
factor ∼ nx/2 in storage.13

In this way, fast calculation of the logarithmic slopes (and of structure functions) is achieved
entirely based on lookup tables which can be pre-calculated with high (and controlled) accuracy.
The x-grid must of course be dense enough so that linear interpolation in x, eq. (31), is a good
approximation. Since parton densities are smoothly varying functions of x this can be achieved
with relatively few grid points (typically nx ≈ 100).

3.3 Evolution in Q2

In this section we describe the calculation of the Q2 evolution of non-singlet quark momentum
densities H(x, Q2) = xq±(x, Q2). Extension of the method to singlet/gluon evolution is straight
forward. For convenience we introduce the variable t = ln Q2 and write for a given grid point
{xi, tj} the evolution equation for H as, cf. eq. (35):

H ′(xi, tj) =
αs(tj)

2π

n∑
k=i

[ w
(0)
± (xk, xi) +

αs(tj)

2π
w

(1)
± (xk, xi) ] H(xk, tj) (36)

with H ′ = ∂H/∂t. This slope cannot be calculated directly because the first term in the sum
on the r.h.s. of eq. (36) contains H(xi, tj) which is a priori unknown. Separating this term
from the sum and denoting the remaining sum (which runs from k = i + 1 to n) by S we write
eq. (36) in shorthand notation as:

H ′
j = wHj + S (37)

Next, we assume that the following condition is fulfilled:

Condition (i): In previous steps of the evolution H(xk, tj) has been calculated for
all values of xk > xi, i.e. for k > i.

With this assumption the sum S can be evaluated and, as a consequence, eq. (37) becomes a
linear equation with two unknowns H ′

j and Hj.

A second linear equation is obtained as follows: the density H(xi, t) is quadratically interpolated
between the grid points tj−1 and tj :

H(xi, tj−1 < t < tj) = at2 + bt + c.

With this interpolation H(xi, tj) is related to H(xi, tj−1), H ′(xi, tj) and H ′(xi, tj−1) through

H(xi, tj) = H(xi, tj−1) +
1

2
[H ′(xi, tj) + H ′(xi, tj−1] ∆tj (38)

with ∆tj = tj − tj−1. If we assume that the following condition is satisfied:

13The weight tables for the splitting and light quark coefficient functions can of course also be reduced in
size but we prefer to give complete freedom to choose the grid density at both low and high x by allowing a
non-equidistant grid in lnx. An equidistant logarithmic x–grid with larger spacing at high x does not much
affect the heavy quark structure functions since these are strongly suppressed by threshold effects at large x.
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Condition (ii): In previous steps of the evolution both H(xi, tj−1) and H ′(xi, tj−1)
have been calculated for tj−1 < tj.

then also eq. (38) is a linear equation with two unknowns Hj and H ′
j; in shorthand notation:

Hj = Hj−1 +
1

2
(H ′

j−1 + H ′
j) ∆j. (39)

Solving eqs. (37) and (39) for Hj we get:

Hj =
2Hj−1 + (H ′

j−1 + S) ∆j

2− w ∆j

. (40)

Because of conditions (i) and (ii) above all quantities on the r.h.s. of eq. (40) are known. The
value of H ′

j is found by substituting eq. (40) back into eq. (37). In this way both H(xi, tj) and
H ′(xi, tj) are calculated for a given grid point {xi, tj} by solving two linear equations with two
unknowns.

Next, we show that it is possible to define, starting from a suitable grid point, a progression in
x and t such that the conditions (i) and (ii) mentioned above are satisfied at each step of the
evolution. First, condition (i) is satisfied for all t at the highest grid point xn since we have
defined xn+1 = 1 and H(xn+1, t) = H(1, t) = 0 (see section 3.2). Second, at the starting value of
the evolution t0, H(x, t0) is known (input by the user) and H ′(x, t0) can be calculated directly
from the QCD evolution eq. (36). At the next grid point t1 > t0 condition (ii) is thus satisfied
for all values of x. It follows that both conditions (i) and (ii) are met at the grid point {xn, t1}
which serves as the starting point of the evolution. It is easy to see that one can subsequently
progress to larger t at fixed values of x (or to smaller x at fixed values of t) and continue the
evolution over the whole x–t grid. Here we have tacitly assumed upward evolution in t > t0; the
method applies to downward evolution as well provided tj−1 is replaced by tj+1 in the above.

It is straight forward to extend the evolution algorithm to the singlet/gluon case by solving
four linear equations with four unknowns at each evolution step.

Finally, we remark that the method outlined in this and the previous section yields parton
distributions which are represented by second order splines in t at fixed values of x and by first
order splines in x at fixed values of t. The evolution is fully numerical in the sense that no use
is made of specific parametric forms of the parton densities.

4 Qcdnum user guide

The Qcdnum program consists of a set subroutines which perform the QCD evolution of parton
distributions (and αs) and which calculate structure functions from the evolved distributions.
Interface routines allow to interact with the program which, from a user point of view, can be
regarded as a black box. A QCD analysis is performed by an application program which in
addition to Qcdnum might use Pdflib (for parton distribution input) or Minuit (for QCD fits).

4.1 The Qcdnum program

The Qcdnum code is available as a patchy .car file. The patches to be selected in the patchy
run are:
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+USE,DOUBLE. Select double precision version

+USE,QCDCOM,T=EXE. Qcdnum common blocks

+USE,QCDNUM,T=EXE. Qcdnum code (light quarks)

+USE,QCUTIL,T=EXE. Utility routines

+USE,QHEAVY,T=EXE. Qcdnum code (heavy quarks)

The switch +use,double selects the double precision version of Qcdnum. To obtain the single
precision version you simply omit the line +use,double or comment it out: c+use,double. It
is recommended to always compile the program in double precision except on machines with
60 bit arithmetic like the CRAY. When the double precision version is used:

• floating point variables in Qcdnum subroutine calls and Qcdnum floating point functions
should be declared double precision in the calling routine e.g:

double precision val, x, q2, QPDFXQ

..

val = QPDFXQ ( ’name’, x, q2, iflag )

..

The easiest is of course to simply declare all floating point variables as double precision
in the calling routine:

----------------

subroutine MYSUB

----------------

implicit double precision (A-H,O-Z)

..

• Actual values passed to subroutines must be written in double precision format e.g. 1.3D0
instead of 1.3 in for instance:

call QNRSET(’MCSTF’,1.3D0)

In the remainder of this writeup we assume that Qcdnum is run in double precision mode.

The patchy directive +use,qheavy,t=exe makes the heavy quark code available. This directive
may be omitted (or commented out) producing a smaller executable but then the heavy quark
structure functions cannot be calculated anymore.14

The Qcdnum code is written in standard Fortran77 and uses only a few CERN library routines
namely DGAUSS (D103), DDILOG (C304), FLPSOR (M103) and, for character string manipulation,
LENOCC (M507) and CHPACK (M432). Qcdnum does not use a dynamic memory manager so
that all common blocks are defined at compilation time. The size of these common blocks is
governed by the two parameters mxx and mq2: mxx-1 and mq2-1 are the maximum number of
grid points in x and Q2 the user can define. This can be set directly in the source code or
through the patchy directive (see table 1) e.g:

14An attempt to do so will cause Qcdnum to abend with an error message.
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+---------------------------------------------------------------------+

| |

| #!/bin/csh -fx |

| # |

| |

| /cern/pro/bin/ypatchy - qcdprog tty qcdprog.list .go << // |

| |

| +OPTION,MAPASM,UREF. |

| |

| +USE,DOUBLE. |

| |

| +USE,P=QUCOMM,QUPROG,T=EXE................user program |

| +USE,QCDCOM,QCDNUM,QCUTIL,T=EXE...........Qcdnum code |

| +USE,QHEAVY,T=EXE.........................Heavy quark code |

| |

| +REPL,QCDCOM,QCDCOM,6-7...................Max # grid points |

| PARAMETER ( MXX = 100 ) |

| PARAMETER ( MQ2 = 40 ) |

| |

| +EXE,P=CRA* |

| |

| +PAM, 11, T=ATTACH, T=CARDS. qcduser.car |

| +PAM, 12, T=ATTACH, T=CARDS. qcdnum16.car |

| |

| +QUIT. |

| |

| // |

| |

| f77 $f77ldflags -O qcdprog.f -o qcdprog -L/cern/pro/lib \ |

| -lgenlib -lpacklib -lkernlib |

| |

| qcdprog > qcdprog.log << EOF |

| |

| (User datacards, e.g. MINUIT, if any) |

| |

| EOF |

| |

+---------------------------------------------------------------------+

Table 1: Example of a unix script running Qcdnum
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+REPL,QCDCOM,QCDCOM,6-7.

PARAMETER ( MXX = 150 )

PARAMETER ( MQ2 = 60 )

See section 5 for further details on program size, accuracy and speed.

A unix script which performs a patchy run, compiles the resulting fortran code, makes the
executable and runs it might look like that shown in table 1. In this example the Qcdnum code
is stored in the file qcdnum16.car and user code in qcduser.car. The user code contains two
patches: qucomm and quprog. An example of such code is given in section 4.3.

4.2 User program

An analysis program based on Qcdnum should contain the following steps:

1. Initialization.

2. Definition of the x–Q2 grid.

3. Calculation of weights. The weight calculations depend on the grid definition which
therefore cannot be changed afterwards. By default, weight tables are computed for
the LO and NLO splitting functions as well as for the NLO F2, FL and xF3 coefficient
functions. Tables which depend on the number of flavors are generated for f = 3, 4 and
5. Optionally weight tables are calculated for the heavy quark coefficient functions.

4. Definition (booking) of the parton distributions. Internally Qcdnum reserves space for
the gluon and the quark singlet momentum density and for up to nine user defined non-
singlet densities. Furthermore up to 20 linear combinations of the quark densities can be
defined.

5. Setting of options/parameters e.g:

• input of the flavor thresholds.

• input value for αs.

• LO or NLO calculations.

• etc.

6. Input of the parton densities for each grid point in x at some fixed value of Q2 = Q2
0

followed by the QCD evolution of these distributions. Routines are provided for the
singlet/gluon evolution and for the evolution of non-singlet quark densities xq+, x∆ and
xq−.

7. Evaluation of structure functions and, in fitting applications, the calculation of the χ2.
Qcdnum provides a routine for the calculation of F2, FL and xF3. The contribution to F2

and FL from charm and bottom can also be calculated.

In the following subsections we give a detailed description of the steps outlined above. For quick
reference a list of Qcdnum subroutines is given in table 2. In the remainder of this write-up we
use the following notation:
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Subroutine or function Description
QNINIT Initialization
QNVERS ( ’vers’ Ldoubl, nxmax, nqmax ) Get info about current version
QNTIME ( ’option’ ) Start/stop CPU timelog
QNiSET ( ’var’, ival ), i = L, I, R Set Qcdnum variable
QNiGET ( ’var’, ival ), i = L, I, R Get Qcdnum variable
GRXDEF ( nx, xmi ) Define the x grid
GRQDEF ( nq, qmi, qma ) Define the Q2 grid
GRXINP ( xarray, nx ) Add x grid points
GRQINP ( qarray, nq ) Add Q2 grid points
GRXNUL, GRQNUL Clear the x, Q2 grid
GRMXMQ ( nxmax, nqmax ) Give maximum number of grid points
GRGIVE ( nx, xmi, xma, nq, qmi, qma ) Get definition of the current grid
GRXOUT ( xgrid ), GRQOUT ( qgrid ) Copy x, Q2 grid to local array
xx = XFROMIX ( ix ), q2 = QFROMIQ ( iq ) Get x, Q2 for given grid index
ix = IXFROMX ( xx ), iq = IQFROMQ ( q2 ) Get grid index for given x, Q2

ix = IXNEARX ( xx ), iq = IQNEARQ ( q2 ) Get grid index for given x, Q2

GRCUTS ( xmi, qmi, qma, roots ) Set cuts
istat = IFAILIJ ( ix, iq ) ix, iq fails/passes cuts
istat = IFAILXQ ( x, q2 ) x, Q2 fails/passes cuts
QNFILW( 0, 0 ) Calculate weight tables
QNDUMP( lun ) Write weight tables to disk
QNREAD( lun, istop, ierr ) Read weight tables from disk
QNBOOK ( id, ’name’ ) Book non-singlet distribution
QNLINC ( id, ’name’, nf, factors ) Define linear combination
id = IPDFID ( ’name’ ) Get id of quark distribution
QTHRES ( t34, t45 ) Set flavor thresholds
nf = NFLGET ( iq ) Get number of flavors
as = QALFAS ( q2 ,qlam, nf, ierr) Get αs(Q

2)
QNPSET ( ’name’, ix, iq, value ) Set value of parton density
QADDSI ( ’name’, iq, factor ) Add factor times singlet
QNPNUL ( ’name’ ) Set parton distribution to zero
EVOLSG ( iq0, iqmin, iqmax ) Singlet/gluon evolution
EVOLNP ( ’name’, iq0, iqmin, iqmax ) Non-singlet evolution (x∆)
EVPLUS ( ’name’, iq0, iqmin, iqmax ) Non-singlet evolution (xq+)
EVOLNM ( ’name’, iq0, iqmin, iqmax ) Non-singlet evolution (xq−)
val = QPDFIJ ( ’name’, ix, iq, ifl ) Get value of parton density
val = QPDFXQ ( ’name’, x, q2, ifl ) Get value of parton density
val = QSTFIJ ( ’opt’, ’name’, ix, iq, ifl ) Calculate F2, FL or xF3

val = QSTFXQ ( ’opt’, ’name’, x, q2, ifl ) Calculate F2, FL or xF3

QFMARK ( x, q2 ) Mark for fast Fi calculation
QFMNUL Clear marks
STFAST ( ’opt’, ’name’ ) Fast Fi calculation
STFCLR Clear memory allocation
QPRINT ( lun, ’opt’ ) Print Qcdnum info

Table 2: Subroutine and function calls in Qcdnum
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• A variable with a name starting with the letter L is of type logical.

• A variable with a name starting with the letter I–N (excluding L) is of type integer.

• We denote character variables by giving the name in quotes, e.g. ’name’. Significant
characters of input variables are given in capitals as in e.g:

call QPRINT(6,’Timelog’)

Qcdnum is case insensitive so that ’T’, ’t’, ’time’ and ’Timelog’ are all valid inputs.

• All other variables are either of type real or of type double precision depending on the
Qcdnum version which is used.

4.3 Example program

In this section we give an example of a simple application program. The program evolves the
singlet quark and gluon distribution given at a starting value of Q2

0 = 7 GeV2 in NLO (NLO is
Qcdnum default) on a 80×60 x–Q2 grid. The grid covers the kinematic range 4×10−4 < x < 1
and 4 < Q2 < 5000 GeV2. The flavor thresholds are set to Q2

c (Q2
b) = 4 (25) GeV2. The code

uses the predefined names ’singlet’ (’gluon’) to access the singlet quark (gluon) distribution.
The quark and gluon distributions at Q2

0 are given by the user defined functions quarks(x)

and gluons(x). The singlet F2 structure function is calculated from the evolved distributions.

+patch,QUCOMM.

(user defined sequences, if any)

+patch,QUPROG.

* --------------

program QUPROG

* --------------

implicit double precision (A-H,O-Z)

*-1- Initialization

call QNINIT

call QNTIME(’start’)

*-2- Setup grid in x and Q2

q0 = 7.

call GRXDEF(80,4.D-4)

call GRQDEF(59,4.D0,5000.D0)

call GRQINP(q0,1)

call GRGIVE(nx,xmi,xma,nq,qmi,qma)
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*-3- Create weight tables

call QNFILW(0,0)

*-4- Set charm (bottom) threshold at Q2 = 4 (25) GeV2

call QTHRES(4.D0,25.D0)

*-5- Set input value for alphas

Mz = 91.2

call QNRSET(’alfas’,0.118D0)

call QNRSET(’alfQ0’,Mz*Mz)

*-6- Input singlet and gluon at Q2 = 7 GeV2

* quarks(x) and gluons(x) are user defined functions

iq0 = IQFROMQ(q0)

do ix = 1,nx

x = XFROMIX(ix)

call QNPSET(’singlet’,ix,iq0,quarks(x))

call QNPSET(’gluon’ ,ix,iq0,gluons(x))

enddo

*-7- Singlet/gluon evolution

call EVOLSG(iq0,1,nq)

*-8- Get singlet, gluon, F2 etc. at any x and Q2

x = 0.005

q2 = 20.

qval = QPDFXQ( ’singlet’,x,q2,iflag)

gval = QPDFXQ( ’gluon’ ,x,q2,iflag)

fval = QSTFXQ(’F2’,’singlet’,x,q2,iflag)

*-9- Some printout

call QPRINT(6,’all’)

end

The user defined function gluons(x) for instance, might look as follows:

* -----------------------------------

double precision function GLUONS(x)

* -----------------------------------

implicit double precision (A-H,O-Z)

dimension a(3)

data a /1.01,-0.35,5.22/

GLUONS = a(1) * x**a(2) * (1.-x)**a(3)
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return

end

4.4 Initialization

Qcdnum is initialized by

call QNINIT

This routine, which must be called before anything else, initializes a large amount of constants
and sets reasonable defaults.

call QNVERS ( ’version’, Ldouble, nxmax, nqmax )

returns the version number in the character*8 variable ’version’ and sets the logical variable
Ldouble to true if the current program version is in double precision and to false if it is in
single precision. The variables nxmax and nqmax are set to the maximum number of grid points
in x and Q2 the user can define.15

A timelog of Qcdnum subroutine calls is started by

call QNTIME ( ’Start’ )

At any moment you can interrupt the logging by a call to QNTIME(’Hold’) and resume it again
by calling QNTIME(’Continue’).

4.5 Qcdnum variables and options

A list of Qcdnum variables/options, is shown in table 3. The meaning of these variables is as
follows:

• W1ANA, . . ., WTFLB: these eight logical options steer the weight calculations as described in
section 4.7.

• LIMCK if set to true one cannot access parton distributions or structure functions outside
the grid boundaries or cuts. See section 4.12.

• CLOWQ if set to true one can access heavy quark structure functions only for Q2 > 1.5
GeV2. If set to false no such check is made. See section 4.12.

• ORDER = 1 (2) selects LO (NLO) calculations. Its value can be set at any time. Default:
NLO.

• SCAX0 and SCAQ0 are related to the logarithmic/linear scale of the x and Q2 grid, see
section 4.6.

15See section 4.1 on how to change this.
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+-------+---+-------+--------------+------------------------------------+

| var |typ| deflt | value | description |

+-------+---+-------+--------------+------------------------------------+

| W1ANA | L | T | T | Analytical LO weight calculation |

| W1NUM | L | F | F | Numerical LO weight calculation |

| W2NUM | L | T | T | Numerical NLO weight calculation |

| W2STF | L | T | T | Structure function NLO weights |

| WTF2C | L | F | T | F2_charm weight calculation |

| WTF2B | L | F | T | F2_bottom weight calculation |

| WTFLC | L | F | T | FL_charm weight calculation |

| WTFLB | L | F | T | FL_bottom weight calculation |

| LIMCK | L | T | T | Check x, Q2 limits and cuts |

| CLOWQ | L | T | T | Heavy F2,FL only for Q2 > 1.5 GeV2 |

| ORDER | I | 2 | 2 | LO (1) or NLO (2) calculations |

| SCAX0 | R | 0.20 | 0.20000E+00 | x-grid scale from log --> linear |

| SCAQ0 | R | +inf | 0.10000E+11 | Q2-grid scale from log --> linear |

| MCSTF | R | 1.5 | 0.15000E+01 | C mass for F2c, FLc (GeV) |

| MBSTF | R | 5.0 | 0.50000E+01 | B mass for F2b, FLb (GeV) |

| MCALF | R | 1.5 | 0.15000E+01 | C mass for alpha_s evolution (GeV) |

| MBALF | R | 5.0 | 0.50000E+01 | B mass for alpha_s evolution (GeV) |

| MTALF | R | 188. | 0.18800E+03 | T mass for alpha_s evolution (GeV) |

| ALFAS | R | 0.180 | 0.13000E+00 | Value of alpha_s |

| ALFQ0 | R | 50. | 0.83152E+04 | Q2 where alpha_s is given (GeV2) |

| AAAR2 | R | 1.0 | 0.10000E+01 | R2 = A*M2 + B (ren. scale) |

| BBBR2 | R | 0.0 | 0.00000E+00 | R2 = A*M2 + B (ren. scale) |

| AAM2L | R | 1.0 | 0.10000E+01 | M2 = A*Q2 + B (light fact. scale) |

| BBM2L | R | 0.0 | 0.00000E+00 | M2 = A*Q2 + B (light fact. scale) |

| AAM2H | R | 1.0 | 0.10000E+01 | M2 = A*Q2 + B (heavy fact. scale) |

| BBM2H | R | 0.0 | 0.00000E+00 | M2 = A*Q2 + B (heavy fact. scale) |

+-------+---+-------+--------------+------------------------------------+

| TCHRM | R | -inf | -0.10000E+11 | Charm threshold |

| TBOTT | R | +inf | 0.10000E+11 | Bottom threshold |

| XMINC | R | 0.0 | -0.10000E+01 | Xmin cut (.le.0 = no cut) |

| QMINC | R | 0.0 | -0.10000E+01 | Qmin cut (.le.0 = no cut) |

| QMAXC | R | 0.0 | -0.10000E+01 | Qmax cut (.le.0 = no cut) |

| ROOTS | R | 0.0 | -0.10000E+01 | Roots cut (.le.0 = no cut) |

| QMINA | R | 0.0 | 0.47568E+00 | Lowest Q2 with valid alpha_s |

+-------+---+-------+--------------+------------------------------------+

Table 3: Default settings in Qcdnum
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• MCSTF and MBSTF are the charm and bottom mass (in GeV) used in the heavy quark
structure function calculations, see section 4.12.

• MCALF, MBALF and MTALF are the charm, bottom and top mass (GeV) which determine
the flavor thresholds in the αs evolution.

• ALFAS and ALFQ0 are the value of αs and the Q2 where it is given. These values may be
changed at any time.

• AAAR2 and BBBR2 define the renormalization scale µ2
R = aµ2

M + b, see section 4.13.

• The mass factorization scale, µ2
M = aQ2 + b, can be defined for the light (heavy) quark

structure functions by setting the variables AAM2L, BBM2L (AAM2H, BBM2H), see section 4.13.

Logical, integer and floating point variables can be set by calls to QNLSET, QNISET and QNRSET

respectively, e.g:

call QNLSET ( ’W1NUM’, .true. )

call QNISET ( ’ORDER’, iorder )

call QNRSET ( ’ALFAS’, 0.187D0 )

The actual value of a Qcdnum parameter/option can be retrieved by similar calls to QNLGET,
QNIGET and QNRGET. The list as given in table 3 can be written to logical unit number lun by
a call to QPRINT(lun,’Parameters’).16

Also given in table 3 are the thresholds Q2
c (TCHRM), Q2

b (TBOTT) and four cut parameters XMINC,
. . ., ROOTS. These cannot be set by QNRSET but by special routines described in section 4.10.
The cut QMINA is set automatically by Qcdnum to delimit the region Q2 ≥ Λ2. You can retrieve
the values of the cuts with calls to QNRGET.

4.6 Definition of the grid

There are two ways in which the x–Q2 grid can be specified:

• Specify the kinematic range and the number of grid points to be generated:

call GRXDEF ( nx, xmin )

call GRQDEF ( nq, qmin, qmax )

GRXDEF clears the x–grid (if any) and generates nx grid points in the range xmin ≤ x < 1.
Qcdnum sets the (nx+1)th grid point to one. The scale is logarithmic for x < 0.20 and
linear for x > 0.20.17 The routine GRQDEF clears the Q2–grid and generates a logarithmic
grid of nq points in the range Q2

min ≤ Q2 ≤ Q2
max.

• Pass a list of n grid points to be added to the grid:

16A logical unit number other than 6 should be opened by the user before a call to QPRINT.
17The default, x0 = 0.20, can be changed by: call QNRSET ( ’SCAX0’, x0 ). There is a similar parameter

for the Q2–grid (SCAQ0) which at initialization is set to a very high value.
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call GRXINP ( xarray, nx )

call GRQINP ( qarray, nq )

where xarray (qarray) are arrays containing nx (nq) points in x (Q2) which may be given
in arbitrary order. One may, or may not specify the point x = 1, Qcdnum will always
generate it.

As mentioned in section 3.2 the heavy quark structure functions are calculated on an equidistant
logarithmic grid in x. This grid is automatically maintained by Qcdnum with the same range
(xmin,1) and the same number of grid points nx as the grid defined by the calls to GRXDEF and
GRXINP.

A call to GRXNUL (GRQNUL) sets the x (Q2) grid to zero.

There are several ways to access the grid:

• GRMXMQ(nxmax,nqmax) returns the maximum number of grid points the user can define.

• GRGIVE(nx,xmi,xma,nq,qmi,qma) returns the number of grid points and the limits of
the current grid.

• GRXOUT(xgrid) and GRQOUT(qgrid) return the list of current grid points in the arrays
xgrid (qgrid) which should be dimensioned in the calling routine to at least nx (nq).

• The value of x corresponding to a given grid index is returned by the function x =

XFROMIX(ix) where x is set to zero if ix is outside the grid boundaries. Likewise the Q2

value is returned by q2 = QFROMIQ(iq)

• The inverse function ix = IXFROMX(x) returns the grid index ix for given x. If x does
not coincide with a grid point, ix is negative and -ix corresponds to the closest grid
point which lies below x. If x is outside the grid boundary ix is set to zero. Thus
ABS(IXFROMX(x)) can be thought of as a function which returns for given x the ‘bin
number’ (i) with the grid point xi being the lower edge of the bin. The corresponding
function for the Q2 grid is iq = IQFROMQ(q2).

• The function ix = IXNEARX(x) is similar to IXFROMX but here the grid index ix corre-
sponds to the grid point closest to x (instead of that below x). Again, if x coincides with
a grid point ix is positive otherwise negative. ABS(IXNEARX(x)) can be thought of as a
function which returns for given x the ‘bin number’ (i) with xi being the center of the
bin. The corresponding function for Q2 is iq = IQNEARQ(q2).

The current grids (including the logarithmic heavy quark x–grid) can be written to logical unit
number lun by a call to QPRINT(lun,’Xqgrid’).

Finally, when defining the x–Q2 grid one should bear in mind that (see section 3):

• The grid should be dense enough so that the linear (quadratic) interpolation in x (ln Q2)
used by Qcdnum is a sufficiently good approximation.

• The CPU time increases quadratically (linearly) with the number of grid points in x (Q2).

• The starting scale of the evolutions, Q2
0, must be included in the grid: see section 4.11.
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• It is convenient, but not strictly necessary, to also put the flavor thresholds, Q2
c and Q2

b ,
into the grid.

A good initial choice is about 100 grid points in x and about 40 in Q2. It may be worthwhile to
spent some effort in optimizing the grid for QCD fit applications where the program is likely to
be run many times on the same dataset. A modest decrease in the number of x grid points by,
say, 30% will increase the program speed by a factor of two. For further details, see section 5.

4.7 Weight calculation

Weight tables are calculated by a call to18

call QNFILW ( 0, 0 )

By default all weights corresponding to the LO and NLO splitting functions and those for the
NLO light quark coefficient functions are evaluated for f = 3, 4 and 5 flavors. The weight
calculations depend on the x grid which thus must have been defined before the call to QNFILW

and cannot be changed afterwards.19

The logical variables listed in table 4 define which tables are calculated in QNFILW. These
variables can be set by the appropriate calls to QNLSET e.g:

call QNLSET ( ’W1NUM’, .TRUE. )

forces Qcdnum to calculate the LO weight tables numerically instead of analytically (default). If
one is not interested in NLO calculations the generation of NLO weight tables may be switched
off by setting W2NUM and W2STF to false.

18The two integer arguments (0,0) in QNFILW are irrelevant and kept only for reasons of backward compati-
bility.

19Doing so invalidates the current weight tables. An attempt to use them afterwards in an evolution or
structure function routine will cause a fatal error.

+-------+---+-------+---------+------------------------------------+

| var |typ| deflt | value | description |

+-------+---+-------+---------+------------------------------------+

| W1ANA | L | T | T | Analytical LO weight calculation |

| W1NUM | L | F | F | Numerical LO weight calculation |

| W2NUM | L | T | T | Numerical NLO weight calculation |

| W2STF | L | T | T | Structure function NLO weights |

| WTF2C | L | F | F | F2_charm weight calculation |

| WTF2B | L | F | F | F2_bottom weight calculation |

| WTFLC | L | F | F | FL_charm weight calculation |

| WTFLB | L | F | F | FL_bottom weight calculation |

+-------+---+-------+---------+------------------------------------+

Table 4: Logical variables which steer the weight calculations
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The CPU time needed for the calculation of the light quark weights is modest: about 60 seconds
for ∼ 100 x grid points but will increase quadratically with the number of grid points.

The logical variables WTF2C, WTF2B, WTFLC and WTFLB enable the calculation of weight tables
needed for the heavy flavor structure functions. These tables depend on the definition of both
the x and the Q2 grid which should not be changed after the call to QNFILW. They also depend
on the charm or bottom mass which should not be changed either. The calculation of the heavy
quark weight tables typically takes a few CPU minutes only.

4.8 Disk dump/read of weight tables

To avoid the weight initialization for every Qcdnum run there is the possibility to write them
to disk (QNDUMP) and read them back again (QNREAD) in a next pass of your QCD analysis. The
rules are as follows:

• Unformatted read/write: this implies that weight files cannot be exchanged across differ-
ent machines.

• Only those tables which are available at the point where QNDUMP is called are written to
disk.

• For each table the full common block is dumped. This implies that the size of the output
file does not depend on how many x–Q2 grid points are actually defined but on the size
of the common block itself. This depends on the parameters mxx and mq2 which are also
written to the file. Weight files cannot be exchanged across Qcdnum versions which have
different values of mxx and/or mq2 (see also section 4.1).

• All weight tables depend on the current x grid definition whereas the heavy quark tables
depend in addition on the Q2 grid: these grid definitions are also written to disk.

• The heavy quark tables depend on the charm and/or bottom mass which are dumped
too.

The weight tables are written to disk by a call to QNDUMP e.g:

OPEN(unit=24,file=weights.file,form=’unformatted’,status=’unknown’)

CALL QNDUMP(24)

Files containing all weight tables (including heavy quarks) typically require about 5 Mbyte of
storage.

To read the file back, use:

OPEN(unit=24,file=weights.file,form=’unformatted’,status=’unknown’)

CALL QNREAD(24, istop, ierr)

However this will not only read the weight tables but also overwrite the current definition of
the x–grid (if any) and, in case the heavy quark tables are stored, that of the Q2–grid together
with the value of the charm and/or bottom mass.

To avoid unwanted side effects, QNREAD compares the grid definition (if any) and the quark
masses in memory with those on the file and sets the error flag ierr as follows:
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ierr = 0 all OK.

ierr = 1 xgrid exist in memory .ne. that on the file.

ierr = 2 file contains heavy quark weight tables and

qgrid exist in memory .ne. that on the file.

ierr = 3 file contains charm weight tables and

c mass in memory .ne. that on the file.

ierr = 4 file contains bottom weight tables and

b mass in memory .ne. that on the file.

The action taken by QNREAD depends on the input variable istop:

istop = 0 read the file whatever the value of ierr.

istop = 1 read only when ierr = 0, do nothing otherwise.

istop = 2 stop the program when ierr .ne. 0.

Thus, setting istop = 1 provides the possibility to inspect the value of ierr, take the appro-
priate action, if any, and then call QNREAD again.

4.9 Definition of parton distributions

Qcdnum can hold up to 11 parton momentum densities in memory which internally are ad-
dressed by an identifier running from id = 0 to id = 10. The user addresses these memory
locations by a name. The identifier id = 0 is reserved for the gluon and id = 1 for the quark
singlet distribution with the predefined names ’gluon’ and ’singlet’ respectively. The re-
maining 9 memory locations, which should contain non-singlet quark distributions,20 can be
associated to a user defined name by

call QNBOOK ( id, ’name’ )

with 2 ≤ id ≤ 10. The following rules apply:

• ’name’ can be given in upper, lower or mixed case (it is translated to upper case inter-
nally).

• ’name’ can be of any length but the first five characters must be unique (Qcdnum trun-
cates ’name’ to five characters or adds trailing blanks if it is shorter). To avoid confusion
please refrain from defining names with leading blanks.

• An identifier cannot be booked twice unless it is released previously by setting the name
to ’free’.

Thus, if one does not like the predefined name ’gluon’ for id = 0, it can be renamed by:

call QNBOOK ( 0, ’free’ )

call QNBOOK ( 0, ’xglue’ )

20They can only be evolved as non-singlets and can only enter as non-singlet contributions in the calculation
of structure functions.
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As an example we give below the calling sequence to book the non-singlet distributions x∆ud,
xq+

s , xq+
c , xq+

b and xqv = xuv + xdv (these distributions will be used in examples later on):

call QNBOOK ( 2, ’umind’ )

call QNBOOK ( 3, ’splus’ )

call QNBOOK ( 4, ’cplus’ )

call QNBOOK ( 5, ’bplus’ )

call QNBOOK ( 6, ’xqval’ )

Up to 20 linear combinations of quark distributions with identifiers id = 11 to id = 30 can
be defined by:

call QNLINC ( id, ’name’, nf, factors )

where factors is a 10 dimensional array which contains the multiplication factor for the
singlet distribution in factors(1) and that for the non-singlet distributions in factors(2)

through factors(10). Because such linear combinations often depend on the number of fla-
vors, Qcdnum maintains for each identifier three factor arrays for f = 3, 4 or 5.21

For instance the proton quark distribution in charged lepton scattering for f = 3 flavors can
be written as a linear combination of the singlet and non-singlet distributions:

q`p
f=3 =

4

18
Σ +

1

6
∆ud −

1

6
q+
s

Taking the non-singlet distributions from the booking list given above, the proton can be defined
by the following code:

double precision factors(10)

data factors /10*0.D0/

*--- Define proton distribution for 3 flavors

factors(1) = 4./18.

factors(2) = 1./6.

factors(3) = -1./6.

call QNLINC ( 11, ’proton’, 3, factors )

Likewise we have for four flavors:

q`p
f=4 =

5

18
Σ +

1

6
∆ud −

1

6
q+
s +

1

6
q+
c

factors(1) = 5./18.

factors(2) = 1./6.

factors(3) = -1./6.

factors(4) = 1./6.

call QNLINC ( 11, ’proton’, 4, factors )

21Notice that only the factor arrays are stored in memory and not the linear combinations themselves. Each
time a linear combination is addressed Qcdnum evaluates it at any given x and Q2. If Q2 < Q2

c Qcdnum uses
the factors defined for f = 3, if Q2

c ≤ Q2 < Q2
b those for f = 4 and if Q2

b ≤ Q2 those for f = 5 (see section 4.10
on how the flavor thresholds are set).
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And for five flavors:

q`p
f=5 =

11

45
Σ +

1

6
∆ud −

1

6
q+
s +

1

6
q+
c −

1

6
q+
b

factors(1) = 11./45.

factors(2) = 1./6.

factors(3) = -1./6.

factors(4) = 1./6.

factors(5) = -1./6.

call QNLINC ( 11, ’proton’, 5, factors )

The function

id = IPDFID ( ’name’ )

returns the identifier id for a given name so that you do not have to remember all identifiers
e.g:

*--- Define proton distribution for 3 flavors

factors( IPDFID(’singl’) ) = 4./18.

factors( IPDFID(’umind’) ) = 1./6.

factors( IPDFID(’splus’) ) = -1./6.

call QNLINC ( 11, ’proton’, 3, factors )

It is guaranteed that 1 ≤ id ≤ 10 because Qcdnum abends with a fatal error message if the
name passed to IPDFID does not correspond to a memory resident quark distribution.

A list of all parton distributions can be written to logical unit number lun by a call to
QPRINT(lun,’Booklist’). This gives for the example given above the list as shown in ta-
ble 5. Notice from table 5 that Qcdnum has assigned ‘trivial’ multiplication factors to the
memory resident distributions gluon,. . . , xqval and also that all names are truncated to five
characters and converted to upper case.

+-------------+------------------------------------------------------------+

| | W_ 1 W_ 2 W_ 3 W_ 4 W_ 5 W_ 6 W_ 7 W_ 8 W_ 9 W_10 |

| ID NAME nf | SING UMIN SPLU CPLU BPLU XQVA FREE FREE FREE FREE |

+-------------+------------------------------------------------------------+

| 0 GLUON | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |

| 1 SINGL | 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |

| 2 UMIND | 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |

| 3 SPLUS | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |

| 4 CPLUS | 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 |

| 5 BPLUS | 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 |

| 6 XQVAL | 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 |

+-------------+------------------------------------------------------------+

| 11 PROTO 3 | 0.22 0.17 -0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |

| 4 | 0.28 0.17 -0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00 |

| 5 | 0.24 0.17 -0.17 0.17 -0.17 0.00 0.00 0.00 0.00 0.00 |

+-------------+------------------------------------------------------------+

Table 5: Example of a list of parton distributions
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4.10 QCD evolution – parameters and options

Before evolving parton distributions and/or calculating structure functions a few parame-
ters/options can be set as follows:

1. The order of all calculations in Qcdnum is governed by the value of iorder = 1 (LO) or
2 (NLO). The default is set to 2 (NLO) which can be changed at any time by

call QNISET ( ’ORDER’, 1 )

and vice versa.

2. The QCD evolution of αs is internally calculated by solving the renormalization group
equation, eq. (3) in section 2.1. Input to the calculation is the value of αs at a given Q2

(default: 0.180 and 50 GeV2 respectively). These values can be changed at any time by
e.g:

Mz = 91.188

As = 0.116

call QNRSET ( ’ALFQ0’, Mz*Mz )

call QNRSET ( ’ALFAS’, As )

As described in section 2.1 the flavor thresholds in the αs evolution are taken to be equal
to the quark masses which can be set by calls to QNRSET: see section 4.5. Notice that you
can also set the top mass (default 188 GeV) so that αs can be evolved with up to f = 6
flavors. However, there is no top threshold in the parton distribution evolutions or in the
structure function calculations so that there Qcdnum uses only up to f = 5 flavors (see
below). The function

alfas = QALFAS ( Q2 ,qlambda, nf, ierr )

gives the value of αs for any Q2. The function also returns the value of Λ (qlambda) and
the number of active flavors (nf).22 If Q2 ≤ Λ2 the value of αs is arbitrarily set to 100, Λ
to zero and the flag ierr = 1 (0 otherwise).

3. The flavor thresholds used in the evolution and structure function routines are not related
to the quark masses. Qcdnum uses instead the thresholds Q2

c and Q2
b such that f = 3 for

Q2 < Q2
c , f = 4 for Q2

c ≤ Q2 < Q2
b and f = 5 for Q2

b ≤ Q2. At initialization Qcdnum sets
Q2

c (Q2
b) at minus (plus) a very large value so that by default f = 4 for all Q2. You can

change this at any time by a call to

call QTHRES ( Q2c, Q2b )

Thus, if you want to use three flavors throughout then set both Q2
c and Q2

b beyond the
highest Q2 grid point; to use 5 flavors set them both below the lowest Q2 grid point.23

As an example we give below the code to set the thresholds to the square of the quark
masses (as in the αs evolution):

22Thus, qlambda and nf are output variables and not input variables as the syntax may suggest.
23However always keep Q2

c < Q2
b in the call to QTHRES, otherwise a (fatal) error will result.
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call QNRGET ( ’MCALF’, Cmass )

call QNRGET ( ’MBALF’, Bmass )

call QTHRES ( Cmass*Cmass, Bmass*Bmass )

The function

nf = NFLGET ( iq )

returns the number of flavors as used by Qcdnum for any grid point iq.

4. As explained in section 4.8, weight tables can be calculated once and for all and dumped
to disk for the next passes of your analysis. It is convenient to do this on a large grid, say,
120 x-grid points covering 10−6 < x < 1 and 60 Q2 points covering 0.1 < Q2 < 104 GeV2.
However one might not always be interested in such a large kinematic range. Instead of
creating a new weight file on a smaller grid you can set cuts so that parton distributions
are evolved over part of the x–Q2 grid only. This may result in a considerable reduction
in CPU time. The cuts are passed to Qcdnum by

call GRCUTS ( xmin, qmin, qmax, roots )

where the meaning of xmin, qmin and qmax should be obvious; roots =
√

s restricts the
x–Q2 domain to within the kinematic limit Q2 ≤ xs.24 Once a cut is applied the region
outside it becomes inaccessible to the user. GRCUTS can be called at any time: to release
one or more cuts (or not apply it at all) the corresponding parameter should be set to a
value ≤ 0. The function

ifail = IFAILXQ ( x, q2 )

can be used to investigate if a given x, Q2 fails or passes the cuts:

ifail = ijklm : i = 0/1 no/yes fail QMINA cut (see below)

j = 0/1 no/yes fail ROOTS cut

k = 0/1 no/yes fail QMAX cut

l = 0/1 no/yes fail QMIN cut

m = 0/1 no/yes fail XMIN cut

Thus, ifail = 1001 means that x, Q2 is below the xmin cut and above the kinematic
limit as defined by roots. The corresponding function for the grid point ix, iq is

ifail = IFAILIJ ( ix, iq )

The QMINA cut mentioned above acts as a Q2
min cut and is automatically set by Qcdnum

to the lowest Q2-grid point above the current value of Λ2.

24In QCD fits for instance you can set roots to the highest center of mass energy of your datasets e.g. 300 GeV
if HERA data are included.
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4.11 QCD evolution of parton distributions

The QCD evolution of parton distributions consists of two steps:

1. Input of the parton distribution for all grid points in x at some fixed value of Q2
0 (i.e. at

a fixed Q2–grid point iq0).

2. QCD evolution over the whole x–Q2 grid (or part of it when cuts are applied, see sec-
tion 4.10) by calling one of the evolution routines described below.

The procedure is straight forward for the singlet/gluon evolution and for the non-singlet evolu-
tions of xq− (valence) and x∆. However the non-singlet evolution of a xq+ distribution is more
complicated because xq+ is – per definition – discontinuous at the flavor thresholds.

The value of a parton distribution can be set for a given grid point (ix,iq) by

call QNPSET ( ’name’, ix, iq, value )

where ’name’ is a valid name of a memory resident distribution. To set the distribution to zero
for all x and Q2,

call QNPNUL ( ’name’ ).

The following call evolves the gluon and the singlet quark density in Q2 :

call EVOLSG ( iq0, iqmin, iqmax )

where iq0 is the starting point and [iqmin,iqmax] the range of the evolution. You must take
care that iqmin ≤ iq0 ≤ iqmax (failing to do so will result in a fatal error) and also that the
gluon and singlet quark distributions are set to their proper starting values at iq0 by previous
calls to QNPSET. The calculation is in LO or in NLO depending on the value of order (see
section 4.10). For an example of user code evolving the gluon and singlet distributions we refer
to the program listing given in section 4.3. We mention at this point that Qcdnum evolution
routines do not clear the memory before the evolution. This allows to ‘chain’ the evolutions,
i.e. if iqmin < iq0 < iq1 < iq2 < iqmax then the sequence

call EVOLSG ( iq0, iqmin, iq1 )

call EVOLSG ( iq1, iq1 , iq2 )

call EVOLSG ( iq2, iq2 , iqmax )

is equivalent to

call EVOLSG ( iq0, iqmin, iqmax )

This feature is of course irrelevant for the singlet/gluon evolution but useful in the context of
xq+ evolution with discontinuities at the flavor thresholds: see below.

A non-singlet distribution of the type xq− (valence) is evolved by
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call EVOLNM ( ’name’, iq0, iqmin, iqmax )

and non-singlet density of the type x∆ by

call EVOLNP ( ’name’, iq0, iqmin, iqmax )

where ’name’ is a valid name of a non-singlet distribution, that is, not ’gluon’ or ’singlet’
(or whatever names are associated with id = 0 and 1).

A non-singlet xq+ distribution can also be evolved by a call to EVOLNP but here one has to be
careful with discontinuities at the flavor thresholds (see section 2.2 and 2.5). As an example
we assume that

1 < iqc < iq0 < iqb < nq2

where iqc and iqb are the grid indices corresponding to the charm and bottom thresholds
respectively. To evolve for instance the xs+ distribution you might code

*--- Evolve from iq0 down to iqc and up to iqb

call EVPLUS ( ’splus’, iq0, iqc, iqb )

*--- Downward: splus jumps at iqc because f = 4 --> 3

factor = 1./4.-1./3.

call QADDSI ( ’splus’, iqc, factor )

call EVPLUS ( ’splus’, iqc, 1, iqc)

*--- Upward: splus jumps at iqb because f = 4 --> 5

factor = 1./4.-1./5.

call QADDSI ( ’splus’, iqb, factor )

call EVPLUS ( ’splus’, iqb, iqb, nq2 )

Here we have introduced the routine EVPLUS which is identical to EVOLNP except that Qcdnum
checks that you do not evolve over the thresholds (without adding the discontinuities) i.e:

call EVPLUS ( ’splus’, iq0, 1, nq2 )

produces, in this example, a (fatal) error message. The routine

call QADDSI ( ’name’, iq, factor )

adds, for all x at the grid point iq, factor times the singlet distribution to a non-singlet
distribution.

Likewise the charm distribution can be evolved from xq+(x, Q2
c) = −1/4xΣ(x, Q2

c) by:25

25Notice that we first set xq+
c to zero (QNPNUL) for all x and Q2 before supplying the starting value with

QADDSI. Otherwise in QCD fits for instance Qcdnum would continue to add −1/4Σ to the starting value of xq+
c

at each Minuit iteration.
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call QNPNUL ( ’cplus’ )

factor = -1./4.

call QADDSI ( ’cplus’, iqc, factor )

call EVPLUS ( ’cplus’, iqc, iqc, iqb )

factor = 1./4.-1./5.

call QADDSI ( ’cplus’, iqb, factor )

call EVPLUS ( ’cplus’, iqb, iqb, nq2 )

Finally we remark that although Qcdnum knows that it deals with a non-singlet distribution it
has no information on what kind of distribution it actually is, xq−, x∆ or xq+. It is therefore
the responsibility of the user to call the proper evolution routine and, in case of xq+ evolution,
to handle the threshold discontinuities correctly.

4.12 Access to parton distributions and structure functions

In this section we describe how to access parton distributions and how to calculate structure
functions from these. Qcdnum does of course not care where these distributions come from:
they may be the result of a Q2 evolution or, for instance, be read in directly from Pdflib and
passed to memory by the appropriate calls to QNPSET, see section 4.15.

The current value of a parton density is returned by:

value = QPDFIJ ( ’name’, ix, iq, iflag )

value = QPDFXQ ( ’name’, x, q2, iflag )

where ’name’ is a valid name of a memory resident distribution or of a linear combination
(e.g. ’proton’, see section 4.9). The function QPDFXQ gives by linear interpolation the parton
distribution at any value of x and Q2 within the grid. If (ix,iq) or (x,q2) are outside the grid
boundaries or cuts a zero value is returned and iflag = -1 (0 otherwise). To protect against
use of undefined parton distributions or structure functions Qcdnum will abend with an error
message. This behavior can be switched off by setting the logical variable LIMCK to false

call QNLSET ( ’LIMCK’, .false. )

The structure function corresponding to a quark density or linear combination is calculated by:

value = QSTFIJ ( ’opt’, ’name’, ix, iq, iflag )

value = QSTFXQ ( ’opt’, ’name’, x, q2, iflag )

where ’opt’ can be set to ’F2’, ’FL’ or ’XF3’ (see below for the heavy quark structure func-
tions). The calculation is in LO or in NLO depending on the value of order (see section 4.10).
It is the responsibility of the user to evaluate the structure function from the appropriate distri-
bution, e.g. xF3 should be calculated from a non-singlet quark density and not from something
else.26 The variable iflag is set to -1 if Q2 (or any other scale like µ2

M or µ2
R, see section 4.13)

26An attempt to calculate any structure function from the gluon distribution will result in a fatal error. Apart
from this Qcdnum accepts any combination of ’opt’ and ’name’.
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runs outside the grid boundaries or cuts, to 0 if the structure function calculation is successful
and to +1 if the result is obtained from fast calculations (see section 4.14).

The heavy quark contribution to F2 and FL can be calculated with QSTFIJ or QSTFXQ by setting
the input option ’opt’ to ’F2C’, ’FLC’, ’F2B’ or ’FLB’, provided of course that the heavy
quark weight tables are calculated beforehand. There are some restrictions however; we refer
to section 2.5 and make a few remarks below:

• The quark distributions making up the target nucleon and the gluon distribution must
have been evolved with f = 3 flavors for all Q2. In fact, a QCD analysis which uses heavy
quark structure functions must have Q2

c and Q2
b set beyond the highest Q2 grid point to

guarantee that Qcdnum uses f = 3 in all calculations (except αs).

• The heavy quark structure functions can only be calculated for the neutral current pro-
cesses γ∗A → X where A stands for the target nucleon i.e. p (proton), n (neutron) or d
= (n+p)/2 (deuteron). Qcdnum cannot check this so that it is the responsibility of the
user that the input argument ’name’ refers to a correct linear combination, for instance
to an object like the ’proton’ as defined in section 4.9 (for f = 3 flavors).

• Heavy quark structure functions can be calculated for all Q2 (within the grid or cuts) but
might be numerically inaccurate for Q2 < 1.5 GeV2 in this version of Qcdnum. Attempts
to calculate below Q2 = 1.5 GeV2 result in a fatal error unless you switch this check off
by27

call QNLSET ( ’CLOWQ’, .false. )

4.13 The renormalization and factorization scale

In Qcdnum the renormalization and mass factorization scales are defined as

µ2
R = aRµ2

M + bR

µ2
M = aMQ2 + bM . (41)

The default values for the parameters aR,M and bR,M are given in table 6: notice that the mass
factorization scale can be defined independently for the light and the heavy quark structure
functions.28 Qcdnum insists that all scales are within the Q2 grid boundaries and above the
current value of Λ2. In addition the scale µ2

M is required to lie within the cuts, if any.

In practice only one scale at the time is varied. For instance one may identify the factorization
scale µ2

M with Q2 and vary µ2
R in the range Q2/4 < µ2

R < 4Q2, say. This variation affects the
value of αs (being taken at µ2

R instead of Q2) and also the evolution of the parton distributions
through a modification of the NLO splitting functions.

In the second case µ2
R is identified with µ2

M which is varied in the range Q2/4 < µ2
M < 4Q2

for instance. This variation does not affect the evolution but changes the coefficient functions
and therefore relation between the structure functions (given at the scale Q2) and the parton
distributions (given at the scale µ2

M).

27It is probably safe to calculate the structure functions down to Q2 = 0.5 GeV2 or so.
28Changing the scales µ2

R or µ2
M does not require a re-calculation of the weight tables.
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+-------+---+-------+--------------+------------------------------------+

| var |typ| deflt | value | description |

+-------+---+-------+--------------+------------------------------------+

| AAAR2 | R | 1.0 | 0.10000E+01 | R2 = A*M2 + B (ren. scale) |

| BBBR2 | R | 0.0 | 0.00000E+00 | R2 = A*M2 + B (ren. scale) |

| AAM2L | R | 1.0 | 0.10000E+01 | M2 = A*Q2 + B (light fact. scale) |

| BBM2L | R | 0.0 | 0.00000E+00 | M2 = A*Q2 + B (light fact. scale) |

| AAM2H | R | 1.0 | 0.10000E+01 | M2 = A*Q2 + B (heavy fact. scale) |

| BBM2H | R | 0.0 | 0.00000E+00 | M2 = A*Q2 + B (heavy fact. scale) |

+-------+---+-------+--------------+------------------------------------+

Table 6: Default settings for the renormalization and mass factorization scale

Because in the previous sections no reference is made to the different scales (they were all
identified with Q2) some confusion may arise when µ2

M is varied with respect to Q2. The rule is
that parton distribution input, evolution and output are defined on the scale µ2

M . The structure
functions however are given on the scale Q2. As an example let us assume that µ2

M = Q2/4.
Then

value = QPDFXQ ( ’name’, x, 8.D0, iflag )

returns the parton distribution at µ2
M = 8 GeV2 whereas

value = QSTFXQ ( ’opt’, ’name’, x, 8.D0, iflag )

gives the structure function at Q2 = 8 GeV2. This structure function is calculated from the
parton distributions at µ2

M = Q2/4 = 2 GeV2. Indeed, the reader may verify that in LO the
F2 structure function given by QSTFXQ at 8 GeV2 is equal to the quark distribution given by
QPDFXQ at 2 GeV2.

4.14 Fast structure function calculation

The calculation of structure functions is expensive because they require (in NLO) the evaluation
of convolution integrals. This is particularly true for QSTFXQ(..,x,q2,..) where, in general,
the result is obtained from linear interpolation of four structure functions calculated at the
four grid points surrounding x and Q2. The use of QSTFXQ is inefficient if one or more of these
grid points coincide with those of a previous call. This overhead can be eliminated if Qcdnum
knows beforehand for which values of x and Q2 it has to calculate the structure functions.

The structure function calculations might thus be speeded up considerably as follows:

1. Pass a list of x, Q2 points where structure functions are to be calculated. This is done
by calling the subroutine QFMARK e.g:

do i = 1,ndata

x = xdata(i)

q2 = qdata(i)

call QFMARK ( x, q2 )

enddo
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This routine just marks the four grid points surrounding each data point x, Q2. The rou-
tine QFMNUL clears all the marks. The grid points have to be marked only once somewhere
in the initialization phase of the user program, but of course after the x–Q2 grid has been
defined.

2. The call

call STFAST ( ’opt’, ’name’ )

calculates the structure function for all marked grid points. As before, ’opt’ can be set
to ’F2’, ’FL’, . . . and ’name’ to a valid name of a memory resident distribution or linear
combination, see section 4.12. STFAST does of course the same as QSTFIJ but the code
is more efficient. STFAST stores the results for later interpolation in 20 memory locations
reserved for this purpose. If more than 20 different structure functions are calculated (i.e.
more than 20 different combinations of ’opt’ and ’name’) STFAST runs out of storage
space and acts as a do-nothing. Qcdnum then switches automatically to slow structure
function calculations.

3. Finally the value of the structure function can be obtained by calling QSTFIJ or QSTFXQ as
described in section 4.12. These functions will, if possible, pick up the results calculated
by STFAST and perform the interpolation, if any; if not possible the structure function is
calculated from scratch.

4. In the unlikely event that you want to calculate more than 20 structure functions with
STFAST you can, after step (3), clear the memory allocation by calling STFCLR and repeat
steps (2) and (3) for a next batch of 20 structure functions.

A call to QPRINT(lun,’Stats’) prints a log as shown in table 7. From this log it is seen that
(almost) all structure functions are obtained from STFAST and that no structure functions are
calculated outside the grid or cuts.

To summarize, you can speed up the structure function calculations by simply marking grid
points using QFMARK and calling STFAST before the calls to QSTFIJ or QSTFXQ. See section 5 on
the performance.

-----------------------------------------------------------------

Structure function calls F2 FL xF3 F2h FLh

-----------------------------------------------------------------

Slow calculation 577 0 10 624 0

Fast calculation 1423961 0 93241 1425183 0

Outside grid or cuts 0 0 0 0 0

-----------------------------------------------------------------

Total 1424538 0 93251 1425807 0

-----------------------------------------------------------------

Table 7: Qcdnum log of the number of structure function calls
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4.15 Structure functions from external parton distribution sets

As mentioned in section 4.12 Qcdnum can be used to calculate structure functions from any
given parton distribution set. These parton distributions can be obtained from e.g. Pdflib and
stored in Qcdnum memory using the routine QNPSET. Doing so you should keep the following
in mind:

• The parton distribution set should have been defined in the MS scheme.

• The order (LO or NLO), the flavor thresholds and αs in Qcdnum should be set identical
to those of the parton distribution set.29

• The quark distributions stored in Qcdnum memory should either be singlet (xΣ) or non-
singlet. Composite objects like the proton can be defined using the routine QNLINC,
see section 4.9. It is for instance wrong to store the charged weighted sum of quark
distributions and calculate structure functions from this.

• When NLO structure functions are calculated from the singlet quark distribution or from
a linear combination containing the singlet, the gluon distribution must be supplied as
well. For non-singlet structure functions the gluon distribution is not needed.

• When heavy flavor structure functions are calculated the parton distribution set must
have been evolved with f = 3 flavors only.

• When the parton densities are read in for part of the x–Q2 grid only one may delimit this
region by appropriate cuts so that Qcdnum can verify that no undefined distributions are
used.

• Once the parton distributions are read in one can study the factorization scale dependence
of the structure functions by varying µ2

M . A variation of the renormalization scale does not
make sense because this requires an evolution of the parton distributions, see section 2.4.

4.16 Access to more information

Qcdnum info is printed on logical unit number lun by a call to

call QPRINT ( lun, ’opt’ )

opt = ’P’ Qcdnum parameters and options

’X’ x-Q2 grid

’B’ Booking list of parton distributions

’S’ Stats on structure function calls

’T’ Timelog

’A’ All of the above

A logical unit number other than 6 should be opened by the user. An example of a timelog is
given in table 8. It gives for the evolution routines the number of calls, the number of evolutions

29Notice that the authors of the set may have used a different αs evolution algorithm than Qcdnum. This
can lead to (small) inconsistencies.
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-------------------------------------------------

Routine # calls # evols CPU sec CPU/evol

-------------------------------------------------

EVOLNM 1000 431.6 14.7 0.03

EVOLNP 1000 431.6 15.2 0.04

EVOLSG 500 215.8 22.7 0.11

-------------------------------------------------

AP total 2500 1079.0 52.6 0.05

STFAST 500 250000.0 7.3

QNFILW 0 0.0

Other 13.1

-------------------------------------------------

Total 73.0

-------------------------------------------------

Table 8: Example of a Qcdnum timelog

normalized to the size of the x–Q2 grid,30 the CPU time spent and the number of CPU seconds
per evolution. Also given is the time spent in fast structure function calculations31 and that in
creating the weight tables (none in this example since the weights were taken from disk). The
entry ‘other’ gives the time spent in any other Qcdnum routine (e.g. QSTFXQ) or user routine
(e.g. Minuit) between the moment QNTIME was called and the moment of the printout.32

Splitting and coefficient functions can be accessed by

val = QNSPLF ( ’opt’, x, q2, nf )

30Parton distributions are often evolved over part of the grid only.
31The second column gives the number of structure function calculations.
32If you want to continue logging after the printout please call QNTIME with argument ’Start’ (start a new

log) or ’Continue’ (continue with the present log).

Option Function Option Function

PFF1 P
(0)
FF (x) C1Q C

(1)
1,q (x)

PFG1 P
(0)
FG(x, f) C1G C

(1)
1,g (x, f)

PGF1 P
(0)
GF (x) C2Q C

(1)
2,q (x)

PGG1 P
(0)
GG(x) C2G C

(1)
2,g (x, f)

PFF2 P
(1)
FF (x, f) CLQ C

(1)
L,q(x)

PFG2 P
(1)
FG(x, f) CLG C

(1)
L,g(x, f)

PGF2 P
(1)
GF (x, f) C3Q C

(1)
3,q (x)

PGG2 P
(1)
GG(x, f)

PPL2 P
(1)
+ (x, f)

PMI2 P
(1)
− (x, f)

Table 9: Selection options in QNSPLF
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The input character variable ’opt’ selects the splitting or coefficient function as listed in table 9.
As indicated in this table, some functions depend on x only (in which case the value of q2 and
nf are irrelevant) whilst others depend in addition on either f (then q2 is irrelevant) or Q2

(then nf is irrelevant). The function QNSPLF is not affected by grid definitions and may thus
be called at any time after QNINIT. Several splitting/coefficient functions are not defined for
x = 1 (only their integral over an interval containing x = 1 as an upper limit): these functions
are set to zero at x = 1.

4.17 Qcdnum error handling

Qcdnum is robust or at least attempts to be: it should either give the correct answer (numer-
ically) or grind to a halt printing an error message. An example of such a message is given
in table 10: here we have attempted to calculate the proton F2 structure function outside the
grid boundaries or cuts. Fatal errors might have their cause upstream. For example if weights
are calculated and the x–Q2 grid is changed afterwards, the weight tables (which are defined
on the grid) are invalidated. The first call to a routine which uses them will cause an abend
complaining that the weights are not available. To avoid such errors we recommend to stick to
the flow of action as described in section 4.2.

In spite of the error checking mechanism there is still room to go astray with a Qcdnum based
analysis. As a reminder we summarize below the most important do’s and dont’s described in
the previous sections.

• QNINIT must be called before any other Qcdnum routine.

• When run in double precision mode floating point variables passed to Qcdnum should

+----------------------------------------------------+

| |

| ------------------------------------ |

| QCDNUM error in s/r QSTFXQ ---> STOP |

| ------------------------------------ |

| Input Opt : F2 |

| Name : PROTO |

| x : 0.63000E-04 |

| Q2 : 0.35000E+01 |

| |

| X, Q2 or mu2 outside grid or cuts |

| |

| x = 0.63000E-04 xmin = 0.10000E-04 pass |

| Q2 = 0.35000E+01 Qmin = 0.75000E+00 pass |

| Q2 = 0.35000E+01 Qmax = 0.60000E+04 pass |

| s = 0.55556E+05 Smax = 0.44100E+05 fail |

| Q2 = 0.35000E+01 Qmin_alphas = 0.16818E+00 pass |

| |

+----------------------------------------------------+

Table 10: Example of a Qcdnum error message
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be declared double precision in the calling routine and actual values should be written
in double precision format e.g. 0.188D0. Qcdnum floating point functions must also be
declared double precision.

• Do not change Qcdnum parameters in between calculations such as evolving in NLO and
calculating structure functions in LO.

• Input parton distributions must be the gluon, the singlet or non-singlet momentum den-
sities and not a mixture of these. Qcdnum assumes that the gluon is stored in memory
location ID = 0, the singlet in ID = 1 and the non-singlet distributions in the remaining
locations ID = 2-10.

• Qcdnum does not verify if starting values of parton distributions are supplied (it checks
if they are booked though).

• Evolution routines do not clear the memory before the evolution. Thus, if you evolve over
a restricted range iqmin, iqmax in Q2 (or apply cuts) then outside this range the value
of the parton distribution will remain to be whatever it was before the evolution.

• Non-singlet xq+ distributions are discontinuous at the flavor thresholds (if any). The
discontinuities are not automatically taken into account by the evolution routines.

• xF3 is a non-singlet structure function and should therefore be calculated from (a linear
combination of) non-singlet densities only.

• Heavy quark F2,L structure functions should only be calculated from linear combinations
representing the proton, deuteron or neutron quark distributions in charged lepton scat-
tering. The parton distributions must have been evolved with f = 3 flavors for all Q2.

5 Size, accuracy and speed

The size of the Qcdnum executable can be controlled by setting the parameters mxx and mq2

to the maximum number of grid points you want to use in your analysis (see section 4.1).
For mxx = 100 (150) and mq2 = 40 the size is 3.3 (5.2) Mbyte (as measured with the Unix
command ‘size’).

The accuracy of Qcdnum depends on the choice of the x–Q2 grid as illustrated in fig. 2. Here we
take as a reference parton distributions evolved from Q2 = 4 up to Q2 = 104 GeV2 on a 400×60
x–Q2 grid covering a large range 10−5 ≤ x ≤ 1. For such a grid Qcdnum results were shown to
be in agreement with several other NLO evolution codes to within 0.05% [5]. Choosing nx =
(200, 100, 70) the accuracy on F2 (and on the quark distributions) is within (0.1, 0.5, 1)% at
the highest Q2 as shown in fig. 2a.33 This is slightly worse for the gluon distribution (fig. 2b),
in particular at high x but here the gluon density vanishes. The deviations are of course zero
at the input scale (4 GeV2) and increase linearly with ln Q2 to the values at Q2 = 104 GeV2

shown in fig. 2.

33The accuracy deteriorates rapidly if the x–grid has less than 70 points.
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Figure 2: (a) The deviation ∆F2/F2 and (b) ∆xg/xg at Q2 = 104 GeV2 as a function of x for a 70, 100 and
200 point x grid and a 60 point Q2 grid. The deviations are taken with respect to parton distributions evolved
on a 400× 60 x–Q2 grid.

It turns out that Qcdnum is rather insensitive to the number of Q2 grid points: the change in
xg is not more than 0.06% if nq is reduced from 60 to 20.34

Figure 3 shows the CPU time spent for 500 passes through a Qcdnum based calculation as
function of the number of x-grid points. Each pass consisted of one singlet/gluon evolution
and four non-singlet evolutions. Furthermore F2 structure functions were calculated for 500
points randomly distributed below the kinematic limit Q2 = xs with

√
s set to 300 GeV. The

amount of CPU time increases quadratically with the number of grid points in x (and linearly
with that in Q2, not shown) but is still only about 8 minutes for 2500 evolutions and 25× 104

structure function evaluations on a 150× 60 grid. Also shown in fig. 3 is the effect of a
√

s cut
which speeds up the evolutions by more than a factor of two (fig. 3b).35 Only a quarter of the
CPU time is spent when STFAST is used to calculate the structure functions instead of QSTFXQ
(fig. 3c). In practical cases however the gain will be less (factor 2 typically) since structure
function data are usually ordered in bins of x and Q2 instead of being randomly distributed as
in this example.

To summarize, a good initial choice is about 100 grid points in x and about 40 in Q2. This
gives an executable size of about 3 Mbyte, an accuracy of well within 1% over a large kinematic
range and execution times of the order of 10 minutes for several thousand evolutions and a few
hundred thousand structure function evaluations.

34If heavy quark structure functions are calculated the number of Q2 grid points should however not be taken
too small.

35In QCD fits you can still have the evolution on the whole x–Q2 grid by releasing the cut once the fit has
converged (‘iflag = 3’ in Minuit language).
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Figure 3: CPU time spent for 2500 evolutions and 250000 F2 calculations as function of the number of x–grid
points for a 60 point Q2–grid. (a) Total time; (b) time spent in QCD evolutions; (c) time spent in structure
function calculations. The dashed curves correspond to evolutions on part of the grid and the dotted curves to
invoking fast structure function calculation in addition.

6 Qcdnum subroutine calls (reference section)

In this section we give a short description of all Qcdnum subroutine calls (see also table 2 in
section 4.2). We use the convention described in section 4.2 to denote logical, integer, floating
point and character variables. Output variables are indicated with an asterisk.

6.1 Description of subroutines

call QNINIT

To be called before anything else. Initializes a large set of constants and sets reasonable defaults.

call QNVERS ( *’version’, *Ldouble, *nxmax, *nqmax )

Output:

• ’version’: current version number. Should be declared character*8 in the calling
program.
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• Ldouble: returned as .true. (.false.) if the current version is in double (single)
precision. Should be declared logical in the calling program.

• nxmax, nqmax: the maximum number of grid points in x and Q2 the user can define.

call QNTIME ( ’option’ )

Start Qcdnum timelog (option ’Start’), stop the log (’Hold’) or continue with the current
log (’Continue’). A printout (see QPRINT) stops the current timelog.

call QNtSET ( ’tvar’, tval )

• QNLSET(’Lvar’,Lval): set the logical Qcdnum variable ’Lvar’ to Lval.

• QNISET(’Ivar’,Ival): as above, but for integer variables.

• QNRSET(’Rvar’,Rval): as above, but for real/double precision variables.

See table 3 in section 4.5 for a list of variables you can set.

call QNtGET ( ’tvar’, *tval )

As QNtGET but now retrieve the value tval corresponding to the Qcdnum variable ’tvar’.

call GRXDEF ( nx, xmi )

Clear the current x grid and generate a grid covering the range xmin ≤ x ≤ 1 with nx points.
The grid is logarithmic (linear) below (above) the value ’scaxo’ (default 0.2, can be reset by
a call to QNRSET).

call GRQDEF ( nq, qmi, qma )

Clear the current Q2 grid and generate a logarithmic grid covering the range Q2
min ≤ x ≤ Q2

max

with nq points.

call GRXINP ( xarray, nx )

Add nx points as specified in the input array xarray to the x–grid. The list of grid points may
be given in arbitrary order. The routine will always generate the grid point x = 1 even if it is
not included in the list xarray.

call GRQINP ( qarray, nq )

As GRXINP, but now add nq points to the Q2–grid.
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call GRtNUL

• GRXNUL: clear the x grid.

• GRQNUL: clear the Q2 grid.

call GRMXMQ ( *nxmax, *nqmax )

Returns the maximum number of grid points the user can define. See section 4.1 on how to set
these (in the Qcdnum source code).

call GRGIVE ( *nx, *xmi, *xma, *nq, *qmi, *qma )

Output:

• nx, xmi, xma: number of grid points and limits of the current x–grid. The grid point
x = 1 is not included in the count nx. GRGIVE should always return xma = 1.

• nq, qmi, qma: number of grid points and limits of the current Q2–grid.

call GRXOUT ( *xgrid )

Copy the current x–grid to a local array xgrid which must be dimensioned to at least nx in
the calling routine. The array xgrid does not contain the point x = 1.

call GRQOUT ( *qgrid )

Copy the current Q2–grid to a local array qgrid which must be dimensioned to at least nq in
the calling routine.

x = XFROMIX ( ix )

Returns the value corresponding to the grid point ix. If ix is outside the grid boundaries or if
the x-grid is not defined, XFROMIX returns zero.

q2 = QFROMIQ ( iq )

As above, but now for the Q2–grid.

ix = IXFROMX ( x )

Returns the grid index ix corresponding to a given value of x.

• If x is outside the grid boundaries, ix is set to zero.
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• If x coincides with a grid point ix is positive and corresponds to that grid point.

• If x does not coincide with a grid point, ix is negative and -ix corresponds to the closest
grid point which lies below x.

iq = IQFROMQ ( q2 )

As above, but now for the Q2–grid.

ix = IXNEARX ( x )

As IXFROMX but ix now corresponds to the grid point closest to x instead of that below x.

iq = IQNEARQ ( q2 )

As above, but now for the Q2–grid.

call GRCUTS ( xmi, qmi, qma, roots )

Pass cuts to Qcdnum such that evolutions are only performed in the kinematic domain defined
by xmin ≤ x ≤ 1, Q2

min ≤ Q2 ≤ Q2
max and Q2 ≤ xs, where roots =

√
s is the center-of-mass

energy. To release a cut or not apply it at all, set the corresponding parameter to a value ≤ 0.
GRCUTS can be called at any time even before the x–Q2 grid is defined.

istat = IFAILIJ ( ix, iq )

Returns a non-zero value if ix or iq falls outside the grid boundaries or cuts:

ifail = ijklm : i = 0/1 no/yes fail QMINA cut

j = 0/1 no/yes fail ROOTS cut

k = 0/1 no/yes fail QMAX cut

l = 0/1 no/yes fail QMIN cut

m = 0/1 no/yes fail XMIN cut

The QMINA cut is set automatically by Qcdnum to the lowest Q2 grid point above the current
value of the QCD scale parameter Λ2.

istat = IFAILXQ ( x, q2 )

As above but now for x, Q2.

call QNFILW ( 0, 0 )
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Generate weight tables needed for the calculation of convolution integrals in the QCD evolution
and structure function routines. Should be called after the x–Q2 grid is defined. For a complete
description of QNFILW see section 4.7.

call QNDUMP ( lun )

Write weight tables to logical unit number lun which should have been opened before by the
user e.g:

OPEN(unit=24,file=weights.file,form=’unformatted’,status=’unknown’)

Written to the file are (i) the Qcdnum version number, (ii) the parameters mxx and mq2 (see
section 4.1), (iii) the x and Q2 grid, (iv) the current value of the charm and bottom mass and
(v) those weight tables which are available when QNDUMP is called. See section 4.8 for details.

call QNREAD ( lun, istop, *ierr )

Read weight tables from logical unit number lun which should have been opened before by the
user (see above). This routine will not only read the weight tables but also overwrite the x–Q2

grid (if any) and the charm/bottom mass in memory. See section 4.8 for a description of the
input parameter istop and the output flag ierr.

call QNBOOK ( id, ’name’ )

Associate memory location id with the name of a parton density:

• id = 0: reserved for the gluon distribution with the predefined name ’gluon’.

• id = 1: reserved for the singlet quark distribution with the predefined name ’singl’.

• id = 2-10: reserved for non-singlet distributions as defined by the user. At initialization
the names of these locations are set to ’free’.

• Qcdnum translates all names to upper case and truncates them to the first five characters
which must be unique.

• An identifier cannot be booked twice unless the name has been previously set to ’free’.

call QNLINC ( id, ’name’, nf, factors )

Define a linear combination of quark distributions:

• id = 11-30: input identifier.

• ’name’: name of the linear combination.

• nf = 3-5: the number of flavors. For each combination of id and ’name’ you can define
three different linear combinations for f = 3, 4 or 5 flavors.
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• factors: 10-dimensional floating point input array containing the multiplication factor
for the singlet distribution in factors(1) and that for the non-singlet distributions in
factors(2) through (10).

id = IPDFID ( ’name’ )

Returns for a given name the identifier id. The input name should correspond to that of
a memory resident quark distribution i.e. not gluon or the name of a linear combination.
Qcdnum abends with a fatal error message if it cannot find an identifier associated with the
input name.

call QTHRES ( q2c, q2b )

Set the flavor thresholds Q2
c and Q2

b ; Q2
c < Q2

b . Can be called at any time, even before
the x–Q2 grid is defined. At initialization Q2

c (Q2
b) is set to minus (plus) a very large value

so that by default f = 4 in all Qcdnum calculations. Actual values can be retrieved by
QNRGET(’tchrm’,q2c) and QNRGET(’tbott’,q2b) respectively.

nf = NFLGET ( iq )

Get the number of flavors associated with the grid point iq. If iq is outside the grid boundaries
NFLGET returns with a fatal error.

alphas = QALFAS ( q2, *qlambda, *nf, *ierr )

Calculate αs(Q
2). The calculation depends on the input value of αs(Q

2
0) at some reference scale

Q2
0, the quark mass thresholds and the order of the Qcdnum calculations. All these parameters

are set at initialisation and can be changed by calls to QNISET/QNRSET, see section 4.5. Apart
from αs the function also returns value of the QCD scale parameter Λ, the number of active
flavours f and an error flag ierr which is set to 0 (1) if Q2 is above (below) Λ2. If Q2 ≤ Λ2

(ierr = 1) then (arbirarily) QALFAS = 100 and qlambda = 0.

call QNPSET ( ’name’, ix, iq, value )

Set the value of the parton distribution ’name’ at the grid point (ix,iq). A fatal error occurs
if ’name’ does not correspond to that of a memory resident distribution, if the x–Q2 grid is
not defined or if (ix,iq) is outside the grid boundaries.

call QADDSI ( ’name’, iq, factor )

Add factor times the singlet distribution to a non-singlet distribution. The addition is done at
fixed iq for all grid points in x. See section 4.11 on how QADDSI is used to add discontinuities of
xq+ distributions at the flavor thresholds. Error messages: as for QNPSET; in addition QADDSI

cannot be called for the gluon and the singlet quark distribution.
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call QNPNUL ( ’name’)

Set the patron distribution ’name’ to zero. A fatal error occurs if ’name’ does not correspond
to a memory resident distribution.

call EVOLSG ( iq0, iqmin, iqmax )

Evolve the gluon and the singlet quark distribution over the range [iqmin,iqmax] starting
from the grid point iq0. A fatal error occurs if iq0 lies outside the range [iqmin,iqmax]. This
range might have been adjusted internally by Qcdnum if Q2 cuts are made. For further details
see section 4.11.

call EVOLNP ( ’name’, iq0, iqmin, iqmax )

As above, but now evolve a non-singlet xq+ or x∆ quark distribution. A fatal error will occur if
’name’ does not correspond to a non-singlet memory resident distribution. For further details
see section 4.11.

call EVPLUS ( ’name’, iq0, iqmin, iqmax )

As above, but check that the number of flavors does not change in the range [iqmin,iqmax].
To be used for xq+ evolution which is discontinuous at the flavor thresholds. For further details
see section 4.11.

val = QPDFIJ ( ’name’, ix, iq, *iflag )

Returns the value of the parton distribution name or linear combination at the grid point ix,
iq. If ix or iq are outside the grid boundaries or cuts val is set to zero and iflag to -1 (0
otherwise). Qcdnum will then abend with an error message unless the flag LIMCK has been set
to false.

val = QPDFXQ ( ’name’, x, q2, *iflag )

As above but now for x and Q2.

val = QSTFIJ ( ’opt’, ’name’, ix, iq, *iflag )

As QPDFIJ but calculate the structure function opt of parton distribution (or linear combina-
tion) name. The input variable opt can be set to F2, FL, xF3, F2C, FLC, F2B or FLB. Qcdnum
accepts every combination of opt and name except the name associated with the gluon distri-
bution. The output variable iflag is set to

• -1: ix and/or iq outside grid or cuts. In this case val is set to zero. Qcdnum abends
with a fatal error unless LIMCK is set to false.
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• 0: calculation successful.

• +1: structure function obtained from the results of STFAST (see below).

For further details on the use of QSTFIJ see section 4.12, 4.14 and 4.15.

val = QSTFXQ ( ’opt’, ’name’, x, q2, *iflag )

As above but now for x and Q2.

call QFMARK ( x, q2 )

Mark the four grid points surrounding x and Q2 for fast structure function calculation. Qcdnum
abends with a fatal error message if x and/or Q2 are outside the grid boundaries.

call QFMNUL

Clear all the marks previously set by QFMARK.

call STFAST ( ’opt’, ’name’ )

Calculate the structure function opt (see above) of parton distribution name for all grid points
marked by QFMARK. The results are stored internally for later interpolation (by QSTFIJ or
QSTFXQ) for up to 20 different combinations of opt and name. If there are more than 20
different combinations STFAST acts as a do-nothing.

call STFCLR

Clear the memory allocation made by STFAST. Previous results calculated by STFAST are inval-
idated.

call QPRINT ( lun, ’opt’ )

Print Qcdnum info on logical unit number lun. A logical unit number other than 6 should be
opened by the user. The input parameter opt can be set to

’P’ Qcdnum parameters and options.

’X’ x-Q2 grid.

’B’ Booking list of parton distributions.

’S’ Stats on structure function calls.

’T’ Timelog.

’A’ All of the above.

A printout of the timelog (option T) causes a halt of the logging. If the log is to be continued
please call QNTIME(’Start’) or QNTIME(’Continue’) after QNPRINT.

52



7 Acknowledgments

I am of course much indebted to the original authors of Qcdnum: M. Virchaux and A. Ouraou.
I would like to thank M. Virchaux for making the code available to me in 1991 and for his
contributions during the first steps on the tortuous road to bring the program up to its present
version. J. O’Mara and M. Vreeswijk contributed to the Qcdnum upgrades for the QCD analysis
of the ZEUS 1993 F2 data. The NLO heavy quark coefficient functions were taken from a
program kindly provided by S. Riemersma. Qcdnum results were regularly checked against
those obtained from a similar program developed independently by M. Vreeswijk. Detailed
comparison with several other NLO evolution codes was made during the HERA 1995-1996
workshop: here I much enjoyed the collaboration with J. Blümlein, C. Pascaud, S. Riemersma,
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A QCD splitting and coefficient functions

The leading order splitting functions are [14]:

P
(0)
FF (z) =

4

3

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]

P
(0)
FG(z) =

f

2

[
z2 + (1− z)2

]
(42)

P
(0)
GF (z) =

4

3

[
1 + (1− z)2

z

]

P
(0)
GG(z) = 6

[
z

(1− z)+

+
1− z

z
+ z(1− z) +

(
11

12
− f

18

)
δ(1− z)

]

where the so-called ‘+’ prescription is defined by:

[f(x)]+ = f(x)− δ(1− x)
∫ 1

0
f(y)dy. (43)

Notice that ∫ 1

x
f(z)[g(z)]+dz =

∫ 1

x
[f(z)− f(1)]g(z)dz − f(1)

∫ x

0
g(z)dz

and in particular that

∫ 1

x
dz

f(z)

(1− z)+

=
∫ 1

x
dz

f(z)− f(1)

(1− z)
+ f(1) ln(1− x).

The coefficient functions are given by [7]:

C
(1)
2,q (x) =

4

3

[
1 + x2

1− x

(
ln

1− x

x
− 3

4

)
+

1

4
(9 + 5x)

]
+

C
(1)
2,g (x) = f

[
(x2 + (1− x)2) ln

(
1− x

x

)
− 1 + 8x(1− x)

]
(44)

53



C
(1)
L,q(x) =

8

3
x

C
(1)
L,g(x) = 4fx(1− x)

C
(1)
3,q (x) = C

(1)
2,q −

4

3
(1 + x). (45)

Notice the ‘+’ prescription in C
(1)
2,q : a non-singlet F2 structure function, for instance, is thus

given by:

F ns(x) = xqns(x) +
αs

2π

{
x
∫ 1

x

dy

y2
[yqns(y)− xqns(x)] C

(1)
2,q (x/y)− xqns(x)

∫ x

0
dyC

(1)
2,q (y)

}
. (46)
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