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About This Manual

This manual contains information about the purpose of control design and 
the control design process. This manual also describes how to develop a 
control design system using the LabVIEW Control Design Toolkit.

This manual requires that you have a basic understanding of the LabVIEW 
environment. If you are unfamiliar with LabVIEW, refer to the Getting 
Started with LabVIEW manual before reading this manual.

Note This manual is not intended to provide a comprehensive discussion of control design 
theory. Refer to the following books for more information about control design theory: 
Modern Control Systems1, Feedback Control of Dynamic Systems2, Digital Control of 
Dynamic Systems3, Control Systems Engineering4, and Modern Control Engineering5.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. Italic text also denotes text that is a placeholder for a word 
or value that you must supply.

1   Dorf, Richard C., and Robert H. Bishop. Modern Control Systems, 9th ed. Upper Saddle River, NJ: Prentice Hall, 2001.
2   Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems, 4th ed. Upper Saddle 

River, NJ: Prentice Hall, 2002.
3   Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems, 3rd ed. Menlo Park, CA: 

Addison Wesley Longman, Inc., 1998.
4   Nise, Norman S. Control Systems Engineering, 3rd ed. New York: John Wiley & Sons, Inc., 2000.
5   Ogata, Katsuhiko. Modern Control Engineering, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.
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monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames, and extensions.

Related Documentation
The following documents contain information that you might find helpful 
as you read this manual:

• LabVIEW Help, available by selecting Help»Search the LabVIEW 
Help

• Getting Started with LabVIEW

• LabVIEW User Manual

• LabVIEW Simulation Module User Manual

• LabVIEW System Identification Toolkit User Manual

• Example VIs located in the labview\Examples\Control 
Design\ directory. You also can use the NI Example Finder to find 
example VIs.
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1
Introduction to Control Design

Control design is a process that involves developing mathematical models 
that describe a physical system, analyzing the models to learn about their 
dynamic characteristics, and creating a controller to achieve certain 
dynamic characteristics. Control systems contain components that direct, 
command, and regulate the physical system, also known as the plant. In this 
manual, the control system refers to the sensors, the controller, and the 
actuators. The reference input refers to a condition of the system that you 
specify.

The dynamic system, shown in Figure 1-1, refers to the combination of the 
control system and the plant.

 

Figure 1-1.  Dynamic System

The dynamic system in Figure 1-1 represents a closed-loop system, also 
known as a feedback system. In closed-loop systems, the control system 
monitors the outputs of the plant and adjusts the inputs to the plant to make 
the actual response closer to the input that you designate.

One example of a closed-loop system is a system that regulates room 
temperature. In this example, the reference input is the temperature at 
which you want the room to stay. The thermometer senses the actual 
temperature of the room. Based on the reference input, the thermostat 
activates the heater or the air conditioner. In this example, the room is the 
plant, the thermometer is the sensor, the thermostat is the controller, and the 
heater or air conditioner is the actuator.

Controller Actuators

Sensors

Physical System
(Plant)

Reference

Control System
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Other common examples of control systems include the following 
applications:

• Automobile cruise control systems

• Robots in manufacturing

• Refrigerator temperature control systems

• Hard drive head control systems

This chapter provides an overview of model-based control design and 
describes how you can use the LabVIEW Control Design Toolkit to design 
a controller.

Model-Based Control Design
Model-based control design involves the following four phases: 
developing and analyzing a model to describe a plant, designing and 
analyzing a controller for the dynamic system, simulating the dynamic 
system, and deploying the controller. Because model-based control design 
involves many iterations, you might need to repeat one or more of these 
phases before the design is complete. Figure 1-2 shows how National 
Instruments provides solutions for each of these phases.

Figure 1-2.  Using LabVIEW in Model-Based Control Design

National Instruments also provides products for I/O and signal 
conditioning that you can use to gather and process data. Using these tools, 
which are built on the LabVIEW platform, you can experiment with 
different approaches at each phase in model-based control design and 
quickly identify the optimal design solution for a control system.

Developing a
Plant Model

System Identification
Toolkit

LabVIEW

Control Design
  

Control Design
Toolkit

Simulation

LabVIEW
Simulation

Module

Deployment

LabVIEW Real-Time
Module
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Developing a Plant Model
The first phase of model-based control design involves developing and 
analyzing a mathematical model of the plant you want to control. You can 
use a process called system identification to obtain and analyze this model. 
The system identification process involves acquiring data from a plant and 
then numerically analyzing stimulus and response data to estimate the 
parameters and order of the model.

The system identification process requires a combination of the following 
components:

• Signal generation and data acquisition—National Instruments 
provides software and hardware that you can use to stimulate and 
measure the response of the plant.

• Mathematical tools to model a dynamic system—The LabVIEW 
System Identification Toolkit contains VIs to help you estimate and 
create accurate mathematical models of dynamic systems. You can use 
this toolkit to create discrete linear models of systems based on 
measured stimulus and response data.

Note This manual does not provide a comprehensive discussion of system identification. 
Refer to the following books for more information about developing a plant model: 
Modern Control Systems1, Feedback Control of Dynamic Systems2, Digital Control of 
Dynamic Systems3, Control Systems Engineering4, and Modern Control Engineering5.

Designing a Controller
The second phase of model-based control design involves two steps. 
The first step is analyzing the plant model obtained during the system 
identification process. The second step is designing a controller based on 
that analysis. You can use the Control Design VIs and tools to complete 
these steps. These VIs and tools use both classical and state-space 
techniques.

1   Dorf, Richard C., and Robert H. Bishop. Modern Control Systems, 9th ed. Upper Saddle River, NJ: Prentice Hall, 2001.
2   Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems, 4th ed. Upper Saddle 

River, NJ: Prentice Hall, 2002.
3   Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems, 3rd ed. Menlo Park, CA: 

Addison Wesley Longman, Inc., 1998.
4   Nise, Norman S. Control Systems Engineering, 3rd ed. New York: John Wiley & Sons, Inc., 2000.
5   Ogata, Katsuhiko. Modern Control Engineering, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.
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Figure 1-3 shows the typical steps involved in designing a controller.
 

Figure 1-3.  Control Design Process

You often iterate these steps to achieve an acceptable design that is 
physically realizable and meets specific performance criteria.

Simulating the Dynamic System
The third phase of model-based control design involves validating the 
controller design obtained in the previous phase. You perform this 
validation by simulating the dynamic system. For example, simulating a jet 
engine saves time, labor, and money compared to building and testing an 
actual jet engine.

You can use the Control Design Toolkit to simulate linear time-invariant 
systems. The LabVIEW Simulation Module, however, provides a variety of 
different numerical integration schemes for simulating more elaborate 
systems, such as nonlinear systems. Use the Simulation Module to 
determine how a system responds to complex, time-varying inputs.

Deploying the Controller
The fourth phase of model-based control design involves deploying the 
controller to a real-time (RT) target. LabVIEW and the LabVIEW 
Real-Time Module provide a common platform that you can use to 
implement the control system.

Refer to the National Instruments Web site at ni.com for information about 
the National Instruments products mentioned in this section.

Overview of the Control Design Toolkit
The Control Design Toolkit provides an interactive Control Design 
Assistant, a library of VIs, and a library of MathScript functions for 
designing a controller based on a model of a plant. You can use both tools 
to complete the entire control design process from creating a model of the 
controller to synthesizing the controller on an RT target.

Determine
Specifications

Create
Mathematical

Model

Analyze
System

Synthesize
Controller
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Control Design Assistant
You can use the Control Design Assistant to synthesize and analyze a 
controller for a user-defined model without knowing how to program in 
LabVIEW. You access the Control Design Assistant through the 
NI Express Workbench. The Express Workbench is a framework that can 
host multiple interactive National Instruments tools and assistants. 

You also can use the Control Design Assistant to create a project. In one 
project, you can load or create a model of a plant into the Control Design 
Assistant, analyze the time or frequency response, and then calculate the 
controller parameters. Using the Express Workbench, you immediately can 
see the mathematical equation and graphical representation that describe 
the model. You also can view the response data and the configuration of the 
controller.

Using the Control Design Assistant, you can convert a project to a 
LabVIEW block diagram and customize that block diagram in LabVIEW. 
You then can use LabVIEW to enhance and extend the capabilities of the 
application. Refer to the NI Express Workbench Help for more information 
about using the Control Design Assistant to analyze models that describe a 
physical system and design controllers to achieve specified dynamic 
characteristics.

Control Design VIs
The Control Design Toolkit also provides VIs that you can use to create and 
develop control design applications in LabVIEW. You can use these VIs to 
develop mathematical models of a dynamic system, analyze the models to 
learn about their dynamic characteristics, and create controllers to achieve 
specified dynamic characteristics. You use these VIs to customize a 
LabVIEW block diagram to achieve specific goals. You also can use 
other LabVIEW VIs and functions to enhance the functionality of the 
application. Refer to the LabVIEW Help, available by selecting Help»
Search the LabVIEW Help, for information about the Control Design 
VIs.

Unlike creating a project with the Control Design Assistant, creating a 
LabVIEW application using the Control Design VIs requires basic 
knowledge about programming in LabVIEW. Refer to the LabVIEW User 
Manual and the Getting Started with LabVIEW manual for more 
information about the LabVIEW programming environment.
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Control Design MathScript Functions
The Control Design Toolkit also includes numerous functions that extend 
the functionality of the LabVIEW MathScript window. Use these functions 
to design and analyze controller models in a text-based environment. You 
generally can use the LabVIEW MathScript engine to execute scripts you 
have previously written using The MathWorks, Inc. MATLAB® 
application software. However, the MathScript engine is not intended to 
support all functions supported by the MATLAB application software.
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2
Constructing Dynamic System 
Models

Model-based control design relies upon the concept of a dynamic system 
model. A dynamic system model is a mathematical representation of the 
dynamics between the inputs and outputs of a dynamic system. You 
generally represent dynamic system models with differential equations or 
difference equations.

Obtaining a model of the dynamic system you want to control is the first 
step in model-based control design. You analyze this model to anticipate 
the outputs of the model when given a set of inputs. Using this analysis, you 
then can design a controller that affects the outputs of the dynamic system 
in a manner that you specify.

For example, consider the temperature-regulation example in the 
introduction of Chapter 1, Introduction to Control Design. You can analyze 
the open-loop dynamics of the plant to effectively design a controller for 
this closed-loop dynamic system. A model for this closed-loop dynamic 
system describes the input to the plant as the air flow from the vent. The 
output of the plant is the temperature of the room. By analyzing the 
relationship between the inputs and output of the plant, you can predict how 
the plant reacts when given certain inputs. Based on this analysis, you then 
can design a controller for this dynamic system.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to create dynamic system models. This chapter also 
describes the different forms that you can use to represent a dynamic 
system model.

Note Refer to the labview\examples\Control Design\Getting Started\Model 
Construction.llb for example VIs that demonstrate the concepts explained in this 
chapter.
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Constructing Accurate Models
To create a model of a system, think of the system as a black box that 
continuously accepts inputs and continuously generates outputs. Figure 2-1 
shows the basic black-box model of a dynamic system.

 

Figure 2-1.  Black-Box Model of a Dynamic System

You refer to this model as a black-box model because you often do not 
know the relationship between the inputs and outputs of a dynamic system. 
The model you create, therefore, has errors that you must account for when 
designing a controller.

An accurate model perfectly describes the dynamic system that it 
represents. Real-world dynamic systems, however, are subject to a variety 
of non-deterministic fluctuating conditions and interacting components 
that prevent you from making a perfect model. You must consider many 
external factors, such as random interactions and parameter variations. You 
also must consider internal interacting structures and their fundamental 
descriptions.

Because designing a perfectly accurate model is impossible, you must 
design a controller that accounts for these inaccuracies. A robust controller 
is one that functions as expected despite some differences between the 
dynamic system and the model of the dynamic system. A controller that is 
not robust might fail when such differences are present.

The more accurate a model is, the more complex the mathematical 
relationship between inputs and outputs. At times, however, increasing the 
complexity of the model does not provide any more benefits. For example, 
if you want to control the interacting forces and friction of a mechanical 
dynamic system, you might not need to include the thermodynamic effects 
of the system. These effects are complicated features of the system that do 
not affect the friction enough to impact the robustness of the controller. 
A model that incorporates these effects can become unnecessarily 
complicated.

H(s)Input Output
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Model Representation
You can represent a dynamic system using several types of dynamic system 
models. You also can represent each type of dynamic system model using 
three different forms. The following sections provide information about the 
different types and forms of dynamic system models that you can construct 
with the Control Design Toolkit.

Model Types
You base the type of dynamic system model on the properties of the 
dynamic system on which the model represents. The following sections 
provide information about the different types of models you can create with 
the Control Design Toolkit.

Linear versus Nonlinear Models
Dynamic system models are either linear or nonlinear. A linear model 
obeys the principle of superposition. The following equations are true for 
linear models.

y1 = ƒ(x1)

y2 = ƒ(x2)

Y = ƒ(x1 + x2) = y1 + y2

Conversely, nonlinear models do not obey the principle of superposition. 
Nonlinear effects in real-world systems include saturation, dead-zone, 
friction, backlash, and quantization effects; relays; switches; and rate 
limiters. Many real-world systems are nonlinear, though you can linearize 
the model to simplify a design or analysis procedure. You can use the 
LabVIEW Simulation Module to perform this linearization task.

The Control Design Toolkit supports linear models only.

Time-Variant versus Time-Invariant Models
Dynamic system models are either time-variant or time-invariant. The 
parameters of a time-variant model change with time. For example, you can 
use a time-variant model to describe an automobile. As fuel burns, the mass 
of the vehicle changes with time.
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Conversely, the parameters of a time-invariant model do not change with 
time. For an example of a time-invariant model, consider a simple robot. 
Generally, the dynamic characteristics of robots do not change over short 
periods of time.

The Control Design Toolkit supports time-invariant models only.

Continuous versus Discrete Models
Dynamic system models are either continuous or discrete. Continuous 
models represent real-world signals that vary continuously with time. You 
use differential equations to describe continuous systems. For example, a 
model that describes the orbital motion of a satellite is a continuous model.

Conversely, discrete models represent signals that you sample at separate 
intervals in time. You use difference equations to describe discrete systems. 
For example, a digital computer that controls the altitude of the satellite 
uses a discrete model.

Continuous system models are analog, and discrete system models are 
digital. Both continuous and discrete system models can be linear or 
nonlinear and time-invariant or time-variant.

The Control Design Toolkit supports continuous and discrete models.

Model Forms
You can use the Control Design Toolkit to represent dynamic system 
models in the following three forms: transfer function, zero-pole-gain, and 
state-space. Refer to the Constructing Transfer Function Models section, 
the Constructing Zero-Pole-Gain Models section, and the Constructing 
State-Space Models section of this chapter for information about creating 
and manipulating these system models.
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Table 2-1 shows the equations for the different forms of dynamic system 
models.

Note Continuous transfer function and zero-pole-gain models use the s variable to define 
time, whereas discrete models in these forms use the z variable. Continuous state-space 
models use the t variable to define time, whereas discrete state-space models use the 
k variable.

You can use these forms to describe single-input single-output (SISO), 
single-input multiple-output (SIMO), multiple-input single-output 
(MISO), and multiple-input multiple-output (MIMO) systems. The number 
of sensors and actuators determines whether a dynamic system is a SISO, 
SIMO, MISO, or MIMO system.

The following sections provide information about an example dynamic 
system and how to represent this dynamic system using all three model 
forms.

Table 2-1.  Definitions of Continuous and Discrete Systems

Model 
Form Continuous Discrete

Transfer
Function

Zero-Pole-
Gain

State-Space

H s( )
b0 b1s … bm 1– sm 1– bmsm

+ + + +

a0 a1s … an 1– sn 1– ansn
+ + + +

----------------------------------------------------------------------------------------------=

H Hi j=

H z( )
b0 b1z … bm 1– zm 1– bmzm

+ + + +

a0 a1z … an 1– zn 1– anzn
+ + + +

----------------------------------------------------------------------------------------------=

H Hi j=

H s( )
k s z1–( ) s z2–( )… s zm–( )

s p1–( ) s p2–( )… s pn–( )
-------------------------------------------------------------------------------=

H Hi j=

H z( )
k z z1–( ) z z2–( )… z zm–( )

z p1–( ) z p2–( )… z pn–( )
-------------------------------------------------------------------------------=

H Hi j=

x· Ax Bu+=

y Cx Du+=

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( ) Du k( )+=
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RLC Circuit Example
Figure 2-2 shows an example circuit consisting of a resistor R, an inductor 
L, a current i(t), a capacitor C, a capacitor voltage vc(t), and an input 
voltage vi(t).

 

Figure 2-2.  RLC Circuit

The following sections use this example to illustrate the creation of three 
forms of dynamic system models. 

Constructing Transfer Function Models
Transfer function models use polynomial functions to define the dynamic 
relationship between inputs and outputs of a system. You analyze transfer 
function models in the frequency domain. The following equations define 
continuous and discrete transfer function models.

Continuous Transfer Function Model

 

Discrete Transfer Function Model

 

Numerators of transfer function models describe the locations of the zeros 
of the system. Denominators of transfer function models describe the 
locations of the poles of the system.

L R

vc (t )vi (t )

i (t )

C
+

–

H s( ) numerator s( )
denominator s( )
--------------------------------------

b0 b1s … bm 1– sm 1– bmsm+ + + +

a0 a1s … an 1– sn 1– ansn+ + + +
---------------------------------------------------------------------------------= =

H z( ) numerator z( )
denominator z( )
--------------------------------------

b0 b1z … bm 1– zm 1– bmzm+ + + +

a0 a1z … an 1– zn 1– anzn+ + + +
---------------------------------------------------------------------------------= =
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Use the CD Construct Transfer Function Model VI to create continuous 
SISO, SIMO, MISO, and MIMO system models in transfer function form. 
This VI creates a data structure that defines the transfer function model and 
contains additional information about the system, such as the sampling 
time, input or output delays, and input and output names. Refer to the 
Obtaining Model Information section of this chapter for information about 
other properties of transfer function models.

SISO Transfer Function Models
Using the example in the RLC Circuit Example section of this chapter, you 
can describe the voltage of the capacitor vc using the following second 
order differential equation:

After taking the Laplace transform and rearranging terms, you then can 
write the transfer function between the input voltage Vi and the capacitor 
voltage Vc using the following equation.

You then can use H(s) to study the dynamic properties of the RLC circuit. 
The following equation defines a continuous transfer function where 
R = 20 Ω, L = 50 mH, and C = 10 µF.

Figure 2-3 shows how you use the CD Construct Transfer Function Model 
VI to create this continuous transfer function model.

 

Figure 2-3.  Creating a Continuous Transfer Function Model

LCv··c RCv·c vc+ + vi=

Vc s( )
Vi s( )
-------------

1
LC
-------

s2 Rs
L

------ 1
LC
-------+ +

------------------------------- H s( )= =

H s( ) 2 106×

s2 400s 2 106×+ +
----------------------------------------------=
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The Numerator and Denominator inputs are arrays with zero-based 
indexes. The ith element of the array corresponds to the ith order coefficient 
of the polynomial. You define the coefficients in ascending order.

Note The CD Construct Transfer Function Model VI does not automatically cancel 
polynomial roots appearing in both the numerator and the denominator of the transfer 
function. Refer to Chapter 10, Model Order Reduction, for information about canceling 
pole-zero pairs.

The CD Construct Transfer Function Model VI creates a continuous model. 
You can create a discrete transfer function model in one of two ways. The 
method you use depends on whether you know the coefficients of the 
discrete transfer function model.

If you know the coefficients of the discrete transfer function model, you can 
enter in the appropriate values for Numerator and Denominator and set 
the Sampling Time (s) to a value greater than zero. Figure 2-4 shows this 
process using a sampling time of 10 µs.

Figure 2-4.  Using Coefficients to Create a Discrete Transfer Function Model

If you do not know the coefficients of the discrete transfer function model, 
you must use the CD Convert Continuous to Discrete VI for the conversion. 
Set the Sampling Time (s) parameter of this VI to a value greater than 
zero. Figure 2-5 shows this process using a sampling time of 10 µs.

Figure 2-5.  Using the CD Convert Continuous to Discrete VI to Create a Discrete 
Transfer Function Model
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Converting from a continuous model to a discrete model results in the 
following equation:

Refer to the Converting Continuous Models to Discrete Models section of 
Chapter 3, Converting Models, for more information about converting 
continuous models to discrete models.

SIMO, MISO, and MIMO Transfer Function Models
You can use the CD Construct Transfer Function Model VI to create 
SIMO, MISO, and MIMO dynamic system models. This section uses a 
MIMO dynamic system model as an example.

Consider the two-input two-output system shown in Figure 2-6.
 

Figure 2-6.  MIMO System with Two Inputs and Two Outputs

You can define the transfer function of this MIMO system by using the 
following transfer function matrix H, where each element represents a 
SISO transfer function.

H z( ) 9.9865 10 5– z 9.9732 10 5–×+×

z2 1.9958z– 0.996+
---------------------------------------------------------------------------=

H11

H21

H12

H22

Y1

Y2

U1

U2

MIMO System

H H11 H12

H21 H22

=
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Suppose the following equations define the SISO transfer functions 
between each input-output pair.

  

 

Select the MIMO instance of the CD Construct Transfer Function Model 
VI to create a MIMO transfer function model. You then can specify each 
transfer function between the j th input and the i th output as the ij th element 
of the two-dimensional Transfer Function(s) input array. Figure 2-7 
shows that the numerator-denominator pair of the first row and first column 
corresponds to H11, the numerator-denominator pair of the first row and 
second column corresponds to H12, and so on.

Figure 2-7.  Creating a MIMO Transfer Function Model

The elements in the Numerator and Denominator arrays correspond to 
the coefficients, in ascending order, of the numerator and denominator in 
the Hij transfer function model. For example, the numerator of H11 is 1, 
which corresponds to the zero-order coefficient. Therefore, the first 
element in the Numerator array for H11 is 1. The denominator of H11 is s, 
which means the value 0 corresponds to the zero-order coefficient and the 
value 1 corresponds to the first-order coefficient. Therefore the first 
element in the Denominator array for H11 is 0 and the second element is 1.

H11
1
s
---= H12

2
s 1+
-----------=

H21
s 3+

s2 4s 6+ +
--------------------------= H22 4=
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Symbolic Transfer Function Models
Symbolic models define the transfer function using variables rather than 
numerical values. If you want to change the value of R, for example, you 
only need to make the change in one location instead of several locations. 
Select the SISO (Symbolic) or MIMO (Symbolic) instance of the 
CD Construct Transfer Model VI to create a SISO or MIMO symbolic 
transfer function model, respectively.

The following equation is a symbolic version of the transfer function 
originally defined in the SISO Transfer Function Models section of this 
chapter.

Specify the Symbolic Numerator and Symbolic Denominator 
coefficients using the variable names R, L, and C. You then specify values 
of the numerator and denominator coefficients in the variables input, as 
shown in Figure 2-8.

 

Figure 2-8.  Creating a SISO Symbolic Transfer Function Model

H s( )

1
LC
-------

s2 Rs
L

------ 1
LC
-------+ +

-------------------------------=
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Constructing Zero-Pole-Gain Models
Zero-pole-gain models are rewritten transfer function models. When you 
factor the polynomial functions of a transfer function model, you get a 
zero-pole-gain model. This factoring process shows the gain and the 
locations of the poles and zeros of the system. The locations of these poles 
determine the stability of the dynamic system.

You analyze zero-pole-gain models in the frequency domain. The 
following equations define continuous and discrete zero-pole-gain models, 
where the numerators and denominators are products of first-order 
polynomials.

Continuous Zero-Pole-Gain Model

 

Discrete Zero-Pole-Gain Model

 

In these equations, k is a scalar quantity that represents the gain, zi 
represents the locations of the zeros, and pi represents the locations of the 
poles of the system model.

Numerators of zero-pole-gain models describe the location of the zeros of 
the system. Denominators of zero-pole-gain models describe the location 
of the poles of the system.

Use the CD Construct Zero-Pole-Gain Model VI to create SISO, SIMO, 
MISO, and MIMO system models in zero-pole-gain form. This VI creates 
a data structure that defines the zero-pole-gain model and contains 
additional information about the system, such as the sampling time, input 

Hi j s( ) k

s zi+

i 0=

m

∏

s pi+

i 0=

n

∏
----------------------

k s z1–( ) s z2–( )… s zm–( )
s p1–( ) s p2–( )… s pn–( )

----------------------------------------------------------------= =

Hi j z( ) k

z zi+

i 0=

m

∏

z pi+

i 0=

n

∏
----------------------

k z z1–( ) z z2–( )… z zm–( )
z p1–( ) z p2–( )… z pn–( )

----------------------------------------------------------------= =
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or output delays, and input and output names. Refer to the Obtaining Model 
Information section of this chapter for information about other properties 
of zero-pole-gain models.

SISO Zero-Pole-Gain Models
Using the example in the RLC Circuit Example section of this chapter, 
the following equation defines a continuous zero-pole-gain model where 
R = 20 Ω, L = 50 mH, and C = 10 µF.

This equation defines a model with one pair of complex conjugate poles at 
–200 ± 1400i.

Figure 2-9 shows how you use the CD Construct Zero-Pole-Gain Model VI 
to create this continuous zero-pole-gain model.

 

Figure 2-9.  Creating a Continuous Zero-Pole-Gain Model

The CD Construct Zero-Pole-Gain Model VI creates a continuous model. 
You create a discrete zero-pole-gain model in the same way you create a 
discrete transfer function model. Refer to the SISO Transfer Function 
Models section of this chapter for more information about creating a 
discrete zero-pole-gain model.

SIMO, MISO, and MIMO Zero-Pole-Gain Models
You create SIMO, MISO, and MIMO zero-pole-gain models the same way 
you create SIMO, MISO, and MIMO transfer function models. Refer to the 
SIMO, MISO, and MIMO Transfer Function Models section of this chapter 
for information about creating these forms of system models.

H s( ) 2 106×
s 200 1400i+ +( ) s 200 1400i–+( )

-------------------------------------------------------------------------------------- 2 106×
s 200 1400i±+( )

------------------------------------------= =
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Symbolic Zero-Pole-Gain Models
You create symbolic zero-pole-gain models the same way you create 
symbolic transfer function models. Refer to the Symbolic Transfer 
Function Models section of this chapter for information about creating a 
symbolic system model.

Constructing State-Space Models
Continuous state-space models use first-order differential equations to 
describe the system. Discrete state-space models use difference equations 
to describe the system. You analyze state-space models in the time domain.

Note State-space models can be either deterministic or stochastic. Deterministic models 
do not account for noise, whereas stochastic models do. This chapter provides information 
about deterministic state-space models. Refer to Chapter 16, Using Stochastic System 
Models, for information about stochastic state-space models.

The following equations define a continuous and a discrete state-space 
model.

Continuous State-Space Model

Discrete State-Space Model

Table 2-2 describes the dimensions of the vectors and matrices of a 
state-space model.

Table 2-2.  Dimensions and Names of State-Space Model Variables

Variable Dimension Name

k — Discrete time

n — Number of states

m — Number of inputs

r — Number of outputs

x· Ax Bu+=

y Cx Du+=

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( ) Du k( )+=
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Use the CD Construct State-Space Model VI to create SISO, SIMO, MISO, 
and MIMO system models in state-space form. This VI creates a data 
structure that uses matrices to define the state-space model. The matrices 
are zero-based two-dimensional arrays of numbers where the ij th element of 
the array corresponds to the ij th element of matrices in a state-space model. 
You can assume that an nth order system with m inputs and r outputs has 
state, input, and output vectors as defined in the following equations:

State-space models also contain additional information about the system, 
such as the sampling time, input or output delays, and input and output 
names. Refer to the Obtaining Model Information section of this chapter for 
information about other properties that state-space models contain.

A n × n matrix State matrix

B n × m matrix Input matrix

C r × n matrix Output matrix

D r × m matrix Direct transmission matrix

x n-vector State vector

u m-vector Input vector

y r-vector Output vector

Table 2-2.  Dimensions and Names of State-Space Model Variables (Continued)

Variable Dimension Name

x

x0

x1

...

xn 1–

= u

u0

u1

..

um 1–

= y

y0

y1

..

yr 1–

=



Chapter 2 Constructing Dynamic System Models

Control Design Toolkit User Manual 2-16 ni.com

SISO State-Space Models
Using the example in the RLC Circuit Example section of this chapter, the 
following equations define a continuous state-space model.

In these equations, y equals the voltage of the capacitor vc, and u equals the 
input voltage vi.

x equals the voltage of the capacitor and the derivative of that voltage .

The following matrices define a state-space model where R = 20 Ω, 
L = 50 mH, and C = 10 µF.

 

 

When you plug these matrices into the equations for a continuous state 
space model defined in the Constructing State-Space Models section of this 
chapter, you get the following equations:

x· vc
·

vc
··

0 1
1

LC
-------– R

L
---–

vc

vc
·

0
1

LC
-------

vi+= =

y vc 1 0
vc

vc
· 0 vi+= =

vc

vc
·

A 0 1

2– 106× 400–
= B 0

2 106×
=

C 1 0= D 0=

x· 0 1

2– 106× 400–

vc

vc
·

0

2 106×
vi+=

y 1 0
vc

vc
· 0 vi+=
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Figure 2-10 shows how you use the CD Construct State-Space Model VI to 
create this continuous state-space model.

 

Figure 2-10.  Creating a Continuous State-Space Model

Note Although B is a column vector, C is a row vector, and D is a scalar, you must use the 
2D array data type when connecting these inputs to the VI.

The CD Construct State-Space Model VI creates a continuous model. You 
create a discrete state-space model in the same way you create a discrete 
transfer function model. Refer to the SISO Transfer Function Models 
section of this chapter for more information about creating a discrete 
state-space model.

SIMO, MISO, and MIMO State-Space Models
You construct a SIMO, MISO, or MIMO state-space model by ensuring the 
output matrix C and the input matrix B have the appropriate dimensions. 
For a SIMO system, construct an output matrix C with more than one row. 
For a MISO system, construct an input matrix B with more than one 
column. For a MIMO system, construct matrices C and B with more than 
one row and column, respectively.

When you create a SIMO, MISO, or MIMO system, ensure that the direct 
transmission matrix D has the appropriate dimensions. If you leave D 
empty or unwired, the Control Design Toolkit replaces the missing values 
with zeros.
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Symbolic State-Space Models
You create symbolic state-space models the same way you create a 
symbolic transfer function model. Refer to the Symbolic Transfer Function 
Models section of this chapter for more information about creating a 
symbolic system model.

Obtaining Model Information
Each Model Construction VI creates not only a data structure that defines 
the model, but also a set of properties that provide information about the 
system. These properties are common in all three model forms. Table 2-3 
lists the properties and their corresponding data types.

Table 2-3.  Model Properties

Property Data Type Description

Model Name String Assigns a name to a specific model.

Input Names 1D array of strings The i th element of the array defines the 
name of the i th input to the model.

Output Names 1D array of strings The i th element of the array defines the 
name of the i th output of the model.

Input Delays 1D array of double-precision, 
floating-point numeric values

The i th element of the array defines the time 
delay of the i th input of the model.

Output Delays 1D array of double-precision, 
floating-point numeric values

The i th element of the array defines the time 
delay of the i th output of the model.

Transport Delay 1D array of double-precision, 
floating-point numeric values

The ij th element of the array defines the time 
delay between the i th output and j th input of 
the model.

Notes String A string for storing additional data. The 
string can contain comments or other 
information that you want to store with the 
model.
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You can use these data structures with every VI in the Control Design 
Toolkit that accepts a system model as an input. 

Note Delay information exists in the model properties and not in the mathematical model. 
Any analysis, such as time- or frequency-domain analysis, you perform on the model does 
not account for delay present in the model. If you want the analysis to account for delay 
present in the model, you must incorporate the delay into the model itself. Refer to 
Chapter 5, Working with Delay Information, for more information about accounting for 
model delay.

You can use the Model Information VIs to get and set various properties 
of the model. Refer to the LabVIEW Help, available by selecting Help»
Search the LabVIEW Help, for more information about using the Model 
Information VIs to view and change the properties of a system model.

Sampling Time Double-precision, 
floating-point numeric value

Represents the sampling time, in seconds, 
of the system. If a model represents a 
continuous system, the value of Sampling 
Time is zero. For discrete system models, 
the value must be greater than zero.

State Names Array of strings The i th element of the array defines the 
name of the i th state of the model. This 
property is available with state-space 
models only.

Table 2-3.  Model Properties (Continued)

Property Data Type Description
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3
Converting Models

Model conversion involves changing the representation of dynamic system 
models. For example, you can convert a zero-pole-gain model to a 
state-space model. You also can convert a model between continuous and 
discrete types.

You can convert models you created using the LabVIEW Simulation 
Module into models you can use in the LabVIEW Control Design Toolkit 
and vice versa. Refer to the LabVIEW Help, available by selecting 
Help»Search the LabVIEW Help, for more information about the VIs 
you can use to perform this conversion.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to convert between model forms and to convert between 
continuous and discrete models.

Note Refer to the labview\examples\Control Design\Getting Started\Model 
Conversion.llb for example VIs that demonstrate the concepts explained in this 
chapter.

Converting between Model Forms
You can use three different model forms—transfer function, 
zero-pole-gain, and state-space—to describe the same dynamic system. 
Refer to Chapter 2, Constructing Dynamic System Models, for more 
information about these model forms. You can use the Control Design 
Toolkit to convert from one form to another.

Converting between model forms is important because each form provides 
different information about the system. For example, state-space models 
use the states of a system to show physical information about the system. 
Thus, observing physical information about a dynamic system is less 
complicated when the model for that dynamic system is in state-space 
form.

You also can use different analysis and synthesis techniques depending on 
the form of the model. For example, if a model for a system is in transfer 
function form, you can synthesize a controller for that system using 
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classical control design techniques such as the root locus technique. If the 
model is in state-space form, you can design a controller using state-space 
control design techniques such as the pole placement technique. Refer to 
Chapter 11, Designing Classical Controllers, and Chapter 12, Designing 
State-Space Controllers, for more information about classical and 
state-space control design techniques.

The following sections discuss the Model Conversion VIs you can use to 
convert between model forms.

Converting Models to Transfer Function Models
Use the CD Convert to Transfer Function Model VI to convert a 
zero-pole-gain or state-space model to a transfer function model. This 
section uses a state-space model as an example.

Note Because transfer function models do not include state information, you lose the state 
vector x when you convert a state-space model to a transfer function model. Additionally, 
the Control Design Toolkit might not be able to recover the same states if you convert the 
model back to state-space form.

Consider the continuous state-space model defined in the Constructing 
State-Space Models section of Chapter 2, Constructing Dynamic System 
Models.

For continuous systems, you can use the Laplace transform to convert from 
the time domain to the Laplace domain model representation.

Note The equations in this section convert model forms within both the continuous and 
discrete domains. Refer to the Converting between Continuous and Discrete Models 
section of this chapter for information about converting between continuous and discrete 
domains.

Applying the Laplace transform to the state-space model results in the 
following equation:

In this equation, s is the Laplace variable, and I is the identity matrix with 
the same dimensions as A.

x· Ax Bu+=

y Cx Du+=

Y s( ) C Is A–( ) 1– B D+[ ]U s( )=
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The ratio between the output Y(s) and input U(s) defines the following 
matrix transfer function model H(s).

For example, consider the following second-order MISO state-space 
system model.

Using the Laplace transform, you obtain the transfer function matrix H(s).

Converting Models to Zero-Pole-Gain Models
Use the CD Convert to Zero-Pole-Gain Model VI to convert a transfer 
function or state-space model to a zero-pole-gain model. This section uses 
a transfer function model as an example.

Note When you convert a state-space model to a zero-pole-gain model, the CD Convert 
to Zero-Pole-Gain Model VI converts the state-space model to a transfer function model 
first.

To convert the transfer function matrix H(s) to the zero-pole-gain form, 
the Control Design Toolkit calculates the numerator and denominator 
polynomial roots and the gain of each SISO transfer function in H(s).

H s( ) Y s( )
U s( )
-----------≡ C Is A–( ) 1– B D+=

x· 1– 2
0 1–

x 1 0
0 1

u+=

y 1 0 x 0 0 u+=

H s( ) 1
s 1+
----------- 2

s2 2s 1+ +
--------------------------=
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When you convert the transfer function matrix from the Converting Models 
to Transfer Function Models section of this chapter, you obtain the 
following zero-pole-gain model:

This zero-pole-gain model is numerically identical to the transfer function 
model. The zero-pole-gain form, however, shows the locations of the zeros 
and poles of a system.

Converting Models to State-Space Models
Use the CD Convert to State-Space Model VI to convert a zero-pole-gain 
or transfer function model to a state-space model. This section uses a 
zero-pole-gain model as an example.

Note When you convert a zero-pole-gain model to a state-space model, the CD Convert 
to State-Space Model VI converts the zero-pole-gain model to a transfer function model 
first.

When converting a transfer function or zero-pole-gain model, you can 
specify whether you want the resulting state-space model to be full or 
minimal. A full state-space model does not reduce the number of states 
determined by a least common denominator calculation. A minimal 
state-space model reduces the number of states and produces a minimal 
representation of the original model. Use the Realization Type parameter 
of the CD Convert to State-Space Model VI to specify if you want the 
resulting model to be full or minimal. Refer to the Obtaining the Minimal 
Realization of Models section of Chapter 10, Model Order Reduction, 
for more information about minimizing state-space realizations. 

Using the example in the Converting Models to Transfer Function Models 
section of this chapter, the following equation gives the minimal realization 
when converting a zero-pole-gain model to a state-space model.

H s( ) 1
s 1+
----------- 2

s 1+( )2
------------------=

x· 0.33– 0.94
0.47– 1.67–

x 0.41– 0
0.29 0.87–

u+=

y 2.45– 0 x 0 0 u+=
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This model numerically differs from the initial state-space model. From the 
input-output model perspective, however, the state-space models are 
identical.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for more information about the Model Conversion VIs.

Converting between Continuous and Discrete Models
Continuous models are analog and operate using physical components. 
Discrete models are digital and operate on a computer or real-time (RT) 
target. To determine how an analog model performs on a digital target, you 
can convert the continuous model to a discrete model. You also can convert 
a discrete model to a continuous model.

Additionally, you can resample a discrete model. Resampling involves 
converting a discrete model to a discrete model with a different sampling 
time. Resampling is useful when the sampling time of a model does not 
match the sampling time of the target on which that model operates. In this 
situation, you resample the model to use the sampling time of the target.

The Model Conversion VIs provide a number of mathematical methods that 
perform these conversions. Table 3-1 summarizes these methods, which are 
substitutions between the continuous Laplace-transform operator and the 
discrete z-transform operator.

Table 3-1.  Mapping Methods for Converting between Continuous and Discrete

Method of Approximation Continuous to Discrete Discrete to Continuous

Forward Rectangular 
Method

Backward Rectangular 
Method

s z 1–
T

-----------→ z 1 sT+→

s z 1–
zT

-----------→ z 1
1 sT–
---------------→



Chapter 3 Converting Models

Control Design Toolkit User Manual 3-6 ni.com

In these equations, T represents the sample time and w represents the 
prewarp frequency. T* is a modified sample time that the Prewarp method 
uses in converting between continuous and discrete models.

The following sections provide information about the methods that you can 
use to perform continuous to discrete conversions, discrete to continuous 
conversions, and discrete to discrete conversions.

Converting Continuous Models to Discrete Models
To convert a continuous model to a discrete one, first approximate the 
value of the derivative in the continuous equation over each change in time. 
Then find the area of the geometric region having width dt and height equal 
to the derivative.

For example, consider the following first-order continuous differential 
equation:

Tustin’s Method

Prewarp Method

Table 3-1.  Mapping Methods for Converting between Continuous and Discrete (Continued)

Method of Approximation Continuous to Discrete Discrete to Continuous

s 2 z 1–( )
T z 1+( )
--------------------→

z
1 sT

2
------+

1 sT
2

------–
---------------→

s z z 1–( )
T∗ z 1+( )
-----------------------→

T ∗
2 w T×

2
------------- 

 tan

w
-------------------------------=

z
1 sT ∗+
1 sT ∗–
-------------------→

T ∗
2 w T×

2
------------- 

 tan

w
-------------------------------=

y· f t( )=
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To convert this continuous model to a discrete model, evaluate the 
derivative function ƒ(t) at different points to approximate  at time t. 
Figure 3-1 illustrates the function ƒ(t) between t and t + T, where T is the 
sampling time.

Figure 3-1.  Discretizing a Differential Equation

Integrating between time t and t + T results in the following difference 
equation:

Integrating f(τ) for τ = t to t + T represents the area under the curve. The 
CD Convert Continuous to Discrete VI provides the following 
mathematical methods to approximate this area.

• Forward Rectangular

• Backward Rectangular

• Tustin’s

• Prewarp

• Zero-Order-Hold

• First-Order-Hold

• Z Transform

• Matched Pole Zero

The following sections provide information about each of these methods.

y·

f(t)

t t + T

y· τd

t

t T+

∫ y t T+( ) y t( )– f τ( ) τd

t

t T+

∫= =
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Forward Rectangular Method
The Forward Rectangular method considers ƒ(τ) constant and equal to 
ƒ(t + T) along the integration range. This consideration results in the 
following equation:

This method considers the incremental area term between sampling times t 
and t + T as a rectangle of width T and height equal to ƒ(t + T ), as shown 
in Figure 3-2.

Figure 3-2.  Forward Rectangular Method

Figure 3-2 shows that, for this example, the Forward Rectangular method 
overestimates the area under the curve. To minimize this overestimation, 
use a small sampling interval. Depending on the direction and size of the 
curve you are measuring, this overestimation might not occur.

Backward Rectangular Method
The Backward Rectangular method considers ƒ(τ) constant and equal to 
ƒ(t) along the integration range. This consideration results in the following 
equation:

y t T+( ) y t( ) f t T+( )T+=

f(t)

t t + T

Forward
f(t + T)

y t T+( ) y t( ) f t( )T+=
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This method considers the incremental area term between sampling times t 
and t + T as a rectangle of width T and height equal to ƒ(t), as shown in 
Figure 3-3.

Figure 3-3.  Backward Rectangular Method

Figure 3-3 shows that, for this example, the Backward Rectangular method 
underestimates the area under the curve. To minimize this underestimation, 
use a small sampling interval. Depending on the direction and size of the 
curve you are measuring, this underestimation might not occur.

Tustin’s Method
Tustin’s method, also known as the trapezoid method, uses trapezoids 
to provide a balance between the Forward Rectangular and Backward 
Rectangular methods. Tustin’s method takes the average of the rectangles 
defined by the Forward and Backward Rectangular methods and uses the 
average value as the incremental area to approximate the area under the 
curve.

Tustin’s method considers ƒ(τ) constant and equal to the average between 
ƒ(t) and ƒ(t + T) along the integration range, which results in the following 
equation:

f(t)

t t + T

Backward
f(t + T)

y t T+( ) y t( ) f t( ) f t T+( )+[ ]
2

-----------------------------------------T+=
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The last term in this equation is identical to the area of a trapezoid of height 
T and bases ƒ(t) and ƒ(t + T). Figure 3-4 shows the area under a curve using 
Tustin’s method.

Figure 3-4.  Tustin’s Method

Figure 3-4 shows that, for this example, Tustin’s method provides a balance 
between the overestimation of the Forward Rectangular and the 
underestimation of the Backward Rectangular method.

Prewarp Method
The Prewarp method is a trapezoidal type of transformation that uses the 
prewarp frequency ω to adjust the sampling time T. This adjustment results 
in a separate sampling time T*. This adjustment also compensates for errors 
introduced in the discretizing process.

This method also considers ƒ(τ) constant and equal to the average between 
ƒ(t) and ƒ(t + T*) along the integration range, which results in the 
following equation:

t t + T

Tustin

y t T+( ) y t( ) f t( ) f t T *+( )+[ ]
2

-------------------------------------------T+=
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The last term in this equation is identical to the area of a trapezoid of 
height T and bases ƒ(t) and ƒ(t + T*). Figure 3-5 shows the area under a 
curve using the Prewarp method.

 

Figure 3-5.  Prewarp Method

Figure 3-5 shows that, for this example, the Prewarp method compensates 
for the integration error by adjusting the sampling time to T*. The area 
between t + T and t + T* is roughly equal to the integration error, which is 
represented by the unshaded portion of the area under the curve.

Use a particular conversion method based on the model that you are 
converting and the requirements of the application for which you are 
designing a control system.

Zero-Order-Hold and First-Order-Hold Methods
The Zero-Order-Hold and First-Order-Hold methods assume properties of 
the continuous differential equation . The Zero-Order-Hold 
method assumes that ƒ(t) consists of an input that you can hold constant 
during the integration period between sampling times t and t + T. The 
First-Order-Hold method assumes that you can increase this input over 
time during this same period. These methods also integrate the remaining 
terms of ƒ(t) not related to the input because these terms refer to the internal 
state dynamics.

t t + T

Prewarp

t + T *

y· f t( )=
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You obtain the following equation after integrating a linear time-invariant 
system between sampling times t and t + T.

In this equation, u(t) is the input to the system and is not necessarily 
constant between sampling times t and t + T. The following equation shows 
the Zero-Order-Hold method approximating the input to a constant value 
u(t) during the integration time.

Conversely, the following equation shows the First-Order-Hold method 
ramping the input values with a constant slope [u(t + T) – u(t)]/T during 
integration time.

Refer to Digital Control of Dynamic Systems1 for more information about 
the Zero-Order-Hold and First-Order-Hold methods.

Z-Transform Method
The Z-Transform method is defined such that the continuous and discrete 
impulse responses maintain major similarities. You calculate the impulse 
response of the discrete transfer function by multiplying the inverse 
Laplace transform of the continuous transfer function by the sampling 
time T.

Refer to Discrete-Time Control Systems2 for more information about the 
Z-Transform method.

1   Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems, 3rd ed. Menlo Park, CA: 
Addison Wesley Longman, Inc., 1998.

2   Ogata, Katsuhiko. Discrete-Time Control Systems, 2nd ed. Englewood Cliffs, N.J.: Prentice Hall, 1995.

x t T+( ) eATx t( ) eA t T τ+ +( )Bu τ( )d τ

t

t T+

∫+=

y t( ) Cx t( ) Du t( )+=

x t T+( ) eATx t( ) eA t T τ+ +( )Bd τ u t( )

t

t T+

∫+=

x t T+( ) eATx t( ) eA t T τ+ +( )B u t( ) u t T+( ) u t( )–[ ] τ t–( )
T

---------------+
 
 
 

d τ

t

t T+

∫+=
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Matched Pole-Zero Method
The Matched Pole-Zero method uses the following relationship between 
the continuous s and discrete z frequency domains.

In this equation, T is the sampling time used for the discrete system. The 
Matched Pole-Zero method maps continuous-time poles and finite zeros to 
the z-plane using this relation. This method also maps zeros at infinity to 
z = 0, so these zeros do not affect the frequency response.

After the algorithm maps the poles and zeros, the algorithm then attempts 
to make sure the system gains are equivalent at some critical frequency. If 
the systems have no poles or zeros at s = 0 or z = 1, the Matched Pole-Zero 
method selects a discrete-time gain such that the system gains match at 
these locations.

Alternatively, if the systems have no poles or zeros at s = p(i/T) or z = –1, 
where p is the location of a pole, this method equalizes the gains at that 
frequency. If the Matched Pole-Zero method cannot match either of these 
gains, the algorithm does not choose a gain.

Refer to Digital Control of Dynamic Systems1 for more information about 
the Matched Pole Zero method.

Converting Discrete Models to Continuous Models
Use the CD Convert Discrete to Continuous VI to convert a discrete model 
to a continuous model. This VI supports the following conversion methods: 
Forward Rectangular, Backward Rectangular, Tustin’s, Prewarp, 
Z Transform, and Zero-Order-Hold. This VI does not support the 
First-Order-Hold or Matched Pole Zero methods. Refer to Table 3-1 for the 
equations for each mapping method.

The Z Transform method also is a reverse calculation to map a model in the 
z-plane to the s-plane. You calculate the impulse response of the continuous 
transfer function by dividing the inverse z-transform of the discrete transfer 
function by the sampling time T. 

1   Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems, 3rd ed. Menlo Park, CA: 
Addison Wesley Longman, Inc., 1998.

z esT=
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Resampling a Discrete Model
Use the CD Convert Discrete to Discrete VI to resample a discrete model. 
This VI converts the discrete model to a continuous model and then 
converts the continuous model back to a discrete model. The first 
conversion uses the initial sampling time T1. The second conversion uses 
the final sampling time T2.

The CD Convert Discrete to Discrete VI supports the following conversion 
methods: Forward Rectangular, Backward Rectangular, Tustin’s, Prewarp, 
Zero-Order-Hold, and Z Transform. This VI does not support the 
First-Order-Hold or Matched Pole Zero methods.
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4
Connecting Models

You typically create a dynamic system model by connecting many models, 
or subsystems, together. Connecting many models together makes 
developing a model of a complicated dynamic system less complicated 
because you can describe the dynamics of individual pieces.

You only can connect continuous models to other continuous models. To 
connect discrete models together, each model must have the same sampling 
time. Connected models might, however, be of any form. For example, you 
can connect a transfer function model to a state-space model or a 
state-space model to a zero-pole-gain model.

Furthermore, you can make connections between single-input 
single-output (SISO), single-input multiple-output (SIMO), multiple-input 
single-output (MISO), and multiple-input multiple-output (MIMO) 
systems.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to connect models in the following four ways: in series, 
by appending, in parallel, and with feedback.

Note Refer to the labview\examples\Control Design\Getting Started\Model 
Connection.llb for example VIs that demonstrate the concepts explained in this 
chapter.

Connecting Models in Series
A series connection joins the outputs of the first model to the inputs of a 
second model. Use the CD Series VI to connect two models in series.

Note When connecting models of different forms, the Series Model output terminal 
returns a model based on the following hierarchy: state-space>transfer 
function>zero-pole-gain. For example, if you connect a zero-pole-gain model to a 
state-space model, Series Model returns a state-space model.

The following sections provide information about the kinds of connections 
you can make with the CD Series VI.
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Connecting SISO Systems in Series
Consider a valve that controls the flow rate of water into a tank. Figure 4-1 
represents this system.

 

Figure 4-1.  Flow of Water into a Tank

If you assume that the incoming water pressure to the valve is constant, 
only the valve input signal affects the level of the water in the tank. You can 
model the flow rate of water into the tank using the following transfer 
functions, where Hv(s) is a model of the valve and Ht(s) is a model of the 
tank.

I(s), Q(s), and L(s) represent the Laplace transform of the input signal, the 
flow rate, and level of water in the tank, respectively. The constants Kv, τ, 
ζ, and Kt are parameters of the models that describe the valve and tank. To 
obtain the effect of the input signal on the water level, place the two systems 
in series and multiply their transfer functions.

Ht (s) L

L(s): Level

I(s): Input Signal

Hv(s)

Q(s): Flow Rate

Hv s( ) Q s( )
I s( )
-----------≡

Kv

τ2s2 2ζτs 1+ +
-------------------------------------= Ht s( ) L s( )

Q s( )
-----------≡

Kt

s
-----=

H s( ) L s( )
I s( )
----------≡ Hv s( ) Ht s( )⋅

Kv

τ2s2 2ζτs 1+ +
-------------------------------------

Kt

s
-----⋅= =
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This equation represents the output of Hv(s) connecting to the input of 
Ht(s). Figure 4-2 illustrates this relationship.

 

Figure 4-2.  Valve Model and Tank Model in Series

The resulting SISO system H(s) now represents the relationship between 
the input signal I(s) and the level of water L(s) in the tank.

Creating a SIMO System in Series
You can create a SIMO system by connecting two or more SISO systems 
with a SIMO subsystem. For example, adding another valve and tank to the 
example in the Connecting SISO Systems in Series section of this chapter 
results in a SIMO system that divides the flow rate between two different 
tanks. Figure 4-3 shows this system.

 

Figure 4-3.  Dividing the Flow of Water between Two Tanks

Hv(s) = Q(s)/I(s) Ht(s) = L(s)/Q(s)
Q(s)I(s) L(s)

H(s) = Hv(s)*Ht(s) = L(s)/I(s)
I(s) L(s)

Ht1(s) L1

L1(s): Level Tank 1

I(s): Input Signal

Hv 2(s)

Q1(s)

Ht 2(s) L2

L2(s): Level Tank 2

Q2(s)

Hv 1(s)

Q(s): Flow Rate
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Hv2(s) is a SIMO transfer function matrix that represents the relationship of 
the flow rates. By connecting Hv2(s) to Hv1(s) and Q(s), the entire system 
becomes SIMO. The total flow rate Q(s) is equal to the sum of the parts 
Q1(s) and Q2(s).

The constant λ represents the fraction of flow sent to the first tank, whereas 
(1 – λ) is the remaining fraction of flow sent to the second tank.

When you connect these models in series, the output of the first system 
Hv1(s) connects to the input of the second system Hv2(s). Figure 4-4 
illustrates this relationship.

 

Figure 4-4.  Two Valve Models and Two Tank Models in Series

This combined system, which now is a SIMO system, has one input I(s) and 
two outputs L1(s) and L2(s). Figure 4-5 is a LabVIEW block diagram that 
illustrates this system.

 

Figure 4-5.  Block Diagram of the Two Valves and Tanks in Series

Q s( ) Q1 s( ) Q2 s( )+ λQ s( ) 1 λ–( )Q s( )+= =

Hv2 s( ) λ
1 λ–

=

Ht2(s) = L2(s)/Q2(s)
Q2(s) = (1 – λ)Q(s) L2(s)

Ht1(s) = L1(s)/Q1(s)
Q1(s) = λQ(s) L1(s)

Hv 2(s)
Q(s)

Hv1(s) = Q(s)/I(s)
I (s)
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Connecting MIMO Systems in Series
When connecting MIMO systems, you can connect any output of the first 
model to any input(s) of the second model. Figure 4-6 shows an example 
of two MIMO system models connected in series.

 

Figure 4-6.  MIMO System Models in Series

Figure 4-6 shows how the outputs of Model 1 that are connected to the 
inputs of Model 2 do not appear as outputs of the resulting series model. 
For example, because z0 connects to the Model 2 inputs v1 and v2, z0 is no 
longer an output of the resulting series model. Similarly, because z2 
connects to v0, z2 is no longer an output of the resulting series model.

z0

z2

z1

zl

v0

v2

v1

vk

Model 2

y0

y2

y1

yi

u0

u2

u1

uj

z1

zl

Model 1
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This same principle applies to the inputs of Model 2. Inputs of Model 2 that 
are connected to an output of Model 1 no longer appear as inputs of the 
resulting series model. Because the input v0 of Model 2 is connected to the 
output of z2 of Model 1, neither v0 nor z2 appear in the resulting series 
model.

You define the connections between two models using the Connections 
control of the CD Series VI. Figure 4-7 shows the settings this control used 
to connect the models in Figure 4-6.

 

Figure 4-7.  Connection Definitions for Models in Series

The control in Figure 4-7 indicates that the Model 1 output z0 connects to 
the Model 2 inputs v1 and v2. You also can see how the Model 1 output z2 
connects to the Model 2 input v0.

Appending Models
You can append models together to compare the time or frequency 
response of two models in the same plot. Use the CD Append VI to produce 
an augmented model from connections between two models. This 
augmented model contains all inputs and outputs of both models. With 
state-space models, states of the first model are combined with states of the 
second model.



Chapter 4 Connecting Models

© National Instruments Corporation 4-7 Control Design Toolkit User Manual

Figure 4-8 shows two appended system models.

Figure 4-8.  Appended Models

For example, consider the two tanks from the Creating a SIMO System in 
Series section of this chapter. The following equations define the transfer 
functions of the tanks.

K1 and K2 are the gains of their respective transfer functions. Appending 
Ht1(s) and Ht2(s) results in the following appended matrix transfer function 
Ht.

Model 2

y0

y2

y1

yi

Model 1

z0

z2

z1

zl

v0

v2

v1

vk

u0

u2

u1

uj

Ht1 s( )
K1

s
------= Ht2 s( )

K2

s
------=

Ht
Ht1 s( ) 0

0 Ht2 s( )
=
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Figure 4-9 uses the block diagram from Figure 4-5 but replaces the Tanks 
input with Ht. As in Figure 4-5, the two valves are connected in series with 
each other. In Figure 4-9, however, the two tanks now are appended to each 
other.

 

Figure 4-9.  Appending the Two Tanks

Connecting Models in Parallel
A parallel connection creates a single model from two separate systems that 
share common inputs. You also can use a parallel connection to add or 
subtract outputs of two subsystems and represent them as a single output. 
Use the CD Parallel VI to connect systems in parallel.

For example, consider the circuit system in Figure 4-10.
 

Figure 4-10.  Circuit System

i

v
i1

L1 L2

i2
R1 R2
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The input of this system is the voltage v. The output of this system is the 
total current i, which is the sum of currents i1 and i2. R1 and R2 are resistors, 
and L1 and L2 are inductors. The following equations describe the 
individual currents for the circuit system in Figure 4-10.

The following equations give the resulting transfer functions for each 
circuit loop.

In Figure 4-11, H1(s) and H2(s) represent the transfer functions defined in 
the previous equations, and I1(s) and I2(s) are the respective outputs of these 
transfer functions. V(s) is the transfer function of the voltage input v that 
both circuit loops share.

 

Figure 4-11.  Each Circuit Loop in the Circuit System

L1
di1

dt
------- R1i1 v–+ 0=

L2
di2

dt
------- R2i2 v–+ 0=

H1 s( )
I1 s( )
V s( )
----------- 1

L1s R1+
--------------------= =

H2 s( )
I2 s( )
V s( )
----------- 1

L2s R2+
--------------------= =

H1(s)

H2(s)

V(s) 

V(s) 

I1(s) 

I2(s) 



Chapter 4 Connecting Models

Control Design Toolkit User Manual 4-10 ni.com

Figure 4-12 illustrates the relationship between the voltage input v and total 
current i by placing both models together in one larger system model. When 
the two models are in parallel, both models share the same input V(s) and 
provide a total output I(s) as shown in Figure 4-12.

 

Figure 4-12.  Entire Circuit System as a Parallel Model

The following equations describe the resulting transfer function as a 
second-order system.

H1(s)

H2(s)

V(s) I(s) 

I s( ) I1 s( ) I2 s( )+ V s( ) H1 s( ) H2 s( )+[ ]= =

H s( ) I s( )
V s( )
----------- H1 s( ) H2 s( )+= =
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Figure 4-13 illustrates how some inputs from Model 1 and Model 2 share 
the same inputs. The outputs of Model 1 are added to or subtracted from the 
outputs of Model 2 to provide one combined parallel model.

 

Figure 4-13.  MIMO Models in Parallel

Model 2

y0

y2

Model 1

z0

z2

z1

zl

v0

v1

w1

vk

u0

u1

u2

uj

v2

w0

+

–

+ +
x0

y1

x1

yi



Chapter 4 Connecting Models

Control Design Toolkit User Manual 4-12 ni.com

Use the CD Parallel VI to define the relationship between the inputs and 
outputs of the models. Figure 4-14 displays the Input Connections and 
Output Connections controls that define the parallel interconnections 
shown in Figure 4-13.

 

Figure 4-14.  Connection Definitions for Models in Parallel

These controls indicate that the input for u0 of Model 1 is the same as the 
input for v1 of Model 2, the input for u1 of Model 1 is the same as the input 
for v0 of Model 2, and so on. You can see how the y2 output of Model 2 is 
subtracted from the z0 output of Model 1. You also can see how the z2 
output of Model 1 is added to the y0 output of Model 2. You define addition 
and subtraction by specifying the output as a Positive (+) or Negative (–) 
connection.

In Figure 4-13, notice that any common inputs from the original models are 
replaced by a new input wn in the resulting model. Likewise, any combined 
outputs of the original models are replaced by a new output xn in the 
resulting model.

Placing Models in a Closed-Loop Configuration
Use the CD Feedback VI to place one or two models in a closed-loop 
configuration. The Feedback Connections and Output Connections 
parameters define the connections between the outputs of a model to the 
inputs of the same model or a second model. If the models have an unequal 
number of inputs and outputs, the CD Feedback VI establishes a number of 
connections equal to the smaller number of inputs or outputs. The 
remaining inputs or outputs remain unmodified.
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For example, a model with m inputs and r outputs, where m < r, has m 
number of reference inputs. Similarly, a model with m inputs and r outputs, 
where m > r, has r number of reference inputs. All original yr outputs 
remain in the resulting model.

The following sections provide information about how the CD Feedback VI 
configures the closed-loop feedback when you have one or two models in 
the closed-loop configuration. The following sections also describe the 
behavior of this VI when you leave connections undefined.

Single Model in a Closed-Loop Configuration
When you only have one model in a closed-loop configuration, the 
CD Feedback VI connects the outputs to the inputs of the same model. 
You define these connections using the Feedback Connections and the 
Feedback Sign parameters.

The following sections provide information about the configuration of the 
model when you define and do not define connections.

Feedback Connections Undefined
If you do not define Feedback Connections, all outputs from Model 1 are 
fed back to the inputs of Model 1. Additionally, the Feedback Sign input 
determines if these outputs are fed back negatively or positively. The 
resulting model, shown in Figure 4-15, contains new reference inputs r0 
and r1 for each feedback connection you specify.

 

Figure 4-15.  One Model with No Connections Defined
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Feedback Connections Defined
If you define Feedback Connections, each specified output in Model 1 is 
fed back to each specified input of Model 1. You also define whether the 
connection is positive or negative. In this situation, the CD Feedback VI 
ignores the Feedback Sign input. The resulting model, shown in 
Figure 4-16, contains a new reference input r0 for each feedback 
connection you specify.

 

Figure 4-16.  One Model with Connections Defined

Two Models in a Closed-Loop Configuration
When you have two models in a closed-loop configuration, the first model 
is always in the open-loop path, and the second model is always in the 
feedback path. You have the option to define feedback connections, output 
connections, both types of connections, or no types of connections.

Within the CD Feedback VI, Feedback Connections defines the 
connection between the outputs of Model 2 and the inputs of Model 1. 
Output Connections defines the connection between the outputs of 
Model 1 and the inputs of Model 2. By default, the CD Feedback VI 
connects the models with negative feedback.

The resulting model differs depending on the number of connections you 
define. The following sections provide information about the configuration 
of the models when you define or do not define connections.
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Feedback and Output Connections Undefined
If you do not define Feedback Connections or Output Connections, 
the CD Feedback VI tries to connect all the outputs of Model 1 to the 
corresponding inputs of Model 2. The CD Feedback VI also tries to 
connect all the outputs of Model 2 to the corresponding inputs of Model 1. 
The Feedback Sign input determines if these outputs are fed back 
negatively or positively. By default, the CD Feedback VI connects the 
models with negative feedback.

The resulting model, shown in Figure 4-17, contains new reference inputs 
r0 and r1 for each feedback connection.

 

Figure 4-17.  Two Models with No Connections Defined
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Feedback Connections Undefined, Output 
Connections Defined
If you do not define Feedback Connections but define Output 
Connections, the CD Feedback VI connects the specified outputs for 
Model 1 to the specified inputs for Model 2. You define whether each 
connection is positive or negative. Because you have not defined Feedback 
Connections, the CD Feedback VI connects all outputs of Model 2 to the 
corresponding inputs in Model 1 based on the Feedback Sign.

Note All outputs of Model 1, whether they are connected to Model 2 outputs or not, 
remain as outputs in the resulting model. Conversely, Model 2 outputs do not remain in the 
resulting model when fed back to Model 1 inputs.

The resulting model, shown in Figure 4-18, contains new reference inputs 
r0 and r1 for each feedback connection.

 

Figure 4-18.  Two Models with Output Connections Defined
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Feedback Connections Defined, Output Connections 
Undefined
If you define Feedback Connections but not Output Connections, the 
CD Feedback VI feeds the outputs specified for Model 2 back to the 
specified inputs for Model 1. You define whether the feedback connection 
is positive or negative. Because you have not defined Output 
Connections, the CD Feedback VI tries to connect all outputs of Model 1 
positively to the inputs in Model 2.

The resulting model, shown in Figure 4-19, contains a new reference input 
r0 for each feedback connection you have defined.

 

Figure 4-19.  Two Models with Feedback Connections Defined
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Both Feedback and Output Connections Defined
If you specify connections in both Feedback Connections and in 
Output Connections, you define all connections. Based on the 
connections you specified in Output Connections, the outputs specified 
for Model 1 are connected to the inputs specified for Model 2. You define 
whether the connection is positive or negative. 

Based on the connections you specified in Feedback Connections, the 
outputs specified for Model 2 are fed back to the inputs specified for 
Model 1. You also define whether the feedback connection is positive or 
negative. Outputs of Model 2 not specified in Feedback Connections are 
removed from the resulting model. Again, because you specified 
connections using the Feedback Connections, the CD Feedback VI 
ignores the Feedback Sign input.

In the resulting model, shown in Figure 4-20, you can see how the 
CD Feedback VI creates a new reference input r0 for each feedback 
connection you specified.

 

Figure 4-20.  Two Models with Feedback and Output Connections Defined
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5
Working with Delay Information

Delays in a system model account for the fact that the inputs and outputs of 
a system often do not respond immediately to excitation. For example, 
chemical plants transfer fluid and materials between the process 
equipment, the actuators, and the sensors. This transportation process can 
cause long delays in the output response of the system. To fully represent 
this system, a model must incorporate this delay. If a model of this system 
does not incorporate delay, you cannot predict how well a controller based 
on that model performs.

A system model can have the following three types of delay:

• Input delay—The time a past input takes to affect the current output

• Output delay—The time an output takes to respond to the current 
system input

• Transport delay—The time the dynamics of a system take to respond 
to a particular excitation

The total delay of a system model is the sum of all delays between each 
input-output pair. The total delay includes all input, output, and transport 
delays in the system model. Another type of delay, residual delay, results 
from certain operations. Refer to the Residual Delay Information section of 
this chapter for more information about residual delay.

Constructing a model in the LabVIEW Control Design Toolkit sets delay 
information but does not make that information part of the mathematical 
model. The Control Design Toolkit provides several VIs that you can use to 
transfer delay information from the model properties into the mathematical 
model. After you incorporate delay into a mathematical model, the model 
properties no longer contain delay information, and the delay information 
appears in any analysis you perform on the model.

This chapter provides information about using the Control Design Toolkit 
to account for delay information in a model and to manipulate delay 
information within a model.

Note Refer to the labview\examples\Control Design\Getting Started\Model 
Delay.llb for example VIs that demonstrate the concepts explained in this chapter.
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Accounting for Delay Information
Accounting for delay information in a model involves the following two 
steps: setting delay in the properties of a model and transferring that delay 
from the model properties to the mathematical model. The following 
sections provide information about the Control Design VIs that you can use 
to accomplish these tasks.

Setting Delay Information
By default, when you construct a model in the Control Design Toolkit, the 
properties of that model have a delay of zero. Use the CD Set Delays to 
Model VI to define any non-zero delays in a model. You can use the 
Input Delays, Output Delays, and Transport Delays inputs of this VI to 
define the input, output, and transport delays in a model. The properties of 
the resulting output Model Out contain the original model with the delay 
information you defined.

You also can retrieve the delay information from the properties of a model 
with the CD Get Delays from Model VI. This VI returns the input, output, 
and transport delays of a model in the Input Delays, Output Delays, and 
Transport Delays outputs, respectively.

Incorporating Delay Information
After you define any delay information in a model, you then can make that 
delay a permanent part of the model. Incorporating delay information into 
a model works differently for continuous system models and discrete 
system models. In both cases, you represent a common delay factor and 
multiply the system model by this factor. The process by which you 
determine this factor, however, varies depending on the type of system 
model. With continuous system models, you apply the Laplace 
transformation to the system to represent the delay as an exponential factor. 
With discrete system models, you apply the shift operator to the system to 
represent the delay as a factor.

The delay factor for a continuous system is . The delay factor for a 
discrete system is . Refer to the Delay Information in Continuous 
System Models section and the Delay Information in Discrete System 
Models section of this chapter for information about these delay factors and 
incorporating them into system models.

Note These delay factors do not always have the same value in systems with more than 
one input-output pair. Single-input multiple-output (SIMO), multiple-input single-output 

e std–

z n– d
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(MISO), and multiple-input multiple-output (MIMO) system models have more than one 
input-output pair, and the delay might be different between each pair. Conversely, because 
single-input single-output (SISO) systems only have one input-output pair, the delay factor 
in a SISO system model always has the same value. Refer to the Residual Delay 
Information section of this chapter for more information about systems that do not have a 
common delay factor.

Use the CD Convert Delay with Pade Approximation VI to incorporate 
delay information into continuous models. Use the CD Convert Delay to 
Poles at Origin VI to incorporate delay information into discrete models. 
If you incorporate the delays in the model using one of these VIs, the 
Dynamic Characteristics VIs and the State Feedback Design VIs account 
for the delays in their results. Refer to the LabVIEW Help, available by 
selecting Help»Search the LabVIEW Help, for more information about 
which VIs account for delays.

The following sections provide information about using the Control Design 
Toolkit to incorporate delay into continuous and discrete system models.

Delay Information in Continuous System Models
Mathematically, incorporating delay into a continuous system model 
involves evaluating that model at td units in the past, where t is the current 
time. For example, consider the continuous SISO system model h(t). To 
represent this model at td units in the past, subtract td from t in the evaluation 
of the system model h(t). The expression h(t – td) represents this operation.

The first step in incorporating delay into a continuous system model is 
factoring a common delay out of the system model. Applying the Laplace 
transformation to the system model accomplishes this step. The following 
equation gives the Laplace transformation of h(t – td).

 

This equation shows that the Laplace transform of a function delayed td 
units of time in the past is identical to the product of the Laplace transform 
of the original function and the factor , where s is the Laplace variable. 
Thus, you can incorporate delay into h(t) by multiplying H(s) by the delay 
factor .

L h t td–( )[ ] h t td–( )e s– t td
0

∞

∫≡ h t td–( )e
s– t td–( )

t td–( )e std–d
0

∞

∫ H s( )e std–= =

e std–

e std–
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For example, consider the continuous SISO transfer function H(s) with 
output Y(s) and input U(s). Because  represents the delay factor, 

 defines a system that has a transport delay.

You also can represent the delay as an input delay or output delay. Applying 
the delay factor  to the input U(s) results in an input delay as shown in 
the following equation:

Conversely, applying the delay factor to the output Y(s) results in an output 
delay shown in the following equation:

Figure 5-1 shows the mathematical representation of transport, input, and 
output delay factors for a continuous system.

Figure 5-1.  Mathematical Representation of Transport, Input, and Output Delay for 
a Continuous System

To accommodate the delay factor, you can convert  from exponential 
form to a rational polynomial function. You can perform this conversion 
using the Padé approximation method. Use the CD Convert Delay with 
Pade Approximation VI to calculate a Padé approximation. This VI 
incorporates the delay information of the input model into the 
Converted Model output model. The delay becomes a part of the output 

e std–

H s( )e std–

H s( )e std– Y s( )
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-----------=

e std–

H s( ) Y s( )
e std– U s( )
----------------------=

H s( ) estdY s( )
U s( )

------------------=

[y(t + td)] = Y(s)estd

Y(s)

[y(t)] = Y(s)[u(t)] = U(s) H(s)e–std

H(s)

H(s)

[u(t – td)] = U(s)e–std

U(s)

: Laplace Transform
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model and thus is not in the model properties. In the case of SIMO, 
MISO, and MIMO system models, the CD Convert Delay with Pade 
Approximation VI calculates the total delay in all the input-output pairs 
before incorporating the delay into the model.

This conversion process has several benefits. First, connecting models that 
contain all rational polynomial functions is less complicated than 
connecting models that contain a mixture of exponential factors and 
rational polynomial functions. Second, when you incorporate the delay into 
the polynomial function, the controller structure, analysis operations, and 
synthesis operations account for the delay.

Note The CD Convert Delay with Pade Approximation VI converts a state-space model 
to a transfer function model before incorporating the delay information. This VI then 
converts the resulting model back to a state-space model. As a result, the final states of the 
model might not directly correspond to the original states. Refer Chapter 3, Converting 
Models, for more information about converting between model forms.

For example, consider a continuous SISO system with an input delay of 
25 seconds. The delay factor in this system is e–25s, so the following 
equation represents the system:

Figure 5-2 shows the step response of this system.

Figure 5-2.  Step Response with a 25 Second Delay

H s( ) Y s( )
e 25s– U s( )
-----------------------=
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You can see that incorporating e–25s into the input of H(s) delays the step 
response of H(s) by 25 seconds. Refer to the Analyzing a Step Response 
section of Chapter 6, Time Response Analysis, for information about a step 
response.

You can use the Polynomial Order input of the CD Convert Delay with 
Pade Approximation VI to affect the accuracy of the approximation. A 
larger Polynomial Order means a more accurate approximation but results 
in a higher-order system model. A large Polynomial Order can have the 
unintended side effect of making a model too complex to be useful.

Figure 5-3 shows the effects of polynomial orders on the accuracy of a Padé 
approximation of H(s).

 

Figure 5-3.  Effect of Polynomial Orders for a Padé Approximation

Delay Information in Discrete System Models
Mathematically, incorporating delay into a discrete system model involves 
evaluating that model at nd units in the past. nd equals the delay divided by 
the sampling time T of the system. For example, consider the discrete SISO 
system model y(k). The equation y(kT – ndT ) provides the output of y(k) at 
nd units in the past, where k represents the current sample. Removing the 
sampling time T from this equation provides the simplified equation 
y(k – nd). This simplified equation produces the same result as y(kT – ndT ).
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This equation shows the delay factor  for a discrete system model, 
where z represents time in the discrete domain. You use  to evaluate 
y(k) at nd samples in the past. The following equation shows this process, 
which also is known as applying the shift operator.

In transfer function models and zero-pole-gain models, incorporating delay 
information means adding poles at the origin. By applying  to a transfer 
function or zero-pole-gain model, you increase the order of the 
denominator polynomial by adding nd poles at the origin. In state-space 
models, incorporating delay information means creating nd additional 
states.

Use the CD Convert Delay to Poles at Origin VI to incorporate delays into 
discrete models. This VI incorporates the delay information of the input 
model into the Converted Model output model. The delay becomes a part 
of the output model and thus is not in the model properties. In the case of 
SIMO, MISO, and MIMO system models, the CD Convert Delay to Poles 
at Origin VI totals the delay in all the input-output pairs before 
incorporating the delay into the model.

Figure 5-4 shows how you can create a transfer function model, define an 
input delay for the model properties, and then incorporate that delay 
directly into the model.

 

Figure 5-4.  Adding Delay Information to a Discrete Transfer Function Model

z n– d

z n– d

y k nd–( ) y k( )= z nd–⋅
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Figure 5-5 shows the resulting transfer function model. The CD Convert 
Delay to Poles at Origin VI accounted for the input delay by increasing the 
number of poles at the origin in the model. Accordingly, the Transfer 
Function Converted Model has a larger order denominator than the 
Transfer Function Model In.

 

Figure 5-5.  Additional Poles Accounting for the Input Delay

The Transfer Function Converted Model expresses the additional poles 
at the origin with two additional zeros in the denominator.

Representing Delay Information
To illustrate how the Control Design Toolkit represents delay in a system 
model, consider the following MIMO transfer function equation, where U 
is the input transfer function matrix and Y is the output transfer function 
matrix.

H Y
U
----=
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The following equations define this MIMO transfer function:

  

The following equations define the transport delay matrix Td, the input 
delay vector Id, and the output delay vector Od. Refer to the Delay 
Information in Continuous System Models section of this chapter for the 
definition of the continuous delay factor .

  

To incorporate this delay information into H, compute the product of the 
transfer function, input, and output matrices with their respective delay 
matrices or vectors. Hd, shown in the following equation, represents H with 
delay information included.

The following equations show the computation of these transfer functions 
to incorporate delay.

H H11 H12

H21 H22

= U U1

U2

= Y Y1

Y2

=
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Td
e

st11–
e

st12–

e
st21–

e
st22–

= Id
e st1–
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=
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To represent the delay of each element, you can use the following matrices:

  

Because the number of rows and columns of Td are the same as the 
dimension of vectors Id and Od, you can represent all the delay information 
of a model using the following structure:

In this delay matrix, the input delay vector Id is on top. Each input uses one 
column. The output delay vector Od is on the right-hand side. Each output 
uses one row.

Manipulating Delay Information
The Control Design Toolkit provides two VIs to help you manipulate the 
delay information of a system model. Use the CD Distribute Delay VI to 
minimize the transport delay of a system model by distributing the 
transport delay information to the inputs and outputs of a system model. 
Use the CD Total Delay VI to distribute the input and output delay of a 
model to the transport delay. The following sections provide information 
about using these VIs to manipulate delay information.

Accessing Total Delay Information
The CD Total Delay VI transfers delay information from the inputs and 
outputs of a system model to the transport delay of a system model by 
adding the input and output delays to the delay in the transport delay 
matrix. When you use the CD Total Delay VI, other Control Design VIs can 
access the total delay information of a system.

Td
t11 t12

t21 t22

= Id
t1

t2

= Od
ta

tb

=

t1 t2

t11 t12
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For example, consider a model with the following delay information. Refer 
to the Representing Delay Information section of this chapter for the 
derivation of this matrix and these vectors.

The CD Total Delay VI first transfers the input delay information to the 
transport delay matrix. The following equations show this process:

The CD Total Delay VI then transfers the output delay information to the 
transport delay matrix. The following equations show this process:

Figure 5-6 shows the output of the CD Total Delay VI.

Figure 5-6.  Resulting Total Delay

The input and output delay vectors are now  and , respectively.
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Distributing Delay Information
The CD Distribute Delay VI calculates the total delay of a system model, 
then uses a common delay factor to distribute the total delay between the 
inputs and outputs. This operation minimizes the non-zero elements of the 
transport delay matrix. The CD Distribute Delay VI transfers delay 
information to the input delays before transferring delay information to the 
output delays.

Note Some Control Design VIs internally distribute the delay to preserve as much delay 
information as possible in the resulting model. Refer to the LabVIEW Help, available by 
selecting Help»Search the LabVIEW Help, to determine which VIs manipulate the 
transport delay matrix to preserve delay information.

For example, consider the system model described in the Accessing Total 
Delay Information section of this chapter. If you apply the CD Distribute 
Delay VI to this system model, you get the following equation:

Because 4 is the common factor among the transport delay matrix, the CD 
Distribute Delay transferred a delay of 4 to the input delays.

Figure 5-7 shows the output of the CD Distribute Delay VI.
 

Figure 5-7.  Resulting Delay Distribution

The input and output delay vectors are now  and , respectively.
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Figure 5-8 shows how you implement this example using the Control 
Design Toolkit.

Figure 5-8.  Totaling and Distributing the Delay Information in a Model

Residual Delay Information
Residual delay information is transport delay information that remains 
when the CD Distribute Delay VI cannot distribute all of the transport delay 
to the inputs or outputs. This situation most often occurs in SIMO, MISO, 
and MIMO system models because each input-output pair can have 
different delay information.

For example, consider a system model with the following delay 
information:

The CD Distribute Delay VI first distributes the delay in the transport delay 
matrix to the input delay vector by subtracting the minimum value from 
each column in the transport delay matrix. In this case, the minimum value 
in both columns is 3. This VI then distributes the delay to the output delay 
vector by subtracting the minimum value from each row in the resulting 
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transport delay matrix. In this case, only the second row has a minimum 
value other than 0.

Because the CD Distribute Delay VI cannot fully distribute all the delays, 
the transport delay matrix contains the residual delay information.
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6
Time Response Analysis

The time response of a dynamic system provides information about how 
the system responds to certain inputs. You analyze the time response to 
determine the stability of the system and the performance of the controller.

Obtaining the time response of a system involves numerically integrating 
the system model in time. The LabVIEW Control Design Toolkit provides 
VIs to help you find these time-domain solutions. You can use these Time 
Response VIs to analyze the response of a system to step and impulse 
inputs. You can apply initial conditions to both of these responses. You also 
can use the Time Response VIs to simulate the response of the system to an 
arbitrary input.

This chapter provides information about using the Control Design Toolkit 
to measure and analyze the time response of a system. This chapter also 
provides information about solving the time-domain equations and 
simulating arbitrary inputs.

Note Refer to the labview\examples\Control Design\Getting Started\Time 
Analysis.llb for example VIs that demonstrate the concepts explained in this chapter.

Calculating the Time-Domain Solution
The following equation represents the time-domain solution for a 
continuous state-space model.

x0 represents any initial conditions of the states in the model. eAtx0 
represents the solution of the model at the initial conditions. This solution 
is known as the free response.

x t( ) eAtx0 eA t τ–( )Bu τ( )dτ

0

t

∫+=
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 represents the state response for stable systems over 

time as the inputs u(τ) drive the dynamic system from time t = t0 to t. This 
solution is the forced response.

The following equation represents the time-domain solution for a discrete 
state-space model.

In this equation,  denotes the discrete free response.

 denotes the discrete forced response.

Note The VIs discussed in this chapter automatically convert transfer function and 
zero-pole-gain models to state-space form before calculating the time-domain solution.

Spring-Mass Damper Example
To illustrate the different time responses you can obtain from a model, 
consider the following example of a spring-mass damper, shown in 
Figure 6-1.

eA t τ–( )Bu τ( )dτ

0

t

∫

x k( ) Akx 0( ) Ak j– 1– Bu j( )

j 0=

k 1–

∑+=

Akx 0( )

Ak j– 1– Bu j( )
j 0=

k 1–

∑
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Figure 6-1.  Spring-Mass Damper System

In this example, k is the spring constant, u is a force, m is the mass, and b 
is the damper coefficient. x is the displacement, which is the distance from 
the normal state of the spring to the current position of the spring. You can 
represent this spring-mass damper system with the following state-space 
model:

For this example, consider the following values:

The following equations define the state-space model.

u

x

b

k

m

x· Ax Bu+
0 1
k
m
----– b

m
----–

x
0
1
m
----

u+= =

y Cx Du+ 1 0 x 0 u+ x= = =

k 50kN
cm
------- m 100kg b 10kN s⋅

cm
-------------= = =

x· 0 1
0.5– 0.1–

x 0
0.01

u+=
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The following sections show how this system responds to different inputs.

Analyzing a Step Response
The step response of a dynamic system measures how the dynamic system 
responds to a step input signal. The following equations define a unit step 
input signal.

The Control Design Toolkit contains two VIs to help you measure the step 
response of a system and then analyze that response. The CD Step 
Response VI returns a graph of the step response. The CD Parametric Time 
Response VI returns the following response data that helps you analyze the 
step response.

• Rise time (tr)—The time required for the dynamic system response to 
rise from a lower threshold to an upper threshold. The default values 
are 10% for the lower threshold and 90% for the upper threshold.

• Maximum overshoot (Mp)—The dynamic system response value that 
most exceeds unity, expressed as a percent.

• Peak time (tp)—The time required for the dynamic system response to 
reach the peak value of the first overshoot.

• Settling time (ts)—The time required for the dynamic system response 
to reach and stay within a threshold of the final value. The default 
threshold is 1%.

• Steady state gain—The final value around which the dynamic system 
response settles to a step input.

• Peak value (yp)—The value at which the maximum absolute value of 
the time response occurs.

Note You can modify the default values for the rise time thresholds and the settling time 
threshold using the Rise Time Thresholds (%) and Settling Time Threshold (%) 
parameters of the CD Parametric Time Response VI. 

u t( ) 0= when t 0<
u t( ) 1= when t 0≥
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Figure 6-2 shows a sample step response graph and the locations of the 
parametric response data.

 

Figure 6-2.  Step Response Graph and Associated Parametric Response Data

For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 6-3 shows how you determine the 
step response and associated parametric response data of this system.

Figure 6-3.  Step Response Block Diagram of the Spring-Mass Damper System
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Figure 6-4 shows the Step Response Graph resulting from this block 
diagram.

 

Figure 6-4.  Step Response Graph of the Spring-Mass Damper System

You can see that the step input causes this system to settle at a steady-state 
value of 0.02 cm.

When you use the CD Parametric Time Response VI to analyze the step 
response of this system, you obtain the following response data:

• Rise time (tr)—1.42 seconds

• Maximum overshoot (Mp)—79.90%

• Peak time (tp)—4.54 seconds

• Settling time (ts)—89.89 seconds

• Steady-state gain—0.02 cm

• Peak value—0.04 cm
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Figure 6-5 shows the output of the CD Parametric Time Response VI.

Figure 6-5.  Parametric Data of the Spring-Mass Damper System

Analyzing an Impulse Response
The impulse response of a dynamic system measures how the system 
responds to an impulse input signal. You define an impulse input signal in 
the following manner:

• Continuous systems—Also known as the Dirac delta function, a 
continuous impulse input is a unit-area signal with an infinite 
amplitude and infinitely small duration occurring at a specified time. 
At all other times, the input signal value is zero.

• Discrete systems—Also known as the Kronecker delta function, a 
discrete impulse input is a physical pulse that has unit amplitude at the 
first sample period and zero amplitude for all other times.

Use the CD Impulse Response VI to calculate the impulse response of a 
dynamic system to a standard impulse input. Because the impulse signal 
excites all frequencies and the duration of this signal is infinitely small, the 
impulse response is the natural response of the system.
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For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 6-6 shows how you determine the 
impulse response of this system.

Figure 6-6.  Impulse Response Block Diagram of the Spring-Mass Damper System

Figure 6-7 shows the Impulse Response Graph resulting from this block 
diagram.

 

Figure 6-7.  Impulse Response Graph of the Spring-Mass Damper System

Analyzing an Initial Response

The initial response of a dynamic system measures how the system 
responds to a set of non-zero initial conditions. Use the CD Initial 
Response VI to determine the initial response of a dynamic system.
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Note The CD Step Response VI and the CD Impulse Response VI support initial 
conditions. Use the Initial Conditions parameter of these VIs to see how a set of initial 
conditions affects the step and/or impulse responses.

For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 6-8 shows how you determine the 
response of this system to an initial condition of 0.3 cm.

Figure 6-8.  Initial Response Block Diagram of the Spring-Mass Damper System

Figure 6-9 shows the Initial Response Graph resulting from this block 
diagram.

Figure 6-9.  Initial Response Graph of the Spring-Mass Damper System

Notice that the displacement begins at the initial condition of 0.3 cm.
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Analyzing a General Time-Domain Simulation
A general time-domain simulation of a system involves input signals that 
are more general than step, impulse, or initial input signals. Refer to the 
Calculating the Time-Domain Solution section of this chapter for equations 
representing the time response of continuous and discrete systems. Use the 
CD Linear Simulation VI to solve these equations in response to an 
arbitrary input signal u into a system. This VI determines the response by 
numerically integrating these equations at the specified time steps. You can 
define the time steps with the Delta t input.

The system model can be continuous or discrete, but the CD Linear 
Simulation VI converts continuous models to discrete models using either 
the exponential Zero-Order-Hold or the First-Order-Hold method. Refer to 
the Converting Continuous Models to Discrete Models section of 
Chapter 3, Converting Models, for more information about these methods. 

If this conversion is necessary, you must specify Delta t, which becomes 
the sampling time. If no conversion is necessary, Delta t must be equal to 
the sampling time of the output data .

Note For accurate results, use a sampling interval that is small enough to minimize the 
effects of converting a continuous system to a discrete one. Select this sampling time based 
on the location of the poles of the system. Refer to Chapter 8, Analyzing Dynamic 
Characteristics, for more information about locating the poles of a system. Also, verify 
that the sampling interval matches the sampling time of the output data .

For example, consider the system described in the Spring-Mass Damper 
Example section of this chapter. Figure 6-10 shows how you simulate the 
response of this system to a square wave input.

u t( )

u t( )
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Figure 6-10.  Linear Simulation Block Diagram of the Spring-Mass Damper System 
Using a Square Wave Input

Notice that the CD Linear Simulation VI converts the continuous 
state-space model to a discrete model using the Zero-Order-Hold method. 
This conversion uses a Delta t input of approximately 0.3. This block 
diagram bundles the state-space model and the square wave as the input to 
the Linear Simulation Graph.

Figure 6-11 shows the Linear Simulation Graph resulting from this block 
diagram.

Figure 6-11.  Linear Simulation Graph of the Spring-Mass Damper System 
Using a Square Wave Input

The scale for the square wave input is on the right-hand side of the graph, 
whereas the scale for the linear simulation output is on the left-hand side of 
the graph. You can specify any input and use the CD Linear Simulation VI 
to observe how the system responds to that input.
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Obtaining Time Response Data
The Time Response VIs return time response data that contains information 
about the time response of all input-output pairs in the model. Use the 
CD Time Response VI to access this information for a specified 
input-output pair, a list of input-output pairs, or all input-output pairs of the 
system.

The CD Time Response VI uses the Time Response Data input, which 
contains the time response information for all the input-output pairs of a 
system model. If the system model is in state-space form, you can use the 
Type of Response Data parameter to obtain the time response of the 
input-state pair(s) as opposed to the input-output pair(s). Because transfer 
function and zero-pole-gain models do not have states, the time response 
data for an input-state pair of these forms is an empty array.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for more information about the CD Get Time Response 
Data VI.
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7
Frequency Response Analysis

The frequency response of a dynamic system is the output of a system given 
unit-amplitude, zero-phase sinusoidal inputs at varying frequencies. You 
can use the frequency response of a system to locate poles and zeros of a 
system. Using this information, you then can design a controller to improve 
unwanted parts of the frequency response.

When applied to the system, a sinusoidal input with unit amplitude, zero 
phase, and frequency ω produces the following sinusoidal output.

A is the magnitude of the response as a function of ω, and φ is the phase. 
The magnitude and phase of the system output vary depending on the 
values of the system poles, zeros, and gain.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to perform Bode frequency analysis, Nichols frequency 
analysis, and Nyquist stability analysis.

Note Refer to the labview\examples\Control Design\Getting Started\
Frequency Analysis.llb for example VIs that demonstrate the concepts explained in 
this chapter.

Bode Frequency Analysis
Use Bode plots of system frequency responses to assess the relative 
stability of a closed-loop system given the frequency response of the 
open-loop system. By analyzing the frequency response, you can determine 
what the open- and closed-loop frequency responses of a system imply 
about the system behavior. Use the CD Bode VI to create a Bode plot.

Note Use the CD Evaluate at Frequency VI to determine the frequency at specified values.

H iω( ) A ω( )e iφ w( )=
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For example, consider the following transfer function that represents a 
linear time-invariant system.

Applying the sinusoidal input x(t) = sin (ωt) to this previous system 
produces the following equation:

Using this equation, the following equation represents the complex 
frequency response.

You can separate the complex frequency response equation into 
two parts—the magnitude A(ω) and the phase φ(ω). You obtain the 
magnitude from the absolute value of the response. You obtain the phase 
value from the four-quadrant arctangent of the response. The following 
equations illustrate these operations:

These two equations represent the magnitude and the phase of the 
frequency response, respectively. Plotting these equations results in 
two subplots—the Bode magnitude plot and the Bode phase plot. The Bode 
magnitude plot shows the gain plotted against the frequency. The Bode 
phase plot shows the phase, in degrees, as a function of the frequency. 

Use a linear scale when dealing with phase information. When using a 
linear scale, you can add the individual phase elements together to 
determine the phase angle.

Because you can add the magnitude and phase plots for systems in series, 
you can add Bode plots of an open-loop plant and potential compensators 
to determine the frequency response characteristics of the dynamic system. 
Bode plots also illustrate the system bandwidth as the frequency at which 
the output magnitude is reduced by three decibels or attenuated to 
approximately 70.7% of its original value. You also can use the 
CD Bandwidth VI to determine the system bandwidth.

H s( ) Y s( )
U s( )
-----------=

y t( ) Y ωt φ+( )sin=

H iω( ) A ω( )e iφ w( )=

A ω( ) H iω( )=

φ ω( ) H∠ iω( ) Imaginary  H iω( )
Real  H iω( )

----------------------------------------------atan= =



Chapter 7 Frequency Response Analysis

© National Instruments Corporation 7-3 Control Design Toolkit User Manual

You can measure how close a system is to instability by examining the 
value of the magnitude and phase at critical values. These values, gain 
margin and phase margins, are important because real-life models and 
controllers are prone to uncertainties. Low gain or phase margins indicate 
potential instability.

The following sections provide information about gain and phase margins.

Gain Margin
The gain margin indicates how much you can increase the gain before the 
closed-loop system becomes unstable. This critical gain value, which 
causes instability, indicates the location of the closed-loop poles of the 
system on the imaginary axis. 

You often use this analysis on systems where G(s) consists of a gain K and 
a dynamic model H(s) in series. For cases where increasing the gain leads 
to system instability, the system is stable for a given value of K only if the 
magnitude of KH(s) is less than 0 dB at any frequency where the phase of 
KH(s) is –180°.

The Bode magnitude plot displays the gain margin as the number of 
decibels by which the gain exceeds zero when the phase equals –180°, as 
shown in Figure 7-1.

Phase Margin
The phase margin represents the amount of delay that you can add to a 
system before the system becomes unstable. Mathematically, the phase 
margin is the amount by which the phase exceeds –180° when the gain is 
equal to 0 dB. The phase margin also indicates how close a closed-loop 
system is to instability. A stable system must have a positive phase margin.
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Figure 7-1 shows Bode plots with corresponding gain and phase margins.

Figure 7-1.  Gain and Phase Margins

Depending on the complexity of the system, a Bode plot might return 
multiple gain and/or phase margins.

Nichols Frequency Analysis
Use Nichols frequency analysis to obtain the closed-loop frequency 
response of a system from the open-loop response. Open-loop response 
curves, or loci, of constant magnitude and phase often provide reference 
points that help you analyze a Nichols plot. Each point on the open-loop 
response curve corresponds to the response of the system at a given 
frequency. You then can read the closed-loop magnitude response at that 
frequency from the Nichols plot by identifying the value of the magnitude 
locus at which the point on the curve intersects. Similarly, you can 
determine the closed-loop phase by identifying the phase locus at which the 
open-loop curve crosses.
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Use the CD Nichols VI to create a Nichols plot and examine system 
performance in dynamic systems. The CD Nichols VI calculates and plots 
the open-loop frequency response against the gain and phase on the Nichols 
plot. Different points on the plot correspond to different values of the 
frequency ω. Examine the Nichols plot to determine the gain and phase 
margins, bandwidth, and the effect of gain variations on the closed-loop 
system behavior.

Nyquist Stability Analysis
Use Nyquist stability analysis to examine the system performance of 
dynamic systems. Nyquist plots consist of the real part of the frequency 
response plotted against the imaginary part of the response. Nyquist plots 
indicate the stability of a closed-loop system, given an open-loop system, 
which includes a gain of K. Use the CD Nyquist VI to create a Nyquist plot.

The Nyquist stability criterion relates the number of closed-loop poles of 
the system to the open-loop frequency response. On the Nyquist plot, the 
number of encirclements around (–1, 0) is equal to the number of unstable 
closed-loop poles minus the number of unstable open-loop poles.
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You can use this criterion to determine how many encirclements the plant 
requires for closed-loop stability. For example, if the plant has all 
open-loop stable poles, there are no encirclements. If the plant has one 
open-loop unstable pole, there is one negative, counter-clockwise 
encirclement. Figure 7-2 shows a system with one unstable pole.

 

Figure 7-2.  Nyquist Plot of One Unstable Pole

Often you want to determine a range of gain values for which the system is 
stable, rather than testing the stability of the system at a specific value of K. 
To determine the stability of a closed-loop system, you must determine how 
a range of gain values affect the stability of the system.

Consider the following closed-loop transfer function equation with output 
Y(s) and input U(s), where K is the gain.

The closed-loop poles are the roots of the equation 1 + KH(s) = 0. The 
complex frequency response of KH(s), evaluated for s = iω in continuous 
systems and eiωT for discrete systems, encircles (–1, 0) in the complex 
plane if 1 + KH(s) encircles (0, 0). If you examine the Nyquist plot of H(s), 
you can see that an encirclement of (–1/K, 0) by H(s) is the same as an 
encirclement of (–1, 0) by KH(s). Thus, you can use one Nyquist plot to 
determine the stability of a system for any and all values of K.

Y s( )
U s( )
----------- KH s( )

1 KH s( )+
-------------------------=
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Obtaining Frequency Response Data
The Frequency Response VIs discussed in this chapter return frequency 
response data that contains information about the frequency response of all 
input-output pairs in the model. The frequency response information for the 
CD Bode VI returns information about the Bode magnitude and Bode 
phase. The frequency response information for the CD Nichols VI returns 
information about the real and imaginary parts of the frequency response. 
The frequency response information for the CD Nyquist VI returns 
information about the open-loop gain and open-loop phase. Use the CD Get 
Frequency Response Data VI to access this information for a specified 
input-output pair, a list of input-output pairs, or all input-output pairs of the 
system.

The CD Get Frequency Response Data VI uses the Frequency Response 
Data input, which contains the frequency response information for all the 
input-output pairs of a system model. For state-space models, the CD Get 
Frequency Response Data VI returns the frequency response of the 
input-state pair(s). Because transfer function and zero-pole-gain models do 
not have states, the frequency response data for an input-state pair of these 
forms is an empty array.

Refer to the LabVIEW Help, available by selecting Help»Search the 
LabVIEW Help, for more information about using the CD Get Frequency 
Response Data VI.
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8
Analyzing Dynamic 
Characteristics

Any given dynamic system has numerous dynamic characteristics such as 
stability, DC gain, damping ratio, natural frequency, and norm. You can 
use the LabVIEW Control Design Toolkit to analyze a system in terms of 
these characteristics.

This chapter provides information about using the Control Design Toolkit 
to analyze the stability of a dynamic system. This chapter also describes 
how to use the root locus method to analyze the stability of a system.

Note Refer to the labview\examples\Control Design\Getting Started\
Dynamic Characteristic Analysis.llb for example VIs that demonstrate the 
concepts explained in this chapter.

Determining Stability
The stability of a system depends on the locations of the poles and zeros 
within the system. To design an effective controller, you must take these 
locations into account.

A continuous system is stable if all poles are on the left half of the complex 
plane. A discrete system is stable if all poles are within a unit circle 
centered at the origin of the complex plane. Additionally, both types of 
systems are stable if they do not contain any poles.

A continuous system is unstable if it contains at least one pole in the right 
half of the complex plane. A discrete system is unstable if at least one pole 
is outside of the unit circle in the complex plane. Additionally, both types 
of systems are unstable if they contain more than one pole at the origin.

In terms of the dynamic response associated with the poles and zeros of a 
system, a pole is stable if the response of the pole decays over time. If the 
response becomes larger over time, the pole is unstable. If the response 
remains unchanged over time, the pole is marginally stable. To describe a 
system as stable, all the closed-loop poles of a system must be stable.
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Continuous and discrete systems are marginally stable if they contain only 
one pole at the origin and no positive poles.

Use the CD Pole-Zero Map VI to obtain all the poles and zeros of a system 
and plot their corresponding locations in the complex plane. Use the CD 
Stability VI to determine if a system is stable, unstable, or marginally 
stable.

Using the Root Locus Method
The root locus method provides the closed-loop pole positions for all 
possible changes in the loop gain K. Root locus plots provide an important 
indication of what gain ranges you can use to keep the closed-loop system 
stable. The root locus is a plot on the real-imaginary axis showing the 
values of s that correspond to pole locations for all gains, starting at the 
open-loop poles, K = 0 and ending at K = ∞.

You can rewrite the characteristic equation of a closed-loop system using 
the following equation, where N(s) is the numerator and D(s) is the 
denominator.

This equation restates the fact that the open-loop system poles, which 
correspond to K = 0, are the roots of the transfer function denominator, 
D(s). As K becomes larger, the roots of the previous characteristic equation 
approach either the roots of N(s), the zeros of the open-loop system, or 
infinity. For a closed-loop system with a non-zero, finite gain K, the 
solutions to the preceding equation are given by the values of s that satisfy 
both of the following conditions:

Use the CD Root Locus with Gain VI to compute and draw root locus plots 
for continuous and discrete SISO models of any form. You also can use this 
VI to synthesize a controller. Refer to the The Root Locus Design 
Technique section of Chapter 11, Designing Classical Controllers, for 
information about using the CD Root Locus with Gain VI to design a 
controller.

1 KH s( )+ D s( ) KN s( )+ 0= =

KH s( ) 1= H s( )∠ 2k 1+( )π±= k 0 1 …, ,=( )
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9
Analyzing State-Space 
Characteristics

State-space analysis involves analyzing the state variables of a system. 
State variables describe the relationship between the inputs and outputs of 
a system. These variables often have physical meaning and represent some 
internal state of the system under analysis. For example, consider a motor 
that has power as its input and speed as its output. If you represent this 
system as a state-space model, the state variables are speed and rotation 
angle.

To design an effective controller, you must perform a state-space analysis 
on the controller model. State-space analysis determines whether a system 
is stable, controllable, observable, stabilizable, or detectable. You can use 
state-space analysis to balance a system model. Balancing a system model 
is useful in both analyzing and synthesizing a controller. You also can use 
state-space analysis to define different representations of the same system.

Because you can choose a variety of state variables to represent a single 
system, the state-space form for a given linear time-invariant multiple-input 
multiple-output (MIMO) system is not unique. You must determine which 
state variables are best for the analysis and design of a state-space 
controller.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to perform state-space analysis.

Note Refer to the labview\examples\Control Design\Getting Started\
State-Space Analysis.llb for example VIs that demonstrate the concepts explained 
in this chapter.
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Determining Stability
In a state-space form, the time evolution of the states determines the 
stability of the system. If you have initial conditions and you eliminate all 
inputs to the system, only the state matrix A governs the response of the 
system. You then apply control theory to find the counterparts of 
poles, which you can use in transfer function and pole-zero analysis.

The counterparts of poles are the eigenvalues of the state matrix A. 
The location of these eigenvalues determines the stability of the system. 
A continuous system is stable if all eigenvalues of A have negative real 
parts. A discrete system is stable if these eigenvalues fall within the unit 
circle.

Determining Controllability and Stabilizability
A system is controllable if all the states that describe the system respond to 
an input of the system, that is, you can influence the states of the system 
independently by adjusting the inputs. A system is not controllable if the 
system contains states that remain unaffected by any input.

If a system is controllable, there is an input that forces the system states, or 
linear combination of states, to go from any initial condition at t = 0 to zero 
at any time t > 0. If a system is open-loop unstable, you can adjust the input 
to affect the response of the states.

You can confirm the controllability of a system by verifying that the 
controllability matrix Q, shown in the following equation, has full row rank 
or is nonsingular.

The state matrix A and the input matrix B determine the controllability 
properties of a state-space model. You use these matrices to calculate Q, 
as shown in the following equation:

A system is controllable if Q has full row rank or is nonsingular. 
For example, if B is an n-dimensional column vector that is colinear to an 
eigenvector of null eigenvalues of A, you obtain the following matrix:

Q B  AB … An 1– B[ ]=

Q B  0 0 … 0[ ]=
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This matrix is row rank deficient for n > 1. The null eigenvalue represents 
an uncontrollable mode of the system.

From the definition of a controllable system you can conclude that to place 
the system states at zero at any time t > 0 indicates that you can place all 
system poles anywhere to make the closed-loop response reach zero at time 
t as quickly as possible.

When you can adjust all system poles locations to a point you want, you can 
calculate a full state-feedback controller gain K to arbitrarily place the 
eigenvalues of the closed-loop system, A' = A – BK. Conversely, the 
eigenvalues associated with modes that are not controllable cannot be 
adjusted, regardless of the value you choose for K.

Stabilizability is related to controllability. A system is stabilizable if all the 
unstable eigenvalues are controllable. Controllability implies 
stabilizability, but stabilizability does not imply controllability.

Use the CD Controllability Matrix VI to calculate the controllability matrix 
of the model and determine if the system is controllable and/or stabilizable. 
Use the CD Controllability Staircase VI to transform a state-space model 
into a model that you can use to identify controllable states in the system. 
You also can use the CD Controllability Staircase VI to inspect the A and 
B matrices of the transformed model to determine the controllable states.

Determining Observability and Detectability
A system is observable if you can estimate each state of the system by 
looking only at the output response. If you can determine the states at 
time t0 by observing the output from time t0 to t1, the system is observable.

Observability depends on the output matrix C and the state matrix A of the 
system. You can check observability by verifying that the observability 
matrix O, defined in the following equation, is full column rank or is 
nonsingular for a SISO system.

O

C
CA

:·

CAn 1–

=
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Use a state estimator to calculate the states of any observable system with 
a column-deficient matrix C. Refer to Chapter 13, Defining State Estimator 
Structures, for information about state estimators.

Detectability is related to observability. A system is detectable if all the 
unstable eigenvalues are observable. Observability implies detectability, 
but detectability does not imply observability.

Use the CD Observability Matrix VI to calculate the observability matrix 
of a model and determine if the system is observable and/or detectable. Use 
the CD Observability Staircase VI to transform a state-space model into a 
model that you can use to identify observable states in the system. Use the 
CD Observability Staircase VI to calculate the observability matrix of the 
transformed model. You also can use the CD Observability Staircase VI to 
inspect the A and C matrices of the transformed model to determine the 
observable states.

Analyzing Controllability and Observability Grammians
An alternative and numerically more stable approach to assessing 
controllability and observability is to compute the Grammians of the 
state-space matrices. The controllability Grammian is an n × n matrix that 
determines how dependent the state responses are on the different inputs of 
the system. Independent state responses indicate that there always is a set 
of inputs that can drive the states to zero at a certain time. In this case, the 
system is controllable.

Calculate the eigenvalues of the controllability Grammian to check the 
dependency of the state responses. If the controllability Grammian is 
positive-definite, meaning all eigenvalues are real and greater than zero, 
the chosen state-space form is controllable.

Similarly, the observability Grammian is an n × n matrix that determines 
how dependent the state effects are on the different outputs of the system. 
Independent state effects indicate that there always is a set of outputs that 
you can use to estimate the states at time t = 0. In this case, the system is 
observable.

Calculate the eigenvalues of the observability Grammian to check the 
dependency of the responses of the states. If the observability Grammian is 
positive-definite, meaning all eigenvalues are real and greater than zero, the 
chosen state-space form is observable.
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Use the CD Grammians VI to calculate the controllability and observability 
Grammians of a state-space model for a stable system.

Balancing Systems
A system is balanced if the controllability and observability diagonal 
Grammians of that system are identical. A balanced model simplifies the 
analysis and use of model order reduction. Refer to Chapter 10, Model 
Order Reduction, for more information about model order reduction.

In model order reduction, balancing highlights the relative importance of 
the state to the input/output performance of the system. Balancing consists 
of finding a similarity transformation from the original model to generate a 
state-space representation. Use the CD Balance State-Space Model 
(Diagonal) VI and the CD Balance State-Space Model (Grammians) VI to 
balance a state-space system.

If you use the CD Balance State-Space Model (Grammians) VI, the 
Balanced Model output of this VI has equal and diagonal controllability 
and observability Grammians. To use this VI, the system must be stable, 
controllable, and observable.

If you use the CD Balance State-Space Model (Diagonal) VI, the balanced 
state-space model has an even eigenvalue spread for the state matrix A or 
the composite matrix, which contains the natural composition of A, B, 
and C.



© National Instruments Corporation 10-1 Control Design Toolkit User Manual

10
Model Order Reduction

In most cases, different models of a dynamic system can represent the same 
input-output behavior of that system. For example, you can have two 
state-space models with different numbers of states that represent the same 
input-output behavior at varying degrees of accuracy. Often you can 
simplify, or reduce, these models to obtain a less complicated 
representation of the system.

How you reduce a model depends on the representation of the model. If the 
model is a state-space model, reducing the number of states reduces the 
order of the model. If the model is a transfer function or zero-pole-gain 
model, canceling matching poles and zeros reduces the order of the model. 
Use the Model Reduction VIs to reduce the order of a model.

This chapter provides information about the minimal realization and model 
order reduction techniques you can use to simplify a model.

Note Refer to the labview\examples\Control Design\Getting Started\Model 
Reduction.llb for example VIs that demonstrate the concepts explained in this chapter.

Obtaining the Minimal Realization of Models
The minimal realization of a system model involves cancelling all pairs of 
poles and zeros at the same location. You refer to these pairs as pole-zero 
pairs. Use the CD Minimal Realization VI to calculate the minimal 
realization of a model.

For example, consider the following transfer function model H(s).

This model has a pole and zero in the same location, –4. Wire this model 
into the CD Minimal Realization VI to cancel this pole-zero pair. This VI 
returns the minimal realization of the model in the Reduced Model output. 
This VI also returns the number of pole-zero locations removed. For 
state-space models, this VI returns the number of states removed.

H s( ) s2 6s 8+ +

s3 8s2– 21s 108+–
------------------------------------------------ s 2+( ) s 4+( )

s 4+( ) s 3–( ) s 9–( )
------------------------------------------------- s 2+( )

s 3–( ) s 9–( )
--------------------------------= = =
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Minimal realizations are minimal because the only modes represented in 
the model are those modes that you can infer by observing the inputs and 
outputs of the system. The modes that you eliminate to obtain a minimal 
transfer function or zero-pole-gain model still exist in the system, but you 
cannot infer their existence by simply observing the input and outputs of 
the model. For this reason, you do not want to cancel unstable pole-zero 
pairs.

For example, consider the following transfer function model G(s).

G(s) has the same minimal realization as H(s), but G(s) contains an unstable 
pole-zero pair at 4. If you cancel this pole-zero pair, you no longer can 
observe any effects the pair has on the stability of the system.

A minimal realization for a state-space model is a state-space 
representation in which you remove all states that are not observable 
or controllable. Use the CD Minimal State Realization VI to determine the 
minimal realization for a state-space model. Refer to Chapter 9, Analyzing 
State-Space Characteristics, for information about controllability and 
observability.

Reducing the Order of Models
In certain situations, you might want to work with a lower-order model of 
the system. The goal of model order reduction is to remove stable states that 
have the smallest impact on the input-output model representation. You 
might want to reduce a model order when the real part of stable system 
poles differ significantly. From an input-output standpoint, you usually 
ignore fast dynamic modes, which are modes that correspond to stable 
eigenvalues far from the imaginary axis, because you only see the effects 
of these modes over a short initial period of time. Use the CD Model Order 
Reduction VI to reduce high-order models.

Note Model order reduction applies only to a state-space model of a system.

You can reduce the order of the model by decreasing the order of the stable 
modes. Reducing stable modes of the model does not affect the unstable 
modes of the model.

G s( ) s2 2s– 8–

s3 16s2 75s 108–+–
--------------------------------------------------- s 2+( ) s 4–( )

s 4–( ) s 3–( ) s 9–( )
------------------------------------------------- s 2+( )

s 3–( ) s 9–( )
--------------------------------= = =
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You have several options for reducing the order of a model. You can match 
the DC gain between the reduced order model and the original model. You 
also can delete the states directly.

Balancing the original state-space model can make the model order 
reduction process easier. When you balance the state-space model, the 
Grammian matrices are diagonal and you avoid computing the eigenvalues.

Given a state-space model, complete the following steps to reduce the 
model order:

1. Balance the state-space model.

2. Compute the Grammians.

3. Remove stable states corresponding to small eigenvalues, in 
proportion to the other eigenvalues, of the Grammian matrix.

4. Repeat steps 1 through 3 until the model is of the order you want.

Refer to the CDEx Model Reduction with Grammians VI, located in 
the labview\examples\Control Design\Model Reduction.llb, 
for an example of this procedure.

Refer to the Analyzing Controllability and Observability Grammians 
section and the Balancing Systems section of Chapter 9, Analyzing 
State-Space Characteristics, for more information about computing 
controllability and observability Grammians and balancing a model.

Selecting and Removing an Input, Output, or State
Manipulating the system representation involves ignoring certain inputs 
and outputs of a model, such as those connected by a unit gain. In a 
state-space model, manipulating the system representation involves 
removing unwanted states from the description. Use the CD Select IO from 
Model VI and the CD Remove IO from Model VI to reduce a model by 
directly removing inputs, outputs, or states.

Manipulating a model is useful for building new models from old ones 
and for quickly removing zero states from a large state-space model 
representation. Zero states are states for which the state matrix A has zeros 
in an input row and the corresponding output column. Use the CD Minimal 
State Realization VI to perform this operation. Figure 10-1 shows an 
example of a zero-state.
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Figure 10-1.  A Zero-State in A

If the matrix has no zero rows or columns, consider using another method 
to reduce the model order.

Note When you work with transfer function and zero-pole-gain models, you generally do 
not select and remove specific inputs and outputs to reduce the model order. You mainly 
use this method with state-space models.
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11
Designing Classical Controllers

Classical control design involves creating controllers based on the 
input-output behavior of a system. In classical control design, you select 
one or more specific gain values to achieve one or more control objectives. 
The first step in designing a controller is identifying a control objective. For 
example, you might focus on the rise time, overshoot, and damping ratio of 
a controller model. Based on this objective, you specify the location of the 
poles of the system. You then select an appropriate set of parameters, such 
as the gain, to satisfy the stated objectives. You use these parameters to 
design a controller.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to implement the root locus design technique. This chapter 
also describes the proportional integral derivative (PID) controller.

Note Refer to the labview\examples\Control Design\Getting Started\
Classical Control Design.llb for example VIs that demonstrate the concepts 
explained in this chapter.

The Root Locus Design Technique
Root locus is a technique that shows how the roots of a system vary with 
respect to the gain K. Taking into account a control objective, you decide 
on the locations of the roots of the system. From the locations of these 
roots, you infer the optimal value of K. You then can use the gain K to 
design a controller for a single-input single-output (SISO) system. Use the 
CD Root Locus with Gain VI to apply the root locus technique to a system.

You can use the root locus technique to design SISO systems by analyzing 
the variation of closed-loop pole positions for all possible changes in a 
controller variable. The closed-loop zeros of a system, between any two 
points in the control system, are a subset of the open-loop zeros and poles 
of the feedback element. The root locus plot depicts the path that the roots 
follow as you vary the gain. You use this relationship to analyze the 
closed-loop behavior in terms of the value of a variable in the feedback 
transfer function.
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For example, consider a system with the following open-loop transfer 
function:

If a simple proportional feedback controller controls this system, the 
following equation describes the characteristic equation.

Figure 11-1 illustrates the root locus plot of this system.
 

Figure 11-1.  Root Locus

This graph shows the locations of the closed-loop poles. The pole locations 
are –1, –2, and –3.

You can use root locus design to synthesize a variety of different controller 
configurations, including the following types:

• Lead compensator—Lowers the rise time and decreases the transient 
overshoot.

• Lag compensator—Improves the steady-state accuracy of the system. 

• Notch compensator—Achieves stability in system with lightly damped 
flexible modes. This compensator adds a zero near the resonance point 
of the flexible mode.

H s( ) 1
s 1+( ) s 2+( ) s 3+( )

--------------------------------------------------=
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• Proportional Integral Derivative (PID) controller—Forms a controller 
using the most common architecture. Refer to the The Proportional 
Integral Derivative Controller Architecture section of this chapter for 
more information about PID controllers.

The difference in these controller configurations is the form of the transfer 
function equations you use to synthesize the controller. Different transfer 
function models result in different dynamic characteristics of the controlled 
system.

For example, consider a controller transfer function model D(s) defined by 
the form of the following equation:

If z < p, this transfer function results in a lead compensator. If z > p, this 
transfer function results in a lag compensator. You typically place this lead 
compensator in series with the plant H(s) in the feed-forward path.

Refer to the CDEx Interactive Root Locus VI, located in the labview\
examples\Control Design\Getting Started\Dynamic 

Characteristic Analysis.llb, for an example that demonstrates root 
locus analysis.

You also can use other frequency domain tools, such as Bode, Nyquist, and 
Nichols plots, to design a system. These plots show the specific locations 
and shape of key points. You examine these locations to iteratively modify 
the controller parameters to meet these specifications. The number and 
nature of the controller parameters depends on the topology of the 
controller. Refer to Feedback Control of Dynamic Systems1 and Modern 
Control Engineering2 for more information about the using the root locus 
technique to design controllers.

1   Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems, 4th ed. Upper Saddle 
River, NJ: Prentice Hall, 2002.

2   Ogata, Katsuhiko. Modern Control Engineering, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.

D s( ) K s z+
s p+
-----------=
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The Proportional Integral Derivative Controller 
Architecture

The PID controller, also known as the three-term controller, is the most 
widely-used controller architecture. PID controllers compare the output 
against the reference input and initiate the appropriate corrective action. 
PID controllers combine proportional P, integral I, and derivative D 
compensation. Use the CD Construct PID Model VI to construct a PID 
controller.

The following equation defines control action for a general PID controller.

In this equation, Kc is the gain, τd is the derivative time constant, and τI is 
the integral time constant. The following equation defines the error.

e(t) = R(t) – B(t)

In this equation, R(t) is the reference input and B(t) is the output.

Because the control action is a function of the error, the following equation 
defines the transfer function for the PID controller.

This transfer function is improper, which means the transfer function has 
more zeros than poles. You cannot physically realize an improper transfer 
function. You can place a pole at –1/ατd to make the transfer function 
proper. α is a small number, typically between 0.05 and 0.2, such that the 
pole has negligible effect on the system dynamics.

u t( ) Kc e t( ) 1
τI
---- e t*( ) t*d

0

t

∫ τd
de t( )

dt
------------+ +=

U s( )
E s( )
----------- Kc 1 1

τIs
------ τds+ + 
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The Control Design Toolkit supports the PID controller in the following 
three forms: PID Academic, PID Parallel, and PID Serial. Table 11-1 shows 
the equations for each of these forms.

Each PID form produces the same result but incorporates information in a 
different manner. For example, you can adjust each term independently 
using the PID Parallel form. The PID form you use depends on the design 
decisions you make, such as how you need to manipulate the output of the 
controller. Use the polymorphic VI selector of the CD Construct PID 
Model VI to implement a PID controller using one of these three PID 
forms.

Note In some applications, you specify the gain in the PID Academic transfer function in 
terms of a proportional band (PB). 

A proportional band, defined by the previous equation, is the percentage of the input range 
of the controller that causes a change equal to the maximum range of the output.

You can use the root locus and Bode design methods to determine 
appropriate gain values for the PID controller. Refer to PID Controllers: 
Theory, Design, and Tuning1 for more information about these techniques. 
Refer to the LabVIEW PID Control Toolset User Manual for more 
information about experimentally determining controller gain parameters.

Table 11-1.  PID Controller Forms in the Control Design Toolkit

PID Controller Form Equation

PID Academic

PID Parallel

PID Series

1   Astrom, K. and T. Hagglund. PID Controllers: Theory, Design, and Tuning, 2nd ed. ISA, 1995.
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12
Designing State-Space 
Controllers

State-space control design uses state-space models to synthesize and 
analyze controllers based on the relationship between the inputs, states, and 
outputs of a system. Because all states are not directly measurable, you 
sometimes need to use an estimator. An estimator infers the states with 
which you are working, based on measurements of the outputs and known 
states.

Similar to classical control design, the process of designing a controller 
begins with one or more control objectives. Typical objectives include 
minimizing a cost function and placing the poles and zeros of a system in 
specific locations. You use this process to achieve a specific dynamic 
response. You then select the architecture of the controller, such as whether 
the feedback is based only on outputs or on all the states of the system. With 
this information, you can synthesize a controller by selecting an appropriate 
set of parameters to satisfy the stated objectives.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to determine estimator and controller gain matrix values. 
This chapter also describes the difference between measured outputs, 
known inputs, and adjustable inputs.

Note Refer to the labview\examples\Control Design\Getting Started\
State-Space Synthesis.llb for example VIs that demonstrate the concepts explained 
in this chapter.

Calculating Estimator and Controller Gain Matrices
Before you can implement an estimator or a controller, you need to 
calculate their respective gain matrices. These gain matrices define the 
structure of the estimator or the controller. The Control Design VIs help 
you calculate the gain matrix for an estimator or controller.

The following sections provide information about using the Control Design 
Toolkit to perform the pole placement technique and design a linear 
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quadratic regulator. The following sections also describe how to use the 
Kalman gain function and how to construct a linear quadratic Gaussian 
controller.

Pole Placement Technique
Pole placement is a technique in which you specify the locations of the 
closed-loop poles of a system and calculate the gain matrix based on these 
locations. You can use the pole placement technique to calculate either the 
observer gain matrix L or the controller gain matrix K.

Use the CD Ackermann VI to apply this technique in the following 
situations:

• A single-input single-output (SISO) system

• A single-input multiple-output (SIMO) system if you are defining the 
controller gain matrix K

• A multiple-input single-output (MISO) system if you are defining the 
observer gain matrix L

Use the CD Pole Placement VI in all other situations, for example, a 
multiple-input multiple-output (MIMO) system. The computation of the 
gain for these systems is more complex and based on a Sylvester matrix 
equation. Refer to the LabVIEW Control Design Toolkit Algorithm 
Reference manual for information about the Sylvester matrix equation.

Use the Gain Type parameter of the CD Ackermann VI and the CD Pole 
Placement VI to determine which kind of gain matrix these VIs return. This 
section uses the controller gain matrix K as an example.

Note The Control Design Toolkit refers to the pole placement technique as an observer, 
because this technique does not estimate measurements given random noise. This 
distinction does not affect the interaction between the CD Ackermann or CD Pole 
Placement VIs and other VIs.

Consider the following SISO state-space system with u = –Kx as the 
control action.

x· Ax Bu+=

y Cx Du+=
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Figure 12-1 shows how you apply the gain matrix K to a controller.

Figure 12-1.  Using K to Regulate the Input of a State-Feedback System

Given a specification of the closed-loop pole locations, λ1, λ2, … λn, you 
can calculate the controller gain matrix K that achieves this goal. The 
system in question must be controllable.

For example, consider a closed-loop continuous system that has the 
following form:

Because  satisfies the characteristic polynomial equation that the 
specified closed-loop pole locations λ1, λ2, … λn define, you can state the 
following relationships:

The locations of αn are based on the locations of λn. s is the Laplace 
variable. You can use these equations to calculate Ackermann’s formula, 
defined by the following equation:

Combine the controller gain matrix K with the CD State-Space Controller 
VI to define a controller structure for the system. Refer to Chapter 14, 
Defining State-Space Controller Structures, for more information about 
defining a controller structure. If you use the pole placement technique to 
calculate the estimator gain matrix L, combine L with the CD State 
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φ Ã( ) Ãn
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Estimator VI to define an estimator structure for the system. Refer to 
Chapter 13, Defining State Estimator Structures, for more information 
about defining an estimator structure.

Linear Quadratic Regulator Technique
The linear quadratic regulator (LQR) technique calculates the controller 
gain matrix K that minimizes a quadratic cost function. Unlike the pole 
placement technique, you cannot use the LQR technique to calculate a 
estimator gain matrix L.

The design process for LQR requires specifying matrices Q and R, which 
specify weights on the states and inputs, respectively. You also can specify 
a matrix N that penalizes the cross product between the inputs and states. 
Typically, the selection of these gain matrices is an iterative process.

Use the CD Linear Quadratic Regulator VI to apply the LQR technique to 
a model with any number of inputs and outputs. Use the Weighting Type 
parameter to choose the cost function you want to minimize. You can 
choose from the following cost functions:

• State Weighting—This cost function weights the model states.

• Output Weighting, Dim[Q] = Ny—This cost function weights the 
model outputs y when Q is in terms of y. If you choose this cost 
function, the dimensions of Q must equal the number of model outputs.

• Output Weighting, Dim[Q] = Nx—This cost function weights the 
model outputs when Q is in terms of the model states x. If you choose 
this cost function, the dimensions of Q must equal the number of 
model states.

Refer to the CD Linear Quadratic Regulator topic of the LabVIEW Help 
for the equations of each of these cost functions.

This VI returns the value of K that minimizes the cost functions you choose. 
Because calculating K involves solving the continuous or discrete algebraic 
Riccati equation, this VI also returns the solution to the appropriate Riccati 
equation.

You can use the CD Linear Quadratic Regulator VI with continuous and 
discrete models. If you wire a continuous model to the State-Space Model 
input of this VI, this VI returns a continuous version of K. If you wire a 
discrete model to this input, this VI returns a discrete version of K. You also 
can configure the this VI to return a discretized version of K for a 
continuous model.
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To calculate this discretized gain matrix, select the Discretized Linear 
Quadratic Regulator instance of the CD Linear Quadratic Regulator VI. 
This instance automatically converts a continuous model to a discrete 
model before calculating K that minimizes the discrete version of the cost 
function you specified. This VI first discretizes the A, B, C, and D matrices 
using the Zero-Order-Hold method. This VI then calculates the discrete 
equivalents of the Q, R, and N matrices using the numerical integration 
method proposed by Van Loan. You specify the Sampling Time (s) this VI 
uses for both conversions.

Refer to the Zero-Order-Hold and First-Order-Hold Methods section of 
Chapter 3, Converting Models, for information about the Zero-Order-Hold 
conversion method. Refer to the CD Linear Quadratic Regulator topic of 
the LabVIEW Help for information about the numerical integration method 
proposed by Van Loan.

Q is a symmetric, positive, semi-definite matrix that penalizes the state 
vector x in the control objective. R is a positive definite matrix, usually 
symmetric, that penalizes the input vector u in the control objective. N is a 
matrix that penalizes the cross product between input and state vectors.

Combine the controller gain matrix K with the CD State-Space Controller 
VI to define a controller structure for the system. Refer to Chapter 14, 
Defining State-Space Controller Structures, for more information about 
defining a controller structure.

Kalman Gain
The Kalman gain is the value of L that minimizes the covariance of 
estimation error for a given for a given continuous or discrete state-space 
model affected by noise. An estimator that uses the Kalman gain is called 
a Kalman filter. Kalman filters estimate model states despite the presence 
of noise. Use the CD Kalman Gain VI to calculate the optimal steady-state 
value of L.

The following sections provide information about calculating the Kalman 
gain matrices to apply to continuous and discrete Kalman filters.
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Continuous Models
For continuous models, the Kalman filter estimates the model states at 
time t. The following equation defines the estimated state vector  the 
Kalman filter calculates.

In these equations, L is the gain matrix of the Kalman filter. The Kalman 
filter estimates the accuracy of the estimated states by calculating the 
steady-state covariance of the estimation error. The following equations 
define this covariance matrix P and the estimation error e(t).

where E{} denotes the expected mean of the enclosed terms.

You calculate the Kalman gain L that minimizes P. Use the CD Kalman 
Gain VI to calculate the value of L for a given model affected by noise. If 
the noise affecting the model is Gaussian, then L is the optimal gain. If the 
noise affecting the model is not Gaussian, L results in the optimal 
linear least-square estimates.

Discrete Models
For discrete models, the Kalman filter not only estimates the current state 
vector at time k, but also predicts the state vector at time k + 1. The 
following sections describe the gain matrices you calculate in these 
situations.

Updated State Estimate
The updated state estimate, which is the current state estimate, is given by 

. This notation translates as the estimated state vector at time k 
given all measurements up to and including k. The following equation 
defines the updated state estimate for a discrete Kalman filter.

x̂ t( )

x'ˆ t( ) Ax̂ t( ) Bu t( ) L y t( ) ŷ t( )–[ ]+ +=
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In these equations, M is the innovation gain matrix of the Kalman filter. The 
Kalman filter estimates the accuracy of the updated states by calculating 
the steady-state covariance of the updated estimation error. The following 
equations define this covariance matrix Z and the updated estimation error 
e(k|k).

You calculate the innovation gain matrix M that minimizes Z. Use the CD 
Kalman Gain VI to calculate the value of M for a given model affected by 
noise.

Predicted State Estimate
The discrete Kalman filter also predicts states at time k + 1 given all 
measurements up to and including time k. The following equation defines 
defines the predicted state estimate.

In these equations, L is the Kalman prediction gain matrix of the Kalman 
filter. The Kalman filter estimates the accuracy of the updated states by 
calculating the steady-state covariance of the predicted estimation error. 
The following equations define this covariance matrix P and the predicted 
estimation error e(k + 1|k).

You calculate the Kalman prediction gain L that minimizes P. Use the CD 
Kalman Gain VI to calculate the value of L for a given model affected by 
noise.

Refer to the CD Kalman Gain topic of the LabVIEW Help for the equations 
this VI uses to calculate M, Z, L, and P for continuous and discrete models.

Z E eT k k( ) e k k( )⋅{ }
k ∞→
lim=

e k k( ) x k( ) x̂ k k( )–=

x̂ k 1 k+( ) Ax̂ k k 1–( ) Bx̂ k k 1–( ) L y k( ) ŷ k( )–[ ]+ +=

ŷ k( ) Cx̂ k k 1–( ) Du k( )–=

P E eT k 1+ k( ) e k 1+ k( )⋅{ }
k ∞→
lim=

e k 1+ k( ) x k( ) x̂ k 1+ k( )–=
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Discretized Kalman Gain
If you wire a continuous model to the CD Kalman Gain VI, the VI returns 
a continuous version of L. If you wire a discrete model to the CD Kalman 
Gain VI, the VI returns discrete versions of L and M. You also can 
configure the this VI to calculate discrete versions of L and M for a 
continuous model.

To calculate these discretized gain matrices, select one of the 
Discretized Kalman Gain instances of the CD Kalman Gain VI. These 
instances automatically convert a continuous model to a discrete model 
before calculating L and M. This VI first discretizes the A, B, C, and D 
matrices using the Zero-Order-Hold method. This VI then calculates the 
discrete equivalents of the Q, R, and N matrices using the numerical 
integration method proposed by Van Loan. You specify the 
Sampling Time (s) this VI uses for both conversions.

Refer to the Zero-Order-Hold and First-Order-Hold Methods section of 
Chapter 3, Converting Models, for information about the Zero-Order-Hold 
conversion method. Refer to the CD Kalman Gain topic of the LabVIEW 
Help for information about the numerical integration method proposed by 
Van Loan.

Defining Kalman Filters
After you use the CD Kalman Gain VI to calculate L and/or M, you can use 
those values with the CD State Estimator VI to define a Kalman filter. 
Refer to Chapter 13, Defining State Estimator Structures, for more 
information about the different estimator configurations.

The Control Design Toolkit also includes the Discrete Recursive Kalman 
Filter function and the CD Continuous Recursive Kalman Filter function. 
These functions implement Kalman filters for discrete and continuous 
models, respectively. These VIs also calculate the appropriate gain matrices 
internally. However, you can use these VIs only with stochastic state-space 
models. Refer to the Using a Kalman Filter to Estimate Model States 
section of Chapter 16, Using Stochastic System Models, for more 
information about using a Kalman filter with stochastic state-space models.
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Linear Quadratic Gaussian Controller
A linear quadratic Gaussian (LQG) controller utilizes the LQR technique 
to build the controller and the Kalman gain technique to filter out any 
system noise. Use the CD Linear Quadratic Regulator VI and the 
CD Kalman Gain VI together with the CD State-Space Controller VI 
to synthesize a LQG controller.

Using an arbitrary estimator with a design such as LQR might not result in 
the most optimal design of the controller. If the estimator starts with the 
same initial condition as the unmeasured states, , and if the 
system satisfies a number of controllability and observability conditions, 
the closed-loop system with the observer based controller has the same 
response as the LQR design. This form of state feedback controller, when 
combined with a estimator defined with the Kalman gain function, is called 
the LQG controller.

Certainty equivalence is the property that enables this combined usage of 
optimal estimator and controller. Certainty equivalence is important 
because you can synthesize a controller gain matrix K and estimator gain 
matrix L independently. You can build a controller assuming all states are 
measurable and then estimate unmeasured states using an optimal 
estimator. The resulting design is optimal for the specified problem.

Note Because a LQG controller uses an estimator, the robustness properties of a LQG 
controller are not the same as that of a LQR controller. You have no guarantee that 
robustness properties can be established for an estimated state feedback controller. You 
only can guarantee robustness by changing the way you measure the states of the system 
to remove the need for an estimator.

x̂ 0( ) x 0( )≡
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13
Defining State Estimator 
Structures

State estimators reconstruct unmeasurable state information. To define the 
structure of a state estimator, you need a model of the system and an 
estimator gain matrix L. You can calculate L using the CD Pole 
Placement VI, the CD Ackermann VI, or the CD Kalman Gain VI. Refer to 
Chapter 12, Designing State-Space Controllers, for more information 
about these VIs.

You use L to define the structure of an estimator. You can design an 
estimator structure to take various factors, such as input noise or input 
disturbances, into consideration.

This chapter provides information about using the LabVIEW Control 
Design Toolkit to define the structure of a state estimator. This chapter also 
discusses known inputs and measurable outputs.

Note Refer to the labview\examples\Control Design\Getting Started\
State-Space Synthesis.llb for example VIs that demonstrate the concepts explained 
in this chapter.

Measuring and Adjusting Inputs and Outputs
The estimator gain L considers all inputs u and outputs y, which are known 
and measured. Also, some inputs and outputs might be unavailable. So you 
can divide the system into adjustable inputs, measured outputs, unknown 
inputs, and unmeasured outputs. You base this division on diagonal 
matrices, such as Λu and Λy.

Diagonal matrices incorporate the effect of known, unknown, measured, 
and unmeasured inputs and outputs into the equation. A diagonal element 
in these matrices equals unity for the known and measured inputs and 
outputs, and zero for the unknown and unmeasured inputs and outputs or 
states. The following equation describes how you incorporate the diagonal 
elements for the inputs and outputs in the controller model.
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In this equation, B* = BΛu, D* = DΛu, and L* = LΛy. These substitutions 
apply to both estimators and controllers. Controllers have an additional 
substitution when inputs are not adjustable. For a controller, the controller 
gain K* is given by K* = KΛz, where Λz is a diagonal matrix with the same 
characteristics as Λu and Λy. Therefore, a diagonal element in Λz equals 
unity for the adjustable input, and zero for the nonadjustable or system 
disturbances.

By default, matrices Λu and Λz are identity matrices whose size equals the 
number of inputs. Λy is an identity matrix whose size equals the number of 
outputs.

Adding a State Estimator to a General System 
Configuration

Use the CD State Estimator VI to define an estimator structure. This VI 
integrates L into a dynamic system so you can analyze and simulate the 
estimator performance.

Note To simplify the equations in the rest of this chapter, assume that all inputs are known 
and all outputs are measurable. This assumption means B* = B, L* = L, and D* = D.

Consider the following equations that represent a continuous state-space 
system.

Assume that L is based on this system, some estimator performance 
specifications, and the output noise ry covariance. You then can calculate 
the estimated states  using the following equations for dynamic models:

The state-space system and dynamic model equations share the same 
system matrices and input u. The states x and  are different because the 

x̂ 
·

Ax̂ B*u L* y ŷ–( )+ +=

ŷ Cx̂ D*u+=

x· Ax Bu+=

y Cx Du ry+ +=

x̂

x̂ 
·

Ax̂ Bu L y ŷ–( )+ +=

ŷ Cx̂ Du+=

x̂
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initial conditions of the system might differ from the model and because 
of the noise input ry. Without a noise input, however, the model states track 
the system states, making the difference x –  converge asymptotically to 
zero. The following equation shows how the estimator gain L enhances the 
convergence of the error  to zero. 

Without the noise input, the following equation defines the error 
convergence.

L is designed to place the poles of the matrix A – LC in the specified 
complex-plane location.

To include the estimator in the composed system model, you append the 
original model states x to the estimated model states . The following 
equations show this process:

Given this general system configuration, the following sections provide 
information about deriving the possible configurations of a state estimator.

Configuring State Estimators
Use the Configuration parameter of the CD State Estimator VI to define 
the structure of an estimator using one of the following three 
configurations:

• System Included—Appends the actual states of the system to the 
estimated states.

• System Included with Noise—Incorporates noise ry into the system 
included configuration.

• Standalone—Defines a structure of the estimator that analyzes a 
system-model mismatch.

x̂

e·

e·x x̂ 
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Table 13-1 summarizes the different state estimator configurations and 
their corresponding states, inputs, and outputs.

The following sections discuss each of these configuration types in detail.

System Included Configuration
You can use the system included configuration to analyze and simulate the 
estimated states and the original states at the same time. For example, the 
following equation defines the output estimator error in a system included 
configuration.

By substituting the output estimator error in the general system 
configuration and removing the sensor noise ry, you obtain the following 
equations that describe the system included configuration.

Table 13-1.  State Estimator Configurations

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone

x̂
x

u ŷ
y

x̂
x

u
ry
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x̂ u
y

ŷ

y ŷ– C x x̂–( )=
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 ŷ
 y

C 0
0 C

x̂
x

D
D

u+=



Chapter 13 Defining State Estimator Structures

© National Instruments Corporation 13-5 Control Design Toolkit User Manual

Figure 13-1 represents the dynamic system that these equations describe.
 

Figure 13-1.  System Included State Estimator

The states, inputs, and outputs of the estimator are , u, and , 
respectively.

System Included Configuration with Noise
The system included configuration with noise incorporates noise ry into the 
system included configuration. The following equation defines the output 
estimator error.

By substituting the output estimator error in the general system 
configuration, you obtain the following equations that describe the system 
included configuration with noise.
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Figure 13-2 represents the dynamic system that these equations describe.
 

Figure 13-2.  System Included State Estimator with Noise

The states, inputs, and outputs of the estimator are , , and , 
respectively.

Standalone Configuration
In the standalone configuration, the system model detaches from the 
estimator. The system outputs y become inputs to the estimator. Unlike the 
system included and system included with noise configurations, the 
standalone configuration does not account for output noise ry.

The primary purpose of the standalone configuration is to implement the 
estimator on a real-time (RT) target. A secondary purpose of the standalone 
configuration is to perform offline simulation and analysis of the estimator. 
Offline simulation and analysis are useful for testing the estimator with 
mismatched models and systems. Mismatched models and systems have 
a calculated estimator gain that applies to a model with uncertainties.

The following equations describe the standalone configuration.

This configuration does not include the original system. This configuration 
does not generate the system output internally but considers the output as 
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another input to the estimator. Figure 13-3 represents the dynamic system 
that these equations describe.

 

Figure 13-3.  Standalone State Estimator

The states, inputs, and outputs of the estimator are , , and , 
respectively.

Example System Configurations
The following equations define an example second-order SISO state-space 
model with poles at –0.2 and –0.1.

You can implement a full state estimator for this system because this system 
is observable. To implement a state estimator for this system, you must 
calculate the estimator gain matrix L for the model of the system. Use the 
CD Ackermann VI to calculate L by placing the poles of the matrix A – LC 
at [–1, –1]. This location is to the left of the original pole location in the 
complex plane. You can use this estimator gain matrix L, along with the 
CD State Estimator VI, to study the performance of the estimator.

Note Use the CD Observability Matrix VI to verify that this system is observable. Use the 
CD Pole-Zero Map VI to determine the initial location of the system poles.

The following sections use this example system model to illustrate the 
different state estimator configurations. The examples in these sections use 
the CD Ackermann VI to calculate the estimator gain matrix L. You also 
can calculate L using the CD Pole Placement VI or the CD Kalman 
Gain VI.

u Estimator

y
y

x

x̂ u
y

ŷ
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Example System Included State Estimator
Figure 13-4, shown below, uses the CD Ackermann VI to determine the 
estimator gain matrix L of the second-order SISO State-Space Model. 
You then use L with the CD State Estimator VI to create the state estimator, 
represented by the Estimator Model, for the system.

Figure 13-4.  System Included State Estimator

Note You can study the performance of the state estimator with the CD Initial 
Response VI.

This configuration creates an Estimator Model that represents the 
original, or actual, states of the system and the estimated states in the same 
model. The Estimator Model consists of four states because this 
configuration appends the original second-order SISO state-space model to 
the state estimator, as shown in the following expression:

Note The direct transmission matrix D is not part of the expression because it is null in 
this example.
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The system included configuration monitors the response of the actual 
states of the system to a set of initial conditions. The CD Initial 
Response VI uses [0, 0, 2, 1] as the initial conditions. These initial 
conditions mean that the initial conditions of the actual states are [2, 1], 
whereas the initial conditions of the estimated states are [0, 0]. Therefore, 
the Initial Conditions vector of the Estimator Model is [0, 0, 2, 1]. 

The State Trajectory Graph, as shown in Figure 13-5, displays the 
response of the system and state estimator to the initial conditions 
[0, 0, 2, 1].

 

Figure 13-5.  State Trajectory of System Included State Estimator

The initial conditions of the actual states are [2, 1]. The response of the 
actual states, therefore, starts at 2 and 1. The initial conditions of the 
estimated states are [0, 0]. The response of the estimated states, therefore, 
start at the origin. The estimated states promptly begin to track the actual 
states as the response of the actual system settles to steady state. This state 
estimator takes approximately six seconds to track the response of the 
system.
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Example System Included State Estimator with Noise
In theory, you can place the poles of the state estimator as far left of the 
complex plane as necessary. This placement leads to very aggressive state 
estimators. Noise and system uncertainties, however, prevent you from 
configuring such aggressive estimators. To account for noise and system 
uncertainties, you can implement a state estimator using the system 
included with noise configuration. Consider the following system included 
with noise configuration.

The configuration of this system is essentially the same as the system in the 
Example System Configurations section of this chapter. The only addition 
is the measurement noise ry. Assume that the measurement noise in this 
example is a Gaussian noise in the system. The output noise influences the 
estimated model dynamics through the estimator gain matrix L. 
Figure 13-6 shows how to account for a Gaussian noise of 0.1 standard 
deviation in the Estimator Model.

 

Figure 13-6.  System Included State Estimator with Noise

The example in Figure 13-6 uses the state-space model and the 
CD Ackermann VI to determine the estimator gain matrix L. The CD State 
Estimator VI then uses the system included with noise configuration to 
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ŷ
y

C 0
0 C

x̂
x

0
I

ry+=



Chapter 13 Defining State Estimator Structures

© National Instruments Corporation 13-11 Control Design Toolkit User Manual

implement the state estimator, represented by the Estimator Model. Use 
the Gaussian White Noise VI to view the effects of Gaussian noise on the 
system and the state estimator. 

Note The CD Linear Simulation VI provides the response to a Gaussian noise with the 
same initial conditions as in Figure 13-4.

The State Trajectory Graph, as shown in Figure 13-7, displays the 
response of the system and state estimator to the same initial conditions 
[0, 0, 2, 1] used in the Example System Included State Estimator section of 
this chapter.

 

Figure 13-7.  State Trajectory of System Included State Estimator with Noise

Similar to the graph in the Example System Included State Estimator 
section of this chapter, this State Trajectory Graph shows the response of 
the actual states starting at 2 and 1. The graph also shows the response of 
the estimated states starting at the origin. Notice the effect of the output 
noise ry on the state estimation. Without noise, the state estimator took 
approximately six seconds to begin tracking the actual system. With noise, 
the state estimator takes much longer to track the actual system and the state 
estimator cannot track the actual system perfectly.

You can place the estimator poles closer to the origin to reduce the effect of 
the noise. However, when you move the estimator poles closer to the origin 
on the left side of the complex plane, you diminish the performance of the 
estimator in tracking the actual states.
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One solution is to use the Kalman gain function to obtain an estimator gain 
matrix that effectively tracks the system states with an acceptable level of 
noise rejection. Refer to the Kalman Gain section of Chapter 12, Designing 
State-Space Controllers, for information about using the Kalman gain 
function to find an optimal solution to this state estimator problem.

Example Standalone State Estimator
Most systems are complex and have many parameters and uncertainties. 
You often do not know all the parameters of a system when you create a 
model of that system, or you cannot create a model that encompasses all the 
uncertainties of the system. Thus, the actual system and the model of the 
system do not match.

When you build a state estimator based on a model that does not match the 
actual system, the result is a system-model mismatch. In this situation, you 
need to use the standalone configuration. This configuration detaches the 
system from the model so you can determine the effect of the system-model 
mismatch. Consider the following state-space model:

This model is similar to the model in the Example System Configurations 
section of this chapter. For this example, however, assume that the actual 
system contains uncertainties that cause this state-space model to be an 
inaccurate representation of the system. The difference is in the first entry 
of the system matrix A, –0.1.

Figure 13-8 shows how the CD State Estimator VI uses the mismatched 
model, State-Space Model, to create the standalone estimator. This 
configuration connects the actual system, System, and the mismatched 
model, State-Space Model, in series so the actual system can provide the 
output y to the standalone state estimator.
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Figure 13-8.  Standalone State Estimator

The example uses the CD Initial Response VI to evaluate the effectiveness 
of the state estimator. The State Trajectory Graph in Figure 13-9 shows 
the response of the actual and estimated states to the same set of initial 
conditions as in the Example System Included State Estimator section of 
this chapter.

 

Figure 13-9.  State Trajectory of Standalone State Estimator

Notice that a mismatch in the actual system and the model of the system 
greatly impacts the estimation of the second state. After 20 seconds, the 
state estimator still cannot track the actual state. Therefore, you must study 
the system and model mismatch to determine the effect of the mismatch on 
the state estimation.
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14
Defining State-Space Controller 
Structures

State controllers use state information to calculate the control action. To 
define the structure of a state controller, you need a model of the system and 
a controller gain matrix K. You can calculate K using the CD Pole 
Placement VI, the CD Ackermann VI, or the CD Linear Quadratic 
Regulator VI. Refer to Chapter 12, Designing State-Space Controllers, for 
information about these VIs.

You use K to define the structure of a controller. You can design a controller 
structure to take various factors, such as input noise or input disturbances, 
into consideration.

The following sections provide information about using the LabVIEW 
Control Design Toolkit to incorporate the gain matrix K into the control 
system. The controllers in the following sections assume that all inputs are 
known and all outputs are measurable. Refer to the Measuring and 
Adjusting Inputs and Outputs section of Chapter 13, Defining State 
Estimator Structures, for information about measuring inputs and outputs.

Note Refer to the labview\examples\Control Design\Getting Started\
State-Space Synthesis.llb for example VIs that demonstrate the concepts explained 
in this chapter.

Configuring State Controllers
Use the CD State-Space Controller VI to define a controller structure. This 
VI integrates K into a dynamic system for analyzing and simulating the 
controller performance. Use the polymorphic VI selector to define one of 
the following three controller types:

• Compensator—Places a reference on the state. Defines the control 
action using u = K(rx – x), where rx is a state reference. If you estimate 
any states, u = K(rx – ) defines the state compensator control action.x̂
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• Regulator—Places a reference on the input. Defines the control action 
using u = ru – Kx, where ru is an input reference. If you estimate any 
states, u = ru – K  defines the state regulator control action.

• Regulator with Integral Action—Uses the following equation to define 
the control action.

In this equation, yref is the output reference, or setpoint.

The difference in these controllers is in how you calculate the control 
action u.

You can implement any of these controller types using one of four different 
configurations. Use the Configuration parameter of the CD State-Space 
Controller VI to define a controller structure using one of the following 
four configurations:

• System Included—Appends the actual states of the system to the 
estimated states. This configuration is useful for analyzing and 
simulating the original and estimated states at the same time.

• System Included with Noise—Incorporates noise ry into the system 
included configuration.

• Standalone with Estimator—Defines an estimator structure with the 
controller target. This configuration is useful for performing offline 
simulations and analyses of the controller. You can use offline 
simulations and analyses to test the controller with mismatched models 
and systems. Mismatched models and systems have a calculated 
estimator and controller gain that applies to the mismatched model, or 
the model with uncertainties. To select this configuration, choose a 
standalone configuration and then wire an estimator with output L to 
the Estimator Gain (L) input of the CD State-Space Controller VI.

• Standalone without Estimator—Bases the control action u on the 
actual states x instead of using an estimator to reconstruct the states. 
This configuration is useful for analyzing a closed-loop system. To 
select this configuration, choose a standalone configuration, but do not 
wire anything to the Estimator Gain (L) input of the CD State-Space 
Controller VI.
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Note Both the system included and system included with noise configurations 
automatically include an estimator.

The following sections show the implementation of all four configurations 
for all three controller types.

State Compensator
A general system configuration appends the original model states x to the 
estimation model states  to represent the compensator with an estimator. 
The following equations show this process:

Table 14-1 summarizes the different state compensator configurations and 
their corresponding states, inputs, and outputs.

The following sections show how to define each configuration of a state 
compensator.

Table 14-1.  State Compensator Configurations

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone with Estimator

Standalone without Estimator
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System Included Configuration
In the system included configuration, the following equation defines the 
output error.

By substituting the output error in the general system configuration and 
removing the sensor noise ry from the system, you obtain the following 
equations that describe the system included configuration.

The reference vector rx has as many elements as the number of states. Also, 
this configuration calculates the control action u internally and then gives 
u as an output of the state compensator.

Figure 14-1 represents the dynamic system that these equations describe.
 

Figure 14-1.  System Included State Compensator

The states, inputs, and outputs of the state compensator are , rx, and , 
respectively.
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System Included Configuration with Noise
The system included configuration with noise incorporates noise ry into the 
system included configuration. The following equation defines the output 
error.

By substituting the output error in the general system configuration, you 
obtain the following equations that describe the system included 
configuration with noise.

The reference vector rx has as many elements as the number of states. Also, 
this configuration calculates the control action u internally and then gives 
u as an output of the compensator.

Figure 14-2 represents the dynamic system that these equations describe.
 

Figure 14-2.  System Included State Compensator with Noise
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The states, inputs, and outputs of the state compensator are , , and 

, respectively.

Standalone Configuration with Estimator
In the standalone configuration with estimator, the system model detaches 
from the controller. The system outputs y become inputs to the estimator. 
Unlike the system included and system included with noise configurations, 
the standalone configuration with estimator does not account for output 
error. You must wire a value to the Estimator Gain (L) input of the CD 
State-Space Controller VI to include the estimator in the standalone state 
compensator.

The following equations describe the standalone configuration.

This configuration does not include the original system. This configuration 
considers the system output y as another input to the estimator.

Figure 14-3 represents the dynamic system that these equations describe.
 

Figure 14-3.  Standalone State Compensator with Estimator
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respectively.
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Standalone Configuration without Estimator
In the standalone configuration without estimator, you calculate the control 
action u using the states. As such, you do not need an estimator. In the 
CD State-Space Controller VI, do not wire a value to the Estimator 
Gain (L) input to exclude the estimator in the standalone state 
compensator.

The following equations describe the standalone configuration.

The states and outputs of the standalone compensator without estimator 
correspond to the states and outputs of the actual system.

Figure 14-4 represents the dynamic system that these equations describe.
 

Figure 14-4.  Standalone State Compensator without Estimator

The states, inputs, and outputs of the state compensator are x, rx, and , 
respectively.
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State Regulator
A general system configuration appends the original model states x to the 
estimation model states  to represent the state regulator with an estimator. 
The following equations show this process:

Table 14-2 summarizes the different state regulator configurations and their 
corresponding states, inputs, and outputs.

The following sections show how to define each configuration.

Table 14-2.  State Regulator Configuration Types

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone with Estimator

Standalone without Estimator
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System Included Configuration
In the system included configuration, the following equation defines the 
output error.

By substituting the output error in the general system configuration and 
removing the sensor noise ry from the system, you obtain the following 
equations that describe the system included configuration.

The reference vector, or actuator noise, ru has as many elements as the 
number of inputs. Also, this configuration calculates the control action u 
internally and then gives u as an output of the state regulator.

Figure 14-5 represents the dynamic system that these equations describe.
 

Figure 14-5.  System Included State Regulator

The states, inputs, and outputs of the state regulator are , ru, and , 
respectively.
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System Included Configuration with Noise
The system included configuration with noise incorporates noise ry into the 
system included configuration. The following equation defines the output 
error.

By substituting the output error in the general system configuration, you 
obtain the following equations that describe the system included 
configuration with noise.

The reference vector, or actuator noise, ru has as many elements as the 
number of inputs. Also, this configuration calculates the control action u 
internally and then gives u as an output of the state regulator.

Figure 14-6 represents the dynamic system that these equations describe.
 

Figure 14-6.  System Included State Regulator with Noise

The states, inputs, and outputs of the state regulator are , , and , 
respectively.
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Standalone Configuration with Estimator
In the standalone configuration with estimator, the system model detaches 
from the controller. The system outputs y become inputs to the estimator. 
Unlike the system included and system included with noise configurations, 
the standalone configuration with estimator does not account for output 
error. You must wire a value to the Estimator Gain (L) input of the 
CD State-Space Controller VI to include the estimator in the standalone 
state compensator.

The following equations describe the standalone configuration with 
estimator.

This configuration does not include the original system. This configuration 
considers the system output y as another input to the estimator.

Figure 14-7 represents the dynamic system that these equations describe.
 

Figure 14-7.  Standalone State Regulator with Estimator

The states, inputs, and outputs of the state regulator are , , and , 
respectively.
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 ŷ

K–

C DK–
x̂ I 0

D 0
ru

y
+=

Estimator

Controller
u

ru

+–

y

y

x

x̂ ru

y
u
ŷ
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Standalone Configuration without Estimator
The standalone configuration without estimator uses states to calculate 
of the control action u. As such, you do not need an estimator. In the 
CD State-Space Controller VI, do not wire a value to the Estimator 
Gain (L) input to exclude the estimator in the standalone state regulator.

The following equations describe the standalone configuration.

The states and outputs of the standalone state regulator without estimator 
correspond to the states and outputs of the actual system. 

Figure 14-8 represents the dynamic system that these equations describe.
 

Figure 14-8.  Standalone State Regulator without Estimator
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State Regulator with Integral Action
A general system configuration appends the output error integrator z to the 
estimation model states . A general system configuration also augments 
the resulting vector ( , z) with the original model states x to represent the 
state regulator with integral action and an estimator. The following 
equations show this process:

In these equations, Kx is the gain, Ki is the integral action, yref is the 
reference variable that you are tracking, and y is the output variable that you 
use to track yref. In these equations, Γ varies depending on whether the 
model describes a continuous or discrete system. If the system is 
continuous, Γ = 0. If the system is discrete, Γ = I.

When you define the control action for a state regulator with integral action 
using the output error integrator z, you obtain the following control action 
equation.

Substituting the control action into state dynamics of the general system 
configuration defined in the previous equation, you obtain the following 
equation that also defines the general system configuration.
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 ŷ
 y

Kx– Ki– 0
C 0 0
0 0 C

x̂
z
x

0 0 0
D 0 0
D 0 0

u
yref y–

y ŷ–
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Table 14-3 summarizes the different state regulator with integral action 
configurations and their corresponding states, inputs, and outputs.

The following sections show how to derive each configuration.

System Included Configuration
In the system included configuration, the following equations define the 
output error and system output.

By substituting the output error and system output in the general system 
configuration and removing the sensor noise ry from the system, you obtain 
the following equations that describe the system included configuration.

Table 14-3.  State Regulator with Integral Action Configuration Types

Configuration Type States Inputs Outputs

System Included

System Included with Noise

Standalone with Estimator

Standalone without Estimator
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The reference vector yref has as many elements as the number of outputs. 
Also, this configuration calculates the control action u internally and then 
gives u as an output of the state regulator with integral action.

Figure 14-9 represents the dynamic system that these equations describe.
 

Figure 14-9.  System Included Regulator with Integral Action
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 ŷ
 y



Chapter 14 Defining State-Space Controller Structures

Control Design Toolkit User Manual 14-16 ni.com

System Included Configuration with Noise
The system included configuration with noise incorporates noise ry into the 
system included configuration. The following equations define the output 
error and system output.

By substituting the output error and system output in the general system 
configuration, you obtain the following equations that describe the system 
included configuration with noise.

The reference vector yref has as many elements as the number of outputs. 
Also, this configuration calculates the control action u internally and then 
gives u as an output of the state regulator with integral action.
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Figure 14-10 represents the dynamic system described by these equations.
 

Figure 14-10.  System Included State Regulator with Integral Action, with Noise
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In the standalone configuration with estimator, the system model detaches 
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CD State-Space Controller VI to include the estimator in the standalone 
state regulator with integral action.
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The following equations describe the standalone configuration.

Use the following substitution to make the input independent.

This process results in the following equations that describe the standalone 
configuration.

This configuration does not include the original system. This configuration 
considers the system output y as another input to the estimator.

Figure 14-11 represents the dynamic system that these equations describe.
 

Figure 14-11.  Standalone State Regulator with Integral Action, with Estimator

x̂ 
·

z·  

A B LD–( )Kx– LC– D B–( )Ki

0 Γ
x̂
z

0 L
I 0

yref y–

y
+=

 u
 ŷ
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The states, inputs, and outputs of the state regulator with integral action are 

, , and , respectively.

Standalone Configuration without Estimator
The standalone configuration without estimator uses states to calculate of 
the control action u. As such, you do not need an estimator. In the 
CD State-Space Controller VI, do not wire a value to the 
Estimator Gain (L) input to exclude the estimator in the standalone state 
regulator with integral action.

The following equations describe the standalone configuration.

Use the following substitution to make the inputs independent.

This process results in the following equations that describe the standalone 
configuration without estimator.

Using this configuration, the states and outputs of the standalone state 
regulator with integral action correspond to the states and outputs of the 
actual system.
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Figure 14-12 represents the system that these equations describe.

Figure 14-12.  Standalone State Regulator with Integral Action, without Estimator

The states, inputs, and outputs of the state regulator with integral action are 

, , and , respectively.
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The following equations define an example second-order SISO state-space 
model with poles at –0.2 and –0.1.

You can implement a full state controller for this system because this 
system is controllable. To implement a state controller for this system, you 
must calculate the controller gain matrix K for the model of the system. Use 
the CD Ackermann VI to calculate K by placing the poles of the matrix 
A – BK at [–1, –1]. This location is to the left of the original pole location 
in the complex plane. You can use this controller gain matrix K, along with 
the CD State-Space Controller VI, to study the performance of the 
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Note Use the CD Controllability Matrix VI to verify that this system is observable. Use 
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Figure 14-13 shows the response of the example system to initial 
conditions of [2, 1]. This system is unstable because the response increases 
exponentially and does not settle at a steady-state value.

 

Figure 14-13.  Unstable Open-Loop System

Even though this system is unstable, the system is still controllable. 
Because the system is controllable, you can use a state compensator to 
place the closed-loop poles in the left-hand side of the complex plane to 
make the response stable. You can calculate the controller gain matrix K by 
using the CD Ackermann VI to place the poles of the matrix A – BK at 
[–1, –1]. You can use K to study the performance of the compensator by 
selecting the Compensator instance of the CD State-Space Controller VI.

The following sections use this example system model to illustrate the 
different state controller configurations. These examples are state 
compensators. You can define a state regulator or state regulator with 
integral action by selecting the Regulator or Regulator with Integral 
Action instance of the CD State-Space Controller VI, respectively.

The examples in these sections use the CD Ackermann VI to calculate the 
controller gain matrix K. You also can calculate K using the CD Pole 
Placement VI or the CD Linear Quadratic Regulator VI.
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Example System Included State Compensator
In theory, you cannot always directly measure the system states for control 
purposes. Therefore, you must synthesize a controller using the system 
outputs. To calculate the control action based on the estimated states, the 
estimator needs to approach the actual states faster than the controller. 
Therefore, you can calculate an estimator gain matrix such that A – LC has 
eigenvalues at [–5, –5], which is farther to the left of the origin than the 
poles of the controller located at [–1, –1].

The system included configuration takes both the estimator gain matrix L 
and the controller gain matrix K and uses them to synthesize a state 
compensator. Figure 14-14 shows the implementation of a state 
compensator using the system included configuration.

 

Figure 14-14.  System Included State Compensator
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The CD Initial Response VI uses [0, 0, 2, 1] as the initial conditions. As in 
the Example System Included State Estimator section of Chapter 13, 
Defining State Estimator Structures, these initial conditions mean that the 
initial conditions of the actual states are [2, 1], whereas the initial 
conditions of the estimated states are [0, 0]. Figure 14-15 shows the 
response of the system to those initial conditions.

 

Figure 14-15.  State Trajectory of a System Included State Compensator

Notice that the time the estimator takes to track the actual states is much 
shorter than the time the actual states take to reach a steady state. The 
estimator takes between 1 and 1.5 seconds to track the actual states, 
whereas the actual states take approximately six seconds to reach a steady 
state. The estimator tracks the actual states faster than the controller 
stabilizes the system because the estimator poles are at [–5, –5] and the 
controller poles are at [–1, –1]. Placing the poles of the estimator farther to 
the left than the controller poles makes the performance of the estimator 
faster than the controller.



Chapter 14 Defining State-Space Controller Structures

Control Design Toolkit User Manual 14-24 ni.com

Example System Included State Compensator with Noise
In general, the compensator accepts two inputs, rx and ry. The input rx 
represents state references. The input ry represents measurement noise and 
is available only in the system included configuration with noise. 
Figure 14-16 shows the use of both types of inputs for the compensator.

 

Figure 14-16.  System Included State Compensator with Noise

The system included configuration with noise analyzes the effect of output 
noise on the system. This example has a total of three inputs to the 
compensator structure. The first two inputs are setpoints to the controller, 
given by rx = [1, 0]. The last input represents the output noise ry, which has 
a standard deviation of 0.01. Figure 14-17 shows the response to these 
inputs.

 

Figure 14-17.  State Trajectory of System Included State Compensator with Noise
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Notice that the state compensator lacks integral action, which originates the 
offsets on the state responses with respect to their respective setpoints. 
Therefore, the states do not reach the specified setpoints rx = [1, 0].

Example Standalone State Compensator with Estimator
Most systems are complex and have many parameters and uncertainties. 
You often do not know all the parameters of a system when you create a 
model of that system, or you cannot create a model that encompasses all the 
uncertainties of the system. Thus, the actual system and the model of the 
system do not match.

When you build a state compensator based on a model that does not match 
the actual system, the result is a system-model mismatch. In this situation, 
you need to use the standalone configuration with estimator. This 
configuration detaches the system from the model so you can determine the 
effect of the system-model mismatch. Consider the following state-space 
model:

This model is similar to the model in the Example System Configurations 
section of this chapter. For this example, however, assume that the actual 
system contains uncertainties that cause this state-space model to be an 
inaccurate representation of the system. The difference is in the last entry 
of the system matrix A, –0.2.

Figure 14-18 shows how this configuration uses the mismatched model, 
State-Space Model, to create the standalone state compensator with 
estimator. Note that the CD State-Space Controller VI uses the 
Compensator instance. This configuration connects the actual system, 
System, and the mismatched model, State-Space Model, in series. System 
uses this connection to provide the output y to the state compensator.
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Figure 14-18.  Standalone State Compensator with Estimator

This example sends the input u, which the compensator calculates, to the 
actual system using the CD Feedback VI. The CD Initial Response VI uses 
the same initial conditions to test the effectiveness of the controller and 
estimator. Figure 14-19 shows the effect of a using a model that does not 
match the actual system.

 

Figure 14-19.  State Trajectory of Standalone State Compensator with Estimator

Notice how Figure 14-15 and Figure 14-19 respond differently even though 
both figures represent responses to the same system with the same initial 
conditions. The example in Figure 14-15 takes 1 to 1.5 seconds to track the 
actual states. The example in Figure 14-19, however, takes approximately 
four seconds to track the actual states. The system-model mismatch in the 
latter example accounts for this difference.
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This example is similar to real-world applications where you do not know 
what the actual system is. Therefore, these tests are important in 
determining how sensitive the controller is to the system-model 
mismatches. You perform these tests before deploying the controller to a 
real-time (RT) target. Using a design method called robust control design, 
you can create model-based controllers that take into account possible 
modeling errors. Refer to Essentials of Robust Control1 for information 
about robust control design.

Example Standalone State Compensator without Estimator
This state compensator uses the standalone configuration without 
estimator, which indicates that you do not need a state estimator because 
the states are directly available for control. The following equations 
describe the compensator model.

Note The direct transmission matrix D is not part of this expression because D is null in 
this example.

The poles, or the eigenvalues of A – BK, of the closed-loop system are in 
the left side of the complex plane. If you set the output noise rx to zero, the 
controller gain matrix K immediately drives the states to zero.

Figure 14-20 shows how you use the CD Ackermann VI to calculate the 
controller gain matrix K, which you then use to study the performance of 
the state compensator.

1   Zhou, Kemin and John C. Doyle. Essentials of Robust Control, 1st ed. Upper Saddle River, NJ: Prentice Hall, 1998.
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y Cx=
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Figure 14-20.  Standalone Compensator without Estimator

Note To view both the original response of the actual system and the response of the 
system controlled by the state compensator, you must append the model of the actual 
system, State-Space Model, to the model of the state compensator. Therefore, in the 
State Trajectory Graph, shown in Figure 14-21, you can see the difference in the system 
response due to the effect of the compensator gain K. 

By adding a state compensator to the actual system, you create a 
closed-loop model of the resulting system. The actual system, without a 
state compensator, is an open-loop system. Figure 14-21 shows the 
response of the open-loop and closed-loop systems to initial conditions 
of [2, 1].

 

Figure 14-21.  State Trajectory for Standalone Compensator without Estimator
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Notice that despite the instability of the actual system, the state 
compensator is able to drive the closed-loop states toward zero. Thus the 
addition of a state compensator to the actual system stabilizes the resulting 
system.

Because the standalone state compensator stabilizes the actual system, you 
must use a state compensator with this system.
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15
Estimating Model States

Observers estimate the states of state-space system models by using the 
model information, any known inputs, and measured outputs. Use an 
observer when you cannot measure one or more model states directly. You 
can use observers only with state-space models because transfer function 
and zero-pole-gain models do not specify state information.

Note Observers do not take noise into account when estimating system states. If there is 
noise present in the system, that is, if the system is stochastic, you use an estimator instead 
of an observer. A Kalman filter is one type of estimator. Refer to Chapter 16, Using 
Stochastic System Models, for more information about stochastic systems and Kalman 
filters.

The LabVIEW Control Design Toolkit includes two types of observers for 
discrete models. Predictive observers use only information from the 
previous time step to estimate state information. Current observers use not 
only information from the previous time step, but also information from the 
current time step. This additional information improves the accuracy 
of current observers. Use a current observer only when the extra 
computation time does not interfere with the next sampling time.

The Control Design Toolkit also includes an observer for continuous 
models. However, estimating state information of continuous models 
requires solving a differential equation over time. Therefore, you must 
install the LabVIEW Simulation Module to implement a continuous 
observer.

Note The examples in this chapter compare actual model states with the estimated states. 
These comparisons are for example purposes only because in real-world control systems 
you rarely have all state information. However, if you are able to measure all state 
information, you do not need an observer.

This chapter provides information about using predictive, current, and 
continuous observers.
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Note Refer to the labview\examples\Control Design\Getting Started\
Implementation.llb for example VIs that demonstrate the concepts explained in this 
chapter.

Predictive Observer
At each time step k, a predictive observer estimates the state information 
for the next time step, or k + 1| k. This notation translates as the estimated 
states at time step k + 1 given all measurements up to and including time 
step k.

Consider an example at time step k = 5. At this time step, the predictive 
observer estimates , or . Estimating this information 
requires , or the current state estimate given all measurements 
up to and including time step k – 1, which is . The predictive 
observer also uses measured output y(5), estimated output , and 
known input u(5).

The following equations show this estimation:

In these equations, the predictive observer applies the observer gain Lp to 
the difference between the measured output y(k) and the estimated output 

. You can use the CD Ackermann VI or the CD Pole Placement VI to 
calculate Lp. Refer to the Pole Placement Technique section of 
Chapter 12, Designing State-Space Controllers, for more information 
about using these VIs.

At the next time step k = 6, the state estimate  becomes the 
predicted state estimate , The predictive observer uses this 
information to estimate the model states at time k = 7, or .

Use the Predictive Observer function to implement a predictive observer. 
For example, consider the following discrete state-space model:

where T is a sampling time of 0.1 seconds.

x̂ k 1+ k( ) x̂ 6 5( )
x̂ k k 1–( )

x̂ 5 4( )
ŷ 5( )

x̂ k 1+ k( ) x̂ 6 5( ) Ax̂ 5 4( ) Bx̂ 5 4( ) Lp y 5( ) ŷ 5( )–[ ]+ += =

ŷ 5( ) Cx̂ 5 4( ) Du 5( )–=

ŷ k( )

x̂ 6 5( )
x̂ k k 1–( )

x̂ 7 6( )

x k 1+( ) 1 T
0 1

x k( )=

y k( ) 1 0 x k( )=



Chapter 15 Estimating Model States

© National Instruments Corporation 15-3 Control Design Toolkit User Manual

Figure 15-1 shows the LabVIEW front panel controls that define this 
state-space model.

Figure 15-1.  Defining the Discrete State-Space Model

This model1 has two states x1 and x2. Figure 15-2 shows a LabVIEW block 
diagram that implements a predictive observer for this model.

Figure 15-2.  Implementing a Predictive Observer for the State-Space Model

1   Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems, 3rd ed. Menlo Park, CA: 
Addison Wesley Longman, Inc., 1998. pp. 292–93.
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The example in Figure 15-2 uses the Discrete State-Space function to 
calculate the actual states of this model. At each time step, this example 
compares the actual State x(k) to the Predicted State Estimate 
xhat(k|k–1), which is the state this function estimated at the previous time 
step. The difference between these two values is the Error e(k). This 
example also uses the CD Pole Placement VI to calculate the observer gain 
Lp such that the Poles of the predictive observer are in a location you define. 
In this example, the predictive observer poles are located at 0.4 ± 0.4i. 
Because this example has an Initial State x(0) value of [0, 0]T, both 
model states return a constant value of zero. The Wait Until Next ms 
Multiple function determines the speed at which the While Loop executes.
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If you execute this example with an Initial State Estimate xhat(0|–1) of 
[0, –1]T, this example returns the graphs shown in Figure 15-3.

Figure 15-3.  Actual Model States vs. Estimated Model States
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In Figure 15-3, notice the predictive observer starts estimating both 
model states correctly after about one second. To confirm this analysis, you 
can look at the Error e(k) graph, defined as x(k) – xhat(k|k–1) for each 
model state. Figure 15-4 shows the error graph of this example.

Figure 15-4.  Estimation Error of a Predictive Observer

Figure 15-4 confirms the estimation error of this predictive observer 
becomes zero after about one second.

Refer to the Predictive Observer topic of the LabVIEW Help, available by 
selecting Help»Search the LabVIEW Help from the pull-down menu, for 
the general forms of the equations this function uses to calculate the 
outputs.

Current Observer
The difference between a predictive and current observer is that a 
predictive observer uses measured output y(k) to estimate the predicted 
state . However, a current observer uses y(k) to estimate the 
current state  and uses that information to estimate . This 
extra calculation means that a current observer is more accurate than a 
predictive observer.

x̂ k 1 k+( )
x̂ k k( ) x̂ k 1 k+( )
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The current observer consists of two VIs: the CD Current Observer 
Corrector VI and the CD Current Observer Predictor VI. At each time step 
k, these VIs execute the following actions:

1. The CD Current Observer Corrector VI estimates the current model 
states  by using . In this sense, this VI corrects the 
state estimate predicted at the previous time step.

2. The CD Current Observer Predictor VI estimates the model states at 
the next time step , using .

3. After k advances to the next time step, the value of  
becomes the value of .

These steps repeat until you stop the VI.

Note You cannot use the CD Current Observer Corrector VI without the CD Current 
Observer Predictor VI.

Consider an example at time step k = 5. At this time step, the CD Current 
Observer Corrector VI estimates  using , measured 
output y(5), estimated output , and known input u(5). The following 
equations show this estimation:

In these equations, the current observer applies the observer gain Lc to the 
difference between the measured output y(k) and the estimated output 

. You can use the CD Ackermann VI or the CD Pole Placement VI to 
calculate Lc.

After estimating , the CD Current Observer Corrector VI wires the 
Corrected State Estimate xhat(k|k) output to the Corrected State 
Estimate xhat(k|k) input of the CD Current Observer Predictor VI. This 
VI uses u(5) to estimate the model states for the next time step , 
or . The following equation shows this estimation:

At the next time step k = 6, the state estimate  becomes . 
The CD Current Observer Corrector VI observer corrects  to 
become . The CD Current Observer Predictor VI then uses  
information to estimate .

x̂ k k( ) x̂ k k 1–( )

x̂ k 1 k+( ) x̂ k k( )

x̂ k 1 k+( )
x̂ k k 1–( )

x̂ 5 5( ) x̂ 5 4( )
ŷ 5( )

x̂ k k( ) x̂ 5 5( ) x̂ 5 4( ) Lc y 5( ) ŷ 5( )–[ ]+= =

ŷ 5( ) Cx̂ 5( ) Du 5( )–=

ŷ k( )

x̂ 5 5( )

x̂ k 1 k+( )
x̂ 6 5( )

x̂ 6 5( ) Ax̂ 5 5( ) Bu 5( )+=

x̂ 6 5( ) x̂ k k 1–( )
x̂ 6 5( )

x̂ 6 6( ) x̂ 6 6( )
x̂ 7 6( )
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Figure 15-5 shows the error graph of a current observer for the same model 
described in the Predictive Observer section of this chapter.

Figure 15-5.  Estimation Error of a Current Observer

In Figure 15-5, notice the error oscillates less than the error of the 
predictive observer shown in Figure 15-4. Also, the current observer error 
generally is less than the predictive observer error at a given time step. This 
decrease in error occurs because the current observer uses the current 
output y(k) to estimate the current states xhat(k|k), whereas the predictive 
observer uses the current output y(k) to predict the next state estimate 
xhat(k+1|k).

Refer to the CD Current Observer Corrector and CD Current Observer 
Predictor topics of the LabVIEW Help for the general forms of the 
equations these VIs use to calculate the outputs.

Continuous Observer
Estimating the states of a continuous state-space model requires solving the 
following ordinary differential equation:

x̂ 
·

t( ) Ax̂ t( ) Bu t( ) L y t( ) ŷ t( )–[ ]+ +=

ŷ t( ) Cx̂ t( ) Du t( )+=
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To estimate the states, you must integrate this equation over time. To 
perform this integration, you must use the CD Continuous Observer 
function with an ordinary differential equation (ODE) solver. You specify 
the ODE solver to use and parameters of the ODE solver by placing the CD 
Continuous Observer function inside a Simulation Loop. The Simulation 
Loop is included in the Simulation Module.

For example, consider the following continuous state-space model:

This model1 has two states x1 and x2. Figure 15-6 shows a LabVIEW block 
diagram that implements a continuous observer for this model.

Figure 15-6.  Implementing a Continuous Observer for a State-Space Model

The example in Figure 15-6 uses the State-Space function to calculate the 
actual states of this model. At each time step, this example compares the 
Actual state x(t) to the Estimated state xhat(t). The difference between 
these two values is the Error e(t). This example also uses the CD Pole 
Placement VI to calculate the observer gain L such that the Poles of the 

1   Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems, 4th ed. Upper Saddle 
River, NJ: Prentice Hall, 2002. p 543.

x· t( ) 0 1
1– 0

x t( ) 0
1

u t( )+=

y t( ) 1 0 x t( )=
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continuous observer are in a location you define. In this example, the 
observer poles are located at –10 ± 0i.

If you execute this example using an Initial State Estimate xhat(0) of 
[0 –1]T and an input of 0, this function returns the graphs shown in 
Figure 15-7.

Figure 15-7.  Actual Model States vs. Estimated Model States
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In Figure 15-7, notice the continuous observer starts estimating both model 
states correctly after about one second. To confirm this fact, you can look 
at the Error e(t) graph, defined as x(t) – xhat(t) for each model state. 
Figure 15-8 shows the error graph of this example.

Figure 15-8.  Estimation Error of a Continuous Observer

Figure 15-8 confirms that the observation error for both states converges to 
zero after about one second.

This example uses the Runge-Kutta 23 ODE solver with an initial time 
step of 0.01 seconds. Refer to the LabVIEW Simulation Module User 
Manual for more information about this and other ODE solvers.
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16
Using Stochastic System 
Models

The model forms in Chapter 2, Constructing Dynamic System Models, 
are deterministic. Deterministic models do not account for random 
disturbances, or noise, present in the system. Because noise affects most 
real-world systems, deterministic models might not represent these systems 
sufficiently.

Stochastic system models are models that represent the effects of noise on 
the plant, actuators, and/or sensors. Each stochastic system model has an 
associated noise model that characterizes the first- and second-order 
statistical behavior of the noise affecting the system. You use stochastic 
system models and noise model to test that a controller performs 
adequately in the presence of noise.

This chapter provides information about constructing and converting 
stochastic state-space models and noise models. This chapter also describes 
simulating stochastic models and implementing a Kalman filter to estimate 
model states in the presence of noise.

Note Refer to the labview\examples\Control Design\Getting Started\
Implementation.llb for example VIs that demonstrate the concepts explained in this 
chapter.

Constructing Stochastic Models
In addition to the state-space matrices A, B, C, and D, stochastic models 
contain the following variables:

• Vectors w and v represent process noise and measurement noise, 
respectively. Process noise reflects errors introduced by the model you 
defined, disturbances in the system states, and actuator errors. 
Measurement noise reflects sensor reading errors and disturbances 
directly affecting the sensor readings.

• Matrices G and H relate w to the states and outputs, respectively.
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The following equations define continuous and discrete stochastic 
state-space models.

Continuous Stochastic State-Space Model

Discrete Stochastic State-Space Model

Table 16-1 describes these variables.

Refer to the Constructing State-Space Models section of Chapter 2, 
Constructing Dynamic System Models, for information about the A, B, C, 
D, x, u, and y variables.

Use the CD Construct Stochastic Model VI to construct a stochastic 
state-space model. Refer to the LabVIEW Help, available by selecting 
Help»Search the LabVIEW Help from the pull-down menu, for 
information about this VI.

Table 16-1.  Dimensions and Names of Stochastic State-Space Model Variables

Variable Dimension Name

q — Length of process noise vector w.

r — Number of outputs.

n — Number of states.

w q × 1 vector Process noise vector.

v r × 1 vector Measurement noise vector.

G n × q matrix Weighting matrix relating the 
process noise vector w to the 
system states.

H r × q matrix Weighting matrix relating the 
process noise vector w to the 
system outputs.

x· t( ) Ax t( ) Bu t( ) Gw t( )+ +=

y t( ) Cx t( ) Du t( ) Hw t( ) v t( )+ + +=

x k 1+( ) Ax k( ) Bu k( ) Gw k( )+ +=

y k( ) Cx k( ) Du k( ) Hw k( ) v k( )+ + +=
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Constructing Noise Models
A noise model characterizes the first- and second-order statistical behavior 
of the noise vectors w and v. You construct a noise model by specifying the 
expected mean and auto-covariance of each noise vector. You also can 
specify any cross-covariance between the two vectors.

A noise model is of the following form:

Table 16-2 describes these variables.

Use the CD Construct Noise Model VI to construct a noise model for a 
given stochastic state-space model. Refer to the LabVIEW Help for 
information about this VI.

Converting Stochastic Models
A noise model is associated with a particular stochastic model. If the 
stochastic model is continuous, the noise model is continuous, whereas if 
the stochastic model is discrete, the noise model is discrete.

You can convert continuous stochastic models to discrete models, and 
vice-versa. You also can convert stochastic models to deterministic models, 
and vice-versa. The following sections provide information about these 
conversions.

Table 16-2.  Dimensions and Names of Noise Model Variables

Variable Dimension Name

Q q × q matrix Auto-covariance matrix of w.

R r × r matrix Auto-covariance matrix of v.

N q × r matrix Cross-covariance between w and v.

E{w} q × 1 vector Mean vector of w.

E{v} r × 1 vector Mean vector of v.

Q E w wT⋅{ } E w{ } ET w{ }⋅–=

R E v vT⋅{ } E v{ } ET v{ }⋅–=

N E w vT⋅{ } E w{ } ET v{ }⋅–=
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Converting between Continuous and Discrete Stochastic Models
Use the CD Convert Continuous Stochastic to Discrete VI to discretize a 
continuous stochastic model and the associated noise model. This VI 
first converts the deterministic matrices A, B, C, and D using the 
Zero-Order-Hold method. Refer to Chapter 3, Converting Models, 
for information about this method.

This VI then converts the G, H, Q, R, and N matrices according to the 
Method you specify. You can choose either the Numerical Integration 
method as proposed by Van Loan or the Truncation of Taylor Series 
Expansion (TSE) method. Refer to the CD Convert Continuous Stochastic 
to Discrete topic of the LabVIEW Help for the equations these methods use.

Converting between Stochastic and Deterministic Models
Use the CD Convert Stochastic to Deterministic VI to convert a stochastic 
state-space model to a deterministic state-space model. This VI removes G 
and H from the stochastic model equations.

Use the CD Convert Deterministic to Stochastic VI to convert a 
deterministic state-space model to a stochastic state-space model. When 
you execute this VI, you specify matrices G and H. This VI then 
incorporates G and H into the deterministic model equations.

Note When using either of these VIs, if the model you are converting is discrete, the 
resulting model has the same sampling time.

Simulating Stochastic Models
Before you deploy a controller to an RT target, you can test that the 
controller performs as expected in the presence of noise. To perform this 
test, you can simulate the behavior of a stochastic system model.

Use the Discrete Stochastic State-Space (Internal) function to simulate the 
behavior of a discrete stochastic state-space model. This function uses the 
Second-Order Statistics Noise Model to generate values of w(k) and v(k). 

You also can use the Discrete Stochastic State-Space (External) function. If 
you use this function, you wire values of w(k) and v(k) to the Process Noise 
w(k) and Measurement Noise v(k) inputs, respectively. In this situation, 
you can use the CD Correlated Gaussian Random Noise VI to generate 
Gaussian-distributed values of w(k) and v(k) that fit a statistical profile you 
specify.
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In either instance, you test a controller model by wiring the output of the 
controller model to the Input u(k) input of the Discrete Stochastic 
State-Space function. You also can provide initial state information by 
wiring values to the Initial State x(0) input.

This function accepts changes to the stochastic model and the noise model 
as long as the dimensions of the A, B, C, D, G, H, Q, R, and N matrices 
remain the same. Because of this functionality, you can use the Discrete 
Stochastic State-Space function to simulate the behavior of linear  
time-variant (LTV) models. 

Refer to the LabVIEW Help for more information about these functions.

Using a Kalman Filter to Estimate Model States
In the real world, controllers typically receive measurements that are 
corrupted by noise. Also, you typically do not or cannot measure all state 
values. If you want to calculate state values, the only information you have 
is these noisy measurements and the known inputs. In this situation, you 
can use a Kalman filter to estimate the state values given noisy sensor 
measurements.

Use the CD Discrete Recursive Kalman Corrector and CD Discrete 
Recursive Kalman Predictor VIs to implement a Kalman filter for a discrete 
stochastic state-space model. These VIs calculates the filtered state 
estimate using only known inputs and noisy measurements of the plant. 
The CD Discrete Recursive Kalman Corrector VI returns the filtered state 
estimate, which is defined as . This notation translates as the 
estimated state vector at time k given all measurements up to and 
including k.

Calculating the filtered state estimate involves applying a gain matrix M(k) 
to the difference between the measured output and the estimated output. 
The CD Discrete Recursive Kalman Corrector VI calculates and returns the 
value of M(k) that minimizes the covariance of the estimation error. This 
covariance is a matrix P(k|k).

The CD Discrete Recursive Kalman Predictor VI calculates the predicted 
state estimate . Calculating the predicted state estimate involves 
applying a gain matrix L(k) to the difference between the measured output 
and the estimated output. This VI calculates and returns the value of L(k) 
that minimizes the covariance of the prediction estimation error. This 
covariance is a matrix P(k+1|k).

x̂ k k( )

x̂ k 1+ k( )
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You can assist the Kalman filter by wiring a value to the Initial State 
Estimate xhat(0|–1) parameters of each VI. These parameters specify the 
state values you think the stochastic model returns at the first time step 
k = 0. Providing this function with initial state estimates helps this function 
converge on the true state values quicker than if you do not provide an 
initial estimate. If you do not wire a value to this parameter, this function 
sets all initial state values to zero.

You also can wire a value to the Initial Estimation Error Covariance 
P(0|–1) parameters. These parameters define the covariance of the 
estimation error at the first time step. A low value of this parameter 
indicates you have a high degree of confidence in any Initial State 
Estimate xhat(0|–1) you provide, and vice versa. If you do not wire a value 
a value to the Initial Estimation Error Covariance P(0|–1) parameter, the 
these VIs set this parameter as the identity matrix.

Refer to the Discrete Models section of Chapter 12, Designing State-Space 
Controllers, for more information about how a Kalman filter uses the gain 
and estimation error covariance matrices. Refer to the CD Discrete 
Recursive Kalman Corrector and CD Discrete Recursive Kalman 
Predictor topics of the LabVIEW Help for the equations these VIs use to 
calculate the outputs.

The Control Design Toolkit also includes the CD Continuous Recursive 
Kalman Filter function. Use this function to implement a Kalman filter for 
a continuous stochastic model. Because continuous Kalman filters must 
solve differential equations over time, you only can place the 
CD Continuous Recursive Kalman Filter function inside a Simulation 
Loop. The Simulation Loop is included in the LabVIEW Simulation 
Module.
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Noisy RL Circuit Example
This example in this section modifies the RLC circuit from the RLC Circuit 
Example section of Chapter 2, Constructing Dynamic System Models, by 
removing the capacitor, adding process noise n(t), and adding measurement 
noise e(t). Figure 16-1 shows this noisy RL circuit.

Figure 16-1.  Noisy RL Circuit

In this example, L is the inductor, i(t) is the current, vi(t) is the input voltage, 
vo(t) is the output voltage, and R is the resistor. n(t) is process noise that 
affects the resistor R, and e(t) is measurement noise that affects the sensor 
that measures vo(t). The result of this noise is a corrupted measurement 
vo,n(t).

The process noise n(t) is modeled as a white, Gaussian, stochastic process 
with spectral density Sn(ω) = 2kTR, where k is the Boltzmann constant1, 
T is the absolute temperature of the resistor, and R is the nominal resistance 
of the noiseless resistor.

The measurement noise e(t) is modeled as a white, Gaussian, stochastic 
process with spectral density Se(ω) = s2, where s is the standard deviation 
of the measurement noise. In this example, e(t) is uncorrelated with n(t).

The following sections construct a stochastic state-space model and noise 
model for this example, simulate the model output, and implement a 
Kalman filter to estimate the model states.

1   In this example, the Boltzmann constant equals 1.38 × 10–23 Joules per Kelvin.
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Constructing the System Model
Constructing a model for this system involves defining the values of the A, 
B, C, D, G, and H matrices. To define these matrices, you can write 
equations that describe the system behavior and transform those equations 
into stochastic state-space form. After the equations are in this form, you 
can derive the values of the necessary matrices.

Applying Kirchoff’s Voltage Law to the example in Figure 16-1 yields the 
following equations that represent the system input and output.

To obtain the values of the state-space matrices, transform these equations 
into the stochastic state-space equations, defined as the following:

You can transform these equations by substituting equivalent terms and 
then rearranging those terms. Table 16-3 shows the equivalent terms in both 
sets of equations.

Substituting variables with equivalent terms yields the following equations:

Table 16-3.  Equivalent Terms

Variable Represents Equivalent Term

i(t) State vector x(t)

vi(t) Input vector u(t)

vo,n(t) Output vector y(t)

n(t) Process noise vector w(t)

e(t) Measurement noise vector v(t)

vi t( ) Ri t( ) Ldi t( )
dt

----------- n t( )+ +=

vo n, t( ) Ri t( ) n t( ) e t( )+ +=

x· t( ) Ax t( ) Bu t( ) Gw t( )+ +=

y t( ) Cx t( ) Du t( ) Hw t( ) v t( )+ + +=

u t( ) Rx t( ) Lx· t( ) w t( )+ +=

y t( ) Rx t( ) w t( ) v t( )+ +=
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Rearranging the terms in the first equation yields the following equations:

From these equations you can obtain the following values of the state-space 
matrices:

The next step is constructing the noise model associated with this stochastic 
model.

Constructing the Noise Model
Because w(t) and v(t) are white, these variables have a mean of zero and are 
temporally uncorrelated. Therefore, the auto-covariance matrices Q(t) and 
R(t) are equivalent to the inverse Fourier transform of the respective 
spectral densities Sw(ω) and Sv(ω). Additionally, E{w(t)} = 0 and 
E{v(t)} = 0. The following equations show the definition of the noise 
model.

where δ(t) is the Dirac delta function. N(t) is 0 because w(t) and v(t) are 
uncorrelated with each other.

x· t( ) R
L
---– x t( ) 1

L
---u t( ) 1

L
---w t( )–+=

y t( ) Rx t( ) w t( ) v t( )+ +=

A R
L
---–≡ B 1

L
---≡ G 1

L
---–≡

C R≡ D 0≡ H 1≡

E w t( ){ } 0=

E v t( ){ } 0=

Q t( ) F 1– Sw ω( ){ } 2kTRδ t( )= =

R t( ) F 1– Sv ω( ){ } s2δ t( )= =

N t( ) 0=
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Figure 16-2 shows a LabVIEW block diagram that constructs this noise 
model and the stochastic system model when R = 1 kΩ, L = 500 µH, 
s = 0.000001, and T = 290 K.

Figure 16-2.  Constructing the Stochastic State-Space Model and a Noise Model for 
the Noisy RL Circuit Example
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Converting the Model
Before you can simulate this stochastic model using the Control Design 
Toolkit, you must discretize the stochastic model and the associated noise 
model. Use the CD Convert Continuous Stochastic to Discrete to discretize 
these models.

Figure 16-3 shows a LabVIEW block diagram that discretizes both models 
using a Sampling Time (s) of 0.000001.

Figure 16-3.  Discretizing the Stochastic State-Space Model and the Noise Model

The example in Figure 16-3 uses the conversion Method of Numerical 
Integration to discretize the models.
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Simulating The Model
Figure 16-4 shows a LabVIEW block diagram that simulates the discrete 
Stochastic State-Space Model defined in the Converting the Model 
section of this chapter. The Input u(k) to this model is a sine wave with an 
Amplitude of 0.01 volts and a Frequency of 1 KHz.

Figure 16-4.  Simulating the Discrete Stochastic State-Space Model

In Figure 16-4, the Construct and Discretize Models subVI contains the 
block diagram code shown in Figure 16-3. The Wait Until Next ms 
Multiple function adjusts the speed of the simulation. Also, this example 
uses Property Nodes to adjust the scale of the resulting graphs based on the 
Frequency of the sine wave.
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Figure 16-5 shows the Output y(k) and the State x(k) of the model when 
you run this example.

Figure 16-5.  Output and State Trajectories of the Discrete Stochastic 
State-Space Model

In Figure 16-5, notice the noise present in the graph of Output y(k).
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Implementing a Kalman Filter
As defined in Table 16-3, the state in this example represents the current 
flowing through the RL circuit. If this example were a real-world circuit, 
you could use an ammeter to measure the current flowing through the 
circuit. However, for the purposes of this example, assume you do not have 
an ammeter or cannot connect an ammeter to the circuit. In this situation, 
you can use a Kalman filter to estimate the current given only the noisy 
voltage measurements Output y(k) that Figure 16-5 shows.

Figure 16-6 shows a LabVIEW block diagram that demonstrates a Kalman 
filter for this discrete stochastic state-space model.

Figure 16-6.  Implementing a Kalman Filter

The example in Figure 16-6 executes the following steps:

1. The Discrete Stochastic State-Space (Internal) function simulates 
acquiring a noisy sensor measurement by wiring the Output y(k) 
output of this function to the Output y(k) input of the CD Discrete 
Recursive Kalman Corrector VI.
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2. The CD Discrete Recursive Kalman Corrector VI calculates the 
current Corrected State Estimate xhat(k|k) based on the 
Output y(k), Input u(k), Initial State Estimate xhat(0|–1), and 
Initial Estimation Error Covariance P(0|-1) parameters.

3. The CD Discrete Recursive Kalman Predictor VI calculates the 
Predicted State Estimate xhat(k+1|k) and Predicted Estimation 
Error Covariance P(k+1|k) based on the same four parameters.

4. At the next iteration of the While Loop, the value of k increases by 1 
and the Predicted State Estimate xhat(k+1|k) becomes the 
Predicted State Estimate xhat(k|k–1). Therefore, this example wires 
the Predicted State Estimate xhat(k+1|k) output of the CD Discrete 
Recursive Kalman Predictor VI to the Predicted State Estimate 
xhat(k|k–1) input of the CD Discrete Recursive Kalman Corrector VI. 
This example also wires the Prediction Error Covariance P(k+1|k) 
output of the CD Discrete Recursive Kalman Predictor VI to the 
Estimation Error Covariance P(k|k–1) input of the CD Discrete 
Recursive Kalman Corrector VI. Feedback nodes transfers these 
values to the next iteration of the While Loop.

5. The Discrete Stochastic State-Space (Internal) function simulates 
another noisy sensor measurement by wiring the Output y(k) output 
of this function to the Output y(k) input of the CD Discrete Recursive 
Kalman Corrector VI.

6. The CD Discrete Recursive Kalman Corrector VI calculates the 
corrected current state estimate based on the updated values of the 
Output y(k) and Input u(k) parameters. Because this is not the initial 
iteration of the While Loop, this VI now uses the State Estimate 
xhat(k|k–1) and Estimation Error Covariance P(k|k–1) parameters 
instead of the initial parameters used in step 2.

Steps 3 through 6 repeat until you stop the VI.
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Figure 16-7 compares the actual model State x(k) with the Corrected 
State Estimate xhat(k|k) the CD Discrete Recursive Kalman Corrector VI 
calculates.

Figure 16-7.  Actual Model States vs. Corrected State Estimates
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In Figure 16-7, notice the actual state appears to equal the corrected state at 
every time step. To confirm this analysis, you can look at the graph of the 
estimation error e(k), defined as x(k) – xhat(k|k). Figure 16-8 shows the 
graph of e(k) for this example.

Figure 16-8.  Estimation Error of Kalman Filter

In Figure 16-8, notice the estimation error is extremely small. This small 
error confirms the ability of the Kalman filter to estimate model states 
despite the presence of noise.

Refer to the Example State-Space Controller with Kalman Filter for 
Stochastic System Code section of Chapter 17, Deploying a Controller to a 
Real-Time Target, for example block diagram code that implements a 
Kalman filter on a real-time (RT) target.
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17
Deploying a Controller to a 
Real-Time Target

After you design a controller using the techniques this manual describes, 
you then can deploy the block diagram code for that controller to a 
real-time (RT) target. The RT target acquires sensor measurements, 
executes the controller code, and sends the appropriate output to the 
actuators.

The LabVIEW Control Design Toolkit includes functions that you use to 
deploy discrete linear time-invariant (LTI) system models to National 
Instruments RT Series Hardware. You can use these functions to define 
discrete controller models in transfer function, zero-pole-gain, or 
state-space form. To deploy continuous controller models to an RT target, 
you must install the LabVIEW Simulation Module. Refer to the Example 
Continuous Controller Model with Kalman Filter Code section of this 
chapter for more information about the deploying continuous models to an 
RT target.

Note Deploying controller code to an RT target involves the LabVIEW Real-Time 
Module. This chapter is not intended to provide a a comprehensive discussion of using the 
Real-Time Module. If you installed the Real-Time Module, refer to the LabVIEW Help, 
available by selecting Help»Search the LabVIEW Help from the pull-down menu, for 
information about deploying a VI to an RT target, using the Timed Loop, and creating I/O 
code to and from RT hardware.
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Figure 17-1 shows where you place a controller in a closed-loop dynamic 
system.

Figure 17-1.  Closed-Loop Dynamic System

In Figure 17-1, the controller represents an RT target running a VI that 
contains the controller code you designed. Because the RT target is digital, 
you need a digital to analog converter (DAC) to convert the digital 
controller output into an analog signal the actuator recognizes. If the sensor 
is analog, you also need an analog to digital converter (ADC) to convert the 
analog sensor measurement into a digital signal the controller hardware 
recognizes. You can eliminate the need for a separate ADC by using a 
digital sensor, such as a digital multimeter (DMM).

The wire leading to the controller in Figure 17-1 represents block diagram 
code that acquires a sensor measurement. The wire leading away from the 
controller represents block diagram code that sends the controller output to 
the actuator. Depending on the hardware installed in the RT target, these 
wires represent different code. For example, if the RT target is using 
National Instruments DAQ devices, these wires represent NI-DAQmx 
code.

Note National Instruments provides hardware and software to test and implement 
controllers, actuators, analog sensors, DMMs, DACs, and ADCs. Refer to ni.com for 
information about these products.

To deploy a controller on an RT target, you must define the controller 
model and then write the block diagram code that implements that 
controller model on an RT target. This chapter provides information about 
both of these steps.

Controller
Digital to Analog
Converter (DAC) Actuators

Sensors
Analog to Digital
Converter (ADC)

Physical System
(Plant)

Reference

Control System

+

–
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Note Refer to the labview\examples\Control Design\Getting Started\
Implementation.llb for example VIs that demonstrate the concepts explained in this 
chapter.

Defining Controller Models
The Control Design Toolkit includes the following three functions you use 
to define a controller model.

• Discrete Transfer Function

• Discrete State-Space

• Discrete Zero-Pole-Gain

You use these functions to deploy a controller model on an RT target. You 
also can use these functions to perform an offline simulation that does not 
involve an RT target. Refer to the LabVIEW Help for information about 
these functions.

You can define a controller model interactively, programmatically, or by 
using the Control Design Assistant. The following sections use the Discrete 
Transfer Function function to provide information about each of these 
methods.

Defining a Controller Model Interactively
Place the Discrete Transfer Function function on the block diagram and 
double-click the function icon to launch the Discrete Transfer Function 
Configuration dialog box. After you launch this dialog box, complete the 
following steps to define the controller model.

1. Specify whether the model is single-input single-output (SISO) or 
multiple-input multiple-output (MIMO) by selecting the appropriate 
option from the Polymorphic instance pull-down list.

2. Select the Transfer Function parameter from the Parameters listbox. 
The Parameter Information section updates to show the 
configuration options for the model.

3. Select Configuration Dialog Box from the Parameter source 
pull-down list.

4. If the model is MIMO, define the dimensions of the model using the 
Inputs and Outputs text boxes in the Model Dimensions section. 
This section is dimmed if you configure a SISO model because SISO 
models have only one input and one output.
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5. Enter numerator and denominator coefficients in the Numerator and 
Denominator text boxes. Notice the Preview window updates to 
display the model equation. For MIMO models, use the Input-Output 
Model control to select different input/output pairs. You can enter 
unique Numerator and Denominator coefficients for each 
input/output pair.

6. Click the OK button to save the model definition and return to the 
block diagram. If you defined a SISO model, the function icon updates 
to show the model equation. You also can resize the function icon.

Defining a Controller Model Programmatically
Launch the Discrete Transfer Function Configuration dialog box, select 
Transfer Function from the Parameters listbox, and select Terminal 
from the Parameter source pull-down list. After you click the OK button, 
the Transfer Function input appears on the function icon. You then can 
use the CD Construct Transfer Function VI, or a block diagram constant, to 
define a transfer function model. Wire this model definition to the 
Transfer Function input of the Discrete Transfer Function function.

Defining a Controller Model Using the Control Design Assistant
Use the Control Design Assistant to design a transfer function 
controller model, and save the model as a .lti file. Then, place the 
Discrete Transfer Function function on the block diagram. Double-click 
the function icon to launch the Discrete Transfer Function 
Configuration dialog box. Click the Load Model button, and select the 
.lti file you saved previously. The model definition updates accordingly. 
Click the OK button to return to the block diagram.

Refer to the NI Express Workbench Help, available by launching the 
Control Design Assistant and selecting Help»Express Workbench Help 
and navigating to Step Reference»Control Design Steps, for more 
information about the Control Design Assistant.

Writing Controller Code
The examples in this section use a Timed Loop to implement the feedback 
configuration Figure 17-1 shows. This structure also ensures the controller 
code you write executes in real time. Refer to the Timed Loop topic of the 
LabVIEW Help for information about configuring and executing a Timed 
Loop.
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Note If you designed a continuous controller model, you must convert that model to a 
discrete one before deploying that model to an RT target. The sampling time you use in this 
conversion must equal the Period of the Timed Loop. Refer to Chapter 3, Converting 
Models, for more information about converting models.

The following sections show example transfer function, state-space, and 
zero-pole-gain controller code. These examples also define and convert 
models in different ways. The following sections also describe how to 
implement observers and Kalman filters on an RT target.

Example Transfer Function Controller Code
Figure 17-2 shows a LabVIEW block diagram that implements a transfer 
function controller.

Figure 17-2.  Implementing a Discrete Transfer Function Controller on an RT Target

Note In Figure 17-2, and throughout the following sections, the Sensor Measurement 
subVI represents block diagram code that acquires a measurement from a hardware sensor. 
The Controller Output subVI represents block diagram code that sends the controller 
output to the actuator.

The example in Figure 17-2 constructs a continuous transfer function 
model in the form of a phase-lead controller. This example then converts 
the model to a discrete one using the Zero-Order-Hold Method and 
implements that discrete controller model on an RT target. Refer to 
Chapter 3, Converting Models, for more information about the 
Zero-Order-Hold method.



Chapter 17 Deploying a Controller to a Real-Time Target

Control Design Toolkit User Manual 17-6 ni.com

When you click the Run button, LabVIEW downloads the VI to the 
RT target and executes the following steps:

1. Acquires a Sensor Measurement from a hardware sensor that 
measures the plant output.

2. Subtracts the Sensor Measurement from a Reference Input you 
define.

3. Applies the result of step 2 to the controller the Discrete Transfer 
Function function defines. This example uses the CD Construct 
Lead-Lag Controller VI to define the controller model 
programmatically. The Discrete Transfer Function function returns 
the Controller Output.

4. Sends the Controller Output to the hardware actuator.

Steps 1 through 4 repeat until you stop the VI.

Example State Compensator Code
Figure 17-3 shows a LabVIEW block diagram that implements a state 
compensator.

Figure 17-3.  Implementing a State Compensator on an RT Target

The example in Figure 17-3 uses the CD Construct State-Space Model VI 
to construct a model of the system to be controlled. The controller consists 
of the block diagram code inside the Timed Loop. The control action is 
defined as u = K(xRef – x), where xRef is the reference input you specify, 
x is the measured state information, and K is the controller gain matrix.
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This example assumes you can measure all state information. If you cannot 
measure all state information, you can use a predictive or current observer 
to estimate state information. Refer to the Example State-Space Controller 
with Predictive Observer Code and Example State-Space Controller with 
Current Observer Code sections of this chapter for information on 
implementing predictive and current observers.

Example SISO Zero-Pole-Gain Controller with Saturation Code
Figure 17-4 shows a LabVIEW block diagram that implements a SISO 
zero-pole-gain controller and takes saturation into account.

Figure 17-4.  Implementing a Discrete Zero-Pole-Gain Controller on an RT Target

The example in Figure 17-4 defines a SISO controller model interactively. 
Notice that the model equation appears on the Discrete Zero-Pole-Gain 
function icon. Also notice the In Range and Coerce function. You can use 
this function to account for saturation effects in the dynamic system.
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Example State-Space Controller with Predictive Observer Code
Figure 17-5 shows a LabVIEW block diagram that implements a 
state-space controller that depends on estimated state information.

Figure 17-5.  Implementing a Predictive Observer on an RT Target

The example in Figure 17-5 uses the Predictive Observer function to 
estimate state information  during execution. This example also 
uses the CD Pole Placement VI to calculate the predictive observer gain Lp 
such that the current Observer Poles are in the location you specify. 
Another CD  Pole Placement VI calculates the controller gain K based on 
the Controller Poles you specify.

This example calculates the control action to apply at the next time step, or 
u(k + 1), which is defined as . At the next iteration of the 
Timed Loop, u(k + 1) becomes u(k), which the Predictive Observer 
function uses to estimate state information for the next time step. The 
feedback node transfers this value from one iteration to the next.

Refer to Chapter 15, Estimating Model States, for more information about 
observers.

x̂ k 1 k+( )

Kx̂ k 1 k+( )–
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Example State-Space Controller with Current Observer Code
The example in Figure 17-6 shows a LabVIEW block diagram that 
implements a state-space controller that depends on estimated state 
information.

Figure 17-6.  Implementing a Current Observer on an RT Target

The example in Figure 17-6 executes the following steps:

1. The CD Pole Placement VIs calculate the observer gain Lc and 
controller gain K based on the Observer Poles and Controller Poles 
you specify.

2. The Negate function changes K to –K to indicate negative feedback.

3. The Sensor Measurement subVI acquires a measurement y(k) from the 
hardware sensor. This subVI wires this measurement to the 
Output y(k) input of the CD Current Observer Corrector VI.

4. The CD Current Observer Corrector VI uses the Output y(k) to 
correct the Initial State Estimate xhat(0|–1). This VI returns the 
current state estimate in the Corrected State Estimate xhat(k|k) 
output.

5. The A x B VI multiplies –K by the Corrected State Estimate 
xhat(k|k) to obtain the control action u(k). This VI wires u(k) to the 
Controller Output subVI.

6. The Controller Output subVI sends u(k) to the hardware actuators.

7. The CD Current Observer Corrector VI also wires the Corrected State 
Estimate xhat(k|k) output to the Corrected State Estimate xhat(k|k) 
input of the CD Current Observer Predictor VI. Similarly, the A x B VI 
wires u(k) to the Input u(k) input of the CD Current Observer 
Predictor VI.
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8. The CD Current Observer Predictor VI uses the Corrected State 
Estimate xhat(k|k) and the Input u(k) to predict the state information 
for the next time step k + 1. This VI returns the predicted state 
information in the Predicted State Estimate xhat(k+1|k) output.

9. At the next iteration of the Timed Loop, the value of k increases by 1 
and the Predicted State Estimate xhat(k+1|k) becomes the 
Predicted State Estimate xhat(k|k–1). Therefore, this example wires 
the Predicted State Estimate xhat(k+1|k) output of the CD Current 
Observer Predictor VI to the Predicted State Estimate xhat(k|k–1) 
input of the CD Current Observer Corrector VI. A feedback node 
transfers the value of the Predicted State Estimate xhat(k+1|k) 
parameter to the next iteration of the Timed Loop.

10. The Sensor Measurement subVI acquires another measurement.

11. The CD Current Observer Corrector VI uses this measurement to 
correct the Predicted State Estimate xhat(k|k–1).

Steps 5 through 11 repeat until you stop the VI.

In this example, the D matrix of the State-Space Model is zero, which 
means the model does not have direct feedthrough from the inputs to the 
output. In this situation, you do not need to wire a value to the Input u(k) 
input of the CD Current Observer Corrector VI. This input does not affect 
the value of the current state estimate when the D matrix equals zero. 
However, you still must wire a value to the Input u(k) of the CD Current 
Observer Predictor VI.

Refer to the CDEx Current Observer and Controller 
Implementation With Feedthrough VI in the labview\examples\
Control Design\Getting Started\Implementation.llb for an 
example of implementing a current observer when the model does have 
direct feedthrough.
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Example State-Space Controller with Kalman Filter for Stochastic 
System Code

The example in Figure 17-7 shows a LabVIEW block diagram that 
implements a state-space controller that depends on estimated state 
information. Because the controller must take noise into account, this 
example uses a Kalman filter instead of a predictive or current observer.

Figure 17-7.  Implementing a Kalman Filter on an RT Target

The example in Figure 17-7 uses the CD Discrete Recursive Kalman 
Corrector and CD Discrete Recursive Kalman Predictor VIs to estimate 
state information  during execution. The control action u(k + 1) 
is defined as . At the next iteration of the Timed Loop, 
u(k + 1) becomes u(k), which these VIs use to estimate state and error 
covariance information for the next time step. The feedback nodes transfer 
these values from one iteration to the next.

In this example, the D matrix of the Stochastic State-Space Model is 
nonzero, which means the model has direct feedthrough from the inputs to 
the output. In this situation, you must wire a value to the Input u(k) input 
of the CD Discrete Recursive Kalman Corrector VI.

Refer to the CDEx Kalman Filter and Controller 
Implementation Without Feedthrough VI in the labview\
examples\Control Design\Getting Started\

Implementation.llb for an example of implementing a current 
observer when the model does not have direct feedthrough.

x̂ k 1 k+( )
Kx̂ k 1 k+( )–
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Refer to the Implementing a Kalman Filter section of Chapter 16, Using 
Stochastic System Models, for information about how these two VIs 
execute.

Example Continuous Controller Model with Kalman Filter Code
You can use the Control Design Toolkit to deploy only discrete controller 
models to RT targets because the Control Design Toolkit does not include 
any ordinary differential equation (ODE) solvers. You need ODE solvers 
to integrate continuous differential equations over time. To deploy a 
continuous controller model to an RT target, purchase the Simulation 
Module, which includes several ODE solvers you can use to deploy a 
continuous controller model to an RT target. You use the Simulation Loop 
to configure the ODE solver and time step settings to use.

Figure 17-8 shows a LabVIEW simulation diagram that uses the 
Simulation Loop to deploy a continuous controller model and Kalman filter 
to an RT target.

Figure 17-8.  Implementing a Continuous Controller Model and a Continuous Kalman 
Filter on an RT Target

In Figure 17-8, the red D on the Sensor Measurement and Controller 
Output subVI icons indicate these subVIs execute as discrete functions. 
You can configure the sample period and sample skew, or offset, of these 
functions individually. The blue C on the A x B VI icon indicates this VI 
executes continuously. Also, notice this example does not need feedback 
nodes or shift registers to feed the output of the A x B VI back to the 
Input u(t) input of the CD Continuous Recursive Kalman Filter function.

Note You must install both the Control Design Toolkit and the Simulation Module to use 
the CD Continuous Recursive Kalman Filter function.
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Finding Example NI-DAQmx I/O Code
If you installed NI-DAQmx, refer to the labview\examples\DAQmx\
Control\Control.llb for examples of writing I/O block diagram code 
for National Instruments DAQ devices.
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A
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support 
include the following:

– Self-Help Resources—For answers and solutions, visit the 
award-winning National Instruments Web site for software drivers 
and updates, a searchable KnowledgeBase, product manuals, 
step-by-step troubleshooting wizards, thousands of example 
programs, tutorials, application notes, instrument drivers, and 
so on.

– Free Technical Support—All registered users receive free Basic 
Service, which includes access to hundreds of Application 
Engineers worldwide in the NI Developer Exchange at 
ni.com/exchange. National Instruments Application Engineers 
make sure every question receives an answer.

For information about other technical support options in your 
area, visit ni.com/services or contact your local office at 
ni.com/contact. 

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, National Instruments 
Alliance Partner members can help. To learn more, call your local 
NI office or visit ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.
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