
The Hmisc Package
February 16, 2008

Version 3.4-3

Date 2007-10-31

Title Harrell Miscellaneous

Author Frank E Harrell Jr <f.harrell@vanderbilt.edu>, with contributions from many other users.

Maintainer Charles Dupont <charles.dupont@vanderbilt.edu>

Depends R (>= 2.4.0), methods

Imports lattice, cluster

Suggests lattice, grid, nnet, foreign, survival, chron, acepack, TeachingDemos, Design, cluster

Description The Hmisc library contains many functions useful for data analysis, high-level graphics,
utility operations, functions for

License GPL version 2 or newer

LazyLoad no

URL http://biostat.mc.vanderbilt.edu/s/Hmisc,
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf,
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/summary.pdf,
http://biostat.mc.vanderbilt.edu/trac/Hmisc

R topics documented:
Cs . 4
Ecdf . 5
Hmisc-internal . 9
Lag . 9
Misc . 10
Overview . 14
Save . 21
abs.error.pred . 22
all.is.numeric . 23

1

2 R topics documented:

approxExtrap . 24
areg . 25
aregImpute . 29
biVar . 37
binconf . 40
bootkm . 41
bpower . 43
bpplot . 45
bystats . 47
ciapower . 49
combine . 51
contents . 52
cpower . 54
csv.get . 56
curveRep . 58
cut2 . 63
data.frame.create.modify.check . 65
dataRep . 73
deff . 75
describe . 76
dotchart2 . 81
dropUnusedLevels . 83
eip . 84
equalBins . 84
errbar . 85
escapeRegex . 87
event.chart . 88
event.history . 97
find.matches . 103
first.word . 107
format.df . 108
format.pval . 110
gbayes . 111
getHdata . 118
getZip . 120
hdquantile . 121
hist.data.frame . 122
histbackback . 123
hoeffd . 125
html . 126
impute . 128
inc-dec . 130
labcurve . 130
label . 139
latex . 142
ldBands . 151
list.tree . 155
mApply . 156

R topics documented: 3

mChoice . 157
makeNstr . 160
mdb.get . 161
mgp.axis . 162
minor.tick . 164
mtitle . 165
na.delete . 166
na.detail.response . 167
na.keep . 168
%nin% . 169
panel.bpplot . 170
partition . 173
pc1 . 174
plotCorrPrecision . 175
plsmo . 175
popower . 179
print.char.list . 180
print.char.matrix . 182
prnz . 183
ps.slide . 184
pstamp . 189
rMultinom . 190
rcorr . 191
rcorr.cens . 192
rcorrp.cens . 194
rcspline.eval . 195
rcspline.plot . 196
rcspline.restate . 198
reShape . 200
redun . 203
reorder.factor . 206
requirePackage . 206
rlegend . 207
rm.boot . 209
samplesize.bin . 216
sasxport.get . 218
scat1d . 221
score.binary . 227
sedit . 228
show.pch . 231
simplifyDims . 232
smean.sd . 233
solvet . 235
somers2 . 235
spower . 236
spss.get . 241
src . 242
stata.get . 243

4 Cs

store . 244
string.bounding.box . 246
string.break.line . 247
stringDims . 248
summarize . 249
summary.formula . 253
symbol.freq . 267
sys . 268
t.test.cluster . 269
transace . 270
transcan . 278
translate . 292
trunc.POSIXt . 293
units . 294
upData . 295
valueTags . 299
varclus . 301
wtd.stats . 306
xYplot . 309
xy.group . 318
yearDays . 319
sas.get . 319

Index 326

Cs Character strings from unquoted names

Description

Makes a vector of character strings from a list of valid S names

Usage

Cs(...)

Arguments

... any number of names separated by commas

Value

character string vector

See Also

sys.frame, deparse

Ecdf 5

Examples

Cs(a,cat,dog)
subset.data.frame <- dataframe[,Cs(age,sex,race,bloodpressure,height)]

Ecdf Empirical Cumulative Distribution Plot

Description

Computes coordinates of cumulative distribution function of x, and by defaults plots it as a step
function. A grouping variable may be specified so that stratified estimates are computed and (by
default) plotted. If there is more than one group, the labcurve function is used (by default) to
label the multiple step functions or to draw a legend defining line types, colors, or symbols by
linking them with group labels. A weights vector may be specified to get weighted estimates.
Specify normwt to make weights sum to the length of x (after removing NAs). Other wise the
total sample size is taken to be the sum of the weights.

Ecdf is actually a method, and Ecdf.default is what’s called for a vector argument. Ecdf.data.frame
is called when the first argument is a data frame. This function can automatically set up a matrix of
ECDFs and wait for a mouse click if the matrix requires more than one page. Categorical variables,
character variables, and variables having fewer than a set number of unique values are ignored. If
par(mfrow=..) is not set up before Ecdf.data.frame is called, the function will try to fig-
ure the best layout depending on the number of variables in the data frame. Upon return the original
mfrow is left intact.

When the first argument to Ecdf is a formula, a Trellis/Lattice function Ecdf.formula is called.
This allows for multi-panel conditioning, superposition using a groups variable, and other Trellis
features, along with the ability to easily plot transformed ECDFs using the fun argument. For
example, if fun=qnorm, the inverse normal transformation will be used for the y-axis. If the
transformed curves are linear this indicates normality. Like the xYplot function, Ecdf will create
a function Key if the groups variable is used. This function can be invoked by the user to define
the keys for the groups.

Usage

Ecdf(x, ...)

Default S3 method:
Ecdf(x, what=c('F','1-F','f'), weights, normwt=FALSE,

xlab, ylab, q, pl=TRUE, add=FALSE, lty=1,
col=1, group=rep(1,length(x)), label.curves=TRUE, xlim,
subtitles=TRUE, datadensity=c('none','rug','hist','density'),
side=1,
frac=switch(datadensity,none=NA,rug=.03,hist=.1,density=.1),
dens.opts=NULL, lwd, ...)

S3 method for class 'data.frame':
Ecdf(x, group=rep(1,nrows), weights, normwt,

6 Ecdf

label.curves=TRUE, n.unique=10, na.big=FALSE, subtitles=TRUE,
vnames=c('labels','names'),...)

S3 method for class 'formula':
Ecdf(x, data=sys.frame(sys.parent()), groups=NULL,

prepanel=prepanel.Ecdf, panel=panel.Ecdf, ..., xlab,
ylab, fun=function(x)x, subset=TRUE)

Arguments

x a numeric vector, data frame, or Trellis/Lattice formula

what The default is "F" which results in plotting the fraction of values <= x. Set to
"1-F" to plot the fraction > x or "f" to plot the cumulative frequency of values
<= x.

weights numeric vector of weights. Omit or specify a zero-length vector or NULL to get
unweighted estimates.

normwt see above

xlab x-axis label. Default is label(x) or name of calling argument. For Ecdf.formula,
xlab defaults to the label attribute of the x-axis variable.

ylab y-axis label. Default is "Proportion <= x", "Proportion > x", or
"Frequency <= x" depending on value of what.

q a vector for quantiles for which to draw reference lines on the plot. Default is
not to draw any.

pl set to F to omit the plot, to just return estimates.

add set toTRUE to add the cdf to an existing plot.

lty integer line type for plot. If group is specified, this can be a vector.

lwd line width for plot. Can be a vector corresponding to groups.

col color for step function. Can be a vector.

group a numeric, character, or factor categorical variable used for stratifying esti-
mates. If group is present, as many ECDFs are drawn as there are non–missing
group levels.

label.curves applies if more than one group exists. Default is TRUE to use labcurve to
label curves where they are farthest apart. Set label.curves to a list to
specify options to labcurve, e.g., label.curves=list(method="arrow",
cex=.8). These option names may be abbreviated in the usual way arguments
are abbreviated. Use for example label.curves=list(keys=1:5) to
draw symbols periodically (as in pch=1:5 - see points) on the curves and au-
tomatically position a legend in the most empty part of the plot. Set label.curves=FALSE
to suppress drawing curve labels. The col, lty, and type parameters are au-
tomatically passed to labcurve, although you can override them here. You
can set label.curves=list(keys="lines") to have different line types
defined in an automatically positioned key.

xlim x-axis limits. Default is entire range of x.

Ecdf 7

subtitles set to FALSE to suppress putting a subtitle at the bottom left of each plot. The
subtitle indicates the numbers of non-missing and missing observations, which
are labeled n, m.

datadensity If datadensity is not "none", either scat1d or histSpike is called to
add a rug plot (datadensity="rug"), spike histogram (datadensity="hist"),
or smooth density estimate ("density") to the bottom or top of the ECDF.

side If datadensity is not "none", the default is to place the additional infor-
mation on top of the x-axis (side=1). Use side=3 to place at the top of the
graph.

frac passed to histSpike

dens.opts a list of optional arguments for histSpike

... other parameters passed to plot if add=F. For data frames, other parameters to
pass to Ecdf.default. For Ecdf.formula, if groups is not used, you
can also add data density information to each panel’s ECDF by specifying the
datadensity and optional frac, side, dens.opts arguments.

n.unique minimum number of unique values before an ECDF is drawn for a variable in a
data frame. Default is 10.

na.big set to TRUE to draw the number of NAs in larger letters in the middle of the plot
for Ecdf.data.frame

vnames By default, variable labels are used to label x-axes. Set vnames="names" to
instead use variable names.

method method for computing the empirical cumulative distribution. See wtd.Ecdf.
The default is to use the standard "i/n" method as is used by the non-Trellis
versions of Ecdf.

fun a function to transform the cumulative proportions, for the Trellis-type usage of
Ecdf

data

groups

subset

prepanel

panel the usual Trellis/Lattice parameters, with groups causing Ecdf.formula to
overlay multiple ECDFs on one panel.

Value

for Ecdf.default an invisible list with elements x and y giving the coordinates of the cdf. If
there is more than one group, a list of such lists is returned. An attribute, N, is in the returned
object. It contains the elements n and m, the number of non-missing and missing observations,
respectively.

Side Effects

plots

8 Ecdf

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
〈f.harrell@vanderbilt.edu〉

See Also

wtd.Ecdf, label, table, cumsum, labcurve, xYplot, histSpike

Examples

set.seed(1)
ch <- rnorm(1000, 200, 40)
Ecdf(ch, xlab="Serum Cholesterol")
scat1d(ch) # add rug plot
histSpike(ch, add=TRUE, frac=.15) # add spike histogram
Better: add a data density display automatically:
Ecdf(ch, datadensity='density')

label(ch) <- "Serum Cholesterol"
Ecdf(ch)
other.ch <- rnorm(500, 220, 20)
Ecdf(other.ch,add=TRUE,lty=2)

sex <- factor(sample(c('female','male'), 1000, TRUE))
Ecdf(ch, q=c(.25,.5,.75)) # show quartiles
Ecdf(ch, group=sex,

label.curves=list(method='arrow'))

Example showing how to draw multiple ECDFs from paired data
pre.test <- rnorm(100,50,10)
post.test <- rnorm(100,55,10)
x <- c(pre.test, post.test)
g <- c(rep('Pre',length(pre.test)),rep('Post',length(post.test)))
Ecdf(x, group=g, xlab='Test Results', label.curves=list(keys=1:2))
keys=1:2 causes symbols to be drawn periodically on top of curves

Draw a matrix of ECDFs for a data frame
m <- data.frame(pre.test, post.test,

sex=sample(c('male','female'),100,TRUE))
Ecdf(m, group=m$sex, datadensity='rug')

freqs <- sample(1:10, 1000, TRUE)
Ecdf(ch, weights=freqs) # weighted estimates

Trellis/Lattice examples:

region <- factor(sample(c('Europe','USA','Australia'),100,TRUE))
year <- factor(sample(2001:2002,1000,TRUE))
Ecdf(~ch | region*year, groups=sex)
Key() # draw a key for sex at the default location
Key(locator(1)) # user-specified positioning of key

Hmisc-internal 9

age <- rnorm(1000, 50, 10)
Ecdf(~ch | equal.count(age), groups=sex) # use overlapping shingles
Ecdf(~ch | sex, datadensity='hist', side=3) # add spike histogram at top

Hmisc-internal Internal Hmisc functions

Description

Internal Hmisc functions.

Details

These are not to be called by the user or are undocumented.

Lag Lag a Numeric, Character, or Factor Vector

Description

Shifts a vector shift elements later. Character or factor variables are padded with "", numerics
with NA.

Usage

Lag(x, shift = 1)

Arguments

x a vector

shift positive integer specifying the number of observations to be shifted to the right

Details

A.ttributes of the original object are carried along to the new lagged one, but factor vectors are
converted to character.

Value

a vector like x

Author(s)

Frank Harrell

10 Misc

See Also

lag

Examples

Lag(1:5,2)
Lag(letters[1:4],2)
Lag(factor(letters[1:4]),2)
Find which observations are the first for a given subject
id <- c('a','a','b','b','b','c')
id != Lag(id)
!duplicated(id)

Misc Miscellaneous Functions

Description

This documents miscellaneous small functions in Hmisc that may be of interest to users.

clowess runs lowess but if the iter argument exceeds zero, sometimes wild values can result,
in which case lowess is re-run with iter=0.

confbar draws multi-level confidence bars using small rectangles that may be of different colors.

getLatestSource fetches and sources the most recent source code for functions in packages
in the Vanderbilty University CVS repository.

inverseFunction generates a function to find all inverses of a monotonic or nonmonotonic
function that is tabulated at vectors (x,y), typically 1000 points. If the original function is mono-
tonic, simple linear interpolation is used and the result is a vector, otherwise linear interpolation is
used within each interval in which the function is monotonic and the result is a matrix with number
of columns equal to the number of monotonic intervals. If a requested y is not within any interval,
the extreme x that pertains to the nearest extreme y is returned. Specifying what=’sample’ to the
returned function will cause a vector to be returned instead of a matrix, with elements taken as a
random choice of the possible inverses.

james.stein computes James-Stein shrunken estimates of cell means given a response variable
(which may be binary) and a grouping indicator.

km.quick provides a fast way to invoke survfit.km in the survival package to get Kaplan-
Meier estimates for a single stratum for a vector of time points (if times is given) or to get a vector
of survival time quantiles (if q is given).

lm.fit.qr.bare is a fast stripped-down function for computing regression coefficients, resid-
uals, R2, and fitted values. It uses the Fortran routines dqrls.

matxv multiplies a matrix by a vector, handling automatic addition of intercepts if the matrix does
not have a column of ones. If the first argument is not a matrix, it will be converted to one.

nomiss returns a data frame (if its argument is one) with rows corresponding to NAs removed, or
it returns a matrix with rows with any element missing removed.

Misc 11

outerText uses text() to put test strings in left or right margins. It temporarily sets par(xpd=NA)
if using R.

sepUnitsTrans converts character vectors containing values such as c("3 days","3day","4month","2
years","2weeks","7") to numeric vectors (here c(3,3,122,730,14,7)) in a flexible
fashion. The user can specify a vector of units of measurements and conversion factors. The units
with a conversion factor of 1 are taken as the target units, and if those units are present in the char-
acter strings they are ignored. The target units are added to the resulting vector as the "units"
attribute.

trap.rule computes the area under a curve using the trapezoidal rule, assuming x is sorted.

trellis.strip.blank sets up Trellis or Lattice graphs to have a clear background on the
strips for panel labels.

under.unix is a scalar logical value that is TRUE if you are running Linux or Unix.

.R. is a logical value set to TRUE if running R, FALSE for S-Plus.

.SV4. is a logical value set to TRUE if running version 4 of the S language under S-Plus, FALSE
otherwise.

unPaste provides a version of the S-Plus unpaste that works for R and S-Plus.

whichClosePW is a very fast function using weighted multinomial sampling to determine which
element of a vector is "closest" to each element of another vector. whichClosest quickly finds
the closest element without any randomness.

xless is a function for Linux/Unix users to invoke the system xless command to pop up a
window to display the result of printing an object. For Windows, xless uses the builtin page
function but with better defaults.

Usage

confbar(at, est, se, width, q = c(0.7, 0.8, 0.9, 0.95, 0.99),
col = if (.R.) gray(c(0, 0.25, 0.5, 0.75, 1)) else

if (under.unix) c(1, 0.8, 0.5, 0.2, 0.065) else
c(1, 4, 3, 2, 5),

type = c("v", "h"), labels = TRUE, ticks = FALSE,
cex = 0.5, side = "l", lwd = 5, clip = c(-1e+30, 1e+30),
fun = function(x) x,
qfun = function(x) ifelse(x == 0.5, qnorm(x),

ifelse(x < 0.5, qnorm(x/2),
qnorm((1 + x)/2))))

getLatestSource(x=NULL, package='Hmisc', recent=NULL, avail=FALSE,
type=c('svn','cvs'))

inverseFunction(x, y)
james.stein(y, group)
km.quick(S, times, q)
lm.fit.qr.bare(x, y, tolerance, intercept=TRUE, xpxi=FALSE)
matxv(a, b, kint=1)
nomiss(x)
outerText(string, y, setAside=string[1], side=4, space=1,

adj=1, cex=par('cex'))

12 Misc

sepUnitsTrans(x, conversion=c(day=1, month=365.25/12, year=365.25, week=7),
round=FALSE, digits=0)

trap.rule(x, y)
trellis.strip.blank()
unPaste(str, sep="/", extended=FALSE)
whichClosest(x, w)
whichClosePW(x, w, f=0.2)
xless(x, ..., title)

Arguments

a a numeric matrix or vector

adj 0 for left justification, 0.5 for centered, 1 for right

at x-coordinate for vertical confidence intervals, y-coordinate for horizontal

avail set to TRUE to have getLatestSource return a data frame of available files
and latest versions instead of fetching any

b a numeric vector

cex character expansion factor

clip interval to truncate limits

col vector of colors

conversion a named numeric vector

digits number of digits used for round

est vector of point estimates for confidence limits

extended see strsplit in R

f a scaling constant

fun function to transform scale

group a categorical grouping variable

intercept set to FALSE to not automatically add a column of ones to the x matrix

kint which element of b to add to the result if a does not contain a column for inter-
cepts

labels set to FALSE to omit drawing confidence coefficients

lwd line widths

package name of package for getLatestSource, default is ’Hmisc’

q vector of confidence coefficients or quantiles

qfun quantiles on transformed scale

recent an integer telling getLatestSource to get the recent most recently mod-
ified files from the package

round set to TRUE to round converted values

S a Surv object

se vector of standard errors

sep a single character string specifying the delimiter

Misc 13

setAside for adj=1 side=4, is a character string used to determine the space to set
aside for all strings.

side for confbar is "b","l","t","r" for bottom, left, top, right. For outText
is the using integers 1-4 corresponding to these.

space the number of extra characters to leave to the left of the string(s) (adj=0) or to
the right (adj=1)

str a character string vector

string a character string vector

ticks set to TRUE to draw lines between rectangles

times a numeric vector of times

title a character string to title a window or plot

tolerance tolerance for judging singularity in matrix

type "v" for vertical, "h" for horizontal. For getLatestSource this specifies
the type of source code repository, ’svn’ (the default) or ’cvs’, which is now
outdated as Subversion has replaced CVS in the Vanderbilt Biostatistics server.

w a numeric vector

width width of confidence rectanges in user units

x a numeric vector (matrix for lm.fit.qr.bare) or data frame. For xless
may be any object that is sensible to print. For sepUnitsTrans is a char-
acter or factor variable. For getLatestSource is a character string or vec-
tor of character strings containing base file names to retrieve from CVS. Set
x=’all’ to retrieve all source files. For clowess, x may also be a list with
x and y components. For inverseFunction, x and y contain evaluations of
the function whose inverse is needed. x is typically an equally-spaced grid of
1000 points.

xpxi set to TRUE to add an element to the result containing the inverse of X ′X

y a numeric vector. For inverseFunction y is the evaluated function values
at x.

... arguments passed through to another function

Author(s)

Frank Harrell

Examples

trap.rule(1:100,1:100)

unPaste(c('a;b or c','ab;d','qr;s'), ';')

sepUnitsTrans(c('3 days','4 months','2 years','7'))

set.seed(1)
whichClosest(1:100, 3:5)

14 Overview

whichClosest(1:100, rep(3,20))

whichClosePW(1:100, rep(3,20))
whichClosePW(1:100, rep(3,20), f=.05)
whichClosePW(1:100, rep(3,20), f=1e-10)

x <- seq(-1, 1, by=.01)
y <- x^2
h <- inverseFunction(x,y)
formals(h)$turns # vertex
a <- seq(0, 1, by=.01)
plot(0, 0, type='n', xlim=c(-.5,1.5))
lines(a, h(a)[,1]) ## first inverse
lines(a, h(a)[,2], col='red') ## second inverse
a <- c(-.1, 1.01, 1.1, 1.2)
points(a, h(a)[,1])

Not run:
getLatestSource(recent=5) # source() most recent 5 revised files in Hmisc
getLatestSource('cut2') # fetch and source latest cut2.s
getLatestSource('all') # get everything
getLatestSource(avail=TRUE) # list available files and latest versions
End(Not run)

Overview Overview of Hmisc Library

Description

The Hmisc library contains many functions useful for data analysis, high-level graphics, utility op-
erations, functions for computing sample size and power, translating SAS datasets into S, imputing
missing values, advanced table making, variable clustering, character string manipulation, conver-
sion of S objects to LaTeX code, recoding variables, and bootstrap repeated measures analysis.
Most of these functions were written by F Harrell, but a few were collected from statlib and from
s-news; other authors are indicated below. This collection of functions includes all of Harrell’s
submissions to statlib other than the functions in the Design and display libraries. A few of the
functions do not have "Help" documentation.

To make Hmisc load silently, issue options(Hverbose=FALSE) before library(Hmisc).

Functions

Function Name Purpose
abs.error.pred Computes various indexes of predictive accuracy based

on absolute errors, for linear models
all.is.numeric Check if character strings are legal numerics
approxExtrap Linear extrapolation
aregImpute Multiple imputation based on additive regression,

bootstrapping, and predictive mean matching

Overview 15

areg.boot Nonparametrically estimate transformations for both
sides of a multiple additive regression, and
bootstrap these estimates and R2

ballocation Optimum sample allocations in 2-sample proportion test
binconf Exact confidence limits for a proportion and more accurate

(narrower!) score stat.-based Wilson interval
(Rollin Brant, mod. FEH)

bootkm Bootstrap Kaplan-Meier survival or quantile estimates
bpower Approximate power of 2-sided test for 2 proportions

Includes bpower.sim for exact power by simulation
bpplot Box-Percentile plot

(Jeffrey Banfield, 〈umsfjban@bill.oscs.montana.edu〉)
bsamsize Sample size requirements for test of 2 proportions
bystats Statistics on a single variable by levels of >=1 factors
bystats2 2-way statistics
calltree Calling tree of functions

(David Lubinsky, 〈david@hoqax.att.com〉)
character.table Shows numeric equivalents of all latin characters

Useful for putting many special chars. in graph titles
(Pierre Joyet, 〈pierre.joyet@bluewin.ch〉)

ciapower Power of Cox interaction test
cleanup.import More compactly store variables in a data frame, and clean up

problem data when e.g. Excel spreadsheet had a non-
numeric value in a numeric column

combine.levels Combine infrequent levels of a categorical variable
comment Attach a comment attribute to an object:

comment(fit) <- ’Used old data’
comment(fit) (prints comment)

confbar Draws confidence bars on an existing plot using multiple
confidence levels distinguished using color or gray scale

contents Print the contents (variables, labels, etc.) of a data frame
cpower Power of Cox 2-sample test allowing for noncompliance
Cs Vector of character strings from list of unquoted names
csv.get Enhanced importing of comma separated files labels
cut2 Like cut with better endpoint label construction and allows

construction of quantile groups or groups with given n
datadensity Snapshot graph of distributions of all variables in

a data frame. For continuous variables uses scat1d.
dataRep Quantify representation of new observations in a database
ddmmmyy SAS "date7" output format for a chron object
deff Kish design effect and intra-cluster correlation
describe Function to describe different classes of objects.

Invoke by saying describe(object). It calls one of the
following:

describe.data.frame Describe all variables in a data frame (generalization
of SAS UNIVARIATE)

describe.default Describe a variable (generalization of SAS UNIVARIATE)
do Assists with batch analyses

16 Overview

dot.chart Dot chart for one or two classification variables
Dotplot Enhancement of Trellis dotplot allowing for matrix

x-var., auto generation of Key function, superposition
drawPlot Simple mouse-driven drawing program, including a function

for fitting Bezier curves
Ecdf Empirical cumulative distribution function plot
eip Edit an object "in-place" (may be dangerous!), e.g.

eip(sqrt) will replace the builtin sqrt function
errbar Plot with error bars (Charles Geyer, U. Chi., mod FEH)
event.chart Plot general event charts (Jack Lee, 〈jjlee@mdanderson.org〉,

Ken Hess, Joel Dubin; Am Statistician 54:63-70,2000)
event.history Event history chart with time-dependent cov. status

(Joel Dubin, joel.dubin@yale.edu)
find.matches Find matches (with tolerances) between columns of 2 matrices
first.word Find the first word in an S expression (R Heiberger)
fit.mult.impute Fit most regression models over multiple transcan imputations,

compute imputation-adjusted variances and avg. betas
format.df Format a matrix or data frame with much user control

(R Heiberger and FE Harrell)
ftupwr Power of 2-sample binomial test using Fleiss, Tytun, Ury
ftuss Sample size for 2-sample binomial test using " " " "

(Both by Dan Heitjan, 〈dheitjan@biostats.hmc.psu.edu〉)
gbayes Bayesian posterior and predictive distributions when both

the prior and the likelihood are Gaussian
getHdata Fetch and list datasets on our web site
gs.slide Sets nice defaults for graph sheets for S-Plus 2000 for

copying graphs into Microsoft applications
hdquantile Harrell-Davis nonparametric quantile estimator with s.e.
histbackback Back-to-back histograms (Pat Burns, Salomon Smith

Barney, London, 〈pburns@dorado.sbi.com〉)
hist.data.frame Matrix of histograms for all numeric vars. in data frame

Use hist.data.frame(data.frame.name)
histSpike Add high-resolution spike histograms or density estimates

to an existing plot
hoeffd Hoeffding’s D test (omnibus test of independence of X and Y)
impute Impute missing data (generic method)
interaction More flexible version of builtin function
is.present Tests for non-blank character values or non-NA numeric values
james.stein James-Stein shrinkage estimates of cell means from raw data
labcurve Optimally label a set of curves that have been drawn on

an existing plot, on the basis of gaps between curves.
Also position legends automatically at emptiest rectangle.

label Set or fetch a label for an S-object
Lag Lag a vector, padding on the left with NA or ”
latex Convert an S object to LaTeX (R Heiberger & FE Harrell)
ldBands Lan-DeMets bands for group sequential tests
list.tree Pretty-print the structure of any data object

(Alan Zaslavsky, 〈zaslavsk@hcp.med.harvard.edu〉)

Overview 17

Load Enhancement of load
mask 8-bit logical representation of a short integer value

(Rick Becker)
matchCases Match each case on one continuous variable
matxv Fast matrix * vector, handling intercept(s) and NAs
mem mem() types quick summary of memory used during session
mgp.axis Version of axis() that uses appropriate mgp from

mgp.axis.labels and gets around bug in axis(2, ...)
that causes it to assume las=1

mgp.axis.labels Used by survplot and plot in Design library (and other
functions in the future) so that different spacing
between tick marks and axis tick mark labels may be
specified for x- and y-axes. ps.slide, win.slide,
gs.slide set up nice defaults for mgp.axis.labels.
Otherwise use mgp.axis.labels(’default’) to set defaults.
Users can set values manually using
mgp.axis.labels(x,y) where x and y are 2nd value of
par(’mgp’) to use. Use mgp.axis.labels(type=w) to
retrieve values, where w=’x’, ’y’, ’x and y’, ’xy’,
to get 3 mgp values (first 3 types) or 2 mgp.axis.labels.

minor.tick Add minor tick marks to an existing plot
mtitle Add outer titles and subtitles to a multiple plot layout
nomiss Return a matrix after excluding any row with an NA
panel.bpplot Panel function for trellis bwplot - box-percentile plots
panel.plsmo Panel function for trellis xyplot - uses plsmo
pc1 Compute first prin. component and get coefficients on

original scale of variables
plotCorrPrecision Plot precision of estimate of correlation coefficient
plsmo Plot smoothed x vs. y with labeling and exclusion of NAs

Also allows a grouping variable and plots unsmoothed data
popower Power and sample size calculations for ordinal responses

(two treatments, proportional odds model)
prn prn(expression) does print(expression) but titles the

output with ’expression’. Do prn(expression,txt) to add
a heading (’txt’) before the ’expression’ title

p.sunflowers Sunflower plots (Andreas Ruckstuhl, Werner Stahel,
Martin Maechler, Tim Hesterberg)

ps.slide Set up postcript() using nice defaults for different types
of graphics media

pstamp Stamp a plot with date in lower right corner (pstamp())
Add ,pwd=T and/or ,time=T to add current directory
name or time
Put additional text for label as first argument, e.g.
pstamp(’Figure 1’) will draw ’Figure 1 date’

putKey Different way to use key()
putKeyEmpty Put key at most empty part of existing plot
rcorr Pearson or Spearman correlation matrix with pairwise deletion

of missing data

18 Overview

rcorr.cens Somers’ Dyx rank correlation with censored data
rcorrp.cens Assess difference in concordance for paired predictors
rcspline.eval Evaluate restricted cubic spline design matrix
rcspline.plot Plot spline fit with nonparametric smooth and grouped estimates
rcspline.restate Restate restricted cubic spline in unrestricted form, and

create TeX expression to print the fitted function
recode Recodes variables
reShape Reshape a matrix into 3 vectors, reshape serial data
rm.boot Bootstrap spline fit to repeated measurements model,

with simultaneous confidence region - least
squares using spline function in time

rMultinom Generate multinomial random variables with varying prob.
samplesize.bin Sample size for 2-sample binomial problem

(Rick Chappell, 〈chappell@stat.wisc.edu〉)
sas.get Convert SAS dataset to S data frame
sasxport.get Enhanced importing of SAS transport dataset in R
Save Enhancement of save
scat1d Add 1-dimensional scatterplot to an axis of an existing plot

(like bar-codes, FEH/Martin Maechler,
〈maechler@stat.math.ethz.ch〉/Jens Oehlschlaegel-Akiyoshi,
〈oehl@psyres-stuttgart.de〉)

score.binary Construct a score from a series of binary variables or
expressions

sedit A set of character handling functions written entirely
in S. sedit() does much of what the UNIX sed
program does. Other functions included are
substring.location, substring<-, replace.string.wild,
and functions to check if a string is numeric or
contains only the digits 0-9

setpdf Adobe PDF graphics setup for including graphics in books
and reports with nice defaults, minimal wasted space

setps Postscript graphics setup for including graphics in books
and reports with nice defaults, minimal wasted space
Internally uses psfig function by
Antonio Possolo (〈antonio@atc.boeing.com〉).
setps works with Ghostscript to convert .ps to .pdf

setTrellis Set Trellis graphics to use blank conditioning panel strips,
line thickness 1 for dot plot reference lines:
setTrellis(); 3 optional arguments

show.col Show colors corresponding to col=0,1,...,99
show.pch Show all plotting characters specified by pch=.

Just type show.pch() to draw the table on the
current device.

showPsfrag Use LaTeX to compile, and dvips and ghostview to
display a postscript graphic containing psfrag strings

solvet Version of solve with argument tol passed to qr
somers2 Somers’ rank correlation and c-index for binary y
spearman Spearman rank correlation coefficient spearman(x,y)

Overview 19

spearman.test Spearman 1 d.f. and 2 d.f. rank correlation test
spearman2 Spearman multiple d.f. ρ2, adjusted ρ2, Wilcoxon-Kruskal-

Wallis test, for multiple predictors
spower Simulate power of 2-sample test for survival under

complex conditions
Also contains the Gompertz2,Weibull2,Lognorm2 functions.

spss.get Enhanced importing of SPSS files using read.spss function
src src(name) = source("name.s") with memory
store store an object permanently (easy interface to assign function)
strmatch Shortest unique identifier match

(Terry Therneau, 〈therneau@mayo.edu〉)
subset More easily subset a data frame
substi Substitute one var for another when observations NA
summarize Generate a data frame containing stratified summary

statistics. Useful for passing to trellis.
summary.formula General table making and plotting functions for summarizing

data
symbol.freq X-Y Frequency plot with circles’ area prop. to frequency
sys Execute unix() or dos() depending on what’s running
tex Enclose a string with the correct syntax for using

with the LaTeX psfrag package, for postscript graphics
transace ace() packaged for easily automatically transforming all

variables in a matrix
transcan automatic transformation and imputation of NAs for a

series of predictor variables
trap.rule Area under curve defined by arbitrary x and y vectors,

using trapezoidal rule
trellis.strip.blank To make the strip titles in trellis more visible, you can

make the backgrounds blank by saying trellis.strip.blank().
Use before opening the graphics device.

t.test.cluster 2-sample t-test for cluster-randomized observations
uncbind Form individual variables from a matrix
upData Update a data frame (change names, labels, remove vars, etc.)
units Set or fetch "units" attribute - units of measurement for var.
varclus Graph hierarchical clustering of variables using squared

Pearson or Spearman correlations or Hoeffding D as similarities
Also includes the naclus function for examining similarities in
patterns of missing values across variables.

xy.group Compute mean x vs. function of y by groups of x
xYplot Like trellis xyplot but supports error bars and multiple

response variables that are connected as separate lines
win.slide Setup win.graph or win.printer using nice defaults for

presentations/slides/publications
wtd.mean
wtd.var
wtd.quantile
wtd.Ecdf
wtd.table

20 Overview

wtd.rank
wtd.loess.noiter
num.denom.setup Set of function for obtaining weighted estimates
zoom Zoom in on any graphical display

(Bill Dunlap, 〈bill@statsci.com〉)

Copyright Notice

GENERAL DISCLAIMER
This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

In short: You may use it any way you like, as long as you don’t charge money for it, remove this
notice, or hold anyone liable for its results. Also, please acknowledge the source and communicate
changes to the author.

If this software is used is work presented for publication, kindly reference it using for example:
Harrell FE (2004): Hmisc S function library. Programs available from http://biostat.mc.
vanderbilt.edu/s/Hmisc.
Be sure to reference S-Plus or R itself and other libraries used.

Acknowledgements

This work was supported by grants from the Agency for Health Care Policy and Research (US
Public Health Service) and the Robert Wood Johnson Foundation.

Author(s)

Frank E Harrell Jr
Professor of Biostatistics
Chair, Department of Biostatistics
Vanderbilt University School of Medicine
Nashville, Tennessee
〈f.harrell@vanderbilt.edu〉

References

See Alzola CF, Harrell FE (2004): An Introduction to S and the Hmisc and Design Libraries at
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf for ex-
tensive documentation and examples for the Hmisc package.

http://biostat.mc.vanderbilt.edu/s/Hmisc
http://biostat.mc.vanderbilt.edu/s/Hmisc
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf

Save 21

Save Faciliate Use of save and load to Remote Directories

Description

These functions are slightly enhanced versions of save and load that allow a target directory to
be specified using options(LoadPath="pathname"). If the LoadPath option is not set,
the current working directory is used.

Usage

options(LoadPath='mypath')
Save(object, name=deparse(substitute(object)))
Load(object)

Arguments

object the name of an object, usually a data frame. It must not be quoted.

name an optional name to assign to the object and file name prefix, if the argument
name is not used

Details

Save creates a temporary version of the object under the name given by the user, so that save will
internalize this name. Then subsequent Load or load will cause an object of the original name to
be created in the global environment. The name of the R data file is assumed to be the name of the
object (or the value of name) appended with ".rda". For Save, compression is used.

Author(s)

Frank Harrell

See Also

save, load

Examples

Not run:
d <- data.frame(x=1:3, y=11:13)
options(LoadPath='../data/rda')
Save(d) # creates ../data/rda/d.rda
Load(d) # reads ../data/rda/d.rda
Save(d, 'D') # creates object D and saves it in .../D.rda
End(Not run)

22 abs.error.pred

abs.error.pred Indexes of Absolute Prediction Error for Linear Models

Description

Computes the mean and median of various absolute errors related to ordinary multiple regression
models. The mean and median absolute errors correspond to the mean square due to regression,
error, and total. The absolute errors computed are derived from Yhat - median(Yhat), Yhat - Y, and
Y - median(Y). The function also computes ratios that correspond to Rsquare and 1 - Rsquare (but
these ratios do not add to 1.0); the Rsquare measure is the ratio of mean or median absolute Yhat -
median(Yhat) to the mean or median absolute Y - median(Y). The 1 - Rsquare or SSE/SST measure
is the mean or median absolute Yhat - Y divided by the mean or median absolute Y - median(Y).

Usage

abs.error.pred(fit, lp=NULL, y=NULL)

S3 method for class 'abs.error.pred':
print(x, ...)

Arguments

fit a fit object typically from lm or ols that contains a y vector (i.e., you should
have specified y=TRUE to the fitting function) unless the y argument is given to
abs.error.pred. If you do not specify the lp argument, fit must contain
fitted.values or linear.predictors. You must specify fit or both
of lp and y.

lp a vector of predicted values (Y hat above) if fit is not given

y a vector of response variable values if fit (with y=TRUE in effect) is not given

x an object created by abs.error.pred

... unused

Value

a list of class abs.error.pred (used by print.abs.error.pred) containing two matri-
ces: differences and ratios.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Schemper M (2003): Stat in Med 22:2299-2308.

all.is.numeric 23

See Also

lm, ols, cor, validate.ols

Examples

set.seed(1) # so can regenerate results
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- exp(x1+x2+rnorm(100))
f <- lm(log(y) ~ x1 + poly(x2,3), y=TRUE)
abs.error.pred(lp=exp(fitted(f)), y=y)
rm(x1,x2,y,f)

all.is.numeric Check if All Elements in Character Vector are Numeric

Description

Tests, without issuing warnings, whether all elements of a character vector are legal numeric values,
or optionally converts the vector to a numeric vector. Leading and trailing blanks in x are ignored.

Usage

all.is.numeric(x, what = c("test", "vector"), extras=c('.','NA'))

Arguments

x a character vector

what specify what="vector" to return a numeric vector if it passes the test, or the
original character vector otherwise

extras a vector of character strings to count as numeric values, other than "".

Value

a logical value if what="test" or a vector otherwise

Author(s)

Frank Harrell

See Also

as.numeric

24 approxExtrap

Examples

all.is.numeric(c('1','1.2','3'))
all.is.numeric(c('1','1.2','3a'))
all.is.numeric(c('1','1.2','3'),'vector')
all.is.numeric(c('1','1.2','3a'),'vector')
all.is.numeric(c('1','',' .'),'vector')

approxExtrap Linear Extrapolation

Description

Works in conjunction with the approx function to do linear extrapolation. approx in R does not
support extrapolation at all, and it is buggy in S-Plus 6.

Usage

approxExtrap(x, y, xout, method = "linear", n = 50, rule = 2, f = 0, ties = "ordered", na.rm = FALSE)

Arguments

x

y

xout

method

n

rule

f see approx

ties applies only to R. See approx

na.rm set to TRUE to remove NAs in x and y before proceeding

Details

Duplicates in x (and corresponding y elements) are removed before using approx.

Value

a vector the same length as xout

Author(s)

Frank Harrell

See Also

approx

areg 25

Examples

approxExtrap(1:3,1:3,xout=c(0,4))

areg Additive Regression with Optimal Transformations on Both Sides us-
ing Canonical Variates

Description

Expands continuous variables into restricted cubic spline bases and categorical variables into dummy
variables and fits a multivariate equation using canonical variates. This finds optimum transforma-
tions that maximize R2. Optionally, the bootstrap is used to estimate the covariance matrix of both
left- and right-hand-side transformation parameters, and to estimate the bias in the R2 due to over-
fitting and compute the bootstrap optimism-corrected R2. Cross-validation can also be used to get
an unbiased estimate of R2 but this is not as precise as the bootstrap estimate. The bootstrap and
cross-validation may also used to get estimates of mean and median absolute error in predicted val-
ues on the original y scale. These two estimates are perhaps the best ones for gauging the accuracy
of a flexible model, because it is difficult to compare R2 under different y-transformations, and
because R2 allows for an out-of-sample recalibration (i.e., it only measures relative errors).

Note that uncertainty about the proper transformation of y causes an enormous amount of model
uncertainty. When the transformation for y is estimated from the data a high variance in predicted
values on the original y scale may result, especially if the true transformation is linear. Comparing
bootstrap or cross-validated mean absolute errors with and without restricted the y transform to be
linear (ytype=’l’) may help the analyst choose the proper model complexity.

Usage

areg(x, y, xtype = NULL, ytype = NULL, nk = 4,
B = 0, na.rm = TRUE, tolerance = NULL, crossval = NULL)

S3 method for class 'areg':
print(x, digits=4, ...)

S3 method for class 'areg':
plot(x, whichx = 1:ncol(x$x), ...)

S3 method for class 'areg':
predict(object, x, type=c('lp','fitted'),

what=c('all','sample'), ...)

Arguments

x A single predictor or a matrix of predictors. Categorical predictors are required
to be coded as integers (as factor does internally). For predict, x is a
data matrix with the same integer codes that were originally used for categorical
variables.

26 areg

y a factor, categorical, character, or numeric response variable

xtype a vector of one-letter character codes specifying how each predictor is to be
modeled, in order of columns of x. The codes are "s" for smooth function
(using restricted cubic splines), "l" for no transformation (linear), or "c" for
categorical (to cause expansion into dummy variables). Default is "s" if nk >
0 and "l" if nk=0.

ytype same coding as for xtype. Default is "s" for a numeric variable with more
than two unique values, "l" for a binary numeric variable, and "c" for a factor,
categorical, or character variable.

nk number of knots, 0 for linear, or 3 or more. Default is 4 which will fit 3 param-
eters to continuous variables (one linear term and two nonlinear terms)

B number of bootstrap resamples used to estimate covariance matrices of transfor-
mation parameters. Default is no bootstrapping.

na.rm set to FALSE if you are sure that observations with NAs have already been re-
moved

tolerance singularity tolerance. List source code for lm.fit.qr.bare for details.

crossval set to a positive integer k to compute k-fold cross-validated R-squared (square
of first canonical correlation) and mean and median absolute error of predictions
on the original scale

digits number of digits to use in formatting for printing

object an object created by areg

whichx integer or character vector specifying which predictors are to have their trans-
formations plotted (default is all). The y transformation is always plotted.

type tells predict whether to obtain predicted untransformed y (type=’lp’, the
default) or predicted y on the original scale (type=’fitted’)

what When the y-transform is non-monotonic you may specify what=’sample’
to predict to obtain a random sample of y values on the original scale instead
of a matrix of all y-inverses. See inverseFunction.

... arguments passed to the plot function.

Details

areg is a competitor of ace in the acepack package. Transformations from ace are seldom
smooth enough and are often overfitted. With areg the complexity can be controlled with the nk
parameter, and predicted values are easy to obtain because parametric functions are fitted.

If one side of the equation has a categorical variable with more than two categories and the other
side has a continuous variable not assumed to act linearly, larger sample sizes are needed to reliably
estimate transformations, as it is difficult to optimally score categorical variables to maximize R2

against a simultaneously optimally transformed continuous variable.

Value

a list of class "areg" containing many objects

areg 27

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

References

Breiman and Friedman, Journal of the American Statistical Association (September, 1985).

See Also

cancor,ace, transcan

Examples

set.seed(1)

ns <- c(30,300,3000)
for(n in ns) {
y <- sample(1:5, n, TRUE)
x <- abs(y-3) + runif(n)
par(mfrow=c(3,4))
for(k in c(0,3:5)) {
z <- areg(x, y, ytype='c', nk=k)
plot(x, z$tx)

title(paste('R2=',format(z$rsquared)))
tapply(z$ty, y, range)
a <- tapply(x,y,mean)
b <- tapply(z$ty,y,mean)
plot(a,b)

abline(lsfit(a,b))
Should get same result to within linear transformation if reverse x and y
w <- areg(y, x, xtype='c', nk=k)
plot(zty, wtx)
title(paste('R2=',format(w$rsquared)))
abline(lsfit(zty, wtx))

}
}

par(mfrow=c(2,2))
Example where one category in y differs from others but only in variance of x
n <- 50
y <- sample(1:5,n,TRUE)
x <- rnorm(n)
x[y==1] <- rnorm(sum(y==1), 0, 5)
z <- areg(x,y,xtype='l',ytype='c')
z
plot(z)
z <- areg(x,y,ytype='c')
z
plot(z)

28 areg

Not run:
Examine overfitting when true transformations are linear
par(mfrow=c(4,3))
for(n in c(200,2000)) {
x <- rnorm(n); y <- rnorm(n) + x
for(nk in c(0,3,5)) {
z <- areg(x, y, nk=nk, crossval=10, B=100)
print(z)
plot(z)
title(paste('n=',n))

}
}
par(mfrow=c(1,1))

Underfitting when true transformation is quadratic but overfitting
when y is allowed to be transformed
set.seed(49)
n <- 200
x <- rnorm(n); y <- rnorm(n) + .5*x^2
#areg(x, y, nk=0, crossval=10, B=100)
#areg(x, y, nk=4, ytype='l', crossval=10, B=100)
z <- areg(x, y, nk=4) #, crossval=10, B=100)
z
Plot x vs. predicted value on original scale. Since y-transform is
not monotonic, there are multiple y-inverses
xx <- seq(-3.5,3.5,length=1000)
yhat <- predict(z, xx, type='fitted')
plot(x, y, xlim=c(-3.5,3.5))
for(j in 1:ncol(yhat)) lines(xx, yhat[,j], col=j)
Plot a random sample of possible y inverses
yhats <- predict(z, xx, type='fitted', what='sample')
points(xx, yhats, pch=2)
End(Not run)

True transformation of x1 is quadratic, y is linear
n <- 200
x1 <- rnorm(n); x2 <- rnorm(n); y <- rnorm(n) + x1^2
z <- areg(cbind(x1,x2),y,xtype=c('s','l'),nk=3)
par(mfrow=c(2,2))
plot(z)

y transformation is inverse quadratic but areg gets the same answer by
making x1 quadratic
n <- 5000
x1 <- rnorm(n); x2 <- rnorm(n); y <- (x1 + rnorm(n))^2
z <- areg(cbind(x1,x2),y,nk=5)
par(mfrow=c(2,2))
plot(z)

Overfit 20 predictors when no true relationships exist
n <- 1000
x <- matrix(runif(n*20),n,20)

aregImpute 29

y <- rnorm(n)
z <- areg(x, y, nk=5) # add crossval=4 to expose the problem

Test predict function
n <- 50
x <- rnorm(n)
y <- rnorm(n) + x
g <- sample(1:3, n, TRUE)
z <- areg(cbind(x,g),y,xtype=c('s','c'))
range(predict(z, cbind(x,g)) - z$linear.predictors)

aregImpute Multiple Imputation using Additive Regression, Bootstrapping, and
Predictive Mean Matching

Description

The transcan function creates flexible additive imputation models but provides only an ap-
proximation to true multiple imputation as the imputation models are fixed before all multiple
imputations are drawn. This ignores variability caused by having to fit the imputation models.
aregImpute takes all aspects of uncertainty in the imputations into account by using the boot-
strap to approximate the process of drawing predicted values from a full Bayesian predictive distri-
bution. Different bootstrap resamples are used for each of the multiple imputations, i.e., for the ith
imputation of a sometimes missing variable, i=1,2,... n.impute, a flexible additive model
is fitted on a sample with replacement from the original data and this model is used to predict all of
the original missing and non-missing values for the target variable.

areg is used to fit the imputation models. By default, linearity is assumed for target variables
(variables being imputed) and nk=3 knots are assumed for continuous predictors transformed us-
ing restricted cubic splines. If nk is three or greater and tlinear is set to FALSE, areg simul-
taneously find transformations of the target variable and of all of the predictors, to get a good fit
assuming additivity, maximizing R2, using the same canonical correlation method as transcan.
Flexible transformations may be overridden for specific variables by specifying the identity trans-
formation for them. When a categorical variable is being predicted, the flexible transformation is
Fisher’s optimum scoring method. Nonlinear transformations for continuous variables may be non-
monotonic. If nk is a vector, areg’s bootstrap and crossval=10 options will be used to help
find the optimum validating value of nk over values of that vector, at the last imputation iteration.
For the imputations, the minimum value of nk is used.

Instead of defaulting to taking random draws from fitted imputation models using random residuals
as is done by transcan, aregImpute by default uses predictive mean matching with optional
weighted probability sampling of donors rather than using only the closest match. Predictive mean
matching works for binary, categorical, and continuous variables without the need for iterative
maximum likelihood fitting for binary and categorical variables, and without the need for computing
residuals or for curtailing imputed values to be in the range of actual data. Predictive mean matching
is especially attractive when the variable being imputed is also being transformed automatically.
See Details below for more information about the algorithm. A "regression" method is also
available that is similar to that used in transcan. This option should be used when mechanistic
missingness requires the use of extrapolation during imputation.

30 aregImpute

A printmethod summarizes the results, and a plotmethod plots distributions of imputed values.
Typically, fit.mult.impute will be called after aregImpute.

If a target variable is transformed nonlinearly (i.e., if nk is greater than zero and tlinear is set to
FALSE) and the estimated target variable transformation is non-monotonic, imputed values are not
unique. When type=’regression’, a random choice of possible inverse values is made.

Usage

aregImpute(formula, data, subset, n.impute=5, group=NULL,
nk=3, tlinear=TRUE, type=c('pmm','regression'),
match=c('weighted','closest'), fweighted=0.2,
curtail=TRUE, boot.method=c('simple', 'approximate bayesian'),
burnin=3, x=FALSE, pr=TRUE, plotTrans=FALSE, tolerance=NULL, B=75)

S3 method for class 'aregImpute':
print(x, digits=3, ...)
S3 method for class 'aregImpute':
plot(x, nclass=NULL, type=c('ecdf','hist'),

datadensity=c("hist", "none", "rug", "density"),
diagnostics=FALSE, maxn=10, ...)

Arguments

formula an S model formula. You can specify restrictions for transformations of vari-
ables. The function automatically determines which variables are categorical
(i.e., factor, category, or character vectors). Binary variables are automat-
ically restricted to be linear. Force linear transformations of continuous variables
by enclosing variables by the identify function (I()). It is recommended that
factor() or as.factor() do not appear in the formula but instead vari-
ables be converted to factors as needed and stored in the data frame. That way
imputations for factor variables (done using impute.transcan for example)
will be correct.

x an object created by aregImpute. For aregImpute, set x to TRUE to save
the data matrix containing the final (number n.impute) imputations in the
result. This is needed if you want to later do out-of-sample imputation. Cate-
gorical variables are coded as integers in this matrix.

data

subset These may be also be specified. You may not specify na.action as na.retain
is always used.

n.impute number of multiple imputations. n.impute=5 is frequently recommended but
10 or more doesn’t hurt.

group a character or factor variable the same length as the number of observations
in data and containing no NAs. When group is present, causes a bootstrap
sample of the observations corresponding to non-NAs of a target variable to have
the same frequency distribution of group as the that in the non-NAs of the
original sample. This can handle k-sample problems as well as lower the chance
that a bootstrap sample will have a missing cell when the original cell frequency
was low.

aregImpute 31

nk number of knots to use for continuous variables. When both the target variable
and the predictors are having optimum transformations estimated, there is more
instability than with normal regression so the complexity of the model should
decrease more sharply as the sample size decreases. Hence set nk to 0 (to force
linearity for non-categorical variables) or 3 (minimum number of knots possible
with a linear tail-restricted cubic spline) for small sample sizes. Simulated prob-
lems as in the examples section can assist in choosing nk. See nk to a vector
to get bootstrap-validated and 10-fold cross-validated R2 and mean and median
absolute prediction errors for imputing each sometimes-missing variable, with
nk ranging over the given vector. The errors are on the original untransformed
scale. The mean absolute error is the recommended basis for choosing the num-
ber of knots (or linearity).

tlinear set to FALSE to allow a target variable (variable being imputed) to have a non-
linear left-hand-side transformation when nk is 3 or greater

type The default is "pmn" for predictive mean matching, which is a more nonpara-
metric approach that will work for categorical as well as continuous predictors.
Alternatively, use "regression" when all variables that are sometimes miss-
ing are continuous and the missingness mechanism is such that entire intervals
of population values are unobserved. See the Details section for more infor-
mation. For the plot method, specify type="hist" to draw histograms of
imputed values with rug plots at the top, or type="ecdf" (the default) to draw
empirical CDFs with spike histograms at the bottom.

match Defaults to match="weighted" to do weighted multinomial probability sam-
pling using the tricube function (similar to lowess) as the weights. The argument
of the tricube function is the absolute difference in transformed predicted values
of all the donors and of the target predicted value, divided by a scaling factor.
The scaling factor in the tricube function is fweighted times the mean ab-
solute difference between the target predicted value and all the possible donor
predicted values. Set match="closest" to find as the donor the observation
having the closest predicted transformed value, even if that same donor is found
repeatedly.

fweighted Smoothing parameter (multiple of mean absolute difference) used when match="weighted",
with a default value of 0.2. Set fweighted to a number between 0.02 and
0.2 to force the donor to have a predicted value closer to the target, and set
fweighted to larger values (but seldom larger than 1.0) to allow donor val-
ues to be less tightly matched. See the examples below to learn how to study
the relationship between fweighted and the standard deviation of multiple
imputations within individuals.

curtail applies if type=’regression’, causing imputed values to be curtailed at
the observed range of the target variable. Set to FALSE to allow extrapolation
outside the data range.

boot.method By default, simple boostrapping is used in which the target variable is predicted
using a sample with replacement from the observations with non-missing target
variable. Specify boot.method=’approximate bayesian’ to build
the imputation models from a sample with replacement from a sample with re-
placement of the observations with non-missing targets. Preliminary simulations

32 aregImpute

have shown this results in good confidence coverage of the final model parame-
ters when type=’regression’ is used. Not implemented when group is
used.

burnin aregImpute does burnin + n.impute iterations of the entire modeling
process. The first burnin imputations are discarded. More burn-in iteractions
may be requied when multiple variables are missing on the same observations.

pr set to FALSE to suppress printing of iteration messages

plotTrans set to TRUE to plot ace or avas transformations for each variable for each of
the multiple imputations. This is useful for determining whether transforma-
tions are reasonable. If transformations are too noisy or have long flat sections
(resulting in "lumps" in the distribution of imputed values), it may be advisable
to place restrictions on the transformations (monotonicity or linearity).

tolerance singularity criterion; list the source code in the lm.fit.qr.bare function
for details

B number of bootstrap resamples to use if nk is a vector

digits number of digits for printing

nclass number of bins to use in drawing histogram

datadensity see Ecdf

diagnostics Specify diagnostics=TRUE to draw plots of imputed values against sequen-
tial imputation numbers, separately for each missing observations and variable.

maxn Maximum number of observations shown for diagnostics. Default is maxn=10,
which limits the number of observations plotted to at most the first 10.

... other arguments that are ignored

Details

The sequence of steps used by the aregImpute algorithm is the following.
(1) For each variable containing m NAs where m > 0, initialize the NAs to values from a random
sample (without replacement if a sufficient number of non-missing values exist) of size m from the
non-missing values.
(2) For burnin+n.impute iterations do the following steps. The first burnin iterations provide
a burn-in, and imputations are saved only from the last n.impute iterations.
(3) For each variable containing any NAs, draw a sample with replacement from the observations
in the entire dataset in which the current variable being imputed is non-missing. Fit a flexible
additive model to predict this target variable while finding the optimum transformation of it (unless
the identity transformation is forced). Use this fitted flexible model to predict the target variable in
all of the original observations. Impute each missing value of the target variable with the observed
value whose predicted transformed value is closest to the predicted transformed value of the missing
value (if match="closest" and type="pmm"), or use a draw from a multinomial distribution
with probabilities derived from distance weights, if match="weighted" (the default).
(4) After these imputations are computed, use these random draw imputations the next time the
curent target variable is used as a predictor of other sometimes-missing variables.

When match="closest", predictive mean matching does not work well when fewer than 3
variables are used to predict the target variable, because many of the multiple imputations for an
observation will be identical. In the extreme case of one right-hand-side variable and assuming

aregImpute 33

that only monotonic transformations of left and right-side variables are allowed, every bootstrap
resample will give predicted values of the target variable that are monotonically related to predicted
values from every other bootstrap resample. The same is true for Bayesian predicted values. This
causes predictive mean matching to always match on the same donor observation.

When the missingness mechanism for a variable is so systematic that the distribution of observed
values is truncated, predictive mean matching does not work. It will only yield imputed values that
are near observed values, so intervals in which no values are observed will not be populated by im-
puted values. For this case, the only hope is to make regression assumptions and use extrapolation.
With type="regression", aregImpute will use linear extrapolation to obtain a (hopefully)
reasonable distribution of imputed values. The "regression" option causes aregImpute to
impute missing values by adding a random sample of residuals (with replacement if there are more
NAs than measured values) on the transformed scale of the target variable. After random residuals
are added, predicted random draws are obtained on the original untransformed scale using reverse
linear interpolation on the table of original and transformed target values (linear extrapolation when
a random residual is large enough to put the random draw prediction outside the range of observed
values). The bootstrap is used as with type="pmm" to factor in the uncertainty of the imputation
model.

As model uncertainty is high when the transformation of a target variable is unknown, tlinear
defaults to TRUE to limit the variance in predicted values when nk is positive.

Value

a list of class "aregImpute" containing the following elements:

call the function call expression
formula the formula specified to aregImpute
match the match argument
fweighted the fweighted argument
n total number of observations in input dataset
p number of variables
na list of subscripts of observations for which values were originally missing
nna named vector containing the numbers of missing values in the data
type vector of types of transformations used for each variable ("s","l","c" for

smooth spline, linear, or categorical with dummy variables)
tlinear value of tlinear parameter
nk number of knots used for smooth transformations
cat.levels list containing character vectors specifying the levels of categorical variables
df degrees of freedom (number of parameters estimated) for each variable
n.impute number of multiple imputations per missing value
imputed a list containing matrices of imputed values in the same format as those cre-

ated by transcan. Categorical variables are coded using their integer codes.
Variables having no missing values will have NULL matrices in the list.

x if x is TRUE, the original data matrix with integer codes for categorical variables
rsq for the last round of imputations, a vector containing the R-squares with which

each sometimes-missing variable could be predicted from the others by ace or
avas.

34 aregImpute

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

References

Little R, An H. Robust likelihood-based analysis of multivariate data with missing values. Statistica
Sinica 14:933-952, 2004.

van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB. Fully conditional specifications
in multivariate imputation. Draft available from http://web.inter.nl.net/users/S.
van.Buuren/publications/FCS%20(revised%20Jan%202005).pdf.

See Also

fit.mult.impute, transcan, areg, naclus, naplot, mice, dotchart2, Ecdf

Examples

Check that aregImpute can almost exactly estimate missing values when
there is a perfect nonlinear relationship between two variables
Fit restricted cubic splines with 4 knots for x1 and x2, linear for x3
set.seed(3)
x1 <- rnorm(200)
x2 <- x1^2
x3 <- runif(200)
m <- 30
x2[1:m] <- NA
a <- aregImpute(~x1+x2+I(x3), n.impute=5, nk=4, match='closest')
a
matplot(x1[1:m]^2, a$imputed$x2)
abline(a=0, b=1, lty=2)

x1[1:m]^2
a$imputed$x2

Multiple imputation and estimation of variances and covariances of
regression coefficient estimates accounting for imputation
Example 1: large sample size, much missing data, no overlap in
NAs across variables
x1 <- factor(sample(c('a','b','c'),1000,TRUE))
x2 <- (x1=='b') + 3*(x1=='c') + rnorm(1000,0,2)
x3 <- rnorm(1000)
y <- x2 + 1*(x1=='c') + .2*x3 + rnorm(1000,0,2)
orig.x1 <- x1[1:250]
orig.x2 <- x2[251:350]
x1[1:250] <- NA
x2[251:350] <- NA
d <- data.frame(x1,x2,x3,y)
Find value of nk that yields best validating imputation models

http://web.inter.nl.net/users/S.van.Buuren/publications/FCS%20(revised%20Jan%202005).pdf
http://web.inter.nl.net/users/S.van.Buuren/publications/FCS%20(revised%20Jan%202005).pdf

aregImpute 35

tlinear=FALSE means to not force the target variable to be linear
f <- aregImpute(~y + x1 + x2 + x3, nk=c(0,3:5), tlinear=FALSE,

data=d, B=10) # normally B=75
f
Try forcing target variable (x1, then x2) to be linear while allowing
predictors to be nonlinear (could also say tlinear=TRUE)
f <- aregImpute(~y + x1 + x2 + x3, nk=c(0,3:5), data=d, B=10)
f

Use 100 imputations to better check against individual true values
f <- aregImpute(~y + x1 + x2 + x3, n.impute=100, data=d)
f
par(mfrow=c(2,1))
plot(f)
modecat <- function(u) {
tab <- table(u)
as.numeric(names(tab)[tab==max(tab)][1])
}
table(orig.x1,apply(f$imputed$x1, 1, modecat))
par(mfrow=c(1,1))
plot(orig.x2, apply(f$imputed$x2, 1, mean))
fmi <- fit.mult.impute(y ~ x1 + x2 + x3, lm, f,

data=d)
sqrt(diag(Varcov(fmi)))
fcc <- lm(y ~ x1 + x2 + x3)
summary(fcc) # SEs are larger than from mult. imputation

Example 2: Very discriminating imputation models,
x1 and x2 have some NAs on the same rows, smaller n
set.seed(5)
x1 <- factor(sample(c('a','b','c'),100,TRUE))
x2 <- (x1=='b') + 3*(x1=='c') + rnorm(100,0,.4)
x3 <- rnorm(100)
y <- x2 + 1*(x1=='c') + .2*x3 + rnorm(100,0,.4)
orig.x1 <- x1[1:20]
orig.x2 <- x2[18:23]
x1[1:20] <- NA
x2[18:23] <- NA
#x2[21:25] <- NA
d <- data.frame(x1,x2,x3,y)
n <- naclus(d)
plot(n); naplot(n) # Show patterns of NAs
100 imputations to study them; normally use 5 or 10
f <- aregImpute(~y + x1 + x2 + x3, n.impute=100, nk=0, data=d)
par(mfrow=c(2,3))
plot(f, diagnostics=TRUE, maxn=2)
Note: diagnostics=TRUE makes graphs similar to those made by:
r <- range(f$imputed$x2, orig.x2)
for(i in 1:6) { # use 1:2 to mimic maxn=2
plot(1:100, f$imputed$x2[i,], ylim=r,
ylab=paste("Imputations for Obs.",i))
abline(h=orig.x2[i],lty=2)
}

36 aregImpute

table(orig.x1,apply(f$imputed$x1, 1, modecat))
par(mfrow=c(1,1))
plot(orig.x2, apply(f$imputed$x2, 1, mean))

fmi <- fit.mult.impute(y ~ x1 + x2, lm, f,
data=d)

sqrt(diag(Varcov(fmi)))
fcc <- lm(y ~ x1 + x2)
summary(fcc) # SEs are larger than from mult. imputation

Study relationship between smoothing parameter for weighting function
(multiplier of mean absolute distance of transformed predicted
values, used in tricube weighting function) and standard deviation
of multiple imputations. SDs are computed from average variances
across subjects. match="closest" same as match="weighted" with
small value of fweighted.
This example also shows problems with predicted mean
matching almost always giving the same imputed values when there is
only one predictor (regression coefficients change over multiple
imputations but predicted values are virtually 1-1 functions of each
other)

set.seed(23)
x <- runif(200)
y <- x + runif(200, -.05, .05)
r <- resid(lsfit(x,y))
rmse <- sqrt(sum(r^2)/(200-2)) # sqrt of residual MSE

y[1:20] <- NA
d <- data.frame(x,y)
f <- aregImpute(~ x + y, n.impute=10, match='closest', data=d)
As an aside here is how to create a completed dataset for imputation
number 3 as fit.mult.impute would do automatically. In this degenerate
case changing 3 to 1-2,4-10 will not alter the results.
completed <- d
imputed <- impute.transcan(f, imputation=3, data=d, list.out=TRUE,

pr=FALSE, check=FALSE)
completed[names(imputed)] <- imputed
completed
sd <- sqrt(mean(apply(f$imputed$y, 1, var)))

ss <- c(0, .01, .02, seq(.05, 1, length=20))
sds <- ss; sds[1] <- sd

for(i in 2:length(ss)) {
f <- aregImpute(~ x + y, n.impute=10, fweighted=ss[i])
sds[i] <- sqrt(mean(apply(f$imputed$y, 1, var)))

}

plot(ss, sds, xlab='Smoothing Parameter', ylab='SD of Imputed Values',
type='b')

abline(v=.2, lty=2) # default value of fweighted

biVar 37

abline(h=rmse, lty=2) # root MSE of residuals from linear regression

Not run:
Do a similar experiment for the Titanic dataset
getHdata(titanic3)
h <- lm(age ~ sex + pclass + survived, data=titanic3)
rmse <- summary(h)$sigma
set.seed(21)
f <- aregImpute(~ age + sex + pclass + survived, n.impute=10,

data=titanic3, match='closest')
sd <- sqrt(mean(apply(f$imputed$age, 1, var)))

ss <- c(0, .01, .02, seq(.05, 1, length=20))
sds <- ss; sds[1] <- sd

for(i in 2:length(ss)) {
f <- aregImpute(~ age + sex + pclass + survived, data=titanic3,

n.impute=10, fweighted=ss[i])
sds[i] <- sqrt(mean(apply(f$imputed$age, 1, var)))

}

plot(ss, sds, xlab='Smoothing Parameter', ylab='SD of Imputed Values',
type='b')

abline(v=.2, lty=2) # default value of fweighted
abline(h=rmse, lty=2) # root MSE of residuals from linear regression
End(Not run)

biVar Bivariate Summaries Computed Separately by a Series of Predictors

Description

biVar is a generic function that accepts a formula and usual data, subset, and na.action
parameters plus a list statinfo that specifies a function of two variables to compute along with
information about labeling results for printing and plotting. The function is called separately with
each right hand side variable and the same left hand variable. The result is a matrix of bivariate
statistics and the statinfo list that drives printing and plotting. The plot method draws a dot plot
with x-axis values by default sorted in order of one of the statistics computed by the function.

spearman2 computes the square of Spearman’s rho rank correlation and a generalization of it
in which x can relate non-monotonically to y. This is done by computing the Spearman multiple
rho-squared between (rank(x), rank(x)^2) and y. When x is categorical, a different kind
of Spearman correlation used in the Kruskal-Wallis test is computed (and spearman2 can do the
Kruskal-Wallis test). This is done by computing the ordinary multiple R^2 between k-1 dummy
variables and rank(y), where x has k categories. x can also be a formula, in which case each
predictor is correlated separately with y, using non-missing observations for that predictor. biVar
is used to do the looping and bookkeeping. By default the plot shows the adjusted rho^2, using
the same formula used for the ordinary adjusted R^2. The F test uses the unadjusted R2.

spearman computes Spearman’s rho on non-missing values of two variables. spearman.test
is a simple version of spearman2.default.

38 biVar

chiSquare is set up like spearman2 except it is intended for a categorical response variable.
Separate Pearson chi-square tests are done for each predictor, with optional collapsing of infrequent
categories. Numeric predictors having more than g levels are categorized into g quantile groups.
chiSquare uses biVar.

Usage

biVar(formula, statinfo, data=NULL, subset=NULL,
na.action=na.retain, exclude.imputed=TRUE, ...)

S3 method for class 'biVar':
print(x, ...)

S3 method for class 'biVar':
plot(x, what=info$defaultwhat,

sort.=TRUE,
main, xlab, ...)

spearman2(x, ...)

Default S3 method:
spearman2(x, y, p=1, minlev=0, na.rm=TRUE, exclude.imputed=na.rm, ...)

S3 method for class 'formula':
spearman2(formula, data=NULL,

subset, na.action=na.retain, exclude.imputed=TRUE, ...)

spearman(x, y)

spearman.test(x, y, p=1)

chiSquare(formula, data=NULL, subset=NULL, na.action=na.retain,
exclude.imputed=TRUE, ...)

Arguments

formula a formula with a single left side variable

statinfo see spearman2.formula or chiSquare code
data, subset, na.action

the usual options for models. Default for na.action is to retain all values,
NA or not, so that NAs can be deleted in only a pairwise fashion.

exclude.imputed
set to FALSE to include imputed values (created by impute) in the calcula-
tions.

... other arguments that are passed to the function used to compute the bivariate
statistics or to dotchart2 for plot.

na.rm logical; delete NA values?

biVar 39

x a numeric matrix with at least 5 rows and at least 2 columns (if y is absent).
For spearman2, the first argument may be a vector of any type, including
character or factor. The first argument may also be a formula, in which case
all predictors are correlated individually with the response variable. x may be
a formula for spearman2 in which case spearman2.formula is invoked.
Each predictor in the right hand side of the formula is separately correlated with
the response variable. For print or plot, x is an object produced by biVar.
For spearman and spearman.test x is a numeric vector, as is y. For
chiSquare, x is a formula.

y a numeric vector

p for numeric variables, specifies the order of the Spearman rho^2 to use. The
default is p=1 to compute the ordinary rho^2. Use p=2 to compute the
quadratic rank generalization to allow non-monotonicity. p is ignored for cate-
gorical predictors.

minlev minimum relative frequency that a level of a categorical predictor should have
before it is pooled with other categories (see combine.levels) in spearman2
and chiSquare (in which case it also applies to the response). The default,
minlev=0 causes no pooling.

what specifies which statistic to plot. Possibilities include the column names that
appear with the print method is used.

sort. set sort.=FALSE to suppress sorting variables by the statistic being plotted

main main title for plot. Default title shows the name of the response variable.

xlab x-axis label. Default constructed from what.

Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values for Spearman,
Wilcoxon, or Kruskal-Wallis tests are approximated by using the t or F distributions.

Value

spearman2.default (the function that is called for a single x, i.e., when there is no formula)
returns a vector of statistics for the variable. biVar, spearman2.formula, and chiSquare
return a matrix with rows corresponding to predictors.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

References

Hollander M. and Wolfe D.A. (1973). Nonparametric Statistical Methods. New York: Wiley.

Press WH, Flannery BP, Teukolsky SA, Vetterling, WT (1988): Numerical Recipes in C. Cam-
bridge: Cambridge University Press.

40 binconf

See Also

combine.levels, varclus, dotchart2, impute, chisq.test, cut2.

Examples

x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
v <- c(1, 2, 3, 4, 5)

spearman2(x, y)
plot(spearman2(z ~ x + y + v, p=2))

f <- chiSquare(z ~ x + y + v)
f

binconf Confidence Intervals for Binomial Probabilities

Description

Produces 1-alpha confidence intervals for binomial probabilities.

Usage

binconf(x, n, alpha=0.05,
method=c("wilson","exact","asymptotic","all"),
include.x=FALSE, include.n=FALSE, return.df=FALSE)

Arguments

x vector containing the number of "successes" for binomial variates

n vector containing the numbers of corresponding observations

alpha probability of a type I error, so confidence coefficient = 1-alpha

method character string specifing which method to use. The "all" method only works
when x and n are length 1. The "exact" method uses the F distribution to com-
pute exact (based on the binomial cdf) intervals; the "wilson" interval is score-
test-based; and the "asymptotic" is the text-book, asymptotic normal interval.
Following Agresti and Coull, the Wilson interval is to be preferred and so is the
default.

include.x logical flag to indicate whether x should be included in the returned matrix or
data frame

include.n logical flag to indicate whether n should be included in the returned matrix or
data frame

return.df logical flag to indicate that a data frame rather than a matrix be returned

bootkm 41

Value

a matrix or data.frame containing the computed intervals and, optionally, x and n.

Author(s)

Rollin Brant, Modified by Frank Harrell and
Brad Biggerstaff
Centers for Disease Control and Prevention
National Center for Infectious Diseases
Division of Vector-Borne Infectious Diseases
P.O. Box 2087, Fort Collins, CO, 80522-2087, USA
bkb5@cdc.gov

References

A. Agresti and B.A. Coull, Approximate is better than "exact" for interval estimation of binomial
proportions, American Statistician, 52:119–126, 1998.

R.G. Newcombe, Logit confidence intervals and the inverse sinh transformation, American Statisti-
cian, 55:200–202, 2001.

L.D. Brown, T.T. Cai and A. DasGupta, Interval estimation for a binomial proportion (with discus-
sion), Statistical Science, 16:101–133, 2001.

Examples

binconf(0:10,10,include.x=TRUE,include.n=TRUE)
binconf(46,50,method="all")

bootkm Bootstrap Kaplan-Meier Estimates

Description

Bootstraps Kaplan-Meier estimate of the probability of survival to at least a fixed time (times
variable) or the estimate of the q quantile of the survival distribution (e.g., median survival time,
the default).

Usage

bootkm(S, q=0.5, B=500, times, pr=TRUE)

Arguments

S a Surv object for possibly right-censored survival time

q quantile of survival time, default is 0.5 for median

B number of bootstrap repetitions (default=500)

42 bootkm

times time vector (currently only a scalar is allowed) at which to compute survival
estimates. You may specify only one of q and times, and if times is specified
q is ignored.

pr set to FALSE to suppress printing the iteration number every 10 iterations

Details

bootkm uses Therneau’s survfit.km function to efficiently compute Kaplan-Meier estimates.

Value

a vector containing B bootstrap estimates

Side Effects

updates .Random.seed, and, if pr=TRUE, prints progress of simulations

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Akritas MG (1986): Bootstrapping the Kaplan-Meier estimator. JASA 81:1032–1038.

See Also

survfit, survfit.km, Surv, Survival.cph, Quantile.cph

Examples

Compute 0.95 nonparametric confidence interval for the difference in
median survival time between females and males (two-sample problem)
set.seed(1)
library(survival)
S <- Surv(runif(200)) # no censoring
sex <- c(rep('female',100),rep('male',100))
med.female <- bootkm(S[sex=='female',], B=100) # normally B=500
med.male <- bootkm(S[sex=='male',], B=100)
describe(med.female-med.male)
quantile(med.female-med.male, c(.025,.975), na.rm=TRUE)
na.rm needed because some bootstrap estimates of median survival
time may be missing when a bootstrap sample did not include the
longer survival times

bpower 43

bpower Power and Sample Size for Two-Sample Binomial Test

Description

Uses method of Fleiss, Tytun, and Ury (but without the continuity correction) to estimate the power
(or the sample size to achieve a given power) of a two-sided test for the difference in two propor-
tions. The two sample sizes are allowed to be unequal, but for bsamsize you must specify the
fraction of observations in group 1. For power calculations, one probability (p1) must be given, and
either the other probability (p2), an odds.ratio, or a percent.reduction must be given.
For bpower or bsamsize, any or all of the arguments may be vectors, in which case they return
a vector of powers or sample sizes. All vector arguments must have the same length.

Given p1, p2, ballocation uses the method of Brittain and Schlesselman to compute the
optimal fraction of observations to be placed in group 1 that either (1) minimize the variance of
the difference in two proportions, (2) minimize the variance of the ratio of the two proportions,
(3) minimize the variance of the log odds ratio, or (4) maximize the power of the 2-tailed test for
differences. For (4) the total sample size must be given, or the fraction optimizing the power is not
returned. The fraction for (3) is one minus the fraction for (1).

bpower.sim estimates power by simulations, in minimal time. By using bpower.sim you can
see that the formulas without any continuity correction are quite accurate, and that the power of
a continuity-corrected test is significantly lower. That’s why no continuity corrections are imple-
mented here.

Usage

bpower(p1, p2, odds.ratio, percent.reduction,
n, n1, n2, alpha=0.05)

bsamsize(p1, p2, fraction=.5, alpha=.05, power=.8)

ballocation(p1, p2, n, alpha=.05)

bpower.sim(p1, p2, odds.ratio, percent.reduction,
n, n1, n2,
alpha=0.05, nsim=10000)

Arguments

p1 population probability in the group 1

p2 probability for group 2

odds.ratio
percent.reduction

n total sample size over the two groups. If you omit this for ballocation, the
fraction which optimizes power will not be returned.

44 bpower

n1

n2 the individual group sample sizes. For bpower, if n is given, n1 and n2 are set
to n/2.

alpha type I error

fraction fraction of observations in group 1

power the desired probability of detecting a difference

nsim number of simulations of binomial responses

Details

For bpower.sim, all arguments must be of length one.

Value

for bpower, the power estimate; for bsamsize, a vector containing the sample sizes in the two
groups; for ballocation, a vector with 4 fractions of observations allocated to group 1, optimiz-
ing the four criteria mentioned above. For bpower.sim, a vector with three elements is returned,
corresponding to the simulated power and its lower and upper 0.95 confidence limits.

AUTHOR

Frank Harrell

Department of Biostatistics

Vanderbilt University

f.harrell@vanderbilt.edu

References

Fleiss JL, Tytun A, Ury HK (1980): A simple approximation for calculating sample sizes for com-
paring independent proportions. Biometrics 36:343–6.

Brittain E, Schlesselman JJ (1982): Optimal allocation for the comparison of proportions. Biomet-
rics 38:1003–9.

Gordon I, Watson R (1996): The myth of continuity-corrected sample size formulae. Biometrics
52:71–6.

See Also

samplesize.bin, chisq.test, binconf

Examples

bpower(.1, odds.ratio=.9, n=1000, alpha=c(.01,.05))
bpower.sim(.1, odds.ratio=.9, n=1000)
bsamsize(.1, .05, power=.95)
ballocation(.1, .5, n=100)

Plot power vs. n for various odds ratios (base prob.=.1)

bpplot 45

n <- seq(10, 1000, by=10)
OR <- seq(.2,.9,by=.1)
plot(0, 0, xlim=range(n), ylim=c(0,1), xlab="n", ylab="Power", type="n")
for(or in OR) {
lines(n, bpower(.1, odds.ratio=or, n=n))
text(350, bpower(.1, odds.ratio=or, n=350)-.02, format(or))

}

Another way to plot the same curves, but letting labcurve do the
work, including labeling each curve at points of maximum separation
pow <- lapply(OR, function(or,n)list(x=n,y=bpower(p1=.1,odds.ratio=or,n=n)),

n=n)
names(pow) <- format(OR)
labcurve(pow, pl=TRUE, xlab='n', ylab='Power')

Contour graph for various probabilities of outcome in the control
group, fixing the odds ratio at .8 ([p2/(1-p2) / p1/(1-p1)] = .8)
n is varied also
p1 <- seq(.01,.99,by=.01)
n <- seq(100,5000,by=250)
pow <- outer(p1, n, function(p1,n) bpower(p1, n=n, odds.ratio=.8))
This forms a length(p1)*length(n) matrix of power estimates
contour(p1, n, pow)

bpplot Box-percentile plots

Description

Producess side-by-side box-percentile plots from several vectors or a list of vectors.

Usage

bpplot(..., name=TRUE, main="Box-Percentile Plot",
xlab="", ylab="", srtx=0)

Arguments

... vectors or lists containing numeric components (e.g., the output of split).

name character vector of names for the groups. Default is TRUE to put names on the
x-axis. Such names are taken from the data vectors or the names attribute of
the first argument if it is a list. Set name to FALSE to suppress names. If a
character vector is supplied the names in the vector are used to label the groups.

main main title for the plot.

xlab x axis label.

ylab y axis label.

srtx rotation angle for x-axis labels. Default is zero.

46 bpplot

Value

There are no returned values

Side Effects

A plot is created on the current graphics device.

BACKGROUND

Box-percentile plots are similiar to boxplots, except box-percentile plots supply more information
about the univariate distributions. At any height the width of the irregular "box" is proportional to
the percentile of that height, up to the 50th percentile, and above the 50th percentile the width is
proportional to 100 minus the percentile. Thus, the width at any given height is proportional to the
percent of observations that are more extreme in that direction. As in boxplots, the median, 25th
and 75th percentiles are marked with line segments across the box.

Author(s)

Jeffrey Banfield
umsfjban@bill.oscs.montana.edu
Modified by F. Harrell 30Jun97

References

Esty, W. W. and Banfield, J. D. (1992) "The Box-Percentile Plot," Technical Report (May 15, 1992),
Department of Mathematical Sciences, Montana State University.

See Also

panel.bpplot, boxplot, Ecdf, bwplot

Examples

set.seed(1)
x1 <- rnorm(500)
x2 <- runif(500, -2, 2)
x3 <- abs(rnorm(500))-2
bpplot(x1, x2, x3)
g <- sample(1:2, 500, replace=TRUE)
bpplot(split(x2, g), name=c('Group 1','Group 2'))
rm(x1,x2,x3,g)

bystats 47

bystats Statistics by Categories

Description

For any number of cross-classification variables, bystats returns a matrix with the sample size,
number missing y, and fun(non-missing y), with the cross-classifications designated by
rows. Uses Harrell’s modification of the interaction function to produce cross-classifications.
The default fun is mean, and if y is binary, the mean is labeled as Fraction. There is a print
method as well as a latex method for objects created by bystats. bystats2 handles the
special case in which there are 2 classifcation variables, and places the first one in rows and the
second in columns. The print method for bystats2 uses the S-Plus print.char.matrix
function to organize statistics for cells into boxes.

Usage

bystats(y, ..., fun, nmiss, subset)
S3 method for class 'bystats':
print(x, ...)
S3 method for class 'bystats':
latex(object, title, caption, rowlabel, ...)
bystats2(y, v, h, fun, nmiss, subset)
S3 method for class 'bystats2':
print(x, abbreviate.dimnames=FALSE,

prefix.width=max(nchar(dimnames(x)[[1]])), ...)
S3 method for class 'bystats2':
latex(object, title, caption, rowlabel, ...)

Arguments

y a binary, logical, or continuous variable or a matrix or data frame of such vari-
ables. If y is a data frame it is converted to a matrix. If y is a data frame or
matrix, computations are done on subsets of the rows of y, and you should spec-
ify fun so as to be able to operate on the matrix. For matrix y, any column with
a missing value causes the entire row to be considered missing, and the row is
not passed to fun.

... For bystats, one or more classifcation variables separated by commas. For
print.bystats, options passed to print.default such as digits. For
latex.bystats, and latex.bystats2, options passed to latex.default
such as digits. If you pass cdec to latex.default, keep in mind that
the first one or two positions (depending on nmiss) should have zeros since
these correspond with frequency counts.

v vertical variable for bystats2. Will be converted to factor.

h horizontal variable for bystats2. Will be converted to factor.

48 bystats

fun a function to compute on the non-missing y for a given subset. You must specify
fun= in front of the function name or definition. fun may return a single num-
ber or a vector or matrix of any length. Matrix results are rolled out into a vector,
with names preserved. When y is a matrix, a common fun is function(y)
apply(y, 2, ff) where ff is the name of a function which operates on
one column of y.

nmiss A column containing a count of missing values is included if nmiss=TRUE or
if there is at least one missing value.

subset a vector of subscripts or logical values indicating the subset of data to analyze
abbreviate.dimnames

set to TRUE to abbreviate dimnames in output

prefix.width see print.char.matrix if using S-Plus

title title to pass to latex.default. Default is the first word of the character
string version of the first calling argument.

caption caption to pass to latex.default. Default is the heading attribute from
the object produced by bystats.

rowlabel rowlabel to pass to latex.default. Default is the byvarnames at-
tribute from the object produced by bystats. For bystats2 the default is
"".

x an object created by bystats or bystats2

object an object created by bystats or bystats2

Value

for bystats, a matrix with row names equal to the classification labels and column names N,
Missing, funlab, where funlab is determined from fun. A row is added to the end with the
summary statistics computed on all observations combined. The class of this matrix is bystats.
For bystats, returns a 3-dimensional array with the last dimension corresponding to statistics
being computed. The class of the array is bystats2.

Side Effects

latex produces a .tex file.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

interaction, cut, cut2, latex, print.char.matrix, translate

ciapower 49

Examples

Not run:
bystats(sex==2, county, city)
bystats(death, race)
bystats(death, cut2(age,g=5), race)
bystats(cholesterol, cut2(age,g=4), sex, fun=median)
bystats(cholesterol, sex, fun=quantile)
bystats(cholesterol, sex, fun=function(x)c(Mean=mean(x),Median=median(x)))
latex(bystats(death,race,nmiss=FALSE,subset=sex=="female"), digits=2)
f <- function(y) c(Hazard=sum(y[,2])/sum(y[,1]))
f() gets the hazard estimate for right-censored data from exponential dist.
bystats(cbind(d.time, death), race, sex, fun=f)
bystats(cbind(pressure, cholesterol), age.decile,

fun=function(y) c(Median.pressure =median(y[,1]),
Median.cholesterol=median(y[,2])))

y <- cbind(pressure, cholesterol)
bystats(y, age.decile,

fun=function(y) apply(y, 2, median)) # same result as last one
bystats(y, age.decile, fun=function(y) apply(y, 2, quantile, c(.25,.75)))
The last one computes separately the 0.25 and 0.75 quantiles of 2 vars.
latex(bystats2(death, race, sex, fun=table))
End(Not run)

ciapower Power of Interaction Test for Exponential Survival

Description

Uses the method of Peterson and George to compute the power of an interaction test in a 2 x 2 setup
in which all 4 distributions are exponential. This will be the same as the power of the Cox model
test if assumptions hold. The test is 2-tailed. The duration of accrual is specified (constant accrual
is assumed), as is the minimum follow-up time. The maximum follow-up time is then accrual
+ tmin. Treatment allocation is assumed to be 1:1.

Usage

ciapower(tref, n1, n2, m1c, m2c, r1, r2, accrual, tmin,
alpha=0.05, pr=TRUE)

Arguments

tref time at which mortalities estimated

n1 total sample size, stratum 1

n2 total sample size, stratum 2

m1c tref-year mortality, stratum 1 control

m2c tref-year mortality, stratum 2 control

r1 % reduction in m1c by intervention, stratum 1

50 ciapower

r2 % reduction in m2c by intervention, stratum 2

accrual duration of accrual period

tmin minimum follow-up time

alpha type I error probability

pr set to FALSE to suppress printing of details

Value

power

Side Effects

prints

AUTHOR

Frank Harrell

Department of Biostatistics

Vanderbilt University

f.harrell@vanderbilt.edu

References

Peterson B, George SL: Controlled Clinical Trials 14:511–522; 1993.

See Also

cpower, spower

Examples

Find the power of a race x treatment test. 25% of patients will
be non-white and the total sample size is 14000.
Accrual is for 1.5 years and minimum follow-up is 5y.
Reduction in 5-year mortality is 15% for whites, 0% or -5% for
non-whites. 5-year mortality for control subjects if assumed to
be 0.18 for whites, 0.23 for non-whites.
n <- 14000
for(nonwhite.reduction in c(0,-5)) {
cat("\n\n\n% Reduction in 5-year mortality for non-whites:",

nonwhite.reduction, "\n\n")
pow <- ciapower(5, .75*n, .25*n, .18, .23, 15, nonwhite.reduction,

1.5, 5)
cat("\n\nPower:",format(pow),"\n")

}

combine 51

combine Element Merging

Description

Merges an object by the names of its elements. Inserting elements in value into x that do not
exists in x and replacing elements in x that exists in value with value elements if protect is
false.

Usage

combine(x, value, protect = FALSE, ...)

combine(x, protect = FALSE, ...) <- value

Arguments

x named list or vector

value named list or vector

protect logical; should elements in x be kept instead of elements in value?

... currently does nothing; included if ever want to make generic.

Author(s)

Charles Dupont

See Also

names

Examples

x <- 1:5
names(x) <- LETTERS[x]

y <- 6:10
names(y) <- LETTERS[y-2]

x # c(A=1,B=2,C=3,D=4,E=5)
y # c(D=6,E=7,F=8,G=9,H=10)

combine(x, y) # c(A=1,B=2,C=3,D=6,E=7,F=8,G=9,H=10)
combine(x, y, protect=TRUE) # c(A=1,B=2,C=3,D=4,E=5,F=8,G=9,H=10)

52 contents

contents Metadata for a Data Frame

Description

contents is a generic method for which contents.data.frame is currently the only method.
contents.data.frame creates an object containing the following attributes of the variables
from a data frame: names, labels (if any), units (if any), number of factor levels (if any), factor lev-
els, class, storage mode, and number of NAs. print.contents.data.frame will print the
results, with options for sorting the variables. html.contents.data.frame creates HTML
code for displaying the results. This code has hyperlinks so that if the user clicks on the number of
levels the browser jumps to the correct part of a table of factor levels for all the factor variables.
If long labels are present ("longlabel" attributes on variables), these are printed at the bottom
and the html method links to them through the regular labels. Variables having the same levels
in the same order have the levels factored out for brevity.

contents.list prints a directory of datasets when sasxport.get imported more than one
SAS dataset.

Usage

contents(object, ...)
S3 method for class 'data.frame':
contents(object, ...)
S3 method for class 'contents.data.frame':
print(x,

sort=c('none','names','labels','NAs'), prlevels=TRUE, ...)
S3 method for class 'contents.data.frame':
html(object,

sort=c('none','names','labels','NAs'), prlevels=TRUE,
file=paste('contents',object$dfname,'html',sep='.'),
levelType=c('list','table'),
append=FALSE, ...)

S3 method for class 'list':
contents(object, dslabels, ...)
S3 method for class 'contents.list':
print(x,

sort=c('none','names','labels','NAs','vars'), ...)

Arguments

object a data frame. For html is an object created by contents. For contents.list
is a list of data frames.

x an object created by contents

sort Default is to print the variables in their original order in the data frame. Specify
one of "names", "labels", or "NAs" to sort the variables by, respectively,
alphabetically by names, alphabetically by labels, or by increaseing order of

contents 53

number of missing values. For contents.list, sort may also be the value
"vars" to cause sorting by the number of variables in the dataset.

prlevels set to FALSE to not print all levels of factor variables

file file to which to write the html code. Default is "conents.dfname.html"
where dfname is the name of the data frame processed by contents.

levelType By default, bullet lists of category levels are constructed in html. Set levelType=’table’
to put levels in html table format.

append set to TRUE to add html code to an existing file

... arguments passed from html to format.df, unused otherwise

dslabels named vector of SAS dataset labels, created for example by sasdsLabels

Value

an object of class "contents.data.frame" or "contents.list"

Author(s)

Frank Harrell
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

See Also

describe, html, upData

Examples

set.seed(1)
dfr <- data.frame(x=rnorm(400),y=sample(c('male','female'),400,TRUE))
contents(dfr)
dfr <- upData(dfr, labels=c(x='Label for x', y='Label for y'))
attr(dfr$x, 'longlabel') <-
'A very long label for x that can continue onto multiple long lines of text'

k <- contents(dfr)
print(k, sort='names', prlevels=FALSE)
Not run:
html(k)
html(contents(dfr)) # same result
w <- html(k, file='my.html') # create my.html, don't display
End(Not run)

54 cpower

cpower Power of Cox/log-rank Two-Sample Test

Description

Assumes exponential distributions for both treatment groups. Uses the George-Desu method along
with formulas of Schoenfeld that allow estimation of the expected number of events in the two
groups. To allow for drop-ins (noncompliance to control therapy, crossover to intervention) and
noncompliance of the intervention, the method of Lachin and Foulkes is used.

Usage

cpower(tref, n, mc, r, accrual, tmin, noncomp.c=0, noncomp.i=0,
alpha=0.05, nc, ni, pr=TRUE)

Arguments

tref time at which mortalities estimated

n total sample size (both groups combined). If allocation is unequal so that there
are not n/2 observations in each group, you may specify the sample sizes in nc
and ni.

mc tref-year mortality, control

r % reduction in mc by intervention

accrual duration of accrual period

tmin minimum follow-up time

noncomp.c % non-compliant in control group (drop-ins)

noncomp.i % non-compliant in intervention group (non-adherers)

alpha type I error probability. A 2-tailed test is assumed.

nc number of subjects in control group

ni number of subjects in intervention group. nc and ni are specified exclusive of
n.

pr set to FALSE to suppress printing of details

Details

For handling noncompliance, uses a modification of formula (5.4) of Lachin and Foulkes. Their
method is based on a test for the difference in two hazard rates, whereas cpower is based on
testing the difference in two log hazards. It is assumed here that the same correction factor can be
approximately applied to the log hazard ratio as Lachin and Foulkes applied to the hazard difference.

Note that Schoenfeld approximates the variance of the log hazard ratio by 4/m, where m is the total
number of events, whereas the George-Desu method uses the slightly better 1/m1 + 1/m2. Power
from this function will thus differ slightly from that obtained with the SAS samsizc program.

cpower 55

Value

power

Side Effects

prints

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

References

Peterson B, George SL: Controlled Clinical Trials 14:511–522; 1993.

Lachin JM, Foulkes MA: Biometrics 42:507–519; 1986.

Schoenfeld D: Biometrics 39:499–503; 1983.

See Also

spower, ciapower, bpower

Examples

#In this example, 4 plots are drawn on one page, one plot for each
#combination of noncompliance percentage. Within a plot, the
#5-year mortality % in the control group is on the x-axis, and
#separate curves are drawn for several % reductions in mortality
#with the intervention. The accrual period is 1.5y, with all
#patients followed at least 5y and some 6.5y.

par(mfrow=c(2,2),oma=c(3,0,3,0))

morts <- seq(10,25,length=50)
red <- c(10,15,20,25)

for(noncomp in c(0,10,15,-1)) {
if(noncomp>=0) nc.i <- nc.c <- noncomp else {nc.i <- 25; nc.c <- 15}
z <- paste("Drop-in ",nc.c,"%, Non-adherence ",nc.i,"%",sep="")
plot(0,0,xlim=range(morts),ylim=c(0,1),

xlab="5-year Mortality in Control Patients (%)",
ylab="Power",type="n")

title(z)
cat(z,"\n")
lty <- 0
for(r in red) {

lty <- lty+1
power <- morts

56 csv.get

i <- 0
for(m in morts) {
i <- i+1
power[i] <- cpower(5, 14000, m/100, r, 1.5, 5, nc.c, nc.i, pr=FALSE)

}
lines(morts, power, lty=lty)

}
if(noncomp==0)legend(18,.55,rev(paste(red,"% reduction",sep="")),

lty=4:1,bty="n")
}
mtitle("Power vs Non-Adherence for Main Comparison",

ll="alpha=.05, 2-tailed, Total N=14000",cex.l=.8)
#
Point sample size requirement vs. mortality reduction
Root finder (uniroot()) assumes needed sample size is between
1000 and 40000
#
nc.i <- 25; nc.c <- 15; mort <- .18
red <- seq(10,25,by=.25)
samsiz <- red

i <- 0
for(r in red) {
i <- i+1
samsiz[i] <- uniroot(function(x) cpower(5, x, mort, r, 1.5, 5,

nc.c, nc.i, pr=FALSE) - .8,
c(1000,40000))$root

}

samsiz <- samsiz/1000
par(mfrow=c(1,1))
plot(red, samsiz, xlab='% Reduction in 5-Year Mortality',

ylab='Total Sample Size (Thousands)', type='n')
lines(red, samsiz, lwd=2)
title('Sample Size for Power=0.80\nDrop-in 15%, Non-adherence 25%')
title(sub='alpha=0.05, 2-tailed', adj=0)

csv.get Read Comma-Separated Text Data Files

Description

Read comma-separated text data files, allowing optional translation to lower case for variable names
after making them valid S names. There is a facility for reading long variable labels as one of the
rows. If labels are not specified and a final variable name is not the same as that in the header, the
original variable name is saved as a variable label.

Usage

csv.get(file, lowernames=FALSE, datevars=NULL, datetimevars=NULL,

csv.get 57

dateformat='%F',
fixdates=c('none','year'), comment.char="", autodates=TRUE,
allow=NULL, charfactor=FALSE,
sep=',', skip=0, vnames=NULL, labels=NULL, ...)

Arguments

file the file name for import.

lowernames set this to TRUE to change variable names to lower case.

datevars character vector of names (after lowernames is applied) of variables to con-
sider as a factor or character vector containing dates in a format matching dateformat.
The default is "%F" which uses the yyyy-mm-dd format.

datetimevars character vector of names (after lowernames is applied) of variables to con-
sider to be date-time variables, with date formats as described under datevars
followed by a space followed by time in hh:mm:ss format. chron is used to
store such variables. If all times in the variable are 00:00:00 the variable will be
converted to an ordinary date variable.

dateformat for cleanup.import is the input format (see strptime)

fixdates for any of the variables listed in datevars that have a dateformat that
cleanup.import understands, specifying fixdates allows corrections of
certain formatting inconsistencies before the fields are attempted to be con-
verted to dates (the default is to assume that the dateformat is followed
for all observation for datevars). Currently fixdates=’year’ is imple-
mented, which will cause 2-digit or 4-digit years to be shifted to the alternate
number of digits when dateform is the default "%F" or is "%y-%m-%d",
"%m/%d/%y", or "%m/%d/%Y". Two-digits years are padded with 20 on the
left. Set dateformat to the desired format, not the exceptional format.

comment.char a character vector of length one containing a single character or an empty string.
Use ’""’ to turn off the interpretation of comments altogether.

autodates Set to true to allow function to guess at which variables are dates

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

charfactor set to TRUE to change character variables to factors if they have at least two
characters in an observation but have fewer than n/2 unique values

sep field separator, defaults to comma

skip number of records to skip before data start. Required if vnames or labels is
given.

vnames number of row containing variable names, default is one

labels number of row containing variable labels, default is no labels

... arguments to pass to read.csv other than skip and sep.

58 curveRep

Details

csv.get reads comma-separated text data files, allowing optional translation to lower case for
variable names after making them valid S names. Original possibly non-legal names are taken to
be variable labels if labels is not specified. Character or factor variables containing dates can be
converted to date variables. cleanup.import is invoked to finish the job.

Value

a new data frame.

Author(s)

Frank Harrell, Vanderbilt University

See Also

sas.get, data.frame, cleanup.import, read.csv, strptime, POSIXct, Date

Examples

Not run:
dat <- csv.get('myfile.csv')

Read a csv file with junk in the first row, variable names in the
second, long variable labels in the third, and junk in the 4th row
dat <- csv.get('myfile.csv', vnames=2, labels=3, skip=4)
End(Not run)

curveRep Representative Curves

Description

curveRep finds representative curves from a relatively large collection of curves. The curves
usually represent time-response profiles as in serial (longitudinal or repeated) data with possibly
unequal time points and greatly varying sample sizes per subject. After excluding records contain-
ing missing x or y, records are first stratified into kn groups having similar sample sizes per curve
(subject). Within these strata, curves are next stratified according to the distribution of x points
per curve (typically measurement times per subject). The clara clustering/partitioning function
is used to do this, clustering on one, two, or three x characteristics depending on the minimum
sample size in the current interval of sample size. If the interval has a minimum number of unique
values of one, clustering is done on the single x values. If the minimum number of unique x
values is two, clustering is done to create groups that are similar on both min(x) and max(x).
For groups containing no fewer than three unique x values, clustering is done on the trio of values
min(x), max(x), and the longest gap between any successive x. Then within sample size and
x distribution strata, clustering of time-response profiles is based on p values of y all evaluated at
the same p equally-spaced x’s within the stratum. An option allows per-curve data to be smoothed
with lowess before proceeding. Outer x values are taken as extremes of x across all curves within

curveRep 59

the stratum. Linear interpolation within curves is used to estimate y at the grid of x’s. For curves
within the stratum that do not extend to the most extreme x values in that stratum, extrapolation
uses flat lines from the observed extremes in the curve unless extrap=TRUE. The p y values are
clustered using clara.

print and plot methods show results. By specifying an auxiliary idcol variable to plot,
other variables such as treatment may be depicted to allow the analyst to determine for example
whether subjects on different treatments are assigned to different time-response profiles. To write
the frequencies of a variable such as treatment in the upper left corner of each panel (instead of the
grand total number of clusters in that panel), specify freq.

curveSmooth takes a set of curves and smooths them using lowess. If the number of unique
x points in a curve is less than p, the smooth is evaluated at the unique x values. Otherwise it is
evaluated at an equally spaced set of x points over the observed range. If fewer than 3 unique xs
are in a curve, those points are used and smoothing is not done.

Usage

curveRep(x, y, id, kn = 5, kxdist = 5, k = 5, p = 5,
force1 = TRUE, metric = c("euclidean", "manhattan"),
smooth=FALSE, extrap=FALSE, pr=FALSE)

S3 method for class 'curveRep':
print(x, ...)

S3 method for class 'curveRep':
plot(x, which=1:length(res), method=c('all','lattice'),

m=NULL, probs=c(.5, .25, .75), nx=NULL, fill=TRUE,
idcol=NULL, freq=NULL, plotfreq=FALSE,
xlim=range(x), ylim=range(y),
xlab='x', ylab='y', ...)

curveSmooth(x, y, id, p=NULL, pr=TRUE)

Arguments

x a numeric vector, typically measurement times. For plot.curveRep is an
object created by curveRep.

y a numeric vector of response values

id a vector of curve (subject) identifiers, the same length as x and y

kn number of curve sample size groups to construct. curveRep tries to divide the
data into equal numbers of curves across sample size intervals.

kxdist maximum number of x-distribution clusters to derive using clara

k maximum number of x-y profile clusters to derive using clara

p number of x points at which to interpolate y for profile clustering. For curveSmooth
is the number of equally spaced points at which to evaluate the lowess smooth,
and if p is omitted the smooth is evaluated at the original x values (which will
allow curveRep to still know the x distribution

60 curveRep

force1 By default if any curves have only one point, all curves consisting of one point
will be placed in a separate stratum. To prevent this separation, set force1=FALSE.

metric see clara

smooth By default, linear interpolation is used on raw data to obtain y values to cluster
to determine x-y profiles. Specify smooth=TRUE to replace observed points
with lowess before computing y points on the grid. Also, when smooth is
used, it may be desirable to use extrap=TRUE.

extrap set to TRUE to use linear extrapolation to evaluate y points for x-y clustering.
Not recommended unless smoothing has been or is being done.

pr set to TRUE to print progress notes

which an integer vector specifying which sample size intervals to plot. Must be speci-
fied if method=’lattice’ and must be a single number in that case.

method The default makes individual plots of possibly all x-distribution by sample size
by cluster combinations. Fewer may be plotted by specifying which. Spec-
ify method=’lattice’ to show a lattice xyplot of a single sample size
interval, with x distributions going across and clusters going down.

m the number of curves in a cluster to randomly sample if there are more than m in
a cluster. Default is to draw all curves in a cluster. For method=’lattice’
you can specify m=’quantiles’ to use the xYplot function to show quan-
tiles of y as a function of x, with the quantiles specified by the probs argument.
This cannot be used to draw a group containing n=1.

nx applies if m=’quantiles’. See xYplot.

probs 3-vector of probabilities with the central quantile first. Default uses quartiles.

fill for method=’all’, by default if a sample size x-distribution stratum did not
have enough curves to stratify into k x-y profiles, empty graphs are drawn so
that a matrix of graphs will have the next row starting with a different sample
size range or x-distribution. See the example below.

idcol a named vector to be used as a table lookup for color assignments (does not
apply when m=’quantile’). The names of this vector are curve ids and the
values are color names or numbers.

freq a named vector to be used as a table lookup for a grouping variable such as treat-
ment. The names are curve ids and values are any values useful for grouping
in a frequency tabulation.

plotfreq set to TRUE to plot the frequencies from the freq variable as horizontal bars in-
stead of printing them. Applies only to method=’lattice’. By default the
largest bar is 0.1 times the length of a panel’s x-axis. Specify plotfreq=.5
for example to make the longest bar half this long.

xlim, ylim, xlab, ylab
plotting parameters. Default ranges are the ranges in the entire set of raw data
given to curveRep.

... arguments passed to other functions.

curveRep 61

Details

In the graph titles for the default graphic output, n refers to the minimum sample size, x refers to
the sequential x-distribution cluster, and c refers to the sequential x-y profile cluster. Graphs from
method=’lattice’ are produced by xyplot and in the panel titles distribution refers
to the x-distribution stratum and cluster refers to the x-y profile cluster.

Value

a list of class ’curveRep’ with the following elements

res a hierarchical list first split by sample size intervals, then by x distribution clus-
ters, then containing a vector of cluster numbers with id values as a names
attribute

ns a table of frequencies of sample sizes per curve after removing NAs

nomit total number of records excluded due to NAs

missfreq a table of frequencies of number of NAs excluded per curve

ncuts cut points for sample size intervals

kn number of sample size intervals

kxdist number of clusters on x distribution

k number of clusters of curves within sample size and distribution groups

p number of points at which to evaluate each curve for clustering

x

y

id input data after removing NAs

curveSmooth returns a list with elements x,y,id.

Note

The references describe other methods for deriving representative curves, but those methods were
not used here. The last reference which used a cluster analysis on principal components motivated
curveRep however.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

References

Segal M. (1994): Representative curves for longitudinal data via regression trees. J Comp Graph
Stat 3:214-233.

Jones MC, Rice JA (1992): Displaying the important features of large collections of similar curves.
Am Statistician 46:140-145.

62 curveRep

Zheng X, Simpson JA, et al (2005): Data from a study of effectiveness suggested potential prog-
nostic factors related to the patterns of shoulder pain. J Clin Epi 58:823-830.

See Also

clara,dataRep

Examples

Not run:
Simulate 200 curves with pre-curve sample sizes ranging from 1 to 10
Make curves with odd-numbered IDs have an x-distribution that is random
uniform [0,1] and those with even-numbered IDs have an x-dist. that is
half as wide but still centered at 0.5. Shift y values higher with
increasing IDs
set.seed(1)
N <- 200
nc <- sample(1:10, N, TRUE)
id <- rep(1:N, nc)
x <- y <- id
for(i in 1:N) {
x[id==i] <- if(i
y[id==i] <- i + 10*(x[id==i] - .5) + runif(nc[i], -10, 10)

}

w <- curveRep(x, y, id, kxdist=2, p=10)
w
par(ask=TRUE, mfrow=c(4,5))
plot(w) # show everything, profiles going across
par(mfrow=c(2,5))
plot(w,1) # show n=1 results
Use a color assignment table, assigning low curves to green and
high to red. Unique curve (subject) IDs are the names of the vector.
cols <- c(rep('green', N/2), rep('red', N/2))
names(cols) <- as.character(1:N)
plot(w, 3, idcol=cols)
par(ask=FALSE, mfrow=c(1,1))

plot(w, 1, 'lattice') # show n=1 results
plot(w, 3, 'lattice') # show n=4-5 results
plot(w, 3, 'lattice', idcol=cols) # same but different color mapping
plot(w, 3, 'lattice', m=1) # show a single "representative" curve
Show median, 10th, and 90th percentiles of supposedly representative curves
plot(w, 3, 'lattice', m='quantiles', probs=c(.5,.1,.9))
Same plot but with much less grouping of x variable
plot(w, 3, 'lattice', m='quantiles', probs=c(.5,.1,.9), nx=2)

Smooth data before profiling. This allows later plotting to plot
smoothed representative curves rather than raw curves (which
specifying smooth=TRUE to curveRep would do, if curveSmooth was not used)
d <- curveSmooth(x, y, id)
w <- with(d, curveRep(x, y, id))

cut2 63

Example to show that curveRep can cluster profiles correctly when
there is no noise. In the data there are four profiles - flat, flat
at a higher mean y, linearly increasing then flat, and flat at the
first height except for a sharp triangular peak

set.seed(1)
x <- 0:100
m <- length(x)
profile <- matrix(NA, nrow=m, ncol=4)
profile[,1] <- rep(0, m)
profile[,2] <- rep(3, m)
profile[,3] <- c(0:3, rep(3, m-4))
profile[,4] <- c(0,1,3,1,rep(0,m-4))
col <- c('black','blue','green','red')
matplot(x, profile, type='l', col=col)
xeval <- seq(0, 100, length.out=5)
s <- x
matplot(x[s], profile[s,], type='l', col=col)

id <- rep(1:100, each=m)
X <- Y <- id
cols <- character(100)
names(cols) <- as.character(1:100)
for(i in 1:100) {
s <- id==i
X[s] <- x
j <- sample(1:4,1)
Y[s] <- profile[,j]
cols[i] <- col[j]

}
table(cols)
yl <- c(-1,4)
w <- curveRep(X, Y, id, kn=1, kxdist=1, k=4)
plot(w, 1, 'lattice', idcol=cols, ylim=yl)
Found 4 clusters but two have same profile
w <- curveRep(X, Y, id, kn=1, kxdist=1, k=3)
plot(w, 1, 'lattice', idcol=cols, freq=cols, plotfreq=TRUE, ylim=yl)
Incorrectly combined black and red because default value p=5 did
not result in different profiles at x=xeval
w <- curveRep(X, Y, id, kn=1, kxdist=1, k=4, p=40)
plot(w, 1, 'lattice', idcol=cols, ylim=yl)
Found correct clusters because evaluated curves at 40 equally
spaced points and could find the sharp triangular peak in profile 4
End(Not run)

cut2 Cut a Numeric Variable into Intervals

Description

Function like cut but left endpoints are inclusive and labels are of the form [lower, upper),
except that last interval is [lower,upper]. If cuts are given, will by default make sure that cuts

64 cut2

include entire range of x. Also, if cuts are not given, will cut x into quantile groups (g given) or
groups with a given minimum number of observations (m). Whereas cut creates a category object,
cut2 creates a factor object.

Usage

cut2(x, cuts, m, g, levels.mean, digits, minmax=TRUE, oneval=TRUE, onlycuts=FALSE)

Arguments

x numeric vector to classify into intervals

cuts cut points

m desired minimum number of observations in a group

g number of quantile groups

levels.mean set to TRUE to make the new categorical vector have levels attribute that is the
group means of x instead of interval endpoint labels

digits number of significant digits to use in constructing levels. Default is 3 (5 if
levels.mean=TRUE)

minmax if cuts is specified but min(x)<min(cuts) or max(x)>max(cuts), aug-
ments cuts to include min and max x

oneval if an interval contains only one unique value, the interval will be labeled with
the formatted version of that value instead of the interval endpoints, unless
oneval=FALSE

onlycuts set to TRUE to only return the vector of computed cuts. This consists of the
interior values plus outer ranges.

Value

a factor variable with levels of the form [a,b) or formatted means (character strings) unless
onlycuts is TRUE in which case a numeric vector is returned

See Also

cut, quantile

Examples

set.seed(1)
x <- runif(1000, 0, 100)
z <- cut2(x, c(10,20,30))
table(z)
table(cut2(x, g=10)) # quantile groups
table(cut2(x, m=50)) # group x into intevals with at least 50 obs.

data.frame.create.modify.check 65

data.frame.create.modify.check
Tips for Creating, Modifying, and Checking Data Frames

Description

This help file contains a template for importing data to create an S-Plus data frame, correcting some
problems resulting from the import and making the data frame be stored more efficiently, modifying
the data frame (including better annotating it and changing the names of some of its variables), and
checking and inspecting the data frame for reasonableness of the values of its variables and to
describe patterns of missing data. Various built-in functions and functions in the Hmisc library are
used. At the end some methods for creating data frames "from scratch" within S-Plus are presented.

The examples below attempt to clarify the separation of operations that are done on a data frame as
a whole, operations that are done on a small subset of its variables without attaching the whole data
frame, and operations that are done on many variables after attaching the data frame in search posi-
tion one. It also tries to clarify that for analyzing several separate variables using S-Plus commands
that do not support a data= argument, it is helpful to attach the data frame in a search position
later than position one.

It is often useful to create, modify, and process datasets in the following order.
- Import external data into a data frame (if the raw data do not contain column names, provide these
during the import if possible)
- Make global changes to a data frame (e.g., changing variable names)
- Change attributes or values of variables within a data frame
- Do analyses involving the whole data frame (without attaching it)
(Data frame still in .Data)
- Do analyses of individual variables (after attaching the data frame in search position two or later)

Details

The examples below use the FEV dataset from Rosner B (1995): Fundamentals of Biostatistics, 4th
Edition. New York: Duxbury Press. Almost any dataset would do. The jcetable data are taken
from Galobardes, et al. (1998), J Clin Epi 51:875-881.

Presently, giving a variable the "units" attribute (using the Hmisc units function) only benefits
the Hmisc describe function and the Design library’s version of the Surv function. Variables
labels defined with the Hmisc label function are used by describe, summary.formula,
and many of the plotting functions in Hmisc and Design.

References

Alzola CF, Harrell FE (2001): An Introduction to S-Plus and the Hmisc and Design Libraries. Chap-
ters 3 and 4, http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.
pdf.

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf

66 data.frame.create.modify.check

See Also

scan, read.table, cleanup.import, sas.get, data.frame, attach, detach, describe,
datadensity, plot.data.frame, hist.data.frame, naclus, factor, label, units,
names, expand.grid, summary.formula, summary.data.frame, casefold, edit,
page, plot.data.frame, Cs, combine.levels, upData

Examples

Not run:
First, we do steps that create or manipulate the data
frame in its entirety. These are done with .Data
in search position one (the S-Plus default at the
start of the session).
#

Step 1: Create initial draft of data frame
#
We usually begin by importing a dataset from
another application. ASCII files may be imported
using the scan and read.table functions. SAS
datasets may be imported using the Hmisc sas.get
function (which will carry more attributes from
SAS than using File ... Import) from the GUI
menus. But for most applications (especially
Excel), File ... Import will suffice. If using
the GUI, it is often best to provide variable
names during the import process, using the Options
tab, rather than renaming all fields later Of
course, if the data to be imported already have
field names (e.g., in Excel), let S-Plus use those
automatically. If using S-Plus 4.x on Windows/NT,
you can use a command to execute File ... Import,
e.g.:

import.data(FileName = "/windows/temp/fev.asc",
FileType = "ASCII", DataFrame = "FEV")

Here we name the new data frame FEV rather than
fev, because we wanted to distinguish a variable
in the data frame named fev from the data frame
name. For S-Plus 6.x the command will look
instead like the following:

FEV <- importData("/tmp/fev.asc")

Step 2: Clean up data frame / make it be more
efficiently stored
#
Unless using sas.get to import your dataset

data.frame.create.modify.check 67

(sas.get already stores data efficiently), it is
usually a good idea to run the data frame through
the Hmisc cleanup.import function to change
numeric variables that are always whole numbers to
be stored as integers, the remaining numerics to
single precision, strange values from Excel to
NAs, and character variables that always contain
legal numeric values to numeric variables.
cleanup.import typically halves the size of the
data frame. If you do not specify any parameters
to cleanup.import, the function assumes that no
numeric variable needs more than 7 significant
digits of precision, so all non-integer-valued
variables will be converted to single precision.

FEV <- cleanup.import(FEV)

Step 3: Make global changes to the data frame
#
A data frame has attributes that are "external" to
its variables. There are the vector of its
variable names ("names" attribute), the
observation identifiers ("row.names"), and the
"class" (whose value is "data.frame"). The
"names" attribute is the one most commonly in need
of modification. If we had wanted to change all
the variable names to lower case, we could have
specified lowernames=TRUE to the cleanup.import
invocation above, or type

names(FEV) <- casefold(names(FEV))

The upData function can also be used to change
variable names in two ways (see below).
To change names in a non-systematic way we use
other options. Under Windows/NT the most
straigtforward approach is to change the names
interactively. Click on the data frame in the
left panel of the Object Browser, then in the
right pane click twice (slowly) on a variable.
Use the left arrow and other keys to edit the
name. Click outside that name field to commit the
change. You can also rename columns while in a
Data Sheet. To instead use programming commands
to change names, use something like:

names(FEV)[6] <- 'smoke' # assumes you know the positions!
names(FEV)[names(FEV)=='smoking'] <- 'smoke'
names(FEV) <- edit(names(FEV))

68 data.frame.create.modify.check

The last example is useful if you are changing
many names. But none of the interactive
approaches such as edit() are handy if you will be
re-importing the dataset after it is updated in
its original application. This problem can be
addressed by saving the new names in a permanent
vector in .Data:

new.names <- names(FEV)

Then if the data are re-imported, you can type

names(FEV) <- new.names

to rename the variables.

Step 4: Delete unneeded variables
#
To delete some of the variables, you can
right-click on variable names in the Object
Browser's right pane, then select Delete. You can
also set variables to have NULL values, which
causes the system to delete them. We don't need
to delete any variables from FEV but suppose we
did need to delete some from mydframe.

mydframe$x1 <- NULL
mydframe$x2 <- NULL
mydframe[c('age','sex')] <- NULL # delete 2 variables
mydframe[Cs(age,sex)] <- NULL # same thing

The last example uses the Hmisc short-cut quoting
function Cs. See also the drop parameter to upData.

Step 5: Make changes to individual variables
within the data frame
#
After importing data, the resulting variables are
seldom self - documenting, so we commonly need to
change or enhance attributes of individual
variables within the data frame.
#
If you are only changing a few variables, it is
efficient to change them directly without
attaching the entire data frame.

FEV$sex <- factor(FEV$sex, 0:1, c('female','male'))

data.frame.create.modify.check 69

FEV$smoke <- factor(FEV$smoke, 0:1,
c('non-current smoker','current smoker'))

units(FEV$age) <- 'years'
units(FEV$fev) <- 'L'
label(FEV$fev) <- 'Forced Expiratory Volume'
units(FEV$height) <- 'inches'

When changing more than one or two variables it is
more convenient change the data frame using the
Hmisc upData function.

FEV2 <- upData(FEV,
rename=c(smoking='smoke'),
omit if renamed above
drop=c('var1','var2'),
levels=list(sex =list(female=0,male=1),

smoke=list('non-current smoker'=0,
'current smoker'=1)),

units=list(age='years', fev='L', height='inches'),
labels=list(fev='Forced Expiratory Volume'))

An alternative to levels=list(...) is for example
upData(FEV, sex=factor(sex,0:1,c('female','male'))).
#
Note that we saved the changed data frame into a
new data frame FEV2. If we were confident of the
correctness of our changes we could have stored
the new data frame on top of the old one, under
the original name FEV.

Step 6: Check the data frame
#
The Hmisc describe function is perhaps the first
function that should be used on the new data
frame. It provides documentation of all the
variables and the frequency tabulation, counts of
NAs, and 5 largest and smallest values are
helpful in detecting data errors. Typing
describe(FEV) will write the results to the
current output window. To put the results in a
new window that can persist, even upon exiting
S-Plus, we use the page function. The describe
output can be minimized to an icon but kept ready
for guiding later steps of the analysis.

page(describe(FEV2), multi=TRUE)
multi=TRUE allows that window to persist while
control is returned to other windows

The new data frame is OK. Store it on top of the
old FEV and then use the graphical user interface
to delete FEV2 (click on it and hit the Delete

70 data.frame.create.modify.check

key) or type rm(FEV2) after the next statement.

FEV <- FEV2

Next, we can use a variety of other functions to
check and describe all of the variables. As we
are analyzing all or almost all of the variables,
this is best done without attaching the data
frame. Note that plot.data.frame plots inverted
CDFs for continuous variables and dot plots
showing frequency distributions of categorical
ones.

summary(FEV)
basic summary function (summary.data.frame)

plot(FEV) # plot.data.frame
datadensity(FEV)
rug plots and freq. bar charts for all var.

hist.data.frame(FEV)
for variables having > 2 values

by(FEV, FEV$smoke, summary)
use basic summary function with stratification

Step 7: Do detailed analyses involving individual
variables
#
Analyses based on the formula language can use
data= so attaching the data frame may not be
required. This saves memory. Here we use the
Hmisc summary.formula function to compute 5
statistics on height, stratified separately by age
quartile and by sex.

options(width=80)
summary(height ~ age + sex, data=FEV,

fun=function(y)c(smean.sd(y),
smedian.hilow(y,conf.int=.5)))

This computes mean height, S.D., median, outer quartiles

fit <- lm(height ~ age*sex, data=FEV)
summary(fit)

For this analysis we could also have attached the
data frame in search position 2. For other
analyses, it is mandatory to attach the data frame
unless FEV$ prefixes each variable name.
Important: DO NOT USE attach(FEV, 1) or

data.frame.create.modify.check 71

attach(FEV, pos=1, ...) if you are only analyzing
and not changing the variables, unless you really
need to avoid conflicts with variables in search
position 1 that have the same names as the
variables in FEV. Attaching into search position
1 will cause S-Plus to be more of a memory hog.

attach(FEV)
Use e.g. attach(FEV[,Cs(age,sex)]) if you only
want to analyze a small subset of the variables
Use e.g. attach(FEV[FEV$sex=='male',]) to
analyze a subset of the observations

summary(height ~ age + sex,
fun=function(y)c(smean.sd(y),
smedian.hilow(y,conf.int=.5)))

fit <- lm(height ~ age*sex)

Run generic summary function on height and fev,
stratified by sex
by(data.frame(height,fev), sex, summary)

Cross-classify into 4 sex x smoke groups
by(FEV, list(sex,smoke), summary)

Plot 5 quantiles
s <- summary(fev ~ age + sex + height,

fun=function(y)quantile(y,c(.1,.25,.5,.75,.9)))

plot(s, which=1:5, pch=c(1,2,15,2,1), #pch=c('=','[','o',']','='),
main='A Discovery', xlab='FEV')

Use the nonparametric bootstrap to compute a
0.95 confidence interval for the population mean fev
smean.cl.boot(fev) # in Hmisc

Use the Statistics ... Compare Samples ... One Sample
keys to get a normal-theory-based C.I. Then do it
more manually. The following method assumes that
there are no NAs in fev

sd <- sqrt(var(fev))
xbar <- mean(fev)
xbar
sd
n <- length(fev)
qt(.975,n-1)
prints 0.975 critical value of t dist. with n-1 d.f.

xbar + c(-1,1)*sd/sqrt(n)*qt(.975,n-1)
prints confidence limits

Fit a linear model

72 data.frame.create.modify.check

fit <- lm(fev ~ other variables ...)

detach()

The last command is only needed if you want to
start operating on another data frame and you want
to get FEV out of the way.

Creating data frames from scratch
#
Data frames can be created from within S-Plus. To
create a small data frame containing ordinary
data, you can use something like

dframe <- data.frame(age=c(10,20,30),
sex=c('male','female','male'))

You can also create a data frame using the Data
Sheet. Create an empty data frame with the
correct variable names and types, then edit in the
data.

dd <- data.frame(age=numeric(0),sex=character(0))

The sex variable will be stored as a factor, and
levels will be automatically added to it as you
define new values for sex in the Data Sheet's sex
column.
#
When the data frame you need to create is defined
by systematically varying variables (e.g., all
possible combinations of values of each variable),
the expand.grid function is useful for quickly
creating the data. Then you can add
non-systematically-varying variables to the object
created by expand.grid, using programming
statements or editing the Data Sheet. This
process is useful for creating a data frame
representing all the values in a printed table.
In what follows we create a data frame
representing the combinations of values from an 8
x 2 x 2 x 2 (event x method x sex x what) table,
and add a non-systematic variable percent to the
data.

jcetable <- expand.grid(
event=c('Wheezing at any time',

'Wheezing and breathless',
'Wheezing without a cold',
'Waking with tightness in the chest',

dataRep 73

'Waking with shortness of breath',
'Waking with an attack of cough',
'Attack of asthma',
'Use of medication'),

method=c('Mail','Telephone'),
sex=c('Male','Female'),
what=c('Sensitivity','Specificity'))

jcetable$percent <-
c(756,618,706,422,356,578,289,333,
576,421,789,273,273,212,212,212,
613,763,713,403,377,541,290,226,
613,684,632,290,387,613,258,129,
656,597,438,780,732,679,938,919,
714,600,494,877,850,703,963,987,
755,420,480,794,779,647,956,941,
766,423,500,833,833,604,955,986) / 10

In jcetable, event varies most rapidly, then
method, then sex, and what.
End(Not run)

dataRep Representativeness of Observations in a Data Set

Description

These functions are intended to be used to describe how well a given set of new observations (e.g.,
new subjects) were represented in a dataset used to develop a predictive model. The dataRep
function forms a data frame that contains all the unique combinations of variable values that existed
in a given set of variable values. Cross–classifications of values are created using exact values of
variables, so for continuous numeric variables it is often necessary to round them to the nearest
v and to possibly curtail the values to some lower and upper limit before rounding. Here v de-
notes a numeric constant specifying the matching tolerance that will be used. dataRep also stores
marginal distribution summaries for all the variables. For numeric variables, all 101 percentiles are
stored, and for all variables, the frequency distributions are also stored (frequencies are computed
after any rounding and curtailment of numeric variables). For the purposes of rounding and cur-
tailing, the roundN function is provided. A print method will summarize the calculations made
by dataRep, and if long=TRUE all unique combinations of values and their frequencies in the
original dataset are printed.

The predict method for dataRep takes a new data frame having variables named the same as
the original ones (but whose factor levels are not necessarily in the same order) and examines the
collapsed cross-classifications created by dataRep to find how many observations were similar
to each of the new observations after any rounding or curtailment of limits is done. predict
also does some calculations to describe how the variable values of the new observations "stack
up" against the marginal distributions of the original data. For categorical variables, the percent
of observations having a given variable with the value of the new observation (after rounding for
variables that were through roundN in the formula given to dataRep) is computed. For numeric

74 dataRep

variables, the percentile of the original distribution in which the current value falls will be computed.
For this purpose, the data are not rounded because the 101 original percentiles were retained; linear
interpolation is used to estimate percentiles for values between two tabulated percentiles. The lowest
marginal frequency of matching values across all variables is also computed. For example, if an
age, sex combination matches 10 subjects in the original dataset but the age value matches 100 ages
(after rounding) and the sex value matches the sex code of 300 observations, the lowest marginal
frequency is 100, which is a "best case" upper limit for multivariable matching. I.e., matching on
all variables has to result on a lower frequency than this amount. A print method for the output
of predict.dataRep prints all calculations done by predict by default. Calculations can be
selectively suppressed.

Usage

dataRep(formula, data, subset, na.action)

roundN(x, tol=1, clip=NULL)

S3 method for class 'dataRep':
print(x, long=FALSE, ...)

S3 method for class 'dataRep':
predict(object, newdata, ...)

S3 method for class 'predict.dataRep':
print(x, prdata=TRUE, prpct=TRUE, ...)

Arguments

formula a formula with no left-hand-side. Continuous numeric variables in need of
rounding should appear in the formula as e.g. roundN(x,5) to have a tol-
erance of e.g. +/- 2.5 in matching. Factor or character variables as well as
numeric ones not passed through roundN are matched on exactly.

x a numeric vector or an object created by dataRep

object the object created by dataRep or predict.dataRep
data, subset, na.action

standard modeling arguments. Default na.action is na.delete, i.e., ob-
servations in the original dataset having any variables missing are deleted up
front.

tol rounding constant (tolerance is actually tol/2 as values are rounded to the
nearest tol)

clip a 2-vector specifying a lower and upper limit to curtail values of x before round-
ing

long set to TRUE to see all unique combinations and frequency count

newdata a data frame containing all the variables given to dataRep but not necessarily
in the same order or having factor levels in the same order

prdata set to FALSE to suppress printing newdata and the count of matching obser-
vations (plus the worst-case marginal frequency).

deff 75

prpct set to FALSE to not print percentiles and percents

... unused

Value

dataRep returns a list of class "dataRep" containing the collapsed data frame and frequency
counts along with marginal distribution information. predict returns an object of class "predict.dataRep"
containing information determined by matching observations in newdata with the original (col-
lapsed) data.

Side Effects

print.dataRep prints.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

See Also

round, table

Examples

set.seed(13)
num.symptoms <- sample(1:4, 1000,TRUE)
sex <- factor(sample(c('female','male'), 1000,TRUE))
x <- runif(1000)
x[1] <- NA
table(num.symptoms, sex, .25*round(x/.25))

d <- dataRep(~ num.symptoms + sex + roundN(x,.25))
print(d, long=TRUE)

predict(d, data.frame(num.symptoms=1:3, sex=c('male','male','female'),
x=c(.03,.5,1.5)))

deff Design Effect and Intra-cluster Correlation

Description

Computes the Kish design effect and corresponding intra-cluster correlation for a single cluster-
sampled variable

76 describe

Usage

deff(y, cluster)

Arguments

y variable to analyze

cluster a variable whose unique values indicate cluster membership. Any type of vari-
able is allowed.

Value

a vector with named elements n (total number of non-missing observations), clusters (number
of clusters after deleting missing data), rho (intra-cluster correlation), and deff (design effect).

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

bootcov, robcov

Examples

set.seed(1)
blood.pressure <- rnorm(1000, 120, 15)
clinic <- sample(letters, 1000, replace=TRUE)
deff(blood.pressure, clinic)

describe Concise Statistical Description of a Vector, Matrix, Data Frame, or
Formula

Description

describe is a generic method that invokes describe.data.frame, describe.matrix,
describe.vector, or describe.formula. describe.vector is the basic function for
handling a single variable. This function determines whether the variable is character, factor, cat-
egory, binary, discrete numeric, and continuous numeric, and prints a concise statistical summary
according to each. A numeric variable is deemed discrete if it has <= 10 unique values. In this case,
quantiles are not printed. A frequency table is printed for any non-binary variable if it has no more
than 20 unique values. For any variable with at least 20 unique values, the 5 lowest and highest
values are printed. This behavior can be overriden for long character variables with many levels
using the listunique parameter, to get a complete tabulation.

describe 77

describe is especially useful for describing data frames created by *.get, as labels, formats,
value labels, and (in the case of sas.get) frequencies of special missing values are printed.

For a binary variable, the sum (number of 1’s) and mean (proportion of 1’s) are printed. If the first
argument is a formula, a model frame is created and passed to describe.data.frame. If a variable
is of class "impute", a count of the number of imputed values is printed. If a date variable has
an attribute partial.date (this is set up by sas.get), counts of how many partial dates are
actually present (missing month, missing day, missing both) are also presented. If a variable was
created by the special-purpose function substi (which substitutes values of a second variable if
the first variable is NA), the frequency table of substitutions is also printed.

A latex method exists for converting the describe object to a LaTeX file. For numeric variables
having at least 20 unique values, describe saves in its returned object the frequencies of 100
evenly spaced bins running from minimum observed value to the maximum. latex inserts a spike
histogram displaying these frequency counts in the tabular material using the LaTeX picture envi-
ronment. For example output see http://biostat.mc.vanderbilt.edu/twiki/pub/
Main/Hmisc/counties.pdf. Note that the latex method assumes you have the following
styles installed in your latex installation: setspace and relsize.

Sample weights may be specified to any of the functions, resulting in weighted means, quantiles,
and frequency tables.

Usage

S3 method for class 'vector':
describe(x, descript, exclude.missing=TRUE, digits=4,

listunique=0, listnchar=12,
weights=NULL, normwt=FALSE, minlength=NULL, ...)

S3 method for class 'matrix':
describe(x, descript, exclude.missing=TRUE, digits=4, ...)
S3 method for class 'data.frame':
describe(x, descript, exclude.missing=TRUE,

digits=4, ...)
S3 method for class 'formula':
describe(x, descript, data, subset, na.action,

digits=4, weights, ...)
S3 method for class 'describe':
print(x, condense=TRUE, ...)
S3 method for class 'describe':
latex(object, title=NULL, condense=TRUE,

file=paste('describe',first.word(expr=attr(object,'descript')),'tex',sep='.'),
append=FALSE, size='small', tabular=TRUE, greek=TRUE, ...)

S3 method for class 'describe.single':
latex(object, title=NULL, condense=TRUE, vname,

file, append=FALSE, size='small', tabular=TRUE, greek=TRUE, ...)

Arguments

x a data frame, matrix, vector, or formula. For a data frame, the describe.data.frame
function is automatically invoked. For a matrix, describe.matrix is called.
For a formula, describe.data.frame(model.frame(x)) is invoked. The formula

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/Hmisc/counties.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/Hmisc/counties.pdf

78 describe

may or may not have a response variable. For print or latex, x is an object
created by describe.

descript optional title to print for x. The default is the name of the argument or the
"label" attributes of individual variables. When the first argument is a formula,
descript defaults to a character representation of the formula.

exclude.missing
set toTRUE to print the names of variables that contain only missing values.
This list appears at the bottom of the printout, and no space is taken up for such
variables in the main listing.

digits number of significant digits to print

listunique For a character variable that is not an mChoice variable, that has its longest
string length greater than listnchar, and that has no more than listunique
unique values, all values are listed in alphabetic order. Any value having more
than one occurrence has the frequency of occurrence after it, in parentheses.
Specify listunique equal to some value at least as large as the number of
observations to ensure that all character variables will have all their values listed.
For purposes of tabulating character strings, multiple white spaces of any kind
are translated to a single space, leading and trailing white space are ignored, and
case is ignored.

listnchar see listunique

weights a numeric vector of frequencies or sample weights. Each observation will be
treated as if it were sampled weights times.

minlength value passed to summary.mChoice.

normwt The default, normwt=FALSE results in the use of weights as weights in
computing various statistics. In this case the sample size is assumed to be equal
to the sum of weights. Specify normwt=TRUE to divide weights by a
constant so that weights sum to the number of observations (length of vectors
specified to describe). In this case the number of observations is taken to be
the actual number of records given to describe.

object a result of describe

title unused

condense default isTRUE to condense the output with regard to the 5 lowest and highest
values and the frequency table

data

subset

na.action There are used if a formula is specified. na.action defaults to na.retain
which does not delete any NAs from the data frame. Use na.action=na.omit
or na.delete to drop any observation with any NA before processing.

... arguments passed to describe.defaultwhich are passed to calls to format
for numeric variables. For example if using R POSIXct or Date date/time for-
mats, specifying describe(d,format=’%d%b%y’) will print date/time
variables as "01Jan2000". This is useful for omitting the time component.
See the help file for format.POSIXct or format.Date for more informa-
tion. For latex methods, . . . is ignored.

describe 79

file name of output file (should have a suffix of .tex). Default name is formed from
the first word of the descript element of the describe object, prefixed by
"describe". Set file="" to send LaTeX code to standard output instead
of a file.

append set to TRUE to have latex append text to an existing file named file

size LaTeX text size ("small", the default, or "normalsize", "tiny", "scriptsize",
etc.) for the describe output in LaTeX.

tabular set to FALSE to use verbatim rather than tabular environment for the summary
statistics output. By default, tabular is used if the output is not too wide.

greek By default, the latex methods will change LaTeX names of greek letters that
appear in variable labels to appropriate LaTeX symbols in math mode unless
greek=FALSE. greek=TRUE is not implemented in S-Plus versions older
than 6.2.

vname unused argument in latex.describe.single

Details

If options(na.detail.response=TRUE) has been set and na.action is "na.delete"
or "na.keep", summary statistics on the response variable are printed separately for missing and
non-missing values of each predictor. The default summary function returns the number of non-
missing response values and the mean of the last column of the response values, with a names
attribute of c("N","Mean"). When the response is a Surv object and the mean is used, this will
result in the crude proportion of events being used to summarize the response. The actual summary
function can be designated through options(na.fun.response = "function name").

Value

a list containing elements descript, counts, values. The list is of class describe. If the
input object was a matrix or a data frame, the list is a list of lists, one list for each variable analyzed.
latex returns a standard latex object. For numeric variables having at least 20 unique values,
an additional component intervalFreq. This component is a list with two elements, range
(containing two values) and count, a vector of 100 integer frequency counts.

Author(s)

Frank Harrell
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

See Also

sas.get, quantile, table, summary, model.frame.default, naprint, lapply,
tapply, Surv, na.delete, na.keep, na.detail.response, latex

Examples

set.seed(1)
describe(runif(200),dig=2) #single variable, continuous

80 describe

#get quantiles .05,.10,...

dfr <- data.frame(x=rnorm(400),y=sample(c('male','female'),400,TRUE))
describe(dfr)

Not run:
d <- sas.get(".","mydata",special.miss=TRUE,recode=TRUE)
describe(d) #describe entire data frame
attach(d, 1)
describe(relig) #Has special missing values .D .F .M .R .T

#attr(relig,"label") is "Religious preference"

#relig : Religious preference Format:relig
n missing D F M R T unique
4038 263 45 33 7 2 1 8
#
#0:none (251, 6%), 1:Jewish (372, 9%), 2:Catholic (1230, 30%)
#3:Jehovah's Witnes (25, 1%), 4:Christ Scientist (7, 0%)
#5:Seventh Day Adv (17, 0%), 6:Protestant (2025, 50%), 7:other (111, 3%)

Method for describing part of a data frame:
describe(death.time ~ age*sex + rcs(blood.pressure))
describe(~ age+sex)
describe(~ age+sex, weights=freqs) # weighted analysis

fit <- lrm(y ~ age*sex + log(height))
describe(formula(fit))
describe(y ~ age*sex, na.action=na.delete)
report on number deleted for each variable
options(na.detail.response=TRUE)
keep missings separately for each x, report on dist of y by x=NA
describe(y ~ age*sex)
options(na.fun.response="quantile")
describe(y ~ age*sex) # same but use quantiles of y by x=NA

d <- describe(my.data.frame)
d$age # print description for just age
d[c('age','sex')] # print description for two variables
d[sort(names(d))] # print in alphabetic order by var. names
d2 <- d[20:30] # keep variables 20-30
page(d2) # pop-up window for these variables

Test date/time formats and suppression of times when they don't vary
library(chron)
d <- data.frame(a=chron((1:20)+.1),

b=chron((1:20)+(1:20)/100),
d=ISOdatetime(year=rep(2003,20),month=rep(4,20),day=1:20,

hour=rep(11,20),min=rep(17,20),sec=rep(11,20)),
f=ISOdatetime(year=rep(2003,20),month=rep(4,20),day=1:20,

hour=1:20,min=1:20,sec=1:20),
g=ISOdate(year=2001:2020,month=rep(3,20),day=1:20))

describe(d)

dotchart2 81

Make a function to run describe, latex.describe, and use the kdvi
previewer in Linux to view the result and easily make a pdf file

ldesc <- function(data) {
options(xdvicmd='kdvi')
d <- describe(data, desc=deparse(substitute(data)))
dvi(latex(d, file='/tmp/z.tex'), nomargins=FALSE, width=8.5, height=11)
}

ldesc(d)
End(Not run)

dotchart2 Enhanced Dot Chart

Description

dotchart2 is an enhanced version of the dotchart function with several new options.

Usage

dotchart2(data, labels, groups=NULL, gdata=NA, horizontal=TRUE, pch=16,
xlab='', ylab='', auxdata, auxgdata=NULL, auxtitle,
lty=if(.R.) 1 else 2, lines=TRUE, dotsize = .8,
cex = par("cex"), cex.labels = cex,
cex.group.labels = cex.labels*1.25, sort.=TRUE,

add=FALSE, dotfont=par('font'), groupfont=2,
reset.par=add, xaxis=TRUE, width.factor=1.1,

lcolor=if(.R.)'gray' else par('col'), ...)

Arguments

data a numeric vector whose values are shown on the x-axis

labels a vector of labels for each point, corresponding to x. If omitted, names(data)
are used, and if there are no names, integers prefixed by "#" are used.

groups an optional categorical variable indicating how data values are grouped

gdata data values for groups, typically summaries such as group medians

horizontal set to FALSE to make the chart vertical instead of the default

pch default character number or value for plotting dots in dot charts. The default is
16.

xlab x-axis title

ylab y-axis title

auxdata a vector of auxiliary data given to dotchart2, of the same length as the first
(data) argument. If present, this vector of values will be printed outside the
right margin of the dot chart. Usually auxdata represents cell sizes.

82 dotchart2

auxgdata similar to auxdata but corresponding to the gdata argument. These usually
represent overall sample sizes for each group of lines.

auxtitle if auxdata is given, auxtitle specifies a column heading for the extra
printed data in the chart, e.g., "N"

lty line type for horizontal lines. Default is 1 for R, 2 for S-Plus

lines set to FALSE to suppress drawing of reference lines

dotsize cex value for drawing dots. Default is 0.8. Note that the original dotchart
function used a default of 1.2.

cex see par

cex.labels cex parameter that applies only to the line labels for the dot chart cex param-
eter for major grouping labels for dotchart2. Defaults to cex.

cex.group.labels
value of cex corresponding to gdata

sort. set to FALSE to keep dotchart2 from sorting the input data, i.e., it will as-
sume that the data are already properly arranged. This is especially useful when
you are using gdata and groups and you want to control the order that groups
appear on the chart (from top to bottom).

add set to TRUE to add to an existing plot

dotfont font number of plotting dots. Default is one. Use -1 to use "outline" fonts.
For example, pch=183, dotfont=-1 plots an open circle for UNIX on
postscript. pch=1 makes an open octagon under Windows.

groupfont font number to use in drawing group labels for dotchart2. Default is 2 for
boldface.

reset.par set to FALSE to cause dotchart2 to not reset the par parameters when fin-
ished. This is useful when add=TRUE is about to be used in another call. The
default is to reset the par parameters if add=TRUE and not if add=FALSE,
i.e., the program assumes that only one set of points will be added to an existing
set. If you fail to use reset.par=TRUE for the first of a series of plots, the
next call to plot with add=TRUE will result in distorted x-axis scaling.

xaxis set to FALSE to suppress drawing x-axis

width.factor When the calculated left margin turns out to be faulty, specify a factor by which
to multiple the left margin as width.factor to get the appropriate space for
labels on horizonal charts.

lcolor color for horizontal reference lines. Default is "gray" for R, par("col")
for S-Plus.

... arguments passed to plot.default

Side Effects

dotchart will leave par altered if reset.par=FALSE.

dropUnusedLevels 83

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

dotchart

dropUnusedLevels Create Temporary Factor Subsetting Function

Description

Calling this function makes Hmisc have its pre-version 3.0 behavior in which the R [.factor
function was overridden by a customized version that caused unused factor levels to be
dropped when the factor variable was subscripted (subsetted). dropUnusedLevels() creates a
temporary version of [.factor in the global environment, which will take precedence. To later
make this function keep unused levels on subsetting, issue options(drop.unused.levels=FALSE)
or just remove this temporary function from the environment by issuing remove(’[.factor’,pos=’.GlobalEnv’).

Usage

dropUnusedLevels()

Author(s)

Frank Harrell and Jens Oehlschlaegel

See Also

factor,[.factor

Examples

Not run:
x <- factor(c('a','b','c'))
x[1:2] # keeps level c
dropUnusedLevels()
x[1:2] # no c any more
End(Not run)

84 equalBins

eip Edit In Place

Description

Invokes edit() on the object name and stores the resulting edited object in place of the original,
even if this is a remote place (as long as the user has write access). This is more useful in S-Plus
than in R.

Usage

eip(name)

Arguments

name an object, usually a function

Value

none

Author(s)

Frank Harrell

See Also

edit

Examples

Not run:
eip(summary.formula
End(Not run) # make temporary bug fix in central area

equalBins Multicolumn Formating

Description

Expands the width either supercolumns or the subcolumns so that the the sum of the supercolumn
widths is the same as the sum of the subcolumn widths.

Usage

equalBins(widths, subwidths)

errbar 85

Arguments

widths widths of the supercolumns.

subwidths list of widths of the subcolumns for each supercolumn.

Details

This determins the correct subwidths of each of various columns in a table for printing. The correct
width of the multicolumns is deterimed by summing the widths of it subcolumns.

Value

widths of the the columns for a table.

Author(s)

Charles Dupont

See Also

nchar, stringDims

Examples

mcols <- c("Group 1", "Group 2")
mwidth <- nchar(mcols, type="width")
spancols <- c(3,3)
ccols <- c("a", "deer", "ad", "cat", "help", "bob")
cwidth <- nchar(ccols, type="width")

subwidths <- partition.vector(cwidth, spancols)

equalBins(mwidth, subwidths)

errbar Plot Error Bars

Description

errbar adds vertical error bars to an existing plot or makes a new plot with error bars. It can
also make a horizontal error bar plot that shows error bars for group differences as well as bars for
groups. For the latter type of plot, the lower x-axis scale corresponds to group estimates and the
upper scale corresponds to differences. The spacings of the two scales are identical but the scale
for differences has its origin shifted so that zero may be included. If at least one of the confidence
intervals includes zero, a vertical dotted reference line at zero is drawn.

Usage

errbar(x, y, yplus, yminus, cap, xlab, ylab, add=FALSE,
lty=1, ylim, lwd=1, Type=rep(1,length(y)), ...)

86 errbar

Arguments

x vector of numeric x values (for vertical error bars) or a factor or character vari-
able (for horizontal error bars, x representing the group labels)

y vector of y values.

yplus vector of y values: the tops of the error bars.

yminus vector of y values: the bottoms of the error bars.

cap The width of the little lines at the tops and bottoms of the error bars in units of
the width of the plot. Default is .015.

xlab

ylab optional axis labels if add=FALSE. Defaults to blank for horizontal charts.

add Set toTRUE to add bars to an existing plot (available only for vertical error bars)

lty Line type for bars

ylim Y-axis limits. Default is to use range of yminus and yplus. For horizonal charts,
ylim is really the x-axis range, excluding differences.

lwd Line width for line segments (not main line)

Type used for horizontal bars only. Is an integer vector with values 1 if corresponding
values represent simple estimates, 2 if they represent differences.

... other parameters passed to all graphics functions except axis.

Author(s)

Charles Geyer, University of Chicago. Modified by Frank Harrell, Vanderbilt University, to han-
dle missing data, to add the parameters add and lty, and to implement horizontal charts with
differences.

Examples

set.seed(1)
x <- 1:10
y <- x + rnorm(10)
delta <- runif(10)
errbar(x, y, y + delta, y - delta)

Show bootstrap nonparametric CLs for 3 group means and for
pairwise differences on same graph
group <- sample(c('a','b','d'), 200, TRUE)
y <- runif(200) + .25*(group=='b') + .5*(group=='d')
cla <- smean.cl.boot(y[group=='a'],B=100,reps=TRUE) # usually B=1000
a <- attr(cla,'reps')
clb <- smean.cl.boot(y[group=='b'],B=100,reps=TRUE)
b <- attr(clb,'reps')
cld <- smean.cl.boot(y[group=='d'],B=100,reps=TRUE)
d <- attr(cld,'reps')
a.b <- quantile(a-b,c(.025,.975))
a.d <- quantile(a-d,c(.025,.975))
b.d <- quantile(b-d,c(.025,.975))

escapeRegex 87

errbar(c('a','b','d','a - b','a - d','b - d'),
c(cla[1],clb[1],cld[1],cla[1]-clb[1],cla[1]-cld[1],clb[1]-cld[1]),
c(cla[3],clb[3],cld[3],a.b[2],a.d[2],b.d[2]),
c(cla[2],clb[2],cld[2],a.b[1],a.d[1],b.d[1]),
Type=c(1,1,1,2,2,2))

rm(x,y,delta,group,a,b,d,a.b,a.d,b.d,cla,clb,cld)

escapeRegex Escapes any characters that would have special meaning in a reqular
expression.

Description

Escapes any characters that would have special meaning in a reqular expression.

Usage

escapeRegex(string)
escapeBS(string)

Arguments

string string being operated on.

Details

escapeRegexwill escape any characters that would have special meaning in a reqular expression.
For any string grep(regexpEscape(string), string) will always be true.

escapeBS will escape any backslash \backslash in a string.

Value

The value of the string with any characters that would have special meaning in a reqular expression
escaped.

Author(s)

Charles Dupont
Department of Biostatistics
Vanderbilt University

See Also

grep

88 event.chart

Examples

string <- "this\\(system) {is} [full]."
escapeRegex(string)

escapeBS(string)

event.chart Flexible Event Chart for Time-to-Event Data

Description

Creates an event chart on the current graphics device. Also, allows user to plot legend on plot area
or on separate page. Contains features useful for plotting data with time-to-event outcomes Which
arise in a variety of studies including randomized clinical trials and non-randomized cohort studies.
This function can use as input a matrix or a data frame, although greater utility and ease of use will
be seen with a data frame.

Usage

event.chart(data, subset.r = 1:dim(data)[1], subset.c = 1:dim(data)[2],
sort.by = NA, sort.ascending =TRUE,
sort.na.last =TRUE, sort.after.subset =TRUE,
y.var = NA, y.var.type = 'n',
y.jitter =FALSE, y.jitter.factor = 1,
y.renum =FALSE, NA.rm =FALSE, x.reference = NA,
now = max(data[,subset.c], na.rm =TRUE),
now.line =FALSE, now.line.lty = 2,
now.line.lwd = 1, now.line.col = 1, pty='m',
date.orig = c(1,1,1960), titl = 'Event Chart',

y.idlabels = NA, y.axis = 'auto',
y.axis.custom.at = NA, y.axis.custom.labels = NA,
y.julian =FALSE, y.lim.extend = c(0,0),
y.lab = ifelse(is.na(y.idlabels), '' , as.character(y.idlabels)),

x.axis.all =TRUE, x.axis = 'auto',
x.axis.custom.at = NA, x.axis.custom.labels = NA,
x.julian =FALSE, x.lim.extend = c(0,0), x.scale = 1,
x.lab = ifelse(x.julian, 'Follow-up Time', 'Study Date'),

line.by = NA, line.lty = 1, line.lwd = 1, line.col = 1,
line.add = NA, line.add.lty = NA,
line.add.lwd = NA, line.add.col = NA,
point.pch = 1:length(subset.c),
point.cex = rep(0.6,length(subset.c)),

event.chart 89

point.col = rep(1,length(subset.c)),

legend.plot =FALSE, legend.location = 'o', legend.titl = titl,
legend.titl.cex = 3.0, legend.titl.line = 1.0,
legend.point.at = list(x = c(5,95), y = c(95,30)),
legend.point.pch = point.pch,
legend.point.text = ifelse(rep(is.data.frame(data),

length(subset.c)), names(data[,subset.c]), subset.c),
legend.cex = 2.5, legend.bty = 'n',
legend.line.at = list(x = c(5,95), y = c(20,5)),
legend.line.text = names(table(as.character(data[,line.by]),

exclude = c('','NA'))),
legend.line.lwd = line.lwd, legend.loc.num = 1,

...)

event.convert(data2, event.time = 1, event.code = 2)

Arguments

data a matrix or data frame with rows corresponding to subjects and columns cor-
responding to variables. Note that for a data frame or matrix containing multi-
ple time-to-event data (e.g., time to recurrence, time to death, and time to last
follow-up), one column is required for each specific event.

data2 a matrix or dataframe with at least 2 columns; by default, the first column con-
tains the event time and the second column contains the k event codes (e.g.
1=dead, 0=censord)

subset.r subset of rows of original matrix or data frame to place in event chart. Logical
arguments may be used here (e.g., treatment.arm == ’a’, if the data frame, data,
has been attached to the search directory; otherwise, data$treatment.arm
== "a").

subset.c subset of columns of original matrix or data frame to place in event chart; if
working with a data frame, a vector of data frame variable names may be used
for subsetting purposes (e.g., c(’randdate’, ’event1’).

sort.by column(s) or data frame variable name(s) with which to sort the chart’s output.
The default is NA, thereby resulting in a chart sorted by original row number.

sort.ascending
logical flag (which takes effect only if the argument sort.by is utilized). If TRUE
(default), sorting is done in ascending order; if F, descending order.

sort.na.last logical flag (which takes effect only if the argument sort.by is utilized). If T
(default), NA values are considered as last values in ordering.

sort.after.subset
logical flag (which takes effect only if the argument sort.by is utilized). If F,
sorting data (via sort.by specified variables or columns) will be performed prior
to row subsetting (via subset.r); if T (default), row subsetting of original data
will be done before sorting.

90 event.chart

y.var variable name or column number of original matrix or data frame with which to
scale y-axis. Default is NA, which will result in equally spaced lines on y-axis
(based on original data or sorted data if requested by sort.by). Otherwise, loca-
tion of lines on y-axis will be dictated by specified variable or column. Examples
of specified variables may be date of an event or a physiological covariate. Any
observation which has a missing value for the y.var variable will not appear on
the graph.

y.var.type type of variable specified in y.var (which will only take effect if argument y.var
is utilized). If ’d’, specifed variable is a date (either numeric julian date or an
S-Plus dates object); if ’n’, specifed variable is numeric (e.g., systolic blood
pressure level) although not a julian date.

y.jitter logical flag (which takes effect only if the argument y.var is utilized). Due to
potential ties in y.var variable, y.jitter (when T) will jitter the data to allow dis-
crimination between observations at the possible cost of producing slightly inac-
curate dates or covariate values; if F (the default), no jittering will be performed.
The y.jitter algorithm assumes a uniform distribution of observations across the
range of y.var. The algorithm is as follows:
size.jitter <- (diff(range(y.var)) / (2 * (length(y.var) - 1))) * y.jitter.factor .
The default of y.jitter.factor is 1. The entire product is then used as an argument
into runif: y.var <- y.var + runif(length(y.var), -size.jitter, size.jitter) .

y.jitter.factor
an argument used with the y.jitter function to scale the range of added noise.
Default is 1.

y.renum logical flag. If T, subset observations are listed on y-axis from 1 to length(subset.r);
if F (default), subset observations are listed on y-axis in original form. As an
example, if subset.r = 301:340 and y.renum ==TRUE, y-axis will be shown as 1
through 40. However, if y.renum ==FALSE, y-axis will be shown as 301 through
340. The above examples assume the following argument, NA.rm, is set to F.

NA.rm logical flag. If T, subset observations which have NA for each variable spec-
ified in subset.c will not have an entry on the y-axis. Also, if the following
argument, x.reference, is specified, observations with missing x.reference val-
ues will also not have an entry on the y-axis. If F (default), user can identify
those observations which do have NA for every variable specified in subset.c
(or, if x.reference is specified, also those observations which are missing only
the x.reference value); this can easily be done by examining the resulting y-axis
and recognizing the observations without any plotting symbols.

x.reference column of original matrix or data frame with which to reference the x-axis.
That is, if specified, all columns specified in subset.c will be substracted by
x.reference. An example may be to see the timing of events before and after
treatment or to see time-to-event after entry into study. The event times will be
aligned using the x.reference argument as the reference point.

now the ’now’ date which will be used for top of y-axis when creating the Gold-
man eventchart (see reference below). Default is max(data[, subset.c], na.rm
=TRUE).

now.line logical flag. A feature utilized by the Goldman Eventchart. When x.reference
is specified as the start of follow-up and y.var = x.reference, then the Goldman

event.chart 91

chart can be created. This argument, if T, will cause the plot region to be square,
and will draw a line with a slope of -1 from the top of the y-axis to the right end
of the x-axis. Essentially, it denotes end of current follow-up period for looking
at the time-to-event data. Default is F.

now.line.lty line type of now.line.

now.line.lwd line width of now.line.

now.line.col color of now.line.

pty graph option, pty=’m’ is the default; use pty=’s’ for the square looking Gold-
man’s event chart.

date.orig date of origin to consider if dates are in julian, SAS , or S-Plus dates object
format; default is January 1, 1960 (which is the default origin used by both
S-Plus and SAS). Utilized when either y.julian =FALSE or x.julian = F.

titl title for event chart. Default is ’Event Chart’.

y.idlabels column or data frame variable name used for y-axis labels. For example, if
c(’pt.no’) is specified, patient ID (stored in ’pt.no’) will be seen on y-axis labels
instead of sequence specified by subset.r. This argument takes precedence over
both y.axis=’auto’ and y.axis=’custom’ (see below). NOTE: Program will issue
warning if this argument is specified and if is.na(y.var) == F; y.idlabels will not
be used in this situation. Also, attempting to plot too many patients on a single
event chart will cause undesirable plotting of y.idlabels.

y.axis character string specifying whether program will control labelling of y-axis
(with argument ’auto’), or if user will control labelling (with argument ’cus-
tom’). If ’custom’ is chosen, user must specify location and text of labels using
y.axis.custom.at and y.axis.custom.labels arguments, respectively, listed below.
This argument will not be utilized if y.idlabels is specified.

y.axis.custom.at
user-specified vector of y-axis label locations. Must be used when y.axis = ’cus-
tom’; will not be used otherwise.

y.axis.custom.labels
user-specified vector of y-axis labels. Must be used when y.axis = ’custom’; will
not be used otherwise.

y.julian logical flag (which will only be considered if y.axis == ’auto’ and (!is.na(y.var)
& y.var.type== ’d’). If F (default), will convert julian numeric dates or S-Plus
dates objects into ’mm/dd/yy’ format for the y-axis labels. If T, dates will be
printed in julian (numeric) format.

y.lim.extend two-dimensional vector representing the number of units that the user wants to
increase ylim on bottom and top of y-axis, respectively. Default = c(0,0). This
argument will not take effect if the Goldman chart is utilized.

y.lab single label to be used for entire y-axis. Default will be the variable name or
column number of y.idlabels (if non-missing) and blank otherwise.

x.axis.all logical flag. If T (default), lower and upper limits of x-axis will be based on all
observations (rows) in matrix or data frame. If F, lower and upper limits will
be based only on those observations specified by subset.r (either before or after
sorting depending on specification of sort.by and value of sort.after.subset).

92 event.chart

x.axis character string specifying whether program will control labelling of x-axis
(with argument ’auto’), or if user will control labelling (with argument ’cus-
tom’). If ’custom’ is chosen, user must specify location and text of labels using
x.axis.custom.at and x.axis.custom.labels arguments, respectively, listed below.

x.axis.custom.at
user-specified vector of x-axis label locations. Must be used when x.axis ==
’custom’; will not be used otherwise.

x.axis.custom.labels
user-specified vector of x-axis labels. Must be used when x.axis == ’custom’;
will not be used otherwise.

x.julian logical flag (which will only be considered if x.axis == ’auto’). If F (default),
will convert julian dates or S-plus dates objects into ’mm/dd/yy’ format for the
x-axis labels. If T, dates will be printed in julian (numeric) format. NOTE: This
argument should remain T if x.reference is specified.

x.lim.extend two-dimensional vector representing the number of time units (usually in days)
that the user wants to increase xlim on left-hand side and right-hand side of x-
axis, respectively. Default = c(0,0). This argument will not take effect if the
Goldman chart is utilized.

x.scale a factor whose reciprocal is multiplied to original units of the x-axis. For exam-
ple, if the original data frame is in units of days, x.scale = 365 will result in units
of years (notwithstanding leap years). Default is 1.

x.lab single label to be used for entire x-axis. Default will be ’On Study Date’ if
x.julian ==FALSE and ’Time on Study’ if x.julian = T.

line.by column or data frame variable name for plotting unique lines by unique values
of vector (e.g., specify c(’arm’) to plot unique lines by treatment arm). Can take
at most one column or variable name. Default is NA which produces identical
lines for each patient.

line.lty vector of line types corresponding to ascending order of line.by values. If line.by
is specified, the vector should be the length of the number of unique values of
line.by. If line.by is NA, only line.lty[1] will be used. The default is 1.

line.lwd vector of line widths corresponding to ascending order of line.by values. If
line.by is specified, the vector should be the length of the number of unique
values of line.by. If line.by is NA, only line.lwd[1] will be used. The default is
1.

line.col vector of line colors corresponding to ascending order of line.by values. If
line.by is specified, the vector should be the length of the number of unique
values of line.by. If line.by is NA, only line.col[1] will be used. The default is
1.

line.add a 2xk matrix with k=number of pairs of additional line segments to add. For ex-
ample, if it is of interest to draw additional line segments connecting events one
and two, two and three, and four and five, (possibly with different colors), an ap-
propriate line.add argument would be matrix(c(’first.event’,’second.event’,’second.event’,’third.event’,
’fourth.event’,’fifth.event’), 2, 3). One line segment would be drawn between
first.event and second.event, a second line segment would be drawn between
second.event and third.event, and a third line segment would be drawn between

event.chart 93

fourth.event and fifth.event. Different line types, widths and colors can be spec-
ified (in arguments listed just below).
The convention use of subset.c and line.add must match (i.e., column name must
be used for both or column number must be used for both).
If line.add != NA, length of line.add.lty, line.add.lwd, and line.add.col must be
the same as number of pairs of additional line segments to add.
NOTE: The drawing of the original default line may be suppressed (with line.col
= 0), and line.add can be used to do all the line plotting for the event chart.

line.add.lty a kx1 vector corresponding to the columns of line.add; specifies the line types
for the k line segments.

line.add.lwd a kx1 vector corresponding to the columns of line.add; specifies the line widths
for the k line segments.

line.add.col a kx1 vector corresponding to the columns of line.add; specifies the line colors
for the k line segments.

point.pch vector of pch values for points representing each event. If similar events are
listed in multiple columns (e.g., regular visits or a recurrent event), repeated pch
values may be listed in the vector (e.g., c(2,4,rep(183,3))). If length(point.pch)
< length(subset.c), point.pch will be repeated until lengths are equal; a warning
message will verify this condition.

point.cex vector of size of points representing each event. If length(point.cex) < length(subset.c),
point.cex will be repeated until lengths are equal; a warning message will verify
this condition.

point.col vector of colors of points representing each event. If length(point.col) < length(subset.c),
point.col will be repeated until lengths are equal; a warning message will verify
this condition.

legend.plot logical flag; if T, a legend will be plotted. Location of legend will be based
on specification of legend.location along with values of other arguments listed
below. Default is F (i.e., no legend plotting).

legend.location
will be used only if legend.plot=T. If ’o’ (default), a one-page legend will pre-
cede the output of the chart. The user will need to hit <enter> in order for the
event chart to be displayed. This feature is possible due to the dev.ask option. If
’i’, an internal legend will be placed in the plot region based on legend.point.at.
If ’l’, a legend will be placed in the plot region using the locator option. Leg-
end will map points to events (via column names, by default) and, if line.by is
specified, lines to groups (based on levels of line.by).

legend.titl title for the legend; default is title to be used for main plot. Only used when
legend.location = ’o’.

legend.titl.cex
size of text for legend title. Only used when legend.location = ’o’.

legend.titl.line
line location of legend title dictated by mtext function with outer=FALSE op-
tion; default is 1.0. Only used when legend.location = ’o’.

legend.point.at
location of upper left and lower right corners of legend area to be utilized for
describing events via points and text.

94 event.chart

legend.point.pch
vector of pch values for points representing each event in the legend. Default is
point.pch.

legend.point.text
text to be used for describing events; the default is setup for a data frame, as it
will print the names of the columns specified by subset.c .

legend.cex size of text for points and event descriptions. Default is 2.5 which is setup for
legend.location = ’o’. A much smaller cex is recommended (possibly 0.75) for
use with legend.location = ’i’ or legend.location = ’l’.

legend.bty option to put a box around the legend(s); default is to have no box (legend.bty =
’n’). Option legend.bty = ’o’ will produce a legend box.

legend.line.at
if line.by was specified (with legend.location = ’o’ or legend.location = ’i’),
this argument will dictate the location of the upper left and lower right corners
of legend area to be utilized for describing the different line.by values (e.g.,
treatment.arm). The default is setup for legend.location == ’o’.

legend.line.text
text to be used for describing line.by values; the default are the names of the
unique non-missing line.by values as produced from the table function.

legend.line.lwd
vector of line widths corresponding to line.by values.

legend.loc.num
number used for locator argument when legend.locator = ’l’. If 1 (default), user
is to locate only the top left corner of the legend box. If 2, user is to locate both
the top left corner and the lower right corner. This will be done twice when
line.by is specified (once for points and once for lines).

event.time the column number in data contains the event time

event.code the column number in data contains the event code

... additional par arguments for use in main plot.

Details

if you want to put, say, two eventcharts side-by-side, in a plot region, you should not set up
par(mfrow=c(1,2)) before running the first plot. Instead, you should add the argument mfg=c(1,1,1,2)
to the first plot call followed by the argument mfg=c(1,2,1,2) to the second plot call.

if dates in original data frame are in a specialized form (eg., mm/dd/yy) of mode CHARACTER,
the user must convert those columns to become class dates or julian numeric mode (see ?dates for
more information). For example, in a data frame called testdata, with specialized dates in columns
4 thru 10, the following code could be used: as.numeric(dates(testdata[,4:10]). This will convert
the columns to numeric julian dates based on the function’s default origin of January 1, 1960. If
original dates are in class dates or julian form, no extra work is necessary.

In the survival analysis, the data typically come in two columns: one column containing survival
time and the other containing censoring indicator or event code. The event.convert function converts
this type of data into multiple columns of event times, one column of each event type, suitable for
the event.chart function.

event.chart 95

Side Effects

an event chart is created on the current graphics device. If legend.plot =TRUE and legend.location
= ’o’, a one-page legend will precede the event chart. Please note that par parameters on completion
of function will be reset to par parameters existing prior to start of function.

Author(s)

J. Jack Lee and Kenneth R. Hess
Department of Biostatistics
University of Texas
M.D. Anderson Cancer Center
Houston, TX 77030
jjlee@mdanderson.org, khess@mdanderson.org

Joel A. Dubin
Division of Biostatistics
Department of Epidemiology and Public Health
Yale University
joel.dubin@yale.edu

References

Lee J.J., Hess, K.R., Dubin, J.A. (2000). Extensions and applications of event charts. The American
Statistician, 54:1, 63–70.

Dubin, J.A., Lee, J.J., Hess, K.R. (1997). The Utility of Event Charts. Proceedings of the Biometrics
Section, American Statistical Association.

Dubin, J.A., Muller H-G, Wang J-L (2001). Event history graphs for censored survival data. Statis-
tics in Medicine, 20: 2951–2964.

Goldman, A.I. (1992). EVENTCHARTS: Visualizing Survival and Other Timed-Events Data. The
American Statistician, 46:1, 13–18.

See Also

event.history

Examples

The sample data set is an augmented CDC AIDS dataset (ASCII)
which is used in the examples in the help file. This dataset is
described in Kalbfleisch and Lawless (JASA, 1989).
Here, we have included only children 4 years old and younger.
We have also added a new field, dethdate, which
represents a fictitious death date for each patient. There was
no recording of death date on the original dataset.
#
All dates are julian with julian=0 being
January 1, 1960, and julian=14000 being 14000 days beyond
January 1, 1960 (i.e., May 1, 1998).

cdcaids <- data.frame(

96 event.chart

age=c(4,2,1,1,2,2,2,4,2,1,1,3,2,1,3,2,1,2,4,2,2,1,4,2,4,1,4,2,1,1,3,3,1,3),
infedate=c(
7274,7727,7949,8037,7765,8096,8186,7520,8522,8609,8524,8213,8455,8739,
8034,8646,8886,8549,8068,8682,8612,9007,8461,8888,8096,9192,9107,9001,
9344,9155,8800,8519,9282,8673),
diagdate=c(
8100,8158,8251,8343,8463,8489,8554,8644,8713,8733,8854,8855,8863,8983,
9035,9037,9132,9164,9186,9221,9224,9252,9274,9404,9405,9433,9434,9470,
9470,9472,9489,9500,9585,9649),
diffdate=c(
826,431,302,306,698,393,368,1124,191,124,330,642,408,244,1001,391,246,
615,1118,539,612,245,813,516,1309,241,327,469,126,317,689,981,303,976),
dethdate=c(
8434,8304,NA,8414,8715,NA,8667,9142,8731,8750,8963,9120,9005,9028,9445,
9180,9189,9406,9711,9453,9465,9289,9640,9608,10010,9488,9523,9633,9667,
9547,9755,NA,9686,10084),
censdate=c(
NA,NA,8321,NA,NA,8519,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,10095,NA,NA))

cdcaids <- upData(cdcaids,
labels=c(age ='Age, y', infedate='Date of blood transfusion',

diagdate='Date of AIDS diagnosis',
diffdate='Incubation period (days from HIV to AIDS)',
dethdate='Fictitious date of death',
censdate='Fictitious censoring date'))

Note that the style options listed with these
examples are best suited for output to a postscript file (i.e., using
the postscript function with horizontal=TRUE) as opposed to a graphical
window (e.g., motif).

To produce simple calendar event chart (with internal legend):
postscript('example1.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'observation dates',
y.lab='patients (sorted by AIDS diagnosis date)',
titl='AIDS data calendar event chart 1',
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8),
legend.plot=TRUE, legend.location='i', legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
legend.point.at = list(c(7210, 8100), c(35, 27)), legend.bty='o')

To produce simple interval event chart (with internal legend):
postscript('example2.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'time since transfusion (in days)',
y.lab='patients (sorted by AIDS diagnosis date)',
titl='AIDS data interval event chart 1',
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8),
legend.plot=TRUE, legend.location='i', legend.cex=1.0,

event.history 97

legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
x.reference='infedate', x.julian=TRUE,
legend.bty='o', legend.point.at = list(c(1400, 1950), c(7, -1)))

To produce more complicated interval chart which is
referenced by infection date, and sorted by age and incubation period:
postscript('example3.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'time since diagnosis of AIDS (in days)',
y.lab='patients (sorted by age and incubation length)',
titl='AIDS data interval event chart 2 (sorted by age, incubation)',
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8),
legend.plot=TRUE, legend.location='i',legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
x.reference='diagdate', x.julian=TRUE, sort.by=c('age','diffdate'),
line.by='age', line.lty=c(1,3,2,4), line.lwd=rep(1,4), line.col=rep(1,4),
legend.bty='o', legend.point.at = list(c(-1350, -800), c(7, -1)),
legend.line.at = list(c(-1350, -800), c(16, 8)),
legend.line.text=c('age = 1', ' = 2', ' = 3', ' = 4'))

To produce the Goldman chart:
postscript('example4.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'time since transfusion (in days)', y.lab='dates of observation',
titl='AIDS data Goldman event chart 1',
y.var = c('infedate'), y.var.type='d', now.line=TRUE, y.jitter=FALSE,
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8), mgp = c(3.1,1.6,0),
legend.plot=TRUE, legend.location='i',legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
x.reference='infedate', x.julian=TRUE,
legend.bty='o', legend.point.at = list(c(1500, 2800), c(9300, 10000)))

To convert coded time-to-event data, then, draw an event chart:
surv.time <- c(5,6,3,1,2)
cens.ind <- c(1,0,1,1,0)
surv.data <- cbind(surv.time,cens.ind)
event.data <- event.convert(surv.data)
event.chart(cbind(rep(0,5),event.data),x.julian=TRUE,x.reference=1)

event.history Produces event.history graph for survival data

Description

Produces an event history graph for right-censored survival data, including time-dependent covari-
ate status, as described in Dubin, Muller, and Wang (2001). Effectively, a Kaplan-Meier curve
is produced with supplementary information regarding individual survival information, censoring
information, and status over time of an individual time-dependent covariate or time-dependent co-
variate function for both uncensored and censored individuals.

98 event.history

Usage

event.history(data, survtime.col, surv.col,
surv.ind = c(1, 0), subset.rows = NULL,
covtime.cols = NULL, cov.cols = NULL,
num.colors = 1, cut.cov = NULL, colors = 1,
cens.density = 10, mult.end.cens = 1.05,
cens.mark.right =FALSE, cens.mark = "-",
cens.mark.ahead = 0.5, cens.mark.cutoff = -1e-08,
cens.mark.cex = 1,
x.lab = "time under observation",
y.lab = "estimated survival probability",
title = "event history graph", ...)

Arguments

data A matrix or data frame with rows corresponding to units (often individuals)
and columns corresponding to survival time, event/censoring indicator. Also,
multiple columns may be devoted to time-dependent covariate level and time
change.

survtime.col Column (in data) representing minimum of time-to-event or right-censoring time
for individual.

surv.col Column (in data) representing event indicator for an individual. Though, tradi-
tionally, such an indicator will be 1 for an event and 0 for a censored observa-
tion, this indicator can be represented by any two numbers, made explicit by the
surv.ind argument.

surv.ind Two-element vector representing, respectively, the number for an event, as listed
in surv.col, followed by the number for a censored observation. Default is tradi-
tional survival data represention, i.e., c(1,0).

subset.rows Subset of rows of original matrix or data frame (data) to place in event history
graph. Logical arguments may be used here (e.g., treatment.arm == ’a’, if the
data frame, data, has been attached to the search directory;

covtime.cols Column(s) (in data) representing the time when change of time-dependent co-
variate (or time-dependent covariate function) occurs. There should be a unique
non-NA entry in the column for each such change (along with corresponding
cov.cols column entry representing the value of the covariate or function at that
change time). Default is NULL, meaning no time-dependent covariate informa-
tion will be presented in the graph.

cov.cols Column(s) (in data) representing the level of the time-dependent covariate (or
time-dependent covariate function). There should be a unique non-NA column
entry representing each change in the level (along with a corresponding cov-
time.cols column entry representing the time of the change). Default is NULL,
meaning no time-dependent covariate information will be presented in the graph.

num.colors Colors are utilized for the time-dependent covariate level for an individual. This
argument provides the number of unique covariate levels which will be dis-
played by mapping the number of colors (via num.colors) to the number of de-
sired covariate levels. This will divide the covariate span into roughly equally-
sized intervals, via the S-Plus cut function. Default is one color, meaning no

event.history 99

time-dependent information will be presented in the graph. Note that this argu-
ment will be ignored/superceded if a non-NULL argument is provided for the
cut.cov parameter.

cut.cov This argument allows the user to explicitly state how to define the intervals for
the time-dependent covariate, such that different colors will be allocated to the
user-defined covariate levels. For example, for plotting five colors, six ordered
points within the span of the data’s covariate levels should be provided. Default
is NULL, meaning that the num.colors argument value will dictate the number of
breakpoints, with the covariate span defined into roughly equally-sized intervals
via the S-Plus cut function. However, if is.null(cut.cov) ==FALSE, then this
argument supercedes any entry for the num.colors argument.

colors This is a vector argument defining the actual colors used for the time-dependent
covariate levels in the plot, with the index of this vector corresponding to the
ordered levels of the covariate. The number of colors (i.e., the length of the col-
ors vector) should correspond to the value provided to the num.colors argument
or the number of ordered points - 1 as defined in the cut.cov argument (with
cut.cov superceding num.colors if is.null(cut.cov) ==FALSE). The function, as
currently written, allows for as much as twenty distinct colors. This argument
effectively feeds into the col argument for the S-Plus polygon function. De-
fault is colors=1. See the col argument for the both the S-Plus par function and
polygon function for more information.

cens.density This will provide the shading density at the end of the individual bars for those
who are censored. For more information on shading density, see the density
argument in the S-Plus polygon function. Default is cens.density=10.

mult.end.cens
This is a multiplier that extends the length of the longest surviving individual
bar (or bars, if a tie exists) if right-censored, presuming that no event times
eventually follow this final censored time. Default extends the length 5 percent
beyond the length of the observed right-censored survival time.

cens.mark.right
A logical argument that states whether an explicit mark should be placed to
the right of the individual right-censored survival bars. This argument is most
useful for large sample sizes, where it may be hard to detect the special shading
via cens.density, particularly for the short-term survivors.

cens.mark Character argument which describes the censored mark that should be used if
cens.mark.right = T. Default is ’-’.

cens.mark.ahead
A numeric argument, which specifies the absolute distance to be placed between
the individual right-censored survival bars and the mark as defined in the above
cens.mark argument. Default is .5 (that is, a half of day, if survival time is
measured in days), but may very well need adjusting depending on the maximum
survival time observed in the dataset.

cens.mark.cutoff
A negative number very close to 0 (by default cens.mark.cutoff = -1e-8) to en-
sure that the censoring marks get plotted correctly. See event.history code in
order to see its usage. This argument typically will not need adjustment.

100 event.history

cens.mark.cex
Numeric argument defining the size of the mark defined in the cens.mark argu-
ment above. See more information by viewing the cex argument for the S-Plus
par function. Default is cens.mark.cex=1.0.

x.lab Single label to be used for entire x-axis. Default is ’time under observation’.

y.lab Single label to be used for entire y-axis. Default is ’estimated survival probabil-
ity’.

title Title for the event history graph. Default is ’event history graph’.

... This allows arguments to the plot function call within the event.history function.
So, for example, the axes representations can be manipulated with appropriate
arguments, or particular areas of the event.history graph can be "zoomed". See
the details section for more comments about zooming.

Details

In order to focus on a particular area of the event history graph, zooming can be performed. This is
best done by specifying appropriate xlim and ylim arguments at the end of the event.history function
call, taking advantage of the ... argument link to the plot function. An example of zooming can be
seen in Plate 4 of the paper referenced below.

Please read the reference below to understand how the individual covariate and survival information
is provided in the plot, how ties are handled, how right-censoring is handled, etc.

WARNING

This function has been tested thoroughly, but only within a restricted version and environment, i.e.,
only within S-Plus 2000, Version 3, and within S-Plus 6.0, version 2, both on a Windows 2000
machine. Hence, we cannot currently vouch for the function’s effectiveness in other versions of
S-Plus (e.g., S-Plus 3.4) nor in other operating environments (e.g., Windows 95, Linux or Unix).
The function has also been verified to work on R under Linux.

Note

The authors have found better control of the use of color by producing the graphs via the postscript
plotting device in S-Plus. In fact, the provided examples utilize the postscript function. How-
ever, your past experiences may be different, and you may prefer to control color directly (to the
graphsheet in Windows environment, for example). The event.history function will work with either
approach.

Author(s)

Joel Dubin
joel.dubin@yale.edu

References

Dubin, J.A., Muller, H.-G., and Wang, J.-L. (2001). Event history graphs for censored survival data.
Statistics in Medicine, 20, 2951-2964.

event.history 101

See Also

plot,polygon, event.chart

Examples

Code to produce event history graphs for SIM paper
#
before generating plots, some pre-processing needs to be performed,
in order to get dataset in proper form for event.history function;
need to create one line per subject and sort by time under observation,
with those experiencing event coming before those tied with censoring time;
require('survival')
data(heart)

creation of event.history version of heart dataset (call heart.one):

heart.one <- matrix(nrow=length(unique(heart$id)), ncol=8)
for(i in 1:length(unique(heart$id)))
{
if(length(heart$id[heart$id==i]) == 1)
heart.one[i,] <- as.numeric(unlist(heart[heart$id==i,]))
else if(length(heart$id[heart$id==i]) == 2)
heart.one[i,] <- as.numeric(unlist(heart[heart$id==i,][2,]))

}

heart.one[,3][heart.one[,3] == 0] <- 2 ## converting censored events to 2, from 0
if(is.factor(heart$transplant))
heart.one[,7] <- heart.one[,7] - 1
getting back to correct transplantation coding
heart.one <- as.data.frame(heart.one[order(unlist(heart.one[,2]), unlist(heart.one[,3])),])
names(heart.one) <- names(heart)
back to usual censoring indicator:
heart.one[,3][heart.one[,3] == 2] <- 0
note: transplant says 0 (for no transplants) or 1 (for one transplant)
and event = 1 is death, while event = 0 is censored

plot single Kaplan-Meier curve from heart data, first creating survival object
heart.surv <- survfit(Surv(heart.one$stop, heart.one$event), conf.int = FALSE)

figure 3: traditional Kaplan-Meier curve
postscript('ehgfig3.ps', horiz=TRUE)
omi <- par(omi=c(0,1.25,0.5,1.25))
plot(heart.surv, ylab='estimated survival probability',

xlab='observation time (in days)')
title('Figure 3: Kaplan-Meier curve for Stanford data', cex=0.8)
dev.off()

now, draw event history graph for Stanford heart data; use as Figure 4

postscript('ehgfig4.ps', horiz=TRUE, colors = seq(0, 1, len=20))
par(omi=c(0,1.25,0.5,1.25))
event.history(heart.one,

102 event.history

survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation (in days)',
title='Figure 4: Event history graph for\nStanford data',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 30.0, cens.mark.cex = 0.85)

dev.off()

now, draw age-stratified event history graph for Stanford heart data;
use as Figure 5

two plots, stratified by age status
postscript('c:\temp\ehgfig5.ps', horiz=TRUE, colors = seq(0, 1, len=20))
par(omi=c(0,1.25,0.5,1.25))
par(mfrow=c(1,2))

event.history(data=heart.one, subset.rows = (heart.one[,4] < 0),
survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation\n(in days)',
title = 'Figure 5a:\nStanford data\n(age < 48)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 40.0, cens.mark.cex = 0.85,
xlim=c(0,1900))

event.history(data=heart.one, subset.rows = (heart.one[,4] >= 0),
survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation\n(in days)',
title = 'Figure 5b:\nStanford data\n(age >= 48)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 40.0, cens.mark.cex = 0.85,
xlim=c(0,1900))

dev.off()
par(omi=omi)

we will not show liver cirrhosis data manipulation, as it was
a bit detailed; however, here is the
event.history code to produce Figure 7 / Plate 1

Figure 7 / Plate 1 : prothrombin ehg with color
Not run:
second.arg <- 1 ### second.arg is for shading
third.arg <- c(rep(1,18),0,1) ### third.arg is for intensity

postscript('c:\temp\ehgfig7.ps', horiz=TRUE,

find.matches 103

colors = cbind(seq(0, 1, len = 20), second.arg, third.arg))
par(omi=c(0,1.25,0.5,1.25), col=19)
event.history(cirrhos2.eh, subset.rows = NULL,

survtime.col=cirrhos2.eh$time, surv.col=cirrhos2.eh$event,
covtime.cols = as.matrix(cirrhos2.eh[, ((2:18)*2)]),
cov.cols = as.matrix(cirrhos2.eh[, ((2:18)*2) + 1]),
cut.cov = as.numeric(quantile(as.matrix(cirrhos2.eh[, ((2:18)*2) + 1]),

c(0,.2,.4,.6,.8,1), na.rm=TRUE) + c(-1,0,0,0,0,1)),
colors=c(20,4,8,11,14),
x.lab = 'time under observation (in days)',
title='Figure 7: Event history graph for liver cirrhosis data (color)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 100.0, cens.mark.cex = 0.85)

dev.off()
End(Not run)

find.matches Find Close Matches

Description

Compares each row in x against all the rows in y, finding rows in y with all columns within a
tolerance of the values a given row of x. The default tolerance tol is zero, i.e., an exact match is
required on all columns. For qualifying matches, a distance measure is computed. This is the sum
of squares of differences between x and y after scaling the columns. The default scaling values are
tol, and for columns with tol=1 the scale values are set to 1.0 (since they are ignored anyway).
Matches (up to maxmatch of them) are stored and listed in order of increasing distance.
The summary method prints a frequency distribution of the number of matches per observation
in x, the median of the minimum distances for all matches per x, as a function of the number
of matches, and the frequency of selection of duplicate observations as those having the smallest
distance. The print method prints the entire matches and distance components of the result
from find.matches.
matchCases finds all controls that match cases on a single variable x within a tolerance of tol.
This is intended for prospective cohort studies that use matching for confounder adjustment (even
though regression models usually work better).

Usage

find.matches(x, y, tol=rep(0, ncol(y)), scale=tol, maxmatch=10)
S3 method for class 'find.matches':
summary(object, ...)
S3 method for class 'find.matches':
print(x, digits, ...)

matchCases(xcase, ycase, idcase=names(ycase),
xcontrol, ycontrol, idcontrol=names(ycontrol),
tol=NULL,
maxobs=max(length(ycase),length(ycontrol))*10,
maxmatch=20, which=c('closest','random'))

104 find.matches

Arguments

x a numeric matrix or the result of find.matches

y a numeric matrix with same number of columns as x

xcase

xcontrol vectors, not necessarily of the same length, specifying a numeric variable used
to match cases and control

ycase

ycontrol vectors or matrices, not necessarily having the same number of rows, specifying
a variable to carry along from cases and matching controls. If you instead want
to carry along rows from a data frame, let ycase and ycontrol be non-
overlapping integer subscripts of the donor data frame.

tol a vector of tolerances with number of elements the same as the number of
columns of y, for find.matches. For matchCases is a scalar tolerance.

scale a vector of scaling constants with number of elements the same as the number
of columns of y.

maxmatch maximum number of matches to allow. For matchCases, maximum number
of controls to match with a case (default is 20). If more than maxmatch match-
ing controls are available, a random sample without replacement of maxmatch
controls is used (if which="random").

object an object created by find.matches

digits number of digits to use in printing distances

idcase

idcontrol vectors the same length as xcase and xcontrol respectively, specifying the
id of cases and controls. Defaults are integers specifying original element posi-
tions within each of cases and controls.

maxobs maximum number of cases and all matching controls combined (maximum di-
mension of data frame resulting from matchControls). Default is ten times
the maximum of the number of cases and number of controls. maxobs is used
to allocate space for the resulting data frame.

which set to "closest" (the default) to match cases with up to maxmatch controls
that most closely match on x. Set which="random" to use randomly chosen
controls. In either case, only those controls within tol on x are allowed to be
used.

... unused

Value

find.matches returns a list of class find.matcheswith elements matches and distance.
Both elements are matrices with the number of rows equal to the number of rows in x, and with
k columns, where k is the maximum number of matches (<= maxmatch) that occurred. The
elements of matches are row identifiers of y that match, with zeros if fewer than maxmatch
matches are found (blanks if y had row names). matchCases returns a data frame with vari-
ables idcase (id of case currently being matched), type (factor variable with levels "case"
and "control"), id (id of case if case row, or id of matching case), and y.

find.matches 105

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

References

Ming K, Rosenbaum PR (2001): A note on optimal matching with variable controls using the
assignment algorithm. J Comp Graph Stat 10:455–463.

Cepeda MS, Boston R, Farrar JT, Strom BL (2003): Optimal matching with a variable number of
controls vs. a fixed number of controls for a cohort study: trade-offs. J Clin Epidemiology 56:230-
237. Note: These papers were not used for the functions here but probably should have been.

See Also

scale, apply

Examples

y <- rbind(c(.1, .2),c(.11, .22), c(.3, .4), c(.31, .41), c(.32, 5))
x <- rbind(c(.09,.21), c(.29,.39))
y
x
w <- find.matches(x, y, maxmatch=5, tol=c(.05,.05))

set.seed(111) # so can replicate results
x <- matrix(runif(500), ncol=2)
y <- matrix(runif(2000), ncol=2)
w <- find.matches(x, y, maxmatch=5, tol=c(.02,.03))
w$matches[1:5,]
w$distance[1:5,]
Find first x with 3 or more y-matches
num.match <- apply(w$matches, 1, function(x)sum(x > 0))
j <- ((1:length(num.match))[num.match > 2])[1]
x[j,]
y[w$matches[j,],]

summary(w)

For many applications would do something like this:
attach(df1)
x <- cbind(age, sex) # Just do as.matrix(df1) if df1 has no factor objects
attach(df2)
y <- cbind(age, sex)
mat <- find.matches(x, y, tol=c(5,0)) # exact match on sex, 5y on age

Demonstrate matchCases
xcase <- c(1,3,5,12)
xcontrol <- 1:6
idcase <- c('A','B','C','D')

106 find.matches

idcontrol <- c('a','b','c','d','e','f')
ycase <- c(11,33,55,122)
ycontrol <- c(11,22,33,44,55,66)
matchCases(xcase, ycase, idcase,

xcontrol, ycontrol, idcontrol, tol=1)

If y is a binary response variable, the following code
will produce a Mantel-Haenszel summary odds ratio that
utilizes the matching.
Standard variance formula will not work here because
a control will match more than one case
WARNING: The M-H procedure exemplified here is suspect
because of the small strata and widely varying number
of controls per case.

x <- c(1, 2, 3, 3, 3, 6, 7, 12, 1, 1:7)
y <- c(0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1)
case <- c(rep(TRUE, 8), rep(FALSE, 8))
id <- 1:length(x)

m <- matchCases(x[case], y[case], id[case],
x[!case], y[!case], id[!case], tol=1)

iscase <- m$type=='case'
Note: the first tapply on insures that event indicators are
sorted by case id. The second actually does something.
event.case <- tapply(m$y[iscase], m$idcase[iscase], sum)
event.control <- tapply(m$y[!iscase], m$idcase[!iscase], sum)
n.control <- tapply(!iscase, m$idcase, sum)
n <- tapply(my, midcase, length)
or <- sum(event.case * (n.control - event.control) / n) /

sum(event.control * (1 - event.case) / n)
or

Bootstrap this estimator by sampling with replacement from
subjects. Assumes id is unique when combine cases+controls
(id was constructed this way above). The following algorithms
puts all sampled controls back with the cases to whom they were
originally matched.

ids <- unique(m$id)
idgroups <- split(1:nrow(m), m$id)
B <- 50 # in practice use many more
ors <- numeric(B)
Function to order w by ids, leaving unassigned elements zero
align <- function(ids, w) {
z <- structure(rep(0, length(ids)), names=ids)
z[names(w)] <- w
z

}
for(i in 1:B) {
j <- sample(ids, replace=TRUE)
obs <- unlist(idgroups[j])
u <- m[obs,]

first.word 107

iscase <- u$type=='case'
n.case <- align(ids, tapply(u$type, u$idcase,

function(v)sum(v=='case')))
n.control <- align(ids, tapply(u$type, u$idcase,

function(v)sum(v=='control')))
event.case <- align(ids, tapply(u$y[iscase], u$idcase[iscase], sum))
event.control <- align(ids, tapply(u$y[!iscase], u$idcase[!iscase], sum))
n <- n.case + n.control
Remove sets having 0 cases or 0 controls in resample
s <- n.case > 0 & n.control > 0
denom <- sum(event.control[s] * (n.case[s] - event.case[s]) / n[s])
or <- if(denom==0) NA else
sum(event.case[s] * (n.control[s] - event.control[s]) / n[s]) / denom
ors[i] <- or

}
describe(ors)

first.word First Word in a String or Expression

Description

first.word finds the first word in an expression. A word is defined by unlisting the elements
of the expression found by the S parser and then accepting any elements whose first character is
either a letter or period. The principal intended use is for the automatic generation of temporary
file names where it is important to exclude special characters from the file name. For Microsoft
Windows, periods in names are deleted and only up to the first 8 characters of the word is returned.

Usage

first.word(x, i=1, expr=substitute(x))

Arguments

x any scalar character string

i word number, default value = 1. Used when the second or ith word is wanted.
Currently only the i=1 case is implemented.

expr any S object of mode expression.

Value

a character string

108 format.df

Author(s)

Frank E. Harrell, Jr.,
Department of Biostatistics,
Vanderbilt University,
f.harrell@vanderbilt.edu

Richard M. Heiberger,
Department of Statistics,
Temple University, Philadelphia, PA.
rmh@astro.ocis.temple.edu

Examples

first.word(expr=expression(y ~ x + log(w)))

format.df Format a Data Frame or Matrix for LaTeX or HTML

Description

format.df does appropriate rounding and decimal alignment, and outputs a character matrix
containing the formatted data. If x is a data.frame, then do each component separately. If x is a
matrix, but not a data.frame, make it a data.frame with individual components for the columns. If a
component x$x is a matrix, then do all columns the same.

Usage

format.df(x,
digits, dec=NULL, rdec=NULL, cdec=NULL,
numeric.dollar=cdot,
na.blank=FALSE, na.dot=FALSE, blank.dot=FALSE,
col.just=NULL, cdot=FALSE, dcolumn=FALSE, matrix.sep=' ',
scientific=c(-4,4), math.row.names, math.col.names, ...)

Arguments

x a matrix (usually numeric) or data frame

digits causes all values in the table to be formatted to digits significant digits. dec
is usually preferred.

dec If dec is a scalar, all elements of the matrix will be rounded to dec decimal
places to the right of the decimal. dec can also be a matrix whose elements
correspond to x, for customized rounding of each element. A matrix dec must
have number of columns equal to number of columns of input x. A scalar dec
is expanded to a vector cdec with number of items equal to number of columns
of input x.

format.df 109

rdec a vector specifying the number of decimal places to the right for each row (cdec
is more commonly used than rdec) A vector rdec must have number of items
equal to number of rows of input x. rdec is expanded to matrix dec.

cdec a vector specifying the number of decimal places for each column. The vector
must have number of items equal to number of columns or components of input
x.

cdot Set to TRUE to use centered dots rather than ordinary periods in numbers. The
output uses a syntax appropriate for latex.

na.blank Set to TRUE to use blanks rather than NA for missing values. This usually looks
better in latex.

dcolumn Set to TRUE to use David Carlisle’s dcolumn style for decimal alignment in
latex. Default is FALSE. You will probably want to use dcolumn if you use
rdec, as a column may then contain varying number of places to the right of the
decimal. dcolumn can line up all such numbers on the decimal point, with in-
teger values right justified at the decimal point location of numbers that actually
contain decimal places. When you use dcolumn=TRUE, numeric.dollar
is set by default to FALSE. When you use dcolumn=TRUE, the "style"
element is set to "dcolumn" as the latex \usepackage must reference
[dcolumn]. The three files dcolumn.sty, newarray.sty, and array.sty
will need to be in a directory in your $TEXINPUTS path. When you use
dcolumn=TRUE, numeric.dollar should be set to FALSE.

numeric.dollar
logical, default !dcolumn. Set to TRUE to place dollar signs around nu-
meric values when dcolumn=FALSE. This assures that latex will use minus
signs rather than hyphens to indicate negative numbers. Set to FALSE when
dcolumn=TRUE, as dcolumn.sty automatically uses minus signs.

math.row.names
logical, set true to place dollar signs around the row names.

math.col.names
logical, set true to place dollar signs around the column names.

na.dot Set to TRUE to use periods rather than NA for missing numeric values. This
works with the sas convention that periods indicate missing values.

blank.dot Set to TRUE to use periods rather than blanks for missing character values. This
works with the sas convention that periods indicate missing values.

col.just Input vector col.just must have number of columns equal to number of
columns of the output matrix. When NULL, the default, the col.just at-
tribute of the result is set to "l" for character columns and to "r" for numeric
columns. The user can override the default by an argument vector whose length
is equal to the number of columns of the result matrix. When format.df is
called by latex.default, the col.just is used as the cols argument to
the \tabular environment and the letters "l", "r", and "c" are valid val-
ues. When format.df is called by sas, the col.just is used to determine
whether a $ is needed on the input line of the sysin file, and the letters "l"
and "r" are valid values.

matrix.sep When x is a data frame containing a matrix, so that new column names are
constructed from the name of the matrix object and the names of the individual

110 format.pval

columns of the matrix, matrix.sep specifies the character to use to separate
object names from individual column names.

scientific specifies ranges of exponents (or a logical vector) specifying values not to con-
vert to scientific notation. See format.default for details.

... other arguments are accepted and ignored. For latexVerbatim these argu-
ments are passed to the print function.

Value

a character matrix with character images of properly rounded x. Matrix components of input x are
now just sets of columns of character matrix. attr(,col.just) repeats the input col.just
when provided, otherwise, it includes the recommended justification for columns of output. See the
discussion of the argument col.just. The default justification is "l" for characters and factors,
"r" for numeric. When dcolumn==TRUE, numerics will have "." as the justification character.

Author(s)

Frank E. Harrell, Jr.,
Department of Biostatistics,
Vanderbilt University,
f.harrell@vanderbilt.edu

Richard M. Heiberger,
Department of Statistics,
Temple University, Philadelphia, PA.
rmh@astro.ocis.temple.edu

See Also

latex

Examples

x <- data.frame(a=1:2, b=3:4)
x$m <- matrix(5:8,nrow=2)
names(x)
dim(x)
x
format.df(x)
dim(format.df(x))

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

gbayes 111

Usage

format.pval(x, pv=x, digits = max(1, .Options$digits - 2), eps = .Machine$double.eps, na.form = "NA", ...)

Arguments

pv a numeric vector.

x argument for method compliance.

digits how many significant digits are to be used.

eps a numerical tolerance: see Details.

na.form character representation of NAs.

... arguments passed to format in the format.pval function body.

Details

format.pval is mainly an auxiliary function for print.summary.lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps]" (where “[eps]” stands for format(eps, digits)).

Value

A character vector.

Note

This is the base format.pval function with the ablitiy to pass an nsmall argument to format

Examples

format.pval(c(runif(5), pi^-100, NA))
format.pval(c(0.1, 0.0001, 1e-27))
format.pval(c(0.1, 1e-27), nsmall=3)

gbayes Gaussian Bayesian Posterior and Predictive Distributions

Description

gbayes derives the (Gaussian) posterior and optionally the predictive distribution when both the
prior and the likelihood are Gaussian, and when the statistic of interest comes from a 2-sample
problem. This function is especially useful in obtaining the expected power of a statistical test,
averaging over the distribution of the population effect parameter (e.g., log hazard ratio) that is
obtained using pilot data. gbayes is also useful for summarizing studies for which the statistic of
interest is approximately Gaussian with known variance. An example is given for comparing two
proportions using the angular transformation, for which the variance is independent of unknown
parameters except for very extreme probabilities. A plot method is also given. This plots the

112 gbayes

prior, posterior, and predictive distributions on a single graph using a nice default for the x-axis
limits and using the labcurve function for automatic labeling of the curves.

gbayes2 uses the method of Spiegelhalter and Freedman (1986) to compute the probability of
correctly concluding that a new treatment is superior to a control. By this we mean that a 1-alpha
normal theory-based confidence interval for the new minus old treatment effect lies wholly to the
right of delta.w, where delta.w is the minimally worthwhile treatment effect (which can be
zero to be consistent with ordinary null hypothesis testing, a method not always making sense). This
kind of power function is averaged over a prior distribution for the unknown treatment effect. This
procedure is applicable to the situation where a prior distribution is not to be used in constructing
the test statistic or confidence interval, but is only used for specifying the distribution of delta,
the parameter of interest.

Even though gbayes2 assumes that the test statistic has a normal distribution with known variance
(which is strongly a function of the sample size in the two treatment groups), the prior distribution
function can be completely general. Instead of using a step-function for the prior distribution as
Spiegelhalter and Freedman used in their appendix, gbayes2 uses the built-in integrate func-
tion for numerical integration. gbayes2 also allows the variance of the test statistic to be general
as long as it is evaluated by the user. The conditional power given the parameter of interest delta
is 1 - pnorm((delta.w - delta)/sd + z), where z is the normal critical value corre-
sponding to 1 - alpha/2.

gbayesMixPredNoData derives the predictive distribution of a statistic that is Gaussian given
delta when no data have yet been observed and when the prior is a mixture of two Gaussians.

gbayesMixPost derives the posterior density or cdf of delta given the statistic x, when the
prior for delta is a mixture of two Gaussians and when x is Gaussian given delta.

gbayesMixPowerNP computes the power for a test for delta > delta.w for the case where
(1) a Gaussian prior or mixture of two Gaussian priors is used as the prior distribution, (2) this prior
is used in forming the statistical test or credible interval, (3) no prior is used for the distribution of
delta for computing power but instead a fixed single delta is given (as in traditional frequentist
hypothesis tests), and (4) the test statistic has a Gaussian likelihood with known variance (and
mean equal to the specified delta). gbayesMixPowerNP is handy where you want to use an
earlier study in testing for treatment effects in a new study, but you want to mix with this prior a
non-informative prior. The mixing probability mix can be thought of as the "applicability" of the
previous study. As with gbayes2, power here means the probability that the new study will yield
a left credible interval that is to the right of delta.w. gbayes1PowerNP is a special case of
gbayesMixPowerNP when the prior is a single Gaussian.

Usage

gbayes(mean.prior, var.prior, m1, m2, stat, var.stat,
n1, n2, cut.prior, cut.prob.prior=0.025)

S3 method for class 'gbayes':
plot(x, xlim, ylim, name.stat='z', ...)

gbayes2(sd, prior, delta.w=0, alpha=0.05, upper=Inf, prior.aux)

gbayesMixPredNoData(mix=NA, d0=NA, v0=NA, d1=NA, v1=NA,
what=c('density','cdf'))

gbayes 113

gbayesMixPost(x=NA, v=NA, mix=1, d0=NA, v0=NA, d1=NA, v1=NA,
what=c('density','cdf'))

gbayesMixPowerNP(pcdf, delta, v, delta.w=0, mix, interval,
nsim=0, alpha=0.05)

gbayes1PowerNP(d0, v0, delta, v, delta.w=0, alpha=0.05)

Arguments

mean.prior mean of the prior distribution

cut.prior
cut.prob.prior

var.prior variance of the prior. Use a large number such as 10000 to effectively use a flat
(noninformative) prior. Sometimes it is useful to compute the variance so that
the prior probability that stat is greater than some impressive value u is only
alpha. The correct var.prior to use is then ((u-mean.prior)/qnorm(1-
alpha))^2. You can specify cut.prior=u and cut.prob.prior=alpha
(whose default is 0.025) in place of var.prior to have gbayes compute the
prior variance in this manner.

m1 sample size in group 1

m2 sample size in group 2

stat statistic comparing groups 1 and 2, e.g., log hazard ratio, difference in means,
difference in angular transformations of proportions

var.stat variance of stat, assumed to be known. var.stat should either be a con-
stant (allowed if n1 is not specified), or a function of two arguments which
specify the sample sizes in groups 1 and 2. Calculations will be approximate
when the variance is estimated from the data.

x an object returned by gbayes or the value of the statistic which is an estimator
of delta, the parameter of interest

sd the standard deviation of the treatment effect

prior a function of possibly a vector of unknown treatment effects, returning the prior
density at those values

pcdf a function computing the posterior CDF of the treatment effect delta, such as
a function created by gbayesMixPost with what="cdf".

delta a true unknown single treatment effect to detect

v the variance of the statistic x, e.g., s^2 * (1/n1 + 1/n2). Neither x nor
v need to be defined to gbayesMixPost, as they can be defined at run time
to the function created by gbayesMixPost.

n1 number of future observations in group 1, for obtaining a predictive distribution

n2 number of future observations in group 2

xlim vector of 2 x-axis limits. Default is the mean of the posterior plus or minus 6
standard deviations of the posterior.

114 gbayes

ylim vector of 2 y-axis limits. Default is the range over combined prior and posterior
densities.

name.stat label for x-axis. Default is "z".

... optional arguments passed to labcurve from plot.gbayes

delta.w the minimum worthwhile treatment difference to detech. The default is zero for
a plain uninteristing null hypothesis.

alpha type I error, or more accurately one minus the confidence level for a two-sided
confidence limit for the treatment effect

upper upper limit of integration over the prior distribution multiplied by the normal
likelihood for the treatment effect statistic. Default is infinity.

prior.aux argument to pass to prior from integrate through gbayes2. Inside of
power the argument must be named prior.aux if it exists. You can pass
multiple parameters by passing prior.aux as a list and pulling off elements
of the list inside prior. This setup was used because of difficulties in passing
... arguments through integrate for some situations.

mix mixing probability or weight for the Gaussian prior having mean d0 and vari-
ance v0. mix must be between 0 and 1, inclusive.

d0 mean of the first Gaussian distribution (only Gaussian for gbayes1PowerNP
and is a required argument)

v0 variance of the first Gaussian (only Gaussian for gbayes1PowerNP and is a
required argument)

d1 mean of the second Gaussian (if mix < 1)

v1 variance of the second Gaussian (if mix < 1). Any of these last 5 arguments can
be omitted to gbayesMixPredNoData as they can be provided at run time
to the function created by gbayesMixPredNoData.

what specifies whether the predictive density or the CDF is to be computed. Default
is "density".

interval a 2-vector containing the lower and upper limit for possible values of the test
statistic x that would result in a left credible interval exceeding delta.w with
probability 1-alpha/2

nsim defaults to zero, causing gbayesMixPowerNP to solve numerically for the
critical value of x, then to compute the power accordingly. Specify a nonzero
number such as 20000 for nsim to instead have the function estimate power by
simulation. In this case 0.95 confidence limits on the estimated power are also
computed. This approach is sometimes necessary if uniroot can’t solve the
equation for the critical value.

Value

gbayes returns a list of class "gbayes" containing the following names elements: mean.prior,var.prior,mean.post,
var.post, and if n1 is specified, mean.pred and var.pred. Note that mean.pred is identi-
cal to mean.post. gbayes2 returns a single number which is the probability of correctly reject-
ing the null hypothesis in favor of the new treatment. gbayesMixPredNoData returns a function
that can be used to evaluate the predictive density or cumulative distribution. gbayesMixPost

gbayes 115

returns a function that can be used to evaluate the posterior density or cdf. gbayesMixPowerNP
returns a vector containing two values if nsim = 0. The first value is the critical value for the test
statistic that will make the left credible interval > delta.w, and the second value is the power. If
nsim > 0, it returns the power estimate and confidence limits for it if nsim > 0. The examples
show how to use these functions.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Spiegelhalter DJ, Freedman LS, Parmar MKB (1994): Bayesian approaches to randomized trials.
JRSS A 157:357–416. Results for gbayes are derived from Equations 1, 2, 3, and 6.

Spiegelhalter DJ, Freedman LS (1986): A predictive approach to selecting the size of a clinical trial,
based on subjective clinical opinion. Stat in Med 5:1–13.

Joseph, Lawrence and Belisle, Patrick (1997): Bayesian sample size determination for normal
means and differences between normal means. The Statistician 46:209–226.

Examples

Compare 2 proportions using the var stabilizing transformation
arcsin(sqrt((x+3/8)/(n+3/4))) (Anscombe), which has variance
1/[4(n+.5)]

m1 <- 100; m2 <- 150
deaths1 <- 10; deaths2 <- 30

f <- function(events,n) asin(sqrt((events+3/8)/(n+3/4)))
stat <- f(deaths1,m1) - f(deaths2,m2)
var.stat <- function(m1, m2) 1/4/(m1+.5) + 1/4/(m2+.5)
cat("Test statistic:",format(stat)," s.d.:",

format(sqrt(var.stat(m1,m2))), "\n")
#Use unbiased prior with variance 1000 (almost flat)
b <- gbayes(0, 1000, m1, m2, stat, var.stat, 2*m1, 2*m2)
print(b)
plot(b)
#To get posterior Prob[parameter > w] use
1-pnorm(w, b$mean.post, sqrt(b$var.post))

#If g(effect, n1, n2) is the power function to
#detect an effect of 'effect' with samples size for groups 1 and 2
#of n1,n2, estimate the expected power by getting 1000 random
#draws from the posterior distribution, computing power for
#each value of the population effect, and averaging the 1000 powers
#This code assumes that g will accept vector-valued 'effect'
#For the 2-sample proportion problem just addressed, 'effect'
#could be taken approximately as the change in the arcsin of

116 gbayes

#the square root of the probability of the event

g <- function(effect, n1, n2, alpha=.05) {
sd <- sqrt(var.stat(n1,n2))
z <- qnorm(1 - alpha/2)
effect <- abs(effect)
1 - pnorm(z - effect/sd) + pnorm(-z - effect/sd)

}

effects <- rnorm(1000, b$mean.post, sqrt(b$var.post))
powers <- g(effects, 500, 500)
hist(powers, nclass=35, xlab='Power')
describe(powers)

gbayes2 examples
First consider a study with a binary response where the
sample size is n1=500 in the new treatment arm and n2=300
in the control arm. The parameter of interest is the
treated:control log odds ratio, which has variance
1/[n1 p1 (1-p1)] + 1/[n2 p2 (1-p2)]. This is not
really constant so we average the variance over plausible
values of the probabilities of response p1 and p2. We
think that these are between .4 and .6 and we take a
further short cut

v <- function(n1, n2, p1, p2) 1/(n1*p1*(1-p1)) + 1/(n2*p2*(1-p2))
n1 <- 500; n2 <- 300
ps <- seq(.4, .6, length=100)
vguess <- quantile(v(n1, n2, ps, ps), .75)
vguess
75%
0.02183459

The minimally interesting treatment effect is an odds ratio
of 1.1. The prior distribution on the log odds ratio is
a 50:50 mixture of a vague Gaussian (mean 0, sd 100) and
an informative prior from a previous study (mean 1, sd 1)

prior <- function(delta)
0.5*dnorm(delta, 0, 100)+0.5*dnorm(delta, 1, 1)

deltas <- seq(-5, 5, length=150)
plot(deltas, prior(deltas), type='l')

Now compute the power, averaged over this prior
gbayes2(sqrt(vguess), prior, log(1.1))
[1] 0.6133338

See how much power is lost by ignoring the previous
study completely

gbayes2(sqrt(vguess), function(delta)dnorm(delta, 0, 100), log(1.1))

gbayes 117

[1] 0.4984588

What happens to the power if we really don't believe the treatment
is very effective? Let's use a prior distribution for the log
odds ratio that is uniform between log(1.2) and log(1.3).
Also check the power against a true null hypothesis

prior2 <- function(delta) dunif(delta, log(1.2), log(1.3))
gbayes2(sqrt(vguess), prior2, log(1.1))
[1] 0.1385113

gbayes2(sqrt(vguess), prior2, 0)
[1] 0.3264065

Compare this with the power of a two-sample binomial test to
detect an odds ratio of 1.25
bpower(.5, odds.ratio=1.25, n1=500, n2=300)
Power
0.3307486

For the original prior, consider a new study with equal
sample sizes n in the two arms. Solve for n to get a
power of 0.9. For the variance of the log odds ratio
assume a common p in the center of a range of suspected
probabilities of response, 0.3. For this example we
use a zero null value and the uniform prior above

v <- function(n) 2/(n*.3*.7)
pow <- function(n) gbayes2(sqrt(v(n)), prior2)
uniroot(function(n) pow(n)-0.9, c(50,10000))$root
[1] 2119.675
Check this value
pow(2119.675)
[1] 0.9

Get the posterior density when there is a mixture of two priors,
with mixing probability 0.5. The first prior is almost
non-informative (normal with mean 0 and variance 10000) and the
second has mean 2 and variance 0.3. The test statistic has a value
of 3 with variance 0.4.
f <- gbayesMixPost(3, 4, mix=0.5, d0=0, v0=10000, d1=2, v1=0.3)

args(f)

Plot this density
delta <- seq(-2, 6, length=150)
plot(delta, f(delta), type='l')

Add to the plot the posterior density that used only
the almost non-informative prior
lines(delta, f(delta, mix=1), lty=2)

The same but for an observed statistic of zero

118 getHdata

lines(delta, f(delta, mix=1, x=0), lty=3)

Derive the CDF instead of the density
g <- gbayesMixPost(3, 4, mix=0.5, d0=0, v0=10000, d1=2, v1=0.3,

what='cdf')
Had mix=0 or 1, gbayes1PowerNP could have been used instead
of gbayesMixPowerNP below

Compute the power to detect an effect of delta=1 if the variance
of the test statistic is 0.2
gbayesMixPowerNP(g, 1, 0.2, interval=c(-10,12))

Do the same thing by simulation
gbayesMixPowerNP(g, 1, 0.2, interval=c(-10,12), nsim=20000)

Compute by what factor the sample size needs to be larger
(the variance needs to be smaller) so that the power is 0.9
ratios <- seq(1, 4, length=50)
pow <- single(50)
for(i in 1:50)
pow[i] <- gbayesMixPowerNP(g, 1, 0.2/ratios[i], interval=c(-10,12))[2]

Solve for ratio using reverse linear interpolation
approx(pow, ratios, xout=0.9)$y

Check this by computing power
gbayesMixPowerNP(g, 1, 0.2/2.1, interval=c(-10,12))
So the study will have to be 2.1 times as large as earlier thought

getHdata Download and Install Datasets for Hmisc, Design, and Statistical
Modeling

Description

This function downloads and makes ready to use datasets from the main web site for the Hmisc
and Design libraries. For R, the datasets were stored in compressed save format and getHdata
makes them available by running load() after download. For S-Plus, the datasets were stored
in data.dump format and are made available by running data.restore() after import. The
dataset is run through the cleanup.import function to reduce multiple inheritance problems for
SV4 (S-Plus 5 or later). Calling getHdata with no file argument provides a character vector
of names of available datasets that are currently on the web site. For R, R’s default browser can
optionally be launched to view html files that were already prepared using the Hmisc command
html(contents()) or to view .txt or .html data description files when available.

Usage

getHdata(file, what = c("data", "contents", "description", "all"),
where="http://biostat.mc.vanderbilt.edu/twiki/pub/Main/DataSets")

getHdata 119

Arguments

file an unquoted name of a dataset on the web site, e.g. prostate. Omit file to
obtain a list of available datasets.

what specify what="contents" to browse the contents (metadata) for the dataset
rather than fetching the data themselves. Specify what="description" to
browse a data description file if available. Specify what="all" to retrieve the
data and see the metadata and description.

where URL containing the data and metadata files

Details

For S-Plus, Hmisc defines a function download.file that is used by getHdata. This is a
stripped-down version of the R download.file function that uses the system wget executable
for fetching files from the Internet. For Unix and Linux systems, wget will be pre-installed usu-
ally. For windows S-Plus systems, get wget from ftp://sunsite.dk/projects/wget/
windows. Once you unzip the file from there, move wget.exe to the same Windows directory
that contains ftp.exe.

Value

getHdata() without a file argument returns a character vector of dataset base names. When a
dataset is downloaded, the data frame is placed in search position one and is not returned as value
of getHdata.

Author(s)

Frank Harrell

See Also

download.file, cleanup.import, data.restore, load

Examples

Not run:
getHdata() # download list of available datasets
getHdata(prostate) # downloads, load() or data.restore()

runs cleanup.import for S-Plus 6
getHdata(valung, "contents") # open browser (options(browser="whatever"))

after downloading valung.html
(result of html(contents()))

getHdata(support, "all") # download and open one browser window
datadensity(support)
attach(support) # make individual variables available
getHdata(plasma, "all") # download and open two browser windows

(description file is available for plasma)
End(Not run)

ftp://sunsite.dk/projects/wget/windows
ftp://sunsite.dk/projects/wget/windows

120 getZip

getZip Open a Zip File From a URL.

Description

Allows downloading and reading of a zip file containing one file

Usage

getZip(url, password=NULL)

Arguments

url either a path to a local file or a valid URL.

password required to decode password-protected zip files

Details

Allows downloading and reading of zip file containing one file. The file may be password protected.
If a password is needed then one will be requested unless given.

Note: to make password-protected zip file z.zip, do zip -e z myfile

Value

Returns a file O/I pipe.

Author(s)

Frank E. Harrell

See Also

pipe

Examples

Not run:
read.csv(getZip('http://biostat.mc.vanderbilt.edu/twiki/pub/Sandbox/WebHome/z.zip'))
Password is 'foo'
End(Not run)

hdquantile 121

hdquantile Harrell-Davis Distribution-Free Quantile Estimator

Description

Computes the Harrell-Davis (1982) quantile estimator and jacknife standard errors of quantiles.
The quantile estimator is a weighted linear combination or order statistics in which the order statis-
tics used in traditional nonparametric quantile estimators are given the greatest weight. In small
samples the H-D estimator is more efficient than traditional ones, and the two methods are asymp-
totically equivalent. The H-D estimator is the limit of a bootstrap average as the number of bootstrap
resamples becomes infinitely large.

Usage

hdquantile(x, probs = seq(0, 1, 0.25),
se = FALSE, na.rm = FALSE, names = TRUE, weights=FALSE)

Arguments

x a numeric vector

probs vector of quantiles to compute

se set to TRUE to also compute standard errors

na.rm set to TRUE to remove NAs from x before computing quantiles

names set to FALSE to prevent names attributions from being added to quantiles and
standard errors

weights set to TRUE to return a "weights" attribution with the matrix of weights used
in the H-D estimator corresponding to order statistics, with columns correspond-
ing to quantiles.

Details

A Fortran routine is used to compute the jackknife leave-out-one quantile estimates. Standard errors
are not computed for quantiles 0 or 1 (NAs are returned).

Value

A vector of quantiles. If se=TRUE this vector will have an attribute se added to it, containing the
standard errors. If weights=TRUE, also has a "weights" attribute which is a matrix.

Author(s)

Frank Harrell

122 hist.data.frame

References

Harrell FE, Davis CE (1982): A new distribution-free quantile estimator. Biometrika 69:635-640.

Hutson AD, Ernst MD (2000): The exact bootstrap mean and variance of an L-estimator. J Roy
Statist Soc B 62:89-94.

See Also

quantile

Examples

set.seed(1)
x <- runif(100)
hdquantile(x, (1:3)/4, se=TRUE)

Not run:
Compare jackknife standard errors with those from the bootstrap
library(boot)
boot(x, function(x,i) hdquantile(x[i], probs=(1:3)/4), R=400)
End(Not run)

hist.data.frame Histograms for Variables in a Data Frame

Description

This functions tries to compute the maximum number of histograms that will fit on one page, then
it draws a matrix of histograms. If there are more qualifying variables than will fit on a page, the
function waits for a mouse click before drawing the next page.

Usage

S3 method for class 'data.frame':
hist(x, n.unique = 3, nclass = "compute",

na.big = FALSE, rugs = FALSE, mtitl = FALSE, ...)
For S-Plus you must use hist.data.frame() as hist is not generic there

Arguments

x a data frame

n.unique minimum number of unique values a variable must have before a histogram is
drawn

nclass number of bins. Default is max(2,trunc(min(n/10,25*log(n,10))/2)), where n is
the number of non-missing values for a variable.

na.big set to TRUE to draw the number of missing values on the top of the histogram
in addition to in a subtitle. In the subtitle, n is the number of non-missing values
and m is the number of missing values

histbackback 123

rugs set to TRUE to add rug plots at the top of each histogram

mtitl set to a character string to set aside extra outside top margin and to use the string
for an overall title

... arguments passed to scat1d

Value

the number of pages drawn

Author(s)

Frank E Harrell Jr

See Also

hist, scat1d

Examples

d <- data.frame(a=runif(200), b=rnorm(200),
w=factor(sample(c('green','red','blue'), 200, TRUE)))

hist.data.frame(d) # in R, just say hist(d)

histbackback Back to Back Histograms

Description

Takes two vectors or a list with x and y components, and produces back to back histograms of the
two datasets.

Usage

histbackback(x, y, brks=NULL, xlab=NULL, axes=TRUE, probability=FALSE,
xlim=NULL, ylab='', ...)

Arguments

x,y either two vectors or a list given as x with two components. If the components
have names, they will be used to label the axis (modification FEH).

brks vector of the desired breakpoints for the histograms.

xlab a vector of two character strings naming the two datasets.

axes logical flag stating whether or not to label the axes.

probability logical flag: if TRUE, then the x-axis corresponds to the units for a density. If
FALSE, then the units are counts.

124 histbackback

xlim x-axis limits. First value must be negative, as the left histogram is placed at
negative x-values. Second value must be positive, for the right histogram. To
make the limits symmetric, use e.g. ylim=c(-20,20).

ylab label for y-axis. Default is no label.

... additional graphics parameters may be given.

Value

a list is returned invisibly with the following components:

left the counts for the dataset plotted on the left.

right the counts for the dataset plotted on the right.

breaks the breakpoints used.

Side Effects

a plot is produced on the current graphics device.

Author(s)

Pat Burns
Salomon Smith Barney
London
pburns@dorado.sbi.com

See Also

hist, histogram

Examples

options(digits=3)
set.seed(1)
histbackback(rnorm(20), rnorm(30))

fool <- list(x=rnorm(40), y=rnorm(40))
histbackback(fool)
age <- rnorm(1000,50,10)
sex <- sample(c('female','male'),1000,TRUE)
histbackback(split(age, sex))
agef <- age[sex=='female']; agem <- age[sex=='male']
histbackback(list(Female=agef,Male=agem), probability=TRUE, xlim=c(-.06,.06))

hoeffd 125

hoeffd Matrix of Hoeffding’s D Statistics

Description

Computes a matrix of Hoeffding’s (1948) D statistics for all possible pairs of columns of a matrix.
D is a measure of the distance between F(x,y) and G(x)H(y), where F(x,y) is the joint CDF
of X and Y, and G and H are marginal CDFs. Missing values are deleted in pairs rather than deleting
all rows of x having any missing variables. The D statistic is robust against a wide variety of
alternatives to independence, such as non-monotonic relationships. The larger the value of D, the
more dependent are X and Y (for many types of dependencies). D used here is 30 times Hoeffding’s
original D, and ranges from -0.5 to 1.0 if there are no ties in the data. print.hoeffd prints the
information derived by hoeffd. The higher the value of D, the more dependent are x and y.

Usage

hoeffd(x)
hoeffd(x, y)
S3 method for class 'hoeffd':
print(x, ...)

Arguments

x a numeric matrix with at least 5 rows and at least 2 columns (if y is absent), or
an object created by hoeffd

y a numeric vector or matrix which will be concatenated to x

... ignored

Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values are approximated by
linear interpolation on the table in Hollander and Wolfe, which uses the asymptotically equivalent
Blum-Kiefer-Rosenblatt statistic. For P<.0001 or >0.5, P values are computed using a well-
fitting linear regression function in log P vs. the test statistic. Ranks (but not bivariate ranks) are
computed using efficient algorithms (see reference 3).

Value

a list with elements D, the matrix of D statistics, n the matrix of number of observations used in
analyzing each pair of variables, and P, the asymptotic P-values. Pairs with fewer than 5 non-
missing values have the D statistic set to NA. The diagonals of n are the number of non-NAs for the
single variable corresponding to that row and column.

126 html

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

References

Hoeffding W. (1948): A non-parametric test of independence. Ann Math Stat 19:546–57.

Hollander M. and Wolfe D.A. (1973). Nonparametric Statistical Methods, pp. 228–235, 423. New
York: Wiley.

Press WH, Flannery BP, Teukolsky SA, Vetterling, WT (1988): Numerical Recipes in C. Cam-
bridge: Cambridge University Press.

See Also

rcorr, varclus

Examples

x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
q <- c(1, 2, 3, 4, 5)
hoeffd(cbind(x,y,z,q))

Hoeffding's test can detect even one-to-many dependency
set.seed(1)
x <- seq(-10,10,length=200)
y <- x*sign(runif(200,-1,1))
plot(x,y)
hoeffd(x,y)

html Convert an S object to HTML

Description

html is a generic function, for which only two methods are currently implemented, html.latex
and a rudimentary html.data.frame. The former uses the HeVeA LaTeX to HTML translator
by Maranget to create an HTML file from a LaTeX file like the one produced by latex. The
resulting HTML file may be displayed using a show or a print method. The browser specified
in options(browser=) for R (help.browser for S-Plus) is launched to display the HTML
file. html.default just runs html.data.frame.

html 127

Usage

html(object, ...)
S3 method for class 'latex':
html(object, file, ...)
S3 method for class 'data.frame':
html(object,

file=paste(first.word(deparse(substitute(object))),'html',sep='.'),
append=FALSE, link=NULL, linkCol=1, linkType=c('href','name'), ...)

Default S3 method:
html(object,

file=paste(first.word(deparse(substitute(object))),'html',sep='.'),
append=FALSE, link=NULL, linkCol=1, linkType=c('href','name'), ...)

S3 method for class 'html':
print(x, ...)
S3 method for class 'html':
show(object)

Arguments

object a data frame or an object created by latex. For show is an object created by
html. For the generic html is any object for which an html method exists.

file name of the file to create. The default file name is object.html where
object is the first word in the name of the argument for object.

append set to TRUE to append to an existing file

link character vector specifying hyperlink names to attach to selected elements of the
matrix or data frame. No hyperlinks are used if link is omitted or for elements
of link that are "". To allow multiple links per link, link may also be a
character matrix shaped as object in which case linkCol is ignored.

linkCol column number of object to which hyperlinks are attached. Defaults to first
column.

linkType defaults to "href"

... arguments passed to format.df

x an object created by html

Side Effects

print or show launch a browser

Author(s)

Frank E. Harrell, Jr.
Department of Biostatistics,
Vanderbilt University,
〈f.harrell@vanderbilt.edu〉

128 impute

References

Maranget, Luc. HeVeA: a LaTeX to HTML translater. URL: http://para.inria.fr/ maranget/hevea/

See Also

latex

Examples

Not run:
x <- matrix(1:6, nrow=2, dimnames=list(c('a','b'),c('c','d','e')))
w <- latex(x)
h <- html(w) # run HeVeA to convert .tex to .html
h <- html(x) # convert x directly to html
options(browser='konqueror') # use help.browser for S-Plus
h # launch html browser by running print.html
w <- html(x, link=c('','B')) # hyperlink first row first col to B
End(Not run)

impute Generic Functions and Methods for Imputation

Description

These functions do simple and transcan imputation and print, summarize, and subscript variables
that have NAs filled-in with imputed values. The simple imputation method involves filling in
NAs with constants, with a specified single-valued function of the non-NAs, or from a sample
(with replacement) from the non-NA values (this is useful in multiple imputation). More complex
imputations can be done with the transcan function, which also works with the generic methods
shown here, i.e., impute can take a transcan object and use the imputed values created by
transcan (with imputed=TRUE) to fill-in NAs. The print method places * after variable
values that were imputed. The summary method summarizes all imputed values and then uses the
next summary method available for the variable. The subscript method preserves attributes of the
variable and subsets the list of imputed values corresponding with how the variable was subsetted.
The is.imputed function is for checking if observations are imputed.

Usage

impute(x, ...)

Default S3 method:
impute(x, fun=median, ...)

S3 method for class 'impute':
print(x, ...)

S3 method for class 'impute':
summary(object, ...)

impute 129

is.imputed(x)

Arguments

x a vector or an object created by transcan, or a vector needing basic uncondi-
tional imputation. If there are no NAs and x is a vector, it is returned unchanged.

fun the name of a function to use in computing the (single) imputed value from the
non-NAs. The default is median. If instead of specifying a function as fun,
a single value or vector (numeric, or character if object is a factor) is spec-
ified, those values are used for insertion. fun can also be the character string
"random" to draw random values for imputation, with the random values not
forced to be the same if there are multiple NAs. For a vector of constants, the
vector must be of length one (indicating the same value replaces all NAs) or
must be as long as the number of NAs, in which case the values correspond to
consecutive NAs to replace. For a factor object, constants for imputation may
include character values not in the current levels of object. In that case new
levels are added. If object is of class "factor", fun is ignored and the
most frequent category is used for imputation.

object an object of class "impute"

... ignored

Value

a vector with class "impute" placed in front of existing classes. For is.imputed, a vector of
logical values is returned (all TRUE if object is not of class impute).

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

See Also

transcan, impute.transcan, describe, na.include, sample

Examples

age <- c(1,2,NA,4)
age.i <- impute(age)
Could have used impute(age,2.5), impute(age,mean), impute(age,"random")
age.i
summary(age.i)
is.imputed(age.i)

130 labcurve

inc-dec Increment and Decrement

Description

inc<- increments x by value. Equivelent to x <- x + value.

dec<- decrements x by the value. Equivelent to x <- x - value.

Usage

inc(x) <- value

dec(x) <- value

Arguments

x object to be incremented or decremented

value value by which x will be modified

Author(s)

Charles Dupont

Examples

x <- 1:5
inc(x) <- 5
x # c(6,7,8,9,10)

dec(x) <- 3
x # c(3,4,5,6,7)

labcurve Label Curves, Make Keys, and Interactively Draw Points and Curves

Description

labcurve Optionally draws a set of curves then labels the curves. A variety of methods for
drawing labels are implemented, ranging from positioning using the mouse to automatic labeling to
automatic placement of key symbols with manual placement of key legends to automatic placement
of legends. For automatic positioning of labels or keys, a curve is labeled at a point that is maximally
separated from all of the other curves. Gaps occurring when curves do not start or end at the same
x-coordinates are given preference for positioning labels. If labels are offset from the curves (the
default behaviour), if the closest curve to curve i is above curve i, curve i is labeled below its line.
If the closest curve is below curve i, curve i is labeled above its line. These directions are reversed
if the resulting labels would appear outside the plot region.

labcurve 131

Both ordinary lines and step functions are handled, and there is an option to draw the labels at the
same angle as the curve within a local window.

Unless the mouse is used to position labels or plotting symbols are placed along the curves to
distinguish them, curves are examined at 100 (by default) equally spaced points over the range of
x-coordinates in the current plot area. Linear interpolation is used to get y-coordinates to line up
(step function or constant interpolation is used for step functions). There is an option to instead
examine all curves at the set of unique x-coordinates found by unioning the x-coordinates of all the
curves. This option is especially useful when plotting step functions. By setting adj="auto"
you can have labcurve try to optimally left- or right-justify labels depending on the slope of the
curves at the points at which labels would be centered (plus a vertical offset). This is especially
useful when labels must be placed on steep curve sections.

You can use the on top method to write (short) curve names directly on the curves (centered on
the y-coordinate). This is especially useful when there are many curves whose full labels would
run into each other. You can plot letters or numbers on the curves, for example (using the keys
option), and have labcurve use the key function to provide long labels for these short ones (see
the end of the example). There is another option for connecting labels to curves using arrows. When
keys is a vector of integers, it is taken to represent plotting symbols (pchs), and these symbols are
plotted at equally-spaced x-coordinates on each curve (by default, using 5 points per curve). The
points are offset in the x-direction between curves so as to minimize the chance of collisions.

To add a legend defining line types, colors, or line widths with no symbols, specify keys="lines",
e.g., labcurve(curves, keys="lines", lty=1:2).

putKey provides a different way to use key() by allowing the user to specify vectors for labels,
line types, plotting characters, etc. Elements that do not apply (e.g., pch for lines (type="l"))
may be NA. When a series of points is represented by both a symbol and a line, the corresponding
elements of both pch and lty, col., or lwd will be non-missing.

putKeyEmpty, given vectors of all the x-y coordinates that have been plotted, uses largest.empty
to find the largest empty rectangle large enough to hold the key, and draws the key using putKey.

drawPlot is a simple mouse-driven function for drawing series of lines, step functions, polyno-
mials, Bezier curves, and points, and automatically labeling the point groups using labcurve or
putKeyEmpty. When drawPlot is invoked it creates temporary functions Points, Curve,
and Abline in the session frame (frame zero). The user calls these functions inside the call to
drawPlot to define groups of points in the order they are defined with the mouse. Abline is
used to call abline and not actually great a group of points. For some curve types, the curve
generated to represent the corresponding series of points is drawn after all points are entered for
that series, and this curve may be different than the simple curve obtained by connecting points at
the mouse clicks. For example, to draw a general smooth Bezier curve the user need only click on
a few points, and she must overshoot the final curve coordinates to define the curve. The originally
entered points are not erased once the curve is drawn. The same goes for step functions and poly-
nomials. If you plot() the object returned by drawPlot, however, only final curves will be
shown. The last examples show how to use drawPlot.

The largest.empty function finds the largest rectangle that is large enough to hold a rectangle
of a given height and width, such that the rectangle does not contain any of a given set of points.
This is used by labcurve and putKeyEmpty to position keys at the most empty part of an
existing plot.

132 labcurve

Usage

labcurve(curves, labels=names(curves),
method=NULL, keys=NULL, keyloc=c("auto","none"),
type="l", step.type=c("left", "right"),
xmethod=if(any(type=="s")) "unique" else "grid",
offset=NULL, xlim=NULL,
tilt=FALSE, window=NULL, npts=100, cex=NULL,
adj="auto", angle.adj.auto=30,
lty=pr$lty, lwd=pr$lwd, col.=pr$col, transparent=TRUE,
arrow.factor=1, point.inc=NULL, opts=NULL, key.opts=NULL,
empty.method=c('area','maxdim'), numbins=25,
pl=!missing(add), add=FALSE,
ylim=NULL, xlab="", ylab="",
whichLabel=1:length(curves),
grid=FALSE, xrestrict=NULL, ...)

putKey(z, labels, type, pch, lty, lwd,
cex=par('cex'), col=rep(par('col'),nc),
transparent=TRUE, plot=TRUE, key.opts=NULL, grid=FALSE)

putKeyEmpty(x, y, labels, type=NULL,
pch=NULL, lty=NULL, lwd=NULL,
cex=par('cex'), col=rep(par('col'),nc),
transparent=TRUE, plot=TRUE, key.opts=NULL,
empty.method=c('area','maxdim'),
numbins=25,
xlim=pr$usr[1:2], ylim=pr$usr[3:4], grid=FALSE)

drawPlot(..., xlim=c(0,1), ylim=c(0,1), xlab='', ylab='',
ticks=c('none','x','y','xy'),
key=FALSE, opts=NULL)

Points(label=' ', type=c('p','r'),
n, pch=pch.to.use[1], cex=par('cex'),
rug = c('none','x','y','xy'), ymean)

Curve(label=' ',
type=c('bezier','polygon','linear','pol','step','gauss'),
n=NULL, lty=1, lwd=par('lwd'), degree=2,
evaluation=100, ask=FALSE)

Abline(...)

S3 method for class 'drawPlot':
plot(x, file, xlab, ylab, ticks,

key=x$key, keyloc=x$keyloc, ...)

largest.empty(x, y, width, height,

labcurve 133

numbins=25, method=c('area','maxdim'),
xlim=pr$usr[1:2], ylim=pr$usr[3:4],
pl=FALSE, grid=FALSE)

Arguments

curves a list of lists, each of which have at least two components: a vector of x values
and a vector of corresponding y values. curves is mandatory except when
method="mouse" or "locator", in which case labels is mandatory.
Each list in curves may optionally have any of the parameters type, lty,
lwd, or col for that curve, as defined below (see one of the last examples).

z a two-element list specifying the coordinate of the center of the key, e.g. locator(1)
to use the mouse for positioning

labels For labcurve, a vector of character strings used to label curves (which may
contain newline characters to stack labels vertically). The default labels are
taken from the names of the curves list. Setting labels=FALSE will sup-
press drawing any labels (for labcurve only). For putKey and putKeyEmpty
is a vector of character strings specifying group labels

x

y for putKeyEmpty and largest.empty, x and y are same-length vectors
specifying points that have been plotted. x can also be an object created by
drawPlot.

... For drawPlot is a series of invocations of Points and Curve (see example).
Any number of point groups can be defined in this way. For Abline these may
be any arguments to abline. For labcurve, other parameters to pass to
text. For plot.drawPlot other parameters to pass to setps.

width

height for largest.empty, specifies the minimum allowable width in x units and
the minimum allowable height in y units

method "offset" (the default) offsets labels at largest gaps between curves, and draws
labels beside curves. "on top" draws labels on top of the curves (espe-
cially good when using keys). "arrow" draws arrows connecting labels to the
curves. "mouse" or "locator" positions labels according to mouse clicks.
If keys is specified and is an integer vector or is "lines", method defaults
to "on top". If keys is character, method defaults to "offset". Set
method="none" to suppress all curve labeling and key drawing, which is
useful when pl=TRUE and you only need labcurve to draw the curves and
the rest of the basic graph.
For largest.empty specifies the method determining the best rectangle among
all those that qualify with respect to width and height. Use method="area"
(the default) to find the one having the largest area, or method="maxdim" to
use the last rectangle searched that had both the largest width and largest height
over all previous rectangles.

keys This causes keys (symbols or short text) to be drawn on or beside curves, and
if keyloc is not equal to "none", a legend to be automatically drawn. The
legend links keys with full curve labels and optionally with colors and line types.

134 labcurve

Set keys to a vector of character strings, or a vector of integers specifying
plotting character (pch values - see points). For the latter case, the default
behavior is to plot the symbols periodically, at equally spaced x-coordinates.

keyloc When keys is specified, keyloc specifies how the legend is to be positioned
for drawing using the key function in trellis. The default is "auto", for
which the largest.empty function to used to find the most empty part of
the plot. If no empty rectangle large enough to hold the key is found, no key
will be drawn. Specify keyloc="none" to suppress drawing a legend, or set
keyloc to a 2-element list containing the x and y coordinates for the center of
the legend. For example, use keyloc=locator(1) to click the mouse at the
center. keyloc specifies the coordinates of the center of the key to be drawn
with plot.drawPlot when key=TRUE.

type for labcurve, a scalar or vector of character strings specifying the method that
the points in the curves were connected. "l" means ordinary connections be-
tween points and "s" means step functions. For putKey and putKeyEmpty
is a vector of plotting types, "l" for regular line, "p" for point, "b" for both
point and line, and "n" for none. For Points is either "p" (the default) for
regular points, or "r" for rugplot (one-dimensional scatter diagram to be drawn
using the scat1d function). For Curve, type is "bezier" (the default)
for drawing a smooth Bezier curves (which can represent a non-1-to-1 function
such as a circle), "polygon" for orginary line segments, "linear" for a
straight line defined by two endpoints, "pol" for a degree-degree polyno-
mial to be fitted to the mouse-clicked points, "step" for a left-step-function,
"gauss" to plot a Gaussian density fitted to 3 clicked points, or a function to
draw a user-specified function, evaluated at evaluation points spanning the
whole x-axis. For the density the user must click in the left tail, at the highest
value (at the mean), and in the right tail, with the two tail values being approx-
imately equidistant from the mean. The density is scaled to fit in the highest
value regardless of its area.

step.type type of step functions used (default is "left")

xmethod method for generating the unique set of x-coordinates to examine (see above).
Default is "grid" for type="l" or "unique" for type="s".

offset distance in y-units between the center of the label and the line being labeled.
Default is 0.75 times the height of an "m" that would be drawn in a label.
For R grid/lattice you must specify offset using the grid unit function, e.g.,
offset=unit(2,"native") or offset=unit(.25,"cm") ("native"
means data units)

xlim limits for searching for label positions, and is also used to set up plots when
pl=TRUE and add=FALSE. Default is total x-axis range for current plot (par("usr")[1:2]).
For largest.empty, xlim limits the search for largest rectanges, but it has
the same default as above. For pl=TRUE,add=FALSE you may want to ex-
tend xlim somewhat to allow large keys to fit, when using keyloc="auto".
For drawPlot default is c(0,1).

tilt set to TRUE to tilt labels to follow the curves, for method="offset" when
keys is not given.

window width of a window, in x-units, to use in determining the local slope for tilting

labcurve 135

labels. Default is 0.5 times number of characters in the label times the x-width
of an "m" in the current character size and font.

npts number of points to use if xmethod="grid"

cex character size to pass to text and key. Default is current par("cex"). For
putKey, putKeyEmpty, and Points is the size of the plotting symbol.

adj Default is "auto" which has labcurve figure justification automatically
when method="offset". This will cause centering to be used when the
local angle of the curve is less than angle.adj.auto in absolute value, left
justification if the angle is larger and either the label is under a curve of positive
slope or over a curve of negative slope, and right justification otherwise. For step
functions, left justification is used when the label is above the curve and right
justifcation otherwise. Set adj=.5 to center labels at computed coordinates.
Set to 0 for left-justification, 1 for right. Set adj to a vector to vary adjustments
over the curves.

angle.adj.auto
see adj. Does not apply to step functions.

lty vector of line types which were used to draw the curves. This is only used when
keys are drawn. If all of the line types, line widths, and line colors are the same,
lines are not drawn in the key.

lwd vector of line widths which were used to draw the curves. This is only used
when keys are drawn. See lty also.

col.

col vector of integer color numbers for use in curve labels, symbols, lines, and leg-
ends. Default is par("col") for all curves. See lty also.

transparent Default is TRUE to make key draw transparent legends, i.e., to suppress drawing
a solid rectangle background for the legend. Set to FALSE otherwise.

arrow.factor factor by which to multiply default arrow lengths

point.inc When keys is a vector of integers, point.inc specifies the x-increment be-
tween the point symbols that are overlaid periodically on the curves. By default,
point.inc is equal to the range for the x-axis divided by 5.

opts an optional list which can be used to specify any of the options to labcurve,
with the usual element name abbreviations allowed. This is useful when labcurve
is being called from another function. Example: opts=list(method="arrow",
cex=.8, np=200). For drawPlot a list of labcurve options to pass as
labcurve(..., opts=).

key.opts a list of extra arguments you wish to pass to key(), e.g., key.opts=list(background=1,
between=3). The argument names must be spelled out in full.

empty.method

numbins These two arguments are passed to the largest.empty function’s method
and numbins arguments (see below). For largest.empty specifies the
number of bins in which to discretize both the x and y directions for searching
for rectangles. Default is 25.

pl set to TRUE (or specify add) to cause the curves in curves to be drawn, under
the control of type,lty,lwd,col parameters defined either in the curves

136 labcurve

lists or in the separate arguments given to labcurve or through opts. For
largest.empty, set pl=TRUE to show the rectangle the function found by
drawing it with a solid color.

add By default, when curves are actually drawn by labcurve a new plot is started.
To add to an existing plot, set add=TRUE.

ylim When a plot has already been started, ylim defaults to par("usr")[3:4].
When pl=TRUE, ylim and xlim are determined from the ranges of the data.
Specify ylim yourself to take control of the plot construction. In some cases it
is advisable to make ylim larger than usual to allow for automatically-positioned
keys. For largest.empty, ylim specifies the limits on the y-axis to limit
the search for rectangle. Here ylim defaults to the same as above, i.e., the range
of the y-axis of an open plot from par. For drawPlot the default is c(0,1).

xlab

ylab x-axis and y-axis labels when pl=TRUE and add=FALSE or for drawPlot.
Defaults to "" unless the first curve has names for its first two elements, in
which case the names of these elements are taken as xlab and ylab.

whichLabel integer vector corresponding to curves specifying which curves are to be la-
belled or have a legend

grid set to TRUE if the R grid package was used to draw the current plot. This
prevents labcurve from using par("usr") etc. If using R grid you can
pass coordinates and lengths having arbitrary units, as documented in the unit
function. This is especially useful for offset.

xrestrict When having labcurve label curves where they are most separated, you can
restrict the search for this separation point to a range of the x-axis, specified
as a 2-vector xrestrict. This is useful when one part of the curve is very
steep. Even though steep regions may have maximum separation, the labels will
collide when curves are steep.

pch vector of plotting characters for putKey and putKeyEmpty. Can be any
value including NA when only a line is used to indentify the group. Is a single
plotting character for Points, with the default being the next unused value
from among 1, 2, 3, 4, 16, 17, 5, 6, 15, 18, 19.

file a file name suffix. If specified, plot.drawPlot will send its output to a
postscript file "file.ps" using the setps function to get nice defaults for inclu-
sion in reports.

plot set to FALSE to keep putKey or putKeyEmpty from actually drawing the
key. Instead, the size of the key will be return by putKey, or the coordinates of
the key by putKeyEmpty.

ticks tells drawPlot which axes to draw tick marks and tick labels. Default is
"none".

key for drawPlot and plot.drawPlot. Default is FALSE so that labcurve
is used to label points or curves. Set to TRUE to use putKeyEmpty.

Details

The internal functions Points, Curve, Abline have unique arguments as follows.

labcurve 137

label: for Points and Curve is a single character string to label that group of points

n: number of points to accept from the mouse. Default is to input points until a right mouse click.

rug: for Points. Default is "none" to not show the marginal x or y distributions as rug plots,
for the points entered. Other possibilities are used to execute scat1d to show the marginal
distribution of x, y, or both as rug plots.

ymean: for Points, subtracts a constant from each y-coordinate entered to make the overall
mean ymean

degree: degree of polynomial to fit to points by Curve

evaluation: number of points at which to evaluate Bezier curves, polynomials, and other func-
tions in Curve

ask: set ask=TRUE to give the user the opportunity to try again at specifying points for Bezier
curves, step functions, and polynomials

The labcurve function used some code from the function plot.multicurve written by Rod
Tjoelker of The Boeing Company (tjoelker@espresso.rt.cs.boeing.com).

If there is only one curve, a label is placed at the middle x-value, and no fancy features such as
angle or positive/negative offsets are used.

key is called once (with the argument plot=FALSE) to find the key dimensions. Then an empty
rectangle with at least these dimensions is searched for using largest.empty. Then key is
called again to draw the key there, using the argument corner=c(.5,.5) so that the center of
the rectangle can be specified to key.

If you want to plot the data, an easier way to use labcurve is through xYplot as shown in some
of its examples.

Value

labcurve returns an invisible list with components x, y, offset, adj, cex, col, and
if tilt=TRUE, angle. offset is the amount to add to y to draw a label. offset is negative
if the label is drawn below the line. adj is a vector containing the values 0, .5, 1.

largest.empty returns a list with elements x and y specifying the coordinates of the center of
the rectangle which was found.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

approx, text, legend, setps, scat1d, xYplot, abline

138 labcurve

Examples

n <- 2:8
m <- length(n)
type <- c('l','l','l','l','s','l','l')
s=step function l=ordinary line (polygon)
curves <- vector('list', m)

plot(0,1,xlim=c(0,1),ylim=c(-2.5,4),type='n')

set.seed(39)

for(i in 1:m) {
x <- sort(runif(n[i]))
y <- rnorm(n[i])
lines(x, y, lty=i, type=type[i], col=i)
curves[[i]] <- list(x=x,y=y)

}

labels <- paste('Label for',letters[1:m])
labcurve(curves, labels, tilt=TRUE, type=type, col=1:m)

Put only single letters on curves at points of
maximum space, and use key() to define the letters,
with automatic positioning of the key in the most empty
part of the plot
Have labcurve do the plotting, leaving extra space for key

names(curves) <- labels
labcurve(curves, keys=letters[1:m], type=type, col=1:m,

pl=TRUE, ylim=c(-2.5,4))

Put plotting symbols at equally-spaced points,
with a key for the symbols, ignoring line types

labcurve(curves, keys=1:m, lty=1, type=type, col=1:m,
pl=TRUE, ylim=c(-2.5,4))

Plot and label two curves, with line parameters specified with data
set.seed(191)
ages.f <- sort(rnorm(50,20,7))
ages.m <- sort(rnorm(40,19,7))
height.f <- pmin(ages.f,21)*.2+60
height.m <- pmin(ages.m,21)*.16+63

labcurve(list(Female=list(ages.f,height.f,col=2),
Male =list(ages.m,height.m,col=3,lty='dashed')),

xlab='Age', ylab='Height', pl=TRUE)
add ,keys=c('f','m') to label curves with single letters
For S-Plus use lty=2

label 139

Plot power for testing two proportions vs. n for various odds ratios,
using 0.1 as the probability of the event in the control group.
A separate curve is plotted for each odds ratio, and the curves are
labeled at points of maximum separation

n <- seq(10, 1000, by=10)
OR <- seq(.2,.9,by=.1)
pow <- lapply(OR, function(or,n)list(x=n,y=bpower(p1=.1,odds.ratio=or,n=n)),

n=n)
names(pow) <- format(OR)
labcurve(pow, pl=TRUE, xlab='n', ylab='Power')

Plot some random data and find the largest empty rectangle
that is at least .1 wide and .1 tall

x <- runif(50)
y <- runif(50)
plot(x, y)
z <- largest.empty(x, y, .1, .1)
z
points(z,pch=3) # mark center of rectangle, or
#key(zx, zy, ... stuff for legend)

Use the mouse to draw a series of points using one symbol, and
two smooth curves or straight lines (if two points are clicked),
none of these being labeled

d <- drawPlot(Points(), Curve(), Curve())
plot(d, file='/tmp/z') # send result to /tmp/z.ps

Not run:
Use the mouse to draw a Gaussian density, two series of points
using 2 symbols, one Bezier curve, a step function, and raw data
along the x-axis as a 1-d scatter plot (rug plot). Draw a key.
The density function is fit to 3 mouse clicks
Abline draws a dotted horizontal reference line
d <- drawPlot(Curve('Normal',type='gauss'),

Points('female'), Points('male'),
Curve('smooth',ask=TRUE,lty=2), Curve('step',type='s',lty=3),
Points(type='r'), Abline(h=.5, lty=2),
xlab='X', ylab='y', xlim=c(0,100), key=TRUE)

plot(d, ylab='Y')
plot(d, key=FALSE) # label groups using labcurve
End(Not run)

label Label Attribute of an Object

140 label

Description

label(x) retrieves the label attribute of x. label(x) <- "a label" stores the label
attribute, and also puts the class labelled as the first class of x (for S-Plus 5 and later this class
is not used and methods for handling this class are not defined so the "label" and "units"
attributes are lost upon subsetting). The reason for having this class is so that the subscripting
method for labelled, [.labelled, can preserve the label attribute in R and S-Plus 2000.
Also, the print method for labelled objects prefaces the print with the object’s label (and
units if there). If the variable is also given a "units" attribute using the units function,
subsetting the variable (using [.labelled) will also retain the "units" attribute.

label can optionally append a "units" attribute to the string, and it can optionally return a
string or expression (for R’s plotmath facility) suitable for plotting. labelPlotmath is a
function that also has this function, when the input arguments are the ’label’ and ’units’
rather than a vector having those attributes. When plotmath mode is used to construct labels, the
’label’ or ’units’ may contain math expressions but they are typed verbatim if they contain
percent signs, blanks, or underscores.

Label (actually Label.data.frame) is a function which generates S-Plus source code that
makes the labels in all the variables in a data frame easy to edit.

llist is like list except that it preserves the names or labels of the component variables in the
variables label attribute. This can be useful when looping over variables or using sapply or
lapply. By using llist instead of list one can annotate the output with the current variable’s
name or label. llist also defines a names attribute for the list and pulls the names from the
arguments’ expressions for non-named arguments.

plotmathTranslate is a simple function that translates certain character strings to character
strings that can be used as part of R plotmath expressions. If the input string has a space or
percent inside, the string is surrounded by a call to plotmath’s paste function.

as.data.frame.labelled is a utility function that is called by [.data.frame. It is just a
copy of as.data.frame.vector. data.frame.labelled is another utility function, that
adds a class "labelled" to every variable in a data frame that has a "label" attribute but not
a "labelled" class.

reLabelled is used to add a ’labelled’ class back to variables in data frame that have a
’label’ attribute but no ’labelled’ oldClass. Useful for changing cleanup.import()’d S-Plus 6
data frames back to general form for R and S-Plus 2000.

Usage

label(x, ...)

Default S3 method:
label(x, units=FALSE, plot=FALSE, default=NULL,

grid=FALSE, ...)

label(x) <- value

S3 replacement method for class 'default':
label(x) <- value

label 141

labelPlotmath(label, units=NULL, plotmath=.R., grid=FALSE)

S3 method for class 'labelled':
print(x, ...) ## or x - calls print.labelled

Label(object, ...)

S3 method for class 'data.frame':
Label(object, file='', append=FALSE, ...)

llist(..., labels=TRUE)

plotmathTranslate(x)

data.frame.labelled(object)

reLabelled(object)

Arguments

x any object (for plotmathTranslate is a character string)

units set to TRUE to append the ’units’ attribute (if present) to the returned la-
bel. The ’units’ are surrounded by brackets. For labelPlotmath is a
character string containing the units of measurement.

plot set to TRUE to return a label suitable for R’s plotmath facility (returns an
expression instead of a character string) if R is in effect. If units is also TRUE,
and if both ’label’ and ’units’ attributes are present, the ’units’ will
appear after the label but in smaller type and will not be surrounded by brackets.

default if x does not have a ’label’ attribute and default (a character string) is
specified, the label will be taken as default

grid Currently R’s lattice and grid functions do not support plotmath ex-
pressions for xlab and ylab arguments. When using lattice functions in
R, set the argument grid to TRUE so that labelPlotmath can return an
ordinary character string instead of an expression.

label a character string containing a variable’s label

plotmath set to TRUE to have labelMathplot return an expression for plotting using
R’s plotmath facility. If R is not in effect, an ordinary character string is
returned.

value the label of the object, or "".

object a data frame

... a list of variables or expressions to be formed into a list. Ignored for print.labelled.

file the name of a file to which to write S-Plus source code. Default is "", meaning
standard output.

append set to TRUE to append code generated by Label to file file

labels set to FALSE to make llist ignore the variables’ label attribute and use the
variables’ names.

142 latex

Value

label returns the label attribute of x, if any; otherwise, "". label is used most often for the
individual variables in data frames. The function sas.get copies labels over from SAS if they
exist.

See Also

sas.get, describe

Examples

age <- c(21,65,43)
y <- 1:3
label(age) <- "Age in Years"
plot(age, y, xlab=label(age))

x1 <- 1:10
x2 <- 10:1
label(x2) <- 'Label for x2'
units(x2) <- 'mmHg'
x2
x2[1:5]
dframe <- data.frame(x1, x2)
Label(dframe)

##In these examples of llist, note that labels are printed after
##variable names, because of print.labelled
a <- 1:3
b <- 4:6
label(b) <- 'B Label'
llist(a,b)
llist(a,b,d=0)
llist(a,b,0)

w <- llist(a, b>5, d=101:103)
sapply(w, function(x){
hist(as.numeric(x), xlab=label(x))
locator(1) ## wait for mouse click

})

Or: for(u in w) {hist(u); title(label(u))}

latex Convert an S object to LaTeX, and Related Utilities

Description

latex converts its argument to a .tex file appropriate for inclusion in a LaTeX2e document.
latex is a generic function that calls one of latex.default, latex.function, latex.list.

latex 143

latex.default does appropriate rounding and decimal alignment and produces a file containing
a LaTeX tabular environment to print the matrix or data.frame x as a table.

latex.function prepares an S function for printing by issuing sed commands that are similar
to those in the S.to.latex procedure in the s.to.latex package (Chambers and Hastie,
1993).

latex.list calls latex recursively for each element in the argument.

latexTranslate translates particular items in character strings to LaTeX format, e.g., makes
a^2 = a2 for superscript within variable labels. LaTeX names of greek letters (e.g., "alpha")
will have backslashes added if greek==TRUE. Math mode is inserted as needed. latexTranslate
assumes that input text always has matches, e.g. [) [] (] (), and that surrounding by $$ is
OK.

latexSN converts a vector floating point numbers to character strings using LaTeX exponents.
Dollar signs to enter math mode are not added.

latexVerbatim on an object executes the object’s print method, capturing the output for a
file inside a LaTeX verbatim environment.

dvi uses the system latex command to compile LaTeX code produced by latex, including
any needed styles. dvi will put a documentclass{report} and end{document} wrapper around a
file produced by latex. By default, the geometry LaTeX package is used to omit all margins
and to set the paper size to a default of 5.5in wide by 7in tall. The result of dvi is a .dvi file.
To both format and screen display a non-default size, use for example print(dvi(latex(x),
width=3, height=4),width=3,height=4). Note that you can use something like xdvi
-geometry 460x650 -margins 2.25in file without changing LaTeX defaults to em-
ulate this.

dvips will use the system dvips command to print the .dvi file to the default system printer, or
create a postscript file if file is specified.

dvigv uses the system dvips command to convert the input object to a .dvi file, and uses the
system dvips command to convert it to postscript. Then the postscript file is displayed using
Ghostview (assumed to be the system command gv).

There are show methods for displaying typeset LaTeX on the screen using the system xdvi
command. If you show a LaTeX file created by latex without running it through dvi using
show.dvi(object), the show method will run it through dvi automatically. These show
methods are not S Version 4 methods so you have to use full names such as show.dvi and
show.latex. Use the print methods for more automatic display of typesetting, e.g. typing
latex(x) will invoke xdvi to view the typeset document.

Usage

latex(object, title=first.word(deparse(substitute(object))), ...)

Default S3 method:
latex(object,

title=first.word(deparse(substitute(object))),
file=paste(title, ".tex", sep=""),
append=FALSE, label=title,
rowlabel=title, rowlabel.just="l", cgroup=NULL, n.cgroup=NULL,
rgroup=NULL, n.rgroup=NULL,

144 latex

cgroupTexCmd="bfseries",
rgroupTexCmd="bfseries",
rownamesTexCmd=NULL,
colnamesTexCmd=NULL,
cellTexCmds=NULL,
rowname, cgroup.just=rep("c",length(n.cgroup)),
colheads=dimnames(cx)[[2]],
extracolheads=NULL, extracolsize='scriptsize',
dcolumn=FALSE, numeric.dollar=!dcolumn, cdot=FALSE,
longtable=FALSE, draft.longtable=TRUE, ctable=FALSE, booktabs=FALSE,
table.env=TRUE, here=FALSE, lines.page=40,
caption=NULL, caption.lot=NULL, caption.loc=c('top','bottom'),
double.slash=FALSE,
vbar=FALSE, collabel.just=rep("c",nc), na.blank=TRUE,
insert.bottom=NULL, first.hline.double=!(booktabs | ctable),
where='!tbp', size=NULL,
center=c('center','centering','none'),
landscape=FALSE,
multicol=TRUE,
math.row.names=FALSE, math.col.names=FALSE,
...) # x is a matrix or data.frame

S3 method for class 'function':
latex(

object,
title=first.word(deparse(substitute(object))),
file=paste(title, ".tex", sep=""),
append=FALSE,
assignment=TRUE, type=c('example','verbatim'), ...)

S3 method for class 'list':
latex(

object,
title=first.word(deparse(substitute(object))),
file=paste(title, ".tex", sep=""),
append=FALSE,
label,
caption,
caption.lot,
caption.loc=c('top','bottom'),
...)

S3 method for class 'latex':
print(x, ...)

latexTranslate(object, inn=NULL, out=NULL, pb=FALSE, greek=FALSE, ...)

latexSN(x)

latex 145

latexVerbatim(x, title=first.word(deparse(substitute(x))),
file=paste(title, ".tex", sep=""),
append=FALSE, size=NULL, hspace=NULL,
width=.Options$width, length=.Options$length, ...)

dvi(object, ...)
S3 method for class 'latex':
dvi(object, prlog=FALSE, nomargins=TRUE, width=5.5, height=7, ...)
S3 method for class 'dvi':
print(x, ...)
dvips(object, ...)
S3 method for class 'latex':
dvips(object, ...)
S3 method for class 'dvi':
dvips(object, file, ...)
S3 method for class 'latex':
show(object) # or show.dvi(object) or just object
dvigv(object, ...)
S3 method for class 'latex':
dvigv(object, ...) # or gvdvi(dvi(object))
S3 method for class 'dvi':
dvigv(object, ...)

Arguments

object For latex, any S object. For dvi or dvigv, an object created by latex. For
latexTranslate is a vector of character strings to translate.

x any object to be printed verbatim for latexVerbatim. For latexSN x is
a numeric vector.

title name of file to create without the .tex extension. If this option is not set,
value/string of x (see above) is printed in the top left corner of the table. Set
title=” to suppress this output.

file name of the file to create. The default file name is x.tex where x is the first
word in the name of the argument for x. Set file="" to have the generated
LaTeX code just printed to standard output. This is especially useful when run-
ning under Sweave in R using its results=tex tag, to save having to man-
age many small external files. When file="", latex keeps track of LaTeX
styles that are called for by creating or modifying an object latexStyles
(in .GlobalTemp in R or in frame 0 in S-Plus). latexStyles is a vector
containing the base names of all the unique LaTeX styles called for so far in the
current session. See the end of the examples section for a way to use this object
to good effect. For dvips, file is the name of an output postscript file.

append defaults to FALSE. Set to TRUE to append output to an existing file.

label a text string representing a symbolic label for the table for referencing in the
LaTeX \label and \ref commands. label is only used if caption is
given.

146 latex

rowlabel If x has row dimnames, rowlabel is a character string containing the column
heading for the row dimnames. The default is the name of the argument for x.

rowlabel.just
If x has row dimnames, specifies the justification for printing them. Possible
values are "l", "r", "c". The heading (rowlabel) itself is left justified if
rowlabel.just="l", otherwise it is centered.

cgroup a vector of character strings defining major column headings. The default is to
have none.

n.cgroup a vector containing the number of columns for which each element in cgroup
is a heading. For example, specify cgroup=c("Major 1","Major 2"),
n.cgroup=c(3,3) if "Major 1" is to span columns 1-3 and "Major 2"
is to span columns 4-6. rowlabel does not count in the column numbers. You
can omit n.cgroup if all groups have the same number of columns.

rgroup a vector of character strings containing headings for row groups. n.rgroup
must be present when rgroup is given. The first n.rgroup[1] rows are
sectioned off and rgroup[1] is used as a bold heading for them. The usual
row dimnames (which must be present if rgroup is) are indented. The next
n.rgroup[2] rows are treated likewise, etc.

n.rgroup integer vector giving the number of rows in each grouping. If rgroup is not
specified, n.rgroup is just used to divide off blocks of rows by horizontal
lines. If rgroup is given but n.rgroup is omitted, n.rgroup will default
so that each row group contains the same number of rows.

cgroupTexCmd A character string specifying a LaTeX command to be used to format column
group labels. The default, "bfseries", sets the current font to ’bold’. It is pos-
sible to supply a vector of strings so that each column group label is formatted
differently. Please note that the first item of the vector is used to format the
title (even if a title is not used), and that there is an empty column between
each column group. Currently the user needs to handle these issues. Multi-
ple effects can be achieved by creating custom LaTeX commands; for example,
\providecommand{\redscshape}{\color{red}\scshape} creates
a LaTeX command called redscshape that formats the text in red small-caps.

rgroupTexCmd A character string specifying a LaTeX command to be used to format row group
labels. The default, "bfseries", sets the current font to ’bold’. A vector of strings
can be supplied to format each row group label differently. Normal recycling
applies if the vector is shorter than n.rgroups. See also cgroupTexCmd
above regarding multiple effects.

rownamesTexCmd
A character string specifying a LaTeX command to be used to format rownames.
The default, NULL, applies no command. A vector of different commands can
also be supplied. See also cgroupTexCmd above regarding multiple effects.

colnamesTexCmd
A character string specifying a LaTeX command to be used to format column
labels. The default, NULL, applies no command. It is possible to supply a
vector of strings to format each column label differently. If column groups are
not used, the first item in the vector will be used to format the title. Please
note that if column groups are used the first item of cgroupTexCmd and not

latex 147

colnamesTexCmd is used to format the title, and that there are empty columns
between each group. The user needs to allow for these issues when supplying
a vector of commands. See also cgroupTexCmd above regarding multiple
effects.

cellTexCmds A matrix of character strings which are LaTeX commands to be used to format
each element, or cell, of the object. The matrix must have the same NROW() and
NCOL() as the object. The default, NULL, applies no formats. Empty strings
also apply no formats, and one way to start might be to create a matrix of empty
strings with matrix(rep("", NROW(x) * NCOL(x)), nrow=NROW(x))
and then selectively change appropriate elements of the matrix. Note that you
might need to set numeric.dollar=FALSE (to disable math mode) for some
effects to work. See also cgroupTexCmd above regarding multiple effects.

na.blank Set to TRUE to use blanks rather than NA for missing values. This usually looks
better in latex.

insert.bottom
an optional character string to typeset at the bottom of the table. For "ctable"
style tables, this is placed in an unmarked footnote.

first.hline.double
set to FALSE to use single horizontal rules for styles other than "bookmark"
or "ctable"

rowname rownames for tabular environment. Default is rownames of matrix or data.frame.
Specify rowname=NULL to suppress the use of row names.

cgroup.just justification for labels for column groups. Defaults to "c".

colheads a character vector of column headings if you don’t want to use dimnames(object)[[2]].
Specify colheads=NULL to suppress column headings.

extracolheads
an optional vector of extra column headings that will appear under the main
headings (e.g., sample sizes). This character vector does not need to include
an empty space for any rowname in effect, as this will be added automatically.
You can also form subheadings by splitting character strings defining the column
headings using the usual backslash n newline character.

extracolsize size for extracolheads or for any second lines in column names; default is
"scriptsize"

dcolumn
numeric.dollar

logical, default !dcolumn. Set to TRUE to place dollar signs around nu-
meric values when dcolumn=FALSE. This assures that latex will use minus
signs rather than hyphens to indicate negative numbers. Set to FALSE when
dcolumn=TRUE, as dcolumn.sty automatically uses minus signs.

math.row.names
logical, set true to place dollar signs around the row names.

math.col.names
logical, set true to place dollar signs around the column names.

cdot see format.df

148 latex

longtable Set to TRUE to use David Carlisle’s LaTeX longtable style, allowing long
tables to be split over multiple pages with headers repeated on each page. The
"style" element is set to "longtable". The latex \usepackagemust
reference [longtable]. The file longtable.sty will need to be in a
directory in your $TEXINPUTS path.

draft.longtable
I forgot what this does.

ctable set to TRUE to use Wybo Dekker’s ctable style from CTAN. Even though
for historical reasons it is not the default, it is generally the preferred method.
Thicker but not doubled hlines are used to start a table when ctable is in
effect.

booktabs set booktabs=TRUE to use the booktabs style of horizontal rules for better
tables. In this case, double hlines are not used to start a table.

table.env Set table.env=FALSE to suppress enclosing the table in a LaTeX table
environment. table.env only applies when longtable=FALSE. You may
not specify a caption if table.env=FALSE.

here Set to TRUE if you are using table.env=TRUE with longtable=FALSE
and you have installed David Carlisle’s here.sty LaTeX style. This will
cause the LaTeX table environment to be set up with option H to guaran-
tee that the table will appear exactly where you think it will in the text. The
"style" element is set to "here". The latex \usepackage must ref-
erence [here]. The file here.sty will need to be in a directory in your
$TEXINPUTS path. here is largely obsolete with LaTeX2e.

lines.page Applies if longtable=TRUE. No more than lines.page lines in the body
of a table will be placed on a single page. Page breaks will only occur at
rgroup boundaries.

caption a text string to use as a caption to print at the top of the first page of the table.
Default is no caption.

caption.lot a text string representing a short caption to be used in the "List of Tables". By
default, LaTeX will use caption. If you get inexplicable latex errors, you
may need to supply caption.lot to make the errors go away.

caption.loc set to "bottom" to position a caption below the table instead of the default of
"top".

double.slash set to TRUE to output \ as \\ in LaTeX commands. Useful when you are
reading the output file back into an S vector for later output.

vbar logical. When vbar==TRUE, columns in the tabular environment are separated
with vertical bar characters. When vbar==FALSE, columns are separated with
white space. The default, vbar==FALSE, produces tables consistent with the
style sheet for the Journal of the American Statistical Association.

collabel.just
justification for column labels.

assignment logical. When TRUE, the default, the name of the function and the assignment
arrow are printed to the file.

where specifies placement of floats if a table environment is used. Default is "!tbp".
To allow tables to appear in the middle of a page of text you might specify
where="!htbp" to latex.default.

latex 149

size size of table text if a size change is needed (default is no change). For example
you might specify size="small" to use LaTeX font size "small".

center default is "center" to enclose the table in a center environment. Use
center="centering" to instead use a LaTeX centering directive, or
center="none" to use no centering. This option was implemented by Markus
Jäntti 〈markus.jantti@iki.fi〉 of Abo Akademi University.

landscape set to TRUE to enclose the table in a landscape environment. When ctable
is TRUE, will use the rotate argument to ctable.

type The default uses the S Example environment for latex.function, assum-
ing you have installed S.sty in a location that the system latex command
automatically accesses. Set type="verbatim" to instead use the LaTeX
verbatim environment.

... other arguments are accepted and ignored except that latex passes arguments
to format.df (e.g., col.just and other formatting options like dec, rdec,
and cdec). For latexVerbatim these arguments are passed to the print
function. Ignored for latexTranslate.

inn, out specify additional input and translated strings over the usual defaults
pb If pb=TRUE, latexTranslate also translates [()] to math mode using

\left, \right.
greek set to TRUE to have latexTranslate put names for greek letters in math

mode and add backslashes
hspace horizontal space, e.g., extra left margin for verbatim text. Default is none. Use

e.g. hspace="10ex" to add 10 extra spaces to the left of the text.
length for S-Plus only; is the length of the output page for printing and capturing ver-

batim text
width

height are the options() to have in effect only for when print is executed. De-
faults are current options. For dvi these specify the paper width and height
in inches if nomargins=TRUE, with defaults of 5.5 and 7, respectively.

prlog set to TRUE to have dvi print, to the S-Plus session, the LaTeX .log file.
multicol set to FALSE to not use \multicolumn in header of table
nomargins set to FALSE to use default LaTeX margins when making the .dvi file

Details

If running under Windows and using MikTeX, latex and yap must be in your system path, and
yap is used to browse .dvi files created by latex. You should install the geometry and
ctable styles in MikTeX to make optimum use of latex().

System options can be used to specify external commands to be used. Defaults are given by
options(xdvicmd=’xdvi’) or options(xdvicmd=’yap’), options(dvipscmd=’dvips’),
options(latexcmd=’latex’). For MacOS specify options(xdvicmd=’MacdviX’).

If running S-Plus and your directory for temporary files is not /tmp (Unix/Linux) or \windows\temp
(Windows), add your own tempdir function such as tempdir <- function() "/yourmaindirectory/yoursubdirectory"

To prevent the latex file from being displayed store the result of latex in an object, e.g. w <-
latex(object, file=’foo.tex’).

150 latex

Value

latex and dvi return a list of class latex or dvi containing character string elements file
and style. file contains the name of the generated file, and style is a vector (possibly empty)
of styles to be included using the LaTeX2e \usepackage command.

latexTranslate returns a vector of character strings

Side Effects

creates various system files and runs various Linux/UNIX system commands which are assumed to
be in the system path.

Author(s)

Frank E. Harrell, Jr.,
Department of Biostatistics,
Vanderbilt University,
f.harrell@vanderbilt.edu

Richard M. Heiberger,
Department of Statistics,
Temple University, Philadelphia, PA.
rmh@astro.ocis.temple.edu

David R. Whiting,
School of Clinical Medical Sciences (Diabetes),
University of Newcastle upon Tyne, UK.
david.whiting@ncl.ac.uk

See Also

html, format.df, texi2dvi

Examples

x <- matrix(1:6, nrow=2, dimnames=list(c('a','b'),c('c','d','enLine 2')))
Not run:
latex(x) # creates x.tex in working directory
w <- latex(x, file='/tmp/my.tex')
d <- dvi(w) # compile LaTeX document, make .dvi

latex assumed to be in path
d # or show(d) : run xdvi (assumed in path) to display
w # or show(w) : run dvi then xdvi
dvips(d) # run dvips to print document
dvips(w) # run dvi then dvips
library(tools)
texi2dvi('/tmp/my.tex') # compile and produce pdf file in working dir.
End(Not run)
latex(x, file="") # just write out LaTeX code to screen

Not run:
After running latex() multiple times with different special styles in

ldBands 151

effect, make a file that will call for the needed LaTeX packages when
latex is run (especially when using Sweave with R)
if(exists(latexStyles))
cat(paste('\usepackage{',latexStyles,'}',sep=''),

file='stylesused.tex', sep='\n')
Then in the latex job have something like:
\documentclass{article}
\input{stylesused}
\begin{document}
...
End(Not run)

ldBands Group Sequential Boundaries using the Lan-DeMets Approach

Description

This function computes and plots group sequential stopping boundaries from the Lan-DeMets
method with a variety of α-spending functions using the ld98 program from the Department of
Biostatistics, University of Wisconsin written by DM Reboussin, DL DeMets, KM Kim, and KKG
Lan. Such stopping boundaries are useful for early termination of clinical trials for safety prob-
lems or for efficacy. Simple plot and print methods are implemented. Simple sample size and
minimally detectable effect sizes given sample sizes may be obtained with a summary method if
power was specified to ldBands. Alternatively, summary computes, for each look, the differ-
ence in means that must be achieved to cross a boundary if n and sd are specified, or the minimum
difference in proportions and the odds ratios that must be achieved to cross a boundary if n and
pbar are specified.

Usage

ldBands(n = length(times), times = NULL, alpha = 0.05, sided = 2,
alphaLower=alpha/2, alphaUpper=alpha/2,
information = NULL,
spending=c('OBrien-Fleming','Pocock','alpha*t^phi',

'Hwang-Shih-DeCani'),
phi=1,
spending2=c('OBrien-Fleming','Pocock','alpha*t^phi',

'Hwang-Shih-DeCani'),
phi2=phi,
truncate = Inf, power = NULL, pr = TRUE)

S3 method for class 'ldBands':
print(x, ...)
S3 method for class 'ldBands':
plot(x, xlab='Time', ylab='Z', actual=NULL,

type='b', labels=NULL, ...)

S3 method for class 'ldBands':
summary(object, stdiff=NULL, n=NULL,

152 ldBands

p1=NULL, p2=NULL, hr=NULL, events=NULL,
pbar=NULL, sd=NULL, ...)

S3 method for class 'summary.ldBands':
print(x, ...)

Arguments

n number of interim analyses. If times is given, is automatically taken as the
length of times. For summary.ldBands, n is the sample size, to obtain
detectable standardized difference.

times times at which interim analyses are done

alpha overall α level for the multiple tests. Default is 0.05. If sided=3 is the
α-level for the lower bounds, otherwise is the total α.

sided set to 1 to use a one-sided test, 3 for asymmetric two-sided bounds

alphaLower α-level for lower bound if sided=3. Defaults to α/2. When sided=3 alpha
is recalculated from alphaLower+alphaUpper.

alphaUpper α-level for upper bound if sided=3. Defaults to α/2.

information a vector of information times if different from times. Used for computing
covariances of test statistics.

spending an α spending function. Default is O’Brien-Fleming function. If sided=3 is
the spending function for the lower bounds.

phi parameter for the third and fourth types of spending functions (exponent of time
for the third, default is 1)

spending2 spending function for the upper bounds if sided=3. Defaults to same spending
function for lower bounds.

phi2 parameter for third and fourth spending functions if sided=3. Default is phi.

truncate a value at which to truncate Z critical values so that early looks will have some
power without really affecting the overall α level. Default is no truncation.

power A power for which to compute a drift parameter; useful in sample size calcula-
tions

pr set to FALSE to supress the actual output of the ld98 program

x an object created by ldBands or summary.ldBands

xlab x-axis label

ylab y-axis label

actual an optional list with two components: times and z values to add as points to the
first plot

type default is "b" causing both points and lines to be drawn for boundaries. Use
type="l" for example to suppress drawing circles at points.

labels an optional character vector to be used to label time points corresponding to
those generated by ldBands

object an object created by ldBands

stdiff standardized difference to detect

ldBands 153

p1 probability of event in group 1

p2 probability of event in group 2, to compare with p1 in order to obtain sample
size for two-sample binomial

hr hazard ratio to detect, to obtain needed number of events at end of study for
either treatment arm using the logrank test

events number of events per treatment arm at end of study, to obtain detectable hazard
ratio

pbar mean of actual probabilities of events in two treatment arms

sd standard deviation of an observation

... unused

Details

This function assumes that you have stored the ld98 executable in a subdirectory that is in your
system path. Obtain ld98 program from the URL given in the reference below.

The plotmethod makes two plots if power is specified, the second containing exit and cumulative
exit probabilities as a function of time. If par(mfrow=c()) is not already set to something
besides c(1,1), par(mfrow=c(2,1)) is set temporarily.

Value

A list of class "ldBands" with the following components. When summary is used and n and
either pbar or sd are given, summary returns the same object returned by ldBands but with
possible components diff.lower,diff.lower (needed difference means or proportions) and
or.lower,or.upper (needed odds ratios).

data a data frame containing the main calculations

power power specified, if any

drift drift calculated, if power specified

type "boundaries" if power not specified, "power" otherwise

n number of interim analyses, for ldBands. For summary is the number of
observations per arm, and it must be a vector with length equal to the number of
looks if pbar or sd are given.

alpha input value of alpha

sided 1-3

alphaLower lower α

alphaUpper upper α

spending name of α spending function used

phi parameter for spending function

spending2 name of spending function for upper boundary. Defaults to spending

phi2 parameter for second spending function. Defaults to phi but is ignored if
spending2 is the first or second type of spending function.

truncate value at which Z statistics truncated (default is Inf)

154 ldBands

Author(s)

Frank E Harrell Jr

References

Reboussin DM, DeMets DL, Kim K-M, Lan KKG (1996): Programs for computing group sequen-
tial boundaries using the Lan-DeMets method. http://www.biostat.wisc.edu/landemets/

Reboussin DM, DeMets DL, Kim K, Lan KKG (2000): Computations for group sequential bound-
aries using the Lan-DeMets spending function method. Controlled Clinical Trials 21:190-207.

See Also

gbayes

Examples

Not run:
Get boundaries for O'Brien-Fleming spending function, 5 looks, alpha=.05
b <- ldBands(5, pr=FALSE)
plot(b)
Same but times are irregular, and information times are different than
test times. Use Pocock spending function.
b <- ldBands(times= c(.4, .6, .8, .9, .95),

information=c(.42,.65,.83,.89,.94), spending='Pocock')

Get power calculations
u <- ldBands(times=c(.4, .6, .8, .9, .95), power=.9)
u$drift # standardize difference * sqrt(n per arm)

needed to provide power=.9
summary(u, n=50) # obtain detectable standardized difference
summary(u, p1=.4, p2=.5) # get sample size per arm, two-sample binomial
summary(u, hr=1.5) # get number of events per arm needed

to detect a hazard ratio of 1.5

Asymmetric boundaries with different spending functions, truncate
b <- ldBands(5, sided=3, spending='alpha*t^phi', phi=1, phi2=1.5,

alphaLower=.01, alphaUpper=.04, truncate=4)
b
plot(b)
Compute differences in proportions and odds ratios needed to cross
the boundaries, given a mean probability in two treatment arms of 0.1
and given a vector of sample sizes per arm corresponding to the looks
s <- summary(b, n=seq(200,1000,by=200), pbar=.1)
s
d <- s$data
plot(dn, dor.lower, xlab='N Per Arm',

ylab='Critical Odds Ratio', type='b',
ylim=range(d$or.lower, d$or.upper), log='y')

lines(dn, dor.upper, type='b')
abline(h=1, lty=2)
End(Not run)

http://www.biostat.wisc.edu/landemets/

list.tree 155

list.tree Pretty-print the Structure of a Data Object

Description

This is a function to pretty-print the structure of any data object (usually a list). It is similar to the
R function str.

Usage

list.tree(struct, depth=-1, numbers=FALSE, maxlen=22, maxcomp=12,
attr.print=TRUE, front="", fill=". ", name.of, size=TRUE)

Arguments

struct The object to be displayed
depth Maximum depth of recursion (of lists within lists . . .) to be printed; negative

value means no limit on depth.
numbers If TRUE, use numbers in leader instead of dots to represent position in structure.
maxlen Approximate maximum length (in characters) allowed on each line to give the

first few values of a vector. maxlen=0 suppresses printing any values.
maxcomp Maximum number of components of any list that will be described.
attr.print Logical flag, determining whether a description of attributes will be printed.
front Front material of a line, for internal use.
fill Fill character used for each level of indentation.
name.of Name of object, for internal use (deparsed version of struct by default).
size Logical flag, should the size of the object in bytes be printed?

A description of the structure of struct will be printed in outline form, with in-
dentation for each level of recursion, showing the internal storage mode, length,
class(es) if any, attributes, and first few elements of each data vector. By default
each level of list recursion is indicated by a "." and attributes by "A".

Author(s)

Alan Zaslavsky, zaslavsk@hcp.med.harvard.edu

See Also

str

Examples

X <- list(a=ordered(c(1:30,30:1)),b=c("Rick","John","Allan"),
c=diag(300),e=cbind(p=1008:1019,q=4))

list.tree(X)
In R you can say str(X)

156 mApply

mApply Apply a Function to Rows of a Matrix or Vector

Description

mApply is like tapply except that the first argument can be a matrix or a vector, and the output is
cleaned up if simplify=TRUE. It uses code adapted from Tony Plate (〈tplate@blackmesacapital.com〉)
to operate on grouped submatrices.

As mApply can be much faster than using by, it is often worth the trouble of converting a data
frame to a numeric matrix for processing by mApply. asNumericMatrix will do this, and
matrix2dataFrame will convert a numeric matrix back into a data frame.

Usage

mApply(X, INDEX, FUN, ..., simplify=TRUE, keepmatrix=FALSE)

Arguments

X a vector or matrix capable of being operated on by the function specified as the
FUN argument

INDEX list of factors, each of same number of rows as ’X’ has.

FUN the function to be applied. In the case of functions like ’+’, ’

... optional arguments to ’FUN’.

simplify set to ’FALSE’ to suppress simplification of the result in to an array, matrix, etc.

keepmatrix set to TRUE to keep result as a matrix even if simplify is TRUE, in the case
of only one stratum

Value

For mApply, the returned value is a vector, matrix, or list. If FUN returns more than one number, the
result is an array if simplify=TRUE and is a list otherwise. If a matrix is returned, its rows corre-
spond to unique combinations of INDEX. If INDEX is a list with more than one vector, FUN returns
more than one number, and simplify=FALSE, the returned value is a list that is an array with
the first dimension corresponding to the last vector in INDEX, the second dimension corresponding
to the next to last vector in INDEX, etc., and the elements of the list-array correspond to the val-
ues computed by FUN. In this situation the returned value is a regular array if simplify=TRUE.
The order of dimensions is as previously but the additional (last) dimension corresponds to values
computed by FUN.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

mChoice 157

See Also

asNumericMatrix, matrix2dataFrame, tapply, sapply, lapply, mapply, by.

Examples

require(datasets, TRUE)
a <- mApply(iris[,-5], iris$Species, mean)

mChoice Methods for Storing and Analyzing Multiple Choice Variables

Description

mChoice is a function that is useful for defining a group of variables on the right side of the for-
mula. The variables can represent individual choices on a multiple choice question. These choices
are typically factor or character values but may be of any type. Levels of component factor vari-
ables need not be the same; all unique levels (or unique character values) are collected over all of
the multiple variables. Then a new character vector is formed with integer choice numbers sepa-
rated by semicolons. Optimally, a database system would have exported the semicolon-separated
character strings with a levels attribute containing strings defining value labels corresponding to
the integer choice numbers. mChoice is a function for creating a multiple-choice variable after
the fact. mChoice variables are explicitly handed by the describe and summary.formula
functions. NAs or blanks in input variables are ignored.

format.mChoice will convert the multiple choice representation to text form by substituting
levels for integer codes. as.double.mChoice converts the mChoice object to a binary
numeric matrix, one column per used level (or all levels of drop=FALSE. This is called by the
user by invoking as.numeric. There is a print method and a summary method, and a print
method for the summary.mChoice object. The summary method computes frequencies of all
two-way choice combinations, the frequencies of the top 5 combinations, information about which
other choices are present when each given choice is present, and the frequency distribution of the
number of choices per observation. This summary output is used in the describe function.

inmChoice creates a logical vector the same length as x whose elements are TRUE when the
observation in x contains at least one of the codes or value labels in the second argument.

is.mChoice returns TRUE is the argument is a multiple choice variable.

Usage

mChoice(..., label='', sort.=TRUE,
sort.levels=c('original','alphabetic'),
add.none=FALSE, drop=TRUE)

S3 method for class 'mChoice':
format(x, minlength=NULL, sep=";", ...)

S3 method for class 'mChoice':
as.double(x, drop=FALSE, ...)

158 mChoice

S3 method for class 'mChoice':
print(x, long=FALSE, ...)

S3 method for class 'mChoice':
summary(object, ncombos=5, minlength=NULL, drop=TRUE, ...)

S3 method for class 'summary.mChoice':
print(x, prlabel=TRUE, ...)

S3 method for class 'mChoice':
x[..., drop=FALSE]

inmChoice(x, values)

is.mChoice(x)

Arguments

... a series of vectors

sort. By default, choice codes are sorted in ascending numeric order. Set sort=FALSE
to preserve the original left to right ordering from the input variables.

label a character string label attribute to attach to the matrix created by mChoice

sort.levels set sort.levels="alphabetic" to sort the columns of the matrix created
by mChoice alphabetically by category rather than by the original order of
levels in component factor variables (if there were any input variables that were
factors)

add.none Set add.none to TRUE to make a new category ’none’ if it doesn’t already
exist and if there is an observations with no choices selected.

drop set drop=FALSE to keep unused factor levels as columns of the matrix pro-
duced by mChoice

x an object of class "mchoice" such as that created by mChoice. For is.mChoice
is any object.

object an object of class "mchoice" such as that created by mChoice

ncombos maximum number of combos.

minlength By default no abbreviation of levels is done in format and summary. Specify
a positive integer to use abbreviation in those functions. See abbreviate.

sep character to use to separate levels when formatting

long Set to TRUE to print the formatted levels. Otherwise integer codes are printed.

prlabel set to FALSE to keep print.summary.mChoice from printing the variable
label and number of unique values

values a scalar or vector. If values is integer, it is the choice codes, and if it is a
character vector, it is assumed to be value labels.

mChoice 159

Value

mChoice returns a character vector of class "mChoice" plus attributes "levels" and "label".
summary.mChoice returns an object of class "summary.mChoice". inmChoice returns a
logical vector. format.mChoice returns a character vector, and as.double.mChoice re-
turns a binary numeric matrix.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

See Also

label

Examples

options(digits=3)
set.seed(3)
n <- 20
sex <- factor(sample(c("m","f"), n, rep=TRUE))
age <- rnorm(n, 50, 5)
treatment <- factor(sample(c("Drug","Placebo"), n, rep=TRUE))

Generate a 3-choice variable; each of 3 variables has 5 possible levels
symp <- c('Headache','Stomach Ache','Hangnail',

'Muscle Ache','Depressed')
symptom1 <- sample(symp, n, TRUE)
symptom2 <- sample(symp, n, TRUE)
symptom3 <- sample(symp, n, TRUE)
cbind(symptom1, symptom2, symptom3)[1:5,]
Symptoms <- mChoice(symptom1, symptom2, symptom3, label='Primary Symptoms')
Symptoms
print(Symptoms, long=TRUE)
format(Symptoms[1:5])
inmChoice(Symptoms,'Headache')
levels(Symptoms)
inmChoice(Symptoms, 3)
inmChoice(Symptoms, c('Headache','Hangnail'))
Note: In this example, some subjects have the same symptom checked
multiple times; in practice these redundant selections would be NAs
mChoice will ignore these redundant selections

meanage <- N <- numeric(5)
for(j in 1:5) {
meanage[j] <- mean(age[inmChoice(Symptoms,j)])
N[j] <- sum(inmChoice(Symptoms,j))
}
names(meanage) <- names(N) <- levels(Symptoms)

160 makeNstr

meanage
N

Manually compute mean age for 2 symptoms
mean(age[symptom1=='Headache' | symptom2=='Headache' | symptom3=='Headache'])
mean(age[symptom1=='Hangnail' | symptom2=='Hangnail' | symptom3=='Hangnail'])

summary(Symptoms)

#Frequency table sex*treatment, sex*Symptoms
summary(sex ~ treatment + Symptoms, fun=table)
Check:
ma <- inmChoice(Symptoms, 'Muscle Ache')
table(sex[ma])

could also do:
summary(sex ~ treatment + mChoice(symptom1,symptom2,symptom3), fun=table)

#Compute mean age, separately by 3 variables
summary(age ~ sex + treatment + Symptoms)

summary(age ~ sex + treatment + Symptoms, method="cross")

f <- summary(treatment ~ age + sex + Symptoms, method="reverse", test=TRUE)
f
trio of numbers represent 25th, 50th, 75th percentile
print(f, long=TRUE)

makeNstr creates a string that is a repeat of a substring

Description

Takes a character and creates a string that is the character repeated len times.

Usage

makeNstr(char, len)

Arguments

char character to be repeated

len number of times to repeat char.

Value

A string that is char repeated len times.

mdb.get 161

Author(s)

Charles Dupont

See Also

paste, rep

Examples

makeNstr(" ", 5)

mdb.get Read Tables in a Microsoft Access Database

Description

Assuming the mdb-tools package has been installed on your system and is in the system path,
mdb.get imports one or more tables in a Microsoft Access database. Date-time variables are
converted to dates or chron package date-time variables. The csv.get function is used to import
automatically exported csv files. If tables is unspecified all tables in the database are retrieved.
If more than one table is imported, the result is a list of data frames.

Usage

mdb.get(file, tables=NULL, lowernames=FALSE, allow=NULL,
dateformat='%m/%d/%y', ...)

Arguments

file the file name containing the Access database

tables character vector specifying the names of tables to import. Default is to import
all tables. Specify tables=TRUE to return the list of available tables.

lowernames set this to TRUE to change variable names to lower case

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

dateformat see cleanup.import. Default is the usual Access format used in the U.S.

... arguments to pass to csv.get

Details

Uses the mdb-tools package executables mdb-tables, mdb-schema, and mdb-export.
cleanup.import is invoked by csv.get to transform variables and store them as efficiently
as possible.

162 mgp.axis

Value

a new data frame or a list of data frames

Author(s)

Frank Harrell, Vanderbilt University

See Also

data.frame, cleanup.import, csv.get, Date, chron

Examples

Not run:
Read all tables in the Microsoft Access database Nwind.mdb
d <- mdb.get('Nwind.mdb')
contents(d)
for(z in d) print(contents(z))
Just print the names of tables in the database
mdb.get('Nwind.mdb', tables=TRUE)
Import one table
Orders <- mdb.get('Nwind.mdb', tables='Orders')
End(Not run)

mgp.axis Draw Axes With Side-Specific mgp Parameters

Description

mgp.axis is a version of axis that uses the appropriate side-specific mgp parameter (see par)
to account for different space requirements for axis labels vertical vs. horizontal tick marks.
mgp.axis also fixes a bug in axis(2,...) that causes it to assume las=1.

mgp.axis.labels is used so that different spacing between tick marks and axis tick mark labels
may be specified for x- and y-axes. Use mgp.axis.labels(’default’) to set defaults.
Users can set values manually using mgp.axis.labels(x,y) where x and y are 2nd value
of par(’mgp’) to use. Use mgp.axis.labels(type=w) to retrieve values, where w=’x’,
’y’, ’x and y’, ’xy’, to get 3 mgp values (first 3 types) or 2 mgp.axis.labels.

Usage

mgp.axis(side, at = NULL, ...,
mgp = mgp.axis.labels(type = if (side == 1 | side == 3) "x"

else "y"),
axistitle = NULL)

mgp.axis.labels(value,type=c('xy','x','y','x and y'))

mgp.axis 163

Arguments

side

at see par

... arguments passed through to axis

mgp see par

axistitle if specified will cause axistitle to be drawn on the appropriate axis as a title

value vector of values to which to set system option mgp.axis.labels

type see above

Value

mgp.axis.labels returns the value of mgp (only the second element of mgp if type="xy"
or a list with elements x and y if type="x or y", each list element being a 3-vector) for
the appropriate axis if value is not specified, otherwise it returns nothing but the system option
mgp.axis.labels is set.

mgp.axis returns nothing.

Side Effects

mgp.axis.labels stores the value in the system option mgp.axis.labels

Author(s)

Frank Harrell

See Also

par

Examples

Not run:
mgp.axis.labels(type='x') # get default value for x-axis
mgp.axis.labels(type='y') # get value for y-axis
mgp.axis.labels(type='xy') # get 2nd element of both mgps
mgp.axis.labels(type='x and y') # get a list with 2 elements
mgp.axis.labels(c(3,.5,0), type='x') # set
options('mgp.axis.labels') # retrieve

plot(..., axes=FALSE)
mgp.axis(1, "X Label")
mgp.axis(2, "Y Label")

End(Not run)

164 minor.tick

minor.tick Minor Tick Marks

Description

Adds minor tick marks to an existing plot. All minor tick marks that will fit on the axes will be
drawn.

Usage

minor.tick(nx=2, ny=2, tick.ratio=0.5)

Arguments

nx number of intervals in which to divide the area between major tick marks on the
X-axis. Set to 1 to suppress minor tick marks.

ny same as nx but for the Y-axis

tick.ratio ratio of lengths of minor tick marks to major tick marks. The length of major
tick marks is retrieved from par("tck").

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

axis

Examples

plot(runif(20),runif(20))
minor.tick()

mtitle 165

mtitle Margin Titles

Description

Writes overall titles and subtitles after a multiple image plot is drawn. If par()$oma==c(0,0,0,0),
title is used instead of mtext, to draw titles or subtitles that are inside the plotting region for a
single plot.

Usage

mtitle(main, ll, lc,
lr=if(.R.) format(Sys.time(),'%d%b%y') else
if(under.unix)unix("date '+%d%h%y'") else date(),

cex.m=1.75, cex.l=.5, ...)
none

Arguments

main main title to be centered over entire figure, default is none

ll subtitle for lower left of figure, default is none

lc subtitle for lower center of figure, default is none

lr subtitle for lower right of figure, default is today’s date in format 23Jan91 for
UNIX or R (Thu May 30 09:08:13 1996 format for Windows). Set to "" to
suppress lower right title.

cex.m character size for main, default is 1.75

cex.l character size for subtitles

... other arguments passed to mtext

Value

nothing

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
f.harrell@vanderbilt.edu

See Also

par, mtext, title, unix, pstamp

166 na.delete

Examples

#Set up for 1 plot on figure, give a main title,
#use date for lr
plot(runif(20),runif(20))
mtitle("Main Title")

#Set up for 2 x 2 matrix of plots with a lower left subtitle and overall title
par(mfrow=c(2,2), oma=c(3,0,3,0))
plot(runif(20),runif(20))
plot(rnorm(20),rnorm(20))
plot(exp(rnorm(20)),exp(rnorm(20)))
mtitle("Main Title",ll="n=20")

na.delete Row-wise Deletion na.action

Description

Does row-wise deletion as na.omit, but adds frequency of missing values for each predictor
to the "na.action" attribute of the returned model frame. Optionally stores further details if
options(na.detail.response=TRUE).

Usage

na.delete(frame)

Arguments

frame a model frame

Value

a model frame with rows deleted and the "na.action" attribute added.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

na.omit, na.keep, na.detail.response, model.frame.default, naresid, naprint

Examples

options(na.action="na.delete")
ols(y ~ x)

na.detail.response 167

na.detail.response Detailed Response Variable Information

Description

This function is called by certain na.action functions if options(na.detail.response=TRUE)
is set. By default, this function returns a matrix of counts of non-NAs and the mean of the response
variable computed separately by whether or not each predictor is NA. The default action uses the last
column of a Surv object, in effect computing the proportion of events. Other summary functions
may be specified by using options(na.fun.response="name of function").

Usage

na.detail.response(mf)

Arguments

mf a model frame

Value

a matrix, with rows representing the different statistics that are computed for the response, and
columns representing the different subsets for each predictor (NA and non-NA value subsets).

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

na.omit, na.delete, model.frame.default, naresid, naprint, describe

Examples

sex
[1] m f f m f f m m m m m m m m f f f m f m
age
[1] NA 41 23 30 44 22 NA 32 37 34 38 36 36 50 40 43 34 22 42 30
y
[1] 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
options(na.detail.response=TRUE, na.action="na.delete", digits=3)
lrm(y ~ age*sex)
#
Logistic Regression Model
#
lrm(formula = y ~ age * sex)

168 na.keep

#
#
Frequencies of Responses
0 1
10 8
#
Frequencies of Missing Values Due to Each Variable
y age sex
0 2 0
#
#
Statistics on Response by Missing/Non-Missing Status of Predictors
#
age=NA age!=NA sex!=NA Any NA No NA
N 2.0 18.000 20.00 2.0 18.000
Mean 0.5 0.444 0.45 0.5 0.444
#
......
options(na.action="na.keep")
describe(y ~ age*sex)
Statistics on Response by Missing/Non-Missing Status of Predictors
#
age=NA age!=NA sex!=NA Any NA No NA
N 2.0 18.000 20.00 2.0 18.000
Mean 0.5 0.444 0.45 0.5 0.444
#
...
options(na.fun.response="table") #built-in function table()
describe(y ~ age*sex)
#
Statistics on Response by Missing/Non-Missing Status of Predictors
#
age=NA age!=NA sex!=NA Any NA No NA
0 1 10 11 1 10
1 1 8 9 1 8
#
...

na.keep Do-nothing na.action

Description

Does not delete rows containing NAs, but does add details concerning the distribution of the re-
sponse variable if options(na.detail.response=TRUE). This na.action is primarily
for use with describe.formula.

Usage

na.keep(mf)

%nin% 169

Arguments

mf a model frame

Value

the same model frame with the "na.action" attribute

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

na.omit, na.delete, model.frame.default, na.detail.response, naresid, naprint,
describe

Examples

options(na.action="na.keep", na.detail.response=TRUE)
x1 <- runif(20)
x2 <- runif(20)
x2[1:4] <- NA
y <- rnorm(20)
describe(y ~ x1*x2)

%nin% Find Matching (or Non-Matching) Elements

Description

%nin% is a binary operator, which returns a logical vector indicating if there is a match or not for
its left operand. A true vector element indicates no match in left operand, false indicates a match.

Usage

a %nin% b

Arguments

a a vector (numeric, character, factor)

b a vector (numeric, character, factor), matching the mode of a

Value

vector of logical values with length equal to length of a.

170 panel.bpplot

See Also

match %in%

Examples

c('a','b','c') %nin% c('a','b')

panel.bpplot Box-Percentile Panel Function for Trellis

Description

For all their good points, box plots have a high ink/information ratio in that they mainly display
3 quartiles. Many practitioners have found that the "outer values" are difficult to explain to non-
statisticians and many feel that the notion of "outliers" is too dependent on (false) expectations that
data distributions should be Gaussian.

panel.bpplot is a panel function for use with trellis, especially for bwplot. It draws
box plots (without the whiskers) with any number of user-specified "corners" (corresponding to dif-
ferent quantiles), but it also draws box-percentile plots similar to those drawn by Jeffrey Banfield’s
(umsfjban@bill.oscs.montana.edu) bpplot function. To quote from Banfield, "box-percentile
plots supply more information about the univariate distributions. At any height the width of the
irregular ’box’ is proportional to the percentile of that height, up to the 50th percentile, and above
the 50th percentile the width is proportional to 100 minus the percentile. Thus, the width at any
given height is proportional to the percent of observations that are more extreme in that direction.
As in boxplots, the median, 25th and 75th percentiles are marked with line segments across the
box."

panel.bpplot is a generalization of bpplot and panel.bwplot in that it works with trellis
(making the plots horizontal so that category labels are more visable), it allows the user to specify
the quantiles to connect and those for which to draw reference lines, and it displays means (by
default using dots).

bpplt draws horizontal box-percentile plot much like those drawn by panel.bpplot but tak-
ing as the starting point a matrix containing quantiles summarizing the data. bpplt is primarily
intended to be used internally by plot.summary.formula.reverse but when used with no
arguments has a general purpose: to draw an annotated example box-percentile plot with the default
quantiles used and with the mean drawn with a solid dot. This schematic plot is rendered nicely in
postscript with an image height of 3.5 inches.

Usage

panel.bpplot(x, y, box.ratio=1, means=TRUE, qref=c(.5,.25,.75),
probs=c(.05,.125,.25,.375), nout=0,
datadensity=FALSE, scat1d.opts=NULL,
font=box.dot$font, pch=box.dot$pch,
cex =box.dot$cex, col=box.dot$col, ...)

E.g. bwplot(formula, panel=panel.bpplot, panel.bpplot.parameters)

panel.bpplot 171

bpplt(stats, xlim, xlab='', box.ratio = 1, means=TRUE,
qref=c(.5,.25,.75), qomit=c(.025,.975),
pch=16, cex.labels=par('cex'), cex.points=if(prototype)1 else 0.5,
grid=FALSE)

Arguments

x continuous variable whose distribution is to be examined

y grouping variable

box.ratio see panel.bwplot

means set to FALSE to suppress drawing a character at the mean value

qref vector of quantiles for which to draw reference lines. These do not need to be
included in probs.

probs vector of quantiles to display in the box plot. These should all be less than 0.5;
the mirror-image quantiles are added automatically. By default, probs is set to
c(.05,.125,.25,.375) so that intervals contain 0.9, 0.75, 0.5, and 0.25
of the data. To draw all 99 percentiles, i.e., to draw a box-percentile plot, set
probs=seq(.01,.49,by=.01). To make a more traditional box plot, use
probs=.25.

nout tells the function to use scat1d to draw tick marks showing the nout smallest
and nout largest values if nout >= 1, or to show all values less than the
nout quantile or greater than the 1-nout quantile if 0 < nout <= 0.5.
If nout is a whole number, only the first n/2 observations are shown on either
side of the median, where n is the total number of observations.

datadensity set to FALSE to invoke scat1d to draw a data density (one-dimensional scatter
diagram or rug plot) inside each box plot.

scat1d.opts a list containing named arguments (without abbreviations) to pass to scat1d
when datadensity=TRUE or nout > 0

font

pch

cex

col see panel.bwplot

... arguments passed to points

stats

xlim

xlab

qomit

cex.labels

cex.points

grid undocumented arguments to bpplt

172 panel.bpplot

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Esty, W. W. and Banfield, J. D. (1992) "The Box-Percentile Plot," Technical Report (May 15, 1992),
Department of Mathematical Sciences, Montana State University.

See Also

bpplot, panel.bwplot, scat1d, quantile, Ecdf

Examples

set.seed(13)
x <- rnorm(1000)
g <- sample(1:6, 1000, replace=TRUE)
x[g==1][1:20] <- rnorm(20)+3 # contaminate 20 x's for group 1

default trellis box plot
require(lattice)
bwplot(g ~ x)

box-percentile plot with data density (rug plot)
bwplot(g ~ x, panel=panel.bpplot, probs=seq(.01,.49,by=.01), datadensity=TRUE)
add ,scat1d.opts=list(tfrac=1) to make all tick marks the same size
when a group has > 125 observations

small dot for means, show only .05,.125,.25,.375,.625,.75,.875,.95 quantiles
bwplot(g ~ x, panel=panel.bpplot, cex=.3)

suppress means and reference lines for lower and upper quartiles
bwplot(g ~ x, panel=panel.bpplot, probs=c(.025,.1,.25), means=FALSE, qref=FALSE)

continuous plot up until quartiles ("Tootsie Roll plot")
bwplot(g ~ x, panel=panel.bpplot, probs=seq(.01,.25,by=.01))

start at quartiles then make it continuous ("coffin plot")
bwplot(g ~ x, panel=panel.bpplot, probs=seq(.25,.49,by=.01))

same as previous but add a spike to give 0.95 interval
bwplot(g ~ x, panel=panel.bpplot, probs=c(.025,seq(.25,.49,by=.01)))

decile plot with reference lines at outer quintiles and median
bwplot(g ~ x, panel=panel.bpplot, probs=c(.1,.2,.3,.4), qref=c(.5,.2,.8))

default plot with tick marks showing all observations outside the outer
box (.05 and .95 quantiles), with very small ticks

partition 173

bwplot(g ~ x, panel=panel.bpplot, nout=.05, scat1d.opts=list(frac=.01))

show 5 smallest and 5 largest observations
bwplot(g ~ x, panel=panel.bpplot, nout=5)

Use a scat1d option (preserve=TRUE) to ensure that the right peak extends
to the same position as the extreme scat1d
bwplot(~x , panel=panel.bpplot, probs=seq(.00,.5,by=.001),

datadensity=TRUE, scat1d.opt=list(preserve=TRUE))

Draw a prototype showing how to interpret the plots
bpplt()

make a local copy of bwplot that always uses panel.bpplot (S-Plus only)
bwplot$panel <- panel.bpplot
bwplot(g ~ x, nout=.05)

partition Patitions an object into different sets

Description

Partitions an object into subsets of length defined in the sep argument.

Usage

partition.vector(x, sep, ...)
partition.matrix(x, rowsep, colsep, ...)

Arguments

x object to be partitioned.

sep determines how many elements should go into each set. The sum of sep should
be equal to the length of x.

rowsep determins how many rows should go into each set. The sum of rowsep must
equal the number of rows in x.

colsep determins how many columns should go into each set. The sum of colsep
must equal the number of columns in x.

... arguments used in other methods of partition.

Value

A list of equal length as sep containing the partitioned objects.

Author(s)

Charles Dupont

174 pc1

See Also

split

Examples

a <- 1:7
partition.vector(a, sep=c(1,3,2,1))

pc1 First Principal Component

Description

Given a numeric matrix which may or may not contain NAs, pc1 standardizes the columns to have
mean 0 and variance 1 and computes the first principal component using prcomp. The proportion
of variance explained by this component is printed, and so are the coefficients of the original (not
scaled) variables. These coefficients may be applied to the raw data to obtain the first PC.

Usage

pc1(x, hi)

Arguments

x numeric matrix

hi if specified, the first PC is scaled so that its maximum value is hi and its mini-
mum value is zero

Value

The vector of observations with the first PC. An attribute "coef" is attached to this vector.
"coef" contains the raw-variable coefficients.

Author(s)

Frank Harrell

See Also

prcomp

Examples

set.seed(1)
x1 <- rnorm(100)
x2 <- x1 + rnorm(100)
w <- pc1(cbind(x1,x2))
attr(w,'coef')

plotCorrPrecision 175

plotCorrPrecision Plot Precision of Estimate of Pearson Correlation Coefficient

Description

This function plots the precision (margin of error) of the product-moment linear correlation coef-
ficient r vs. sample size, for a given vector of correlation coefficients rho. Precision is defined
as the larger of the upper confidence limit minus rho and rho minus the lower confidence limit.
labcurve is used to automatically label the curves.

Usage

plotCorrPrecision(rho = c(0, 0.5), n = seq(10, 400, length = 100),
conf.int = 0.95)

Arguments

rho single or vector of true correlations. A worst-case precision graph results from
rho=0

n vector of sample sizes to use on the x-axis

conf.int confidence coefficient; default uses 0.95 confidence limits

Author(s)

Xing Wang and Frank Harrell

See Also

rcorr,cor,cor.test

Examples

plotCorrPrecision()
plotCorrPrecision(rho=0)

plsmo Plot smoothed estimates

176 plsmo

Description

Plot smoothed estimates of x vs. y, handling missing data for lowess or supsmu, and adding axis
labels. Optionally suppresses plotting extrapolated estimates. An optional group variable can be
specified to compute and plot the smooth curves by levels of group. When group is present, the
datadensity option will draw tick marks showing the location of the raw x-values, separately
for each curve. plsmo has an option to plot connected points for raw data, with no smoothing.

panel.plsmo is a panel function for trellis for the xyplot function that uses plsmo
and its options to draw one or more nonparametric function estimates on each panel. This has
advantages over using xyplot with panel.xyplot and panel.loess: (1) by default it will
invoke labcurve to label the curves where they are most separated, (2) the datadensity
option will put rug plots on each curve (instead of a single rug plot at the bottom of the graph),
and (3) when panel.plsmo invokes plsmo it can use the "super smoother" (supsmu function)
instead of lowess. panel.plsmo senses when a group variable is specified to xyplot so that
it can invoke panel.superpose instead of panel.xyplot. Using panel.plsmo through
trellis has some advantages over calling plsmo directly in that conditioning variables are
allowed and trellis uses nicer fonts etc.

When a group variable was used, panel.plsmo creates a function Key in the session frame
that the user can invoke to draw a key for individual data point symbols used for the groups. By
default, the key is positioned at the upper right corner of the graph. If Key(locator(1)) is
specified, the key will appear so that its upper left corner is at the coordinates of the mouse click.

Usage

plsmo(x, y, method=c("lowess","supsmu","raw"), xlab, ylab,
add=FALSE, lty=1:nlev, col=par("col"), lwd=par("lwd"),
iter=if(length(unique(y))>2) 3 else 0, bass=0, trim,
fun, group, prefix, xlim, ylim,
label.curves=TRUE, datadensity=FALSE, lines.=TRUE, subset=TRUE,
grid=FALSE, ...)

#To use panel function:
#xyplot(formula=y ~ x | conditioningvars, groups,
panel=panel.plsmo, type='b',
label.curves=TRUE,
lwd = superpose.line$lwd,
lty = superpose.line$lty,
pch = superpose.symbol$pch,
cex = superpose.symbol$cex,
font = superpose.symbol$font,
col = NULL, ...)

Arguments

x vector of x-values, NAs allowed

y vector of y-values, NAs allowed

method "lowess" (the default), "supsmu", or "raw" to not smooth at all

xlab x-axis label iff add=F. Defaults of label(x) or argument name.

plsmo 177

ylab y-axis label, like xlab.

add Set to T to call lines instead of plot. Assumes axes already labeled.

lty line type, default=1,2,3,. . . , corresponding to group

col color for each curve, corresponding to group. Default is current par("col").

lwd vector of line widths for the curves, corresponding to group. Default is current
par("lwd"). lwd can also be specified as an element of label.curves if
label.curves is a list.

iter iter parameter if method="lowess", default=0 if y is binary, and 3 otherwise.

bass bass parameter if method="supsmu", default=0.

trim only plots smoothed estimates between trim and 1-trim quantiles of x. Default is
to use 10th smallest to 10th largest x in the group if the number of observations
in the group exceeds 200 (0 otherwise). Specify trim=0 to plot over entire range.

fun after computing the smoothed estimates, if fun is given the y-values are trans-
formed by fun()

group a variable, either a factor vector or one that will be converted to factor
by plsmo, that is used to stratify the data so that separate smooths may be
computed

prefix a character string to appear in group of group labels. The presence of prefix
ensures that labcurve will be called even when add=TRUE.

xlim a vector of 2 x-axis limits. Default is observed range.

ylim a vector of 2 y-axis limits. Default is observed range.

label.curves set to FALSE to prevent labcurve from being called to label multiple curves
corresponding to groups. Set to a list to pass options to labcurve. lty and
col are passed to labcurve automatically.

datadensity set to TRUE to draw tick marks on each curve, using x-coordinates of the raw
data x values. This is done using scat1d.

lines. set to FALSE to suppress smoothed curves from being drawn. This can make
sense if datadensity=TRUE.

subset a logical or integer vector specifying a subset to use for processing, with respect
too all variables being analyzed

grid set to TRUE if the R grid package drew the current plot

... optional arguments that are passed to scat1d, or optional parameters to pass
to plsmo from panel.plsmo. See optional arguments for plsmo above.

type set to p to have panel.plsmo plot points (and not call plsmo), l to call
plsmo and not plot points, or use the default b to plot both.

pch

cex

font vectors of graphical parameters corresponding to the groups (scalars if group
is absent). By default, the parameters set up by trellis will be used.

Value

plsmo returns a list of curves (x and y coordinates) that was passed to labcurve

178 plsmo

Side Effects

plots, and panel.plsmo creates the Key function in the session frame.

See Also

lowess, supsmu, label, quantile, labcurve, scat1d, xyplot, panel.superpose,
panel.xyplot

Examples

set.seed(1)
x <- 1:100
y <- x + runif(100, -10, 10)
plsmo(x,y,"supsmu",xlab="Time of Entry")
#Use label(y) or "y" for ylab

plsmo(x,y,add=TRUE,lty=2)
#Add lowess smooth to existing plot, with different line type

age <- rnorm(500, 50, 15)
survival.time <- rexp(500)
sex <- sample(c('female','male'), 500, TRUE)
race <- sample(c('black','non-black'), 500, TRUE)
plsmo(age, survival.time < 1, fun=qlogis, group=sex) # plot logit by sex

#Plot points and smooth trend line using trellis
(add type='l' to suppress points or type='p' to suppress trend lines)
require(lattice)
xyplot(survival.time ~ age, panel=panel.plsmo)

#Do this for multiple panels
xyplot(survival.time ~ age | sex, panel=panel.plsmo)

#Do this for subgroups of points on each panel, show the data
#density on each curve, and draw a key at the default location
xyplot(survival.time ~ age | sex, groups=race, panel=panel.plsmo,

datadensity=TRUE)
Key()

#Use wloess.noiter to do a fast weighted smooth
plot(x, y)
lines(wtd.loess.noiter(x, y))
lines(wtd.loess.noiter(x, y, weights=c(rep(1,50), 100, rep(1,49))), col=2)
points(51, y[51], pch=18) # show overly weighted point
#Try to duplicate this smooth by replicating 51st observation 100 times
lines(wtd.loess.noiter(c(x,rep(x[51],99)),c(y,rep(y[51],99)),

type='ordered all'), col=3)
#Note: These two don't agree exactly

popower 179

popower Power and Sample Size for Ordinal Response

Description

popower computes the power for a two-tailed two sample comparison of ordinal outcomes under
the proportional odds ordinal logistic model. The power is the same as that of the Wilcoxon test
but with ties handled properly. posamsize computes the total sample size needed to achieve a
given power. Both functions compute the efficiency of the design compared with a design in which
the response variable is continuous. print methods exist for both functions. Any of the input
arguments may be vectors, in which case a vector of powers or sample sizes is returned. These
functions use the methods of Whitehead (1993).

Usage

popower(p, odds.ratio, n, n1, n2, alpha=0.05)
S3 method for class 'popower':
print(x, ...)
posamsize(p, odds.ratio, fraction=.5, alpha=0.05, power=0.8)
S3 method for class 'posamsize':
print(x, ...)

Arguments

p a vector of marginal cell probabilities which must add up to one. The ith ele-
ment specifies the probability that a patient will be in response level i, averaged
over the two treatment groups.

odds.ratio the odds ratio to be able to detect. It doesn’t matter which group is in the nu-
merator.

n total sample size for popower. You must specify either n or n1 and n2. If you
specify n, n1 and n2 are set to n/2.

n1 for popower, the number of subjects in treatment group 1

n2 for popower, the number of subjects in group 2

alpha type I error

x an object created by popower or posamsize

fraction for posamsize, the fraction of subjects that will be allocated to group 1

power for posamsize, the desired power (default is 0.8)

... unused

Value

a list containing power and eff (relative efficiency) for popower, or containing n and eff for
posamsize.

180 print.char.list

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Whitehead J (1993): Sample size calculations for ordered categorical data. Stat in Med 12:2257–
2271.

Julious SA, Campbell MJ (1996): Letter to the Editor. Stat in Med 15: 1065–1066. Shows accuracy
of formula for binary response case.

See Also

bpower, cpower

Examples

#For a study of back pain (none, mild, moderate, severe) here are the
#expected proportions (averaged over 2 treatments) that will be in
#each of the 4 categories:

p <- c(.1,.2,.4,.3)
popower(p, 1.2, 1000) # OR=1.2, total n=1000
posamsize(p, 1.2)
popower(p, 1.2, 3148)

print.char.list prints a list of lists in a visually readable format.

Description

print.char.list Takes a list that is composed of other lists and matrixs and prints it in a
visually readable format.

Usage

print.char.list(x, ..., hsep = c("|"), vsep = c("-"), csep = c("+"), print.it = TRUE, rowname.halign = c("left", "centre", "right"), rowname.valign = c("top", "centre", "bottom"), colname.halign = c("centre", "left", "right"), colname.valign = c("centre", "top", "bottom"), text.halign = c("right", "centre", "left"), text.valign = c("top", "centre", "bottom"), rowname.width, rowname.height, min.colwidth = .Options$digits, max.rowheight = NULL, abbreviate.dimnames = TRUE, page.width = .Options$width, colname.width, colname.height, prefix.width, superprefix.width = prefix.width)

Arguments

x list object to be printed

... place for extra arguments to reside.

hsep character used to separate horizontal fields

vsep character used to separate veritcal feilds

print.char.list 181

csep character used where horizontal and veritcal separators meet.

print.it should the value be cated out or returned as a string.

rowname.halign
horizontal justification of row names.

rowname.valign
verical justification of row names.

colname.halign
horizontal justification of column names.

colname.valign
verical justification of column names.

text.halign horizontal justification of cell text.

text.valign vertical justification of cell text.

rowname.width
minimumwidth of row name strings.

rowname.height
minimum height of row name strings.

min.colwidth minimum column width.
max.rowheight

maximum row height.

abbreviate.dimnames
should the row and column names be abbreviated.

page.width width of the page being printed on.

colname.width
minimum width of the column names.

colname.height
minimum height of the column names

prefix.width maximum width of the rowname columns

superprefix.width
maximum width of the super rowname columns

Value

String that formated table of the list object.

Author(s)

Charles Dupont

182 print.char.matrix

print.char.matrix Function to print a matrix with stacked cells

Description

Prints a dataframe or matrix in stacked cells. Line break charcters in a matrix element will result in
a line break in that cell, but tab characters are not supported.

Usage

print.char.matrix(x, file = "", col.name.align = "cen", col.txt.align = "right",
cell.align = "cen", hsep = "|", vsep = "-", csep = "+", row.names = TRUE,
col.names = FALSE, append = FALSE,
top.border = TRUE, left.border = TRUE, ...)

Arguments

x a matrix or dataframe

file name of file if file output is desired. If left empty, output will be to the screen
col.name.align

if column names are used, they can be aligned right, left or centre. Default
"cen" results in names centred between the sides of the columns they name.
If the width of the text in the columns is less than the width of the name,
col.name.alignwill have no effect. Other options are "right" and "left".

col.txt.align
how character columns are aligned. Options are the same as for col.name.align
with no effect when the width of the column is greater than its name.

cell.align how numbers are displayed in columns

hsep character string to use as horizontal separator, i.e. what separates columns

vsep character string to use as vertical separator, i.e. what separates rows. Length
cannot be more than one.

csep character string to use where vertical and horizontal separators cross. If hsep
is more than one character, csep will need to be the same length. There is no
provision for multiple vertical separators

row.names logical: are we printing the names of the rows?

col.names logical: are we printing the names of the columns?

append logical: if file is not "", are we appending to the file or overwriting?

top.border logical: do we want a border along the top above the columns?

left.border logical: do we want a border along the left of the first column?

... unused

prnz 183

Details

If any column of x is a mixture of character and numeric, the distinction between character and
numeric columns will be lost. This is especially so if the matrix is of a form where you would not
want to print the column names, the column information being in the rows at the beginning of the
matrix.

Row names, if not specified in the making of the matrix will simply be numbers. To prevent printing
them, set row.names = FALSE.

Value

No value is returned. The matrix or dataframe will be printed to file or to the screen.

Author(s)

Patrick Connolly 〈p.connolly@hortresearch.co.nz〉

See Also

write, write.table

Examples

data(HairEyeColor)
print.char.matrix(HairEyeColor[, , "Male"], col.names = TRUE)
print.char.matrix(HairEyeColor[, , "Female"], col.txt.align = "left", col.names = TRUE)

z <- rbind(c("", "N", "y"),
c("[1.34,40.3)\n[40.30,48.5)\n[48.49,58.4)\n[58.44,87.8]",
" 50\n 50\n 50\n 50",
"0.530\n0.489\n0.514\n0.507"),

c("female\nmale", " 94\n106", "0.552\n0.473"),
c("", "200", "0.510"))

dimnames(z) <- list(c("", "age", "sex", "Overall"),NULL)

print.char.matrix(z)

prnz Print and Object with its Name

Description

Prints an object with its name and with an optional descriptive text string. This is useful for anno-
tating analysis output files and for debugging.

Usage

prn(x, txt)

184 ps.slide

Arguments

x any object

txt optional text string

Side Effects

prints

See Also

print, cat

Examples

x <- 1:5
prn(x)
prn(fit, 'Full Model Fit')

ps.slide Postscript and Adobe PDF Setup for 35mm Slides and Other Formats

Description

The ps.slide function has nice defaults to create postscript images with larger font, thicker lines,
and better axis labeling. These images can be used to make nice slides. There is an option to view
the constructed postscript file using ghostview, and an option to initiate a background process to
convert the postscript file to a PC Paintbrush .pcx file for importing into various PC presentation
graphics packages although with a significant loss in resolution. This option assumes you have
installed various public-domain unix image conversion programs. You can preview .pcx files using
e.g. xli file.pcx &. Specify type=1 to make nice fullsize graphs or type=3 for making
5 x 7" landscape graphs using 14-point type (useful for submitting to journals). type=2 (the
default) is for color 35mm slides. Use type=4 to make nice black and white overhead projection
transparancies (portrait mode). This uses line thickness 4, pointsize 14, height 8, width 7. For
type=3, numbers on the y-axis are written horizontally (las defaults to 1 for type=3).

ps.slide calls mgp.axis.labels in Hmisc set up axis-specific defaults for the 2nd mgp
graphical parameter. See Overview for Hmisc for help. This is only used automatically for
select high-level graphics functions in Hmisc and Design, as S-Plus only supports a single distance
between tick marks and tick mark labels using par, and when las=1 a larger distance is needed
for the y-axis.

See the body of the function for type-specific default values for many of the parameters. This
function has not been tested for color output on Windows systems.

setps is a function that makes small postscript plots with minimal surrounding white space, suit-
able for inclusion in books and reports. Internally setps uses (and defines) the psfig func-
tion by Antonio Possolo (antonio@atc.boeing.com). setps is especially good for including plots
in LaTeX. setps creates a temporary function in the session database that when invoked will

ps.slide 185

convert a completed postscript graphics file to a Adobe Acrobat .pdf if you have Ghostscript in-
stalled and in your path (so that the gs command is available in UNIX or gswin32c is avail-
able for Windows/NT). Invoke topdf by the command topdf(), or, if you want to convert
a graphic other than the last one created, run topdf(filename) to convert filename.ps to
filename.pdf. If trellis=TRUE, setps invokes trellis.devicewith a postscript
device argument, and it does not set any of the par parameters. Arguments 3, 4, 5, 7, 9, and 10 to
setps are ignored if trellis=TRUE. If options(setpsPrefix="name") is defined, the
"name" string will be prefixed to the file name used by setps. setpdf uses a similar option
setpdfPrefix. setps and setpdf set par(mgp=c(2,0.4,0)) if trellis=FALSE.

setpdf is similar to setps but for making Adobe Acrobat PDF graphics files directly. There are
a few problems with the S-Plus pdf.graph function used by setpdf, though: (1) the default for
points (open circle) is too large, (2) graphs are not centered properly, (3) gray scale does not work,
and (4) there is some wasted space at the bottom of the graph. When drawing points, the user may
want to specify cex=0.7. It may be better to use setps followed by topdf().

tex is a little function to save typing when including \tex commands in graphs that are used with
the psfrag package in LaTeX to typeset any LaTeX text inside a postscript graphic. tex surrounds
the input character string with \tex[options]{}. This is especially useful for getting Greek letters
and math symbols in postscript graphs. By default tex returns a string with psfrag commands
specifying that the string be centered, not rotated, and not specially enlarged or shrunk.

showPsfrag is used to display (using ghostview) a postscript image that contained psfrag LaTeX
strings, by building a small LaTeX script and running latex and dvips.

Usage

ps.slide(file, background = if (type != 2) "white" else "navy blue",
foreground = if (type == 2) "yellow" else

(if(background == "white") "black" else "white"),
font = "Helvetica", pointsize = c(24, 28, 14, 14)[type],
hor = type != 4, lwd = c(2, 5, 2, 4)[type],
mgp = if(under.unix) list(c(1.8, 0.4, 0), c(1.5, 0.2, 0),

c(2, 0.4, 0), c(1.5, 0.2, 0))[[type]] else
list(c(1.8, 0.5, 0), c(1.5, 0.4, 0), c(2, 0.5, 0),
c(1.5, 0.4, 0))[[type]],

mar = list(c(4, 3, 2, 1) + 0.1, c(5, 4, 2.25, 2) + 0.1,
c(3, 3, 1, 1) + 0.1, c(5, 4, 2.25, 2) + 0.1)[[type]],

pch = 202, view = FALSE, pcx = FALSE, tiff = FALSE,
close = view | pcx | tiff, bty = "l",
type = 2, height = switch(type, NULL, NULL, 5, 8),
width = switch(type, NULL, NULL, 7, 7),
tck = if (type == 3 || !under.unix) -0.013 else par("tck"),
las = if (type == 3) 1 else 0, eps = FALSE, ...)

setps(filename, w=0, h=3, pointsize=10, sublines=0, toplines=0,
type="symbol", lwd=2, font="Helvetica",
leftlines=0, las=1,
trellis=!(missing(setTrellis.) & missing(strip.blank) &

missing(lty.dot.line) & missing(lwd.dot.line)),
setTrellis.=TRUE,

186 ps.slide

strip.blank =TRUE, lty.dot.line = 1, lwd.dot.line = 1,
seqno=NULL, color=FALSE)

setpdf(filename, w=0, h=4, pointsize=10, sublines=0, toplines=0,
type="symbol", lwd=1.5, font=if(.R.)"Helvetica" else 1,
ratio= if(.R.) 4/3 else (1 + sqrt(5))/2,
leftlines=0, las=1, bty='l', hor=FALSE,
trellis=!(missing(setTrellis.) & missing(strip.blank) &

missing(lty.dot.line) & missing(lwd.dot.line)),
setTrellis.=TRUE,
strip.blank =TRUE, lty.dot.line = 1, lwd.dot.line =1,
region=c(0, 0, h, w), color=FALSE, seqno=NULL, ...)

tex(string, lref='c', psref='c', scale=1, srt=0)

showPsfrag(filename)

Arguments

file

filename name or character string or character vector specifying file prefix. For setps
or setpdf specify type="char" if this is a character vector or a quote-
delimited character string.

string a character string to be processed by psfrag in LaTeX.

background default is yellow on navy blue background (black on white for type=1,3.
background may also be set to any legitimate background color listed in the
S-supplied object ps.colors.rgb.

foreground foreground color. See background for allowable values.

font font for text. Replaces the first font in the standard list of fonts in ps.options("fonts").
If font="Times-Roman", the fifth font (normally Helvetica-Bold) is
set to Times-Bold. For setpdf, font is a number, and the default is 1 for
Helvetica. All default fonts are Helvetica for setps, psfig, and ps.slide.

pointsize postscript point size. Set to a larger number if using multiple plots via par(mfrow=).

hor default is TRUE to make a horizontal graph

lwd line width

mgp see par. Defaults are chosen according to type.

mar margins (see par)

pch see par

view set to TRUE to initiate a ghostview run to view the postscript file. This
option will also close out the postscript file (this is done before viewing). If
you have an active ghostview window for this file already, you can just type
graphics.off() or dev.off() to re-create the .ps file. ghostview
will then update the image automatically.

pcx set to TRUE to initiate conversion to pcx format. Also implies close=TRUE.

tiff set to TRUE to initiate conversion to tiff format. Also implies close=TRUE.

ps.slide 187

close set to TRUE to finish construction of the postscript file.

bty box type surrounding graph. Default is "l" for "L" shape. Use "c" for com-
plete box.

type For ps.slide, type is an integer. In this case, set type=1 to use black on
white background, smaller pointsize, and other settings that are good for making
overhead transparencies and graphs to include in reports. Set type=3 for 5"
x 7" landscape plots, and type=4 for overheads. For setps and setpdf,
type="char" specifies that the filename argument is a character string or
vector, and any other value indicates that it is an unquoted name.

height defaults to 5 if type=3, otherwise no default (except for type=4)

width defaults to 7 if type=3, otherwise no default (except for type=4)

tck length of tick marks. See par.

las set to 0 to have axis labels always parallel to the axis, 1 for always horizontal,
2 for perpendicular to axis

eps set to TRUE if you are going to be importing the postscript file to a system that
really cares that it is marked to officially be encapsulated postscript. If you set
eps=TRUE, you may put only one figure in the file (see the onefile argument
in postscript). This applies to UNIX systems only.

... other arguments to ps.options (or postscript for Windows or pdf.graph
for setpdf)

w width of plot. Default is chosen to scale nicely to h for a landscape plot

h height of plot (default is 3in)

sublines number of lines to reserve for subtitles

toplines number of lines to reserve for main title

leftlines number of lines to reserve for left margin

trellis set to TRUE to set up for postscript output for Trellis graphics. This makes
trellis.device("postscript", ...) be called instead of postscript(...)
directly, and leaves par parameters at defaults.

setTrellis. set to FALSE to prevent setTrellis from being called to set the strip panel
background and to set characteristics for dot plot reference lines

strip.blank set to FALSE to keep shading in conditioning variable panel titles, if setTrellis.=TRUE

lty.dot.line if setTrellis.=TRUE, the line type for dot plot reference lines (default =
solid line)

lwd.dot.line if setTrellis.=TRUE, the line width for dot plot reference lines (default =
1)

seqno if non-null, pastes the value of seqno at the end of the base of the file name,
for setps and setpdf

color set color=TRUE to use a color Trellis device instead of default of black and
white, for setps. For setpdf set to TRUE to get color pdf graphics.

region see pdf.graph. Default is to use an image region that is just large enough to
contain the graphic.

188 ps.slide

ratio ratio of width to height of the plot when only one of those is specified. Defaults
depend on whether S-Plus or R are being used.

lref LaTeX reference point for string. See the psfrag documentation referenced
below. Default is "c" for centered (this is also the default for psref).

psref PostScript reference point.

scale scall factor, default is 1

srt rotation for string in degrees (default is zero)

Value

nothing, for most of the functions. tex returns a modified character string.

Side Effects

Starts a postscript file or a process to convert it to pcx format, or starts a Trellis postscript device.
ps.slide Stores a system option ps.slide.file. pdf.graph opens a graphics file using
pdf.graph. setps creates a function topdf in frame 0 (the session database).

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

References

Grant MC, Carlisle (1998): The PSfrag System, Version 3. Full documentation is obtained by
searching www.ctan.org for pfgguide.ps.

See Also

postscript, par, ps.options, mgp.axis.labels, pdf, trellis.device, setTrellis

Examples

Not run:
ps.slide("myslide") # myslide is file name prefix
use ps.slide("myslide",back="green") to use e.g. green background
plot(x, y)
title("My Title")

ps.slide(view=TRUE) # makes myslide.ps file
use ps.slide(close=TRUE) to close file without viewing with
ghostview.

ps.slide(view=TRUE, pcx=TRUE)
converts myslide.ps into myslide.pcx (PC Paintbrush
format suitable for importing in PC graphics packages)

mgp.axis.labels(c(.4,1.2)) # override 2nd mgp parameters for x- and y axes
mgp.axis.labels(type='x') # retrieve 3 mgp parameters for x-axis

pstamp 189

setps(myfile) # equiv. to setps('myfile', type='char')
setps(myfile, trellis=TRUE, other args) for Trellis

plotting commands
dev.off()
topdf() # topdf created by setps

makes Ghostscript create "myfile.pdf"
setpdf(myfile)
plotting commands
dev.off()

Put math and Greek symbols in a graph
setps(test)
x <- seq(0,15,length=100)
plot(x, dchisq(x, 5), xlab=tex('x'),

ylab=tex('$f(x)$'), type='l')
title(tex('Density Function of the χ_{5}^{2} Distribution'))
dev.off()
To process this file in LaTeX do something like
#\documentclass{article}
#\usepackage[scanall]{psfrag}
#\begin{document}
#\begin{figure}
#\includegraphics{test.ps}
#\caption{This is an example}
#\end{figure}
#\end{document}
End(Not run)

pstamp Date/Time/Directory Stamp the Current Plot

Description

Date-time stamp the current plot in the extreme lower right corner. Optionally add the current
working directory and arbitrary other text to the stamp.

Usage

pstamp(txt, pwd = FALSE, time. = TRUE)

Arguments

txt an optional single text string

pwd set to TRUE to add the current working directory name to the stamp

time. set to FALSE to use the date without the time

190 rMultinom

Details

Certain functions are not supported for S-Plus under Windows. For R, results may not be satisfac-
tory if par(mfrow=) is in effect.

Author(s)

Frank Harrell

Examples

plot(1:20)
pstamp(pwd=TRUE, time=FALSE)

rMultinom Generate Multinomial Random Variables with Varying Probabilities

Description

Given a matrix of multinomial probabilities where rows correspond to observations and columns
to categories (and each row sums to 1), generates a matrix with the same number of rows as has
probs and with m columns. The columns represent multinomial cell numbers, and within a row
the columns are all samples from the same multinomial distribution. The code is a modification of
that in the impute.polyreg function in the MICE package.

Usage

rMultinom(probs, m)

Arguments

probs matrix of probabilities

m number of samples for each row of probs

Value

an integer matrix having m columns

See Also

rbinom

Examples

set.seed(1)
w <- rMultinom(rbind(c(.1,.2,.3,.4),c(.4,.3,.2,.1)),200)
t(apply(w, 1, table)/200)

rcorr 191

rcorr Matrix of Correlations and P-values

Description

rcorr Computes a matrix of Pearson’s r or Spearman’s rho rank correlation coefficients for all
possible pairs of columns of a matrix. Missing values are deleted in pairs rather than deleting
all rows of x having any missing variables. Ranks are computed using efficient algorithms (see
reference 2), using midranks for ties.

Usage

rcorr(x, y, type=c("pearson","spearman"))

S3 method for class 'rcorr':
print(x, ...)

Arguments

x a numeric matrix with at least 5 rows and at least 2 columns (if y is absent). For
print, x is an object produced by rcorr.

y a numeric vector or matrix which will be concatenated to x. If y is omitted for
rcorr, x must be a matrix.

type specifies the type of correlations to compute. Spearman correlations are the
Pearson linear correlations computed on the ranks of non-missing elements, us-
ing midranks for ties.

... argument for method compatiblity.

Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values are approximated by
using the t or F distributions.

Value

rcorr returns a list with elements r, the matrix of correlations, n the matrix of number of observa-
tions used in analyzing each pair of variables, and P, the asymptotic P-values. Pairs with fewer than
2 non-missing values have the r values set to NA. The diagonals of n are the number of non-NAs
for the single variable corresponding to that row and column.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

192 rcorr.cens

References

Hollander M. and Wolfe D.A. (1973). Nonparametric Statistical Methods. New York: Wiley.

Press WH, Flannery BP, Teukolsky SA, Vetterling, WT (1988): Numerical Recipes in C. Cam-
bridge: Cambridge University Press.

See Also

hoeffd, cor, combine.levels, varclus, dotchart2, impute, chisq.test, cut2.

Examples

x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
v <- c(1, 2, 3, 4, 5)
rcorr(cbind(x,y,z,v))

rcorr.cens Rank Correlation for Censored Data

Description

Computes the c index and the corresponding generalization of Somers’ Dxy rank correlation for a
censored response variable. Also works for uncensored and binary responses, although its use of
all possible pairings makes it slow for this purpose.

Usage

rcorr.cens(x, S, outx=FALSE)

Arguments

x a numeric predictor variable

S an Surv object or a vector. If a vector, assumes that every observation is un-
censored.

outx set to TRUE to not count pairs of observations tied on x as a relevant pair. This
results in a Goodman–Kruskal gamma type rank correlation.

Value

a vector with the following named elements: C Index, Dxy, S.D., n, missing, uncensored,
Relevant Pairs, Concordant, and Uncertain

n number of observations not missing on any input variables

missing number of observations missing on x or S

relevant number of pairs of non-missing observations for which S could be ordered

rcorr.cens 193

concordant number of relevant pairs for which x and S are concordant.

uncertain number of pairs of non-missing observations for which censoring prevents clas-
sification of concordance of x and S.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

References

Newson R: Confidence intervals for rank statistics: Somers’ D and extensions. Stata Journal 6:309-
334; 2006.

See Also

somers2

Examples

set.seed(1)
x <- round(rnorm(200))
y <- rnorm(200)
rcorr.cens(x, y, outx=TRUE) # can correlate non-censored variables
library(survival)
age <- rnorm(400, 50, 10)
d.time <- rexp(400)
cens <- runif(400,.5,2)
death <- d.time <= cens
d.time <- pmin(d.time, cens)
rcorr.cens(age, Surv(d.time, death))

Show typical 0.95 confidence limits for ROC areas for a sample size
with 24 events and 62 non-events, for varying population ROC areas
Repeat for 138 events and 102 non-events
set.seed(8)
par(mfrow=c(2,1))
for(i in 1:2) {
n1 <- c(24,138)[i]
n0 <- c(62,102)[i]
y <- c(rep(0,n0), rep(1,n1))
deltas <- seq(-3, 3, by=.25)
C <- se <- deltas
j <- 0
for(d in deltas) {
j <- j + 1
x <- c(rnorm(n0, 0), rnorm(n1, d))
w <- rcorr.cens(x, y)
C[j] <- w['C Index']
se[j] <- w['S.D.']/2

194 rcorrp.cens

}
low <- C-1.96*se; hi <- C+1.96*se
print(cbind(C, low, hi))
errbar(deltas, C, C+1.96*se, C-1.96*se,

xlab='True Difference in Mean X',
ylab='ROC Area and Approx. 0.95 CI')

title(paste('n1=',n1,' n0=',n0,sep=''))
abline(h=.5, v=0, col='gray')
true <- 1 - pnorm(0, deltas, sqrt(2))
lines(deltas, true, col='blue')
}
par(mfrow=c(1,1))

rcorrp.cens Rank Correlation for Paired Predictors with a Censored Response

Description

Computes U-statistics to test for whether predictor X1 is more concordant than predictor X2, ex-
tending rcorr.cens. For method=1, estimates the fraction of pairs for which the x1 difference is
more impressive than the x2 difference. For method=2, estimates the fraction of pairs for which x1
is concordant with S but x2 is not.

Usage

rcorrp.cens(x1, x2, S, outx=FALSE, method=1)

Arguments

x1 first predictor

x2 second predictor

S a possibly right-censored Surv object. If S is a vector instead, it is converted to
a Surv object and it is assumed that no observations are censored.

outx set to T to exclude pairs tied on x1 or x2 from consideration

method see above

Value

a vector of statistics

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
〈f.harrell@vanderbilt.edu〉

rcspline.eval 195

See Also

rcorr.cens, somers2, Surv

Examples

set.seed(1)
library(survival)

x1 <- rnorm(400)
x2 <- x1 + rnorm(400)
d.time <- rexp(400) + (x1 - min(x1))
cens <- runif(400,.5,2)
death <- d.time <= cens
d.time <- pmin(d.time, cens)
rcorrp.cens(x1, x2, Surv(d.time, death))
#rcorrp.cens(x1, x2, y) ## no censoring

rcspline.eval Restricted Cubic Spline Design Matrix

Description

Computes matrix that expands a single variable into the terms needed to fit a restricted cubic spline
(natural spline) function using the truncated power basis. Two normalization options are given
for somewhat reducing problems of ill-conditioning. The antiderivative function can be optionally
created. If knot locations are not given, they will be estimated from the marginal distribution of x.

Usage

rcspline.eval(x, knots, nk=5, inclx=FALSE, knots.only=FALSE,
type="ordinary", norm=2, rpm=NULL)

Arguments

x a vector representing a predictor variable

knots knot locations. If not given, knots will be estimated using default quantiles of
x. For 3 knots, the outer quantiles used are .10 and .90. For 4-6 knots, the outer
quantiles used are .05 and .95. For nk>6, the outer quantiles are .025 and .975.
The knots are equally spaced between these on the quantile scale. For fewer than
100 non-missing values of x, the outer knots are the 5th smallest and largest x.

nk number of knots. Default is 5. The minimum value is 3.

inclx set to TRUE to add x as the first column of the returned matrix

knots.only return the estimated knot locations but not the expanded matrix

type "ordinary" to fit the function, "integral" to fit its anti-derivative.

196 rcspline.plot

norm 0 to use the terms as originally given by Devlin and Weeks (1986), 1 to nor-
malize non-linear terms by the cube of the spacing between the last two knots,
2 to normalize by the square of the spacing between the first and last knots (the
default). norm=2 has the advantage of making all nonlinear terms be on the
x-scale.

rpm If given, any NAs in x will be replaced with the value rpm after estimating any
knot locations.

Value

If knots.only=TRUE, returns a vector of knot locations. Otherwise returns a matrix with x (if
inclx=TRUE) followed by nk-2 nonlinear terms. The matrix has an attribute knots which is
the vector of knots used.

References

Devlin TF and Weeks BJ (1986): Spline functions for logistic regression modeling. Proc 11th
Annual SAS Users Group Intnl Conf, p. 646–651. Cary NC: SAS Institute, Inc.

See Also

ns, rcspline.restate, rcs

Examples

x <- 1:100
rcspline.eval(x, nk=4, inclx=TRUE)
#lrm.fit(rcspline.eval(age,nk=4,inclx=TRUE), death)

rcspline.plot Plot Restricted Cubic Spline Function

Description

Provides plots of the estimated restricted cubic spline function relating a single predictor to the re-
sponse for a logistic or Cox model. The rcspline.plot function does not allow for interactions
as do lrm and cph, but it can provide detailed output for checking spline fits. This function uses
the rcspline.eval, lrm.fit, and Therneau’s coxph.fit functions and plots the estimated
spline regression and confidence limits, placing summary statistics on the graph. If there are no
adjustment variables, rcspline.plot can also plot two alternative estimates of the regression
function when model="logistic": proportions or logit proportions on grouped data, and a
nonparametric estimate. The nonparametric regression estimate is based on smoothing the binary
responses and taking the logit transformation of the smoothed estimates, if desired. The smoothing
uses supsmu.

rcspline.plot 197

Usage

rcspline.plot(x,y,model=c("logistic", "cox", "ols"),xrange,event,nk=5,knots=NULL,
show=c("xbeta","prob"),adj=NULL,xlab,ylab,ylim,plim=c(0,1),plotcl=TRUE,
showknots=TRUE,add=FALSE,subset,lty=1,noprint=FALSE,m,smooth=FALSE,bass=1,
main="auto",statloc)

Arguments

x a numeric predictor
y a numeric response. For binary logistic regression, y should be 0-1.
model "logistic" or "cox". For "cox", uses the coxph.fitwith method="efron".

function.
xrange range for evaluating x, default is f and 1-f quantiles of x, where f=10/max(n,200)
event event/censoring indicator if model="cox". If event is present, model is

assumed to be "cox"
nk number of knots
knots knot locations, default based on quantiles of x (by rcspline.eval)
show "xbeta" or "prob" - what is plotted on y-axis
adj optional matrix of adjustment variables
xlab x-axis label, default is "label" attribute of x
ylab same for y
ylim y-axis limits for logit or log hazard
plim y-axis limits for probability scale
plotcl plot confidence limits
showknots show knot locations with arrows
add add this plot to an already existing plot
subset subset of observations to process, e.g. subset=sex=="male"
lty line type for plotting estimated spline function
noprint suppress printing regression coefficients and standard errors
m for model="logistic", plot grouped estimates with triangles. Each group

contains m ordered observations on x.
smooth plot nonparametric estimate if model="logistic" and adj is not specified
bass smoothing parameter (see supsmu)
main main title, default is e.g. "Estimated Spline Transformation"

statloc location of summary statistics. Default positioning by clicking left mouse but-
ton where upper left corner of statistics should appear. Alternative is "ll" to
place below the graph on the lower left, or the actual x and y coordinates. Use
"none" to suppress statistics.

Value

list with components knots, x, xbeta, lower, upper which are respectively the knot
locations, design matrix, linear predictor, and lower and upper confidence limits

198 rcspline.restate

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
f.harrell@vanderbilt.edu

See Also

lrm, cph, rcspline.eval, plot, supsmu, coxph.fit, lrm.fit

Examples

#rcspline.plot(cad.dur, tvdlm, m=150)
#rcspline.plot(log10(cad.dur+1), tvdlm, m=150)

rcspline.restate Re-state Restricted Cubic Spline Function

Description

This function re-states a restricted cubic spline function in the un-linearly-restricted form. Coef-
ficients for that form are returned, along with an S functional representation of this function and
a LaTeX character representation of the function. rcsplineFunction is a fast function that
creates a function to compute a restricted cubic spline function with given coefficients and knots,
without reformatting the function to be pretty (i.e., into unrestricted form).

Usage

rcspline.restate(knots, coef,
type=c("ordinary","integral"),
x="X", lx=nchar(x),
norm=2, columns=65, before="& &", after="\",
begin="", nbegin=0, digits=max(8, .Options$digits))

rcsplineFunction(knots, coef, norm=2)

Arguments

knots vector of knots used in the regression fit

coef vector of coefficients from the fit. If the length of coef is k-1, where k=length(knots),
the first coefficient must be for the linear term and remaining k-2 coefficients
must be for the constructed terms (e.g., from rcspline.eval). If the length
of coef is k, an intercept is assumed to be in the first element (or a zero is
prepended to coef for rcsplineFunction).

type The default is to represent the cubic spline function corresponding to the co-
efficients and knots. Set type="integral" to instead represent its anti-
derivative.

rcspline.restate 199

x a character string to use as the variable name in the LaTeX expression for the
formula.

lx length of x to count with respect to columns. Default is length of character
string contained by x. You may want to set lx smaller than this if it includes
non-printable LaTeX commands.

norm normalization that was used in deriving the original nonlinear terms used in the
fit. See rcspline.eval for definitions.

columns maximum number of symbols in the LaTeX expression to allow before inserting
a newline (\\) command. Set to a very large number to keep text all on one line.

before text to place before each line of LaTeX output. Use "& &" for an equation array
environment in LaTeX where you want to have a left-hand prefix e.g. f(X) &
= & or using \lefteqn.

after text to place at the end of each line of output.

begin text with which to start the first line of output. Useful when adding LaTeX
output to part of an existing formula

nbegin number of columns of printable text in begin

digits number of significant digits to write for coefficients and knots

Value

rcspline.restate returns a vector of coefficients. The coefficients are un-normalized and
two coefficients are added that are linearly dependent on the other coefficients and knots. The
vector of coefficients has four attributes. knots is a vector of knots, latex is a vector of text
strings with the LaTeX representation of the formula. columns.used is the number of columns
used in the output string since the last newline command. function is an S function, which is
also return in character string format as the text attribute. rcsplineFunction returns an S
function with arguments x (a user-supplied numeric vector at which to evaluate the function), and
some automatically-supplied other arguments.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
f.harrell@vanderbilt.edu

See Also

rcspline.eval, ns, rcs, latex, Function.transcan

Examples

set.seed(1)
x <- 1:100
y <- (x - 50)^2 + rnorm(100, 0, 50)
plot(x, y)
xx <- rcspline.eval(x, inclx=TRUE, nk=4)
knots <- attr(xx, "knots")

200 reShape

coef <- lsfit(xx, y)$coef
options(digits=4)
rcspline.restate must ignore intercept
w <- rcspline.restate(knots, coef[-1], x="{\\rm BP}")
could also have used coef instead of coef[-1], to include intercept
cat(attr(w,"latex"), sep="\n")

xtrans <- eval(attr(w, "function"))
This is an S function of a single argument
lines(x, coef[1] + xtrans(x), type="l")
Plots fitted transformation

xtrans <- rcsplineFunction(knots, coef)
xtrans
lines(x, xtrans(x), col='blue')

#x <- blood.pressure
xx.simple <- cbind(x, pmax(x-knots[1],0)^3, pmax(x-knots[2],0)^3,

pmax(x-knots[3],0)^3, pmax(x-knots[4],0)^3)
pred.value <- coef[1] + xx.simple %*% w
plot(x, pred.value, type='l') # same as above

reShape Reshape Matrices and Serial Data

Description

If the first argument is a matrix, reShape strings out its values and creates row and column vectors
specifying the row and column each element came from. This is useful for sending matrices to
Trellis functions, for analyzing or plotting results of table or crosstabs, or for reformatting
serial data stored in a matrix (with rows representing multiple time points) into vectors. The number
of observations in the new variables will be the product of the number of rows and number of
columns in the input matrix. If the first argument is a vector, the id and colvar variables are
used to restructure it into a matrix, with NAs for elements that corresponded to combinations of id
and colvar values that did not exist in the data. When more than one vector is given, multiple
matrices are created. This is useful for restructuring irregular serial data into regular matrices. It is
also useful for converting data produced by expand.grid into a matrix (see the last example).
The number of rows of the new matrices equals the number of unique values of id, and the number
of columns equals the number of unique values of colvar.

When the first argument is a vector and the id is a data frame (even with only one variable),
reShape will produce a data frame, and the unique groups are identified by combinations of the
values of all variables in id. If a data frame constant is specified, the variables in this data frame
are assumed to be constant within combinations of id variables (if not, an arbitrary observation in
constant will be selected for each group). A row of constant corresponding to the target id
combination is then carried along when creating the data frame result.

A different behavior of reShape is achieved when base and reps are specified. In that case
x must be a list or data frame, and those data are assumed to contain one or more non-repeating
measurements (e.g., baseline measurements) and one or more repeated measurements represented

reShape 201

by variables named by pasting together the character strings in the vector base with the integers 1,
2, . . . , reps. The input data are rearranged by repeating each value of the baseline variables reps
times and by transposing each observation’s values of one of the set of repeated measurements as
reps observations under the variable whose name does not have an integer pasted to the end. if
x has a row.names attribute, those observation identifiers are each repeated reps times in the
output object. See the last example.

Usage

reShape(x, ..., id, colvar, base, reps, times=1:reps,
timevar='seqno', constant=NULL)

Arguments

x a matrix or vector, or, when base is specified, a list or data frame

... other optional vectors, if x is a vector

id A numeric, character, category, or factor variable containing subject identifiers,
or a data frame of such variables that in combination form groups of interest.
Required if x is a vector, ignored otherwise.

colvar A numeric, character, category, or factor variable containing column identifiers.
colvar is using a "time of data collection" variable. Required if x is a vector,
ignored otherwise.

base vector of character strings containing base names of repeated measurements

reps number of times variables named in base are repeated. This must be a constant.

times when base is given, times is the vector of times to create if you do not want
to use consecutive integers beginning with 1.

timevar specifies the name of the time variable to create if times is given, if you do not
want to use seqno

constant a data frame with the same number of rows in id and x, containing auxiliary
information to be merged into the resulting data frame. Logically, the rows of
constant within each group should have the same value of all of its variables.

Details

In converting dimnames to vectors, the resulting variables are numeric if all elements of the ma-
trix dimnames can be converted to numeric, otherwise the corresponding row or column variable
remains character. When the dimnames if x have a names attribute, those two names become
the new variable names. If x is a vector and another vector is also given (in ...), the matrices
in the resulting list are named the same as the input vector calling arguments. You can specify
customized names for these on-the-fly by using e.g. reShape(X=x, Y=y, id= , colvar=
). The new names will then be X and Y instead of x and y. A new variable named seqnno is
also added to the resulting object. seqno indicates the sequential repeated measurement number.
When base and times are specified, this new variable is named the character value of timevar
and the values are given by a table lookup into the vector times.

202 reShape

Value

If x is a matrix, returns a list containing the row variable, the column variable, and the as.vector(x)
vector, named the same as the calling argument was called for x. If x is a vector and no other vec-
tors were specified as ..., the result is a matrix. If at least one vector was given to ..., the result
is a list containing k matrices, where k one plus the number of vectors in If x is a list or data
frame, the same type of object is returned. If x is a vector and id is a data frame, a data frame will
be the result.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
〈f.harrell@vanderbilt.edu〉

See Also

reshape, as.vector, matrix, dimnames, outer, table

Examples

set.seed(1)
Solder <- factor(sample(c('Thin','Thick'),200,TRUE),c('Thin','Thick'))
Opening <- factor(sample(c('S','M','L'), 200,TRUE),c('S','M','L'))

tab <- table(Opening, Solder)
tab
reShape(tab)
attach(tab) # do further processing

#if(!.R.) {
g <- crosstabs(~ Solder + Opening, data = solder, subset = skips > 10)
rowpct <- 100*attr(g,'marginals')$"N/RowTotal" # compute row pcts
rowpct
#
#
r <- reShape(rowpct)
note names "Solder" and "Opening" came originally from formula
given to crosstabs
r
dotplot(Solder ~ rowpct, groups=Opening, panel=panel.superpose, data=r)
#}

An example where a matrix is created from irregular vectors
follow <- data.frame(id=c('a','a','b','b','b','d'),

month=c(1, 2, 1, 2, 3, 2),
cholesterol=c(225,226, 320,319,318, 270))

follow
attach(follow)
reShape(cholesterol, id=id, colvar=month)
detach('follow')

redun 203

Could have done :
reShape(cholesterol, triglyceride=trig, id=id, colvar=month)

Create a data frame, reshaping a long dataset in which groups are
formed not just by subject id but by combinations of subject id and
visit number. Also carry forward a variable that is supposed to be
constant within subject-visit number combinations. In this example,
it is not constant, so an arbitrary visit number will be selected.
w <- data.frame(id=c('a','a','a','a','b','b','b','d','d','d'),

visit=c(1, 1, 2, 2, 1, 1, 2, 2, 2, 2),
k=c('A','A','B','B','C','C','D','E','F','G'),

var=c('x','y','x','y','x','y','y','x','y','z'),
val=1:10)

with(w,
reShape(val, id=data.frame(id,visit),

constant=data.frame(k), colvar=var))

Get predictions from a regression model for 2 systematically
varying predictors. Convert the predictions into a matrix, with
rows corresponding to the predictor having the most values, and
columns corresponding to the other predictor
d <- expand.grid(x2=0:1, x1=1:100)
pred <- predict(fit, d)
reShape(pred, id=d$x1, colvar=d$x2) # makes 100 x 2 matrix

Reshape a wide data frame containing multiple variables representing
repeated measurements (3 repeats on 2 variables; 4 subjects)
set.seed(33)
n <- 4
w <- data.frame(age=rnorm(n, 40, 10),

sex=sample(c('female','male'), n,TRUE),
sbp1=rnorm(n, 120, 15),
sbp2=rnorm(n, 120, 15),
sbp3=rnorm(n, 120, 15),
dbp1=rnorm(n, 80, 15),
dbp2=rnorm(n, 80, 15),
dbp3=rnorm(n, 80, 15), row.names=letters[1:n])

options(digits=3)
w

u <- reShape(w, base=c('sbp','dbp'), reps=3)
u
reShape(w, base=c('sbp','dbp'), reps=3, timevar='week', times=c(0,3,12))

redun Redundancy Analysis

Description

Uses flexible parametric additive models (see areg and its use of regression splines) to determine
how well each variable can be predicted from the remaining variables. Variables are dropped in a

204 redun

stepwise fashion, removing the most predictable variable at each step. The remaining variables are
used to predict. The process continues until no variable still in the list of predictors can be predicted
with an R2 or adjusted R2 of at least r2 or until dropping the variable with the highest R2 (adjusted
or ordinary) would cause a variable that was dropped earlier to no longer be predicted at least at the
r2 level from the now smaller list of predictors.

Usage

redun(formula, data=NULL, subset=NULL, r2 = 0.9,
type = c("ordinary", "adjusted"), nk = 3, tlinear = TRUE,
allcat=FALSE, minfreq=0, pr = FALSE, ...)

S3 method for class 'redun':
print(x, digits=3, long=TRUE, ...)

Arguments

formula a formula. Enclose a variable in I() to force linearity.

data a data frame

subset usual subsetting expression

r2 ordinary or adjusted R2 cutoff for redundancy

type specify "adjusted" to use adjusted R2

nk number of knots to use for continuous variables. Use nk=0 to force linearity for
all variables.

tlinear set to FALSE to allow a variable to be automatically nonlinearly transformed
(see areg) while being predicted. By default, only continuous variables on the
right hand side (i.e., while they are being predictors) are automatically trans-
formed, using regression splines. Estimating transformations for target (depen-
dent) variables causes more overfitting than doing so for predictors.

allcat set to TRUE to ensure that all categories of categorical variables having more
than two categories are redundant (see details below)

minfreq For a binary or categorical variable, there must be at least two categories with
at least minfreq observations or the variable will be dropped and not checked
for redundancy against other variables. minfreq also specifies the minimum
frequency of a category or its complement before that category is considered
when allcat=TRUE.

pr set to TRUE to monitor progress of the stepwise algorithm

... arguments to pass to dataframeReduce to remove "difficult" variables from
data if formula is ~. to use all variables in data (data must be specified
when these arguments are used). Ignored for print.

x an object created by redun

digits number of digits to which to round R2 values when printing

long set to FALSE to prevent the printmethod from printing the R2 history and the
original R2 with which each variable can be predicted from ALL other variables.

redun 205

Details

A categorical variable is deemed redundant if a linear combination of dummy variables representing
it can be predicted from a linear combination of other variables. For example, if there were 4 cities
in the data and each city’s rainfall was also present as a variable, with virtually the same rainfall
reported for all observations for a city, city would be redundant given rainfall (or vice-versa; the one
declared redundant would be the first one in the formula). If two cities had the same rainfall, city
might be declared redundant even though tied cities might be deemed non-redundant in another
setting. To ensure that all categories may be predicted well from other variables, use the allcat
option. To ignore categories that are too infrequent or too frequent, set minfreq to a nonzero
integer. When the number of observations in the category is below this number or the number of
observations not in the category is below this number, no attempt is made to predict observations
being in that category individually for the purpose of redundancy detection.

Value

an object of class "redun"

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

areg, dataframeReduce, transcan, varclus

Examples

set.seed(1)
n <- 100
x1 <- runif(n)
x2 <- runif(n)
x3 <- x1 + x2 + runif(n)/10
x4 <- x1 + x2 + x3 + runif(n)/10
x5 <- factor(sample(c('a','b','c'),n,replace=TRUE))
x6 <- 1*(x5=='a' | x5=='c')
redun(~x1+x2+x3+x4+x5+x6, r2=.8)
redun(~x1+x2+x3+x4+x5+x6, r2=.8, minfreq=40)
redun(~x1+x2+x3+x4+x5+x6, r2=.8, allcat=TRUE)
x5 is no longer redundant but x6 is

206 requirePackage

reorder.factor Reorder Factor Levels

Description

Reorders the levels of a factor variable by the values or the summarized values of another variable

Usage

reorder.factor(x, v, FUN = mean, ...)

Arguments

x a factor variable

v a numeric variable the same length as x

FUN a statistical summarization function applied to v by levels of x

... other arguments passed to FUN

Value

a new factor vector

See Also

factor

Examples

x <- factor(c('a','b','b','c'))
v <- c(3,-1,1,-5)
w <- reorder.factor(x, v) # uses FUN=mean
w
levels(w)
class(w)

requirePackage require a packge and error if package is not installed

Description

require a package. If package doesn’t exist then throw an error.

Usage

requirePackage(package, character.only = FALSE, ...)

rlegend 207

Arguments

package character vector containing the names of packages to load.
character.only

a logical indicating whether ’package’ can be assumed to be character string.

... arguments to be passed to require.

Author(s)

Charles Dupont

See Also

library, require

Examples

Not run:
requirePackage(methods)
End(Not run)

rlegend Special Version of legend for R

Description

rlegend is a version of legend for R that implements plot=FALSE, adds grid=TRUE, and
defaults lty, lwd, pch to NULL and checks for length>0 rather than missing(), so it’s
easier to deal with non-applicable parameters. But when grid is in effect, the preferred function
to use is rlegendg, which calls the lattice draw.key function.

Usage

rlegend(x, y, legend, fill, col = "black", lty = NULL, lwd = NULL, pch = NULL, angle = NULL, density = NULL, bty = "o", bg = par("bg"), pt.bg = NA, cex = 1, xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1, adj = 0, text.width = NULL, merge = do.lines && has.pch, trace = FALSE, ncol = 1, horiz = FALSE, plot = TRUE, grid = FALSE, ...)

rlegendg(x, y, legend, col=pr$col[1], lty=NULL,
lwd=NULL, pch=NULL, cex=pr$cex[1], other=NULL)

Arguments

x

y

legend

fill

col

lty

208 rlegend

lwd

pch

angle

density

bty

bg

pt.bg

cex

xjust

yjust

x.intersp

y.intersp

adj

text.width

merge

trace

ncol

horiz see legend

plot set to FALSE to suppress drawing the legend. This is used the compute the size
needed for when the legend is drawn with a later call to rlegend.

grid set to TRUE if the grid package is in effect

... see legend

other a list containing other arguments to pass to draw.key. See the help file for
xyplot.

Value

a list with elements rect and text. rect has elements w, h, left, top with size/position
information.

Author(s)

Frank Harrell and R-Core

See Also

legend,draw.key

rm.boot 209

rm.boot Bootstrap Repeated Measurements Model

Description

For a dataset containing a time variable, a scalar response variable, and an optional subject iden-
tification variable, obtains least squares estimates of the coefficients of a restricted cubic spline
function or a linear regression in time after adjusting for subject effects through the use of subject
dummy variables. Then the fit is bootstrapped B times, either by treating time and subject ID as
fixed (i.e., conditioning the analysis on them) or as random variables. For the former, the resid-
uals from the original model fit are used as the basis of the bootstrap distribution. For the latter,
samples are taken jointly from the time, subject ID, and response vectors to obtain unconditional
distributions.

If a subject id variable is given, the bootstrap sampling will be based on samples with replace-
ment from subjects rather than from individual data points. In other words, either none or all of
a given subject’s data will appear in a bootstrap sample. This cluster sampling takes into account
any correlation structure that might exist within subjects, so that confidence limits are corrected
for within-subject correlation. Assuming that ordinary least squares estimates, which ignore the
correlation structure, are consistent (which is almost always true) and efficient (which would not be
true for certain correlation structures or for datasets in which the number of observation times vary
greatly from subject to subject), the resulting analysis will be a robust, efficient repeated measures
analysis for the one-sample problem.

Predicted values of the fitted models are evaluated by default at a grid of 100 equally spaced time
points ranging from the minimum to maximum observed time points. Predictions are for the av-
erage subject effect. Pointwise confidence intervals are optionally computed separately for each
of the points on the time grid. However, simultaneous confidence regions that control the level of
confidence for the entire regression curve lying within a band are often more appropriate, as they
allow the analyst to draw conclusions about nuances in the mean time response profile that were not
stated apriori. The method of Tibshirani (1997) is used to easily obtain simultaneous confidence
sets for the set of coefficients of the spline or linear regression function as well as the average in-
tercept parameter (over subjects). Here one computes the objective criterion (here both the -2 log
likelihood evaluated at the bootstrap estimate of beta but with respect to the original design matrix
and response vector, and the sum of squared errors in predicting the original response vector) for the
original fit as well as for all of the bootstrap fits. The confidence set of the regression coefficients
is the set of all coefficients that are associated with objective function values that are less than or
equal to say the 0.95 quantile of the vector of B + 1 objective function values. For the coefficients
satisfying this condition, predicted curves are computed at the time grid, and minima and maxima of
these curves are computed separately at each time point to derive the final simultaneous confidence
band.

By default, the log likelihoods that are computed for obtaining the simultaneous confidence band
assume independence within subject. This will cause problems unless such log likelihoods have
very high rank correlation with the log likelihood allowing for dependence. To allow for correlation
or to estimate the correlation function, see the cor.pattern argument below.

210 rm.boot

Usage

rm.boot(time, y, id=seq(along=time), subset,
plot.individual=FALSE,
bootstrap.type=c('x fixed','x random'),
nk=6, knots, B=500, smoother=supsmu,
xlab, xlim, ylim=range(y),
times=seq(min(time),max(time),length=100),
absorb.subject.effects=FALSE,
rho=0, cor.pattern=c('independent','estimate'), ncor=10000,
...)

S3 method for class 'rm.boot':
plot(x, obj2, conf.int=.95,

xlab=x$xlab, ylab=x$ylab,
xlim, ylim=x$ylim,
individual.boot=FALSE,
pointwise.band=FALSE,
curves.in.simultaneous.band=FALSE,
col.pointwise.band=2,
objective=c('-2 log L','sse','dep -2 log L'), add=FALSE, ncurves,
multi=FALSE, multi.method=c('color','density'),
multi.conf =c(.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,.95,.99),
multi.density=c(-1,90,80,70,60,50,40,30,20,10, 7, 4),
multi.col =c(1, 8,20, 5, 2, 7,15,13,10,11, 9, 14),
subtitles=TRUE, ...)

Arguments

time numeric time vector

y continuous numeric response vector of length the same as time. Subjects hav-
ing multiple measurements have the measurements strung out.

x an object returned from rm.boot

id subject ID variable. If omitted, it is assumed that each time-response pair is
measured on a different subject.

subset subset of observations to process if not all the data
plot.individual

set to TRUE to plot nonparametrically smoothed time-response curves for each
subject

bootstrap.type
specifies whether to treat the time and subject ID variables as fixed or random

nk number of knots in the restricted cubic spline function fit. The number of knots
may be 0 (denoting linear regression) or an integer greater than 2 in which k
knots results in k-1 regression coefficients excluding the intercept. The default
is 6 knots.

knots vector of knot locations. May be specified if nk is omitted.

B number of bootstrap repetitions. Default is 500.

rm.boot 211

smoother a smoothing function that is used if plot.individual=TRUE. Default is
supsmu.

xlab label for x-axis. Default is "units" attribute of the original time variable, or
"Time" if no such attribute was defined using the units function.

xlim specifies x-axis plotting limits. Default is to use range of times specified to
rm.boot.

ylim for rm.boot this is a vector of y-axis limits used if plot.individual=TRUE.
It is also passed along for later use by plot.rm.boot. For plot.rm.boot,
ylim can be specified, to override the value stored in the object stored by
rm.boot. The default is the actual range of y in the input data.

times a sequence of times at which to evaluated fitted values and confidence limits.
Default is 100 equally spaced points in the observed range of time.

absorb.subject.effects
If TRUE, adjusts the response vector y before re-sampling so that the subject-
specific effects in the initial model fit are all zero. Then in re-sampling, subject
effects are not used in the models. This will downplay one of the sources of vari-
ation. This option is used mainly for checking for consistency of results, as the
re-sampling analyses are simpler when absort.subject.effects=TRUE.

rho The log-likelihood function that is used as the basis of simultaneous confidence
bands assumes normality with independence within subject. To check the ro-
bustness of this assumption, if rho is not zero, the log-likelihood under mul-
tivariate normality within subject, with constant correlation rho between any
two time points, is also computed. If the two log-likelihoods have the same
ranks across re-samples, alllowing the correlation structure does not matter. The
agreement in ranks is quantified using the Spearman rank correlation coefficient.
The plot method allows the non-zero intra-subject correlation log-likelihood
to be used in deriving the simultaneous confidence band. Note that this approach
does assume homoscedasticity.

cor.pattern More generally than using an equal-correlation structure, you can specify a func-
tion of two time vectors that generates as many correlations as the length of these
vectors. For example, cor.pattern=function(time1,time2).2^(abs(time1-
time2)/10)would specify a dampening serial correlation pattern. cor.pattern
can also be a list containing vectors x (a vector of absolute time differences) and
y (a corresponding vector of correlations). To estimate the correlation function
as a function of absolute time differences within subjects, specify cor.pattern="estimate".
The products of all possible pairs of residuals (or at least up to ncor of them)
within subjects will be related to the absolute time difference. The correlation
function is estimated by computing the sample mean of the products of stan-
dardized residuals, stratified by absolute time difference. The correlation for a
zero time difference is set to 1 regardless of the lowess estimate. NOTE: This
approach fails in the presence of large subject effects; correcting for such effects
removes too much of the correlation structure in the residuals.

ncor the maximum number of pairs of time values used in estimating the correlation
function if cor.pattern="estimate"

... other arguments to pass to smoother if plot.individual=TRUE

212 rm.boot

obj2 a second object created by rm.boot that can also be passed to plot.rm.boot.
This is used for two-sample problems for which the time profiles are allowed to
differ between the two groups. The bootstrapped predicted y values for the sec-
ond fit are subtracted from the fitted values for the first fit so that the predicted
mean response for group 1 minus the predicted mean response for group 2 is
what is plotted. The confidence bands that are plotted are also for this differ-
ence. For the simultaneous confidence band, the objective criterion is taken to
be the sum of the objective criteria (-2 log L or sum of squared errors) for the
separate fits for the two groups. The times vectors must have been identical
for both calls to rm.boot, although NAs can be inserted by the user of one
or both of the time vectors in the rm.boot objects so as to suppress certain
sections of the difference curve from being plotted.

conf.int the confidence level to use in constructing simultaneous, and optionally point-
wise, bands. Default is 0.95.

ylab label for y-axis. Default is the "label" attribute of the original y variable, or
"y" if no label was assigned to y (using the label function, for example).

individual.boot
set to TRUE to plot the first 100 bootstrap regression fits

pointwise.band
set to TRUE to draw a pointwise confidence band in addition to the simultaneous
band

curves.in.simultaneous.band
set to TRUE to draw all bootstrap regression fits that had a sum of squared errors
(obtained by predicting the original y vector from the original time vector
and id vector) that was less that or equal to the conf.int quantile of all
bootstrapped models (plus the original model). This will show how the point by
point max and min were computed to form the simultaneous confidence band.

col.pointwise.band
color for the pointwise confidence band. Default is 2, which defaults to red for
default Windows S-PLUS setups.

objective the default is to use the -2 log of the Gaussian likelihood for computing the
simultaneous confidence region. If neither cor.pattern nor rho was spec-
ified to rm.boot, the independent homoscedastic Gaussian likelihood is used.
Otherwise the dependent homoscedastic likelihood is used according to the spec-
ified or estimated correlation pattern. Specify objective="sse" to instead
use the sum of squared errors.

add set to TRUE to add curves to an existing plot. If you do this, titles and subtitles
are omitted.

ncurves when using individual.boot=TRUE or curves.in.simultaneous.band=TRUE,
you can plot a random sample of ncurves of the fitted curves instead of plot-
ting up to B of them.

multi set to TRUE to draw multiple simultaneous confidence bands shaded with differ-
ent colors. Confidence levels vary over the values in the multi.conf vector.

multi.method specifies the method of shading when multi=TRUE. Default is to use colors,
with the default colors chosen so that when the graph is printed under S-Plus
for Windows 4.0 to an HP LaserJet printer, the confidence regions are naturally

rm.boot 213

ordered by darkness of gray-scale. Regions closer to the point estimates (i.e., the
center) are darker. Specify multi.method="density" to instead use den-
sities of lines drawn per inch in the confidence regions, with all regions drawn
with the default color. The polygon function is used to shade the regions.

multi.conf vector of confidence levels, in ascending order. Default is to use 12 confidence
levels ranging from 0.05 to 0.99.

multi.density
vector of densities in lines per inch corresponding to multi.conf. As is the
convention in the polygon function, a density of -1 indicates a solid region.

multi.col vector of colors corresponding to multi.conf. See multi.method for
rationale.

subtitles set to FALSE to suppress drawing subtitles for the plot

Details

Observations having missing time or y are excluded from the analysis.

As most repeated measurement studies consider the times as design points, the fixed covariable case
is the default. Bootstrapping the residuals from the initial fit assumes that the model is correctly
specified. Even if the covariables are fixed, doing an unconditional bootstrap is still appropriate, and
for large sample sizes unconditional confidence intervals are only slightly wider than conditional
ones. For moderate to small sample sizes, the "x random" method can be fairly conservative.

If not all subjects have the same number of observations (after deleting observations containing
missing values) and if bootstrap.type="x fixed", bootstrapped residual vectors may have
a length m that is different from the number of original observations n. If m > n for a bootstrap
repetition, the first n elements of the randomly drawn residuals are used. If m < n, the residual
vector is appended with a random sample with replacement of length n - m from itself. A warning
message is issued if this happens. If the number of time points per subject varies, the bootstrap
results for "x fixed" can still be invalid, as this method assumes that a vector (over subjects)
of all residuals can be added to the original yhats, and varying number of points will cause mis-
alignment.

For bootstrap.type="x random" in the presence of significant subject effects, the analysis
is approximate as the subjects used in any one bootstrap fit will not be the entire list of subjects. The
average (over subjects used in the bootstrap sample) intercept is used from that bootstrap sample as
a predictor of average subject effects in the overall sample.

Once the bootstrap coefficient matrix is stored by rm.boot, plot.rm.boot can be run multiple
times with different options (e.g, different confidence levels).

See bootcov in the Design library for a general approach to handling repeated measurement data
for ordinary linear models, binary and ordinal models, and survival models, using the unconditional
bootstrap. bootcov does not handle bootstrapping residuals.

Value

an object of class rm.boot is returned by rm.boot. The principal object stored in the returned
object is a matrix of regression coefficients for the original fit and all of the bootstrap repetitions
(object Coef), along with vectors of the corresponding -2 log likelihoods are sums of squared
errors. The original fit object from lm.fit.qr is stored in fit. For this fit, a cell means model
is used for the id effects.

214 rm.boot

plot.rm.boot returns a list containing the vector of times used for plotting along with the overall
fitted values, lower and upper simultaneous confidence limits, and optionally the pointwise confi-
dence limits.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Feng Z, McLerran D, Grizzle J (1996): A comparison of statistical methods for clustered data
analysis with Gaussian error. Stat in Med 15:1793–1806.

Tibshirani R, Knight K (1997):Model search and inference by bootstrap "bumping". Technical
Report, Department of Statistics, University of Toronto.
http://www-stat.stanford.edu/ tibs. Presented at the Joint Statistical Meetings, Chicago, August
1996.

Efron B, Tibshirani R (1993): An Introduction to the Bootstrap. New York: Chapman and Hall.

Diggle PJ, Verbyla AP (1998): Nonparametric estimation of covariance structure in logitudinal
data. Biometrics 54:401–415.

Chapman IM, Hartman ML, et al (1997): Effect of aging on the sensitivity of growth hormone
secretion to insulin-like growth factor-I negative feedback. J Clin Endocrinol Metab 82:2996–3004.

See Also

rcspline.eval, lm, lowess, supsmu, bootcov, units, label, polygon, reShape

Examples

Generate multivariate normal responses with equal correlations (.7)
within subjects and no correlation between subjects
Simulate realizations from a piecewise linear population time-response
profile with large subject effects, and fit using a 6-knot spline
Estimate the correlation structure from the residuals, as a function
of the absolute time difference

Function to generate n p-variate normal variates with mean vector u and
covariance matrix S
Slight modification of function written by Bill Venables
See also the built-in function rmvnorm
mvrnorm <- function(n, p = 1, u = rep(0, p), S = diag(p)) {
Z <- matrix(rnorm(n * p), p, n)
t(u + t(chol(S)) %*% Z)

}

n <- 20 # Number of subjects
sub <- .5*(1:n) # Subject effects

rm.boot 215

Specify functional form for time trend and compute non-stochastic component
times <- seq(0, 1, by=.1)
g <- function(times) 5*pmax(abs(times-.5),.3)
ey <- g(times)

Generate multivariate normal errors for 20 subjects at 11 times
Assume equal correlations of rho=.7, independent subjects

nt <- length(times)
rho <- .7

set.seed(19)
errors <- mvrnorm(n, p=nt, S=diag(rep(1-rho,nt))+rho)
Note: first random number seed used gave rise to mean(errors)=0.24!

Add E[Y], error components, and subject effects
y <- matrix(rep(ey,n), ncol=nt, byrow=TRUE) + errors +

matrix(rep(sub,nt), ncol=nt)

String out data into long vectors for times, responses, and subject ID
y <- as.vector(t(y))
times <- rep(times, n)
id <- sort(rep(1:n, nt))

Show lowess estimates of time profiles for individual subjects
f <- rm.boot(times, y, id, plot.individual=TRUE, B=25, cor.pattern='estimate',

smoother=lowess, bootstrap.type='x fixed', nk=6)
In practice use B=400 or 500
This will compute a dependent-structure log-likelihood in addition
to one assuming independence. By default, the dep. structure
objective will be used by the plot method (could have specified rho=.7)
NOTE: Estimating the correlation pattern from the residual does not
work in cases such as this one where there are large subject effects

Plot fits for a random sample of 10 of the 25 bootstrap fits
plot(f, individual.boot=TRUE, ncurves=10, ylim=c(6,8.5))

Plot pointwise and simultaneous confidence regions
plot(f, pointwise.band=TRUE, col.pointwise=1, ylim=c(6,8.5))

Plot population response curve at average subject effect
ts <- seq(0, 1, length=100)
lines(ts, g(ts)+mean(sub), lwd=3)

Not run:
#
Handle a 2-sample problem in which curves are fitted
separately for males and females and we wish to estimate the
difference in the time-response curves for the two sexes.
The objective criterion will be taken by plot.rm.boot as the
total of the two sums of squared errors for the two models
#

216 samplesize.bin

knots <- rcspline.eval(c(time.f,time.m), nk=6, knots.only=TRUE)
Use same knots for both sexes, and use a times vector that
uses a range of times that is included in the measurement
times for both sexes
#
tm <- seq(max(min(time.f),min(time.m)),

min(max(time.f),max(time.m)),length=100)

f.female <- rm.boot(time.f, bp.f, id.f, knots=knots, times=tm)
f.male <- rm.boot(time.m, bp.m, id.m, knots=knots, times=tm)
plot(f.female)
plot(f.male)
The following plots female minus male response, with
a sequence of shaded confidence band for the difference
plot(f.female,f.male,multi=TRUE)

Do 1000 simulated analyses to check simultaneous coverage
probability. Use a null regression model with Gaussian errors

n.per.pt <- 30
n.pt <- 10

null.in.region <- 0

for(i in 1:1000) {
y <- rnorm(n.pt*n.per.pt)
time <- rep(1:n.per.pt, n.pt)

Add the following line and add ,id=id to rm.boot to use clustering
id <- sort(rep(1:n.pt, n.per.pt))
Because we are ignoring patient id, this simulation is effectively
using 1 point from each of 300 patients, with times 1,2,3,,,30

f <- rm.boot(time, y, B=500, nk=5, bootstrap.type='x fixed')
g <- plot(f, ylim=c(-1,1), pointwise=FALSE)
null.in.region <- null.in.region + all(g$lower<=0 & g$upper>=0)
prn(c(i=i,null.in.region=null.in.region))

}

Simulation Results: 905/1000 simultaneous confidence bands
fully contained the horizontal line at zero
End(Not run)

samplesize.bin Sample Size for 2-sample Binomial

Description

Computes sample size(s) for 2-sample binomial problem given vector or scalar probabilities in the
two groups.

samplesize.bin 217

Usage

samplesize.bin(alpha, beta, pit, pic, rho=0.5)

Arguments

alpha scalar ONE-SIDED test size, or two-sided size/2

beta scalar or vector of powers

pit hypothesized treatment probability of success

pic hypothesized control probability of success

rho proportion of the sample devoted to treated group (0 <rho < 1)

Value

TOTAL sample size(s)

AUTHOR

Rick Chappell

Dept. of Statistics and Human Oncology

University of Wisconsin at Madison

chappell@stat.wisc.edu

Examples

alpha <- .05
beta <- c(.70,.80,.90,.95)

N1 is a matrix of total sample sizes whose
rows vary by hypothesized treatment success probability and
columns vary by power
See Meinert's book for formulae.

N1 <- samplesize.bin(alpha, beta, pit=.55, pic=.5)
N1 <- rbind(N1, samplesize.bin(alpha, beta, pit=.60, pic=.5))
N1 <- rbind(N1, samplesize.bin(alpha, beta, pit=.65, pic=.5))
N1 <- rbind(N1, samplesize.bin(alpha, beta, pit=.70, pic=.5))
attr(N1,"dimnames") <- NULL

#Accounting for 5% noncompliance in the treated group
inflation <- (1/.95)**2
print(round(N1*inflation+.5,0))

218 sasxport.get

sasxport.get Enhanced Importing of SAS Transport Files using read.xport

Description

Uses the read.xport and lookup.xport functions in the foreign library to import SAS
datasets. SAS date, time, and date/time variables are converted respectively to Date, POSIX, or
chron objects in R, variable names are converted to lower case, SAS labels are associated with
variables, and (by default) integer-valued variables are converted from storage mode double to
integer. If the user ran PROC FORMAT CNTLOUT= in SAS and included the resulting dataset
in the SAS version 5 transport file, variables having customized formats that do not include any
ranges (i.e., variables having standard PROC FORMAT; VALUE label formats) will have their for-
mat labels looked up, and these variables are converted to S factors.

For those users having access to SAS, method=’csv’ is preferred when importing several SAS
datasets. Run SAS macro exportlib.sas available from http://biostat.mc.vanderbilt.
edu/twiki/pub/Main/Hmisc/exportlib.sas to convert all SAS datasets in a SAS data
library (from any engine supported by your system) into CSV files. If any customized formats are
used, it is assumed that the PROC FORMAT CNTLOUT= dataset is in the data library as a regular
SAS dataset, as above.

SASdsLabels reads a file containing PROC CONTENTS printed output to parse dataset labels,
assuming that PROC CONTENTS was run on an entire library.

Usage

sasxport.get(file, force.single = TRUE,
method=c('read.xport','dataload','csv'), formats=NULL, allow=NULL,
out=NULL, keep=NULL, drop=NULL, as.is=0.5, FUN=NULL)

sasdsLabels(file)

Arguments

file name of a file containing the SAS transport file. file may be a URL beginning
with http://. For sasdsLabels, file is the name of a file containing a
PROC CONTENTS output listing. For method=’csv’, file is the name of
the directory containing all the CSV files created by running the exportlib
SAS macro.

force.single set to FALSE to keep integer-valued variables not exceeding 231 − 1 in value
from being converted to integer storage mode

method set to "dataload" if you have the dataload executable installed and want
to use it instead of read.xport. This seems to correct some errors in which
rarely some factor variables are always missing when read by read.xport
when in fact they have some non-missing values.

formats a data frame or list (like that created by read.xport) containing PROC FORMAT
output, if such output is not stored in the main transport file.

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/Hmisc/exportlib.sas
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/Hmisc/exportlib.sas

sasxport.get 219

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

out a character string specifying a directory in which to write separate R save files
(.rda files) for each regular dataset. Each file and the data frame inside it is
named with the SAS dataset name translated to lower case and with underscores
changed to periods. The default NULL value of out results in a data frame or a
list of data frames being returned. When out is given, sasxport.get returns
only metadata (see below), invisibly. out only works with methods=’csv’.
out should not have a trailing slash.

keep a vector of names of SAS datasets to process (original SAS upper case names).
Must include PROC FORMAT dataset if it exists, and if the kept datasets use any
of its value label formats.

drop a vector of names of SAS datasets to ignore (original SAS upper case names)

as.is SAS character variables are converted to S factor objects if as.is=FALSE or if
as.is is a number between 0 and 1 inclusive and the number of unique values
of the variable is less than the number of observations (n) times as.is. The
default if as.is is .5, so character variables are converted to factors only if
they have fewer than n/2 unique values. The primary purpose of this is to keep
unique identification variables as character values in the data frame instead of
using more space to store both the integer factor codes and the factor labels.

FUN an optional function that will be run on each data frame created, when method=’csv’
and out are specified. The result of all the FUN calls is made into a list corre-
sponding to the SAS datasets that are read. This list is the FUN attribute of the
result returned by sasxport.get.

Details

See contents.list for a way to print the directory of SAS datasets when more than one was
imported.

Value

If there is more than one dataset in the transport file other than the PROC FORMAT file, the result
is a list of data frames containing all the non-PROC FORMAT datasets. Otherwise the result is the
single data frame. There is an exception if out is specified; that causes separate R save files to
be written and the returned value to be a list corresponding to the SAS datasets, with key PROC
CONTENTS information in a data frame making up each part of the list. sasdsLabels returns a
named vector of dataset labels, with names equal to the dataset names.

Author(s)

Frank E Harrell Jr

See Also

read.xport,label,sas.get, Dates,DateTimeClasses,chron, lookup.xport,contents,describe

220 sasxport.get

Examples

Not run:
SAS code to generate test dataset:
libname y SASV5XPT "test2.xpt";
#
PROC FORMAT; VALUE race 1=green 2=blue 3=purple; RUN;
PROC FORMAT CNTLOUT=format;RUN; * Name, e.g. 'format', unimportant;
data test;
LENGTH race 3 age 4;
age=30; label age="Age at Beginning of Study";
race=2;
d1='3mar2002'd ;
dt1='3mar2002 9:31:02'dt;
t1='11:13:45't;
output;
#
age=31;
race=4;
d1='3jun2002'd ;
dt1='3jun2002 9:42:07'dt;
t1='11:14:13't;
output;
format d1 mmddyy10. dt1 datetime. t1 time. race race.;
run;
data z; LENGTH x3 3 x4 4 x5 5 x6 6 x7 7 x8 8;
DO i=1 TO 100;
x3=ranuni(3);
x4=ranuni(5);
x5=ranuni(7);
x6=ranuni(9);
x7=ranuni(11);
x8=ranuni(13);
output;
END;
DROP i;
RUN;
PROC MEANS; RUN;
PROC COPY IN=work OUT=y;SELECT test format z;RUN; *Creates test2.xpt;
w <- sasxport.get('test2.xpt')
To use an existing copy of test2.xpt available on the web:
w <- sasxport.get('http://hesweb1.med.virginia.edu/biostat/s/data/sas/test2.xpt')

describe(w$test) # see labels, format names for dataset test
Note: if only one dataset (other than format) had been exported,
just do describe(w) as sasxport.get would not create a list for that
lapply(w, describe)# see descriptive stats for both datasets
contents(w$test) # another way to see variable attributes
lapply(w, contents)# show contents of both datasets
options(digits=7) # compare the following matrix with PROC MEANS output
t(sapply(w$z, function(x)
c(Mean=mean(x),SD=sqrt(var(x)),Min=min(x),Max=max(x))))
End(Not run)

scat1d 221

scat1d One-Dimensional Scatter Diagram, Spike Histogram, or Density

Description

scat1d adds tick marks (bar codes. rug plot) on any of the four sides of an existing plot, corre-
sponding with non-missing values of a vector x. This is used to show the data density. Can also
place the tick marks along a curve by specifying y-coordinates to go along with the x values.

If any two values of x are within eps*w of each other, where eps defaults to .001 and w is the
span of the intended axis, values of x are jittered by adding a value uniformly distributed in [-
jitfrac*w, jitfrac*w], where jitfrac defaults to .008. Specifying preserve=TRUE
invokes jitter2 with a different logic of jittering. Allows plotting random sub-segments to
handle very large x vectors (see tfrac).

jitter2 is a generic method for jittering, which does not add random noise. It retains unique
values and ranks, and randomly spreads duplicate values at equidistant positions within limits of
enclosing values. jitter2 is especially useful for numeric variables with discrete values, like
rating scales. Missing values are allowed and are returned. Currently implemented methods are
jitter2.default for vectors and jitter2.data.frame which returns a data.frame with
each numeric column jittered.

datadensity is a generic method used to show data densities in more complex situations. In
the Design library there is a datadensity method for use with plot.Design. Here, another
datadensity method is defined for data frames. Depending on the which argument, some or
all of the variables in a data frame will be displayed, with scat1d used to display continuous
variables and, by default, bars used to display frequencies of categorical, character, or discrete
numeric variables. For such variables, when the total length of value labels exceeds 200, only
the first few characters from each level are used. By default, datadensity.data.frame will
construct one axis (i.e., one strip) per variable in the data frame. Variable names appear to the left of
the axes, and the number of missing values (if greater than zero) appear to the right of the axes. An
optional group variable can be used for stratification, where the different strata are depicted using
different colors. If the q vector is specified, the desired quantiles (over all groups) are displayed
with solid triangles below each axis.

When the sample size exceeds 2000 (this value may be modified using the nhistSpike argument,
datadensity calls histSpike instead of scat1d to show the data density for numeric vari-
ables. This results in a histogram-like display that makes the resulting graphics file much smaller. In
this case, datadensity uses the minf argument (see below) so that very infrequent data values
will not be lost on the variable’s axis, although this will slightly distort the histogram.

histSpike is another method for showing a high-resolution data distribution that is particularly
good for very large datasets (say n > 1000). By default, histSpike bins the continuous x variable
into 100 equal-width bins and then computes the frequency counts within bins (if n does not exceed
10, no binning is done). If add=FALSE (the default), the function displays either proportions or
frequencies as in a vertical histogram. Instead of bars, spikes are used to depict the frequencies. If
add=FALSE, the function assumes you are adding small density displays that are intended to take
up a small amount of space in the margins of the overall plot. The frac argument is used as with
scat1d to determine the relative length of the whole plot that is used to represent the maximum
frequency. No jittering is done by histSpike.

222 scat1d

histSpike can also graph a kernel density estimate for x, or add a small density curve to any
of 4 sides of an existing plot. When y or curve is specified, the density or spikes are drawn with
respect to the curve rather than the x-axis.

Usage

scat1d(x, side=3, frac=0.02, jitfrac=0.008, tfrac,
eps=ifelse(preserve,0,.001),
lwd=0.1, col=par("col"),
y=NULL, curve=NULL,
bottom.align=FALSE,
preserve=FALSE, fill=1/3, limit=TRUE, nhistSpike=2000, nint=100,
type=c('proportion','count','density'), grid=FALSE, ...)

jitter2(x, ...)

Default S3 method:
jitter2(x, fill=1/3, limit=TRUE, eps=0, presorted=FALSE, ...)

S3 method for class 'data.frame':
jitter2(x, ...)

datadensity(object, ...)

S3 method for class 'data.frame':
datadensity(object, group,

which=c("all","continuous","categorical"),
method.cat=c("bar","freq"),
col.group=1:10,
n.unique=10, show.na=TRUE, nint=1, naxes,
q, bottom.align=nint>1,
cex.axis=sc(.5,.3), cex.var=sc(.8,.3),
lmgp=NULL, tck=sc(-.009,-.002),
ranges=NULL, labels=NULL, ...)

sc(a,b) means default to a if number of axes <= 3, b if >=50, use
linear interpolation within 3-50

histSpike(x, side=1, nint=100, frac=.05, minf=NULL, mult.width=1,
type=c('proportion','count','density'),
xlim=range(x), ylim=c(0,max(f)), xlab=deparse(substitute(x)),
ylab=switch(type,proportion='Proportion',

count ='Frequency',
density ='Density'),

y=NULL, curve=NULL, add=FALSE,
bottom.align=type=='density', col=par('col'), lwd=par('lwd'),
grid=FALSE, ...)

scat1d 223

Arguments

x a vector of numeric data, or a data frame (for jitter2)

object a data frame or list (even with unequal number of observations per variable, as
long as group is not specified)

side axis side to use (1=bottom (default for histSpike), 2=left, 3=top (default for
scat1d), 4=right)

frac fraction of smaller of vertical and horizontal axes for tick mark lengths. Can be
negative to move tick marks outside of plot. For histSpike, this is the relative
length to be used for the largest frequency. When scat1d calls histSpike,
it multiplies its frac argument by 2.5.

jitfrac fraction of axis for jittering. If <=0, no jittering is done. If preserve=TRUE,
the amount of jittering is independent of jitfrac.

tfrac fraction of tick mark to actually draw. If tfrac<1, will draw a random fraction
tfrac of the line segment at each point. This is useful for very large samples or
ones with some very dense points. The default value is 1 if the number of non-
missing observations n is less than 125, and max(.1, 125/n) otherwise.

eps fraction of axis for determining overlapping points in x. For preserve=TRUE
the default is 0 and original unique values are retained, bigger values of eps tends
to bias observations from dense to sparse regions, but ranks are still preserved.

lwd line width for tick marks, passed to segments

col color for tick marks, passed to segments

y specify a vector the same length as x to draw tick marks along a curve instead of
by one of the axes. The y values are often predicted values from a model. The
side argument is ignored when y is given. If the curve is already represented
as a table look-up, you may specify it using the curve argument instead. y
may be a scalar to use a constant vertical placement.

curve a list containing elements x and y for which linear interpolation is used to derive
y values corresponding to values of x. This results in tick marks being drawn
along the curve. For histSpike, interpolated y values are derived for bin
midpoints.

bottom.align set to TRUE to have the bottoms of tick marks (for side=1 or side=3) aligned
at the y-coordinate. The default behavior is to center the tick marks. For
datadensity.data.frame, bottom.align defaults to TRUE if nint>1.
In other words, if you are only labeling the first and last axis tick mark, the
scat1d tick marks are centered on the variable’s axis.

preserve set to TRUE to invoke jitter2

fill maximum fraction of the axis filled by jittered values. If d are duplicated values
between a lower value l and upper value u, then d will be spread within +/-
fill*min(u-d,d-l)/2.

limit specifies a limit for maximum shift in jittered values. Duplicate values will be
spread within +/- fill*min(limit,min(u-d,d-l)/2). The default
TRUE restricts jittering to the smallest min(u-d,d-l)/2 observed and results in
equal amount of jittering for all d. Setting to FALSE allows for locally different
amount of jittering, using maximum space available.

224 scat1d

nhistSpike If the number of observations exceeds or equals nhistSpike, scat1d will
automatically call histSpike to draw the data density, to prevent the graphics
file from being too large.

type used by or passed to histSpike. Set to "count" to display frequency counts
rather than relative frequencies, or "density" to display a kernel density es-
timate computed using the density function.

grid set to TRUE if the R grid package is in effect for the current plot

nint number of intervals to divide each continuous variable’s axis for datadensity.
For histSpike, is the number of equal-width intervals for which to bin x, and
if instead nint is a character string (e.g., nint="all"), the frequency tabu-
lation is done with no binning. In other words, frequencies for all unique values
of x are derived and plotted.

... optional arguments passed to scat1d from datadensity or to histSpike
from scat1d

presorted set to TRUE to prevent from sorting for determining the order l<d<u. This is
usefull if an existing meaningfull local order would be destroyed by sorting, as
in sin(pi*sort(round(runif(1000,0,10),1))).

group an optional stratification variable, which is converted to a factor vector if it is
not one already

which set which="continuous" to only plot continuous variables, or which="categorical"
to only plot categorical, character, or discrete numeric ones. By default, all types
of variables are depicted.

method.cat set method.cat="freq" to depict frequencies of categorical variables with
digits representing the cell frequencies, with size proportional to the square root
of the frequency. By default, vertical bars are used.

col.group colors representing the group strata. The vector of colors is recycled to be the
same length as the levels of group.

n.unique number of unique values a numeric variable must have before it is considered to
be a continuous variable

show.na set to FALSE to suppress drawing the number of NAs to the right of each axis

naxes number of axes to draw on each page before starting a new plot. You can set
naxes larger than the number of variables in the data frame if you want to
compress the plot vertically.

q a vector of quantiles to display. By default, quantiles are not shown.

cex.axis character size for draw labels for axis tick marks

cex.var character size for variable names and frequence of NAs

lmgp spacing between numeric axis labels and axis (see par for mgp)

tck see tck under par

ranges a list containing ranges for some or all of the numeric variables. If ranges is
not given or if a certain variable is not found in the list, the empirical range, mod-
ified by pretty, is used. Example: ranges=list(age=c(10,100),
pressure=c(50,150)).

scat1d 225

labels a vector of labels to use in labeling the axes for datadensity.data.frame.
Default is to use the names of the variables in the input data frame. Note: mar-
gin widths computed for setting aside names of variables use the names, and not
these labels.

minf For histSpike, if minf is specified low bin frequencies are set to a minimum
value of minf times the maximum bin frequency, so that rare data points will re-
main visible. A good choice of minf is 0.075. datadensity.data.frame
passes minf=0.075 to scat1d to pass to histSpike. Note that specifying
minf will cause the shape of the histogram to be distorted somewhat.

mult.width multiplier for the smoothing window width computed by histSpike when
type="density"

xlim a 2-vector specifying the outer limits of x for binning (and plotting, if add=FALSE
and nint is a number)

ylim y-axis range for plotting (if add=FALSE)

xlab x-axis label (add=FALSE); default is name of input argument x

ylab y-axis label (add=FALSE)

add set to TRUE to add the spike-histogram to an existing plot, to show marginal
data densities

Details

For scat1d the length of line segments used is frac*min(par()$pin) / par()$uin[opp]
data units, where opp is the index of the opposite axis and frac defaults to .02. Assumes that
plot has already been called. Current par("usr") is used to determine the range of data for
the axis of the current plot. This range is used in jittering and in constructing line segments.

Value

histSpike returns the actual range of x used in its binning

Side Effects

scat1d adds line segments to plot. datadensity.data.frame draws a complete plot.
histSpike draws a complete plot or adds to an existing plot.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
Charlottesville VA, USA
f.harrell@vanderbilt.edu

Martin Maechler (improved scat1d)
Seminar fuer Statistik
ETH Zurich SWITZERLAND
maechler@stat.math.ethz.ch

226 scat1d

Jens Oehlschlaegel-Akiyoshi (wrote jitter2)
Center for Psychotherapy Research
Christian-Belser-Strasse 79a
D-70597 Stuttgart Germany
oehl@psyres-stuttgart.de

See Also

segments, jitter, rug, plsmo, stripplot, hist.data.frame,Ecdf, hist, histogram,
table, density

Examples

plot(x <- rnorm(50), y <- 3*x + rnorm(50)/2)
scat1d(x) # density bars on top of graph
scat1d(y, 4) # density bars at right
histSpike(x, add=TRUE) # histogram instead, 100 bins
histSpike(y, 4, add=TRUE)
histSpike(x, type='density', add=TRUE) # smooth density at bottom
histSpike(y, 4, type='density', add=TRUE)

smooth <- lowess(x, y) # add nonparametric regression curve
lines(smooth) # Note: plsmo() does this
scat1d(x, y=approx(smooth, xout=x)$y) # data density on curve
scat1d(x, curve=smooth) # same effect as previous command
histSpike(x, curve=smooth, add=TRUE) # same as previous but with histogram
histSpike(x, curve=smooth, type='density', add=TRUE)
same but smooth density over curve

plot(x <- rnorm(250), y <- 3*x + rnorm(250)/2)
scat1d(x, tfrac=0) # dots randomly spaced from axis
scat1d(y, 4, frac=-.03) # bars outside axis
scat1d(y, 2, tfrac=.2) # same bars with smaller random fraction

x <- c(0:3,rep(4,3),5,rep(7,10),9)
plot(x, jitter2(x)) # original versus jittered values
abline(0,1) # unique values unjittered on abline
points(x+0.1, jitter2(x, limit=FALSE), col=2)

allow locally maximum jittering
points(x+0.2, jitter2(x, fill=1), col=3); abline(h=seq(0.5,9,1), lty=2)

fill 3/3 instead of 1/3
x <- rnorm(200,0,2)+1; y <- x^2
x2 <- round((x+rnorm(200))/2)*2
x3 <- round((x+rnorm(200))/4)*4
dfram <- data.frame(y,x,x2,x3)
plot(dfram$x2, dfram$y) # jitter2 via scat1d
scat1d(dfram$x2, y=dfram$y, preserve=TRUE, col=2)
scat1d(dfram$x2, preserve=TRUE, frac=-0.02, col=2)
scat1d(dfram$y, 4, preserve=TRUE, frac=-0.02, col=2)

pairs(jitter2(dfram)) # pairs for jittered data.frame
This gets reasonable pairwise scatter plots for all combinations of

score.binary 227

variables where
#
- continuous variables (with unique values) are not jittered at all, thus
all relations between continuous variables are shown as they are,
extreme values have exact positions.
#
- discrete variables get a reasonable amount of jittering, whether they
have 2, 3, 5, 10, 20 ... levels
#
- different from adding noise, jitter2() will use the available space
optimally and no value will randomly mask another
#
If you want a scatterplot with lowess smooths on the *exact* values and
the point clouds shown jittered, you just need
#
pairs(dfram ,panel=function(x,y) { points(jitter2(x),jitter2(y))

lines(lowess(x,y)) })

datadensity(dfram) # graphical snapshot of entire data frame
datadensity(dfram, group=cut2(dfram$x2,g=3))

stratify points and frequencies by
x2 tertiles and use 3 colors

datadensity.data.frame(split(x, grouping.variable))
need to explicitly invoke datadensity.data.frame when the
first argument is a list

score.binary Score a Series of Binary Variables

Description

Creates a new variable from a series of logical conditions. The new variable can be a hierarchical
category or score derived from considering the rightmost TRUE value among the input variables,
an additive point score, a union, or any of several others by specifying a function using the fun
argument.

Usage

score.binary(..., fun=max, points=1:p,
na.rm=funtext == "max", retfactor=TRUE)

Arguments

... a list of variables or expressions which are considered to be binary or logical

fun a function to compute on each row of the matrix represented by a specific obser-
vation of all the variables in ...

228 sedit

points points to assign to successive elements of The default is 1, 2, ...,
p, where p is the number of elements. If you specify one number for points,
that number will be duplicated (i.e., equal weights are assumed).

na.rm set to TRUE to remove NAs from consideration when processing each row of
the matrix of variables in For fun=max, na.rm=TRUE is the default
since score.binary assumes that a hierarchical scale is based on available
information. Otherwise, na.rm=FALSE is assumed. For fun=mean you may
want to specify na.rm=TRUE.

retfactor applies if fun=max, in which case retfactor=TRUEmakes score.binary
return a factor object since a hierarchical scale implies a unique choice.

Value

a factor object if retfactor=TRUE and fun=max or a numeric vector otherwise. Will not
contain NAs if na.rm=TRUE unless every variable in a row is NA. If a factor object is returned,
it has levels "none" followed by character string versions of the arguments given in

See Also

any, sum, max, factor

Examples

set.seed(1)
age <- rnorm(25, 70, 15)
previous.disease <- sample(0:1, 25, TRUE)
#Hierarchical scale, highest of 1:age>70 2:previous.disease
score.binary(age>70, previous.disease, retfactor=FALSE)
#Same as above but return factor variable with levels "none" "age>70"
"previous.disease"
score.binary(age>70, previous.disease)

#Additive scale with weights 1:age>70 2:previous.disease
score.binary(age>70, previous.disease, fun=sum)
#Additive scale, equal weights
score.binary(age>70, previous.disease, fun=sum, points=c(1,1))
#Same as saying points=1

#Union of variables, to create a new binary variable
score.binary(age>70, previous.disease, fun=any)

sedit Character String Editing and Miscellaneous Character Handling
Functions

sedit 229

Description

This suite of functions was written to implement many of the features of the UNIX sed program
entirely within S-PLUS (function sedit). The substring.location function returns the
first and last position numbers that a sub-string occupies in a larger string. The substring2<-
function does the opposite of the builtin function substring. It is named substring2 because
for S-Plus 5.x there is a built-in function substring, but it does not handle multiple replacements
in a single string. replace.substring.wild edits character strings in the fashion of "change
xxxxANYTHINGyyyy to aaaaANYTHINGbbbb", if the "ANYTHING" passes an optional user-
specified test function. Here, the "yyyy" string is searched for from right to left to handle balanc-
ing parentheses, etc. numeric.string and all.digits are two examples of test functions,
to check, respectively if each of a vector of strings is a legal numeric or if it contains only the digits
0-9. For the case where old="*$" or "^*", or for replace.substring.wild with the
same values of old or with front=TRUE or back=TRUE, sedit (if wild.literal=FALSE)
and replace.substring.wild will edit the largest substring satisfying test.

substring2 is just a copy of substring so that substring2<- will work.

Usage

sedit(text, from, to, test, wild.literal=FALSE)
substring.location(text, string, restrict)
substring(text, first, last) <- setto # S-Plus only
replace.substring.wild(text, old, new, test, front=FALSE, back=FALSE)
numeric.string(string)
all.digits(string)
substring2(text, first, last=1e6)
substring2(text, first, last) <- value

Arguments

text a vector of character strings for sedit, substring2, substring2<-
or a single character string for substring.location, replace.substring.wild.

from a vector of character strings to translate from, for sedit. A single asterisk wild
card, meaning allow any sequence of characters (subject to the test function,
if any) in place of the "*". An element of from may begin with "^" to force
the match to begin at the beginning of text, and an element of from can end
with "$" to force the match to end at the end of text.

to a vector of character strings to translate to, for sedit. If a corresponding el-
ement in from had an "*", the element in to may also have an "*". Only
single asterisks are allowed. If to is not the same length as from, the rep
function is used to make it the same length.

string a single character string, for substring.location, numeric.string,
all.digits

first a vector of integers specifying the first position to replace for substring2<-.
firstmay also be a vector of character strings that are passed to sedit to use
as patterns for replacing substrings with setto. See one of the last examples
below.

230 sedit

last a vector of integers specifying the ending positions of the character substrings
to be replaced. The default is to go to the end of the string. When first is
character, last must be omitted.

setto a character string or vector of character strings used as replacements, in substring2<-

old a character string to translate from for replace.substring.wild. May
be "*$" or "^*" or any string containing a single "*" but not beginning with
"^" or ending with "$".

new a character string to translate to for replace.substring.wild

test a function of a vector of character strings returning a logical vector whose ele-
ments are TRUE or FALSE according to whether that string element qualifies as
the wild card string for sedit, replace.substring.wild

wild.literal set to TRUE to not treat asterisks as wild cards and to not look for "^" or "$"
in old

restrict a vector of two integers for substring.location which specifies a range
to which the search for matches should be restricted

front specifying front=TRUE and old="*" is the same as specifying old="^*"

back specifying back=TRUE and old="*" is the same as specifying old="*$"

value a character vector

Value

sedit returns a vector of character strings the same length as text. substring.location
returns a list with components named first and last, each specifying a vector of character
positions corresponding to matches. replace.substring.wild returns a single character
string. numeric.string and all.digits return a single logical value.

Side Effects

substring2<- modifies its first argument

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

See Also

grep, substring

show.pch 231

Examples

x <- 'this string'
substring2(x, 3, 4) <- 'IS'
x
substring2(x, 7) <- ''
x

substring.location('abcdefgabc', 'ab')
substring.location('abcdefgabc', 'ab', restrict=c(3,999))

replace.substring.wild('this is a cat','this*cat','that*dog')
replace.substring.wild('there is a cat','is a*', 'is not a*')
replace.substring.wild('this is a cat','is a*', 'Z')

qualify <- function(x) x==' 1.5 ' | x==' 2.5 '
replace.substring.wild('He won 1.5 million $','won*million',

'lost*million', test=qualify)
replace.substring.wild('He won 1 million $','won*million',

'lost*million', test=qualify)
replace.substring.wild('He won 1.2 million $','won*million',

'lost*million', test=numeric.string)

x <- c('a = b','c < d','hello')
sedit(x, c('=','he*o'),c('==','he*'))

sedit('x23', '*$', '[*]', test=numeric.string)
sedit('23xx', '^*', 'Y_{*} ', test=all.digits)

replace.substring.wild("abcdefabcdef", "d*f", "xy")

x <- "abcd"
substring2(x, "bc") <- "BCX"
x
substring2(x, "B*d") <- "B*D"
x

show.pch Display Colors, Plotting Symbols, and Symbol Numeric Equivalents

Description

show.pch plots the definitions of the pch parameters. show.col plots definitions of integer-
valued colors. character.table draws numeric equivalents of all latin characters; the charac-
ter on line xy and column z of the table has numeric code "xyz", which you would surround in
quotes and preceed by a backslash.

Usage

show.pch(object = par("font"))

232 simplifyDims

show.col(object=NULL)
character.table(font=1)

Arguments

object font for show.pch, ignored for show.col.

font font

Author(s)

Pierre Joyet 〈pierre.joyet@bluewin.ch〉, Frank Harrell

See Also

points, text

Examples

Not run:
show.pch()
show.col()
character.table()
End(Not run)

simplifyDims List Simplification

Description

Takes a list where each element is a group of rows that have been spanned by a multirow row and
combines it into one large matrix.

Usage

simplifyDims(x)

Arguments

x list of spanned rows

Details

All rows must have the same number of columns. This is used to format the list for printing.

Value

a matrix that contains all of the spanned rows.

smean.sd 233

Author(s)

Charles Dupont

See Also

rbind

Examples

a <- list(a = matrix(1:25, ncol=5), b = matrix(1:10, ncol=5), c = 1:5)

simplifyDims(a)

smean.sd Compute Summary Statistics on a Vector

Description

A number of statistical summary functions is provided for use with summary.formula and
summarize (as well as tapply and by themselves). smean.cl.normal computes 3 sum-
mary variables: the sample mean and lower and upper Gaussian confidence limits based on the
t-distribution. smean.sd computes the mean and standard deviation. smean.sdl computes the
mean plus or minus a constant times the standard deviation. smean.cl.boot is a very fast im-
plementation of the basic nonparametric bootstrap for obtaining confidence limits for the population
mean without assuming normality. These functions all delete NAs automatically. smedian.hilow
computes the sample median and a selected pair of outer quantiles having equal tail areas.

Usage

smean.cl.normal(x, mult=qt((1+conf.int)/2,n-1), conf.int=.95, na.rm=TRUE)

smean.sd(x, na.rm=TRUE)

smean.sdl(x, mult=2, na.rm=TRUE)

smean.cl.boot(x, conf.int=.95, B=1000, na.rm=TRUE, reps=FALSE)

smedian.hilow(x, conf.int=.95, na.rm=TRUE)

Arguments

x for summary functions smean.*, smedian.hilow, a numeric vector from
which NAs will be removed automatically

na.rm defaults to TRUE unlike built-in S-Plus functions, so that by default NAs are
automatically removed

234 smean.sd

mult for smean.cl.normal is the multiplier of the standard error of the mean to
use in obtaining confidence limits of the population mean (default is appropriate
quantile of the t distribution). For smean.sdl, mult is the multiplier of the
standard deviation used in obtaining a coverage interval about the sample mean.
The default is mult=2 to use plus or minus 2 standard deviations.

conf.int for smean.cl.normal and smean.cl.boot specifies the confidence level
(0-1) for interval estimation of the population mean. For smedian.hilow,
conf.int is the coverage probability the outer quantiles should target. When
the default, 0.95, is used, the lower and upper quantiles computed are 0.025 and
0.975.

B number of bootstrap resamples for smean.cl.boot

reps set to TRUE to have smean.cl.boot return the vector of bootstrapped means
as the reps attribute of the returned object

Value

a vector of summary statistics

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

summarize, summary.formula

Examples

set.seed(1)
x <- rnorm(100)
smean.sd(x)
smean.sdl(x)
smean.cl.normal(x)
smean.cl.boot(x)
smedian.hilow(x, conf.int=.5) # 25th and 75th percentiles

Function to compute 0.95 confidence interval for the difference in two means
g is grouping variable
bootdif <- function(y, g) {
g <- as.factor(g)
a <- attr(smean.cl.boot(y[g==levels(g)[1]], B=2000, reps=TRUE),'reps')
b <- attr(smean.cl.boot(y[g==levels(g)[2]], B=2000, reps=TRUE),'reps')
meandif <- diff(tapply(y, g, mean, na.rm=TRUE))
a.b <- quantile(b-a, c(.025,.975))
res <- c(meandif, a.b)
names(res) <- c('Mean Difference','.025','.975')
res

solvet 235

}

solvet solve Function with tol argument

Description

A slightly modified version of solve that allows a tolerance argument for singularity (tol) which
is passed to qr.

Usage

solvet(a, b, tol=1e-09)

Arguments

a a square numeric matrix
b a numeric vector or matrix
tol tolerance for detecting linear dependencies in columns of a

See Also

solve

somers2 Somers’ Dxy Rank Correlation

Description

Computes Somers’ Dxy rank correlation between a variable x and a binary (0-1) variable y, and
the corresponding receiver operating characteristic curve area c. Note that Dxy = 2(c-0.5).
somers allows for a weights variable, which specifies frequencies to associate with each obser-
vation.

Usage

somers2(x, y, weights=NULL, normwt=FALSE, na.rm=TRUE)

Arguments

x typically a predictor variable. NAs are allowed.
y a numeric outcome variable coded 0-1. NAs are allowed.
weights a numeric vector of observation weights (usually frequencies). Omit or specify

a zero-length vector to do an unweighted analysis.
normwt set to TRUE to make weights sum to the actual number of non-missing obser-

vations.
na.rm set to FALSE to suppress checking for NAs.

236 spower

Details

The rcorr.cens function, which although slower than somers2 for large sample sizes, can
also be used to obtain Dxy for non-censored binary y, and it has the advantage of computing the
standard deviation of the correlation index.

Value

a vector with the named elements C, Dxy, n (number of non-missing pairs), and Missing. Uses
the formula C = (mean(rank(x)[y == 1]) - (n1 + 1)/2)/(n - n1), where n1 is
the frequency of y=1.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

See Also

rcorr.cens, rank, wtd.rank,

Examples

set.seed(1)
predicted <- runif(200)
dead <- sample(0:1, 200, TRUE)
roc.area <- somers2(predicted, dead)["C"]

spower Simulate Power of 2-Sample Test for Survival under Complex Condi-
tions

Description

Given functions to generate random variables for survival times and censoring times, spower
simulates the power of a user-given 2-sample test for censored data. By default, the logrank (Cox 2-
sample) test is used, and a logrank function for comparing 2 groups is provided. For composing
S-Plus functions to generate random survival times under complex conditions, the Quantile2
function allows the user to specify the intervention:control hazard ratio as a function of time, the
probability of a control subject actually receiving the intervention (dropin) as a function of time, and
the probability that an intervention subject receives only the control agent as a function of time (non-
compliance, dropout). Quantile2 returns a function that generates either control or intervention
uncensored survival times subject to non-constant treatment effect, dropin, and dropout. There is a
plot method for plotting the results of Quantile2, which will aid in understanding the effects
of the two types of non-compliance and non-constant treatment effects. Quantile2 assumes that
the hazard function for either treatment group is a mixture of the control and intervention hazard

spower 237

functions, with mixing proportions defined by the dropin and dropout probabilities. It computes
hazards and survival distributions by numerical differentiation and integration using a grid of (by
default) 7500 equally-spaced time points.

The logrank function is intended to be used with spower but it can be used by itself as long
as the group variable has only the values 1 and 2 and there are no missing data. It returns the 1
degree of freedom chi-square statistic.

The Weibull2 function accepts as input two vectors, one containing two times and one containing
two survival probabilities, and it solves for the scale and shape parameters of the Weibull distribu-
tion (S(t)=exp(-alpha*t^ gamma)) which will yield those estimates. It creates an S-Plus
function to evaluate survival probabilities from this Weibull distribution. Weibull2 is useful in
creating functions to pass as the first argument to Quantile2.

The Lognorm2 and Gompertz2 functions are similar to Weibull2 except that they produce
survival functions for the log-normal and Gompertz distributions.

Usage

spower(rcontrol, rinterv, rcens, nc, ni,
test=logrank, nsim=500, alpha=0.05, pr=TRUE)

Quantile2(scontrol, hratio,
dropin=function(times)0, dropout=function(times)0,
m=7500, tmax, qtmax=.001, mplot=200, pr=TRUE, ...)

S3 method for class 'Quantile2':
print(x, ...)

S3 method for class 'Quantile2':
plot(x,

what=c('survival','hazard','both','drop','hratio','all'),
dropsep=FALSE, lty=1:4, col=1, xlim, ylim=NULL,
label.curves=NULL, ...)

logrank(S, group)

Gompertz2(times, surv)
Lognorm2(times, surv)
Weibull2(times, surv)

Arguments

rcontrol a function of n which returns n random uncensored failure times for the con-
trol group. spower assumes that non-compliance (dropin) has been taken into
account by this function.

rinterv similar to rcontrol but for the intervention group

rcens a function of n which returns n random censoring times. It is assumed that both
treatment groups have the same censoring distribution.

238 spower

nc number of subjects in the control group

ni number in the intervention group

scontrol a function of a time vector which returns the survival probabilities for the control
group at those times assuming that all patients are compliant

hratio a function of time which specifies the intervention:control hazard ratio (treat-
ment effect)

x an object of class "Quantile2" created by Quantile2

S a Surv object or other two-column matrix for right-censored survival times

group group indicators have length equal to the number of rows in S. Only values
allowed are 1 and 2.

times a vector of two times

surv a vector of two survival probabilities

test any function of a Surv object and a grouping variable which computes a chi-
square for a two-sample censored data test. The default is logrank.

nsim number of simulations to perform (default=500)

alpha type I error (default=.05)

pr set to FALSE to cause spower to suppress progress notes for simulations.
Set to FALSE to prevent Quantile2 from printing tmax when it calculates
tmax.

dropin a function of time specifying the probability that a control subject actually be-
comes an intervention subject at the corresponding time

dropout a function of time specifying the probability of an intervention subject dropping
out to control conditions

m number of time points used for approximating functions (default is 7500)

tmax maximum time point to use in the grid of m times. Default is the time such that
scontrol(time) is qtmax.

qtmax survival probability corresponding to the last time point used for approximating
survival and hazard functions. Default is .001. For qtmax of the time for
which a simulated time is needed which corresponds to a survival probability of
less than qtmax, the simulated value will be tmax.

mplot number of points used for approximating functions for use in plotting (default is
200 equally spaced points)

... optional arguments passed to the scontrol function when it’s evaluated by
Quantile2

what a single character constant (may be abbreviated) specifying which functions to
plot. The default is "both" meaning both survival and hazard functions. Spec-
ify what="drop" to just plot the dropin and dropout functions, what="hratio"
to plot the hazard ratio functions, or "all" to make 4 separate plots showing
all functions (6 plots if dropsep=TRUE).

dropsep set dropsep=TRUE to make plot.Quantile2 separate pure and contami-
nated functions onto separate plots

lty vector of line types

spower 239

col vector of colors

xlim optional x-axis limits

ylim optional y-axis limits

label.curves optional list which is passed as the opts argument to labcurve.

Value

spower returns the power estimate (fraction of simulated chi-squares greater than the alpha-critical
value). Quantile2 returns an S-Plus function of class "Quantile2" with attributes that drive
the plot method. The major attribute is a list containing several lists. Each of these sub-lists
contains a Time vector along with one of the following: survival probabilities for either treat-
ment group and with or without contamination caused by non-compliance, hazard rates in a similar
way, intervention:control hazard ratio function with and without contamination, and dropin and
dropout functions. logrank returns a single chi-square statistic, and Weibull2, Lognorm2
and Gompertz2 return an S function with three arguments, only the first of which (the vector of
times) is intended to be specified by the user.

Side Effects

spower prints the interation number every 10 iterations if pr=TRUE.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Lakatos E (1988): Sample sizes based on the log-rank statistic in complex clinical trials. Biometrics
44:229–241 (Correction 44:923).

Cuzick J, Edwards R, Segnan N (1997): Adjusting for non-compliance and contamination in ran-
domized clinical trials. Stat in Med 16:1017–1029.

Cook, T (2003): Methods for mid-course corrections in clinical trials with survival outcomes. Stat
in Med 22:3431–3447.

Barthel FMS, Babiker A et al (2006): Evaluation of sample size and power for multi-arm survival
trials allowing for non-uniform accrual, non-proportional hazards, loss to follow-up and cross-over.
Stat in Med 25:2521–2542.

See Also

cpower, ciapower, bpower, cph, coxph, labcurve

240 spower

Examples

Simulate a simple 2-arm clinical trial with exponential survival so
we can compare power simulations of logrank-Cox test with cpower()
Hazard ratio is constant and patients enter the study uniformly
with follow-up ranging from 1 to 3 years
Drop-in probability is constant at .1 and drop-out probability is
constant at .175. Two-year survival of control patients in absence
of drop-in is .8 (mortality=.2). Note that hazard rate is -log(.8)/2
Total sample size (both groups combined) is 1000
% mortality reduction by intervention (if no dropin or dropout) is 25
This corresponds to a hazard ratio of 0.7283 (computed by cpower)

cpower(2, 1000, .2, 25, accrual=2, tmin=1,
noncomp.c=10, noncomp.i=17.5)

ranfun <- Quantile2(function(x)exp(log(.8)/2*x),
hratio=function(x)0.7283156,
dropin=function(x).1,
dropout=function(x).175)

rcontrol <- function(n) ranfun(n, what='control')
rinterv <- function(n) ranfun(n, what='int')
rcens <- function(n) runif(n, 1, 3)

set.seed(11) # So can reproduce results
spower(rcontrol, rinterv, rcens, nc=500, ni=500,

test=logrank, nsim=50) # normally use nsim=500 or 1000

Simulate a 2-arm 5-year follow-up study for which the control group's
survival distribution is Weibull with 1-year survival of .95 and
3-year survival of .7. All subjects are followed at least one year,
and patients enter the study with linearly increasing probability after that
Assume there is no chance of dropin for the first 6 months, then the
probability increases linearly up to .15 at 5 years
Assume there is a linearly increasing chance of dropout up to .3 at 5 years
Assume that the treatment has no effect for the first 9 months, then
it has a constant effect (hazard ratio of .75)

First find the right Weibull distribution for compliant control patients
sc <- Weibull2(c(1,3), c(.95,.7))
sc

Inverse cumulative distribution for case where all subjects are followed
at least a years and then between a and b years the density rises
as (time - a) ^ d is a + (b-a) * u ^ (1/(d+1))

rcens <- function(n) 1 + (5-1) * (runif(n) ^ .5)
To check this, type hist(rcens(10000), nclass=50)

Put it all together

f <- Quantile2(sc,

spss.get 241

hratio=function(x)ifelse(x<=.75, 1, .75),
dropin=function(x)ifelse(x<=.5, 0, .15*(x-.5)/(5-.5)),
dropout=function(x).3*x/5)

par(mfrow=c(2,2))
par(mfrow=c(1,1)) to make legends fit
plot(f, 'all', label.curves=list(keys='lines'))

rcontrol <- function(n) f(n, 'control')
rinterv <- function(n) f(n, 'intervention')

set.seed(211)
spower(rcontrol, rinterv, rcens, nc=350, ni=350,

test=logrank, nsim=50) # normally nsim=500 or more
par(mfrow=c(1,1))

spss.get Enhanced Importing of SPSS Files

Description

spss.get invokes the read.spss function in the foreign package to read an SPSS file, with
a default output format of "data.frame". The label function is used to attach labels to indi-
vidual variables instead of to the data frame as done by read.spss. By default, integer-valued
variables are converted to a storage mode of integer unless force.single=FALSE. Date vari-
ables are converted to R Date variables. By default, underscores in names are converted to periods.

Usage

spss.get(file, lowernames=FALSE, datevars = NULL,
use.value.labels = TRUE, to.data.frame = TRUE,
max.value.labels = Inf, force.single=TRUE,
allow=NULL, charfactor=FALSE)

Arguments

file input SPSS save file. May be a file on the WWW, indicated by file starting
with ’http://’.

lowernames set to TRUE to convert variable names to lower case

datevars vector of variable names containing dates to be converted to R internal format
use.value.labels

see read.spss
to.data.frame

see read.spss; default is TRUE for spss.get
max.value.labels

see read.spss

242 src

force.single set to FALSE to prevent integer-valued variables from being converted from
storage mode double to integer

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

charfactor set to TRUE to change character variables to factors if they have at least two
characters in an observation but have fewer than n/2 unique values

Value

a data frame or list

Author(s)

Frank Harrell

See Also

read.spss,cleanup.import,sas.get

Examples

Not run:
w <- spss.get('/tmp/my.sav', datevars=c('birthdate','deathdate'))

End(Not run)

src Source a File from the Current Working Directory

Description

src concatenates ".s" to its argument, quotes the result, and sources in the file. It sets
options(last.source) to this file name so that src() can be issued to re-source the
file when it is edited.

Usage

src(x)

Arguments

x an unquoted file name aside from ".s". This base file name must be a legal S
name.

Side Effects

Sets system option last.source

stata.get 243

Author(s)

Frank Harrell

See Also

source

Examples

Not run:
src(myfile) # source("myfile.s")
src() # re-source myfile.s
End(Not run)

stata.get Enhanced Importing of STATA Files

Description

Reads a file in Stata version 5-8 or 7/SE binary format into a data frame.

Usage

stata.get(file, lowernames = FALSE, convert.dates = TRUE,
convert.factors = TRUE, missing.type = FALSE,
convert.underscore = TRUE, warn.missing.labels = TRUE,
force.single = TRUE, allow=NULL, charfactor=FALSE, ...)

Arguments

file input SPSS save file. May be a file on the WWW, indicated by file starting
with ’http://’.

lowernames set to TRUE to convert variable names to lower case
convert.dates

see read.dta
convert.factors

see read.dta

missing.type see read.dta
convert.underscore

see read.dta
warn.missing.labels

see read.dta

force.single set to FALSE to prevent integer-valued variables from being converted from
storage mode double to integer

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

244 store

charfactor set to TRUE to change character variables to factors if they have at least two
characters in an observation but have fewer than n/2 unique values

... arguments passed to read.dta.

Details

stata.get invokes the read.dta function in the foreign package to read an STATA file, with a
default output format of data.frame. The label function is used to attach labels to individual
variables instead of to the data frame as done by read.dta. By default, integer-valued variables
are converted to a storage mode of integer unless force.single=FALSE. Date variables are
converted to R Date variables. By default, underscores in names are converted to periods.

Value

A data frame

Author(s)

Charles Dupont

See Also

read.dta,cleanup.import,label,\label{data.frame},Date

Examples

Not run:
w <- stata.get(\sQuote{/tmp/my.dta})
End(Not run)

store Store an Object Permanently

Description

By default, store will copy the object to .Data under the same name. This function is most
useful when you have attached a data frame or a temporary directory in position 1. store is also
useful for setting up to store later objects in a temporary work area (.Data.tempnnnn, where
nnnn is a number computed by the system) so that they are not stored on disk. For this usage,
just invoke store with no arguments, i.e., store(). After that, you can still invoke store with
arguments so that the object is copied to permanent storage. Another function, stores is useful
for storing a series of temporary objects in .Data with one call. store and stores are not
available For R. See Details below for a method of approximating the use of store in R.

storeTemp stores an object in frame 0 for S-Plus or in a temporary environment .GlobalTemp
in R, attaching that environment if it is not already attached, so that the objects are easily available.

store 245

Usage

store(object, name=as.character(substitute(object)),
where=if (under.unix || .SV4.) ".Data" else "_Data")

stores(...)
storeTemp(object, name=deparse(substitute(object)))

Arguments

object object to store (omit to set search list position one to a temporary directory
created by store)

name name under which to store the object. Default is name of object in call to
store().

where directory in which to store object. Default is .Data underneath current direc-
tory (for UNIX) or position 2 in the search list (for Windows). For R the default
is .GlobalEnv.

... a list of objects to store in .Data or .GlobalEnv permanently, using names
which are the same as the argument names

Details

To almost mimic the functionality of store or stores in R, you can do the following. Use
save(x,y,z,file="Permdata") to save permanent objects in "permdata". When you
exit R, do not save the workspace. Then all temporary objects will disappear. In your .Rprofile
put the command load("Permdata") so that the next time you invoke R the permanent objects
will be available.

Side Effects

uses assign and attach functions. store with no arguments also stores a function .Last
in .Data.tempnnnn, which will cause .Data.tempnnnn to be removed when the S session
ends. For S-Plus, store() causes creation of a system option named .store.temp which
contains the name of the temporary directory created.

See Also

assign, .Last, attach, search

Examples

Not run:
attach(database, 1) #this database takes precedence
store() #new objects to go under database in memory

#this doesn't work in R
f <- lm(y ~ x)
store(f) #store f under name "f" in .Data or .GlobalEnv

#uses assign() with immediate=T
store(f, "final.model") #immediately store f under "final.model" in .Data
store() #store future objects in .Data.tempnnnn
x <- runif(1000) #x will disappear at session end unless

246 string.bounding.box

store(x) #this statement appears -> store in .Data
stores(x, y, z) #store x,y,z in .Data under names x,y,z
storeTemp(x) #put x as name 'x' in frame 0

#for R, attach .GlobalTemp and store it there
storeTemp(x,'X') #same as previous but under the name X
End(Not run)

string.bounding.box
Determine Diamentions of Strings

Description

This determins the number of rows and maximum number of columns of each string in a vector.

Usage

string.bounding.box(string, type = c("chars", "width"))

Arguments

string character vector, or a vector to be coerced to a character vector

type character string: How the length of the string should be measured. See Details.

Details

The length of a string can be measured in one of two ways. See nchar Details section for more
info.

‘chars’ The number of human readable characters.

‘width’ The number of columns used to print the string.

Value

rows vector containing the number of character rows in each string.

columns vector containing the maximum number of characters or character columns in
each string.

Note

compatable with Splus string.bounding.box

Author(s)

Charles Dupont

See Also

nchar, stringDims

string.break.line 247

Examples

a <- c("this is a single line string", "This is a\nmulty line string")
stringDims(a)

string.break.line Break a string into many lines at carage retruns.

Description

Takes a string and breaks it into seperate substrings where there are carrage returns.

Usage

string.break.line(string)

Arguments

string character vector to be separated into many lines.

Value

Returns a list that is the same length of as the string argument.

Each list element is a character vector.

Each character vectors elements are the split lines of the corasponding element in the string
argument vector.

Author(s)

Charles Dupont

See Also

strsplit

Examples

a <- c('', 'this is a single line string',
'This is a\nmulti-line string.')

b <- string.break.line(a)

248 stringDims

stringDims String Dimentions

Description

Finds the height and width of all the string in a character vector.

Usage

stringDims(string)

Arguments

string vector of strings

Details

stringDims finds the number of characters in width and number of lines in height for each string
in the string argument.

Value

height a vector of the number of lines in each string.

width a vector with the number of character columns in the longest line.

Author(s)

Charles Dupont

See Also

string.bounding.box, nchar

Examples

a <- c("this is a single line string", "This is a\nmulty line string")
stringDims(a)

summarize 249

summarize Summarize Scalars or Matrices by Cross-Classification

Description

summarize is a fast version of summary(formula, method="cross",overall=FALSE)
for producing stratified summary statistics and storing them in a data frame for plotting (especially
with trellis xyplot and dotplot and Hmisc xYplot). Unlike aggregate, summarize ac-
cepts a matrix as its first argument and a multi-valued FUN argument and summarize also labels
the variables in the new data frame using their original names. Unlike methods based on tapply,
summarize stores the values of the stratification variables using their original types, e.g., a nu-
meric by variable will remain a numeric variable in the collapsed data frame. summarize also
retains "label" attributes for variables. summarize works especially well with the Hmisc
xYplot function for displaying multiple summaries of a single variable on each panel, such as
means and upper and lower confidence limits.

asNumericMatrix converts a data frame into a numeric matrix, saving attributes to reverse the
process by matrix2dataframe. It saves attributes that are commonly preserved across row
subsetting (i.e., it does not save dim, dimnames, or names attributes).

matrix2dataFrame converts a numeric matrix back into a data frame if it was created by
asNumericMatrix.

Usage

summarize(X, by, FUN, ...,
stat.name=deparse(substitute(X)),
type=c('variables','matrix'), subset=TRUE)

asNumericMatrix(x)

matrix2dataFrame(x, at=origAttributes, restoreAll=TRUE)

Arguments

X a vector or matrix capable of being operated on by the function specified as the
FUN argument

by one or more stratification variables. If a single variable, bymay be a vector, oth-
erwise it should be a list. Using the Hmisc llist function instead of listwill
result in individual variable names being accessible to summarize. For exam-
ple, you can specify llist(age.group,sex) or llist(Age=age.group,sex).
The latter gives age.group a new temporary name, Age.

FUN a function of a single vector argument, used to create the statistical summaries
for summarize. FUN may compute any number of statistics.

... extra arguments are passed to FUN
stat.name the name to use when creating the main summary variable. By default, the name

of the X argument is used. Set stat.name to NULL to suppress this name
replacement.

250 summarize

type Specify type="matrix" to store the summary variables (if there are more
than one) in a matrix.

subset a logical vector or integer vector of subscripts used to specify the subset of data
to use in the analysis. The default is to use all observations in the data frame.

x a data frame (for asNumericMatrix) or a numeric matrix (for matrix2dataFrame).

at List containing attributes of original data frame that survive subsetting. Defaults
to object "origAttributes" in the global environment, created by the last
call to asNumericMatrix

restoreAll set to FALSE to only restore attributes label, units, and levels instead of
all attributes

Value

For summarize, a data frame containing the by variables and the statistical summaries (the first
of which is named the same as the X variable unless stat.name is given). If type="matrix",
the summaries are stored in a single variable in the data frame, and this variable is a matrix.

asNumericMatrix returns a numeric matrix and stores an object origAttributes in the
global environment, with original attributes of component variables, plus an indicator for whether a
variable was converted from character to factor to allow it to be made numeric.

matrix2dataFrame returns a data frame.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu

See Also

label, cut2, llist, by

Examples

Not run:
s <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean,

stat.name='Proportion')
dotplot(Proportion ~ size | bone, data=s7)
End(Not run)

set.seed(1)
temperature <- rnorm(300, 70, 10)
month <- sample(1:12, 300, TRUE)
year <- sample(2000:2001, 300, TRUE)
g <- function(x)c(Mean=mean(x,na.rm=TRUE),Median=median(x,na.rm=TRUE))
summarize(temperature, month, g)
mApply(temperature, month, g)

mApply(temperature, month, mean, na.rm=TRUE)

summarize 251

w <- summarize(temperature, month, mean, na.rm=TRUE)
if(.R.) library(lattice)
xyplot(temperature ~ month, data=w) # plot mean temperature by month

w <- summarize(temperature, llist(year,month),
quantile, probs=c(.5,.25,.75), na.rm=TRUE, type='matrix')

xYplot(Cbind(temperature[,1],temperature[,-1]) ~ month | year, data=w)
mApply(temperature, llist(year,month),

quantile, probs=c(.5,.25,.75), na.rm=TRUE)

Compute the median and outer quartiles. The outer quartiles are
displayed using "error bars"
set.seed(111)
dfr <- expand.grid(month=1:12, year=c(1997,1998), reps=1:100)
attach(dfr)
y <- abs(month-6.5) + 2*runif(length(month)) + year-1997
s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)
s
mApply(y, llist(month,year), smedian.hilow, conf.int=.5)

xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s,
keys='lines', method='alt')

Can also do:
s <- summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),

stat.name=c('y','Q1','Q3'))
xYplot(Cbind(y, Q1, Q3) ~ month, groups=year, data=s, keys='lines')
To display means and bootstrapped nonparametric confidence intervals
use for example:
s <- summarize(y, llist(month,year), smean.cl.boot)
xYplot(Cbind(y, Lower, Upper) ~ month | year, data=s)

For each subject use the trapezoidal rule to compute the area under
the (time,response) curve using the Hmisc trap.rule function
x <- cbind(time=c(1,2,4,7, 1,3,5,10),response=c(1,3,2,4, 1,3,2,4))
subject <- c(rep(1,4),rep(2,4))
trap.rule(x[1:4,1],x[1:4,2])
summarize(x, subject, function(y) trap.rule(y[,1],y[,2]))

Not run:
Another approach would be to properly re-shape the mm array below
This assumes no missing cells. There are many other approaches.
mApply will do this well while allowing for missing cells.
m <- tapply(y, list(year,month), quantile, probs=c(.25,.5,.75))
mm <- array(unlist(m), dim=c(3,2,12),

dimnames=list(c('lower','median','upper'),c('1997','1998'),
as.character(1:12)))

aggregate will help but it only allows you to compute one quantile
at a time; see also the Hmisc mApply function
dframe <- aggregate(y, list(Year=year,Month=month), quantile, probs=.5)

Compute expected life length by race assuming an exponential
distribution - can also use summarize
g <- function(y) { # computations for one race group

252 summarize

futime <- y[,1]; event <- y[,2]
sum(futime)/sum(event) # assume event=1 for death, 0=alive

}
mApply(cbind(followup.time, death), race, g)

To run mApply on a data frame:
xn <- asNumericMatrix(x)
m <- mApply(xn, race, h)
Here assume h is a function that returns a matrix similar to x
matrix2dataFrame(m)

Get stratified weighted means
g <- function(y) wtd.mean(y[,1],y[,2])
summarize(cbind(y, wts), llist(sex,race), g, stat.name='y')
mApply(cbind(y,wts), llist(sex,race), g)

Compare speed of mApply vs. by for computing
d <- data.frame(sex=sample(c('female','male'),100000,TRUE),

country=sample(letters,100000,TRUE),
y1=runif(100000), y2=runif(100000))

g <- function(x) {
y <- c(median(x[,'y1']-x[,'y2']),

med.sum =median(x[,'y1']+x[,'y2']))
names(y) <- c('med.diff','med.sum')
y

}

system.time(by(d, llist(sex=d$sex,country=d$country), g))
system.time({

x <- asNumericMatrix(d)
a <- subsAttr(d)
m <- mApply(x, llist(sex=d$sex,country=d$country), g)
})

system.time({
x <- asNumericMatrix(d)
summarize(x, llist(sex=d$sex, country=d$country), g)
})

An example where each subject has one record per diagnosis but sex of
subject is duplicated for all the rows a subject has. Get the cross-
classified frequencies of diagnosis (dx) by sex and plot the results
with a dot plot

count <- rep(1,length(dx))
d <- summarize(count, llist(dx,sex), sum)
Dotplot(dx ~ count | sex, data=d)
End(Not run)
d <- list(x=1:10, a=factor(rep(c('a','b'),5)),

b=structure(letters[1:10], label='label for a'))
x <- asNumericMatrix(d)
origAttributes
matrix2dataFrame(x)

summary.formula 253

detach('dfr')

Run summarize on a matrix to get column means
x <- c(1:19,NA)
y <- 101:120
z <- cbind(x, y)
g <- c(rep(1, 10), rep(2, 10))
summarize(z, g, colMeans, na.rm=TRUE, stat.name='x')
Also works on an all numeric data frame
summarize(as.data.frame(z), g, colMeans, na.rm=TRUE, stat.name='x')

summary.formula Summarize Data for Making Tables and Plots

Description

summary.formula summarizes the variables listed in an S-Plus formula, computing descriptive
statistics (including ones in a user-specified function). The summary statistics may be passed to
print methods, plot methods for making annotated dot charts, and latex methods for typeset-
ting tables using LaTeX. summary.formula has three methods for computing descriptive statis-
tics on univariate or multivariate responses, subsetted by categories of other variables. The method
of summarization is specified in the parameter method (see details below). For the response
and cross methods, the statistics used to summarize the data may be specified in a very flexible
way (e.g., the geometric mean, 33rd percentile, Kaplan-Meier 2-year survival estimate, mixtures of
several statistics). The default summary statistic for these methods is the mean (the proportion of
positive responses for a binary response variable). The cross method is useful for creating data
frames which contain summary statistics that are passed to trellis as raw data (to make multi-
panel dot charts, for example). The print methods use the print.char.matrix function to
print boxed tables, if it is available (it is included in S-Plus versions 3.2 and later).

The right hand side of formula may contain mChoice ("multiple choice") variables. When
test=TRUE each choice is tested separately as a binary categorical response.

The plot method for method="reverse" creates a temporary function Key in frame 0 as is
done by the xYplot and Ecdf.formula functions. After plot runs, you can type Key() to put
a legend in a default location, or e.g. Key(locator(1)) to draw a legend where you click the left
mouse button. This key is for categorical variables, so to have the opportunity to put the key on the
graph you will probably want to use the command plot(object, which="categorical")
[Note however that in Windows S-Plus you can switch back and forth between multiple pages on
a graph sheet, and issue a Key() or Key2() command according to which graph sheet page is
active.]. A second function Key2 is created if continuous variables are being plotted. It is used the
same as Key. If the which argument is not specified to plot, two pages of plots will be produced.
If you don’t define par(mfrow=) yourself, plot.summary.formula.reverse will try to
lay out a multi-panel graph to best fit all the individual dot charts for continuous variables.

There is a subscripting method for objects created with method="response". This can be used
to print or plot selected variables or summary statistics where there would otherwise be too many
on one page.

cumcategory is a utility function useful when summarizing an ordinal response variable. It
converts such a variable having k levels to a matrix with k-1 columns, where column i is a vector

254 summary.formula

of zeros and ones indicating that the categorical response is in level i+1 or greater. When the left
hand side of formula is cumcategory(y), the default fun will summarize it by computing
all of the relevant cumulative proportions.

Usage

S3 method for class 'formula':
summary(formula, data, subset, na.action, fun = NULL,

method = c("response", "reverse", "cross"),
overall = method == "response" | method == "cross",
continuous = 10, na.rm = TRUE, na.include = method != "reverse",
g = 4, quant = c(0.025, 0.05, 0.125, 0.25, 0.375, 0.5, 0.625,

0.75, 0.875, 0.95, 0.975),
nmin = if (method == "reverse") 100

else 0,
test = FALSE,

conTest = function(group, x) {
st <- spearman2(group, x)
list(P = st["P"], stat = st["F"], df = st[c("df1", "df2")],

testname = if (st["df1"] == 1) "Wilcoxon"
else "Kruskal-Wallis",

statname = "F", latexstat = "F_{df}",
plotmathstat = "F[df]")

},
catTest = function(tab) {

st <- if (!is.matrix(tab) || nrow(tab) < 2 | ncol(tab) < 2)
list(p.value = NA, statistic = NA, parameter = NA)

else chisq.test(tab, correct = FALSE)
list(P = st$p.value, stat = st$statistic, df = st$parameter,

testname = "Pearson", statname = "Chi-square",
latexstat = "\chi^{2}_{df}", plotmathstat = "chi[df]^2")

},
ordTest = function(group, x) {

f <- lrm(x ~ group)$stats
list(P = stats["P"], stat = stats["Model L.R."],

df = stats["d.f."],
testname = "Proportional odds likelihood ratio",
statname = "Chi-square", latexstat = "\chi^{2}_{df}",
plotmathstat = "chi[df]^2")

}, ...)

S3 method for class 'summary.formula.response':
print(x, vnames=c('labels','names'), prUnits=TRUE,

abbreviate.dimnames=FALSE,
prefix.width, min.colwidth, formatArgs, ...)

S3 method for class 'summary.formula.response':
plot(x, which = 1, vnames = c('labels','names'), xlim, xlab,

pch = c(16, 1, 2, 17, 15, 3, 4, 5, 0), superposeStrata = TRUE,

summary.formula 255

dotfont = 1, add = FALSE, reset.par = TRUE, main, subtitles = TRUE,
...)

S3 method for class 'summary.formula.response':
latex(object, title = first.word(deparse(substitute(object))), caption,

trios, vnames = c('labels', 'names'), prn = TRUE, prUnits = TRUE,
rowlabel = '', cdec = 2, ncaption = TRUE, ...)

S3 method for class 'summary.formula.response':
x[i, j, drop=FALSE, ...]

S3 method for class 'summary.formula.reverse':
print(x, digits, prn = any(n != N), pctdig = 0,

npct = c('numerator', 'both', 'denominator', 'none'),
exclude1 = TRUE, vnames = c('labels', 'names'), prUnits = TRUE,
sep = '/', abbreviate.dimnames = FALSE,
prefix.width = max(nchar(lab)), min.colwidth, formatArgs,
prtest = c('P','stat','df','name'), prmsd = FALSE, long = FALSE,
pdig = 3, eps = 0.001, ...)

S3 method for class 'summary.formula.reverse':
plot(x, vnames = c('labels', 'names'), what = c('proportion', '%'),

which = c('both', 'categorical', 'continuous'),
xlim = if(what == 'proportion') c(0,1)

else c(0,100),
xlab = if(what=='proportion') 'Proportion'

else 'Percentage',
pch = c(16, 1, 2, 17, 15, 3, 4, 5, 0), exclude1 = TRUE,
dotfont = 1, main, subtitles = TRUE,
prtest = c('P', 'stat', 'df', 'name'), pdig = 3, eps = 0.001,
conType = c('dot', 'bp', 'raw'), cex.means = 0.5, ...)

S3 method for class 'summary.formula.reverse':
latex(object, title = first.word(deparse(substitute(object))), digits,

prn = any(n != N), pctdig = 0,
npct = c('numerator', 'both', 'denominator', 'none'),
npct.size = 'scriptsize', Nsize = 'scriptsize', exclude1 = TRUE,
vnames=c("labels", "names"), prUnits = TRUE, middle.bold = FALSE,
outer.size = "scriptsize", caption, rowlabel = "",
insert.bottom = TRUE, dcolumn = FALSE,
prtest = c('P', 'stat', 'df', 'name'), prmsd = FALSE,
msdsize = NULL, long = dotchart, pdig = 3, eps = 0.001,
auxCol = NULL, dotchart=FALSE, ...)

S3 method for class 'summary.formula.cross':
print(x, twoway = nvar == 2, prnmiss = any(stats$Missing > 0), prn = TRUE,

abbreviate.dimnames = FALSE, prefix.width = max(nchar(v)),

256 summary.formula

min.colwidth, formatArgs = NULL, ...)

S3 method for class 'summary.formula.cross':
latex(object, title = first.word(deparse(substitute(object))),

twoway = nvar == 2, prnmiss = TRUE, prn = TRUE,
caption=attr(object,"heading"), vnames=c('labels','names'),
rowlabel="", ...)

stratify(..., na.group=FALSE, shortlabel=TRUE)

S3 method for class 'summary.formula.cross':
formula(x, ...)

cumcategory(y)

Arguments

formula An S formula with additive effects. For method="response" or "cross",
the dependent variable has the usual connotation. For method="reverse",
the dependent variable is what is usually thought of as an independent variable,
and it is one that is used to stratify all of the right hand side variables. For
method="response" (only), the formula may contain one or more in-
vocations of the stratify function whose arguments are defined below. This
causes the entire analysis to be stratified by cross-classifications of the combined
list of stratification factors. This stratification will be reflected as major column
groupings in the resulting table, or as more response columns for plotting. If
formula has no dependent variable method="reverse" is the only legal
value and so method defaults to "reverse" in this case.

x an object created by summary.formula

y a numeric, character, category, or factor vector for cumcategory. Is converted
to a categorical variable is needed.

data name or number of a data frame. Default is the current frame.

subset a logical vector or integer vector of subscripts used to specify the subset of data
to use in the analysis. The default is to use all observations in the data frame.

na.action function for handling missing data in the input data. The default is a function
defined here called na.retain, which keeps all observations for processing,
with missing variables or not.

fun function for summarizing data in each cell. Default is to take the mean of
each column of the possibly multivariate response variable. You can specify
fun="%" to compute percentages (100 times the mean of a series of logical or
binary variables). User–specified functions can also return a matrix. For exam-
ple, you might compute quartiles on a bivariate response.

method The default is "response", in which case the response variable may be mul-
tivariate and any number of statistics may be used to summarize them. Here
the responses are summarized separately for each of any number of independent
variables. Continuous independent variables (see the continuous parameter
below) are automatically stratified into g (see below) quantile groups (if you

summary.formula 257

want to control the discretization for selected variables, use the cut2 function
on them). Otherwise, the data are subsetted by all levels of discrete right hand
side variables. For multivariate responses, subjects are considered to be missing
if any of the columns is missing.
The method="reverse" option is typically used to make baseline character-
istic tables, for example. The single left hand side variable must be categorical
(e.g., treatment), and the right hand side variables are broken down one at a
time by the "dependent" variable. Continuous variables are described by three
quantiles (quartiles by default) along with outer quantiles (used only for scaling
x-axes when plotting quartiles; all are used when plotting box-percentile plots),
and categorical ones are described by counts and percentages. If there is no
left hand side variable, summary assumes that there is only one group in the
data, so that only one column of summaries will appear. If there is no dependent
variable in formula, method defaults to "reverse" automatically.
The method="cross" option allows for a multivariate dependent variable
and for up to three independents. Continuous independent variables (those with
at least continuous unique values) are automatically divided into g quan-
tile groups. The independents are cross-classified, and marginal statistics may
optionally be computed. The output of summary.formula in this case is
a data frame containing the independent variable combinations (with levels of
"All" corresponding to marginals) and the corresponding summary statistics
in the matrix S. The output data frame is suitable for direct use in trellis.
The print and latex typesetting methods for this method allows for a special
two-way format if there are two right hand variables.

overall For method="reverse", setting overall=TRUE makes a new column
with overall statistics for the whole sample. For method="cross", overall=TRUE
(the default) results in all marginal statistics being computed. For trellis
displays (usually multi-panel dot plots), these marginals just form other cate-
gories. For "response", the default is overall=TRUE, causing a final row
of global summary statistics to appear in tables and dot charts. If test=TRUE
these marginal statistics are ignored in doing statistical tests.

continuous specifies the threshold for when a variable is considered to be continuous (when
there are at least continuous unique values). factor variables are always
considered to be categorical no matter how many levels they have.

na.rm TRUE (the default) to exclude NAs before passing data to fun to compute statis-
tics, FALSE otherwise. na.rm=FALSE is useful if the response variable is a
matrix and you do not wish to exclude a row of the matrix if any of the columns
in that row are NA. na.rm also applies to summary statistic functions such as
smean.cl.normal. For these na.rm defaults to TRUE unlike built-in func-
tions.

na.include for method="response", set na.include=FALSE to exclude missing
values from being counted as their own category when subsetting the response(s)
by levels of a categorical variable. For method="reverse" set na.include=TRUE
to keep missing values of categorical variables from being excluded from the ta-
ble.

g number of quantile groups to use when variables are automatically categorized
with method="response" or "cross" using cut2

258 summary.formula

nmin if fewer than nmin observations exist in a category for "response" (over all
strata combined), that category will be ignored. For "reverse", for categories
of the response variable in which there are less than or equal to nmin non-
missing observations, the raw data are retained for later plotting in place of box
plots.

test applies if method="reverse". Set to TRUE to compute test statistics using
tests specified in conTest and catTest.

conTest a function of two arguments (grouping variable and a continuous variable) that
returns a list with components P (the computed P-value), stat (the test statis-
tic, either chi-square or F), df (degrees of freedom), testname (test name),
statname (statistic name), an optional component latexstat (LaTeX rep-
resentation of statname), an optional component plotmathstat (for R -
the plotmath representation of statname, as a character string), and an op-
tional component note that contains a character string note about the test (e.g.,
"test not done because n < 5"). conTest is applied to continu-
ous variables on the right-hand-side of the formula when method="reverse".
The default uses the spearman2 function to run the Wilcoxon or Kruskal-
Wallis test using the F distribution.

catTest a function of a frequency table (an integer matrix) that returns a list with the
same components as created by conTest. By default, the Pearson chi-square
test is done, without continuity correction (the continuity correction would make
the test conservative like the Fisher exact test).

ordTest a function of a frequency table (an integer matrix) that returns a list with the
same components as created by conTest. By default, the Proportional odds
likelihood ratio test is done.

... for summary.formula these are optional arguments for cut2 when vari-
ables are automatically categorized. For plot methods these arguments are
passed to dotchart2. For Key and Key2 these arguments are passed to
key, text, or mtitle. For print methods these are optional arguments to
print.char.matrix. For latexmethods these are passed to latex.default.
One of the most important of these is file. Specifying file="" will cause
LaTeX code to just be printed to standard output rather than be stored in a per-
manent file.

drop logical. If ’TRUE’ the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but *not* to drop if only one row is
left.

object an object created by summary.formula
quant vector of quantiles to use for summarizing data with method="reverse".

This must be numbers between 0 and 1 inclusive and must include the numbers
0.5, 0.25, and 0.75 which are used for printing and for plotting quantile intervals.
The outer quantiles are used for scaling the x-axes for such plots. Specify outer
quantiles as 0 and 1 to scale the x-axes using the whole observed data ranges
instead of the default (a 0.95 quantile interval). Box-percentile plots are drawn
using all but the outer quantiles.

vnames By default, tables and plots are usually labeled with variable labels (see the
label and sas.get functions). To use the shorter variable names, specify
vnames="name".

summary.formula 259

pch vector of plotting characters to represent different groups, in order of group
levels. For method="response" the characters correspond to levels of the
stratify variable if superposeStrata=TRUE, and if no strata are
used or if superposeStrata=FALSE, the pch vector corresponds to the
which argument for method="response".

superposeStrata
If stratify was used, set superposeStrata=FALSE to make separate
dot charts for each level of the stratification variable, for method=’response’.
The default is to superposition all strata on one dot chart.

dotfont font for plotting points

reset.par set to FALSE to suppress the restoring of the old par values in plot.summary.formula.response
abbreviate.dimnames

see print.char.matrix

prefix.width see print.char.matrix

min.colwidth minimum column width to use for boxes printed with print.char.matrix.
The default is the maximum of the minimum column label length and the mini-
mum length of entries in the data cells.

formatArgs a list containing other arguments to pass to format.default such as scientific,
e.g., formatArgs=list(scientific=c(-5,5)). For print.summary.formula.reverse,
formatArgs applies only to statistics computed on continuous variables, not
to percents, numerators, and denominators.

digits number of significant digits to print. Default is to use the current value of the
digits system option.

prn set to TRUE to print the number of non-missing observations on the current (row)
variable. The default is to print these only if any of the counts of non-missing
values differs from the total number of non-missing values of the left-hand-side
variable. For method="cross" the default is to always print N.

prnmiss set to FALSE to suppress printing counts of missing values for "cross"

pctdig number of digits to the right of the decimal place for printing percentages. The
default is zero, so percents will be rounded to the nearest percent.

npct specifies which counts are to be printed to the right of percentages. The default
is to print the frequency (numerator of the percent) in parentheses. You can
specify "both" to print both numerator and denominator, "denominator",
or "none".

npct.size the size for typesetting npct information which appears after percents. The
default is "scriptsize".

Nsize When a second row of column headings is added showing sample sizes, Nsize
specifies the LaTeX size for these subheadings. Default is "scriptsize".

exclude1 by default, method="reverse" objects will be printed, plotted, or typeset
by removing redundant entries from percentage tables for categorical variables.
For example, if you print the percent of females, you don’t need to print the
percent of males. To override this, set exclude1=FALSE.

prUnits set to FALSE to suppress printing or latexing units attributes of variables,
when method=’reverse’ or ’response’

260 summary.formula

sep character to use to separate quantiles when printing method="reverse" ta-
bles

prtest a vector of test statistic components to print if test=TRUE was in effect when
summary.formula was called. Defaults to printing all components. Specify
prtest=FALSE or prtest="none" to not print any tests. This applies to
print, latex, and plot methods for method=’reverse’.

prmsd set to TRUE to print mean and SD after the three quantiles, for continuous vari-
ables with method="reverse"

msdsize defaults to NULL to use the current font size for the mean and standard deviation
if prmsd is TRUE. Set to a character string to specify an alternate LaTeX font
size.

long set to TRUE to print the results for the first category on its own line, not on the
same line with the variable label (for method="reverse" with print and
latex methods)

pdig number of digits to the right of the decimal place for printing P-values. Default
is 3. This is passed to format.pval.

eps P-values less than eps will be printed as < eps. See format.pval.

auxCol an optional auxiliary column of information, right justified, to add in front of
statistics typeset by latex.summary.formula.reverse. This argument
is a list with a single element that has a name specifying the column heading.
If this name includes a newline character, the portions of the string before and
after the newline form respectively the main heading and the subheading (typi-
cally set in smaller font), respectively. See the extracolheads argument to
latex.default. auxCol is filled with blanks when a variable being sum-
marized takes up more than one row in the output. This happens with categorical
variables.

what for method="reverse" specifies whether proportions or percentages are to
be plotted

twoway for method="cross" with two right hand side variables, twoway controls
whether the resulting table will be printed in enumeration format or as a two-way
table (the default)

which For method="response" specifies the sequential number or a vector of sub-
scripts of response variables to plot. If you had any stratify variables, these
are counted as if multiple response variables were analyzed. For method="reverse"
specifies whether to plot results for categorical variables, continuous variables,
or both (the default).

conType For plotting method="reverse" plots for continuous variables, dot plots
showing quartiles are drawn by default. Specify conType=’bp’ to draw box-
percentile plots using all the quantiles in quant except the outermost ones.
Means are drawn with a solid dot and vertical reference lines are placed at the
three quartiles. Specify conType=’raw’ to make a strip chart showing the
raw data. This can only be used if the sample size for each left-hand-side group
is less than or equal to nmin.

cex.means character size for means in box-percentile plots; default is .5

summary.formula 261

xlim vector of length two specifying x-axis limits. For method="reverse", this
is only used for plotting categorical variables. Limits for continuous variables
are determined by the outer quantiles specified in quant.

xlab x-axis label

add set to TRUE to add to an existing plot

main a main title. For method="reverse" this applies only to the plot for cate-
gorical variables.

subtitles set to FALSE to suppress automatic subtitles

caption character string containing LaTeX table captions.

title name of resulting LaTeX file omitting the .tex suffix. Default is the name of
the summary object. If caption is specied, title is also used for the table’s
symbolic reference label.

trios If for method="response" you summarized the response(s) by using three
quantiles, specify trios=TRUE or trios=v to group each set of three statis-
tics into one column for latex output, using the format a B c, where the outer
quantiles are in smaller font (scriptsize). For trios=TRUE, the overall
column names are taken from the column names of the original data matrix.
To give new column names, specify trios=v, where v is a vector of column
names, of length m/3, where m is the original number of columns of summary
statistics.

rowlabel see latex.default (under the help file latex)

cdec number of decimal places to the right of the decimal point for latex. This
value should be a scalar (which will be properly replicated), or a vector with
length equal to the number of columns in the table. For "response" tables,
this length does not count the column for N.

ncaption set to FALSE to not have latex.summary.formula.response put sam-
ple sizes in captions

i a vector of integers, or character strings containing variable names to subset on.
Note that each row subsetted on in an summary.formula.reverse object
subsets on all the levels that make up the corresponding variable (automatically).

j a vector of integers representing column numbers

middle.bold set to TRUE to have LaTeX use bold face for the middle quantile for method="reverse"

outer.size the font size for outer quantiles for "reverse" tables
insert.bottom

set to FALSE to suppress inclusion of definitions placed at the bottom of LaTeX
tables for method="reverse"

dcolumn see latex

na.group set to TRUE to have missing stratification variables given their own category
(NA)

shortlabel set to FALSE to include stratification variable names and equal signs in labels
for strata levels

dotchart set to TRUE to output a dotchart in the latex table being generated.

262 summary.formula

Value

summary.formula returns a data frame or list depending on method. plot.summary.formula.reverse
returns the number of pages of plots that were made.

Side Effects

plot.summary.formula.reverse creates a function Key and Key2 in frame 0 that will
draw legends.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

References

Harrell FE (2004): Statistical tables and plots using S and LaTeX. Document available from http:
//biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/summary.pdf.

See Also

mChoice, smean.sd, summarize, label, strata, dotchart2, print.char.matrix,
update, formula, cut2, llist, format.default, latex, latexTranslate bpplt

Examples

options(digits=3)
set.seed(173)
sex <- factor(sample(c("m","f"), 500, rep=TRUE))
age <- rnorm(500, 50, 5)
treatment <- factor(sample(c("Drug","Placebo"), 500, rep=TRUE))

Generate a 3-choice variable; each of 3 variables has 5 possible levels
symp <- c('Headache','Stomach Ache','Hangnail',

'Muscle Ache','Depressed')
symptom1 <- sample(symp, 500,TRUE)
symptom2 <- sample(symp, 500,TRUE)
symptom3 <- sample(symp, 500,TRUE)
Symptoms <- mChoice(symptom1, symptom2, symptom3, label='Primary Symptoms')
table(Symptoms)

Note: In this example, some subjects have the same symptom checked
multiple times; in practice these redundant selections would be NAs
mChoice will ignore these redundant selections

#Frequency table sex*treatment, sex*Symptoms
summary(sex ~ treatment + Symptoms, fun=table)
could also do summary(sex ~ treatment +
mChoice(symptom1,symptom2,symptom3), fun=table)

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/summary.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/summary.pdf

summary.formula 263

#Compute mean age, separately by 3 variables
summary(age ~ sex + treatment + Symptoms)

f <- summary(treatment ~ age + sex + Symptoms, method="reverse", test=TRUE)
f
trio of numbers represent 25th, 50th, 75th percentile
print(f, long=TRUE)
plot(f)
plot(f, conType='bp', prtest='P')
bpplt() # annotated example showing layout of bp plot

#Compute predicted probability from a logistic regression model
#For different stratifications compute receiver operating
#characteristic curve areas (C-indexes)
predicted <- plogis(.4*(sex=="m")+.15*(age-50))
positive.diagnosis <- ifelse(runif(500)<=predicted, 1, 0)
roc <- function(z) {

x <- z[,1];
y <- z[,2];
n <- length(x);
if(n<2)return(c(ROC=NA));
n1 <- sum(y==1);
c(ROC= (mean(rank(x)[y==1])-(n1+1)/2)/(n-n1));

}
y <- cbind(predicted, positive.diagnosis)
options(digits=2)
summary(y ~ age + sex, fun=roc)

options(digits=3)
summary(y ~ age + sex, fun=roc, method="cross")

#Use stratify() to produce a table in which time intervals go down the
#page and going across 3 continuous variables are summarized using
#quartiles, and are stratified by two treatments

set.seed(1)
d <- expand.grid(visit=1:5, treat=c('A','B'), reps=1:100)
d$sysbp <- rnorm(100*5*2, 120, 10)
label(d$sysbp) <- 'Systolic BP'
d$diasbp <- rnorm(100*5*2, 80, 7)
d$diasbp[1] <- NA
d$age <- rnorm(100*5*2, 50, 12)
g <- function(y) {
N <- apply(y, 2, function(w) sum(!is.na(w)))
h <- function(x) {
qu <- quantile(x, c(.25,.5,.75), na.rm=TRUE)
names(qu) <- c('Q1','Q2','Q3')
c(N=sum(!is.na(x)), qu)

}
w <- as.vector(apply(y, 2, h))
names(w) <- as.vector(outer(c('N','Q1','Q2','Q3'), dimnames(y)[[2]],

function(x,y) paste(y,x)))

264 summary.formula

w
}
#Use na.rm=FALSE to count NAs separately by column
s <- summary(cbind(age,sysbp,diasbp) ~ visit + stratify(treat),

na.rm=FALSE, fun=g, data=d)
#The result is very wide. Re-do, putting treatment vertically
x <- with(d, factor(paste('Visit', visit, treat)))
summary(cbind(age,sysbp,diasbp) ~ x, na.rm=FALSE, fun=g, data=d)

#Compose LaTeX code directly
g <- function(y) {
h <- function(x) {
qu <- format(round(quantile(x, c(.25,.5,.75), na.rm=TRUE),1),nsmall=1)
paste('{\scriptsize(',sum(!is.na(x)),

')} \hfill{\scriptsize ', qu[1], '} \textbf{', qu[2],
'} {\scriptsize ', qu[3],'}', sep='')

}
apply(y, 2, h)

}
s <- summary(cbind(age,sysbp,diasbp) ~ visit + stratify(treat),

na.rm=FALSE, fun=g, data=d)
latex(s, prn=FALSE)
need option in latex to not print n
#Put treatment vertically
s <- summary(cbind(age,sysbp,diasbp) ~ x, fun=g, data=d, na.rm=FALSE)
latex(s, prn=FALSE)

#Plot estimated mean life length (assuming an exponential distribution)
#separately by levels of 4 other variables. Repeat the analysis
#by levels of a stratification variable, drug. Automatically break
#continuous variables into tertiles.
#We are using the default, method='response'
Not run:
life.expect <- function(y) c(Years=sum(y[,1])/sum(y[,2]))
attach(pbc)
S <- Surv(follow.up.time, death)
s2 <- summary(S ~ age + albumin + ascites + edema + stratify(drug),

fun=life.expect, g=3)

#Note: You can summarize other response variables using the same
#independent variables using e.g. update(s2, response~.), or you
#can change the list of independent variables using e.g.
#update(s2, response ~.- ascites) or update(s2, .~.-ascites)
#You can also print, typeset, or plot subsets of s2, e.g.
#plot(s2[c('age','albumin'),]) or plot(s2[1:2,])

s2 # invokes print.summary.formula.response

#Plot results as a separate dot chart for each of the 3 strata levels
par(mfrow=c(2,2))
plot(s2, cex.labels=.6, xlim=c(0,40), superposeStrata=FALSE)

#Typeset table, creating s2.tex

summary.formula 265

w <- latex(s2, cdec=1)
#Typeset table but just print LaTeX code
latex(s2, file="") # useful for Sweave

#Take control of groups used for age. Compute 3 quartiles for
#both cholesterol and bilirubin (excluding observations that are missing
#on EITHER ONE)

age.groups <- cut2(age, c(45,60))
g <- function(y) apply(y, 2, quantile, c(.25,.5,.75))
y <- cbind(Chol=chol,Bili=bili)
label(y) <- 'Cholesterol and Bilirubin'
#You can give new column names that are not legal S-Plus names
#by enclosing them in quotes, e.g. 'Chol (mg/dl)'=chol

s <- summary(y ~ age.groups + ascites, fun=g)

par(mfrow=c(1,2), oma=c(3,0,3,0)) # allow outer margins for overall
for(ivar in 1:2) { # title
isub <- (1:3)+(ivar-1)*3 # *3=number of quantiles/var.
plot(s3, which=isub, main='',

xlab=c('Cholesterol','Bilirubin')[ivar],
pch=c(91,16,93)) # [, closed circle,]

}
mtext(paste('Quartiles of', label(y)), adj=.5, outer=TRUE, cex=1.75)
#Overall (outer) title

prlatex(latex(s3, trios=TRUE))
trios -> collapse 3 quartiles

#Summarize only bilirubin, but do it with two statistics:
#the mean and the median. Make separate tables for the two randomized
#groups and make plots for the active arm.

g <- function(y) c(Mean=mean(y), Median=median(y))

for(sub in c("D-penicillamine", "placebo")) {
ss <- summary(bili ~ age.groups + ascites + chol, fun=g,

subset=drug==sub)
cat('\n',sub,'\n\n')
print(ss)

if(sub=='D-penicillamine') {
par(mfrow=c(1,1))
plot(s4, which=1:2, dotfont=c(1,-1), subtitles=FALSE, main='')
#1=mean, 2=median -1 font = open circle
title(sub='Closed circle: mean; Open circle: median', adj=0)
title(sub=sub, adj=1)

}

w <- latex(ss, append=TRUE, fi='my.tex',
label=if(sub=='placebo') 's4b' else 's4a',
caption=paste(label(bili),' {\\em (',sub,')}', sep=''))

266 summary.formula

#Note symbolic labels for tables for two subsets: s4a, s4b
prlatex(w)

}

#Now consider examples in 'reverse' format, where the lone dependent
#variable tells the summary function how to stratify all the
#'independent' variables. This is typically used to make tables
#comparing baseline variables by treatment group, for example.

s5 <- summary(drug ~ bili + albumin + stage + protime + sex +
age + spiders,

method='reverse')
#To summarize all variables, use summary(drug ~., data=pbc)
#To summarize all variables with no stratification, use
#summary(~a+b+c) or summary(~.,data=...)

options(digits=1)
print(s5, npct='both')
#npct='both' : print both numerators and denominators
plot(s5, which='categorical')
Key(locator(1)) # draw legend at mouse click
par(oma=c(3,0,0,0)) # leave outer margin at bottom
plot(s5, which='continuous')
Key2() # draw legend at lower left corner of plot

oma= above makes this default key fit the page better

options(digits=3)
w <- latex(s5, npct='both', here=TRUE)
creates s5.tex

#Turn to a different dataset and do cross-classifications on possibly
#more than one independent variable. The summary function with
#method='cross' produces a data frame containing the cross-
#classifications. This data frame is suitable for multi-panel
#trellis displays, although `summarize' works better for that.

attach(prostate)
size.quartile <- cut2(sz, g=4)
bone <- factor(bm,labels=c("no mets","bone mets"))

s7 <- summary(ap>1 ~ size.quartile + bone, method='cross')
#In this case, quartiles are the default so could have said sz + bone

options(digits=3)
print(s7, twoway=FALSE)
s7 # same as print(s7)
w <- latex(s7, here=TRUE) # Make s7.tex

library(trellis,TRUE)
invisible(ps.options(reset=TRUE))
trellis.device(postscript, file='demo2.ps')

dotplot(S ~ size.quartile|bone, data=s7, #s7 is name of summary stats

symbol.freq 267

xlab="Fraction ap>1", ylab="Quartile of Tumor Size")
#Can do this more quickly with summarize:
s7 <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean,
stat.name='Proportion')
dotplot(Proportion ~ size | bone, data=s7)

summary(age ~ stage, method='cross')
summary(age ~ stage, fun=quantile, method='cross')
summary(age ~ stage, fun=smean.sd, method='cross')
summary(age ~ stage, fun=smedian.hilow, method='cross')
summary(age ~ stage, fun=function(x) c(Mean=mean(x), Median=median(x)),

method='cross')
#The next statements print real two-way tables
summary(cbind(age,ap) ~ stage + bone,

fun=function(y) apply(y, 2, quantile, c(.25,.75)),
method='cross')

options(digits=2)
summary(log(ap) ~ sz + bone,

fun=function(y) c(Mean=mean(y), quantile(y)),
method='cross')

#Summarize an ordered categorical response by all of the needed
#cumulative proportions
summary(cumcategory(disease.severity) ~ age + sex)

End(Not run)

symbol.freq Graphic Representation of a Frequency Table

Description

This function can be used to represent contingency tables graphically. Frequency counts are rep-
resented as the heights of "thermometers" by default; you can also specify symbol=’circle’
to the function. There is an option to include marginal frequencies, which are plotted on a halved
scale so as to not overwhelm the plot. If you do not ask for marginal frequencies to be plotted using
marginals=T, symbol.freq will ask you to click the mouse where a reference symbol is to
be drawn to assist in reading the scale of the frequencies.

label attributes, if present, are used for x- and y-axis labels. Otherwise, names of calling argu-
ments are used.

Usage

symbol.freq(x, y, symbol = c("thermometer", "circle"),
marginals = FALSE, orig.scale = FALSE,
inches = 0.25, width = 0.15, subset, srtx = 0, ...)

268 sys

Arguments

x first variable to cross-classify

y second variable

symbol specify "thermometer" (the default) or "circle"

marginals set to TRUE to add marginal frequencies (scaled by half) to the plot

orig.scale set to TRUE when the first two arguments are numeric variables; this uses their
original values for x and y coordinates)

inches see symbols

width see thermometers option in symbols

subset the usual subsetting vector

srtx rotation angle for x-axis labels

... other arguments to pass to symbols

Author(s)

Frank Harrell

See Also

symbols

Examples

Not run:
getHdata(titanic)
attach(titanic)
age.tertile <- cut2(titanic$age, g=3)
symbol.freq(age.tertile, pclass, marginals=T, srtx=45)
detach(2)
End(Not run)

sys Run Unix or Dos Depending on System

Description

Runs unix or dos depending on the current operating system. For R, just runs system with
optional concatenation of first two arguments which are assumed named command and text.

Usage

sys(command, text=NULL, output=TRUE)
S-Plus: sys(..., minimized=FALSE)

t.test.cluster 269

Arguments

command system command to execute

text text to concatenate to system command, if any (typically options or file names
or both)

output set to FALSE to not return output of command as a character vector

Value

see unix or dos

Side Effects

executes system commands

See Also

unix, system

t.test.cluster t-test for Clustered Data

Description

Does a 2-sample t-test for clustered data.

Usage

t.test.cluster(y, cluster, group, conf.int = 0.95, ...)
S3 method for class 't.test.cluster':
print(x, digits, ...)

Arguments

y normally distributed response variable to test

cluster cluster identifiers, e.g. subject ID

group grouping variable with two values

conf.int confidence coefficient to use for confidence limits

x an object created by t.test.cluster

digits number of significant digits to print

... unused

Value

a matrix of statistics of class t.test.cluster

270 transace

Author(s)

Frank Harrell

References

Donner A, Birkett N, Buck C, Am J Epi 114:906-914, 1981.

Donner A, Klar N, J Clin Epi 49:435-439, 1996.

Hsieh FY, Stat in Med 8:1195-1201, 1988.

See Also

t.test

Examples

set.seed(1)
y <- rnorm(800)
group <- sample(1:2, 800, TRUE)
cluster <- sample(1:40, 800, TRUE)
table(cluster,group)
t.test(y ~ group) # R only
t.test.cluster(y, cluster, group)
Note: negate estimates of differences from t.test to
compare with t.test.cluster

transace Additive Regression and Transformations using ace or avas

Description

transace is ace packaged for easily automatically transforming all variables in a matrix. transace
is a fast one-iteration version of transcan without imputation of NAs.

areg.boot uses areg or avas to fit additive regression models allowing all variables in the
model (including the left-hand-side) to be transformed, with transformations chosen so as to opti-
mize certain criteria. The default method uses aregwhose goal it is to maximize R2. method=’avas’
explicity tries to transform the response variable so as to stabilize the variance of the residuals. All-
variables-transformed models tend to inflate R^2 and it can be difficult to get confidence limits for
each transformation. areg.boot solves both of these problems using the bootstrap. As with the
validate function in the Design library, the Efron bootstrap is used to estimate the optimism in
the apparent R2, and this optimism is subtracted from the apparent R2 to optain a bias-corrected
R2. This is done however on the transformed response variable scale.

Tests with 3 predictors show that the avas and ace estimates are unstable unless the sample size
exceeds 350. Apparent R2 with low sample sizes can be very inflated, and bootstrap estimates of R2

can be even more unstable in such cases, resulting in optimism-corrected R2 that are much lower
even than the actual R2. The situation can be improved a little by restricting predictor transfor-
mations to be monotonic. On the other hand, the areg approach allows one to control overfitting

transace 271

by specifying the number of knots to use for each continuous variable in a restricted cubic spline
function.

For method="avas" the response transformation is restricted to be monotonic. You can spec-
ify restrictions for transformations of predictors (and linearity for the response). When the first
argument is a formula, the function automatically determines which variables are categorical (i.e.,
factor, category, or character vectors). Specify linear transformations by enclosing vari-
ables by the identify function (I()), and specify monotonicity by using monotone(variable).
Monotonicity restrictions are not allowed with method=’areg’.

The summary method for areg.boot computes bootstrap estimates of standard errors of dif-
ferences in predicted responses (usually on the original scale) for selected levels of each predictor
against the lowest level of the predictor. The smearing estimator (see below) can be used here to
estimate differences in predicted means, medians, or many other statistics. By default, quartiles are
used for continuous predictors and all levels are used for categorical ones. See DETAILS below.
There is also a plot method for plotting transformation estimates, transformations for individ-
ual bootstrap re–samples, and pointwise confidence limits for transformations. Unless you already
have a par(mfrow=) in effect with more than one row or column, plot will try to fit the plots
on one page. A predict method computes predicted values on the original or transformed re-
sponse scale, or a matrix of transformed predictors. There is a Function method for producing a
list of S functions that perform the final fitted transformations. There is also a print method for
areg.boot objects.

When estimated means (or medians or other statistical parameters) are requested for models fit-
ted with areg.boot (by summary.areg.boot or predict.areg.boot), the "smearing"
estimator of Duan (1983) is used. Here we estimate the mean of the untransformed response by
computing the arithmetic mean of ginverse(lp + residuals), where ginverse is the inverse of the
nonparametric transformation of the response (obtained by reverse linear interpolation), lp is the
linear predictor for an individual observation on the transformed scale, and residuals is the en-
tire vector of residuals estimated from the fitted model, on the transformed scales (n residuals for n
original observations). The smearingEst function computes the general smearing estimate. For
efficiency smearingEst recognizes that quantiles are transformation-preserving, i.e., when one
wishes to estimate a quantile of the untransformed distribution one just needs to compute the in-
verse transformation of the transformed estimate after the chosen quantile of the vector of residuals
is added to it. When the median is desired, the estimate is ginverse(lp + median(residuals)). See the
last example for how smearingEst can be used outside of areg.boot.

Mean is a generic function that returns an S function to compute the estimate of the mean of a vari-
able. Its input is typically some kind of model fit object. Likewise, Quantile is a generic quantile
function-producing function. Mean.areg.boot and Quantile.areg.boot create functions
of a vector of linear predictors that transform them into the smearing estimates of the mean or quan-
tile of the response variable, respectively. Quantile.areg.boot produces exactly the same
value as predict.areg.boot or smearingEst. Mean approximates the mapping of linear
predictors to means over an evenly spaced grid of by default 200 points. Linear interpolation is
used between these points. This approximate method is much faster than the full smearing estima-
tor once Mean creates the function. These functions are especially useful in nomogram.Design
(see the example on hypothetical data).

Usage

transace(x, monotonic=NULL, categorical=NULL, binary=NULL, pl=TRUE)

272 transace

areg.boot(x, data, weights, subset, na.action=na.delete,
B=100, method=c("areg","avas"), nk=4, evaluation=100, valrsq=TRUE,
probs=c(.25,.5,.75), tolerance=NULL)

S3 method for class 'areg.boot':
print(x, ...)

S3 method for class 'areg.boot':
plot(x, ylim, boot=TRUE, col.boot=2, lwd.boot=.15,
conf.int=.95, ...)

smearingEst(transEst, inverseTrans, res,
statistic=c('median','quantile','mean','fitted','lp'),
q)

S3 method for class 'areg.boot':
summary(object, conf.int=.95, values, adj.to,

statistic='median', q, ...)

S3 method for class 'summary.areg.boot':
print(x, ...)

S3 method for class 'areg.boot':
predict(object, newdata,

statistic=c("lp", "median",
"quantile", "mean", "fitted", "terms"),

q=NULL, ...)

S3 method for class 'areg.boot':
Function(object, type=c('list','individual'),

ytype=c('transformed','inverse'),
prefix='.', suffix='', frame=0, where=1, ...)

Mean(object, ...)

Quantile(object, ...)

S3 method for class 'areg.boot':
Mean(object, evaluation=200, ...)

S3 method for class 'areg.boot':
Quantile(object, q=.5, ...)

Arguments

x for transace a numeric matrix. For areg.boot x is a formula. For print
or plot, an object created by areg.boot. For print.summary.areg.boot,
and object created by summary.areg.boot.

transace 273

object an object created by areg.boot, or a model fit object suitable for Mean or
Quantile.

transEst a vector of transformed values. In log-normal regression these could be pre-
dicted log(Y) for example.

inverseTrans a function specifying the inverse transformation needed to change transEst
to the original untransformed scale. inverseTrans may also be a 2-element
list defining a mapping from the transformed values to untransformed values.
Linear interpolation is used in this case to obtain untransform values.

monotonic

categorical

binary These are vectors of variable names specifying what to assume about each col-
umn of x for transace. Binary variables are not transformed, of course.

pl set pl=FALSE to prevent transace from plotting each fitted transformation

data data frame to use if x is a formula and variables are not already in the search list

weights a numeric vector of observation weights. By default, all observations are weighted
equally.

subset an expression to subset data if x is a formula

na.action a function specifying how to handle NAs. Default is na.delete (in Hmisc).

B number of bootstrap samples (default=100)

method "areg" (the default) or avas

nk number of knots for continuous variables not restricted to be linear. Default is
4. One or two is not allowed. nk=0 forces linearity for all continuous variables.

evaluation number of equally-spaced points at which to evaluate (and save) the nonparamet-
ric transformations derived by avas or ace. Default is 100. For Mean.areg.boot,
evaluation is the number of points at which to evaluate exact smearing esti-
mates, to approximate them using linear interpolation (default is 200).

valrsq set to TRUE to more quickly do bootstrapping without validating R2

probs vector probabilities denoting the quantiles of continuous predictors to use in
estimating effects of those predictors

tolerance singularity criterion; list source code for the lm.fit.qr.bare function.

res a vector of residuals from the transformed model. Not required when statistic="lp"
or statistic="fitted".

statistic statistic to estimate with the smearing estimator. For smearingEst, the de-
fault results in computation of the sample median of the model residuals, then
smearingEst adds the median residual and back-transforms to get estimated
median responses on the original scale. statistic="lp" causes predicted
transformed responses to be computed. For smearingEst, the result (for
statistic="lp") is the input argument transEst. statistic="fitted"
gives predicted untransformed responses, i.e., ginverse(lp), where ginverse is
the inverse of the estimated response transformation, estimated by reverse lin-
ear interpolation on the tabulated nonparametric response transformation or by
using an explicit analytic function. statistic="quantile" generalizes
"median" to any single quantile q which must be specified. "mean"’ causes

274 transace

the population mean response to be estimated. For predict.areg.boot,
statistic="terms" returns a matrix of transformed predictors. statistic
can also be any S function that computes a single value on a vector of values,
such as statistic=var. Note that in this case the function name is not
quoted.

q a single quantile of the original response scale to estimate, when statistic="quantile",
or for Quantile.areg.boot.

ylim 2-vector of y-axis limits

boot set to FALSE to not plot any bootstrapped transformations. Set it to an integer
k to plot the first k bootstrap estimates.

col.boot color for bootstrapped transformations

lwd.boot line width for bootstrapped transformations

conf.int confidence level (0-1) for pointwise bootstrap confidence limits and for esti-
mated effects of predictors in summary.areg.boot. The latter assumes nor-
mality of the estimated effects.

values a list of vectors of settings of the predictors, for predictors for which you want
to overide settings determined from probs. The list must have named compo-
nents, with names corresponding to the predictors. Example: values=list(x1=c(2,4,6,8),
x2=c(-1,0,1)) specifies that summary is to estimate the effect on y of
changing x1 from 2 to 4, 2 to 6, 2 to 8, and separately, of changing x2 from -1
to 0 and -1 to 1.

adj.to a named vector of adjustment constants, for setting all other predictors when
examining the effect of a single predictor in summary. The more nonlinear is
the transformation of y the more the adjustment settings will matter. Default
values are the medians of the values defined by values or probs. You only
need to name the predictors for which you are overriding the default settings.
Example: adj.to=c(x2=0,x5=10) will set x2 to 0 and x5 to 10 when
assessing the impact of variation in the other predictors.

newdata a data frame or list containing the same number of values of all of the predictors
used in the fit. For factor predictors the levels attribute do not need to
be in the same order as those used in the original fit, and not all levels need to
be represented. If newdata is omitted, you can still obtain linear predictors
(on the transformed response scale) and fitted values (on the original response
scale), but not "terms".

type specifies how Function is to return the series of functions that define the trans-
formations of all variables. By default a list is created, with the names of the list
elements being the names of the variables. Specify type="individual"
to have separate functions created in the session frame (frame=0, the de-
fault) or in location defined by where if where is specified. For the latter
method, the names of the objects created are the names of the corresponding
variables, prefixed by prefix and with suffix appended to the end. If any
of frame, where, prefix, or suffix is specified, type is automatically
set to "individual".

ytype By default the first function created by Function is the y-transformation.
Specify ytype="inverse" to instead create the inverse of the transforma-
tion, to be able to obtain originally scaled y-values.

transace 275

prefix character string defining the prefix for function names created when type="individual".
By default, the function specifying the transformation for variable x will be
named .x.

suffix character string defining the suffix for the function names

frame frame number in which to store functions (see assign). The default is frame
0, the session database, which disappears at the end of the S-Plus session.

where location in which to store functions (see assign). If where is specified (e.g.,
where=1 to store functions in search position one), frame is ignored. For R,
the value of where is passed to assign as the pos argument.

... arguments passed to other functions

Details

As transace only does one iteration over the predictors, it may not find optimal transformations
and it will be dependent on the order of the predictors in x.

ace and avas standardize transformed variables to have mean zero and variance one for each boot-
strap sample, so if a predictor is not important it will still consistently have a positive regression
coefficient. Therefore using the bootstrap to estimate standard errors of the additive least squares
regression coefficients would not help in drawing inferences about the importance of the predictors.
To do this, summary.areg.boot computes estimates of, e.g., the inter-quartile range effects
of predictors in predicting the response variable (after untransforming it). As an example, at each
bootstrap repetition the estimated transformed value of one of the predictors is computed at the
lower quartile, median, and upper quartile of the raw value of the predictor. These transformed x
values are then multipled by the least squares estimate of the partial regression coefficient for that
transformed predictor in predicting transformed y. Then these weighted transformed x values have
the weighted transformed x value corresponding to the lower quartile subtracted from them, to esti-
mate an x effect accounting for nonlinearity. The last difference computed is then the standardized
effect of raising x from its lowest to its highest quartile. Before computing differences, predicted
values are back-transformed to be on the original y scale in a way depending on statistic and
q. The sample standard deviation of these effects (differences) is taken over the bootstrap samples,
and this is used to compute approximate confidence intervals for effects and approximate P-values,
both assuming normality.

predict does not re-insert NAs corresponding to observations that were dropped before the fit,
when newdata is omitted.

statistic="fitted" estimates the same quantity as statistic="median" if the residu-
als on the transformed response have a symmetric distribution. The two provide identical estimates
when the sample median of the residuals is exactly zero. The sample mean of the residuals is
constrained to be exactly zero although this does not simplify anything.

Value

transace returns a matrix like x but containing transformed values. This matrix has attributes
rsq (vector of R2 with which each variable can be predicted from the others) and omitted (row
numbers of x that were deleted due to NAs).

areg.boot returns a list of class "areg.boot" containing many elements, including (if valrsq
is TRUE) rsquare.app and rsquare.val. summary.areg.boot returns a list of class

276 transace

"summary.areg.boot" containing a matrix of results for each predictor and a vector of adjust-
to settings. It also contains the call and a label for the statistic that was computed. A print
method for these objects handles the printing. predict.areg.boot returns a vector unless
statistic="terms", in which case it returns a matrix. Function.areg.boot returns by
default a list of functions whose argument is one of the variables (on the original scale) and whose
returned values are the corresponding transformed values. The names of the list of functions corre-
spond to the names of the original variables. When type="individual", Function.areg.boot
invisibly returns the vector of names of the created function objects. Mean.areg.boot and
Quantile.areg.boot also return functions.

smearingEst returns a vector of estimates of distribution parameters of class "labelled" so
that print.labelled wil print a label documenting the estimate that was used (see label).
This label can be retrieved for other purposes by using e.g. label(obj), where obj was the
vector returned by smearingEst.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Harrell FE, Lee KL, Mark DB (1996): Stat in Med 15:361–387.

Duan N (1983): Smearing estimate: A nonparametric retransformation method. JASA 78:605–610.

Wang N, Ruppert D (1995): Nonparametric estimation of the transformation in the transform-both-
sides regression model. JASA 90:522–534.

See avas, ace for primary references.

See Also

avas, ace, ols, validate, predab.resample, label, nomogram

Examples

xtrans <- transace(cbind(age,sex,blood.pressure,race.code),
binary='sex', monotonic='age',
categorical='race.code')

Generate random data from the model y = exp(x1 + epsilon/3) where
x1 and epsilon are Gaussian(0,1)
set.seed(171) # to be able to reproduce example
x1 <- rnorm(200)
x2 <- runif(200) # a variable that is really unrelated to y]
x3 <- factor(sample(c('cat','dog','cow'), 200,TRUE)) # also unrelated to y
y <- exp(x1 + rnorm(200)/3)
f <- areg.boot(y ~ x1 + x2 + x3, B=40)
f
plot(f)

transace 277

Note that the fitted transformation of y is very nearly log(y)
(the appropriate one), the transformation of x1 is nearly linear,
and the transformations of x2 and x3 are essentially flat
(specifying monotone(x2) if method='avas' would have resulted
in a smaller confidence band for x2)

summary(f)

use summary(f, values=list(x2=c(.2,.5,.8))) for example if you
want to use nice round values for judging effects

Plot Y hat vs. Y (this doesn't work if there were NAs)
plot(fitted(f), y) # or: plot(predict(f,statistic='fitted'), y)

Show fit of model by varying x1 on the x-axis and creating separate
panels for x2 and x3. For x2 using only a few discrete values
newdat <- expand.grid(x1=seq(-2,2,length=100),x2=c(.25,.75),

x3=c('cat','dog','cow'))
yhat <- predict(f, newdat, statistic='fitted')
statistic='mean' to get estimated mean rather than simple inverse trans.
xYplot(yhat ~ x1 | x2, groups=x3, type='l', data=newdat)

Not run:
Another example, on hypothetical data
f <- areg.boot(response ~ I(age) + monotone(blood.pressure) + race)
use I(response) to not transform the response variable
plot(f, conf.int=.9)
Check distribution of residuals
plot(fitted(f), resid(f))
qqnorm(resid(f))
Refit this model using ols so that we can draw a nomogram of it.
The nomogram will show the linear predictor, median, mean.
The last two are smearing estimators.
Function(f, type='individual') # create transformation functions
f.ols <- ols(.response(response) ~ age +

.blood.pressure(blood.pressure) + .race(race))
Note: This model is almost exactly the same as f but there
will be very small differences due to interpolation of
transformations
meanr <- Mean(f) # create function of lp computing mean response
medr <- Quantile(f) # default quantile is .5
nomogram(f.ols, fun=list(Mean=meanr,Median=medr))

Create S functions that will do the transformations
This is a table look-up with linear interpolation
g <- Function(f)
plot(blood.pressure, g$blood.pressure(blood.pressure))
produces the central curve in the last plot done by plot(f)
End(Not run)

Another simulated example, where y has a log-normal distribution
with mean x and variance 1. Untransformed y thus has median
exp(x) and mean exp(x + .5sigma^2) = exp(x + .5)

278 transcan

First generate data from the model y = exp(x + epsilon),
epsilon ~ Gaussian(0, 1)

set.seed(139)
n <- 1000
x <- rnorm(n)
y <- exp(x + rnorm(n))
f <- areg.boot(y ~ x, B=20)
plot(f) # note log shape for y, linear for x. Good!
xs <- c(-2, 0, 2)
d <- data.frame(x=xs)
predict(f, d, 'fitted')
predict(f, d, 'median') # almost same; median residual=-.001
exp(xs) # population medians
predict(f, d, 'mean')
exp(xs + .5) # population means

Show how smearingEst works
res <- c(-1,0,1) # define residuals
y <- 1:5
ytrans <- log(y)
ys <- seq(.1,15,length=50)
trans.approx <- list(x=log(ys), y=ys)
options(digits=4)
smearingEst(ytrans, exp, res, 'fitted') # ignores res
smearingEst(ytrans, trans.approx, res, 'fitted') # ignores res
smearingEst(ytrans, exp, res, 'median') # median res=0
smearingEst(ytrans, exp, res+.1, 'median') # median res=.1
smearingEst(ytrans, trans.approx, res, 'median')
smearingEst(ytrans, exp, res, 'mean')
mean(exp(ytrans[2] + res)) # should equal 2nd # above
smearingEst(ytrans, trans.approx, res, 'mean')
smearingEst(ytrans, trans.approx, res, mean)
Last argument can be any statistical function operating
on a vector that returns a single value

transcan Transformations/Imputations using Canonical Variates

Description

transcan is a nonlinear additive transformation and imputation function, and there are several
functions for using and operating on its results. transcan automatically transforms continuous
and categorical variables to have maximum correlation with the best linear combination of the other
variables. There is also an option to use a substitute criterion - maximum correlation with the first
principal component of the other variables. Continuous variables are expanded as restricted cubic
splines and categorical variables are expanded as contrasts (e.g., dummy variables). By default, the
first canonical variate is used to find optimum linear combinations of component columns. This
function is similar to ace except that transformations for continuous variables are fitted using re-
stricted cubic splines, monotonicity restrictions are not allowed, and NAs are allowed. When a

transcan 279

variable has any NAs, transformed scores for that variable are imputed using least squares multiple
regression incorporating optimum transformations, or NAs are optionally set to constants. Shrink-
age can be used to safeguard against overfitting when imputing. Optionally, imputed values on the
original scale are also computed and returned. For this purpose, recursive partitioning or multino-
mial logistic models can optionally be used to impute categorical variables, using what is predicted
to be the most probable category.

By default, transcan imputes NAs with "best guess" expected values of transformed variables,
back transformed to the original scale. Values thus imputed are most like conditional medians as-
suming the transformations make variables’ distributions symmetric (imputed values are similar to
conditionl modes for categorical variables). By instead specifying n.impute, transcan does
approximate multiple imputation from the distribution of each variable conditional on all other vari-
ables. This is done by sampling n.impute residuals from the transformed variable, with replace-
ment (a la bootstrapping), or by default, using Rubin’s approximate Bayesian bootstrap, where a
sample of size n with replacement is selected from the residuals on n non-missing values of the target
variable, and then a sample of size m with replacement is chosen from this sample, where m is the
number of missing values needing imputation for the current multiple imputation repetition. Neither
of these bootstrap procedures assume normality or even symmetry of residuals. For sometimes-
missing categorical variables, optimal scores are computed by adding the "best guess" predicted
mean score to random residuals off this score. Then categories having scores closest to these
predicted scores are taken as the random multiple imputations (impcat="tree" or "rpart"
are not currently allowed with n.impute). The literature recommends using n.impute=5 or
greater. transcan provides only an approximation to multiple imputation, especially since it
"freezes" the imputation model before drawing the multiple imputations rather than using different
estimates of regression coefficients for each imputation. For multiple imputation, the aregImpute
function provides a much better approximation to the full Bayesian approach while still not requir-
ing linearity assumptions.

When you specify n.impute to transcan you can use fit.mult.impute to re-fit any
model n.impute times based on n.impute completed datasets (if there are any sometimes
missing variables not specified to transcan, some observations will still be dropped from these
fits). After fitting n.impute models, fit.mult.impute will return the fit object from the
last imputation, with coefficients replaced by the average of the n.impute coefficient
vectors and with a component var equal to the imputation-corrected variance-covariance matrix.
fit.mult.impute can also use the object created by the mice function in the MICE library to
draw the multiple imputations, as well as objects created by aregImpute.

The summary method for transcan prints the function call, R-squares achieved in transform-
ing each variable, and for each variable the coefficients of all other transformed variables that are
used to estimate the transformation of the initial variable. If imputed=TRUE was used in the
call to transcan, also uses the describe function to print a summary of imputed values. If
long=TRUE, also prints all imputed values with observation identifiers. There is also a simple
function print.transcan which merely prints the transformation matrix and the function call.
It has an optional argument long, which if set to TRUE causes detailed parameters to be printed.
Instead of plotting while transcan() is running, you can plot the final transformations after the
fact using plot.transcan, if the option trantab=TRUE was specified to transcan. If in
addition the option imputed=TRUE was specified to transcan, plot.transcan will show
the location of imputed values (including multiples) along the axes.

impute does imputations for a selected original data variable, on the original scale (if imputed=TRUE
was given to transcan). If you do not specify a variable to impute, it will do imputations for all

280 transcan

variables given to transcan which had at least one missing value. This assumes that the original
variables are accessible (i.e., they have been attached) and that you want the imputed variables
to have the same names are the original variables. If n.impute was specified to transcan you
must tell impute which imputation to use.

predict computes predicted variables and imputed values from a matrix of new data. This matrix
should have the same column variables as the original matrix used with transcan, and in the same
order (unless a formula was used with transcan).

Function is a generic function generator. Function.transcan creates S functions to trans-
form variables using transformations created by transcan. These functions are useful for getting
predicted values with predictors set to values on the original scale.

Varcov methods are defined here so that imputation-corrected variance-covariance matrices are
readily extracted from fit.mult.impute objects, and so that fit.mult.impute can eas-
ily compute traditional covariance matrices for individual completed datasets. Specific Varcov
methods are defined for lm, glm, and multinom fits.

The subscript function preserves attributes.

The invertTabulated function does either inverse linear interpolation or uses sampling to
sample qualifying x-values having y-values near the desired values. The latter is used to get inverse
values having a reasonable distribution (e.g., no floor or ceiling effects) when the transformation
has a flat or nearly flat segment, resulting in a many-to-one transformation in that region. Sampling
weights are a combination of the frequency of occurrence of x-values that are within tolInverse
times the range of y and the squared distance between the associated y-values and the target y-value
(aty).

Usage

transcan(x, method=c("canonical","pc"),
categorical=NULL, asis=NULL, nk, imputed=FALSE, n.impute,
boot.method=c('approximate bayesian', 'simple'),
trantab=FALSE, transformed=FALSE,
impcat=c("score", "multinom", "rpart", "tree"),
mincut=40,
inverse=c('linearInterp','sample'), tolInverse=.05,
pr=TRUE, pl=TRUE, allpl=FALSE, show.na=TRUE,
imputed.actual=c('none','datadensity','hist','qq','ecdf'),
iter.max=50, eps=.1, curtail=TRUE,
imp.con=FALSE, shrink=FALSE, init.cat="mode",
nres=if(boot.method=='simple')200 else 400,
data, subset, na.action, treeinfo=FALSE,
rhsImp=c('mean','random'), details.impcat='', ...)

S3 method for class 'transcan':
summary(object, long=FALSE, ...)

S3 method for class 'transcan':
print(x, long=FALSE, ...)

S3 method for class 'transcan':

transcan 281

plot(x, ...)

S3 method for class 'transcan':
impute(x, var, imputation, name, where.in, data,

where.out=1, frame.out, list.out=FALSE, pr=TRUE, check=TRUE, ...)

fit.mult.impute(formula, fitter, xtrans, data, n.impute, fit.reps=FALSE,
derived, pr=TRUE, subset, ...)

S3 method for class 'transcan':
predict(object, newdata, iter.max=50, eps=0.01, curtail=TRUE,

type=c("transformed","original"),
inverse, tolInverse, check=FALSE, ...)

Function(object, ...)

S3 method for class 'transcan':
Function(object, prefix=".", suffix="", where=1, ...)

invertTabulated(x, y, freq=rep(1,length(x)),
aty, name='value',
inverse=c('linearInterp','sample'),
tolInverse=0.05, rule=2)

Varcov(object, ...)

Default S3 method:
Varcov(object, regcoef.only=FALSE, ...)

S3 method for class 'lm':
Varcov(object, ...)

S3 method for class 'glm':
Varcov(object, ...)

S3 method for class 'multinom':
Varcov(object, ...)

S3 method for class 'fit.mult.impute':
Varcov(object, ...)

Arguments

x a matrix containing continuous variable values and codes for categorical vari-
ables. The matrix must have column names (dimnames). If row names are
present, they are used in forming the names attribute of imputed values if
imputed=TRUE. x may also be a formula, in which case the model matrix
is created automatically, using data in the calling frame. Advantages of using

282 transcan

a formula are that categorical variables can be determined automatically
by a variable being a factor variable, and variables with two unique lev-
els are modeled asis. Variables with 3 unique values are considered to be
categorical if a formula is specified. For a formula you may also specify
that a variable is to remain untransformed by enclosing its name with the iden-
tify function, e.g. I(x3). The user may add other variable names to the asis
and categorical vectors. For invertTabulated, x is a vector or a list
with three components: the x vector, the corresponding vector of transformed
values, and the corresponding vector of frequencies of the pair of original and
transformed variables. For print, plot, impute, and predict, x is an
object created by transcan.

formula any S model formula
fitter any S or Design modeling function (not in quotes) that computes a vector of

coefficients and for which Varcov will return a variance-covariance ma-
trix. E.g., fitter=lm, glm, ols. At present models involving non-regression
parameters (e.g., scale parameters in parametric survival models) are not han-
dled fully.

xtrans an object created by transcan, aregImpute, or Mice
method use method="canonical" or any abbreviation thereof, to use canonical

variates (the default). method="pc" transforms a variable instead so as to
maximize the correlation with the first principal component of the other vari-
ables.

categorical a character vector of names of variables in xwhich are categorical, for which the
ordering of re-scored values is not necessarily preserved. If categorical is
omitted, it is assumed that all variables are continuous (or binary). Set categorical="*"
to treat all variables as categorical.

asis a character vector of names of variables that are not to be transformed. For these
variables, the guts of lm.fit.qr is used to impute missing values. You may
want to treat binary variables asis (this is automatic if using a formula). If
imputed=TRUE, you may want to use "categorical" for binary variables
if you want to force imputed values to be one of the original data values. Set
asis="*" to treat all variables asis.

nk number of knots to use in expanding each continuous variable (not listed in
asis) in a restricted cubic spline function. Default is 3 (yielding 2 parameters
for a variable) if n < 30, 4 if 30 <= n < 100, and 5 if n >= 100 (4
parameters).

imputed Set to TRUE to return a list containing imputed values on the original scale. If the
transformation for a variable is non-monotonic, imputed values are not unique.
transcan uses the approx function, which returns the highest value of the
variable with the transformed score equalling the imputed score. imputed=TRUE
also causes original-scale imputed values to be shown as tick marks on the top
margin of each graph when show.na=TRUE (for the final iteration only). For
categorical predictors, these imputed values are jittered so that their fre-
quencies can be visualized. When n.impute is used, each NA will have
n.impute tick marks.

n.impute number of multiple imputations. If omitted, single predicted expected value
imputation is used. n.impute=5 is frequently recommended.

transcan 283

boot.method default is to use the approximate Bayesian bootstrap (sample with replacement
from sample with replacement of the vector of residuals). You can also spec-
ify boot.method="simple" to use the usual bootstrap one-stage sampling
with replacement.

trantab Set to TRUE to add an attribute trantab to the returned matrix. This contains
a vector of lists each with components x and y containing the unique values and
corresponding transformed values for the columns of x. This is set up to be used
easily with the approx function. You must specify trantab=TRUE if you
want to later use the predict.transcan function with type="original".

transformed set to TRUE to cause transcan to return an object transformed containing
the matrix of transformed variables

impcat This argument tells how to impute categorical variables on the original scale.
The default is impcat="score" to impute the category whose canonical
variate score is closest to the predicted score. Use impcat="tree" to im-
pute categorical variables using the tree() function, using the values of all
other transformed predictors. impcat="rpart" will use rpart. A better
but somewhat slower approach is to use impcat="multinom" to fit a multi-
nomial logistic model to the categorical variable, at the last iteraction of the
transcan algorithm. This uses the multinom function in the nnet library
of the MASS package (which is assumed to have been installed by the user) to
fit a polytomous logistic model to the current working transformations of all
the other variables (using conditional mean imputation for missing predictors).
Multiple imputations are made by drawing multinomial values from the vector
of predicted probabilities of category membership for the missing categorical
values.

mincut If imputed=TRUE, there are categorical variables, and impcat="tree",
mincut specifies the lowest node size that will be allowed to be split by tree.
The default is 40.

inverse By default, imputed values are back-solved on the original scale using inverse
linear interpolation on the fitted tabulated transformed values. This will cause
distorted distributions of imputed values (e.g., floor and ceiling effects) when
the estimated transformation has a flat or nearly flat section. To instead use the
invertTabulated function (see above) with the "sample" option, specify
inverse="sample".

tolInverse the multiplyer of the range of transformed values, weighted by freq and by the
distance measure, for determining the set of x values having y values within a
tolerance of the value of aty in invertTabulated. For predict.transcan,
inverse and tolInverse are obtained from options that were specified to
transcan by default. Otherwise, if not specified by the user, these default to
the defaults used to invertTabulated.

pr For transcan, set to FALSE to suppress printing r-squares and shrinkage fac-
tors. For impute.transcan set to FALSE to suppress messages concern-
ing the number of NAs imputed, or for fit.mult.impute set to FALSE to
suppress printing variance inflation factors accounting for imputation, rate of
missing information, and degrees of freedom.

pl Set to FALSE to suppress plotting the final transformations with distribution of
scores for imputed values (if show.na=TRUE).

284 transcan

allpl Set to TRUE to plot transformations for intermediate iterations.

show.na Set to FALSE to suppress the distribution of scores assigned to missing values
(as tick marks on the right margin of each graph). See also imputed.

imputed.actual
The default is "none" to suppress plotting of actual vs. imputed values for
all variables having any NAs. Other choices are "datadensity" to use
datadensity to make a single plot, "hist" to make a series of back-to-
back histograms, "qq" to make a series of q-q plots, or "ecdf" to make a
series of empirical cdfs. For imputed.actual="datadensity" for ex-
ample you get a rug plot of the non-missing values for the variable with beneath
it a rug plot of the imputed values. When imputed.actual is not "none",
imputed is automatically set to TRUE.

iter.max maximum number of iterations to perform for transcan or predict. For
predict, only one iteration is used if there are no NAs in the data or if
imp.con was used.

eps convergence criterion for transcan and predict. eps is the maximum
change in transformed values from one iteration to the next. If for a given it-
eration all new transformations of variables differ by less than eps (with or
without negating the transformation to allow for "flipping") from the transfor-
mations in the previous iteration, one more iteration is done for transcan.
During this last iteration, individual transformations are not updated but coeffi-
cients of transformations are. This improves stability of coefficients of canonical
variates on the right-hand-side. eps is ignored when rhsImp="random".

curtail for transcan, causes imputed values on the transformed scale to be truncated
so that their ranges are within the ranges of non-imputed transformed values.
For predict, curtail defaults to TRUE to truncate predicted transformed
values to their ranges in the original fit (xt).

imp.con for transcan, set to TRUE to impute NAs on the original scales with constants
(medians or most frequent category codes). Set to a vector of constants to instead
always use these constants for imputation. These imputed values are ignored
when fitting the current working transformation for a single variable.

shrink default is FALSE to use ordinary least squares or canonical variate estimates.
For the purposes of imputing NAs, you may want to set shrink=TRUE to avoid
overfitting when developing a prediction equation to predict each variables from
all the others (see details below).

init.cat method for initializing scorings of categorical variables. Default is "mode" to
use a dummy variable set to 1 if the value is the most frequent value (this is the
default). Use "random" to use a random 0-1 variable. Set to "asis" to use
the original integer codes as starting scores.

nres number of residuals to store if n.impute is specified. If the dataset has fewer
than nres observations, all residuals are saved. Otherwise a random sample
of the residuals of length nres without replacement is saved. The default for
nres is higher if boot.method="approximate bayesian".

data

subset an integer or logical vector specifying the subset of observations to fit

transcan 285

na.action These may be used if x is a formula. The default na.action is na.retain
(defined by transcan) which keeps all observations with any NAs. For impute.transcan,
data is a data frame to use as the source of variables to be imputed, rather than
using where.in. For fit.mult.impute, data is mandatory and is a data
frame containing the data to be used in fitting the model but before imputations
are applied. Variables omitted from data are assumed to be available from
frame 1 and do not need to be imputed.

treeinfo Set to TRUE to get additional information printed when impcat="tree",
such as the predicted probabilities of category membership.

rhsImp Set to "random" to use random draw imputation when a sometimes miss-
ing variable is moved to be a predictor of other sometimes missing variables.
Default is rhsImp="mean", which uses conditional mean imputation on the
transformed scale. Residuals used are residuals from the transformed scale.
When "random" is used, transcan runs 5 iterations and ignores eps.

details.impcat
set to a character scalar that is the name of a category variable to include in the
resulting transcan object an element details.impcat containing details
of how the categorical variable was multiply imputed.

... arguments passed to scat1d or to the fitter function (for fit.mult.impute)
long for summary, set to TRUE to print all imputed values. For print, set to TRUE

to print details of transformations/imputations.
var For impute, is a variable that was originally a column in x, for which im-

putated values are to be filled in. imputed=TRUE must have been used in
transcan. Omit var to impute all variables, creating new variables in search
position where.

imputation specifies which of the multiple imputations to use for filling in NAs
name name of variable to impute, for impute(). Default is character string version

of the second argument (var) in the call to impute. For invertTabulated,
is the name of variable being transformed (used only for warning messages).

where.in location in search list to find variables that need to be imputed, when all vari-
ables are to be imputed automatically by impute.transcan (i.e., when no
input variable name is specified). Default is first search position that contains
the first variable to be imputed.

where.out location in the search list for storing variables with missing values set to im-
puted values, for impute.transcan when all variables with missing values
are being imputed automatically.

frame.out Instead of specifying where.out you can specify an S frame number into
which individual new imputed variables will be written. For example, frame.out=1
is useful for putting new variables into a temporary local frame when impute
is called within another function (see fit.mult.impute). See assign for
details about frames. For R, where.out and frame.out are ignored and
results are stored in .GlobalEnv when list.out is not specified (it is rec-
ommended to use list.out=TRUE).

list.out If var is not specified, you can set list.out=TRUE to have impute.transcan
return a list containing variables with needed values imputed. This list will con-
tain a single imputation.

286 transcan

check set to FALSE to suppress certain warning messages

newdata a new data matrix for which to compute transformed variables. Categorical vari-
ables must use the same integer codes as were used in the call to transcan.
If a formula was originally specified to transcan (instead of a data matrix),
newdata is optional and if given must be a data frame; a model frame is gen-
erated automatically from the previous formula. The na.action is handled
automatically, and the levels for factor variables must be the same and in the
same order as were used in the original variables specified in the formula given
to transcan.

fit.reps set to TRUE to save all fit objects from the fit for each imputation in fit.mult.impute.
Then the object returned will have a component fits which is a list whose ith
element is the ith fit object.

derived an expression containing S expressions for computing derived variables that are
used in the model formula. This is useful when multiple imputations are done for
component variables but the actual model uses combinations of these (e.g., ratios
or other derivations). For a single derived variable you can specified for exam-
ple derived=expression(ratio <- weight/height). For multi-
ple derived variables use the form derived=expression({ratio <- weight/height;
product <- weight*height}) or put the expression on separate input
lines. To monitor the multiply-imputed derived variables you can add to the
expression a command such as print(describe(ratio)). See the
example below.

type By default, the matrix of transformed variables is returned, with imputed values
on the transformed scale. If you had specified trantab=TRUE to transcan,
specifying type="original" does the table look-ups with linear interpola-
tion to return the input matrix x but with imputed values on the original scale
inserted for NAs. For categorical variables, the method used here is to select
the category code having a corresponding scaled value closest to the predicted
transformed value. This corresponds to the default impcat; a problem in get-
ting predicted values for tree objects prevented using tree for this. Note:
imputed values thus returned when type="original" are single expected
value imputations even in n.impute is given.

object an object created by transcan, or an object to be converted to S function code,
typically a model fit object of some sort

prefix

suffix When creating separate S functions for each variable in x, the name of the new
function will be prefix placed in front of the variable name, and suffix
placed in back of the name. The default is to use names of the form .varname,
where varname is the variable name.

where position in search list at which to store new functions (for Function). De-
fault is position 1 in the search list. See the assign function for more docu-
mention on the where argument.

y a vector corresponding to x for invertTabulated, if its first argument x is
not a list

freq a vector of frequencies corresponding to cross-classified x and y if x is not a
list. Default is a vector of ones.

transcan 287

aty vector of transformed values at which inverses are desired

rule see approx. transcan assumes rule is always 2

regcoef.only set to TRUE to make Varcov.default delete positions in the covariance
matrix for any non-regression coefficients (e.g., log scale parameter from psm
or survreg)

Details

The starting approximation to the transformation for each variable is taken to be the original cod-
ing of the variable. The initial approximation for each missing value is taken to be the median of
the non-missing values for the variable (for continuous ones) or the most frequent category (for
categorical ones). Instead, if imp.con is a vector, its values are used for imputing NAs. When
using each variable as a dependent variable, NAs on that variable cause all observations to be tem-
porarily deleted. Once a new working transformation is found for the variable, along with a model
to predict that transformation from all the other variables, that latter model is used to impute NAs
in the selected dependent variable if imp.con is not specified. When that variable is used to
predict a new dependent variable, the current working imputed values are inserted. Transforma-
tions are updated after each variable becomes a dependent variable, so the order of variables on
x could conceivably make a difference in the final estimates. For obtaining out-of-sample predic-
tions/transformations, predict uses the same iterative procedure as transcan for imputation,
with the same starting values for fill-ins as were used by transcan. It also (by default) uses
a conservative approach of curtailing transformed variables to be within the range of the original
ones. Even when method="pc" is specified, canonical variables are used for imputing missing
values.

Note that fitted transformations, when evaluated at imputed variable values (on the original scale),
will not precisely match the transformed imputed values returned in xt. This is because transcan
uses an approximate method based on linear interpolation to back-solve for imputed values on the
original scale.

Shrinkage uses the method of Van Houwelingen and Le Cessie (1990) (similar to Copas, 1983).
The shrinkage factor is [1-(1-R2)(n-1)/(n-k-1)]/R2, where R2 is the apparent R-squared
for predicting the variable, n is the number of non-missing values, and k is the effective num-
ber of degrees of freedom (aside from intercepts). A heuristic estimate is used for k: A - 1 +
sum(max(0,Bi-1))/m + m, where A is the number of d.f. required to represent the variable
being predicted, the Bi are the number of columns required to represent all the other variables, and
m is the number of all other variables. Division by m is done because the transformations for the
other variables are fixed at their current transformations the last time they were being predicted. The
+ m term comes from the number of coefficients estimated on the right hand side, whether by least
squares or canonical variates. If a shrinkage factor is negative, it is set to 0. The shrinkage factor is
the ratio of the adjusted R-squared to the ordinary R-squared. The adjusted R-squared is 1 - (1
- R2)(n-1)/(n-k-1), which is also set to zero if it is negative. If shrink=FALSE and the
adjusted R-squares are much smaller than the ordinary R-squares, you may want to run transcan
with shrink=TRUE.

Canonical variates are scaled to have variance of 1.0, by multiplying canonical coefficients from
cancor by sqrt(n-1).

When specifying a non-Design library fitting function to fit.mult.impute (e.g., lm, glm),
running the result of fit.mult.impute through that fit’s summary method will not use the
imputation-adjusted variances. You may obtain the new variances using fit$var or Varcov(fit).

288 transcan

When you specify a Design function to fit.mult.impute (e.g., lrm, ols, cph, psm,
bj), automatically computed transformation parameters (e.g., knot locations for rcs) that are es-
timated for the first imputation are used for all other imputations. This ensures that knot locations
will not vary, which would change the meaning of the regression coefficients.

Warning: even though fit.mult.impute takes imputation into account when estimating vari-
ances of regression coefficient, it does not take into account the variation that results from estima-
tion of the shapes and regression coefficients of the customized imputation equations. Specifying
shrink=TRUE solves a small part of this problem. To fully account for all sources of variation
you should consider putting the transcan invocation inside a bootstrap or loop, if execution time
allows. Better still, use aregImpute or one of the libraries such as MICE that uses real Bayesian
posterior realizations to multiply impute missing values correctly.

It is strongly recommended that you use the Hmisc naclus function to determine is there is a
good basis for imputation. naclus will tell you, for example, if systolic blood pressure is miss-
ing whenever diastolic blood pressure is missing. If the only variable that is well correlated with
diastolic bp is systolic bp, there is no basis for imputing diastolic bp in this case.

At present, predict does not work with multiple imputation.

When calling fit.mult.impute with glm as the fitter argument, if you need to pass a
family argument to glm do it by quoting the family, e.g., family="binomial".

You should be able to use a variable in the formula given to fit.mult.impute as a numeric vari-
able in the regression model even though it was a factor variable in the invocation of transcan.
Use for example fit.mult.impute(y ~ codes(x), lrm, trans) (thanks to Trevor
Thompson 〈trevor@hp5.eushc.org〉).

Value

For transcan, a list of class transcan with elements call (with the function call), iter
(number of iterations done) and rsq and rsq.adj containing the R-squares and adjusted R-
squares achieved in predicting each variable from all the others. It also has elements categorical,
asis, coef, xcoef, parms, fillin, ranges, scale, and formula containing respectively
the values supplied for categorical and asis, the within-variable coefficients used to compute
the first canonical variate, the (possibly shrunk) across-variables coefficients of the first canonical
variate that predicts each variable in turn, the parameters of the transformation (knots for splines,
contrast matrix for categorical variables), the initial estimates for missing values (NA if variable
never missing), the matrix of ranges of the transformed variables (min and max in first and second
row), a vector of scales used to determine convergence for a transformation, the formula (if x was a
formula), and optionally a vector of shrinkage factors used for predicting each variable from the oth-
ers. For "asis" variables, the scale is the average absolute difference about the median. For other
variables it is unity, since canonical variables are standardized. For xcoef, row i has the coeffi-
cients to predict transformed variable i, with the column for the coefficient of variable i set to NA.
If imputed=TRUE was given, an optional element imputed also appears. This is a list with the
vector of imputed values (on the original scale) for each variable containing NAs. Matrices rather
than vectors are returned if n.impute is given. If trantab=TRUE, the ‘trantab element
also appears, as described above. If n.impute > 0, transcan also returns a list residuals
that can be used for future multiple imputation.

impute returns a vector (the same length as var) of class "impute"with NAs imputed. predict
returns a matrix with the same number of columns or variables as were in x.

transcan 289

fit.mult.impute returns a fit object that is a modification of the fit object created by fitting
the completed dataset for the final imputation. The var matrix in the fit object has the imputation-
corrected variance-covariance matrix. coefficients is the average (over imputations) of the
coefficient vectors, variance.inflation.impute is a vector containing the ratios of the di-
agonals of the between-imputation variance matrix to the diagonals of the average apparent (within-
imputation) variance matrix. missingInfo is Rubin’s "rate of missing information" and dfmi
is Rubin’s degrees of freedom for a t-statistic for testing a single parameter. The last two objects are
vectors corresponding to the diagonal of the variance matrix.

Side Effects

prints, plots, and impute.transcan creates new variables.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
〈f.harrell@vanderbilt.edu〉

References

Kuhfeld, Warren F: The PRINQUAL Procedure. SAS/STAT User’s Guide, Fourth Edition, Volume
2, pp. 1265–1323, 1990.

Van Houwelingen JC, Le Cessie S: Predictive value of statistical models. Statistics in Medicine
8:1303–1325, 1990.

Copas JB: Regression, prediction and shrinkage. JRSS B 45:311–354, 1983.

He X, Shen L: Linear regression after spline transformation. Biometrika 84:474–481, 1997.

Little RJA, Rubin DB: Statistical Analysis with Missing Data. New York: Wiley, 1987.

Rubin DJ, Schenker N: Multiple imputation in health-care databases: An overview and some appli-
cations. Stat in Med 10:585–598, 1991.

Faris PD, Ghali WA, et al:Multiple imputation versus data enhancement for dealing with missing
data in observational health care outcome analyses. J Clin Epidem 55:184–191, 2002.

See Also

aregImpute, impute, naclus, naplot, ace, avas, cancor, prcomp, rcspline.eval,
lsfit, approx, datadensity, mice

Examples

Not run:
x <- cbind(age, disease, blood.pressure, pH)
#cbind will convert factor object `disease' to integer
par(mfrow=c(2,2))
x.trans <- transcan(x, categorical="disease", asis="pH",

transformed=TRUE, imputed=TRUE)
summary(x.trans) #Summary distribution of imputed values, and R-squares

290 transcan

f <- lm(y ~ x.trans$transformed) #use transformed values in a regression
#Now replace NAs in original variables with imputed values, if not
#using transformations
age <- impute(x.trans, age)
disease <- impute(x.trans, disease)
blood.pressure <- impute(x.trans, blood.pressure)
pH <- impute(x.trans, pH)
#Do impute(x.trans) to impute all variables, storing new variables under
#the old names
summary(pH) #uses summary.impute to tell about imputations

#and summary.default to tell about pH overall
Get transformed and imputed values on some new data frame xnew
newx.trans <- predict(x.trans, xnew)
w <- predict(x.trans, xnew, type="original")
age <- w[,"age"] #inserts imputed values
blood.pressure <- w[,"blood.pressure"]
Function(x.trans) #creates .age, .disease, .blood.pressure, .pH()
#Repeat first fit using a formula
x.trans <- transcan(~ age + disease + blood.pressure + I(pH),

imputed=TRUE)
age <- impute(x.trans, age)
predict(x.trans, expand.grid(age=50, disease="pneumonia",

blood.pressure=60:260, pH=7.4))
z <- transcan(~ age + factor(disease.code), # disease.code categorical

transformed=TRUE, trantab=TRUE, imputed=TRUE, pl=FALSE)
plot(z$transformed)
End(Not run)

Multiple imputation and estimation of variances and covariances of
regression coefficient estimates accounting for imputation
set.seed(1)
x1 <- factor(sample(c('a','b','c'),100,TRUE))
x2 <- (x1=='b') + 3*(x1=='c') + rnorm(100)
y <- x2 + 1*(x1=='c') + rnorm(100)
x1[1:20] <- NA
x2[18:23] <- NA
d <- data.frame(x1,x2,y)
n <- naclus(d)
plot(n); naplot(n) # Show patterns of NAs
f <- transcan(~y + x1 + x2, n.impute=10, shrink=FALSE, data=d)
options(digits=3)
summary(f)

f <- transcan(~y + x1 + x2, n.impute=10, shrink=TRUE, data=d)
summary(f)

h <- fit.mult.impute(y ~ x1 + x2, lm, f, data=d)
Add ,fit.reps=TRUE to save all fit objects in h, then do something like:
for(i in 1:length(h$fits)) print(summary(h$fits[[i]]))

diag(Varcov(h))

h.complete <- lm(y ~ x1 + x2, na.action=na.omit)

transcan 291

h.complete
diag(Varcov(h.complete))

Note: had Design's ols function been used in place of lm, any
function run on h (anova, summary, etc.) would have automatically
used imputation-corrected variances and covariances

Example demonstrating how using the multinomial logistic model
to impute a categorical variable results in a frequency
distribution of imputed values that matches the distribution
of non-missing values of the categorical variable

Not run:
set.seed(11)
x1 <- factor(sample(letters[1:4], 1000,TRUE))
x1[1:200] <- NA
table(x1)/sum(table(x1))
x2 <- runif(1000)
z <- transcan(~ x1 + I(x2), n.impute=20, impcat='multinom')
table(z$imputed$x1)/sum(table(z$imputed$x1))
End(Not run)

Example where multiple imputations are for basic variables and
modeling is done on variables derived from these

set.seed(137)
n <- 400
x1 <- runif(n)
x2 <- runif(n)
y <- x1*x2 + x1/(1+x2) + rnorm(n)/3
x1[1:5] <- NA
d <- data.frame(x1,x2,y)
w <- transcan(~ x1 + x2 + y, n.impute=5, data=d)
Add ,show.imputed.actual for graphical diagnostics
Not run:
g <- fit.mult.impute(y ~ product + ratio, ols, w,

data=data.frame(x1,x2,y),
derived=expression({
product <- x1*x2
ratio <- x1/(1+x2)
print(cbind(x1,x2,x1*x2,product)[1:6,])}))

End(Not run)

Here's a method for creating a permanent data frame containing
one set of imputed values for each variable specified to transcan
that had at least one NA, and also containing all the variables
in an original data frame. The following is based on the fact
that the default output location for impute.transcan is
given by where.out=1 (search position 1)

Not run:
xt <- transcan(~. , data=mine,

imputed=TRUE, shrink=TRUE, n.impute=10, trantab=TRUE)

292 translate

attach(mine, pos=1, use.names=FALSE)
impute(xt, imputation=1) # use first imputation
omit imputation= if using single imputation
detach(1, 'mine2')
End(Not run)

Example of using invertTabulated outside transcan
x <- c(1,2,3,4,5,6,7,8,9,10)
y <- c(1,2,3,4,5,5,5,5,9,10)
freq <- c(1,1,1,1,1,2,3,4,1,1)
x=5,6,7,8 with prob. .1 .2 .3 .4 when y=5
Within a tolerance of .05*(10-1) all y's match exactly
so the distance measure does not play a role
set.seed(1) # so can reproduce
for(inverse in c('linearInterp','sample'))
print(table(invertTabulated(x, y, freq, rep(5,1000), inverse=inverse)))

Test inverse='sample' when the estimated transformation is
flat on the right. First show default imputations
set.seed(3)
x <- rnorm(1000)
y <- pmin(x, 0)
x[1:500] <- NA
for(inverse in c('linearInterp','sample')) {
par(mfrow=c(2,2))
w <- transcan(~ x + y, imputed.actual='hist',

inverse=inverse, curtail=FALSE,
data=data.frame(x,y))

if(inverse=='sample') next
cat('Click mouse on graph to proceed\n')
locator(1)
}

translate Translate Vector or Matrix of Text Strings

Description

Uses the UNIX tr command to translate any character in old in text to the corresponding charac-
ter in new. If multichar=T or old and new have more than one element, or each have one element
but they have different numbers of characters, uses the UNIX sed command to translate the se-
ries of characters in old to the series in new when these characters occur in text. If old or
new contain a backslash, you sometimes have to quadruple it to make the UNIX command work.
If they contain a forward slash, preceed it by two backslashes. The Microsoft Windows version
of translate invokes the sedit() function and does not allow multichar=FALSE, i.e., it
does not support the UNIX tr function. The R version of translate invokes the builtin chartr
function if multichar=FALSE.

Usage

translate(text, old, new, multichar=FALSE)

trunc.POSIXt 293

Arguments

text scalar, vector, or matrix of character strings to translate.

old vector old characters

new corresponding vector of new characters

multichar See above.

Details

At present, multichar=FALSE, which requires the UNIX tr program, is not implemented under
MS Windows.

Value

an object like text but with characters translated

See Also

unix, grep

Examples

translate(c("ABC","DEF"),"ABCDEFG", "abcdefg")
translate("23.12","[.]","\\\cdot ") # change . to \cdot
translate(c("dog","cat","tiger"),c("dog","cat"),c("DOG","CAT"))
S-Plus gives [1] "DOG" "CAT" "tiger" - check discrepency
translate(c("dog","cat2","snake"),c("dog","cat"),"animal")
S-Plus gives [1] "animal" "animal2" "snake"

trunc.POSIXt return the floor, ceiling, or rounded value of date or time to specified
unit.

Description

trunc.POSIXt returns the date truncated to the specified unit. ceiling.POSIXt returns next
ceiling of the date at the unit selected in units. floor.POSIXt trunk.POSIXt by another
name. round.POSIXt returns the date or time value rounded to nearest specified unit selected in
digits.

trunc.POSIXt and round.POSIXt have been extended from the base package functions.

294 units

Usage

ceil(x, units,...)
Default S3 method:
ceil(x, units, ...)
S3 method for class 'POSIXt':
trunc(x, units = c("secs", "mins", "hours", "days",
"months", "years"), ...)
S3 method for class 'POSIXt':
ceil(x, units = c("secs", "mins", "hours", "days",
"months", "years"), ...)
S3 method for class 'POSIXt':
round(x, digits = c("secs", "mins", "hours", "days", "months", "years"))

Arguments

x date to be floored, ceilinged, truncated, or rounded
units unit to that is is rounded up or down to.
digits same as units but different name to be compatible with round generic.
... further arguments to be passed to or from other methods.

Value

An object of class POSIXlt.

Author(s)

Charles Dupont

See Also

Date POSIXt POSIXlt DateTimeClasses

Examples

date <- ISOdate(1832, 7, 12)
ceil(date, units='months') # '1832-8-1'
trunc(date, units='years') # '1832-1-1'
round.POSIXt(date, digits='months') # '1832-7-1'

units Units Attribute of a Vector

Description

Sets or retrieves the "units" attribute of an object. For units.default replaces the builtin
version, which only works for time series objects. If the variable is also given a label, subsetting
(using [.labelled) will retain the "units" attribute. For S-Plus 6 which uses version 4 of the
S language, the latter does not work.

upData 295

Usage

units(x, ...)
Default S3 method:
units(x, none='', ...)
S3 replacement method for class 'default':
units(x) <- value

Arguments

x any object

... ignored

value the units of the object, or ""

none value to which to set result if no appropriate attribute is found

Value

the units attribute of x, if any; otherwise, the units attribute of the tspar attribute of x if any;
otherwise the value none

See Also

label

Examples

fail.time <- c(10,20)
units(fail.time) <- "Day"
describe(fail.time)
label(fail.time) <- 'Failure Time'
fail.time
Not run:
f <- cph(Surv(fail.time, event) ~ xx)
plot(xx,xx2,xlab=paste(label(xx),", ",units(xx),"s",sep=""))
End(Not run)

upData Update a Data Frame or Cleanup a Data Frame after Importing

Description

cleanup.import will correct errors and shrink the size of data frames created by the S-Plus
File ... Import dialog or by other methods such as scan and read.table. By default,
double precision numeric variables are changed to single precision (S-Plus only) or to integer when
they contain no fractional components. Infinite values or values greater than 1e20 in absolute value
are set to NA. This solves problems of importing Excel spreadsheets that contain occasional charac-
ter values for numeric columns, as S-Plus converts these to Inf without warning. There is also an
option to convert variable names to lower case and to add labels to variables. The latter can be made

296 upData

easier by importing a CNTLOUT dataset created by SAS PROC FORMAT and using the sasdict
option as shown in the example below. cleanup.import can also transform character or factor
variables to dates.

upData is a function facilitating the updating of a data frame without attaching it in search position
one. New variables can be added, old variables can be modified, variables can be removed or
renamed, and "labels" and "units" attributes can be provided. Various checks are made
for errors and inconsistencies, with warnings issued to help the user. Levels of factor variables
can be replaced, especially using the list notation of the standard merge.levels function.
Unless force.single is set to FALSE, upData also converts double precision vectors to single
precision (if not under R), or to integer if no fractional values are present in a vector.

Both cleanup.import and upData will fix a problem with data frames created under S-Plus
before version 5 that are used in S-Plus 5 or later. The problem was caused by use of the label
function to set a variable’s class to "labelled". These classes are removed as the S version 4
language does not support multiple inheritance. Failure to run data frames through one of the two
functions when these conditions apply will result in simple numeric variables being set to factor
in some cases. Extraneous "AsIs" classes are also removed.

For S-Plus, a function exportDataStripped is provided that allows exporting of data to other
systems by removing attributes label, imputed, format, units, and comment. It calls
exportData after stripping these attributes. Otherwise exportData will fail.

The dataframeReduce function removes variables from a data frame that are problematic for
certain analyses. Variables can be removed because the fraction of missing values exceeds a thresh-
old, because they are character or categorical variables having too many levels, or because they are
binary and have too small a prevalence in one of the two values. Categorical variables can also have
their levels combined when a level is of low prevalence.

Usage

cleanup.import(obj, labels, lowernames=FALSE,
force.single=TRUE, force.numeric=TRUE, rmnames=TRUE,
big=1e20, sasdict, pr, datevars=NULL, datetimevars=NULL,
dateformat='%F',
fixdates=c('none','year'), charfactor=FALSE)

upData(object, ...,
rename, drop, labels, units, levels,
force.single=TRUE, lowernames=FALSE, moveUnits=FALSE, charfactor=FALSE)

exportDataStripped(data, ...)

dataframeReduce(data, fracmiss=1, maxlevels=NULL, minprev=0, pr=TRUE)

Arguments

obj a data frame or list

object a data frame or list

data a data frame

upData 297

force.single By default, double precision variables are converted to single precision (in S-
Plus only) unless force.single=FALSE. force.single=TRUEwill also
convert vectors having only integer values to have a storage mode of integer, in
R or S-Plus.

force.numeric
Sometimes importing will cause a numeric variable to be changed to a factor
vector. By default, cleanup.import will check each factor variable to see
if the levels contain only numeric values and "". In that case, the variable will be
converted to numeric, with "" converted to NA. Set force.numeric=FALSE
to prevent this behavior.

rmnames set to ‘F’ to not have ‘cleanup.import’ remove ‘names’ or ‘.Names’ attributes
from variables

labels a character vector the same length as the number of variables in obj. These
character values are taken to be variable labels in the same order of variables in
obj. For upData, labels is a named list or named vector with variables in
no specific order.

lowernames set this to TRUE to change variable names to lower case. upData does this
before applying any other changes, so variable names given inside arguments to
upData need to be lower case if lowernames==TRUE.

big a value such that values larger than this in absolute value are set to missing by
cleanup.import

sasdict the name of a data frame containing a raw imported SAS PROC CONTENTS
CNTLOUT= dataset. This is used to define variable names and to add attributes
to the new data frame specifying the original SAS dataset name and label.

pr set to TRUE or FALSE to force or prevent printing of the current variable number
being processed. By default, such messages are printed if the product of the
number of variables and number of observations in obj exceeds 500,000. For
dataframeReduce set pr to FALSE to suppress printing information about
dropped or modified variables.

datevars character vector of names (after lowernames is applied) of variables to con-
sider as a factor or character vector containing dates in a format matching dateformat.
The default is "%F" which uses the yyyy-mm-dd format.

datetimevars character vector of names (after lowernames is applied) of variables to con-
sider to be date-time variables, with date formats as described under datevars
followed by a space followed by time in hh:mm:ss format. chron is used to
store date-time variables. If all times in the variable are 00:00:00 the variable
will be converted to an ordinary date variable.

dateformat for cleanup.import is the input format (see strptime)

fixdates for any of the variables listed in datevars that have a dateformat that
cleanup.import understands, specifying fixdates allows corrections of
certain formatting inconsistencies before the fields are attempted to be con-
verted to dates (the default is to assume that the dateformat is followed
for all observation for datevars). Currently fixdates=’year’ is imple-
mented, which will cause 2-digit or 4-digit years to be shifted to the alternate
number of digits when dateform is the default "%F" or is "%y-%m-%d",

298 upData

"%m/%d/%y", or "%m/%d/%Y". Two-digits years are padded with 20 on the
left. Set dateformat to the desired format, not the exceptional format.

charfactor set to TRUE to change character variables to factors if they have at least two
characters in an observation but have fewer than n/2 unique values

... for upData, one or more expressions of the form variable=expression,
to derive new variables or change old ones. For exportDataStripped,
optional arguments that are passed to exportData.

rename list or named vector specifying old and new names for variables. Variables are
renamed before any other operations are done. For example, to rename variables
age and sex to respectively Age and gender, specify rename=list(age="Age",
sex="gender") or rename=c(age=...).

drop a vector of variable names to remove from the data frame

units a named vector or list defining "units" attributes of variables, in no specific
order

levels a named list defining "levels" attributes for factor variables, in no specific
order. The values in this list may be character vectors redefining levels (in
order) or another list (see merge.levels if using S-Plus).

moveUnits set to TRUE to look for units of measurements in variable labels and move them
to a "units" attribute. If an expression in a label is enclosed in parentheses or
brackets it is assumed to be units if moveUnits=TRUE.

fracmiss the maximum permissable proportion of NAs for a variable to be kept. Default
is to keep all variables no matter how many NAs are present.

maxlevels the maximum number of levels of a character or categorical or factor variable
before the variable is dropped

minprev the minimum proportion of non-missing observations in a category for a binary
variable to be retained, and the minimum relative frequency of a category before
it will be combined with other small categories

Value

a new data frame

Author(s)

Frank Harrell, Vanderbilt University

See Also

sas.get, data.frame, describe, label, read.csv, strptime, POSIXct,Date

Examples

Not run:
dat <- read.table('myfile.asc')
dat <- cleanup.import(dat)
End(Not run)
dat <- data.frame(a=1:3, d=c('01/02/2004',' 1/3/04',''))

valueTags 299

cleanup.import(dat, datevars='d', dateformat='%m/%d/%y', fixdates='year')

dat <- data.frame(a=(1:3)/7, y=c('a','b1','b2'), z=1:3)
dat2 <- upData(dat, x=x^2, x=x-5, m=x/10,

rename=c(a='x'), drop='z',
labels=c(x='X', y='test'),
levels=list(y=list(a='a',b=c('b1','b2'))))

dat2
describe(dat2)
dat <- dat2 # copy to original name and delete dat2 if OK
rm(dat2)

Remove hard to analyze variables from a redundancy analysis of all
variables in the data frame
d <- dataframeReduce(dat, fracmiss=.1, minprev=.05, maxlevels=5)
Could run redun(~., data=d) at this point or include dataframeReduce
arguments in the call to redun

If you import a SAS dataset created by PROC CONTENTS CNTLOUT=x.datadict,
the LABELs from this dataset can be added to the data. Let's also
convert names to lower case for the main data file
Not run:
mydata2 <- cleanup.import(mydata2, lowernames=TRUE, sasdict=datadict)
End(Not run)

valueTags Store Discriptive Information About an Object

Description

Functions get or set useful information about the contents of the object for later use.

Usage

valueTags(x)
valueTags(x) <- value

valueLabel(x)
valueLabel(x) <- value

valueName(x)
valueName(x) <- value

valueUnit(x)
valueUnit(x) <- value

300 valueTags

Arguments

x an object

value for valueTags<- a named list of value tags. a character vector of length 1, or
NULL.

Details

These functions store the a short name of for the contents, a longer label that is useful for display,
and the units of the contents that is useful for display.

valueTag is an accessor, and valueTag<- is a replacement function for all of the value’s infor-
mation.

valueName is an accessor, and valueName<- is a replacement function for the value’s name.
This name is used when a plot or a latex table needs a short name and the variable name is not
useful.

valueLabel is an accessor, and valueLabel<- is a replacement function for the value’s label.
The label is used in a plots or latex tables when they need a descriptive name.

valueUnit is an accessor, and valueUnit<- is a replacement function for the value’s unit.
The unit is used to add unit information to the R output.

Value

valueTag returns NULL or a named list with each of the named values name, label, unit set
if they exists in the object.

For valueTag<- returns list

For valueName, valueLable, and valueUnit returns NULL or character vector of length 1.

For valueName<-, valueLabel<-, and valueUnit returns value

Author(s)

Charles Dupont

See Also

names, attributes

Examples

age <- c(21,65,43)
y <- 1:3
valueLabel(age) <- "Age in Years"
plot(age, y, xlab=valueLabel(age))

x1 <- 1:10
x2 <- 10:1
valueLabel(x2) <- 'Label for x2'
valueUnit(x2) <- 'mmHg'
x2

varclus 301

x2[1:5]
dframe <- data.frame(x1, x2)
Label(dframe)

##In these examples of llist, note that labels are printed after
##variable names, because of print.labelled
a <- 1:3
b <- 4:6
valueLabel(b) <- 'B Label'

varclus Variable Clustering

Description

Does a hierarchical cluster analysis on variables, using the Hoeffding D statistic, squared Pearson
or Spearman correlations, or proportion of observations for which two variables are both positive
as similarity measures. Variable clustering is used for assessing collinearity, redundancy, and for
separating variables into clusters that can be scored as a single variable, thus resulting in data re-
duction. For computing any of the three similarity measures, pairwise deletion of NAs is done.
The clustering is done by hclust(). A small function naclus is also provided which depicts
similarities in which observations are missing for variables in a data frame. The similarity measure
is the fraction of NAs in common between any two variables. The diagonals of this sim matrix are
the fraction of NAs in each variable by itself. naclus also computes na.per.obs, the number
of missing variables in each observation, and mean.na, a vector whose ith element is the mean
number of missing variables other than variable i, for observations in which variable i is missing.
The naplot function makes several plots (see the which argument).

So as to not generate too many dummy variables for multi-valued character or categorical predictors,
varclus will automatically combine infrequent cells of such variables using an auxiliary function
combine.levels that is defined here.

plotMultSim plots multiple similarity matrices, with the similarity measure being on the x-axis
of each subplot.

na.pattern prints a frequency table of all combinations of missingness for multiple variables. If
there are 3 variables, a frequency table entry labeled 110 corresponds to the number of observations
for which the first and second variables were missing but the third variable was not missing.

Usage

varclus(x, similarity=c("spearman","pearson","hoeffding","bothpos","ccbothpos"),
type=c("data.matrix","similarity.matrix"),
method=if(.R.)"complete" else "compact",
data=NULL, subset=NULL, na.action=na.retain, ...)

S3 method for class 'varclus':
print(x, abbrev=FALSE, ...)
S3 method for class 'varclus':
plot(x, ylab, abbrev=FALSE, legend.=FALSE, loc, maxlen, labels, ...)

302 varclus

naclus(df, method)
naplot(obj, which=c('all','na per var','na per obs','mean na',

'na per var vs mean na'), ...)

combine.levels(x, minlev=.05)

plotMultSim(s, x=1:dim(s)[3],
slim=range(pretty(c(0,max(s,na.rm=TRUE)))),
slimds=FALSE,
add=FALSE, lty=par('lty'), col=par('col'),
lwd=par('lwd'), vname=NULL, h=.5, w=.75, u=.05,
labelx=TRUE, xspace=.35)

na.pattern(x)

Arguments

x a formula, a numeric matrix of predictors, or a similarity matrix. If x is a for-
mula, model.matrix is used to convert it to a design matrix. If the formula
excludes an intercept (e.g., ~ a + b -1), the first categorical (factor) vari-
able in the formula will have dummy variables generated for all levels instead
of omitting one for the first level. For combine.levels, x is a character,
category, or factor vector (or other vector that is converted to factor). For plot
and print, x is an object created by varclus. For na.pattern, x is a list,
data frame, or numeric matrix.
For plotMultSim, is a numeric vector specifying the ordered unique values
on the x-axis, corresponding to the third dimension of s.

df a data frame

s an array of similarity matrices. The third dimension of this array corresponds to
different computations of similarities. The first two dimensions come from a sin-
gle similarity matrix. This is useful for displaying similarity matrices computed
by varclus, for example. A use for this might be to show pairwise similari-
ties of variables across time in a longitudinal study (see the example below). If
vname is not given, s must have dimnames.

similarity the default is to use squared Spearman correlation coefficients, which will detect
monotonic but nonlinear relationships. You can also specify linear correlation
or Hoeffding’s (1948) D statistic, which has the advantage of being sensitive to
many types of dependence, including highly non-monotonic relationships. For
binary data, or data to be made binary, similarity="bothpos" uses as a
similarity measure the proportion of observations for which two variables are
both positive. similarity="ccbothpos" uses a chance-corrected mea-
sure which is the proportion of observations for which both variables are positive
minus the product of the two marginal proportions. This difference is expected
to be zero under independence. For diagonals, "ccbothpos" still uses the
proportion of positives for the single variable. So "ccbothpos" is not re-
ally a similarity measure, and clustering is not done. This measure is useful for
plotting with plotMultSim (see the last example).

varclus 303

type if x is not a formula, it may be a data matrix or a similarity matrix. By default,
it is assumed to be a data matrix.

method see hclust. The default, for both varclus and naclus, is "compact"
(for R it is "complete").

data

subset

na.action These may be specified if x is a formula. The default na.action is na.retain,
defined by varclus. This causes all observations to be kept in the model
frame, with later pairwise deletion of NAs.

... for varclus these are optional arguments to pass to the dataframeReduce
function. Otherwise, passed to plclust (or to dotchart or dotchart2
for naplot).

ylab y-axis label. Default is constructed on the basis of similarity.

legend. set to TRUE to plot a legend defining the abbreviations

loc a list with elements x and y defining coordinates of the upper left corner of the
legend. Default is locator(1).

maxlen if a legend is plotted describing abbreviations, original labels longer than maxlen
characters are truncated at maxlen.

labels a vector of character strings containing labels corresponding to columns in the
similar matrix, if the column names of that matrix are not to be used

obj an object created by naclus

which defaults to "all" meaning to have naplot make 4 separate plots. To make
only one of the plots, use which="na per var" (dot chart of fraction of
NAs for each variable), ,"na per obs" (dot chart showing frequency distri-
bution of number of variables having NAs in an observation), "mean na" (dot
chart showing mean number of other variables missing when the indicated vari-
able is missing), or "na per var vs mean na", a scatterplot showing on
the x-axis the fraction of NAs in the variable and on the y-axis the mean number
of other variables that are NA when the indicated variable is NA.

minlev the minimum proportion of observations in a cell before that cell is combined
with one or more cells. If more than one cell has fewer than minlev*n observa-
tions, all such cells are combined into a new cell labeled "OTHER". Otherwise,
the lowest frequency cell is combined with the next lowest frequency cell, and
the level name is the combination of the two old level levels.

abbrev set to TRUE to abbreviate variable names for plotting or printing. Is set to TRUE
automatically if legend=TRUE.

slim 2-vector specifying the range of similarity values for scaling the y-axes. By
default this is the observed range over all of s.

slimds set to slimds to TRUE to scale diagonals and off-diagonals separately

add set to TRUE to add similarities to an existing plot (usually specifying lty or
col)

lty

col

304 varclus

lwd line type, color, or line thickness for plotMultSim

vname optional vector of variable names, in order, used in s

h relative height for subplot

w relative width for subplot

u relative extra height and width to leave unused inside the subplot. Also used as
the space between y-axis tick mark labels and graph border.

labelx set to FALSE to suppress drawing of labels in the x direction

xspace amount of space, on a scale of 1:n where n is the number of variables, to set
aside for y-axis labels

Details

options(contrasts= c("contr.treatment", "contr.poly")) is issued temporar-
ily by varclus to make sure that ordinary dummy variables are generated for factor variables.
Pass arguments to the dataframeReduce function to remove problematic variables (especially
if analyzing all variables in a data frame).

Value

for varclus or naclus, a list of class varclus with elements call (containing the calling
statement), sim (similarity matrix), n (sample size used if x was not a correlation matrix already
- n is a matrix), hclust, the object created by hclust, similarity, and method. For
plot, returns the object created by plclust. naclus also returns the two vectors listed under
description, and naplot returns an invisible vector that is the frequency table of the number of
missing variables per observation. plotMultSim invisibly returns the limits of similarities used
in constructing the y-axes of each subplot. For similarity="ccbothpos" the hclust object
is NULL.

na.pattern creates an integer vector of frequencies.

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
f.harrell@vanderbilt.edu

References

Sarle, WS: The VARCLUS Procedure. SAS/STAT User’s Guide, 4th Edition, 1990. Cary NC: SAS
Institute, Inc.

Hoeffding W. (1948): A non-parametric test of independence. Ann Math Stat 19:546–57.

See Also

hclust, plclust, hoeffd, rcorr, cor, model.matrix, locator, na.pattern

varclus 305

Examples

set.seed(1)
x1 <- rnorm(200)
x2 <- rnorm(200)
x3 <- x1 + x2 + rnorm(200)
x4 <- x2 + rnorm(200)
x <- cbind(x1,x2,x3,x4)
v <- varclus(x, similarity="spear") # spearman is the default anyway
v # invokes print.varclus
print(round(v$sim,2))
plot(v)

plot(varclus(~ age + sys.bp + dias.bp + country - 1), abbrev=TRUE)
the -1 causes k dummies to be generated for k countries
plot(varclus(~ age + factor(disease.code) - 1))
#
#
use varclus(~., data= fracmiss= maxlevels= minprev=) to analyze all
"useful" variables - see dataframeReduce for details about arguments

df <- data.frame(a=c(1,2,3),b=c(1,2,3),c=c(1,2,NA),d=c(1,NA,3),
e=c(1,NA,3),f=c(NA,NA,NA),g=c(NA,2,3),h=c(NA,NA,3))

par(mfrow=c(2,2))
for(m in if(.R.)c("ward","complete","median") else

c("compact","connected","average")) {
plot(naclus(df, method=m))
title(m)

}
naplot(naclus(df))
n <- naclus(df)
plot(n); naplot(n)
na.pattern(df) # builtin function

x <- c(1, rep(2,11), rep(3,9))
combine.levels(x)
x <- c(1, 2, rep(3,20))
combine.levels(x)

plotMultSim example: Plot proportion of observations
for which two variables are both positive (diagonals
show the proportion of observations for which the
one variable is positive). Chance-correct the
off-diagonals by subtracting the product of the
marginal proportions. On each subplot the x-axis
shows month (0, 4, 8, 12) and there is a separate
curve for females and males
d <- data.frame(sex=sample(c('female','male'),1000,TRUE),

month=sample(c(0,4,8,12),1000,TRUE),
x1=sample(0:1,1000,TRUE),
x2=sample(0:1,1000,TRUE),
x3=sample(0:1,1000,TRUE))

s <- array(NA, c(3,3,4))

306 wtd.stats

opar <- par(mar=c(0,0,4.1,0)) # waste less space
for(sx in c('female','male')) {
for(i in 1:4) {
mon <- (i-1)*4
s[,,i] <- varclus(~x1 + x2 + x3, sim='ccbothpos', data=d,

subset=d$month==mon & d$sex==sx)$sim
}

plotMultSim(s, c(0,4,8,12), vname=c('x1','x2','x3'),
add=sx=='male', slimds=TRUE,
lty=1+(sx=='male'))

slimds=TRUE causes separate scaling for diagonals and
off-diagonals

}
par(opar)

wtd.stats Weighted Statistical Estimates

Description

These functions compute various weighted versions of standard estimators. In most cases the
weights vector is a vector the same length of x, containing frequency counts that in effect
expand x by these counts. weights can also be sampling weights, in which setting normwt
to TRUE will often be appropriate. This results in making weights sum to the length of the
non-missing elements in x. normwt=TRUE thus reflects the fact that the true sample size is the
length of the x vector and not the sum of the original values of weights (which would be ap-
propriate had normwt=FALSE). When weights is all ones, the estimates are all identical to
unweighted estimates (unless one of the non-default quantile estimation options is specified to
wtd.quantile). When missing data have already been deleted for, x, weights, and (in the
case of wtd.loess.noiter) y, specifying na.rm=FALSE will save computation time. Omit-
ting the weights argument or specifying NULL or a zero-length vector will result in the usual
unweighted estimates.

wtd.mean, wtd.var, and wtd.quantile compute weighted means, variances, and quan-
tiles, respectively. wtd.Ecdf computes a weighted empirical distribution function. wtd.table
computes a weighted frequency table (although only one stratification variable is supported at
present). wtd.rank computes weighted ranks, using mid–ranks for ties. This can be used to ob-
tain Wilcoxon tests and rank correlation coefficients. wtd.loess.noiter is a weighted version
of loess.smooth when no iterations for outlier rejection are desired. This results in especially
good smoothing when y is binary.

num.denom.setup is a utility function that allows one to deal with observations containing
numbers of events and numbers of trials, by outputting two observations when the number of events
and non-events (trials - events) exceed zero. A vector of subscripts is generated that will do the
proper duplications of observations, and a new binary variable y is created along with usual cell
frequencies (weights) for each of the y=0, y=1 cells per observation.

wtd.stats 307

Usage

wtd.mean(x, weights=NULL, normwt="ignored", na.rm=TRUE)
wtd.var(x, weights=NULL, normwt=FALSE, na.rm=TRUE)
wtd.quantile(x, weights=NULL, probs=c(0, .25, .5, .75, 1),

type=c('quantile','(i-1)/(n-1)','i/(n+1)','i/n'),
normwt=FALSE, na.rm=TRUE)

wtd.Ecdf(x, weights=NULL,
type=c('i/n','(i-1)/(n-1)','i/(n+1)'),
normwt=FALSE, na.rm=TRUE)

wtd.table(x, weights=NULL, type=c('list','table'),
normwt=FALSE, na.rm=TRUE)

wtd.rank(x, weights=NULL, normwt=FALSE, na.rm=TRUE)
wtd.loess.noiter(x, y, weights=rep(1,n), robust=rep(1,n),

span=2/3, degree=1, cell=.13333,
type=c('all','ordered all','evaluate'),
evaluation=100, na.rm=TRUE)

num.denom.setup(num, denom)

Arguments

x a numeric vector (may be a character or category or factor vector for
wtd.table)

num vector of numerator frequencies
denom vector of denominators (numbers of trials)
weights a numeric vector of weights
normwt specify normwt=TRUE to make weights sum to length(x) after deletion

of NAs
na.rm set to FALSE to suppress checking for NAs
probs a vector of quantiles to compute. Default is 0 (min), .25, .5, .75, 1 (max).
type For wtd.quantile, type defaults to quantile to use the same inter-

polated order statistic method as quantile. Set type to "(i-1)/(n-
1)","i/(n+1)", or "i/n" to use the inverse of the empirical distribution
function, using, respectively, (wt - 1)/T, wt/(T+1), or wt/T, where wt is the cu-
mulative weight and T is the total weight (usually total sample size). These three
values of type are the possibilities for wtd.Ecdf. For wtd.table the de-
fault type is "list", meaning that the function is to return a list containing
two vectors: x is the sorted unique values of x and sum.of.weights is the
sum of weights for that x. This is the default so that you don’t have to convert
the names attribute of the result that can be obtained with type="table"
to a numeric variable when x was originally numeric. type="table" for
wtd.table results in an object that is the same structure as those returned
from table. For wtd.loess.noiter the default type is "all", indicat-
ing that the function is to return a list containing all the original values of x (in-
cluding duplicates and without sorting) and the smoothed y values correspond-
ing to them. Set type="ordered all" to sort by x, and type="evaluate"
to evaluate the smooth only at evaluation equally spaced points between the
observed limits of x.

308 wtd.stats

y a numeric vector the same length as x
robust, span, degree, cell, evaluation

see loess.smooth. The default is linear (degree=1) and 100 points to
evaluation (if type="evaluate").

Details

The functions correctly combine weights of observations having duplicate values of x before com-
puting estimates.

wtd.rank does not handle NAs as elegantly as rank if weights is specified.

Value

wtd.mean and wtd.var return scalars. wtd.quantile returns a vector the same length as
probs. wtd.Ecdf returns a list whose elements x and Ecdf correspond to unique sorted values
of x. If the first CDF estimate is greater than zero, a point (min(x),0) is placed at the beginning of
the estimates. See above for wtd.table. wtd.rank returns a vector the same length as x (after
removal of NAs, depending on na.rm). See above for wtd.loess.noiter.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
f.harrell@vanderbilt.edu

References

Research Triangle Institute (1995): SUDAAN User’s Manual, Release 6.40, pp. 8–16 to 8–17.

See Also

mean, var, quantile, table, rank, loess.smooth, lowess, plsmo, Ecdf, somers2,
describe

Examples

set.seed(1)
x <- runif(500)
wts <- sample(1:6, 500, TRUE)
std.dev <- sqrt(wtd.var(x, wts))
wtd.quantile(x, wts)
death <- sample(0:1, 500, TRUE)
plot(wtd.loess.noiter(x, death, wts, type='evaluate'))
describe(~x, weights=wts)
describe uses wtd.mean, wtd.quantile, wtd.table
xg <- cut2(x,g=4)
table(xg)
wtd.table(xg, wts, type='table')

xYplot 309

Here is a method for getting stratified weighted means
y <- runif(500)
g <- function(y) wtd.mean(y[,1],y[,2])
summarize(cbind(y, wts), llist(xg), g, stat.name='y')

Restructure data to generate a dichotomous response variable
from records containing numbers of events and numbers of trials
num <- c(10,NA,20,0,15) # data are 10/12 NA/999 20/20 0/25 15/35
denom <- c(12,999,20,25,35)
w <- num.denom.setup(num, denom)
w
attach(my.data.frame[w$subs,])

xYplot xyplot and dotplot with Matrix Variables to Plot Error Bars and Bands

Description

A utility function Cbind returns the first argument as a vector and combines all other argu-
ments into a matrix stored as an attribute called "other". The arguments can be named (e.g.,
Cbind(pressure=y,ylow,yhigh)) or a label attribute may be pre-attached to the first ar-
gument. In either case, the name or label of the first argument is stored as an attribute "label" of
the object returned by Cbind. Storing other vectors as a matrix attribute facilitates plotting error
bars, etc., as trellis really wants the x- and y-variables to be vectors, not matrices. If a single
argument is given to Cbind and that argument is a matrix with column dimnames, the first column
is taken as the main vector and remaining columns are taken as "other". A subscript method for
Cbind objects subscripts the other matrix along with the main y vector.

The xYplot function is a substitute for xyplot that allows for simulated multi-column y. It
uses by default the panel.xYplot and prepanel.xYplot functions to do the actual work.
The method argument passed to panel.xYplot from xYplot allows you to make error bars,
the upper-only or lower-only portions of error bars, alternating lower-only and upper-only bars,
bands, or filled bands. panel.xYplot decides how to alternate upper and lower bars according
to whether the median y value of the current main data line is above the median y for all groups
of lines or not. If the median is above the overall median, only the upper bar is drawn. For bands
(but not ’filled bands’), any number of other columns of y will be drawn as lines having the same
thickness, color, and type as the main data line. If plotting bars, bands, or filled bands and only one
additional column is specified for the response variable, that column is taken as the half width of
a precision interval for y, and the lower and upper values are computed automatically as y plus or
minus the value of the additional column variable.

When a groups variable is present, panel.xYplotwill create a function in frame 0 (.GlobalEnv
in R) called Key that when invoked will draw a key describing the groups labels, point symbols,
and colors. By default, the key is outside the graph. For S-Plus, if Key(locator(1)) is spec-
ified, the key will appear so that its upper left corner is at the coordinates of the mouse click. For
R/Lattice the first two arguments of Key (x and y) are fractions of the page, measured from the
lower left corner, and the default placement is at x=0.05, y=0.95. For R, an optional argument
to sKey, other, may contain a list of arguments to pass to draw.key (see xyplot for a list of
possible arguments, under the key option).

310 xYplot

When method="quantile" is specified, xYplot automatically groups the x variable into in-
tervals containing a target of nx observations each, and within each x group computes three quan-
tiles of y and plots these as three lines. The mean xwithin each x group is taken as the x-coordinate.
This will make a useful empirical display for large datasets in which scatterdiagrams are too busy
to see patterns of central tendency and variability. You can also specify a general function of a
data vector that returns a matrix of statistics for the method argument. Arguments can be passed
to that function via a list methodArgs. The statistic in the first column should be the measure
of central tendency. Examples of useful method functions are those listed under the help file for
summary.formula such as smean.cl.normal.

xYplot can also produce bubble plots. This is done when size is specified to xYplot. When
size is used, a function sKey is generated for drawing a key to the character sizes. See the bubble
plot example. size can also specify a vector where the first character of each observation is used
as the plotting symbol, if rangeCex is set to a single cex value. An optional argument to sKey,
other, may contain a list of arguments to pass to draw.key (see xyplot for a list of possible
arguments, under the key option). See the bubble plot example.

Dotplot is a substitute for dotplot allowing for a matrix x-variable, automatic superpositioning
when groups is present, and creation of a Key function. When the x-variable (created by Cbind
to simulate a matrix) contains a total of 3 columns, the first column specifies where the dot is
positioned, and the last 2 columns specify starting and ending points for intervals. The intervals
are shown using line type, width, and color from the trellis plot.line list. By default, you
will usually see a darker line segment for the low and high values, with the dotted reference line
elsewhere. A good choice of the pch argument for such plots is 3 (plus sign) if you want to
emphasize the interval more than the point estimate. When the x-variable contains a total of 5
columns, the 2nd and 5th columns are treated as the 2nd and 3rd are treated above, and the 3rd and
4th columns define an inner line segment that will have twice the thickness of the outer segments.
In addition, tick marks separate the outer and inner segments. This type of display (an example of
which appeared in The Elements of Graphing Data by Cleveland) is very suitable for displaying two
confidence levels (e.g., 0.9 and 0.99) or the 0.05, 0.25, 0.75, 0.95 sample quantiles, for example.
For this display, the central point displays well with a default circle symbol.

setTrellis sets nice defaults for Trellis graphics, assuming that the graphics device has already
been opened if using postscript, etc. By default, it sets panel strips to blank and reference dot lines
to thickness 1 instead of the Trellis default of 2.

numericScale is a utility function that facilitates using xYplot to plot variables that are not
considered to be numeric but which can readily be converted to numeric using as.numeric().
A good example of this is timeDate variables in S-Plus 5 and 6. numericScale converts
the variable into an ordinary numeric variable. If it is a timeDate variable, two attributes are
added to the resulting variable: scales.major and scales.minor. These are each lists with
elements at to specify a vector of numeric values for tick marks, and a corresponding charac-
ter vector labels with formatted values (e.g., using time or date formats). When you use such
a variable with xYplot and do not specify a corresponding scales element, tick marks and
scale labeling are taken from scales.major. The at element for scales.minor is used by
panel.xYplot to add minor tick marks. numericScale by default will keep the name of the
input variable as a label attribute for the new numeric variable.

Usage

Cbind(...)

xYplot 311

xYplot(formula, data = sys.frame(sys.parent()), groups,
subset, xlab=NULL, ylab=NULL, ylim=NULL,
panel=panel.xYplot, prepanel=prepanel.xYplot, scales=NULL,
minor.ticks=NULL, ...)

panel.xYplot(x, y, subscripts, groups=NULL,
type=if(is.function(method) || method=='quantiles')

'b' else 'p',
method=c("bars", "bands", "upper bars", "lower bars",

"alt bars", "quantiles", "filled bands"),
methodArgs=NULL, label.curves=TRUE, abline,
probs=c(.5,.25,.75), nx=NULL,
cap=0.015, lty.bar=1,
lwd=plot.line$lwd, lty=plot.line$lty, pch=plot.symbol$pch,
cex=plot.symbol$cex, font=plot.symbol$font, col=NULL,
lwd.bands=NULL, lty.bands=NULL, col.bands=NULL,
minor.ticks=NULL, col.fill=NULL,
size=NULL, rangeCex=c(.5,3), ...)

prepanel.xYplot(x, y, ...)

Dotplot(formula, data = sys.frame(sys.parent()), groups, subset,
xlab = NULL, ylab = NULL, ylim = NULL,
panel=panel.Dotplot, prepanel=prepanel.Dotplot,
scales=NULL, xscale=NULL, ...)

prepanel.Dotplot(x, y, ...)

panel.Dotplot(x, y, groups = NULL,
pch = dot.symbol$pch,
col = dot.symbol$col, cex = dot.symbol$cex,
font = dot.symbol$font, abline, ...)

setTrellis(strip.blank=TRUE, lty.dot.line=2, lwd.dot.line=1)

numericScale(x, label=NULL, skip.weekends=FALSE, ...)

Arguments

... for Cbind ... is any number of additional numeric vectors. Unless you are
using Dotplot (which allows for either 2 or 4 "other" variables) or xYplot
with method="bands", vectors after the first two are ignored. If drawing
bars and only one extra variable is given in ..., upper and lower values are
computed as described above. If the second argument to Cbind is a matrix,
that matrix is stored in the "other" attribute and arguments after the second
are ignored. For bubble plots, name an argument cex.
Also can be other arguments to pass to labcurve. or extra arguments sent
from numericScale to axis.time

312 xYplot

formula a trellis formula consistent with xyplot or dotplot

x x-axis variable. For numericScale x is any vector such as as.numeric(x)
returns a numeric vector suitable for x- or y-coordinates.

y a vector, or an object created by Cbind for xYplot. y represents the main
variable to plot, i.e., the variable used to draw the main lines. For Dotplot the
first argument to Cbind will be the main x-axis variable.

data

subset

ylim

subscripts

groups

type

scales

panel

prepanel

xlab

ylab see trellis.args. xlab and ylab get default values from "label" at-
tributes.

xscale allows one to use the default scales but specify only the x component of it
for Dotplot

method defaults to "bars" to draw error-bar type plots. See meaning of other val-
ues above. method can be a function. Specifying method=quantile,
methodArgs=list(probs=c(.5,.25,.75)) is the same as specifying
method="quantile" without specifying probs.

methodArgs a list containing optional arguments to be passed to the function specified in
method

label.curves set to FALSE to suppress invocation of labcurve to label primary curves
where they are most separated or to draw a legend in an empty spot on the panel.
You can also set label.curves to a list of options to pass to labcurve.
These options can also be passed as ... to xYplot. See the examples below.

abline a list of arguments to pass to panel.abline for each panel, e.g. list(a=0,
b=1, col=3) to draw the line of identity using color 3.

probs a vector of three quantiles with the quantile corresponding to the central line
listed first. By default probs=c(.5, .25, .75). You can also specify
probs through methodArgs=list(probs=...).

nx number of target observations for each x group (see cut2 m argument). nx
defaults to the minimum of 40 and the number of points in the current stratum
divided by 4. Set nx=FALSE or nx=0 if x is already discrete and requires no
grouping.

cap the half-width of horizontal end pieces for error bars, as a fraction of the length
of the x-axis

lty.bar line type for bars

xYplot 313

lwd, lty, pch, cex, font, col
see trellis.args. These are vectors when groups is present, and the order
of their elements corresponds to the different groups, regardless of how many
bands or bars are drawn. If you don’t specify lty.bands, for example, all
band lines within each group will have the same lty.

lty.bands, lwd.bands, col.bands
used to allow lty, lwd, col to vary across the different band lines for different
groups. These parameters are vectors or lists whose elements correspond to
the added band lines (i.e., they ignore the central line, whose line characteristics
are defined by lty, lwd, col). For example, suppose that 4 lines are drawn
in addition to the central line. Specifying lwd.bands=1:4 will cause line
widths of 1:4 to be used for every group, regardless of the value of lwd. To vary
characteristics over the groups use e.g. lwd.bands=list(rep(1,4),
rep(2,4)) or list(c(1,2,1,2), c(3,4,3,4)).

minor.ticks a list with elements at and labels specifying positions and labels for minor
tick marks to be used on the x-axis of each panel, if any. This is intended for
timeDate variables.

col.fill used to override default colors used for the bands in method=’filled bands’.
This is a vector when groups is present, and the order of the elements cor-
responds to the different groups, regardless of how many bands are drawn.
The default colors for ’filled bands’ are pastel colors matching the default colors
superpose.linecol(plot.linecol)

size a vector the same length as x giving a variable whose values are a linear function
of the size of the symbol drawn. This is used for example for bubble plots.

rangeCex a vector of two values specifying the range in character sizes to use for the size
variable (lowest first, highest second). size values are linearly translated to this
range, based on the observed range of size when x and y coordinates are not
missing. Specify a single numeric cex value for rangeCex to use the first
character of each observations’s size as the plotting symbol.

strip.blank set to FALSE to not make the panel strip backgrounds blank

lty.dot.line line type for dot plot reference lines (default = 1 for dotted; use 2 for dotted)

lwd.dot.line line thickness for reference lines for dot plots (default = 1)

label a scalar character string to be used as a variable label after numericScale
converts the variable to numeric form

skip.weekends
see axis.time

Details

Unlike xyplot, xYplot senses the presence of a groups variable and automatically invokes
panel.superpose instead of panel.xyplot. The same is true for Dotplot vs. dotplot.

Value

Cbind returns a matrix with attributes. Other functions return standard trellis results.

314 xYplot

Side Effects

plots, and panel.xYplot may create temporary Key and sKey functions in the session frame.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
f.harrell@vanderbilt.edu
Madeline Bauer
Department of Infectious Diseases
University of Southern California School of Medicine
mbauer@usc.edu

See Also

xyplot, panel.xyplot, summarize, label, labcurve, errbar, dotplot, reShape,
setps, cut2, panel.abline

Examples

Plot 6 smooth functions. Superpose 3, panel 2.
Label curves with p=1,2,3 where most separated
d <- expand.grid(x=seq(0,2*pi,length=150), p=1:3, shift=c(0,pi))
xYplot(sin(x+shift)^p ~ x | shift, groups=p, data=d, type='l')
Use a key instead, use 3 line widths instead of 3 colors
Put key in most empty portion of each panel
xYplot(sin(x+shift)^p ~ x | shift, groups=p, data=d,

type='l', keys='lines', lwd=1:3, col=1)
Instead of implicitly using labcurve(), put a
single key outside of panels (for S-Plus) or at
lower left corner (for R)
xYplot(sin(x+shift)^p ~ x | shift, groups=p, data=d,

type='l', label.curves=FALSE, lwd=1:3, col=1, lty=1:3)
Key()

Bubble plots
x <- y <- 1:8
x[2] <- NA
units(x) <- 'cm^2'
z <- 101:108
p <- factor(rep(c('a','b'),4))
g <- c(rep(1,7),2)
data.frame(p, x, y, z, g)
xYplot(y ~ x | p, groups=g, size=z)
Key(other=list(title='g', cex.title=1.2)) # draw key for colors
sKey(.2,.85,other=list(title='Z Values', cex.title=1.2))
draw key for character sizes

Show the median and quartiles of height given age, stratified
by sex and race. Draws 2 sets (male, female) of 3 lines per panel.

xYplot 315

xYplot(height ~ age | race, groups=sex, method='quantiles')

Examples of plotting raw data
dfr <- expand.grid(month=1:12, continent=c('Europe','USA'),

sex=c('female','male'))
set.seed(1)
dfr <- upData(dfr,

y=month/10 + 1*(sex=='female') + 2*(continent=='Europe') +
runif(48,-.15,.15),

lower=y - runif(48,.05,.15),
upper=y + runif(48,.05,.15))

xYplot(Cbind(y,lower,upper) ~ month,subset=sex=='male' & continent=='USA',
data=dfr)

xYplot(Cbind(y,lower,upper) ~ month|continent, subset=sex=='male',data=dfr)
xYplot(Cbind(y,lower,upper) ~ month|continent, groups=sex, data=dfr); Key()
add ,label.curves=FALSE to suppress use of labcurve to label curves where
farthest apart

xYplot(Cbind(y,lower,upper) ~ month,groups=sex,
subset=continent=='Europe', data=dfr)

xYplot(Cbind(y,lower,upper) ~ month,groups=sex, type='b',
subset=continent=='Europe', keys='lines',
data=dfr)

keys='lines' causes labcurve to draw a legend where the panel is most empty

xYplot(Cbind(y,lower,upper) ~ month,groups=sex, type='b', data=dfr,
subset=continent=='Europe',method='bands')

xYplot(Cbind(y,lower,upper) ~ month,groups=sex, type='b', data=dfr,
subset=continent=='Europe',method='upper')

label(dfr$y) <- 'Quality of Life Score'
label is in Hmisc library = attr(y,'label') <- 'Quality...'; will be
y-axis label
can also specify Cbind('Quality of Life Score'=y,lower,upper)
xYplot(Cbind(y,lower,upper) ~ month, groups=sex,

subset=continent=='Europe', method='alt bars',
offset=if(.R.)unit(.1,'inches') else .4, type='b', data=dfr)

offset passed to labcurve to label .4 y units away from curve
for R (using grid/lattice), offset is specified using the grid
unit function, e.g., offset=unit(.4,'native') or
offset=unit(.1,'inches') or unit(.05,'npc')

The following example uses the summarize function in Hmisc to
compute the median and outer quartiles. The outer quartiles are
displayed using "error bars"
set.seed(111)
dfr <- expand.grid(month=1:12, year=c(1997,1998), reps=1:100)
month <- dfr$month; year <- dfr$year
y <- abs(month-6.5) + 2*runif(length(month)) + year-1997
s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)
xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s,

keys='lines', method='alt', type='b')

316 xYplot

Can also do:
s <- summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),

stat.name=c('y','Q1','Q3'))
xYplot(Cbind(y, Q1, Q3) ~ month, groups=year, data=s,

type='b', keys='lines')
Or:
xYplot(y ~ month, groups=year, keys='lines', nx=FALSE, method='quantile',

type='b')
nx=FALSE means to treat month as a discrete variable

To display means and bootstrapped nonparametric confidence intervals
use:
s <- summarize(y, llist(month,year), smean.cl.boot)
s
xYplot(Cbind(y, Lower, Upper) ~ month | year, data=s, type='b')
Can also use Y <- cbind(y, Lower, Upper); xYplot(Cbind(Y) ~ ...)
Or:
xYplot(y ~ month | year, nx=FALSE, method=smean.cl.boot, type='b')

This example uses the summarize function in Hmisc to
compute the median and outer quartiles. The outer quartiles are
displayed using "filled bands"

s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)

filled bands: default fill = pastel colors matching solid colors
in superpose.line (this works differently in R)
xYplot (Cbind (y, Lower, Upper) ~ month, groups=year,

method="filled bands" , data=s, type="l")

note colors based on levels of selected subgroups, not first two colors
xYplot (Cbind (y, Lower, Upper) ~ month, groups=year,

method="filled bands" , data=s, type="l",
subset=(year == 1998 | year == 2000), label.curves=FALSE)

filled bands using black lines with selected solid colors for fill
xYplot (Cbind (y, Lower, Upper) ~ month, groups=year,

method="filled bands" , data=s, label.curves=FALSE,
type="l", col=1, col.fill = 2:3)

Key(.5,.8,col = 2:3) #use fill colors in key

A good way to check for stable variance of residuals from ols
xYplot(resid(fit) ~ fitted(fit), method=smean.sdl)
smean.sdl is defined with summary.formula in Hmisc

Plot y vs. a timeDate variable x
xYplot(y ~ numericScale(x, label='Label for X') | country)
For this example could omit label= and specify
y ~ numericScale(x) | country, xlab='Label for X'

Here is an example of using xYplot with several options
to change various Trellis parameters,
xYplot(y ~ x | z, groups=v, pch=c('1','2','3'),

xYplot 317

layout=c(3,1), # 3 panels side by side
ylab='Y Label', xlab='X Label',
main=list('Main Title', cex=1.5),
par.strip.text=list(cex=1.2),
strip=function(...) strip.default(..., style=1),
scales=list(alternating=FALSE))

#
Dotplot examples
#

s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)

setTrellis() # blank conditioning panel backgrounds
Dotplot(month ~ Cbind(y, Lower, Upper) | year, data=s)
or Cbind(...), groups=year, data=s

Display a 5-number (5-quantile) summary (2 intervals, dot=median)
Note that summarize produces a matrix for y, and Cbind(y) trusts the
first column to be the point estimate (here the median)
s <- summarize(y, llist(month,year), quantile,

probs=c(.5,.05,.25,.75,.95), type='matrix')
Dotplot(month ~ Cbind(y) | year, data=s)
Use factor(year) to make actual years appear in conditioning title strips

Plot proportions and their Wilson confidence limits
set.seed(3)
d <- expand.grid(continent=c('USA','Europe'), year=1999:2001,

reps=1:100)
Generate binary events from a population probability of 0.2
of the event, same for all years and continents
d$y <- ifelse(runif(6*100) <= .2, 1, 0)
s <- with(d,

summarize(y, llist(continent,year),
function(y) {
n <- sum(!is.na(y))
s <- sum(y, na.rm=TRUE)
binconf(s, n)
}, type='matrix')

)

Dotplot(year ~ Cbind(y) | continent, data=s, ylab='Year',
xlab='Probability')

Dotplot(z ~ x | g1*g2)
2-way conditioning
Dotplot(z ~ x | g1, groups=g2); Key()
Key defines symbols for g2

If the data are organized so that the mean, lower, and upper
confidence limits are in separate records, the Hmisc reShape
function is useful for assembling these 3 values as 3 variables
a single observation, e.g., assuming type has values such as

318 xy.group

c('Mean','Lower','Upper'):
a <- reShape(y, id=month, colvar=type)
This will make a matrix with 3 columns named Mean Lower Upper
and with 1/3 as many rows as the original data

xy.group Mean x vs. function of y in groups of x

Description

Compute mean x vs. a function of y (e.g. median) by quantile groups of x or by x grouped to have
a given average number of observations. Deletes NAs in x and y before doing computations.

Usage

xy.group(x, y, m=150, g, fun=mean, result="list")

Arguments

x a vector, may contain NAs

y a vector of same length as x, may contain NAs

m number of observations per group

g number of quantile groups

fun function of y such as median or mean (the default)

result "list" (the default), or "matrix"

Value

if result="list", a list with components x and y suitable for plotting. if result="matrix", matrix with
rows corresponding to x-groups and columns named n, x, and y.

See Also

cut2, tapply

Examples

plot(xy.group(x, y, g=10)) #Plot mean y by deciles of x
xy.group(x, y, m=100, result="matrix") #Print table, 100 obs/group

yearDays 319

yearDays Get Number of Days in Year or Month

Description

Returns the number of days in a specific year or month.

Usage

yearDays(time)

monthDays(time)

Arguments

time A POSIXt or Date object describing the month or year in question.

Author(s)

Charles Dupont

See Also

POSIXt, Date

sas.get Convert a SAS Dataset to an S Data Frame

Description

Converts a SAS dataset into an S data frame. You may choose to extract only a subset of vari-
ables or a subset of observations in the SAS dataset. You may have the function automatically
convert PROC FORMAT-coded variables to factor objects. The original SAS codes are stored
in an attribute called sas.codes and these may be added back to the levels of a factor
variable using the code.levels function. Information about special missing values may be
captured in an attribute of each variable having special missing values. This attribute is called
special.miss, and such variables are given class special.miss. There are print, [],
format, and is.special.miss methods for such variables. The chron function is used to
set up date, time, and date-time variables. If using S-Plus 5 or 6 or later, the timeDate function
is used instead. Under R, Dates is used for dates and chron for date-times. For times without
dates, these still need to be stored in date-time format in POSIX. Such SAS time variables are given
a major class of timePOSIXt and a format.timePOSIXt function so that the date portion
(which will always be 1/1/1970) will not print by default. If a date variable represents a partial date
(.5 added if month missing, .25 added if day missing, .75 if both), an attribute partial.date is
added to the variable, and the variable also becomes a class imputed variable. The describe
function uses information about partial dates and special missing values. There is an option to
automatically uncompress (or gunzip) compressed SAS datasets.

320 sas.get

Usage

sas.get(library, member, variables=character(0), ifs=character(0),
format.library=library, id,
dates.=c("sas","yymmdd","yearfrac","yearfrac2"),
keep.log=TRUE, log.file="_temp_.log", macro=sas.get.macro,
data.frame.out=existsFunction("data.frame"), clean.up=!.R., quiet=FALSE,
temp=tempfile("SaS"), formats=TRUE, recode=formats,
special.miss=FALSE, sasprog="sas",
as.is=.5, check.unique.id=TRUE, force.single=FALSE,
where, uncompress=FALSE)

is.special.miss(x, code)

S3 method for class 'special.miss':
x[..., drop=FALSE]

S3 method for class 'special.miss':
print(x, ...)

S3 method for class 'special.miss':
format(x, ...)

sas.codes(object)

code.levels(object)

Arguments

library character string naming the directory in which the dataset is kept.

member character string giving the second part of the two part SAS dataset name. (The
first part is irrelevant here - it is mapped to the UNIX directory name.)

x a variable that may have been created by sas.get with special.miss=T
or with recode in effect.

variables vector of character strings naming the variables in the SAS dataset. The S dataset
will contain only those variables from the SAS dataset. To get all of the variables
(the default), an empty string may be given. It is a fatal error if any one of the
variables is not in the SAS dataset. You can use sas.contents to get the
variables in the SAS dataset. If you have retrieved a subset of the variables in the
SAS dataset and which to retrieve the same list of variables from another dataset,
you can program the value of variables - see one of the last examples.

ifs a vector of character strings, each containing one SAS "subsetting if" statement.
These will be used to extract a subset of the observations in the SAS dataset.

format.library
The UNIX directory containing the file formats.sct, which contains the defini-
tions of the user defined formats used in this dataset. By default, we look for
the formats in the same directory as the data. The user defined formats must be
available (so SAS can read the data).

sas.get 321

formats Set formats to F to keep sas.get from telling the SAS macro to retrieve
value label formats from format.library. When you do not specify formats
or recode, sas.get will set format to T if a SAS format catalog (.sct
or .sc2) file exists in format.library. Value label formats if present are
stored as the formats attribute of the returned object (see below). A format
is used if it is referred to by one or more variables in the dataset, if it contains
no ranges of values (i.e., it identifies value labels for single values), and if it is a
character format or a numeric format that is not used just to label missing values.
If you set recode to TRUE, 1, or 2, formats defaults to TRUE. To fetch the
values and labels for variable x in the dataset d you could type:
f <- attr(d$x, "format")
formats <- attr(d, "formats")
formatsfvalues; formatsflabels

recode This parameter defaults to TRUE if formats is TRUE. If it is TRUE, vari-
ables that have an appropriate format (see above) are recoded as factor ob-
jects, which map the values to the value labels for the format. Alternatively,
set recode to 1 to use labels of the form value:label, e.g. 1:good 2:better
3:best. Set recode to 2 to use labels such as good(1) better(2) best(3). Since
sas.codes and code.levels add flexibility, the usual choice for recode
is T or TRUE.

special.miss For numeric variables, any missing values are stored as NA in S. You can recover
special missing values by setting special.miss to TRUE. This will cause the
special.miss attribute and the special.miss class to be added to each
variable that has at least one special missing value. Suppose that variable y was
.E in observation 3 and .G in observation 544. The special.miss attribute
for y then has the value
list(codes=c("E","G"),obs=c(3,544))
To fetch this information for variable y you would say for example
s <- attr(y, "special.miss")
s$codes; s$obs
or use is.special.miss(x) or the print.special.missmethod, which
will replace NA values for the variable with E or G if they correspond to special
missing values. The describe function uses this information in printing a data
summary.

drop set drop=FALSE to keep unused factor levels as columns of the matrix pro-
duced by mChoice

id The name of the variable to be used as the row names of the S dataset. The id
variable becomes the row.names attribute of a data frame, but the id variable is
still retained as a variable in the data frame. (if data.frame.out is FALSE,
this will be the attribute "id" of the S dataset.) You can also specify a vector of
variable names as the id parameter. After fetching the data from SAS, all these
variables will be converted to character format and concatenated (with a space
as a separator) to form a (hopefully) unique ID variable.

dates. specifies the format for storing SAS dates in the resulting data frame

as.is IF data.frame.out=T, SAS character variables are converted to S factor
objects if as.is=F or if as.is is a number between 0 and 1 inclusive and the
number of unique values of the variable is less than the number of observations

322 sas.get

(n) times as.is. The default if as.is is .5, so character variables are con-
verted to factors only if they have fewer than n/2 unique values. The primary
purpose of this is to keep unique identification variables as character values in
the data frame instead of using more space to store both the integer factor codes
and the factor labels.

check.unique.id
If id is specified, the row names are checked for uniqueness if check.unique.id=T.
If any are duplicated, a warning is printed. Note that if a data frame is being cre-
ated with duplicate row names, statements such as my.data.frame["B23",]
will retrieve only the first row with a row name of "B23".

force.single By default, SAS numeric variables having LENGTHs > 4 are stored as S double
precision numerics, which allow for the same precision as a SAS LENGTH 8
variable. Set force.single=T to store every numeric variable in single pre-
cision (7 digits of precision). This option is useful when the creator of the SAS
dataset has failed to use a LENGTH statement. R does not have single precision,
so no attempt is made to convert to single if running R.

dates One of the character strings "sas", "yearfrac", "yearfrac2", "yymmdd".
If a SAS variable has a date format (one of "DATE", "MMDDYY", "YYM-
MDD", "DDMMYY", "YYQ", "MONYY", "JULIAN"), it will be converted
to the format specified by dates before being given to S. "sas" gives days
from 1/1/1960 (from 1/1/1970 if using chron), "yearfrac" gives days from
1/1/1900 divided by 365.25, "yearfrac2" gives year plus fraction of cur-
rent year, and "yymmdd" gives a 6 digit number YYMMDD (year%%100,
month, day). Note that S will store these as numbers, not as character strings.
If dates="sas" and a variable has one of the SAS date formats listed above, the
variable will be given a class of "date" to work with Terry Therneau’s implemen-
tation of the "date" class in S. If the chron package or timeDate function is
available, these are used instead.

keep.log logical flag: if FALSE, delete the SAS log file upon completion.

log.file the name of the SAS log file.

macro the name of an S object in the current search path that contains the text of the
SAS macro called by S. The S object is a character vector that can be edited
using for example sas.get.macro <- editor(sas.get.macro).

data.frame.out
logical flag: if TRUE, the return value will be an S data frame, otherwise it will
be a list.

clean.up logical flag: if TRUE, remove all temporary files when finished. You may want
to keep these while debugging the SAS macro. Not needed for R.

quiet logical flag: if FALSE, print the contents of the SAS log file if there has been an
error.

temp the prefix to use for the temporary files. Two characters will be added to this,
the resulting name must fit on your file system.

sasprog the name of the system command to invoke SAS

uncompress set to T to automatically invoke the UNIX gunzip command (if member.ssd01.gz
exists) or the uncompress command (if member.ssd01.Z exists) to un-

sas.get 323

compress the SAS dataset before proceeding. This assumes you have the file per-
missions to allow uncompressing in place. If the file is already uncompressed,
this option is ignored.

where by default, a list or data frame which contains all the variables is returned. If you
specify where, each individual variable is placed into a separate object (whose
name is the name of the variable) using the assign function with the where
argument. For example, you can put each variable in its own file in a directory,
which in some cases may save memory over attaching a data frame.

code a special missing value code (A through Z or underscore) to check against. If
code is omitted, is.special.misswill return a T for each observation that
has any special missing value.

object a variable in a data frame created by sas.get
... ignored

Details

If you specify special.miss=T and there are no special missing values in the data SAS dataset,
the SAS step will bomb.

For variables having a PROC FORMAT VALUE format with some of the levels undefined, sas.get
will interpret those values as NA if you are using recode.

The SAS macro sas_get uses record lengths of up to 4096 in two places. If you are exporting
records that are very long (because of a large number of variables and/or long character variables),
you may want to edit these LRECLs to quadruple them, for example.

Value

if data.frame.out is TRUE, the output will be a data frame resembling the SAS dataset. If id
was specified, that column of the data frame will be used as the row names of the data frame. Each
variable in the data frame or vector in the list will have the attributes label and format contain-
ing SAS labels and formats. Underscores in formats are converted to periods. Formats for character
variables have $ placed in front of their names. If formats is TRUE and there are any appro-
priate format definitions in format.library, the returned object will have attribute formats
containing lists named the same as the format names (with periods substituted for underscores and
character formats prefixed by $). Each of these lists has a vector called values and one called
labels with the PROC FORMAT; VALUE ... definitions.

If data.frame.out is FALSE, the output will be a list of vectors, each containing a variable
from the SAS dataset. If id was specified, that element of the list will be used as the id attribute
of the entire list.

Side Effects

if a SAS error occurs and quiet is FALSE, then the SAS log file will be printed under the control
of the less pager.

BACKGROUND

The references cited below explain the structure of SAS datasets and how they are stored under
UNIX. See SAS Language for a discussion of the "subsetting if" statement.

324 sas.get

Note

You must be able to run SAS (by typing sas) on your system. If the S command !sas does not
start SAS, then this function cannot work.

If you are reading time or date-time variables, you will need to execute the command library(chron)
to print those variables or the data frame if the timeDate function is not available.

Author(s)

Terry Therneau, Mayo Clinic
Frank Harrell, Vanderbilt University
Bill Dunlap, University of Washington and Insightful Corporation
Michael W. Kattan, Cleveland Clinic Foundation

References

SAS Institute Inc. (1990). SAS Language: Reference, Version 6. First Edition. SAS Institute Inc.,
Cary, North Carolina.

SAS Institute Inc. (1988). SAS Technical Report P-176, Using the SAS System, Release 6.03, under
UNIX Operating Systems and Derivatives. SAS Institute Inc., Cary, North Carolina.

SAS Institute Inc. (1985). SAS Introductory Guide. Third Edition. SAS Institute Inc., Cary, North
Carolina.

See Also

data.frame, describe, label, upData, cleanup.import

Examples

Not run:
sas.contents("saslib", "mice")
[1] "dose" "ld50" "strain" "lab_no"
attr(, "n"):
[1] 117
mice <- sas.get("saslib", mem="mice", var=c("dose", "strain", "ld50"))
plot(mice$dose, mice$ld50)

nude.mice <- sas.get(lib=unix("echo $HOME/saslib"), mem="mice",
ifs="if strain='nude'")

nude.mice.dl <- sas.get(lib=unix("echo $HOME/saslib"), mem="mice",
var=c("dose", "ld50"), ifs="if strain='nude'")

Get a dataset from current directory, recode PROC FORMAT; VALUE ...
variables into factors with labels of the form "good(1)" "better(2)",
get special missing values, recode missing codes .D and .R into new
factor levels "Don't know" and "Refused to answer" for variable q1
d <- sas.get(".", "mydata", recode=2, special.miss=TRUE)
attach(d)
nl <- length(levels(q1))
lev <- c(levels(q1), "Don't know", "Refused")

sas.get 325

q1.new <- as.integer(q1)
q1.new[is.special.miss(q1,"D")] <- nl+1
q1.new[is.special.miss(q1,"R")] <- nl+2
q1.new <- factor(q1.new, 1:(nl+2), lev)
Note: would like to use factor() in place of as.integer ... but
factor in this case adds "NA" as a category level

d <- sas.get(".", "mydata")
sas.codes(d$x) # for PROC FORMATted variables returns original data codes
d$x <- code.levels(d$x) # or attach(d); x <- code.levels(x)
This makes levels such as "good" "better" "best" into e.g.
"1:good" "2:better" "3:best", if the original SAS values were 1,2,3

Retrieve the same variables from another dataset (or an update of
the original dataset)
mydata2 <- sas.get('mydata2', var=names(d))
This only works if none of the original SAS variable names contained _
mydata2 <- cleanup.import(mydata2) # will make true integer variables

Code from Don MacQueen to generate SAS dataset to test import of
date, time, date-time variables
data ssd.test;
d1='3mar2002'd ;
dt1='3mar2002 9:31:02'dt;
t1='11:13:45't;
output;
#
d1='3jun2002'd ;
dt1='3jun2002 9:42:07'dt;
t1='11:14:13't;
output;
format d1 mmddyy10. dt1 datetime. t1 time.;
run;
End(Not run)

Index

∗Topic IO
csv.get, 54
getZip, 118
mdb.get, 159

∗Topic algebra
solvet, 233

∗Topic aplot
labcurve, 128
minor.tick, 162
pstamp, 187
rlegend, 205
scat1d, 219
show.pch, 229

∗Topic arith
approxExtrap, 22

∗Topic array
print.char.matrix, 180
reShape, 198
solvet, 233

∗Topic attribute
label, 137
valueTags, 297

∗Topic category
binconf, 38
biVar, 35
bpower, 41
bystats, 45
cut2, 61
dataRep, 71
describe, 74
dropUnusedLevels, 81
mApply, 154
mChoice, 155
popower, 177
rcorr, 189
samplesize.bin, 214
summarize, 247
summary.formula, 251
varclus, 299

wtd.stats, 304
xy.group, 316

∗Topic character
%nin%, 167
all.is.numeric, 21
Cs, 2
escapeRegex, 85
first.word, 105
format.df, 106
html, 124
latex, 140
makeNstr, 158
rcspline.restate, 196
sedit, 226
string.break.line, 245
translate, 290

∗Topic chron
trunc.POSIXt, 291
yearDays, 317

∗Topic cluster
dataRep, 71
varclus, 299

∗Topic datasets
dataRep, 71

∗Topic data
contents, 50
data.frame.create.modify.check,

63
getHdata, 116
Save, 18
store, 242
upData, 293

∗Topic design
ldBands, 149

∗Topic device
ps.slide, 182

∗Topic distribution
describe, 74
Ecdf, 2

326

INDEX 327

hist.data.frame, 120
histbackback, 121
ldBands, 149
panel.bpplot, 168
rMultinom, 188
scat1d, 219
wtd.stats, 304

∗Topic documentation
list.tree, 153

∗Topic dplot
approxExtrap, 22
hist.data.frame, 120
histbackback, 121
labcurve, 128
mgp.axis, 160
scat1d, 219

∗Topic environment
mgp.axis, 160

∗Topic file
csv.get, 54
format.df, 106
getZip, 118
html, 124
latex, 140
mdb.get, 159
Save, 18
spss.get, 239
src, 240
stata.get, 241

∗Topic hplot
bpplot, 43
curveRep, 56
dotchart2, 79
Ecdf, 2
errbar, 83
event.chart, 86
hist.data.frame, 120
histbackback, 121
labcurve, 128
minor.tick, 162
mtitle, 163
panel.bpplot, 168
plsmo, 173
ps.slide, 182
rm.boot, 207
scat1d, 219
summary.formula, 251
symbol.freq, 265

xYplot, 307
∗Topic htest

binconf, 38
biVar, 35
bpower, 41
ciapower, 47
cpower, 52
data.frame.create.modify.check,

63
deff, 73
find.matches, 101
gbayes, 109
hoeffd, 123
impute, 126
ldBands, 149
plotCorrPrecision, 173
popower, 177
rcorr, 189
rm.boot, 207
samplesize.bin, 214
smean.sd, 231
spower, 234
t.test.cluster, 267

∗Topic interface
contents, 50
data.frame.create.modify.check,

63
describe, 74
format.df, 106
getHdata, 116
html, 124
latex, 140
rcspline.restate, 196
sas.get, 317
sasxport.get, 216
spss.get, 239
stata.get, 241
summary.formula, 251
sys, 266
units, 292

∗Topic internal
Hmisc-internal, 6

∗Topic iplot
labcurve, 128
mgp.axis, 160

∗Topic iteration
mApply, 154

∗Topic list

328 INDEX

print.char.list, 178
∗Topic loess

wtd.stats, 304
∗Topic manip

%nin%, 167
csv.get, 54
data.frame.create.modify.check,

63
dataRep, 71
escapeRegex, 85
first.word, 105
format.df, 106
html, 124
inc-dec, 128
Lag, 7
latex, 140
makeNstr, 158
mChoice, 155
mdb.get, 159
partition, 171
reorder.factor, 204
reShape, 198
sas.get, 317
sasxport.get, 216
score.binary, 225
sedit, 226
spss.get, 239
stata.get, 241
summarize, 247
summary.formula, 251
trunc.POSIXt, 291
upData, 293
varclus, 299
wtd.stats, 304

∗Topic math
find.matches, 101
impute, 126

∗Topic methods
aregImpute, 27
dropUnusedLevels, 81
Ecdf, 2
format.df, 106
html, 124
impute, 126
latex, 140
redun, 201
transcan, 276

∗Topic misc

label, 137
Overview, 12
valueTags, 297

∗Topic models
abs.error.pred, 19
areg, 23
aregImpute, 27
dataRep, 71
describe, 74
impute, 126
na.delete, 164
na.detail.response, 165
na.keep, 166
rcspline.plot, 194
redun, 201
transcan, 276

∗Topic multivariate
areg, 23
aregImpute, 27
curveRep, 56
find.matches, 101
pc1, 172
redun, 201
rm.boot, 207
summarize, 247
transace, 268
transcan, 276
varclus, 299

∗Topic nonlinear
transace, 268

∗Topic nonparametric
biVar, 35
bootkm, 39
bpplot, 43
cut2, 61
describe, 74
Ecdf, 2
hoeffd, 123
panel.bpplot, 168
plsmo, 173
rcorr, 189
rcorr.cens, 190
rcorrp.cens, 192
smean.sd, 231
somers2, 233
transace, 268
wtd.stats, 304
xy.group, 316

INDEX 329

∗Topic print
equalBins, 82
format.pval, 108
print.char.list, 178
print.char.matrix, 180
prnz, 181
simplifyDims, 230
string.bounding.box, 244
string.break.line, 245
stringDims, 246

∗Topic programming
data.frame.create.modify.check,

63
dropUnusedLevels, 81
escapeRegex, 85
Misc, 8
requirePackage, 204
src, 240

∗Topic regression
abs.error.pred, 19
areg, 23
aregImpute, 27
na.detail.response, 165
rcspline.eval, 193
rcspline.plot, 194
rcspline.restate, 196
redun, 201
rm.boot, 207
transace, 268
transcan, 276

∗Topic robust
abs.error.pred, 19
describe, 74
wtd.stats, 304

∗Topic smooth
areg, 23
aregImpute, 27
plsmo, 173
rcspline.eval, 193
redun, 201
transace, 268
transcan, 276
wtd.stats, 304

∗Topic survival
bootkm, 39
ciapower, 47
cpower, 52
event.chart, 86

event.history, 95
rcorr.cens, 190
rcorrp.cens, 192
spower, 234

∗Topic univar
hdquantile, 119

∗Topic utilities
combine, 49
Cs, 2
dropUnusedLevels, 81
eip, 82
format.df, 106
html, 124
inc-dec, 128
label, 137
latex, 140
Misc, 8
requirePackage, 204
Save, 18
src, 240
trunc.POSIXt, 291
units, 292
valueTags, 297
yearDays, 317

.Last, 243

.R. (Misc), 8

.SV4. (Misc), 8
[.Cbind (xYplot), 307
[.describe (describe), 74
[.factor, 81
[.impute (impute), 126
[.labelled (label), 137
[.mChoice (mChoice), 155
[.roundN (dataRep), 71
[.special.miss (sas.get), 317
[.substi (Hmisc-internal), 6
[.summary.formula.response

(summary.formula), 251
[.terms (Hmisc-internal), 6
[.transcan (transcan), 276
%in%, 168
%nin%, 167

abbreviate, 156
abline, 135
abs.error.pred, 19
ace, 25, 274, 287
all.digits (sedit), 226
all.is.numeric, 21

330 INDEX

any, 226
apply, 103
approx, 22, 135, 287
approxExtrap, 22
areg, 23, 32, 201, 203, 268
areg.boot (transace), 268
aregImpute, 27, 287
aregTran (Hmisc-internal), 6
as.category (Hmisc-internal), 6
as.data.frame.impute

(Hmisc-internal), 6
as.data.frame.labelled (label),

137
as.data.frame.roundN

(Hmisc-internal), 6
as.data.frame.special.miss

(Hmisc-internal), 6
as.data.frame.substi

(Hmisc-internal), 6
as.data.frame.Surv

(Hmisc-internal), 6
as.double.Cbind (Hmisc-internal),

6
as.double.mChoice (mChoice), 155
as.numeric, 21
as.numeric.Cbind

(Hmisc-internal), 6
as.vector, 200
asNumericMatrix, 155
asNumericMatrix (summarize), 247
assign, 243
attach, 64, 243
attributes, 298
avas, 268, 274, 287
axis, 161, 162

ballocation (bpower), 41
bezier (labcurve), 128
binconf, 38, 42
biVar, 35
bootcov, 74, 212
bootkm, 39
boxplot, 44
bpower, 41, 53, 178, 237
bpplot, 43, 170
bpplt, 260
bpplt (panel.bpplot), 168
bpx (Hmisc-internal), 6
bsamsize (bpower), 41

bwplot, 44
by, 155, 248
bystats, 45
bystats2 (bystats), 45

cancor, 25, 287
casefold, 64
cat, 182
Cbind (xYplot), 307
ceil (trunc.POSIXt), 291
character.table (show.pch), 229
chisq.test, 37, 42, 190
chiSquare (biVar), 35
chron, 160, 217, 317
ciapower, 47, 53, 237
clara, 56–58, 60
cleanup.import, 56, 64, 117, 159, 160,

240, 242, 322
cleanup.import (upData), 293
clowess (Misc), 8
code.levels (sas.get), 317
combine, 49
combine.levels, 37, 64, 190
combine.levels (varclus), 299
combine<- (combine), 49
confbar (Misc), 8
contents, 50, 217
contents.list, 217
cor, 20, 173, 190, 302
cor.test, 173
coxph, 237
coxph.fit, 196
cph, 196, 237
cpower, 48, 52, 178, 237
Cs, 2, 64
csv.get, 54, 160
cumcategory (summary.formula), 251
cumsum, 5
curveRep, 56
curveSmooth (curveRep), 56
cut, 46, 62
cut2, 37, 46, 61, 190, 248, 260, 312, 316

data.frame, 56, 64, 160, 242, 296, 322
data.frame.create.modify.check,

63
data.frame.labelled (label), 137
data.restore, 117
datadensity, 64, 287

INDEX 331

datadensity (scat1d), 219
dataDensityString

(Hmisc-internal), 6
dataframeReduce, 203, 301, 302
dataframeReduce (upData), 293
dataRep, 60, 71
Date, 56, 160, 242, 292, 296, 317
Dates, 217, 317
DateTimeClasses, 217, 292
ddmmmyy (Hmisc-internal), 6
dec<- (inc-dec), 128
deff, 73
density, 224
describe, 51, 64, 74, 127, 140, 165, 167,

217, 296, 306, 322
detach, 64
dimnames, 200
do (Hmisc-internal), 6
dot.chart (Hmisc-internal), 6
dotchart, 81
dotchart2, 32, 37, 79, 190, 260
Dotplot (xYplot), 307
dotplot, 312
download.file, 117
draw.key, 206
drawPlot (labcurve), 128
dropUnusedLevels, 81
dvi (latex), 140
dvigv (latex), 140
dvips (latex), 140

Ecdf, 2, 30, 32, 44, 170, 224, 306
edit, 64, 82
eip, 82
equalBins, 82
errbar, 83, 312
escapeBS (escapeRegex), 85
escapeRegex, 85
event.chart, 86, 99
event.convert (event.chart), 86
event.history, 93, 95
existsFunction (Hmisc-internal), 6
expand.grid, 64
exportDataStripped (upData), 293
expr.tree (Hmisc-internal), 6

factor, 64, 81, 204, 226
fillin (Hmisc-internal), 6
find.matches, 101

first.word, 105
fit.mult.impute, 32
fit.mult.impute (transcan), 276
format, 109
format.default, 260
format.df, 106, 145, 148
format.mChoice (mChoice), 155
format.pval, 108, 109
format.sep (Hmisc-internal), 6
format.special.miss (sas.get), 317
format.timePOSIXt

(Hmisc-internal), 6
formatCats (Hmisc-internal), 6
formatCons (Hmisc-internal), 6
formatDateTime (Hmisc-internal), 6
formatTestStats (Hmisc-internal),

6
formula, 260
formula.summary.formula.cross

(summary.formula), 251
ftupwr (Hmisc-internal), 6
ftuss (Hmisc-internal), 6
Function (transcan), 276
Function.areg.boot (transace), 268
Function.transcan, 197

gbayes, 109, 152
gbayes1PowerNP (gbayes), 109
gbayes2 (gbayes), 109
gbayesMixPost (gbayes), 109
gbayesMixPowerNP (gbayes), 109
gbayesMixPredNoData (gbayes), 109
get2rowHeads (Hmisc-internal), 6
getFunction (Hmisc-internal), 6
getHdata, 116
getLatestSource (Misc), 8
getZip, 118
Gompertz2 (spower), 234
grep, 85, 228
groupn (Hmisc-internal), 6
gView (Hmisc-internal), 6

hclust, 302
hdquantile, 119
hist, 121, 122, 224
hist.data.frame, 64, 120, 224
histbackback, 121
histogram, 122, 224
histSpike, 5

332 INDEX

histSpike (scat1d), 219
Hmisc-internal, 6
Hmisc.Overview (Overview), 12
hoeffd, 123, 190, 302
html, 51, 124, 148
html.contents.data.frame

(contents), 50

importConvertDateTime
(Hmisc-internal), 6

impute, 37, 126, 190, 287
impute.transcan, 28, 127
impute.transcan (transcan), 276
inc-dec, 128
inc<- (inc-dec), 128
inmChoice (mChoice), 155
interaction, 46
inverseFunction, 24
inverseFunction (Misc), 8
invertTabulated (transcan), 276
is.category (Hmisc-internal), 6
is.imputed (impute), 126
is.mChoice (mChoice), 155
is.present (Hmisc-internal), 6
is.special.miss (sas.get), 317

james.stein (Misc), 8
jitter, 224
jitter2 (scat1d), 219

km.quick (Misc), 8

labcurve, 5, 128, 176, 237, 312
Label (label), 137
label, 5, 64, 137, 157, 176, 212, 217, 242,

248, 260, 274, 293, 296, 312, 322
Label.data.frame (label), 137
label.default (label), 137
label<- (label), 137
labelPlotmath (label), 137
Lag, 7
lag, 7
lapply, 77, 155
largest.empty (labcurve), 128
latex, 46, 77, 108, 126, 140, 197, 260
latex.bystats (bystats), 45
latex.bystats2 (bystats), 45
latex.describe (describe), 74
latex.summary.formula.cross

(summary.formula), 251

latex.summary.formula.response
(summary.formula), 251

latex.summary.formula.reverse
(summary.formula), 251

latexSN (latex), 140
latexTranslate, 260
latexTranslate (latex), 140
latexVerbatim (latex), 140
ldBands, 149
legend, 135, 206
library, 205
list.tree, 153
llist, 248, 260
llist (label), 137
lm, 20, 212
lm.fit.qr.bare (Misc), 8
Load (Save), 18
load, 19, 117
locator, 302
loess.smooth, 306
Lognorm2 (spower), 234
logrank (spower), 234
lookup.xport, 217
lookupSASContents

(Hmisc-internal), 6
lowess, 56–58, 176, 212, 306
lrm, 196
lrm.fit, 196
lsfit, 287

makeNames (Hmisc-internal), 6
makeNstr, 158
mApply, 154
mapply, 155
mask (Hmisc-internal), 6
match, 168
matchCases (find.matches), 101
matrix, 200
matrix2dataFrame, 155
matrix2dataFrame (summarize), 247
matxv (Misc), 8
max, 226
mChoice, 155, 260
mdb.get, 159
Mean (transace), 268
mean, 306
Mean.areg.boot (transace), 268
mgp.axis, 160
mgp.axis.labels, 186

INDEX 333

mice, 32, 287
minor.tick, 162
Misc, 8
model.frame.default, 77, 164, 165, 167
model.matrix, 302
monotone (transace), 268
monthDays (yearDays), 317
mtext, 163
mtitle, 163

na.delete, 77, 164, 165, 167
na.detail.response, 77, 164, 165, 167
na.include, 127
na.include (Hmisc-internal), 6
na.keep, 77, 164, 166
na.omit, 164, 165, 167
na.pattern, 302
na.pattern (varclus), 299
na.retain (summary.formula), 251
naclus, 32, 64, 287
naclus (varclus), 299
nafitted.delete (Hmisc-internal),

6
names, 49, 64, 298
Names2names (Hmisc-internal), 6
naplot, 32, 287
naplot (varclus), 299
naprint, 77, 164, 165, 167
naprint.delete (Hmisc-internal), 6
naprint.keep (Hmisc-internal), 6
naresid, 164, 165, 167
naresid.delete (Hmisc-internal), 6
naresid.keep (Hmisc-internal), 6
nchar, 83, 244, 246
nomiss (Misc), 8
nomogram, 274
ns, 194, 197
num.denom.setup (wtd.stats), 304
numeric.string (sedit), 226
numericScale (xYplot), 307

oldUnclass (Hmisc-internal), 6
ols, 20, 274
oPar (Hmisc-internal), 6
optionsCmds (Hmisc-internal), 6
ordGridFun (Hmisc-internal), 6
outer, 200
outerText (Misc), 8
Overview, 12

page, 64
panel.abline, 312
panel.bpplot, 44, 168
panel.bwplot, 168–170
panel.Dotplot (xYplot), 307
panel.Ecdf (Ecdf), 2
panel.plsmo (plsmo), 173
panel.superpose, 174, 176
panel.xYplot (xYplot), 307
panel.xyplot, 176, 312
par, 80, 160, 161, 163, 186
parGrid (Hmisc-internal), 6
partition, 171
paste, 159
pasteFit (Hmisc-internal), 6
pc1, 172
pdf, 186
pipe, 118
plclust, 302
plot, 99, 196
plot.areg (areg), 23
plot.areg.boot (transace), 268
plot.aregImpute (aregImpute), 27
plot.biVar (biVar), 35
plot.curveRep (curveRep), 56
plot.data.frame, 64
plot.drawPlot (labcurve), 128
plot.gbayes (gbayes), 109
plot.ldBands (ldBands), 149
plot.Quantile2 (spower), 234
plot.rm.boot (rm.boot), 207
plot.summary.formula.response

(summary.formula), 251
plot.summary.formula.reverse

(summary.formula), 251
plot.transcan (transcan), 276
plot.varclus (varclus), 299
plotCorrPrecision, 173
plotmathTranslate (label), 137
plotMultSim (varclus), 299
plsmo, 173, 224, 306
points, 230
polygon, 99, 212
popower, 177
posamsize (popower), 177
POSIXct, 56, 296
POSIXlt, 292
POSIXt, 292, 317

334 INDEX

postscript, 186
prcomp, 172, 287
predab.resample, 274
predict.areg (areg), 23
predict.areg.boot (transace), 268
predict.dataRep (dataRep), 71
predict.transcan (transcan), 276
prepanel.Dotplot (xYplot), 307
prepanel.Ecdf (Ecdf), 2
prepanel.xYplot (xYplot), 307
print, 182
print.abs.error.pred

(abs.error.pred), 19
print.areg (areg), 23
print.areg.boot (transace), 268
print.aregImpute (aregImpute), 27
print.biVar (biVar), 35
print.bystats (bystats), 45
print.bystats2 (bystats), 45
print.char.list, 178
print.char.matrix, 46, 180, 260
print.contents.data.frame

(contents), 50
print.contents.list (contents), 50
print.curveRep (curveRep), 56
print.dataRep (dataRep), 71
print.describe (describe), 74
print.dvi (latex), 140
print.find.matches

(find.matches), 101
print.hoeffd (hoeffd), 123
print.html (html), 124
print.impute (impute), 126
print.labelled (label), 137
print.latex (latex), 140
print.ldBands (ldBands), 149
print.mChoice (mChoice), 155
print.popower (popower), 177
print.posamsize (popower), 177
print.predict.dataRep (dataRep),

71
print.Quantile2 (spower), 234
print.rcorr (rcorr), 189
print.redun (redun), 201
print.special.miss (sas.get), 317
print.substi (Hmisc-internal), 6
print.summary.areg.boot

(transace), 268

print.summary.formula.cross
(summary.formula), 251

print.summary.formula.response
(summary.formula), 251

print.summary.formula.reverse
(summary.formula), 251

print.summary.ldBands (ldBands),
149

print.summary.lm, 109
print.summary.mChoice (mChoice),

155
print.t.test.cluster

(t.test.cluster), 267
print.timePOSIXt

(Hmisc-internal), 6
print.transcan (transcan), 276
print.varclus (varclus), 299
prn (prnz), 181
prnz, 181
ps.options, 186
ps.slide, 182
pstamp, 163, 187
putKey (labcurve), 128
putKeyEmpty (labcurve), 128

Quantile (transace), 268
quantile, 62, 77, 120, 170, 176, 306
Quantile.areg.boot (transace), 268
Quantile.cph, 40
Quantile2 (spower), 234

rank, 234, 306
rbind, 231
rbinom, 188
rcorr, 124, 173, 189, 302
rcorr.cens, 190, 193, 234
rcorrp.cens, 192
rcs, 194, 197
rcspline.eval, 193, 196, 197, 212, 287
rcspline.plot, 194
rcspline.restate, 194, 196
rcsplineFunction

(rcspline.restate), 196
read.csv, 56, 296
read.dta, 241, 242
read.spss, 239, 240
read.table, 64
read.xport, 217

INDEX 335

read.xportDataload
(Hmisc-internal), 6

readSAScsv (Hmisc-internal), 6
recode (Hmisc-internal), 6
redun, 201
reLabelled (label), 137
reorder.factor, 204
rep, 159
replace.substring.wild (sedit),

226
require, 205
requirePackage, 204
reShape, 198, 212, 312
reshape, 200
rlegend, 205
rlegendg (rlegend), 205
rm.boot, 207
rMultinom, 188
robcov, 74
round, 73, 292
round.POSIXt (trunc.POSIXt), 291
roundN (dataRep), 71
rowsumFast (Hmisc-internal), 6
rug, 224

sample, 127
samplesize.bin, 42, 214
sapply, 155
sas.codes (sas.get), 317
sas.get, 56, 64, 77, 140, 217, 240, 296, 317
sas.get.macro (Hmisc-internal), 6
sasdsLabels, 51
sasdsLabels (sasxport.get), 216
sasxport.get, 50, 216
Save, 18
save, 19
scale, 103
scan, 64
scat1d, 121, 135, 170, 176, 219
score.binary, 225
search, 243
sedit, 226
segments, 224
sepUnitsTrans (Misc), 8
setParNro (Hmisc-internal), 6
setpdf (ps.slide), 182
setps, 135, 312
setps (ps.slide), 182
setTrellis, 186

setTrellis (xYplot), 307
show.col (show.pch), 229
show.dvi (latex), 140
show.html (html), 124
show.latex (latex), 140
show.pch, 229
showPsfrag (ps.slide), 182
simplifyDims, 230
smean.cl.boot (smean.sd), 231
smean.cl.normal (smean.sd), 231
smean.sd, 231, 260
smean.sdl (smean.sd), 231
smearingEst (transace), 268
smedian.hilow (smean.sd), 231
solve, 233
solvet, 233
somers2, 191, 193, 233, 306
source, 241
spearman (biVar), 35
spearman2 (biVar), 35
split, 172
spower, 48, 53, 234
spss.get, 239
src, 240
stata.get, 241
stepfun.eval (Hmisc-internal), 6
store, 242
stores (store), 242
storeTemp (store), 242
str, 153
strata, 260
stratify (summary.formula), 251
string.bounding.box, 244, 246
string.break.line, 245
stringDims, 83, 244, 246
stripChart (Hmisc-internal), 6
stripplot, 224
strptime, 55, 56, 295, 296
strsplit, 10, 245
substi (Hmisc-internal), 6
substring, 228
substring.location (sedit), 226
substring2 (sedit), 226
substring2<- (sedit), 226
sum, 226
summarize, 232, 247, 260, 312
summary, 77
summary.areg.boot (transace), 268

336 INDEX

summary.data.frame, 64
summary.find.matches

(find.matches), 101
summary.formula, 64, 232, 251
summary.impute (impute), 126
summary.ldBands (ldBands), 149
summary.mChoice (mChoice), 155
summary.transcan (transcan), 276
supsmu, 176, 196, 212
Surv, 10, 40, 77, 192, 193
survfit, 40
survfit.km, 40
Survival.cph, 40
symbol.freq, 265
symbols, 266
sys, 266
system, 267

t.test, 268
t.test.cluster, 267
table, 5, 73, 77, 200, 224, 306
tapply, 77, 155, 316
termsDrop (Hmisc-internal), 6
testDateTime (Hmisc-internal), 6
tex (ps.slide), 182
texi2dvi, 148
text, 135, 230
timePOSIXt (sas.get), 317
title, 163
topdf (ps.slide), 182
transace, 268
transcan, 25, 32, 127, 203, 276
translate, 46, 290
trap.rule (Misc), 8
trellis.device, 183, 186
trellis.strip.blank (Misc), 8
trunc.POSIXt, 291

uncbind (Hmisc-internal), 6
under.unix (Misc), 8
units, 64, 212, 292
units<-.default (units), 292
unix, 163, 267
unPaste (Misc), 8
untangle.specials

(Hmisc-internal), 6
upData, 51, 64, 293, 322
update, 260

validate, 274
validate.ols, 20
valueLabel (valueTags), 297
valueLabel<- (valueTags), 297
valueName (valueTags), 297
valueName<- (valueTags), 297
valueTags, 297
valueTags<- (valueTags), 297
valueUnit (valueTags), 297
valueUnit<- (valueTags), 297
var, 306
var.inner (Hmisc-internal), 6
varclus, 37, 124, 190, 203, 299
Varcov (transcan), 276
Varcov.fit.mult.impute

(transcan), 276
Varcov.glm (transcan), 276
Varcov.lm (transcan), 276
Varcov.multinom (transcan), 276

Weibull2 (spower), 234
whichClosePW (Misc), 8
whichClosest (Misc), 8
wtd.Ecdf, 5
wtd.Ecdf (wtd.stats), 304
wtd.loess.noiter (wtd.stats), 304
wtd.mean (wtd.stats), 304
wtd.quantile (wtd.stats), 304
wtd.rank, 234
wtd.rank (wtd.stats), 304
wtd.stats, 304
wtd.table (wtd.stats), 304
wtd.var (wtd.stats), 304

xInch (Hmisc-internal), 6
xless (Misc), 8
xy.group, 316
xYplot, 5, 58, 135, 307
xyplot, 59, 176, 307, 308, 312
xySortNoDupNoNA (Hmisc-internal),

6

yearDays, 317
yInch (Hmisc-internal), 6

zoom (Hmisc-internal), 6

	Cs
	Ecdf
	Hmisc-internal
	Lag
	Misc
	Overview
	Save
	abs.error.pred
	all.is.numeric
	approxExtrap
	areg
	aregImpute
	biVar
	binconf
	bootkm
	bpower
	bpplot
	bystats
	ciapower
	combine
	contents
	cpower
	csv.get
	curveRep
	cut2
	data.frame.create.modify.check
	dataRep
	deff
	describe
	dotchart2
	dropUnusedLevels
	eip
	equalBins
	errbar
	escapeRegex
	event.chart
	event.history
	find.matches
	first.word
	format.df
	format.pval
	gbayes
	getHdata
	getZip
	hdquantile
	hist.data.frame
	histbackback
	hoeffd
	html
	impute
	inc-dec
	labcurve
	label
	latex
	ldBands
	list.tree
	mApply
	mChoice
	makeNstr
	mdb.get
	mgp.axis
	minor.tick
	mtitle
	na.delete
	na.detail.response
	na.keep
	%nin%
	panel.bpplot
	partition
	pc1
	plotCorrPrecision
	plsmo
	popower
	print.char.list
	print.char.matrix
	prnz
	ps.slide
	pstamp
	rMultinom
	rcorr
	rcorr.cens
	rcorrp.cens
	rcspline.eval
	rcspline.plot
	rcspline.restate
	reShape
	redun
	reorder.factor
	requirePackage
	rlegend
	rm.boot
	samplesize.bin
	sasxport.get
	scat1d
	score.binary
	sedit
	show.pch
	simplifyDims
	smean.sd
	solvet
	somers2
	spower
	spss.get
	src
	stata.get
	store
	string.bounding.box
	string.break.line
	stringDims
	summarize
	summary.formula
	symbol.freq
	sys
	t.test.cluster
	transace
	transcan
	translate
	trunc.POSIXt
	units
	upData
	valueTags
	varclus
	wtd.stats
	xYplot
	xy.group
	yearDays
	sas.get
	Index

