
european space research
and technology centre

esa
estec

ASIC/001
Issue 1
September 1994

VHDL Modelling Guidelines

Approved by

R. Creasey R. Coirault
Onboard Data Division Radio Frequency Systems Division

Prepared by P. Sinander

Onboard Data Division (WD)
Keplerlaan 1 - Noordwijk - The Netherlands

Mail address: Postbus 299 - 2200 AG Noordwijk - The Netherlands
Tel: +31-1719-83667 - Telex: 39098 - Cables: Spaceurop, Noordwijk - Fax: +31-1719-84295

2ASIC/001 Issue 1 european space agency

Table of contents

1 INTRODUCTION . 3
1.1 Purpose and scope . 3
1.2 Applicable Documents . 3
1.3 Reference Documents . 3

2 REQUIREMENTS FOR ALL KINDS OF MODELS 4
2.1 General . 4
2.2 Names . 5
2.3 Comments . 5
2.4 Types . 6
2.5 Files . 6
2.6 Signals and ports . 7
2.7 Assertions . 8
2.8 Subprograms, processes, entities, architectures, component declarations . 8
2.9 Configurations . 9
2.10 Packages . 9
2.11 Design libraries . 10
2.12 Constructs to be avoided . 10
2.13 Verification . 12
2.14 Format of deliverable items . 13

3 ADDITIONAL REQUIREMENTS . 14
3.1 Models for Component simulation . 14
3.1.1 Names . 14
3.1.2 Types . 14
3.1.3 Model interface . 15
3.2 Models for Board-level simulation . 16
3.2.1 Names . 17
3.2.2 Model interface . 17
3.2.3 Handling of unknown values . 17
3.2.4 Timing . 18
3.2.5 Verification . 19
3.3 Models for System-level simulation . 20
3.3.1 Model interface . 20
3.3.2 Verification . 20
3.4 Testbenches . 21
3.4.1 Automated verification . 21

APPENDIX A: ABBREVIATIONS . 22
APPENDIX B: COMMON ERRORS ENCOUNTERED 23
APPENDIX C: COMPATIBILITY BETWEEN VHDL-87 AND VHDL-93 . . . 24
APPENDIX D: VHDL CODE EXAMPLES . 25
APPENDIX E: SELECTION OF SIMULATION CONDITION 49

Copyright © 1995 European Space Agency. All rights reserved.
This document may be used and distributed without restrictions provided that this copyright statement is
retained and that any derivative work acknowledges the origin of the information.

3european space agency ASIC/001 Issue 1

1 INTRODUCTION

1.1 Purpose and scope

This document defines requirements on VHDL models and testbenches, and is intended
to be used as an applicable document for ESA developments involving VHDL
modelling. It is mainly focused on digital models; specific requirements for analog
modelling have not been covered.

The requirements concern simulation and documentation aspects of VHDL models
delivered to ESA; specific rules and guidelines for logic synthesis from VHDL have not
been included. Nevertheless, the requirements of this document are compatible with the
use of logic synthesis. The requirements are not applicable for the case when a design
database is transferred in VHDL format.

The purpose of these requirements is to ensure a high quality of the developed VHDL
models, so they can be efficiently used and maintained with a low effort throughout the
full life-cycle of the modelled hardware.

The requirements are based on the VHDL-93 standard, to minimise future maintenance
efforts for updating models. However, in an initial stage the models shall be backward
compatible with VHDL-87 as far as possible, since some tools will not be updated
immediately.

The requirements have been structured in a general part applicable to all VHDL models,
and additional requirements applicable to different kinds of models. In addition, VHDL
code examples and a list of common problems encountered have been included in order
to provide some guidance to the VHDL developer. If not stated which kind of model is
to be developed, the default kind is a model for Component simulation.

Requirements expressed in a Statement of Work or similar document have precedence
over this document.

1.2 Applicable Documents

AD1 IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993
AD2 IEEE Standard Multivalue Logic System for VHDL Model Interoperability

(std_logic_1164), IEEE Std 1164-1993

1.3 Reference Documents

RD1 IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1987
RD2 IEEE Standards Interpretations: IEEE Standard VHDL Language Reference

Manual, IEEE Std 1076/INT-1991

4ASIC/001 Issue 1 european space agency

2 REQUIREMENTS FOR ALL KINDS OF MODELS

2.1 General

The models shall be written in VHDL-93 as defined in AD1. All code shall be written
with the intent to be simulator independent (as far as possible, using all available
information); the use of non-standard constructs or supersets is not allowed. Note that
the code is not necessarily correct just because it compiles and executes on one
simulator without errors; many tools do not detect all possible errors (see further
appendix B). In case of ambiguities the interpretations in RD2 shall have precedence.

Unusual language constructs should be avoided, since this will reduce the clarity and
have a potential to stimulate bugs in other VHDL tools.

All models shall be compliant with VHDL-93 as defined in AD1. To allow backward
compatibility with VHDL-87 in an initial stage, the VHDL code shall as far as possible
also be compliant with RD1. The usage of the new features of VHDL-93 shall be agreed
with ESA before being introduced.

All documentation, identifiers, comments, messages, file names etc. shall use or be
based on the English language.

The code shall be consistent in writing style and naming conventions. The VHDL
reserved words shall appear in uniform casing; they shall either all appear in lower-case,
or all appear in upper-case. It is recommended to write identifiers using mixed casing.
Consistent casing shall be used in all the code.

The code shall be concise and use the most straightforward and intuitive constructs.
Using more code than necessary leads to poorer readability and lower simulation speed.
Wherever possible, unused parts of the code shall be removed. Temporary assignments
shall not be used unless necessary.

The code shall emphasize good readability. It shall contain maximum one statement per
line, and have maximum 80 characters per line. The code shall be properly indented, for
example using 3 space characters; the indentation shall be the same in all the code. The
TAB character shall not be used, being environment dependent. Related constructs should
be grouped together, and these groups should be separated e.g. using blank lines or lines
made of dashes where this increases the readability. Identifiers, comments etc. should
be aligned vertically where this improves the readability.

Automatically generated VHDL models, for example from schematics or from State
Machine diagrams, may be accepted subject to explicit ESA approval. To obtain such
approval, the contractor shall provide complete written information about any possible
non-compliancies w.r.t. the requirements before commencing the development, after
which ESA may grant the usage. If granted, all additional design documentation (e.g.
the schematics or the State Machine diagrams) should be delivered in addition to the
VHDL code itself. Automatically translated models, e.g. from Verilog, are generally not
acceptable, not fulfilling the requirements of this document.

5european space agency ASIC/001 Issue 1

2.2 Names

Meaningful non-cryptic identifier names shall be used, based on the English language.
The same identifier name as for the actual hardware and as in the data sheet or similar
documentation shall be used. For signals and variables that are active low, this shall be
clearly indicated by their name, for example by suffixing _N as in Reset_N. In case a
name would not be legal VHDL, it should be close to the original name and a comment
should be included for clarification. The VHDL-93 extended identifiers (any string
enclosed by two \ characters) may only be used in case ESA approval has been obtained
before commencing the development.

A name should indicate the purpose of the object and not its type. Example: an eight-bit
loadable counter used for addressing should be called AddressCounter (its purpose)
rather than CountLoad8 (its type).

The naming convention (e.g. how active low and internal signals are indicated, if
registers are indicated with a special suffix etc.) used should be documented in each file,
close to the signal declarations or in the file header.

It is recommended to write identifiers using mixed casing, with consistent casing in all
the code. It is recommended to use less than 15 characters in the normal case, though
the number of characters used for an identifier shall never exceed 28 due to an NFS
limitation for file names.

The VHDL name of the predefined identifiers, including the identifiers in the Std and
IEEE design libraries shall never be used for other identifiers. Note for example the
formfeed character FF and the Time unit Min.

2.3 Comments

The purpose of comments is to allow the function of a model, package or testbench to
be understood by a designer not involved in the development of the VHDL code.

All models shall be fully documented with explanatory comments in English. The
comments shall be placed close to the part of the code they describe; a description only
in the file header without comments in the executable part is not acceptable. All
comments shall be indented and aligned for good readability. The comments shall be
descriptive and not just direct translations or repetitions of the VHDL code.

Each file shall include a header, as a minimum containing the following information:
• Name of the design unit(s) in the file;
• File name;
• Purpose of the code, description of hardware modelled;
• Limitations to the model and known errors, if any, including any assumptions made;
• Design library where the code is intended to be compiled in;
• List of all analysis dependencies, if any;

6ASIC/001 Issue 1 european space agency

• Author(s) including full address;
• Simulator(s), simulator version(s) and platform(s) used;
• Change list, containing version numbers, author(s), the dates and a description of all

changes performed (as a minimum this list shall be updated for each delivery, in case
a change has taken place).

Each subprogram declaration, subprogram, process, block etc. shall be immediately
preceded by a description of its function, including any limitations and assumptions. For
subprograms, the parameters and result shall also be described.

For port and generic clauses in entity and component declarations, there shall be one
signal declaration per line, directly followed by a comment describing the signal.
Describing the signals in a group of comments separate from the declarations themselves
are not recommended, being likely to become inconsistent in case of modification.

Where functionality is represented by data, as for example microcode or a PLA fuse-
map program, the functionality shall be fully described. This applies regardless of the
data representation (e.g. hard-coded constants or read from an ASCII file).

2.4 Types

The leftmost bit of an array shall be the most significant, regardless of the bit ordering.
Example: In Bit_Vector(0 to 15), bit 0 is the Most Significant Bit (MSB), whereas in
Bit_Vector(15 downto 0), bit 0 is the Lest Significant Bit (LSB).

It is recommended to write the code so it is possible to change the type of a signal or
variable without changing the simulation behaviour. This implies:
• Avoid relying on default initialisation of a variable or a signal unless a reset policy

ensures that the model is initialised in an explicit way (typical for synthesizable
constructs);

• Avoid relying on the number of type values in a type declaration;
• Avoid dependencies on the order in the type declaration.

Real literals shall only be written in decimal format. Based literals shall only be
specified in base 2, 8, 10 or 16, and should not have an exponent. The use of underscore
characters in literals should be restricted to binary, octal and hexadecimal literals.
Hexadecimal literals shall be written using uppercase characters, for example 16#9ABC#.

2.5 Files

For portability reasons the only allowed file type is Std.Textio.Text. However, it should
be noted that there are still certain variances, such as (see further AD1 section 14.3):
• Line delimiters might not be readable, and therefore characters with a lower rank than

the space character should be avoided;
• Underline character(s) and/or an exponent may be absent or present when writing

values of the Integer, Real and Time types;
• The casing of the identifier when writing values of the Boolean type may vary.

7european space agency ASIC/001 Issue 1

Consequently, in case values of the Boolean, Integer, Real or Time types are written
using Std.TextIO, possible impact on the portability should be analyzed. The same
applies when characters with lower rank than the space character is read from a file.

The predefined file Std.TextIO.Input should be avoided, since its implementation on
different simulators varies. In particular, it shall never be used in testbenches for
automated verification, since this could preclude the verification to be performed using
a script. Also note that assertions may be output to the Std.TextIo.Output file by some
simulators, but not by all.

When data is to be read from a text file, e.g. for initialising a memory, the format of the
file shall be fully and clearly specified in the VHDL code implementing the reading
function. An example should also be included.

It is recommended to limit the number of characters per line in a file to be read to 80
characters. In any case, it shall never exceed 255 characters.

2.6 Signals and ports

The same name shall be used for a signal throughout all levels of the model, wherever
possible. In cases where exactly the same name cannot be used, e.g. when two identical
sub-components have been instantiated, names derived from the same base name should
be used.

The index ordering (i.e. using to or downto) of the model top-level entity port clause
signals shall be identical to the one used in the data sheet or similar documentation. It
is recommended to use the same index ordering in the whole model, but in case the
index order is reversed within the model, this shall be clearly marked every time the
index order is different w.r.t. the corresponding signal at the highest level of the
hierarchy.

The buffer mode shall never appear in the port clause of the model’s top-level entity
declaration.

The port clause signal declarations shall appear in a logical order. It is recommended
to order the signals in the port clause after their mode; first input signals, followed by
bi-directional signals and last output signals. Nevertheless the signals could be grouped
together according to their function, and within each such group according to their
mode. Port clauses shall be commented as specified in section 2.3.

Port maps for component instantiations shall use named association, unless all signals
in the component instantiation have the same (or derived) name as in the component
declaration. The same applies to generic maps where increasing the readability.

Duplicating a signal by assignment to another signal only to rename the signal, to allow
another port mode to be used or to perform a type conversion should only be used
where necessary or where clearly increasing the readability.

8ASIC/001 Issue 1 european space agency

2.7 Assertions

Assertions shall be used to report model errors, timing violations and when signals have
illegal or unknown values affecting the model behaviour. The following policy for
assigning severity levels is recommended:
• Failure: Errors in the model itself (e.g. if a statement believed to be non-

executable is actually executed);
• Error: Timing violations and invalid data affecting the state of the model,

including illegal combinations of mode signals and of control signals (e.g.
unknown data on a mode input or too short reset time);

• Warning: Timing violations and invalid data not affecting the state, but which could
affect the simulation behavior of the model (e.g. if data to be sent out
from an interface is invalid);

• Note: Essential information that is not classified in the other severity levels,
such as reporting from which text file data is read, which testbench is
executed, if an event is detected on an input signal whose function has
not been implemented (e.g. activation of production test) etc.

A model should not issue assertions for insignificant events, for example at start, during
reset or if an event has no impact on the simulation behavior. Neither should
unnecessary messages be generated, e.g. as reporting whether Worst Case or Best Case
timing has been selected.

The assertion report shall give a clear description of the reason for the assertion, and
shall include the hierarchical path to the instance or package, as well as identifying the
signal(s) where applicable. It is sufficient to report the hierarchical path relative to the
top-level entity of the model before VHDL-93 has been fully introduced (then the new
predefined attribute ’Instance_Name should be used).

Testbenches could use Std.TextIO.Output instead of assertions where advantageous.

2.8 Subprograms, processes, entities, architectures, component declarations

All processes shall be associated with a descriptive label. The same applies for other
concurrent statements where this will increase the readability.

A process with only one wait statement (e.g. typical for synthesizable processes) should
use a process sensitivity list instead of the wait statement, since this increases the
readability.

Wherever possible, all language constructs such as subprograms, package declarations
and bodies, entities, architectures and loop statements shall be qualified, i.e. the
identifier associated with the construct shall also appear at its end.

Procedures that modify signals or variables not passed as parameters in the procedure
call should be avoided. Nevertheless, in some cases such as testbenches, this technique
could actually increase the readability of the code. If used, it shall be clearly commented
which signals and variables can be modified by the procedure call.

9european space agency ASIC/001 Issue 1

The top-level entity should have the same name as the device or hardware modelled.
Declarations other than generic and port clauses should be avoided in an entity
declaration.

The identifier, port clause and generic clause of a component declaration shall be
identical (i.e. use the same identifiers and the same ordering) to the declarations in the
corresponding entity declaration.

2.9 Configurations

There shall be no configuration specifications within the architectures of the model
itself, since it would then not be possible to use another configuration without modifying
the source code.

A testbench should preferably use explicit configuration specifications within its
architecture.

2.10 Packages

Where possible, packages approved by the IEEE should be used rather than redeveloping
similar functionality, in order to reduce development cost as well as the number of
errors in the packages and to allow speed optimised versions to be provided with the
VHDL simulators. At the time of writing, only the IEEE.Std_Logic_1164 package has
been approved; in case a package to be approved by the IEEE is used before approval
it shall be placed in the same design library as the model itself.

Packages specific to a particular CAD tool should only be used after ESA approval
before commencing the development. In particular, any source code distribution
restrictions should be assessed.

The number of packages used by a model shall not be excessive. There shall be no
empty or almost empty packages, unless where this clearly increases code readability.
It is recommended to place VHDL code concerning different functionality areas in
different packages, e.g. all timing parameters in one package, all subprograms related
to timing in another etc. However, there should not be a separate package for each entity
where constants etc. used by that entity are defined.

The declarations in a package body shall appear in the same order as the corresponding
declarations in its package declaration.

The package declaration shall contain full documentation about the declared types,
constants, subprograms etc.

Each package containing one or more subprograms - except packages approved by the
IEEE - shall be separately and extensively verified as specified in section 2.13, using
a testbench allowing automated verification as described in section 3.4.1.

10ASIC/001 Issue 1 european space agency

2.11 Design libraries

The model design units shall be placed in a design library other than Work. This will
normally be a separate design library for each model, though families of devices, such
as 54-series logic or a collection of different memories, are preferably grouped together
in one design library.

This design library shall be named after the device, respectively the family, with the
suffix Lib appended. The top-level entity to be used for simulation shall have the same
name as the device. Example: a device XYZ should be placed in the library XYZ_Lib,
and should be used as XYZ_Lib.XYZ. It is recommended to consult ESA regarding the
name choice, to avoid the same name being used in different developments.

This design library shall contain all design units used by the model itself (including
packages), except for the packages in design library Std, the packages in the IEEE
design library (at the time of writing only Std_Logic_1164), and common packages used
by many different models. Whether a particular package is to be considered as common
is subject to ESA approval before commencing the development.

The testbench(es) used for the development and verification of the device shall be placed
in a design library different from the device design library, such as XYZ_TB_Lib or
Work. This design library should contain all hierarchical sub-components and packages
used, except the model to be tested (already being in a separate library) and standard
and common packages in the same way as above.

The IEEE design library shall not contain any other packages than those approved by
the IEEE. Neither shall these packages be modified or extended. At the time of writing
only the IEEE.Std_Logic_1164 package has been approved. Some CAD companies may
place own defined packages in the IEEE design library. In case such a package is used,
it shall be moved to the design library where it is used.

2.12 Constructs to be avoided

The VHDL code shall be fully deterministic when executed regardless of the simulator
used. This means for example:
• There shall be no communication between different parts of the model through files;
• Resolution functions shall always be commutative and associative;
• Shared variables (VHDL-93) shall only be used after justification and ESA approval

before commencing the development. It shall then be proven by analysis that the
usage is fully deterministic, which shall be documented;

• Care should be taken when using floating point values, especially conversion to and
from floating point values, comparisons between floating point values and events on
floating point values. Note that using pseudo-random test patterns is not portable if
the pseudo-random generator is using the Real type;

• The Std.TextIO portability limitations shall be avoided, see further section 2.5.
Refer to appendix C of AD1 for more information.

11european space agency ASIC/001 Issue 1

CAD tool specific types shall not be used. Features specific to an operating system, e.g.
the /dev/null file on Unix systems, should be avoided. Neither shall absolute paths be
used for filenames.

Objects with an implicitly declared index, for example a line returned from the
Std.TextIO.Read procedure for a string, shall never be used with absolute indexing.
Instead the predefined attributes for indexing, such as ’Left, shall be used. As a
consequence absolute indexing shall be used when declaring an object to be referenced
using an absolute index.

The dependence on implementation defined limitations, for example 32-bit limitations
on the Integer and Time types, shall be minimized. In particular, the model should not
encounter implementation defined limitations on Time as long as the simulated time does
not exceed the limitation.

Subprograms and components should not be renamed by encapsulating them with
subprograms or components with other names unless where clearly increasing the
readability.

Signals, variables, constants, subprograms or components shall not be hidden by
declaring another object with the same name (overloading is not considered as hiding,
and is encouraged where beneficial).

The predefined operators, subprograms, attributes etc. shall never be redefined. This
shall also apply to the packages in the IEEE design library. Neither shall similar
declarations using the same names be created.

Since the model shall be placed in another design library than Work, there shall be no
references to Work within the code for the model and its packages.

The constructs below are considered as obsolescent. Being not strictly necessary to use
for modelling, they should therefore not be used, unless otherwise agreed with ESA
before commencing the development:
• Guarded expressions, signals and assignments, including the reserved words bus,

disconnect, guarded, register;
• The linkage mode for interface declarations;
• The Allowed Replacement Characters defined in section 13.10 of AD1;
• The Std.TextIO.EndLine function, L’Length = 0 could be used instead (EndLine was

excluded from VHDL-87 being illegal VHDL);
• File types other than Std.TextIO.Text.

12ASIC/001 Issue 1 european space agency

2.13 Verification

The purpose of the verification shall be to verify that the developed model is correct,
with few or no errors being found. It shall not be a means to locate errors in the VHDL
code in order to patch them.

The verification shall be performed by somebody not involved in the creation of that
model or package, to avoid that a misunderstanding of the functionality is masked by
the same misunderstanding in the verification.

In case another simulation model is available, the VHDL model shall also be verified
versus this other model (regardless whether the other model is a VHDL model).

The verification shall solely be performed using VHDL testbenches as specified in
section 3.4, no simulator specific features or commands shall be used.

The verification shall encompass the full functionality, including all assertions and error
messages. As a minimum requirement every executable line of the model shall be
executed, which shall be proven and documented. The following guidelines shall apply:
• Only sequential and concurrent statements, excluding component instantiations and

block statements, shall be counted as executable (empty lines, comments,
declarations, specifications etc. shall not be counted);

• Statements that cannot be removed but can be shown to be non-executable should be
excluded. An example is the others choice in a State Machine decoding only
covering non-existing states. Wherever possible such statements shall be associated
with an assertion of severity level Failure reporting model failure;

• Only statements executed by a testbench verifying the complete model or a package
may be counted as executed; the coverage obtained when verifying a sub-component
of the model shall be disregarded;

• Only statements executed for the purpose of verifying the model versus the functional
requirements may be counted as executed. Statements included to implement
testability can nevertheless be counted, in case it can be shown that they are actually
used. Example: If a Built-In Self Test function happens to execute certain statements
in the model they should not be counted as executed, except for those included only
for the purpose of implementing this Built-In Self Test.

In addition, subprograms placed in packages shall be verified for all possible boundary
conditions and singularities. This shall include unknown and not initialized values, as
well as ascending, descending and invalid ranges, and null arrays. Each such package
(except IEEE approved packages) shall be fully verified by its corresponding separate
testbench.

The results shall be presented in a verification compliance matrix for each VHDL model
and package, clearly describing each test and its extent, when, how and by whom it was
performed and the result. Each separate test shall be presented together with the date of
verification and a signature. In addition, the results shall be summarised for each model,
clearly identifying any discrepancies from the specifications, including agreed
differences.

13european space agency ASIC/001 Issue 1

2.14 Format of deliverable items

All models and packages shall be delivered with their respective testbench(es) in
electronic format, using the two organisations specified below (both shall be delivered):

• Using separate files for each design unit or design unit pair (entity with
corresponding architecture, or package declaration with corresponding package body).
All design units shall be delivered, except from design library Std. Note that this
includes the IEEE.Std_Logic_1164 package and other common packages, if any;

• Using one file for the model design library, and one file for the testbench design
library. Each file shall contain all design units of the respective design library, as
specified in section 2.11, in the following order:
• Top-level entity;
• All packages;
• Remaining entities and architectures combined in pairs;
• The top-level architecture.
The headers of each design unit (pair) shall be included in the file. For a model, the
header of the file could be derived from the header of the top-level entity.

The files shall contain the design units in a correct compilation order. Each file shall
have the same name as the contained entity, package, configuration respectively design
library. If a file contains a separate architecture or package body, this should be
indicated in the filename by appending the architecture name respectively the word
body. VHDL files shall have a .vhd or a .vhdl suffix. The uniqueness of a filename shall
not depend on case sensitivity. Examples: An entity XYZ together with its architecture
Behavioral are together placed in the file xyz.vhd, or in the separate files xyz.vhd and
xyz.behavioral.vhd. The design library XYZ_Lib is placed in the file xyz_lib.vhd.

There shall be a script file for each design library which when executed compiles all the
separate files (design units or design unit pairs) of the design library. For models where
automated verification is required, a script file performing the full verification shall also
be delivered. The scripts shall be executable under a standard Unix sh or csh shell.

Any files associated with the code shall be delivered, such as files read by Std.TextIO.

In case automated verification is to be performed by writing an ASCII file to be
compared with a reference file, each such reference file shall be delivered. Each
reference file shall have the same name as the file written by the testbench, with the
recommended suffix .chk appended.

All files shall use the ASCII character representation (Unix ASCII).

Unless otherwise specified, the default delivery media for the files shall be QIC-150 tape
cartridges suitable for archive storage (high quality, not reused etc.), and it shall be
possible to restore the files on a Sun Sparc workstation using the tar command. The
contents (VHDL model, developer, issue, date) and the procedure to retrieve all
information shall be clearly indicated on the tape cartridge itself.

14ASIC/001 Issue 1 european space agency

3 ADDITIONAL REQUIREMENTS

3.1 Models for Component simulation

The main purpose of a model for component simulation is to be used for verification of
a component under development, before proceeding with the manufacture. This implies
that the model should exactly reflect the structure and functions of the underlying
hardware; accuracy being more important than simulation speed. The model shall have
correct timing characteristics, at least using estimated (e.g. pre-layout) values for timing
parameters.

The model need not be synthesizable, unless so specified. The model can be on the gate
level or on the Register Transfer level. Phenomena such as EMC, transmission line
effects etc. need not be modelled.

However, for some developments it is also specified that a model for board-level
simulation shall be developed. The same entity declarations shall then be used for both
models (i.e. the model for Component simulation will be represented by one
architecture, and the model for Board-level simulation by another architecture).

An accurate block diagram showing the relationship between different VHDL modules,
their input and output signals etc. shall be created. It is suggested not to mix structural
and behavioral descriptions within the same architecture.

3.1.1 Names

The model structure and naming convention shall be the same as for all other design
descriptions, including the Architectural Design Document, the Detailed Design
Document and the data sheet. It is recommended to use an architecture name reflecting
the level of the description, such as GateLevel or RTL for the architecture associated
with the top-level entity.

3.1.2 Types

The VHDL predefined types such as Bit, Bit_Vector, Boolean and Integer, together with
the types defined in the IEEE.Std_Logic_1164 package are preferred. For Finite State
Machines, the states could be represented by constants of type Bit_Vector or
Std_ULogic_Vector, or by enumerated types. Complex data types should be avoided
unless were beneficial.

15european space agency ASIC/001 Issue 1

3.1.3 Model interface

The preferred types for the model interface are Std_Logic and Std_Logic_Vector from
the IEEE.Std_Logic_1164 package for digital signals. The Bit and Bit_Vector types may
also be used, but no other types are allowed. In the case of analog signals, the Real type
is suggested.

Global signals shall not be used; all signals of the component shall be specified in the
top-level entity port clause, also including signals whose functions have not been
modelled, such as signals activating specific test modes etc. Power pins and unconnected
pins need not be included. The model interface should only include signals actually
present on the component.

It is recommended that the top-level entity declaration is not preceded by any other
library and use clauses than necessary for defining the interface signals
(IEEE.Std_Logic_1164) and the timing (e.g. the Vital_Timing package). No user-defined
subtypes should be used in the port clause.

16ASIC/001 Issue 1 european space agency

3.2 Models for Board-level simulation

The main purpose of a model for Board-level simulation is to be used for the
verification of a board using the component, normally together with several other
components. This can be seen as the simulation version of breadboarding. This implies
that the model must have acceptable simulation speed, but only need to model the
functionality possibly affecting the board and the other models. The model should be on
the Register Transfer level or higher, a gate level netlist is not acceptable. The model
need necessarily not reflect the actual internal structure of the component.

The model behaviour shall include the full functionality, though specific test modes only
used during manufacturing test need not be implemented (activation should be reported
as specified in section 2.7). The interface signals shall have the correct digital waveform
behavior as can be observed at the interfaces of the components. Timing shall be
modelled for the interface, including checking violations on inputs and assigning output
delays.

The model shall be coded for efficient simulation w.r.t. simulation time. This implies
that the number of processes, signals and signal assignments shall be minimized, due to
their negative impact on the simulation speed. There should not be more design entities
than there are blocks in the architectural block diagram. Where possible variables should
be used instead of signals. Resolved signals should be avoided where not functional. By
using types on higher abstraction levels - e.g. Integer instead of Bit_Vector - models
with higher simulation speed will be obtained in most cases. It should be avoided to
execute statement when not necessary.

The memory usage shall be optimised when necessary, e.g. when modelling memory
devices, since otherwise simulation could be impossible due to the memory requirements
of the simulator. One technique could be to divide the memory area into a number of
blocks, which would be allocated only when used.

It is suggested to model the timing and handling of unknowns in the top-level
architecture.

The model should avoid reading files, since this complicates model distribution and
usage.

Each model shall be delivered with a full configuration declaration for the top-level
entity, explicitly binding all entities and architectures of the model.

An accurate block diagram showing the relationship between different VHDL modules,
their input and output signals etc. shall be created.

A User’s Manual shall be written, allowing a Board-level designer not involved in the
development activity to efficiently use the developed VHDL models to perform Board-
level simulation at a later stage, without needing the VHDL source code.

17european space agency ASIC/001 Issue 1

3.2.1 Names

The model naming convention shall be the same as for all other design descriptions, and
especially the data sheet. Unless otherwise agreed with ESA, the architecture associated
with the top-level entity should be named BoardLevel.

3.2.2 Model interface

The types used for the model interface shall be Std_Logic and Std_Logic_Vector from
the IEEE.Std_Logic_1164 package, no other types are allowed for digital signals. In the
case of analog signals, the Real type is suggested.

Pull-up and pull-down on inputs and outputs shall be correctly modelled; the
IEEE.Std_Logic_1164 values ’L’ and ’H’ on an input shall result in the same simulation
response as the values ’0’ and ’1’, respectively. The IEEE.Std_Logic_1164 values ’L’,
’H’ and ’W’ shall only appear on outputs having weak drivers for those states.

Global signals shall not be used; all signals of the component shall be specified in the
top-level entity port clause, also including signals whose functions have not been
modelled, such as signals activating specific test modes etc. Power pins and unconnected
pins need not be included. The model interface shall only include signals actually
present on the component.

The top-level entity declaration should not be preceded by any other library and use
clauses than necessary for defining the interface signals and the timing. No user-defined
subtypes shall be used in the port clause.

3.2.3 Handling of unknown values

Unless otherwise specified, handling of unknown values (X-handling) may be limited
to only reporting the offending values using assertions. If propagation of unknown
values is implemented, it should only apply to data not affecting the state of the model;
there should be no propagation on control signals or mode signals affecting the model
state. In all cases assertions shall be issued for unknown values that would affect the
simulation behaviour (on all inputs); insignificant occurrences should not be reported.

The handling of unknown values should be documented in the header of the top-level
entity as well as in the User’s Manual.

The IEEE.Std_Logic_1164 values ’U’, ’Z’, ’W’ and ’-’ on an input shall result in the
same simulation response as the value ’X’, though propagation of the un-initialised value
’U’ should be considered for combinational functionality and low complexity devices.
Models that have not been initialized, as well as parts thereof, should produce the
IEEE.Std_Logic_1164 value ’U’ when accessed. The ’-’ value shall never appear on an
output.

18ASIC/001 Issue 1 european space agency

3.2.4 Timing

All inputs shall be checked w.r.t. period, pulse width, setup time and hold time as
applicable, and all significant violations reported using assertions. Violations that would
not affect the simulation behaviour should not be reported. All outputs shall be assigned
output delays, including tristate modelling. The timing shall be correctly modelled w.r.t.
the internal or external signals generating the change of the signal.

All timing parameters shall have the simulation condition selectable between Worst
Case, Typical Case or Best Case timing, controlled by a generic parameter SimCondition
of type SimConditionType defined in the package ESA.Simulation (see appendix E), with
the default simulation condition being Worst Case. The simulation conditions for CMOS
processes are defined as follows:
• Worst Case: The timing at the lowest voltage (e.g. 4.5 Volt), highest

temperature (e.g. 125 °C) and slowest process characteristics;
• Typical Case: The timing at the nominal voltage (e.g. 5.0 Volt), temperature

(e.g. 25 °C) and process characteristics;
• Best Case: The timing at the highest voltage (e.g. 5.5 Volt), lowest

temperature (e.g. -55 °C) and fastest process characteristics.

The values of the timing parameters shall be specified in a separate package as deferred
constants, allowing the values to be changed by only recompiling the package body.
This package shall be named after the component name with the suffix Timing
appended, as in XYZ_Timing. The data sheet timing parameter names shall be clearly
indicated for each timing parameter.

The timing parameters shall be updated with accurate values after final layout and
manufacture. The values shall be taken from the component data sheet. If all values are
not available, the designer or manufacturer should be contacted for advice. In case no
information can be obtained, suitable values should be established in consultation with
ESA. The timing parameters shall be specified including an appropriate loading, which
should be specified in the timing package, in the header for the top-level entity and in
the User’s Manual.

As a baseline, timing parameters should be given in an integer number of ns in order
to avoid simulation time limitations, with values rounded in a pessimistic way.

The model shall allow timing check disabling, controlled by a generic parameter
TimingChecksOn of type Boolean declared in the top-level entity declaration. When
TimingChecksOn has the value False no timing checks shall be performed. The default
value shall be False. The implementation shall ensure minimum simulation time penalty
when timing checks are disabled.

When the packages implementing the Vital Model Development Specification have been
approved by the IEEE, it is recommended to use them for checking and reporting setup
and hold times etc. In this case it is allowed that the severity level for timing violations
are all Error (as implemented in the Vital subprograms). The types defined therein may
also be used. In case a package is used before IEEE approval, it should be placed in the
same library as the model itself.

19european space agency ASIC/001 Issue 1

Timing parameters should use names compliant with the Vital Model Development
Specification, which could allow back-annotation on the board-level to be performed
using the Standard Delay File (SDF) format in the future, or alternatively the same
names as in the data sheet should be used. Vital-compliant naming for some types of
timing parameters has been listed below:
• tpd_<OutPort> Propagation delay applicable to all delay paths for the output <OutPort>;
• tpd_<InPort>_<OutPort> Propagation delay only applicable to the specified Input-to-Output delay

path;
• tsetup_<InPort> Setup time for the input <InPort> w.r.t. any clock;
• tsetup_<InPort>_<ClkPort> Setup time for the input <InPort> w.r.t. the clock signal <ClkPort>;
• thold_<InPort> Hold time for the input <InPort> w.r.t. any clock;
• thold_<InPort>_<ClkPort> Hold time for the input <InPort> w.r.t. the clock signal <ClkPort>;
• tperiod_min_<ClkPort> Minimum allowable period time for <ClkPort>;
• tperiod_max_<ClkPort> Maximum allowable period time for <ClkPort>;
• tpw_hi_min_<InPort> Minimum pulse width for a high value at the input <InPort>;
• tpw_hi_max_<InPort> Maximum pulse width for a high value at the input <InPort>;
• tpw_lo_min_<InPort> Minimum pulse width for a low value at the input <InPort>;
• tpw_lo_max_<InPort> Maximum pulse width for a low value at the input <InPort>.

It is recommended to only report timing violations, and not to generate unknown values.
In case generation of unknown values is implemented, a generic parameter
XGenerationOn of type Boolean should be declared in the generic clause of the top-level
entity. When XGenerationOn has the value False timing violations should not lead to
unknown values being generated. The default value should be False.

It is not required to check timing violations for changes between similar logic levels
(e.g. ’0’ and ’L’, ’1’ and ’H’); to differentiate delays for falling and rising signals or to
assign separate delay values for each element of a Std_Logic_Vector. Neither is it
required to proportionally model loading, temperature, voltage or radiation impact on the
timing parameters.

Optional: In case more detailed timing modelling is desired, such as differentiating
delays for rising and falling edges, assigning separate delays for each element of a
vector or providing wire-load delays for the inputs, it is recommended to be compliant
with the requirements for a Vital level 0 model. The same applies in case it is desired
that the timing parameters appear in the generic clause of the top-level entity to allow
easy modification of the timing on a per-instance basis.

3.2.5 Verification

The verification shall be performed using a testbench allowing automated verification
as described in section 3.4.1. The verification shall include assigning all nine values of
the Std_Logic type to each input (including inout ports), and to produce timing
violations on each input.

20ASIC/001 Issue 1 european space agency

3.3 Models for System-level simulation

The main purpose of a model for system-level simulation is to provide the functionality
of a board, a subsystem, an algorithm or a protocol, with a simulation speed allowing
trade-offs to be performed. No similarity with any hardware is necessary, as long as the
desired functionality is achieved. The behaviour may be approximated w.r.t. details such
as timing aspects, exactly which clock cycle an event occurs, the exact numerical value
of a result etc.

The model shall be coded for efficient simulation, not to slow down simulations. This
implies that the number of entities, processes, signals and signal assignments shall be
minimized, due to their negative impact on the simulation speed. Where possible,
variables should be used instead of signals. Resolved signals should only be used when
advantageous. By using types on higher abstraction levels - e.g. Integer instead of
Bit_Vector - models with higher simulation speed will be obtained in most cases. It
should be avoided to execute statement when not necessary.

The memory usage shall be optimised when necessary, e.g. when modelling memory
devices, since otherwise simulation could be impossible due to the memory requirements
of the simulator. One technique could be to divide the memory area into a number of
blocks, which would be allocated only when used.

3.3.1 Model interface

The model interface should use the types most suitable for the intended usage of the
model, be that IEEE.Std_Logic_1164 types (e.g. if a electronic board is modelled) or
more abstract types (e.g. if a protocol is modelled).

3.3.2 Verification

Unless otherwise specified, the verification should be performed using a testbench
allowing automated verification as described in section 3.4.1.

21european space agency ASIC/001 Issue 1

3.4 Testbenches

The purpose of a testbench is to verify the functionality of a developed model or
package. A testbench shall be a distinct design unit separated from the model or package
to be verified, placed in a design library separate from the model itself.

If the testbench incorporates models of components surrounding the model to be tested,
they need only to incorporate functions and interfaces required to properly operate with
the model under test; it is not necessary to develop complete VHDL models of them.
If external stimuli or configuration data is required, it shall be implemented by reading
an ASCII file using the Std.TextIO package in order to ensure portability.

Every testbench shall stop by itself when the test has been completed, in order to allow
the verification to be done using a script, independent of the simulator used.

The root entity shall neither have port nor generic clauses, being potentially not portable.

If several testbenches are used for the verification of a package or a model, no re-
compilation shall be necessary in order to perform the complete verification. Neither
shall it be necessary to copy any files (or create soft links) used by the testbenches or
the model.

If several testbenches are used it is recommended to place the component declaration(s),
some signal declarations etc. in a package instead of including them in each testbench.

3.4.1 Automated verification

All testbenches for models for Board-level simulation, for models for System-level
simulation and for packages containing subprograms should allow automated verification
to be performed. Automated verification allows a reduction of the future maintenance
effort, such as verification of the model operation on a different simulator, platform or
operating system. Since it enables fast and reliable verification of a model when
modifications have been introduced, it is recommended for all types of models.

The verification of error messages and timing parameters can be difficult due to
assertions, and may therefore be performed without using automated verification.

The recommended approach is to write testbenches that are self-checking, reporting
success or failure for each sub-test. Alternatively, and subject to ESA approval before
commencing the development, a testbench could write all values of the signals generated
by the model together with time stamps to a text file, which could be verified separately
for example by using the Unix diff utility. In case a specific program is needed for the
file comparison, it shall be delivered in compiled form together with the fully
documented source code in the C language. Care should be taken with non-portable
issues of Std.TextIO, see section 2.5.

22ASIC/001 Issue 1 european space agency

APPENDIX A: ABBREVIATIONS

ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
CAD Computer Aided Design
EIA Electronic Industries Association
EMC Electro Magnetic Compatibility
e.g. exempli gratia (Latin: for example)
etc. et cetera
ESA European Space Agency
i.e. id est (Latin: that is; in other words)
IEEE Institute of Electrical and Electronics Engineers
LSB Least Significant Bit
MSB Most Significant Bit
NFS Network File System
PLA Programmable Logic Array
QIC Quarter Inch Cartridge
RTL Register Transfer Logic
SDF Standard Delay File
std standard
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VITAL VHDL Initiative Towards ASIC Libraries
w.r.t. with respect to

23european space agency ASIC/001 Issue 1

APPENDIX B: COMMON ERRORS ENCOUNTERED

This appendix contains examples of some common errors concerning the VHDL syntax
and semantics found in some of the VHDL models delivered to ESA. Before delivering
any VHDL code, it should be verified w.r.t. these error types in order to avoid the
model being immediately rejected for example due to compilation errors.

B.1 Inconsistent subprogram declarations

The subprogram declaration in a package declaration must be identical to the
subprogram declaration in the package body, e.g. whenever any of the mode indicators
in, out, inout or buffer appear in one declaration they must appear exactly at the same
position in the other declaration. This also applies for default expressions in the
declarations.

B.2 Brackets around case statement expression

The following code is illegal if BV is a Bit_Vector, due to the brackets around the
expression:

case (BV) is
when others => null;

end case;

B.3 Time limitation encountered at time 0

It shall be ensured that the model does not execute constructs requiring higher resolution
than 32 bits on the Time type at time 0 or for short simulation times.

B.4 Subtype assigned value outside subtype range

A variable or a signal of a subtype shall not be assigned a value outside the range of
that subtype. The following code fragment is illegal in case UX01 is the subtype defined
in the IEEE.Std_Logic_1164 package, which can only take the values ’U’, ’X’, ’0’ and
’1’:

signal OneSignal: UX01 := ’Z’;

B.5 No range check on values of type Integer and Time

Some simulators do not implement range check on the Integer and Time types; instead
of reporting a run-time error the value is wrapped around (e.g. Time’Low - 1 gives
Time’High).

24ASIC/001 Issue 1 european space agency

APPENDIX C: COMPATIBILITY BETWEEN VHDL-87 AND VHDL-93

Note: this appendix contains only a limited set of compatibility issues.

In case it has been agreed to start a VHDL model development using the VHDL-87
standard instead of the VHDL-93 standard, the code shall be written so as to require
minimal modifications when updating to VHDL-93. As an example, the following
identifiers shall not be used, being reserved words in VHDL-93:

group, impure, inertial, literal, postponed, pure, reject, rol, ror, shared, sla, sll,
sra, srl, unaffected, xnor

The predefined attributes ’Behavior and ’Structure shall not be used, being removed
from the VHDL-93 standard.

The constructs for handling files, including the Std.TextIO package, are different for
VHDL-93 compared to VHDL-87. Therefore shall the code involving file handling be
written considering a future update; these constructs should be concentrated to as few
places in the code as possible, and clearly commented.

25european space agency ASIC/001 Issue 1

APPENDIX D: VHDL CODE EXAMPLES

This appendix is included as a guidance for VHDL model developers. In case of
discrepancies, the requirements have precedence over the examples. The code is
provided as is, no functionality is guaranteed.

D.1 VHDL constructs

This section contains code fragments of various VHDL constructs. It is not exhaustive,
but contains a sufficient set of constructs to create most types of models. The code
fragments have not necessarily been fully commented.

D.1.1 Entity declaration

entity ABC is
generic(SimCondition: SimConditionType := WorstCase);

port(
Clk: in Bit; -- Clock signal
Reset_N: in Bit; -- Asynchronous Reset
In1: in Bit; -- Input 1
In2: in Bit_Vector(1 downto 0); -- Input 2

Out1: out Bit_Vector(7 downto 0)); -- Output, bit 0 is LSB
end ABC;

D.1.2 Architecture body

architecture RTL of ABC is

-- Declarations, such as type declarations, constant declarations,
-- subprograms, component declarations, signal declarations etc.

begin -- Architecture RTL of ABC

-- Concurrent statements, e.g. processes, signal assignments and
-- component instantiations

end RTL;

26ASIC/001 Issue 1 european space agency

D.1.3 Configuration declaration

This configuration configures the components used to design the TMEncoder design,
which is a board with ten components.

configuration TMEncoderConfig of TMEncoder is

for Structural
for VCA0, VCA1, VCA2, VCA7: VCA

use configuration VCA_Lib.VCA_Config;
end for;

for SRAM0, SRAM1, SRAM2, SRAM7: SRAM
use entity Mem_Lib.MA9264(BoardLevel);

end for;

for VCM1: VCM
use configuration VCM_Lib.VCM_Config;

end for;

for MA1916_1: MA1916
use configuration MA1916_Lib.MA1916_Config;

end for;
end for;

end TMEncoderConfig;

D.1.4 Package declaration

package TCSuiteDef is

-- Declarations of (deferred) constants, types, files, subprograms,
-- components etc. For example:

subtype Byte is Bit_Vector(0 to 7); -- Bit 0 is MSB
subtype Word16 is Bit_Vector(0 to 15); -- Bit 0 is MSB

type ByteArray is array(Integer range <>) of Byte;
type TailErrorType is (All5s, -- Normal Tail (55555...)

SingleFill, -- Single error + Fill bit
Double, -- Double error
DoubleFill); -- Double error + Fill bit

constant CrcPoly: Bit_Vector := X"1021"; -- x16 + x12 + x5 + 1
constant InitCrc: Bit_Vector := X"FFFF"; -- Init. to all ones

--
-- The AddCrc function calculates the CCSDS CRC (syndrome x16 +
-- x12 + x5 + 1, register initiated to all ones before each data)
-- over an array of bytes, and appends the calculated CRC.
-- Data is an unconstrained array of bytes, and the result is of
-- the same type, with the length increased by 2 (for the CRC).
--
function AddCrc(Data: ByteArray) return ByteArray;

-- Description of subprogram function and parameters
procedure ADFrame(NR: Byte;

Segment: inout ByteArray;
signal TCOut: out Bit);

end TCSuiteDef;

27european space agency ASIC/001 Issue 1

D.1.5 Package body

package body TCSuiteDef is

-- Declarations of subprograms, deferred constants etc., in the same
-- order as they appeared in the package declaration.
-- Also declaration of objects not visible outside the package body.

end TCSuiteDef;

D.1.6 Component declaration

component ABC
generic(SimCondition: SimConditionType := WorstCase);

port(
Clk: in Bit; -- Clock signal
Reset_N: in Bit; -- Asynchronous Reset
In1: in Bit; -- Input 1
In2: in Bit_Vector(1 downto 0); -- Input 2

Out1: out Bit_Vector(7 downto 0)); -- Output
end component;

D.1.7 Component instantiation

In case all signals outside and inside the component have the same name, positional
association could be used instead of named association.

U1: ABC
generic map(SimCondition => BestCase)

port map(
Clk => Clk,
Reset_N => Reset_N,
In1 => DataIn1,
In2 => BaudRate,

Out1 => DataBusA);

D.1.8 Procedure declaration and body

-- Description of subprogram function and parameters
procedure ADFrame(NR: Byte;

Segment: inout ByteArray;
signal TCOut: out Bit) is

begin

-- Sequential statements

end ADFrame;

28ASIC/001 Issue 1 european space agency

D.1.9 Function declaration and body

--
-- The AddCrc function calculates the CCSDS CRC (syndrome x16 +
-- x12 + x5 + 1, register initiated to all ones before each data)
-- over an array of bytes, and appends the calculated CRC.
-- Data is an unconstrained array of bytes, and the result is of
-- the same type, with the length increased by 2 (for the CRC).
--
function AddCrc(Data: ByteArray) return ByteArray is

variable Crc: Word16 := InitCRC;
variable Xor1: Bit;
variable Result: ByteArray(0 to (Data’Length + 1));

begin
-- Calculate the CRC over all the data
EachByte: for i in Data’Range loop

EachBit: for BitNo in Byte’Range loop
Xor1 := Crc(0) xor Data(i)(BitNo);
Crc := Crc(1 TO 15) & ’0’; -- Shift left 1 bit
if Xor1 = ’1’ then

Crc := Crc xor CRCPoly;
end if;

end loop EachBit;
end loop EachByte;

-- Add the CRC after the data
Result(0 to Result’High - 2) := Data;
Result(Result’High - 1) := Crc(0 TO 7);
Result(Result’High) := Crc(8 TO 15);

return Result;
end AddCrc;

D.1.10 Signal assignment

Reset_N <= ’0’,
’1’ after 79 ns,
’0’ after 10491 ns,
’1’ after 10627 ns;

D <= DOut after Tpd_D when DEnable = ’1’ else
"ZZZZZZZZ" after Tpd_D;

D.1.11 Process statement

-- Process header

SyncRxIn: process(Clk, Reset_N) -- Rx synchronizer
begin

if Reset_N = ’0’ then -- Asynchronous reset
RxInSync <= ’1’;

elsif Clk’Event and Clk = ’1’ then -- Rising Clk edge
RxInSync <= RxIn;

end if;
end process SyncRxIn;

29european space agency ASIC/001 Issue 1

D.1.12 If statement

if RxInSync = ’1’ and RxReg(0) = ’0’ then -- Wait for start bit
BaudCount := 0;

elsif (BaudRate = Baud1200 and BaudCount >= Count1200) or
(BaudRate = Baud9600 and BaudCount >= Count9600) then

BaudCount := 0;
else

BaudCount := BaudCount + 1;
end if;

D.1.13 Case statement

case TailError is
when All5s => -- Normal tail sequence

Result := EndCB;
when SingleFill => -- Set filler bit

Result := Data;
Result(7)(7) := ’1’; -- Set filler bit

when Double | DoubleFill => -- Double error
Result := InjectError(Data);
if TailError = DoubleFill then

Result(7)(7) := ’1’; -- Set filler bit
end if;

when others => -- No action
null;

end case;

D.1.14 Loop statement

EachByte: for i in Data’Range loop

-- Statements to be executed in the loop

end loop EachByte;

D.1.15 Assertion statement

Note that when VHDL-93 has been fully introduced, the new predefined attribute
’Instance_Name should be used to report the full instantiation path.

assert (TestMode = ’0’)
report InstancePath & ": Non-implemented test mode activated"
severity Note;

30ASIC/001 Issue 1 european space agency

D.2 Complete examples

D.2.1 RS-232 VHDL receiver

This example is representative for one module of a larger component (called XYZ). The
model is synthesizable with a complexity of about 400 equivalent gates. It is however
efficiently and concisely coded to be acceptable as a model for Board-level simulation
though timing checks and output delays have not been modelled here.

--==--
-- Design units : RS232_Receive(RTL) (Entity and architecture)
--
-- File name : rs232_receive.vhd
--
-- Purpose : The module receives a serial RS-232 bit stream. The
-- bit stream should contain 1 start bit (’0’), 8 data
-- bits and finally 2 stop bits (’1’). The baud rate
-- is selectable to 1200, 2400, 4800 or 9600. The last
-- received data is output in 8-bit parallel format.
--
-- Note : This model can be synthesized by Synopsys VHDL
-- Compiler and Mentor AutoLogic VHDL.
--
-- Limitations : The baud rates have been approximated in order to
-- allow a simpler implementation. A Clk frequency of
-- 10 MHz is assumed.
--
-- Errors: : None known
--
-- Library : XYZ_Lib
--
-- Dependencies : None
--
-- Author : Peter Sinander
-- ESTEC Onboard Data Division (WD)
-- P.O. Box 299
-- 2200 AG Noordwijk
-- The Netherlands
--
-- Simulator : Synopsys v. 3.0c, on Sun Sparcstation 10, SunOS 4.1.3
--
-- Revision list
-- Version Author Date Changes
--
-- 1.0 PSI 4 Mar 94 New version
-- 2.0 PSI 10 May 94 Baudrate index changed to descending;
-- Constants introduced for baud count;
-- Header and comments modified.
--

-- Naming convention: Active low signals are indicated by "_N",
-- synchronized signals are indicated by "Sync".

entity RS232_Receive is
port(

Clk: in Bit; -- Clock, nominally 10 MHz
Reset_N: in Bit; -- Asynchronous Reset
RxIn: in Bit; -- Serial data in
BaudRate: in Bit_Vector(1 downto 0); -- Bit rate selection

RxOut: out Bit_Vector(7 downto 0)); -- Last received data,
end RS232_Receive; -- Bit 0 is LSB

31european space agency ASIC/001 Issue 1

--=========================== ARCHITECTURE ===========================--

architecture RTL of RS232_Receive is

-- These constant would normally be placed in a package defining all
-- constants and subprograms used by the design, but in this
-- example they have been placed here.
constant Baud1200: Bit_Vector := "00"; -- Baud selections
constant Baud2400: Bit_Vector := "01";
constant Baud4800: Bit_Vector := "10";
constant Baud9600: Bit_Vector := "11";

constant Count1200: Integer := 4096; -- End count values
constant Count2400: Integer := 2048;
constant Count4800: Integer := 1024;
constant Count9600: Integer := 512;

constant InitRxReg: Bit_Vector := "1111111110"; -- Init. pattern

signal RxInSync: Bit; -- Synchronised Rx

begin -- Architecture RTL of RS232_Receive

-- Input serial data is synchronized with Clk to protect against
-- meta-stability. This process could be merged with the Rs232
-- process in order to increase the simulation performance (it was
-- written separately here for the cause of clarity).

SyncRxIn: process (Clk, Reset_N)
begin

if Reset_N = ’0’ then -- Asynchron. reset
RxInSync <= ’1’;

elsif Clk’Event and Clk = ’1’ then -- Rising Clk edge
RxInSync <= RxIn;

end if;
end process SyncRxIn;

-- The Rs232 process contains a counter which toggles the Sample
-- signal two times per bit period. The rising edge of Sample (which
-- occurs in the middle of the input bit) is synchronously detected
-- by comparing it to DelaySample (the Sample signal delayed one Clk
-- cycle); at this time the data bit is clocked into the shift
-- register.
--
-- The State machine controlling the shift register has been merged
-- with the shift register itself. When the last bit - RxReg(0) - is
-- 0 the retrieval cycle has completed and the process is waiting
-- for the next start bit. When a start bit is detected, the counter
-- starts incrementing, at each sample time shifting in one data bit
-- (a start bit shorter than a half bit period will have no impact).
-- When the start bit, which is ’0’, reaches RxReg(0) the data is
-- copied to the output, and the process will wait for the next start
-- bit.

Rs232: process (Clk, Reset_N)

variable BaudCount: Integer range 0 to 8191; -- 13 bit counter
variable Sample: Bit; -- For bit sample
variable DelaySample: Bit; -- To detect edge
variable RxReg: Bit_Vector(9 downto 0); -- 10 bit shift

-- register

32ASIC/001 Issue 1 european space agency

begin
if Reset_N = ’0’ then -- Asynchron. reset,

BaudCount := 0; -- initialize all
Sample := ’0’; -- values
DelaySample := ’0’;
RxReg := InitRxReg;
RxOut <= X"00";

elsif Clk’Event and Clk = ’1’ then -- Rising Clk edge
-- Wait for RxInSync to be 0, i.e. the start bit in the serial
-- input stream.
if RxInSync = ’1’ and RxReg(0) = ’0’ then

-- Waiting for the start bit; initialise values
BaudCount := 0;
Sample := ’0’;
RxReg := InitRxReg;

elsif (BaudRate = Baud1200 and BaudCount >= Count1200) or
(BaudRate = Baud2400 and BaudCount >= Count2400) or
(BaudRate = Baud4800 and BaudCount >= Count4800) or
(BaudRate = Baud9600 and BaudCount >= Count9600) then

-- The counter has reached half a bit period (assuming that
-- Clk runs at 10 MHz); reset counter and toggle the Sample
-- signal (the exact bit rates are 1220, 2441, 4882 & 9765)
BaudCount := 0;
Sample := not Sample;

else -- RxInSync = ’0’ or RxReg(0) = ’1’
BaudCount := BaudCount + 1;

end if;

if Sample = ’1’ and DelaySample = ’0’ then
-- Rising Sample edge; shift in one data bit
RxReg := RxInSync & RxReg(9 downto 1);

if RxReg(0) = ’0’ and RxReg(8) = ’1’ and RxReg(9) = ’1’ then
-- Last bit acquired, copy data to output if stop
-- bits are both ’1’
RxOut <= RxReg(8 downto 1);

end if;
end if;

-- Sample delayed one Clk
DelaySample := Sample;

end if;
end process Rs232;

end RTL; --=========== End of RS232_Receive(RTL) =====================--

33european space agency ASIC/001 Issue 1

D.2.2 VHDL model for Board-level simulation

This is an example showing the principle of a VHDL model for board-level simulation.
All design units have been included, except the package defining the sub-programs for
timing checks:
• ExampleDefinition: Defines constants, functions and conversion functions;
• ExampleTiming: Defines the timing parameters as deferred constants;
• ExampleCore: The functional core, written for high simulation efficiency

(most of the code in one process), and with an interesting
implementation of the reset functionality;

• Example: The top-level entity/architecture, with signal strength
stripping and the timing implementation.

The margins have been extended in order to allow 80 characters per line.

--==--
-- Design units : ExampleDefinition (Package declaration and body)
--
-- File name : exampledefinition.vhd
--
-- Purpose : Package defining constants and functions for the Example.
-- Defines constants and types for the functions as implemented
-- by the Example.
-- Defines conversion functions/procedures.
--
-- Limitations : None
--
-- Errors: : None known
--
-- Library : Example_Lib
--
-- Dependencies : IEEE.Std_Logic_1164
--
-- Author : Peter Sinander
-- ESTEC Onboard Data Division (WD)
-- P.O. Box 299
-- 2200 AG Noordwijk
-- The Netherlands
--
-- Simulator : Synopsys v. 3.0c, on Sun Sparcstation 10, SunOS 4.1.3
--
-- Revision list
-- Version Author Date Changes
--
-- 1.0 PSI 1 Sep 94 New version
--

library IEEE;
use IEEE.Std_Logic_1164.all;

package ExampleDefinition is

-- Definition of common Std_ULogic vector sizes
-- Note: Bit 0 is the MSB

subtype Std_Byte is Std_ULogic_Vector(0 to 7);
subtype Std_Word16 is Std_ULogic_Vector(0 to 15);
subtype Std_Word32 is Std_ULogic_Vector(0 to 31);

34ASIC/001 Issue 1 european space agency

-- Definition of the fixed part of the preamble

constant FixPreamble: Std_Word32 := To_StdULogicVector(X"89_AB_CD_EF");

-- Constant fixed field of the preamble

constant FixedField: Std_ULogic_Vector := "00";

-- Length of preamble
-- Position of the Line Count field after the preamble

constant PreambleLen: Integer := FixPreamble’Length + 8;
constant LineCountEnd: Integer := PreambleLen + 8;

-- Number Clk cycles for the Built In Self Test, BIST, and time after reset
-- when no BIST is running

constant BistClks: Integer := 16384;
constant NoBistClks: Integer := 1;

-- Number of entries in the memory
-- Definition of Mem type

constant MemSize: Integer := 255;
type MemType is array(0 to MemSize-1) of Integer range 0 to 255;

-- Calculation of Valid and FSM lengths
-- Valid is 1200, 2400, 4800 or 9600 depending on Mode
-- FSM is same as Valid, plus a gap of 400 system clocks between data bursts
-- when LowSpeed is 1

function CalcValidLength(Mode: Std_ULogic_Vector(0 to 1))

return Integer;

function CalcFSMLength (Mode: Std_ULogic_Vector(0 to 1);
LowSpeed: Std_ULogic)
return Integer;

-- Converts Natural to Std_ULogic_Vector of length Len
-- Leftmost bit is most significant

function To_StdULogicVector(I: Natural;

Len: Positive)
return Std_ULogic_Vector;

-- Converts unsigned Std_ULogic_Vector to Natural
-- Leftmost bit is most significant
-- No warning for unknowns (U, X, W, Z, -), they are converted to 0
-- Verifies whether vector is too long (> 31 bits)

function To_Integer(V: Std_ULogic_Vector)

return Natural;

-- Wrap-around addition between two Std_ULogic_Vectors of the same length
-- Leftmost bit is most significant
-- Verifies whether both vectors have the same length

function "+"(R, L: Std_ULogic_Vector)

return Std_ULogic_Vector;
end ExampleDefinition;

35european space agency ASIC/001 Issue 1

package body ExampleDefinition is

-- Calculation of Valid length
-- Valid is 1200, 2400, 4800 or 9600 depending on Mode

function CalcValidLength(Mode: Std_ULogic_Vector(0 to 1))

return Integer is
begin

if Mode = "00" then
return 1200; -- Mode 0

elsif Mode = "01" then
return 2400; -- Mode 1

elsif Mode = "10" then
return 4800; -- Mode 2

else
-- Default value for unknowns as well as for 11
return 9600; -- Default mode

end if;
end CalcValidLength;

-- Calculation of FSM length
-- FSM is 1200, 2400, 4800 or 9600 depending on Mode, plus a gap of 400
-- system clocks between data bursts when LowSpeed is 1

function CalcFSMLength(Mode: Std_ULogic_Vector(0 to 1);

LowSpeed: Std_ULogic)
return Integer is

begin
if LowSpeed = ’0’ then

-- Highest speed, no gap between data bursts, same as Valid length
if Mode = "00" then

return 1200; -- Mode 0
elsif Mode = "01" then

return 2400; -- Mode 1
elsif Mode = "10" then

return 4800; -- Mode 2
else

-- Default value for unknown Mode as well as for 11
return 9600; -- Default mode

end if;
else

-- Insert gap of 400 system clocks between data bursts
if Mode = "00" then

return 1600; -- Mode 0 + 400
elsif Mode = "01" then

return 2800; -- Mode 1 + 400
elsif Mode = "10" then

return 5200; -- Mode 2 + 400
else

-- Default value for unknown Mode as well as for 11
return 10000; -- Default mode + 400

end if;
end if;

end CalcFSMLength;

-- Converts Natural to Std_ULogic_Vector of length Len
-- Leftmost bit is most significant

function To_StdULogicVector(I: Natural;

Len: Positive)
return Std_ULogic_Vector is

variable Tmp: Integer;
variable Result: Std_ULogic_Vector(0 to Len - 1);

36ASIC/001 Issue 1 european space agency

begin
Tmp := I;

for j in Result’Reverse_Range loop
if (Tmp mod 2) = 1 then

Result(j) := ’1’;
else

Result(j) := ’0’;
end if;
Tmp := Tmp / 2;

end loop;

return Result;
end To_StdULogicVector;

-- Converts unsigned Std_ULogic_Vector to Natural
-- Leftmost bit is most significant
-- No warning for unknowns (U, X, W, Z, -), they are converted to 0
-- Verifies whether vector is too long (> 31 bits)

function To_Integer(V: Std_ULogic_Vector)

return Natural is
variable Result: Integer := 0;

begin
assert V’Length <= 31

report "Can not convert more than 31 bit Std_ULogic_Vectors"
severity Failure;

for i in V’Range loop
Result := Result * 2;
if (V(i) = ’1’) or (V(i) = ’H’) then

Result := Result + 1;
end if;

end loop;

return Result;
end To_Integer;

-- Wrap-around addition between two Std_ULogic_Vectors of the same length
-- Leftmost bit is most significant
-- Verifies whether both vectors have the same length

function "+"(R, L: Std_ULogic_Vector)

return Std_ULogic_Vector is
variable Carry: Std_ULogic := ’0’;
variable RTmp, LTmp, Result: Std_ULogic_Vector((R’Length - 1) downto 0);

begin
assert R’Length = L’Length

report "Vectors to be added are not of same length"
severity Failure;

RTmp := R; -- To get the range (MSB downto 0)
LTmp := L; -- -- " --
for i in 0 to RTmp’Length - 1 loop

-- Calculate sum using carry from previous step, then carry out
Result(i) := RTmp(i) xor LTmp(i) xor Carry;
Carry := (RTmp(i) and LTmp(i)) or (RTmp(i) and Carry) or

(LTmp(i) and Carry);
end loop;
return Result;

end "+";

end ExampleDefinition;

37european space agency ASIC/001 Issue 1

--==--
-- Design units : ExampleTiming (Package declaration and body)
--
-- File name : exampletiming.vhd
--
-- Purpose : In this package, all timing parameters for the Example are
-- defined as deferred constants; their value can be modified
-- by recompiling only the package body and no other files.
--
-- Note : The timing figures have been taken from the data sheet.
-- The timing figures are based on 50 pF load on the outputs.
--
-- Limitations : Best case and typical figures have been estimated.
-- Note that simulation with timing checks CANNOT replace
-- a worst case timing analysis.
--
-- Errors : None known
--
-- Naming : Names of timing parameters are compliant with SDF (Standard
-- convention Delay Format).
--
-- Library : Example_Lib
--
-- Dependencies : ESA.Simulation
--
-- Author : Sandi Habinc, Peter Sinander
-- ESTEC Onboard Data Division (WD)
-- P. O. Box 299
-- 2200 AG Noordwijk
-- The Netherlands
--
-- Simulator : Synopsys v. 3.0c, on Sun Sparcstation 10, SunOS 4.1.3
--
-- Revision list
-- Version Author Date Changes
--
-- 1.0 PSI 1 Sep 94 New version
--

library ESA;
use ESA.Simulation.all;

package ExampleTiming is

-- Deferred constants for the timing parameters, all values are defined in
-- the package body.
--
-- Test, Mode, LowSpeed, Code : not allowed to change while Reset_N is
-- de-asserted (checked in model).
--
-- Reset_N, CS_N de-asserted after write: timing requirement expressed in
-- number of clock cycles (checked in model).

-- System signal timing parameters Data sheet reference
constant tperiod_Clk: TimeArray; -- TCp
constant tpw_hi_min_Clk: TimeArray; -- TCLo
constant tpw_lo_min_Clk: TimeArray; -- TCHi

38ASIC/001 Issue 1 european space agency

-- Mem interface timing parameters
constant tsetup_A_CS_N: TimeArray; -- T5
constant thold_A_CS_N: TimeArray; -- T6
constant tsetup_RW_N_CS_N: TimeArray; -- T1
constant thold_RW_N_CS_N: TimeArray; -- T2
constant tpw_lo_min_CS_N: TimeArray; -- T3
constant tsetup_D_CS_N: TimeArray; -- T5
constant thold_D_CS_N: TimeArray; -- T6
constant tpd_CS_N_D: TimeArray; -- T7
constant tpd_CS_N_D_Z: TimeArray; -- T9
constant tpd_A_D: TimeArray; -- T8

-- Serial input interface timing parameters
constant tsetup_Clk_Ready: TimeArray; -- T10
constant thold_Clk_Ready: TimeArray; -- T11
constant tsetup_Clk_SIn: TimeArray; -- T12
constant thold_Clk_SIn: TimeArray; -- T13

-- Output interface timing parameters
constant tpd_Clk_SOut: TimeArray; -- T4
constant tpd_Clk_Valid: TimeArray; -- T4

end ExampleTiming;

package body ExampleTiming is

-- Deferred constants for the timing parameters, all values are defined in
-- the package body
--
-- Test, Mode, LowSpeed, Code : not allowed to change while Reset_N is
-- de-asserted (checked in model).
--
-- Definition of default timing parameter values with 50 pF load
-- The timing figures have been taken from the data sheet

-- System signal timing parameters WC Typ BC Ref.
constant tperiod_Clk: TimeArray := (80 ns, 66 ns, 50 ns); -- TCp
constant tpw_hi_min_Clk: TimeArray := (40 ns, 33 ns, 25 ns); -- TCLO
constant tpw_lo_min_Clk: TimeArray := (40 ns, 33 ns, 25 ns); -- TCHI

-- Mem interface timing parameters WC Typ BC Ref.
constant tsetup_A_CS_N: TimeArray := (10 ns, 7 ns, 5 ns); -- T5
constant thold_A_CS_N: TimeArray := (10 ns, 7 ns, 4 ns); -- T6
constant tsetup_RW_N_CS_N: TimeArray := (0 ns, 0 ns, 0 ns); -- T1
constant thold_RW_N_CS_N: TimeArray := (3 ns, 5 ns, 6 ns); -- T2
constant tpw_lo_min_CS_N: TimeArray := (50 ns, 40 ns, 30 ns); -- T3
constant tsetup_D_CS_N: TimeArray := (10 ns, 7 ns, 5 ns); -- T5
constant thold_D_CS_N: TimeArray := (10 ns, 7 ns, 4 ns); -- T6
constant tpd_CS_N_D: TimeArray := (45 ns, 35 ns, 25 ns); -- T7
constant tpd_CS_N_D_Z: TimeArray := (35 ns, 35 ns, 35 ns); -- T9
constant tpd_A_D: TimeArray := (60 ns, 53 ns, 45 ns); -- T8

-- Serial input interface timing WC Typ BC Ref.
constant tsetup_Clk_Ready: TimeArray := (5 ns, 4 ns, 3 ns); -- T10
constant thold_Clk_Ready: TimeArray := (10 ns, 8 ns, 5 ns); -- T11
constant tsetup_Clk_SIn: TimeArray := (5 ns, 4 ns, 3 ns); -- T12
constant thold_Clk_SIn: TimeArray := (10 ns, 8 ns, 5 ns); -- T13

-- Output interface timing parameters WC Typ BC Ref.
constant tpd_Clk_SOut: TimeArray := (30 ns, 22 ns, 15 ns); -- T5
constant tpd_Clk_Valid: TimeArray := (30 ns, 22 ns, 15 ns); -- T5

end ExampleTiming;

39european space agency ASIC/001 Issue 1

--==--
-- Design units : ExampleCore(FunctionalCore) (Entity and architecture)
--
-- File name : examplecore.vhd
--
-- Purpose : This is the functional core of an example VHDL model called
-- Example. The core implements all the functionality, except
-- the multiplexing of the data bus D which is performed in the
-- top-level architecture.
--
-- Note : All timing, checking and conversion of logical values are
-- performed in the top-level architecture.
-- X-propagation is implemented for the SIn and Code inputs, but
-- not for data written to the parallel interface.
--
-- The functionality does not represent an existing component.
--
-- The model is intended for efficient simulation at board level
-- and is not synthesizable.
--
-- Since no real function is modelled, the comments have
-- sometimes been reduced.
--
-- Limitations : BIST internal function not modelled, only the resulting delay
-- after reset. Manufacturing test not modelled.
--
-- Errors: : None known (model not verified)
--
-- Naming : Active low signals are indicated by _N.
-- convention All external signals have been named as in the data sheet.
--
-- Library : Example_Lib
--
-- Dependencies : IEEE.Std_Logic_1164,
-- Example_Lib.ExampleDefinition
--
-- Author : Peter Sinander
-- ESTEC On-board Data Division (WD)
-- P. O. Box 299
-- 2200 AG Noordwijk
-- The Netherlands
--
-- Simulator : Synopsys v. 3.0c, on Sun Sparcstation 10, SunOS 4.1.3
--
-- Revision list
-- Version Author Date Changes
--
-- 1.0 PSI 1 Sep 94 New version
--

library IEEE;
use IEEE.Std_Logic_1164.all;

library Example_Lib;
use Example_Lib.ExampleDefinition.all;

entity ExampleCore is
port (

-- System signals
Test0: in Std_ULogic; -- 0 to activate BIST
Clk: in Std_ULogic; -- System clock
Reset_N: in Std_ULogic; -- System async reset

-- Mode pins for selecting the operation + static fields
Mode: in Std_ULogic_Vector(0 to 1); -- Selects mode
LowSpeed: in Std_ULogic; -- Lower speed when 1
Code: in Std_ULogic_Vector(0 to 5); -- Code input 6 bits

40ASIC/001 Issue 1 european space agency

-- Parallel interface
A: in Std_Byte; -- Address bus
CS_N: in Std_ULogic; -- Chip select, act. low
RW_N: in Std_ULogic; -- Read/write, read = 1
D: in Std_Logic_Vector(0 to 7); -- Data bus in
DOut: out Integer range 0 to 255; -- Data bus output
DEnable: out Boolean; -- Data bus enable

-- Serial input interface
Ready: in Std_ULogic; -- Data input ready
SIn: in Std_ULogic; -- Serial input data

-- Resulting serial output and valid strobe
SOut: out Std_ULogic; -- Serial data output
Valid: out Std_ULogic); -- 1 when output valid

end ExampleCore;

--=============================== ARCHITECTURE ===============================--

architecture FunctionalCore of ExampleCore is
signal ValidLen: Integer range 0 to 9600; -- Valid FSM states
signal EndOfFSM: Integer range 0 to 10000; -- Where the FSM ends
signal Preamble: Std_ULogic_Vector(0 to PreambleLen-1); -- Concat preamble
signal MainReset: Boolean := True; -- Reset or BIST

signal DWrite: Integer range 0 to 255; -- Memory data to write
signal AWrite: Integer range 0 to 255; -- Address to write data
signal WStrobe: Std_ULogic; -- Async. write strobe

begin --=========== Architecture FunctionalCore of ExampleCore ===============--

-- Calculation of valid and FSM lengths

ValidLen <= CalcValidLength(Mode);
EndOfFSM <= CalcFSMLength(Mode, LowSpeed) - 1;

--
-- Generation of preamble part that seldom changes
--
Preamble <= FixPreamble & FixedField & Code;

-- Implementation of all functionality driven by Clk, i.e. ...
-- (Here a full description should normally be placed)
-- Note that the Reset signal is synchronized, and is therefore not included
-- in the sensitivity list.
-- Inclusion of events on the A address signal in order to synchronize
-- data and address from the asynchronous memory interface.

ClkRegion: process(Clk, A)

variable Reset1_N: Std_ULogic := ’1’; -- Synchronized reset
variable Reset2_N: Std_ULogic := ’1’; -- Synchronized reset
variable BistCount: Integer range -1 to BistClks := -1; -- No init = -1

variable FSMCount: Integer range 0 to 10000; -- Which bit of FSM
variable LineCount: Std_Byte; -- Line Counter
variable DataOut: Std_ULogic; -- Serial data output

variable DelayedSIn: Std_ULogic; -- Registered Sin bit

variable MemData: Integer range 0 to 255; -- Data read from Mem
variable Mem: MemType; -- 256*8 bit memory
variable A_Integer: Integer range 0 to 255; -- A in integer format
variable AWrite1: Integer range 0 to 255; -- Delayed write address
variable DWrite1: Integer range 0 to 255; -- Delayed Mem write data
variable AWrite2: Integer range 0 to 255; -- Delayed write address
variable DWrite2: Integer range 0 to 255; -- Delayed Mem write data

41european space agency ASIC/001 Issue 1

begin
if Falling_Edge(Clk) then -- Falling Clk edge

-- Code dealing with the Reset initialization

-- Delay 2 Clk of Reset_N due to synchronization
Reset2_N := Reset1_N;
Reset1_N := Reset_N;

if Reset2_N = ’0’ then -- Reset the Example
-- Select delay for BIST or for no BIST
if Test0 = ’1’ then

BistCount := NoBistClks; -- BIST disabled
else

BistCount := BistClks;
end if;

FSMCount := 0;
LineCount := "00000000";

DelayedSIn := ’0’;
AWrite1 := 0;
DWrite1 := 0;
AWrite2 := 0;
DWrite2 := 0;
Mem := (others => 0); -- Initialize memory
DOut <= Mem(A_Integer);

-- Output values at reset
SOut <= ’0’;
Valid <= ’0’;

-- Normal operation after reset and BIST (if enabled)

elsif (BistCount = 0) then

--
-- The serial data output, containing of the Preamble, the line
-- count and the serial input data SIn
if FSMCount < LineCountEnd then

-- Optimized if-structure to execute only when necessary
if FSMCount < PreambleLen then -- Sync. Mark +

DataOut := Preamble(FSMCount); -- Preamble bytes
else -- Line Counter byte

DataOut := LineCount(FSMCount mod 8);
end if;

elsif FSMCount < ValidLen then -- Output data from SIn
DataOut := DelayedSIn;

else -- Reed-Solomon codes
DataOut := ’0’;

end if;

--
-- Generation of SOut
-- Generation of Valid; ’1’ while the input data is being output
-- if the data input is ready (i.e. Ready = ’1’)
SOut <= DataOut;
if FSMCount < FixPreamble’Length then -- Output invalid

Valid <= ’0’;
else

if FSMCount = FixPreamble’Length then
Valid <= Ready;

elsif FSMCount = ValidLen then
Valid <= ’0’;

end if;
end if;

42ASIC/001 Issue 1 european space agency

--
-- Writing of data into the Mem; delayed 2.5 Clk cycles for
-- synchronization reasons (first delay on rising Clk edge)
-- Change DOut in case the corresponding Mem data was changed
Mem(AWrite2) := DWrite2;
AWrite2 := AWrite1;
DWrite2 := DWrite1;
DOut <= Mem(A_Integer);

--
-- Delay of SIn with 1 Clock cycle (it was registered in order
-- to reduce the setup time)
DelayedSIn := SIn;

--
-- Implementation of FSM counter (for FSM) and Line Counter
if FSMCount < EndOfFSM then

-- Increment bit counter
FSMCount := FSMCount + 1;

else
-- End of FSM reached: reset FSM counter & increment Line Count
FSMCount := 0;
LineCount := LineCount + "00000001";

end if;

-- Model Bist delay. In case Reset has never been asserted,
-- BistCount = -1, and no action will take place

elsif BistCount > 0 then

BistCount := BistCount - 1;

-- Release MainReset when the BIST has completed
-- Prepare Reset1_N & Reset2_N for the next reset
if BistCount = 0 then

MainReset <= False;
Reset1_N := ’1’;
Reset2_N := ’1’;

end if;
end if;

--
-- First latching of parallel interface address & data on Rising Clk edge
--
elsif Rising_Edge(Clk) then

AWrite1 := AWrite;
DWrite1 := DWrite;

end if;

--
-- Output parallel data on internal bus whenever the address changes
-- Only convert A to integer when it changes (used elsewhere in process)
--
if A’Event then

A_Integer := To_Integer(A);
DOut <= Mem(A_Integer);

end if;
end process ClkRegion;

43european space agency ASIC/001 Issue 1

-- Latching of address & data for the parallel interface
-- Generation of external data bus enable

-- Data and address to be written is latched on the rising edge of WStrobe
WStrobe <= CS_N or RW_N;

WriteMem: process(WStrobe, MainReset)
begin

if MainReset then
AWrite <= 0;
DWrite <= 0;

elsif WStrobe’Event and WStrobe = ’1’ then
AWrite <= To_Integer(A);
DWrite <= To_Integer(To_StdULogicVector(D));

end if;
end process WriteMem;

-- Enabled for read cycles when not Reset
DEnable <= (Reset_N = ’1’) and (RW_N = ’1’) and (CS_N = ’0’);

end FunctionalCore; --==== End of ExampleCore(FunctionalCore) ================--

44ASIC/001 Issue 1 european space agency

--==--
-- Design units : Example(BoardLevel) (Entity and architecture)
--
-- File name : example.vhd
--
-- Purpose : This is an example VHDL model called Example. For a real
-- model the functionality should be described here, together
-- with a reference to the applicable data sheet.
--
-- Note : Selection of Worst Case, Typical or Best Case timing
-- is performed by changing the SimCondition generic.
--
-- X-propagation is implemented for the Code and SIn inputs, but
-- not for data written to the parallel interface.
--
-- Timing violations will not lead to unknown being generated.
--
-- The model is intended for efficient simulation at board level
-- and is not synthesizable.
--
-- Limitations : BIST internal function not modelled, only the resulting delay
-- after reset. Manufacturing test not modelled.
--
-- Do not use timing modelling to replace worst case timing
-- analysis; the timing modelling is not always accurate.
--
-- Errors: : Timing and X checks have not been implemented for all inputs.
--
-- Naming : Active low signals are indicated by _N.
-- convention All external signals have been named as in the data sheet.
-- Internal, strength converted signals are named after their
-- new strength, for example _X01. Internal signals without
-- output delay are indicated by _NoTime.
--
-- Library : Example_Lib
--
-- Dependencies : IEEE.Std_Logic_1164
-- ESA.Simulation
-- Example_Lib.ExampleCore
-- Example_Lib.ExampleDefinition
-- Example_Lib.ExampleTiming
-- Example_Lib.TimingChecks (Note: code not included)
--
-- Author : Sandi Habinc, Peter Sinander
-- ESTEC Onboard Data Division (WD)
-- P. O. Box 299
-- 2200 AG Noordwijk
-- The Netherlands
--
-- Simulator : Synopsys v. 3.0c, on Sun Sparcstation 10, SunOS 4.1.3
--
-- Revision list
-- Version Author Date Changes
--
-- 1.0 PSI 1 Sep 94 New version
--

library IEEE;
use IEEE.Std_Logic_1164.all; -- For signal types

library ESA;
use ESA.Simulation.all; -- For simulation mode

entity Example is
generic(

SimCondition: SimConditionType := WorstCase; -- Simulation condition
InstancePath: String := "Example:"; -- For Assertions
TimingChecksOn: Boolean := False); -- Timing disabling

45european space agency ASIC/001 Issue 1

port (
-- System signals (4)
Test: in Std_Logic_Vector(0 to 1); -- Test inputs
Clk: in Std_Logic; -- System clock
Reset_N: in Std_Logic; -- System async reset

-- Mode pins for selecting the operation + static fields (9)
Mode: in Std_Logic_Vector(0 to 1); -- Selects mode
LowSpeed: in Std_Logic; -- Lower speed when 1
Code: in Std_Logic_Vector(0 to 5); -- Code input 6 bits

-- Parallel interface (18)
A: in Std_Logic_Vector(0 to 7); -- Address bus
CS_N: in Std_Logic; -- Chip select, act. low
RW_N: in Std_Logic; -- Read/write, read = 1
D: inout Std_Logic_Vector(0 to 7); -- Data bus

-- Serial input interface (2)
Ready: in Std_Logic; -- Data input ready
SIn: in Std_Logic; -- Serial input data

-- Resulting serial output and valid strobe (2)
SOut: out Std_ULogic; -- Serial data output
Valid: out Std_ULogic); -- 1 when output valid

end Example;

--=============================== ARCHITECTURE ===============================--

library Example_Lib;
use Example_Lib.ExampleDefinition.all; -- For functions
use Example_Lib.ExampleTiming.all; -- For timing parameters
use Example_Lib.TimingChecks.all; -- Code not included

architecture BoardLevel of Example is

--
-- Component declaration
--
component ExampleCore

port (
-- System signals
Test0: in Std_ULogic; -- 0 to activate BIST
Clk: in Std_ULogic; -- System clock
Reset_N: in Std_ULogic; -- System async reset

-- Mode pins for selecting the operation + static fields
Mode: in Std_ULogic_Vector(0 to 1); -- Selects mode
LowSpeed: in Std_ULogic; -- Lower speed when 1
Code: in Std_ULogic_Vector(0 to 5); -- Code input 6 bits

-- Parallel interface
A: in Std_Byte; -- Address bus
CS_N: in Std_ULogic; -- Chip select, act. low
RW_N: in Std_ULogic; -- Read/write, read = 1
D: in Std_Logic_Vector(0 to 7); -- Data bus in
DOut: out Integer range 0 to 255; -- Data bus output
DEnable: out Boolean; -- Data bus enable

-- Serial input interface
Ready: in Std_ULogic; -- Data input ready
SIn: in Std_ULogic; -- Serial input data

-- Resulting serial output and valid strobe
SOut: out Std_ULogic; -- Serial data output
Valid: out Std_ULogic); -- 1 when output valid

end component;

46ASIC/001 Issue 1 european space agency

-- Local signal declarations, for input strength conversion, output signals
-- without delay and signals for the data bus control

signal Test0_X01: Std_ULogic; -- 0 to activate BIST
signal Clk_X01: Std_ULogic; -- System clock
signal Reset_N_X01: Std_ULogic; -- System async reset
signal Mode_X01: Std_ULogic_Vector(0 to 1); -- Selects mode
signal LowSpeed_X01: Std_ULogic; -- Lower speed when 1
signal Code_X01: Std_ULogic_Vector(0 to 5); -- Code input 6 bits

signal A_X01: Std_Byte; -- Address bus
signal CS_N_X01: Std_ULogic; -- Chip select, act. low
signal RW_N_X01: Std_ULogic; -- Read/write, read = 1
signal D_X01: Std_Logic_Vector(0 to 7); -- Input data
signal DOut: Integer range 0 to 255; -- Data bus output
signal DOutDelayed: Integer range 0 to 255; -- D delayed wrt address
signal DEnable: Boolean; -- Data bus enable
signal DEnDelayed: Boolean; -- Enable delayed wrt CS

signal Ready_X01: Std_ULogic; -- Data input ready
signal SIn_X01: Std_ULogic; -- Serial input data
signal SOut_NoTime: Std_ULogic; -- Serial data output
signal Valid_NoTime: Std_ULogic; -- 1 when output valid

-- Used for enabling the input timing checks and for storing timing check status
signal AfterReset: Boolean; -- True after reset
signal ClkInfo: Time; -- Status for Clk period
signal CS_NInfo: Time; -- Status for Clk period

begin --============== Architecture BoardLevel of Example ==================--

-- Strength stripping to X01 using the Std_Logic_1164 provided routines

Test0_X01 <= To_X01(Test(0));
Clk_X01 <= To_X01(Clk);
Reset_N_X01 <= To_X01(Reset_N);
Mode_X01 <= To_StdULogicVector(To_X01(Mode));
LowSpeed_X01 <= To_X01(LowSpeed);
Code_X01 <= To_StdULogicVector(To_X01(Code));
A_X01 <= To_StdULogicVector(To_X01(A));
CS_N_X01 <= To_X01(CS_N);
RW_N_X01 <= To_X01(RW_N);
D_X01 <= To_X01(D);
Ready_X01 <= To_X01(Ready);
SIn_X01 <= To_X01(SIn);

-- Check for unknown values on the static inputs, and that they only change
-- during reset). Check for unknown values on Reset_N.
-- Activating production test and changing the code inputs do not change the
-- state of the model, and have therefore severity level Note resp. Warning.

CheckStaticInputs: process(Reset_N_X01, Mode_X01, LowSpeed_X01, Code_X01)
begin

if (Now /= 0 ns) and (Reset_N_X01 = ’1’) then
-- No assertions at start-up or when Reset is asserted
assert not Is_X(Test)

report InstancePath & " ’X’ on Test inputs" severity Error;
assert (Test(1) = ’0’)

report InstancePath & " Prod. test not modelled" severity Note;
assert not Is_X(Mode_X01)

report InstancePath & " ’X’ on Mode input" severity Error;
assert LowSpeed_X01 /= ’X’

report InstancePath & " ’X’ on LowSpeed input" severity Error;
assert not Is_X(Code_X01)

report InstancePath & " ’X’ on Code inputs" severity Warning;

47european space agency ASIC/001 Issue 1

-- Check if the static pins changed after Reset
assert not Test’Event

report InstancePath & " Test changed after reset" severity Error;
assert not Mode_X01’Event

report InstancePath & " Mode changed after reset" severity Error;
assert not LowSpeed_X01’Event

report InstancePath & " LowSpeed changed after reset" severity Error;
assert not Code_X01’Event

report InstancePath & " Code changed after reset" severity Warning;

elsif (Now /= 0 ns) and Reset_N’Event then -- Check for X on Reset_N
assert Reset_N_X01 /= ’X’

report InstancePath & " ’X’ on Reset_N input" severity Error;

end if;
end process CheckStaticInputs;

-- Timing checks on inputs (setup, hold, period, pulse width).

-- Enabling of the checkers when reset is de-asserted (1 ns delay in order
-- to avoid messages at start-up
AfterReset <= TimingChecksOn and (Reset_N_X01 = ’1’) after 1 ns;

-- Clk period, high and low times (TCp, TCLo, TCHi)
PeriodCheck(TestPort => Clk_X01,

TestPortName => "Clk",
PeriodMin => tperiod_Clk (SimCondition),
Pw_Hi_Min => tpw_hi_min_Clk(SimCondition),
Pw_Lo_Min => tpw_lo_min_Clk(SimCondition),
Info => ClkInfo,
CheckEnabled => TimingChecksOn,
HeaderMsg => InstancePath,
SeverityLevel => Error);

-- CS_N asserted time (T3), PeriodMin and Pw_Hi_Min defined by default values
PeriodCheck(TestPort => CS_N_X01,

TestPortName => "CS_N",
Pw_Lo_Min => tpw_lo_min_CS_N(SimCondition),
Info => CS_NInfo,
CheckEnabled => TimingChecksOn,
HeaderMsg => InstancePath,
SeverityLevel => Error);

-- Ready setup & hold wrt Clk (T10, T11); does not affect state => Warning
SetupHoldCheck(TestPort => Ready_X01,

TestPortName => "Ready",
RefPort => Clk_X01,
RefPortName => "Clk",
RefEdge => ’0’,
TSetup => tsetup_Clk_Ready(SimCondition),
THold => thold_Clk_Ready (SimCondition),
CheckEnabled => AfterReset,
HeaderMsg => InstancePath,
SeverityLevel => Warning);

-- SIn setup & hold wrt Clk (T12, T13); does not affect state => Warning
SetupHoldCheck(TestPort => SIn_X01,

TestPortName => "SIn",
RefPort => Clk_X01,
RefPortName => "Clk",
RefEdge => ’0’,
TSetup => tsetup_Clk_SIn(SimCondition),
THold => thold_Clk_SIn (SimCondition),
CheckEnabled => AfterReset,
HeaderMsg => InstancePath,
SeverityLevel => Warning);

48ASIC/001 Issue 1 european space agency

-- Assignment of output delays.

SOut <= SOut_NoTime after tpd_Clk_SOut(SimCondition);
Valid <= Valid_NoTime after tpd_Clk_Valid(SimCondition);

-- Generation of the tristate or drive of the external Data bus.
-- DOut delayed wrt the address
-- DEnable delayed, with different timing for tristating
DOutDelayed <= transport DOut after tpd_A_D(SimCondition);
DEnDelayed <= transport DEnable after tpd_CS_N_D(SimCondition)

when DEnable else
DEnable after tpd_CS_N_D_Z(SimCondition);

D <= To_StdLogicVector(To_StdULogicVector(DOutDelayed, 8))
when DEnDelayed else

"ZZZZZZZZ";

-- Instantiation of the ExampleCore modelling the functionality

ExampleCore1: ExampleCore
port map (

Test0 => Test0_X01,
Clk => Clk_X01,
Reset_N => Reset_N_X01,
Mode => Mode_X01,
LowSpeed => LowSpeed_X01,
Code => Code_X01,
A => A_X01,
CS_N => CS_N_X01,
RW_N => RW_N_X01,
D => D_X01,
DOut => DOut,
DEnable => DEnable,
Ready => Ready_X01,
SIn => SIn_X01,
SOut => SOut_NoTime,
Valid => Valid_NoTime);

end BoardLevel; --======== End of Example(BoardLevel) ========================--

49european space agency ASIC/001 Issue 1

APPENDIX E: SELECTION OF SIMULATION CONDITION

In order to achieve a common interface for all VHDL models intended for Board-level
simulation, the package below has been created, ensuring a similar interface for VHDL
models for Board-level simulation created under ESA contracts. Work is ongoing to find
a more widespread method, and it is therefore recommended to consult ESA regarding
the timing interface before starting the modelling.

--==--
-- Design unit : Simulation (Package declaration)
--
-- File name : simulation.vhd
--
-- Purpose : In this package the enumerated type SimConditionType,
-- to be used to select Worst, Typical or Best Case
-- values for timing parameters in VHDL models for
-- board-level simulation.
--
-- The simulation condition will normally be selected
-- by a generic parameter in the top-level entity
--
-- Note : A type TimeArray has been defined, which can be used
-- for defining the timing parameters.
--
-- Errors: : None known
--
-- Library : ESA
--
-- Dependencies : None
--
-- Author : Sandi Habinc, Peter Sinander
-- ESTEC Onboard Data Division (WD)
-- P.O. Box 299
-- 2200 AG Noordwijk
-- The Netherlands
--
-- Simulator : Synopsys v. 3.0c, on Sun Sparcstation 10, SunOS 4.1.3
--
-- Revision list
-- Version Author Date Changes
--
-- 1.0 PSI 1 Sep 94 New version
--

package Simulation is

-- Definition of the SimConditionType type
type SimConditionType is (WorstCase, TypCase, BestCase);

-- Definition of Time array type which can be used for the timing
-- parameters
type TimeArray is array(SimConditionType) of Time;

end Simulation; --======= End of package Simulation =================--

50ASIC/001 Issue 1 european space agency

Page intentionally left blank

