TRANSDUCTION

USER'S MANUAL

Version 1.0 05/31/12

TR-7053 INDUSTRIAL FULL-SIZE PICMG 1.3 SBC WITH INTEL XEON E-1200 SERIES OR CORE i7 / i5 / i3 PROCESSOR FOR INTEL PROCESSOR SOCKET LGA1155

> 23-5155 Spectrum Way, Mississauga, ON, Canada L4W 5A1 TEL: 1-800-268-0427, 905-625-1907 FAX: 905-625-0531 Email: sales@transduction.com

Table of Contents

Chapter 1	Specifications	1
Introductio	n	1
Features .		2
TR-7053 –	- Single Processor SHB Block Diagram	3
TR-7053 –	- Single Processor SHB Layout Diagram – Revision-01 (Top)	4
TR-7053 –	- Single Processor SHB Layout Diagram – Revision-02 (Top)	5
TR-7053 –	- Single Processor SHB Layout Diagram – Revision-03 and later (Top)	6
TR-7053 –	- Single Processor SHB Layout Diagram (Bottom)	7
Processor		8
Supported	Intel® Processor Technologies	8
Serial Inter	rconnect Interface	9
Data Path		9
Serial Inter	rconnect Speeds	9
Platform C	Controller Hub (PCH)	9
Intel® Dire	ect Media Interface (DMI)	9
Intel® Flex	kible Display Interface (FDI) Between CPU and PCH	9
Memory In	terface	9
DMA Char	nnels	9
Interrupts		9
BIOS (Flas	sh)	9
Cache Me	mory	9
DDR3-133	3 Memory	10
Universal S	Serial Bus (USB)	10
Analog Vic	leo Interface	10
Digital Vide	eo Interface	10
PCI Expres	ss Interfaces	11
Ethernet Ir	nterfaces	11
Serial ATA	(SATA) Ports	11
Watchdog	Timer (WDT)	12-13
SATA RAI	D Operation (Windows O/S Setup)	13

Power Req	uirements	
Power Fail	Detection	14
Battery		14
Temperatu	re/Environment	
Mechanica		14
Board Stiff	ener Bars	15
Industry Ce	ertifications	15
Configurati	on Jumpers	
P4A/P4B E	thernet LED's and Connectors	
Status LED	's	
System BI	OS Setup Utility	
Connectors	\$	
Chapter 2	PCI Express [®] Reference	
Introduction	۱	
PCI Expres	s Links	
SHB Config	guration	
PCI Expres	s Edge Connector Pin Assignments	
PCI Expres	s Signals Overview	
Optional IC	B33 PCI Express Link Expansion	
Chapter 3	TR-7053 System Power Connection	s37
Introduction	۱	
Power Sup	ply and SHB Interaction	
Electrical C	onnection Configurations	
Chapter 4	PCI Express Backplane Usuage	41
Introduction	۱	41
SHB Edge	Connectors	
TR-7053 a	nd Compatible Backplanes	
Chapter 5	Optional IOB33 Expansion Board U	sage45
IOB33 Ove	rview	
IOB33 Fea	tures	

IOB33 Temperature/Environment	
IOB33 Block Diagram	
IOB33 Layout Diagram	
IOB33 I/O Plate Diagram	
IOB33 Connectors	
Chapter 6 BIOS	
Starting APTIO® TSE	
Advanced Setup	
Chipset Configuration Setup	
Boot Setup	61
Security	
Saving and Exiting BIOS Setup and Restoring D	efaults65-66
Event Log	
Appendix A BIOS Messages	
Introduction	
Aptio Boot Flow	
BIOS Beep Codes	
PEI Beep Codes	
DXE Beep Codes	
BIOS Status Codes	71
BIOS Status POST Code LED's	71
Status Code Ranges	
SEC Status Codes	
SEC Beep Codes	
PEI Status Codes	
DXE Status Codes	
DXE Beep Codes	
ACPI/ASL Status Codes	78

HANDLING PRECAUTIONS

WARNING: This product has components that may be damaged by electrostatic discharge.

To protect your system host board (SHB) from electrostatic damage, be sure to observe the following precautions when handling or storing the board:

- Keep the SHB in its static-shielded bag until you are ready to perform your installation.
- Handle the SHB by its edges.
- Do not touch the I/O connector pins.
- Do not apply pressure or attach labels to the SHB.
- Use a grounded wrist strap at your workstation or ground yourself frequently by touching the metal chassis of the system before handling any components. The system must be plugged into an outlet that is connected to an earth ground.
- Use antistatic padding on all work surfaces.
- Avoid static-inducing carpeted areas.

RECOMMENDED BOARD HANDLING PRECAUTIONS

This SHB has components on both sides of the PCB. Some of these components are extremely small and subject to damage if the board is not handled properly. It is important for you to observe the following precautions when handling or storing the board to prevent components from being damaged or broken off:

- Handle the board only by its edges.
- Store the board in padded shipping material or in an anti-static board rack.
- Do not place an unprotected board on a flat surface.

Before You Begin

INTRODUCTION

It is important to be aware of the system considerations listed below before installing your TR-7053 (7053-xxx) SHB. Overall system performance may be affected by incorrect usage of these features.

DDR3-1333 MEMORY

Transduction recommends unbuffered ECC PC3-8500 or PC3-10600 DDR3 memory modules for use on the TR-7053. These unbuffered ECC registered (64-bit) DDR3 DIMMs must be PC3-10600 or PC3-8500 compliant. Unbuffered non-ECC DDR3 DIMMs are also supported on the TR-7053 SHB, but you cannot mix the two different memory types on the same board.

NOTES:

- To maximize memory interface speed, populate each memory channel with DDR3 DIMMs having the same interface speed. The SHB will support DIMMs with different speeds, but the memory channel interface will operate speed of the slowest DIMM.
- All memory modules must have gold contacts and have a 240-pin edge connector
- The SHB supports the following memory module memory latency timings:
 - o 7-7-7 and 8-8-8 for 1066MHz DDR3 DIMMs
 - 9-9-9 for 1333MHz DDR3 DIMMs
- Populate the memory sockets starting with memory channel A and begin by using the DIMM socket closest to the CPU first. Refer to the TR-7053 board layout drawing and populate the memory sockets using the population order illustrated in the chart below:

Population order*	CPU1
1	BK0A
2	BK1A
3	BK0B
4	BK1B

*Using a balanced memory population approach ensures maximum memory interface performance. A "balance approach" means using an equal number of DIMMs on the TR-7053 SHB whenever possible.

The memory DIMMs on the SHB connect directly to the CPU and at least one memory module must be installed on the board.

SATA RAID OPERATION (WINDOWS O/S SETUP)

The Intel® C206 Platform Controller Hub (PCH) used on the SHB features Intel® Rapid Storage Technology (Intel® RST) and requires a driver called: Intel® RST F6. Intel® RST allows the PCH's SATA controller to be configured as a RAID controller supporting RAID 0, 1, 5 and 10 implementations. To configure the SATA ports as RAID drives while taking advantage of the PCH's drive array management features you must first install the Intel® RST driver software if you are using a Windows XP or the Windows 2003 Server family of operating systems. Later operating systems such as Windows 7 or Windows Server 2008 R2 do not require Intel® RST F6 driver installation.

The Microsoft Windows .NET FrameWork 3.0 software framework includes libraries and other useful tools that allow the RST Rapid Storage Manager to install and function properly in reporting drive failure alerts correctly. Windows .NET Framework 3.0 or later may be required to support the latest revisions of the RST Rapid Storage Manager. Windows .NET Framework is already included with Windows 7 or Windows 2008 O/S installations but it does need to be enabled.

If you would like your system to immediately inform you of a failed drive in the RAID array then the "Hot Plug" setting on the Advanced/SATA TR-7053 BIOS screen needs to be ENABLED for each drive in the array. If this BIOS setting is DISABLED a drive failure notification alert may take several minutes or even longer if there is no hard drive activity on the RAID array.

MOUSE/KEYBOARD "Y" CABLE

Many of the legacy I/O connections that previously required an optional IOB33 board have been incorporated into the TR-7053 design. Unless you need the additional PCIe expansion link down to your backplane or a parallel printer or floppy port, you should not need an IOB33 in your TR-7053-based system. However, if you have an IOB33 I/O board in your system and you are using a "Y" cable attached to the bracket mounted mouse/keyboard mini Din connector, be sure to use Transduction "Y" cable. Using a different cable may result in improper SHB operation.

POWER CONNECTION

The PICMG® 1.3 specification supports soft power control signals via the Advanced Configuration and Power Interface (ACPI). The TR-7053 supports these signals, controlled by the ACPI and are used to implement various sleep modes. When control signals are implemented, the type of ATX or EPS power supply used and the operating system software will dictate how system power should connect to the SHB. It is critical that the correct method be used. Refer to - *Power Connection* section in the TSB manual to determine the method that will work with your specific system design. The *Advanced Setup* chapter in the manual contains the ACPI BIOS settings.

PCI EXPRESS 2.0 LINKS AND PICMG® 1.3 BACKPLANES

The PCI Express® links A0 through A3 on the TR-7053 connect to PCI Express 2.0 repeaters and the repeaters connect directly to the Sandy Bridge processor. PCIe 2.0 repeaters are used to maximize signal integrity regardless of where an end-point device is located on a PICMG 1.3 backplane. The PCIe links can operate as either PCI Express 2.0 or PCI Express 1.1 links based on the end-point devices on the backplane that are connected to the SHB. In addition to automatically configuring themselves for either PCIe 2.0 or PCIe 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple PCIe links from the processor (links A0, A2 and A3) can be combined into a single x16 PCIe electrical link or a combination of one x8 and two x4 links on a backplane. The CPU's PCIe links may train down to x1 links, but cannot bifurcate into multiple x1 links. The PCIe link (B0) is also a PCIe 2.0 interface and comes from the board's PCH. Link B0 has a x4 default configuration and can automatically bifurcate into four, x1 PCIe links. Refer to the *PCI Express*® *Reference* chapter and to *Chapter 4 - PCI Express Backplane Usage* of this manual for more information.

PICMG 1.3 BACKPLANE CLASSIFICATION

The TR-7053 is a combo-class PICMG 1.3 system host board meaning that it can operate as either a Server or Graphics-Class SHB. The TR-7053 also supports the PICMG 1.3 optional SHB-to-backplane USB (4) and Gigabit Ethernet (1) interfaces. Both 3rd party industry standard PICMG 1.3 backplanes as well as a wide variety of Transduction backplanes are compatible with the TR-7053.

DVI-D AND ANALOG VIDEO PORTS

The TR-7053 offers both a DVI-D and an analog video port. The digital DVI-D port is a vertical port mounted directly on the SHB. This port is useful in system designs that incorporate a flat panel LCD display directly into the system enclosure. The ports may run simultaneously; however, the specific dual monitor implementation is a function of the system's operating system and video driver parameters. If using a Windows O/S the Windows dotNetFrameWork 3.5 or higher driver needs to be installed for the Intel HD Graphics Control Panel to function. Right clicking on the Desktop and choosing Graphics Properties allows access to the Intel HD Graphics Control Panel. This control panel enables a simplified set-up of dual video monitor applications.

BIOS

The TR-7053 features the Aptio® 4.x BIOS from American Megatrends, Inc. (AMI) with a ROM-resident setup utility called the Aptio Text Setup Environment or TSE. Details of the Aptio TSE are provided in Chapter 6 - BIOS of the manual.

FOR MORE INFORMATION

For more information on any of these features, refer to the appropriate sections of the TR-7053 User Manual.

This page intentionally left blank

Chapter 1 Specifications

Introduction

The TR-7053 is a combo-class, PICMG® 1.3 system host board featuring the choice of an Intel® Xeon® E3-1200 Series, Intel® Core™ i7-2700, Intel® Core™ i5-2400 or an Intel® Core™ i3-2120 extended life, embedded processor. These CPUs feature the Sandy Bridge – Advanced Server micro-architecture. The processors have a DDR3 integrated memory controller that supports two, dual-channel DDR3-1333 memory interfaces. The TR-7053 supports four DDR3 DIMM sockets. With 4GB, DDR3 DIMMs the total system memory capacity for a TR-7053 is 16GB and will double to 32GB once 8GB DDR3 DIMMs become readily available.

PCI Express 2.0 links are built into the TR-7053's Sandy Bridge processor and the Intel® C206 Platform Controller Hub or PCH. All of the PCI Express interface links needed for a PICMG 1.3 compliant server or graphics-class backplane are provided by the PCIe links out of the processor and the Intel® C206 PCH. An additional x4 PCI Express 2.0 interface is available for use on selected PICMG 1.3 backplanes via an optional plug-in card called the IOB33 module. All TR-7053 links may also operate as PCI Express 1.1 electrical interfaces. The TR-7053 also supports the optional PCI 32-bit/33MHz serial interface on edge connector D.

Video and I/O features on the TSB boards include:

- Dual video ports (one DVI-D and one VGA analog) that are driven with the internal Graphics Processing Unit inside the PCH
- PCIe Mini-Connector supports industry standard PCI Express Mini Cards
- Three Gigabit Ethernet interfaces with two on the I/O plate and one available for use on a PICMG 1.3 compliant backplane or over a cable for Intel® AMT 7.0 support
- Six SATA/300 ports that can support independent drives or RAID drive arrays
- Eight USB 2.0 interfaces
- An RS232 high-speed serial port and a configurable RS232/422/485 serial interface port
- PS/2 Mouse and Keyboard Header
- Integrated TPM 1.2 for Trusted Computing applications

Features

- Intel® Xeon® E3-1200 Series Processors (Sandy Bridge Advanced Server [AS])
- Intel® CoreTM i7-2600, Intel® CoreTM i5-2400 & Intel® CoreTM i3-2120 Processors (Sandy Bridge Desktop [DT])
- Intel® C206 Platform Controller Hub (Cougar Point)
- Direct PCI Express® 2.0 links into the Sandy Bridge Processor
- A Combo-class SHB that is compatible with PCI Industrial Computer Manufacturers Group (PICMG) 1.3 Specification
- TR-7053 provides a total of 24 lanes of PCI Express for off-board system integration
- Direct DDR3-1333 Memory Interfaces into the Sandy Bridge Processor
- Four DDR3 DIMM sockets capable of supporting up to 32GB of system memory with 8GB DDR3 DIMMs and 16GB maximum capacity with readily available 4GB DDR3 DIMMs
- Dual Digital and Analog video interfaces utilizing Intel® HD Graphics P3000 or Intel® HD Graphics 2000 (Xeon E3-1275 or 1225 uses Intel® HD Graphics P3000 all other CPU options is Intel® HD Graphics 2000)
- WiFi, SSD on-board storage and other additional video and I/O on-board capabilities are supported with a PCIe mini-connector supporting industry standard PCI Express Mini Cards
- Two 10/100/1000Base-T Ethernet interfaces available on the SHB's I/O plate
- Six Serial on-board ATA/300 ports support four independent SATA storage devices
 - SATA/300 ports may be configured to support RAID 0, 1, 5 or 10 implementations
- Eight Universal Serial Bus (USB 2.0) interfaces
- Off-board I/O support provided for one 10/100/1000Base-T Ethernet interface and four USB 2.0 port connections on a PICMG 1.3 backplane
- PS/2 mouse and keyboard headers, high-speed RS232 and RS232/422/RS485 serial ports
- An additional x4 PCI Express 2.0 lanes are available when using an IOB33 expansion board on the TR-7053 connected to a PICMG 1.3 backplane with an PCIe Expansion Slot
- Full-length stiffner bars on the rear of the SHB enhances the rugged nature on the board by maximizing component protection and simplifying mechanical system integration
- Full PC compatibility
- Revision controlled Aptio 4.x BIOS for American Megatrends, Inc. (AMI) resides in the SHB's SPI flash device to simplify field upgrades and BIOS customization
 - See Chapter 6 BIOS for TR-7053 System Host Board for more information

TR-7053 Single-Processor SHB Block Diagram

TR-7053 Single-Processor SHB Layout Diagram – Revision –01 (Top)

TR-7053 Single-Processor SHB Layout Diagram (Bottom)

Processor

- Intel® Xeon® E3-1200 Series Processor Long-life Sandy Bridge Advanced Server processor or the long-life Sandy Bridge Desktop versions including the Intel® Core™ i7-2600, Intel® Core™ i5-2400 and Intel® Core™ i3-2120 processor
- Processor plugs into an LGA1155 socket

Supported Intel® Processor Technologies

There are a wide variety of Intel® technologies supported on the TR-7053 system host board:

- Intel® Advanced Management Technology 7.0 (Intel® AMT) Provides the ability to monitor, maintain, update, upgrade, and repair a system remotely using one of the SHB's available Ethernet interfaces. Intel AMT 7.0 is part of the processor's Intel Management Engine and the processor must support Intel vPro technology in order to take full advantage of Intel AMT 7.0.
- Intel® vPro Intel vPro is a combination of processor technologies, silicon hardware enhancements and management features that enable technologies like Intel AMT 7.0 to function.
- Intel® Hyper-Threading (Intel® HT) This processor technology allows simultaneous multithreading of CPU tasks to enable parallel system operations. An operating system that is hyper-threading aware can address each core as a logical processor in order to spread out execution tasks to improve application software effeciency and overall system speed.
- Intel Virtualization Technology (Intel® VT-x) Enabled in the SHB's BIOS, this technology enables multiple operating systems to run in specific Sandy Bridge processor cores thereby creating virtual machines (VMs) on a single SHB.
- Intel Virtualization Technology for Directed I/O (Intel® VT-d) This is a sub-set of Intel VTx and enables I/O device assignments to specific processor cores or VMs. Intel VT-d also supports DMA remapping, interrupt remapping and software DMA and interrupt status reporting. Intel VT-d is an optional extension to the Intel VT-x technology
- Intel Trusted Execution Technology (Intel® TXT) This processor feature works in conjunction with the SHB's on-board Trusted Platform Module or TPM to allow the system designer to create multiple and separated execution environments or partitions with multiple levels of protection and security. The TPM provides for a way to generate and store an encrypted access key for authenticated access to sensitive applications and data. This private key never leaves the TPM, is generally available only to authorized system administrators, and enables remote assurance of a system's security state.
- Intel Turbo Boost Technology 2.0 The higher performance Sandy Bridge processors may run above the processors stated clock speed via a new dynamic processor speed control technology called Intel Turbo Boost 2.0. The processor enters the boost mode when the operating system requests the highest possible performance state as defined by the Advanced Configuration and Power Interface or ACPI.
- Intel Advanced Vector Extensions (Intel® AVX) Several new Sandy Bridge microarchitecture instruction extensions that features a new CPU coding scheme that results in faster integer operations.

The following chart defines which Intel technology is supported on which particular embedded Sandy Bridge processor featured on the TR-7053 system host board.

Intel Technology	Intel Xeon E3-1275	Intel Xeon E3-1225	Intel Core i7-2600	Intel Core i5-2400	Intel Core i3-2120
Intel AMT 7.0	Yes	Yes	Yes	Yes	No
Intel vPro	Yes	Yes	Yes	Yes	No
Intel HT	Yes	No	Yes	No	Yes
Intel VT-x	Yes	Yes	Yes	Yes	Yes
Intel VT-d	Yes	Yes	Yes	Yes	No
Intel TXT	Yes	Yes	Yes	Yes	Yes
Intel Turbo Boost 2.0	Yes	Yes	Yes	Yes	No
Intel AVX	Yes	Yes	Yes	Yes	No
See the Intel ARK website for additional processor specification information.					

Serial Interconnect Interface

PCI Express® 2.0 and 1.1 compatible

Data Path

DDR3-1333 Memory - 64-bit (per channel)

Serial Interconnect Speeds

PCI Express 2.0 – 5.0GHz per lane PCI Express 1.1 - 2.5GHz per lane

Platform Controller Hub (PCH)

• Intel® C206 Platform Controller Hub (Cougar Point)

Intel® Direct Media Interface (DMI)

The Sandy Bridge processors support the latest interface version called DMI12. DMI12 uses a x4 PCI Express link to connect the processor to the Intel® C206 PCH

Intel® Flexible Display Interface (FDI) Between CPU and PCH

The FDI is a dedicated, two channel interconnect between the processor's display engine and the analog and digital video monitor interfaces connected to the Intel® C206 PCH. Each of the two FDI channels feature differential signaling supporting 2.7Gb/s video data transfers for both single and dual monitor applications.

Memory Interface

The TR-7053 features two memory channels of unbuffered DDR3 with two DIMMs per channel. These DDR3-1333 memory interface channels support up to four, unbuffered, ECC PC3-10600 standard memory DIMMs. Non-ECC DDR3 DIMMs are also supported, but the two memory types cannot be used together on the SHB. Maximum peak memory interface bandwidth is 21GB/s when using PC3-10600 DIMMs.

DMA Channels

The SHB is fully PC compatible with seven DMA channels, each supporting type F transfers.

Interrupts

The SHB is fully PC compatible with interrupt steering for PCI plug and play compatibility.

Bios (Flash)

The TR-7053 board uses an Aptio® 4.x BIOS from American Megatrends Inc. (AMI). The BIOS features built-in advanced CMOS setup for system parameters, peripheral management for configuring on-board peripherals and other system parameters. The BIOS resides in a 32Mb Atmel® AT25DF321SU SPI Serial EEPROM (SPI Flash). The BIOS may be upgraded from a USB thumb drive storage device by pressing **<Ctrl>** + **<Home>** immediately after reset or power-up with the USB device installed in drive A:. Custom BIOSs are available.

Cache Memory

The processors include either a 3MB, 6MB or 8MB last-level cache (LLC) memory capacity that is equally shared between all of the processor cores on the die.

DDR3-1333 Memory

The SHB supports two DDR3-1333 memory interface channel that can support two DIMMs each. The four active DIMM sockets on the TR-7053 models can support up to 8GB DIMMs for a total possible DDR3 system memory capacity of 32GB. However, currently available DDR3 DIMM memory capacities of 1GB, 2GB and 4GB are more common in today's market; thereby, making the maximum practical limit of system memory supported 16GB. The peak memory interface bandwidth per channel is 21GB/s when using PC3-10600 (i.e. DDR3-1333) DIMMs.

The System BIOS automatically detects memory type, size and speed. Transduction recommends unbuffered ECC PC3-8500 or PC3-10600 DDR3 memory modules for use on the TR-7053. These unbuffered ECC registered (64-bit) DDR3 DIMMs must be PC3-10600 or PC3-8500 compliant. Unbuffered non-ECC DDR3 DIMMs are also supported on the TR-7053 SHB, but you cannot mix the two different memory types on the same board.

NOTES:

- To maximize memory interface speed, populate each memory channel with DDR3 DIMMs having the same interface speed. The SHB will support DIMMs with different speeds, but the memory channel interface will operate speed of the slowest DIMM.
- All memory modules must have gold contacts.
- All memory modules must have a 240-pin edge connector
- The SHB supports the following memory module memory latency timings:
 - o 7-7-7 and 8-8-8 for 1066MHz DDR3 DIMMs
 - o 9-9-9 for 1333MHz DDR3 DIMMs
- Populate the memory sockets starting with memory channel A and begin by using the DIMM socket closest to the CPU first. Refer to the TR-7053 board layout drawing and populate the memory sockets using the population order illustrated in the chart below:

Population order*	CPU1
1	BK0A
2	BK1A
3	BK0B
4	BK1B

*Using a balanced memory population approach ensures maximum memory interface performance. A "balance approach" means using an equal number of DIMMs on the TR-7053 SHB whenever possible.

The memory DIMMs on the SHB connect directly to the CPU and at least one memory module must be installed on the board. The TR-7053 SHB versions feature one processor; however, memory slots BK10, BK11 and BK12 are installed on the SHB but are not active in this single-processor board version.

Universal Serial Bus (USB)

The SHB supports eight high-speed USB 2.0 ports. Connectors for two of the USB ports (0 and 1) are on the I/O bracket and USB ports 2, 3, 4 and 5 are available via headers on the SHB. USB ports 6, 7, 8 and 9 are routed directly to edge connector C of the SHB for use on a PICMG 1.3 backplane.

Analog Video Interface

The Intel® Xeon® E3-1275 and -1225 processors feature the Intel® HD Graphics P3000 core while the remaining processor options supported on the SHB feature the Intel® HD Graphics 2000 graphics core. A VGA monitor port connects to the SHB's Intel® C206 PCH and video data is routed to the processor via the first Intel® Flexible Display Interface.

Digital Video Interface

A DVI-D monitor port connects to the SHB's Intel® C206 PCH and is routed to the processor via the second Intel® Flexible Display Interface. Both display ports may be used simultaneously.

PCI Express Interfaces

PCI Express® links A0 through A3 on the TR-7053 connect to PCI Express 2.0 repeaters and the repeaters connect directly to the Sandy Bridge processor. PCIe 2.0 repeaters are used to maximize signal integrity regardless of where an end-point device is located on a PICMG 1.3 backplane. The PCIe links can operate as either PCI Express 2.0 or PCI Express 1.1 links based on the end-point devices on the backplane that are connected to the SHB. In addition to automatically configuring themselves for either PCIe 2.0 or PCIe 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the multiple PCIe links from the processor (links A0, A2 and A3) can be combined into a single x16 PCIe electrical link or a combination of one x8 and two x4 links on a backplane. The CPU's PCIe links may train down to x1 links, but cannot bifurcate into multiple x1 links. The PCIe link (B0) is also a PCIe 2.0 interface and comes from the board's PCH. Link B0 has a x4 default configuration and can automatically bifurcate into four, x1 PCIe links. Refer to the *PCI Express*® *Reference* chapter and to *Appendix C - PCI Express Backplane Usage* of this manual for more information.

Ethernet Interfaces

The TR-7053 supports three Ethernet interfaces. The first two interfaces are on-board 10/100/1000Base-T Ethernet interfaces located on the board's I/O bracket and implemented using an Intel® 82580DB Dual Gigabit Ethernet Controller. These I/O bracket interfaces support Gigabit, 10Base-T and 100Base-TX Fast Ethernet modes and are compliant with the IEEE 802.3 Specification.

The main components of the I/O bracket Ethernet interfaces are:

- Intel® 82580DB for 10/100/1000-Mb/s media access control (MAC) with SYM, a serial ROM port and a PCIe interface
- Serial ROM for storing the Ethernet address and the interface configuration and control data
- Integrated RJ-45/Magnetics module connectors on the SHB's I/O bracket for direct connection to the network. The connectors require category 5 (CAT5) unshielded twisted-pair (UTP) 2-pair cables for a 100-Mb/s network connection or category3 (CAT3) or higher UTP 2-pair cables for a 10-Mb/s network connection. Category 5e (CAT5e) or higher UTP 2-pair cables are recommended for a 1000-Mb/s (Gigabit) network connection.
- Link status and activity LEDs on the I/O bracket for status indication (See *Ethernet LEDs and Connectors* later in this chapter.)

The third LAN is supported by the Intel® C206 and the Intel® 82579 Gigabit Ethernet PHY. This 10/100/1000Base-T Ethernet interface is routed to the PICMG 1.3 backplane via SHB edge connector C. The SHB includes an Ethernet connector (P18) that can be utilized to route this interface over an Ethernet cable rather than to the PICMG 1.3 backplane. This interface may be useful in Intel® AMT 7.0 system implementations.

Software drivers are supplied for most popular operating systems.

Serial ATA (SATA) Ports

The six Serial ATA (SATA) ports on the SHB are driven with a built-in SATA controller from the Intel® C206 Platform Controller Hub (PCH). All of the board's SATA interfaces comply with the SATA 1.0 and SATA 2.0 specifications that define support for data transfer rates of 150MB/s and 300 MB/s respectively. SATA port 0 (header connector P27) and SATA port 1 (P28) have the added capability of supporting data transfer rates up to 600MB/s from SATA 3.0 devices.

The SHB's SATA controller may support up to six independent SATA storage devices such as hard disks and CD-RW devices. The SATA controller has two BIOS selectable modes of operation with a legacy (i.e. IDE) mode using I/O space, and an AHCI mode using memory space. Software that uses legacy mode will not have AHCI capabilities.

The board's PCH features support for Intel® Rapid Storage Technology (Intel® RST). This feature allows a third BIOS-selectable SATA controller configuration that enables a six drive RAID configuration capable of supporting RAID 0, 1, 5 and 10 storage array implementations.

Watchdog Timer (WDT)

The TR-7053 provides a programmable watchdog timer with programmable timeout periods of 100 msec, 1 second, 10 seconds or 1 minute via board component U11. When enabled the WDT (i.e. U11) will generate a system reset. WDT control is supplied via the General Purpose IO pins from the Intel® C206 Platform Controller Hub (PCH). The PCH's GPIO_LVL2 register controls the state of each GPIO signal. This 32-bit register is located within GPIO IO spaces. The GPIO_BASE IO address is determined by the values programmed into the PCH's LPC Bridge PCI configuration at offset 48-4B(h).

GPIO Bit Definitions:

Watchdog Timer Enable (WDT EN#)

Watchdog timer enable\disable functionality is controlled by GPIO32. Clearing bit 0 of the GP_LVL register enables the WDT. The GP_LVL2 register is located at IO address GPIO_BASE + offset 38(h). The power-on default for this bit is a "1" which disables WDT functionality. Setting this bit to a "0" enables the WDT at the pre-selected interval.

Watchdog Select 0 (WDT S0)

The state of this bit in conjunction with Watchdog Select 0 will select the WDT time out period. This function is controlled by GPIO33 and the state of this bit is determined by bit 1 of the GP_LVL2 register at IO address GPIO_BASE + offset 38(h). After POST, the inverted state of this bit is reflected on Port80, LED0. If this bit is set to a "1" the LED is off, if set to a "0" the LED is on. The state of the GPIO pin is inverted at the Select 0 input of U11. See the Watchdog Timeout Period Selection table below for WDT interval selection information.

Watchdog Select 1 (WDT_S1)

The state of this bit in conjunction with Watchdog Select 1 will select the WDT time out period. This function is controlled by GPIO34 and the state of this bit is determined by bit three of the GP_LVL2 register at IO address GPIO_BASE + offset 38(h). After POST, the inverted state of this bit is reflected on Port80, LED1. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on. The state of the GPIO pin is inverted at the Select 0 input of U11. See the Watchdog Timeout Period Selection table below for WDT interval selection information.

Watchdog_Input (WDT_IN)

When the WDT is enabled this bit must be toggled $(0 \rightarrow 1 \text{ or } 1 \rightarrow 0)$ within the selected watchdog timeout period, failure to do so will result in a system reset. This function is supported by the GPIO71 bit and its state is controlled by bit 23 of the GP_LVL3 register which is at IO address GPIO_BASE + offset 48(h). The inverted state of this bit is reflected on Port80, LED7. If this bit is set to a "1" the LED in off, if set to a "0" the LED is on.

Watchdog Timeout Period Selections:

WDT_EN#	WD_S1	WD_S0	Watchdog Timeout
(GPIO32)	(GPIO34)	(GPIO33)	Period
1	Х	Х	Disabled
0	1	1	100msec
0	1	0	1 sec
0	0	1	10 sec
0	0	0	1 min

The Watchdog Timer may require initialization prior to usage. GPIO 32, 33, 34 and 71 must be configured as outputs. While these GPIOs do default to outputs at power-on, care should be taken to insure they have not been altered prior to WDT usage. These GPIO are configured to outputs by clearing bits 0, 1 and 2 of the GP_IO_SEL2 register at GPIO_BASE + offset 34(h) to a "0", as well as clearing bit 7 of the GP_IO_SEL3 register at GPIO_BASE + offset 44(h) to a "0".

After initialization is completed (if required) the Watchdog timer period is selected by via the WDT_S1 and WDT_S0 bits. Once the timeout period has been programmed the WDT is "enabled" by clearing the WDT_EN# bit. To avoid the WDT from generating a system reset the WDT_IN bit must be toggled within the timeout period.

Programming Example: Enable WDT with 10-second timeout period

Note: When writing to any of the WDT controlling GPIO bit the remaining bits of the selected GP_LVL2 and GP_LVL3 registers should remain unchanged.

Write bit 0 of GP_LVL2 to 1 Write bits 2,1 of GP_LVL2 to 0,1 Write bit 0 of GP_LVL2 to 0 pre condition GPIO32 for WDT disable set Watchdog timeout period to 10 sec enable Watchdog timer

At this point, the bit 7 of GP_LVL3 (GPIO71) must be toggled within a 10 sec period or the WDT will expire resulting in a system reset.

SATA RAID Operation (Windows O/S Setup)

The Intel® C206 Platform Controller Hub (PCH) used on the SHB features Intel® Rapid Storage Technology (Intel® RST) and requires a driver called: Intel® RST F6. Intel® RST allows the PCH's SATA controller to be configured as a RAID controller supporting RAID 0, 1, 5 and 10 implementations. To configure the SATA ports as RAID drives; while taking advantage of the PCH's drive array management features, you must first install the Intel® RST driver software if you are using a Windows XP 64 or the Windows 2003 Server family of operating systems. Later operating systems such as Windows 7 or Windows Server 2008 R2 do not require Intel® RST F6 driver installation.

The Microsoft Windows .NET FrameWork 3.0 software framework includes libraries and other useful tools that allow the RST Rapid Storage Manager to install and function properly in reporting drive failure alerts correctly. Windows .NET Framework 3.0 or later may be required to support the latest revisions of the RST Rapid Storage Manager. Windows .NET Framework is already included with Windows 7 or Windows 2008 O/S installations but it does need to be enabled.

If you would like your system to immediately inform you of a failed drive in the RAID array then the "Hot Plug" setting on the Advanced/SATA TR-7053 BIOS screen needs to be ENABLED for each drive in the array. If this BIOS setting is DISABLED a drive failure notification alert may take several minutes or even longer if there is no hard drive activity on the RAID array.

Processor Type	SHB Type	Processor	+5V	+12V	+3.3V
		Speed			
CPU Idle State:					
Intel Xeon E3-1275	TR-7053	3.4GHz	0.68A	1.54A	2.79A
Intel Xeon E3-1225	TR-7053	3.1GHz	0.67A	1.54A	2.77A
Intel Xeon E3-1260L	TR-7053	2.4GHz	0.67A	1.51A	2.78A
Intel Core i7-2600	TR-7053	3.4GHz	0.72A	1.56A	2.81A
Intel Core i5-2400	TR-7053	3.1GHz	0.73A	1.56A	2.81A
Intel Xeon i3-2120*	TR-7053	3.3GHz	0.71A	1.36A	2.68A
100% CPU Stress Sta	te:				
Intel Xeon E3-1275	TR-7053	3.4GHz	0.78A	5.68A	2.92A
Intel Xeon E3-1225	TR-7053	3.1GHz	0.75A	5.24A	2.89A

Power Requirements

The following are nominal values with 16GB of system memory installed.

Intel Xeon E3-1260L	TR-7053	2.4GHz	0.75A	3.93A	2.89A
Intel Core i7-2600	TR-7053	3.4GHz	0.81A	5.85A	2.94A
Intel Core i5-2400	TR-7053	3.1GHz	0.81A	5.08A	2.91A
Intel Xeon i3-2120*	TR-7053	3.3GHz	0.79A	3.44A	2.77A

Tolerance for all voltages is +/- 5%

*Dual-core processor, all other processors are quad-core CPUs

CAUTION: Transduction recommends an EPS type of power supply for systems using high-performance processors. The power needs of backplane option cards, high-performance processors and other system components may result in drawing 20A of current from the +12V power supply line. If this occurs, hazardous energy (240VA) could exist inside the system chassis. Final system/equipment suppliers must provide protection to service personnel from these potentially hazardous energy levels.

Stand-by voltages may be used in the final system design to enable certain system recovery operations. In this case, the power supply may not completely remove power to the system host board when the power switch is turned off. Caution must be taken to ensure that incoming system power is completely disconnected before removing the system host board.

Power Fail Detection

A hardware reset is issued when any of the voltages being monitored drops below its specified nominal low voltage limit. The monitored voltages and their nominal low limits are listed below.

Monitored Voltage	Nominal Low Limit	Voltage Source
+5V	4.75 volts	System Power Supply
+3.3V	2.97 volts	System Power Supply
$Vcc_DDR(+1.5V)$	1.15 volts	On-Board Regulator
VCCIO_CPU(1.05V)	0.70 volt	On-Board Regulator
+1.05V(Chipset)	0.924 volt	On-Board Regulator
+1.05V(Chipset-ME)	0.924 volt	On-Board Regulator

Battery

A built-in lithium battery is provided for ten years of data retention for CMOS memory.

CAUTION: There is a danger of explosion if the battery is incorrectly replaced. Replace it only with the same or equivalent type recommended by the battery manufacturer. Dispose of used batteries according to the battery manufacturer's instructions.

Temperature/Environment 'Operating Temperature: 0° C. to 50° C.

Air Flow Requirement<350LFM continuous airflow

Storage Temperature: -20° C. to 70° C.

Humidity: 5% to 90% non-condensing

Mechanical

The standard cooling solution used on the TR-7053 enables placement of option cards approximately 2.15" (54.61mm) away from the top component side of the SHB. Contact Transduction for a system engineering consultation if your application needs a lower profile cooling solution. The SHB's overall dimensions are 13.330" (33.858cm) L x 4.976" (12.639cm) H. The relative PICMG 1.3 SHB height off the backplane is the same as a PICMG 1.0 SBC due to the shorter PCI Express backplane connectors.

Board Stiffener Bars

The two stiffener bars located on the back of the SHB maximize system integrity by ensuring proper SHB alignment within the card guides of a computer chassis. The stiffeners provide reliable SHB operation by protecting sensitive board components from mechanical damage and assist in the safe insertion and removal of the SHB from the system.

Industry Certifications

This SHB is designed to meet a variety of internationally recognized industry standards including UL60950, CAN/CSA C22.2 No. 60950-00, EN55022:1998 Class B, EN61000-4-2:1995, EN61000-4-3:1997, EN61000-4-4:1995, EN61000-4-5:1995, EN61000-4-6:1996 and EN61000-4-11:1994.

Configuration Jumpers

The setup of the configuration jumpers on the SHB is described below. * indicates the default value of each jumper.

NOTE: For the three-position JU12 jumper, "RIGHT" is toward the I/O bracket side of the board; "LEFT" is toward the header connector P14.

Jumper Description

JU1

SPI Update (two position jumper) Install for one power-up cycle to enable the board to unprotect the SHB's SPI storage device.

Remove for normal operation. *

CAUTION: Installing this jumper is only done for special board operations such as changing the PCI Express link bifurcation operation. Contact Transduction tech support *before* installing this jumper to prevent any unintended system operation.

JU2 - rev. -01 Serial Port 1 Interface Configuration, Board Revisions -01 and -02

& -02 JU2 uses three jumpers to allow serial port one to be configured as either a RS232 or a RS422/RS485 electrical interface. The jumper table below illustrates the possible interface configurations for serial port one.

JU2

- RS232 operation* Jumper 1 to 2 <u>and</u> 3 to 4
- RS485 Full Duplex, No Termination Jumper 1 to 2
- RS485 Half Duplex, No Termination No jumpers installed
 - RS485 Full Duplex, With Termination Jumper 1 to 2 and 5 to 6
 RS485 Half Duplex, With Termination Jumper 5 to 6

JU2 – rev. -03 Serial Port 1 Interface Configuration, Board Revision –03 or later

JU2 uses five jumpers to allow serial port one to be configured as either a RS232 or a RS422/RS485 electrical interface. The jumper table below illustrates the possible interface configurations for serial port one.

1- Shut between pins 9 and 10 can optionally be removed to unconditionally enable the Tx driver

2- Shut between pins 9 and 10 can optionally be installed to unconditionally enable the Tx driver

JU3 - rev.Clear Management Engine (ME) Operational Parameters (two position jumper),-02 boardsBoard Rev -02 or later

The board's management engine has its own CMOS Non-Volatile Memory (NVM) that stores operational parameters for Intel AMT 7.0 implementations.

Install for one power-up cycle to clear management engine CMOS settings. Remove for normal operation. *

or later

Configuration Jumpers (continued)

JU8	Password Clear (two position jumper) Install for one power-up cycle to reset the password to the default (null password). Remove for normal operation. *
JU12	CMOS Clear (three position jumper) Install on the LEFT to clear. Install on the RIGHT to operate. *
	NOTE: To clear the CMOS, power down the system and install the JU12 jumper on the LEFT. Wait for at least two seconds, move the jumper back to the RIGHT and turn the power on. Clearing CMOS on the TR-7053 will not result in a checksum error on the following boot. If you want to change a BIOS setting, you must press DEL or the F2 key during POST to enter BIOS setup after clearing CMOS.

P4A/P4B Ethernet LEDs and Connectors

The I/O bracket houses the two RJ-45 network connectors for Ethernet LAN1 and LAN2. Each LAN interface connector has two LEDs that indicate activity status and Ethernet connection speed. Listed below are the possible LED conditions and status indications for each LAN connector:

LED/	<u>Connector</u>	Description		
Activity LED		Green LED that indicates network activity. This is the upper LED on the LAN connector (i.e., toward the upper memory sockets).		
	Off	Indicates there is no current network transmit or receive activity.		
	On (flashing)	Indicates network transmit or receive activity.		
Speed	LED	This multi-color LED identifies the connection speed of the SHB's P4A (LAN2) and P4B (LAN1) Ethernet interfaces. These are the lower LEDs on the dual LAN connector (i.e., toward the edge connectors).		
	Green	Indicates a valid link at 1000-Mb/s or 1Gb/s.		
	Orange	Indicates a valid link at 100-Mb/s.		
	Off	Indicates a valid link at 10-Mb/s.		
RJ-45 Conne	Network ector	The RJ-45 network connector requires a category 5 (CAT5) unshielded twisted-pair (UTP) 2-pair cable for a 100-Mb/s network connection or a category 3 (CAT3) or higher UTP 2-pair cable for a 10-Mb/s network connection. A category 5e (CAT5e) or higher UTP 2-pair cable is recommended for a 1000-Mb/s (Gigabit) network connection		

Status LEDs

Backplane LAN LED – LED8

LED8 is located just above the right side of memory DIMM connector BK1B. A flashing LED8 indicates that network transmit and receive activity is occurring on the Ethernet LAN routed to the board's edge connector C / cable connector P18. This LAN provides a network interface for use on a compatible PICMG 1.3 backplane or over an Ethernet cable connector to P18.

Thermal Trip LED – LED9

The thermal trip LED indicates when a processor reaches a shut down state. The LED is located just above the BK02 DIMM socket. LED9 indicates the processor shutdown status and thermal conditions as illustrated below:

LED Status	Description
Off	Indicates the processor or processors are operating within acceptable thermal levels
On (flashing)	Indicates the CPU is throttling down to a lower operating speed due to rising CPU temperature
On (solid)	Indicates the CPU has reached the thermal shutdown threshold limit. The SHB may or may not be operating, but a thermal shutdown may soon occur.

NOTE: When a thermal shutdown occurs, the LED will stay on in systems using non- ATX/EPS power supplies. The CPU will cease functioning, but power will still be applied to the SHB. In systems with ATX/EPS power supplies, the LED will turn off when a thermal shutdown occurs because system power is removed via the ACPI soft control power signal S5. In this case, all SHB LEDs will turn off; however, stand-by power will still be present.

PCIe Mini Card WLAN LED – LED10

When LED10, located just to the right of LED9, is flashing this indicates that network transmit and receive activity is occurring on an Ethernet LAN that is located on an optional PCIe Mini Card connected to the TR-7053's Mini PCIe Expansion connector P10. P10 is located on the bottom side of the SHB.

VRM LED – LED11

LED11 is a red LED located just above the left side of memory DIMM connector BK1B. If LED11 were to turn on and remain on, this would indicate that the voltage levels of the SHB's VRM circuits are not within the acceptable operating range. In all likelihood the SHB will fail to function if LED11 is on and the source of the voltage error could reside in the system power supply, the power supply wiring or on the board itself. Contact Transduction Tech Support for trouble shooting assistance.

Post Code LEDs 0 - 7

As the POST, (Power On Self Test) routines are performed during boot-up; test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's SATA connectors and slightly toward the right. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7). Refer to the board layout diagram for the exact location of the POST code LEDs.

These POST codes may be helpful as a diagnostic tool. After a normal POST sequence the LEDs are off (00h) indicating that the SHB's BIOS has passed control over to the operating system loader typically at interrupt INT19h. Specific test codes and their meaning along with the following chart are listed in Appendix A and can be used to interpret the LEDs into hexadecimal format during POST.

Upper Nibble (UN)				
Hex. Value	LED7	LED6	LED5	LED4
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
Α	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	On	On	On	Off
F	On	On	On	On

Lower Nibble (LN)				
Hex. Value	LED3	LED2	LED1	LED0
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
А	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	Ön	Ön	On	Off
F	Ön	On	On	On

TR-7053 POST Code LEDs

System BIOS Setup Utility

The TR-7053 features the Aptio® 4.x BIOS from American Megatrends, Inc. (AMI) with a ROM-resident setup utility called the Aptio Text Setup Environment or TSE. The TSE setup utility allows you to select to the following categories of options:

- Main Menu
- Advanced Setup
- Boot Setup
- Security Setup
- Chipset Setup
- Exit

Each of these options allows you to review and/or change various setup features of your system. Details of the Aptio TSE are provided in Chapter 6 - BIOS.

Connectors

NOT	E: Pin	1 on the	connectors is inc	licated by the s	square pac	d on the	e PCB.		
P1	-	Analo 15 pos	og Video Interfa sition socket com	ce Connector nector, Amp/T	YCO 1-1	734530	-3		
		<u>Pin</u> 1	<u>Signal</u> Red	Pin 6	<u>Signal</u> Gnd		<u>P</u> 1	' <u>in</u> 1	<u>Signal</u> NC
		2	Green	7	Gnd		1	2	EEDI
		3	Blue	8	Gnd		1	3	HSYNC
		4	NC	9	+5		1	4	VSYNC
		5 Note: C	Gnd Connector suppor	10 ts standard DE	Gnd 15 analog	g video	1 cables	5	EECS
P2	-	Reset 2 pin s	Connector single row heade	r, Amp #6404	56-2				
		<u>Pin</u> 1	<u>Signal</u> Gnd			<u>Pin</u> 2	<u>Signal</u> Reset In	l	
Р3	-	CPU 3 pin s <u>Pin</u> 1 2 3 Note: 1	Fan Power Com single row heade Signal Gnd +12V FanTach P2 is the fan conr	nector r, Molex #22-2 nector of CPU2	23-2031 2 and P19	is for C	CPU1		
P4A, P4B	-	10/10 Dual I Each i	0/1000Base-T Et RJ-45 connector, individual RJ-45	thernet Conne Pulse #JG0-00 connector is d	e ctors - L)24NL efined as	AN1/L	AN2		
		Pin 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A Notes: 1 - LA	Signal L2_MDI0n L2_MDI0p L2_MDI1n L2_MDI1p L2_MDI2n L2_MDI2p L2_MDI3n L2_MDI3n L2_MDI3p VCC_1.8V GND_A	tandard CAT5	Ethernet	Pin 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B cables	<u>Signal</u> L1_MD L1_MD L1_MD L1_MD L1_MD L1_MD L1_MD L1_MD VCC_1. GND_b	I0n I0p I1n I1p I2n I2p I3n I3p 8V	

2 – P4A is LAN2 and P4B is LAN1

P5 - Speaker Port Connector 4 pin single row header, Amp #640456-4

- <u>Pin</u> <u>Signal</u>
- 1 Speaker Data
- 2 Key
- 3 Gnd
- 4 +5V

P7 - Serial Port 1 Connector – RS232 Signal Connections* 10 pin dual row header, Amp #5103308-1

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Carrier Detect	2	Data Set Ready-I
3	Receive Data-I	4	Request to Send-O
5	Transmit Data-O	6	Clear to Send
7	Data Terminal Ready-O	8	Ring Indicator-I
9	Gnd	10	NC

* See JU2 pin-outs listed in the Configuration Jumper section of this manual to enable serial port 1 signal connections.

P7 - Serial Port 1 Connector – RS422/485 Full Duplex Signal Connections* 10 pin dual row header, Amp #5103308-1

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	Not applicable	2	Not applicable
3	RX+	4	TX+
5	TX-	6	RX-
7	Not applicable	8	Not applicable
9	Gnd	10	NC

* See JU2 pin-outs listed in the Configuration Jumper section of this manual to enable serial port 1 signal connections.

P7 - Serial Port 1 Connector – RS422/485 Half Duplex Signal Connections* 10 pin dual row header, Amp #5103308-1

Pin	<u>Signal</u>	Pin	<u>Signal</u>
1	Not applicable	2	Not applicable
3	Not applicable	4	DATA+
5	DATA-	6	Not applicable
7	Not applicable	8	Not applicable
9	Gnd	10	NC
		0.1.1	

* See JU2 pin-outs listed in the Configuration Jumper section of this manual to enable serial port 1 signal connections.

P9 - Dual Universal Serial Bus (USB) Conn	ector
---	-------

10 pin dual row header, Amp #1761610-3

(+5V fused with self-resetting fuses)

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+5V-USB4	2	+5V-USB5
3	USB4-	4	USB5-
5	USB4+	6	USB5+
7	Gnd-USB4	8	Gnd-USB5
9	NC	10	NC

P10

_

PCI Express Mini Card Connector (SHB bottom side) Standard 52-pin PCIe mini-card edge connector

Pin	<u>Signal</u>	Pin	Signal
1	PCH WAKE#	2	VCC3 MINIPCIE
3	NC	4	GND
5	NC	6	VCC1 5 MINIPE
7	VCC MINIPCIE	8	NC
9	GND	10	NC
11	MINIPCIE_CLK100N	12	NC
13	MINIPCIE_CLK100P	14	NC
15	GND	16	NC
17	NC	18	GND
19	NC	20	NC
21	GND	22	EXP_RESET#
23	MINI_PE_RXN0	24	3.3V AUX
25	MINI_PE_RXP0	26	GND
27	GND	28	VCC1_5_MINIPE
29	GND	30	SMBCLK_RESUME
31	MINI_PE_TXN0	32	SMBDAT_RESUME
33	MINI_PE_TXP0	34	GND
35	GND	36	USBP6-
37	NC	38	USBP6+
39	NC	40	GND
41	NC	42	NC
43	NC	44	WLAN_LED10
45	CLINK_CLK	46	NC
47	CLINK_DAT	48	VCC1_5_MINIPE
49	CLINK_RST#	50	GND
51	NC –	52	VCC3 MINIPCIE

P11 - PS/2 Keyboard Header

5 pin single row header, Amp #640456-5

<u>Pin</u>	Signal
------------	--------

- 1 Kbd Clock
- 2 Kbd Data
- 3 NC
- 4 Kbd Gnd
- 5 Kbd Power (+5V fused) with self resetting fuse

P12 - Hard Drive LED Connector

4 pin single row header, Amp #640456-4

- Pin Signal
- 1 LED+
- 2 LED-
- 3 LED-
- 4 LED+

P13 - PS/2 Mouse Header

6 pin single row header, Amp #640456-6

- Pin Signal
- 1 Ms Data
- 2 NC
- 3 Gnd
- 4 Power (+5V fused) with self-resetting fuse
- 5 Ms Clock
- 6 NC

P14 - Serial Port 2 Connector – RS232 Signal Connections

10 pin dual row header, Amp #5103308-1

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	Signal
1	Carrier Detect	2	Data Set Ready-I
3	Receive Data-I	4	Request to Send-O
5	Transmit Data-O	6	Clear to Send
7	Data Terminal Ready-O	8	Ring Indicator-I
9	Gnd	10	NC

P15 - Digital Video Interface Connector (DVI-D)

24 position socket digital video connector, Molex #74320-5006

<u>Pin</u> 1	<u>Signal</u> DVI_TX2N	<u>Pin</u> 9	<u>Signal</u> DVI_TX1N	<u>Pin</u> 17	<u>Signal</u> DVI_TX0N
2	DVI_TX2P	10	DVI_TX1P	18	DVI_TX0P
3	Gnd	11	Gnd	19	Gnd
4	NC	12	NC	20	NC
5	NC	13	NC	21	NC
6	DVI_SCLK	14	5V	22	Gnd
7	DVI_SDAT	15	Gnd	23	DVI_TXCP
8 Note:	NC Connector supports s	16 tandard DV	DVI_HPD /I D digital video ca	24 blas	DVI_TXCN

Note: Connector supports standard DVI-D digital video cables

P17	-	Dual	Universal	Serial	Bus	(USB)	Connector

10 pin dual row header, Amp #1761610-3

(+5V fused with self-resetting fuses)

<u>Pin</u>	Signal	<u>Pin</u>	<u>Signal</u>
1	+5V-USB2	2	+5V-USB3
3	USB2-	4	USB3-
5	USB2+	6	USB3+
7	Gnd-USB2	8	Gnd-USB3
9	NC	10	NC

P17A - Universal Serial Bus (USB) Connector

USB vertical connector, Molex #67329-8001 (+5V fused with self-resetting fuse)

- <u>Pin</u> <u>Signal</u>
- 1 +5V-USB0
- 2 USB0-
- 3 USB0+
- 4 Gnd-USB0

P17B - Universal Serial Bus (USB) Connector

USB vertical connector, Molex #67329-8001 (+5V fused with self-resetting fuse)

- Pin Signal
- 1 +5V-USB1
- 2 USB1-
- 3 USB1+
- 4 Gnd-USB1

P18 - 10/100/1000Base-T Ethernet Connector – Alternate Backplane LAN Over Cable 8 pin single row connector, Molex #0554500859

Pin	Signal	The mating Molex connector to use when
1	A_MDI2N	making this alternative Ethernet cable has a
2	A_MDI2P	Molex part number of 0513360810.
3	A_MDI3N	
4	A_MDI3P	
5	A_MDI1N	
6	A_MDI1P	
7	A_MDI0N	
8	A MDI0P	

P21 - Power Good LED Connector

2 pin single row header, Amp #640456-2

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	LED-	2	LED+

P27, -	SATA	Ports		
P28,	7 pin vertical locking connector, Molex #67800-8005			
P31,	1			
P32,	Pin	Signal		
P35,	1	Gnd		
P36	2 TX	+		
	3	TX-		
	4	Gnd		
	5	RX-		
	6	RX+		
	7	Gnd		
Notes:				
	1 – P27	7 = SATA0 interface, $P28 = SATA1$ interface,		
	P3	1 = SATA2 interface, $P32 = SATA3$ interface,		
	P35	5 = SATA4 interface. P36 = SATA5 interface		
	2 - SA	TA connectors support standard SATA II interface cables		
	3 – P27	& P28 (SATA0 and SATA1 ports) support SATA 3.0. SATA 2.0 and SATA 1.0		
	devi	ces while all other SATA ports support SATA 2.0 and 1.0 devices		
	4 - SA	$\Gamma A 3.0 = 600 \text{MB/s}$ data transfers. SATA 2.0 = 300 MB/s data transfers and		
	SAT	$\Gamma A = 150 MB/s$ data transfers		

Connectors (Continued) P20 - I/O Expansion Mezzanine Card Connector

76 pin controlled impedance connector, Samtec #MIS-038-01-FD-K

<u>Pin</u>	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	+12	2	+5V_STANDBY
3	HDA_SDIN2	4	+5V_STANDBY
5	HDA_SDIN1	6	+5V_DUAL
7	HDA_SDIN0	8	+5V_DUAL
9	HDA_SYNC	10	HDA_BITCLK
11	HDA_SDOUT	12	HDA_ACRST
13	ICH_SMI#	14	ICH_RCIN#
15	ICH_SIOPME#	16	ICH_A20GATE
17	Gnd	18	Gnd
19	L_FRAME#	20	L_AD3
21	L_DRQ1#	22	L_AD2
23	L_DRQ0#	24	L_AD1
25	SERIRQ	26	L ^{AD0}
27	Gnd	28	Gnd
29	PCLK14SIO	30	PCLK33LPC
31	Gnd	32	Gnd
33	SMBDATA_RESUME	34	IPMB_DAT
35	SBMCLK RESUME	36	IPMB ^{CLK}
37	SALRT# RESUME	38	IPMB [_] ALRT#
39	Gnd	40	Gnd
41	EXP CLK100	42	EXP RESET#
43	EXP_CLK100#	44	ICH WAKE#
45	Gnd	46	Gnd
47	C PE TXP5	48	C PE RXP5
49	C PE TXN5	50	C PE RXN5
51	Gnd	52	Gnd
53	NC	54	NC
55	NC	56	NC
57	Gnd	58	Gnd
59	NC	60	NC
61	NC	62	NC
63	Gnd	64	Gnd
65	NC	66	NC
67	NC	68	NC
69	Gnd	70	Gnd
71	+3.3V	72	+5V
73	+3.3V	74	+5V
75	+3.3V	76	+5V

This page intentionally left blank
Chapter 2 PCI Express® Reference

Introduction

PCI Express® is a high-speed, high-bandwidth interface with multiple channels (lanes) bundled together with each lane using full-duplex, serial data transfers with high clock frequencies.

The PCI Express architecture is based on the conventional PCI addressing model, but improves upon it by providing a high-performance physical interface and enhanced capabilities. Whereas the PCI bus architecture provided parallel communication between a processor board and backplane, the PCI Express protocol provides high-speed serial data transfer, which allows for higher clock speeds. The same data rate is available in both directions simultaneously, effectively reducing bottlenecks between the system host board (SHB) and PCI Express option cards.

PCI Express option cards may require updated device drivers. Most operating systems that support legacy PCI cards will also support PCI Express cards without modification. Because of this design, PCI, PCI-X and PCI Express option cards can co-exist in the same system.

PCI Express connectors have lower pin counts than PCI bus connectors. The PCIe connectors are physically different, based on the number of lanes in the connector.

PCI Express Links

Several PCI Express channels (lanes) can be bundled for each expansion slot, leaving room for stages of expansion. A link is a collection of one or more PCIe lanes. A basic full-duplex link consists of two dedicated lanes for receiving data and two dedicated lanes for transmitting data. PCI Express supports scalable link widths in 1-, 4-, 8- and 16-lane configurations, generally referred to as x1, x4, x8 and x16 slots. A x1 slot indicates that the slot has one PCIe lane, which gives it a bandwidth of 250MB/s in each direction. Since devices do not compete for bandwidth, the effective bandwidth, counting bandwidth in both directions, is 500MB/s (full-duplex).

The number and configuration of an SHB's PCI Express links is determined by specific component PCI Express specifications. In PCI Express Gen 1 the bandwidths for the PCIe links are determined by the link width multiplied by 250MB/s and 500MB/s, as follows:

Slot		Full-Duplex
Size	Bandwidth	<u>Bandwidth</u>
x1	250MB/s	500MB/s
x4	1GB/s	2GB/s
x8	2GB/s	4GB/s
x16	4GB/s	8GB/s

In PCI Express Gen 2 the bandwidths for the PCIe links are doubled as compared to PCIe Gen 1.1 as shown below:

Slot <u>Size</u>	Bandwidth	Full-Duplex Bandwidth		
1	5001 (D)	100/		
XI	500MB/s	IGB/s		
x4	2GB/s	4GB/s		
x8	4GB/s	8GB/s		
x16	8GB/s	16GB/s		

Scalability is a core feature of PCI Express. Some chipsets allow a PCI Express link to be subdivided into additional links, e.g., a x8 link may be able to be divided into two x4 links. In addition, although a board with a higher number of lanes will not function in a slot with a lower number of lanes (e.g., a x16 board in a x1 slot) because the connectors are mechanically and electrically incompatible, the reverse configuration will function. A board with a lower number of lanes can be placed into a slot with a higher number of lanes (e.g., a x4 board into a x16 slot). The link auto-negotiates between the PCI Express devices to establish communication. The mechanical option card slots on a PICMG 1.3 backplane must have PCI Express configuration straps that alert the SHB to the PCI Express electrical configuration expected. The SHB can then reconfigure the PCIe links for optimum system performance.

For more information, refer to the PCI Industrial Manufacturers Group's SHB Express® System Host Board PCI Express Specification, PICMG® 1.3.

SHB Configuration

The TR-7053 is a combo class SHB designed to support either PCI Express server-class or graphics-class backplane configurations. Server applications require multiple, high-bandwidth PCIe links, and therefore the server-class SHB/backplane configuration is identified by multiple x8 and x4 links to the SHB edge connectors.

SHBs, which require high-end video or graphics cards generally, use a x16 PCI Express link. The graphicsclass SHB/backplane configuration is identified by one x16 PCIe link and one x4 or four x1 links to the edge connectors. Previous generation PCIe video or graphics cards communicated to the SHB at an effective x1, x4 or x8 PCI Express data rate over the card's x16 PCIe mechanical connector and did not actually make use of all of the signal lanes in a x16 connector. The latest video and graphics cards make full use of the available x16 bandwidth by communicating to the SHB at the x16 PCIe data rate.

NOTE: The TR-7053 eliminates the PICMG 1.3 requirement that server-class SHBs should always be used with server-class PICMG 1.3 backplanes and graphics-class SHBs should always be used with graphics-class PICMG 1.3 backplanes. This is because of the PCIe links integrated into the TSB processor, and the SHB architecture itself that can sense the backplane end-point devices and configure the SHB links for either server or graphics-class operations. For this reason, the Transduction TR-7053 is referred to as a combo-class SHB.

PCI Express Edge Connector Pin Assignments

Transduction's TR-7053 SHB uses edge connectors A, B, C and D. Optional I/O signals are defined in the PICMG 1.3 specification and if implemented must be located on edge connector C of the SHB. The SHB makes the Intelligent Platform Management Bus (IPMB) signals available to the user. The SHB supports four USB ports (USB 4, 5, 6 and 7) and one 10/100/1000Base-T Ethernet interface on PICMG 1.3 compatible backplanes via the SHB's edge connector C. Connector D offers a 32-bit/33MHz parallel interface for backplanes that provide the PICMG 1.3 optional D connector.

The following table shows pin assignments for the PCI Express edge connectors on the TR-7053 SHB.

Connector A		Connector B		Connector C			Connector D				
	Side B	Side A		Side B	Side A		Side B	Side A		Side B Side A	
1	SMCLK	SMBDAT	1	+5VSBY	+5VSBY	1	USBP0+	GND	1	INTB#	INTA#
2	GND	GND	2	GND	NC	2	USBP0-	GND	2	INTD#	INTC#
3	TDI TDO*	NC	3	A_PE_TXP8	GND	3	GND	USBP1+	3	GND	NC
4	TDI TDO*	NC	4	A_PE_TXN8	GND	4	GND	USBP1-	4	REQ3#	GNT3#
5	NC	ICH WAKE#	5	GND	A PE RXP8	5	USBP2+	GND	5	REQ2#	GNT2#
6	PWRBTN#	ICH	6	GND	A PE RXN8	6	USBP2-	GND	6	PCIRST#	GNT1#
		PCIPME#									
7	PWROK	PSON#	7	A_PE_TXP9	GND	7	GND	USBP3+	7	REQ1#	GNT0#
8	SHBRST#	EXP	8	A_PE_TXN9	GND	8	GND	USBP3-	8	REQ0#	SERR#
		RESET#									
9	CFG0	CFG1	9	GND	A_PE_RXP9	9	USBOC0	GND	9	NC	3.3V
10	CFG2	CFG3	10	GND	A_PE_RXN9	10	GND	USBOC1	10	GND	CLKFI
11	NC	GND	11	RSVD	GND	11	USBOC2	GND	11	CLKFO	GND
	Machanical Co	nnoator		Maghapiag C	nnootor		Machanical	oppostor		Machanical C	appostor
	Mechanical Co	DINIECTOR		Mechanical Co	DIMECTOR		Mechanical C	onnector		Mechanical C	onnector
12	GND	RSVD	12	GND	RSVD	12	GND	USBOC3	12	CLKC	CLKD
13	B_PE_TXPO	GND	13	A_PE_TXP10	GND	13	NC	GND	13	GND	3.3V
14	B_PE_TXN0	GND	14	A_PE_TXN10	GND	14	NC	GND	14	CLKA	CLKB
15	GND	B_PE_RXP0	15	GND	A_PE_RXP10	15	GND	NC	15	3.3V	GND
16	GND	B_PE_RXN0	16	GND	A_PE_RXN10	16	GND	NC	16	AD31	PME#
17	B_PE_TXP1	GND	17	A_PE_TXP11	GND	17	NC	GND	17	AD29	3.3V
18	B_PE_TXN1	GND	18	A_PE_TXN11	GND	18	NC	GND	18	M6_6_EN	AD30
19	GND	B_PE_RXP1	19	GND	A_PE_RXP11	19	GND	NC	19	AD27	AD28
20	GND	B_PE_RXN1	20	GND	A_PE_RXN11	20	GND	NC	20	AD25	GND
21	B_PE_TXP2	GND	21	A_PE_TXP12	GND	21	A_MDI0P	GND	21	GND	AD26
22	B PE TXN2	GND	22	A PE TXN12	GND	22	A MDION	GND	22	CBE3#	AD24
23	GND	B_PE_RXP2	23	GND	A_PE_RXP12	23	GND	A_MDI1P	23	AD23	3.3V
24	GND	B PE RXN2	24	GND	A PE RXN12	24	GND	A MDI1N	24	GND	AD22
25	B PE TXP3	GND	25	A PE TXP13	GND	25	A MDI2P	GND	25	AD21	AD20
26	B PE TXN3	GND	26	A PE TXN13	GND	26	A MDI2N	GND	26	AD19	PCIXCAP
27	GND	B PE RXP3	27	GND	A PE RXP13	27	GND	A MDI3P	27	+5V	AD18
28	GND	B PF RXN3	28	GND	A PF RXN13	28	NC	A MDI3P	28	AD17	AD16
29	REECI KO	GND	29	A PF TXP14	GND	29	IPMB CLK	GND	29	CBF2#	GND
30	REFCLK0#	GND	30	A PF TXN14	GND	30	IPMB DAT	GND	30	GND	FRAMF#
31	GND	RFFCLK1#	31	GND	A PF RXP14	31	NC	NC	31	IRDY#	TRDY#
32	RSVD-G	REFCLK1	32	GND	A PF RXN14	32	NC	NC	32	DEVSEL#	+5V
52	1.010 0	NEI OEINI	52	GND	ii,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	52			52	DEVOLL/	

* Pins 3 and 4 of Side B of Connector A (TDI and TDO) are jumpered together.

Connector A		Connector B		Connector C			Connector D				
	Side B	Side A		Side B	Side A		Side B	Side A		Side B	Side A
33	REFCLK2#	GND	33	A_PE_TXP15	GND	33	NC	NC	33	PLOCK#	STOP#
34	REFCLK2	GND	34	A_PE_TXN15	GND	34	NC	GND	34	PERR#	GND
35	GND	REFCLK3#	35	GND	A_PE_RXP15	35	NC	GND	35	GND	CBE1#
36	RSVD-G	REFCLK3	36	GND	A_PE_RXN15	36	GND	NC	36	PAR	AD14
37	REFCLK4#	GND	37	NC	GND	37	GND	NC	37	NC	GND
38	REFCLK4	GND	38	NC	NC	38	NC	GND	38	GND	AD12
39	GND	REFCLK5#	39	GND	GND	39	NC	GND	39	AD15	AD10
		PU									
40	RSVD-G	REFCLK 5 PU	40	GND	GND	40	GND	NC	40	AD13	GND
41	REFCLK6# PU	GND	41	GND	GND	41	GND	NC	41	GND	AD9
42	REFCLK6 PU	GND	42	GND	GND	42	3.3V	3.3V	42	AD11	CBE0#
43	GND	REFCLK7# PU	43	GND	GND	43	3.3V	3.3V	43	AD8	GND
44	GND	REFCLK7 PU	44	+12V	+12V	44	3.3V	3.3V	44	GND	AD6
45	A_PE_TXP0	GND	45	+12V	+12V	45	3.3V	3.3V	45	AD7	AD5
46	A_PE_TXN0	GND	46	+12V	+12V	46	3.3V	3.3V	46	AD4	GND
47	GND	A_PE_RXP0	47	+12V	+12V	47	3.3V	3.3V	47	GND	AD2
48	GND	A_PE_RXN0	48	+12V	+12V	48	3.3V	3.3V	48	AD3	AD1
49	A_PE_TXP1	GND	49	+12V	+12V	49	3.3V	3.3V	49	AD0	GND
50	A_PE_TXN1	GND				50	3.3V	3.3V			
51	GND	A_PE_RXP1				51	GND	GND			
52	GND	A_PE_RXN1				52	GND	GND			
53	A PE TXP2	GND				53	GND	GND			
54	A PE TXN2	GND				54	GND	GND			
55	GND	A PE RXP2				55	GND	GND			
56	GND	A PE RXN2				56	GND	GND			
57	A PE TXP3	GND				57	GND	GND			
58	A PE TXN3	GND				58	GND	GND			
59	GND	A PF RXP3				59	+5V	+5V			
60	GND	A PF RXN3				60	+5V	+5V			
61	A DE TYPA					61	+5V	+5V			
62		GND				62	+5V	+5V			
62						62	CND	CND			
64		A_FL_KAF4				64					
45						45					
00 44	A_PE_IAPO					44					
00						00 47	GND				
07 40		A_PE_KAPO				07 40					
00		A_PE_KAND				00	GND	GND			
09	A_PE_IXPO	GND				09	GND	GND			
70	A_PE_TXINO	GND				70	GND	GND			
/1	GND	A_PE_RXP6				/1	GND	GND			
12	GND	A_PE_RXN6				12	GND	GND			
/3	A_PE_IXP/	GND				/3	+12V_VRM	+12V_VRM			
/4	A_PE_TXN/	GND				/4	+12V_VRM	+12V_VRM			
75	GND	A_PE_RXP7				75	+12V_VRM	+12V_VRM			
76	GND	A_PE_RXN7				76	+12V_VRM	+12V_VRM			
77	NC	GND				77	+12V_VRM	+12V_VRM			
78	3.3V	3.3V				78	+12V_VRM	+12V_VRM			
79	3.3V	3.3V				79	+12V_VRM	+12V_VRM			
80	3.3V	3.3V				80	+12V_VRM	+12V_VRM			
81	3.3V	3.3V				81	+12V_VRM	+12V_VRM			
82	NC	NC				82	+12V_VRM	+12V_VRM			
			l						J		

PCI Express Signals Overview The following table provides a description of the SHB slot signal groups on the PCI Express connectors.

Type	Signals	Description	Connector	Source
Global	GND, +5V, +3.3V, +12V	Power	0011100101	Backplane
5.0201	PSON#	Optional ATX support	А	SHB
	PWRGD, PWRBT#, 5Vaux	Optional ATX support	A and B	Backplane
	TDI	Optional JTAG support	A	Backplane
	TDO	Optional JTAG support	A	SHB
	SMCLK, SMDAT	Optional SMBus support	A	SHB & Backplane
	IPMB CL. IPMB DA	Optional IPMB support	C	SHB & Backplane
	CEG[0:3]	PCIe configuration straps	A	Backplane
	SHB RST#	Optional reset line	A	SHB
	RSVD	Reserved	A and B	0.15
	RSVD-G	Reserved around	A	Backplane
	WAKF#	Signal for link reactivation	A	Backplane
PCIe	a PETp[0:15]	Point-to-point from SHB slot through	A and B	SHB & Backplane
1 010	a PETn[0:15]	the x16 PCIe connector (A) to the		
	a_PERn[0:15]	target device(s)		
	a PERn $[0:15]$	target device(3)		
	b PETp[0:3]		А	SHB & Backplane
	h PETn[0:3]	Point-to-point from SHB slot through		
	h_PERn[0:3]	the x8 PCIe connector (B) to the target		
	b PERn[0:3]	device(s)		
		401.00(0)		
	REECLK[0:7]+ REECLK[0:7]-		А	SHB
				one
	PERST#	Clock synchronization of PCIe	А	SHB & Backplane
	. 2.1.0.1.#	expansion slots		
		oxpansion siets		
		PCIe fundamental reset		
PCI(-X)	AD[0:31], FRAME#, IRDY#, TRDY#,	Bussed on SHB slot and expansion	D	SHB & Backplane
	STOP#, LOCK#, DEVSEL#, PERR#,	slots		
	SERR#, C/BE[0:3], SDONE, SBO#,			
	PAR			
			D	SHB & Backplane
	GNT[0:3], REQ[0:3], CLKA, CLKB,	Point-to-point from SHB slot to each		
	CLKC, CLKD, CLKFO, CLKFI	expansion slot		
			D	Backplane
	INTA#, INTB#, INTC#, INTD#	Bussed (rotating) on SHB slot and		
		expansion slots	D	Backplane
	M66EN, PCIXCAP	Bussed on SHB slot and expansion		
		slots	D	Backplane
	PCI_PRST#			
		PCI(-X) present on backplane detect	А	Backplane
	PME#			
		Optional PCI wake-up event bussed on		
		SHB and backplane expansion slots		
Misc. I/O	USB[0:3]P, USB[0:3]N, USBOC[0:3]#	Optional point-to-point from SHB	С	SHB & Backplane
		Connector C to a destination USB		
		device		
SATA	ESATATX(4:5)P,	Optional point-to-point from SHB	С	SHB & Backplane
	ESATATX(4:5)N,	Connector C to a destination SATA		
	ESATARX(4:5)P,	device		
	ESATARX(4:5)N,	Note: These optional SATA		
		connections to the backplane are not		
		available with the TR-7053.		
Ethernet	a_MDI(0:1)p,	Optional point-to-point from SHB	С	SHB & Backplane
	a_MDI(0:1)n	Connector C to a destination Ethernet		· · · · · ·
	,	device		

Optional IOB33 PCI Express Link Expansion

An optional IOB33 module may be used with the TR-7053 SHB to provide additional PCIe links to a backplane equipped with a PCI Express expansion slot. The IOB33 routes an additional PCIe x4 link available from the TR-7053's processor down to a backplane for use in PCI Express link and/or bandwidth expansion. This additional link may operate at the PCIe 1.1 or PCIe 2.0 interface speed depending on the backplane and end-point configuration.

Chapter 3 TR-7053 System Power Connections

Introduction

The combination of new power supply technologies and the system capabilities defined in the SHB Express® (PICMG® 1.3) specification requires a different approach to connecting system power to a PICMG 1.3 backplane and/or SHB hardware.

To improve system MTTR (Mean Time To Repair), the PICMG 1.3 specification defines enough power connections to the SHB's edge connectors to eliminate the need to connect auxiliary power to the SHB. All power connections in a PICMG 1.3 system can be made to the PICMG 1.3 backplane. This is true for SHBs that use high-performance processors. The connectors on a backplane must have an adequate number of contacts that are sufficiently rated to safely deliver the necessary power to drive these high-performance SHBs. Transduction PICMG 1.3 backplanes define ATX/EPS and +12V connectors that are compatible with ATX/EPS power supply cable harnesses and provide multiple pins capable of delivering the current necessary to power high-performance processors.

The PICMG® 1.3 specification supports soft power control signals via the Advanced Configuration and Power Interface (ACPI). Transduction SHBs support these signals, which are controlled by the ACPI and are used to implement various sleep modes. Refer to the General ACPI Configuration section of the *Advanced Setup* chapter in this manual for information on ACPI BIOS settings.

When soft control signals are implemented, the type of ATX or EPS power supply used in the system and the operating system software will dictate how system power should be connected to the SHB. It is critical that the correct method be used.

Power Supply and SHB Interaction

The following diagram illustrates the interaction between the power supply and the processor. The signals shown are PWRGD (Power Good), PSON# (Power Supply On), 5VSB (5 Volt Standby) and PWRBT# (Power Button). The +/- 12V, +/-5V, +3.3V and Ground signals are not shown.

Power Supply and SHB Interaction

PWRGD, PSON# and 5VSB are usually connected directly from an ATX or EPS power supply to the backplane. The PWRBT# is a normally open momentary switch that can be wired directly to a power button on the chassis.

CAUTION: In some ATX/EPS systems, the power may appear to be off while the 5VSB signal is still present and supplying power to the SHB, option cards and other system components. The +5VAUX LED on a Transduction PICMG 1.3 backplane monitors the 5VSB power signal; "green" indicates that the 5VSB signal is present. Transduction backplane LEDs monitor all DC power signals, and all of the LEDs should be off before adding or removing components. Removing boards under power may result in system damage.

Electrical Connection Configurations

There are a number of different connector types, such as EPS, ATX or terminal blocks, which can be utilized in wiring power supply and control functions to a PICMG 1.3 backplane. However, there are only two basic electrical connection configurations: **ACPI Connection** and **Legacy Non-ACPI Connection**.

ACPI Connection

The diagram on the previous page shows how to connect an ACPI compliant power supply to an ACPI enabled PICMG 1.3 system. The following table shows the required connections that must be made for soft power control to work.

<u>Signal</u>	Description	<u>Source</u>
+12	DC voltage for those systems that require it	Power Supply
+5V	DC voltage for those systems that require it	Power Supply
+3.3V	DC voltage for those systems that require it	Power Supply
+5VSB	5 Volt Standby. This DC voltage is always on when an ATX or EPS type power supply has AC voltage connected. 5VSB is used to keep the necessary circuitry functioning for software power control and wake up.	Power Supply
PWRGD	Power Good. This signal indicates that the power supply's voltages are stable and within tolerance.	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply.	SHB/Backplane
PWRBT#	Power Button. A momentary normally open switch is connected to this signal. When pressed and released, this signals the SHB to turn on a power supply that is in an off state.	Power Button
	If the system is on, holding this button for four seconds will cause the SHB's chipset to shut down the power supply. The operating system is not involved and therefore this is not considered a clean shutdown. Data can be lost if this situation occurs.	

Legacy Non-ACPI Connection

For system integrators that either do not have or do not require an ACPI compliant power supply as described in the section above, an alternative electrical configuration is described in the table on the following page.

<u>Signal</u>	Description	<u>Source</u>
+12	DC voltage for those systems that require it	Power Supply
+5V	DC voltage for those systems that require it	Power Supply
+3.3V	DC voltage for those systems that require it	Power Supply
+5VSB	Not Required	Power Supply
PWRGD	Not Required	Power Supply
PSON#	Power Supply On. This signal is used to turn on an ATX or EPS type power supply. If an ATX or EPS power supply is used in this legacy configuration, a shunt must be installed on the backplane from PSON# to signal Ground. This forces the power supply DC outputs on whenever AC to the power supply is active.	Backplane
PWRBT#	Not Used	

In addition to these connections, there is usually a switch controlling AC power input to the power supply.

When using the legacy electrical configuration, the SHB BIOS **Power Supply Shutoff** setting should be set to **Manual shutdown**. Refer to the *General ACPI Configuration* section of the *Advanced Setup* chapter in this manual for details.

Chapter 4 PCI Express Backplane Usage

Introduction

PCI Express® is a scalable, full-duplex serial interface which consists of multiple communication lanes grouped into links. PCI Express scalability is achieved by grouping these links into multiple configurations. A x1 ("by 1") PCI Express link is made up of one full-duplex link that consists of two dedicated lanes for receiving data and two dedicated lanes for transmitting data. A x4 configuration is made up of four PCI Express links. The most commonly used PCIe link sizes are x1, x4, x8 and x16.

PCI Express devices with different PCI Express link configurations establish communication with each other using a process called auto-negotiation or link training. For example, a PCI Express device or option card that has a x16 PCI Express interface and is placed into a x16 mechanical/x8 electrical slot on a backplane establishes communication with a PICMG® 1.3 SHB using auto-negotiation. The option card's PCI Express interface will "train down" to establish communication with the SHB via the x8 PCI Express link between the SHB and the backplane option card slot.

SHB Edge Connectors

The PICMG 1.3 specification enables SHB vendors to provide multiple PCI Express configuration options for edge connectors A and B of a particular SHB. These edge connectors carry the PCI Express links and reference clocks down to the SHB slot on the PICMG 1.3 backplane. The potential PCI Express link configurations of an SHB fall into three main classifications: server-class, graphics-class and combo-class. The specific class and PCI Express link configuration of an SHB is determined by the chipset components or Platform Controller Hub (PCH) and the processor(s) used on the board.

In a server-class configuration, the main goal of the SHB is to route as many high-bandwidth PCI Express links as possible down to the backplane. Typically, these links are a combination of x4 and x8 PCI Express links.

A graphics-class configuration should provide a x16 PCI Express link down to the backplane in order to support high-end PCI Express graphics and video cards. Graphics-class SHB configurations also provide as many lower bandwidth (x1 or x4) links as possible.

A combo-class configuration is provided by SHBs like the TR-7053 or JXT6966. These system host board types have PCI Express hardware and software implementations that are capable of combining links to support either server or graphics-class PICMG 1.3 backplane configurations.

The A0, A2 and A3 PCI Express links on the TR-7053 connect to the processor via PCI Express 2.0 link repeaters. These repeaters ensure optimum PCI Express signal integrity between the SHB's processor and the end-point device on the backplane regardless of device's location on the backplane. The A0, A2 and A3 links can operate as either PCI Express 2.0 or PCI Express 1.1 links based on the end-point devices on the backplane that connect to the SHB. In addition to automatically configuring themselves for either PCIe 2.0 or PCIe 1.1 operations, the links also configure themselves for either graphics or server-class operations. In other words, the two x4 links and the one x8 link from the processor; links A0, A2 and A3 can be combined into a single x16 PCIe electrical link or two x8 links on a backplane. (Note: link A0 is a x8 link.) The CPU's x4 links can train down to x1 links, but cannot bifurcate into multiple x1 links. The PCIe link (B0) is also a PCIe 2.0 or PCIe 1.1 interface and this link comes from the board's Intel® C206 PCH. This x4 link can automatically bifurcate into four, x1 PCIe links.

In addition to the standard PICMG 1.3 edge connector PCIe interfaces, the TR-7053 boards also have an additional x4 link available for use on a backplane. This extra x4 link originates at the processor and is routed to the SHB's controlled impedance connector for use with the IOB33 plug-in option card. The IOB33 routes this x4 PCI Express link down to a physical x4 PCIe edge connector on the board. The IOB33 edge connector mates with a backplane's PCIe Expansion slot. This extra x4 link is useful in supporting an additional system card slot or a PCIe end-point device such a PCI Express switch. Refer to the *Optional IOB Expansion Board – Chapter 5* for more information on the IOB33 and the *PCI Express*

Reference – Chapter 2 for more information on the PCI Express signal routings to the SHB edge connectors.

The figures below show some typical SHB and backplane combinations that would result in successfully establishing communication with the SHB host device. The first figure shows a server-class SHB; the second shows a graphics-class SHB while the third shows a combination that would not work well with the TR-7053 SHB. Three similar graphics-class examples are illustrated in the second group of figures below.

Server-Class SHB:

PCI Express[™] Edge Connectors A & B: One x4 and two x8 PCI Express[™] Links with five reference clocks

* x16 slot is x16 mech./x8 elec.

Note: A backplane with the BP #3 routing example to edge connectors A & B would not be a good match for the TR-7053 SHB because link A0 is a x8 link that cannot bifurcate into two x4 links. One of these x4 links will not have an interface path available to the TR-7053.

Graphics-Class SHB:

PCI Express™ Edge Connectors A & B: One x16 and one x4 PCI Express™ Link with five reference clocks

Note: All of these graphics class backplane examples will work fine with the TR-7053 SHB because the PCIe link B0 on the board can bifurcate into four x1 PCIe links.

PCI Express link configuration straps for each PCI Express option card slot on a PICMG 1.3 backplane are required as part of the PICMG® 1.3 specification. These configuration straps alert the SHB as to the specific link configuration expected on each PCI Express option card slot. PCI Express communication between the SHB and option card slots is successful only when there are enough available PCI Express links established between the PICMG 1.3 SHB and each PCI Express slot or device on the backplane.

For more information, refer to the PCI Industrial Manufacturers Group's SHB Express® System Host Board PCI Express Specification, PICMG® 1.3.

TR-7053 and Compatible Backplanes

The TR-7053 is a standard PICMG 1.3 SHB that will function with a wide variety of industry standard PICMG 1.3 backplanes. However, some backplanes may not utilize the full capabilities of the TR-7053 boards. The table below illustrates the TR-7053 compatibility with the current listing of PICMG 1.3 backplanes. A "Yes" in the compatible column below means that all slots on the backplane will function with a TR-7053 board. The clarification column explains any limitations of using a TR-7053 single processor SHB with a particular backplane.

PICMG 1.3 Paakulana	Compatible with TR-7053 (i.e. all	Why not or clarification		
Баскріане	backplane slots are functional)			
2U Butterfly Backplanes				
BPG6741	Yes			
BPX6736*	Yes			
Multi-Segment Backplanes				
BP6FS6605	No	SHB segment spacing		
BP4FS6890	Yes, use Graphics Class configuration			
BP2S6929	Yes			
Combo Backplanes				
BPC7041	No, for the TR-7053 does not support the PEX10 for PCIe link expansion	PEX10 needed to provide the links for BP slots PCIe 1 through PCIe4		
BPC7009*	Yes	TR-7053 will have edge connector D exposed		
Server-Class Backplanes				
BPX6806*	Yes, need IOB33 for PCIe1 slot	TR-7053 provides x4 via IOB33		
BPX6620*	Yes, need IOB33 for PCIe1 slot	TR-7053 provides x4 via IOB33		
BPX6610*	Yes			
BPX6571*	Yes			
BPX3/14*	No	One x4 link short		
BPX3/8*	Yes			
BPX6719	Yes, need IOB33 for PCIe1 slot	TR-7053 provides x4 via IOB33		
BPX3/2*	Yes			
BPX5*	Yes, need IOB33 for PCIe1 slot	TR-7053 provides x4 via IOB33		
Graphics-Class Backplanes				
BPG8032	Yes	Available Q4, 2011		
BPG7087	Yes, need IOB33 for PCIe1 slot			
BPG6615	Yes			
BPG6600	Yes			
BPG6544	Yes			
BPG6714	Yes, need IOB33 for PCIe1 slot	TR-7053 provides x4 via IOB33		
BPG2/2*	Yes			
BPG4*	Yes, need IOB33 for PCIe1 slot	TR-7053 provides x4 via IOB33		

*Backplane does not have an SHB edge connector D slot. The backplane will function OK, but the system designer should ensure the exposed SHB edge connector D pins are protected from potential damage.

Chapter 5 Optional IOB33 Expansion Board Usage

IOB33 Overview

The IOB33 is optional I/O expansion board that may be used on the TR-7053 SHB for the purpose of routing an additional x4 PCIe expansion link from the processor down to the PCIe Expansion Slot on a backplane.

Most of the legacy I/O interfaces on the IOB33 have been moved down to the TR-7053. Additional legacy I/O IOB33 will be available for use on the TR-7053 with a future BIOS revision of the SHB. The added I/O capabilities will include the following added interfaces for use by the system designer:

- Two RS232 communication ports
- One Floppy drive interface
- One Parallel printer interface
- One PS/2 Mini-DIN connector for PS/2 keyboard and mouse connections
 - Also includes separate, on-board PS/2 keyboard and mouse headers for systems that require separate PS/2 connections

IOB33 Features

IOB33 (7015-004, 7015-002, 7015-001)

- I/O plate versions for a variety of system host boards
- Two serial ports and PS/2 mouse/keyboard mini DIN on the I/O bracket
- PS/2 mouse, keyboard, parallel port and floppy drive connectors
- PCI Express expansion capability for use with PCI Express backplanes
- Compatible with PCI Industrial Computer Manufacturers Group (PICMG®) PCI Express Specification

IOB33 Temperature/Environment

Operating Temperature: 0°C. to 60°C.

Storage Temperature: -20° C. to 70° C.

Humidity: 5% to 90% non-condensing

IOB33 (7015-xxx) Block Diagram

NOTE: When an IOB33 is connected to the TR-7053's P20 I/O expansion connector, a second Super I/O chip is placed into the system by virtue of the LPC Bus routing through the controlled impedance connector. A future TR-7053 BIOS revision will be necessary to use this second Super I/O chip to support the IOB33's on-board headers and I/O bracket port connectors. All of the legacy I/O and serial communication ports featured on the IOB33; with the exception of the floppy and parallel ports, are now available directly on the TR-7053 board itself. The PCIe x4 link routing to a PICMG 1.3 backplane expansion slot works fine with the current TR-7053 BIOS revision.

IOB33 (7015-xxx) Layout Diagram

IOB33 (7015-xxx) I/O Plate Diagram

IOB33 Connectors

NOTE: the square pad on the PCB indicates Pin 1 on the connectors.

P1 Serial Port Connector 9 position "D" right angle, Spectrum #56-402-001 Pin Signal Signal <u>Pin</u> Carrier Detect Data Set Ready-I 1 6 7 Request to Send-O 2 Receive Data-I 8 Clear to Send-3 Transmit Data-O 9 4 Data Terminal Ready-O Ring Indicator-I 5 Signal Gnd **P2 Serial Port Connector** 9 position "D" right angle, Spectrum #56-402-001 Pin Signal Pin Signal Carrier Detect Data Set Ready-I 1 6 7 Request to Send-O 2 Receive Data-I 3 Transmit Data-O 8 Clear to Send-4 Data Terminal Ready-O 9 **Ring Indicator-I** 5 Signal Gnd **P3** PS/2 Mouse and Keyboard Connector 6 pin mini DIN, Kycon #KMDG-6S-B4T Signal Pin 1 Ms Data 2 Kbd Data 3 Gnd Power (+5V fused) with self-resetting fuse 4 Ms Clock 5 Kbd Clock 6 P4 **Floppy Drive Connector** 34 pin dual row header, Amp #103308-7 Pin Signal Pin Signal N-RPM 1 Gnd 2 3 Gnd 4 NC 5 Gnd 6 D-Rate0 7 Gnd 8 P-Index 9 Gnd 10 N-Motoron 1 N-Drive Sel2 11 Gnd 12 13 Gnd 14 N-Drive Sel1 15 Gnd 16 N-Motoron 2 17 18 Gnd N-Dir 19 Gnd 20 N-Stop Step 21 Gnd 22 N-Write Data 23 Gnd 24 N-Write Gate 25 26 Gnd P-Track 0 27 Gnd 28 **P-Write Protect** 29 Gnd 30 N-Read Data

32 N-Side Select

34 Disk Change

31

33

Gnd

Gnd

IOB33 Connectors (continued)

P5 - Parallel Port Connector

26 pin dual row header, Amp #103308-6

Pin	<u>Signal</u>	<u>Pin</u>	<u>Signal</u>
1	Strobe	2	Auto Feed XT
3	Data Bit 0	4	Error
5	Data Bit 1	6	Init
7	Data Bit 2	8	Slct In
9	Data Bit 3	10	Gnd
11	Data Bit 4	12	Gnd
13	Data Bit 5	14	Gnd
15	Data Bit 6	16	Gnd
17	Data Bit 7	18	Gnd
19	ACK	20	Gnd
21	Busy	22	Gnd
23	Paper End	24	Gnd
25	Slet	26	NC

P7 - Keyboard Header

5 pin single row header, Amp #640456-5

- Pin Signal
- 1 Kbd Clock
- 2 Kbd Data
- 3 Key
- 4 Kbd Gnd
- 5 Kbd Power (+5V fused) with self resetting fuse

P8 - PS/2 Mouse Header

6 pin single row header, Amp #640456-6

- Pin Signal
- 1 Ms Data
- 2 Reserved
- 3 Gnd
- 4 Power (+5V fused) with self-resetting fuse
- 5 Ms Clock
- 6 Reserved

IOB33 Connectors (continued)

P6 - Impedance Connector

76 pin controlled impedance connector, Samtec #MIS-038-01-FD-K

Pin	<u>Signal</u>	<u>Pin</u>	Signal
1	+12	2	+5V_STANDBY
3	NC	4	+5V_STANDBY
5	NC	6	+5V_DUAL
7	NC	8	+5V_DUAL
9	NC	10	NC
11	NC	12	NC
13	ICH_SMI#	14	ICH_RCIN#
15	ICH_SIOPME#	16	ICH_A20GATE
17	Gnd	18	Gnd
19	L_FRAME#	20	L_AD3
21	L_DRQ1#	22	L_AD2
23	L_DRQ0#	24	L_AD1
25	SĒRIRQ	26	L_AD0
27	Gnd	28	Gnd
29	PCLK14SIO	30	PCLK33LPC
31	Gnd	32	Gnd
33	SMBDATA RESUME	34	IPMB DAT
35	SBMCLK RESUME	36	IPMB ^{CLK}
37	SALRT# RESUME	38	IPMB ⁻ ALRT#
39	Gnd	40	Gnd
41	EXP CLK100	42	EXP RESET#
43	EXP_CLK100#	44	ICH_WAKE#
45	Gnd	46	Gnd
47	C PE TXP4	48	C PE RXP4
49	C_PE_TXN4	50	C_PE_RXN4
51	Gnd	52	Gnd
53	C_PE_TXP3	54	C_PE_RXP3
55	C_PE_TXN3	56	C_PE_RXN3
57	Gnd	58	Gnd
59	C_PE_TXP2	60	C_PE_RXP2
61	C_PE_TXN2	62	C_PE_RXN2
63	Gnd	64	Gnd
65	C PE TXP1	66	C PE RXP1
67	C_PE_TXN1	68	C_PE_RXN1
69	Gnd	70	Gnd
71	+3.3V	72	+5V
73	+3.3V	74	+5V
75	+3.3V	76	+5v

Chapter 6 BIOS - Starting Aptio® TSE

Introduction

The TR-7053 and feature the Aptio® 4.x BIOS from American Megatrends, Inc. (AMI) with a ROMresident setup utility called the Aptio® Text Setup Environment or TSE. The TSE allows you to select to the following categories of options:

- Main Menu
- Advanced Setup
- Boot Setup
- Security Setup
- Chipset Setup
- Exit

Each of these options allows you to review and/or change various setup features of your system. Details are provided in chapter 6 of this manual.

Aptio Text Setup Environment (TSE) is a text-based basic input and output system. The purpose of Aptio TSE is to empower the user with complete system control at boot. This document explains the basic navigation of Aptio TSE.

NOTE: The contents of this document were provided as a courtesy from American Megatrends, Inc or AMI and describe the standard look and feel of the Aptio TSE interface. Trenton Technology Inc. is the manufacturer of the SHB hardware and during production may have made subtle changes to some of the settings described in this document. Therefore, some of the options that are described in this document may not exist or may have been modified for use in the TR-7053 / implementation of the Aptio TSE BIOS utility. Contact Transduction for any questions regarding the SHBs' implementation of Aptio TSE.

Starting Aptio TSE

To enter the Aptio TSE screens, follow the steps below:

Step	Description
1	Install the SHB in a PICMG 1.3 backplane with the proper system power connections made to the backplane and a mouse, keyboard and monitor connected to the SHB
2	Power on the system with the SHB
3	Press the <delete> or <f2> key on your keyboard when you see the following text prompt: Press DEL or F2 to enter Setup</f2></delete>
4	After you press the <delete>/<f2> key, the Aptio TSE main BIOS setup menu displays. You can access the other setup screens from the main BIOS setup menu, such as the Chipset and Power menus.</f2></delete>

NOTE: In most cases, the <Delete> or <F2> keys are used to invoke the Aptio TSE screen. There are a few cases that other keys are used (<F1>, <F10>, ...).

NOTE: The user can press the <TAB> key during boot to switch from the boot splash screen (logo) to see the keystroke messages.

Aptio® TSE Setup Menu

The Aptio TSE BIOS setup menu is the first screen that you can navigate. Each BIOS setup menu option is described in this user's guide.

Apt	Aptio Setup Utility - Copyright (C) 2010 American Megatrends, Inc.								
Main	Advance	Chipset	Boot	Security	Save	e & Exit	Event Logs		
Bios InformationAmerican MegatrendsChoose the system default languageBios VendorAmerican MegatrendsCore Version4.6.4.0CompliencyUEFI 2.0Project Version0ABXA 0.04 X64Build Date & Time08/29/2010Customer Reference Number006250							e system guage		
Memo Tota	ry Information al Memory	ſ	1024MB (DDR3 1333)			 ★=: Select Screen ↓ : Select Item Enter: Select 			
Syster	m Language		[Engli	sh]	+	H- : Char	nge Opt.		
Syster Syster	m Date m Time	Date [Mon 09/19/2011] F1 : 0 Time [16:45:50] F3 : 0 Level Administrator FSC : 1					General Help Previous Values Optimized Defaults Save		
Acces	Access Level Administrator ESC : Exit Version 2.02.1205 Copyright (C) 2010 American Megatrends, Inc.								

There may be slight differences in the screen shots illustrated in this manual due to Transduction TR-7053 BIOS modifications. Contact Transduction for any questions regarding the SHBs' implementation of Aptio TSE.

Navigation

The Aptio® TSE keyboard-based navigation can be accomplished using a combination of the keys.(<FUNCTION> keys, <ENTER>, <ESC>, <ARROW> keys, etc.).

Key	Description
ENTER	The <i>Enter</i> key allows the user to select an option to edit its value or access a sub menu.
$\rightarrow \leftarrow$	The Left and Right < Arrow> keys allow you to select an Aptio TSE screen.
Left/Right	
_	For example: Main screen, Advanced screen, Chipset screen, and so on.
↑↓ Up/Down	The Up and Down <arrow> keys allow you to select an Aptio TSE item or sub-screen.</arrow>
+- Plus/Minus	The Plus and Minus < Arrow> keys allow you to change the field value of a particular
	setup item.
	For example: Date and Time.
Tab	The <tab> key allows you to select Aptio TSE fields.</tab>
ESC	The <esc> key allows you to discard any changes you have made and exit the Aptio</esc>
	TSE. Press the <esc> key to exit the Aptio TSE without saving your changes. The</esc>
	following screen will appear:
	Press the <enter> key to discard changes and exit. You can also use the <arrow> key</arrow></enter>
	to select <i>Cancel</i> and then press the <enter> key to abort this function and return to the</enter>
	previous screen.
Function keys	When other function keys become available, they are displayed in the help screen
	along with their intended function.

Chapter 6.1 Advanced Setup

Introduction

Select the *Advanced* menu item from the Aptio TSE screen to enter the Advanced BIOS Setup screen. You can select any of the items in the left frame of the screen, such as PCI Sub-System Settings, ACPI Settings, CPU Configuration, SATA Configuration, USB Configuration, Intel TXT Configuration and a SuperIO configuration. Selecting one of these set-up items will take you to a configuration sub menu for that item.

Launch PXE OpROM Configuration

With this selection, you can enable or disable the system's Boot From LAN capability of the SHB which allows system ROM storage settings for legacy networks.

Launch Storage OpROM Configuration

With this selection, you can enable or disable the system's ROM storage settings for legacy mass storage devices.

PCI Sub-System Settings

Various PCI Express and PCI device settings are available for configuration with this BIOS parameter. Specific device availability depends on what the BIOS can see during the system boot process.

ACPI Settings

This is where you set up your system for use with the ACPI soft control states available on the SHB. Various system sleep states and recover modes are available for selection on this sub-menu.

Trusted Computing

This where you must first enable the board's Trusted Platform Module (TPM) if your system is to operated in a Trusted Computing application. When Trusted Computing is enabled, the O/S will not show the TPM until a platform reset is performed.

WHEA Configuration

This BIOS setting enables or disables the Windows Hardware Error Architecture.

CPU Configuration

The parameters for the specific Sandy Bridge processor installed on your SHB are displayed on the top portion of this sub-menu. The lower portion of this screen contains processor features that you may elect to enable or disable based on the unique requirements of your system. Here is a partial listing of some of these CPU parameters.

Option	Description
Intel® Hyper-	This option allows the user to enable or disable Intel® Hyper-Threading support
Threading	on the Intel® Xeon® E3-1275 processor. Other Sandy Bridge processors may
	or may not support Intel Hyper-Threading. By default, this setting is enabled.
Intel® Virtualization	This option allows the user to enable or disable Intel® Virtualization support on
	the Intel® Xeon® E3-1200 series (i.e. Sandy Bridge) processor. Other Sandy
	Bridge processors may or may not support Intel Virtualization. By default, this
	setting is enabled.
Execute Disable Bit	This option allows the user to enable or disable Intel® Execute Disable Bit
	feature of the Intel® Xeon® E3-1200 series (i.e. Sandy Bridge) processor.
Active Processor	With this setting you may us all of the available cores available in the Intel®
Cores	Xeon® E3-1200 series (i.e. Sandy Bridge) processor or on use a subset of the
	available CPU execution cores. The default setting for this option is "ALL" and
	the number of cores to select depends on the specific processor installed on the
	SHB.

SATA Configuration

This is where you can set the parameters for the SATA devices that SHB's BIOS senses during the boot process.

Serial ATA Modes - Disabled, IDE, ACHI or RAID

The selection of the SATA mode will determine most of the remaining SATA configuration selections available on this menu. Use these selections on this menu to configure or to turn on or off the selected onboard SATA ports.

Option	Description
Disabled	All onboard SATA ports disabled
IDE	SATA ports configured for individual SATA drives. The SATA Controller 0 and 1
	selections become visible when IDE mode is selected. Most applications will use
	either the Compatible or Enhanced SATA controller option.
AHCI	AHCI is a variation on IDE in that this SATA mode of operation support hot plug
	SATA drives using the AHCI control signals. Various settings are available to
	configure each SATA port for the specific hot plug SATA drive implementation.
RAID	The TR-7053 supports a variety of RAID drive array configurations. Use this setting
	if your system is using the SHB's on-board software RAID capability.

Serial ATA Port X

This item specifies the number of SATA ports sensed by the BIOS during system startup. An indication of each SATA drive port status will be display along with the individual port settings available for each drive. The specific port settings displayed are a function of the SATA mode selected.

Thermal Configuration

Thermal over-temp conditions are sensed in a number of locations on the SHB. This BIOS setup screen allows you to choose how you would like these potential error conditions to be reported in order for the system to take any necessary corrective actions.

Intel Trusted Execution Technology (TXT) Configuration

With this BIOS setup screen you can enable or disable Intel TXT. However, you can only enable Intel TXT if Intel Virtualization Technology is enabled on the CPU Configuration menu and the Secure Mode Extensions (SMX) are enabled on the Intel TXT setup menu.

Intel IGD SWSCI OpRegion Configuration

This menu determines how the two video ports will function on the TR-7053. The IGD – BOOT TYPE setup parameter on this menu is used to determine which video device will be active during POST. The VBIOS default should be used in most applications.

USB Configuration

This is where you can set the parameters for the USB devices that have been sensed SHBs' during the boot process.

Super IO Configuration

The one Super IO component on the TR-7053 supports the SHB's PS/2 mouse and keyboard ports as well as Serial Port 1 and Serial Port 2. A future BIOS revision may be available to support a second Super I/O chip located on an optional IOB33 module. This future BIOS revision will enable an IOB33 to plug into the SHBs' P20 I/O Expansion connector and provide additional IDE floppy and parallel port connectivity to the system designer as well as two additional serial interface ports. The Super IO Configuration submenu that will be displayed will depend on the SHB's BIOS revision and if an IOB33 is connected to P20. This Advanced Setup sub-menu allows you to configure the system ports connected to the board's Super I/O component(s).

Floppy Disk Controller Configuration

When available, this option will allow you to enable or disable the floppy drive controller on your platform.

Option	Description
Disabled	Set this value to prevent the BIOS from detecting the onboard floppy drive controller.
Enabled	Set this value to allow the BIOS to use the onboard floppy drive controller to control
	selected floppy drive operational parameters. This is the default setting.

Serial Port 0 Configuration

This option specifies the base I/O port address and Interrupt Request address of serial port 1 located on header connector P7 on the TR-7053. The Optimal setting is *3F8/IRQ4*, but you do have the ability to change this setting with the Change Settings parameter. The Fail-Safe default setting is *Auto*.

Option	Description
Auto	The Aptio BIOS selects the optimum port address and IRQ based on the IO
	connections sensed during POST. This is the default setting.
3F8h; IRQ4	Set this value to allow the serial port to use 3F8 as its I/O port address and IRQ 4 for
	the interrupt address. The majority of serial port 1 or COM1 ports on computer
	systems use IRQ4 and I/O Port 3F8 as the standard setting.
3F8h; IRQ3, 4,	Set this value to allow the serial port to use 3F8 as its I/O port address and any one of
5, 6, 7, 10, 11,	the listed IRQs for the interrupt address.
12	
2F8h; ; IRQ3,	Set this value to allow the serial port to use 2F8 as its I/O port address and any one of
4, 5, 6, 7, 10,	the listed IRQs for the interrupt address.
11, 12	
3E8h; ; IRQ3,	Set this value to allow the serial port to use 3E8 as its I/O port address and any one of
4, 5, 6, 7, 10,	the listed IRQs for the interrupt address.
11, 12	
2E8h; ; IRQ3,	Set this value to allow the serial port to use 2E8 as its I/O port address and any one of
4, 5, 6, 7, 10,	the listed IRQs for the interrupt address.
11, 12	

The Device Mode setting allows you to select Normal or High Speed serial interface implementations. The default setting is *Normal*.

Serial Port 1 Configuration

These BIOS setup parameters are for the SHB's serial port 2 available on header connector P14. The BIOS settings are identical to the ones described in the Serial Port 0 Configuration section.

Parallel Port Address

This option specifies the I/O address used by the parallel port. The Optimal setting is *378h*. The Fail-Safe setting is *Auto*.

Option	Description
Auto	The Aptio BIOS selects the optimum parallel port address and IRQ based on the IO
	connections sensed during POST.
378h; IRQ5;	Set this value to allow the parallel port to use 278h as its I/O port address.
378h; IRQ3, 4,	This setting uses parallel port IO address 378h and any one of the listed IRQs for the
5, 6, 7, 10, 11,	interrupt address.
12;	
278h; IRQ3, 4,	This setting uses parallel port IO address 278h and any one of the listed IRQs for the
5, 6, 7, 10, 11,	interrupt address.
12;	
3BCh; IRQ3,	This setting uses parallel port IO address 3BCh and any one of the listed IRQs for the
4, 5, 6, 7, 10,	interrupt address.
11, 12;	
378	Set this value to allow the parallel port to use 378 as its I/O port address. This is the
	default setting. The majority of parallel ports on computer systems use IRQ7 and I/O
	Port 378h as the standard setting.
278	Set this value to allow the parallel port to use 278h as its I/O port address.
3BC	Set this value to allow the parallel port to use 3BCh as its I/O port address.

The Device Mode parameter enables you to select either the standard printer mode (STD) or a variation of the SPP, EPP or SCP parallel printer mode of operation. Any application still using a parallel printer will likely use the *STD Printer Mode*.

AMT Configuration

The processor's Intel Advanced Management Technology or AMT is *Enabled* by default. You may disable the AMT capability using this BIOS menu bys selecting the *Disabled* option. The configuration settings available when Intel AMT is *Enabled* are listed below.

Option	Description
Unconfigure	This setting allows access to the AMT management engine without a password when <i>English</i> . The Disabled selection requires a password to enter the AMT management
	engine.
Watchdog	The Enabled setting allows you to enter both Operating System and BIOS watchdog
Timer	timer values. Valid entries for the watchdog timer values may range from 0 to 9999
	(9.999 seconds). The default setting for the watchdog timer setting is <i>Disabled</i> .

Serial Port Console Redirection

The redirection capability of the serial ports is useful for accessing the systems' BIOS remotely using one of the serial ports on the TR-7053. The serial port console redirection BIOS setup parameters are used to ensure that the redirection of the board's VGA output and keyboard parameters used for BIOS selection and modification match those of a remote terminal/keyboard or PC. When *Enabled* there are a number of console redirection setting options available.

Option	Description
Out-of-Band	This setting enables or disables the Microsoft Windows EMS for remote management
Management	of a windows server operating system via a serial interface port.
Port	
Terminal	These three settings are used to set-up the re-directed serial port's interface for the
Type, Bits/sec	terminal or PC connected to the port.
and Flow	
Control	

Chapter 6.2 Chipset Configuration Setup

Introduction

The term "chipset" is a bit of a misnomer for the TR-7053. The "chipset" on this SHB is a single component called a "Platform Controller Hub" or PCH. Some of the traditional "chipset" functions specifically the system memory interfaces and the A0, A2, A3 and PCI Express Expansion links to a PICMG 1.3 backplane have migrated up into the Sandy Bridge processor's micro-architecture. The TR-7053 features the Intel® C206 PCH and this platform controller hub merges the former South Bridge chipset component functionality with the North Bridge functionality not handled by the Sandy Bridge processor. The following section covers the set-up parameters of what could thought of as the North Bridge and South Bridge sections of the Sandy Bridge processor and the Intel® C206 PCH.

North Bridge Configuration

The Memory Information at the top of the *North Bridge Configuration* menu lists the memory capacities of each DDR3 DIMM installed on the board and that the BIOS has sensed during POST. The remaining north bridge set-up parameters allow the user to do the following:

Option	Description
Low MMI/O Align	The default setting for Low MMI/O Align is 1024M and this setting optimizes the
	board's system memory interface for use with 64-bit operating systems. If you are
	using a 32-bit operating system you can gain access to additional system memory
	resources by choosing the 64M setting.
DMI Gen2	The default setting is <i>Enabled</i> and this setting ensure that PCI Express 2.0 link speeds
	are use between the processor and the PCH using the Intel Direct Media Interface.
VT-d	This option allows the user to enable or disable the Intel® Virtualization Technology
	for Directed I/O feature of the processor. The default setting is Disabled.
Initiate Graphic	This setting allows you to select which of the processor's graphics controllers is to be
Adapter	used as the primary boot device. There are five options:
	IGD – Processor's integrated graphics device only
	PCI/IGD – External PCI graphics card or the CPU's IGD
	PCI/PEG – External PCI or PCI Express graphics (PEG) card, PCI first priority
	PEG/IGD – External PEG or internal IGD [Default]
	PEG/PCI - External PEG or PCI card, PEG first priority
IGD Memory	This option enables the size of system memory that you would like set aside for use as
	video memory. Acceptable entries range from Disable i.e. 0 video memory, up to
	512M of video memory. The default setting is 64M.
Render Standby	The default setting is <i>Enabled</i> meaning that the processor's internal graphics device is
	on standby status during system idle periods. The Disabled option is available for
	non-video applications.
IGD Multi-Monitor	The IGD used in the Sandy Bridge processor micro-architecture has the capability of
	supporting one or two video monitors simultaneously. The default condition for this
	option is <i>Disabled</i> .
PCI Express Port	There are three possible selections for this option: Disabled, Enabled and Auto. Auto
	is the default setting and offers the most system flexibility and allows the system to use
	both internal and external PCI Express graphics devices. The disabled setting implies
	internal graphics device usage or a PCI graphics card. The enabled setting means PEG
	card only system operations.
PEG Force Gen1	The BIOS default setting for this option is <i>Disabled</i> allowing the system to use either a
	PCIe 2.0 or 1.1 interface to an external PEG device. When this option is <i>Enabled</i> , the
	processor will expect to see only Gen1 PEG cards.
Detect Non-	The default setting is <i>Disabled</i> , but the user can select <i>Enabled</i> to allow the system to
Compliance Device	detect non-compliant PCI Express devices.
MRC Message Print	The default setting is <i>Disabled</i> . The <i>Enabled</i> option allows the printing of memory
	initialization messages.

South Bridge Configuration

The South Bridge Configuration menu item allows the user to do the following:

Option	Description
SMBus Controller	This option allows the user to enable or disable the SMBus Controller in the Intel® C206
GbE Controller	This option allows the user to enable or disable the Ethernet Controller in the Intel®
	C206. Disabling this internal controller shuts down the LAN interface to the PICMG 1.3
	backplane. This setting does not affect the operation of the independent Intel®
	82580DB Ethernet Controller that drives the two LAN ports on the SHBs I/O plate.
Wake on LAN from S5	This option allows the user to enable or disable wake on LAN feature derived from an ACPI S5 shutdown event
Restore AC Power Loss	This option allows the user to determine how the system will come back up when power
Settings	is restored after an unplanned power interruption. The options are Power Off, Power On or Last State.
PCI Express Ports	This option allows the user to Enable, Disable or Automatically turn on the various PCI
Configuration	Express ports inside the Intel® 206 PCH. The default setting is set to Auto and it is
	highly recommended eaving this setting alone. These internal PCIe ports drive on-board
	components and turning them off will disable critical SHB and system functions
SLP_S4 Assertion	When <i>Enabled</i> this allows the selection of a minimum assertion width for the SLP_S4
Stretch Enable	signal. This is the default setting and provides access to the four value choices that may
	be entered for the assertion width: $1-2$, $2-3$, $3-4$ or $4-5$ seconds. The $4-5$ second
	assertion width is the default value for the SLP_S4 signal. The assertion width values
	are hidden if the assertion stretch enable option is set to <i>Disabled</i> .
Deep Sx	This is the deep sleep state setting option. The default value for this option is <i>Disabled</i>
	since the option is usually associated with mobile devices. There are four possible
	entries that can be made if the option is <i>Enabled</i> : Enabled in S5 (battery), Enabled in S5,
	Enabled in S4 and S5 (battery) and Enabled in S4 and S5.
High Precision Event	The default setting is <i>Enabled</i> with an option to disable this timer
Timer	
PCI Express Ports	There are eight potential PCI Express ports available in a standard Intel C206 PCH. The
Configuration	TR-7053 implementation uses these ports for both on-board and off- board PCI Express
	interfaces. The default setting for each port is <i>Auto</i> , and it should be left in this position.
	Changing to the <i>Enabled</i> or <i>Disabled</i> option setting can cause unintended system
	operations.
PCIe Sub Decode	The default value for this option setting is <i>Disabled</i> and should be left in this position.
	Enabling this option setting allows you to set up a PCIe sub-decode operation on any one
	of the PCH's eight PCI Express ports. Care must be used if implementing this setting.
USB Configuration	This option allows the user to enable or disable the various USB ports inside the Intel®
	C206 PCH. The default setting is set to <i>Enabled</i> . These internal USB ports drive the
	USB interface connections to the SHBs I/O plate and down to edge connector C for use
	on a PICMG 1.3 backplane, as well a USB interface to any optional PCI Express Mini-
	Card connected to board connector P10 located on the back of the TR-7053.

ME Subsystem Configuration

The ME or *Management Engine Subsystem Configuration* menu items provide access to the BIOS software's management engine implementation parameters. The Intel® Management Engine and BIOS Extensions (Bx) come into play in Intel AMT system implementations.

Option	Description
ME Subsystem	System default setting is <i>Enabled</i> .
ME Temporary Disable	System default setting is Disabled.
End of POST Message	System default setting is <i>Enabled</i> .
Execute MEBx	System default setting is <i>Enabled</i> . This allows the BIOS extensions for the ME to run
MEBx Mode	<i>Normal</i> is the defaults setting with optional settings that include <i>Hidden Ctrl</i> + <i>P</i> and
	Enter MEBx Setup.
Integrated Clock Chip	System default setting is <i>Disabled</i> .
Configuration	

Chipset Reference Board

This BIOS setting allows you to enable the CIRA (Client Initiated Remote Access) Trigger for use in Intel AMT 7.0 system implementations. The system default setting is *Disabled*.

Chapter 6.3 Boot Setup

Introduction

Select the *Boot Setup* menu item from the Aptio TSE screen to enter the BIOS Setup screen. The Boot menu option allows you to access the following the following boot setup features.

Boot Configuration

Set this value to instruct the system on how long it needs to wait for the setup activation key and turn On/Off the Bootup NumLock State.

Option	Description
Setup Prompt	The numeric value of 1 to 65355 entered is in seconds. A value of 65355 or FFFFh
Timeout	means an indefinite wait period
Bootup	The default setting is <i>On</i> with an option to turn the setting <i>Off</i> . The <i>On</i> setting enables
NumLock	the keyboard to automatically enabled at system boot and allows the immediate use of
State	the 10-key numeric keypad located on the right side of the keyboard. In the Off
	setting, the NumLock keyboard key will need to be pressed to use the 10-key numeric
	pad.

Quite Boot

Set this value to allow the boot up screen options to be modified between POST messages or OEM logo.

Option	Description
Disabled	Set this default value allows the computer system to display the POST messages.
Enabled	Set this value to allow the computer system to display the OEM logo.

The next three BIOS settings on this screen are:

- Gate20 Active -- Default setting = Upon Request
- Option ROM Messages -- Default setting = Force BIOS
- Interrupt 19 Capture -- Default setting = *Disabled*

These are special purpose BIOS settings and should remain in the default positions. Contact Transduction technical support team if you need to use these BIOS settings.

Chapter 6.4 Security

Two Levels of Password Protection

Security Setup provides both a Administrator and a User password. If you use both passwords, the Administrator password must be set first.

The system can be configured so that all users must enter a password every time the system boots or when Setup is executed, using either or either the Supervisor password or User password.

The Administrator and User passwords activate two different levels of password security. If you select password support, you are prompted for a one to six character password. Type the password on the keyboard. The password does not appear on the screen when typed. Make sure you write it down. If you forget it, you must drain NVRAM and reconfigure.

Remember the Password

Keep a record of the new password when the password is changed. If you forget the password, you must erase the system configuration information in NVRAM. See (Deleting a Password) for information about erasing system configuration information.

Security Setup

The Security setup menu item allows the user to do the following:

Option	Description
Administrator	This option allows the user to set an administrative level password for the
Password	BIOS. BIOS access passwords must be between 3 and 20 characters in length.
User Password	This option allows the user to set a user level password for the BIOS.
Chapter 6.5 Saving and Exiting BIOS Setup and Restoring Defaults

Introduction

There are four methods of saving BIOS changes and leaving Aptio TSE listed at the top of this screen:

1 - Save Changes & Exit

When you have completed the system configuration changes, select this option to save your BIOS changes and leave Aptio TSE. You will need to reboot the computer for the new system configuration parameters to take effect.

Select Save Changes & Exit from the Exit menu and press < Enter>.

Save Configuration Changes and Exit Now?

[YES] [NO] appears in the window. Select YES to save changes and exit.

2 - Discard Changes & Exit

Select this option to quit Aptio TSE without making any permanent changes to the system configuration.

Select Discard Changes & Exit from the Exit menu and press <Enter>.

Discard Changes and Exit Setup Now?

[YES] [NO] Select YES to discard changes and exit.

3 - Save Changes & Reset

When you have completed the system configuration changes, select this option to save the BIOS changes, leave Aptio TSE and reset the computer so the new system configuration parameters can take effect.

Select Save Changes & Reset from the Exit menu and press <Enter>.

Save Configuration Changes and Exit Now?

[YES] [NO] appears in the window. Select YES to save changes and reset.

4 - Discard Changes & Reset

Choose this option if you decide to discard your BIOS changes, but what to reset the system upon leaving Aptio TSE.

Select Discard Changes & Reset from the Exit menu and press <Enter>.

Discard Configuration Changes and Exit Now?

[YES] [NO] appears in the window. Select *YES* to discard changes and reset.

The following two screen options allow save or discard BIOS changes without leaving Aptio TSE:

Save Changes	[YES]	[NO]
Discard Changes	[YES]	[NO]

The following menu options for BIOS defaults are available:

Restore Defaults

Aptio TSE automatically sets all Aptio TSE options to a complete set of factory default settings when you select this option.

Select restore defaults from the Exit menu and press <Enter>.

Restore Defaults?

[YES] [NO] appears in the window. Select YES to load restore defaults.

Save as User Defaults

With this option the BIOS changes done so far by the user are saved as User Defaults.

Select save as user defaults from the Exit menu and press <Enter>.

Save as User Defaults?

[YES] [NO] appears in the window. Select YES to save user defaults.

Restore User Defaults

Aptio TSE automatically sets all Aptio TSE options to a complete set of user default settings when you select this option.

Select restore user defaults from the Exit menu and press <Enter>.

Restore User Defaults?

[YES] [NO] appears in the window. Select YES to load restore user defaults.

Boot Overide

Select this option to allow a system boot override from either a specific device connected to the SHB or from the BIOS' EFI Shell.

Chapter 6.7 Event Log

Change SMBIOS Event Log Settings

Use the Aptio TSE menu screen options to set up the system event log reporting format and configuration options for the BIOS.

View SMBIOS Event Log

This read-only menu screen displays the events recorded in the BIOS event log. An event's error code and severity along with the data an time that the event occurred are displayed on this screen.

View SYSTEM Event Log

This read-only menu screen displays the events recorded in the SYSTEM event log. A sensor's event date, time and sensor type are displayed on this screen.

This page intentionally left blank

Appendix A BIOS Messages

Introduction

A status code is a data value used to indicate progress during the boot phase. These codes are outputed to I/O port 80h on the SHB. Aptio 4.x core outputs checkpoints throughout the boot process to indicate the task the system is currently executing. Status codes are very useful in aiding software developers or technicians in debugging problems that occur during the pre-boot process.

Aptio Boot Flow

While performing the functions of the traditional BIOS, Aptio 4.x core follows the firmware model described by the Intel Platform Innovation Framework for EFI ("the Framework"). The Framework refers the following "boot phases", which may apply to various status code descriptions:

- Security (SEC) initial low-level initialization
- Pre-EFI Initialization (PEI) memory initialization¹
- Driver Execution Environment (DXE) main hardware initialization²
- Boot Device Selection (B DS) system setup, pre-OS us er interface & selecting a bootable device (CD/DVD, HDD, USB, Network, Shell, ...)

¹ Analogous to "bootblock" functionality of legacy BIOS

² Analogous to "POST" functionality in legacy BIOS

BIOS Beep Codes

The Pre-EFI Initialization (PEI) and Driver Execution Environment (DXE) phases of the Aptio BIOS use audible beeps to indicate error codes. The number of beeps indicates specific error conditions.

PEI Beep	Codes
----------	-------

# of Beeps	Description
1	Memory not Installed
1	Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
7	Reset PPI is not available
4	Recovery failed
4	S3 Resume failed

DXE Beep Codes

# of Beeps	Description
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
1	Invalid password
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met

BIOS Status Codes

As the POST (Power On Self Test) routines are performed during boot-up, test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7).

The POST code checkpoints are the largest set of checkpoints during the BIOS pre-boot process. The following chart is a key to interpreting the POST codes displayed on LEDs 0 through 7 on the TR-7053 and SHBs. Refer to the board layout in the *Specifications* chapter for the exact location of the POST code LEDs.

The HEX to LED chart in the POST Code LEDs section will serve as a guide to interpreting specific BIOS status codes.

BIOS Status POST Code LEDs

As the POST (Power On Self Test) routines are performed during boot-up, test codes are displayed on Port 80 POST code LEDs 0, 1, 2, 3, 4, 5, 6 and 7. These LED are located on the top of the SHB, just above the board's battery socket. The POST Code LEDs and are numbered from right (position 1 = LED0) to left (position 8 - LED7).

The POST code checkpoints are the largest set of checkpoints during the BIOS pre-boot process. The following chart is a key to interpreting the POST codes displayed on LEDs 0 through 7 on the TR-7053 and SHBs. Refer to the board layout in the *Specifications* chapter for the exact location of the POST code LEDs.

Upper N	ibble (UN)			
Hex. Value	LED7	LED6	LED5	LED4
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
Α	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	On	On	On	Off
F	On	On	On	On

Lower Nibble (LN)				
Hex. Value	LED3	LED2	LED1	LED0
0	Off	Off	Off	Off
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	Off	On	On
4	Off	On	Off	Off
5	Off	On	Off	On
6	Off	On	On	Off
7	Off	On	On	On
8	On	Off	Off	Off
9	On	Off	Off	On
А	On	Off	On	Off
В	On	Off	On	On
С	On	On	Off	Off
D	On	On	Off	On
E	On	Ön	On	Off
F	On	On	On	On

TR-7053 POST Code LEDs

Status Code Ranges

Status Code Range	Description
0x01 - 0x0F	SEC Status Codes & Errors
0x10-0x2F	PEI execution up to and including memory detection
0x30-0x4F	PEI execution after memory detection
0x50 - 0x5F	PEI errors
0x60 – 0xCF	DXE execution up to BDS
0xD0 - 0xDF	DXE errors
0xE0 - 0xE8	S3 Resume (PEI)
0xE9 - 0xEF	S3 Resume errors (PEI)
0xF0 - 0xF8	Recovery (PEI)
0xF9 - 0xFF	Recovery errors (PEI)

SEC Status Codes

Status Code	Description	
0x0	Not used	
Progress Codes	<u>.</u>	
0x1	Power on. Reset type detection (soft/hard).	
0x2	AP initialization before microcode loading	
0x3	North Bridge initialization before microcode loading	
0x4	South Bridge initialization before microcode loading	
0x5	OEM initialization before microcode loading	
0x6	Microcode loading	
0x7	AP initialization after microcode loading	
0x8	North Bridge initialization after microcode loading	
0x9	South Bridge initialization after microcode loading	
0xA	OEM initialization after microcode loading	
0xB	Cache initialization	
SEC Error Codes		
0xC - 0xD	Reserved for future AMI SEC error codes	
0xE	Microcode not found	
0xF	Microcode not loaded	

SEC Beep Codes There are no SEC Beep codes associated with this phase of the Aptio BIOS boot process.

PEI Status Codes

Status Code	Description
Progress Codes	
0x10	PEI Core is started
0x11	Pre-memory CPU initialization is started
0x12	Pre-memory CPU initialization (CPU module specific)
0x13	Pre-memory CPU initialization (CPU module specific)
0x14	Pre-memory CPU initialization (CPU module specific)
0x15	Pre-memory North Bridge initialization is started
0x16	Pre-Memory North Bridge initialization (North Bridge module specific)
0x17	Pre-Memory North Bridge initialization (North Bridge module specific)
0x18	Pre-Memory North Bridge initialization (North Bridge module specific)
0x19	Pre-memory South Bridge initialization is started
0x1A	Pre-memory South Bridge initialization (South Bridge module specific)
0x1B	Pre-memory South Bridge initialization (South Bridge module specific)
0x1C	Pre-memory South Bridge initialization (South Bridge module specific)
0x1D-0x2A	OEM pre-memory initialization codes
0x2B	Memory initialization. Serial Presence Detect (SPD) data reading
0x2C	Memory initialization. Memory presence detection
0x2D	Memory initialization. Programming memory timing information
0x2E	Memory initialization. Configuring memory
0x2F	Memory initialization (other).
0x30	Reserved for ASL (see ASL Status Codes section below)
0x31	Memory Installed
0x32	CPU post-memory initialization is started
0x33	CPU post-memory initialization. Cache initialization
0x34	CPU post-memory initialization. Application Processor(s) (AP) initialization
0x35	CPU post-memory initialization. Boot Strap Processor (BSP) selection
0x36	CPU post-memory initialization. System Management Mode (SMM) initialization
0x37	Post-Memory North Bridge initialization is started
0x38	Post-Memory North Bridge initialization (North Bridge module specific)
0x39	Post-Memory North Bridge initialization (North Bridge module specific)
0x3A	Post-Memory North Bridge initialization (North Bridge module specific)
0x3B	Post-Memory South Bridge initialization is started
0x3C	Post-Memory South Bridge initialization (South Bridge module specific)
0x3D	Post-Memory South Bridge initialization (South Bridge module specific)
0x3E	Post-Memory South Bridge initialization (South Bridge module specific)
0x3F-0x4E	OEM post memory initialization codes
0x4F	DXE IPL is started

PEI Error Codes	
0x50	Memory initialization error. Invalid memory type or incompatible memory speed
0x51	Memory initialization error. SPD reading has failed
0x52	Memory initialization error. Invalid memory size or memory modules do not match.
0x53	Memory initialization error. No usable memory detected
0x54	Unspecified memory initialization error.
0x55	Memory not installed
0x56	Invalid CPU type or Speed
0x57	CPU mismatch
0x58	CPU self test failed or possible CPU cache error
0x59	CPU micro-code is not found or micro-code update is failed
0x5A	Internal CPU error
0x5B	reset PPI is not available
0x5C-0x5F	Reserved for future AMI error codes
S3 Resume Progres	ss Codes
0xE0	S3 Resume is stared (S3 Resume PPI is called by the DXE IPL)
0xE1	S3 Boot Script execution
0xE2	Video repost
0xE3	OS S3 wake vector call
0xE4-0xE7	Reserved for future AMI progress codes
0xE0	S3 Resume is stared (S3 Resume PPI is called by the DXE IPL)
S3 Resume Error (Codes
0xE8	S3 Resume Failed in PEI
0xE9	S3 Resume PPI not Found
0xEA	S3 Resume Boot Script Error
0xEB	S3 OS Wake Error
0xEC-0xEF	Reserved for future AMI error codes
Recovery Progress	Codes
0xF0	Recovery condition triggered by firmware (Auto recovery)
0xF1	Recovery condition triggered by user (Forced recovery)
0xF2	Recovery process started
0xF3	Recovery firmware image is found
0xF4	Recovery firmware image is loaded
0xF5-0xF7	Reserved for future AMI progress codes
Recovery Error Co	odes
0xF8	Recovery PPI is not available
0xF9	Recovery capsule is not found
0xFA	Invalid recovery capsule
0xFB-0xFF	Reserved for future AMI error codes

PEI Beep Codes

# of Beeps	Description
1	Memory not Installed
1	Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
7	Reset PPI is not available
4	Recovery failed
4	S3 Resume failed

DXE Status Codes

Status Code	Description
0x60	DXE Core is started
0x61	NVRAM initialization
0x62	Installation of the South Bridge Runtime Services
0x63	CPU DXE initialization is started
0x64	CPU DXE initialization (CPU module specific)
0x65	CPU DXE initialization (CPU module specific)
0x66	CPU DXE initialization (CPU module specific)
0x67	CPU DXE initialization (CPU module specific)
0x68	PCI host bridge initialization
0x69	North Bridge DXE initialization is started
0x6A	North Bridge DXE SMM initialization is started
0x6B	North Bridge DXE initialization (North Bridge module specific)
0x6C	North Bridge DXE initialization (North Bridge module specific)
0x6D	North Bridge DXE initialization (North Bridge module specific)
0x6E	North Bridge DXE initialization (North Bridge module specific)
0x6F	North Bridge DXE initialization (North Bridge module specific)
0x70	South Bridge DXE initialization is started
0x71	South Bridge DXE SMM initialization is started
0x72	South Bridge devices initialization
0x73	South Bridge DXE Initialization (South Bridge module specific)
0x74	South Bridge DXE Initialization (South Bridge module specific)
0x75	South Bridge DXE Initialization (South Bridge module specific)
0x76	South Bridge DXE Initialization (South Bridge module specific)
0x77	South Bridge DXE Initialization (South Bridge module specific)
0x78	ACPI module initialization
0x79	CSM initialization

0x7A - 0x7F	Reserved for future AMI DXE codes
0x80 - 0x8F	OEM DXE initialization codes
0x90	Boot Device Selection (BDS) phase is started
0x91	Driver connecting is started
0x92	PCI Bus initialization is started
0x93	PCI Bus Hot Plug Controller Initialization
0x94	PCI Bus Enumeration
0x95	PCI Bus Request Resources
0x96	PCI Bus Assign Resources
0x97	Console Output devices connect
0x98	Console input devices connect
0x99	Super IO Initialization
0x9A	USB initialization is started
0x9B	USB Reset
0x9C	USB Detect
0x9D	USB Enable
0x9E - 0x9F	Reserved for future AMI codes
0xA0	IDE initialization is started
0xA1	IDE Reset
0xA2	IDE Detect
0xA3	IDE Enable
0xA4	SCSI initialization is started
0xA5	SCSI Reset
0xA6	SCSI Detect
0xA7	SCSI Enable
0xA8	Setup Verifying Password
0xA9	Start of Setup
0xAA	Reserved for ASL (see ASL Status Codes section below)
0xAB	Setup Input Wait
0xAC	Reserved for ASL (see ASL Status Codes section below)
0xAD	Ready To Boot event
0xAE	Legacy Boot event
0xAF	Exit Boot Services event
0xB0	Runtime Set Virtual Address MAP Begin
0xB1	Runtime Set Virtual Address MAP End
0xB2	Legacy Option ROM Initialization
0xB3	System Reset
0xB4	USB hot plug
0xB5	PCI bus hot plug
0xB6	Clean-up of NVRAM
0xB7	Configuration Reset (reset of NVRAM settings)

Reserved for future AMI codes		
OEM BDS initialization codes		
DXE Error Codes		
CPU initialization error		
North Bridge initialization error		
South Bridge initialization error		
Some of the Architectural Protocols are not available		
PCI resource allocation error. Out of Resources		
No Space for Legacy Option ROM		
No Console Output Devices are found		
No Console Input Devices are found		
Invalid password		
Error loading Boot Option (LoadImage returned error)		
Boot Option is failed (StartImage returned error)		
Flash update is failed		
Reset protocol is not available		

DXE Beep Codes

# of Beeps	Description
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
1	Invalid password
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met

ACPI/ASL Status Codes

Status Code	Description
0x01	System is entering S1 sleep state
0x02	System is entering S2 sleep state
0x03	System is entering S3 sleep state
0x04	System is entering S4 sleep state
0x05	System is entering S5 sleep state
0x10	System is waking up from the S1 sleep state
0x20	System is waking up from the S2 sleep state
0x30	System is waking up from the S3 sleep state
0x40	System is waking up from the S4 sleep state
0xAC	System has transitioned into ACPI mode. Interrupt controller is in PIC mode.
0xAA	System has transitioned into ACPI mode. Interrupt controller is in APIC mode.

OEM-Reserved Status Code Ranges

Status Code	Description
0x5	OEM SEC initialization before microcode loading
0xA	OEM SEC initialization after microcode loading
0x1D - 0x2A	OEM pre-memory initialization codes
0x3F - 0x4E	OEM PEI post memory initialization codes
0x80 - 0x8F	OEM DXE initialization codes
0xC0 - 0xCF	OEM BDS initialization codes