Getting Started with Excel’s
Visual Basic for Applications

This introduction presumes prior programming experience, such as C++ or Java. In
other words, many “fundamental” programming ideas will not be covered! This
handout instead focuses on getting you up to speed in programming for Visual Basic
for Applications, in particular as it is implemented in Microsoft Excel.

After completion of this module, you should be able to do the following:

7.

8.
9.

create functions, subroutines, and UserForms;

perform mathematical and Boolean manipulations;

pull in data from the user and display results;

use structures such as IF and FOR for repetitive and evaluative elements

Overview of this Tutorial
Introduction
Sample start-up codes: Function, Subroutine, and UserForm
a. Self-check
Saving (and restoring) your work
a. Self-check
The programming environment: windows, events, variables, math
a. Self-check
Subroutines and functions
a. Self-check
Inputs and Outputs
a. Self-check
Structures: IF, DO, WHILE, FOR, SELECT...CASE
a. Self-check
Other Handy Tricks, including serial communication
Assignments

10. References and Resources

1. Introduction

Visual Basic for Applications (VBA) is a high level programming language
that evolved from the earlier language Visual Basic 6 (VB6), which itself
evolved from the DOS version called BASIC. BASIC is a relatively easy
programming language to learn, since the code looks a lot like English.
Different software companies have produced different versions of BASIC, but
Microsoft VBA is very pervasive today, as it is a well developed programming
language and supporting resources are available everywhere. Many features
and solutions that have been produced for VB6 can be readily adapted into
VBA. (VB6 is a popular “legacy” language that is still widely used; however,
newer applications use VB.net and VB2010, which have capabilities and

complexity beyond what is used in your EP courses.) With VBA in Excel, users
can go beyond simple macros and write programs that draw on both the
Excel functionality (functions, charts, shapes) as well as those of the
Windows Application Programming Interface (API).}iBecause VBA is
accessible through the Microsoft Office suite, it can be used to create
“macros” within those programs. However, it can also be used to access
nearly any aspect of your computer through the Windows API (which can be
incorporated into Excel and other MSOffice programs.

In VBA, programming is done in a graphical (visual) environment. In the old
BASIC, one would write program code for each graphical object on the
screen, including its position and its color. However, In VBA, this can be done
simply via drag and drop and menu controls.

Each object has to be programmed independently to be able to response to
actions (events). Therefore, a VBA Program is made up of many
subprograms, each with its own program code. Each can be executed
independently and at the same time each can be linked together.

Visual Basic for Applications: Basics in Excel

Several books and websites exist that show the basics of VBA in Excel.ii Here

we present an overview of how to get started.

1. First, enable the “Developer” tab in Excel (see Figure 1 below). This is
done by checking the appropriate box under “Excel Options,” and enables
access to VBA programming and code.

Iﬂ = M= Bookl - Microsoft Excel
File Home Insert Page Layout Formulas Data Review View Developer Add-Ins
/_j = 3 Record Macro S AP Properties E Epimport aﬁ
==z E Use Relative References N Q'J Wiew Code zj Expansion Packs t —
Visual Macros Ihsert Desic Source Document
Basic /1 Macro Security v Mode 8 Run Dialog < Panel
Code Controls HML Modify
N18 - Fe

Figure 1. Developer tab in Excel 2010 (from Microsoft Developer Network;
http://msdn.microsoft.com/en-us/library/ee814737(v=office.14).aspx .

2. Selecting “Visual Basic” (leftmost button in Figure 1) switches to the
Visual Basic Editor (VBE) view, which shows the code windows. The
“Project” window (Figure 3 below) shows the worksheets in the
workbook, as well as any modules associated with the workbook.
(Modules are containers for code that can be used by the entire
workbook; right-clicking on the VBA Project allows one to insert or
import a new module.)

3. By double-clicking the module, a coding window appears (Figure 2).
Here, one may create functions - which return a value - or a subroutine,
which can follow more complex instructions. Once created, these can be
called within Excel or by other subroutines and functions.

v @ VBAProject (Workbook1)
¥ (L1 Microsoft Excel Objects
" Sheetl (Sheetl)
| ThisWorkbook
¥ (11 Modules
#% Modulel

Figure 3. Project window in VBA. Modules are
“containers” for code that can be accessed by the
entire workbook.

68 00 Workbook1 - Modulel (Code)

(General) v | DemoSub v

Sub DemoSub(varl As Double)

End Sub

0

Figure 2. Coding window for a module.

2. Sample start-up codes: Function, Subroutine, and UserForm
To begin, we'll create some simple programs in order to get introduced to VBA.
We'll create three of the common types of programming objects, which will all be
described in more detail in later sections: Functions, Subroutines, and
UserForms.

First, we'll use VBA to create a simple function that can be used in Excel
(or in other VBA programs).

A Function is a group of VBA statements that performs a calculation and returns a
single value. This is much like the functions you already know how to use in Excel:
sin(), exp(), etc. Functions can be executed on a spreadsheet, or by another
subroutine.

To create the function, the first steps are similar to what’s needed for Subroutines
and UserForms:

A. Start Microsoft Excel. If the Developer tab is not visible or available, open the
“Options” window in Excel, and enable the Developer tab, as described above.

(Alternatively, depending on your version of Excel, you check the
“Developer” box under “Customize Ribbon.”)

In your Excel workbook, click on the Developer tab, and then the “Visual
Basic” button at the far left. This puts you into “Visual Basic Editor” mode
(VBE) To the left, you will see £ Microsoft Visual Basic for Applications - Bookl l
the “Project Explorer” window
(which is simply titled .
“VBAProject”). In this 5 @ & - H_ ‘ A
window, you see the Eropect = NEAbroject)
“Microsoft Excel Objects” of TENE N - F—
your workbook - most likely ' #al oo
three worksheets. To add a e
Module, where you can write || FewOfgecs

§Ei|e Edit View Inset Format Debug Run

code that the entire workbook VBAProject Properties...
can use, right-click on the Insert » & UserForm
“VBAProject” in the Project Import File... @ Module

window. In the pop-up
window, select “Insert >
Module.” You will then have

Export File & Class Module

@ Print...

added Modulel, and its Code Figure 4. Inserting a Module in the Visual Basic
window will appear (see Editor.

Figure 4).
In this “Book1 - Modulel (Code)” window enter the following:

Function CubeRoot (number)
CubeRoot = number ~ (1/3)
End Function

. Now, go back to “regular Excel” by clicking on the green “Excel” icon in the
upper left of the screen. Select a cell in your spreadsheet and try out your
new function. (I.e., type “=cuberoot(8)”.) Congratulations! You've just
extended Excel’s capabilities.

You can easily create functions of more than one variable, too. Go back to the
VBE and enter the following (these can be entered below the previous
function), then try it out in the spreadsheet!

Function sum(a, b)
sum = a + b
End Function

Next, we'll create a simple subroutine in the VBE.

F. You will next write a Sub procedure (or subroutine): a group of statements

that performs an action (or actions). Subroutines can call the same functions
that Excel can call. Enter the following in the VBE, below your previous
work:

Sub NewSub ()
dim a as double
a = inputbox(“enter a number”)
msgbox cuberoot(a)

End Function

Notice a few things, before we go any farther: (1) the VBE automatically
capitalized words for you; (2) we had to declare the variable type for a (more
on this below); (3) the subroutine uses your new CubeRoot function; (4) we
are using two new VBA objects for input & output: InputBox and MsgBox. We
will get into more detail on these shortly.

To run this subroutine, you can either: (1) press the F5 key while the cursor
is in the Code window, or (2) press the “play” icon (triangle) in the Standard
toolbar at the top of the window. Do this. You’'ve now created a program
usable in Excel! Granted, this was a simple program - read on for more
powerful applications.

Finally, we'll create a simple UserForm.

L

A UserForm appears to the user as a separate, stand-alone window. You've
been exposed to simple versions of UserForms in the previous example, with
InputBox and MsgBox. A UserForm is handy for collecting multiple pieces of
information from the user: input values, destinations, etc.

For now, we'll create a UserForm that can be called with a button on the
spreadsheet, and will execute a simple routine. First, go to the VBE (Visual
Basic Editor).

Right-click on the Project window, as you did before when inserting a new
Module. This time, select Insert > UserForm.

Two new windows will appear: the UserForm window, and the Toolbox.
First, we’ll “draw” the UserForm. (See Figure 5.)

M. On the Toolbox, select the CommandButton icon (10t icon; hovering the
pointer over it reveals the name). Then, click on the UserForm and draw a

button' a Microsoft Visual Basic for Applications - Bookl‘ _
! File Edit View Insert Format Debug Run Tools Add-Ins Window Hel
N. Next, select the - d @ 48 » na 25 0
TextBox icon on the Project - VBAProject x|
rd j =M=l |
ToolBox (3¢ icon). =y ey K 4 Bookl - Modulel (Code)
DraW a reCtangle on & & o Micr:soft Excel Objects
your UserForm. Your Sheetl (Sheet1)
i Sheet2 (Sheet2)
UserForm should look) sheet3 [
hi like th - g8 Thiswor
something like the o8& roms Contels |
1 i -[g UserFor|
ﬁgure below. -3 Modules K A abl B8
-4 Module v & '__.
0. We now need to add E) =0 2)
some code that is dRm

executed with the
button click. Double-
click on the
CommandButton1 icon in the UserForm. Userbormt

Figure 5. ToolBox and UserForm windows.

P. A new window should appear: “Book1 -
UserForm1(Code)”. The first and last lines of a
subroutine associated with that button will
appear. Complete the following code, which

will run every time CommandButton1 is
clicked:

CommandButton1

Figure 6. Completed UserForm.

Private Sub CommandButtonl_Click()
Range (“B2"”)=CubeRoot (TextBoxl.Value)
End Sub

Q. Now, we want to make the new UserForm appear with the click of a button.
Go back to the spreadsheet (click on the green “Excel” icon, top left). Select

T ———

the Developer tab. AE9 T BT ~—

m Home Insert Page Layout Formulas Data
R. Click on the “Insert” button, then Bl [SRecord Moo & = &N
select the “Button” from the Form et E:J:* Re':““_f:f“e““‘ 5o I?:,t S

. . I\ Macro Securi b v

Controls in the window that appears **“ - Add-ns »
K Code Form Controls L

(see Figure 7). AL = % =Bz g=oe
(M4 & bIEEAEAE

. @_j Bookl Adivexxéontrols

S. Click and drag on the spreadsheet to = = c s ECEE

draw the button. 1 ' slo Al

Figure 7. Selecting Form Controls for the
T. Once you release the mouse, an spreadsheet (in Spreadsheet view).

“Assign Macro” window appears.
Select “New,” as this macro doesn’t yet exist. (See Figure 8 below.)

U. Yet another coding window appears, again
with the first and last lines of code written for
you. Enter the code below:

Sub Buttonl_Click()
UserForml.Show
End Sub

V. That’sit! To try your code, go back to the
spreadsheet view. Click on Button1. (You
may need press the Escape key, first, to de-
select the button.) When your new UserForm

appears, enter a number in the TextBox and press the CommandButton. You

lewSub Record...

Macrosin: | All Open Workbooks [~]
Description

oK Cancel

=
Figure 8. The Assign Macro
window, which appears after
creating a new button on the
spreadsheet.

should see its cube root appear in cell B2. When you’re done using the

UserForm, “X” out the window.

W. This example is of course underutilizing the UserForm'’s abilities, but should

serve as an introduction; again, more details are below.

At this point, you have created working examples of Functions, Subroutines, and a

UserForm. We will delve more into these, below.

Self-Check
1. Modify your programs:

a. Create a function that returns the radius of a circle, given its

circumference.

Create a subroutine that applies your new function to a user’s input.
c. Create a button on your spreadsheet that summons this new

subroutine.

d. “CommandButtonl” etc. is a boring caption - change it by exploring

the “Properties” window. In the Visual Basic Editor (VBE), access this

by clicking on View - Properties Window (or select F4).
e. Further explore the “Properties” window to modify colors and fonts.

3. Saving (and restoring) your work

Saving your programming is simple: all of your code is saved with the Excel
workbook. In the current version of Excel, you will need to save your file in the

“xlsm” format, which is a “macro-enabled workbook.”

What if you wanted to use your handy functions, subroutines and UserForms in
other Excel workbooks? Fortunately, we don’t have to re-type everything: we can
simply “export” the Module or UserForm, and then “import” it into our new

workbook.

To export, switch to the Visual Basic Editor. In the Project Window, right-click on
the Module or Form that you’d like to use in other worksheets. The window shown
above in Figure 4 will appear; this time, select “Export File...”. Save this file (.bas for
Modules, .frm for forms) as you would any other file.

To import, you would again right-click in the VBE Project Window, this time
selecting “Import File...”. Select your file, and it's added to the current document!
Note that all of the functions and subroutines in a Module are exported/imported
together.

Self-Check
1. Export your CubeRoot function (and other subroutines), and email it to
yourself. Restart Excel, and add it to a new spreadsheet.

4. The Programming Environment
This section will give more details about some of the parts that you used in your
“Hello World” program.

The Visual Basic Editor (VBE)

Visual Basic for Applications features an Integrated Development Environment
(IDE). IDE is a term commonly used in the programming world to describe the
interface and environment that we use to create our applications. It is called
integrated because we can access virtually all of the development tools that we need
from one screen called an interface. The VBE is also commonly referred to as the
design environment, or the program.

The Visual Basic Editor is made up of a number of components. Those we will find
useful include:

e Menu Bar

e Tool Bar

e Toolbox

e Project Window

e Properties window

¢ UserForm Layout Window

e Code Window

Menu Bar and Toolbar

These are most similar to the commands you access in, for example, Word or Excel.
The Menu Bar at the top of the main window displays the commands (File, Edit,
View...) that are required to build an application. The main menu items have sub
menu items that can be chosen when needed. The toolbars below the menu bar
provides quick access to the commonly used commands and a button in the toolbar
is clicked once to carry out the action represented by it. The “Standard” toolbar and
the “Editing” toolbar are the most useful for VBA editing. They can be activated by
clicking on View > Toolbars.

ﬁ Microsoft Visual Basic for Applications - Book1 (version 1).xlsb

! File Edit View Insert Format Debug Run Tools Add-Ins Window ﬂelpl <-- Menu bar I
ME-d »n al ¥FY R Q \ H > i = -
Project - VBAProject x| — !l
2= & B Bookl (version 1)xisb - UserForml (UserForm) \E\ﬂ\@ &8 ookl (version 1).xisb - Modulel (Code) o [@][=
=-&% VBAProject (Book1 (version UserForml (peneral) v (Declarations) ¥
—J-23 Microsoft Excel Objects 555 Option Explicit f
%:::g EiCZZ“)T = L U_se‘;Form
%;hiiézrfbfo?‘ Contvols} it e Cods
-5 Forms window
UserForm1 x A abl [
=)-£%§ Modules
J&Modmel '7 “ 7| ToolBox L
mE | T -
Project Soh window
window 2 ‘ T
E
=
Properties - UserForm1 Properties i
UserForm1 UserForm window El% < »
Alphabetic | Categorized
(Na UserForm1 ~
e secceesi Toolbars:
BorderStyle 0 - fmBorderStyleNone £ Standard
=5 T ‘ and Editing
Figure 9. ‘The Visual Basic Editor (VBE) environment.
Toolbox
The Toolbox contains a set of controls that are used to place Toolbox (5]
objects on a UserForm, thereby creating the user interface Controls |
area. Note that the ToolBox is only visible when the UserForm A A abl BB
window is active. BF & 2
B = 2= 0
Project Window S xRm
Docked on the left side of the screen, just under the toolbar, is

the Project window (see Figure 11). The Project window, as Figure 10. Toolbox

shown here, serves as a quick reference to the various window (for

elements of a project, namely
UserForms, modules, and classes (we Project - VBAProject

UserForm creation).

=]

won’t be using classes, here). All of the 03 o
objects associated with the workbook 1 =5 S

o

are packed in a project. A simple project =& VBAProject (Book1 (version 1).xisb)
[#-[7] Microsoft Excel Objects

will typically contain one form, which is -
. . . =¥ Forms

a window that is designed as part of a O

Vs . . S -8] UserForm1
program's interface. It is possible to @-(23 Modules
develop any number of forms for use in
a program, although a program may
consist of a single form. Using the three
buttons on the top of this window, one
can quickly jump to the Code or Object
window associated with a selected

Figure 11. Proect Window. Here, UserForml1 is
selected; clicking on either of the icons at the top left

UserForm or Module. will “jump” you to the Code or UserForm window,

respectively.

Properties Window
The Properties Window can be revealed via | Properties - UserForm1 =
View > Properties Window (or F4). (See

. . . UserForm1 UserForm v
Figure 12.) The Properties Window :
displays the various characteristics of Alphabetic | Categorized
selected objects, such as forms, buttons, etc. UserForm1 -
Each and every form in an application is BackColor [] a+8000000F8 |-
considered an object. Each object in Visual BorderColor i 81800000128 B8

)) o) BorderStyle 0 - fmBorderStyleN
Basic has characteristics such as color and Caption UserForm1
size. Other characteristics affect not just the Cyde 0 - fmCydeAlForm:
appearance of the object but the way it DrawBuffer 32000
behaves too. All these characteristics of an Enabled True
. . . lalal :"\r\m:
object are called its properties. Thus, a » == =
form has properties and any controls placed rigure 12. Properties Window. The window
on it will have properties too. All of these shows the property of the selected object,
. . . . whether button, text box, or UserForm.

properties are displayed in the Properties
Window, which is a convenient means of
modifying these values!

UserForm Layout Window

This window can be activated by double-clicking on the UserForm icon in the
Project window. It simply shows the location on the screen of the various windows
(objects) associated with your UserForm, and allows you to reposition them to the
center, top, bottom, etc. of the window.

Code Window

You used the code window with your function and subroutines. This window shows
all of the code associated with all of the objects in your program. (Again, an object
can be a button, text box, check box, etc.) The code window is normally visible; if it
is not, select View = Code from the menu.

In the code window, you are able to select any of the objects in your program from
the top left drop-down menu (see Figure 13). Once the object is selected, then you
are able to select the event for which you wish to write code, from the top right
drop-down menu (see Figure 14). In the figures shown here, the “Click” event is
selected for the “CommandButton1” (button) object.

(%] Bookl (version 1).xIsb - UserForm1 (Code)

CommandButton1 E]
(General) Y
CommandButton1

UserForm

Figure 13. In the Code window, you can select the object for which you
would like to write code.

10

=3 BB <
Click E]

'BeforeDragOver
‘BeforeDropOrPaste

DbiClick
Enter
Error

|Exit
KeyDown
KeyPress
KeyUp
MouseDown
MouseMove
MouseUp

Figure 14. The “action” associated with the selected object. You can
thus create code for many more actions than just “clicking” on a button.

Event-Driven Programming

Visual Basic programs are built around events. Events are various things that can
happen in a program. For context, let us contrast this with procedural
programming. In procedural languages, an application is written is executed by
checking for the program logically through the program statements, one after
another. For a temporary phase, the control may be transferred to some other point
in a program. In an event driven application, on the other hand, the program
statements are executed only when a particular event calls a specific part of the
code that is assigned to that event.

Let us consider a TextBox control and a few of its associated events to understand
the concept of event driven programming. The TextBox control supports various
events such as Change, Click, MouseMove and many more that will be listed in the
Procedure dropdown list in the code window for the TextBox control. Details of
some of these are given below.
e The code entered in the Change event runs when there is a change in the
contents of the TextBox
e The DbIClick event runs its code when the TextBox area is double-clicked by
the user.

As an example, the UserForm code above could have been modified to act on a
different event: the clicking of a text box (TextBox will be described below.)
Private Sub TextBoxl DblClick(default ignorable code here)
MsgBox ("Hello, World! Double-click!")
End Sub

11

Variables

Visual Basic has the several data types - Boolean, integer, string, etc. By default
Visual Basic variables are of variant data types. The variant data type can store
numeric, date/time or string data. When a variable is declared, a data type is
supplied for it that determines the kind of data they can store. The fundamental data
types in Visual Basic including variant are shown in the table below.

TYPE Can Hold

Boolean | True or False

Byte A number 0 to 255

Double | A 64 bit floating point number (I.E. 3.1415) - This is used when a high
degree of accuracy is needed.

Integer | A whole number from -32,768 to 32,767

Long A whole number from -2,147,483,648 to 2,147,483,647

Single A 32 bit number like a double, but with less precision

String A collection of letters such as "Hello". Used to store words and sentences.

In a program, the variables are declared with the “Dim xxx As yyy” command. A
sample variant of the “Hello World” code is shown below.

Private Sub Commandl Click()
Dim varl As String
varl = “Hello, World!”
MsgBox (varl)

End Sub

A note on variable declarations: advanced programmers may prefer, for debugging
purposes, to declare all of their variables. If you wish to do this, select Tools 2>
Options... and check the “Require Variable Declaration” box in the resulting window.
Alternatively, you may type the line “Option Explicit” at the top of your program. The
reasons for wanting to do this are beyond the scope of this tutorial; suffice to say it can
greatly simplify the debugging of typos in variable names.

Mathematical Functions

Math functions are what you might suspect: +, -, *, -, and » for addition, subtraction,
multiplication, subtraction, and raising to a power. Others are below. Note: the
carat * needs a space on either side.

VBA function @ Description

Abs Returns the absolute value of a specified number.

Atn Returns a Double value containing the angle whose tangent is
the specified number.

Cos Returns a Double value containing the cosine of the specified
angle.

Exp Returns a Double value containing e (the base of natural

12

logarithms) raised to the specified power.

Log Returns a Double value containing the logarithm of a specified
number. This method can return either the natural (base e)
logarithm or the logarithm in a specified base.

Round Returns a Double value containing the number nearest the
specified value.

Rnd Returns a random number from zero to just less than one.
Works best with the “Randomize” command typed on a prior
line.

Sgn Returns an Integer value indicating the sign of a number.

Sin Returns a Double value specifying the sine of an angle.

Sqr Returns a Double value specifying the square root of a number.

Tan Returns a Double value containing the tangent of an angle.

Self-Check

1. Modify “Hello World” so that it returns a random number as its message.
2. Round this number to three figures.

5. Subroutines and Functions
We will now create a more complicated program.

What Are Subroutines?
Subroutines can be thought of as miniature programs. A subroutine has a name
attributed with it, much like a variable does. Unlike a variable, a subroutine doesn't
hold data. Instead, it holds code. When the code in a subroutine is executed, the
subroutine is said to be "called." Therefore, one subroutine can "call" another
subroutine. Some subroutines are called automatically when certain actions are
performed. For example, the UserForm_Initialize subroutine is automatically called
when a UserForm appears, and Worksheet_Activate is called when a worksheet is
selected. UserForm_Terminate is called when the UserForm program is stopped.
Note: UserForm_Initialize is the 15t subroutine to be run when starting your
UserForm.

Creating A Subroutine
Creating a subroutine involves two lines of code. Luckily though, the Visual Basic
code editor is smart, and will insert the second line for you! A subroutine begins
with the word "Sub", followed by a space, then a name identifying the subroutine.
Two parentheses follow, which are used for a parameter list. Don't worry about
these yet, they will be covered later.

Sub TestSub()

End Sub
After you enter the first line and press Enter, the second line will automatically be
added for you. These lines represent the start and end of the subroutine. Any code
inserted between these lines will be executed when the subroutine is called. A

13

subroutine can be called in one of two ways: using the Call keyword, or by simply
stating its name. Enter the following code into your UserForm; try to predict what
will happen before running it.

Sub TestSub()
MsgBox "Code in TestSub()"
End Sub

Private Sub UserForm Initialize()
MsgBox "Code in UserForm Initialize ()"
TestSub ‘ use subroutine to post message box
MsgBox "Back in UserForm Initialize ()"

End Sub

You can also use the Call keyword, as mentioned above: replace the line consisting
only of “TestSub”, above, with “Call TestSub”. Try this on your own.

Comments
The code above also illustrates how one adds comments in VBA: by using an
apostrophe (‘). Comments begin with the apostrophe and end with a new line.

Subroutine Scope

You may have noticed that the UserForm_Initialize subroutine above has the word
"Private" before "Sub". This optional keyword in the declaration of a subroutine is
used to represent scope. "Private” and "Public" are examples of scopes; a Private
scope means the routine can only be called from other routines in its UserForm or
Module. For our purposes, the programs will be small and we will simply use the
“Private” scope.

Parameters
Parameters, also called Arguments, are variables that can be "passed into" a
subroutine. A subroutine with parameters, DisplayAdd, is below:

Private Sub DisplayAdd(x As Integer, y As Integer)
MsgBox X + y
End Sub

Private Sub UserForm Initialize()
DisplayAdd 5, 2
End Sub

A new subroutine has been declared called DisplayAdd. This declaration is different
than the declarations that you have seen so far, however, as code has been added
between the parenthesis. From your knowledge of variables, this syntax should look
somewhat similar to you. “x As Integer” and “y As Integer” are variable declarations
without the "Dim" keyword. These declarations are separated by a comma. These

14

variables are the Parameters for the DisplayAdd subroutine. Code within the
subroutine can access x and y as usual, as if they were normal variables. However,
when the subroutine is called, the calling subroutine will also provide values for
these parameters. Therefore, the subroutine has now become dynamic. The code
can act on input without caring where the input came from. When the
UserForm_Initialize subroutine calls DisplayAdd with the parameters 5 and 2, the
code within DisplayAdd is executed. The first line adds x and y together and displays
the result. x and y have already been filled with the values 5 and 2 from the
UserForm_Initialize subroutine. The calling subroutine doesn't have to use numeric
constants, however. It can use variables as well:

Private Sub DisplayAdd(x As Integer, y As Integer)
MsgBox x + y
End Sub

Private Sub UserForm Initialize()
Dim a As Integer
Dim b As Integer

a=>5

b =2

DisplayAdd a, b
End Sub

This code has identical results. Note that DisplayAdd cannot access a and b. As far as
DisplayAdd is concerned, a and b are represented as x and y. Attempting to access a
or b from DisplayAdd would result in an error.

ByRef and ByVal
Parameters can be sent to a subroutine By Reference (ByRef) or By Value (ByVal).
The ByRef and ByVal keywords are rarely used in simple programs, but it's a nice
trick for your toolkit. ByRef is the default, and means that changes to the variable in
the subroutine will result in changes to the source variable outside of the
subroutine. ByVal literally copies the values of the variables from the calling
subroutine into the called subroutine. By doing this, the variables can be changed,
but their values will not change outside of the called subroutine. ByVal can also be a
lot slower with large variable types, however, since memory has to be copied from
one location to another. If you don't have any reason to do so, there is no need to
pass variables ByVal. You can explicitly state the way that a variable is passed to a
subroutine by using these keywords before the variable name. Using the ByRef
keyword, one could write a Swap function, which switches the values of two
variables.

Private Sub Swap(ByRef x As Integer, ByRef y As

Integer)
Dim temp As Integer
temp = x
X =Yy

15

y = temp
End Sub

Private Sub DisplayVals(ByRef a As Integer, ByVal b As

Integer)
'Don't worry about understanding the next line yet
MsgBox "a = " & CStr(a) & vbCrLf & "b = " & CStr(b)
End Sub

Private Sub UserForm Initialize()
Dim a As Integer
Dim b As Integer

a =10
b =12

'Display values, swap, and display again
DisplayVals a, b

'The next line is identical to "Swap a, b"
Call Swap(a, b)
DisplayVals a, b

End Sub

Notice that Call was used instead of simply stating the subroutine name. When using
the Call method however, you must use parenthesis when calling the subroutine.
Note that this program would also have worked without typing "ByRef" anywhere,
since “ByRef” is the default.

Functions

Subroutines have a close cousin called Functions. Functions are basically the exact
same as subroutines, except that they return a value. That means that the function
itself has a type (integer, double, ...), and the function will return a value to the
calling subroutine based on the code that it contains. An example of this would be a
function that adds two numbers, shown below. A function is declared the exact
same way as a subroutine, except using the "Function" keyword instead of "Sub". To
return a value, assign a value of the proper type to the function's name, as if it were
a variable.

Private Function Add(ByVal x As Integer, ByVal y As
Integer) As Integer

Add = x + vy
End Function

Private Sub UserForm Initialize()

Dim a As Integer
Dim b As Integer

16

a = 32
b = 64

MsgBox Add(a, b)
End Sub

Functions Or Subroutines?

The best way to determine which is better for your application is by asking yourself
a simple question. Will you need to return a value? If so, use Functions. If you don't,
use subroutines.

Self-Check

1. Write a subroutine that calls a function to find the square root of a number
divided by its base-ten logarithm. The subroutine should then show this number
and its cube root in a message box.

2. Modify the “swap” code sequence above so that it executes not with the loading of
a UserForm, but instead with the click of a button on your spreadsheet.

6. Inputs and Outputs

Sending Inputs to your Program

You may wish to have a user enter data that can be acted upon by your program.
Two good ways to do this are the TextBox (in a UserForm) and the InputBox
(anywhere).

The TextBox can be added to your UserForm by using the proper icon on the toolbox
(see above): click on the toolbox, and click-and-drag on the UserForm window to
add it. You can use the Properties window to set its default Value (either text or
numerical). You can then access its value from the program by using its .Value
property. For example, if it is a number, this code snippet grabs the value and prints
its inverse natural logarithm:

Value = TextBoxl.Value
Output = Exp(Value)
MsgBox Output

The InputBox displays a prompt in a dialog box, waits for the user to input text or
click a button, and takes the contents of the text box into the program. Here is a
complete code sample that accepts a user input and assigns it to the variable
“AcctID,” which gets posted to a MessageBox:

Private Sub UserForm Initialize()
AcctID = InputBox("Enter:")
MsgBox AcctID

End Sub

17

Note that if the user clicks Cancel instead of OK, the function returns a zero-length
string ("").

(A slightly fancier version provides a ‘default’ value of “123” and gives a label to the
InputBox. This is done by replacing the “AcctID” line as follows:)

AcctID = InputBox("Enter ID:", "Label", "123")

Outputs from your Program

To pass results from our program to the user, you have already seen one method:
the MessageBox. Of course, this is inconvenient for a list of numbers, and the
“interruption” of the MessageBox can get annoying. Two other methods are
TextBox (again!) and Label (UserForm) and Range (worksheet).

If your program uses a UserForm, TextBox and Label (accessible via the Toolbox
window) can pass along outputs to the user - without need for a MessageBox - as
shown below. This snippet simply replaces the MsgBox command line from the
snippet above:

Value = TextBoxl.Value
Output = Exp(Value)

TextBox2.Value = Output
Labell.Caption Output

The difference between TextBox and Label is that a Label cannot be altered by the
user, whereas the user can type into the TextBox.

Alternatively, you could put your output into the spreadsheet, for later calculations,
plots, etc. The Range object allows the program to read in values from a
spreadsheet; i.e. this line of code squares the number in cell A1:

MsgBox Range(“Al"”) "~ 2
Range can also be used to place results:

Range(*“Al"”) = CubeRoot(value)
To add data cell by cell, the Offset property can be useful. The following expression
refers to a cell two rows below cell E2 and three columns to the right of E2. In other
words, cell H4:

Range(“E2").0ffset(2,3)

Since the arguments of Offset could be variables, the sky is the limit!

18

Self-Check
1. Write a simple program that reads someone’s age and prints out the year
they were born (don’t worry about being off by a half year; this is meant to
be simple). Do this using both forms of input and output described above.

7. Structures: IF, DO, WHILE, FOR, SELECT...CASE
These fundamental programming structures are similar to those you have probably
used already.

Conditional (IF) Statements
These are similar to those you have seen in other programming languages. Some
sample code snippets are shown below as illustrative examples:

If varl = 10 Then
MsgBox "The condition is true."
End If

The ELSE statement also exists in VBA:

If varl = 10 Then

MsgBox "The variable is ten"
Else

MsgBox "The variable is not ten"
End If

The logical operators are as shown in the table below:

= Equality

<> Inequality

> Greater Than

< Less Than

>= Greater Than Or Equal To

<= Less Than Or Equal To

And Conjunction [i.e. (X>0 And X<=3)]
(other Boolean: Not Or Xor) (As with “And”, above)

Finally, here is a sample block of code that also illustrates the “Elself” command. It
compares the variables ‘Major’ and ‘GPA’ to expected values. Each “Elself”
statement only occurs if all statements above are false.

If Major <> "EP" Then

MsgBox ("Major is not EP.")
ElseIf (GPA > 2 And GPA <= 3) Then

MsgBox ("GPA is > 2.0 and <= 3.0, and Major is EP.")
ElseIf GPA > 3 Then

MsgBox ("GPA is >3 and Major is EP.")

19

Else
MsgBox ("Major is EP and GPA is <= 2.0")
End If

Do and While Loops
Do-Loops
The most basic form of loop in Visual Basic is the Do-Loop. Its construct is very
simple:
Do
(Code to execute)
Loop

The drawback? This is an infinite loop! It can be exited by using the Exit Do
command in the code:
If n>300 Then
Exit Do
End If

Do Until
As an alternative approach to nesting an If-Statement inside the loop, and invoking
Exit Do once we're done looping, VB6 provides a Do Until statement. Its syntax is
the following:
Do Until (Expression)
(Code to execute)
Loop

(Expression) can be any legal logical expression that we wish to evaluate to
determine whether or not to exit the loop. Each time the program reaches Loop it
will evaluate this expression. If the expression is True, it will exit the loop, but
otherwise it will continue looping.

Do While
In the place of Do Until, you can also use Do While. Its syntax is the following:
Do While (Expression
(Code to execute)
Loop

Here, (Expression) can be any legal logical expression that we wish to evaluate to
determine whether or not to exit the loop. Each time the program reaches Loop it
will verify that this expression is True, and if it is False, it will exit the loop. Thus,
instead of exiting when an expression is True, it now exits only once this expression
is False.

For-Next Loops
In situations where you merely want to run the loop a predefined number of times,
it can become quite tiresome to have to create and manage a counter for each loop,

20

which is why we also have something called a For-Next Loop. This kind of loop
allows you to specify a counter, to tell it to count from one number to another each
time through the loop, and to exit once the counter has reached its upper limit. The
syntax is as follow:

Dim I As Integer

For I = (Integer) To (Integer)
(Code to execute)
Next T

We used the variable name "I" above, as it is the most common name used for For-
Loops; however, you can use any variable name you want, so long as the variable is
of the type Integer.

Step
By default, the variable used in the declaration of the For-Next loop is incremented
by 1 each time through the loop; however, if you want to increment this value by a
different amount each time through the loop, you can simply append Step (Integer)
to the end of the For-Next loop declaration. If, for instance, we wanted to print out
every even number counting backward from 20 to 0, we could do this using the
following code:

Dim I As Integer

For T = 20 To 0 Step -2
Range(“C2").0ffset(I,0) = i
Next I

Exit For

As with Do Loops, there is a statement that can be used to exit a For-Next loop, and
itis called Exit For. Simply invoke this statement anywhere within a For-Next loop
and the current loop will be exited.

Select...Case Selection Structure

Select...Case structure is an alternative to If...Then...Elself for selectively executing
a single block of statements from among multiple block of statements. Select...case
can be more convenient to use than the If...Else...End If. The following program
block illustrates the working of Select...Case.

Private Sub Commandl3 Click()
Dim averageV As Integer
averageV = Val(TextBox8.Value) ‘pull grade from TextBox8

Select Case average ‘Case values run from low to high
Case 75 To 100

TextBox9.Value = "A" ‘ Print grade in Text9 box.
Case 65 To 74
TextBox9.Value = "B"

Case 55 To 64

TextBox9.Value = "C"
Case 45 To 54

TextBox9.Value = "D"
Case 0 To 44

TextBox9.Value = "F"

Case Else
MsgBox "Invalid average marks"
End Select
End Sub

Self-Check
1. Create a program that, given a student’s major and General Engineering core
GPA, will determine whether that student is accepted into the engineering
program of their choice. Use the data in the UW-Platteville catalog
(http://www3.uwplatt.edu/catalog/department-general-engineering) and
for the sake of simplicity only worry about EP, ME, and EE. The user should
input two-letter abbreviations for major and a number for GPA.

8. Other Handy Tricks, including serial communication

Combining several values for an output
MsgBox ("This is a list " & Add(a, b) & " " & a)

Changing object properties as an event.
In this case, the caption on a “Label” object depends on the value of a variable:

If Rnd()<= 0.5 Then

Labell.Caption = "Less than or equal to 0.5"
Else

Labell.Caption = "Greater than 0.5"
End If

To see other options, you will notice that typing “Label1.” and then pausing yields
a pop-up menu, which lists all possible properties that may be modified.

Accessing Excel functions
If you try to enter the following code, VBA will give you an error:

Sub TryThis()

‘* this program won'’'t work!
MsgBox Sum(Range(“Al:A3"))

End Sub

This program fails because Excel has many more built-in functions - including

SUM() - than VBA has. As you might expect, though, VBA can access these functions
using the WorksheetFunction object. The following code will work:

22

Sub TryThis2()
‘ this program WILL work!

MsgBox WorksheetFunction.Sum(Range(“Al:A3"))
End Sub

Using the Macro Recorder

VBA can access all the functionality that Excel has. But how would one write the
code for creating a chart? Fortunately, VBA has a “Record Macro” feature that will
generate code for you - and which you can then modify to your own ends.

Access this from the spreadsheet view, Developer tab. The “Record Macro” is at the
top left (see Figure 1). Click this, and you will get a prompt for a name for this new
macro; click “OK” when ready to record. Once you've created your chart (or
whatever your task was), return to the Developer tab and click “Stop Recording.”
You're done!

The code that was generated is now in a Module. Sample code generated by the
creation of a scatter chart, with its legend removed, is below.

Sub Macrol()

Macrol Macro

Range("Al:B6").Select
ActiveSheet.Shapes.AddChart.Select
ActiveChart.ChartType = x1lXYScatter
ActiveChart.SetSourceData Source:=Range("Sheetl!A1:BS6")
ActiveChart.Legend.Select
Selection.Delete

End Sub

This not only gives you a template you can edit, but it also is educational!

Serial Communication: Sending Text Commands to an External Device

Sometimes it is necessary to pass commands to an external device that is connected
to the PC via the computer’s serial port (COM port) or a USB port. Many
instruments, such as DAQs, RFID readers, and bench top measurement equipment,
are equipped to receive text commands for remote operation.

To enable VBA to access the serial/USB ports, you will have to import a new Module,
“modCOMM,” to your Project (see Import/Export, above): right-click on the Project
window, select “Import File...”, and find modCOMM.bas. This file is part of all the
routines used in ENGRPHYS 4210; it is also at these links:
Windows 7 (64-bit):
https://dl.dropboxusercontent.com/u/37968177 /modCOMM.bas

23

Windows XP (non 64-bit):
https://dl.dropboxusercontent.com/u/37968177 /modCOMMxp.bas

The modCOMM module was written by David M. Hitchner, and can be downloaded
from several locations on the Web.! The code has been modified somewhat for 64-
bit systems, and to increase the number of COM ports that can be accessed. This
module uses Windows Application Programming Interface (API) commands.

Once your workbook has access to these commands, you are now able to access the
serial communication port (both the RS-232 port, and any USB ports). These ports
are typically numbered COM1, for the RS-232 port at the back of the computer, and
COM2, COM3, etc. for the USB and other ports. Use another program (i.e. National
Instruments MAX; Agilent Technologies’ Connection Expert) to determine the COM
port you need to address.

1. Open

To send commands through the serial port, you will first need to “open” the
serial/USB port in order to prepare it to send and receive data. This requires the
CommOpen routine; see the sample code below:

Private Sub Buttonl Click()
'Initialize serial port
'Set baud=9600 parity=N data=8 stop=1 for most devices
‘ intPortID is 1 for COM1l, 2, for COM2, etc.
‘ strError is a public String variable
‘ 1ngStatus and lngSize are Long variables

lngStatus = CommOpen(intPortID, "COM" & CStr(intPortID), _
"baud=9600 parity=N data=8 stop=1")

If 1IngStatus <> 0 Then
' Handle error.
lngStatus = CommGetError(strError)
MsgBox "COM Error: " & strError
End If

End Sub
2. Send Command
To send text commands to your external device, use the CommWrite routine, which
simply sends a string to the port. An example is below:

1 The serial I/O module was created by David M. Hitchner; the code was
downloaded from http://www.thescarms.com/VBasic/commio.aspx. Another site
has similar code (though without the acknowledgment to Mr. Hitchner):
http://dev.emcelettronica.com/serial-port-communication-excel-vba . Finally, the
code (again without the acknowledgment to Mr. Hitchner) was found as part of a
sample code for controlling a Dimetix, Inc. distance sensor at this site:
http://www.dimetix.com/appl/ FRMappl.html .

24

Private Sub SendTypedCommand Click()

This sends the command that's in TextBoxl.

‘ The actual command will depend on your device;

! read the device’s user manual to learn these.
' This uses the API-based calls of modCOMM.

‘ 1ngStatus and lngSize are Long variables

‘ strData is a String variable

‘ intPortID is again 1 for COM1l, 2 for COM2, etc.

strData Trim(CStr(TextBoxl.Value)) & Chr$(13)
1lngSize Len(strData)
IngStatus = CommWrite(intPortID, strData)
If lngStatus <> 1lngSize Then
' Handle error.
'Place error handler in your software here
End If
End Sub

The “Chr$(13)” is a carriage return and tells the instrument, “here is the end of the
command line.” Typically, instruments need a string command followed by the
carriage return.

3. Read Response
To read the instrument’s response to your command (if there is one!), use the
CommRead routine; an example is below:

Private Sub ReadCommand Click()

‘ 1ngStatus and lngSize are Long variables

‘ strData is a String variable

‘ intPortID is again 1 for COM1l, 2 for COM2, etc.
Dim readDAQ as String

Depending on the device and the connection, you
‘ may need to insert a time delay between sending the
‘ command and reading the response. This takes some
' “playing” to get right.
Sleep DelaySleep ' delay in milliseconds;
‘ The Sleep routine is called from the kernel32.dll
Read maximum of 64 bytes from serial port. The beauty of these
commands from modCOMM is that it's "OK" if the return string is
not equal to 64 bytes.

read data into the "strData" variable...
lngStatus = CommRead(intPortID, strData, 64)
If 1IngStatus > 0 Then
readDAQ = strData
ElseIf 1lngStatus < 0 Then
' Handle error.
lngStatus = CommGetError(strError)

MsgBox "COM Error: " & strError
End If
MsgBox readDAQ

End Sub

25

The above code uses the “Sleep” subroutine, which is from the Windows API. Itis
part of the kernel32.dll, the 32-bit dynamic link library found in the Windows
operating system kernel. It can be used in your routines if it is imported into your
module by entering this line outside of any functions or subroutines:2

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

4. Close the Port

Finally, be sure to close the port when exiting your program! Otherwise, you risk
crashing the program the next time you try to use the port. This is simply done wit
the CommClose routine - see below for example. Ifusing a UserForm, it is handy to
include CommClose in your UserForm_Terminate subroutine.

Private Sub CloseCOMport Click()

‘ intPortID is 1 for COM1l, 2 for COM2 etc.
Call CommClose(intPortID)

End Sub

9. Assignments

1. Create a simple calculator that combines two numbers, which the user can
enter into text boxes. The interface should consist of two blank boxes for
data entry (i.e. for variables X and Y), one blank box for output, plus an array
of buttons that will allow us to determine X+Y, X/Y, XY, sine of X*Y, etc.

2. Print the first N odd numbers, where N is provided by user input.

Compute the factorial of N, where N is provided by user input.

4. Use the references below to investigate two means of printing a list of values
(i.e. not just a single number) for the user to read: (1) simply printing to the
spreadsheet; (2) printing to a ListBox using the List1.AddItem command.
Demonstrate these in a single program; you may print a simple sequence of
numbers, squares, square roots, etc.

5. Investigate the With...End statement as a means of setting several Object
parameters. Use this statement to change the appearance of a button or a
label according to an event. (I.e. when clicking a button, or when a value
(random?) crosses a threshold. Use the references below.

6. Use the Macro Recorder to create a chart with your favorite formatting; save
this as a subroutine so that all of your charts have this formatting!

w

10. References and Resources

Because of the similarities between VBA and VB6, you can get a lot of useful
information from resources for either language. The VB6.us site has many tutorials
and is very useful... perhaps more useful than VB6’s own help files!
http://www.vb6.us/guides/visual-basic-6-beginners-guide

2 Don’t worry if this paragraph makes no sense to you; just add the line to the
beginning of your Module and use Sleep

26

These books are in EGH 246, the EP Lab/Sensor Lab:

Wang, Wallace. Visual Basic 6 for Dummies. IDG Books Worldwide, 1998.
Walkenbach, John. Microsoft Excel VBA Programming for Dummies. Wiley
Publishing, Inc. 2010.

Finally, some other sites that you may find useful:
Microsoft has a good “getting started” site:
http://msdn.microsoft.com/en-us/library/ee814737(v=office.14).aspx

Excel-Easy.com:
http: //www.excel-easy.com/vba.html

Excel VBA Tutor:
http://excelvbatutor.com/vba_tutorial.html

Comment boards; users post & answer questions:
http://www.stackoverflow.com
http: //www.mrexcel.com/archive/VBA/

References

' “Visual Basic for Applications.” January 4, 2014. In Wikipedia: The Free
Encyclopedia. http://en.wikipedia.org/wiki/Visual Basic_for Applications

" Ribando, R.J., "An Excel/Visual Basic for Applications (VBA) Primer," Computers in
Education Journal, Vol. VIII, No. 2, April-June 1998, pp. 38-43.

i Walkenbach, J., “Microsoft® Excel® VBA Programming for Dummies,” Wiley
Publishing, Indianapolis (2010); see also “Getting Started with VBA in Excel 2010,”
downloaded from http://msdn.microsoft.com/en-us/library/ee814737(v=office.14).aspx
on Jan. 4 2013 (Microsoft Developer Network).

27

